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Preface

There are many books on computers, networks, and software engineering but none
that integrate the three with applications. Integration is important because, increas-
ingly, software dominates the performance, reliability, maintainability, and avail-
ability of complex computer and systems. Books on software engineering typically
portray software as if it exists in a vacuum with no relationship to the wider system.
This is wrong because a system is more than software. It is comprised of people,
organizations, processes, hardware, and software. All of these components must be
considered in an integrative fashion when designing systems. On the other hand,
books on computers and networks do not demonstrate a deep understanding of the
intricacies of developing software. In this book you will learn, for example, how to
quantitatively analyze the performance, reliability, maintainability, and availability
of computers, networks, and software in relation to the total system. Furthermore,
you will learn how to evaluate and mitigate the risk of deploying integrated systems.
You will learn how to apply many models dealing with the optimization of systems.
Numerous quantitative examples are provided to help you understand and interpret
model results.
The following topics are covered:

e application of quantitative models to solving computer, network, and software
engineering problems

* mathematical and statistical models of reliability, maintainability, and
availability

* statistical process and product control

o fault tree analysis

* risk management

* software metrics

e resource allocation and assignment

* software reliability models and tools

e computer security

 optimal network routing
Solutions to problems that consider only a single facet of a problem are doomed to
be suboptimal. Because of its breadth, this book provides a new perspective for

computer, network, and software engineers to consider the big picture in order to
develop optimal solutions.

vii
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viii Preface

This book can be used as a text, handbook, and reference by advanced under-
graduates and first-year graduate students in academia as well as by computer,
network, and software engineer practitioners in the worldwide industry.

NORMAN F. SCHNEIDEWIND

Professor Emeritus of Information Sciences
Department of Information Sciences

and the Software Engineering Group
Naval Postgraduate School
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Chapter 1

Digital Logic and
Microprocessor Design

This chapter focuses on the fundamentals of digital logic and design, with numerous
examples from both computer hardware design and “everyday life” events to demonstrate
that digital logic is not confined to designing computers. My objective is to equip the engineer
or student with sufficient knowledge of design principles to be able to design a digital com-
puter. In addition, I integrate the important role that software plays in modern computer
systems with the hardware design principles. Numerous design examples and solved problems
are provided to support learning objectives.

MICROPROCESSOR DESIGN
Functions

Using its arithmetic logic unit(ALU), a microprocessor can perform mathematical
and logic operations like addition, subtraction, multiplication, division, and com-
parison. Modern microprocessors contain complete floating-point processors that
can perform extremely sophisticated operations on large variable-length numbers.
In addition, a microprocessor can perform the following functions:

Move data from one memory location to another.

Make decisions and jump to a new set of computer program instructions based
on those decisions.

Use an RD (read) and WR (write) line to tell the memory whether it wants to
read from or write to the addressed location.

Use a clock line to transmit clock pulses (CPs) to sequence the microprocessor.
For example, when numbers are added by the microprocessor, which you

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
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will see later, addition takes place bit by bit, and the clock triggers each
binary bit addition to ultimately form a decimal result.

Uses a reset line to reset the program counter to zero and restart execution.

Components

Microprocessor components are the building blocks of modern computers. These
components are the following:

e ALU. Consists of accumulators, registers, and control unit.
* The ALU executes instructions and manipulates data.
* An 8-bit ALU can add, subtract, multiply, and divide two 8-bit numbers,
while a 32-bit ALU can manipulate 8-bit, 16-bit, and 32-bit numbers.

e An 8-bit ALU would have to execute four instructions to add two 32-bit
numbers (four add instructions, each of which adds 8-bit numbers), whereas
a 32-bit ALU can do it in one instruction.

e Accumulator. Holds data and instructions for processing by the ALU.
* Register. Temporary storage of instructions and data.
e Program Counter (PC). Contains the address of next instruction to be
executed

 Instruction Register (IR). Holds address of current instruction being
executed

* General Registers. Holds operator (e.g., code for add instruction), operands
(e.g., numbers to be added), and data while an instruction is executed

e Stack. Temporary storage of instructions and data, usually on a last in, first
out (LIFO) basis. Also called push-down stack.

e Control Unit. Fetches and decodes instructions, generates signals for the ALU
to execute instructions

* Busses

* Address Bus. Path over which addresses flow for directing memory and
input/output (I/O) data transfers. An address bus may be 8, 16, or 32 bits
wide that sends an address to memory or I/O for accessing memory or I/O.

* Data Bus. Transfers data. A data bus may be 8, 16, or 32 bits wide that can
send data to memory or I/O and receive data from memory or I/O. The
number of address bus lines determine the amount of addressable memory
(n lines = 2" addressable words).

* Control Bus. Communicates control and status information.

e Chip. A chip is also called an integrated circuit. Generally it is a small, thin
piece of silicon onto which the transistors making up the microprocessor have
been etched. A chip might be as large as an inch on a side and can contain
tens of millions of transistors. Simpler processors might consist of a few
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thousand transistors etched onto a chip just a few millimeters square. Microns
are the width of the smallest wire on the chip. For comparison, a human hair
is 100 um thick. As the feature size on the chip goes down, the number of
transistors rises.

Characteristics

Microprocessor characteristics govern the speed and functionality of computer oper-
ations. Important characteristics include the following presented in the succeeding
paragraphs.

Smaller microprocessors can be combined into a larger one (four 4-bit micro-
processors combined into one 16-bit microprocessor).

A crystal-controlled clock sequences the operations of a microprocessor (e.g.,
the sequence of computer program instruction execution) by generating CPs. Clock
speed is specified in cycles per second, where 1 MHz is equal to 1 million cycles
per second. Clock speed is the maximum speed of the chip.

Instructions require one or more clock cycles to execute the following, depend-
ing on its complexity: fetch instruction from memory, decode the operation code,
fetch operands from memory, execute the instruction, and store the result in memory.
In addition to clock speed, an important performance metric is the number of
floating-point operations per second or flops.

Complex instruction set computing (CISC). A single instruction can perform
several operations. This design simplifies programming because, for example,
a single instruction can fetch instruction from memory, decode the operation
code, fetch operands from memory, execute the instruction, and store the
result in memory. However, the downside is the relatively slow speed of the
computer [RAFO05].

Reduced instruction set computing (RISC). Several operations are required to
execute a single instruction. This design provides high speed, for example,
well suited to real-time applications that must meet deadlines, but at the
expense of relatively complex programming.

Performance

One measure of the computing power of a microprocessor is its clock speed, mea-
sured in millions of cycles per second (MHz). It usually takes from one to seven
cycles of a microprocessor’s internal clock to fully process an instruction. The faster
the internal clock, the more instructions can be processed per unit of time. For the
microprocessors in laptop and desktop computers, clock speeds are usually greater
than 100 MHz. The fastest microprocessors can run at a speed of 2 GHz. From a
user standpoint, the most important performance metric is program execution time,
defined as [HARO7]:
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Program execution time = (Number of instructions in program)

*(Clock cycles per instruction) * (Time per clock cycle).

Another measure of performance is the number of instructions that can be processed
per second, referred to as MIPS, for million instructions per second. The MIPS rating
of a microprocessor depends on both the clock speed and the number of instructions
that can be executed per clock cycle. Simple microprocessors can execute a maximum
of one instruction per clock cycle. Advanced microprocessors can execute up to six
or eight instructions per clock cycle. The relationship between clock speed and MIPS
is not straightforward, however, because some instructions may take more than one
clock cycle to execute, depending on the program. The product of clock speed and
the number of instructions that can be executed per cycle may be greater than MIPS.
The maximum clock speed is a function of the manufacturing process and delays
within the chip. MIPS is proportional to the clock speed and inversely proportional
to the number of clock cycles per instruction.

Another indication of microprocessor speed is the word length, as measured by
the number of bits of information that can be transferred simultaneously. Long words
allow the microprocessor to handle data and perform complex tasks more efficiently.
The number of bits per word has been steadily increasing with the growth of circuit
technology. Thus 4-, 8-, 16-, 32-, and 64-bit microprocessors are now common.
Some personal computers use 32-bit microprocessors. More powerful computers use
64-bit microprocessors. The 4-, 8-, or 16-bit devices are usually employed in simple
embedded applications, such as microwave ovens, electric shavers, and televisions.
Figure 1.1 shows the microprocessor architecture.

Pipeline Systems

An important aid to performance is the pipeline system. The purpose of a pipeline
system is to reduce delay caused by the computer processor having to wait for
instructions to complete. With a pipeline design, the processor begins the execution
of the next instruction while the current instruction is executing. Thus, various
phases of instruction execution are overlapped. The concept is to keep the pipeline
full, with as many execution sequences as possible. For example, due to overlapped
instruction execution, each instruction overlaps during (n — 1) clock cycles, and each
of m =4 instructions requires one clock cycle, yielding (n— 1) + m =7 clock
cycles, total, as shown in Figure 1.2.

Problem: How is the increase in speed, obtained by a pipelined system over a
conventional system, computed?

Answer: Using Figure 1.2 as an example, the increase is computed as follows:

The number of clock cycles required in conventional system is mn =4 % 4 = 16 in

the example of Figure 1.2. Thus, the decrease in number of clock cycles for a pipe-
lined system is:

mn—((n—1)+m)=16-7=9,
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and the increase in speed (number of clock cycles required in conventional system/
number of clock cycles required in a pipelined system) is:

(mn)/(n—D+m)=n/(((n—-1)/m)+1)=16/7 =2.286.

If m is large, the increase in speed approaches n clock cycles per instruction—
maximum speed increase.

The pipeline throughput is defined as the number of instructions, m, per total
clock cycle time required to process m instructions:
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Instruction Input fstruction Queues\
Hold
Instruction
Memory » Memory Memory > Memory
1 2 r 3 4
* Latch 1 * Latch 2 Latch 3
Bus
Clock Cycle T1 T2 T3 T4 T5 T6 T7
Instructions 11 11 1 1 —» Done
12 12 12 12 —» Done
13 13 13 13 —» Done
14 14 14 14 —» Done

Figure 1.2 Pipelined system. n, clock cycle per instruction; m, instructions, each requiring one
clock cycle; (n — 1) + m = 7 clock cycles (each instruction overlaps for [n — 1] clock cycles).

m instructions _ m
Number of clock cycles per instruction * Time per clock cycle m+(n—DT’

where T is clock cycle time per instruction.

Problem: Compute the throughput of the pipeline microprocessor in Figure 1.2.

Answer: For a clock speed of 10 Mhz (107 clock cycles per second), T = 1/10’
seconds, the throughput is:

m/((m+n-1T)=4/((7)1/107)) = (4)(107) /7 = 5.71 MIPS.

Pipeline efficiency is computed as: speed increase/maximum speed increase (n = 4
clock cycles per instruction) = 2.286/4 = 0.5715.

Pipeline System Delay

When a pipeline instruction is unable to complete on the scheduled clock cycle, then

e Finish the earlier instructions on schedule and
* Delay the later instructions
* This is called stalling the pipeline

Structural hazards are pipeline hardware delays.
Example: Memory does not respond to a request as fast as it is expected.

Data hazards arise when data are not ready in a pipeline at the time they are needed.
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Example: An instruction needs data in a register that a previous instruction is
still modifying.

Control hazards arise when the central processing unit (CPU) needs to manage a
pipeline but instead must increment the program counter.

Example: Nonpipelined conditional branch instruction jumps to a pipelined
instruction.

Problem: Delay in a pipelined operation is illustrated in this problem that
compares the clock cycle delay for nonjump instructions with that of jump
instructions.

If a jump instruction is executed in the pipelined CPU in Figure 1.2, what is the
clock cycle delay?

Answer: Since the target of the jump instruction (another instruction) cannot
be decoded (i.e., program counter updated) until the jump instruction is
executed, there is a delay of three clock cycles.

Problem: What cam be done in a pipeline system to maintain performance
when a structural hazard occurs?

Answer: More resources can be employed, if available, or the pipeline can be
stalled (i.e., no instructions executed until needed hardware is available).

Problem: Is the microprocessor architecture in Figure 1.1 a pipeline computer?
Answer: No, it is not because only one instruction can be executed at a time.
Problem: What determines the clock cycle frequency of a pipeline system?

Answer: The clock cycle frequency of a pipeline system is governed by the
pipeline with the slowest processing time. For example, whichever pipeline
queue in Figure 1.2 experiences the slowest processing determines clock
cycle frequency.

Operating System

The operating system contains the software necessary to manage the resources of a
computer system. An example is a signal called an interrupt that is used to indicate
to the microprocessor that an I/O device needs attention (i.e., data input or data
output) or that there is an error condition (e.g., attempted divide by zero). The inter-
rupt service routine is shown in Figure 1.1. In addition to managing resources, the
operating system is responsible for allocating resources, for example, allocating
memory to the application program, as depicted in Figure 1.1.

Memory

Because computer performance depends on the characteristics of memory systems
in addition to the microprocessor architecture, it is important to consider the former
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[HARO7]. Two important types of memory systems are main memory (random
access memory, RAM) and secondary memory (hard disk, USB flash). Main memory
can be divided between a relatively slow RAM for program and data access and a
fast cache memory for accessing recently used instructions and data. In addition,
secondary memory can be classified as virtual, meaning that pages on a hard disk
can be mapped to main memory locations under the control of a memory manage-
ment unit. A microprocessor may be equipped with special hardware, called direct
memory access (DMA), which allows I/O devices to communicate directly with
memory rather than using intermediate devices (such as data buffers in Fig. 1.1).

RAM

RAM contains bytes of information that the microprocessor can read or write,
depending on whether the RD or WR line is activated. One problem with RAM
chips is that they are volatile; the RAM contents are lost once the power goes off.
That is why the microprocessor needs read-only memory (ROM).

ROM

All microprocessors contain ROM. A ROM chip is programmed with a permanent
collection of preset bytes. The address bus tells the ROM chip which byte to read and
place on the data bus. The RD line signal causes the ROM chip to transfer the selected
byte to the data bus. On a personal computer, the program in the ROM is called the
BIOS (basic input/output system). When the microprocessor starts, it begins execut-
ing instructions it finds in the BIOS. The BIOS instructions test the hardware, and
then control is transferred to the hard disk to fetch the boot sector. The boot sector is
another small program that the BIOS stores in RAM after reading it from the disk.
The microprocessor then begins executing the boot sector’s instructions from RAM.
The boot sector program will tell the microprocessor to fetch more instructions from
the hard disk into RAM, which the microprocessor then executes, and so on. This is
how the microprocessor loads and executes the entire operating system.

Read/Write (R/W) Control Line

This single wire is driven by the microprocessor to control memory functions. If the
R/W control line is asserted as a logical 1 (i.e., true), then the microprocessor per-
forms a read operation. If it is asserted as a logic O (i.e., false), then the microprocessor
performs a write operation. The relationship between logic level and voltage level
can vary, depending on the implementation. For example, a logical O corresponds to
a voltage of 0 V, and a logical 1 corresponds to a voltage of 5 V. Figure 1.3 is a block
diagram of the microprocessor and memory, showing the R/W control line.

Address Bus

These wires are controlled by the microprocessor to select a particular location in
memory for reading or writing. The microprocessor in Figure 1.3 uses a memory
chip that has 15 address wires.
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Address Bus (15 bits)
A0:14 A0:14
Microprocessor Memory
D0:7 D0:7
Data Bl it
ata Bus (8 bits) Enable R/~W

e )

R/~W Enable

Read/Write Control Line

Figure 1.3 Diagram of microprocessor and memory.

Problem: How many locations can be addressed in Figure 1.3?

Answer: Since each wire has two states (it can be a digital 1 or a 0), 2'° = 32,768
locations are possible. Thus, the system is said to have 32K of memory
(1K = 1024 bytes).

Data Bus

These wires are used to pass data between the microprocessor and the memory.
When data are written to the memory, the microprocessor drives the data bus; when
data are read from the memory, memory drives the bus. In the example, in Figure
1.3, there are eight data wires (or bits). These wires can transfer one of 2* or 256
different binary values per transfer. The data size of 8 bits is commonly referred to
as a byte. A data size of 4 bits is frequently referred to as a nibble.

Memory Enable Control Line

This wire, called the Enable line, connects to the enable circuitry of the memory in
Figure 1.3. When the memory is enabled, it performs either a read or write operation
as determined by the status of the R/W line.

Memory System Performance

Memory system performance is computed by considering hit and miss rates and the
order of accessing memory components: cache memory, main memory, and hard
disk. These rates are related to whether the instructions or data that are required by
a program are available, first, in the cache memory, or second, in the main memory.
If the instructions or data are in the cache, the access is scored as a cache hit;
otherwise, the access is scored as a cache miss. Similarly, if the instructions or data

vww allitebooks.conl



http://www.allitebooks.org

12 Computer, Network, Software, and Hardware Engineering with Applications

are not in the cache but are in main memory, the access is scored as a main memory
hit; otherwise, the access is scored as a main memory miss because the instructions
or data are only available on the hard disk [HARO7]. Thus, hit and miss rates are
computed as follows:

Number of cache hits

Cache hit rate (CHR) = )
Total number of memory accesses

Number of cache mi
Cache miss rate (CMR) = UMDET Of Cache MmISses

b
Total number of memory accesses

Number of mai hit
Main memory hit rate (MMHR) = Tbet o7 math Termoty b

9
Total number of memory accesses

Number of main memory misses

Main memory miss rate (MMMR) = ,
Total number of memory accesses

Number of hard disk accesses (HAD) = Total number of memory accesses
— (Number of cache memory hits + Number of main memory hits

+ Number of main memory misses).

Note that when there is a cache memory miss, the main memory access is attem-
pted. Thus, it is not necessary to count cache memory misses in the foregoing
computation:

Hard disk access rate (HDAR) = HAD/ Total number of memory accesses.

Problem: For example, consider the following case:
4000 total number of memory accesses
1200 cache accesses are hits and 800 are misses

Of the 800 cache misses that require access to the main memory, 200 are hits
and 600 are misses

Compute CHR, CMR, MMHR, MMMR, HAD, and HDAR.
Answer: CHR = 1200/4000 = 30%

CMR = 800/4000 = 20%

MMHR = 200/4000 = 5%

MMMR = 600/4000 = 1%

HAD = 4000 — (1200 + 200 + 600) = 2000

HDAR = 1200/4000 = 50%

Another memory performance metric is average access time (AAT), which is com-
puted as follows:

AAT = CHR *(cache access time)
+ MMHR * (main memory access time)+ HDAR * (hard disk access time).
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Problem: For the following typical access times: cache = 2 ns, main memory =
60 ns, and hard disk = 35 ms, and using the above hit and miss access rates,
compute the AAT.

Answer: AAT = (0.30)(2) + (0.04)(60) + (0.50)(35 * 10°) ns = 20.50 * 10° ns
(of course, hard disk access time dominates).

Multiplexing Data and Address Signals

On the Motorola 68HC11 microprocessor, in Figure 1.4, the 8-bit address/data bus
takes turns acting as an address bus and a data bus. When a memory location is
accessed (for reading or writing), the bus first acts as an address bus, transmitting
the 8 lower-order bits of the address. Then the bus functions as a data bus, either
transmitting a data byte (for a write cycle) or receiving a data byte (for a read cycle).
This kind of split-personality bus is referred to as a multiplexed address and data
bus. The support needed by the memory is provided by an 8-bit latch (a device that
can store an address), using a multiplexed address/data bus. This chip (HC373)
performs the function of latching the lower 8 address bits, when combined with the
upper 7 address bits from the microprocessor, will provide the full 15-bit address
for reading or writing data.

Figure 1.4 shows how the latch is wired. The upper 7 address bits run directly
from the microprocessor to the memory. The lower 8 address bits are multiplexed
with 8 data bits. When an address appears on the wires AD: 07, the latch connects
the address bits of the microprocessor to the memory. On the other hand, when
data appears on the wires ADO:7, the latch connects the data bits of the micropro-
cessor to the memory. An additional signal, the address strobe (AS) output of the

Address Bus (lower 8 bits)
Address Bus (upper 7 bit§
A8:14 » A8:14
Microprocessor Latch - Memory
(Motorola 6811) (HC373) RO
AS (32K static RAM)
7l > DO0:7
ADO:7 — R/~W Enable
Multiplexed
Address/Data Bus
E_R-W_AS (8 bits)

‘Address Strobe” Signal

Read/Write Control Line

Enable

Figure 1.4 Block diagram of microprocessor and memory with latch.
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microprocessor, tells the latch when to obtain the address bits from the address/data
bus. When the full 15-bit address is available to the memory (upper 7 bits direct
from the microprocessor (wires A8: 14) and lower 8 bits from the latch (wires AD:
07), the read or write access can occur. Because the address/data bus is also wired
directly to the memory, data can flow in either direction between the memory and
the microprocessor. The entire process is managed by the microprocessor. The
Enable (E) clock, the R/W line, and the AS line perform in tight synchronization to
make sure these operations happen in the correct sequence and within the timing
capacities of the microprocessor hardware.

Memory Mapping the RAM

Memory mapping refers to allocating blocks of memory to different functions, such
as the operating system and the application program. If a microprocessor has 15
address bits, it has 32,728 (32K bytes) of addressable locations that can be mapped.
This address space would be used by the 32K memory chip in Figure 1.5. The
technique used to map the memory is fairly simple. Whenever the microprocessor’s
A15 (the highest order address bit) is logic 1, the high-order address bit is selected.
The other 15 address bits (AO through A14) determine the address within that 32K
block. If A15 is logic 0, the 32K block is not selected.

A NAND gate (actually a portion of a programmable logic device called a PAL)
is used to enable the memory when A 15 and the E Clock equal 1 in Figure 1.5. (See
the “Digital Logic” section below for the explanation of NAND and other gates).

The E Clock controls the timing of the chip enable line. Some memory chips
use an active low (sometimes called “active false”) signal to enable inputs, meaning
that they are enabled when the enable input is 0. The method for denoting an input
that is active low (i.e., 0) is shown in Figure 1.5, where the chip enable input con-
nects to a circle; this circle indicates an active low input. Also, the name for the
signal, CE, is prefixed with a ~ symbol.

Interrupt Handling

The microprocessor has a bank of interrupt vectors, as shown in Figure 1.5, which
are hardware-defined locations in the memory address space where the microproces-

Interrupt vectors

32K memory chip

Microprocessor R/~W
x R/~W read/write line

A15—p . .
E clock D O~CE chip enable line
PAL 16L8

Functions as NAND gate

Figure 1.5 Enabling the memory.
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Table 1.1 NOT Truth Table

Input Output
A A
0 1
1 0

sor expects to find pointers to interrupt handling routines, for processing input and
output data, arithmetic overflow, and so on. Also, when the microprocessor is reset,
it finds the reset vector to determine where it should begin running a program. These
vectors are located in the address space of the memory.

DIGITAL LOGIC

The fundamental logic operations of a microprocessor are performed by the follow-
ing circuits. The results of those operations are represented in truth tables, where
the binary value 0 is considered “low” (e.g., low voltage) and the binary value 1 is
considered “high” (e.g., high voltage). While digital logic is used in the design of
microprocessors, “everyday” examples are provided to show that the logic opera-
tions are not restricted to microprocessors.

NOT: represented in Table 1.1 and implemented with an inverter in Figure 1.6.

Application: The application is to complement the input A, producing the
output A.

Microprocessor example: the binary bit input was caused by an arithmetic
overflow condition, so it is ignored and not used in the computation.

Everyday example: if we are to leave on an automobile trip, where A =1
represents leaving at 1000, A =0 represents all times not equal to 1000.
OR: represented in Table 1.2 and implemented with OR gate in Figure 1.6.
Application: The application is to produce a 1 output if any or both of the inputs
are 1.

Microprocessor example: the inputs are binary bits from memory stick or hard
disk, so the microprocessor can accept either or both to perform a computa-
tion, depending on the current computer program instruction.

Everyday example: if A =1 represents the decision to purchase a house and
B =1 represents the decision to purchase an automobile, Z = 1 represents
the decision to purchase a house or an automobile or both.

AND: represented n Table 1.3 and implemented with an AND gate in Figure 1.6.

Application: The application is to produce a 1 output if all inputs are 1.
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Inverter

i

OR Gate

Z=A+B

]

AND Gate
A
> Z=AB
B

NOR Gate

Z=A+B

:

NAND Gate

Z=AB

XOR Gate
Z=AB+AB

;

Implementation of XOR Gate

XNOR Gate

A Z=AB+AB
B

Figure 1.6 Logic operations.

Table 1.2 OR Truth Table

Input Input Output

A B Z=A+B

_—— O O
— o = O
—_— = = O
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Table 1.3 AND Truth Table

Input Input Output
A B Z =AB
0 0 0
0 1 0
1 0 0
1 1 1

Table 1.4 NOR Truth Table

Input Input Output
A B Z=A+B
0 0 1

0 1 0

1 0 0

1 1 0

Table 1.5 NAND Truth Table

Input Input Output
A B Z=AB
0 0 1
0 1 1
1 0 1
1 1 0

Microprocessor example: the microprocessor uses a signal Z = 1 to tell it that
an interrupt has occurred on input line A and signifying that data input occurs
on B, which the microprocessor will transfer to its memory.

Everyday example: if A =1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has both a gas
station and a restaurant.

NOR: represented in Table 1.4 and implemented with NOR gate in Figure 1.6.

Application: The application is to produce a 1 output if all inputs are 0.

Microprocessor example: the microprocessor Z = 1 output is recognized as
interrupt code AB = 00.

Everyday example: if A =0 represents the decision to not purchase a home
and B = 0 represents the decision not to purchase an automobile, then Z = 1
represents the decision to neither purchase a home nor purchase an
automobile.

NAND: represented in Table 1.5 and implemented with NAND gate in Figure 1.6.
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Application: The application is to produce a 1 output if all inputs are not 1.

Microprocessor example: the microprocessor program produces the comple-
ment of the product of binary bits. This would be the case, for example, when
Z =1 signals that Os occur on either or both of two input channels.

Everyday example: if A =1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has only a gas
station, or has only a restaurant, or has neither (i.e., rest stop).

Exclusive OR (XOR): represented in Table 1.6 and implemented with EXCLUSIVE
OR gate in Figure 1.6. The figure also shows how the gate can be implemented,
using AND and OR gates.

Application: The application is to produce a 1 output if any of the inputs is 1,
but not all inputs are 1, and not all inputs are 0.

Microprocessor example: the main microprocessor receives a signal Z = 1
from the output of the I/O microprocessor that a binary bit A= 1 from a
memory stick or B =1 from a hard disk, and is ready for input, but these
inputs are not concurrent.

Everyday example: if A =1 represents the decision to purchase a house and
B =1 represents the decision to purchase an automobile, Z = 1 represents
the decision to purchase a house or an automobile, but not both at the same
time.

Exclusive NOR (XNOR): represented in Table 1.7 and implemented with XNOR gate
in Figure 1.6. The NOR gate is the negation of the XOR gate from Table 1.6, as
indicated in Table 1.7.

Table 1.6 EXCLUSIVE OR Truth Table

Input Input Output

A B Z=AB+AB
0 0 0

0 1 1

1 0 1

1 1 0

Table 1.7 EXCLUSIVE NOR (XNOR) Truth Table

Input Input Output

A B Z=AB+AB=(AB)AB)=(A+B)(A+B)=AA+AB+AB+BB=AB+AB

—_—— O O

— o = O
_— 0 O =
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Application: The application is to produce a 1 output if all inputs are 0 or all
inputs are 1.

Microprocessor example: Two hard drives are identified as A= 0 and A = 1;
two flash memories are identified as B = 0, and B = 1. The microprocessor
is programmed to input data from a hard drive and a flash memory concur-
rently. Therefore, it reads A=0and B=0orA=1and B=1.

Everyday example: if A =1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has neither a
gas station nor a restaurant (i.e., rest stop) or has both a gas station and
restaurant (i.e., get gas and eat).

De Morgan’s theorem [GRES0] is used to simplify complex logic equations and the
resultant digital logic. The theorem is used to simplify relatively simple expressions,
as contrasted with Karnaugh maps (K-maps), described in the next section. The
application of this theorem is shown in the following example:

Theorem: A+B=AB and AB = A +B.

Suppose it is required to simplify F = ((E)(A_B)).
Applying the theorem:

AB = A +B,(AB)(AB) = (A + B)(A + B)
=AA+AB+AB+BB=A+A §+E:K+(K+1)]§:K+E

F=(A+B)A+B=(A+B)+(A+B)=AB+AB=B.

Then, use Table 1.8 to demonstrate the equivalence between ((E)(A_B)) and AB.

K-MAPS

A K-map in Table 1.9 is used to minimize a complex Boolean expression [RAFO05].
Each square of a K-map represents a minterm (i.e., product terms). The process
proceeds by listing the binary equivalents of the terms A and BC on the axes of
Table 1.9, ordering them so that there is only a 1-bit difference between adjacent
cells. Then, the minimum number of cells is enclosed. Next, minterms are identified

Table 1.8 Truth Table to Demonstrate Equivalence between F and AB

A B AB ABAB F = (AB)(AB)) AB
0 0 1 1 0 0
0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 0 1 1
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according to terms that are common to all cells in the enclosure. Last, the product
terms are summed. Notice what a clever method this is. Minimization is achieved
by noting the combination of terms that yields the minimum difference!

Example: Simplify F=A BC+A B C+A BC+A BC.

Table 1.9 K-Map for F = ABC+ ABC+ ABC + ABC

BC BC BC BC
00 01 11 10
A 0 Ly | A 1 4
A 1 /1, 2 41
= /]
In minterm form, FFABC+ABC+ABC+ABC=B

In the K-map, B is common to the enclosed minterms. Therefore, F = B. Table 1.10
demonstrates this result. The considerable reduction from the original function
would result in significant savings in circuitry to implement the function.

Prime Implicant

A prime implicant is the product term obtained by enclosing the maximum number
of adjacent cells in a K-map. For example, in the K-map of Table 1.9, F=B is a
prime implicant. The prime implicant is only useful for providing a name for the
maximum enclosure in a K-map.

Quine-McCluskey Method

This method is an alternative to the K-map for minimizing a Boolean func-
tion. The method is illustrated in Table 1.11 by minimizing the function

F=ABC+ABC+A BC+A BC, where these minterms are placed in Table

Table 1.10 F Function Truth Table

el
Il
™|

F=ABC+ABC+ABC+ABC

»—»—»—»—OOOO>
—_— —_— 0o O~ ~—O0OOC | W
—_— o~ O~ O ~=Oo 0N

OO = = OO =
OO == OO = -
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Table 1.11 Quine-McCluskey Method for F = A BC+ABC+ABC+ABC=B

Difference of 1 Difference of 1
Prime
Minterm ABC Minterms Minterms Minterms implicant
0 ABC 000 0,1 00- 0,1.4.5 -0- B
1 ABC 001
4  ABC 100 4,5 10-
5 ABC 101

Table 1.12 One-Bit Adder Truth Table

A B Q CcO
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

1.11. This method is used to represent a difference of 1 between two adjacent minterms,
suchas A B Cand A B C, yielding A B-=00-. The symbol - is placed where there
is a difference in minterm bit values, such as between 00- and 10- in Table 1.11,
yielding -0-. This process continues until the four minterms 0, 1, 4, and 5 show a
difference of 1 (00- compared with 10-), yielding prime implicant B(-0-). The same
result is obtained as was the case using the K-map in Table 1.9. Of the two methods,
the K-map is easier to apply.

COMBINATIONAL CIRCUITS
These are circuits that use logic gates to produce outputs at any time that are only

dependent on the current values of the inputs, meaning that it is not necessary to
use a CP to trigger outputs [HARO7]. A typical combinational circuit is the adder.

One-Bit Adder with Carry Out

A and B are added, producing Q output and CO (carry out). Q and CO are imple-
mented according to the truth table shown in Table 1.12.

Two-bit Adder with Carry In and CO

What if you want to add two 8-bit bytes? This becomes slightly harder. In this case,
you need to create a full binary adder. The difference between a full adder and the

vww allitebooks.conl
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Table 1.13 Two-Bit Adder Truth Table

Q=1 Cco=1
CI A B Q CO Minterms Minterms
0 0 0 0 0
0 0 1 1 0 CIAB
0 1 0 1 0 CIAB
0 1 1 0 1 CIAB
1 0 0 1 0 CIA B
1 0 1 0 1 CIAB
1 1 0 0 1 CIAB
1 1 1 1 1 CIAB CIAB

Q Product Terms: CI AB+CI AB+CI A B+CIAB

Q=CI(AB+AB)+CI(A B+AB)

CO Product Terms: CIAB+CI A B+ CI A B+CI A B=AB (CI+CI)+CI(A B+A B)
CO=AB+CI(A B+ AB)

Table 1.14  K-Map for Q=CI A B+CI A B+CI A B+
CIAB =CI(A B+ A B)+CI(A B+AB)

AB
CI 00 01 11 10
41l CALL
A= 7 )
CIAB CIAB CIAB CIAB

1-bit adder is that a full adder accepts A and B inputs plus a carry-in (CI) input.
Once you have a full adder, you can string eight of them together to create a byte-
wide adder and cascade the carry bit from one adder to the next. The truth table for
a full adder is slightly more complicated than the previous truth table because now
there are 3 input bits.

A combinational circuit minterm is represented by a product in a row of the
truth table as shown in Table 1.13, corresponding to a 1 in the Q or CO output
columns; for example, the fourth row for CO and the second row for Q in Table
1.13 [GIB80]. The values of Q and CO product terms are obtained by ORing the
products in each row of Table 1.13 where Q = 1 or CO = 1, and then summing these
terms, followed by simplifying the expressions, as demonstrated in Table 1.13.
Further simplification may be possible by using a K-map.

As can be seen in Table 1.14, the adder output Q cannot be simplified by using
a K-map because there are no adjacent cells. However, simplification is achieved
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Table 115 K-Map for Carry Out (CO) = CIAB+ CIAB+CIAB +
CIAB = AB+CI(AB+ AB)

AB
CI 00 01 + 10
0 1
1 <13 SIACN| CIR
/ _/ T _
CIAB CIAB CIAB AB CIAB

A B CI(CarryIn)

Inputs XOR Gate
A AB+ AB CI (AB + AB) Adder Output
) Q=CI(AB + AB) + CI (AB + AB)
B Cl
AND Gate
XNOR Gate
AB+AB - OR Gate
i \ Cl (AB + AB)
/ Carry Out
AND Gate CO = AB +ClI (AB + AB)
A
~ AB
B J
XNOR Gate R
A (KB 4 AE) OR Gate
B )
Cl
AND Gate

Figure 1.7  Adder circuit.

for CO, as shown in Table 1.15, producing CQO = AB+CI(XB+ AE). The relevant
minterm cells in Table 1.15 that comprise the minimized function are outlined in
red. Minterm logic is called sum of products. The full adder logic that corresponds
to the minterms in Table 1.13 is shown in Figure 1.7, showing the adder output Q
and the CO.

MULTIPLE OUTPUT COMBINATIONAL CIRCUITS

Combinational circuits can have multiple outputs [RAF05]. Each output is expressed
as a function of the inputs, as shown in Table 1.16, where the inputs are binary-coded
decimal (BCD) bits W, X, Y, and Z, corresponding to the decimal digits 0,..., 9. A
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Table 1.16 Truth Table for Binary-Coded Decimal (BCD) Converter

BCD input bits Computer display segment output bits
Decimal
digit \\% X Y Z a b c d e f g
0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 1 0 0 0 0
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 0 0 1
4 0 1 0 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0 0 0 1 1 1 1 1
7 0 1 1 1 1 1 0 1 0 0 0
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 1 0 0 1 1
. Computer Display
BCD Input Bits Segment Bits
a — a
W —» b—
— >
X —— BCD to Seven Z I f 9 b
Segment Code [—
Y —» Converter e___ 0 5
f > € d ¢
7 —> g b

Example: Number 9

Figure 1.8 BCD to seven-segment code converter.

binary coded decimal converter is an example shown in Figure 1.8, showing how
the number 9 can be displayed. The outputs are computer display segment bits a,...,
g that represent the 1s necessary to generate the display decimal numbers. The code
converter transforms the BCD numbers 0000,..., 1001 to display segments. The
converter does not represent decimal numbers greater than 9. The K-maps use “don’t
cares” = Xs in order to simplify the logic; the “don’t cares” should not be confused
with the BCD bit = X in Table 1.16. The “don’t cares” are used to advantage in
forming minterms, as, for example, in Tables 1.17-1.23.

In order to generate the K-maps, place a 1 in the K-map cells corresponding to
the 1s that appear in Table 1.16. For example, for segment a in Table 1.17, a 1 is
recorded in the cell WXYZ = 0000, corresponding to the 1 (bolded) in the segment
a column in Table 1.16.

The K-maps will lead to simplifying the equations for the seven-segment com-
puter display (Fig. 1.8). The equations will then be used to design the digital logic
circuit in Figures 1.9 and 1.10.
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Table 1.17 K-Map for Segment a

YZ
WX 00 01 11 10
00 1 1 (1
01 T T //
T RPN S
10 AR 74N X
/ N7 T 1
w WXZ XZ YZ
a=W+W X Z+Z(X+Y).
Table 1.18 K-Map for Segment b
YZ
WX 00 01 11 10
00 IF ] | 1]
01 ] / 1
11 X| ] x (X X
10 1/ 1 X X
_/ _
YZ W WX YZ
b=W+W X+YZ+Y Z.
Table 1.19 K-Map for Segment ¢
YZ
WX 00 01 11 10
00 1 1 f
01 1 1 [ T
— A L —
11 X NS IS 57
10 1 /ﬂ \\] 3| 71
/ \ L / _
w Y XYZ XY Z

c=W+Y+X YZ+XY Z=W+Y +Y(XZ+XZ).

25
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Table 1.20 K-Map for Segment d

YZ
WX 00 01 11 10
00 4! t t
01 74; 4l 1 1
1 | x fx X 4] x
TR P
7 /
XYZ XYZ Y
d=XYZ+XYZ+Y=YXZ+XZ)+Y.
Table 1.21 K-Map for Segment e
YZ
WX 00 01 11 10
00 | | !
01 / 1
1 / x X X X
10 /T X 4X
_I/ /_
XYZ YZ
e=Z(XY+Y).
Table 1.22 K-Map for Segment f
YZ
WX 00 01 11 10
00 T
01 41 NE Al
1 X = X IX
10 —4 | 1 X |
T [ 1 _ I_
YZ W XY XYZ

f=Z(Y +XY)+ W+ XY.
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Table 1.23 K-Map for Segment g

YZ
WX 00 01 1 10
00 TR
01 I 411 / 1
1 X / x x| | |x

g=WEXY+XY)+W+YZ.

Input bits Output comparisons
ar —p a0z bibo (G)
a —” N bibo (E)
by ——p . ﬂ:bmo (L)
by —»

Figure 1.9 Two-bit comparator block diagram.

Comparators

A comparator is another type of combinational circuit. Its block diagram is shown
in Figure 1.9 and the corresponding logic diagram is shown in Figure 1.10. For
example, as Figure 1.10 shows, a comparator can be designed to compare two 2-bit
quantities for greater-than (G), equal-to (E), and less-than (L) conditions. By mini-
mizing the logic in Table 1.24, as accomplished by the K-maps in Tables 1.25-1.27,
the logic circuit is designed in Figure 1.9. The K-maps are generated by recording
a 1 in cells corresponding to s in Table 1.24; for example, placing a 1 in the cells
aj, ay, by, and by = 0100 for G in Table 1.24. Notice, as opposed to previous exam-
ples, there are no “don’t care” conditions because all four comparator bits are
relevant.

Decoders

A decoder is a combinational circuit that, when enabled, selects one of 2" inputs and
produces a 1 output, where n is the number of input bits, as shown in Figure 1.11.
After this block diagram is displayed, the truth table (Table 1.28), is formulated,
showing the relationship between inputs and outputs, where an output term 1 is
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Ell

N @b, b, G =aib; + agb by + ajaghy
N '

b I

[

E= (albl +a: E)(anbu+gn Bn)

V

] a,a,b, ;Dilaobo +a,bb,+a b

L ™\ a,b, b,
J

Figure 1.10 Two-bit comparator logic diagram.

generated according to the appearance of Os and s in the inputs columns; for
example, d; =E X; X, =1 for E X, X, =100.

Finally, Table 1.28 is used to design the logic diagram in Figure 1.11. Applying
K-maps to minimize the logic of the truth table is not necessary because there is
only a single 1 output for each combination of inputs in Table 1.28. However, the
truth table is used to generate the output equations, which will lead to the design of
the logic diagram in Figure 1.11. An application of the decoder is to select an operand
(i.e., 4-bit output dyd,d,d;) in a computer instruction, based on the operation code
(i.e., 2-bit input Xx;X,) in the instruction, when the instruction execution enable is
high (E = 1).

Encoders

Encoders produce n output bits in accordance with the value of 2" input bits, as
shown in the block diagram of Figure 1.12. Like the decoder, it is not necessary to
develop K-maps of the outputs as a function of the inputs because of the inherent
simplicity of the circuit logic in Figure 1.12. Equations that emerge from the



Table 1.24 Truth Table for Two-Bit Comparator

Inputs Outputs
a, a b, by G: aja, > bby E: aja, = b\b, L: ajay, < b;b,
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0
Table 1.25 K-Map for Output G:a,a, > b;b,
Inputs Inputs b;by
00 01 11 10
aag 00
01 ]
1 ) QP 7 e -
10 AN
aOb_Ib_O/ a b_l a aob_o
G=a,b,by +a,b, +a,3,bq.
Table 1.26 K-Map for Output E:a,a, = b;b,
Inputs Inputs b;by
00 01 11 10
i 00 Lol
o |7 | o
1 / L4
A D
L ] [ /
a;29b, by a;29b, by a;a0b;by a;29b; by

E= ;iaa + ;a()glb() +a,a0b,b, +2, ;0b1 a

=a,b;(aby +a9bg) +a;by (ayby +29by) = (a;by +a,b,)(agby +a,bo).

29
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Table 1.27 K-Map for Output L:a,ay < b;b,

Inputs Inputs b;by
00 01 11 10
i 00 R WLl ]
o R ———
11 / \
10

L= a_15"1_0130 + a_OblbO + a_lbl'

Two Inputs and Four Outputs

Inputs

Decoder Block Diagram

Outputs

Xq ——

Xo —

E —»
Enable

— d3
—— do
—q,
— do

Two Inputs and Four Outputs
Decoder Logic Diagram

%= Ex,x,

s

X
Xo
E
dl =E X ;0
X1
X,
E
do =E X1 Xo
X1
Xo J

Figure 1.11 Two inputs and four outputs decoder block and logic diagrams.
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Table 1.28 Truth Table for Two Inputs and Four Outputs Decoder

Inputs Outputs
E (Enable) X1 Xo d3 d2 d] dQ
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

dy = EX,Xg; d> = Ex;Xo} d; = Ex,Xo3do = EX;X,-

Inputs Outputs
do X1
—»
ds >
a0 ’ 4 Bit to 2 Bit
d—’ Encoder Xo
3—’ ——p

Block Diagram

Logic Diagram
Figure 1.12 The 4-bit to 2-bit encoder block and logic diagrams.

relationships in the truth table (Table 1.29) are used to design the logic circuit in
Figure 1.12. The outputs x, and x, are generated as the sum of the products of inputs
where there are 1s in the x; and X, columns as signified by the bolded quantities.
An application of the encoder is data compression in which we could shrink
4 bits of input to 2 bits of output in a database application that deals with large
quantities of data. For example, representing d,d;d,d; = 0100 as x,x, = 01.

vww allitebooks.conl
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Table 1.29 Truth Table for 4-Bit to 2-Bit Decoder

Inputs Outputs
do d, dy ds X1 Xo
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 1 1

X, =dodid,d; +dod; dady, Xe=dod;d,ds +dod,dyds.

Block Diagram Output

Inputs
do —
d1 _>
4-.t0-1 7
d2 —p Multiplexer
ds —pf
So S
Selectors
Logic Diagram
So > S
L o 5,84,
S > S71 | _—J
o 7= S_Us_ld0+s_(lsld]+SUS_ld2+Sl)Sld3
do S5y
ds J
\ SO §1 d2
d2 J
\ sUS]d3
ds -

Figure 1.13  The 4-to-1 multiplexer block and logic diagrams.

Multiplexers

A multiplexer acts as a data selector, meaning that if the multiplexer has n select
lines, one of 2" inputs can be selected as the output. For example, in Figure 1.13,
using selector lines Sy and S,, one of four inputs, do, d;, d,, d3, can be selected at the
output Z. The output equation for Z is derived from Table 1.30, noting that a given
output is produced for given values of the selectors, for example, Z = d, when
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Table 1.30 Truth Table for 4-to-1 Multiplexer

Selector Output
SO S1 Z
0 0 dy
0 1 d
1 0 d,
1 1 d;

Z =S,S,dy +SoS,d,; +SoS,d, + SS,ds-

SoS; =11. Multiplexers differ from decoders and encoders by virtue of select lines
that cause inputs to be produced at the output. An application is to combine data
received from the Internet on input lines d,, d;, d,, and d; onto a single microproces-
sor memory line Z, if an Internet interrupt has occurred, that has a code represented
by selector lines S;S;.

Demultiplexers

A demultiplexer causes an input X to be transferred to one of 2" output lines, where
n is the number of select inputs in Figure 1.14. Output equations for a demultiplexer
with two select inputs and four outputs are shown in the truth table, Table 1.31. The
demultiplexer does the reverse of the multiplexer; for example, it distributes Internet
data, which have been multiplexed on input line x, to each of four microprocessor
output ports d, d;, ds;, and d,.For example, Internet data will be distributed to output

port dy when 5 S, =11in Table 1.31.

SEQUENTIAL CIRCUITS

A clocked synchronous sequential circuit uses flip-flops to store data, and its outputs
depend on both the previous and current values of inputs [HARO7]. These circuits
are called state machines, wherein states are stored in flip-flops, and state changes
are triggered by CPs. In an asynchronous sequential circuit, the completion of an
operation starts the next operation (i.e., a clock is not needed).

Flip-Flops and Latches

A flip-flop is a clocked synchronous sequential circuit with a 1-bit memory. The
output of the flip-flop can be changed by the rising or falling edge of a CP. A clock
prevents the flip-flop from changing state when spurious inputs occur. Instability can
arise if inputs change during the CP. This problem is avoided by holding data stable
for specified periods of time before and after the CP. The former period is called
setup time and the latter is called hold time.
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Data Input Outputs
——»do
1-to-4 —— d1
X ——p Demultiplexer —»d,
Block Diagram
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Select Inputs So S,

——»ds3

1-to-4
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>
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j d1 = §0 SIX

Figure 1.14 The 1-to-4 demultiplexer block and logic diagrams.

Table 1.31 Truth Table for 1-to-4 Demultiplexer

Select Data

inputs input Data output
Sy S, dy d d, ds
0 0 X SoSix 0 0 0
0 1 X 0 SoSx 0 0
1 0 X 0 0 SoS X 0
1 1 X 0 0 0 SuS X

dy =SoSix; dy = SeSi%; d> =S, S,%; ds = SySix-
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Table 1.32 SR Latch Truth Table Using NOR Gates

Q(t) (present Q(t) Q(t+ 1) (Gate #1)  Q(t+1) (next
S state) R (present state) (next state) state)
0 0 0 1 0 (no change) 1(no change)
1 0 1 1 0 (illegal) 0 (illegal)
0 1 1 (reset) 0 0 (change state) 1(change state)
1 (set) 0 0 1 1(change state) O(change state)

Flip-flops use storage circuits called latches. The term “latch” refers to the
ability to receive and hold data (set) until the latch is reset. The most common latch
is the SR (set-reset). An application of a latch is to set and hold an interrupt flag
when an input device needs attention by the microprocessor. A flip-flop is a latch
with clock input (CLK). Flip-flops implement changes in circuit states that are trig-
gered by a CP. For example, when the CP and the input line cause the flip-flop to
assume the set state, a computer program would execute a branch operation; when
the CP and the input line cause the flip-flop to assume the reset state, a computer
program would return to the main line of the program. An interesting question is
how a latch or flip-flop manages to be in the initial state. The answer is that the latch
or flip-flop will be in the initial state determined by the initial state settings wired
into the flip-flop.

SR Latch

The logic rules of the SR latch are the following:

NOR Gate output = 1, if all inputs = 0; output = 0, if any input = 1.

These rules are applied in the truth table shown in Table 1.32 and the logic
diagram in Figure 1.15. Notice in Table 1.32 and Figure 1.15 that there are illegal
next states in the case of S = 1 and R = 1 because it is not possible to simultaneously
set and reset the latch.

Reset-Set (RS) Flip-Flop

The RS flip-flop is a clocked SR latch. This flip-flop is important because all other
flip-flops are derived from it. Figure 1.16 shows the implementation of this flip-flop
using NAND gates and the truth table, Table 1.33, shows the gate relationships for
present state at time t and next state at time (t + 1), including simultaneous set and
reset that should be avoided. In Figure 1.16, notice that there is feedback from Gate
3 to Gate 4 of Q(t + 1) and from Gate 4 to Gate 3 of Q(t+1).

The design in Figure 1.16 is obtained by employing the equations below, which
in turn are obtained from Table 1.33 and the K-map in Table 1.34. The components
of the equations are annotated on Figure 1.16. The K-map is constructed by noting
whether the next state output Q(t + 1) is a 1. If it is, the corresponding present state
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R=1
o Q) =0 Q(t+1)=0
Q=1 ®L

lllegal States

Q(t)=0 | /

S=1 QH=1Qt+1)=0

No Change in Output
R=0

o Q=0  Q(+1)=0
Q=1

Q=0
s:oi >:®=1 QD=1

R=1
= Q) =1 Q(t+1) =0 «—— Reset: Change Output
Q=0

Qt+1)=0

Qt+1=1
Qv =0

S=0

R=0

jDC& 0 Q(t+1) =1 «—— Set: Change Output
Qt+1)=0 7
Qt+1)=0
Qt)=0 ——
Q=1

S=1
Figure 1.15 SR latch logic diagram.

output Q(t) is inserted into the K-map. The corresponding next state and present
state outputs are bolded in Table 1.33. You can see that Table 1.33 contains eight
entries, corresponding to whether the Present State Q(t) (Gate #3) is 0 or 1; however,
Figure 1.16 shows five cases, sufficient to demonstrate the logic of the RS

flip-flop.

Based on Table 1.33, the K-map is constructed in Table 1.34. Then the K-map

is used to formulate the equations for the flip-flop:
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Table 1.33 RS Flip-Flop Truth Table

Next state Present Next state
Present state Qt+1) state Q(t) Q(t+1)

S (Gate #1) R (Gate #2) Q(t) (Gate #3) (Gate #3) (Gate #4) (Gate #4)
0 0 0 0 (hold) 1 1
0 0 1 1 (hold) 0 0
0 1 (reset) 0 0 1 1
0 1 (reset) 1 0 0 1
1 (set) 0 0 1 1 0
1 (set) 0 1 1 0 0
1(illegal) 1(illegal) 0 1 1 0
1(illegal) 1(illegal) 1 1 0 0

Hold Hold
s , * #3 STRQ(t) S #1 #3

at  Qt+1) 0 1 Q%’ Q“g”

1

CLK 1
! QHQE+1) QB Qt+1)
— 0 0 R 1
R 0 R e
#2 #a S R+Q (1) #2 #4
#1 #3 Set #1 #3
Q(t) Q(t+1
S o ; wae+n 1 0 %(t) Q(t1+1)
D
oK CLK B
1 QM
1 I
0 QW Qe+ Qe
0o 1 R 0
R 1T 42 #4 #2 #4
Reset
s, M #3 aw at+)
D
1 lllegal state
CLK QM Q(t+h)
1 1

1
0 1
R 1

#2
Figure 1.16 RS flip-flop.

#4
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Table 1.34a K-Map

S R Present State Q(t)
(Gate #3)
0 1
0 0 [ 41|
0 1 z
1 1 1 [ 1
bl |
! 0 4 14
71/
S RQ(1)
Table 1.34b K-Map
S R Present State Q(t)
(Gate #4)
0 1
0 0 L
0 14 1"\‘
1 1 /
1 0 /
/
R

S

| |
ol _L—

Table 1.34a: (Gate #3): Q(t+1)=S+R Q(t)

Table 1.34b: (Gate #4): Q(t+1) = S(R +Q(t))
Problem: What are the illegal states of the RS flip-flop?

Answer: The states S = 1 (set) and R = 1 (reset) are not allowed in an RS flip-
flop because set and reset cannot exist simultaneously (indeterminate state).

Delay (D) Flip-Flop

The D or delay flip-flop, shown in Figure 1.17, uses NAND gates. It is widely used
in computers for transferring data. Several of these flip-flops can be used to design
a CPU register, where each flip-flop is used to store 1 bit [RAF05]. This flip-flop
delays the input appearing at the output by one CP. The D input goes directly into
the S input and the complement of the D input goes to the R input. The D input is
sampled during the occurrence of the CP. If D is 1, the flip-flop is switched to the
set state (unless it was already set). If D is 0, the flip-flop switches to the clear state.
If CP = 1, the output Q(t + 1) of the upper flip-flop is fed to the input of the lower
flip-flop in Figure 1.17. On the other hand, if CP = 0, Q(t) of the upper flip-flop is
fed to the input of the lower flip-flop.
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Figure 1.17 D flip-flop.

Problem: Given the above rules for the behavior of the D flip-flop, develop its
truth table.
Solution: These relationships are embodied in Table 1.35.

A D flip-flop circuit can also be triggered by the negative-going edge of the CP, as
opposed to being activated by pulse duration. The timing diagram for such a circuit
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Table 1.35 D Flip-Flop Truth Table

Present Next state Q(t + 1) =D Present Next state 6(t +1)= D

D CP state Q(t) when CP = 1 state Q(t) when CP = 1
0 0 0 0 (no change) 1 1 (no change)
0 1 1 0 (clear) 0 1
1 0 1 1 (no change) 0 0 (no change)
1 1 0 1 (set) 1 0

Q(t)

. KQ(t) = KQ(t) + Q(1) = KQOQ() = (K + Q(1))(Q(t) = KQ(t)
K _J
CP

Qt+1)=1Qm +KQ(t) Next States

= _j‘”—LD
Q1) =JQ +KQ = (XK + Q) = UK + Q) + KQ(

1Q() Q)

o TQW + Q) = U+ QYA = 1AM

Figure 1.18 JK flip-flop circuit.

is shown in Figure 1.17. As the timing diagram shows, the D input is reflected in
the Q(t + 1) (next state) output on the negative edge of the CP. Q(t + 1) follows the
D input regardless of the present state Q(t), if CP = 1. If CP = 0, there is no change
in the output. This property can be applied, for example, to transferring data from
an input device (D) to microprocessor memory port Q(t + 1), according to the data
transfer rules of Figure 1.17.

JK Flip-flop

A JK flip-flop is a refinement of the RS flip-flop by defining and allowing the illegal
state of the RS flip-flop. In Figure 1.16, inputs J and K behave like inputs S and R
to set and clear the flip-flop (note that in a JK flip-flop, the letter J is for set and the
letter K is for clear). When logic 1 inputs are applied to both J and K simultaneously,
the flip-flop switches to its complement state (e.g., if Q = 0, it switches to Q = 1 in
Figure 1.18).

Note that because of the feedback connection in the JK flip-flop, a CP signal
that remains a 1 (while J = K = 1) after the outputs have been complemented once
will cause repeated and continuous transitions of the outputs. To avoid this, the CPs
must have a time duration less than the propagation delay through the flip-flop.

Table 1.36 shows how the state of output Q at t + 1 changes as a function of
the original state of Q(t) and the set input J and the clear input K. The K-map for
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Table 1.36 JK Flip-Flop Truth Table

Q(t) present Qt+1) a(t) a(t +1)
J K CP state next state present state next state
0 0 1 0 0 1 1
0 1 (clear) 1 0 0 1 1
1(set) 0 1 0 1 1 0
1 1 1 0 1 1 0
0 0 1 1 1 0 0
0 1(clear) 1 1 0 0 1
1(set) 0 1 1 1 0 0
1 1 1 1 0 0 1

Table 1.37 K-Map for JK Flip-Flop

J K Q(t) Present | Q(t) Present
State State
0 1
0 0 P
0 | [—
1 1 1, |
! 0 i .
_/ A
JQM® KQM®

JK flip-flop in Table 1.37 is derived from the truth table in Table 1.36 by plugging
1s in the map wherever there is a Q(t + 1) =1 in the Table 1.36 (bolded). For
example, when J =0, K=0,Q(t) =1, and Q t+ 1) = 1 in Table 1.36, a 1 is placed
in the Q(t) = 1 column in Table 1.37.

Problem: Based on the K-map, what are the next state equations for Q(t + 1)
and Q(t+1)?

Answer: Referring to Table 1.37, the next state Q(t + 1) is governed by the
following equation:

Q(t+1)=J Q(t)+K Q(t).

Using this equation for Q(t + 1), the equation for 6(t+1) can be computed as
follows:

Q(t+1)=J Q) +K Q(t) = (J + Q(t)(K +Q(1)) = (J(K +Q(t)) + K Q(1).

These equations are annotated on Figure 1.18.

vww allitebooks.conl
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Table 1.38 T Flip-Flop Truth Table

T CP QO  Qt+D=TQO+TQ® QO  Qt+)=TQW+T Q)
0 1 0 0 (no change) 1 1 (no change)
1 1 0 1 (toggle) 1 0 (toggle)
0 1 1 1 (no change) 0 0 (no change)
1 1 1 0 (toggle) 0 1(toggle)
|&t) el} — e
T TQ(1) + TQ(H) = (TQ)(TQ(1) = (T + Q)T + Q1)) = TQ(H) + TQ(t)
cP—
T
cpP— —_— — - -
Q) Q(t+ 1) =TQ() + TQ(t) = (TQ(V) (TQ() = (T +Q (1) (T +Q() = TQ(H) + TQ(®)
Q® [

Q®

Figure 1.19 T flip-flop circuit diagram.

T Flip-Flop

The T flip-flop is a single input version of the JK flip-flop [RAF05]. It is typically
used in the design of binary counters (covered later in the section “Design of Binary
Counters,” where complementation of the output is required. For example, in Table
1.38 when T =1, the input Q(t) is toggled, producing its complement in output
Q(t + 1). By examining the gate operations in Figure 1.19, at the Q output, we see that:

Q(t+1)=TQ(1)+T Q(t) = (TQM)(T Q1) = (T+QO)T+Q(1)) =T Q(t)+T Q(t).

Furthermore, the equation for 6(t+1) is derived as follows:

Q(t+1)=T Q)+ T Q(t) = (T Q)T Q(t)
=(T+QM)T+Q(1))=T Q(t)+T Q(t).

Note that in Figure 1.19 feedback from the flip-flop outputs to the inputs is used to
obtain the desired outputs at time t + 1.

Problem: Based on the above equations, develop the T flip-flop truth table.
Solution: The truth table is shown in Table 1.38.

Triggering of Flip-Flops

There are situations where it is useful to have the output change only at the rising
or falling edge of the CP, rather than during the CP. This stabilizes the circuit because
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Triggered

Figure 1.20 Edge-triggered flip-flop.

all changes are synchronized to the rising or falling edge of the CP. For example,
when an input interrupt occurs, it should be held by the microprocessor until it can
be serviced during the CP and only released on the falling edge of the CP. An edge-
triggered flip-flop achieves this by combining a pair of latches in series. Figure 1.20
shows an edge-triggered D flip-flop where two D latches are connected in series,
one directly, and one through an inverter. The first latch is called the master latch.
When CLK is a | at Step 1, with a positive edge trigger, the master latch is enabled
but the second latch, called the slave latch, is disabled with a negative edge trigger,
so that a 1 is produced at the Q output of the master latch and a O is produced at the
output of the slave latch. A 1 is produced at the master latch output because when
CLK = 1, the Q output follows the D input. Contrariwise, when CLK is a 0 at Step
2, with a negative edge trigger, the master latch is disabled but the slave latch is
enabled with a positive edge trigger (a negative edge is made positive with an
inverter) so that a 1 is produced at the Q output of the slave latch by the Q output
at the slave latch following the D input. In Step 2 it is assumed that Q still equals
1 in the master latch from Step 1. The Q output of the master latch does not change
when CLK = 0, so that a 1 is transferred from the master latch to the slave latch.

Analysis of Asynchronous Sequential Circuits

As you have seen, edge-triggered flip-flops change state at the edge of a synchro-
nizing CP. Many circuits require the initialization of flip-flops to a known state
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Present states Next states
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Figure 1.21  Analysis of asynchronous sequential circuit.

independent of the clock signal. Sequential circuits that change states whenever a
change in input values occurs, independent of the clock, are referred to as asynchro-
nous sequential circuits. Synchronous sequential circuits, latches, and flip-flops, on
the other hand, change state only at the edge of the CP. For asynchronous sequential
circuits, inputs are used to either set or clear the circuit without using the clock.
Figure 1.21 is an example of an asynchronous sequential circuit. The next state
equations for Z; and Z,—as a function of present states a, z;, and z,—provide the
logic for the outputs of the circuit in Figure 1.21. Feedback from outputs to inputs
in Figure 1.21 produces the desired next states. The output equation

Z,=(a+z)(a+z,)=aa+az,+az,+z z,=az,+az,+2, 7,

can be reduced because the term a a =0, and the last term z; z, does not change the
value of the equation, as demonstrated by the K-map in Table 1.40 that is used to
minimize this equation, producing Z; =az, +a z,. Thus, the resultant terms az,
and a z, are identified in the K-map. The validity of this transformation is shown
in the truth table for Z;, Table 1.39. The K-map in Table 1.40 is produced by record-
ing Is in the map corresponding to 1s (bolded) that appear for Z, in the truth table.
This example demonstrates the fact that K-maps can accomplish Boolean expression
reduction that is not possible with algebraic manipulation.

Problem: Reduce output equation Z, by developing the truth table and corre-
sponding K-map.

Solution: The output equation Z, =(a+z,)(a+z,)=aa+az +az,+z, 2, =
az,+az, can be reduced, as shown above, because the first term aa =0
and the last term does not change the value of the equation, as demonstrated
by the K-map in Table 1.41 that is used to minimize this equation, producing
7, =az,+az, ,where it is shown that the term z,z, is redundant. Thus, the
resultant terms a z, and a z, are identified in the K-map. The validity of this
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Table 1.39  Truth Table for Z, =(a+2z,) (3 +2,)a z, +a 7,

Decimal
a 7z, 7, code=azz, (a+2z) (§+z_2) Z, :(a+zl)(§+z_2) az az_2 Z, :Ezl+az
0 0 O 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0 0 0
0 1 0 2 1 1 1 1 0 1
0 1 1 3 1 1 1 1 0 1
1 0 O 4 1 1 1 0 1 1
1 0 1 5 1 0 0 0 0 0
1 1 0 6 1 1 1 0 1 1
1 1 1 7 1 0 0 0 0 0

Table 1.40 K-Map for Z, =(a+z,)(@+2,)=az,+a z,

Z) 7y a
0 1
0 0 [ 1 4
1 0 0
1 1 1 0
1 0 (Xt 4 L
} A i
az, YAVS) az,
redundant

Table 1.41 K-Map for Z, =(a+z,)(a+2z,)=az+az,

Z, Zy a
1
0 0 0
0 1 0 T
1 1 4 1 y)
/ /
1 0 154 / 1/
a Z VAV az,
redundant

transformation is shown in the truth table for Z, (Table 1.42). The K-map is
produced by recording 1s in the map corresponding to 1s (bolded) that appear
for Z, in the truth table.

The state transition table, depicting the state changes in transitioning from input
variables a, z;, and z, to output variables Z, and Z,, is shown in Table 1.43. This



46 Computer, Network, Software, and Hardware Engineering with Applications

Table 1.42 Truth Table for Z, =(a+2z,)(a+z,)

Decimal

a zy z, code=azz, (a+z) (a+z,) Z,=Z,=(a+z)a+z,) az az, Z,=az +az,
0 0 O 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0 0 0
0 1 O 2 1 1 1 1 0 1
0o 1 1 3 1 1 1 1 0 1
1 0 O 4 1 0 0 0 0 0
1 0 1 5 1 1 1 0 1 1
1 1 0 6 1 0 0 0 0 0
11 1 7 1 1 1 0 1 1

Table 1.43 State Transition Table for Asynchronous Sequential Circuit

Next state
Present
state a=0 a=1
7 Z) Z1=521+aZ Z,=az,+az, Zl=5z1+az Z,=az,+az,

0 0 0 0 1 0

0 1 0 0 0 1

1 0 1 1 1 0

1 1 1 1 0 1

table is constructed by noting the values of Z; corresponding to a =0 and a =1 and
values of Z, corresponding to a = 0 and a = 1 in Tables 1.39 and 1.42, respectively,
and recording the relationships in Table 1.43. Table 1.43 is used to indicate transi-
tions from microprocessor state Z, = 1 to state Z, = 1 and vice versa. Consider the
following application: when a = 1, z, = 0, and z, = 0 (decimal code 4), Z, is in the
next state = 1 processing transactions. However, when a=1, z, =0, and 7z, =1
(decimal code 5), the microprocessor transitions to the next state Z, = 1 to receive
additional transaction input.

Another application of the asynchronous sequential circuit is the occurrence of
asynchronous inputs to a microprocessor that arrive from the Internet, not on sched-
ule (not governed by CP), but unscheduled (i.e., asynchronously). For example, let
a, 7;, and z, be the binary bits of a decimal transaction code, arriving from the
Internet, in a database application, where one type of transaction is processed by a
microprocessor at its input Z; and the second type at its input Z,. Suppose the allow-
able decimal codes at Z, are 2, 3, 4, and 6 in Table 1.39 (bolded), and the allowable
codes at Z, are 2, 3, 5, and 7 in Table 1.42 (bolded). Then, Tables 1.39 and 1.42
provide the required transaction processing logic for Z, and Z,, respectively.
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Figure 1.22 D flip-flops in asynchronous sequential circuit.

Relationship among Inputs, Flip-Flops,
and Output States

Figure 1.22 shows an example of analyzing the inputs, D flip-flops, and output states
of an asynchronous sequential circuit. The diagram shows the equations for the next
states Q, and Q,, as a function of the present states D, and D,, recalling that for D
flip-flops, output Q follows input D.

The equations below produce the values shown in the state transition table,
Table 1.44, which shows the relationships among components.

Q. =(X+Y)A=D,,
Q. =X+Y)A,
Qy=A+X=D,,
Qy =A+X=AX,

B=AY+AY.

An application is the processing of transaction code bits occurring at microprocessor
input ports X, Y, and A. An output B = 1 is produced by setting a flag B in a micro-
processor register when correct transaction codes are received. For example, if
decimal interrupt code 1, 3, 4, 6, or 7, corresponding to X, Y, A =001, 011, 100,
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Table 1.44 State Transition Table for the Analysis of Asynchronous Sequential Circuit

Inputs Next state Flip-flop inputs Output
_ o x= _ D=Q= D;=Q_  __
X XY Y A A Dx Q Q=Dy Q X+Y)A =A+X B=AY+AY
o 1 0 1 0 1 1 0 1 0 1 1 0
0o 1 0 1 1 0 1 0 1 0 1 1 1
o 1 1 0 0 1 1 0 1 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0 0 1 1 0 1
1 0 0 1 1 0 0 1 1 0 0 1 0
1 0 1 0 0 1 1 0 0 1 1 0 1
1 0 1 0 1 O 0 1 1 0 0 1 1

110, or 111 in Table 1.44, respectively, is received, the flag would be set. The micro-
processor queries this flag to determine when to process transactions. The bolded
terms in Table 1.44 indicate when the flag B is set.

TYPES OF SYNCHRONOUS SEQUENTIAL CIRCUITS
Mealy and Moore Machines

In the Mealy machine, the output states depend on the inputs and the present states
of the flip-flops [RAFO05]. In the Moore machine, output states depend only on the
present states of the flip-flops. For example, a Mealy machine would be used to
control the execution sequence of a microprocessor that uses both data inputs and
the current state of the program (i.e., program address) to decide which instruction
to execute next (e.g., doing database management using input data from the Internet).
On the other hand, the Moore machine would be used to control microprocessor
program execution when only the current state of the program is relevant (e.g., doing
a matrix multiplication on data stored in memory). Thus, the Mealy machine is the
more versatile of the two.

Minimization of States

Figure 1.23 shows a state diagram for a synchronous sequential circuit, which is
classified as a Mealy machine because outputs depend on both present states and
inputs, where two of the paths are highlighted in red and green. It may be possible
to minimize the number of states in these circuits by developing the state sequence
diagram, based on Figure 1.23, to see whether there are any redundant states. If there
are, the reduction in states is reflected in the revised state sequence table. Using
Figure 1.23 and the original state sequence table, Table 1.45, state Z is identified as
being redundant because the next state for both states V and Z is W, and the state
changes have the same inputs and outputs (1, 1). Therefore, state Z is noted as
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Branch Identifier

States: V,W,X)Y,Z

Path Sequences: (1,2,3,4) (5,6,7) (8,3,9,10,11,12) (13,14,15,16)
Input Sequence: (0101)(1 01)(100011)(1000)

Output Sequence:(0110)(100)(110010)(1000)

Figure 1.23 State diagram for minimization of states.

Table 1.45 Original State Sequence Table

<
=
<
<
N

Originating state ~ V v W X
States Y and Z

Branch 1 2 3 4 6 12 10 5 12 are redundant
Input 0 1 0 1 1 1 1 0 0

Next state v W X \% A\ v W Y A\

Output 0 1 1 0 1 0

Table 1.46 Revised State Sequence Table (Eliminating Redundant States)

Next state Output
Present state Input =0 Input =1 Input =0 Input =1
v A% w 0 1
' X v 1 0
X v 0

redundant in Figure 1.23 and Table 1.45. Another state indicated as redundant in
Figure 1.23 and Table 1.45 is Y because both Y and W have the next state V, with
same state change inputs and outputs (1, 0). State Y is also noted as redundant in
Figure 1.23 and Table 1.45. Therefore, states Z and Y do not appear in the revised
state sequence table, Table 1.46.

Figure 1.24 shows the result of eliminating redundant states in the state diagram.
It is important to note that it may not be possible to eliminate “redundant states”
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Output
Input
\ \ 1/0
0/0 6

1
' 3 0/0

Branch Identifier

States: V, W, X
Path Sequences: (1, 2, 3, 4) (5, 6)
Input Sequence: (010 1) (1 1)

Output Sequence: (01 10)(10)
Figure 1.24 Reduced state diagram.

because these states could be associated with important functions. For example,
redundant states could be associated with two microprocessors—one the primary,
currently executing, and the other, a backup, redundant microprocessor, designed to
take over if the primary fails. However, in general, digital circuitry can be simplified
by eliminating redundant states.

Design of Synchronous Sequential Circuits

To design synchronous sequential circuits, or any circuit for that matter, start with
your objective. For example, suppose you want a microprocessor to produce an
output Z dependent on input A (e.g., input data A has arrived from the Internet, and
the microprocessor produces output Z); the present state of your computer program
is represented by X (e.g., ready to read input data A) and the present state of the
input buffer A is represented by Y (e.g., input buffer A empty). You need to identify
the transition to the next computer program state, X+, (e.g., fill buffer with input A
data) and Y+ (e.g., input A buffer full). Thus, referring to the state diagram in Figure
1.25, if an input occurs on microprocessor line A = 1, and the present program state
are X = 1, Y = 1, representing instruction ready to execute and input buffer A empty,
respectively, output is produced on microprocessor line Z = 1, and the program
transitions to next state X+ = 0 (fill buffer) and Y+ = 0, (input buffer A full). The
state diagram in Figure 1.25 is an example of a Mealy machine circuit specification
because outputs depend on both inputs and states of the circuit.

To design your circuit, identify the states, inputs that cause state transitions, and
outputs produced by inputs and state transitions, as in the above example. Then, note
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A: input

/ Z: output
o ¥

X, Y: present state: ready to
execute. Input buffer A empty

X*, Y*: next state: fill buffer,
input buffer A full

Figure 1.25 State diagram for design of sequential circuit.

Table 1.47 State Table for Sequential Circuit

Present Next
states Input states Flip-flop inputs Output
X Y A X Y D =X'=XY+XYA D,=Y'=YA+YA Z-YA+X

0 0 0 0 0 0 0 1

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 0

0 1 1 1 0 1 0 0

1 0 0 0 0 0 0 1

1 0 1 1 1 1 1 1

1 1 0 0 1 0 1 1

1 1 1 0 0 0 0 1

in Figure 1.25 and in Table 1.47 the present states X and Y and input A that generate
next state output X* = 1. For example X =0, Y =1, and A= 1 (or XYA) produce
X* = 1. Next, for example, use the D flip-flop, noting that the output corresponding
to next state X" is designated as D, and its formulation is the following:

D, = XYA+XYA +XYA = XY(A+A) = XY + XYA.

Similarly, produce the next state Y* formulation in terms of a D flip-flop output, as
follows:

vww allitebooks.conl



http://www.allitebooks.org

52 Computer, Network, Software, and Hardware Engineering with Applications

D, = XYA+XYA +XYA+XYA = YAX+X)+ YAX+X) = (YA + YA).

Also, develop the equation for output Z by noting in Figure 1.25 the present states
X and Y and input A that generate Z = 1 output, producing the following equation:

Z=XYA+XYA+XYA+XYA=YAX+X)+XY(A+A)=(YA+XY).
Then, using these equations, develop the state table in Table 1.47. Next, formulate
the K-maps in Tables 1.48—1.50. Note that to construct the K-maps, 1s are placed
in the cells of the maps wherever 1s appear for D,, D, and Z in the state table. Recall
that for D flip-flops, inputs are equal to the next states of the circuit. Last, based on
the flip-flop and output equations, design the circuit in Figure 1.26.

Message Processing Design

Synchronous sequential circuits are highly adaptable to message processing systems,
as shown in Figure 1.27. As shown in the figure, a message processing system

Table 1.48 K-Map for D, = XYA + XYA + XYA = XY(A+A) = XY + XYA

YA
X 00 01 11 10
0 L4 ]
| 4 /
/ _/
XYA XY

Table 1.49 K-Map for D,= XYA + XYA + XYA + XYA =
YAX +X) + YAKX + X) = (YA + YA)

YA
X 00 01 11 10
T

<|/‘~’ 7
>

1h

b
\
YA

Table 1.50 K-Map for Z=XYA+XYA+XYA+XYA

= YAX+X)+XY(A+A)=(YA+XY)

YA

X 00 01 11 10

0 +t

fi

I
YA XY
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X
q X XY
Q, —\
YA+YA Y
— A Qy
X Y Dy -
¥ g
Y N
Y XY
Y A lz- ¥A+XY)

9y

_I>OL
Y
Figure 1.26 Logic diagram for synchronous digital circuit.

Input X Qutput Z

\11 /

10

11 10

VAN
/ \ 01

Present Next
state state

Detects message output sequence 101

State transitions

State A detects input X = 1 and outputs Z = 1 to state B
State B receives 1 from A and outputs Z = 0 to state C
State C receives 0 from B and outputs Z = 1 to state A

Figure 1.27 Message processing state diagram.

involves a sequence of inputs X with the objective of the circuit detecting a bit
pattern, such as 101. The circuit accomplishes this objective by changing state
according to the bit pattern received. When the desired bit pattern is recognized, the
sequence 101 is generated at the output. An application is the detection of computer
program operation codes by a microprocessor. For example, if the operation code
for the add instruction is the decimal 5 (binary 101), the output 101 would be gener-
ated in Figure 1.27 designating that the add instruction should be executed.
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The first step in the design process is to specify the state transitions, as shown
in Figure 1.27, where the desired detected bit pattern is shown. State transitions are
identified that will serial process the incoming bit stream, looking for the desired
pattern in Figure 1.27. Additional steps involve designing the state transition table
in Table 1.51 to represent the logic of Figure 1.27 in a tabular form and selecting a
flip-flop type to implement state transitions. In this case, the T flip-flop is selected
because its output toggles with each CP. If T = 1, the flip-flop causes complementa-
tion of the present state. This is the logic required to detect the input sequence 101
in Figure 1.28.

Table 1.51 State Transition Table

Input X =1 Input X =1 Input X =1
Present Present T flip-flop Next T flip-flop Next T flip-flop
state binary state Q state Q binary state Q Output Z
A 0 B 1 1
B 0 C 1 0
C 0 A 1 1
Present Next
state state
X = 1 ‘( / Output
- |7 Q=0 ! Z=1
A— N

CLK Output sequence = 101

T Q=0

N

Figure 1.28 Message processing circuit.
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Design of Binary Counters

Two-Bit Counter

The binary counter is an example of a synchronous sequential circuit designed to
count a sequence of binary digits. For example, if the counter can count two binary
digits at a time, it would be able to process the following sequence of digits: 00, 01,
10, and 11. Thus, the counter can count 2" binary numbers, using flip-flops (e.g., T
flip-flops), where n is the number of binary bits in the count. Figure 1.29 shows the
state transition diagram for a 2-bit binary counter that implements the binary
sequence count rules (e.g., if the sequence is 00, it is recognized by the next state
01). After Figure 1.29 has been constructed, the state table (Table 1.52) for flip-
flops 1 and 2 is developed followed by the state table (Table 1.53) for flip-flops 3
and 4. The outputs b,y and b, follow the logic rule: TQ(t) + TQ(t) in Figure 1.29. Note

Next state 01 recognizes

Next state
Present state a; ) present state sequence 00

Q" =T Q=()a)=0011 Q" =T,Q=(a )1)=1001
Q—— bi=a =1001

! =1 | [>T, —a | Output

| a,=1100
Q a1 N Q

CLK

Q" =T, Q=(a, )(1)=0101

1 Q" =T,Q=(I)a,)=0101 .
an =0101 Output

—Q
Ts=1 |'> Ta= a0+

a, =1010

6 do ’, 6 0

Figure 1.29 Binary counter state transition diagram and circuit.
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Table 1.52 Binary Sequence Counter State Table

Present state Next state flip-flop 1 Next state flip-flop 2 Output
a at Q" =T,Q=()a) Q" =T.Q= @)D b =a;

0 0 0 1 1

0 1 0 0 0

1 1 1 0 0

1 0 1 1 1

Table 1.53 Binary Sequence Counter State Table

Present state Next state flip-flop 3 Next state flip-flop 4 Output
a9 aj Q' =T:Q =) (ay) Q' =TQ=(a§)(D) by = a5

0 0 0 0 0

0 1 0 1 1

1 1 1 0 0

1 0 1 1 1

that an inverter is inserted between the flip-flops in Figure 1.29 in order to achieve
the correct state transitions.

Three-Bit Counter

A 3-bit counter design proceeds by first constructing the state diagram in Figure
1.30, with present and next states annotated. Next, using JK flip-flops, show the 3-bit
counter excitation table (Table 1.54), noting flip-flop states and flip-flop inputs. The
salient state conditions can be summarized as follows: when Q =0 and J =0, no
change in state; when J = 1, set the flip-flop; when K = 1, clear the flip-flop; and
when Q = 1 and K = 0, no state change. The reader may wonder how the present
states are obtained in Figure 1.30. The answer is that present states correspond to
the present states of the flip-flops that, in turn, correspond to the condition where
there is no CP (e.g., a,a;a, = 000).

To demonstrate the validity of the JK flip-flop transformations in Figure 1.30,
recall the fundamental property of the JK flip-flop: Q* (next state) =J Q(t)+ K Q(t).
For example, in the state transition a,aa, =000 ajajaj =001, applying Q'(next
state) yields:

a; =1, Q(0)+ K_zQz (= alaoa_z +a,a0,.
Thus,

aj = ala0a_2+ala0a2 =001+ 000 = 0,
ay =J,Q () +K,Q;() =apa; +apa.
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State diagram
Present states Next states

2,248,

Next state 001 recognizes present state 000

Logic diagram

J,=aga, J Q, a,
CLK
K,=a.a - —
2 01 K2 Qz a,
Ji=2a, a,
J1 Q1 a,a,
_ a ]
Ko Q 1
K1 =a,
JO =1 y 3 QO =a,= 0
0 0 T
_ 60 = i =1
K Q
Ko=1

Figure 1.30 Three-bit counter state diagram and logic diagram.
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Thus,

af =aga, +a,a, =01+10=0,
at =J,Qu(0)+K,Qo(t) =1ay, +0a, =11+00=1.

Thus, the state transition a,a,a, =000 atafaj =001 is demonstrated.

Next, using Figure 1.30, formulate the truth table (Table 1.54), incorporating
the state transitions from Figure 1.30 and the flip-flop inputs that generate these
transitions. Next, the K-maps in Tables 1.55-1.60, by noting the flip-flop inputs that
are bolded in Table 1.54, and resultant equations, are developed for the flip-flop
inputs.

Table 1.54 Three-Bit Counter Truth Table

Present
State Next state Flip-flop inputs
a a ) ar af a J,= aay K, = a1|a0 J, = a K, = a JO =1 KO =1
0 0O 0 O 0 1 0 0 0 0 1 1
0 0 1 0 1 0 0 0 1 1 1 1
0 1 0 O 1 1 0 0 0 0 1 1
0 1 1 1 0 0 1 1 1 1 1 1
1 0o 0 1 0 1 0 0 0 0 1 1
1 0 1 1 1 0 0 0 1 1 1 1
1 1 0 1 1 1 0 0 0 0 1 1
1 1 1 0 0 0 1 1 1 1 1 1
Table 1.55 K-Map for J,
aag
00 01 11 10
ay 0 4 1
1 T
/
J2 = a9y
Table 1.56 K-Map for K,
aag
00 01 11 10
a 0 I
1 4
/
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Table 1.57 K-Map for J,

a;dy
00 01 11 10
a 0 T T
1 ’ 1
T I T
/
Ii=a
Table 1.58 K-Map for K|
41dy
00 01 11 10
dy 0 X T T
1 X Al
/
Kl = Qp
Table 1.59 K-Map for J,
a1d9
00 01 11 10
a, 0 1 L 1 1
1 P 1 1
T T / T T
/
JO =1
Table 1.60 K-Map for K,
a;dg
00 01 1 10
a, 0 T T T T
| A |
/
Ko=1

Shift Register Design

The design process starts by documenting the elements of the basic building block
of the shift register—called the basic cell in Figure 1.31—comprised of the multi-
plexer and the D flip-flop. The D flip-flop is used because the flip-flop Q output
follows the multiplexer basic cell D input, thus enabling the shift operation. The
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Basic Cell
Multiplexer Output
[ — D| » D Q>
Operation Selectors
S E—— CLR 5

Colc ¢ c Ens

IR

Xo Xy Xo X3
External Inputs X

Xo X1 Xo
X3 Q, Q1
Right Shift & q, Qs lLeftShift
Operation l l v Q1l vy Q°l v ¥ Qs
Selectors |
So d
N > > >
S
CLK——»] > - >
CLR > > > >
Qs Q. Q, Qo
Multiplexer Multiplexer Multiplexer Multiplexer

Shift Register Logic Design
Figure 1.31 Basic cell and logic design of shift register.

basic cell is replicated in the shift register logic design, also shown in Figure 1.31.
The shift register operates in Figure 1.31 by shifting the least significant bit, x,, for
a left shift, one flip-flop output to the left on each CP. For a right shift, the most
significant bit, xs, is shifted one flip-flop output to the right on each CP. These shifts
are referred to as “end around” because for a right shift, the least significant bit,
represented by Qs in Table 1.61, is shifted to the most significant bit position. More-
over, in a left shift, the most significant bit, represented by Q, in Table 1.61, is shifted
to the least significant bit position. The type of shift is based on the values of the
operation selectors in Table 1.61.

RAM DESIGN

There are two types of RAM: static and dynamic. Static RAM stores data in flip-
flops. Dynamic RAM stores data in capacitors. Because capacitors gradually lose
their charge, dynamic RAM must be refreshed periodically. A RAM circuit is shown
in Figure 1.32 where 1 bit, O or 1, can either be read or written depending on whether
a read or write operation is selected and whether a 1 or 0 appears at the input.
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Table 1.61 Truth Table for Shift Register

Operation Clock Clear Operation Input Output
selectors input CLK| input CLR
So Sy
0 1 Clear Q() Ql Q2 Q3 0000
1 0 No Q QI Q Qs Q Q1 Q Qs
operation
1 0 _I—]0 Shift Q Qi QQ; | Q3Q Qi Q
right “end
around”
1 1 _ 0 Shift left QQQQ | QQQ:Q
“end
around”

— 1.0 Readgate

R/W — 1
Select Read output gate
| _J1o0 Input 10r0
1 DSET @ 1or0
1or0
1 —
1 CcLR@ 1or0
Write output gate
0 1 CLK 1 1or0
Write gate
Red: read
Blue: write

R/W = 1 for read and 0 for write
Select = 1 : select flip flop for read or write

Figure 1.32 Random access memory (RAM) circuit.

HARDWARE DESCRIPTION LANGUAGE (HDL)

Given the complexity of some digital circuits, implementing them can be error
prone. Therefore, as a design aid, aimed to increase design productivity and reduce
errors, HDLs have been developed. In electronics, an HDL is any language from a
class of computer languages for formal description of electronic circuits, and more
specifically, digital logic. It can describe the circuit’s operation, its design and orga-
nization, and tests to verify its operation by means of simulation.

Using the proper subset of virtually any HDL, a software program called a
synthesizer can infer hardware logic operations from the language statements and
produce equivalent hardware functions to implement the specified logic. Synthesiz-
ers use clock edges as the way to time a circuit.

vww allitebooks.conl
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HDLs are text-based expressions of the logical and timing characteristics of
electronic systems. Like concurrent programming languages, HDL syntax and
semantics includes notations for expressing concurrency. Languages whose only
purpose is to express circuit connectivity between blocks are classified as computer-
aided design languages.

The automated steps in using an HDL are the following:

Develop the logic diagram, using truth tables.
Generate the logic equations corresponding to the truth table relationships.
Minimize the logic equations, if necessary, using K-maps.

Use the simulator component of the HDL to verify the correct operation of the
circuit logic, in particular, test timing constraints.

More details on HDL can be found in Salcic and Smailagic [SALOS].

SUMMARY

This chapter has provided the reader with numerous microprocessor design fundamentals and
practical examples that lay the groundwork for the practicing engineer or student to design a
complete microprocessor. In addition to elucidating principles, the chapter explained why
circuits operate the way they do. Furthermore, there was a focus on design process to provide
the reader with a road map to successful design. Last, many examples of digital logic were
drawn from everyday experience to show the reader that the application of digital logic is not
limited to designing microprocessors.
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Chapter 2

Case Study in Computer
Design

The objective of this chapter is to provide the reader with a case study illustrating design
principles, design decisions, and the analysis of performance and reliability that are products
of the design process, using the computer-based design of an elevator system as an example.
This chapter builds upon the fundamentals of Chapter 1: Digital Logic and Microprocessor
Design.

DESIGN PRINCIPLES

According to Harris and Harris [HARO7], the following design principles should be
used to develop an effective design:

Simplicity favors regularity, meaning that functions exhibiting regularity should
be implemented in simple hardware designs, as opposed to complex software
designs that would be the choice for functions exhibiting nonregularity. For
example, elevator push button controls would be implemented in hardware,
whereas the algorithm for determining direction of travel would be imple-
mented in software.

Make the common case fast, meaning that frequently executed functions should
be implemented in a design that provides for fast execution. For example,
the elevator door open and close function could be implemented in a fast
microprocessor.

Smaller is faster, meaning that small components, such as cache memory, are
smaller and faster than large and slow main memory. Thus, for example, the
data about frequently requested floors in an elevator system (e.g., lobby floor)
would be stored in the cache, as opposed to basement floor data that would
be stored in main memory.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.
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DESIGN DECISIONS

There are a number of decisions that must be made as part of the design process
that we explain as follows:

Control. If the elements (see Table 2.1) of a system can operate independently,
such as a Web system implemented on the Internet, control should be dis-
tributed. On the other hand, if there must be surveillance of the elements in
order to coordinate operations, such as users generating floor requests in an
elevator system, control should be centralized.

Storage. For systems with large storage demands and modest data access time
specifications, such as a database management system, secondary storage is
a requirement. However, for embedded systems in which the data volume
generated is small but access time must be short to meet user demands, fast
cache memory is the primary storage requirement. An example is an elevator
system that must store simultaneous user floor requests and have quick access
to those requests in a cache memory.

Communication. The major contenders for the system communication vehicle
are the bus and point-to-point connectivity. This is a very interesting design
decision because it is not obvious that one alternative would be better than
the other for a given application. The point-to-point alternative provides
dedicated communication but becomes unwieldy if applied to many compo-
nents because the hardware connectivity becomes complex and costly.
However, if high speed communication is essential, point-to-point commu-
nication would be used because competing for bus bandwidth would be
infeasible for meeting high speed communication requirements, such as
among the elevator system devices shown in Figure 2.1. Bus communication
is attractive for applications that have modest speed requirements, but where
there is a multiplicity of devices that must communicate frequently, such as
an Ethernet local network.

Topology. Communication and topology are intimately related because com-
munication paths are the elements of a topology. For example, in point-to-
point connectivity, nodes (e.g., components) are directly connected by links
(e.g., communication cables), whereas in a bus system, all nodes are con-
nected to a single link. In addition, topology is related to component and
device count, which, in turn, are related to system hardware cost. Thus, by
defining topology, designers can estimate hardware cost.

IDENTIFICATION OF SYSTEM ELEMENTS

Using an elevator example, Tables 2.1 and 2.2 provide a manifest of the linkage of
elements to the computer design process, where elements are the objects comprising
a system. That is, the attributes of the elements are characterized in order to visualize
how elements are related. These attributes will be used in various facets of the design
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Elevator Architecture

User Elevator controller
Test h Elevator
point (microprocessor)
N;, N H
R [ UP, DOWN
— [y L E——
0
o O]
n )
Floor request N, Nqg
Push buttons " Sequence | Probability of sequence j: P;
sensor . o :
control Test point Response time T; .
Floor traversal time: t;
N;, Ng Door open close time: to

Floor location Test Cache 5 w_
sensor = point memory Testpoint  Long-term
<4 storage
| N Interface test:
(3 BCD integer)
En—or\A Recover &
signal © rollback
Sequence 1 0|
Exception handler
(microprocessor)
Sequence 2 Sequence 3 Sequence 4
Nd _ § E §
(Ne>Nj, Ng=>Nj) (N;= N, Ng=Ny) (NizNe, Ne2Ng) (N, = N;, Ni>Ny)

((Ng=N) +(Ne=N)))  (N;=No) + (Ng—N)))  ((Ni=No) + (N;-Ng)) ((Ne—=N;) +(Ni—=Ng))  Floor travel

Sequence 1: Tj = (t; *((Ng— Ni) + (Ne = N)*P; + toc Pj= (Ng— N)/(Ne = Nj) + (Ng— Ny))
Sequence 2: Tj= (ty *((N; — N¢) + (Ng— Nj))*P;j + toc Pj= (Ng— N)/((N; = N¢) + (Ng— Ny))
Sequence 3: Tj =t *((N;— Ne) + (N; — Ng))*Pj + toc Pj= (Ni— Na)/(Ni— No) + (N; — Ng))
Sequence 4: Tj =ty *(N¢ — Nj) + (N; — Ng))*P;+ toc Pj= (N; — Ng)/((Nc.— N;j) + (N; — Ng))

Elevator Sequences
Figure 2.1 Elevator system architecture. N;, request floor location; N., current floor location; Ny,

destination floor location; T;: sequence j response time; P;, probability of sequence j; t.., door open/
close time; t;, single floor traversal time.

process. Some of the elements, such as floor request i, represent actions in an eleva-
tor system, while others, such as probability of traversing sequence j, are metrics
for evaluating elevator system performance; therefore, these elements have no
“source” nor “destination.” Element transfer rates are measured by floor travel dis-
tances relative to the time of travel:
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Table 2.2 Transfer Rates (Floors per Second)

5 seconds floor 1 second floor
Element Sequence traversal time traversal time
Sequence j 1 0.3845 1.8490
Sequence j 2 2.2082 10.2118
Sequence j 3 0.5054 2.4605
Sequence j 4 1.0765 5.1246
Floor request i N; 1 0.8175 3.9309
Floor request i N; 2 0.8166 3.9265
Floor request i N; 3 0.8900 4.2796
Floor request i N; 4 0.7054 3.3920
Current floor location N, 1 0.7906 3.8013
Current floor location N, 2 0.8025 3.8586
Current floor location N, 3 0.7468 3.5911
Current floor location N, 4 0.7455 3.5844
Destination floor Ny 1 0.8331 4.0060
Destination floor Ny 2 0.7705 3.7051
Destination floor Ny 3 0.8017 3.8550
Destination floor Ny 4 0.7955 3.8252

Sequence j travel distance:

n

S

i=1

3 0
i=1

where n; is travel distance for floor request i; Tj(i) is the response time for
sequence j and floor request i; and n is the number of floor requests.

Request floor travel distance N;:

where N;(j, n) is the request floor location i for sequence j and the number of
floor requests n.
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Current floor travel distance N:

i=1

where N.(j, n) is the current floor location for sequence j and number of floor
requests n.

Destination floor travel distance Ng:
n

Y Nu(jon)
i=1

Zn: T;(®)

where Ny(j, n) is the destination floor location for sequence j and the number
of floor requests n.

’

Transfer rates are computed using the above expressions and recorded in Table 2.2.
Table 2.2 shows that, in general, sequence j transfer rates are higher for the shorter
floor traversal time alternative (1 second). This result is expected because more
floors are traversed during shorter response times. This result can be used to advan-
tage by anticipating prior to system implementation the transfer rates produced by
performance alternatives.

ARCHITECTURAL DESIGN

Computer architecture involves the organization and functions of various elements
into a unified system. Architectural design involves conceptualizing the subsystems
of a system in terms of components, units, functions, elements, and connections.
Table 2.3 documents the architectural relationships for the elevator example, where
elements from Table 2.1 and Figure 2.1 are related to the architecture. An important
architectural feature includes test points in Table 2.3 and Figure 2.1 for testing and
evaluating the reliability of the system.

TEST STRATEGIES

An excellent test strategy is to view testing as a means of fault prevention
[SIG90], meaning that if we identify a system’s vulnerabilities before committing
to programming and detailed hardware design, we can avoid these weak spots when
actually committing to code and hardware implementation. For example, in an eleva-
tor system, the sequences of floor traversals are critical in realizing a reliable opera-
tion. Thus, a key strategy of fault prevention is to focus on critical sequences
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[GANOS], emphasizing stress testing (e.g., simulating multiple concurrent user floor
requests).

The test specification should contain the functions to be tested, types of faults
expected, input data, expected outputs, pass/fail criteria, test environment, and test
schedule [SIG90]. The types of faults expected is critical and warrants elaboration
[SIG90]. One type of fault is classified as functional; it pertains to faults arising
from errors in designing and implementing functions, such as programming an
elevator to go down when it is supposed to go up. To avoid or correct this problem,
functional testing is designed to simulate critical functions and to compare the test
result with the expected result. If the two are unequal, the relevant documentation
is analyzed to identify the source of the error. For example, if a test result shows an
elevator going down when it is supposed to up, the floor traversal sequencing algo-
rithm would be investigated.

System faults can arise due to components not being properly interfaced, such
as a system bus not having the bandwidth required to accommodate the myriad of
devices connected to it. Another type of system fault is failing to specify the correct
capacity of components, such as a cache size that is too small for storing floor tra-
versal information in Figure 2.1. A key process fault is generated by incorrect pro-
cessing of sequences, for example, sequence j directing the elevator to go down,
when it is supposed to go up, in Figure 2.1. Data faults are created by incorrect
specification of value, limit, or format. For example, the user floor request data in
Table 2.1 is specified as three binary-coded decimal (BCD) integer digits in a 100-
floor elevator system. If only two BCD digits floating-point digits were specified,
there would be a limit error (only 99 floors could be accommodated) and a format
error (floating-point representation). Values would also be incorrect if the sensor
control in Figure 2.1 reads request floor 5 instead of the correct floor 10.

Test Plan

Now, we illustrate test planning by developing a sequence-oriented test plan for an
elevator system that includes the analysis of critical faults and test plan support
functions.

Critical Faults

One type of critical fault occurs when boundary values are not processed correctly
[SIG90]. For example, this fault occurs when elevator floor location processing
results in floor location exceeding 100 in a 100-floor elevator system, or the location
is computed to be less than one. This problem can be mitigated by providing test
points at data entry locations in Figure 2.1 and checking for boundary value errors.

Another type of critical fault can occur at the interface of two elements [SIG90].
This type of fault occurs, for example, when two elements must match with respect
to transmitted data type. Using the interface between the floor location sensor and
the cache memory in Figure 2.1 as an example, the data type must be 3 BCD integer,
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which was originally specified in Table 2.1. This problem is controlled by using
integration testing to ensure that every interface behaves properly.

Test Plan Support Functions

In order to conduct tests in the absence of certain elements, drivers that substitute
for missing calling elements are used. In addition, stubs that substitute for missing
called elements are used. This would be the case, for example, in testing Sequence
1 in Figure 2.1, when the request floor location (N;) element is to be tested, but both
the current floor location (N,) and destination floor location (N,) elements have not
been implemented. In this situation a driver would substitute for N, (calling element)
and a stub would substitute for Ny (called element).

Integration testing involves testing the hardware and software for each sequence
on an incremental basis, using the test points in Figure 2.1. For example, once the
testing of the floor location sensor is completed, it is incorporated into the elevator
system and the cache memory is the next element tested. This process continues
until all elements have been tested. If any hardware or software changes are made
along the way, regression testing is invoked to retest all elements that had been tested
up to the point of the changes [SIG90].

Environmental testing, which can be equated to system testing and acceptance
testing, is designed to test and evaluate a system in its operational environment.
However, during system development, it may not be possible to test some systems
in their actual operational environment. Obviously, it would not be feasible to test
elevators in various buildings where they will be installed because these environ-
ments would be unknown during development. Instead, the elevator system manu-
facturer uses a test bed to create environmental conditions as close to the ultimate
environment as possible for testing the physical system. However, prior to this phase,
the operation of elements and their sequences is simulated, which will be described
in a later section. Environmental testing includes not only testing of functions, but
performance testing as well. For example, the elevator system in Figure 2.1 would
be tested for the correct ordering of sequences and, in addition, tested for the correct
computation of sequence response times.

Test Data Design

The design of test data is as important as developing test plans because these plans
would be worthless if the test data do not support the plan. In addition to inputting
the correct floor location data (3 BCD integer) in Figure 2.1, incorrect data (e.g., 2
BCD floating point) should be inputted to test the system response. Systems should
be equipped with an exception handler, as shown in Figure 2.1, to be activated when
errors occur, such as incorrect data type. This is an excellent example of coordinating
test data design with test plans: erroneous test data are incorporated in the test plan
to test the system response—recover from the error and rollback to the last correct
operation, or halt the operation if it is impossible to recover from the error. Table
2.1 is an excellent source for designing test data, because for each element, the
purpose, source, format, storage requirement, and computation are documented. This
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information can be correlated with the architectural perspective in Figure 2.1 (e.g.,
location of test points) to develop integrated test plans and data.

FAULT DETECTION AND CORRECTION

In the design process, it is important to plan for both fault detection and correction.
Some methods, like simple parity detection, can only detect. Other methods, such
as the cyclic redundancy check (CRC), include sufficient information to allow both
detection and correction.

Parity Error Detection

If the number of one bits, including the parity bit P bit, is an even number, an even
parity error signal is generated; otherwise, if the number of one bits, including the
parity bit, is an odd number, an odd parity error signal is generated.

For example, if it is desired to use even parity error detection in a digital circuit,
which of the data below would generate an even parity error signal? The solution is
shown below.

P

0010 odd parity

0100 odd parity

0101 even parity (solution)
0111 odd parity

CRC

Data can be represented by a polynomial M(x): x" + x™' + x"2 + . . . + x’, x = 2 and
the exponents correspond to bit positions: 0 for position 0, 1 for position 1, and so
on. The degree of the polynomial is n that is equal to the highest bit position. For
example, if we consider floor 50 in the elevator system, the polynomial representa-
tion of M(x) = x* + x* + x' =32 + 16 + 2 = 50,y = 110010,, and the degree n = 5.

Continuing the example, the sender and receiver must agree on a generator
polynomial G(x) of degree k < n in advance of transmission. Both the high and low
bits of G(x) must be 1. M(x) must be longer than G(x). In addition, k zeros are
appended to M(x), yielding the augmented message T(x) = M(x) x*.

The details of the example follow:

M(x) = x> +x* +x'.

Use G(x) =x + 1 =3, = 11,, because M(x) can be divided by G(x) (i.e., the degree
of G(x) = 1 < degree of M(x) = 5).
Degree k = degree 1; therefore, append one zero to M(x), yielding

T(x) = M(x)x* =x° +x° +x? =1100100, = 100,,.
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Divide T(x) by G(x), using modulo 2 division, and record remainder R(x) using
modulo 2 division:

100001

lli 1100100 .

11

0000100
11

R(x) =01

Now, append the remainder R(x) = O1 to the original message M(x), using modulo
2 addition, and transmit M(x)R(x) = 11001001, = 201, (check: 201,, is divisible by
3 with 0 remainder).

At the receiver, divide (M(x)R(x)) by G(x) and check for zero remainder. If this is
the case, there is no error in transmission; otherwise, there is one error, so retransmit:

100001

11)1100100
11

0000100
11

11
11
0 (no error)

SEQUENCE ANALYSIS
Sequence Relationships

We perform sequence analysis to provide a structure for predicting reliability, avail-
ability, and performance. Figure 2.1 shows the architecture for processing the data
that are used for constructing the sequences. In addition, the figure shows the details
of the sequences. These details are used for predicting reliability, availability, and
performance. This is accomplished by first, identifying the relationships among the
request floor location, N;, the current floor location, N,, and the destination floor
location, Ny. Using these relationships, floor travel is identified in order to predict
the probability of the elevator system invoking sequence j. Once the probabilities
are predicted, the response time for each sequence is predicted for each of the floor
traversal times. Since the floor locations are unknown prior to implementing the
system, uniformly distributed random numbers, multiplied by 100, are used to gener-
ate floor locations for a 100-floor system. In order to achieve statistical validity, 100
tests are simulated for each of the four sequences that are shown in Figure 2.1. Then,
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Initialize floor
counter

i=1

Go up
one floor
A
Open door, Open door,
passenger(s) passenger(s) i=i+1
enter, exit,
close door close door
£z h 4
M N, =d()
Desitination|
floor d( ¥
Iy

Figure 2.2 Elevator logic diagram. N; request floor; Ny, destination floor; d(i), user-entered
destination floor; N,, top floor.

the floor constraints (e.g., (N, = N;, Ny = N;) for Sequence 1), which are documented
in Figure 2.1, are used to identify the combinations of floor locations that are valid
for a given sequence. These valid combinations are used to generate floor travel
distances for each sequence. Next, the sequence probabilities are computed as a
function of floor travel distances as shown in Figure 2.1.

In addition to the sequence analysis of Figure 2.1, the logic of the elevator opera-
tions are shown in Figure 2.2 to allow us to visualize how the elevator system exe-
cutes the logic steps to control to transport passengers from floor to floor. This
diagram would be the basis for the software design of the floor traversal algorithm.

SEQUENCE PROBABILITY AND SEQUENCE
RESPONSE TIME PREDICTIONS AND ANALYSIS

Sequence Probability

Sequence 1

(1) Elevator goes down from current floor N, to request floor N;, then (2) goes
up from request floor N; to destination floor Ny (N, > N;, Ny > N)):

P; =(Nyg —N;)/((N. =N;)+(Ng —N;)).
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Sequence 2

(1) Elevator goes up from current floor N, to request floor N;, then (2) goes up
from request floor N; to destination floor Ny (N; = N, Ny = N)):

P; =Ny —N;)/((N; =N.)+(Ny —N;)).

Sequence 3

(1) Elevator goes up from current floor N, to request floor N;, then (2) goes
down from request floor N; to destination floor Ny (N; = N, N, = Ny):

Py =(N; =Ng) /((N; =N )+ (N = Ny)).
Sequence 4
(1) Elevator goes down from current floor N, to request floor N;, then (2) goes

down from request floor N; to destination floor Ny (N, = N;, N; = Ny):

Py = (N; =Ng)/((Ne =N;) +(N; = Ny)).

Sequence Response Time

Response time predictions are based on the above predictions of sequence probabil-
ity, which correspond to the sequences depicted in Figure 2.1.Response time is
predicted for each sequence j and floor traversal time, t; using the following
equations:

Sequence 1

T, = (tg #(Ng =N+ (N, =N;))) #P; + t,.
Sequence 2

T, = (tg #((N; =N )+(Ng = N;))) #P; + .
Sequence 3

T, =t *((N; =N )+ (N, =Ng))*P; + t,.
Sequence 4

T, =t #* (N, =N;)+(N; =Ng)) #P; +t,.

The purpose of the predictions is twofold: (1) to assess in advance of implementation
which performance alternative would satisfy the performance requirement and (2)
to identify the sequence(s) that would satisfy the performance requirement. This
objective is accomplished by simulated testing. Figures 2.3 and 2.4 address this
purpose. Figure 2.3 pertains to the 5-second floor alternative and shows that none
of the sequences satisfy the performance requirement over the complete range of
tests. Figure 2.4 is a little more encouraging, showing that Sequence 2 satisfies the
requirement. Unfortunately, since it is infeasible to provide an elevator system with
a floor traversal time of less than 1 second, the performance in actual operation is
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600.00 - —&— Series 1
—=®— Series 2

Series 3

500.00 1 —— Series 4
—*— Series 5

400.00 - No sequence satisfies requirement
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w
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o
o
!

200.00

100.00

12 3456 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

n
Figure 2.3  Elevator system: sequence response time T; versus number of tests n for 5 seconds floor
traversal time. Series 1: Sequence 1: mean = 200.77 seconds, total = 6223.87. Series 2: Sequence 2:
mean = 95.53 seconds, total = 1083.85. Series 3: Sequence 3: mean = 295.97 seconds, total = 4735.48.
Series 4: Sequence 4: mean = 158.80 seconds, total = 2223.17. Series 5: required response time.

120.00 -
100.00 o
Only sequence 2 satisfies requirement
80.00 A
—&— Series 1
—=&— Series 2
= 60.00 Series 3
—¢— Series 4
—¥— Series 5
40.00 A
20.00 4
0.00 +—r—T—T—T—T—T—7—1— —— ——

12345 67 8 9 101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

n
Figure 2.4 Elevator system: sequence j response time T; versus number of tests n for 1 second floor
traversal time. Series 1: Sequence 1: mean = 41.75 seconds, total = 129.37 seconds. Series 2: Sequence
2: mean = 21.31 seconds, total = 234.37 seconds. Series 3: Sequence 3: mean = 60.79 seconds,
total = 972.70 seconds. Series 4: Sequence 4: mean = 33.36 seconds, total = 467.03 seconds. Series 5:

required response time.
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likely to be undesirable for some of the floor requests. However, this performance
may be acceptable because the majority of all sequence response times in Figure 2.4
satisfies the requirement over all of the tests.

SEQUENCE FAILURE RATE

In order to predict sequence reliability, it is necessary to estimate sequence j failure
rate A;, a parameter that is used in the prediction of sequence j reliability. This
parameter is estimated using the number of failures, ny, that is specified to occur
during n tests of sequence j, and sequence j response time, T;. In addition, we pos-
tulate that the expected number of failures in sequence j is proportional to sequence
j floor traversal distance for test i, n;, with respect to total floor traversal distance
for sequence j, based on the premise that the larger the floor traversal distance, the
higher the probability of failure. Putting these factors together, we arrive at the
following:

Ay =n gni /[Z(T»}

i=1

A key determinate of sequence failure rate is whether there are failures in delivering
information from source to destination [YOUQ9], such as user floor request to sensor
control in Figure 2.2. This factor is captured in the above failure rate prediction by
the specified number of failures n;.

RELIABILITY

In developing real-time reliability predictions, it is important that the predictions
reflect operational reliability [SUNOS]. That is, reliability must be cast in the context
of operational conditions, such as differences in floor traversal times in the elevator
system. Otherwise, the predictions will not represent user requirements. We adhere
to this principle by using sequence response time, which represents operational
conditions, in the formulation of reliability.

The unreliability of sequence j, UR,, is predicted by using the probability of
sequence j, P;, sequence failure rate A;, and sequence j response time, Tj, assuming
exponentially distributed response time. The distinction between normal and complex
operations is important in characterizing reliability [PET06]. This is why we assume
exponentially distributed response time, which is based on the premise that reli-
ability degrades fast with increasingly complex operations, as represented by increas-
ing floor traversal time and resultant increasing response time:

UR, = (P,)(1-e ™M),
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Then, sequence j reliability R; can be predicted as follows:
AT
R, =1-(P)1-e "))
Because numerous predictions of reliability are made due to the fact that sequences

are simulated n times during tests, it is appropriate to predict the mean value, as
follows:

Lt

n

MR; =

J

Figures 2.5 and 2.6 address the reliability issue, predicting sequence j reliability as
a function of a number of tests. Figure 2.5 shows that for a number of specified
failures = 1 and floor traversal time = 5 seconds, all sequences satisfy the reliability
requirement. In addition, Figure 2.6 indicates that for a number of specified fail-
ures = 5 and floor traversal time = 1 second, all of the sequences satisfy the reli-
ability requirement. Although the reliability requirement is satisfied in both Figures
2.5 and 2.6, if a high reliability system is desired, operating in a dense failure envi-
ronment, significant testing would be required to bring the system into conformance
with the reliability requirement.

1.0000
0.9980
—— Series 1
Series 3
0.9960 - —X— Series 5
—+— Series 7
— Series 9
 0.9940 4
0.9920 -
All sequences satisfy requirement
0.9900
09880 —r——F————T——— """ T — — —

12 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3
n
Figure 2.5 Elevator system: reliability of sequence j R; versus number of tests n for sequence j
number of failures = 1 and floor travel time = 5 seconds. Series 1: Sequence 1, mean = 0.9993. Series
3: Sequence 2, mean = 0.9984. Series 5: Sequence 3, mean = 0.9986. Series 7: Sequence 4,
mean = 0.9981. Series 9: required reliability.
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Figure 2.6 Elevator system: reliability of sequence j R; versus number of tests n for sequence j
number of failures = 5 and floor traversal time = 1 second. Series 1: Sequence 1, mean = 0.9964.
Series 2: Sequence 2, mean = 0.9921. Series 3: Sequence 3, mean = 0.9933. Series 4: Sequence 4,
mean = 0.9908. Series 5: required reliability.

7-bit floor locations for 100 floors
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Figure 2.7 Elevator comparator circuit. Nj, request floor location; Ny, destination floor location; i,
floor counter; N,, top floor; d(i), user-entered destination floor.
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Figure 2.8 Elevator detailed logic diagram. i, floor counter; Nj, request floor bit number; D,
flip-flop input; Q, flip-flop output; CLK, clock input.

DETAILED DESIGN

Next, the detailed design process is illustrated by implementing the logic processes
from Figure 2.2, as shown in Figure 2.7, where the detailed logic steps relate the
floor request variable N; and the floor counter parameter i. This is accomplished by
using shift register logic on these two quantities, as shown in Figure 2.8, in order to
store and align all 7 bits of the quantities so that they can be compared for equality
and inequality, as governed by the relationships in Figure 2.2.

SUMMARY

A road map has been presented for guiding the engineer in making correct analyses and deci-
sions in developing computer-based systems. An elevator system was used to illustrate the
myriad of factors that must be considered in bringing a concept of a system to fruition as an
integrated hardware—software system.
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Chapter 3

Analog and Digital Computer
Interactions

While digital computers dominate today’s computer marketplace, digital computers have
important interactions with analog devices; for example, a smart meter installed in a smart
electric grid requires interactions between an analog voltage sensor, an analog-to-digital
converter, a digital-to-analog converter, and a digital computer for computing power usage.
A communication system is also required for distributing power usage data to the customer’s
premises and to the electric utility office. This chapter will provide the reader with the back-
ground in interfacing analog devices with digital computers that is necessary for designing
and evaluating such systems.

INTRODUCTION
Analog Computer Background

An analog computer is a form of computer that uses the continuously changeable
aspects of physical phenomena such as electrical, mechanical, or hydraulic quantities
to model the problem being solved. In contrast, digital computers represent varying
quantities incrementally as their numerical values change. Mechanical analog com-
puters were very important in gunfire control in World War II and the Korean War;
they were made in significant numbers. In particular, development of transistors
made electronic analog computers practical, and before digital computers had devel-
oped sufficiently, they were commonly used in science and industry. In particular,
perhaps the best known example of an analog computer is the slide rule.

The similarity between linear mechanical components, such as springs and
dashpots (viscous fluid dampers), and electrical components, such as capacitors,
inductors, and resistors, is striking in terms of mathematics. They can be modeled
using equations that are of essentially the same form. However, the difference
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between these systems is what makes analog computing useful. If one considers a
simple mass—spring system, constructing the physical system would require making
or modifying the springs and masses. This would be followed by attaching them to
each other and to an appropriate anchor, collecting test equipment with the appropri-
ate input range, and finally, taking measurements. In more complicated cases, such
as suspensions for racing cars, experimental construction, modification, and testing
is not so simple or inexpensive.

The electrical equivalent of a physical system can be constructed with a few
operational amplifiers and some components, such as resistors and capacitors;
all electrical measurements can be made with an oscilloscope. In the circuit, the
simulated stiffness of the spring, for example, can be changed by adjusting a poten-
tiometer. The electrical system is an analogy to the physical system, hence the name,
but it is less expensive to construct, generally safer, and typically much easier to
modify.

An electric circuit can typically operate at higher frequencies than the physical
system being simulated. This allows the simulation to run faster than real time
(which could, in some instances, be hours, weeks, or longer). These electric circuits
can perform a wide variety of simulations. For example, voltage can simulate water
pressure and electric current can simulate rate of flow. Analog computers are espe-
cially well suited to representing situations described by differential equations.

Analog-to-Digital and Digital-to-Analog Components

Sensor

A voltage sensor reads voltage at the input of an analog-to-digital (A/D) converter
circuit, as shown in Figure 3.1, and the output of a digital-to-analog (D/A) converter
in Figure 3.6. Note that Figures 3.1 and 3.6 depict a smart electric meter system
with the sensor reading the input voltage or output voltage, respectively; other
signals, such as current, could be sensed in other applications.

Operational Amplifier

An operational amplifier produces an output voltage that is larger than its input. For
example, in Figures 3.1 and 3.6, the voltage sensor does not have the capability to
read a full-scale voltage signal; its range is only 10 V. Therefore, an operational
amplifier is used to boost the signal to the required level for conversion. Operational
amplifiers are important building blocks for a wide range of electronic circuits.

Low-Pass Filter

A low-pass filter is needed to reduce high frequency signal noise by only passing
signals to the multiplexer in Figure 3.1 and to the customer premise and public
electric utility in Figure 3.6 that have had the high frequency noise components
eliminated [GANOS].



Analog and Digital Computer Interactions 85

Need fsn > 120 cycles per second

Voltage Amplified sample-and-hold
until conversion

\
Voa =0-110V Vip Allows several complete ™ — _I1

channels to be

fed to A/D Converter Analog

Low-pass ) Sample-and »  Digital

Filter Multio! -Hold Circuit g c "
Vout =0.1-9.9V p exer_» onverter

Reduce high __'—__——
Input J\ Voltage frequency noise Digital signal | yy yyv vy A
Voltage Sensor Nip D
Vin=0-10V =
fi= 60 cycles per second Left Shift Register Smart Meter

|g¢———————Microcomputer

Public Electric Utility

Quantizing Analog Signal

Output Binary (partial input)

Code
1101110 —

1101101
1101100
1101011
1101010
1101001

Customer Premise

105106107 108 109 110
Input Voltage

Figure 3.1 A/D conversion system.

Multiplexer

Because both A/D converters and D/A converters are expensive, a multiplexer is
used in Figure 3.1 to allow several analog signals to be processed for conversion by
a single A/D converter, and a multiplexer is used in Figure 3.6 to provide several
channels to be fed to the D/A converter [GANOS]. In the Figure 3.1 example, the
several analog inputs could be voltage signals from several customers in the neigh-
borhood. In the Figure 3.6 example, the several digital outputs from the microcom-
puter could be destined for conversion to analog voltages for a voltage regulation
application in the customer premise and public electric utility.

Sample-and-Hold Circuit

A sample-and-hold circuit is used to avoid having the input change while A/D con-
version is taking place in Figure 3.1 and having the digital output change while D/A
conversion is taking place in Figure 3.6 [GANOS].

A/D Converter

The details of the A/D converter and the conversion process are shown in Figure
3.2.The capacitor C in Figure 3.2 assists in the conversion of analog input to digital
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Figure 3.2 A/D converter.

output by the duration of its charge. This is accomplished by measuring the time it
takes to charge and discharge the capacitor into the resistor R. The larger the value
of C, for a given value of R, the longer it takes to charge and discharge the capacitor,
and, hence, the slower the rise and fall in voltage, respectively. Conversely, the
smaller the value of C, the less time it takes to charge and discharge the capacitor,
and, hence, the faster the rise and fall in voltage, respectively. The converter inte-
grates the varying analog input signal voltage V;, in Figure 3.2 during the time period
t;, . At the end of this process, C has been charged by V;, to generate the voltage
V across the resistance—capacitance (RC) circuit, given by:

1 e
V=—o/| v,dt.
CR Ju

Finally, the voltage V is converted to the digital output.

Figure 3.1 shows an example of the results of the conversion process called
“quantizing analog signal”—a process that converts an analog signal to a digital
binary code. For example, 110 V is transformed into 1101110. This process is not
perfect. There are errors that result because it is impossible for a conversion system
to perfectly represent the input. These errors are called “quantizing errors,” which
will be addressed in a later section.

Smart Meter Microcomputer

This computer contains a left shift register that formats the bit-by-bit A/D conversion
so that the complete digital signal (e.g., 1101110 = 110 V) is ready for distribution
to customer premise and public electric utility in Figure 3.1. In Figure 3.2, the
microcomputer is assigned to provide its stored digital signal to the input of the D/A
converter.
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Analog Computer Limitations

Analog computers have limitations. An analog signal is comprised of three characte-
ristics: alternating current (AC) voltage and current magnitudes, frequency, and phase.
The range limitations of these characteristics limit analog computers. These limits
include operational amplifier amplification capability, gain, frequency response,
noise, and nonlinearities in A/D conversions.

Analog-Digital Computer Contrast

The drawback of analog computers in imitating physical systems is that analog
electronics are limited by the range over which the variables may vary. This is called
dynamic range. They are also limited by noise levels. In contrast, digital computer
floating-point calculations have a comparatively huge dynamic range (good modern
handheld scientific/engineering calculators have exponents of 500).

An electronic digital system uses two voltage levels to represent binary numbers.
In many cases, the binary numbers are simply codes that correspond, for instance,
to brightness of primary colors, or letters of the alphabet. In contrast, the electronic
analog computer manipulates electrical voltages that are proportional to the magni-
tudes of quantities in the problem being solved.

The accuracy of an analog computer is limited by its computing elements as
well as quality of the internal power and electrical interconnections. The precision
of the analog computer display readout is limited chiefly by the precision of the
readout equipment, generally three or four significant figures. The precision of a
digital computer is limited by its word size and degree of precision arithmetic. While
the process is relatively slow, any practical degree of precision can be provided that
might be needed.

Quantizing Step Size and Error

The quantizing step size for A/D conversion is defined by Q:
Q=R/2",

where R is the range (110 V in Figure 3.1) and n is the number of bits used to code
the digital output [GANOS]. Thus, for the smart meter example in Figure 3.1, where
n = 7 bits,

Q=110/128=0.8594 V per bit.

Since Q is the smallest value recognizable by the A/D converter, it represents the
error of conversion. In order to evaluate the rate of error occurrence with respect to
the number of encoding bits n, the following derivative is produced:

d(Q) -R#n#20"" —R#pn*2"" —Rxn -Rx*n
d(n) "y 2mEe") 20 Q)
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Figure 3.4 Rate of change of A/D conversion error, d(Q)/d(n) versus number of digital code bits n.

Figures 3.3 and 3.4 show that to encode 110 V in the smart meter application, 7 bits
are required. However, by using more than the minimum, say 12 bits, the quantizing
error can be significantly reduced, but more than 12 bits would not be cost-effective
because at this point diminishing returns sets in.
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Figure 3.5 Interrupt processing with A/D converter. Start, microcomputer commands converted to
start A/D conversion; output enable, enables digital output from converter to microcomputer; interrupt,
converter signals microcomputer that it has digital data to transmit.

Microcomputer Input/Output (I/O) Applications

An A/D converter is very useful for demonstrating the various methods that an I/O
device (e.g., A/D converter) can use to communicate with a microcomputer [RAF05].
For example, Figure 3.5 shows the interaction between an A/D converter and micro-
computer, using interrupt processing. This method of /O communication is very
efficient because the microcomputer only has to be diverted from its main processing
task when there are data from an I/O device to be processed. In Figure 3.5, this is
accomplished by the interchange of commands between the converter and the micro-
computer: the microcomputer commands the converter to start converting, the
microcomputer signals to the converter that transfer of digital data from converter
has been enabled, and the converter signals the microcomputer, via an interrupt, that
digital data are ready for transmission on the data lines.

D/A CONVERSION

In addition to A/D conversion, it is important to understand how the reverse process
works—D/A conversion. For example, you have seen that A/D conversion is an
important component of smart meters in smart electric grid systems. But this is not
the end of the story because D/A conversion is needed in these systems to take the
digital voltage data as input to the D/A converter and use the resultant analog voltage
output to act as a voltage regulator of the electric distribution system in Figure 3.6.
This function is required because power disruptions could cause the voltage deliv-
ered to customer premises to be of the wrong magnitude. D/A conversion will not
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Figure 3.6 D/A conversion system.

be addressed as an isolated subject. Rather, it will be treated as part of a unified
system that includes A/D conversion.

D/A Description

A D/A converter is a device for converting information that is in the form of a digital
signal comprised of discrete binary bits (e.g., binary coded voltage) to a continuously
varying analog signal (e.g., voltage sine wave) in Figure 3.6. D/A converters are
used to present the results of digital computation (A/D voltage conversion in Figure
3.1) and storage (digital data stored in database in Figure 3.2) as input to the D/A
converter in Figure 3.6 for eventual application in voltage regulation.

D/A Performance

Resolution

This is the number of possible output levels the D/A is designed to reproduce. This
is stated as the number of bits it uses. For example, a 1-bit D/A is designed to
reproduce two voltage levels while an 8-bit D/A is designed to reproduce 256 voltage
levels. Thus the quantizing error Q is given by the following:
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Q=2"/R,

where n is the number of binary bits produced by the digital signal in Figure 3.6
and R is the voltage range of the D/A output. Thus, the D/A quantizing error is the
inverse of the A/D quantizing error.

Maximum Sampling Frequency

This is a measurement of the maximum speed at which the D/A (or A/D) circuitry
must operate to reproduce the correct output. As stated in the Nyquist—-Shannon
sampling theorem, a signal must be sampled at least twice its frequency in order to
produce the desired output signal. The period is the duration of one cycle in a repeat-
ing event, so the period is the reciprocal of the frequency. For example, the 60-cycle
input voltage in the A/D converter of Figure 3.1 must be sampled at least 120 cycles
per second. Correspondingly, in the D/A converter of Figure 3.6, the digital repre-
sentation of the original 60-cycle voltage from A/D conversion must be sampled at
least 120 cycles per second to reproduce a 60-cycle signal at the output of the D/A
converter.

Monotonicity

This refers to the ability of a D/A converter’s analog output to move only in the
direction that the digital input moves (i.e., if the input increases, the output increases)
This characteristic is very important when a D/A converter is used for low frequency
signals, such as 60-cycle voltage, as shown in Figure 3.6.

Distortion

Distortion is the alteration of the original shape of the analog signal, such as a voltage
signal. Distortion can be minimized by using an adequate number of bits in the
digital representation of the analog signal, such as 7 bits, and a sampling rate of the
digital signal for D/A conversion of at least twice its original frequency (at least 120
cycles per second) in Figure 3.6.

Dynamic Range

This is the absolute ratio between the smallest and largest possible values of a signal-
changeable quantity, such as between the smallest and largest values of an analog
voltage sine wave. In this example, if there is a perfect dynamic range, the
ratio = [+110 V/=110 VI = 1. Deviations from the perfect ratio, either greater or
smaller, are indicative of signal distortion.

Phase Distortion

This problem occurs when the original phase of a signal in the input of the A/D
converter is not faithfully reproduced in the output of the D/A converter. For example,
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the phase of the voltage sine wave sensed in the A/D converter of Figure 3.1 may
not be faithfully reproduced at the output of the D/A converter in Figure 3.6. Phase
distortion is measured by the difference between the correct phase and the phase
that is reproduced at the output of the D/A converter.

Signal Representation Distortion

This problem occurs when, for example, a 1-V difference in the A/D converter in
Figure 3.1 does not result in a 1-bit difference in the digital encoding. The problem
would also occur when a 1-bit difference in the input of the D/A converter in Figure
3.6 does not result in a 1-V change in the output in Figure 3.6. Thus, this distortion
is measured by the difference between the correct signal change in adjacent values
and the actual change in adjacent values.

Dynamic range, phase distortion, and signal representation distortion are con-
trolled by the voltage regulation function shown in Figure 3.6.

Nonlinearity Distortion

This occurs when the plot of the output signal versus the input signal is not a straight
line, which is measured by the difference between the correct value and the value
realized by D/A conversion [GANO8]. For example, in Figure 3.7, using assumed
error values, the difference between actual and realized voltages values is plotted.
This type of plot is extremely useful because it indicates the range where the con-
verted voltage is either too high or too low. After these initial measurements
have been made, the gain of the microcomputer-controlled operational amplifier in
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0 0'001 1 1(;2 163 1(;4 1(;5 1(;7 1(;8 169 11‘0
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Figure 3.7 Difference between correct voltage and actual voltage, AV, versus correct voltage V.
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Figure 3.6 would be adjusted to bring the converted voltage in line with the desired
values.

CONVERSION SYSTEM ERRORS

At this point in the development of A/D and D/A conversion, it is time to focus
on the errors that could arise in each component, whether A/D or D/A, and aggregate
the component errors to produce an overall system error that can be used to judge
the accuracy of conversion from analog input in the A/D converter in Figure 3.1 to
D/A analog output in Figure 3.6.

A/D and D/A Converter

The error attributed to this device was previously described as a “quantizing error”
in an earlier section and portrayed in Figures 3.3 and 3.4.

Voltage Sensor

A sensor is a device that receives and responds to a signal. A sensor’s sensitivity
indicates how much the sensor’s output changes when the measured quantity
changes. This sensitivity can be interpreted as sensor error. The sensor error, Ej, is
computed by the following ratio:

_ A\/()ut

“TAV
where AV, is the change in sensor output voltage in Figures 3.1 and 3.6 and AV;,
is the change in sensor input voltage in Figures 3.1 and 3.6. Ideally, this ratio should
equal one. Deviations from the ideal measure indicate sensor error. Additionally, the
resolution error is determined by the smallest change in AV, that can be detected at
the sensor output. For example, in Figures 3.1 and 3.6, if the smallest change in
Vi, = 0.1V, can this change be detected in V,,?

Another type of sensor error occurs when the input range exceeds the output
range. For example, in Figures 3.1 and 3.6, while the input range of V;, is 0-10 V,
the output range of V., is 0.1-9.9 V. Thus, V;, = 0 and 10 V cannot be represented
by Vou.

Since the changes in sensor input and output voltages could be any values,
simulation can be used to generate random changes in voltage, say 100 times, and
compute the resultant values of E,. One example is shown in Figure 3.8, where the
Excel random number generator RAND was used to generate random changes in
Vi, and V,,;, and then E, was computed and plotted against the correct A/D voltage.
Because RAND generates uniformly distributed numbers between 0 and 1, these
numbers were multiplied by 10—the maximum V;, voltage—in order to compute
values of AV;, and AV,,.



94  Computer, Network, Software, and Hardware Engineering with Applications

18.00
17.00
16.00
15.00
14.00
13.00
12.00
11.00
10.00
w’ 9.00 -
8.00 -
7.00 A
6.00 -
5.00 -
4.00 -
3.00 A
2.00 -

—— Series 1

—=— Series 2

Sensor error when E¢ not equal 1

101 102 103 104 105 106 107 108 109 110
V (volts)

Figure 3.8 Sensor output voltage change/sensor input voltage change, E,, versus correct A/D input
voltage, V. Series 1: Actual E,. Series 2: Required E,.

Operational Amplifier

The operational amplifier in Figures 3.1 and 3.6 may fail to produce a correct ampli-
fication of the signal produced by the sensor output, V,,. This error is computed by
the expression E,,. A similar simulation error analysis can be performed to analyze
the operational amplifier, as was the case for the voltage sensor:

an =A- %7
A\/out

where A is the required amplification factor, AV,, is the actual change in operational
amplifier voltage, and AV,, is the actual change in voltage sensor output voltage
that is delivered to the input of the operational amplifier. Given the voltage sensor
output range and operational amplifier output range in Figures 3.1 and 3.6,
A = (110-0)/(9.9-0.1) = 11.22.

Low-Pass Filter

The low-pass filter in Figures 3.1 and 3.2 is also subject to error because it may not
faithfully eliminate high frequency noise generated by the operational amplifier in
Figure 3.1. The ability of the filter to eliminate this noise is measured by the signal-
to-noise ratio, S/N. For the low-pass filter, S/N is computed by the following:
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S/N:Vip/Nlp,

where V;, is the voltage signal and N,, is the high frequency noise signal produced
by the low-pass filter in Figures 3.1 and 3.6. Thus, if V;, =100 V and N, = 0.1V,
S/N = 1000.

Sample-and-Hold Circuit

Since it was stated previously that the sample-and-hold circuit must sample input at
a rate at least twice the frequency of the input in order to produce the desired output,
the error, Ey, in the sample-and-hold circuit of Figures 3.1 and 3.6 can be formulated
as follows:

Eg :fsh/2fis

where fy, is the required sampling frequency and f; is the desired signal frequency
emanating from the input analog voltage in Figure 3.1. An error arises if Ey, < 0.5
(ie., fy, <f).

Summary of Conversion Errors

Since there are a variety of errors associated with A/D and D/A conversions, these
errors are summarized in Table 3.1 in order to identify the key relationships that lead
to error occurrence. Now, examining Table 3.1, the key findings concerning error
analysis are the following:

To achieve an optimal trade-off between quantizing error and cost, use 12 binary
encoding bits even though only 7 bits are required.

To minimize voltage sensor error, the sensor should produce an output change-
to-input change ratio = 1.

To minimize operational amplifier error, ensure that the output-to-input ratio,
AV,./AV,,, is equal to the amplification factor A.

To minimize low-pass filter error, maximize the S/N for given values of analog
signal voltage (i.e., minimize noise signal).

To prevent sample-and-hold circuit error, ensure that the circuit can sample at
a frequency f, > desired frequency f;.

CHAPTER SUMMARY

The reader has been introduced to important concepts about devices that interconnect with
digital computers—the A/D converter and the D/A converter. This objective has been achieved
by considering these signal conversion circuits as a single integrated system, using a smart
electric meter system as an example. Circuit diagrams were developed illustrating various
facets of conversion logic. Extensive error analysis was performed on all converter circuit



96 Computer, Network, Software, and Hardware Engineering with Applications

Table 3.1 Summary of Conversion Errors

Optimal number

D/A of binary Key
A/D conversion conversion Figure(s) encoding bits relationship
Quantizing Figure 3.3 12 Accuracy
error R/2" cost—benefit
trade-off
2"/R Quantizing 12 Accuracy
error cost—benefit
trade-off
Rate of change Figure 3.4 12 Accuracy
of conversion cost—benefit
error trade-off
Voltage sensor Voltage Figures 3.1, = AVou -
error Sensor error 3.6, and 3.7 TAY
AV,
Operational Operational Figures 3.1 En.=A- AV
amplifier amplifier and 3.6 o
error error A=11.22
Low-pass filter Low-pass Figures 3.1 S/N = V,/N,,
filter and 3.6
Sample-and- Sample-and- Figures 3.1 Eg =f4/2 f;
hold circuit hold circuit and 3.6 Error if fy, < f;

components in order to identify the best circuit performance values consistent with achieving
cost-effective systems.

Reader Problem: You have learned that the number of bits n required to digitally encode
an analog signal with a range R is related by the equation R = 2". Suppose the range
is to be R =120V, what is the minimum number of bits required to encode this

signal?

Solution: log;oR = nlog2, n = log;,R/log;s2 = log;y120/log;,2 = 2.079/0.301 = 6.91 (7 bits
rounded up).

REFERENCES

[GANOS] J. GANSSLE (ed.), Embedded Systems: World Class Designs. Amsterdam: Elsevier, 2008.
[RAF05] M. RAFIQUZZAMAN, Fundamentals of Digital Logic and Microcomputer Design. New York:
Wiley-Interscience, 2005.



Part Two

Network Engineering



Chapter 4

Integrated Software and
Real-Time System Design
with Applications

Approaches for designing real-time software and hardware on an integrated basis are pre-
sented. By “integrated” it is meant that the interaction of software and hardware during
program execution is addressed in the system design. For example, software outputs of the
executable system that are fed to the hardware subsystem are represented in the software and
hardware designs. Another aspect of this design approach is, first, to develop the real-time
system generic design of a particular artifact, such as a state diagram, and then to use the
generic design to guide the development of the application-specific design. An elevator system
is used as the design example because it has interesting properties such as interruptible floor
traversal sequences. The series of design representations starts with generic and application-
specific system-level functions and ends with integrated testing and performance evaluations.
An important aspect of the integrated design approach is that exclusive use of abstract rep-
resentations is unwise because it is important to consider the physical properties of the real-
world system, such as elevator floor travel sequences. Without this perspective, critical aspects
of real-time system operations such as elevator direction of travel may be overlooked. Several
metrics of real-time system performance are modeled and evaluated.

INTRODUCTION

Having learned the fundamentals of computer design, both digital and analog, in
previous chapters, you are prepared to learn a very important application area: real-
time systems. Real-time control hardware and software has been applied to a wide
variety of real-world systems for diverse military, aerospace, industrial, medical,
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and civil applications. Most real-time systems are comprised of heterogeneous com-
ponents including sensors, microprocessors, and actuators. These components inten-
sively interact with each other and with their environments. Thus, there are many
dynamic and uncertain factors in these systems. Such a system needs to satisfy all
the functional requirements and timeliness demands. In real-time systems, system
resources such as microprocessor cycles, communication bandwidth, and storage
memory are restricted, and thus efficient resource allocation in different operational
scenarios is required. As a result, the design of complex real-time systems is quite
challenging and is distinct from the conventional non-real-time design [WANOS].
As real-time computer systems become larger and more complex, so their analysis
becomes increasingly difficult. Much of the skill in developing these systems lies
in choosing the most appropriate theories and tools for different stages of develop-
ment and different aspects of the system [CAD98]. The approach in this chapter
is to use models, such as state diagrams, simulated testing, and event sequencing
(e.g., elevator floor traversal sequences) that are appropriate for real-time system
analysis.

Objectives

While there are many worthy papers addressed to single aspects of real-time design,
such as scheduling [GUP10], there is an absence of an integrated approach. Thus,
the aim of this chapter is to develop an integrated and comprehensive design
approach with the objective of providing engineers with a road map for improving
real-time system design. According to Wang et al. [WANO04], model-based software
development has been shown to be a promising approach to real-time design prob-
lems. In this approach, the software is first modeled abstractly without considering
its execution platform, and then transformed to a software design model on the target
platform. However, as mentioned in the abstract, this approach should not be carried
too far because if the abstract model is divorced from reality, it will do a poor job
of representing the real-world system.

Design Challenges

Today, many computer systems are being used to measure and control real-world
processes. The execution of these systems and their control programs is therefore
bound to timing constraints imposed by the real-world process [PLA84; SID06].
Thus, timing constraints are addressed in analyzing real-time system performance.

Unfortunately, real-time software is particularly difficult to design. In addition
to ever more complex functional requirements, real-time software has to satisfy a
set of stringent nonfunctional requirements, such as maximum permissible response
time (e.g., maximum elevator system response time) and throughput (e.g., elevator
system passenger throughput). Often, the inability of real-time software to meet its
primary nonfunctional requirements becomes apparent only in the later stages of
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development. When this happens, the design may have to be heavily and hurriedly
modified, even if all the functional requirements are satisfied, resulting in cost and
schedule overruns as well as unreliable and unmaintainable code. This unhappy situ-
ation is primarily due to the common practice of postponing all consideration of
so-called platform issues until the application logic of the software has been satis-
factorily designed. Although “platform-independent design” is a good idea in prin-
ciple, because it allows separation of application concerns and implementation, it is
often carried to extremes. In particular, it is dangerous in situations where the physi-
cal characteristics of the platform (e.g., elevator system floor traversal control) can
have a fundamental impact on the application logic (e.g., elevator system floor tra-
versal control software design) [SELO3].Therefore, because an abstract representa-
tion of our design would be of limited value, the abstract analysis is illustrated with
an elevator system. I chose the elevator example because it presents many design
challenges and everyone can relate to this system. Recognize that an abstract
approach can only be applied for marrying software and hardware design. When
testing and performance evaluation are performed, the particular characteristics of
the application must be considered. For example, the response time to elevator floor
requests must be evaluated through simulated performance testing.

Steps in Real-Time System Design

Real-time system design can be accomplished by the following steps [KOY90;
OSTI98]:

Elicit and document the service requirements in terms of the environment (e.g.,
elevator response time requirement geared to the number of user floor
requests during a specified time).

Using the environment-based service requirements, specify the system control-
ler characteristics (e.g., specify elevator controller properties for managing
efficient floor traversal scenarios).

Based on the controller specifications, develop software and hardware designs
that achieve system requirements and correct interaction among system com-
ponents (e.g., develop elevator system integrated software and hardware
designs that achieve response time requirements and correct interplay
between elevator system floor request control and motion control).

Apply the rule of considering real-world operational details during abstract
design by using a mix of abstraction and operational detail views. For
example, observing how an elevator operates (e.g., processing service
requests) provides insight into how real-time systems must function in
general. That is, if you observe how an elevator control organizes operations
in order to service as many floors as possible in minimum time, in a given
traversal (i.e., using interrupts to develop an optimal schedule), you can apply
this observation to designing schedules for real-time systems.
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REAL-TIME SYSTEM PROPERTIES
Execution Time

Some researchers consider periodic real-time independent tasks with known periods
and worst-case execution times in their design approach [GUP10]. This view is quite
restrictive because it would be unusual for a real-time system to have “known
periods and worst-case execution times.” The more representative situation is periods
of operation and execution times that are driven asynchronously by inputs that occur
at unpredictable times, and, hence, produce unknown execution times (e.g., elevator
system).

Implementation Elements

The reduced instruction set computing (RISC) architecture requires several opera-
tions to execute a single instruction. However, this design provides high speed; for
example, it is well suited to real-time applications that must meet deadlines, but at
the expense of relatively complex programming.

Objects. The objects in the elevator system are user, system controller, system
storage, operations, and error control, as shown in Figure 4.1.

Asynchronous Circuits. Due to the unpredictable nature of inputs and opera-
tions in real-time systems, hardware design is accomplished with asynchro-
nous circuits

Performance

The response time is the difference in time between completion of request and
initiation of request (e.g., difference in time between elevator reaching des-
ignated floor and user pushing the Up or Down button).

Operations that must meet deadlines (e.g., elevator travel satisfies response time
requirement).

Operations schedule (e.g., elevator schedule maximizes number of floors tra-
versed in traveling from current floor to most distant floor).

Control Functions

The following control functions are shown in Figure 4.1:
Interruptible sequence of operations causing interrupts to be processed out of
sequence (e.g., changing directions of elevator floor travel sequences).

Multiple threads of control caused by concurrent inputs (e.g., multiple concur-
rent elevator floor requests) [MOOO02].
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Figure 4.1 Generic real-time system design. TS;, time of service request i; RT, required response
time; TR; = TS;—TC;, response time of service request i; TC;, time of completion of service request i;
P;, probability of completing service request i in required response time; n, number of services request
in operational time T; FC = TR;—RT, feedback correction; T, duration of service operations.

Control commands are issued, for example, by System Controller to
Operations.

Feedback control is the response time error is fed back from the Error Control
to Controller.

System queues are used to store backlog of user requests (e.g., queues of eleva-
tor floor requests) [MOOO02].

Design Levels

In Harris and Harris [HARO7], advice is offered regarding using design levels to
accomplish system design as follows:

Hierarchy. Divide system into modules that are easer to understand than the
complete system.

Modularity. Produce modules that have well-defined functions and interfaces
that can easily interconnect.

Regularity. Find modules with common functions (i.e., interchangeable parts).
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This approach may be satisfactory for a general approach to design but does not
completely satisfy real-time requirements. Instead, it is suggested that real-time
system hierarchies are rare or nonexistent. Real-time module topology is essentially
flat. For example, the user system and system controller in Figure 4.1 interact on
the same level. Real-time systems can have well-defined functions but interfaces
may not easily interconnect because inputs may arrive at unpredictable times, making
it difficult for the system controller to respond in a timely manner. For example, in
Figure 4.1, user system requests must be queued because the system controller is
unable to respond to all requests immediately. Lastly, real-time systems are one-of-
a-kind; they are not mass produced. Therefore, common functions with interchange-
able parts do not hold. These peculiarities of real-time systems will be recognized
when developing the design approach. The synopsis of requirements postulated at
three levels is listed below for both generic and application-specific cases.

Real-Time System Requirements

System Level
Generic

Response time: variable response time, mean response time, maximum
response time, minimum response time, throughput

Application Specific

Response time: time between elevator floor request and arrival at destina-
tion floor and mean value of these times

Throughput: number of floor requests processed per elevator operational time

Software Level
Generic
Map between system level requirements and software routines (see Fig. 4.8)
Application Specific

For example, routines for optimally sequencing elevator floor requests.

Hardware Level
Generic

Map between system-level requirements and hardware components and
between hardware components and software routines (see Fig. 4.4)

Application Specific

For example, input/output (I/O) channels must have a sufficient transfer
rate to satisfy elevator system response time requirements
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DESIGN PROCESS ELEMENTS

It is important to have a close relationship between the user system and the system
control functions [BOA77], as demonstrated by the generic design process in Figure
4.1. To implement this approach, apply the following elements of the design process
that are listed below for both generic and application-specific (elevator) cases.

Event sequence: series of state transitions
Elevator responds to sequence of floor push-button events
Interruptible event sequence causing state transition

Sequence of elevator floor traversals is modified to service as many requests
possible in a given floor traversal

Time of service request

Time when the following occur: user pushes Up button, user pushes Down
button

States and state transitions

User pushes Up floor button at request floor — elevator goes up or down
or is at request floor —door opens — door closes — elevator goes up to
destination floor

User pushes Down floor button at request floor — elevator goes up or down
or is at request floor—elevator stops— door opens—door closes —
elevator goes down to destination floor

Controls

Down travel control, up travel control, start control, stop control, door open
control, door close control

System storage

Elevator event sequence storage requirements: present event, next event,
present state, next state, next state transition, and storage capacity neces-
sary for effective communication among software and hardware compo-
nents [BAG97].

Interrupts

User floor request while the elevator is in motion

INTEGRATED SOFTWARE-HARDWARE DESIGN

Putting software and hardware design in separate bins is a big mistake because the
operations of software and hardware are intimately related. For example, in interrupt
processing, an interrupt signal generated by hardware triggers software interrupt
processing routines. Thus, when designing systems, processing a requirement should
be considered as a resource allocation problem. For example, in an elevator system,
the signals generated by pushing buttons for floor requests are allocated to electronic
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circuitry. These signals are fed to software routines for determining the direction
and distance the elevator must travel to service requests.

A problem in system design is the appropriate allocation of functions between
software and hardware design [AYAO2]. Resolve this problem by allocating logic
functions, such as identifying the elevator floor travel sequences in the architectural
design of Figure 4.4 and allocating the resulting control functions of elevator control
(Up, Down, and Open and Close doors) to the hardware design in Figure 4.5.

Time-Driven versus Event-Driven
Software Design Styles

Time-driven software design style corresponds to using cyclic activities triggered
by time. This software style is naturally suited for the implementation of periodic
activities, such as software implementation of control loop behavior in embedded
control systems. In contrast, software written in the event-driven style typically waits
for an event to occur, and then reacts to it by making an appropriate decision or
computation, and then enters a dormant state waiting for the next event [SEL96].
Elevator systems are event-driven (i.e., elevator controller responds to floor request
event). Therefore, elevator controller software must be designed to develop a floor
traversal schedule when requests arrive. However, in doing so, elevator controller
software must be designed to achieve floor request response time requirements.

In contrast to time-driven software style, the event-driven software style has
evolved largely to deal with the complexity arising from asynchrony, concurrency,
and the inherent nondeterminism due to the two. The system must respond to asyn-
chronous events in the external world, and the reaction must depend on the system
state [SAK98]. Thus, elevator controller software must be responsive to user service
requests that will occur asynchronously (floor push-button operations) and may occur
concurrently (push-button operations occurring on different floors at the same time).

In the following integrated software—hardware design methodology, states and
state transitions form the core processes, because the real-time environment is one
of rapidly changing conditions, and state diagrams are effective for representing this
environment. In addition, when the detailed software logic is developed for the
elevator application, flowcharts are used because they are useful for portraying deci-
sion logic, which is endemic to this application. The flowchart is driven by the state
diagram transitions. Both the generic and application-specific software state dia-
grams are shown in Figure 4.3. The generic software design is shown in Figure 4.8.

SOFTWARE FUNCTIONS
Input Processing State

Generic System

Input request i and service request time TS; in Figure 4.8.
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Figure 4.2 Elevator system. N;, request floor; Ny, destination floor; N, current floor; TR;, response
time of request i.

Elevator System

Elevator floor sequencing controller identifies and processes floor requests in Figure 4.2.

Decision Analysis State

Generic System

Identify sequence of service requests i and i + 1 based on its priority PR; and priority
PR;,;, respectively, and process them in this order in Figure 4.8.

Elevator System

Sequences elevator travel so that throughput is maximized and response time T; is
minimized, as shown in Figure 4.2. In contrast to the generic system, there is no
priority in the elevator system; all floor requests are treated equally.

Computation State

Generic System

Compute response time TR; for service request i, mean response time TR, and
throughput for all service requests TP in Figure 4.8.
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States

Computation Output Devices

Results

Sequence i

Time of Completion of Service Request i: TC;

Identification of ) Probability of Service Request i: P,  Response Time of Service Request i, TR; = TS, ~TC;
Sequence of Operations Mean Response Time TR
Throughput for All Generic Software State Diagram

Input i Identification and
Time of Service Request TR,

Requests: TP

Sequence 1

Elevator-Specific Software State Diagram

Output Devices

Figure 4.3 State diagrams. N, nearest request floor; N,, current floor; Ny, destination floor
associated with N;; T;: response time of request i; RD, response time difference with respect to
required RT; TP, throughput.

Elevator System

Computations of response time metrics as the result of state transitions are based on
comparison of floor locations in Figure 4.3.

Output Processing State
Generic System

Transfer results of decision analysis and computations to output devices in Figure 4.3.

Elevator System

Transfer results of computing performance metrics to output devices in Figure 4.3.
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HARDWARE FUNCTIONS

Generic System

Microprocessor with sufficient speed (clock rate) to satisfy the response time require-
ment. If this requirement is not satisfied, increase the microprocessor speed in
Figure 4.4.

Elevator Architecture
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Elevator Sequences
Figure 4.4 Elevator system architecture. N;, request floor location; T;, sequence j response time; Ty,
single floor traversal time; N, current floor location; P;, probability of sequence j; Ng, destination floor
location; t,.: door open/close time; BCD, binary-coded decimal.
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Elevator System

Elevator floor sequencing controller with sufficient speed to satisfy floor request
response time requirement. If this requirement is not satisfied, increase controller
speed in Figure 4.4.

Generic System

I/O channels with sufficient transfer rate to keep up with real-time transaction input rate.

Elevator System

Elevator I/O channels with sufficient transfer rate to satisfy floor request response
time and mean value and throughput requirements.

Generic System

Storage system with sufficient capacity to support the input, storage, and output of
real-time transactions. Real-time systems do not have the luxury of inputting data
when convenient for the microprocessor. These systems must input data as it arrives,
with no loss of input, in Figure 4.4.

Elevator System

Many real-time designs impose hard real-time constraints on tasks. Thus, computing
an upper bound of execution time of the software (e.g., maximum floor traversal
time) is a critically important but difficult task. The difficulty arises particularly
when the code is executed on processors with cache-based memory systems, which
may be limited in capacity [UMO3]. Therefore, the elevator cache must have suffi-
cient capacity and speed to input and store floor requests, with no loss of floor
requests, as shown in Figure 4.4.

Generic System

System bus with sufficient bandwidth to accommodate expected data transfer
requirements, as shown in Figure 4.5.

Elevator System

Elevator system bus with sufficient bandwidth to achieve floor request response
time, mean response time, and throughput requirements, as shown in Figure 4.6.

ELEVATOR SOFTWARE DESIGN

The purpose of the elevator-specific software design is to identify the floor travel
sequences by comparing the values of the present floor location (N.), request floor
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Figure 4.5 Generic hardware design and display. TS;, time of service request i; TC;, service request
i completion time; TR;, service request i response time; RT, required response time; FC, error control
(used if TR; > RT).

Elevator Floor
Push Buttons Locationsof

Up

Down Floor Travel Sequences:
Asynchronous N, N, N, and

Interrupts o
Hardware

Design

Figure 4.6 Elevator system software design. P;, probability of completing service request i in
required response time; T, expected time of traversing all floors to respond a request i; T;, expected
time of traversing all floors to respond a request i plus opening and closing doors; TP, throughput; FC,
response time feedback correction; t;, time of traversing one floor; t,., time of opening and closing

doors.
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Figure 4.7 Elevator system hardware design. N,, current floor; N;, request floor; Ny, destination
floor.

location (N;), and the destination floor location (Ny), which are inputted by the eleva-
tor floor push buttons in Figure 4.6. In addition, the software design formulates the
performance equations that are transferred to the hardware design in Figure 4.7 for
implementation. According to Mok [MOKO90], in real-time programs, the time of
occurrence of events rather than the order of events is crucial in determining the
outcome of a computation. However, both event order and time of occurrence are
crucial in determining system performance. For example, the order of elevator floor
traversals and their traversal times are important determinants of elevator system
performance and must be included in the software design, as shown in Figure 4.6.

Selected Hardware Designs

Critical design functions are developed for both the generic and elevator systems.
The purpose is to demonstrate how an integrated software—hardware design is
achieved by mapping between software and hardware designs. Hardware-oriented
design has to deal with more problems than software-based design, especially the
progression of time [LUO3], such as manipulating the clock rate to achieve the
required response time in an elevator system, as shown in Figure 4.7. Therefore,
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Figure 4.8 Generic software design. TS;, time of service request i; TC;, service request i completion
time; TR;, service request i response time; P;, probability of service request i; RT, required response
time; FC, error control; T, duration of service operations; n, number of responses required in operation
time T; TP, throughput; PR;, priority of request i.

the emphasis in the design process is on hardware design, but not neglecting the
mapping between hardware and software designs.

Generic System

Develop control logic for decoding (i.e., identifying) input service requests in Figure
4.9 in order to demonstrate the mapping between generic software and hardware
designs in Figures 4.8 and 4.5, respectively, where Figure 4.9 provides the decoder
logic for generating service request interrupts. Table 4.1 shows the truth table cor-
responding to the design logic in Figure 4.9, where the bolded 1s in the table cor-
respond to the decoder outputs. Then, a second critical hardware function is
designed—response time computation and display—if the response time require-
ment is not satisfied in Figure 4.7.

Elevator-Specific System

The elevator controller in the hardware design (Fig. 4.7) accepts the elevator floor
sequences from the software design (Fig. 4.6) and uses digital logic to translate the
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Figure 4.9 Input request decoder design.

Table 4.1 Decoder Truth Table for Two Inputs (Request i and Request i + 1) and Four
Outputs (Request Interrupt Signals)

Inputs Outputs
E (Enable) x, request (i + 1) X, (request 1) d, d, d, d,
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1
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sequences into elevator control commands: Up, Down, and Open and Close Doors.
In addition, the elevator system is equipped with a server that implements the per-
formance equations delivered by the software design. One of these equations is the
response time error control function. In the event that a response time deficiency
exists, the server uses the error control function to increase the clock rate. The
increased clock rate, in turn, allows the floor travel time to be reduced to satisfy the
response time requirement.

PERFORMANCE EQUATIONS DEVELOPMENT

Now define the variables, parameters, event sequences, and performance equations
that are used in evaluating the performance of both generic and application-specific
systems.

Definitions

Generic System

Time of service request i: TS;

Time of completion of service request i: TC;

Required response time: RT

Operational time: T

Response time of service request i, TR; = TS; — TG

Maximum response time service request i: TR; (max)

Minimum response time service request i: TR; (min)

Probability of completing service request i in required response time: P;
System error if TR; > RT

System error feedback correction: FC = TR; — RT

Number of responses to service requests required in operational time T: n

Elevator-Specific System

The sequence of elevator system operations is complex with respect to the number
and type of floor requests and the number of stops—with door openings and
closings—over a given operational time. Therefore, this complexity is decomposed
so that request floor N; is considered to be the nearest request floor to the current
elevator floor N, and destination floor Ny is considered to be the destination floor
corresponding to N; in a given elevator traversal. This formulation is reflected in the
list below. By considering the traversals in Figure 4.2, the decomposition covers the
possible floor traversal sequences.
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Estimated by Uniformly Distributed Random

Variable (Using Excel RAND Function)
Probability of floor request i: P;
Request i floor (floor that is nearest to current location N, of elevator): N;
Current floor (current location of elevator): N,

Destination floor associated with request i floor: Ny

Specified
Time of traversing one floor: t;

Time of opening and closing doors: t,. (these times are used at request floor N;
and again at destination floor Ny)

Number of floor requests processed in time T: n

Computed

Expected time of traversing all floors to respond to a request i: Tj

Elevator response time = expected time of traversing all floors to respond to
request i plus time of opening and closing doors: T;

Maximum response time for service request i: T; (max)

Minimum response time for service request i: T; (min)

Required

Elevator response time: RT

Response time difference: RD = RT — T,

Mean response time difference (MRD), computed over n floor requests
System error if T; > RT

System error feedback correction: FC = T; — RT

Elevator operational time: T

Event Sequences

Event sequences are generated in Figure 4.2 based on the number of distinct com-
binations of floor locations (N;, N, Ny) and their travel directions. Note in the event
sequences that if the elevator is already at the request floor (N, = N;), there is zero
travel time from N, to N;. Also note, in Figure 4.2, that the relative locations of the
elevator, the request floor, and the destination floor, are important in computing the
elevator travel distances in the event sequences.
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Sequence 1
(1) Elevator goes down from current floor N, to request floor N;, then (2) goes
up from request floor N; to destination floor Ny (N, = N;, Ny = N)):

P =(Ng —N;)/((Ne =Nj)+(Ng —Ny)),

T =t; #((Ng =N+ (N =N;)) =P,

T =t #*((Ng =N+ (N —=Nj) P+t
Sequence 2

(1) Elevator goes up from current floor N, to request floor N;, then (2) goes up
from request floor N; to destination floor Ny (N; = N, Ny = N)):

P, =(Ng —N;)/((N; =N.)+(Ny —N;)),

T =t #((N; =N.)+(Nyg —N;)) *P,

T =1t #((N; = No)+(Ng —N;) P, + ¢,
Sequence 3

(1) Elevator goes up from current floor N, to request floor N;, then (2) goes
down from request N; to destination floor Ny (N; = N, N > Ny):

P =(N; =Ng)/((N; =N)+ (N, —Ny)),

Ts =t #((N; =No)+ (N, = Ng))* P,

T =t #(N; =N )+ (N, —=Ny)) * P, + t..
Sequence 4

(1) Elevator goes down from current floor N, to request floor N;, then (2) goes
down from request floor N; to destination floor Ny (N, = N;, N; = Ny):

P, =(N; =Ng)/((N. =N} +(N; —=Ny)),

Ts =t #(N. =N+ (N; =Ng))*P;,

T =t #(Ne =N+ (N; =Ng))# P, + .
Sequence 5

(1) Elevator goes up from current floor N, to request floor N;, then (2) goes
down from request floor N; to destination floor Ny (N; =2 N, N; = Ny):

P =(N; =Ng)/((N; =N )+ (N; —Ny)),
Tp =t #*((N; =N +(N; =Ny))*P,
T =t #(N; =N+ (N; =Ny )P, + t.

System Performance Equations
Both generic and elevator-specific performance equations are shown below. Later,

these equations will be used to evaluate elevator system performance and to design
tests of simulated performance.
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Generic

Expected (mean) system response time, computed over n responses to service
requests, accounting for probability of occurrence of response time:

2 (P)(TR;)

TR ==
n

Elevator Specific

Mean time for elevator controller to service floor requests, accounting for probability
of occurrence of response time:

3 @)

TR=-
n

Generic

Total expected operational time, accounting for the probability of occurrence of
response time:

T=> (P)XTR;).
i=1

Elevator Specific

Total expected elevator operational time over n operations, accounting for the prob-
ability of occurrence of response time:

T=2 ()T
i=1
Generic

Throughput (TP) = number of operations/operational time = n/T.

Elevator Specific

Number of service floor requests n processed by elevator controller during opera-
tional time T:

TP=n/T.
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Generic

MRD for request i:

Elevator Specific

Mean elevator response time difference for floor request i:

iRDi

MRD=2
n

REAL-TIME SYSTEM SIMULATED TESTING

This section is comprised of observations by other researchers of problems in real-
time system testing and our responses to these problems.

Achieving Visibility of Operations

As complex devices such as elevator controllers are inserted into real-time systems,
traditional testing methods may be inadequate. A difficult obstacle to thorough
testing of real-time systems is achieving visibility into the operations of processing
elements, such as the elevator server of the hardware design in Figure 4.7, while
application software is executing, such as floor sequencing control, in the software
design of Figure 4.6 [KIN98]. Resolve this problem by explicitly mapping Figure
4.6 computations into computation execution in Figure 4.7, and test the interaction
in terms of performance results, as discussed in the next section.

Test Case Selection

Test case selection is designed to provide adequate coverage of system components
by deriving test cases from software designs [ENO8]; for example, the elevator
software design in Figure 4.6. Test case selection is effective when software func-
tions are mapped to test cases, such as floor sequence traversal sequences mapped
to tests of sequence correctness. Test case selection can also be enhanced by using
state diagrams to identify state transitions that must be tested [SHUO4], such as the
elevator travel state changes in Figure 4.3.

Verifying a Design

It has been noted that the application of simulation to verifying a design does not
provide “total confidence” that the design is correct [UMR&3]. Actually, no verification
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method can provide “total confidence,” but by replicating simulation tests a suffi-
ciently large number of times, say 100 elevator floor traversals, verification error
can be minimized.

Achieving Realism in Testing

The testing regimen approximates realism by mimicking the way the actual elevator
system would perform with respect to floor traversal scenarios [ZHE04]. The testing
of the elevator system is geared to the performance simulation results to be presented
in the next section. The objective is to ascertain whether performance objectives
such as required response time can be met. This is accomplished by simulating a
specified number of floor requests that generate a series of elevator travel sequences.
Based on these sequences, performance metrics are computed and compared with a
specified performance. If there is a performance error, the test is repeated using a
reduced floor traversal time, consistent with achievable performance of extant eleva-
tor systems. A key indicator of acceptable performance is that response time is satis-
fied for all floor requests.

Detecting Logical Errors

The characteristics of real-time systems impose specific requirements on the test
system. The system must be capable of detecting logical as well as timing errors in
the design [TIMO93], for example the ability to detect incorrect elevator floor
sequences (e.g., elevator goes up to the highest destination floor and attempts to go
higher) and the ability to detect incorrect elevator timing computations (e.g., response
time is computed to be negative).

Maximum Response Time Criterion

Maximum response time that occurs due to resource limitation [WEDO91], such as
maximum elevator response time caused by the elevator not being available in a
timely manner, is another important test criterion. An example of the test of this
variable is shown in Figure 4.10 for elevator travel Sequence 1. Based on the test
results, floor travel time would be reduced to 3 seconds in Figure 4.10 to obtain the
required maximum response time of 60 seconds.

Complexity Caused by Interrupts

Another consideration in real-time testing is complexity caused by interrupts occur-
ring in an asynchronous manner [PET07], such as elevator travel in the down direc-
tion being interrupted by a request to go in the up direction. Handle this situation
by incorporating asynchronous interrupts into both the elevator software and hard-
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90.00 Response time requirement = 60 seconds, 20 floors assumed, n = 38 floor requests
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70.00 A
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Figure 4.10 Elevator Sequence 1: Mean response time (TR), throughput (TP), MRD, maximum
response time T; (max), and minimum response time T; (min) versus one elevator floor traversal time
(t). Series 1: TR (seconds). Series 2: TP (requests per minute). Series 3: MRD, mean difference
between required and achieved response time (seconds). Series 4: T; (max) (seconds). Series 5: T;
(min) (seconds).

ware designs in Figures 4.6 and 4.7, respectively, and conducting performance simu-
lations in this environment.

ELEVATOR SYSTEM PERFORMANCE RESULTS

Elevator system performance results are computed using performance metrics. These
metrics are functions of elevator travel sequences and the comparison of sequences.
As Figure 4.9 shows, performance improves with decreasing travel time for one
floor. These results were generated by simulating testing of travel sequences 100
times. For each sequence, current floor, request floor, and destination floor locations
were produced from uniformly generated random numbers, assuming there are 20
floors in the elevator system. Then, the floor location values were compared to
produce the travel sequences. Next, using the sequences, various metrics were com-
puted. Then, two sequences (1 and 4) were compared (see Fig. 4.2) to investigate
whether there is a difference due to direction of elevator travel, for the same values
of travel time for one floor. Indeed, as Figure 4.11 demonstrates, there are notable
differences for throughput and mean difference between required and achieved
response times. The lesson learned is that travel direction and distance is important
in assessing performance.
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Figure 4.11 Elevator: Mean response time (TR), throughput (TP), and MRD versus one floor travel

time t;. Series 1: TR, Sequence 1. Series 2: TP, Sequence 1. Series 3: MRD, Sequence 1. Series 4: TR,
Sequence 4. Series 5: TP, Sequence 4. Series 6: MRD, Sequence 4.

SUMMARY AND CONCLUSION

My aim was to develop an integrated and comprehensive design approach with the
objective of providing engineers with a road map for improving real-time system
design. My approach to real-time system design was to use models (e.g., elevator
floor traversal sequences) that are appropriate for real-time system analysis, such as
state diagrams, simulated testing, and event sequencing. Timing and schedule con-
straints were considered in order to analyze real-time system performance. I chose
the elevator example because it presents many design challenges and everyone can
relate to this system. I recognize that an abstract approach can only go so far in
developing real-time hardware and software designs, and in testing these designs.
Ultimately, the particular characteristics of the application must be considered.

By applying the above principles of real-time system design, an application-
specific system such as an elevator system can be developed to satisfy response time
requirements. The most important step in the development process is first, to repre-
sent the generic view of the application design. Then, using the generic design as a
guide, develop the specific features of the application. This approach has the advan-
tages of providing real-time system design abstractions that can be used for design-
ing any real-time system, and at the same time providing sufficient specificity for
designing application-specific systems.

Question for the Reader: In the elevator system design, why not model the
complete, continuous scenario of elevator operations rather than dividing the
operations into discrete sequences, such as those shown in Figure 4.27
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Answer: While at first glance this may be a reasonable thing to do in order to
introduce more realism into the model, this approach would be counterpro-
ductive because excessive complexity induced by considering too large a
chunk of a system at one time leads to errors in design and, consequently, to
errors in the implemented system. The “divide-and-conquer” approach is a
superior design paradigm.
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Chapter 5

Network Systems

This chapter is dedicated to describing and analyzing the performance, reliability, maintaina-
bility, and availability of networks. With respect to the part of networks called the Internet, the
chapter builds upon Chapter 6: Future Internet Performance Models. A smart grid application is
used to illustrate network functional and performance requirements. The chapter covers the various
types of networks, communication protocols, network services, and network architecture.

OVERVIEW

First, an overview of different types of networks is provided in order to give the
reader a perspective on networks that will serve as a foundation for learning network
details. In addition, because contemporary texts do not always explain the “why” of
networks as opposed to the “how,” this chapter will explain the rationale of each
network concept.

Local Area Network

A local network provides processing and communication services to a community
of users in a local area, typically within a corporate or residential geographical
domain. Why not have these users communicate directly to the Internet? The reason
is that some applications do not require access to the Internet. For example, users
may need access to servers that are part of a corporate local area network. In addi-
tion, even if access to the Internet is ultimately required in the application, prelimi-
nary communication and processing may be necessary in the local area network prior
to Internet access. For example, an electric utility may need to access smart meter
readings in a local area network prior to communicating them over the Internet to
various substations. Also, note that when possible, there is a performance advantage
in communicating in a local area network as opposed to using the Internet because
local networks employ higher speed communication lines and do not have to contend
with the traffic congestion that is present on the Internet.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
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Wide Area Network

The most prominent of this type of network is the Internet. However, there are many
private wide area networks that are part of corporate computer communication
systems. Due to the geographic extent of these networks, communication services
provided by communication carriers are necessary. This is not the case in local
networks because the communication distances are sufficiently short that private
communication channels (e.g., Ethernet) suffice. The performance of wide area
networks is comparable to that of the Internet. Then, why not use the Internet
directly? The reason, again, is a question of congestion, since the congestion on a
private wide area network is much less than that on the public Internet.

Network Architecture

This aspect of networks is addressed at this point because many texts and articles
use this model to explain network operations. It seems that the model is overused
because it can appear to readers to be the network rather than a representation of
network operations. The essence of the layered model is that corresponding layers
between two computers in a network communicate, for example, between applica-
tion layers. In actuality, the layers do not communicate. This is a software conception
of how the major parts of a network interoperate. Actual communication is accom-
plished by a combination of hardware and software, as shown in Figure 5.1. This
figure shows the function of each layer using the smart meter application as an
example. The only actual communication that takes place in Figure 5.1 in the layered
architecture is in the physical layer. In contrast to layered, virtual communication,
the figure also shows the real communication between network computers.

NETWORK APPLICATION

To provide context for the various facets of network analysis that are presented in this
chapter, a smart grid application is discussed. The smart grid is a network of comput-
ers and power devices that monitor and manage energy usage. Each energy producer—
for example, a regional electrical company—maintains operational centers that
receive usage information from collector devices placed throughout the served area
(see the smart meter in Fig. 5.1). In a typical configuration, a neighborhood contains
a single collector device that will receive periodic updates from each customer in the
neighborhood via the Internet. The collector device reports usage readings to the
operational centers using communication media such as the Internet.

Usage Reporting

The electric utilities manage transmission and perform billing based on smart meter
readings and send this information to the database in Figure 5.1. The usage-reporting
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Figure 5.1 Network architecture.

device at each customer site is called a smart meter. It is a computerized replacement
of the electrical meter attached to the exterior of many of our homes today. Each
smart meter contains a processor, nonvolatile storage, and communication facilities.
Although in many respects the smart meter’s look and function is the same as its
unsophisticated predecessor, its additional features make it more useful. Smart
meters can track usage as a function of time of day, disconnect a customer via soft-
ware, or send out alarms in case of problems. The smart meter can also interface
directly with “smart” appliances to control them, for example, turn down the air
conditioner during peak periods [MCDO09]. Smart meters can collect a unique meter
identifier, timestamp, usage data, and time synchronization every 15-60 minutes.

Data Requirements

In the United States, there are 338 million meters in operation. To bring the electric-
ity grid into the digital era, every meter, and the millions of devices that connect to
them, must be smart. Devices need to measure and transmit data, act on incoming
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Figure 5.2 Network performance model. T, node i processing time; pi, probability of node i being
busy; A, user computer input rate; W;: node i wait time; p, Web page packet request size or Web page
size; T, packet input time; Ty, link ij processing time; S, link ij speed.

information, and handle innovative applications. This will require a network that can
accommodate the sum of information that will be generated by the smart grid. For
example, if the 338 million meters already deployed in the United States digitally
reported the most basic electricity use information every 15 minutes, they would
generate anywhere from 274 to 548 GiB of information every day (http:/
www.smartsynch.com/smartsynch_infrastructure.htm). Components such as those
shown in Figure 5.2 would require this capacity.

NETWORK PROTOCOLS

Network protocols are rules of communication that govern how data are communi-
cated in a network. Most of the protocols are used in the Internet due to the com-
plexity of that network relative to local area networks. These protocols and ancillary
items that are related to protocols will now be described.

Transmission Control Protocol (TCP)
and Virtual versus Real Communication

This protocol operates in the Transport Layer in Figure 5.1 and is responsible for
ensuring reliable end-to-end communication in the Internet. By “end-to-end,” it is
meant from network computer to network computer in Figure 5.1. While this objec-
tive sounds good, realistically, it cannot be achieved; no system can be failure free.
An attempt is made at reliable communication by using acknowledgements. The
receiver acknowledges to the sender that a “correct” message was received. The

Internet
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message is assumed to be incorrect if an acknowledgement is not received within a
specified time called the “time-out period.” Since, as stated, no system is failure
free, correct messages cannot be guaranteed. Rather, an attempt is made at correct-
ness by appending error check data—which is computed over the message—to the
message and transmitting this package to the receiver. The receiver, in turn, com-
putes error check data over the received message, using the same algorithm that was
used at the sender. The reliability of this process will be addressed in a later section.
An interesting facet of TCP reliability is that a great deal of overhead is generated
when the odds are that a high percentage of messages will be transmitted without
error. This overhead injects additional congestion into the Internet, lowering the
performance of the entire Internet. It seems that reliability—performance trade-offs
were not considered in designing TCP. Also to be noted is that the Application Layer
provides TCP with the Smart Meter Reading in Figure 5.1. Thus, in addition to the
“horizontal” virtual communication, there is “vertical” virtual communication
between layers. Of course, both “horizontal” and “vertical” virtual communications
are fictitious; these are modeling artifacts. The only true communication is the “real
communication” in Figure 5.1.

Also note in Figure 5.1 that the concept of vertical virtual communication occurs
at both the source and destination. In the former, the Smart Meter Reading applica-
tion data is sent from the Application Layer to TCP, where the data become a TCP
message that is fortified with acknowledgement, error checking, and sequencing
information. The last item is required because messages are actually comprised of
smaller segments for efficiency in communication and processing (e.g., reduced
buffer space at both source and destination). Each segment is assigned a sequence
number because segments can get out of order when they are routed through the
Internet due to different delay times experienced by the segments. Then, the seg-
ments are sent to the Network Layer where they are transformed into a series of
packets in Figure 5.1, where the packets contain source and destination Internet
Protocol (IP) addresses and routing information (e.g., IP address of next router).
Local networks such as Ethernet—usually owned by user communities—are required
at the source and destination in order to process and communicate data within the
user communities, and to interact with the Internet. Therefore, Network Layer
packets are “virtually transmitted” to the Data Link Layer. This layer’s protocol
provides error checking between source and destination local networks. Note that
up to this point in the discussion of the layering approach the functionality in Figure
5.1 is implemented primarily in software. Now, at the Physical Layer, hardware is
used to transmit binary bits from source to destination. No error checking is neces-
sary in this layer because this function is performed in the Data Link Layer.

At the destination, the raw bits in the Physical Layer are checked for correctness
by the Data Link Layer. Next, the packets that have been buried in the binary bits
of the Physical Layer and the data of the Data Link Layer are recovered. The
Network Layer also checks segment sequence, reassembling segments in the correct
order, and thus recovering the TCP message. This is not the end of the story because
the messages require error checking by the Transport.
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User Datagram Protocol (UDP)

In contrast to TCP, the UDP does not attempt to ensure reliable communication.
Operating in the Network Layer of Figure 5.1, it transmits data with no acknowl-
edgements, thus providing higher performance compared with TCP. The term “data-
gram” could be confusing to the reader; “message” would suffice. To add to the
confusion, “message” is used in TCP, wherein, in reality, both TCP and UDP transmit
messages. However, Internet working groups designate this terminology because
UDP transmits short messages, called datagrams, whereas TCP transmits messages
comprised of several packets, where a packet is defined as data that have a header
for an address and routing information, a body for the actual data, and a trailer for
error check information.

Internet Protocol (IP)

This rule of communication is used in all Internet data transfers and is associated
with the Network Layer in Figure 5.1. Interestingly, the TCP message is appended
to the IP packet, where a packet is simply a set of binary bits that is transmitted in
the Internet. Thus, in the literal sense, a TCP message is not transmitted in the
Internet. Rather, it is the IP packet that is transmitted.

NETWORK SERVICES

Network services are network functions that provide services to users. In addition
to their functions, services are distinguished from protocols by virtue of being
affixed, by servers, to one or more points in local networks, as opposed to protocols
that operate over communication channels between points in a network.

Domain Name Service (DNS)

The DNS can be mystifying to readers because the natural question arises: why can’t
my data be communicated in the Internet by using the name of my computer and
the name of the resource I wish to access? The reason this is not feasible is that to
access a resource in the Internet, an IP address is required. The reason for this
requirement is that IP addresses provide generality in the Internet. That is, with each
resource in the Internet having an IP address, which may be assigned permanently
(e.g., Web server) or temporarily (e.g., duration of a network computer transaction),
any resource can be accessed. While it could be possible to maintain tables of
network computer names in order to access these resources, it would be inefficient
because the names would vary in length and not all network computers would remain
connected to the Internet over time. Thus, temporary assignment of an IP address
for the duration of a transaction has proven effective. However, users do not want
to remember IP addresses. It is more natural for them to deal with computer names.
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Besides, as mentioned, IP addresses are only assigned temporarily. Therefore, DNS
converts from a network computer name to an IP address when the computer
accesses a resource (e.g., Web server) and performs the reverse conversion—from
IP address to Uniform Resource Locator (URL)—when the Web server is accessed.
The URL, a bureaucratic name if there ever was one, is the name of a Web server
that is used by the network computer for accessing the Web server. Once the DNS
converts network computer name to an IP address, the Web server uses it to respond
to the Network Computer’s request.

Web Site Services

These services go into action when users request Web pages on the Internet. Users
are unaware of the many messages that transpire in the Internet when they access a
Web page. In addition to the user’s request, messages are required to perform DNS
name-to-IP address translation and to establish a session between user and Web site.
Thus, in assessing the user’s performance experience on the Internet, many support-
ing “hidden messages” must be accounted for in addition to application message.

Session and Presentation Layer Services

Actually, these are nonservices because they are not needed by these layers! Then,
why are they present in the architecture? The answer is that the international stan-
dards group included them because they believed these functions would be per-
formed by distinct layers in the architecture. However, Internet architects assigned
TCPs to session establishment by virtue of acknowledgements and they designated
applications to format source data (e.g., user formatting of Web page requests) and
services to format response data at the destination (e.g., Web site formatting of
requested Web page). However, since the seven-layer architecture is the holy grail
of networks, it is incumbent for book authors to include it.

NETWORK PERFORMANCE

In this section, network performance equations will be developed for each component
shown in Figure 5.2. Later, relevant network performance data from Chapter 6 will
be used in the equations to estimate the performance of extant computer networks.

Link Delay Times

These are the times required to transmit data on a link from the source point to the
end point; for example, the delay time from the user computer to the local network
queue in Figure 5.2. Thus, Tj; is link time, as computed below:

Tij :p/SU’
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Table 5.1 Network Performance Parameters

Data item

Source

Value

Asymmetric digital subscriber
line (ADSL) Internet
communication channel
speed

Local network (Ethernet) link
speed

Local network router
processing speed

Internet router link speed

Domain name server (DNS)
processing speed

DNS processing time

Web server link speed

Web page size

User computer processing
speed

Local network server
processing speed

Internet router server
processing speed

Web server processing speed

www.webopedia.com/

[HAMO2]

http://arstechnica.com/
hardware
www.highspeedrouter.com/

www.labnol.org/

/www.labnol.org/
www.google.com

www.google.com
[HARO7]

Assume same speed as user
computer
Cisco

http://www.info-techs.com/
speedtest50.html

e = 640,000 bits per
second

S;; = 100,000,000 bits
per second

S; = 54,000,000 bits per
second

S;; = 6,250,000 bits per
second

S; = 143,000 bits per
second

T, = 0.007 seconds

S = 2,418,500 bits per
second

p = 96, 928 bits

S; = 2,000,000,000 bits
per second

S; = 2,000,000,000 bits
per second

S; = 100,000,000,000
bits per second

S; = 12,439,000 bits per
second

where p is the Web page request packet and Web page size and S;; is speed of link
ij. p is assumed to be exponentially distributed, with mean = 1000 bits for Web page
request packet and mean = 96,928 bits for Web page size (see Table 5.1 for this
information). The exponential distribution is justified on the basis of higher probabil-
ity of small values of p and lower probability of large values. Values of p are gener-
ated by using the mean values in an exponential distribution, using a statistics

program (e.g., Minitab).

Question for Reader: Why not use the mean values of Web page request packet
and Web page size, rather than assume an exponential distribution and gener-

ate various values?

Answer: Single or mean values of p do not exist in real networks. Rather, in
real networks, there exists a distribution of sizes, where the exponential is
the most rationale distribution to use.

In addition to individual link delay times, it is also important to compute the mean
of link delay, MT, and time over all links, Ny, to obtain a metric of network com-
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Figure 5.3 Link delay time T; versus link ij. Series 1: Tj. Series2: Mean of T;.

munication performance that can be compared with individual link delay times to
see which link delay times are excessive and in need of performance improvement
by increasing link speed S;. This metric is computed as follows:

N,
MTL = ZTU /NL
ij

Figure 5.3 puts the metric MT, into action by identifying the Web server of exhibit-
ing anomalous behavior: excessive link delay time attributed to the Web server,
calling for an increase in its link speed. However, note that another contributor to
excessive link delay is the large Web page. Unfortunately, it may be infeasible to
reduce the size of the Web page. Therefore, the feasible option is to obtain a Web
service that can provide the desired speed, where this speed is computed as follows,
using the unchanged Web page size and the mean line delay:

Sij = p/MTL.

Figure 5.3 shows the increased Web service link speed designed to correct the per-
formance deficiency.

Node Processing Times

Nodes in Figure 5.2 are any objects that are not a link (e.g., user computer). Thus,
T; is the processing time of node i, as computed below:
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T, =p/S;,

where S; is the processing speed of node i.

In addition to individual node processing times, it is also important to compute
the mean processing time, MTy, and time over all nodes, Ny, to obtain a metric of
network processing performance, computed as follows:

NN
MT, :ZTi/NN.

Then, individual node processing times can be compared with the mean to identify
nodes that may be causing excessive processing time and, thus, are in need of pro-
cessing speed increase.

Again, as was the case with link delay, Figure 5.4 demonstrates that the Web
server is a bottleneck.

The remedies are to either increase the Web server processing speed or to
decrease the Web page size. Therefore, again the performance problem can be solved
by increasing the Web server processing speed, using the unchanged Web page size
and the mean node processing time as follows:

Si =p/MT1

Figure 5.4 shows the increased Web service processing speed designed to correct
the performance deficiency. Note, however, that since both the increased Web service
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Web server processing time excessive,
0.007 A processing speed too slow and Web page
too large;
0.006 - increase Web server processing speed from
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Figure 5.4 Node processing time T; versus server node i. Series 1: T;. Series 2: Mean of T..
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link speed and node processing speed are significantly greater than the original
values, it may not be practical to achieve these rates. Thus, it may be necessary to
settle for improved Web server service but not to the extent suggested by Figures
5.3 and 5.4.

Node Probability of Being Busy

Note in Figure 5.2 that nodes such as local network server may or may not be busy.
Being busy means that there are one or more items in a queue waiting to be pro-
cessed. Thus, the probability of node i being busy, p;, is related to the data input
speed to node i, on link ij, S;, and to the processing speed of node i, S;, as follows:

pi =S; /S

There is one exception to the application of this equation and that is the determina-
tion of p; for the Domain Name Server (DNS). For the DNS, the Internet Router
link speed, in Figure 5.2, which is the DNS link speed, is so much greater than the
DNS processing speed (see Table 5.1) that it would be necessary to provide at buffer
at the input of the DNS in Figure 5.2. This is done to prevent the DNS from being
overrun by Internet traffic. p; = S;/S; cannot be used because it would yield a value
much larger than 1.0, which would indicate queue instability. However, this is not
the case when the buffer is employed. To make the DNS operate in a stable manner
p; = 0.8 is assigned as the DNS busy metric.

Packet Input Time

Packet input time, T,, is a driver of network operations that is needed to estimate
its influence on wait time in a queue. Its influence is exerted because the rate of data
input generated by the user computer, A,., may cause the links and nodes down the
line to be overwhelmed with data and, hence, increasing wait time. T, is computed
as follows:

Tp :p/7\'UC9

where p is the packet size.

Figure 5.5 demonstrates the influence packet input time on wait time, in that
wait time follows the pattern set by packet input time as a function of the node where
the wait time occurs. The utility of this plot is to identify the node associated with
anomalous high values, which in this case is the Domain Name Server (DNS), and
to correct this deficiency by obtaining the services of a DNS provider that has a
DNS with the requisite speed.

Node Wait Time

Node i wait time, W, can be estimated by considering that if node i probability of
being busy, p;. is 0, there are no items waiting for processing at node i. On the other



136  Computer, Network, Software, and Hardware Engineering with Applications

0.00300000 ~

—&— Series 1
—— Series 2
4
0.00250000 -
0.00200000 -
w
T©
c
S
o
& 0.00150000
=
a
= Wi tracks T, Domain Name Server is out of bounds
0.00100000 -

0.00050000

L 2

0.00000000 & g
1 2

w @

¢
4

o @
<4
4
4
<
<

Figure 5.5 Packet input time T, and node wait time W; versus node i. Series 1: W;. Series 2: T,,.

hand, if p; is 1, the indication is that node i is in its maximum busy state and an item
would have to wait to be processed. If the probability of node i being busy is
0 < p; < 1, it indicates the degree of busyness. Thus, on an expected value basis,
node i wait time, W,, is estimated as follows:

W, =p;T;.

For example, if p; =0, then W; = 0; if p; = 1, then W; = 1. That is, with p; = 0, of
course there is no waiting and W; = 0. However, with p; = 1, an item would have to
wait for the previous item to be processed for a time T.

Node Processing Time plus Node Wait Time

Processing time alone does not tell the entire story of node performance. What is
needed is to account for wait time, which could be significant. Therefore, the sum
of these times, TW,, is computed as follows:

TW =T1+W1 =p/S,+p1T,

In addition, to provide a standard for evaluating the performance of individual nodes,
the mean of TW;, is computed over N, nodes as follows:

Ny
Srw

MTW, ==
N,
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The value of TW, is compared with MTW; to identify node processing times that
may be excessive. This comparison is demonstrated in Figure 5.6, where the Web
server is identified as failing to meet the mean value test. In these cases, there would
be a need for node processing speed S; to be increased.

Summation of Link Delay, Processing Time,
and Wait Time

To obtain a comprehensive performance metric of an entire network, T, link delay,

node processing time, and wait time are summed over number of links, Ny, and N,
number of nodes in a network, as follows:

NL Ny N
=SS S
ij i i

In addition, the mean MT; of T; is computed over all Ny nodes and N; links as follows:

MT, = ZTl.

It is appropriate to compare total network time T, with the user expectation T, to see
whether the performance is meeting expectation. Furthermore, the relative error RE
between expected and realized times is computed as follows:
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Figure 5.7 Node processing time plus wait time plus link delay T, versus server node i. Series 1:
T.. Series 2: Mean of T,.

RE=(T.-T) /T,

where positive or zero values indicate that the user expectation of T, < T, is satisfied
and negative values indicate that the user expectation is not satisfied. By examining
individual link delay, node processing time, and node wait time, the source of per-
formance problems can be identified that could be excessive link delay or node
processing time, or both. This comparison is performed in Figure 5.7, where it is
shown that high RE is associated with the Web server failing to meet the total node
processing, wait, and link delay time expectation.

Network Performance Parameters Data

The network performance parameter data that will be used in the network perfor-
mance equations is documented in Table 5.1.

NETWORK RELIABILITY, MAINTAINABILITY,
AND AVAILABILITY PREDICTION

In addition to performance, it is important to predict the reliability, maintainability,
and availability that can be achieved in a network.
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Reliability

The factors that govern reliability in a network are the following:

Both links and nodes must be used in prediction equations.

Because reliability is higher for small values of link delay and node processing
time than for large values, the appropriate reliability function is the
exponential.

The probability of a node being busy must be included in reliability prediction
equations because when nodes are busy, not only are nodes busy but the
connecting links are also busy because the data on the links must be delayed
for processing until the nodes are no longer busy, thus exposing links to
increased possibility of failure.

The failure rate A is a random variable that is generated by using the Excel
RAND function.

Thus, proceeding to use these factors in developing reliability prediction equations,
the link failure rate, A;;, is computed as follows, applying the probability of node i
being busy:

A =pik.

The exponential distribution is put to work to predict link reliability, R,
is link delay:

i» where Tij

R. = e—(lijTij)
1] .

Now node reliability is formulated in a manner similar to links. First, failure rate:
as in the case of links, failure rate is the product of probability of node busy and the
Excel RAND function, A, generating difference values for this computation:

A =pik.

Then, the exponential distribution is called on to predict node reliability, R;, applying
node processing time T;:

R = e—(MTj)
i .

Maintainability

Maintainability is formulated by considering how the probability of maintenance
actions can be estimated. The concept is that maintainability is a probability, and
this probability is the ratio of the quantity of data processed by a given link or node
to the total quantity of data processed at all links and nodes in the network. The
quantity of data that is processed by each link and node is p;;;, the Web page request
size for all links and nodes, except for the Web server and its associated link, where
Di;i 18 the Web page size. Thus, maintainability is predicted as follows, where N is
the number of links and Ny is the number of nodes in the network:
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M. = Piji

i T NLNy :

2 Dij.i

ij,i

The primary purpose of Table 5.2 is to account for the links and nodes in the main-
tainability predictions. See Figure 5.2 as an aid in making this accounting. The Web
page request packet and Web page sizes in Table 5.2 were generated from the afore-
mentioned exponential distribution process.

Availability

Availability is important in all systems, including networks. It represents the fraction
of time that a network is operational for useful work. The fraction of time that the
network is not available is the time consumed in maintaining the system, and the
fraction of time the network is not being maintained and doing useful work is when
it is operating reliably. These fractions of times can be translated into corresponding
probabilities in order to produce a general availability expression as follows:

Maintainability. The probability that the network is not available.
Reliability. The probability that the network is available.

Thus, link availability, A, is predicted as follows:
Ay =Ry /(R + M),
and node availability, A,, is predicted as follows:
Ai = Ri /(l{1 + Mij,i)'

The results of combining reliability and maintainability into availability predictions
are shown in Figure 5.8, where the link and node availabilities are almost identical
so that only one availability plot is shown along with the required availability of
0.9800. This requirement means that the user expectation is that the network will be
unavailable for not more than 2% of the scheduled operating time. The figure delin-
eates the nodes and connecting links that satisfy the requirement and those that do
not. The problem in the latter case is excessive maintainability. Since both link and
node reliabilities are high, the remedy would be improved maintenance practices,
such as preventive maintenance.

SUMMARY

This chapter has shown how to analyze and predict network performance, reliability,
maintainability, and availability. In addition, using the foregoing tools, the reader
learned how to identify anomalous performance and availability behavior, such as
that exhibited by the Domain Name Server and Web server. Thus, the reader is then
fortified with tools for correcting these deficiencies.
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p (Web page request or

Link Node Web page size in bits)
User computer to local 467.29
network server queue
Local network server queue 467.29
Local network server queue to 656.28
local network server
Local network server 656.28
Local network server to local 491.06
network router server queue
Local network router server 491.06
queue
Local network router server 938.72
queue to local network
router server
Local network router server 938.72
Local network router server to 1,069.94
internet router server queue
Internet router server queue 1,069.94
Internet router server queue to 1,115.03
internet router server
Internet router server 1,115.03
Internet router server to 1,399.53
domain name server queue
Domain name server queue 1,399.53
Domain name server queue to 943.51
domain name server
Domain name server 943.51
Domain name server to 1,774.3
internet router server queue
Internet router server queue 1,774.3
Internet router server queue to 887.43
internet router server
Internet router server 887.43
Internet router server to Web 1,231.98
server queue
Web server queue 1,231.98
Web server queue to Web 385.84
server
Web server 385.84
Web page to Web server 33,181.3
‘Web server 33,181.3

Total 44,542.21
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Chapter 6

Future Internet Performance
Models

Having learned the fundamentals of computer design in Chapters 1 and 2, which apply to
computers such as personal computers, you are ready to study a topic that is pervasive in the
world of information technology—the Internet. Since there are few computer applications
that do not use the Internet, I provide the reader with a perspective of the evolving Internet,
using the present Internet as a baseline. The performance and reliability of a proposed future
Internet—wired and wireless—is compared with the present Internet. Models of data transfer
and queuing dynamics are used to make the performance comparison. These models consist
of logic diagrams that express the sequence of data transfers in the Internet (e.g., local network
to local network router) and queuing logic diagrams, supported by queuing equations (e.g.,
probability of local network queue busy). These models represent the steady-state behavior
of the present and proposed future Internets. Computer programs are used to simulate the
variability in queue behavior. The results are used to identify the major variables in Internet
performance (e.g., Internet routing time as a major performance variable). Furthermore, the
results are used to compare present Internet and proposed future Internet performance. Reli-
ability analysis is performed by predicting cumulative Internet faults and failures and by
analyzing the complexity of present and proposed Internet configurations as an indicator of
reliability (i.e., number of points of failure in a configuration). Model results demonstrate
significant increases in performance and reliability for the proposed Internet, attributed to the
elimination of data transfer overhead (e.g., elimination of Domain Name Service) and simpli-
fied network configurations.

CHAPTER OBJECTIVES

One objective is to compare the performance and reliability of the present Internet
with a proposed Internet of the future that could operate faster, more reliably, and
with improved security, by eliminating the overhead induced by a multiplicity of
protocols, intermediate networks, and interfaces that comprise the current Internet.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
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In order to illustrate the proposal, I developed analytic queuing models and simula-
tion models for comparing the performance and reliability of the current versus the
proposed Internet. The process starts by defining the network topology for present
and future Internet configurations. This leads to identifying and defining the perfor-
mance and reliability and variables of the model. In developing the prediction equa-
tions, the sequence of operations on the network—for example, an input request to
the Internet—provides the basis for computing the performance and reliability of
the present and proposed Internets.

To add realism to the models, I use publicly available performance and reli-
ability data posted on the Internet. While the performance and reliability of present
and proposed Internets are of interest, it is the comparison of the two that is my core
objective that would demonstrate whether the proposed Internet is viable. Both wired
and wireless Internets are included in the analysis, in both upload direction (i.e.,
request for Web page) and download direction (i.e., delivery of Web page). Based
on extensive literature search, no one has proposed fundamental changes in the
Internet configuration, as I propose. Rather, current research focuses on the present
Internet configuration as a given, with proposals to improve quality of service, reli-
ability, and so on, on the existing platform.

PROPERTIES OF THE PROPOSED FUTURE INTERNET

In today’s Internet architecture, the Internet Protocol (IP), Internet addresses, and
the Domain Name Service (DNS) implement core architectural principles that
restrict the Internet’s ability to adapt to improved performance and reliability require-
ments [GOEQ7]. In the future Internet, the current edge of the network (e.g., user
computers and mobile devices) will often be just one hop to the Internet [FAIOS].
That is, devices will be able to connect directly into the Internet, eliminating barriers
such as local networks, local network routers, and domain name servers. The trend
to connect more devices will also accelerate, facilitated by the increasing installation
of Internet Protocol version 6 (IPv6). In the future, the Internet will connect vast
numbers of tiny devices integrated into cell phones and other mobile devices [FAIOS].
These devices may challenge the traditional understanding of network topology as
a collection of networks and, instead, view the future Internet as a single unified
network.

According to Gokhale et al. [SWAOQ6], in a process-based Web server architec-
ture, the server consists of multiple single-threaded processes, each of which handles
one request at a time. In a thread-based architecture, the Web server consists of a
single multithreaded process; each thread handles one request at a time. However,
there is another Web server model—the one I use. This model uses multiple execut-
ing servers, each processing user requests concurrently.

The proposed future Internet is comprised of the following capabilities:

e Rather than using local networks, such as Ethernet, communication between
user computers and Web servers and between mobile devices and Web servers
would be direct, via Internet routers.
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* Devices would be assigned permanent IP addresses, issued by the Internet
authority, thus eliminating the need for name-to-IP address translation, thereby
eliminating the need for Domain Name Systems. User computers and mobile
devices would access a Web server by providing a Universal Resource Locator
(URL) (Web site address) to the Internet service provider (Isp). The Isp, in
turn, would look up the Web server IP address in its directory and append it
to the IP packet. In case the IP address has not been recorded in the Isp direc-
tory, the Isp would broadcast a request to obtain the IP address.

* In order to provide increased security of data, every user computer and mobile
device would have its own IP address, requiring the replacement of Internet
Protocol version 4 (IPv4) with IPv6, in order to provide for a large address
space. IPv6 does not provide any better (or worse) support for quality of
service than IPv4, but it does have several important features that would
enhance the performance and security of the future Internet, including larger
address space, integrated security capabilities, easier configuration, and a
simplified packet header format [METO3].

* Reliability would be increased because there would be fewer components that
could fail and fewer single points of failure (e.g., elimination of local networks
and Domain Name Systems). This is important because the Domain Name
System is reputedly one of the main causes of failure in the Internet [PAR].

* Cyber security would be increased because there would be fewer components
that could be attacked and if attacks do occur, resolution would be simplified
by pinpointing the location of an attack by virtue of using a much simpler
Internet configuration than is presently the case.

NETWORK USAGE DATA

In developing the Internet evaluation models, using queuing models, it is important
to use real-world data, as advertised on the Internet and documented in Table 6.1.
Some items in the table are descriptive to indicate the magnitude of wired and wire-
less Internet traffic and storage requirements. Other items are used to compute
quantities that are used in queuing and simulation analyses.

QUEUING MODEL (PRESENT INTERNET SYSTEM)

In this section the various queuing model equations, computations, and plots [HILO1],
using data from Table 6.1, are presented, encompassing upload of Web page requests
and download of Web pages, for both wired and wireless technologies, for the
present Internet system. The queuing models are based on a continuous timescale
of user computer and mobile device Web page requests and corresponding Web
server Web page deliveries in order to provide realistic portrayals of Internet per-
formance and reliability that would not be feasible with a discrete, time-sampled
approach ([JINOS], [TAK93]).
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Figure 6.1 shows the wired logic for upload of a packet that is requesting a
Web page. It is assumed that Web pages are downloaded from a Web server to the
user computer. Figure 6.1 also shows the wired logic of Web pages downloaded to
the user computer. Note that in the case of Internet routers, Domain Name Systems,
and Web servers, multiple servers are required in order for the probability of queue

A, =0.328mps )
P twi, = 0.003039 seconds NStn = 55.8 bits {81, = 18.52 microseconds

User Computer

I packet
——) Server

+—> d=1000 bits Busy
we = 0.003049 seconds

M, =100 mps
N tsi, = 0.0000100 seconds

Local
Network

W, =54 mps nsi = 6.07 bits

Internet

Local
Network
Router
Server

t

N Local Network A
Router Server

tsina = 0.00096928 seconds tsi¢ = 0.001750 seconds

tuca = 0.018462 seconds Local Network
p = 96,928 bits Server Queue . _ R i tw = 0.016712 seconds
| nWing = 91,521 bifs  nwi, = 944.20 bits | NStne = 5407 bits Local Network . — g7 504 pits

twing = 0.001749 seconds Router Server Queue

p,. =0.7646

Internet
Router
Server 1

Internet Router
Server 1

Internet Router Domain Name

Server 1 Server 1
Y ts, = 0.000080 seconds tsys = 0.0023 seconds tsiq = 0.0078 seconds
ns;; = 446.24 Wi = 07 seconds

i
N Internet Router
Server 2
nsiq = 43,253 bits

nwiq = 53,675 bits

Internet
Router
Server 2
Busy

Domain Name
Server 2
Busy

Internet Router
Server 2

Internet Router

Internet Router Server
tw; = 0.002969 seconds (S)irev:; Dogain Neme Queue
_ . Busy
nw;; = 553.76 bits Domain Name
Server 3
i
Domain Name
Server Queue b
twps = 0.000749 seconds Web Server 1

nwps = 235.43 bits
Ay =5.250 mps
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nsys = 723.59 bits
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El
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Figure 6.1 Present wired Internet queuing model.
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busy <1 (i.e., server utilization <1). Otherwise, the queue systems would become
unstable (i.e., the servers would become overwhelmed with traffic).

See the sections entitled “Present Internet Wired Logic Sequences for Upload
and Download” and ‘“Present Internet Wireless Backbone” for the explanations of
the notations and quantities that appear on the queuing model figures.

The queuing models provide a mean value analysis of the wired and wireless
performance. While important, mean values are not the whole story of Internet
system performance. Since performance will vary considerably from the means, as
a function of operating conditions in the Internet, this variation in Internet perfor-
mance is estimated using simulation queuing models. These estimates are computed
in a later section.

Present Internet Wired Logic Sequences
for Upload and Download

This subsection contains the mean value equations and computations for the sequence
of data transfer and processing operations that are required to upload a request for a Web
page, as depicted in Figure 6.1, and to deliver a Web page to the user computer (down-
load), as shown in Figure 6.1, for the present Internet wired system, organized by the
components that comprise the system. The computations use the data in Table 6.1.

User Computer

Mean Packet Upload Time t,.

d
tye =7, 6.1
" (6.1)

where d is the packet size and A, is the packet upload rate in Figure 6.1:

1000 bits

=————=0.003049 seconds.
0.328 Mbit/s

uc

Web Server

Mean Web Page Download Time t,.4

tucd =T (62)
where p is the Web page size and A, is the Web page download rate in Figure 6.1:

96,928 bits

=—————=0.018462 seconds.
5.250 Mbit/s

ucd
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Local Network

Single-server equations apply for the local network, shown in Figure 6.1, because
only one server is required for the probability of queue being busy <I1.

Probability of Queue Being Busy p,,

This probability is the ratio of the sum of the packet arrival rate \,. (upload) and
the Web page delivery rate A, (download) to the local network packet service rate,
Urn, shown in Equation 6.3. The result of this computation is shown in Figure 6.1:

7\‘11(2 +7\’WS
an =
l"an (6 3)
oL, = 0.328+5.25'Mb1t/s — 0.055780.
100 Mbit/s

Mean Upload Processing Time ts,,,

This is the mean time required for the local network in Figure 6.1 to process a packet
of size d, using the local network processing rate L;,, when the user computer
requests a Web page to be uploaded, as given in Equation 6.4:

tSLn =,
L;L(;oo bit ©4
S1p = —— 2 0.000010 seconds.
100 Mbit/s

Mean Upload Wait Time tw,,

This is the mean time a packet has to wait to be processed in the local network queue
in Figure 6.1 when the user computer request for a Web page is uploaded, as given
by the packet upload time, from Equation 6.1, and the local network upload process-
ing time, computed in Equation 6.4:

Wi, =ty = Spp,

6.5
twr, =0.003049 —0.000010 seconds = 0.003039 seconds. 6

Mean Download Processing Time ts .4

This is the mean time, computed in Equation 6.6, required to process a Web page,
of size p, processed at the local network processing rate ., in the local network,
when a Web page is downloaded in Figure 6.1:
(S pg =—,
HLn

96,928 bits
100 Mbit/s

(6.6)
=0.00096928 seconds.

tsLnd
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Mean Download Wait Time tw .4

This is the mean time, computed in Equation 6.7, a Web page has to wait to be
processed in the local network queue in Figure 6.1, when a Web page is downloaded,
as given by the Web page download time, from Equation 6.2, and the local network
processing time, computed in Equation 6.6:

tVVLnd = lyed — tsLnd’

6.7
tWina = 0.018461—-0.00096928 seconds = 0.001749 seconds. 67

Mean Number of Packet Bits Being
Processed in the Upload Direction ns,,,

Equation 6.8 is the probability of the local network being busy from Equation 6.3
times the packet of length d, as shown in Figure 6.1:

ns,, = (M) d,
uLn

_(0.328+5.25 Mbit/s
b 100 Mbit/s

(6.8)

)(1000 bits) = 55.8 bits.

Mean Number of Packet Bits Waiting to be
Processed in the Upload Direction nwy,,

If the result computed in Equation 6.8 is subtracted from the packet length, the
number of packet bits waiting to be processed can be computed in Equation 6.9, as
shown in Figure 6.1:

nw;, =d—nsp,,

. . (6.9)
nwy, = 1000 - 55.8 bits = 944.20 bits.

Mean Number of Web Page Bits Being Processed
in the Download Direction ns, .4

In Equation 6.10, we multiply the Web page size p by the probability of the local
network server being busy from Equation 6.3, as shown in Figure 6.1:

}\'UC + }\‘WS
NS g = (—) (p),

Ln

(6.10)

0.328 +5.25 Mbit/s
NS g = .
100 Mbit/s

j(%, 928 bits) = 5407 bits.

Mean Number of Web Page Bits Having to Wait
to Be Processed in the Download Direction nw, .4

Equation 6.11 computes the number of Web page bits that are held up in the local
network queue waiting to be processed for download that is equal to Web page size
p minus the result from Equation 6.10, as shown in Figure 6.1:
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NWpng =P —DSppng,

. ) (6.11)
NWye = 96,928 — 5407 bits = 91,521 bits.

Local Network Router

Single-server equations apply for the local network router, shown in Figure 6.1,
because only one local network router server is required in order for the probability
of queue being busy <1. Also, note that the local router equations are applied twice—
once for routing the Web page request in Figure 6.1 and again for routing the down-
loaded Web page in Figure 6.1.

Probability of Local Network Router Being Busy p,,

This probability is the ratio of the sum of the packet upload rate \,. and the Web
server download rate A to the local network router packet routing rate, \;,, com-
puted in Equation 6.12, as shown in Figure 6.1:

e + Ay
er = - >
Hre 6.12)
o = 0.328+5.2§ Mbit/s _ | oos
54 Mbit/s

Mean Upload Processing Time ts,

This is the mean time required for the local network to process a packet, of size d,
for routing in Figure 6.1, as given in Equation 6.13:

tSLr =,

LIL(L)rOO bit: ©6.13)
Sip = S 18,52 pis.

54 Mbit/s

Mean Upload Wait Time tw,,

This is the mean time a packet has to wait to be routed in the local network router queue
in Figure 6.1, computed in Equation 6.14, as given by the packet upload time, from
Equation 6.1, and the local network router routing time, computed in Equation 6.13:

twy, = tue — 81,

(6.14)
twy, =3049-18.52 us =3030.48 ps.

Mean Download Processing Time ts,,q

This is the mean time required to route a Web page of size p from a Web server to
the user computer, as given in Equation 6.15 and shown in Figure 6.1:
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ts Led = s
Lr

S = w =0.001750 seconds.

54 Mbit/s

(6.15)

Mean Download Wait Time twq4

This is the mean time, computed in Equation 6.16, a Web page has to wait before
it can be routed in the download direction to the user computer, as shown in Figure
6.1. Equation 6.16 uses the Web page download time, t,.4, computed in Equation 6.2
and the download processing time computed in Equation 6.15:

Wi = tuea = BSLras

6.16
twiq =0.018462 —0.001750 seconds = 0.016712 seconds. ( )

Mean Number of Packet Bits Being Processed
in the Upload Direction for Routing ns,,

Equation 6.17 is equivalent to the product of the probability of the local net-
work router being busy, from Equation 6.12, and the packet size d, as shown in
Figure 6.1:

)
o 2 ()@
0 2;8 Mbit/s) (1000 bit ©.17)
ns,, = it/s)( ) _ 6.07 bis.
54 Mbit/s

Mean Number of Packet Bits Waiting to be Processed
in the Upload Direction for Routing nw,,

If the result computed in Equation 6.17 is subtracted from the packet length, the
number of packet bits waiting to be processed for routing can be computed in Equa-
tion 6.18, as shown in Figure 6.1:

nwy, = d- nsy,,

. . (6.18)
nwy, =1000-6.07 bits = 993.93 bits.

Mean Number of Web Page Bits Being Processed for Routing
in the Download Direction ns,4

In Equation 6.19, compute the number of Web page bits being processed in the
download direction by utilizing the Web page download rate A, Web page size p,
and local network router processing rate LL;,, as shown in Figure 6.1:
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(Aus) (P)

nerd = —’
1Ir
. . (6.19)
ns,, = (5.25 Mb1t/s)(?6,928 bits) — 9424 bits,
54 Mbit/s

Mean Number of Web Page Bits Waiting to Processed for Routing
in the Download Direction nw,4

This computation is made by subtracting Equation 6.19 from the Web page size p,
producing Equation 6.20, as shown in Figure 6.1:

Wi =P — DSy,

. . (6.20)
nwy g = 96,928 — 9424 bits = 87,504 bits.

Internet Router

Probability of Internet Router Being Busy p;,

This probability is the ratio of the sum of the packet upload rate \,. and the Web
page download rate A to the Internet router packet routing rate, s, as shown in
Equation 6.21, where s = 2 is the number of Internet router servers. Whenever there
are multiple servers involved, this fact must be reflected in the total service rate. The
Internet routers are shown in Figures 6.1-6.3.

7\’110 + 7\’WS
Pir = (Sl-l—‘)’
" , (6.21)
o, = (0.328+5.25 Mblt/S) 04462,
(2)(6.25 Mbit/s)

Mean Upload Processing Time ts;,

This is the mean time required for the Internet router to route a packet in the upload
direction, as given in Equation 6.22, where again, the computation must account for
s = 2 servers, as shown in Figure 6.1:

d
tsir =
S
1000 bits
(2)(6.250 Mbit/s)

(6.22)
=0.000080 seconds.

ir

Mean Upload Wait Time tw;,

This is the mean time a packet has to wait to be routed in the Internet router queue
in the upload direction, as given by the packet upload time, from Equation 6.1, and
the Internet router processing time, computed in Equation 6.23, as shown in Figure 6.1:
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Figure 6.2 Present wireless queuing model (upload).
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Web page | P =96, 928 bits M, = 2.4185 mps
Ay = 5.25mps  ts,e = 0.000006981 microseconds
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Mobile Device

Web page —» @ Ay, = 7.2mps

wb =100 bits Web page request packet
twp = 13.889 microseconds

p = 96, 928 bits

Access Point

u,, = 17.75 mps
NSapq = 41,108 bits

tSaps = 0.0055 seconds

twapa = 0.0130 seconds Disk array

NW_pa = 55,820 bits P, = 0.7014

Internet Router
Queue

tsi¢ = 0.0078 seconds
Router Server 1

Web
Server 1
Busy

Web
Server 4
Busy

A, = 5.25mps

Web Server 1 Web Server 4

N m_ _D N

Web
Server 2
Busy

Web
Server 5

Web Server 2 Web Server 5

0| SEIREN ¢ | P

N

Web Server 3 Web server 6

= <
Web Server Router
Queue
tWwsg = 0.00117835 seconds NWuwsd = 61,860 bits

Figure 6.3 Present wireless queuing model (download).
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twy, =t —ts;
1 uc s 6.23
tw;, = 0.003049 — 0.000080 seconds = 0.002969 seconds. ( )

Mean Download Processing Time ts;q

This is the mean time required for the Internet router to process a Web page for
routing, using the Web page size p and the processing rate of s = 2 servers sy;, given
in Equation 6.24, as shown in Figure 6.1:

Sig = ——,
SWi;
" 96,928 bit (6.24)
Sid = ’—IS =0.0078 seconds.
(2)(6.250 Mbit/s)

Mean Download Wait Time tw;q

Equation 6.25 computes the mean time a Web page, downloaded in a time t,.q. must
wait for routing, using the processing time ts; 4, computed in Equation 6.24, as shown
in Figure 6.1:

Wig = tyeq — tSird’

(6.25)
tw,q =0.018461—0.0078 seconds = 0.0107 seconds.

Mean Number of Packet Bits Being Processed for Upload Routing ns;,

Equation 6.26 is equivalent to the product of the probability of the Internet router
being busy, from Equation 6.21, and the packet size d, as shown in Figure 6.1:

(7\.“ + 7"ws ) (d)
ns, =——m——,
Sl"’ir
(0.328 + 5.25 Mbit/s) (1000 bits) (6:26)
. . 1U/S 1S
ns;, = - =446.24 bits.
(2)(6.25 Mbit/s)

Mean Number of Packet Bits Waiting to be Processed for Routing
in the Upload Direction nw;,

If the result computed in Equation 6.26 is subtracted from the packet length d, the
number of packet bits waiting to be processed for routing in the upload direction
can be computed in Equation 6.27, as shown in Figure 6.1:

nw;, =d-—ns;,

. . (6.27)
nw;, = 1000 —446.24 bits = 553.76 bits.
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Mean Number of Web Page Bits Being Processed for Download
Routing ns; 4

Equation 6.28 is equivalent to the product of the probability of the Internet router
being busy, from Equation 6.21, and the Web page size p, for s = 2 servers as shown
in Figure 6.1:

NSy = (xuc + st )(p) ,
Suir
(0.328+5.25 Mbit/s) (96,928 bit (6.28)
NSy = : 15) (96,928 BItS) _ 43 253 bits.
(2)(6.25 Mbit/s)

Mean Number of Web Page Bits Waiting for Download Routing nwi;, 4

Equation 6.29 is computed by subtracting the result in Equation 6.28 from the Web
page size p, as shown in Figure 6.1:

NWig = P — DSjrg,

) ) (6.29)
nw;y = 96,928 — 43,253 bits = 53,675 bits.

Domain Name System (DNS)

Only the upload equations are computed because once the user computer has
obtained an IP address from the DNS, it can be used for downloading a Web page.
Note that because the DNS computations are mean values, a fraction of a packet
(i.e., number of bits) would be computed for name-to-IP address translation, as
opposed to an entire packet, which is the case in actual translations.

Probability of Domain Name System Being Busy p,s

This probability is the ratio of packet arrival rate A, to the DNS user computer
name to IP address translation rate, s\, shown in Equation 6.30, where s = 3 is
the required number of DNS servers. This probability and the DNS servers are
shown in Figure 6.1:

7"uc
pns =,
SHns

_ 0.328 Mblt/.S — 0.7646.
(3)(0.143 Mbit/s)

(6.30)

ns

Mean Processing Time ts,

This is the mean time required for a DNS in Figure 6.1 to do an address translation
for a packet of size d, as given in Equation 6.31, where again, the computation must
account for multiple servers:
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d
Sty
_ 1000 bits
" (3)(143,000 bits/s)

tsns =
(6.31)

=0.0023 seconds.

SﬂS

Mean Wait Time tw,,

This is the mean time a user computer Web page request packet must wait in the
DNS queue prior to name-to-IP address translation in Figure 6.1, computed in Equa-
tion 6.32, as given by the packet upload time from Equation 6.1, and the DNS
processing time, as computed in Equation 6.31:

tWy =ty —ts
ns uc ns» 6.32
tw,, = 0.003049 —0.0023 seconds = 0.000749 seconds. ( )
Mean Number of Packet Bits Being Processed for Name
Translation ns,

Equation 6.33 is equivalent to the product of the probability of the DNS being busy,
from Equation 6.30, and the packet size d, as shown in Figure 6.1:

_ ()@

ns — s

SIJ'HS

328 Mbit/s) (1000 bi
ns,, = (0328 MBIUS)A000bits) _ 7y o7y,
(3)(0.143 Mbit/s)

(6.33)

Mean Number of Packet Bits Having to Wait for Name
Translation nw,

This quantity, computed in Equation 6.34, is the difference between packet size d
and the number of bits being processed by the DNS from Equation 6.33, as shown
in Figure 6.1:

nw,, =d—ns,,

, (6.34)
nw,, = 1000 —764.57 = 235.43 bits.

Web Server Processing

Some quantities involving Web pages were previously computed. This section pro-
vides computations for Web server processing (e.g., probability of server busy) for
both the wired system (Fig. 6.1) and the wireless system upload Web page request
(Fig. 6.2), and the wireless download Web page response (Fig. 6.3).

Probability of Web Server Being Busy p..s

For wired systems, this probability is the ratio of the sum of the Web page wired
system request packet upload rate, A, and the Web page download rate, Ay, to the
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Web page processing rate, S|y, as shown in Figure 6.1. For wireless systems, this
probability is the sum of the Web page wireless system request rate, Ay, and the
Web page download rate, A, to the Web page processing rate, s\, shown in Equa-
tion 6.35, where s is the number of Web servers. Note that in the case of the wireless
system, twice as many servers (six) are required to maintain queue stability (i.e.,
Pws < 1.0) than in the case of the wired system (three), due to the high Web page
wireless system request rate, Ay, as shown in Figures 6.2 and 6.3:

Pus = R+ (wired system),
suws
Pus = Ran A (wireless system),
0 ;;lsws 5.25 Mbit/ (©39)
. +).
Pws = ( - it/s) =0.7688 (wired system),
(3)(2.4185 Mbit/s)
7.2 .25 Mbi
Pus = (7.20+5.25 t?ltls) = 0.8580 (wireless system).
(6)(2.4185 Mbit/s)

Wired and Wireless Systems Mean Upload Processing Time ts,,

This is the mean time required for the Web servers to process requests for Web pages
received from the user computers, as computed in Equation 6.36, for wired system
packet size d and number of servers s = 3 (Fig. 6.1) and wireless system packet size
wb and number of servers s = 6 (Fig. 6.2):

d wb
(Sys = —, Sy = s
SIJ’WS Sl”LWS
1 bit
ws = 000 bits - =0.000138 seconds (three-server wired system),
(3)(2,418,500 bits/s)
100 bit
(Sysp = 00 bits —— =0.000006891 us (six-server wireless system).
(6)(2.4185 Mbit/s)

(6.36)

Wired and Wireless Systems Mean Download Processing Time ts,,sq

This is the mean time required by the Web servers to provide the Web pages
requested by wired user computers (Fig. 6.1) and wireless mobile devices (Fig. 6.3),
as computed in Equations 6.37 and 6.38, respectively, for Web pages of size p, again
accounting for multiple servers:

50y = P _ 96,928 bits
Slys  3%2,418,500 bits/s for three-server wired system (6.37)
=0.013359 seconds,
5,0y = P _ 96,928 bits
Slys  6%2,418,500 bits/s for six-server wireless system (6.38)

=0.00667695 seconds.
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Wired and Wireless Systems Mean Upload Wait Time tw,,

This is the mean time a wired system user computer request for a Web page, and a
wireless system mobile device request for a Web page, must wait in a Web server
queue to be processed in Figures 6.1 and 6.2, respectively, as computed by Equation
6.39, using the Web page upload time from Equation 6.1 and the wired and wireless
processing times from Equation 6.36:

Wired system: tw,,, = t,. — ts,,; wireless system: twg, = t,. — tSyep,
twys =0.003049 — 000138 seconds = 0.002911 seconds (wired system),

tw,, = 0.003049 —0.000006891 seconds = 0.003042 seconds (wireless system).
(6.39)

Wired and Wireless Systems Mean Download Wait Time tw,, 4

This is the mean time Web pages must wait in the Web server queue prior to being
downloaded to user computers (Fig. 6.1) and mobile devices (Fig. 6.3), using the
Web page download time from Equation 6.2 and the mean download processing
times from Equations 6.37 and 6.38:

twwsd = tucd - tswsda
twWea = 0.018462 —0.013359 seconds = 0.005103 seconds (wired system),

tWysa = 0.018462 —0.00667695 seconds = 0.00117835 seconds (wireless system).
(6.40)

Wired System Mean Number of Web Page Request Bits Being
Processed for Upload ns,,

Equation 6.41 is equivalent to the product of the probability of a Web server being
busy (Eq. 6.35), Web page packet request size d, and s = 3 servers, in the wired
system in Figure 6.1:

(Aw)(@)

ws b

Slus
. (5.25 Mbit/s) (1000 bits)
" (3)(2.4185 Mbit/s)

(6.41)

=723.59 bits.

Wireless System Mean Number of Web Page Request Bits Being
Processed for Upload ns,,,

Equation 6.42 is equivalent to the product of the probability of a Web server being
busy (Eq. 6.35), and the wireless Web page packet request size wb, using s =6
servers, in Figure 6.2:

(hus) (wb) _ (5.25 Mbit/s) (100 bits)

. =36.1795 bits. (6.42)
Stys (6)(2.4185 Mbit/s)

NSy =
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Wired and Wireless System Mean Number
of Web Page Bits Being Processed for Download ns,,q

Equation 6.43 is equivalent to the product of the probability of a Web server being
busy (Eq. 6.35) and the Web page size p. This equation applies to both the wired
and wireless systems in Figures 6.1 and 6.2, respectively, noting the different number
of servers used in the wired and wireless systems:

_ ()@
wsd SI.LWS >
5.25 Mbit/s) (96,928 bit . .
wsd = ( it/s)© 9' i) _ 70,136 bits (wired system three servers),
(3)(2.4185 Mbit/s)
5.25 Mbit/s) (96,928 bit . . .
NSy = ( it/s)( - its) = 35,068 bits (wireless system, six servers).

Wired System Mean Number of Web Page Bits Having to Wait for
Upload Processing by a Web Server nw,,,

This quantity is the difference between Web page packet request size d and the
number of bits being processed by a Web server in the upload direction, which is
computed in Equation 6.44. This equation applies to the wired system (Fig. 6.1):

Wy = d- NSy,

] ) (6.44)
nw,,, = 1000—-723.59 bits = 276.41 bits.

Wireless System Mean Number of Web Page Bits Having to Wait for
Upload Processing by a Web Server nw,,,4

Equation 6.45 is the difference between wireless Web page packet request size wb and
the number of bits being processed by a Web server in the upload direction, which is
computed in Equation 6.41. This equation applies to the wireless system (Fig. 6.2):

W g = wb— NS yeds

) i (6.45)
nWpg = 100 —72.359 bits = 27.641 bits.

Wired and Wireless System Mean Number of Web Page Bits Having
to Wait for Download Processing by a Web Server nw,,¢

This quantity is the difference between Web page size p and the number of bits being
processed by a Web server, which is computed in Equation 6.46. This equation
applies to both the wired (Fig. 6.1) and wireless systems (Fig. 6.3), but note the
different results due to the difference in processing time caused by difference in
number of servers:

NWysq =P —NCyy,
nw = 96,928 -70,136 = 26,792 bits (wired system), (6.46)
nw = 96,928 —35,068 = 61,860 bits (wireless system).
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Present Internet Wireless Backbone

In this section, the important contribution of data traffic generated by handheld
devices, communicating via the wireless backbone with the Internet, is assessed.
The importance of this data traffic, and its attendant storage requirement, can be
seen by examining the high traffic rates documented in Table 6.1. See Figure 6.2
(upload) and Figure 6.3 (download) for the logic sequences.

Mobile Device

Mean Wireless Packet Upload Time t,,,

This is the mean time required to upload a wireless backbone packet of size wb at
an upload rate of A, in Figure 6.2:

6.47
100 bits ©4D

=———=13.889 us.
7.2 Mbit/s

wb

Access Point

Probability of Access Point Being Busy p.,

This probability is the ratio of the sum of wireless packet upload rate A, and Web
page download rate s to the access point processing rate |1, in Figures 6.2 and 6.3:

_ (wa +7\'ws)
ap —

uap
_ (7.245.25 Mbit/s)
P ="1775 Mbit/s

(6.48)
=0.7014.

Mean Access Point Processing Time in the Upload Direction ts,,
This is the mean time required for the access point to process a wireless backbone

packet of size wb at a processing rate of L, in the upload direction in Figure 6.2:

ts,, = wb/[L,,,

. . (6.49)
ts,, =100 bits/17.75 Mbit/s = 5.6338 L.

Mean Access Point Queue Wait Time in the Upload Direction tw,,

This is the mean time a wireless backbone packet—transmitted in the upload
direction—must wait to be processed by the access point in Figure 6.2. Equation
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6.50 uses the wireless packet upload time from Equation 6.47 and the access point
processing time from Equation 6.49:

twap =ty — tSap,

(6.50)
tw,, =13.889—5.6338 us = 8.2552 ys.
Mean Access Point Processing Time in the Download
Direction ts,pq

This is the mean time required for the access point to process the Web page in the
download direction, using the Web page of size p and the access point processing
rate U, in Equation 6.51, as shown in Figure 6.3:

tSapd = p/uaps

6.51
tS,50 = 96,928 bits/17.75 Mbit/s = 0.0055 seconds. ( )

Mean Access Point Queue Wait Time in the Download Direction tw

This mean time, computed in Equation 6.52, using Web page download time t,.q and
the processing time computed in Equation 6.51, is the time the Web page must wait
in the access point queue prior to being processed, as shown in Figure 6.3:

tVvapd =lyea — tSapda 6.52
tw,,g = 0.018461—-0.0055 seconds = 0.0130 seconds. (6.52)
Mean Number of Wireless Packet Bits Being Processed in
the Upload Direction by the Access Point ns,,

This computation is made in Equation 6.53 by computing the probability of the
access point being busy (A, + Ays)/H,,, from Equation 6.48, and multiplying it by
the size of the wireless packet size wb, as shown in Figure 6.2:

(wa +)\'ws)(Wb)
N8y =—"———
(7.2 +?§5 Mbit/s) (100 bit (6.53)
ns,, = - iUs)A00bItS) _ 20 14 pis.
17.75 Mbit/s

Mean Number of Wireless Packet Bits Waiting to be Processed
in the Upload Direction by the Access Point nw,,

Equation 6.54 is computed by subtracting the number of wireless packet bits being
processed in the upload direction, computed in Equation 6.53, from the wireless
packet size wb, as shown in Figure 6.2:

nw,, = wb—ns,,,

. . (6.54)
nw,, =100—70.14 bits = 29.86 bits.
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Mean Number of Web Page Bits Being Processed in the Download
Direction by the Access Point ns,yy

This computation is made by computing the probability of the access point being
busy (Ayb + Ays)/Hy, derived from Equation 6.48, and multiplying it by the size of
the Web page size p, as shown in Figure 6.3:

nsﬂpd — (7\‘wb + 7\‘ws )(P) ,
(7.2 L(L)ap328 Mbit/s) (96,928 bit (6:33)
g = i) 96,928 BS) _ 4} 108 bits,
17.75 Mbit/s

Mean Number of Web Page Bits Having to Wait for Processing in the
Download Direction by the Access Point nw,,4

Equation 6.56 computes the number of Web page bits having to wait to be processed
by the access point by subtracting the Web page bits being processed in Equation
6.55 from the Web page size p, as shown in Figure 6.3:

nwapd =p- nsapd’

) . (6.56)
nw,,q = 96,928 — 41,108 bits = 55,820 bits.

Internet Router

The Internet router computations in the succeeding sections are shown in Figure 6.2
(upload) and Figure 6.3 (download).

Probability of Internet Router Being Busy Processing
Wireless Packet p;,

Equation 6.57 expresses the probability that the Internet router will be occupied
processing the wireless Web page request packet, transmitted at a rate A, in the
upload direction, plus being busy when the Web page is downloaded at a rate A,
and the router processes at a rate [l;, and the number of routers s = 2, as shown in
Figures 6.2 and 6.3:

_ O‘wb + }\'ws)

T )()

_ (7.2+5.25 Mbit/s)
"~ (2)(6.25 Mbit/s)

ir

(6.57)

=0.996.

Mean Time a Wireless Packet Spends Being Processed for

Routing by the Internet Router in the Upload Direction ts;,

Equation 6.58 computes this mean time by dividing the wireless packet of size wb
by the Internet router processing rate (s)(L;;) as shown in Figure 6.2:
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. = wb

($)(Wir) . 6.58)
. - 100 bits
" (2)(6.25 Mbit/s)

Mean Time a Wireless Packet Spends Waiting to be Processed for
Routing by the Internet Router in the Upload Direction tw;,

Equation 6.59 is computed by subtracting the processing time computed in Equation
6.58 from the wireless packet upload time t,,,, as shown in Figure 6.2:

t\x'/ir = twb - tsin
(6.59)
twWi, = typ —ts; =13.889—8 s = 5.889 ps.
Mean Time a Web Page Requested by a Wireless Packet Spends
Being Processed for Routing by the Internet Router in the Download
Direction ts;4

Equation 6.60 computes the mean processing time by dividing the Web page of size
p by the Internet router processing rate (s)(W;,),as shown in Figure 6.3:

S ir
9§ 928 bit (6.60)
Sig = —IS =0.0078 seconds.
(2)(6.25 Mbit/s)

Mean Time a Wireless Packet Spends Waiting to be Processed for
Routing by the Internet Router in the Download Direction twiq

This mean time is computed by subtracting the processing time, computed in Equa-
tion 6.60, from the Web page download time t,., as shown in Figure 6.3:

Wirg = tyea = USiras

6.61
tWig = 0.018461—-0.0078 seconds = 0.0107 seconds. ( )

Mean Number of Wireless Packet Bits Being Routed in the Upload
Direction ns;,

This quantity is computed in Equation 6.62 by multiplying the probability of the
Internet router being busy, from Equation 6.57, by the wireless packet size wb, as
shown in Figure 6.2:

(7\'Wb + %’ws)(Wb)
($)(1ir)
(7.245.25 Mbit/s) (100 bits)

ns; = - =99.6 bits.
(2)(6.25 Mbit/s)

ir

(6.62)
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Mean Number of Wireless Packet Bits Having to Wait for Routing in
the Upload Direction by the Internet Router nw;,

This quantity is computed in Equation 6.63 by subtracting the number of bits being
processed, computed in Equation 6.62, from the wireless packet size wb, as shown
in Figure 6.2:

nw; = wb—ns;, =100 —99.6 bits = 0.4 bits (6.63)

Mean Number of Web Page Bits Being Processed in the Download
Direction by the Internet Router ns;4

Equation 6.64 is computed by multiplying the probability of the Internet router being
busy, derived from Equation 6.57, by the Web page size p, as shown in Figure 6.3:

Map + As
nS;q = M(P),
(s)(Wir)
(7.2+5.25 Mbit/s) (6.64)
N,y = 7220 VOWS) g6 958 bits) = 96,540 bits,
(2)(6.25 Mbitls)

Mean Number of Web Page Bits Having to Wait for Routing in the
Download Direction by the Internet Router nw;4

This quantity is computed in Equation 6.65 by subtracting the number of Web page
bits being processed for routing, computed in Equation 6.66, from the Web page
size p, as shown in Figure 6.3:

NDWiq = P — N8jq,

. . (6.65)
nwi,y = 96,928 — 96,540 bits = 388 bits.

Domain Name System (DNS)

Only upload equations are computed because once the mobile device in Figure 6.2
has obtained an IP address from the DNS, it can be used for downloading a Web
page. Because the wireless upload rate of the mobile device in Figure 6.3,
Ao = 7.2 Mbit/s, is so much faster than the DNS processing rate, L,, = 0.143 Mbit/s,
a buffer is used at the access point to slow the mobile device rate to a value that the
DNS can handle. This value, A, called the DNS input rate, is computed in Equation
6.66 by assuming that the probability of the DNS server busy p,, = 0.8 (i.e., as long
as a queue has p < 0.8, the queue is considered stable), and using the DNS process-
ing rate .. Note that because the DNS computations are mean values, a fraction of
a packet or Web page (i.e., number of bits) would be computed for translation:

Mns = (P )(8)(Hns )

. . (6.66)
Ane = (0.8)(3)(0.143 Mbit/s) = 0.3432 Mbit/s.
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Mean Upload Time from Buffer of Wireless Packet to DNS ts,

Since the DNS input rate has been computed in Equation 6.66, now compute
the wireless packet upload time, ts,, in Equation 6.67, using the wireless packet
size wb. This is the upload time that results from using the DNS buffer in
Figure 6.2:

wb
tsns =T >
}\'HS
100 bits

= 0.3432 Mbit/s

(6.67)
=291.38 pis.

ns

Mean Processing Time for the DNS to Translate a Wireless Packet
Name to an IP Address ts,

Equation 6.68 computes the name-to-IP address translation mean time for a wireless
packet, using the wireless packet size, wb, number of DNS servers, s, and DNS
processing rate, L,

o = wb
ns — S R ’
S = _233.10pus.

" (3)(0.143 Mbit/s)

Mean Time That a Wireless Packet Must Wait in the DNS Queue
Prior to Name-to-IP Address Translation tw,

This mean time is computed in Equation 6.69 by subtracting the processing time,
computed in Equation 6.68, from the upload time, computed in Equation 6.67, as
shown in Figure 6.2.

tw,s = tu,g — Sy,
(6.69)
tw,, =291.38—233.10 us = 58.28 us.

Mean Number of Wireless Packet Bits That Are Processed for
Translation by the DNS ns,,

The number of wireless packet bits that are processed for translation is computed in
Equation 6.70 by multiplying the previously assumed probability of the DNS being
busy, p.s, by the wireless packet size wb. The result is shown in Figure 6.2:

ns,, = (Pus)(Wh),

. . (6.70)
ns,, = (0.8)(100 bits) = 80 bits.
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Mean Number of Wireless Packet Bits That Are
Waiting for Translation by the DNS nw,,

The number of wireless bits waiting for translation is computed in Equation 6.71 by
subtracting the number of bits being processed, computed in Equation 6.70, from
the wireless packet size wb. The result is shown in Figure 6.2:

nw,, = wb—ns,,
. . 6.71)
nw,, =100 —80 bits = 20 bits.

SUMMARY OF QUEUING MODEL COMPUTATIONS
FOR PRESENT AND PROPOSED INTERNETS

Now that the queuing model computations have been made for the present wired
and wireless Internets, it is time to summarize them in Table 6.2 (wired system) and
in Table 6.1 (wireless system) in order to identify the critical performance variables.
Also, the proposed wired and wireless Internet computations are shown in Tables
6.4 and 6.5, respectively. These computations are made in a later section entitled
“Performance Analysis of Proposed Future Wired Internet,” and are presented to
contrast with the present systems mean value performance results.

Important results are shown at the bottom of each table: effective upload and
download processing rates. The effective rate includes all the delays encountered in
the various queues in the process of obtaining a Web page for the user computer or
mobile device. These results are the following:

Table 6.2: Effective processing rate for present wired Internet: 1.7936 Mbit/s.
Table 6.3: Effective processing rate for present wireless Internet: 2.0697 Mbit/s.
Table 6.4: Effective processing rate for proposed wired Internet: 113.35 Mbit/s.
Table 6.5: Effective processing rate for proposed wireless Internet: 2.0853 Mbit/s.
Note that the effective rate of the proposed wired system is much greater than the
effective rate of the present wired system because the former is not subject to local
network, local router, and DNS delays. Also note that the effective rate of the pro-
posed wireless system is marginally greater than the effective rate of the present
wireless system because the former is not subject to the overhead introduced by the

DNS. This reduction in overhead is not nearly as significant as the time saved by
eliminating several components in the case of the proposed wired system.

SIMULATION QUEUING MODELS
Local Network: Present Wired System
In order to evaluate Internet performance, taking into account the variance in per-

formance variables, such as the variability in upload and download times, a series
of models is developed and designed to achieve this objective. The models include
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Table 6.3 Summary of Queuing Computations for the Present Wireless Internet System

(Mean Values)

Variable Component Computation Figure(s)
Wireless packet upload Mobile device 13.889 us (0.000013889 Figures 6.2
time ty;, seconds) and 6.3
Probability of access Access point 0.7014 Figure 6.3

point being busy p,,

Access point processing Access point 5.6338 us (0.0000056338  Figure 6.4
time in the upload seconds)
direction ts,,

Access point queue wait  Access point 8.2552 us (0.0000082552  Figure 6.4
time in the upload seconds)
direction tw,,

Access point processing Access point 0.0055 seconds Figures 6.2
time in the download and 6.3
direction ts,

Access point queue wait  Access point 0.0130 seconds Figures 6.2
time in the download and 6.3
direction tw,yg

Number of wireless Access point 70.14 bits Figure 6.4
packet bits being
processed in the
upload direction ns,,

Number of wireless Access point 29.86 bits Figure 6.4
packet bits having to
wait to be processed in
the upload direction
0w,

Number of web page bits  Access point 41,108 bits Figures 6.2
being processed in the and 6.3
download direction
NSypa

Number of web page bits  Access point 55,820 bits Figures 6.2
having to wait for and 6.3
processing in the
download direction
W,

Time to translate Domain Name 291.38 ps (0.00029138 Figure 6.4
wireless packet name System seconds)
to IP address tu,,

Time wireless packet Domain Name 58.28 us (0.00005828 Figure 6.4

waits for name-to-IP
address translation tw,,

System

seconds)

(Continued)
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Table 6.3 (Continued)

Variable

Component

Computation

Figure(s)

Number of wireless
packet bits that are
processed for
translation ns,

Number of wireless
packet bits that are
waiting for translation
W,

Probability of being busy
processing wireless
packet p;;

Time a wireless packet
spends in being
processed for routing
router in the upload
direction ts;,

Time a wireless packet
spends waiting to be
processed for routing
in the upload direction
Wi

Time a wireless packet
spends being
processed for routing
in the download
direction ts;q

Time a wireless packet
spends waiting to be
processed for routing
the download direction
tWirg

Number of wireless
packet bits being
processed in the
upload direction ns;,

Number of wireless
packet bits having to
wait for routing in the
upload direction nw;,

Number of web page bits
being processed in the
download direction
NSirq

Domain Name
System

Domain Name
System

Internet router

Internet router

Internet Router

Internet router

Internet router

Internet router

Internet router

Internet router

80 bits

20 bits

0.996

8 s (0.000008 seconds)

5.889 us (0.000005889
seconds)

0.0078 seconds

0.0107 seconds

99.6 bits

0.4 bits

96, 540 bits

Figure 6.4

Figure 6.4

Figures 6.2
and 6.3

Figure 6.1

Figure 6.4

Figures 6.2
and 6.3

Figures 6.2
and 6.3

Figure 6.4

Figure 6.4

Figure 6.2
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Table 6.3 (Continued)

Variable Component Computation Figure(s)
Number of web page bits  Internet router 388 bits Figures 6.2
having to wait for and 6.3

routing in the
download direction

NWirg

Probability of being busy = Web server 0.8580 Figures 6.2
Puws and 6.3

Upload processing time Web server 0.00006891 seconds Figure 6.4
(Sys

Upload wait time tw Web server 0.002980 seconds Figure 6.4

Download processing Web server 0.0013359 seconds Figure 6.1
time Sy

Download wait time Web server 0.005103 seconds Figure 6.5
Wysd

Number of web request Web server 723.59 Figure 6.1

packet bits being
processed in the
upload direction ns,
Number of web request Web server 276.41 Figure 6.1
packet bits waiting to
be processed in the
upload direction nw,,
Number of web request Web server 35,068 bits Figure 6.3
packet bits being
processed in the
download direction

NSysd
Number of web request Web server 61,860 Figures 6.2
packet bits waiting to and 6.3

be processed in the
download direction

NWyq

Total delay time 0.046879137 seconds

Web request 100 + 96,928 bits =
packet + web 97,028 bits
page

Effective 97,028 bits/
wireless upload/ 0.046879137 seconds =
download 2.0697 Mbit/s

processing rate
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Table 6.4 Summary of Queuing Computations for the Future Wired Internet System (Mean

Values)
Variable Component Computation Figure
Packet upload time t,, User computer 0.000050 seconds Figure 6.15
Web page download time t,.q Web server 605.8 us Figure 6.15
(0.000006058
seconds)
Probability of being busy p;. Internet router 0.0900 Figure 6.15
Upload processing time ts;, Internet router 0.5 ps (0.0000005 Figure 6.15
seconds)
Upload wait time tw;, Internet router 49.5 us (0.0000495 Figure 6.15
seconds)
Download processing time ts;y  Internet router 46.464 us
(0.000046464
seconds)
Download wait time tw;, Internet router 557.336 us Figure 6.15
(0.0000557336
seconds)
Number of packet bits being Internet router 640 bits Figure 6.17
processed for upload routing
ns;;
Number of packet bits waiting  Internet router 360 bits Figure 6.17
to be processed for routing
in the upload direction nw;,
Number of web page bits being Internet router 2055 bits
processed for download
routing ns;q
Number of web page bits Internet router 94,873 bits Figure 6.15
waiting for download
routing nwiy
Probability of being busy Py Web server 0.02120 Figure 6.17
Upload processing time ts,, Web server 0.11779 us (=0 Figure 6.15
seconds)
Upload wait time tw, Web server 49.88 us Figure 6.15
(0.00004988
seconds)
Download processing time ts,,, Web server 11.417 ps Figure 6.15
(0.000011417
seconds)
Download wait time tw, Web server 594.383 us Figure 6.15
(0.000594383
seconds)
Number of web request packet ~ Web server 20.21 bits Figure 6.17

bits being processed in the
upload direction ns,,
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Variable Component Computation Figure
Number of web request packet ~ Web server 978.80 bits Figure 6.15
bits waiting to be processed
in the upload direction nw,,
Number of web page bits being Web server 2055 bits
processed in the download
direction ns,,y
Number of web page bits Web server 94,873 bits Figure 6.15
waiting to be processed in
the download direction nw,
Total delay time 0.0008639356
seconds
Web request packet 1000 + 96,928 bits
length + Web = 97,928 bits

page length
Effective wired

upload/download

processing rate

97,928 bits/
0.0008639356
seconds =

113.35 Mbit/s

each component of the Internet, where Figure 6.4—the local network and router
present system simulation model—is the first of these. Now, develop the equations
that will be implemented in computer programs (C4++) for each of the performance
variables, using the mean values previously computed. The mean values and associ-
ated probabilities are used to simulate the exponential distribution of the various
Internet prediction equations shown below. As opposed to mean values, the predic-
tion equations permit the variation in queuing model variables to be evaluated. The
local network and router simulation equations are shown in Figure 6.4.

The probabilities referred to below are generated by using the Excel random
number function RAND. The simulation program checks for the possibility of queue
being busy. If it is not busy, zero time is assigned for the wait time, rather than using
the wait time equations below. We can use the simulation program to monitor queue
status for the steady-state condition (i.e., wait time does not become excessive). If
steady state is not reached, as the load increases, it would be indicative of a poorly
performing Internet (e.g., inefficient routing).

Local Network Processing Times

Starting with the packet upload processing time (Ts;,) that we assume is exponen-
tially distributed, with probability P(Ts;,) and mean processing rate L;,, Equation
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Table 6.5 Summary of Queuing Computations for the Future Wireless Internet System

(Mean Values)

Variable

Component

Computation

Wireless packet upload time t,

Probability of access point being
busy pq,

Access point processing time in
the upload direction ts,,

Access point queue wait time in
the upload direction tw,,

Access point processing time in
the download direction ts,yg

Access point queue wait time in
the download direction tw,

Number of wireless packet bits
being processed in the upload
direction ns,,

Number of wireless packet bits
having to wait to be processed
in the upload direction nw,,

Number of web page bits being
processed in the download
direction ns,g

Number of web page bits having
to wait for processing in the
download direction nw,pq

Probability being busy
processing wireless packet p;,

Time a wireless packet spends
in being processed for routing
in the upload direction ts;

Time a wireless packet spends
waiting to be processed for
routing in the upload direction
Wi

Time a wireless packet spends
being processed for routing in
the download direction ts;

Time a wireless packet spends
waiting to be processed for
routing in the download
direction twiy

Number of wireless packet bits
being processed in the upload
direction ns;,

Mobile device
Access point
Access point
Access point
Access point
Access point

Access point

Access point

Access point

Access point

Internet router

Internet router

Internet router

Internet router

Internet router

Internet router

13.889 us (0.000013889
seconds)

0.7014

5.6338 us (0.0000056338
seconds)

8.2552 us (0.0000082552
seconds)

0.0055 seconds

0.0130 seconds

70.14 bits

29.86 bits

41,108 bits

55,820 bits

0.9960

8 s (0.000008 seconds)

5.889 us (0.000005889
seconds)

0.0078 seconds

0.0107 seconds

99.6 bits
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Variable

Component

Computation

Number of wireless packet bits
having to wait for routing in
the upload direction nw;,

Number of web page bits being
processed in the download
direction ns;q

Number of web page bits having
to wait for routing in the
download direction nw;

Probability being busy
processing wireless packet py,

Time a wireless packet spends
in being processed in the
upload direction ts,,

Time a wireless packet spends
waiting to be processed in the
upload direction tw,,

Time a wireless packet spends
being processed in the
download direction ts,,

Time a wireless packet spends
waiting to be processed in the
download direction twgg

Number of wireless packet bits
being processed in the upload
direction ns,,

Number of wireless packet bits
having to wait for processing
in the upload direction nw,,

Number of web page bits being
processed in the download
direction nsy.y

Number of web page bits having
to wait for processing in the
download direction nw,

Internet router

Internet router

Internet router

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Total delay time

Web request
packet + Web
page

Effective wireless
upload/download
processing rate

0.4 bits

96,540 bits

388 bits

0.8580

0.000006891 seconds

0.003042 seconds

0.0013359 seconds

0.005103 seconds

72.359 bits

27.641 bits

701 bits

96,227 bits

0.0465294580 seconds
100 + 96,928 bits = 97,028 bits

97,028 bits/0.0465294580
seconds = 2.0853 Mbit/s
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ofdand p
Input Sample
Size n, Packet
Size d, and —b@
Web Page
Size p
Generate n | P(Ts,)
Y Random
Numbers for P(Ts,,,) Local Network
Probabilities | P(Tw,, )
P(TWrna)
Compute le——— Processing rate
L
Packet Upload Processing Time | Ts;, = (- ﬁ)(log[P(TSLn)/uln])*d
h
Compute l« Processing rate p v
™ Web Page Download > Compute Time in
Processing Time Local Network
1 " ocal Networl
Tspng = ( Iys )(log[P(TsLaa)/ Mws))*p T =Tstn + TStaa + TWin + TWina
N Compute Packet 1 ]
Upload Wait Time Twrng = (— m)(lOg[P(TWLn)/st])*d
Processing rate Hi, (If the queue is not busy, assign zero|wait time)
Compute [ Processing rate M.,
. g Web Page
- 1
Download Wait Time TWing = (- m)(log[P(TWLnd)/llws])*P Processing rate .
Local Network Router
P(Tsry)
Generate n
Random P(TsLa) N Compute
Numbers for | p(Ty,,) " Download Wait Time
Probabilities
P(Twira) T
Twira = (15 (0gP(TWLw)/Has)) P
[¢— Processing rate u,,
Compute
Upload Processing Time . Compute Time in
Tsir=((— uv)(log[P(TsL,)/uL,]))*d Local Network Router
" T =Tspe + Tspeg + Twie + TWing
1 A
R Compute |¢———— Processing rate r 3
Download Processing Time 1
l Tsia = (- m)(lOg[P (TsLra)/Mws])*p
R Compute [«———— Processing rate i,
Foad Wait Time Twie = (- 4y loglP(Twe)hu D) *d

(If the queue is not busy, assign zero wait time)

Figure 6.4 Local network and router present wired system simulation model.
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6.72 is formulated. Then, solve for Ts;, in Equation 6.73, which is the upload time
per packet, by including the packet size d in the formulation. The assumption of
exponential distribution is based on the likelihood that there will be significantly
more short times than long times.

P(Tsp,) = (Uy, e /T, 6.72)
Tsy, = ((—ijaog[msm)/um]))*d. (6.73)
n

Ln

In a similar vein, develop Equation 6.74 for the Web page download processing time
Tspg, With probability P(Ts,,q), mean processing rate [L,,, and Web page size p:

1
Tspa = ((——j (1og[P(Tsyq)/ Wys ])) *p. (6.74)

ws

Local Network Wait Times

Since wait times should follow the pattern of processing times, again assume the
exponential distribution for wait times. Thus, Equation 6.75 is produced for the
upload wait time, using the probability P(Twy,):

Twy, = ((—ui)aog[P(TwLn)/uLn]))*d. (6.75)

Ln

Lastly, in a similar fashion, the download wait time Twy 4 is developed in Equa-
tion 6.76:

1
Twig = ((——) (log[P(Twrng )/ My ])) *p. (6.76)

ws

Local Network Wait Times Time in System

Finally the time packets and Web pages in the system, waiting and being processed,
is computed in Equation 6.77 by adding Equations 6.73-6.76.

T = TSLn + TSLnd + TWLn + TWLnd‘ (6.77)

Packet Lengths Being Processed and Waiting for
Processing by Local Network

Similar to the situation for service and wait times, the distribution of packet bits
being processed in the upload direction can be estimated by assuming an exponential
distribution (i.e., high probability of small packet lengths and low probability of
large packet lengths). The distribution of packet length bits is generated by statistical
software, such as Minitab, using the mean ns;,, computed in Equation 6.8.
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In an analogous fashion the distribution of packet length bits having to wait to
be processed in the upload direction is generated by statistical software, using the
mean nwy,, computed in Equation 6.9.

Also account for the distribution of Web page length bits that are processed in
the download direction generated by statistical software, using the mean ns; 4, com-
puted in Equation 6.10. Correspondingly, generate the distribution of Web page
length bits that must wait to be processed in the download direction, using a mean
of nwy 4, computed in Equation 6.11.

Local Network Router: Present Wired System

Similar to the approach used for the local network, equations for processing time,
wait time, and time in the system are developed for the local network router, using
different service and wait time probabilities, mean local network router processing
rate |, and mean Web page download processing rate |, These equations are
shown in Figure 6.1.

Processing Times
Upload processing time, using packet size d:
1
Tsy, =| | —— |(log[P(Ts, ) /1, 1) |*d. (6.78)
qu
Download processing time, using Web page size p:

1
Tsp = [(— —) (log[P(Tsp.q)/ Wys ])) *Pp. (6.79)

Wait Times
Upload wait time, using packet size d:
1
Twy, = ((——)(log[P(TWu ) s ])) *d. (6.80)
l“lLr
Download wait time, using Web page size p:
1
TWer = ((__)(log[P(Terd)/uws]))*p (681)
Time in System

Add Equations 6.78-6.81 to obtain time spent in local network router:

T=Tsy, +Ts g +Twp, + Twpg. (6.82)
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Packet Length Bits Being Routed and Waiting
for Routing by Local Network Router

Once again, the distribution of packet length bits is generated using statistical
software—this time for the local network router, assuming an exponential distribu-
tion. To generate the upload packet length bits being routed, use the mean ns;, from
Equation 6.17. Correspondingly, generate the distribution of the packet length bits
that must wait to be routed in the upload direction by using the mean nwy, from
Equation 6.18.

Also account for the distribution Web page bits that are routed in the download
direction generated by statistical software, using the mean ns;, computed in
Equation 6.19. Correspondingly, generate the distribution of Web page bits that must
wait to be routed in the download direction, using the mean nwy,, computed in
Equation 6.20.

Internet Router: Present Wired System

As before, processing time, wait time, and time in system are computed using the
simulation program and the Internet router upload processing rate ;. and the Web
page download processing rate [L,s. The processing logic is shown in Figure 6.5.

Processing Times

Upload processing time, using packet size d:
1
Ts, = ((——)aog[P(Tsir)/ui,])j #d, (6.83)
Download processing time, using Web page size p:

Tsq = ((—Lj (10g[P(Tsirg )/ Mys ])j *Pp. (6.84)

ws

Wait Times

Upload wait time using packet size d:

1
Tw;, = ((——)(log[P(Twir)/qu]))*d. (6.85)
Download wait time, using Web page size p:

Twiq = ((—Lj (log[P(TWirg )/ Mus ])) *p. (6.86)

ws
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Develop Statistical
Distributions
ofd and p

|

Input Sample
Size n, Packet
Size d, and
Web Page
Size p

Generate n P(Ts,)

v random
Numbers for P(Ts;y)

Probabilities P(Tw,)

P(Tw,,)
Compute «+—— Processing rate
— Packet Upload . 1
Processing Time Tsi, = (= =) (log[P(Ts, )/, 1)*d
Compute

—»  Web Page Download <+—— Processing rate 1
Processing Time

Tsi, = (- df)(log[P(TS,,d)/um]))*P

A

<+—— Processing rate [L;, Compute
Compute Time in Internet
> Pa\(/:\l/(e_tt ?_pload . > Router
at time Twi, = () og[P(Tw, )/, 1))*d
T =Tsiy + Tsiza + Twir + Tw;
(If the queue is not busy, assign zero wait time) i ird i i
Compute «+—— Processing rate {1
£ Packet Download P I ®
Wait time Twi, = (( HM)(log[P(TW,,d)/uM])) P

(If the queue is not busy, assign zero wait time)

Figure 6.5 Internet router present wired system queuing model.

Time in System

Add Equations 6.83—6.86 to obtain time spent in Internet router:

T= TSir + TSird + TWir + TWird. (6.87)

Packet Lengths Being Routed and Waiting for Routing by
the Internet Router

Using the mean ns;, of the number of packet bits being processed for routing in the
upload direction from Equation 6.26, statistical software is again called upon to
generate an exponential distribution of these data. Similarly, generate the distribution
of number of packet bits waiting for routing in the upload direction using the mean



Future Internet Performance Models 185

nw;, from Equation 6.27. Continuing in this vein, the corresponding download dis-
tributions are generated using the mean values ns;q, from Equation 6.28, and nw;,
from Equation 6.29.

Queue Efficiency

Because it is germane to simulation model analysis, we introduce the concept of
queue efficiency. In addition to the various time, packet length, and Web page size
variables, queue efficiency should be assessed for each Internet component (e.g.,
wired Internet router). Do this by computing an efficiency metric, recognizing that
the queue count generated in the simulation models accounts for both upload and
download traffic, where n is the number of Web page requests, nq is the queue count
(count of requests being processed plus requests waiting to be processed) for both
upload and download directions, and nd is the number of upload and download data
transfers in a sequence of Web page requests by an Internet component (e.g., Internet
router). For example, nd = 2 for an Internet router because it is involved in both
upload and download data transfers, whereas nd = 1 for a DNS because it is only
involved in upload data transfer. Then, queue efficiency ge can be computed in
Equation 6.88:

. (Total number of upload and download Web data transfers) — (Queue count)

s

Total number of upload and download Web data transfers
_ (nd*n)—nq _{__"d
nd*n nd*n’ (6.88)

qge

This metric can be used to pinpoint strengths and weaknesses in the ability of Inter-
net systems to process queue traffic.

Domain Name System (DNS): Present System
Consistent with the foregoing approaches, processing time, wait time, and time in
the system are developed for the DNS, using the appropriate processing and wait

time probabilities and the mean DNS processing rate g, The processing logic is
shown in Figure 6.6.

Processing Time

Tsy = ((—Lj (log[P(Tsdn)/udn])) *d, using packet size d. (6.89)
dn
Wait Time

Tw,, = ((—Lj (log[P(Twyy )/ WLan ])) *d, using packet size d. (6.90)
0

dn
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Domain Name Server (DNS)

Develop a
Statistical Input Wired
Distribution for Web Page
Wired Web [ Request
Page Request Packet d
Packet d
Generate DNS
Processing P (Ts,,)
< and Wait "
Time
Probability
Compute
Packet ¢ Processing rate i
Translation
Processing 1 h 4
Time Tsus = ((— m)(lOg[P(Tsdn)/udn]))*d
Compute T =Tsps + Twys
Compute - Time in DNS
N Packet [¢—— Processingrate pu
Translation 1
waitTime | T Was = (- ) (1oglP(Twan) Maal))*d
(If queue not busy, assign zero wait time)
Access Point
Develop a Input Wireless
Statistical Web Page
Distribution for Request
< Wireless Web Packet wb and
Page Request Web Page p
Packet wb . .
and Web Page p Processing rate Processullg rate
l Mo l v

Generate
A;ﬁ]e::sziﬂgt %2&2’: Svﬁ:g?eust: (If queue not busy, assign zero wait time)
< i Web Page Web Page
an1c_!ir\Tl1\ga|t P(Tsap) Request Packet Wait time
Probability Wait Time
1
* T TWapa = (- )(10g[P(TWapa)/ Map])*p
Compute 1 p
Wireless Twap = ((— u—)(log[P(Twap)/uap]))*wb
Web Page ap
— Request l¢— Processing rate R Cqmpgte
Packet > Time in e
Processing | T,y = (1) (10g[P(Tsqp) Hapl))*wb Access Pont
Time Hap
Compute . T =Tsap + TWap + TSypa + TWapa
Wireless [« Processing rate pi,,
» Web Page 1
Processing | Tsapa = ((— 7, )(10g[P(Tsapa)/ Hap])*p
Time aP

Figure 6.6 DNS and access point present system simulation queuing model.
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Time in System

Add Equations 6.89 and 6.90 to obtain time spent in the DNS:
T =Ts, +Tw,. 6.91)
Packet Bits Translated from Name-to-IP Address by the DNS and

Waiting for Translation

Using the mean ns,,, from Equation 6.33, of the number of packet bits being trans-
lated, statistical software is again called upon to generate an exponential distribution
of these data. Similarly, we generate the distribution of number of packet bits waiting
for translation, using the mean nw,, from Equation 6.34.

Access Point: Present Wireless System

For the wireless system, access point processing and wait times are computed using
the logic in Figure 6.6, using the access point processing rate [l

Processing Times

This upload time accounts for the processing required to process Web packet size
wb, using the processing rate |, in Equation 6.92:

Tsap = ((_IJLJ (log[P(Tsy, )/ Map ])) *wb. (6.92)

ap

Similarly, Equation 6.93 accounts for the time required in the download direction
to process Web page size p:

1
Tsapd = [(——j (Iog[P(Ts,pq) / Wyp ])j *D. (6.93)

ap

Wait Tines

Correspondingly, Equation 6.94 computes the wait time in the upload direction and
Equation 6.95 computes the wait time in the download direction:

Twap = ((—L] (log[P(Tw,, )/ Wy ])j *wb, (6.94)

ap

1
Twapd = ((_ !J_J (log[P(TWapd ) / Map ])j * p- (695)

ap
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Time in System
Equation 6.96 computes the time in the system, accounting for both upload and

download processing and wait times:

T = Tsap + Tsapd + Twap + Twapd. (6.96)

Wireless Packet Bits Processed by Access Point and Waiting for
Processing

Using the mean ns,,, from Equation 6.53, of the number of packet bits being pro-
cessed, statistical software is once again called upon to generate an exponential
distribution of these data. Similarly, generate the distribution of number of packet
bits waiting for processing, using the mean nw,, from Equation 6.54.

Web Server Processing: Wired and Wireless

Continuing the generation of processing time, wait time, and time in system, equa-
tions are developed for the Web servers, using the appropriate processing and wait
time probabilities, the mean Web server processing rate [, the wired Web page
request packet size d, the Web page size p, and the wireless Web request packet size
wb. The processing logic is shown in Figure 6.7.

Processing Times
Wired upload, using wired packet size d:

Ts,, = ((—Ljaog[P(Tsws)/uws])j . 6.97)

Wired and wireless download, using web page size p:
TSysa = ((—L) (10g[P(TSysq )/ s ])j *p. (6.98)
Wireless upload, using wireless packet length wb:
TSy = ((—L) (1og[P(TSysp )/ s ])) *wb. (6.99)

Wait Times

The corresponding wait times are developed as follows:

Twys = ((—L) (log[P(TWWS)/uWS])) *d (wired upload), (6.100)

WS
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Figure 6.7 Web server simulation queuing model (wired and wireless).

Twya = —L (log[P(Tw )/ Ly D) |* p (wired and wireless download),
Hus (6.101)
1
Twyg =| | —— [(10g[P(Twyg )/ Lys 1) |* Wb (wireless upload). (6.102)

IJ'WS
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Time in System

Time in the system for all three cases is computed by adding Equations 6.97-102:

T =Tsy + TSpea + TSuep + TWos + TWoeq + TWgp. (6.103)

Web Page Lengths Being Processed and
Waiting for Processing by the Web Servers

Using the mean ns,,, from Equation 6.41, of the number of Web page bits being
processed in the download direction, the statistical software is again called upon to
generate an exponential distribution of these data. Similarly, we generate the distri-
bution of number of Web page bits waiting for processing in the download direction,
using the mean nw,,, from Equation 6.44.

Summary of Simulation Model Computations

The main benefit of the C++ simulation model results is to provide a comparison of
the performance and reliability of the present Internet with the proposed future
Internet. Thus, the following figures contrast the present with future Internet perfor-
mance; the latter is based on equations, queuing model diagrams, and simulation
logic diagrams that have been developed. In addition, we present additional results
that illustrate key performance characteristics of the present Internet. For example,
it is of interest to identify when the various Internet components achieve stability
as a function of number of uploads and downloads. This is illustrated in Figure 6.8,
where time in the present Internet system stabilizes (i.e., reaches steady state) after
n = 26 uploads and downloads. Thus, in this example, we would not be confident
of dependable performance until n > 26. Now, the shape of the plots is determined
by the assumption of exponentially distributed queue processing and wait times.
Other distributions could be assumed, which could result in different patterns, but
the important point is the efficacy of the modeling methodology.

Another interesting comparison is between the wired and wired present Internet
systems, again using time in the system as the basis of comparison. Figure 6.9 shows
an example in which the wireless has better performance (i.e., shorter time in the
system) because it is not encumbered by the overhead induced by the local network
and router required in the wired system (i.e., the wireless system access point is
much faster).

Queue efficiency computations identify the Internet components that are effi-
cient with respect to processing Internet traffic—both upload and download—and
those that are inefficient, thus highlighting smooth traffic flows and bottlenecks,
respectively. For example, Figure 6.10 shows that the proposed future wired Internet
is more efficient than the present wired Internet. The reason for this, as shown in
Figure 6.10, is the fact that queue count dominates the computation of queue effi-
ciency in Equation 6.87, thus resulting in lower queue count and higher queue
efficiency for the proposed future Internet components. By examining Figures 6.10
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and 6.11, you can see that there is an inverse association between queue efficiency
and queue count (i.e., small queue count leads to large queue efficiency).

Finally, we look at the patterns of data that wait to be processed by Internet
components. The rationale for this assessment is queue processing efficiency from
the perspective of quantity of data waiting to be processed (i.e., stability) in Figure
6.12. This figure tells us that download processing of Web pages will eventually
deteriorate, and become unstable, as queue count increases. Figure 6.12 provides
another perspective: aided by the standard deviation that has been computed for each
component, we see that the wireless Web server has the highest standard deviation,
meaning that its distribution of queuing data has the most variability. This is due to
the great variety of mobile devices that connect to the Internet, resulting in the Web
server being less able to process data efficiently than when responding to wired
system requests.

INTERNET RELIABILITY ANALYSIS

Reliability is the probability of fault-free operation of an Internet component for a
specified time in a specified environment. A fault is an instance of any unanticipated
Internet component output (e.g., incorrect routing of a Web page request) caused by
errors in the component. Faults are the results of errors, which are design or coding
flaws created inadvertently by hardware designers and programmers [NEU93].
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Reliability modeling involves using fault data (e.g., records of faults occurring
per testing time of an Internet component) to fit some parameters of a prediction
model, and then using this model to predict reliability of Internet components at a
future time. We can then determine when components will be ready for release to the
Internet, based on predicting when the number of faults and failures will drop below
a specified threshold [FOO95]. Predicting the reliability of components means we can
estimate how many faults the Internet user is likely to encounter per unit time.

Because Internet fault and failure data do not correspond to a theoretical distri-
bution (we made a test of the Poisson distribution of failures that failed), we fit a
regression curve against the cumulative empirical data [FINK98] in Figure 6.13 that
yields a reasonable fit of the upper bound by virtue of R* = 0.9447 and mean relative
error (MRE) = 0.1920. This source of fault and failure data [FINK98] does not break
the data down by component. Thus, Figure 6.13 represents the fotal present Internet
reliability in terms of cumulative faults and failures.

When assessing Internet reliability—both present and proposed systems—it is
important to note the number of servers comprising a component in each part of the
Internet (e.g., number of Web servers comprising a Web site) because with multiple
servers, a degree of redundancy is provided, such that if one server fails, another can
be used. This fact is used in the reliability prediction equation to be developed.

Local Network and Router

Local network failure data were obtained from Kalyanakrishnam et al. [KAL99],
involving Windows NT Local Area Network (LAN) systems. For a sample size of
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1298, mean uptime = 354.6 hours and mean downtime = 1.97 hours, yielding a reli-
ability = 0.9945 (354.6/(354.6 + 1.97)). Local network router failure data were
obtained from reports about Cisco routers. For the Cisco 6500 router, 23 of the 805
routers failed, for a reliability 1 — (23/805) = 0.9714 [PAG]. The local network and
router comprise a single network because there is only a single router server, as
shown in Figure 6.1. Thus, this network, lacking redundancy, has no backup capabil-
ity if a failure occurs.

Internet Router

An Internet router reliability estimate based on 104 router outages out of a total of
1616 outages yields reliability = 1 — (104/1616) = 0.9356, as reported in the Inter-
domain Border Gateway Protocol data collection (01/98~11/98) [LAB98]. The Inter-
net router uses two servers, thus providing a degree of redundancy against failures,
as shown in Figure 6.1.

Domain Name System (DNS)

The Domain Name System (DNS) is a ubiquitous part of everyday computing,
translating human-friendly machine names to numeric IP addresses. Most DNS
research has focused on server-side infrastructure, with the assumption that the
aggressive caching and redundancy on the client side are sufficient. However,
through systematic monitoring, the authors found that client-side DNS failures are
widespread and frequent, degrading DNS performance and reliability [PAR]. In
support of this finding, we collected the following failure data:

Number of successful DNS accesses: 5268. Number of failed DNS accesses: 153
(Cricket Liu’s Advisor, http://www.infoblox.com/services/cl_cookbook_5.14.cfm).
Reliability = 5268/(5268 + 153) = 0.9718.

Successfully answered queries: 37,973. Failure responses: 348 (http:/
www.daemon.be/maarten/dns.html). Reliability = 37,973/(37,973 + 348) = 0.9909.

Total queries: 4,547,577. Total replies: 3,893,205. [PAP]. Reliability = 3,893,205/
4,547,577 = 0.8561.

Web Server

The reliability for Web applications can be defined as the probability of failure-free
Web operation completions (i.e., successful completion of upload Web request and
download Web page delivery). We define Web failures as the inability to correctly
obtain or deliver information, such as documents or computational results, requested
by Web users. This definition conforms to the standard definition of failures being
the behavioral deviations from user expectations [IEE90]. Based on this definition,
we can consider the following failure sources:

Web server failures that prevent the delivery of requested information to Web
users.
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Web site content failures that prevent the acquisition of the requested
information by Web users because of problems such as missing or inacces-
sible files.

Applying these definitions, we obtained failure data in terms of failures per hit,
where a hit is a successful access of Web server, from the School of Engineering,
Southern Methodist University, Dallas, Texas, USA (errors per hit = 0.09091) and
Unix desktop computers accessing Web servers (errors per hit = 0.0466). These data
yield reliability = (1 — 0.09091) = 0.90909 and (1 — 0.0466) = 0.9534, respectively
[TTIAO4].

In our models, the number of Web servers varies depending on whether they
are used in a wired system (three servers) in Figure 6.1 or wireless system (six
servers) in Figure 6.3. In both cases, reliability would be significantly improved over
a single server system.

Access Point

Given their convenience of user mobility, wireless networks are increasingly being
considered as the platform of choice for various applications. Critical applications,
such as health monitoring systems and so on, require the network to continue to
function even in the presence of faults. Unfortunately, current wireless networks are
notoriously prone to a number of problems, such as the loss of connectivity due to
user mobility combined with network failures, which makes it difficult to guarantee
their reliability. Today’s users are mostly content with their ability to access wired
networks conveniently from mobile devices, even if the access is unreliable.
However, as wireless networks become ubiquitous and start to support more critical
applications, users will expect wireless networks to provide the same guarantees of
reliability as their wired counterparts. Furthermore, providing wireless networks
with a certain degree of reliability will lead to more opportunities for wireless car-
riers to provide applications that can be run satisfactorily on mobile devices. Some
authors [GANO3] propose the signal-to-noise ratio as the metric to identify access
point failures. Unfortunately, they do not provide actual failure data that can be used
in our study.

In a study of digital cellular systems [TIP02], call blocking probability (i.e., the
chance that due to heavy wireless traffic, calls will be blocked) was estimated. The
blocking probabilities range from a minimum of 0.0385 to a maximum of 0.226,
yielding fromreliability = (1 — 0.0385) = 0.9615 toreliability = (1 — 0.226 = 0.774),
respectively.

In our model, only a single access point is used because only a single mobile
device accesses the wired network, via the access point, as shown in Figure 6.3. Of
course, in the real Internet, there are many mobile devices and access points that
would impose additional load on the Internet. However, our goal is not to model the
total Internet, which would be infeasible. Rather, our objective is compare the
present Internet with the proposed Internet. In each case, our access point configura-
tion is the same.
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Present Wired Internet System

Now use the above reliabilities to predict both the present and proposed Internet
component reliability R, in Equation 6.104 [SHOS83], where R is the reported server
reliability (e.g., 0.9945 for local network), 1 — R is the server unreliability, and n is
the number of servers for a given component. Then, to obtain the Internet system
reliability R, in Equation 6.105, the component reliabilities are multiplied, reflecting
the fact that Internet components operate in series. To apply R, to the entire Internet
would be incorrect because each component comprises a separate configuration of
servers, where the components operate in series. Thus, R, is applied to each com-
ponent, and then R; is applied to the entire Internet.

These equations take into account the use of multiple servers for some Internet
components in our model.

R, =1-(1-R)", (6.104)

N
R, = HRC. (6.105)
i=1

We proceed by first listing the server reliabilities, which were described above, for
the wired system and the number of servers that a given component uses, where for
components that have multiple reported server reliabilities, only the minimum and
maximum values are used in order to provide a range of Internet reliability
predictions:

Local network: 0.9945, n = 1 server:

R, =R =0.9945.
Local network router: 0.9714, n = 1 server:
R, =R =0.9714.
Domain Name Server (DNS): 0.8561, 0.9718, 0.9909, n = 3 servers:

R, = 1—(1-0.8561)* = 0.99702 (minimum),
R, = 1—(1-0.9909)° = 0.99999(maximum).

Internet router: 0.9356, n = 2 servers:
R, =1-(1-0.9356)2 = 0.99585.
Web server: 0.9091, 0.9534, n = 3 servers:

R, = 1—(1-0.9091)3 = 0.99925(minimum),
R, = 1—(1-0.9534)3 = 0.99990(maximum).
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Then, applying equation R; to the components in series:
R, =0.9945%0.9714*0.99702 * 0.99585* 0.99925 = 0.95846 (minimum),
R; =0.9945%0.9714%0.99999*0.99585* 0.99990 = 0.96194 (maximum).

Thus, the reliability of the present wired system is predicted to be between 0.95846
and 0.96194 .

Present Wireless Internet System

To obtain the reliability estimates for the wireless system, we need only to factor in
the access point reliability estimates (0.774, 0.9615) to the results for R; computed
above, as follows:

R, =0.95846*0.774 = 0.74184 (minimum),

R, =0.96194*0.9615 = 0.92491 (maximum).
Thus, present wireless system reliability is predicted to range between 0.74184 and
0.92491. These results, combined with the total Internet cumulative faults and fail-
ures in Figure 6.13, provide a comprehensive picture of present Internet reliability.
Figure 6.13 has the desirable feature of predicting an upper bound on total Internet
cumulative faults and failures. Thus, we are assured that it is highly unlikely that
reliability will be any worse than the upper bound. The overall picture that emerges

suggests that considerable improvement in reliability is needed, particularly with
regard to the wireless system.

Proposed Wired Internet System

The equations for R, and R, are now applied to the proposed wired Internet system.
Recall that the proposed wired system does not include local network, local network
router, and DNS. Therefore, the following component reliabilities are used:
Internet router: 0.9356, n = 2 servers:

R, =1-(1-0.9356)2 = 0.99585.
Web server: 0.9091, 0.9534, n = 3 servers:
R, =1-(1-0.9091)3 = 0.99925,
R, =1-(1-0.9534)3 = 0.99990,
Rs =0.99585%0.99925 = 0.99510 (minimum),
Rs=0.99585%0.99990 = 0.99575 (maximum).
Note the improvements over the present wired Internet system: 0.95846 — 0.99510

(3.83% increase, minimum) and 0.96194 — 0.99575 (3.51% increase, maximum)
(Figure 6.14).
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Figure 6.14 Time in system T versus number of uploads and downloads n. Series 1: Present
Internet wired system. Series 2: Proposed Internet wired system.

Proposed Wireless Internet System

The equations for R, and R, are now applied to the proposed wireless Internet system.
Again, recall that the proposed wireless system does not include local network, local
network router, and DNS. However. It does require an access point. Therefore, the
following component reliabilities are used:
Access Point: 0.774, 0.9615, n = 1 server:

R, =R =0.774,0.9615.
Internet router: 0.0.9356, n = 2 servers:
R, =1-(1-0.9356)2 = 0.99585.
Web server: 0.9091, 0.9534, n = 6 servers:

R, =1-(1-0.9091)6 = 0.99999 (minimum),

R, =1-(1-0.9534)6 = 0.99999 (maximum),
Rs=0.774%0.99585*0.99925 = 0.77021 (minimum),
Rs =0.9615%0.99585*0.99990 = 0.95714 (maximum).

Thus, the reliability of the proposed wireless Internet system is predicted to be
between 0.77021 and 0.95714. However, note the improvements over the present
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wireless Internet system: 0.74184 — 0.77021 (3.82 % increase, minimum) and
0.92491 — 0.95714 (3.48 % increase, maximum). Thus, the relative reliability
improvements are approximately the same for the wired and wireless systems, with
the former yielding the greater absolute improvement.

PERFORMANCE ANALYSIS OF PROPOSED FUTURE
WIRED INTERNET

As has been demonstrated, the proposed Internet would achieve improved perfor-
mance and reliability because its configuration would have fewer components, thus
reducing performance overhead, single points of failure, and number of components
that could fail. The configuration would be comprised of only a user computer,
Internet routers, and Web servers for wired systems. No DNS would be required
because each user computer and mobile device would be supplied with a permanent
IP address, using IPv6. For wireless systems, the access point is still necessary to
provide for mobile device access to the Internet.

In order to provide a realistic model of the proposed future Internet, projected
future Internet speeds of Web page request packet upload rate A,. = 20 Mbit/s and
Web page download rate A, = 160 Mbit/s were obtained from the following source:
http://www.livescience.com/technology /070522_cable_modem.html.

Also,Ifound thatthe future Internetrouting speed is projected as L1;, = 1000 Mbit/s
[BAN]. These data are used to produce revised computations, using the equations
below.

In addition, it is appropriate to use different probabilities of processing and
wait times than were used for the present Internet because these probabilities change
with changing operating conditions. The proposed future wired Internet system
queuing model, using the following performance computations, is shown in
Figure 6.15.

User Computer

Mean Upload Packet Time t,.

This mean time is computed in Equation 6.106 by dividing the Web page request
packet of size d by the packet upload rate A,

toe = /Ay = 1000 bits/20 Mbit/s = 50 ps. (6.106)

Mean Web Page Download Time t,.q

This mean time is computed in Equation 6.107 by dividing the Web page size p by
the packet upload rate A,

fuea = P/hus = 96,928 bits/160 Mbit/s = 605.8 ps. (6.107)
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Figure 6.15 Future wired Internet system queuing model.

Wired System Internet Router

Probability of Being Busy p;,

This probability is computed in Equation 6.108 by dividing the sum of packet upload
rate h,. and Web page download rate A by the Internet router processing rate L,
accounting for the number of servers s:

(Mue +Ae) (204160 Mbit/s)
G)Wi)  (2)(1000 Mbit/s)

=0.0900. (6.108)

ir
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Mean Upload Service Time ts;

This mean time is computed in Equation 6.109 by dividing the Web page request packet

length d by the Internet router processing rate L, accounting for number of servers s:

_d  1000bits
($)(Wir)  (2)(1000 Mbit/s)

0.5 s. (6.109)

I:sir

Mean Upload Wait Time tw;,

This mean time is computed in Equation 6.110 by subtracting the upload service
time computed in Equation 6.109 from the packet upload time t,:

twi, =ty —ts;; =50-0.5us =49.5 us (6.110)

Mean Download Service Time ts;q

This mean time is computed in Equation 6.111 by dividing the Web page length p
by the Internet router processing rate L, accounting for number of servers s:

p 96,928 bits
($)(Wir)  (2)(1000 Mbit/s)

Sig = =48.464 us. (6.111)
Mean Download Wait Time tw;,4

This mean time is computed in Equation 6.112 by subtracting the download service
time computed in Equation 6.111 from the Web page download time t,.4, computed
in Equation 6.107:

Wi = tueq — t85q = 605.8 — 48.464 us = 557.336 pis. (6.112)

Mean Number of Bits Being Processed in the Upload Direction ns;,

This quantity is computed in Equation 6.113 by multiplying the probability of Inter-
net router queue being busy, computed in Equation 6.108, by the Web page request
packet size d:

(Aue +Ays)(d) (204160 Mbit/s) (1000 bits)
SWir (2)(1000 Mbit/s)

ns;, = =90 bits. (6.113)

Mean Number of Bits Waiting for Processing in
the Upload Direction nw;,

This quantity is computed in Equation 6.114 by subtracting the number of bits being
processed in the upload direction, computed in Equation 6.115 from the Web page
request packet size d:

nw;, =d—ns; =1000—-90 bits = 910 bits. (6.114)
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Mean Number of Bits Being Processed in
the Download Direction ns;q

This quantity is computed in Equation 6.115 by multiplying the probability of Inter-
net router queue busy, computed in Equation 6.108, by the Web page size p:

NS =

(A + ) (P) _ (20+160 Mb1t/s)(9§, 928 bits) _ oo
S (2)(1000 Mbit/s) 6.115)

Mean Number of Bits Waiting For Processing in the Download
Direction nw;4

This quantity is computed in Equation 6.116 by subtracting the number of bits being
processed in the download direction, computed in Equation 6.115 from the Web page
size p:

NW;y =P —NS; = 96,928 —8724 bits = 88,204 bits. (6.116)

The statistical program is used to generate the distribution of wired system Internet
router number of bits being processed and waiting for processing, using the above
mean values.

Wired System Web Server Processing

The probability of queue busy, using the IBM System x3250 M2 4194 Web server
processing rate Ll = 2830 Mbit/s, is computed in Equation 6.117:

(A +Ay) (204160 Mbit/s)
Sty (3)(2830 Mbit/s)

=0.02120. (6.117)

WS

Mean Upload Packet Processing Time ts,,
This mean time is computed in Equation 6.118 by dividing the Web page request

packet size, d, by the processing rate, accounting for number of servers, s:

~d 1000 bits
Sl (3)(2830 Mbit/s)

=0.11779 ps. (6.118)

SWS
Mean Download Web Page Processing Time ts,,q
This mean time is computed in Equation 6.119 by dividing the Web page size, p, by

the processing rate, again accounting for number of servers, s:

(g =D = 0O _ 1y g0 (6.119)
S, (3)(2830 Mbit/s)
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Mean Web Page Download Time t,.q

This is the mean time required to download a Web page of size, p, using the Web

page download rate, A, in Equation 6.120:

_p 96,928 bits
Slws  (3)(2830 Mbit/s)

=11.417 ps. (6.120)

tSya

Mean Web Page Upload Wait Time tw,,,

This mean time is computed in Equation 6.121 by subtracting the upload processing
time computed in Equation 6.119 from the Web page request packet upload time, t,.:

tWys = oo — (84 = 50—0.11779 s = 49.88 ps. (6.121)

Mean Web Page Download Wait Time tw,,

Using Equation 6.122, compute the mean Web page download wait time by subtract-
ing the download processing time computed in Equation 6.119 from the Web page
download time computed in Equation 6.120:

tWysa = tuea — tSysa = 605.8 —11.417 us = 594.383 ps. (6.122)
Mean Number of Web Page Bits Being Processed in
the Upload Direction ns,,

This quantity is computed in Equation 6.123 by multiplying the probability of Web server
queue busy, computed in Equation 6.117 by the Web page request packet size d:

(M + M) (@) (20+160 Mbit/s) (1000 bits)
SlLys - (3)(2830 Mbit/s)

=21.20 bits. (6.123)

nsSys =

Mean Number of Web Page Bits Being Processed in the Download
Direction ns,,

This quantity is computed in Equation 6.124 by multiplying the probability of Web
server queue busy, computed in Equation 6.117 by the Web page size p:

(A +Ays)(P) (204160 Mbit/s) (96,928 bits)
Sty (3)(2830 Mbit/s)

= 2055 bits. (6.124)

NSy =

Mean Number of Web Page Bits Waiting for Processing in the Upload
Direction nw,,

This quantity is computed in Equation 6.125 by subtracting the number of bits being
processed in the upload direction ns,,, computed in Equation 6.124, from the Web
page request packet size d:

nw,,, =d-ns,, =1000-21.20 bits = 978.80 bits. (6.125)
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Mean Number of Web Page Bits Waiting for Processing in the
Download Direction nw,,.4

This quantity is computed in Equation 6.126 by subtracting the number of bits being
processed in the download direction ns,,, computed in Equation 6.125 from the
Web page size p:

NW g =P — NSy = 96,928 —2055 bits = 94,873 bits. (6.126)

Again, statistical software is called upon to generate the distribution of wired system
Web server bits being processed and waiting to be processed, using the above mean
values.

COMPARISON OF PRESENT AND FUTURE WIRED
INTERNET PERFORMANCE

Time in System

As can be seen by comparing the present wired Internet time in system with the
proposed wired Internet time in system in Table 6.6, the latter’s performance is
dramatically better than the former. Table 6.6 contains the means and standard devia-
tions of the performance times of the two systems. The significant performance
advantage of the proposed Internet system, which is not burdened with local router
and DNS overhead, is readily apparent, since both the means and standard deviations
are lower. In addition, because the DNS in the present Internet only has to deal with
upload traffic, its time in system is the lowest.

Table 6.6 Performance Comparison of Present and Proposed Future Wired Internets

Present Internet Proposed future Internet
Standard Standard
Mean deviation Mean deviation
Performance metric (seconds) (seconds) (seconds) (seconds)
Wired local network 0.655720 0.140187 Does not apply Does not apply
time in system
DNS time in system 0.178284 0.007516 Does not apply Does not apply
Wired Internet router 1.194493 0.224831 0.258607 0.029701
time in system
Wired Internet Web 0.797331 0.283792 0.000814 0.000115
server time in
system
Total time in wired 3.522262 0.584658 0.259421 0.029705

system
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Table 6.7 Packet and Web Page Length Summary (Processed and Waiting to Be Processed)

Present wired Internet Proposed future wired Internet

Component (coefficient of variation) (coefficient of variation)
Local network (upload) 0.9180 Does not apply
Local network (download) 0.8985 Does not apply
Local network router (upload) 0.9399 Does not apply
Local network router 0.7516 Does not apply
(download)

DNS (upload) 0.9822 Does not apply
Internet router (upload) 0.7903 0.9510
Internet router (download) 0.6940 0.9059

Web server (upload) 0.7774 0.9623

Web server (download) 0.7382 0.8047

Internet Data Traffic

In addition to the time in system performance metric, it is important to include a
metric that measures the variation in data flow. This metric is the coefficient of
variation (standard deviation/mean) of the sum of bits being processed and bits
waiting to be processed for each component in Table 6.7. This metric is computed
because there is a great deal of variation in data flows, thus it is appropriate to nor-
malize the standard deviation by the mean in order to obtain a representative picture
of variation across the components. We see that the proposed wired network has
consistently higher variation. This result is attributed to the fact that the proposed
wired system has much higher Web request packet upload and Web page download
rates, thus generating greater variation in data flows. The implication of this result
is that higher data transfer rates achieved in the proposed wired system comes at a
cost—lower stability of data traffic in the Internet.

COMPARISON OF PRESENT AND FUTURE WIRELESS
INTERNET PERFORMANCE

As a reader exercise, for the proposed wireless Internet system, develop the equa-
tions for the mean values and performance prediction equations similar to what was
done for the proposed Internet wired system. In addition, produce a future wireless
Internet system simulation queuing model similar to Figure 6.15. Use the mean
values contained in Table 6.8. In order to compare the present with the proposed
wireless system, document the logic of the proposed wireless system, for both the
upload and download directions. Notice that in contrasting the present wireless
systems in Figure 6.2 (upload) and Figure 6.3 (download) with your proposed
system, the difference is that the latter does not require the services of the DNS.
In addition, all the mean value equations and the equations for the distribution of
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Table 6.8 Performance Comparison of Present and Proposed Future Wireless Internets

Present Internet Proposed future Internet
Standard Standard
Mean deviation Mean deviation
Performance metric (seconds) (seconds) (seconds) (seconds)
Wireless access point 0.165121 0.044345 Does not apply Does not apply
time in system
Wireless DNS 0.178284 0.007516 Does not apply Does not apply
Wireless Internet router 1.194089 0.225939 0.516090 0.032931
time in system
Wireless Internet Web 0.790009 0.281181 1.157510 0.233608
server time in
system
Total time in wireless 2.151653 0.406204 1.852345 0.257725
system

processing and wait times remain the same, although the results of the distribution
value equations will change based on different sets of probabilities of those
distributions.

By eliminating the DNS from the present wireless simulation queuing model in
the upload direction in Figure 6.2, you can produce the future wireless simulation
queuing model. The components that would be included in the simulation queuing
model are: access point, Internet router, and Web server, both upload and download.
As in the case of the present wireless system, depicted in Figures 6.2 and 6.3, twice
as many Web servers are required to maintain queue stability, compared with the
present and proposed wired systems.

Eliminating the burden of DNS overhead on the proposed wireless system
improves total system performance, as shown in Figure 6.16. However, not all
advantages would necessarily accrue to the proposed wireless Web server because
it could suffer from a higher queue load, which could be caused by a higher probabil-
ity of queue being busy, compared with the present Web server. This result is dem-
onstrated in Figure 6.17, where even the present wired system is superior to the
proposed wireless system with respect to queue efficiency. As has been suggested,
the result is caused by a higher queue load in the wireless system, which in turn is
the result of high Internet activity generated by wireless devices.

Time in System

As was the case for the wired systems, we see in Table 6.8 that the proposed future
wireless Internet has superior performance with respect to the time metrics, again
as the result of not having to contend with the local network, local network router,
and DNS overhead.
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Table 6.9 Packet and Web Page Length Summary (Processed and Waiting to be Processed)

Present wireless Internet ~ Proposed future wireless Internet

Component (coefficient of variation) (coefficient of variation )
Access point (upload) 0.7849 0.6970

Access point (download) 0.7191 0.6554

DNS (upload) 0.9822 Does not apply
Internet router (upload) 1.1548 0.7611

Internet router (download) 0.9247 0.7643

Web server (upload) 0.7731 0.6774

Web server (download) 1.0310 0.7303

Internet Data Traffic

Again, as in the case of comparing present and proposed future wired systems, the
Web page length variations of the present and proposed wireless system are com-
pared in Table 6.9, where we see the advantage of the future Internet, again as the
result of not being burdened by the variation in local network, local network router,
and DNS data traffic.

SUMMARY

By eliminating the local network and its supporting router, and eliminating DNS name-to-IP
address translation by virtue of providing every user computer and mobile device with its
own [P address, both wired and wireless performance are predicted to be improved, as mea-
sured by time in the system. It is also useful to model data flows in the present and proposed
Internets to gauge the relative variation in traffic across components. This process spotlights
excessive component variation, for example, the present wireless Internet router in the upload
mode in Table 6.9 that is reduced in the future Internet. It is recognized that major organiza-
tional changes (e.g., elimination of domain name administration) and technical changes (e.g.,
elimination of local networks and routers) are required in order to realize this vision of the
future Internet. However, if the Internet were being built from scratch, it should closely
resemble this proposal.

A performance metric that was not covered is the delay time among communicating
devices. This is particularly the case for wireless devices, where both human-made and nature-
made interference can have a significant effect on Internet performance [XYL99]. This factor
should be included in enhanced future Internet proposals.
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Chapter 7

Network Standards

The primary objective of this chapter is to provide evidence of the fact that while there is
a myriad of network standards, they are lacking in some fundamental properties as predictions
of reliability, maintainability, and availability. For without these crucial properties being
included in network standards, you would question the utility of existing standards. Existing
standards do a reasonable job of specitying speed, range, signal properties, wireless device
mobility, and compatibility requirements. However, to a large extent these properties are
expressed sans user perspective. By user perspective I mean, for example, if a standard speci-
fies a signal-to-noise ratio in the abstract, what does this mean in concrete terms for the user?
Will the user be able to access a Web server, via the Internet, when desired, and reliably
retrieve a Web page from the server within, say 5 seconds? Given the abstract nature of
standards, my goal is to equip the reader with practical methods for designing and evaluating
network standards with the goal of increasing user productivity in their use of computer
networks.

DESIRABLE PROPERTIES OF NETWORK STANDARDS

First, the properties that are desirable in a network standard will be discussed and,
second, a comparison will be made between desired properties and existing standard
properties. Third, improvements designed to bring existing standards into confor-
mance with desired properties will be identified. The reader may be surprised to
learn that common requirements such as reliability specifications and the means for
testing reliability are largely absent from current standards. Building on the founda-
tion of network principles learned in Chapter 5, desirable properties of network
performance, reliability, maintainability, and availability will be specified along with
test procedures to ensure compliance with the specifications. These specifications
will be formulated and used as a baseline for judging the utility of existing standards
from the user’s perspective.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
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Network Efficiency

The first desirable property to be addressed is network efficiency, defined as:
(total time a packet spends in a network to achieve the user’s goal)/(packet
input time).

From Chapter 5, you learned that the numerator, T,, is obtained as the summation
of link delay, T;;, node processing time, T;, and wait time, W;, summed over number of
links, Ni, and nodes, N, in a network. The numerator is T, = X T; + X" T, + X" W,
and the denominator is T, = p/A,., where p is the Web page request packet size and A,
is the user computer packet input rate. Thus, efficiency E, which we desire to be as
high as feasible, is defined as follows:

Np N, N,
D T+ ) T+ Y Wi (ko) /p.
ij i i

Thus, you can see that what was initially formulated as time efficiency has become
data efficiency because the above ratio is the quantity of data transmitted in a
network to achieve the user’s goal to the quantity of data inputted by the user; in
other words, the number of bits outputted per input bit. The network performance
evaluation model for making the efficiency test is shown in Figure 7.1. Figure 7.2
shows that only the Web Server Queue node is in conformance with the specification
by virtue of having the smallest Web page request packet size, p, compared with the
other nodes. Recall from Chapter 5 that p is generated by an exponential statistical
routine. When this routine was applied in Chapter 5, it generated a small value of p

Input  User Computer T, ‘ Internet
Tp = p/ kuc Local Network
Mic ) > - > '( § i
e Local Network il Local Network Local Network

Server Queue

b ‘ ‘ Router Server Queue Router Server ‘

Internet Router Domaln Name Internet Router
Internet Router bus : Internet Router
Server Server Y Server Queue Domain Name Server

Server
Queue Server Queue

N; N, N,
Web Server Queue . < Web page| Tt= ZT.J +2Ta + ZW,
| i i i

Web Server Output
Figure 7.1 Network performance evaluation model. A, user computer input rate; p, Web page
packet request size; Ty, link ij processing time; W;, node i wait time; T, packet input time; T;, node i
processing time; pw, Web page size. Efficiency = Output/Input = T/T,,.
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Figure 7.2 Network efficiency E versus node i. Series 1: E. Series 2: Specified E.

for the Web server queue (see Table 5.2, Chapter 5). This means that the result in
Figure 7.2 is only one instance of computing efficiency. To obtain a more representa-
tive result you would repeat the process of generating p and computing values of E,
say 100 times, and compute the mean value of E. Also, it is important to note, in
Figure 7.2, that the packet input rate A, must be increased to bring the other nodes
into conformance with the specification.

Problem: What is the equation required to ensure that all nodes and associated
links will satisfy the efficiency specification?

Solution: Solve the efficiency equation for A,., the user computer input rate
from Figure 7.1, as shown below, for all of the nodes and associated links,
setting E to your desired value, and use the values of p from Table 5.2 in
Chapter 5 for each computation of A,.. Use the maximum value of A, as your
solution. Show a plot of A, versus node identification i:

NL Na Na
(Me)=(E*p)/ ) T+ > T+ Y W,
ij i i

Using an E = 10.0, the largest value of A, = 950,118,764 bits per second. The
required plot is shown in Figure 7.3. The maximum value of A, corresponds to the
User Computer and Local Network Server Queue nodes and the link between them
(see node and link identifications in Fig. 7.4).
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Figure 7.4 Reliability simulation process diagram.

RELIABILITY PREDICTION PROCESS

The reason reliability prediction is important is that national and international regula-
tions may require that reliability specifications be achieved in network systems
[MARI10]. The approach to reliability prediction is to simulate the injection of faults
and failures into a replica of a computer network. Faults such as garbled data on a
link, attributed to a noisy communication channel, cause failures such as the inability
to transmit data between two nodes. Injection of faults and failures is simulated by
randomly selecting links and nodes to be injected. This is accomplished by using
the Excel RAND function (uniformly distributed random numbers between 0 and
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1) to generate random numbers that will identify where injection is to take place.
Specifically, since there is a total of 25 nodes and links, counting queues, in Figure
7.1, RAND is multiplied by 25 and then rounded to obtain the identification of
injection location. Injection locations are identified in Figure 7.4, which will be used
for simulating network reliability. Note that the Internet icon in Figure 7.1, which
is included for clarity of presentation, is not shown in Figure 7.4 because Internet
nodes and links are obviously components of the Internet; to show the Internet icon
would involve double counting of nodes and links. In addition, the buffer in Figure
7.1, which is included for clarity of presentation, is not carried over into Figure 7.4
because the buffer is part of the Domain Name Server, which, again, would result
in double counting.

Table 7.1 is provided to document the results of the node and link identification
process, where, for example, the link Internet Router Server Queue — Internet
Router Server is identified as number 12. Therefore, this link receives a fault and
failure injection in Figure 7.4.

Estimation of Failure Rate

Continuing the process of reliability prediction, failure rate must be estimated. This
will be an interesting exercise in failure rate estimation because the failure rate will
be estimated for each sequence of the reliability simulation. The rationale for
sequences is that end-to-end transmission and processing of data in a network is
comprised of subsets of the total end-to-end chain called sequences. One of the
principles of computer engineering is to reduce the complexity of analysis by decom-
posing a system into its component parts. If this is not done, the complexity of large
systems overwhelms the engineer, leading to errors in analysis. To illustrate the
sequence prediction process, the first estimate pertains to the last fault and failure
of the first sequence injected at point 12 in Figure 7.4; the second estimate pertains
to the last fault and failure of the second sequence injected at point 17, and so on.
Duplicate sequences that may be generated by the random designation of injection
points are not repeated because this would bias the results in favor of repeated
sequences.

The failure rate A pertaining to each simulation test of a sequence of fault and
failure injection is estimated by summing the node and link times T, over the N
nodes and links, from node 1 to the last node or link of the sequence, N, where there
has been an injection, and dividing it into the number of failures occurring over the
sequence. For example, for injection at point 12 in Figure 7.4, T, and n; are summed
from 1 to N = 12, where n; is the number of failures expected in node or link i. The
sequence failure rate equation follows:

N
S
N .
S

=1

A=
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The determination of failure occurrence is performed by again employing the RAND
function for estimating the number of failures, n;, at each node and link, using a
uniformly distributed number between 0 and 1. Of course, it is recognized that in
the real world the number of failures must be an integer value. However, as stated,
n; is an expected value, justified by the fact that over a large number of operations
in the real-world network, an integer number of failures would occur over the nodes
and links. If the mean of these integer values were computed, the result would be
the expected fractional value.

Reliability Prediction

Reliability is based on the sequence failure rate estimated above and the node or
link times, Ti, from node 1 to the node or link where the last fault and failure injec-
tion occurs in a sequence at N. Thus, for each simulation test, there will be predic-
tions from 1 to N. Again, the exponential distribution is used because there is a high
probability of short node and link times and low probability of long times. Then,
the sequence i reliability, R;, is formulated as follows:

R. =)
i .

Since there will be many values of reliability in a sequence—one for each node or
link—the mean value is computed in order to generate an overall sequence reliability
metric. The mean values are tabulated in Table 7.1. This table will be used to identify
possible low sequence reliability values that would be indicative of low values of
node and link reliabilities.

Analysis of Table 7.1 reveals that since all of the mean sequence reliability
values are very high, the prediction is that there should be no problem with reliability
per se in actual operation. However, note that some of the failure rates are relatively
high (bolded). In particular, this is the case for sequences associated with local
network components. A possible reason for this is that local network components
operate faster than Internet components. The higher speed can result in failures
occurring at a higher rate. Thus, you can see that Table 7.1 is valuable in pinpointing
reliability weak spots in a network. Notice that Table 7.1 results are consistent with
the results in Figure 7.2, where only the Web Server satisfies the efficiency require-
ment. That is, both network performance—as measured by efficiency—and reli-
ability are better at the service end of a network than at the input request end,
suggesting that network standards should focus on local networks.

Maintainability Prediction

Recalling from Chapter 5 that maintainability was formulated as a probability, and
this probability was the ratio of the quantity of data processed by a given link or
node to the total quantity of data processed at all links and nodes in the network.
Now, since reliability has been predicted using network entities called sequences,
maintainability will also be predicted using sequences in order that availability,
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which is a function of reliability and maintainability, will have consistent inputs for
its prediction in a later section. Thus, maintainability will be formulated as a ratio
of the quantity of data processed by a given sequence of nodes and associated links
(e.g., Local Network Server Queue and the link between it and the User Computer)
to the total quantity of data processed at all nodes and associated links in a network.
Note that nodes and their associated links process the same quantity of data. There-
fore, the maintainability of sequence i, M;, is predicted as follows, where p; is the
quantity of data transmitted or processed in a node and the associated link, N; is the
number of nodes and associated links in sequence i, and N is the total number of
nodes and associated links in a network:

Availability Prediction

Similar to the formulation of availability in Chapter 5, the availability of sequences
represents the probability that the set of nodes and links that comprise a sequence
will be available for operational use when needed. Equivalently, availability is the
proportion of operational time that maintenance is not being performed on a sequence
(i.e., the sequence is operating reliably). Thus, availability, A;, of a sequence is
predicted as follows:

Ai = RI/(R1 + Mi)'

Figure 7.5 shows the results of applying the availability prediction equation, results
that are opposite to those obtained for failure rate in Table 7.1 that showed local
network sequences with relatively high failure rates, whereas Figure 7.5 shows that
local network sequences are the only ones that satisfy the availability requirement.
What accounts for the discrepancy? Checking Table 5.2 of Chapter 5, which records
Web page request and Web page size, we see that local network components have
smaller sizes that are the primary driver of maintenance actions. The lesson to be
learned from this exercise is that multiple dimensions of network quality must
be evaluated. If any one is deficient, it is a signal that network quality should be
improved. In this case, local network sequences would be subject to further testing
to discover and remove additional faults.

Storage Capacity Prediction

Due to the fact that there is a great deal of data transmitted and processed in a
network, storage requirements must be predicted. Since other metrics, such as avail-
ability, have been predicted on the basis of node and link sequences, consistency
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local network nodes and links satisfy requirement.

requires that storage requirements predictions use the same approach. Thus, storage
capacity is predicted by noting that data is injected into the network (i.e., sequences)
in Figure 7.1 at a rate determined by the User Computer input rate, A,.. This sequence
input rate multiplied by the sequence operational time, >.N, T,, generates the pre-
dicted sequence i storage capacity, S;, and computed over the N nodes and links of
the sequence, as follows:

s, =<xuc>(irj.

i=1

Figure 7.6 shows the results of predicting sequence storage capacity requirements,
where the utility of the prediction is to delineate the maximum storage requirement,
which in this case occurs in the Local Network Router Server Queue. This result is
due to the relatively heavy traffic load in the local network. As a minimum, the Local
Network Router Server Queue should be designed to accommodate this much data
(in this case, about 12,000 bits).

Software Compatibility Standards Issue

An issue of great concern in network standards is whether various software systems
that are required in a network are compatible, meaning that, for example, user
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requests for Web pages in Figure 7.1 can traverse all links and nodes to the Web
Server and return without disruption caused by software incompatibilities. Specifi-
cally, this refers to compatibility among the user operating system, Web browser,
Ethernet local network protocol, router software—both local network and Internet—
Internet Protocol (IP), Domain Name Server software, Web Server, database man-
agement system, and network security software. My motivation for including this
issue is to identify for the reader improvements that would make standards more
valuable for the user. There is no standards issue more important from the wuser
standpoint than software compatibility because: (1) historically, software, due to its
complexity, has caused more problems than hardware and (2) unfortunately, network
standards do not address the software compatibility issue. This means that network
users must insist on receiving compatibility information when considering purchase
of network software from vendors.

EXISTING STANDARDS

At this point, existing standards will be reviewed to see to what extent, if any, these
standards address performance, reliability, maintainability, availability, and software
compatibility.

There are a lot of different network standards that the majority of computers
use. There are standards for both physical hardware and for signaling. For example,
IEEE 802.11g is a wireless networking standard. It includes specifications for the
type of radio that is used, how strong the signal can be amplified, a standard set of
encryption schemes, and so on.
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Another standard is Ethernet, also known as IEEE 802.3. This is a standard for
hardwired networks. It defines what types of wiring can be used, transmission power
requirements, connector styles, and so on.

There are also protocols. As you learned in Chapter 5, Transmission Control
Protocol (TCP)/IP is a protocol that operates at the transport layer of the seven-layer
network. Note that TCP/IP is a protocol that interfaces with local network protocols
such as Ethernet.

Today, virtually all networking standards are “open” standards, administered by
a standards organization or industry group. Open standards are more popular than
proprietary ones in the computer industry, and this is particularly the case for net-
working. In fact, the few technologies that have no accepted open standard have
been losing ground to those with open standards, particularly in the areas of wireless
local area and home networks (http://uk.answers.yahoo.com/question/index ?qid=20
091014025636 AA0qcDy).

Open standards are useful for helping to mitigate the problem of software com-
patibility because with open standards, software developers can incorporate compat-
ibility into standards. However, there is no assurance that individual developers will
address all compatibility issues.

WIRELESS STANDARDS

As voice and data in wired networks increasingly converge to use the Internet,
similar convergence is happening with wireless access networks [CHAO7]. Many
different wireless network standards have been developed or are under development
for metropolitan area networks (MANSs), local area networks (LANSs), and personal
area networks (PANS).

The wireless access networks are diverse but the major standards may be clas-
sified as belonging to either a group of public land mobile networks (PLMNs) owned
by cellular phone operators or to another group of wireless networks under the IEEE
802 family of standards. The frequency spectrum used by these wireless systems
includes both unlicensed and licensed bands. The cellular networks and systems are
diverse, and efforts to standardize them include the 3G Wireless in the International
Mobile Telecommunication 2000 (IMT-2000) standard.

While the cellular networks have been moving from voice networks toward the
Internet packet network, the family of IEEE 802 wireless networks is attempting to
achieve the higher quality that is required in voice and other real-time applications.
Different wireless network systems have good technological reasons to exist. There
are different power requirements, distance ranges, data rates, and carrier frequencies.
Different systems are therefore needed to optimize the performance and cost accord-
ing to different requirements. Note that there is no mention of reliability and other
important metrics in this list!

The most widely implemented wireless network standards fall into two major
groups. One group of wireless networks is the PLMN family of cellular networks.
Another group of wireless networks are the IEEE802 family of standards.
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PLNMINs

The major wireless systems under the PLMN family are primarily operated by the
cellular telecom service providers. Cellular systems are usually designed with
maximum cell range exceeding 10 km, where a cell is a wireless geographical area
that has access to an access point, which has, in turn, access to the Internet. However,
the peak data rates may only be realized in favorable channel conditions, such as in
those areas close to the base station, where a base station contains a transmitter and
antenna for transmitting mobile device signals. Note that given the erratic channel
conditions, reliability should be predicted under these conditions to have a useful
standard.

Multimedia Services

One key issue in providing multimedia services over a wireless network is the
quality-of-service (QoS) support in the presence of changing network connectivity.
The concern here is user mobility and shared, noisy, highly variable, and limited
wireless communication links. Most wireless standard organizations are revising
existing standards or making new specifications to provide more bandwidth or QoS-
related parameters and interfaces to meet requirements from highly demanded mul-
timedia applications, such as wireless video phone and multimedia message systems
[GANO4].

IEEE802 WIRELESS NETWORKS

An important group of wireless networks is the IEEE802 family of standards. PAN
distance ranges are 10 m, for example the 802.15 Bluetooth standard. LAN distance
ranges that are within 100 m are the 802.11 Wireless LAN standards with data rates
of 11, 55, and 100 Mbit/s. MAN distance ranges are 3-8 km. While range is an
important network standard attribute, it is meaningless if not accompanied by speci-
fying the reliability that would be achieved at these ranges!

The 3G Wireless networks, which provide wireless access to global and metro-
politan area data networks, are standardized according to the 3G Wireless require-
ments specified in IMT-2000. The IMT-2000 3G Wireless goals are summarized
below [CHAO7]. The purpose of describing this standard is to indicate what is cur-
rently feasible in this class of important wireless networks and what needs to be
improved by more mature standards.

1. Enable global roaming. Allow a mobile device to be used anywhere in the
world, without changing network cards. A noble objective, but currently
infeasible because of differing wireless technologies in different parts of the
world. This is a generalization of the software compatibility problem.

2. Use Standardized Interfaces. Use the same interface between mobile
devices and applications across mobile device developers.
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3. Support Multimedia Services. This requirement has evolved into a very
mature set of services, given the extensive use of, for example, cameras,
social networking, and Web site access via mobile devices.

4. Have Minimum Data Rates. A minimum of 144 kbps in a vehicular envi-
ronment, 384 kbps in a pedestrian environment, and 2 Mbit/s in an indoor
office environment; these specifications are not particularly useful because
they are arbitrary with no justification provided. The performance methodol-
ogy presented in this chapter should be used to quantitatively estimate these
requirements. This example illustrates the deficiency in some network stan-
dards: specifying a requirement, while neglecting to provide a rationale.

5. Operate in Multiple Environments. Indoor, outdoor, vehicular, and satel-
lite; this specification should be tested by subjecting the wireless system to
operate in these environments and noting whether there is equal performance
and availability across the environments.

A more advanced wireless network is 4G, which is designed to operate at 50—
250 MBit/s. Among other capabilities, 4G supports TV broadcast and interoperates
with the wired Internet.

Limited Range Wireless Network

It is instructive to consider a limited range wireless network because the network
standard is decidedly different from its long-range cousin due to a different market
objective. The example is the Bluetooth wireless network.

The Bluetooth network has no network infrastructure other than the nodes (i.e.,
mobile device) [CHAO7]. A Bluetooth network, called a piconet, consists of one
master node and up to seven slave nodes within the radio frequency range of about
10 m. Adjacent piconets may interconnect with each other through nodes in overlap-
ping regions of the separate piconets to form a larger network. Bluetooth provides
packet switching links. The total data rate is in thel Mbit/s range.

Bluetooth provides rapid ad hoc connections without cable and without line-of-
sight requirement. It uses small form factor, low power, and low cost devices. The
use of low power enables longer battery life applications such as a personal data
assistant (PDA). Applications include phones, pagers, modems, headsets, notebook
computers, handheld personal computers, and digital cameras.

The salient issue in standardizing a network such as Bluetooth is to test it in the
environment described above to ascertain whether connectivity, performance, and
availability can be achieved in a limited range environment.

Spectrum Considerations

Signal interference in the available spectrum, particularly in wireless systems, is a
network standards issue. The degree of interference that is tolerable in various geo-
graphical areas, using specified network hardware and software, should be specified
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by signal-to-noise (S/N) ratio. Increasing the S/N ratio will increase the range of the
wireless system.

TEST BED FOR TESTING NETWORKS

Having discussed a number of network-recommended performance and availability
metrics and having reviewed existing network standards, it is now appropriate to
show the reader how a test bed could be deployed to perform tests designed to ensure
the networks adhere to proposed and existing standards. It is important that the test
bed be automated [HOD99], as portrayed in Figure 7.7, where the test measurements
are instrumented.

First, the important network requirements that would be subject to testing are
listed. These are shown in the network test bed in Figure 7.7.

Compatibility of a local network, wired and wireless systems, with the Internet.
Test software records a compatibility result if the signal is received. An
incompatible result is recorded if the signal is not received.

Compatibility Test

Signal S ‘ Internet
B
Web page Local Network: r'g
request X 45
‘ ‘ Noise
b N

Input Rate: ),
Packet Size: p Wired System

= R Noise i
R e

Mobile Device Wireless Access Point

Signal
received

Compatible

Incompatible

SIN Test

Compute
———= SIN

Compute
Ri=e*T)
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Storage Test Reliability Test

Report failureN
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Activity

Figure 7.7 Network test bed. T; = p/A, required time; R,, required range; S/N,, required signal/
noise; C, storage capacity; R; = e, required reliability; R,, specified stability; S/N, actual signal/
noise; S,, storage requirement.
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Time required to request a Web page from Web server. Test software computes
required time and compares it with clock time.

Range required by mobile device in wireless network. A sensor attached to
access point records the range between the mobile device and the access
point. Test software compares the actual range with the received range.

Reliability is assessed following a successful time test by using test software
that computes the required reliability, using the successful time obtained
from the previous test, and compares it with the specified reliability. If the
reliability test fails, the failure is reported to the maintenance activity
[BALS9], as shown in Figure 7.7.

S/N ratio is tested by propagating the signal and noise to an oscilloscope where
signal and noise are measured. The S/N ratio is computed and test software
is used to compare the required ratio with the ratio actual generated in the
network.

The storage requirement test is conducted with test software by comparing the
database capacity with the Web page storage requirement.

The standards tests in Figure 7.7 are the major ones that can be quantified. Addi-
tional, important tests, such as the ability of a mobile device to roam and achieve
connectivity, the use of compatible interfaces, and the ability of wireless networks
to operate in multiple environments could also be tested in the test bed.

SUMMARY

The main point I wish to leave with the reader is that there are many more crucial factors
involved in obtaining satisfaction in using networks than those factors contained in extant
network standards. From the review of existing network standards, you can see that dwelling
on speed, for example, is certainly not the whole story in assessing network standards. From
the user’s perspective, equally, if perhaps more, important are factors such as reliability,
maintainability, and availability that are not quantified in existing standards reports [LEEO6].
In addition, while standards developers may assume that the products to which their standards
apply are reliable [SIEOO], there is no guarantee of reliability without the type of testing shown
in Figure 7.7. Therefore, it is important for the user acquiring networks to ascertain whether
the network vendor has specified these crucial factors. Furthermore, the engineer charged with
designing networks should include these crucial factors in the specifications and establish a
test system, such as the one described in this chapter, for verifying that the specifications can
be achieved.
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Chapter 8

Network Reliability and
Availability Metrics

Having been introduced to the basics of reliability and availability in Chapters 5 and 7, it
is time to turn to developing a detailed, quantitative modeling methodology for predicting
these variables in order to provide the reader with the tools that are needed to support complex
network development.

Today, standalone computer applications are rare. Almost all applications involve a
network—the Internet in particular. Models are important for analyzing the reliability and
availability of networks. Therefore, in this chapter, you will learn how a model is developed
for predicting the probability of failure, reliability, and availability in a network comprised
of nodes, links, and subnetworks. This chapter provides a foundation for Chapter 15: “Mobile
Device Engineering.” In addition to developing the quantitative models, a template, or road
map, is provided for modeling network reliability and availability. The process starts by defin-
ing the network topology and subnetwork configurations. This leads to identifying and defin-
ing the parameters and variables of the model. In developing the prediction equations, you
define the sequence of operations on the network—for example, an input request to the
Internet—that provides the basis for computing the reliability and availability of nodes, links,
subnetworks, and network. Predicted failure and fault correction times are used to predict
revised probability of failure, reliability, and availability that result from the correction
process. These results are used to compute changes in these metrics that occur due to failure
and fault correction. In addition, you examine the possibility of employing alternate network
communication and processing paths to increase reliability and assess whether the increase
in reliability is warranted by the increase in cost. With respect to model validity, you will find
that reliability predictions for the network yield very low error values with respect to the
actual network reliability (i.e., reliability computed from actual failure data).

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
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INTRODUCTION
Network Metrics

Dependability of a system is the ability to deliver services that can be trusted.
Dependability can be divided into three properties: availability, reliability, and main-
tainability. It is expected that a dependable system will be operational when needed
(availability), that the system will keep operating correctly while being used (reli-
ability), and that the correction of failure and faults will leave the network in a stable
state (maintainability). This chapter covers reliability, availability, and maintain-
ability by developing prediction equations for these metrics for network nodes, links,
and subnetworks.

There are various perspectives on network reliability, all of which are useful. The
perspective that is relevant depends on the characteristic to be emphasized, as follows,
where reliability is defined by various researchers and comments are made concerning
the relevance of the definitions to this chapter’s perspective on reliability:

* Reliability is the ability of the network to provide communication in the event
of a failure of a component in the network, such as a node or link, and it
depends on the reliability of both hardware and software. Historically, failures
were primarily due to hardware malfunctions. In current networks, many
failures are due to fiber cable cuts, software faults, and malicious attacks
[MEDOO]. Such failures can drop a significant number of existing connec-
tions. Thus the network should have the ability, with low delay, to detect and
correct failures and the faults that cause the failures. The model in this chapter
predicts the time required to correct failures and faults.

* Reliability is the maintenance of connectivity between nodes via their inter-
connected links, as shown in Figure 8.1. In this model, connectivity refers to
the availability of a path from a source node to a destination node, for
example, between nodes a and c, via link a, c, in Figure 8.1 [MEN].

* Reliability in interconnected networks is defined as survivability. That is, the
network will not crash in the face of abnormal events. Reliability analysis
depends on probability models of the failure rate, operating time duration,
and severity of faults in hardware and software [NIC04]. In this chapter’s
model, reliability is cast in terms of probability of failure and associated reli-
ability of the nodes and links in a subnetwork.

* Reliability is the probability of no permanent critical system failures during
operating time t [ATHOS]. Operating time is a key parameter in this chapter’s
model.

Software Dimension

It is claimed by some researchers that network hardware reliability is a mature field,
and that there has not been an equal maturation of network software reliability
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Figure 8.1 Network topology. dc, duty cycle of primary node; dc;, duty cycle of nonprimary node;
dcj, duty cycle of link.

[BENO7], despite the wealth of software reliability models and measurements
[MUSO4]. They claim that network software reliability quantification remains an
open issue for a number of reasons. These include: confusion as to what to measure,
when to measure it, and how to measure it. However, network users are not interested
in software versus hardware reliability. They are just interested in enjoying reliable
networks! Therefore, this chapter does not distinguish between hardware and soft-
ware reliability in its model. Instead, this model uses failure rate and derivative
metrics that include both hardware and software failures.

Model Tasks
The tasks that are required to develop this model were inspired by Chirivella et al.
[CHIO1], and are comprised of the following:

1. Define the network topology in Figure 8.1.
2. Define the subnetworks in Figures 8.2-8.4.
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3. Define network components, parameters, and variables, as follows:
Node and Link

Successful Operation of a Node. The node must be able to communicate
with all nodes over the links to which it is connected [SHOO2]. This
definition is adopted by predicting the reliability and availability of the
subnetworks in which a given node, and its connected links, must
communicate.

Path. The sequence of nodes and links in a subnetwork representing trans-
action paths to and from the Internet (e.g., user’s request for an Internet
Web page, issued in a local network, and response provided by the Web
site).

Successful Operation between a Pair of Nodes. One or more paths are
operating correctly between the nodes [SHOO2]. In this chapter’s model,
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it is not any path that is relevant but the specific path necessary to imple-
ment a network transaction.

Many terms are defined in the following sections. The reader need
not focus on the definitions at this time. The terms are placed in here so
that when studying the equations that use the terms, you will have one
place to refer to the definitions, if necessary.

k: primary node: node that governs the operation of the network (e.g.,
desktop PC)

i: nonprimary node (e.g., cable modem)

Failure Rate and Failure Counts

Failure. One or more nodes cannot communicate with each other, either
because there are no physical links between them, or because the Inter-
net router in Figure 8.1 cannot select a route to reach the destination
node [CHIO1]. In addition, there can be failures internal to nodes, such
as an operating system failure in a desktop computer.

f(t): network failure rate

F(ty): failure count at primary node k

F(t;): failure count at nonprimary node i

F(t;): failure count on link i, j

F(t,): failure count on subnetwork

F(t,): failure count on network

x: expected number of failures to occur in time t
M(f(t)): mean network failure rate

M(t,): mean failure count at primary node k
M(t;): mean failure count at nonprimary node i
M(t;;): mean failure count on link i, j

MR(t,): revised mean failure count at primary node k based on failure
correction

MR(t;): revised mean failure count at nonprimary node i based on failure
correction

MR(t;): revised mean failure count on link i, j based on failure
correction

Network Times

t: network operating time

t: primary node k operating time

t;: nonprimary node i operating time
t;: operating time of link i, j

t;: subnetwork operating time
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tc,: mean fault and failure correction time of primary node k
tc;: mean fault and failure correction time of nonprimary node i

tcy: mean fault and failure correction time of link i, j

Duty Cycles
dc,: duty cycle of node k = fraction of time t that node k is operational

dc;: duty cycle of node i=fraction of available time t that node i is
operational

dcy: duty cycle of link i, j = fraction of available time t that link i, j is
operational

Probabilities

P(F(ty)): probability of failure at primary node k

P(F(t;)): probability of failure at nonprimary node i

P(F(t;)): probability of failure on link i, j

P(F(t,)): probability of failure on subnetwork

P(F(t,)): probability of failure on network

PR(F(t;)): revised probability of failure at primary node k based on failure
correction

PR(F(t;)): revised probability of failure at nonprimary node i based on
failure correction

PR(F(t;)): revised probability of failure on link i, j based on failure
correction

PR(F(t,)): revised probability of failure on subnetwork based on failure
correction

PR(F(t,)): revised probability of failure on network based on failure
correction

Reliabilities

R(ty) : reliability of primary node k

R(t;): reliability of nonprimary node i

R(t;): reliability of link i, j

R(t,): reliability of subnetwork

R(t,): reliability of network

RR(ty) : revised reliability of primary node k based on failure correction

RR(t): revised reliability of nonprimary node i based on failure correction

RR(t;): revised reliability of link i, j based on failure correction

RR(t,): revised reliability of subnetwork based on failure correction

RR(t,): revised reliability of network based on failure correction
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Availabilities

A(ty): availability of primary node k

A(t): availability of nonprimary node 1

A(t;): availability of link i, j

A(t,): availability of subnetwork

A(t,): availability of network

RA(ty): revised availability of primary node k based on failure correction
RA(t): revised availability of nonprimary node i based on failure correction
RAC(t;): revised availability of link i, j based on failure correction

RA(ty): revised availability of subnetwork based on failure correction

RAC(t,): revised availability of network based on failure correction

Faults and Failures Corrected
N(ty): number of faults and failures corrected in primary node k
N(t;): number of faults and failures corrected in nonprimary node i

N(t;): number of faults and failures corrected in link 1, j

Remaining Faults and Failures

r(ty): number of faults and failures remaining in primary node after correc-
tion process

r(t;): number of faults and failures remaining in nonprimary node after cor-
rection process

r(t;): number of faults and failures remaining in link node after correction
process

1(t;): number of faults and failures remaining in subnetwork after correction
process

r(t,): number of faults and failures remaining in network after correction
process

p: priority of failure and fault correction

. Select metrics that quantify the reliability and availability characteristic
that you want to study: Use probability of failure and actual and predicted
reliability and availability.

. Compute probability of failure for nodes, links, subnetworks, and
network.

. Use probability of failure to prioritize the order in which failure and faults
are corrected on subnetworks.

. Predict reliability and availability for subnetworks and network.

. Predict failure and fault correction times for nodes and links.



236  Computer, Network, Software, and Hardware Engineering with Applications

9. Use correction times to predict remaining failures for subnetworks and
network.

10. Use remaining failures to revise predictions of reliability and availability
for subnetworks and network.

11. Determine whether the revised predictions satisfy the reliability and avail-
ability specifications.

12. If the specifications are not satisfied, additional testing is required to correct
more failures and faults.

13. Determine whether the use of alternate network paths would increase reli-
ability and availability to the extent that the cost of additional paths would
be justified.

MODEL DEVELOPMENT

Table 8.1 shows how the duty cycle assignments for the example network topology
shown in Figure 8.1 are obtained, starting with the primary nodes a, d, and e that
are the drivers for nonprimary node and link duty cycle assignments. The data are
illustrative only. For example, link a, ¢ is assumed to be active one-third of the time
that node a is active. Different data would apply to other topologies and applications.
If you have data from an existing system, use it! Otherwise, you must make assump-
tions. You could vary the assumptions to see how sensitive network solutions are to
the assumptions.

Actually, there is only one physical connection between pairs of nodes in Figure
8.1, but I show two links to account for the two-way flow of data. You can assume
that the data flows between pairs of nodes are equal because the link speeds are
equal in the two directions. Thus, the duty cycles for these links are equal. Figures
8.2-8.4 show subnetworks 1, 2, and 3, respectively, configured from Figure 8.1. It
is these subnetworks that provide the platforms for the models to be described and
analyzed.

Node and Link Operating Times

Operating time provides an accurate measure of fault discovery, is easy to measure,
and reflects the time during which faults are discovered [DISO1]. Since operating
times will be needed in the computation of failure rates in the next section, they are
computed here for the primary nodes, nonprimary nodes, and links in Equations
8.1-8.3, respectively, where the duty cycles in Table 8.1 are multiplied by the
network operating time:

tk = t*de, (8.1)
ti = t*dCi, (82)
tij = t*dCij. (8.3)
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Failure Rates and Failure Counts

Using software and hardware failure data from the Computer Emergency Response
Team (CERT) Web site [MOOO1], based on a prominent router vendor’s experience,
the failure rate function in Equation 8.4 was fitted with these data, using network
operating time t. Then, using Equations 8.1-8.3, the failure counts at primary
nodes k, nonprimary nodes i, and links i, j, are computed in Equations 8.5-8.7,
respectively:

f(t) = 0.0868¢", (8.4)
F(t,) = f(0*t,, (8.5)
F(t;) = f(t)*t; (8.6)
F(ty) = f(O*t;; 8.7)

Probabilities of Failure

One of the measures of reliability is the probability of incurring failures at nodes
and on links and subnetworks. We assume that the probability of failure is governed
by the Poisson distribution. This assumption is justified because although there is a
reason for failures, from the user’s perspective, failures appear to occur at random
(i.e., Poisson distribution [MUSS87]).

First, the mean number of failures must be estimated for primary node, nonpri-
mary node, and link, in Equations 8.8-8.10, respectively. Then, using these equa-
tions, the probabilities of failure at the primary node, nonprimary node, and link,
are computed in Equations 8.11-8.13, respectively, where x = f(t)*t is the expected
number of failures, based on the failure rate from Equation 8.4:

F(t)

M(tk):L, (8.8)
ny

where ny is the number of failure counts recorded for primary node

F(t.
M(ti>=z (t'), (8.9)

n

where n; is the number of failure counts recorded for nonprimary node
F(ty)
M(tij):La (8.10)

where nj; is the number of failure counts recorded for link

(M(t,))re™)
' b

P(F(t,)) = (8.11)
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(M(t))*e ™
|

P(F(t;)) = ; (8.12)

(M(tij))xefM(“j)
x! ’

P(F(t;)) = (8.13)

Reliabilities

You can use the Weibull distribution to model reliability because it has the flexibility
of representing decreasing, constant, or increasing reliability over operating time,
governed by the values of parameter oo [LLO62]. You estimate the value o based on
minimizing the mean relative error (MRE) between predicted and actual reliabilities.
Error computations will be described later.

Reliabilities are the “bottom line” of quality in that they predict the probability
that a node, link, subnetwork, or network will survive for a time greater than operat-
ing time t. The computation of the primary node, nonprimary node, and link reli-
abilities using Weibull distribution reliabilities [LLO62] are shown in Equations
8.14-8.16, respectively:

R(t,) = e (0%, (8.14)
R(t)=e 'O, (8.15)
R(ty)=e . (8.16)

Now using these reliabilities, compute the subnetwork reliability in Equation 8.17,
based on a series configuration (nodes and links are connected in series in the sub-
networks). These subnetworks are shown in Figures 8.2-8.4, where only the nodes
and links that are relevant to the operation of the primary node are shown (i.e., the
primary node a is not directly concerned with the recovery database node g in Fig.
8.1). Then, the network reliability is predicted in Equation 8.18, again using a series
configuration:

R(t) = [ [REDRE)R,)), 8.17)
K.inij
Re)[ R (8.18)

In Figure 8.2, the subnetwork reliability is equal to the reliability of the path (a, c,
b, f) in the upload direction, and the reverse path (f, b, c, a) in the download direc-
tion. Since these path reliabilities are equal, reliabilities are only computed for the
upload direction—input request transaction to the Internet, reflecting the typical
scenario of request to an Internet Web server.

Fault and Failure Correction

In formulating the fault and failure correction process, we assume the following: (1)
one-to-one relationship between faults and failures and (2) the times required to
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correct faults and failures are exponentially distributed (i.e., high probability of small
correction times and low probability of large correction times). While it is true that
a fault could spawn multiple failures, this is the minority case. These correction
times are computed in Equations 8.19-8.23, for primary node, nonprimary node,
link, subnetwork, and network, respectively, by using the mean number of failures
divided by the mean failure rate M(f(t)):

Based on assumption (1), the correction rate equals the failure rate f(t) from
Equation 8.4. Using assumption (2), the correction time probabilities in Equations
8.24-8.28 are based on the exponential distribution for primary node, nonprimary
node, link, subnetwork, and network, respectively, where tc, tc;, tc;, tc,, and tc, are
the corresponding mean correction times:

te, = M(t,)/M(f(1)), (8.19)
tc; = M(t;)/M(f(1)), (8.20)
te;; = M(t; /M(f(1)), (8.21)
tc, = M(t,)/M(f(t)), (8.22)
tc, = M(t,)/M(f(1)), (8.23)
p(ty) = f(t)e' ), (8.24)
p(t;) = (e, (8.25)
p(ty) = f()e "V, (8.26)
p(t,) = f(t)e V), (8.27)
p(t,) = f(t)e O, (8.28)

Once the correction time probabilities have been obtained, the next step is to
compute the expected number of faults and failures that can be corrected. These
quantities are computed by using correction time probabilities and the corresponding
failure counts, for primary node, nonprimary node, link, subnetwork, and network,
in Equations 8.29-8.33, respectively:

N(t) = p(ti)*F(ty), (8.29)
N(t;) = p(t;)*F(t)), (8.30)
N(ty) = p(ty P*F(ty), (8.31)
N(t,) = p(t,*F(t,), (8.32)
N(t,) = p(t,)*F(t,). (8.33)

Now that the number of faults and failures that can be corrected has been estimated,
the remaining number of faults and failures are computed for primary node, nonpri-
mary node, and link in Equations 8.34-8.36, respectively. Now, not all faults and
failures are of equal priority for correction. An example of a serious one is a com-
munication failure on links that connect the primary node to the Internet. An example
of a nonserious failure is a transient failure, such as a file that does not initially show



Network Reliability and Availability Metrics 241

on the desktop screen of the primary node but does appear after a refresh. The
computation of the priority code is based on the relative value of the mean number
of failures in the subnetworks. The priority code, pc, is applied to the nodes and
links that comprise a subnetwork, as shown in Equations 8.34-8.36, to account for
the relative priority of correcting remaining faults and failures.

The subnetwork remaining failures in Equation 8.37 is computed by summing
remaining failures over primary nodes, nonprimary nodes, and links. Then, the
network remaining failures in Equation 8.38 is computed by summing the remaining
failures over subnetworks:

r(t,) = (F(t,) — N(t,))*pe, (8.34)

r(t;) = (F(t;) = N(t;))*pe, (8.35)

r(t;) = (F(t;) — N(t;;))*pe, (8.36)

r(ty) = Z(r(tk))+(r(ti))+(r(tij))v (8.37)
ki

() = Y r(t,). (8.38)

Revising Probabilities of Remaining Failures Based
on Fault and Failure Correction

Once the remaining failures have been estimated, the revised probability of remain-
ing failures for the primary node, nonprimary node, link, subnetwork, and network
can be predicted by first computing the mean remaining failures in Equations
8.39-8.43 and substituting these values in Equations 8.44-8.48, respectively, and
using x as the expected number of failures in the Poisson distribution of remaining
failures:

MR(t,) = Z:tk), (839)

MR(t,) = Zr“i{ (8.40)
n

MR(t;) = zr(t“), (8.41)
n

MR(t,) = Zr(tS), (8.42)
n

MR(t,) = Zr(t“), (8.43)
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(MR(t))* e 80

PR(r(ty)) = ] , (8.44)
PR(r(t,)) = (MR(”;# (8.45)
PR(x(t;)) = (MR(t”)jeMR%) , (8.46)
PR(1(t,)) = M (847)
PR(r(t,)) = (MR(t")je_MR([") . (8.48)

Revising Reliabilities Based on
Fault and Failure Correction

Since the failure count has been reduced by the correction process, it is necessary
to revise the reliabilities of the primary nodes, nonprimary nodes, and links, using
the remaining failures failure rates, rf(ty), rf(t)), and rf (t;), and Weibull distribution,
as shown in Equations 8.49-8.51, respectively:

RR(t,) = e W, (8.49)

where primary node failure rate rf(t;) = ri(t)/t, (remaining primary node failures/
primary node operating time);

RR(t;) = e WY, (8.50)

where nonprimary node failure rate rf(t) = rj(t)/t; (remaining nonprimary node
failures/nonprimary node operating time); and

RR(t;)=e "V, (8.51)

where link failure rate rf(t;) = r;(t)/t; (remaining link failures/link operating time).
Next, the revised subnetwork reliability can be predicted in Equation 8.52 as
follows, using Equations 8.49-8.51 and a series configuration:

RR(t,) = [ J(RR(6OIRR()RR (). (8.52)

k.iij

Then, by using Equation 8.52 and a series configuration, the revised network reli-
ability is predicted in Equation 8.53:

RR(t,) = [ [RR(,). (8.53)
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Availability Analysis

To predict availability of a new system, probabilistic models need to be formulated
[MILO98], and you need to account for the downtime attributed to fault detection,
isolation, and correction [EIS]. However, while these approaches are valid, it is
easier to define availability as the expected fraction of time that a system is function-
ing acceptably [MUSO04], or alternatively, as the fraction of time that the network
delivers proper service (i.e., it is not engaged in correcting faults) during its operat-
ing time [ATHOS].

In this chapter’s network model, t,/M(t) is the mean time to failure for primary
nodes, computed from the operating time, t,, and the mean number of failures, M(ty),
and tcy is the mean fault correction time. Thus, using these quantities, the availability
of the primary node is computed in Equation 8.54. Similarly, the availability of the
nonprimary nodes and the links are computed in Equations 8.55 and 8.56, respec-
tively. Next, the subnetwork availabilities are computed in Equation 8.57 as the
product of primary node, nonprimary node, and link availabilities, using a series
configuration. Finally, the network availability is computed in Equation 8.58 as the
product of the subnetwork availabilities.

You must also account for revised availabilities, once faults and failures have
been corrected, by using the mean remaining failure counts. This is accomplished
for the primary node, nonprimary node, link, subnetwork, and network in Equations
8.59-8.63, respectively, using the means of remaining failures (MR) that result from
fault correction actions:

t
M(t,) 1
At) = = : 8.54
W= e, (e /EOM(t) (859
M)
4
Aty =—HL) : : (8.55)
b (e /M)
M(t)
t
M(t;) 1
Alty) = —= : 8.56
(J) e 1+((tcij/tij)M(tij)) ( )
M(ty)
At = [ JAtOA®)A®), 857)

K.ilj

At = TAaw). (8.58)
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Ly
RA(t,) = — MRt _ ! , (8.59)
b 1 OMR®,))
MR(t,)
tc;
RA(t) = —MRE) ! , (8.60)
_®i e (i /6)MR()
MR(t)
t;
RA(ty) = MR 1 , (8.61)
i e T+ ((tey; /1) M(t;))
MR(t;)
RA(t,) = [ [RAGORA()RA(,), 8.62)
k.iij
RA(t,) = [ JRA). (8.63)

PROBABILITY OF FAILURE ANALYSIS RESULTS

Typically, systems are unstable as they boot up when many processes and applica-
tions are invoked concurrently; later, the systems stabilize, hence the reason for the
decreasing probability of failure over operating time in Figures 8.5 and 8.6. Figure
8.5 shows the ranking of probability of failure for the subnetworks, using the mean
failure count. The value of this figure is that it identifies the order in which failure
and fault correction should take place for the subnetwork, according to the priority
code.

Figure 8.6 shows that the revised probability of failure for the network does not
become favorable (i.e., crosses the original probability of failure curve) until operat-
ing time t > 17. The implication is that the network must be operated for a consider-
able time before the effect of failure and fault correction occurs. This concept is
reinforced in Figure 8.7, where the changes in probability of failure between original
and revised are plotted for the subnetworks and network. Again, there is considerable
delay before the changes occur in the favorable direction.

FAULT AND FAILURE CORRECTION
ANALYSIS RESULTS

This analysis is directed toward answering the question: Are there correction time
anomalies among the nodes and links such that a priority ranking for fault and failure
correction should be established? In looking at Figure 8.8, the answer is “yes”
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Figure 8.5 Original subnetwork probability of failure P(F(t)) versus operating time t. Series 1:
subnetwork 1, mean failure count = 0.2953. Series 2: subnetwork 2, mean failure count = 0.2149.

Series 3: subnetwork 3, mean failure count = 0.3018.
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because there is considerable variation in the correction times for the primary node
(i=1) and nonprimary node (i = 2), and connecting link (i = 3), whereas the cor-
rection time stabilizes for the remainder of the subnetworks. The reason for the
anomalies is that the software that is used in the home, such as desktop and laptop
computers, is usually more difficult to debug than, for example, a cable modem,
wherein a reset will usually clear the failure.

REMAINING FAILURES ANALYSIS RESULTS

An important metric for judging the reliability of a network system is predicted
remaining failures. After all, predicted remaining failures of subnetworks and
network represent residual problems that signal the need for further failure and fault
correction. Figure 8.9 shows the relative effectiveness of the correction effort. The
process has been most effective for subnetwork 2 and less effective for subnetworks
1 and 3, and the network.

RELIABILITY ANALYSIS RESULTS

After remaining failures have been predicted and plotted in Figure 8.9, as the result
of failure and fault correction, reliability predictions, before and after failure and
fault correction, can be analyzed in Figures 8.10 and 8.11, respectively, to identify
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Figure 8.9 Remaining failures r (t) versus operating time t. Series 1: Subnetwork 1. Series 2:
Subnetwork 2. Series 3: subnetwork 3. Series 4: Network.
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Figure 8.11 Revised actual reliability ARR(t) and predicted reliability RR(t) versus operating time t.
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improvements in reliability for the subnetworks. Comparing the figures, you can see
that improvements in reliability occur for subnetworks 1 and 2, no improvement for
subnetwork 3, and minor improvement in the network, as the result of failure and
fault correction. Thus, the correction process has proved partially beneficial. Sub-
network 3 must be subjected to further fault correction. Also note that the predictions
for the network yield very low MREs with respect to the actual network reliability.
The value of Figures 8.10 and 8.11 is that network administrators can determine
whether failure and fault correction efforts are likely to succeed.

AVAILABILITY ANALYSIS RESULTS

Figure 8.12 demonstrates that none of the subnetworks and the network satisfies the
availability requirement. Therefore, action would be taken to correct failures and
faults and then revise the availability predictions. The predictions are revised in
Figure 8.13, where it is demonstrated that the failure and fault correction process
has been very effective because now all subnetworks and the network satisfy the
availability requirement.
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Figure 8.12 Original availability A(t) versus operating time t. Series 1: Subnetwork 2: fails
requirement for t > 6. Series 2: Subnetwork 3: fails requirement for t > 5. Series 3: Network: fails
requirement for t > 2. Series 4: Subnetwork 1: fails requirement for t > 5. Series 5: Specified
availability = 0.9100.
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Figure 8.13 Revised availability RA (t) versus operating time t. Series 1: Subnetwork 1. Series 2:
Subnetwork 2. Series 3: Subnetwork 3. Series 4: Network.

ANOTHER PERSPECTIVE ON
PROBABILITY OF FAILURE

In this section a simplistic equation is developed for the probability of failures in a
subnetwork or network, using a binomial distribution that is a function of X, a speci-
fied number of nodes and links that could fail in a subnetwork or network. In Equa-
tion 8.64, the constant probability of a node or link failing is p = 1/n, where n is the
number of nodes and links in a subnetwork or network. This formulation assumes
that nodes and links fail independently and that the probability of failure p is con-
stant. Thus, the probability of x failures, P(x), is expressed in Equation 8.68:

!
P(x) = ——(p)(1—p)"™™). (8.64)
(n—x)!

While, admittedly, this is a crude formulation, it is useful for obtaining a rough
cut of the reliability of a subnetwork or network when individual node and link
failure data are not available. Even absent these data, Equation 8.64 provides the
likelihood that x number of nodes and links is likely fail, and the values of x where
P(x) will be a maximum. For example, the results in Figure 8.14 show that as the
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Figure 8.14 Probability of x failures, P(x), versus x. Series 1: Subnetwork 1. Series 2: Subnetworks
1 and 2. Series 3: Subnetworks 1, 2, and 3. Series 4: Network.

nodes and links are aggregated into subnetworks, and subnetworks are aggregated
into the network, the maximum probability of failure always occurs at one and two
failures. Thus, network users would only have to prepare for a small number of
failures.

Problem for Reader: Why are the probabilities of failure in Figures 8.6 and
8.14 so significantly different?

Answer: Notice that in Figure 8.6, for the Poisson distribution, the probability
of failure is a function of operating time while in Figure 8.14, for the binomial
distribution, the probability of failure is a function of number of failures—
specified number of link and node failures. In the case of Figure 8.6, the
probability of failure is large because the network is exposed to long operating
times—up to 20 hours. Furthermore, the probability of failure is also driven
by the failure rate postulated in Equation 8.4, whose source is an Internet
router company that reported a variety of network hardware and software
failures. During this prolonged exposure, there are opportunities for faults to
wreck havoc on the system. Contrast this situation with Figure 8.14, where
the probability of failure is much smaller because the probability pertains to
a link or node failing—an occurrence rare compared to any type of failure in
Figure 8.6.
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MEASURING PREDICTION ACCURACY

Of course, it is important to measure the accuracy of predictions so that you can see
whether the models are validated. A frequently used measure is the relative error
(RE) of reliability predictions and the MRE [FEN97]. To illustrate the process, first
estimate the actual reliability, AR(t), for a subnetwork, in Equation 8.65, by summing
the original failure counts F(t) over the number of nodes and links in the network,
N, in the numerator, and then summing these counts over the number of operating
time periods, n, in the denominator. Then compute the RE in Equation 8.66, using
the original predicted reliabilities R(t) and actual reliabilities AR(t). Next, compute
the MRE of the RE. It is also important to assess prediction accuracy after failure
and fault correction, using remaining failures r(t) in Equation 8.67, as the actual
remaining failure count, and then compute the revised RE RRE(t) in Equation 8.68,
using the revised reliability predictions RR(t). Finally, compute the MRE of the
revised RE:

N
ZF(t)

AR(t)=1-—= (8.65)
PRIG)
i=1 =l
RE(t) = (AR(t) — R(1))/AR(t), (8.66)
N
D r(t)
ARR(t) =1-—=L—— (8.67)
PR
i=l =l
RRE(t) = (ARR(t) - RR(1))/ARR(t). (8.68)

METHODS FOR IMPROVING RELIABILITY

The network should preserve connectivity in the presence of failures (i.e., fault toler-
ance in router subnetworks) [MEN]. One way to implement fault tolerance is to
provide redundant units that can replace failed units. This approach can extend the
mean lifetime of fault-free operation [KAI95]. Rather than switch in a fault-free unit,
a network can achieve equivalent fault tolerance by providing alternate paths for
data in the event of a router or link failure. This approach quickly plays to the
strength of routers: detecting network failures and routing data round them. Data are
routed between any two subnetworks on the lowest cost or shortest time-path basis.
Redirectors exist for different network protocols: sending, receiving, and processing
routing updates. Redirectors calculate a forwarding table from the available routing
information, including destination subnetwork interface on which data are bound for
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the destination subnetwork. During normal router operation, the forwarding table
indicates only the best path to a destination subnetwork. When a link or router fails,
routers exchange routing information to learn alternate paths. The period of time for
the routers to detect the link failure and discover new routes to all available subnet-
works is referred to as convergence time. Generally, convergence occurs within 1
minute [HEW93]. An example of this principal is shown in Figure 8.2, for subnet-
work 1, where alternate paths would be provided by the Internet service provider
between the cable modem and Internet router.

When an alternate path is provided on the link b, f in Figure 8.2, assuming equal
reliabilities on the single and alternate paths, the alternate path original link reli-
ability APR(t;) is the parallel reliability shown in Equation 8.69, where R(t;) is the
original single-path reliability [LYU96]. Thus, use Equation 8.69 to see whether
significant improvement in reliability is obtained for subnetwork 1 by using an
alternate path. Then, the subnetwork original reliability, comprised of the reliability
on link b, f, from Equation 8.69, and the reliabilities of the primary (R(t,)) and
nonprimary (R(t;)) nodes, are computed in Equation 8.70:

APR(t;) =2 R(t;) - R(tij)z, (8.69)
APR (1) = [ J(APR(,)R )R, ). 8.70)
ij K.

In addition to the original reliabilities in Equations 8.69 and 8.70, the revised reliabili-
ties resulting from failure and fault correction are computed in Equations 8.71 and
8.72 for the alternate path provided by link b, f and the subnetwork, respectively.

APRR(t;) = 2 RR (t;) ~ RR (t;)?, 8.71)

APR, (1) = [ J(APRR(t,))(RR(t,))(RR(1,)). 872)

ij.k,i

The first test of reliability improvement is shown in Figure 8.15 where, for subnet-
work 1, the revised alternate path and single path subnetwork reliabilities satisfy the
requirement for all values of operating time. The second test is shown in Figure
8.16, where original and revised alternate path /ink and single-path link reliabilities
satisfy the reliability specification for all values of operating time, with the alternate
path configurations providing the higher reliability. The expense incurred by using
an alternate path would be justified for a mission-critical application but, perhaps,
not for a commercial application.

Network reliability can also be improved by dividing the network into subsets
that have high interaction and connectivity within a subnetwork. Subnetworks are
then interconnected, thus providing isolation of network domains that are likely to
experience high failure rates due to high interaction. This concept is shown in
Figures 8.2-8.4 for subnetworks 1, 2, and 3, respectively, where the subnetworks
have been created from the total network in Figure 8.1.
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Another method for improving reliability is to store recovery data in a database.
For example, when a problem is detected in a network, a recovery action is executed
by the wireless router in Figure 8.1 that is associated with the malfunctioning com-
ponent to guide the recovery procedure. A database in Figure 8.1 stores network
state data (e.g., node and node communication history) that is used to recover lost
data after a crash. Changes in the network are broadcast to dependent components
through the database’s publish mechanism in order to initiate recovery. When a
failure is detected, the defect is repaired, and the system continues running with
minimum disturbance to other processes [HERO7].

SUMMARY OF RESULTS

A large number of metrics, analyses of metric results, and explanatory plots have
been used in modeling network reliability and availability. Therefore, it is necessary
to summarize the highlights in Tables 8.2 and 8.3 for the subnetworks and network,
respectively. The most important part of the tables is the action taken in response to
the metric results. The actions indicate what users can do to improve the reliability
and availability of their networks.

SUMMARY

Based on the network configuration diagrams, mathematical formulations and corresponding
plots, and analysis results summaries, a practical template has been demonstrated for model-
ing and analyzing the reliability and availability of networks—nodes, links, and subnetworks.
The specific numerical results that were obtained were for illustrative purposes. However, the
template, or road map, could be used for different network topologies, parameters (i.e. duty
cycle), and variables (i.e., failure rate).
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Chapter 9

Programming Languages

This chapter is designed to provide the reader with valuable information, analyses, and
evaluations of programming languages. This is a vital topic because, after all, all the computer
hardware and system design tools in the world will not produce an implement application
without programming languages to support the implementation of software! An outstanding
feature of this chapter are the models for estimating the reliability, maintainability, and avail-
ability of computer programs. This feature does not exist in other texts. In addition, the reader
is led through various methodologies for designing programs, supported by graphical presen-
tations that render the methodologies understandable.

INTRODUCTION

Programming languages are programmers’ most basic tools. With appropriate pro-
gramming languages one can drastically reduce the cost of building new applications
as well as maintaining existing ones. There have been many advances in program-
ming languages technology. The main driving force was and will be to better express
programmers’ ideas. Therefore, research in programming languages is an endless
activity and the core of computer science. New language features, new programming
paradigms, and better compile-time and run-time mechanisms can be foreseen in the
future [COMO9]. This chapter will discuss programming language issues and show
the reader how languages can be evaluated and improved.

DESIRABLE PROPERTIES OF
A PROGRAMMING LANGUAGE

A convenient way to think about desirable properties in a programming language is
to think about how the brain solves a problem. First, there should be a minimum of
syntax that has little relevance for how humans solve problems. The reason for this

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.
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criterion is that such excess baggage is a distraction to problem solving. The C++
language will be used as the principle language for illustrating characteristics that
are beneficial for problem solving and those characteristics that are detrimental to
this cause. I will couple the application of C++ to solving a problem in searching a
Web site for desired information with the principles of the design process.

What is Design?

Let us consider the question: what is design? Design is the process of making deci-
sions about an abstract representation of a system. The word “abstract” is used
because at this stage the system does not exist. It is a concept in the brain that is
later translated to a more concrete representation, such as a drawing, model, or
mathematical equation. Design involves making trade-offs among various design
alternatives [REI99]. For example, one alternative for searching a Web site is to
serially—in a brute-force fashion—search for the desired content. A second alterna-
tive is to use pointers that have been organized to map to various subject matters.
Yet a third alternative is to combine the second alternative with organizing the
subject matter in chronological sequence, on the presumption that the user is inter-
ested in seeing the latest content first. Note that C4++ is irrelevant to the evaluation
of these design alternatives! This is an important point that you should be aware of:
too many books confuse design issues with programming language characteristics.
The correct process is to first select the most appropriate design, independent of
programming languages. Then choose a programming language whose characteris-
tics are most representative of the selected design. Another design principle accord-
ing to some authors is avoiding details in the initial design process [REI99]. While
it is true that it is unwise to become mired in details at an early stage in design, thus
losing sight of the big picture, it is equally detrimental to the design process if
important details are considered too late in the process. For example, if the desir-
ability of presenting Web content in chronological order were put off until the design
is almost complete, it would be very difficult to include this important feature when
the design is almost complete.

System Decomposition into Components

A very worthwhile design principle is to decompose a system into its constituent
components [REI99]. Doing so allows the designer to not become overwhelmed by
the complexity of the system, thus leading to errors in design. For example, the Web
search problem would be decomposed into search request interpretation, search
mechanization in the Web database, and Web page pointer management. Along with
decomposition, an important issue is the number of components and their hierarchy
[REI99]. Again, using the Web search example, three components and a hierarchy
according to the above sequence, seem appropriate.
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Form of Design Presentation

Another consideration is the form in which the design should be presented [REI99].
This is particularly the case with respect to the purchaser and user of the system.
The purchaser of a Web system server may be primarily interested in cost and search
time, while the user would want to know the details of formatting a request and
browser specifications, and so on.

Functional-Oriented versus Data-Oriented Design

There are two major design approaches: functional oriented and data oriented
[REI99]. The emphasis in the former is the functions that must be executed to solve
a problem; in the latter, the focus is on the data that must be processed to obtain a
solution. For example, in the Web search application, functional-oriented design
would involve identifying search request interpretation, search mechanization in the
Web database, and Web page pointer management as procedures that must be exe-
cuted to locate the user’s desired Web page. In contrast, in the data-oriented design
approach, the search request data, the data in the Web database, and the data related
to pointers would be the focus of Web search processing. It is important to note that
each approach would arrive at the same result, but with different performances,
depending on the relative performance of computing (procedure-oriented) and com-
munication (data-oriented) resources at the Web site. These design alternatives are
shown in Figure 9.1.

Object-Oriented Design

Another design methodology, one touted by its advocates of solving the entire
world’s problems, is object-oriented design. This approach is based on the premise
that systems are comprised of entities called objects that possess state, data that
identify the object, and can perform actions, accompanied by state transitions. An
example of a state is a Web server that is in the state of searching for a Web page.
An example of identifying data is the manufacturer of the Web server. An example
of an object action is a Web server object performing the action of delivering a Web
page to the requester when the server is in the state of having located the desired
page, as shown in Figure 9.1.

In this design methodology, objects are members of classes. Classes are entities
that are the parents of objects. Classes have the same data attributes as classes and
perform the same actions, but at a higher level. For example, a generic Web server
could be a class, and specific Web servers manufactured by companies A, B, and C
would be object members of the class.



266 Computer, Network, Software, and Hardware Engineering with Applications
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Figure 9.1 Design alternatives.

Analysis of the Design Alternatives

It is tempting to examine Figure 9.1 and think that one alternative is superior to the
others, when in fact each can be used to advantage in a coordinated design approach.
The functional approach aids the engineer and programmer in identifying calling
sequences that can be used in C4++, for example. That is, the functions identify
the second-level program functions (search mechanization and pointer mana-
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gement) that will be called by the top-level program function (search request
interpretation).

Then, examining the data-oriented approach, this supports our use of data
resources in implementing the design in C++. Code will be needed for implementing
data flow between components in Figure 9.1. Note that the functional- and data-
oriented approaches are complementary because data flow must be mechanized in
order to accomplish the functional requirements. An important advantage of the data
flow approach, compared with the other two methods, is that inputs and outputs are
specified [REI99]. This is crucial because computer programs involve more than
computation: they require input data to perform computations and the computation
must produce output data.

Taking the analysis to the object-oriented level, this approach identifies state
transitions. State transitions are an important way for organizing a computer program.
For example, the Web server can be programmed to sequence through the state
transitions in Figure 9.1. Additionally, because our computer program may have to
handle multiple Web servers, the relationship between classes and objects is helpful
because the computer code that implements the Web server generic class can be
reused by multiple Web server objects by only changing the object name. Reusing
software is important because the effort and time of program development are
reduced and programming errors are reduced!

All design methods should provide for placeholders in order to implement inter-
faces between subsystems of a system, for example, between user Web request
subsystem and local network subsystem[REI99]. This is a common technique in
computer programming for reserving space in a program for code that will be deter-
mined at a future time. An example in C++ is to name an interface function, but leave
the details for a future time when interface requirements have been determined.

Problem Representativeness
in Programming Languages

One of the most intriguing aspects of this process is the fact that information is lost
in transitioning from brain thought to a model of the system. For example, if it is
desired to add two quantities, this operation is easily understood in our brain. For
example, we “know” that the quantities are integer. We also know the length and
precision of the quantities. Unfortunately, C++ and other languages do not know any
of this to begin with and must be told every bit of minutia! Aggravating this problem
is the fact that each compiler has its own syntax rules that do not always follow the
C++ standard.

A METHOD FOR ANALYZING COMPUTER
PROGRAM RELIABILITY

The reliability of a computer program is tremendously important but unfortunately
is often overlooked in programming textbooks. In this chapter you will be introduced
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to analyzing reliability as a function of the structure and complexity of the computer
code. A program such as the Web server application can be conceptualized as a
directed graph of logic in Figure 9.2, whose structure and complexity can be ana-
lyzed, leading to the estimation of program reliability. Interestingly, the directed
graph of program logic does not correspond to any of the design methodologies
already discussed despite the fact that a primary aspect of most problems is decision
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making. None of the three design approaches already discussed represent the deci-
sions made in a computer program. In contrast, the directed graph does an excellent
job in this regard because decisions, represented by nodes in a graph, are concerned
with the probability of deciding which logic paths to execute in a computer program,
where a path represents a sequence of instructions (edges in a graph) to be executed
to achieve a requirement (e.g., transmit a Web page request to a Web server). Once
a decision is made, the execution of the selected path may encounter one or more
faults, leading to one or more failures. Failure occurrence, in turn, provides the data
for estimating reliability. Note that this design approach, like the data-oriented
method, specifies input data (input to the first node on a path) and output data (output
from the last node on a path).

Path probabilities and, hence, selected paths are dependent on input data. For
the purpose of path probability assessment, input data is characterized by the prob-
ability of selecting path i, p;, based on the frequency, f;, of input type i:

where n is the number of input types in the program.

For a new program, although the number of input data types n is known, the
frequency of the types f; is unknown; this factor would become known only after
the program has been executed for a considerable period of time, but to estimate
reliability, it is required that p; be computed now. Therefore, f; is generated from
random numbers using our old friend Excel RAND function.

As stated earlier, paths are comprised of sequences of instructions. For programs
that we write, we can estimate the number of instructions required. However, these
days, the majority of software is that provided by software vendors where we have
no idea of the sizes. Therefore, we can resort to using the total estimated number of
instructions over all programs, N. How do we know the value of N? We do not know
its value, but this need not concern us because whatever value we choose will lead
us to the estimation of relative values of path reliability. Our interest is in estimating
path reliability on a relative basis so that maintenance actions and, hence, availability
can be estimated accordingly.

The estimated expected number of instructions executed on path i, N, is esti-
mated as follows, where N is specified as 1000:

N;i=p;*N.

Once the number of instructions on a path has been estimated, the number of instruc-
tions that are expected to fail, Ny, is estimated as follows:

N =(N;) *(1/N),
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where r1; is the estimated failure rate of path i, for N number of instructions, using
the RAND random number generator. However, what is needed is the failure rate
per instruction, r;/N.

Then, using the above formulations, path i unreliability, UR;, is estimated as the
ratio of the number of failed instructions, Nf, on a path to the total number of failed
instructions over all paths in the program:

Then the R;, reliability of path i, is estimated as follows:
R, =1-UR,

The resultant unreliabilities and reliabilities are annotated on the directed graph of
path logic in Figure 9.2. As you can see in this particular example that depends
upon the roll of the dice in random number generation, the path reliabilities are low,
suggesting that major maintenance actions would be required on a relative basis.
The term relative is used because, as mentioned earlier, it is the relative reliability
that is significant for signaling the for-maintenance action, once the software is
implemented.

MODELING PATH MAINTAINABILITY
AND AVAILABILITY

It is reasonable to suggest that path maintainability is proportional to path unreli-
ability on the basis that the greater the unreliability, the greater the need for main-
tenance action. Also, we can see that the frequency of maintenance actions, mj, is
an additional determinate of the probability of maintenance action (i.e., maintain-
ability of path i, M;). Thus, combining these two factors, we have:

Mi =m; * Uri.

Now, how is m; determined? Well, for one thing, it should have the same ordering
as unreliabilities. For example, the highest value of m; should be associated with the
highest value of UR; because, naturally, the higher the unreliability, the greater the
need for maintenance. Second, we do not know in advance of software implementa-
tion the frequency of maintenance activity. Therefore, m; will be estimated by gen-
erating uniformly distributed random numbers between 0 and 1 and associate them
with unreliability on an ordered basis. The resultant values of M, are annotated on
Figure 9.2 to provide visibility of the probable need for maintenance, by path, on a
relative basis.
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Now that both reliability and maintainability have been estimated for each path,
availability, A;, of path i is estimated as follows:

A; =R/(R; +M,),

which expresses the fraction of software execution time during which there is a
reliable operation. Availability results, by path, are keyed to paths in Figure 9.2.

Because the Web Processing function is the focus of our analysis, the details of
its path are shown in Figure 9.2, whereas the other functions do not have expanded
paths.

Another view of the results is provided by Figure 9.3, where you can see that
availability mirrors reliability because availability reflects good operational time,
which is the time when the software operates reliably. In contrast, availability has
an inverse relationship with maintainability because the operational time lost to the
maintenance activity is a loss of the availability of the software. Furthermore, Figure
9.3 is useful because it identifies the most reliable and least reliable paths. This
information can be used to prioritize testing, allocating the greatest effort to the least
reliable paths.

EXECUTING TEST SCENARIOS

It is necessary to test paths and combinations of paths that are called scenarios
[REI99]. Scenarios represent sequences of path executions, where the scenario input
has been defined, the corresponding computation specified, and the resulting output
defined. Thus, scenarios are the mechanism for validating a computer program (i.e.,
demonstrating that a program does what it is supposed to do [BAG97]).
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IMPLEMENTING COHESION AND COUPLING

Cohesion means that, for example, paths should contain only the code that is relevant
to the path (e.g., Web searching should not contain word processing code). Coupling
refers to the maximization of the independence of paths. That is, there should be
only the minimum amount of interaction among paths. Following this principle
reduces faults and failures when software is updated in the future. Of course some
interaction is necessary; for example, when a document being created with a word
processor requires data from a Web site. However, if access to the Web site were to
be implemented by code in the document, as opposed to using a browser, problems
would arise in maintaining the document if the Internet location of the Web site
should change.

DETAILED ANALYSIS OF A PROGRAMMING
LANGUAGE

It is difficult for the practitioner to know what design approach and programming
language is best for his or her application because there are many advocates for a
particular approach and language to the exclusion of other alternatives. The software
field is plagued by faddism, where design models are proclaimed to be the only way
to implement software, only to be discarded when the next fad arrives! What is
needed is a balanced approach because there are properties of various design alterna-
tives that can be combined to support the software implementation of a given
problem. Therefore, this section is dedicated to providing the reader with a practical
road map for developing software solutions. I begin by describing the entities that
should comprise a design with the rationale given for each entity.

Program Objective
This is the most important part of the design approach [PRAO02]: a clear and succinct

statement of the program’s requirement; for example, to retrieve publications of
“Schneidewind software reliability model” in 5 seconds.

Objects

This entity is the basis of a design because all problems involve objects, whether it
is a human user, database, mathematical equation, Web server, Web page, and so on.

Classes

A class is a set of objects, such as all Web servers. Some authors advocate making
class the focus of design [REI99]. This seems strange because it is objects that are
the active entities in a problem; classes, as the name implies, are classifications of
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objects. Thus, I assign a class to the role of classifying objects. This is useful because
the same Web searching code can be used, for example, for a variety of Web servers,
by classifying each specific Web server object as a member of the generic Web server
class.

Functions

Functions, for example mathematical functions, do not receive the attention they
merit in contemporary programming language texts [PRA02]. In these books, func-
tions are described as C and C++ functions, the modules of these languages.

Decisions

Decisions are the meat of many problems, for example determining whether a Web
searching algorithm has found the requested information. Again, decisions are given
the short shrift in many texts. Decisions can be represented by a directed graph or
by an old-fashioned flow chart, heaven forbid!

Input Data

Objects and functions cannot operate in a vacuum. Input data, such as the user’s
specification of the desired information required from a Web site, must be specified
to the search algorithm. The origin of input data is specified.

Output Data

Output data refers to the data that the output units in a computer system will provide.
The destination of output data is specified.

Control

Program control is necessary because certain operations, such as iteration, must be
terminated, for example, the termination of Web searching when the desired Web
page has been found in Figure 9.4.

Units

These are physical computer system entities, such as a graphics display device.
Generally, units are only specified in special-purpose computing, such as in space
applications, where specific hardware is assigned to processing specific software. In
general computer processing, such as Web searching, unit specifications are not
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Figure 9.4 Reliability simulation process diagram.

necessary because the user is only concerned with results, not the particular hardware
that produces the results.

Support Requirements

In addition to these specifications, it is important to keep in mind the need to main-
tain the software in the future based on errors that occur and on the need for enhance-
ments that users require [PRA02]. Incidentally, the cost of software maintenance is
the largest of all software costs, including the cost of development.

Now, the above entities of software design will be illustrated by producing Table
9.1, which will document each entity for the Web searching problem, and Figure
9.4, which shows the logic for Web searching. An important additional factor, which
contributes to high quality software, is the need to produce good documentation.
Document the software for other people to read, who may not be as familiar with
the details as you are! Poor or nonexistent documentation has been the bane of the
software field. Do not contribute to this chaos!

PROGRANM LANGUAGE CHARACTERISTICS
Structure

This section is dedicated to describing program language structure, using C++ as
the example. My purpose is to not only describe, but, in addition, evaluate the effi-
cacy of the structures so that you can apply the structures with minimum difficulty.
First, what is meant by program structure? Structure is required to control the
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Table 9.2 Definition of Conditions

Operator Meaning Figure 9.4 example

= Equal Search information correct

1= Not equal Search information correct not correct
< Less than Web page not found

> Greater than Web page not found

<= Less than or equal to Web page found

>= Greater than or equal to Web page found

program statements to execute and the order of executing them [HAN97]. These
structures are sequential, selection, and repetition, using iteration control. Sequential
structures are sequences of statements that do not involve decision making. The
best example is a sequence of arithmetic statements programmed to solve an equa-
tion. Selection involves designing statements to make decisions, such as the decision
by the user in Figure 9.4 concerning whether the desired information has been
obtained from the Web site. Decisions are typically implemented with the if state-
ment. Repetition, controlled by iteration, is implemented with the while statement
in Figure 9.4.

Conditions

Conditions refer to the outcome of comparing quantities. The meaning of the condi-
tion operators, geared to Figure 9.4, is defined in Table 9.2.

Logical Operators

There are some conditions that cannot be handled by the operators in Table 9.2.
These are the Boolean operators and (& &), or (11), and not(!). Using Figure 9.4 as
an example, suppose the user desires information by subject S and that the date D
of the information be greater than d. Then the condition can be written as follows;
statements must end in a semicolon and *“//” indicates a comment:

S && (d > D) =true; // if S and (d > D) are true, the result is true = 1, if the
result is not true, it is false = 0, so that the result can be checked by comparing with
constants 1 and 0.

As another example, suppose the subject is still S and either (date d1 = D1) or
(date d2 = D2) is required. Then, these conditions are written as:

(S && ((date d1 = D1) Il (d2 = D2))) = true; // notice the liberal use of paren-
theses that renders the code readable.

As the third example, suppose subject S is still desired but the date d = D is to
be excluded in the search:

(S && (d ! = D)) = true // |= signifies not equal.
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Important Variable Types

There are various types of variables that can be used in programming languages.
Among these are types bool (i.e., Boolean), integer, and double (i.e., floating point).
The variable type bool is used to keep track of events in a program’s execution
[HAN97]. For example, in Figure 9.4, suppose there is a variable of type bool called
search information correct. Then, when the if statement is executed, search informa-
tion correct = true, if the correct information found, and search information
correct = false, if the correct information not found. Variable types integer and
double are used in arithmetic operations to signify operands that have no fractional
part and operands that do have a fractional part respectively.

Detailed Design Example

Now, in Figure 9.5, a detailed software design is implemented for the Web search
problem in Figure 9.4. This exercise will illustrate some very interesting design
aspects that are not covered well in programming texts. One aspect is that for a
design to be meaningful, it must not be limited to abstractions, such as classes!
Instead, for a design to be understood, there must be a combination of physical enti-
ties and program abstractions. For example, in Figure 9.5 the designer should not
limit the design to proclaiming an input specification. Instead, it is critical to identify
the input device: keyboard, hard disk file, memory stick, and so on. The reason is
that C++ and other languages are very finicky about such details because there are
different types of commands pertinent to different devices. Thus, where decisions
about physical components must be made, I ask questions in Figure 9.5 to stimulate
decision making. Note that I do not pose questions concerning Internet resources,
such as the brands of Internet browser, Web server, and search engine because these
components are outside the scope of this particular C++ program. The browser and
search engine are human user choices and the search engine vendor specifies the
server(s) to use on a particular search. Also, notice the need for “housekeeping”
declarations in Figure 9.5, such as specifying the search request type, where “type”
refers to format, not the type of request. Additional C4++ syntax is shown in Figure
9.5 in connection with the if statement. If the condition is false (e.g., the search has
been unsuccessful), the program branch executed is called else.

Rather than attempt to write one program to cover all the logic in Figure 9.5,
experience has shown that when the programmer includes too much logic in a single
program, the programmer is overwhelmed by complexity and programming errors
grow exponentially. Therefore, the total logic should be divided into digestible
pieces [HONO96]. Thus, three C++ programs: #1 for user specification of Web search
requirement, #2 for user analysis of Web search results, and #3 for Web server search
process are shown below. A major purpose of this presentation is to show the reader
that there is a great deal of housekeeping that must accompany the meat of a
program, if the program is to compile (translate from C++ statements to machine
language that can be executed on a computer). It is imperative to understand that
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both the logic of the program and the housekeeping directives must be correct for
the program to work. This characteristic of software development is one of the
reasons that software is so costly and error prone.

Note that by convention, the first index value for an array or matrix is equal to
zero, hence the initialization of the matrix pointers in the following programs to
zero. Also note that matrix sizes must be assumed. This means that if a search
exhausts a matrix without finding the desired item, an error must be signaled. In
addition, Figure 9.5 shows that for both the user and Web site, a database is used
for search request and search content, respectively. The computer codes for these
functions are not included in the following programs because this processing would
be handled by separate software in database management systems. In addition, the
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code for the interaction between Internet browser and Web server for specifying
user-specified subject code, as shown in Figure 9.5, is included in the programs.
Program #1

// program specifying Web search request (good idea
to state purpose of program in first comment)

# include <jiostream> // specify input output library
# include <math.h> // specify math library

using namespace std; // allows C++ to allocated
computer space for names

using std::cout; // specify standard screen output
using std::cin; // specify keyboard input

main() // beginning of main code, this is required in
every program

{ // opening bracket is needed at start of code

const char* format_string; // pointer to type char
for processing alphanumeric data

int i, j, imax // declare matrix A pointers and
maximum pointer value as type integer

char A [20] [20] [20]; // declare matrix A as three
columns and 20 rows and type char that contains
subject, subject code, and date

char subject; // declare search request subject

char code; declare located subject code storage
area

char date; declare storage area for search request
content date

i, j, k = 0 // initialize matrix pointers
imax = 19; // initialize maximum value of matrix A i
pointer

cout << endl; // start screen output on a new line

”

cout << “search request subject ="; // tell user to
input search request subject from keyboard to screen,
the = sign means that input is expected after it

cin >> subject ; // request subject inputted

cout << “input required date of search results”; //
input required date of search results from keyboard
to screen

cin >> date; // required date of search results
inputted
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while (subject != A [i]) // while subject request not
found, continue with search

{

if (subject = A [i]) // test for finding request
subject

{

code = A [Jj]; // if request subject found, store
located subject code for use by user computer

date = A [k]; // store specified date of search
results for use by Web server

else

{

if ( i < = imax) // test for subject pointer being
less than or equal to maximum value

{

i =41 + 1; // if subject pointer has not reached

maximum value, increment all matrix pointers

j=3+1;

k = k + 1;

}

else

cout << “error: subject not found”; // tell user that
request subject not found

}

return 0; // return to the operating system
} // executable code ends here

Program #2

// program for analyzing Web search results
(good idea to state purpose of program in first
comment)

# dinclude <iostream> // specify input output library
# include <math.h> // specify math library

using namespace std; // allows C++ to allocated
computer space for names

using std::cout; // specify standard screen output

main() // beginning of main code, this is required in
every program

{ // opening bracket is needed at start of code
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FILE *fp;//pointer to type FILE, C++ requires
pointers to files that are read or written, files
usually stored on hard disk or stick memory, fp
points to the file command in the next statement

fp = fopen (“c:/search results.txt”, “w”); // file
for writing search results data output in text
format, the location is given for this file to be
written, signified by “w”

const char* format_string; // pointer to type char

char date; // declare date of search results in
alphanumeric format

char requireddate; // declare required date of search
results in alphanumeric format

if (date > = requireddate)

{

fprintf (fp, “%s%\n”, “search results date”, (char)
20); // write quoted text in c:/search results.txt
disk file, “s” specifies writing quoted text, 20
characters long, “\n” specifies line feed for next

line to be written

fprintf (fp, “%c%\n”, date, (char) 8); // date of
search result written in c:/search results.txt disk

file, “c” means date is in alphanumeric format, 8
characters long, “\n” specifies line feed for next
line to be written

fprintf (fp, “%s%\n”, “search results content”,
(char) 20); // write quoted text in c:/search
results.txt disk file, “s” specifies writing quoted
text, 20 characters long, “\n” specifies line feed

for next line to be written

fprintf (fp, “%c%\n”, date, (char) 1000); // search
results content written in file c:/search results.txt

disk file, “c” means content is in alphanumeric
format, 1000 characters long, “\n” specifies line
feed for next line to be written

}

else

{

cout << “search results date incorrect”; // tell user
that search results date incorrect

¥

return 0; // return to the operating system

} // executable code ends here
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Program #3

// program for searching Web database (good idea to
state purpose of program in first comment)

# dinclude <iostream> // specify input output library
# include <math.h> // specify math library

using namespace std; // allows C++ to allocated
computer space for names

main() // beginning of main code, this is required in
every program

{ // opening bracket is needed at start of code

const char* format_string; // pointer to type char
for processing alphanumeric data

int i, j, imax // declare matrix B pointers and
maximum value of subject code pointer as type
integer

char B [20] [20]; // declare matrix B as two columns
and 20 rows and type char

char subject; // declare search request subject code
that was inputted by Web browser

char content; declare located content storage area

i, j = 0 // dinitialize matrix pointers

imax = 999; // dinitialize maximum value of matrix B i
pointer

while

{(subject ! = B [i]) // continue search while subject
code not found

if (B [i] = subject) // test for finding subject code
{

content = B [j] ; // if subject code found, store
content in Web server

}

else

{

if ( i < = dimax) // test for subject code pointer

being less than or equal to maximum value

{i =i + 1; // increment matrix B pointers, if
subject code not found

J =3+ 1
i
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else

{

cout << “error: subject code not found”; // tell Web
server that request subject not found

}

return 0; // return to the operating system

} // executable code ends here

EVALUATION OF PROGRAMMING LANGUAGES

Factors to consider when evaluating a programming language are compile time,
execution time, understandability of error messages, and availability and quality of
help information. Some versions of C++, for example, produce unintelligible error
message and their help information is minimal. These are important considerations
that significantly affect your productivity. To avoid these pitfalls, download free
copies of programming systems and test them against the above criteria for the same
program. Then avoid using systems that produce more noise than signal!

One researcher investigated program length, programming effort, runtime effi-
ciency, memory consumption, and reliability [PRE0OO]. However, the validity of the
analysis was compromised by using several programmers in the tests, rather than
one, thus introducing programmer skill variability into the mix. Nevertheless, there
are some valuable aspects of this experiment that you should note. One is program-
ming effort: is the effort you expend in understanding and using the language rea-
sonable? Another good point is reliability: does the program produce the correct,
predetermined result. Of course. You must be careful that a perceived incorrect result
is not due to your programming errors! The other factors—program length, runtime
efficiency, and memory consumption—are of little consequence, given the speed
and memory capacity of contemporary microcomputers. It is surprising that the
author did not evaluate compile time, execution time, understandability of error
messages, and availability and quality of help information.

Visual Language Alternative

There have been numerous studies that have looked at the learning styles of engi-
neering students. These learning style preferences are consistent across populations.
What these studies have found is that engineering students tend to be more visual
in their learning styles. However, since most programming languages taught in
introductory courses are text based, a disconnect occurs between what is being taught
and how these students prefer to learn [BUCOQ9].

Because many text-based languages use syntax that incorporates many English
terms, students often resort to using the models they have developed for the natural
language use of these terms. However, this poses a significant problem for some
terms because the model for how the word is used in natural language differs from
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how it is used in a programming language. For example, in natural language, the
term “while” has a slightly different meaning than it does in programming usage.
In natural language, “while” implies that as soon as the condition is no longer satis-
fied, the activity will cease. In a programming language, the conditional statement
associated with the “while” is only checked once during an iteration. This can cause
students problems if they believe that as soon as the condition is met, the loop will
exit [BUCO09].

A promising avenue for the reader to explore to address these issues is the use
of graphical programming languages. Graphical programming languages allow the
user to create programs by connecting together graphical icons representing different
functions, similar to flowcharts. Using these languages should help students learn
better from visual presentations [BUCO09]. For, example, graphical programming
languages such as Simulink and Hypersignal, and others, have been coming into use
recently for rapid prototyping of digital signal processing algorithms. Using such
languages amounts to dragging functional blocks from libraries and connecting them
to form a block diagram, which is also a program [AMIO0].

Question for the Reader: Based on what you have learned about programming
language characteristics, what characteristic do you think is the most
important?

Answer: If a programming language is not representative of the problem to be
solved, programs that are produced using this language could be loaded with
bugs! For example, a program for doing numerical computation should have
a library of mathematical software (e.g., sine function) that the programmer
could invoke rather than having to program these functions, thus saving a
significant amount of time and avoiding programming errors.

SUMMARY

The reader has been exposed to many aspects of evaluating programming languages that are
not covered in contemporary texts. Among these aspects are lack of coherent compiler and
execution error messages and help aids. Techniques have been presented for testing a set of
programming languages against a specified program in order to identify the language that is
best for the user. Armed with these tools, the reader will be able to combine previously learned
computer hardware design skills and knowledge with programming languages to develop
computer-based systems.
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Chapter 10

Operating Systems

The aim of this chapter is to expose the reader to important facets of operating system (OS)
analysis and design that are missing from contemporary texts. Among these are quantitative
analyses of reliability, performance attributes such as memory management efficiency, opti-
mization of time-slice allocation to processes, and deadlock detection and prevention. To
lay the foundation for these analyses, OS issues and OS architecture are discussed so that the
reader will understand why there is a focus on certain facets of OS behavior, such as
the difference in computing environments between general-purpose and real-time systems.
The dramatically different OS performance differences between these environments are
highlighted.

OPERATING SYSTEM ISSUES

Operating systems (OSs) have become increasingly complex and thus very expen-
sive and time consuming to develop, maintain, and debug. Two difficulties are
inherent in maintaining any large complex system: a large investment is required to
add new features rapidly enough to meet time-to-market requirements and another
is the effort required to preserve compatibility with prior versions. Continuing to
patch existing OSs in ad hoc ways to accommodate tomorrow’s needs (e.g., high
reliability) is not cost-effective. Interactions within the OS and between the OS and
application programs are very complex [HAM95].

The challenge to OSs designers is to deliver to applications the performance
available now only from dedicated hardware, combined with the ease of sharing
resources and data among multiple applications [AND92]. This issue is fascinating
because the original objective of OSs was to efficiently manage multiple applications
in a complex computing environment. Unfortunately, OSs have grown to the extent
that their excess baggage can slow application execution to a crawl!

The importance of OSs has motivated the development of this chapter, which
is designed to provide the reader with methodologies for analyzing and estimating
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the performance and reliability of these systems, with the goal of mitigating the
problems described above.

OS ARCHITECTURE

OS architecture is comprised of processes (i.e., a process is a program in execution),
interprocess communication (e.g., instruction and data communication on a bus),
virtual memory (a fancy name for disk drive memory as opposed to random access
memory [RAM] devices), hierarchical file system, and access control to system
resources [REIO4]. Three approaches have evolved for organizing structure and are
shown in Figure 10.1. The monolithic architecture considers the OS as being com-
prised of modules wherein any module can call another module. The modules are
controlled by the supervisor so that they can have access to the hardware. All module
calls must be made under supervisor control. This organization is obviously complex
and leads to high overhead. In response to this problem the microkernel architecture
was developed [REIO4]. This architecture simplifies OS functions by centralizing
functions in the microkernel. This strategy reduces the complexity of OS design
because the numerous interactions that must transpire in the monolithic case can be
centralized in the microkernel in the microkernel case. A similar situation happens
in the client—server architecture, wherein simplicity is achieved by using a bus for
communication among system resources. However, as will be shown in the reli-
ability section. There is a price to pay for reducing architectural complexity because
reducing interactions among resources can lead to dependence on a single resource
(e.g., microkernel) for managing controlling OS actions. This dependency can lead
to reduced reliability.

OS PERFORMANCE EVALUATION

An OS performance attribute is its ability to switch among various programs while
also allocating resources to these programs. This switching function is executed by
the supervisor and microkernel in Figure 10.1, which switch among OS modules,
application programs, and computer hardware as the need for these resources arises
during system operation. Switching speed and time are important performance
metrics. Switching speed can be computed in two ways: one, by switch operation 1i,
S;, using the number of programs switched on switch operation i, n;; and the second,
computed over the number of programs n. In both cases, since we do not know a
priori the probability of making a switch i, the probability, p;, must be included in
the equations. Thus, switching speed, S, and time for switching to program i, T;, can
be estimated by considering the number of programs, n, that must be switched for
a given user’s operation, as follows:

Si = (p,nl)/Ti,

$= (pim)/T)/n.
i=1
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Since n; and T; are not known in advance of using an OS, their values must be simu-
lated by using the Excel RAND function (uniformly distributed random numbers
between 0 and 1) for n = 100 switch operations in order to achieve computational
validity. After executing the RAND function, both n; and S; are multiplied by 10 in
order to produce practical values. Since the relative values of S; will not be affected
by the choice of multiplication factor, readers are free to choose whatever value is
practical in their application.

Furthermore, since S is the mean of S;, the standard error of the mean Si\/ﬁ can
be computed, which when combined with the mean (S +3%S;/ vn ) provides confi-
dence intervals for S;. If any values of S; fall outside the mean plus or minus three
Si\/; , it is indicative of switching spends that are unlikely to be achieved. Thus, the
user can predict in advance of OS usage the bounds on this performance metric.
Figure 10.2 shows how the bounds on switching speed can be analyzed.

OS RELIABILITY EVALUATION

Another important OS metric that we can relate to switching actions is reliability.
Again, prior to using an OS to manage our computer operations, it is possible to
estimate reliability by randomly injecting faults into the switching operation. Thus,
the reliability, R;, of switch operation i, is estimated by noting that the expected
number of faults that occur on switch operation i is the product of the probability

16.00 ~

—e—Series 1| o

—#— Series 2
14.00 -

Series 3

12.00 -

N

o

o

S
.

Most likely values of S, between 0.48 and 1.63

®

o

S
.

S, (programs per second)
[}
=)
o

4.00 -

201 nM

(NI

L 2 4 hd

0.00 —*
1 1 21 31 41 51 61 71 81 91
i
Figure 10.2 Switch operation i speed S; versus switch operation i. Series 1: S;. Series 2: Mean
S; + 3#(standard error of mean) = 1.63. Series 3: Mean S; — 3*(standard error of mean) = 0.48.



290 Computer, Network, Software, and Hardware Engineering with Applications

of the switch operation, p;, and the number of faults f;. Then, this term is related to
the total number of expected faults over n switching operations to produce the unreli-
ability of switch operation i. Finally, unreliability is subtracted from 1 to produce
reliability. As in the case of performance, confidence intervals can be developed for
reliability so that the likely achievable range of reliability can be estimated:

pifi

2 pifi
i=l

Figure 10.3 shows the probable range of switching reliability that is likely to be
achieved in practice. In addition to the foregoing quantitative reliability assessment,
it is important to evaluate reliability on a quantitative basis, based on the competing
architectures shown in Figure 10.1. Although the monolithic architecture is consid-
ered inefficient [REIO4], it can continue operation with reduced capability because
communication between surviving OS modules and application programs can con-
tinue in the face of one or more failed OS modules. In contrast, the microkernel
architecture, while compact and efficient, is highly dependent on its namesake for
reliable communication because all traffic flow must be managed by the microkernel.
A similar situation occurs with the client—server architecture because all communica-
tion must take place on the bus. Thus, the lesson to be learned is that the relationship
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between architectural efficiency and reliability is a subtle one. That is, efficient
architectures can be relatively unreliable!

OS CHARACTERISTICS

There are a number of characteristics of an OS that determine its ability to effectively
manage system resources. The first is the scheduling algorithm. Scheduling refers
to the way processes are assigned to run on the available central processing units
(CPUys), since there are typically many more processes running than there are avail-
able CPUs. This assignment is carried out by software known as a scheduler and
dispatcher.

The scheduler is concerned mainly with:

Throughput. The number of processes that complete their execution per time
unit.

Turnaround. The total time between submission of a process and its
completion.

Response Time. The amount of time it takes from when a request was submit-
ted until the first response is produced.

Fairness. Equal CPU time to each process (or more generally appropriate times
according to each process’ priority).

In practice, these goals often conflict (e.g., throughput vs. latency), thus a scheduler
will implement a suitable compromise.

In real-time environments, such as mobile devices for automatic control in
industry (e.g., robotics), the scheduler must also ensure that processes can meet
deadlines; this is crucial for keeping the system stable.

Long-Term Scheduler

The long-term scheduler decides which jobs or processes are to be admitted to the
ready queue; that is, when an attempt is made to execute a program, its admission
to the set of currently executing processes is either authorized or delayed. Thus, this
scheduler dictates what processes are to run on a system, and the degree of concur-
rency to be supported at any one time (i.e., number of processes are to be executed
concurrently), and how the split between input/output (I/O)-intensive and CPU-
intensive processes is to be handled. This is used to make sure that real-time pro-
cesses get enough CPU time to finish their tasks [STA04].

Mid-Term Scheduler

The mid-term scheduler temporarily removes processes from the main memory and
places them on the secondary memory (such as a disk drive), or vice versa. This is
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commonly referred to as “swapping out” or “swapping in,” respectively. The mid-
term scheduler may decide to swap out a process which has not been active for some
time, or a process which has a low priority, or a process which is taking up a large
amount of memory, in order to free up main memory for other processes, swapping
the process back in later when more memory is available [STA04].

Short-Term Scheduler

The short-term scheduler decides which of the ready, in-memory processes are to
be executed next (allocated a CPU) following a clock interrupt, an I/O interrupt, or
OS call. Thus, the short-term scheduler makes scheduling decisions more frequently
than the long-term or mid-term schedulers. A scheduling decision will be made when
there is completion of an event, signaled by an interrupt, or periodically. This sched-
uler can be preemptive, implying that it is capable of forcibly removing processes
from a CPU when it decides to allocate that CPU to another, higher priority process,
or nonpreemptive, in which case the scheduler is unable to “force” processes off the
CPU [STA04].

Dispatcher

Another component involved in scheduling function is the dispatcher. The dispatcher
is the module that gives control to the process selected by the short-term scheduler.
This function involves the following:

Switching among processes

Jumping to the proper location in a program to start its execution

The dispatcher should be as fast as possible, since it is invoked during every
process switch

Scheduling Efficiency

Scheduling efficiency is an important OS performance metric. It is formulated by
considering that the number of programs that have been queued, waiting for service,
as the result of switch operation i, nq;, related to the number of programs that have
been scheduled as a result of switch operation i, n;, measures scheduling efficiency,
E,, because programs waiting in a queue decrease the scheduling rate. Thus, E; is
computed as follows:

E, =nq;/n;.

Then, the number of programs queued, waiting for service, is equal to the program
input speed to the queue, S;, as a result of switch operation i, times the switch opera-
tion 1 wait time, tw;:

nqi = Si * tWi.
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To compute tw;, note that the probability, p;, of a queue being busy, as the result of
switch operation 1, is defined as:

p; = tw,/T,,

where T; is the switch operation i time. This equation reflects the fact that the
higher the lower the wait time for a given switch time, the lower the wait time.

Now, combining the foregoing equations, the number of programs in the queue
generated by switch operation i is the following:

ng; =S; *p; * T,
Last, scheduling efficiency, E,, is computed by using the last equation as follows:
E, =(S; *p; * Ti)/ni.

Note that the probability of the queue being busy is unknown when the OS is
designed. Therefore, this parameter must be estimated using the Excel RAND
function.

By computing efficiency over 100 programs and then computing its mean, the
value 0.2635 or 26.35% is produced. The utility of this analysis is that scheduling
efficiency can be estimated during design, in advance of implementation, and
increased if warranted by the estimated value. In this example, an increase is needed,
which would be accomplished by increasing the switching speed, S;.

Annoying Messages

An important distraction to user computing productivity is the plethora of annoying
messages concerning, for example, never-ending notification of security settings and
offers to update software, which various vendors seem compelled to present to the
user whether the user is interested or not. In some cases, the messages can be turned
off. In other cases, it is very difficult or impossible to turn them off. The problem
is that rather than the default mode being “no messages,” the default mode is
“maximum messages”! Thus, it is important for the prospective customers of OS
and application software to give the system a trial run before purchasing.

SCHEDULING ALGORITHMS

OS scheduling algorithms can be classified into two major categories related to
the computing environment. One pertains to personal computer processing where
program execution is triggered by user actions, typically with a mouse or Internet
browser. In this case, there is really no need for a scheduler because program invoca-
tion is preordained by user actions. The more interesting and challenging case is the
service computing environment: Web servers, file servers, e-mail processing, and so
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on. In this environment, program invocation should be triggered by interrupts. The
reason is that in order to not waste time, the OS should only service a program when
the program needs servicing (e.g., a Web server receives a search request). However,
before rushing to conclude that an interrupt-driven scheduler is sufficient to achieve
efficient use of resources, consider the possibility that once a program gains control
of the microcomputer, it may execute for a long time, thus preventing other programs
from executing for a prolonged period of time. Then, how can this problem be
resolved? A solution is to allocate a time slice to a program once it has signaled the
need for service via an interrupt. The time slice is the amount of execution time
allocated to a program. In a generalized computing environment, such as Web
searching, all users have equal priority; thus, each program is allocated the same
fixed time slice.

Contrariwise, in a real-time environment wherein deadlines must be met, the
order and size of time slices is the order of deadlines. That is, the program with the
first deadline receives the next time slice whose length is equal to the difference
between the deadline time and the current time (times are determined by the micro-
computer clock). In both cases, the scheduler performs interrupt-driven [WANOG6]
time-slice allocation, and switching logic controls the execution of programs, as
shown in Figure 10.5. While this strategy may result in some programs not meeting
their deadlines because a given program has control of the microcomputer until it
meets its deadline, it is a sound strategy because at least there is assurance that the
given program will meet its deadline.

Next, the generalized computer environment scheduling process will be formu-
lated, using the following definitions and equations:

TS;: length of time slice for switch action 1

NI;: number of instructions executed during time TSi

Since in a generalized computing environment this quantity is unknown a
priori, it is estimated by using random number generation multiplied by
a practical factor, say 10,000.

n;: number of programs allocated time slices as a result of switch operation i

CR: microcomputer clock rate (1/CR = time of clock pulse)
It is assumed that one instruction is executed per clock pulse.

Typical values of CR are 2 and 4 GHz, yielding (1/CR) = 0.5 and 0.25 ns,
respectively.

Using the above definitions, the length of the time slice is formulated as follows:
TS; = ((1/CR) * NI, )/n;.

Figure 10.4 shows the result of the time-slice analysis wherein two factors drive the
length to decreasing quantities: one is that, of course, as the number of programs
that must be serviced increase, the length of the slice, necessarily, decreases. The
second factor, the microprocessor speed (clock rate), may not be so obvious. With
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a higher speed, less time is required per instruction. Therefore, the time slice
decreases.

Since for real-time systems the time-slice length strategy is highly dependent
on deadlines that evolve with unpredictable events in real-time that cannot be pre-
dicted at OS design time, the next deadline, TD;, associated with switch action i, is
estimated by considering it to be randomly distributed, using the RAND function
and a multiplication factor of 10 to make the estimates realistic. Time slice TS; is
estimated by the difference between the next deadline and the previous deadline,
TD,_,, associated with switch action i — 1, as follows:

Tsi = ’TD1 - TDi—l'

Since, as stated, assigning a time slice to one program may cause other programs to
miss their deadlines, it is necessary to estimate this blocking delay, TB;: the differ-
ence between the deadline associated with switch action i+ 1 and the deadline
associated with switch action i, as follows:

TBi = TDi+l - TDi.

A measure of real-time scheduler scheduling efficiency, RT;, is the fraction of time
between deadline i + 1 and deadline i — 1 that is consumed by blocking time, com-
puted as follows:

RT; = (TD;;, = TD;)) /(TDj,; = TD;y).
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To obtain an overall estimate of the scheduler efficiency and blocking delay over n
switching actions, the means of TS;, TB;, and RT, are computed. These values are:
0.0993, 0.1003, and 0.5057 seconds, respectively. The result suggests that with more
time spent in being blocked, over 50%, as opposed to productive computing (time
slice), the scheduler efficiency should be improved. An appropriate solution would
be a very fast microcomputer. While significant blocking may still occur, the time
lost to blocking would be significantly reduced. Thus, in advance of scheduler
implementation, it is possible to estimate the penalty incurred by using a scheduling
policy that assigns time slices equal to the deadline requirements.

The logic of time slicing in generalized computing is developed in Figure 10.5
along with the real-time system scheduling.
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programs allocated time slices as a result of switch operation i; NI;, number of instructions executed
during time TS;; CR, microcomputer clock rate.
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MEMORY MANAGEMENT

If all the memory requirements of all the programs that an OS must manage could
fit into the main memory, there would be no need for memory management. However,
as the size of programs continues to grow due to increasing user requirements,
memory requirements expand exponentially. Thus, memory management has become
a major component of contemporary OSs. This section contains an important quan-
titative treatment of memory management that is missing from the mostly qualitative
coverage of OS texts. Consider the following definitions of memory management,
as related to switching actions, which trigger memory accesses:

M: size of main memory (e.g., RAM) that is required by programs

P: fixed page size used in memory accesses triggered by switch operations,
where a page is a subset of M, designed to allow only the instructions and
data that are required for a given program’s memory requirement to be a
resident in M. This concept permits multiple processes, each of which has
memory requirements, to be active at the same time. Note that the use of
fixed size pages does not utilize memory as efficiently as variable size pages
(i.e., wasted space when a page does not fit in M). However, because variable
size pages are difficult to implement, OS designers opt for fixed size pages.

N: number of page transfers from secondary storage to M required by a pro-
gram’s operations, triggered by switch action i:

N=M/P.

PT: total paging time generated by n switching actions (n programs):
PT=Y TN=Y (T)(M/P),
i=1 i=1

where T, is the time of switch action i (i.e., page transfer) and PT; = (T;)(M/P)
is the page transfer time per single program (i.e., switch action i).

PR: paging rate PR = 1/PT

C: page cost C = P*c, where c is the cost per megabyte

Now, our objective is to achieve a relatively high benefit—cost ratio, BC, consistent
with minimizing the page transfer time per single program. Doing this provides a
reasonable balance between BC and performance:

BC=PR/(P*c).

Figures 10.6 and 10.7 show how this balance is achieved, wherein Figure 10.6 docu-
ments the minimum single program page transfer time and corresponding page size.
Then this information is used in Figure 10.7 to identify the “reasonable balance”
BC. Last, Figure 10.8 provides the reader with a pictorial view of the mechanics of
memory management.
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DEADLOCK ANALYSIS AND PREVENTION

A deadlock is a situation in which two computer programs sharing the same resource
are preventing each other from accessing the resource, resulting in both programs
ceasing to function.

The earliest computer OSs ran only one program at a time. All of the resources
of the system were available to this one program. Later, OSs ran multiple programs
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at once, interleaving them. Programs were required to specify in advance what
resources they needed so that they could avoid conflicts with other programs running
at the same time. Eventually some OSs offered dynamic allocation of resources.
Programs could request further allocations of resources after they had begun running.
This led to the problem of the deadlock. Here is the simplest example:

Program 1 requests resource A and receives it.
Program 2 requests resource B and receives it.
Program 1 requests resource B and is queued up, pending the release of B.

Program 2 requests resource A and is queued up, pending the release of A.

Now, neither program can proceed until the other program releases a resource. The
OS cannot know what action to take. At this point, the only alternative is to abort
(stop) one of the programs. Learning to deal with deadlocks has had a major impact
on the development of OSs. A solution to the deadlock problem is to allocate all the
resources the program needs to complete its processing [REIO4]. While this solution
may prevent other programs from executing for a prolonged period of time, it does
have the advantages of being relatively simple to implement, thus avoiding program
failures, and of guaranteeing that at least one program will run to completion. Pre-
venting deadlock is difficult if the OS allows for programs to execute concurrently.
Note that this does not mean simultaneous execution; rather, it refers to two or more
programs executing during a period of time allocated by the scheduler.
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It is possible to estimate the probability, PD;, of deadlock in a concurrent com-
puting environment, when switch action i triggers execution of program i. The first
factor that governs this probability is the probability of N;, the number of computer
resources (e.g., main memory) that are concurrently invoked by switch action i,
related to the total number of resources, N. Thus, this probability is Ni/N.

The second factor that must be considered is the probability of n; programs
being invoked concurrently by switch action i, related to the total number of pro-
grams, n, invoked over all switch actions. Thus, this probability is:

o

i=1

The third and last factor is the number of complete computer systems (i.e., processor,
memory, and all peripheral devices), N;. The probability of deadlock is inversely
proportional to N because the greater the number of computer systems, the lower
the resource conflicts that cause deadlocks. Putting these factors together, the prob-
ability of deadlock is estimated as follows:

n;

PD; =| (N;/N)* / N,

n

S

i=1

As we would expect, Figure 10.9 shows that the probability of deadlock increases
with the number of concurrent programs and decreases with the number of available
computer systems. Thus, this type of estimate is useful for planning resource utili-
zation to avoid deadlocks: moderate concurrency coupled with the availability of
several computer systems.

DISTRIBUTED OSS

The development of distributed OSs was partly motivated by a desire to escape from
the limitations of centralized OSs, which has the disadvantage of centralizing
resource allocation management, such as memory management, with attendant
failure vulnerability (i.e., single point of failure) and lowered performance (i.e.,
slowdown caused by all programs competing for the attention of an OS function,
for example, a scheduler). Hence, the distributed OS was developed, which distrib-
utes the processing load across processing elements [THU79]. These processing
elements have their own interconnected memory and I/O units, thus achieving
modularity of design [THU79]. The performance penalty for achieving greater
autonomy of resource management is the time delay incurred when elements com-
municate via messages. Also, distributed systems virtually eliminate deadlocks by
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Figure 10.9 Probability of deadlock by switch action i, PD;, versus number of concurrent programs
executing by switch action i, n;. Series 1: number of computer systems = 1. Series 2: number of
computer systems = 2. Series 3: number of computer systems = 3.

virtue of using several autonomous computing elements, each equipped with all the
resources needed to execute several program concurrently.

VIRTUAL OSS

Virtualization enables installation and running of multiple virtual machines on the
same computer system. The OS that communicates directly with the hardware is
known as the host OS, whereas virtual OSs have all the features of a real OS, but
they run on virtual machines inside the host OS. A virtual machine is separated from
the host computer hardware and it runs in emulation mode (i.e., software emulates
hardware operations). The performance of a virtual OS running on the same com-
puter system as the host OS depends on the performance of the host OS [MAR10].
The benefit of virtual OSs is the isolation that they provide from faults occurring in
other virtual OSs and in the host OS. Thus, a high degree of reliability can be
achieved. With virtual OSs based on time-slice allocation, during which time a given
virtual OS has exclusive use of hardware resources, performance improvements ca
also be achieved.

SUMMARY

The reader has been shown that it is important to estimate OS performance and reliability in
advance of acquiring these systems by simulating the operating conditions under which an
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OS would function. While the actual performance and reliability may differ from the esti-
mates, nevertheless, statistical confidence intervals can bound the estimates such that devia-
tions in operation from the estimates are very unlikely. Thus, the engineer who designs
systems, of which the OS is a part, can anticipate OS performance and reliability in advance
of committing time, effort, and funds to system implementation.

Question for the Reader: What OS characteristics would be appropriate for a
computer system that is to control space flights?

Answer: It should have the characteristics of a real-time OS, meaning that it is
imperative to meet deadlines (e.g., meeting launch schedule) by allocating
time slices to programs in accordance with the logic shown in Figure 10.5.
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Chapter 11

Software Reliability
and Safety

Having laid a foundation of reliability principles in Chapter 8, the reader is now prepared
to study important applications of reliability, such as the risk to system safety of unreliability.
Thus, the objective of this chapter is to develop and illustrate a software reliability risk profile
that supports system safety. Understand that there is more to safety than reliability. However,
it is clear that achieving reliability goals will support safety. The problem to be addressed is
the development and analysis of a profile of software reliability risk metrics designed to
measure the risk of software not meeting requirements with respect to reliability, time to
failure, and remaining failures. If these goals are not achieved, catastrophic failures could
occur that would jeopardize the mission. This problem is important because while there are
many papers and texts about various reliability prediction models, there is inadequate attention
to evaluating and responding to the risk to the mission of predictions that fail to achieve reli-
ability goals.

RISK EVALUATION

During project development, risk is any threat to the development and delivery of
a reliable product. The primary goal of software developers is the production of
reliable systems that meet the needs of the user. To meet the goal of reliable software,
developers focus on particular risks, including reliability risks [GOTO1]. Risk evalu-
ation is performed because the operation of software may not go according to plan.
Risk evaluation is essential for spacecraft software. Spacecraft software is particu-
larly critical, because its failure can directly jeopardize the mission (e.g., software’s
role in Ariane V’s demise [ARI96], and as the most probable cause of loss of the
Mars Polar Lander [JPLOO]). Thus, it is important to develop metrics that can quan-
tify risk and to consider the consequences of software operations that deviate from
plans [CHIO96].
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First, I define risk as used in the analysis: Software risk is a measure of the
probability that faults and failures will occur in the development of software [CHI94].
Thus, you can see that risk is related to reliability. Since testing is a key element of
project development, the objective is to minimize the probability of reliability risk
by testing the software to the extent that the predicted reliability exceeds the reli-
ability goal during operation.

Then, I posit questions from the user’s perspective related to concerns about
risk.

What are the questions users might ask about the risk of using their software?
Here are some of the major concerns:

Will the software satisfy my reliability goals?
Will the software operate without failure during my planned mission?

Will there be residual faults and failures after testing that would jeopardize the
mission?

The risk evaluation process focuses on these concerns.

To provide for the evaluation of risk, each of the risk metrics must have a goal.
These goals are the following:

Reliability. Predicted reliability must exceed specified reliability for the planned
duration of the mission.

Time to Failure. Predicted time to failure must exceed the planned duration of
the mission.

Remaining Failures. Predicted remaining failures must be less than a specified
number of failures.

In addition, the test time when remaining failures have been reduced to an acceptable
value is identified.

The consequences of not achieving these goals are the following: required reli-
ability is not attained during a mission; the software fails during a mission because
the time to failure is too short; and residual faults in the software lead to failures
during a mission.

In addition to specifying the goals, the degree of risk computed by the risk
metrics is quantified. In order to quantify risk, reliability prediction equations are
developed. These equations and the corresponding risk metrics use National Aero-
nautics and Space Administration (NASA) Space Shuttle flight software failure data,
related to orbital trajectory calculations. Because the Shuttle is a safety critical
system, using failure data from this system is appropriate for illustrating modeling
for achieving high reliability goals. A number of plots are made showing how, for
example, risk varies with test time. If the plots indicate that the degree of risk would
endanger the safety of the mission, corrective action is taken, for example, predict
the amount of test time that would be required to reduce risk and achieve reliability
goals.
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OBJECTIVE

My objective is to develop and illustrate a software reliability risk profile that sup-
ports reducing uncertainty in achieving user reliability goals [GUPO8]. The motiva-
tion is to address this aspect of risk that needs more attention. To illustrate, consider
the following list of risks as presented in a research paper [ROPOO]:

scheduling and timing risks,

system functionality risks,

subcontracting risks,

requirement management risks,

resource usage and performance risks, and

personnel management risks.

I wonder what happened to reliability risk! Therefore, I am motivated to develop
the following reliability risk criteria:

Criterion 1. The reliability R(t,) predicted to be achieved for test time t, must
exceed the specified reliability R. The concept is that we must have confi-
dence that the software satisfies reliability goals before it is released for
operational usage. The specified reliability is made an increasing function of
test time based on the premise that the reliability goal should increase as
more faults are corrected with increased test time.

The risk of Criterion 1 is measured by:
Risk 1=(R —R(t,))/R =1-(R(t,)/R).
If R(t,) < R, the risk is positive and undesirable; otherwise, it is zero or

negative and favorable.

Criterion 2. The predicted time to failure T must exceed mission duration t,,
The concept is that we want to be assured that that the mission can be com-
pleted with no failures.

The risk of Criterion 2 is measured by:
Risk 2 =(t,, - D/t,, =1-(Th,,).
If T < t,, the risk is positive and undesirable; otherwise, it is zero or

negative and favorable.

Criterion 3. The failures predicted to remain after the software is tested for a
time t,, 1(t;), must not exceed r., where r. is a specified critical value. It is
also important that no residual failures remain when the software is released
for operational usage.

The risk of Criterion 3 is measured by:

Risk 3 = (r, —r(t,))/r, = 1—(r(t,)/r.).
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If r(t,) > r, the risk is negative and undesirable; otherwise, it is zero or posi-
tive and desirable.

SOFTWARE RELIABILITY PROFILE IMPLEMENTATION

Now, each of the profile criterions will be implemented, using the NASA Space
Shuttle Operational Increment OI8 (software release) as the source of failure data.
These data are shown in Table 11.1. In order to implement the profile, the prediction
equations of the Schneidewind software reliability model (SSRM) [SCH97, IEEOS]
will be used. Other extant models [LYU96] could also be used.

Criterion 1 (Reliability Risk)

Equation 11.1 is used to implement Criterion 1, where o, B, and s are parameters
related to failure rate, estimated from the data in the Table 11.1. The long test times
are due to the fact that the software for a given release (e.g., OI8A) is included in
subsequent releases and undergoes additional testing in the combined software con-
figuration. The procedure is to predict reliability R(t;) as a function of test time t;
and compare it with specified reliability, R, in order to predict Risk 1. If Risk
1 =1-(R(t)/R is positive, the prediction is less than the required reliability, and
there is a risk of mission failure; otherwise, Risk 1 predicts a safe mission. In addi-
tion, note that predicted reliability increases with increasing test time in accordance
with the concept that additional testing will remove additional faults.

Rz 1) (1L.1)

Table 11.1 NASA Space Shuttle OI8A Failure Data

Test time (days) Number of failures Cumulative failures

56 1 1

104 1 2

119 1 3

402 1 4

412 1 5

3077 1 6

4896 1 7

Model parameters

Alpha Beta Xs-1

0.8747 0.0650 0

Initial failure rate Rate of change of failure rate Number of failures in range
1, s-1

s=2 Starting time for parameter estimation
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where o, B, and s are failure rate parameters estimated from the Shuttle failure data
in Table 11.1.

The reason for the low failure count is that the Shuttle software is highly
reliable.

It is important to assess risk related to requirements early in the software devel-
opment cycle so that corrective action can be taken before reliability problems are
frozen in the software [APPOS]. In addition, testing should be conducted as soon as
possible to provide a quantitative assessment of risk sufficiently early to take cor-
rective action, such as looking for potential software errors that could be generated
by risky requirements. Risk-based reliability prediction is accomplished by specify-
ing reliability R as a function of mission duration t,,, based on the premise that higher
values of specified reliability should correspond to higher values of planned mission
duration. Then, the software is tested to see how well predicted reliability matches
the specified values, as shown in Figure 11.1.

Just predicting reliability does not tell the whole story about Criterion 1. We are
also interested in how much test time is likely to be required to achieve the reliability
goal. Thus, Equation 11.2 is produced by substituting R for R(t,) in Equation 11.1
and solving for t,. Equation 11.2 is used to predict the test time t; required to achieve
the reliability requirement R, using the Shuttle continuous software testing regimen
in the Shuttle simulators and in flight, as shown in Figure 11.2. In addition, in order
to ensure a safe mission, it is required that testing continue for a time t; > t,,. That
is, testing under simulated operational conditions should continue for a duration
longer than the planned mission duration:
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Figure 11.1 NASA Space Shuttle (OI8A) (SSRM): predicted reliability R(t,) and specified
reliability R versus test time t,. Series 1: R(t,). Series 2: Reliability risk. Series 3: R.
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The first step in the procedure for evaluating reliability risk is to plot Equation 11.1
as a function of test time and the specified reliability R in accordance with Risk 1.
The purpose is to see whether the reliability objective has been achieved. As can be
seen in Figure 11.1, it is achieved once there has been sufficient testing at 104 days
when faults have been removed to the extent that the reliability goal can be achieved.
Once this has occurred, missions can be launched for durations t,, < t; = 104 days.

The second step is to see how fast risk can be decreased by achieving higher
reliability by increasing test time. Figure 11.1 attests to the strategy of achieving the
reliability risk goal by increasing test time.

The third step is evaluate the cost of testing, using test time as the surrogate for
cost, to identify the value of achieved reliability where the cost becomes prohibitive.
We see in Figure 11.2 that R > 0.9800 would result in exorbitant cost of testing (i.e.,
relatively large test times). Thus R = 0.9800, requiring t; = 58 days of test time, is
a reasonable objective that balances safety against cost.

Criterion 2 (Time to Failure Risk)

To address the risk posed by this criterion, predict the time to next failure as a
function of given number of cumulative failures F(T), and relate it to Risk 2:
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RT = (t, - (T)/t, = 1 — (T)/t,) to see which mission durations constitute the highest
risk. To do this, the time to next failure(s) is needed in Equation 11.3 [SCH97]:

T= -llog[1 ~(F(D)+ XH)(E
B o

):|+s—1 for (F(T)+XS_1)(EJ<1, (11.3)
a
where F is the given number of cumulative failures and X_, is the number of failures

in the range 1, s—1. Figure 11.3 demonstrates that all mission durations are safe to
fly because in all cases, T > t,, where the range of t,, = 1, 13 days.

Criterion 3 (Remaining Failures Risk)

This criterion uses Equation 11.4 [SCH97] to predict the number of failures remain-
ing, r(t,), after the software has been tested for a time t,. This prediction provides an
assessment of residual faults in the software as a function of test time, leading to
the identification of test time required to predict the risk associated with the remain-
ing failures criterion. This time is predicted as 41 days in Figure 11.4 for a criterion
of one remaining failure. That is, a minimum test time of 41 days is required to
ensure that the remaining failures criterion is satisfied:

’(t) = %[exp(—ﬁ(ts ~(s-1))]. (11.4)
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Table 11.2 Summary of Risk Prediction Results

Risk criterion Figure Result

Reliability Figure 11.1 R(t;) > R = 0.9797 at t, = 104 days

Reliability Figure 11.2 Cost of testing high for t, > 58 days and R > 0.9800
Time to failure Figure 11.3 T > t,, for all values of t,,

Remaining failures Figure 11.4 Safe region: t; > 41 days for r. = 1

t;, test time; R(ty), predicted reliability; R, specified reliability; T, predicted time to failure; t,, mission
duration; r., remaining failures criterion.

Question for Reader: Why is the remaining failures criterion zero remaining
failures rather than one?

Answer: As can be seen in Figure 11.4, predicted remaining failures decreases
asymptotically with increasing test time. Thus, it would require an infinite
amount of test time to achieve zero remaining failures. In addition, from a
practical standpoint, no software of any consequence is error free. If it
appears error free because no errors have been experienced, either the
program has not been executed long enough or the code where the errors are
hiding has not been executed! Thus, a criterion of “one” is a practical goal.

Summary of Prediction Results

The purpose of Table 11.2 is to assemble the prediction results corresponding to the
risk criteria in one place so that the summary results can be identified. Based on the
results, the following are the key findings:
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Reliability requirement is achieved at R = 0.9797 at t; = 104 days.
Cost-effective predicted reliability is approximately 0.9800.

Test software for a minimum of 41 days to achieve the remaining failures
requirement.

Test for a maximum of 58 days to avoid excessive cost of testing.

All planned mission durations are safe.

In summary, one must test for 104 days to achieve the reliability objective, even
though it is not cost-effective. This decision gives a higher priority to safety than
to cost.

Risk Control

It is insufficient to predict risk. In addition, risk control and mitigation is necessary
for developing and implementing risk resolution plans (i.e., action to take if risk
goal not achieved), monitoring risk status (measuring current risk and comparing it
with planned risk), and correcting deviations from the plan [KHA09 , RUZ03]. For
example, there could be errors in predicting reliability, time to failure, and remaining
failures, resulting in inaccurate assessments of the conditions for safe missions.
Monitoring risk involves recording the actual future time to failure during test and
operation and comparing with predicted values. Then the mean relative error (MRE)
is computed. For example, an MRE in excess of £20% could be considered justifica-
tion for discarding the current model and evaluating others [LYU96]. Risk mitigation
can be implemented by refining predictions to improve their accuracy by using
additional failure data generated from future tests and operations, designed to
improve the accuracy of risk criteria computations.

Another consideration in risk control is mapping failures to their causes [FEA04].
To illustrate, the failures recorded for the NASA Space Shuttle software release
OI8A in Table 11.1 spans the range of category 1, mission-threatening failures, to
category 3, minor failures; workarounds are available for the latter. Thus, in the
examples, since reliability predictions are based on these data, the predictions are
representative of typical failure scenarios (e.g., time to failure predictions can
produce a mix of category 1-3 time to failure predictions).

CONCLUSIONS

It is beneficial for risk analysis to focus on reliability because, after all, if expected
reliability cannot be achieved, the software would be useless no matter what other
qualities it may possess. Mission success can be measured by predicting the extent
to which predicted reliability exceeds specified reliability. Other reliability-related
metrics are time to failure and remaining failures. We would have confidence in the
safety of the mission if predicted time to failure exceeds planned mission duration
and predicted remaining failures are less than a specified critical value.
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Chapter 12

Integration of Hardware and
Software Reliability

The objective of this chapter is to integrate hardware and software into a unified reliability
model by using several reliability models in order to identify an appropriate integrated model,
supported by failure data from several real-world projects. Several system configurations are
evaluated, including series, parallel, and series—parallel. The Weibull distribution, because of
its ability to model various failure rate patterns, is useful for identifying the reliability proper-
ties of each of the configurations. A reliability benefit—cost ratio, with cost based on the
number of series and parallel components, is useful for evaluating model predictions. As a
by-product of the modeling process, several reliability relationships are revealed that might
be intuitively obvious, but are dramatized by quantitative analysis. For example, increasing
the degree of hardware parallelism will not produce the desired reliability if hardware and
software failure rates are excessive. In this situation, the only recourse to achieving acceptable
reliability is testing to correct faults. In addition, in a component-based system, component
failure rates must be extremely low in order to prevent the failure of even a single component
that could bring the system down. This chapter uses several reliability principles covered in
Chapter 8. The reader may want to refer to Chapter 8 because topics such as series and parallel
reliability configurations and Poisson and Weibull distributions are used in this chapter.

INTRODUCTION
Objectives

The primary objective is to show the reader how to integrate hardware and software
reliability into a single system reliability model. The reason for this is typically,
hardware and software are treated as disparate entities in reliability analysis, when
in fact they are intimately related. For example, an error in software causes a divide
overflow, leading to a hardware divide overflow interrupt, which, in the user’s view,

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

315



316 Computer, Network, Software, and Hardware Engineering with Applications

is a system failure. A second objective is to evaluate various software—hardware
configurations such as series, series—parallel, and pure parallel in relation to cost, so
that the reader can see which configuration produces the most favorable reliability
benefit—cost (BC) relationship. Third, the analysis is supported with failure data from
real-world projects in order to see how these data affect efforts to achieve high
system reliability by using redundancy, for example.

A factor in achieving high reliability is that the quality of a product design is
dependent on the quality of the process in which it is inserted. Changes in process
evolve and this evolution should be taken into account when designing a product
for high reliability [BONO98]. For example, achievable product reliability is a func-
tion of software testing methodologies (e.g., testing by software function versus
testing by program path). While this is true, process is beyond the scope of this
chapter because there is no information available on the relationship between product
and process quality.

Definitions

As an aid in understanding the development of reliability models, the following
terms are defined:

Series Component (x;). Part of a series, or series—parallel, configured computer
system (see Fig. 12.1), hardware or software [MUSS87].

Parallel Component (x;). Part of a parallel, or series—parallel, configured com-
puter system (see Fig. 12.1), hardware or software [MUSS87].

Operational Mode. The operating characteristics of a component [MUS87].
Operational modes can have different requirements and reliabilities [MUS87].

Requirements include both functional (e.g., performance) and nonfunctional
(e.g., reliability) specifications [MUS87].

R; Ri
Interrupt high
Input 1
S=xi+.. x5+ 4+X) X" AN X
Input 2
Input received
Input 3

Clock transition

Parallel (OR) connection  Series (AND) connection

Rs =R R, = ([TR)(1- ([T -R, )

Rs: system reliability

Figure 12.1 Series—parallel reliability.
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Concurrent System. Comprised of components that execute during the same
scheduled operational time, but not simultaneously (e.g., computer and appli-
cations software) [MUS87].

Sequential System. Comprised of components that execute at different sched-
uled operational times (e.g., input data component execution followed by
database management system execution) [MUSS87].

Functional Logic

Reliability is related to the functions that are performed in a system. For example,
if the output S in Figure 12.1 of a series—parallel hardware and software system is
“1,” it means that the input has been received and that system reliability of this event
is Rs. The success of the input received function in Figure 12.1 of a series—parallel
hardware and software system is given in Equation 12.1:

S=(X+ X X)X AL AX N, (12.1)

where x; and x; =0 or 1.

RELIABILITY LOGIC

Reliability logic refers to the ways in which reliability is computed for configurations
of series, parallel, and series—parallel hardware and software components. This
entails considering the way components are connected, as in Figure 12.1, which
provides the logic for the number of terms and the operators (OR, AND) in the reli-
ability equations. In addition, the reliability models for individual components (e.g.,
exponential, Weibull) are integrated with the connection logic.

Series—Parallel Configuration

In viewing the following reliability equations, refer to Figure 12.1 for a pictorial
view of a series—parallel configuration, where components can execute sequentially
(inputs followed by interrupt and clock transition) or concurrently (interrupt and
clock transition during scheduled operating time).

The reliability of a series configuration with s components, each with reliability
R;, is computed in Equation 12.2:

R =]~ (122)
i=1

The reliability of a parallel configuration with p components, each with reliability
R;, is computed in Equation 12.3. The rationale of this equation is that parallel con-
figuration reliability is equal to 1 minus the parallel configuration unreliability:
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P
R, =1—[H(1—Rj)} (12.3)
j=1

Then using Equations 12.2 and 12.3, and assuming series system reliability Rg, it is
computed in Equation 12.4:

Rs=R.R, z(ﬁRiJ(l—(ﬁ(l—RJ«))J. (12.4)

Assuming series system reliability provides a conservative, or worst-case, computa-
tion, with the assurance that the system reliability will be no worse than predicted
by Equation 12.4.

When the failure rate A is constant mean value (i.e., exponentially distributed
time t between failures), the reliabilities in Equations 12.2—-12.4 are computed based
on the exponential distribution in Equation 12.5:

R(t) =™, (12.5)

In hardware reliability, Equation 12.5 is used during the operational phase (neither
burn-in nor wear out phases) when operating time is available [MICOS5]. This cor-
responds to the Poisson failure count model in Equation 12.6 that is used when you
want to predict the probability of x failures occurring, with a failure rate A, for an
operating time t. If you set x = 0 in Equation 12.6, you arrive at Equation 12.5:

B (At) e
- x! '

P(x, 1) (12.6)

Equation 12.6 can also be used for evaluating the effect of failure rate of various
components on probability of failure and to identify the number of failures x when
the probability of failure becomes negligible. The latter analysis can be used to
advantage in determining how long to test components (i.e., terminate testing when
x failures have occurred and their faults removed).

Question for Reader: Can you think of an assumption that governs the struc-
ture of reliability Equations 12.2—-12.4?

Answer: There is the assumption of independence of faults that cause failures,
thus allowing component reliabilities to be multiplied. However, this may
not be the cases because faults can be dependent. For example, one fault
can mask another. The masked fault cannot be detected until the masking
fault is removed [LYU96]. In such cases, the faults and failures and resul-
tant component reliabilities are not independent. However, by multiplying
component reliabilities, the salvation from this problem is that the assum-
ption of independence leads to lower, and, hence, conservative reliability
predictions.
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Reliability When n Out of N Components Fail

In the preceding discussion of reliability, notice that component reliability is not
taken into account—computations of reliability are at the system level. If N, the
number of components in a system, is available, you can use Equation 12.7—the
binomial distribution—to predict the system reliability Rs, based on n of the N
components operating without failure, each with a reliability R. The component
reliabilities, in turn, can be formulated on an exponentially distributed operating time
basis by using Equation 12.8:

N S\ L 1Ry van
RS_(n!(N—n)!)(R )([A=R)*™), 12.7)
where R = e, (12.8)

To predict the operating time t corresponding to specified reliability R and mean
failure rate A, use Equation 12.9, which is obtained by solving Equation 12.8 for t.
This equation is useful for predicting the duration of operating time that is feasible
for an application with a specified reliability. If the time does not satisfy the opera-
tional requirement, it means that the specified reliability would have to be reduced
to meet the requirement:

t =(—logR)/A. (12.9)

The likelihood of processor failure during a long-running application that uses mul-
tiple processors increases with the number of processors, and the failure of a single
processor can crash the entire system. Detecting faults and recovering from faults
is thus a major concern in using these systems [CAR95]. On the one hand, based
on the reliability of individual components, R = e, reliability will decrease for a
long-running application. On the other hand, if each processor (component) runs the
same application, system reliability Rs in Equation 12.7 will increase as the number
of processors, n, that do not fail increases. The net effect on system reliability
depends on values of failure rate, A, operating time, t, and n.

Cost Considerations

You should not evaluate the reliability of various computer configurations ignoring
cost. For example, in configurations that involve parallel redundancy in order to
increase reliability, there would be additional cost incurred compared with a series
configuration. The penalty for using parallelism to achieve reliability improvement
is the additional processors that are required. For a serial-parallel configuration
comprised of one processor to communicate with s serial components (e.g., input—
output, memory) and p processors to communicate with p parallel components, the
total number of processors is ¢ = p + 1. Since the cost of processors would be equal
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for a given configuration, the cost is proportional to c, so that the benefit of increased
system reliability Rg can be related to the cost ¢ by the BC in Equation 12.10:

BC=Ry/c =Ry/(p+1). (12.10)

If the configuration is pure series, p = 0 and ¢ = 1; if it is pure parallel, c = p = N,
number of components. A cautionary note is that since ¢ = 1 for the series configura-
tion, BC = Ry would look very favorable. However, the system reliability Rg must
also satisfy the specified reliability requirement R. That is, Rg > R. Thus, first, the
reliability requirement must be satisfied. Then, BC can be computed.

RELIABILITY ANALYSIS RESULTS
Series-Parallel Configurations

The disk failure rates used in the analysis of series—parallel configurations are shown
in Table 12.1.

Figure 12.2 shows that only the pure parallel configuration satisfies the reli-
ability requirement. While the reliability of the series configuration is poor, it does
provide the worst case, so that you can be assured that reliability would be no worse
than this case. Finally, you can see that the series—parallel configuration does not
provide a significant advantage over the series configuration.

BC Considerations

Now, when the BC relationship is applied in Figure 12.3, the superiority of the
series configuration for all values of operating time is evident. However, for a
mission-critical application, operating for prolonged periods, and cost is a minor

Table 12.1 Disk Failure Rates (The Computer Failure Data Repository [CFDR], Carnegie
Mellon University)

Failures per day per disk

From Number Failure
Type of cluster day To day Days Failures of disks rate
T f d A
High performance 37,104 38,838 1734 1263 3406 0.000214
High performance 37,987 38,899 912 14 520 0.000030
Internet server 38,000 38,031 31 465 26734 0.000561
Internet server 38,231 38,808 577 667 39039 0.000030

Internet server 38,353 38,687 334 346 3734 0.000277
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Figure 12.2 Disk reliability R(t) versus operating time t. Series 1: 5 disks connected in series, 1
processor required. Series 2: 2 disks connected in series, 3 disks connected in parallel, 4 processors
required. Series 3: 5 disks connected in parallel, 5 processors required. Series 4: required
reliability = 0.9500 (only parallel configuration satisfies reliability requirement).
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Figure 12.3 Reliability benefit—cost ratio BC for disk configurations versus operating time t. Series
1: Series—parallel configuration (2 disks connected in series, 3 disks connected in parallel, 4 processors
required). Series 2: Series configuration (5 disks connected in series, 1 processor required). Series 3:
Parallel configuration (5 disks connected in parallel, 5 processors required).
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Figure 12.4 Disk probability of failure P(x, t) versus number of failures x. Series 1: failure
rate = 0.370816 failures per day. Series 2: failure rate = 0.004271 failures per day.

consideration (e.g., nuclear power plant control), you would select the parallel
configuration.

Probability of Failure

It is important to study the effects of failure rate and number of failures on probabil-
ity of failure. In addition, since testing can be expensive, you want guidance for
determining how long to test. Both of these issues are illustrated in Figure 12.4,
where you can see that failure rate dramatically affects probability of failure, and at
x = 6 failures detected, you could stop testing.

Figure 12.5 uses Equation 12.9 to estimate the operating time t that can be
achieved for specified values of reliability R(t) for five disk systems with different
failure rates. You can see that t decreases with increasing R(t) and failure rate. This
type of figure could be employed to estimate the operating time that could be
achieved for any hardware or software component whose reliability is described by
the exponential function.

Component Reliability Analysis

Advances in multiprocessor technology have made possible the design of highly
flexible parallel multiprocessor memory systems, such as the Los Alamos National
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Figure 12.5 Disk operating time t versus required reliability R(t). Series 1: failure rate =
0.378016 failures per day. Series 2: failure rate = 0.013462 failures per day. Series 3: failure
rate = 0.005798 failures per day. Series 4: failure rate = 0.004271 failures per day. Series 5: failure
rate = 0.018532 failures per day.

Table 12.2 Component Failure Data (Los Alamos National Laboratory’s ASC Q
Supercomputer)

Component Memory Cache Parity CPU Hardware
type failure failures failures failures failures failures Total failures
rate per hour  per hour per hour per hour  per hour per hour
A 0.0047  0.0061 0.0065 0.0075 0.0096 0.0127
Number of N 22
components
Operating time  t 1.00 hour
Operating time ~ t 3.50 hours
Operating time ~ t 4.50 hours

Laboratory computer documented in Table 12.2. High reliability is required for these
systems because a small degradation in a component (processor or memory) can be
catastrophic by significantly lowering the overall system reliability. High reliability
of these systems has been commonly achieved by utilizing redundancy [CHOO2].
Therefore, the component-based reliability relationships are investigated, including
redundancy that applies when individual component reliabilities are predicted
and the results put into a larger framework of generating system reliabilities. This
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Figure 12.6 System reliability Rs versus number of components that do not fail n. Series 1: Rg,
memory failures, failure rate = 0.0047 failures per hour, operating time t = 1 hour, component
reliability = 0.9953. Series 2: Rs, memory failures, failure rate = 0.0047 failures per hour, operating
time t = 4.5 hours, component reliability = 0.9790. Series 3: R, CPU failures, failure rate = 0.0075
failures per hour, operating time t = 1 hour, component reliability = 0.9925. Series 4: Rs, CPU failures,
failure rate = 0.0075 failures per hour, operating time t = 4.5 hours, component reliability = 0.9668.

analysis is informative because you can study the effects on system reliability of
failure rate, component reliability, operating time, and number of components that
do not fail. The data that were used to support this analysis are shown in Table 12.2.
As can be seen in Figure 12.6, when very few components fail (i.e., n is large) and
operating time is low, these are conditions for producing acceptable system reli-
ability (i.e., approximately 0.9000).

Another perspective on component reliability evaluation can be obtained by
using the Poisson probability of failure that was introduced in Equation 12.6, but
this time rather than number of failures, the focus is on number of failed components
n in Equation 12.11:

(M) e

n!

P(n. 1) = (12.11)

The purpose of this examination is to determine whether there is a significant prob-
ability of multiple failed components. Using the same components, failure rates, and
operating times that were explored in Figure 12.6, you can produce Figure 12.7,
revealing that for both memory and central processing unit (CPU) components, the
probability of multiple failed components is negligible. Therefore, the prospects are
good of achieving high reliability in this multiple component system.
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Figure 12.7 Probability of components failing at time t, P (n, t) versus n. Series 1: P(n, t): memory
failures, failure rate = 0.0047 failures per hour, t = 1 hour. Series 2: P(n, t): memory failures, failure
rate = 0.0047 failures per hour, t = 4.5 hours. Series 3: P(n, t): CPU failures, failure rate = 0.0075
failures per hour, t = 1 hour. Series 4: P(n, t): CPU failures, failure rate = 0.0075 failures per hour,
t = 4.5 hours.

Assessing Reliability Model Predictive Accuracy

If you possessed historical computed reliability data for the systems tabulated in
Tables 12.1 and 12.2, you could compute the error between the prediction models
and the historical reliability data in order to assess the predictive validity of the
models. Lacking this information, you can make a qualitative assessment as follows:
If redundancy is used to improve hardware reliability, then a model with parallelism
is most appropriate. If the major concern is to predict worst-case reliability, the series
model should be used. If component failure data are available, the n out of N model
is the most appropriate. Complementing these models is the Poisson probability of
failure model that provides an additional quality perspective by predicting the prob-
ability of a specified number of failures occurring. This information can be used to
determine how long to test (i.e., stop testing when a number of failures have been
detected corresponding to a low value of probability of detection).

COMBINED HARDWARE-SOFTWARE
RELIABILITY ANALYSIS

One approach to reduce the complexity of systems and, hence, render them suitable
for reliability modeling is decomposition. To deal with the complexity of integrated
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modeling, the functions of a computer system are successively divided by a func-
tional decomposition method. The decomposition of a function into subfunctions
stops when the smallest subfunctions cannot be divided further or dividing the sub-
functions further will be of no interest. When the smallest subfunction is achieved,
the next step is to represent the implementation of the function in terms of the hard-
ware function, software function, and some form of interaction [PUR99]. Unfortu-
nately, this is usually difficult to do because the functionality information to support
decomposition is not available.

The classical reliability models that considered only hardware are no longer rel-
evant. Software, its operations, and resultant failures, are at least as important as
hardware failures. Interestingly, the author [PUR99] uses user-perceived reliability
and availability data rather than data recorded against the hardware and software. This
is a useful practice because who else is better to judge whether a system is up or down
than the user [WOO95]? While you might like to use this concept, user-perceived
reliability and availability data are generally not available for most projects.

Another approach is to provide strong partitioning of applications, which means
that the boundaries among applications are well defined and protected so that opera-
tions of an application will neither be disrupted nor corrupted by erroneous behavior
of another application [RUS99]. Each application is allocated to a single partition,
providing computational and memory resources and the means to access devices
[ISLO6]. Strong partitioning improves the reliability of individual applications and
the system as a whole.

Combining Hardware and Software Reliability

In the case of a system with a real-time operational mode, such as the Los Alamos
CRAY-1 computer, performance is affected by such factors as interprocess com-
munication, sequence of operations, and processor scheduling policies. On the other
hand, the reliability of the system is affected by random hardware and software
failures. In the event of the failure of some components, a real-time system must
still continue to function, and a subset of its time-critical tasks must meet the dead-
line [LSL92]. To respond to the continuous operation requirement, one of the
hardware—software models that will be explored provides parallel hardware redun-
dancy combined with software components in series. Note that software redundancy
is infeasible because the same fault will reside in all copies of the software, but you
can mitigate the risk of software failure by testing for a time to assure high reliability.
To aid this investigation, use the example hardware and software failure data from
the CRAY-1 computer in Table 12.3. These data will be used in the Weibull reliability
model in a later section.

System Validation

Validation of computer system reliability during the development of the system is
an important activity. The validation process provides: (1) a measure of the ability
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Table 12.3 Hardware—Software Failure Data (Los Alamos National Laboratory)

CRAY-1 Fraction
reporting Total Hardware software ~ Software = Hardware Software
period failures failures failures failures  failure rate failure rate
t f h="f—(sx*fs) fs s=1xfs A A
1 40 13.88 0.6529 26.12 0.69 1.31
2 38 37.51 0.0128 0.49 1.88 0.02
3 29 19.66 0.3219 9.34 0.98 0.47
4 23 19.47 0.1534 3.53 0.97 0.18
5 19 5.60 0.7055 13.40 0.28 0.67
6 15 7.90 0.4733 7.10 0.40 0.35
7 17 5.89 0.6533 11.11 0.29 0.56
8 19 10.42 0.4516 8.58 0.52 0.43
9 24 18.67 0.2219 5.33 0.93 0.27
10 25 3.80 0.8479 21.20 0.19 1.06
11 31 19.90 0.3581 11.10 0.99 0.56
12 35 24.80 0.2914 10.20 1.24 0.51
13 33 31.15 0.0561 1.85 1.56 0.09
14 34 23.62 0.3052 10.38 1.18 0.52
15 35 27.22 0.2224 7.78 1.36 0.39
16 33 22.14 0.3290 10.86 1.11 0.54
17 24 1.20 0.9500 22.80 0.06 1.14
18 28 23.07 0.1761 493 1.15 0.25
19 27 4.56 0.8313 22.44 0.23 1.12
20 28 1.48 0.9471 26.52 0.07 1.33
21 31 11.89 0.6163 19.11 0.59 0.96
Totals 588 333.85 254.15

20 days in reporting period.

of a system to detect, locate, and recover from errors; (2) confidence in a system
before it is deployed; and (3) feedback during the development stage for improving
the design and implementation of a system. Fault injection has been recognized as
one of the best approaches for evaluating the behavior and performance of complex
systems. There are several advantages in adopting the fault injection approach for
evaluating these systems. These advantages include: (1) the effects of faults can be
determined when executing programs; (2) the overhead of algorithms that are used
to recover from faults can be evaluated; (3) the effects of additional faults occurring
during the recovery process can be studied; and (4) reliability models can be refined
by utilizing data, such as the distribution of faults in the hardware and software
[KNAO9S]. These methods are powerful, but in order to use them, you need access
to software code that would allow you to do fault injection.
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In real-time systems, hardware and software interact to accomplish a specific
task. The presence of both hardware and software causes difficulties in validating
real-time systems. A common obstacle is the lack of formal methods (e.g., correct-
ness proofs) that can be used to validate both hardware and software [HSI99].
However, a method that you can apply to both hardware and software is predictive
validity (e.g., mean squared error [MSE] between actual [historical] and predicted
reliability [LYU96]). MSE has the advantageous property that it effectively measures
the variance between actual and predicted values and is useful for comparing the
prediction accuracy of various reliability models.

Structure of a Software Application

The structure of a software application may be defined as a collection of components
comprising the application and the interactions among the components. A component
could be a single function, a class, an object, or a collection of these. The interac-
tions among the components may be procedure calls, client—server protocols, links
between distributed databases, or synchronous and asynchronous communication
among components [GOKOS5]. These software components are integrated with hard-
ware components to form a unified suite of components that can be subjected to
reliability evaluation.

Reliability evaluation is useful and important in designing computer systems,
while at the same time it is also difficult. The difficulty becomes significant when
the model combines hardware, software, and their interactions, due to the difference
in failure behavior between hardware and software [PUR99]. Despite this difficulty,
the analysis now shifts to investigate one of the major objectives: the possibility of
developing a unified hardware—software reliability model (i.e., a system reliability
model not limited to hardware or software).

Hardware and Software Failure Relationships

You can consider hardware and software failure relationships to be based on the
following reasoning: It is extremely unlikely that hardware and software failures
would occur simultaneously. If they did, it would be a coincidence rather than cause
and effect. For example, an error in the software that causes the program to take a
wrong branch, would not, in itself, result in a hardware failure. Another example is
when there is a memory failure and, subsequently, the software “fails” in attempting
to access the defective memory. But the failure should be charged to the hardware
and not to the software. Now, it is possible for a permanent hardware failure to
render the software inoperable [KANO96], but this is not the fault of the software.
The failure should be charged against the hardware. The consequence is that the
availability of the software would be decreased.
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Assessing Predictive Validity

In order to assess predictive validity of hardware, software, and system reliability
predictions, the corresponding actual (i.e., historical) reliability computations are
required in Equations 12.12-12.14, respectively, over the scheduled operating time
T. Once these values have been computed, mean relative error, with respect to the
corresponding predictions, can be computed:

h,

T s

T (12.12),

t=1

Rah =1_

where h; is the actual number of hardware failures;
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ZS (12.13),
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where s, is the actual number of software failures;

Raf =1-

Zf (12.14),

where f| is the actual number of system failures.

Weibull Reliability Model

Due to the great variation in both hardware and software failure counts in Table
12.3, a flexible failure function is needed to represent these phenomena. One of the
most widely used distributions for reliability is the Weibull failure distribution
[SHOBS3]. It has the flexibility of allowing for constant, increasing, and decreasing
failure rate functions. Thus, given the variability in hardware and software failure
rates in Table 12.3, it is a good candidate for predicting the reliability of the CRAY-1
computer. The reliability R(t) at operating time t is given in Equation 12.15, where
A is the failure rate and o is the shape parameter (i.e., the parameter that governs
the shape of the reliability function) [LLO62]:

R(t)=e ™%, (12.15)
The parameters of the Weibull distribution are estimated according to Lloyd and

Lipow [LLOG62] in Equations 12.16 and 12.17, where n is the number of failure
counts:
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However, trying to solve Equations 12.16 and 12.17 is not practical because in order
to solve for A in Equation 12.16, o is required, but to solve for o in Equation 12.17,
A is required. A practical approach is to use the reliability function, Equation 12.15,
to solve for o, given values of A and R(t), for a specified value of t. Now, solving
Equation 12.15 for o results in Equation 12.18:
QZ[W} (12.18)

However, notice the constraint on the maximum value of R(t) that can be achieved
to avoid trying to take the log of a negative quantity: R(t) < e™* because log R(t) = A.
Therefore, set the limit on R(t) according to R(t) < €™ and substitute this value in
Equation 12.18 and solve for a. Since the hardware and software failure rates A and
failure time t (reporting period) are given in Table 12.3, you have all the information
needed to estimate the parameter o.

Weibull Model Results

If Equation 12.15 does not yield adequate hardware—software predictive reliability,
compared with actual hardware—software reliability, parallel and combined series—
parallel reliability models can be brought into play to provide hardware redundancy,
thereby increasing both hardware and system reliability. Figure 12.7 shows these
concepts, where predicted system reliability is considerably below actual system
reliability and there is a large MSE difference between the two reliabilities. Using
five hardware components in parallel, with software in series, while significantly
reducing the prediction error, does not result in predicted system reliability approxi-
mating actual reliability. Therefore, in order to raise reliabilities to desirable levels,
hardware, software, and system failure rates must be reduced. This issue will be
addressed in the next section.

Solving Equation 12.15 for failure rate A(t), for values of operating time t and
mean value of parameter o, allows you to estimate the failure rate required to achieve
specified reliability R(t) in Equation 12.19. This estimate is made for hardware,
software, and system reliability:

A1) = (—log(R(1))/(t*). (12.19)
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Table 12.4 CRAY-1 Failure Rates

Mean failures per day

Required reliability Hardware Software System
No requirement 0.794874 0.605126 1.400000
0.8000-0.9900 0.107179 0.106992 0.107185

Applying Equation 12.19, the mean value of failure rates for CRAY-1 hardware,
software, and system required to achieve the specified reliability values are tabulated
in Table 12.4. Surprisingly, there is negligible difference in failure rates among
hardware, software, and system, but significant reductions when compared with the
failure rates where no reliability requirement is specified. The reason for this is that
when there is a reliability goal, efforts to reduce faults and subsequent failures are
focused, such as testing to bring reliability into conformance with the specification.
Whether an organization would opt to achieve these reliability levels would depend
on the mission reliability requirement and the cost of testing to remove faults to the
extent that required failure rate reduction would be achieved. The lack of distinction
between hardware and software failure rates may be explained by the fact that being
a super computer, the CRAY-1 possesses both complex hardware and software,
contributing approximately equally to the generation of failures.

It is also important to estimate the operating time t that could be achieved for
a specified reliability R(t) and mean value of parameter o in the Weibull model, by
solving Equation 12.15 for t. The result is Equation 12.20:

il
t= K%)(log R(t))}(a). (12.20)

Figure 12.8 shows the results of applying Equation 12.20 to the CRAY-1 computer
data, where you can identify the maximum operating times that can achieved at
specified values of reliability. The utility of this figure is that it shows the predicted
spread, and maximums of operating times, that could be achieved for a computer
and its applications.

SUMMARY AND CONCLUSIONS

Using data from several real-world projects, evaluations were conducted with several
hardware, software, and system reliability models. The major result is that if the
project failure data are significant, no amount of parallelism will salvage a reliability
disaster. Faults must be removed and failure rates reduced for the systems to come
into conformance with reliability specifications.
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Figure 12.8 CRAY-1 reliability R(t) versus operating time t, using Weibull distribution for
predictions. Series 1: Actual system reliability. Series 2: Predicted hardware—software system
reliability, no parallel hardware components, MSE = 0.4952. Series 3: Predicted hardware—software
system reliability, five parallel hardware components, MSE = 0.0146.

Although not a result, it was noted that only hardware is subject to parallel-based
reliability improvement because using software redundancy is no help because the
same faults will be repeated in multiple copies of the software.

It was found that the reliability BC, where cost is based on number of configura-
tion components, is a good tool for deciding on a series—parallel configuration that
provides both required reliability at a reasonable cost. This metric can be related to
operating time so that it is possible to see when one configuration (e.g., pure parallel)
becomes superior to another (e.g., series).

The probability of failure metric is useful because it allows you to identify the
accumulated number of failures where the probability of additional failures becomes
negligible and testing can be terminated.

An important consideration of the user community is how long a system can be
operated at specified values of reliability. Using various values of reliability, cor-
responding failure rates, and solving the reliability equation for operating time, the
community can predict the operating times that could be achieved. When both hard-
ware and software failure data are available, this prediction identifies the maximum
operating time and corresponding reliability that can be achieved by hardware,
software, and system.

It was seen that when component failure data are available so that system reli-
ability can be predicted as a function of number of components and their failure
rates, no components can be allowed to fail in order to achieve acceptable reliability.
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Even a single component failure would put the system down. The solution to this
problem is to use very high reliability software and hardware components, combined
with hardware redundancy, in the system design. As the analysis showed, this
problem is mitigated by the fact that the probability of multiple component failures
at the same operating time is negligible.

In accordance with the major objective of integrating hardware and software
into a system model, the Weibull distribution was chosen for this purpose because
it has the flexibility of modeling various failure rate patterns. While the Weibull
distribution is useful for showing how parallelism can improve system reliability,
it did not match actual reliability very well; other models may provide better
accuracy.
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Part Five

Applications



Chapter 13

Applying Neural Networks
to Software Reliability
Assessment

While you have studied many reliability concepts—both software and hardware—in Chap-
ters 8, 11, and 12, this material was based on traditional models. In this chapter, new models
are studied based on concepts from the field of neural networks that are used to assess the
reliability of software, employing cumulative failures, reliability, remaining failures, and time
to failure metrics. In addition, the risk of not achieving reliability, remaining failures, and
time to failure goals are assessed. The purpose of the assessment is to compare a criterion,
derived from a neural network model, for estimating the parameters of software reliability
metrics, with the method of maximum likelihood estimation. The neural network method
proved superior for all the reliability metrics that were assessed by virtue of yielding
lower prediction error and risk. Considerable adaptation of the neural network model was
necessary to be meaningful for the software reliability assessment application—only inputs,
functions, neurons, weights, activation units, and outputs were required to characterize this
application.

INTRODUCTION

Neural networks have attracted a great deal of attention from researchers because
they have many advantages over other models. For example, they have the ability
to learn. Given sample data, a neural network can learn rules from these sample data
with or without a teacher. They have the capability to adapt weights to changes in
the surrounding environment. That is, a neural network trained to operate in a spe-
cific environment can be retrained to deal with minor change in the operating envi-
ronmental conditions [WONO8].
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Neural networks have been successfully applied to many fields, such as pattern
recognition [FUK98], system identification [CHU90], and intelligent control
[NARO92]. Software engineering areas including risk analysis [NEUO2], cost estima-
tion [TADOS], reliability estimation [KAR96], and reusability characterization
[BOB93]. However, they have not been applied as extensively to help programmers
find bugs [WONO7, WONO8]. Since neural networks operate on the principle of
learning, no model is specified a priori [KAR96], meaning the models are evolved
by learning.

Neural networks are comprised of the following components [KAR96]:

e Models of Neurons. Characteristics of the processing units used in neural
networks

* Models of Interconnection Structure. Topology of the network and strength
of interconnections that encode network knowledge

e Learning Algorithm. Steps involved in computing or assigning neural con-
nection weights in the network

Biological neurons are single cells capable of crude computation. Neurons are
stimulated by one or more inputs and generate outputs that are sent to other neurons.
Outputs are dependent on the strength of inputs and the nature of input connections.
Some connections excite neurons and increase output; others inhibit neuron output
[MAS93]. Neurons are connected together with weighted connections following a
specified structure. Each neuron has an activation function that describes the rela-
tionship between its input and output [WONOS8]. Neural network learning is nor-
mally accomplished through an adaptive procedure, known as a learning algorithm
[WONOS]. The architecture of a generic neural network is shown in Figure 13.1.

Functions

Weights

Output

Figure 13.1 Generic neural network.
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Back Propagation Algorithm

Back propagation (BP), or propagation of error, is a common method of teaching
neural networks how to perform a given task. It is similar to feedback in a control
system that adjusts the input to achieve the desired output. The algorithm can cal-
culate the desired output for any given input. An important application of BP in
neural networks is fault localization s[LEE99, WASO93]. It is a learning method, and
is an implementation of the gradient descent (ascent) learning rule. Gradient descent
(ascent) refers to computing the rate of change of a function to find where the rate
of change is minimum. For example, finding the time of testing software where the
rate of change between reliability and test time is a minimum, thereby achieving a
balance between improving reliability, by localizing faults, and the cost of testing.
Once this rule is learned for one software system, it can be applied to subsequent
software systems.

NEURAL NETWORKS APPLIED
TO FAULT LOCALIZATION

Fault localization is the most expensive activity in program debugging. Traditional
ad hoc methods can be time consuming and ineffective because they rely on pro-
grammers’ intuitive guesswork, which may be neither accurate nor reliable. A better
solution is to utilize a systematic and statistically well-defined method to automati-
cally identify code that should be examined for possible fault locations. A statistical
method can be used to identify the coverage of each executable statement and the
execution result (success or failure) for each test case. A record is constructed for
each executable statement and a statistic is computed to determine the likelihood of
the corresponding statement containing bugs. Statements with a higher likelihood
of bugs are more likely to contain bugs and should be examined before those with
a lower likelihood [WONO7].

A typical neural network has a feed-forward structure that can be trained to learn
the input—output relationship from a set of data. For example, the input is the
program statement coverage of a test case and the output is the corresponding state-
ment execution result (success or failure). After the network is trained, a test case
with only one statement covered is used as an input to compute the likelihood of
the corresponding statement containing bugs. The larger the output, the greater the
likelihood of statement bugs. Statements are then ranked in descending order based
on their likelihood of containing bugs. Programmers examine these statements from
the top of the rank, one by one, until the first statement containing the bugs is
identified.

In fault localization, the output of a given input can be defined as a binary value
of 0 or 1, where 1 represents a program failure on this input and O represents a suc-
cessful execution. With this definition, the output of each input is known because
you know exactly whether the corresponding program execution fails or succeeds.
Moreover, two similar inputs can produce different outputs because the program
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execution may fail on one input but succeed on another input. Thus, learning algo-
rithms that cannot adapt to the environment are inappropriate for fault localization.
Therefore, neural networks using adaptable learning algorithms are better candidates
for solving the fault localization problem.

NEURAL NETWORKS APPLIED TO SOFTWARE
RELIABILITY ASSESSMENT

Another approach to software reliability improvement, in addition to fault localiza-
tion, is to adapt neural network concepts to reliability prediction. The idea is to use
gradient descent or ascent, depending on the nature of the activation function in
Figure 13.2 (i.e., relationship between inputs and outputs). In effect, the network is
trained to use the gradient method to identify the test time when the marginal reduc-
tion in failures and faults (benefit) is just balanced by the marginal increase in test
time (cost).

Cumulative Failures

Software reliability, as measured by cumulative failures during testing, is illustrated
in Figure 13.2. The idea is to embody the neuron with the processing power to
aggregate the weighted failure counts x; in the test time intervals i, such that the

Inputs
X4
Wij
Testing Neuron
Wo; . . . .
Fanin Processing Activation

Xi > > »> ) - Output

Function Unit Unit P

, (ifi=i,
F ZZW X Fi=Fi release software)
W3j = .
F] = min [(FiH, i FiJ)/F‘j]
Xn
Fi

i s
Figure 13.2 Neural network process function. x;, number of failures in interval i; wy, severity of

failures in interval i for software system j; F;, cumulative failures limit; F;;, cumulative failures

ij»
Activation Function for test interval i and software system j; i, scheduled test time; i,, test time at F,.
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actual cumulative failures for a software system j, F;;, is compared with the limit
value, F;, where the limit value is equal to the slope of the curve in Figure 13.2 at
test time i. If F;; < F,, the software is released because at this test time i, marginal
benefit equals marginal cost; otherwise, it is subjected to further testing. Equation
13.1 shows the computation of cumulative failures and Equation 13.2 shows the
computation of weights, using the failure severity code:

Fy =Y wix;, 13.1)
i=1
Si'
wy=1-38, (13.2)
Sm

where s;; is the severity code of x; for software system j and s,, is the maximum value
of the severity code (minimum severity). The limit F, is computed in Equation 13.3,
where the limit is the minimum rate of change over successive test intervals i. The
value of i corresponding to F, is the amount of test time required to achieve the
reliability objective. If this value of i, i, is less than or equal to the schedule test
time i, release the software system; otherwise, continue testing. Note that in order
for this policy to make sense, the faults causing the failures that have been detected
must be corrected:

E =1’I1in[F1+J’J _Fi']' (13.3)

In order to test the validity of Equation 13.3 as a criterion of a benefit—cost limit for
cumulative failures, the equation for predicted cumulative failures is needed in order
to see whether F, is capable of identifying the amount of test time that should be
used to accurately estimate the parameters of the prediction model. The predicted
cumulative failures will be compared with the actual cumulative failures (unweighted)
in Figure 13.3. The prediction equation from the Schneidewind software reliability
model (SSRM) [SCHO97] for test interval i is shown in Equation 13.4:

F(i) = (ou/B)[1-e P ]+ X, (13.4)

where o, and P are failure rate parameters, s governs how much failure data are used
in parameter estimation, and X_; is the observed failure data in the range (s—1), i.
Figure 13.3 shows how the neural network criterion limit of Figure 13.2 and
Equation 13.3 can be applied to identify the test interval i that is optimal for termi-
nating testing and releasing the software system. This is the test interval when the
rate of change of actual cumulative failures is minimum. In other words, this is the
point in test time when diminishing returns in finding and correcting faults has been
reached. The results of an experiment to test the validity of the neural network cri-
terion limit are shown in Figure 13.4. The experiment was conducted by predicting
cumulative failures for a National Aeronautics and Space Administration (NASA)
Space Shuttle software system j = OI6, using SSRM. This model has a parameter s
that identifies the first interval of test failure data that is used in estimating model
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parameters. Two criteria were used in selecting s: one is based on the neural network
criterion limit identified in Figure 13.3 as i = 77 that corresponds to s = 13 (the 13th
failure count interval); the second is based on the maximum likelihood estimation
(MLE) method of parameter estimation [SCHO7] that yielded s =2. The mean
squared error between the actual and predicted cumulative failures was computed
for the two methods. As Figure 13.4 demonstrates, the neural network criterion limit
provides much better prediction accuracy.

Reliability

A second validity test was conducted by experimenting with the reliability activation
function in test interval i, R; (i.e., R; output produced when input failure counts x;
occur). Unlike the case of cumulative failures, using weights does not apply because
reliability is not an additive function. Start by computing the actual reliability and
its reliability limit criterion, R,, in Equations 13.5 and 13.6, respectively:

R =1-| 2| (13.5)
2%
i=1

R, = min[(R,,; —R,)/ R, ]. (13.6)

As in the case of cumulative failures, the equation for predicted reliability is needed
in order to compare it with actual reliability from Equation 13.5, and to ascertain
whether Equation 13.6 provides an effective criterion for identifying the optimal
amount of test time. Predicted reliability, as obtained from SSRM, is shown in Equa-
tion 13.7, where the parameters have been defined previously.

In Figure 13.5 you see that the reliability criterion limit R, from Equation 13.6
is associated with the maximum actual reliability R; at a test time i; equal to the total
scheduled test time i,. This test time corresponds to the reliability parameter s = 13
that will be used in subsequent reliability evaluations.

The superiority of the neural network reliability criterion limit in the early stages
of testing is demonstrated in Figure 13.6, where this method produces a prediction
lower error, with respect to actual reliability, than in the case of the parameter evalu-
ation method. However, the latter method does have an advantage in yielding higher
reliability in the later stages of testing. Thus, in choosing reliability prediction
models, it would be prudent to evaluate more than one model because a given model
may not be superior for all test times.

Another important formulation of reliability is shown in Equation 13.8, where
the concept is to predict reliability at the end of the mission duration, t,. This is
done by predicting reliability for the test time i plus the mission duration (i + t),
assuming the system becomes operational immediately after the completion of test
time i. The concept is to subject the system to increasing values of mission duration
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in order to identify the maximum mission duration (i.e., mission duration where
predicted reliability no longer achieves specified reliability):

R(i) = e—{%[e‘ﬁ(i—S+l)_e—B(i—s+2)}], (13.7)
R(l . tm) _ e_[%[e—[i(i-nm—sﬂ)_e—B(i+tm—s+2)ﬂ‘ (138)

Reliability Risk

Risk is a major issue in software reliability assessment because there is a probability
(i.e., risk) that the predicted reliability of a software system, as given by Equation
13.8, will not achieve specified reliability, R, at the end of the mission. Thus, reli-
ability risk, RR, is computed in Equation 13.9:

RR=(R-R(i+t,))/R=1-(R(i+t,))/R, (13.9)

where R is specified reliability. The greater the relative difference between specified
and predicted reliabilities in Equation 13.9, the greater the risk. The best result is
when RR goes negative (i.e., predicted reliability > specified reliability). Figure 13.7
demonstrates that the neural network criterion method involves lower reliability risk
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Figure 13.7 NASA space shuttle OI6: reliability risk RR versus specified reliability R. Series1:
RR, using neural network criterion for s = 13. Series 2: RR, using parameter evaluation method for
s = 2. s, first test interval of failure data used in RR parameter estimation.
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at higher values of reliability. This is important in a mission-critical application, such
as the Shuttle flight software, which requires high reliability at low risk.

It is also important to compare the neural network and parameter evaluation
methods with respect to the reliability required to achieve the mission duration.
Figure 13.8 provides an interesting contrast between the methods because although
the required reliability produced by the parameter evaluation method is less, for the
given mission duration, this would not be desirable for a mission-critical application
where the reliability must be high. Thus, it is important to evaluate such results
in the context of the application: for a commercial application, where the cost of
achieving reliability is critical, the parameter evaluation method would be the choice,
but not in a mission-critical application.

It is also of interest to predict the test time ig required to achieve specified reli-
ability R. This quantity is predicted in Equation 13.10 by solving Equation 13.7 for
i, where R(i) becomes the specified reliability R:

ir =[(=1/B)log[(-B/a)logR/(1—exp(—B))]]+B(s—1). (13.10)

Figure 13.9 vividly shows that the neural network criterion is superior because its
use requires significantly less test time to achieve specified reliability. Thus, on
balance, considering the software reliability results shown in Figures 13.5-13.9, the
neural network criterion is the better choice, particularly for the mission-critical
application that has been evaluated.
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Remaining Failures

Another important reliability metric is remaining failures. The reason for the impor-
tance of this metric is that remaining failures represent residual problems buried in
the software code that could emerge when least expected—during operation. Thus,
it behooves us to include this metric in our arsenal of software reliability tools. Note
that remaining failures, expressed in Equation 13.11 (SSRM), is a predicted quantity
because you have no way of knowing the actual number of remaining failures. But
this begs the question of how to evaluate the neural network and parameter estima-
tion methods that were employed previously by comparing the method prediction
errors, using actual failure values. The solution is to approximate remaining failures
by using the known remaining failures, as shown in Equation 13.12, where X is the
total number of failures reported at the scheduled test time interval i, and x; is the
number of failures in test interval i. Since these are failure counts, it is appropriate
to weigh remaining failures in Equation 13.12:

r(i)=%[exp(—B(i—(s—1)))], (13.11)

L :Wij(xs_zxi]~ (13.12)

i=1
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Then the neural network criterion r; can be computed by the usual process, with the
proviso that since remaining failures is a decreasing function, as opposed to the
increasing functions of cumulative failures and reliability, Equation 13.13 has been
formulated appropriately:

| =min[(ri,j _ri+l,j)/ri+1,j]- (13.13)

In addition, as in the case of reliability, predict the reliability risk using Equation
13.14 (SSRM):

(i) =1-(r(i)/r.), (13.14)

where r, is a specified number of remaining failures. Values of r(i) < r. will render
rr(i) positive, and, hence, yield decreasing risk.

Figure 13.10 again demonstrates the superiority of the neural network criterion
for parameter evaluation by producing a significantly lower prediction error with
respect to the actual remaining failures. More evidence of this result is afforded by
Figure 13.11 that shows, for a specified remaining failures r. = 1, that the risk is
lower (i.e., more positive) for the neural network criterion. Furthermore, by using
this criterion, the risk trends positive much earlier in test time.
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Figure 13.10 NASA space shuttle OI6: remaining failures r(i) versus test time i. Series 1: actual
r(i). Series 2: predicted r(i), using neural network criterion for s = 8, MSE = 1.1423. Series 3:
predicted r(i), using parameter evaluation method for s = 2, MSE = 4.4606.
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Time to Next Failure

Time to next failure is also an important software reliability metric because if the
predicted value is less than the mission duration, it could be disastrous for the
mission. Therefore, preceding as before, first find the neural network criterion t; by
using the actual time to failure, t;, as illustrated in Equation 13.15. The prediction
metric is shown in Equation 13.16, using SSRM as the source:

ty =min[(t; —ti,) / t;], (13.15)
N o L A
T(l)_log{(a—B(F+XS,i))/B} (i-s+1) for o> BF+X,;), (13.16)

where F is the specified number of failures (usually one) to use in predictions and
X, 1s the observed failure count in the range s, i, and i is the failure count interval
when the prediction is made.

As in the case of remaining failures, there is a risk associated with the time to
failure metric because, as mentioned earlier, a prediction less than the mission dura-
tion poses a risk. This relationship is expressed in Equation 13.17, where T(i) < t,,
represents risk in the risk criterion metric RCM T(i). When T(i) > t,,, the risk func-
tion in Equation 13.17 is negative (i.e., favorable):
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Figure 13.12 Predicted time to failure T(i), risk criterion metric RCM T(i), and mission duration t,,
versus time i. Series 1: T(i), using neural network criterion for s = 8. Series 2: RCM T(i), using neural
network criterion for s = 8. Series 3: t,,. Series 4: T(i), using parameter evaluation method for s = 2.
Series 5: RCM T(i), using parameter evaluation method for s = 2.

tm —T(1) :l—m

m tm

RCM T(i) = (13.17)

Figure 13.12 shows that the safer (i.e., lower risk) alternative is the one produced
by the neural network criterion: the RCM is more negative and this metric goes
positive at a longer time. The implication is that the software system could be oper-
ated safely for a longer time, using the neural network criterion.

Mean Time to Failure

The mean time to failure (MTTF) is the expected value of predicted time to failure
and is valuable for characterizing time to failure across various time intervals i. It
can be conveniently predicted in Equation 13.18 by using the interval i, and then
calling upon the predicted cumulative failures F(i) from Equation 13.4:

MTTF =i/F(Q). (13.18)

Further evidence of the superiority of neural network criterion is provided by Figure
13.13, wherein MTTF is higher for this method. The importance of this result is that
MTTF is well understood in the software industry and is typically used to character-
ize the reliability of software systems [MUS87].
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Figure 13.13 NASA space shuttle OI6: Predicted mean time to failure MTTF versus time i. Series
1: MTTF, using neural network criterion for s = 8. Series 2: MTTF, using parameter evaluation method
for s =2.

Problem for Solution by Reader: Using Equations 13.11 and 13.14 for pre-
dicted remaining failures and remaining failures risk, respectively, compute
the risk for specified remaining failures r, = 2. Then plot the following four
risk curves, with respect to test time i, which has been used on previous plots,
on one figure:

risk forr, = 1, using neural network criterion with o0 = 1.0895 and 3 = 0.1250

risk for r, =1, using parameter evaluation method with o = 1.5953 and
B = 0.0650

risk for r, = 2, using neural network criterion with o0 = 1.0895 and 3 = 0.1250

risk for r, =2, using parameter evaluation method with o = 1.5953 and
B = 0.0650

Interpret the results: compare the four curves and indicate which factors lead
to the greatest risk.

Solution: Figure 13.14 shows the solution with the greatest risk factors indi-
cated. The neural network criterion leads to the lowest risk because the risk
function is more positive, and becomes more positive sooner, than using the
parameter evaluation criterion.
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Figure 13.14 NASA space shuttle OI6: remaining failure risk rr(i) versus test time i. Series 1:
r. = 1, using neural network criterion for s = 8. Series 2: r. = 1, using parameter evaluation method for
s = 2. Series 3: r. = 2, using neural network criterion for s = 8. Series 4: r. = 2, using parameter
evaluation method for s = 2.

SUMMARY

The basic concepts of neural networks, as exhibited in Figures 13.1 and 13.2, proved helpful
in formulating the software reliability assessment problem. However, some properties of
neural networks, such as networks learning from a teacher and others [MAS93], proved to
be obscure and of little practical value for the reliability problem that was analyzed. On the
positive side, a surprising and enlightening result is that for all software reliability prediction
metrics, the neural network prediction criterion was superior to the traditional reliability
model parameter estimation method.
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Chapter 14

Web Site Design

Given the importance of Web systems in contemporary society, it behooves us to contribute
to improving their reliability. This chapter is just such a contribution. Much valuable research
on Web systems focuses on performance evaluation, failing to recognize that, in addition,
reliability should be considered. For example, if Web client-to-Web server access time is short,
while the system is up, the performance loses meaning if there is considerable downtime. You
can model the reliability of Web systems from the bottom up by developing component reli-
ability prediction equations for Web server, Web client, and the communication channels that
interconnect them. Then, the component models are integrated to produce total system reli-
ability models. Support your modeling efforts with real-world failure data. The prediction
equations identify weak spots in component and system reliability that assist organizations in
identifying corrective actions, such as fault removal, in order to achieve reliability goals.

INTRODUCTION
Background

The paradigm of Web services has been gathering significant momentum in both
academia and industry in recent years. This paradigm transforms the Internet from
a repository of data into a repository of services. Simply put, a Web service is a
programmable Web application that is universally accessible through standard Inter-
net protocols [FER03]. Web services opens a new cost-effective way of engineering
systems to quickly develop and deploy Web applications by dynamically integrating
other independently published Web services [HOLO02]. However, it is not clear that
this new model of Web services provides any measurable increase in reliability
[PAR9O0]. Thus, this is a motivation for this chapter to show the reader how the reli-
ability of Web services could be improved.

The essential feature of dynamically configured Web services poses new chal-
lenges for Web system reliability. In a traditional system, all of its components and

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
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their relationships are decided before the system runs. Therefore, each component
can be thoroughly tested, and the interactions among the components can be fully
examined, before the system starts to execute. Web services dynamically locate and
assemble distributed Web services in an Internet setting. More precisely, when a
system requires a Web service component, the system will search Web services
providers to choose the optimal Web service that fulfills the requirements [GOLO04].
The challenge to reliability of this approach is that these components may not have
been subjected to rigorous reliability testing.

Web System Reliability Approach

While there is much coverage of the performance characteristics of Web systems,
there has not been equal attention to the contribution of nonfunctional characteris-
tics such as reliability that plays an important role in the selection of Web services
by users [ZO07]. My objective is to improve nonfunctional properties, such as reli-
ability, by developing and analyzing comprehensive Web system reliability models.
To set the stage for Web system reliability models development, some characteris-
tics of Web systems that influence the design of Web-based models are described
below.

Fault-Tolerant Web Systems

The Web Service-Fault-Tolerance Mechanism is an implementation of the classic
N-version redundancy model for Web services that can easily be applied to systems
with minimal change. The Web services are implemented in different redundant
versions. The voting mechanism, which decides whether a component has failed,
and, thus, requires replacement, is conducted in the client program (i.e., user)
[CHAOQ7]. The problem with this is that while it will work for hardware, it will not
work for software because a fault in one version will be a fault in another version!

Web System Communication

In Web services, standard communication protocols and simple client—server requests
for Web pages are needed to facilitate service performance because standardization
simplifies interoperability [CHAOS]. It is necessary to ensure the reliability of Web
system communication and the interconnected components. Indeed, the use of net-
works, such as wireless to access Internet resources such as Web servers, causes
failures and degradation of the communication links between Web clients and Web
servers. In the Internet, problems such as the decrease of transmission speed due to
competing Web client access to Web servers, the decrease in processing performance
in Internet routers, and the degradation of the communication lines may occur. Also,
a decrease in quality of communication may be caused by changing distances and
locations between Web clients and Web servers [NAROS5].
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Robotic Web Services

Because Web services, implemented in robots, are moving, the distance between
clients and servers is likely to vary, and the position of clients and servers relative
to the signal will also change. This may affect the quality of communication lines.
If a client notices that the electric signal worsens, the client can move to find a place
where the electric signal can be received better. The solution is to achieve reliable
messaging technology of Web services, combined with a standard for the recovery
of failed Web services [NAROS].

Cyclomatic Complexity Analysis of Web System
Reliability

The authors exploit the idea of cyclomatic complexity to cover the number of inde-
pendent paths interconnecting Web clients with Web servers, where cyclomatic
complexity is the number of independent paths (i.e., no additional paths can be
created from existing paths) in a directed graph representation of a system. Thus,
this process focuses on the most likely communication paths, and still maintains the
dynamic nature of Web surfing (i.e., communication paths can change rapidly)
[WANO3]. This approach is very good, but Web system path data are needed to
support its implementation. These data may not be available.

Therefore, based on the above Web system characteristics, you can develop
reliability prediction models for assessing the software, hardware, and system quality
of a Web system. In performing this assessment, be cognizant of the importance of
quality of service [LAKOS5]. Quality of service is dependent on the nature of Web
service client, communication links, and Web server interactions. In order to under-
stand the myriad of failures that can occur in a Web system, for example, on the
client side, it is instructive to consider the properties of an XHTML Web page and
its associated tree structure. This is advantageous because you can obtain a sense of
the types of failures that could occur in constructing a Web page by a Web server.
A partial XHTML tree structure is shown in Figure 14.1 [MACQ9]. This diagram
provides a visual perspective of Web page syntax, which is not always easy to
understand in a linear text format. Note that errors in Web page design, in any path,
could lead to failure in Web page processing by the Web server.

Web Services State Transitions

In composing Web services, the usual assumption is that invocations of Web service
operations are independent (i.e., the invocation of a given Web service does not
depend on the invocation of another Web service). This assumption, however, does
not hold in practice because the service requirements impose ordering on the invoca-
tion of operations. Therefore, the use of state machines to model the order of Web
service operations is appropriate [HWAOQ7]. In the spirit of this advice, you can use
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Figure 14.1 XHTML tree structure.

the Web System State Transition Diagram in Figure 14.2, and the supporting transi-
tion information in Table 14.1.

Measures for predicting reliability are calculated with the aid of system configu-
ration descriptions, as shown in Figure 14.2 [ALAO2]. As shown in Figure 14.2,
system configuration descriptions denote the sequence of interactions. In order to
obtain the state transition probabilities that will be needed later in predicting total
Web system reliability, Table 14.1 presents the state transitions involved when a Web
client interacts with a Web server, as portrayed in Figure 14.2. The state transition
probabilities shown in this figure are developed in Table 14.3 in a later section. In
developing Figure 14.2, note that a Web transaction consists of a client resolving a
Web server name to the corresponding Internet Protocol (IP) address—browser
accessing the Domain Controller in Figure 14.2—establishing a Transmission
Control Protocol (TCP) connection to the Web server, and downloading the object
of interest, using Hypertext Transfer Protocol (HTTP) [PADOS]. In addition to fail-
ures due to interactions between client and server, failures in the disk storage unit
nodes, such as Web servers, account for a significant number of failures [SCHO71].

Web Server Proxy

Web server proxy is a well-developed scheme for improving the performance of Web
browsing. Users’ requests can be supported by a proxy, instead of the processing
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Figure 14.2 Web system state transition diagram. URL, Uniform Resource Locator; p,, probability

of state transition = probability of next state s.

Table 14.1 Web State Transitions

Current state

Next state

Transition trigger

Web Client doing local
computing s,
Web Client uses browser s,

Browser identifies URL of
desired Web Page s;

Browser obtains IP address
of domain s,

Browser sends IP address
to Web Server s;

Web Server looks for Web
Page in XHTML Web
Service s

Web Server retrieves Web
Page s,

Web client uses browser s,

Browser identifies URL of
desired Web Page s,

Browser looks up IP
address of domain s,

Browser sends IP address
to Web Server s;

Web server looks for Web
page in XHTML Web
Service sg

Web Server retrieves Web
Page s,

Web Server sends Web
page to Web Client sg

Web client needs Web
Page

Browser locates URL
name in Internet list

Browser accesses Domain
Controller

Automatic state change in
browser

Web Server receives
request from Web
Client

Web server finds Web
Page on XHTML Web
Service

Web Server has found
requested Web Page
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being performed by a Web server. In this instance, a proxy is a computer that per-
forms ancillary services on behalf of the Web server. These services are, for example,
identifying the initial search location in the Web database and formatting output for
the user. Performance studies show that a proxy is very effective in reducing the
response time of Web accesses [SHE04]. While this is true, the models in this chapter
are based on the Web client directly accessing the Web server to obtain a page. Also,
Web system service and reliability could be improved by transitioning to another
Web site or page in the event of failure of a given Web site [DHAOS].

Web Server Failure Data

Web server failure data cannot be found in abundance, which is an understatement!
Vendors are not anxious to reveal their reliability problems. Therefore, we have to
settle for failure data from computers that could function as Web servers, such as
the data described below. Actually, the particular data that are used are not important
as long as they are representative of the Web environment. What is important are
the characteristics of models that predict Web service reliability. The available data
are used for explanatory purposes; any representative data could be used.

One of the hardest problems in future high-performance computing (HPC)
installations, such as Web servers, will be avoiding, coping with, and recovering
from failures. HPC requires the simultaneous use and control of hundreds of thou-
sands or even millions of processing, storage, and networking elements. With this
large number of elements involved, element failure will be frequent, making it
increasingly difficult for applications to make progress. The success of HPC comput-
ing will depend on the ability to provide high reliability, supported by representative
failure data. The available data sets cover computer outages in HPC clusters, as well
as failures in storage systems [SCHO7].

The data obtained were collected during 1995-2005 at Los Alamos National
Laboratory (LANL) and covers 22 high-performance computing systems, including
a total of 4750 computing systems and 24,101 processors at two sites. The data
contain an entry for any failure that occurred during the 9-year time period. The
data cover all aspects of system failures: software failures, hardware failures, fail-
ures due to operator error, network failures, and failures due to environmental
problems (e.g., power outages). Hardware is the single largest component, with 50%
of all failures assigned to this category. Software is the second largest contributor,
with 20% of all failures at both sites attributed to software. Failure rate varies
widely across systems, from 10 failures per year per system to 1180 failures per
year per system. Note that a failure rate of 1180 failures per year per system means
that a Web server application will fail and require recovery action more than three
times per day, thus causing considerable disruption for Web clients. One might
wonder what causes the large differences in failure rates across the different systems.
The main reason for these differences is that the systems vary widely in size. Thus,
the failure rate of a system grows proportional to the number of processors in the
system (i.e., size) [SCHO7].
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WEB SERVER RELIABILITY ANALYSIS

The architecture of a Web Server has a profound impact on its performance and
reliability. One of the architectural characteristics of a Web server is its processing
method, which describes the type of process that is used to support Web Server
operations [GOKO06]. While this is true, unfortunately, the available Web Server
failure data do not include information on processing architecture.

As the authors attest [NICOS5], it is common to use statistical modeling theory
for the evaluation of Web-based system reliability. Keying on this idea, let us use
various statistical metrics to compute and predict reliability for illustrative Web
Servers, using the system, software, and hardware failure data shown in Table 14.2.
Note that the numbers of software (20%) and hardware (50%) failures do not
add to the number of system failures. The reason for this is that there are other
types of failures that are not identified in the Los Alamos failure data. In addition,
it is unusual to have a higher percentage of software failures compared with hard-
ware failures. The apparent reason is the complexity of supercomputer hardware
configurations.

The probability distribution of choice is the Weibull, as elaborated and justified
in the next section. Recall that you were introduced to this reliability distribution in
Chapter 12. Based on the patterns of failure data tabulated in Table 14.2, the Weibull
distribution proved appropriate for predicting system, software, and hardware
reliability.

Weibull Failure Distribution

One of the most widely used distributions for predicting reliability is the Weibull
failure distribution [LYU96]. It has the flexibility of allowing for constant, increas-
ing, and decreasing hazard functions (i.e., instantaneous failure rate), as demon-
strated by the hazard function in Equation 14.1 [LLOG62]:

Hazard function: h(i) = oA(i)*™", (14.1)

where o is a shape parameter, i is the system identification in Table 14.2, and A is
a scale parameter.

The parameter A can also be considered to be the failure rate.

Equation 14.2 represents the probability p(i) of system i failing. This equation
is flexible because it can portray various patterns of probability of failure across
systems, depending on the values of o and A [LLO62]:

p(i) = oA @ Ve ™M, (14.2)

For the exponentially distributed pattern of failure data in Table 14.2, the Weibull
reliability in Equation 14.3 is advantageous to use [LLOG62]:

R(i)=e ™, (14.3)
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The parameters of the Weibull distribution are estimated according to reference
[LLO62] in Equations 14.4 and 14.5, where n is the number of systems:

A=—",
. (14.4)
1
j=1
n
o= - - .
LY it logi; =Y logi; (14.5)
=1 j=1

However, trying to solve Equations 14.4 and 14.5 is not practical because in order
to solve for A in Equation 14.4, o is required, but to solve for o in Equation 14.5,
A is required. A practical approach is to use the reliability function, Equation 14.3
to solve for o, given values of A and R for a specified value of i.

Now, solving Equation 14.3 for o results in Equation 14.6:

log[—logiR(i))}
log(i)

(14.6)

However, notice the constraint on the maximum value of R(i) that can be achieved
to avoid trying to take the log of a negative quantity: R(i) < ™ because log R(t) = A.
Therefore, set the limit on R(i) according to R(i) < e™, and substitute this value in
Equation 14.6 and solve for o

In order to examine the validity of reliability predictions using Equation 14.3,
the actual reliability R,(i), based on historical failure data, is computed in Equation
14.7, where f(i) is the number of software failures for system i, computed over n
systems:

f.()

R,()=1-—
2 ) (14.7)
i=1

The error between the predicted and actual reliabilities is computed using the mean
relative error that is computed as: mean*((actual — predicted)/actual) [FEN97].

Factoring in Probability of State Transitions

Now, although the reliability analysis that was presented is appropriate, it is only
relevant when, according to Table 14.1, there is a state transition that causes a given
node (e.g., Web Server) in the Web system in Figure 14.2 to become active (e.g.,
Web server looks for Web page). Therefore, to predict total Web system reliability,



Table 14.3 Web State Transition Probabilities
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Current state

Next state

Transition
probability = Probability
of next state

Web Client doing local
computing s,
Web Client uses browser s,

Browser identifies URL of
desired Web Page s;

Browser obtains IP address
of domain s,

Browser sends IP address to
Web Server ss

Web Server looks for Web
Page in XHTML Web
Service sg

Web Server retrieves Web
Page s,

Web Server sends Web
Page to Web Client sg

Web Client uses browser s,

Browser identifies URL of
desired Web Page s;

Browser looks up IP
address of domain s,

Browser sends IP address
to Web Server ss

Web Server looks for Web
Page in XHTML Web
Service s

Web Server retrieves Web
Page s,

Web Server sends Web
Page to Web Client sg

Web Client doing local
computing s,

ps (1) = 0.034483
w (2) = 0.008333

ps (1) =0.172414

w (3) = 0.041667

ps (2, 3, 4) = 0.862069
w (4) = 0.208333

ps (4) = 1.000000

w (5) = 0.241667

Ps (6, 7) = 0.586207

w (6) = 0.141667

p7 (7, 8) =0.724138
w (7) = 0.175000

ps (6, 5,2) = 0.310345
w (8) = 0.075000
pi (1) = 0.448276
w (1) =0.108333

each node and link system reliability (systems of Table 14.2) must be multiplied by
the weighted probability of state transition w(i) py(i), where py(i) is the unweighted
probability and w(i) are weights that sum to one. Then, the values of w(i) py(i) R(i)
are summed to predict total system reliability R,. The result is Equation 14.8:

R, = wi) p.(i) R(i). (14.8)

i=1

A random number generator was coded in C++ to produce random numbers from
which probabilities of state transitions were derived. These probabilities and weights
are shown in Table 14.3. Note that these probabilities are for the purpose of illustrat-
ing the computation of Web system reliability. Other probabilities could be used in
other situations.

Using the logic of Figure 14.2—Web System State Transition Diagram—and
the state transition information in Table 14.3, the Web Client and Server Interac-
tions is constructed in Figure 14.3. With the probabilities of state transitions
appended, this figure will be used to predict total Web system reliability, as given
by Equation 14.8.
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1. Browser determines that
desired page is at URL
http:/fellowoftheieee.com/ 2. Browser looks up IP address
biographywebpage.html for domain

1=3 | 3. Browser sends IP address to
=2 Web Server

Domain Controller

Web Client f /
?

Web Server sends Web Page
to Web Client Internet

4. Web Server looks for Web
Web Server Page

XHTML Web Service Web Page

Figure 14.3 Web client and Web server interactions. i, node or link identification.

Reliability Analysis Based on Web Systems

The purpose of Figure 14.4 is to identify which Web systems are able to satisfy the
Web Server reliability requirement at the software, hardware, and system levels, and
to compute the prediction accuracy of software, hardware, and system with respect
to actual reliability. We see that only systems 1 and 2 satisfy the requirement and
that software has the best prediction accuracy as judged by the mean relative error
(MRE). This means that additional debugging of the faults in the system and hard-
ware is necessary, recognizing that system failures include user and computer opera-
tor errors. Traditionally, user and operator errors have not been analyzed because
the information may not be available. Since these errors could be significant con-
tributors to unreliability, they should be tracked by using user and computer operator
logs. Note that these systems are the ones from the LANL, where the failure data
are documented in Table 14.2, and the Web Server system is depicted in Figure 14.2.

It is also important to track the hazard function (i.e., instantaneous failure rate)
produced by Web servers in Figure 14.5 to determine whether there is any anomalous
behavior (i.e., sudden jumps in hazard function) that would jeopardize reliability.
As Figure 14.5 shows, indeed, there are cases of hardware and system showing
sudden jumps in hazard function, thus reinforcing the finding from Figure 14.4 that
hardware and system are candidates for additional fault removal.

Another reliability metric of interest is the probability of failure of Web server
systems shown in Figure 14.6, with software demonstrating the lowest probability,
once the probability of failure reaches steady state. Recall that the reliability plots
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Figure 14.4 Web server reliability R(i) versus system identification i. Series 1: Actual reliability.
Series 2: Predicted software reliability, MRE = 0.0849. Series 3: Predicted hardware reliability,
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Figure 14.6 Probability of Web server failure p(i) versus system identification i. Series 1: Software.

Series 2: Hardware. Series 3: System.

in Figure 14.4 showed that only systems 2 and 3 satisfied the reliability requirement,
but according to Figure 14.6, it might be better to select system 9 as the Web Server
because at this point, the probability of failure has stabilized. This would be a false
choice because reliability is the primary metric; other metrics are of secondary
importance. Since the probabilities of failure are relatively small for systems 2 and
3 in Figure 14.6, these systems would remain our choice for Web server.

When predicted reliabilities do not satisfy the required reliability, as is the case
in Figure 14.4, we can solve Equation 14.3 for A to predict the required failure rate
A that is necessary to achieve required reliability R(i). The result is Equation 14.9.
Statistical testing and reliability analysis can be used effectively to assure quality
for Web applications [KALO1]. Therefore, Equation 14.9 helps us determine how
much testing must be conducted to remove faults in order to reduce the failure rate
A to a value that will achieve the required reliability, R(i):

)= — 08RG (14.9)

1(1

Web Server Reliability Analysis
Based on Operating Time

Up to this point we have used LANL data and made reliability predictions across
these systems. Now, we focus on using data and making predictions as a function
of Web server operating time. Failure phenomena of Web server systems depends
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on their workload characteristics. As a result, the number of user Web sessions
strongly affects the failure rate of Web servers [FUJ09]. While this is true, operating
time is a better metric of workload than number of sessions because it represents the
continued, not periodic, use of Web facilities. Therefore, to start the analysis, Table
14.4 is presented showing the operating time-oriented data for system, software, and
hardware failure rates, where 20% of the failures are contributed by software and
50% by hardware. Typically, software accounts for a larger proportion of failures
than hardware. However, in the case of Los Alamos supercomputers, the hardware
configurations are very complex. This complexity contributes a disproportionate
share of failures.

Note that in using operating time, all equations that have been developed
remain the same except that operating time variable t is substituted for system iden-
tification i.

Next, predict the operating time-oriented reliability of software, hardware, and
system and compare these predictions to the actual reliability by computing the
MRE, similar to our previous analysis of the system-oriented reliabilities. Figure
14.7 shows that none of the reliability metrics—software, hardware, system—
achieve the required reliability. This means that, again, we must call upon Equation
14.9 to find the reduced failure rates that would allow the required reliability to be
achieved. Figure 14.8 shows the dramatic reduction in system failure rate required
to bring predicted reliabilities into conformance with required reliability. The impli-
cation of this result is that a massive reduction in Web server faults must occur
through comprehensive testing.

WEB CLIENT RELIABILITY ANALYSIS

The logic for developing the client-side Web probability of failure model is to con-
sider that, with a historical error rate of n errors per Web page operation, N number
of operations on the Web page, and an assumed exponential decrease in reliability,
as n and N increase, Equation 14.10 is produced reflecting the logic of n Web page
errors occurring over N Web page operations. Admittedly, there are no data to prove
the behavior of Equation 14.10. However, it seems reasonable that, as n and N
increase, the complexity of the Web page increases at an exponential rate, reflected
in an exponentially decreasing reliability R.(n, N).

The overall failure rate for a given server or a given client can be noticeable.
Failure rates in excess of 2% are not uncommon. The failure rate varies considerably
across servers and clients. About 30% of the failures can be traced to Domain Name
Server (DNS) problems, and most of the rest are due to the inability of the client to
establish a TCP connection to the remote Web server. (Note that the DNS lookup
accesses are included in Fig. 14.2.) Client-side problems account for the overwhelm-
ing majority of DNS lookup failures, whereas server-side problems are the dominant
cause of TCP connection failures [PADO5]. Therefore, in predicting client-side prob-
ability of failure, based on the above failure history, assume various values of n—as
much as 2% in Figure 14.9—to see how sensitive the result is to the size of n, for given
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Figure 14.7 Web server reliability R(t) versus operation time t. Series 1: Actual reliability. Series
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Figure 14.8 Web server system failure rate A versus operating time t. Series 1: failure rate for
predicted reliability. Series 2: failure rate required to achieve required reliability = 0.9500.
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Figure 14.9 Web client reliability R.(n) versus Web page error rate n. Series 1: N = 100. Series 2:
N = 200. Series 3: N = 300. Series 4: N = 400. Series 5: Required reliability = 0.9500. N, number of
Web page operations.

values of N. It is also of interest to see how reliability changes as a function of n as
reliability is increased by reducing the number of errors on a Web page. Therefore, the
rate of change of reliability with respect to n is predicted in Equation 14.11:

R.(n,N)=¢e™, (14.10)
dR.(n,N)
—c ¥ = _NR,(n,N). )
am) (n,N) (14.11)

Calling on Equation 14.10 in Figure 14.9, we are able to determine whether the Web
client meets the reliability requirement for various values of number of errors n and
number of operations N. As can be seen, this is not the case. Therefore, considerable
debugging of client software and hardware is necessary to achieve the required reli-
ability. In order to determine the error rate n that would be required to achieve the
required reliability for a given value of N, manipulate Equation 14.10 to produce
Equation 14.12:

_ _logR.(n.N) (14.12)
N
It is evident in Figure 14.10 that an excessive number of Web page operations
is bad news for reliability because the rate of change of reliability increases in the
negative direction as the number of Web operations increases.
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Figure 14.10 Web client rate of change of reliability dR.(n, N)/d(n) versus error rate n. Series 1:
N = 100. Series 2: N = 200. Series 3: N = 300. Series 4: N = 400. N, number of Web page operations.

COMMUNICATION RELIABILITY ANALYSIS

The last element in the Web system model to be subjected to reliability analysis is
the communication among Web system elements in Figure 14.2. The Web system
error rate is defined as the frequency with which errors or noise are introduced into
communication channels. Error rate may be measured in terms of erroneous bits
received per bits transmitted B. The distribution of errors is usually nonuniform,
with a higher probability of small message size B and a lower probability of large
message size. Thus, use the exponential distribution to represent the error rate in
Equation 14.13, where A is the communication channel error rate in megabits per
second (Mbit/s), b,, is the mean error rate, and By, is the maximum bandwidth in
megabits per second assumed available to the Web system. Given the exponential
decay in error rate in Equation 14.13, the reliability, R..(t), of the communication
channel in Equation 14.14 is expected to degrade exponentially with operating
time t:

A (bm)e_[%J (14.13)

>

R.(t) e™, (14.14)

As Figures 14.11 and 14.12 attest, client and server are restricted in obtaining
required communication reliability to a bandwidth of 30 Mbit/s (Fig. 14.11) and an



372  Computer, Network, Software, and Hardware Engineering with Applications

1.0000

0.9000

0.8000

0.7000

0.6000

0.5000

Rec(t)

0.4000

0.3000

0.2000

0.1000

0.0000

Predicted reliability fails required reliability for B > 30 MBit/s
—o— Series 1
—&— Series 2
20 30 40 50 60 70 80 90 100

B (megabits per second)

Figure 14.11 Web communication channel reliability R..(t) versus bandwidth B. Series 1:
Communication channel reliability. Series 2: Required reliability = 0.9500.
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Figure 14.12 Web communication channel reliability R..(t) versus operating time t. Series 1:
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operating time of 3 seconds (Fig. 14.12). If higher reliability is required, Web
system providers and users would have to invest in higher reliability communication
facilities. While reliability performance is obviously not outstanding, the situation
is not quite so dire because operating time refers to the time required to complete
single communication functions, not all the Web system functions illustrated in
Figure 14.2.

TOTAL SYSTEM RELIABILITY ANALYSIS

Individual Web components can be used to form value-added total Web services.
The value of total Web services is directly influenced by the reliability of individual
components [YANO6]. Following this dictum, invoke the total system reliability
Equation 14.8 to predict total Web system reliability in Figure 14.13. We see that
required reliability is satisfied for only a limited range of operating time. Further-
more, by including client, server, and communication component reliabilities in
Figure 14.13, we are able to prioritize the components for reliability improvement,
yielding the result that the server component is the first in line for reliability improve-
ment. In addition, Figure 14.13 provides us with the increase in system reliability
necessary to achieve the reliability goal for each value of operating time.

Question for Reader: Based on what you have learned in this chapter, what
process could you use to choose among existing Web services in terms of
performance and reliability?
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Figure 14.13 Total Web system reliability R, versus operating time t. Series 1: System. Series 2:
Client. Series 3: Server. Series 4: Communication channel. Series 5: Required reliability = 0.9500.
Series 6: Required system reliability improvement.
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Answer: Probably the most important performance factor that was not covered
in the chapter is the relevance of search results to the user’s information
needs. It was not covered because search relevance cannot be generalized.
It is highly personable and only has meaning for the Web client. Thus, you
could evaluate the relevance, coupled with response time, for various searches
important to you, over various Web services, and compare the results.

With respect to reliability, you could repeatedly access a group of Web systems in
rapid succession for the same search request, over an observed operating time, and
record any failures to provide search results. If failure counts are obtained, the data
would be used in the system actual reliability, Equation 14.7, to compute the reli-
ability of each Web system. The result would be one basis for choosing a Web
system.

SUMMARY AND CONCLUSIONS

In order to obtain a comprehensive and valid assessment of Web system reliability
and related metrics it is necessary to decompose the system into its component parts,
predict component reliabilities, and then do an integrative analysis to produce total
system reliability predictions. The reason for this is that there are different failure
properties for Web client, Web server, and the interconnected communication chan-
nels. This process includes the following steps:

1. Identify Web page operations so that the number of ways Web clients and
servers could fail can be ascertained.

2. Identify states and state transition probabilities so that components reliabili-
ties can be properly weighted to produce total system reliabilities.

3. Determine whether each component and the system satisfy the reliability
requirement.

4. When reliability requirements are not achieved, compute the failure rates
required to bring components into conformance with reliability
requirements.

5. Use rate of change of Web client and server-predicted reliability, with
respect to error rate, to identify the number of Web page operations that
cause reliability degradation.

6. Study the effects of increasing bandwidth and operating time on communi-
cation channel reliability.

7. Integrate component reliabilities into total system reliability predictions and
compute the reliability improvement necessary to achieve the reliability
goal.

The above process not only yields important Web system reliability predictions, but,
in addition, allows the researcher and practitioner to understand how all the pieces
of the reliability picture fit together, thus supporting reliability analyses.
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Chapter 15

Mobile Device Engineering

Issues in mobile network reliability, performance, and context and network awareness are
examined. Based on mobile phone failure data reported in the literature, reliability models
for assessing mobile network reliability are explored from two perspectives: by type of failure
and by category of failure recovery action. This chapter builds on the foundation provided in
the Chapter 8. Furthermore, the operational time corresponding to specified reliability values
are predicted. Based on these calculations, you could conclude that current mobile networks
are unable to provide highly reliable service for more than a few months of operation. In
addition, a novel signal-to-noise ratio is developed and computed, and applied to assessing
mobile network stability. Where data were not available, such as in issues involving context
(i.e., environment in which mobile device is operational, such as a wireless hot spot) and
network awareness (i.e., mobile device having the intelligence to recognize its operational
environment), | have indicated with diagrams how mobile networks could respond to changes
in both context and network awareness.

INTRODUCTION

The chapter’s objective is to discuss a number of issues in mobile computing, such
as risks of operating mobile devices, the problem of maintaining adequate power in
a mobile network, mobile device software reliability, context-aware and network-
aware mobile computing, and mobile device performance. Because the mobile
environment involves many software and hardware components and technologies,
it is important to address many relevant issues. Thus, for each of these issues, where
appropriate, a quantitative approach is used for making assessments of the need for
mobile device improvement. Reliability is an example of where the quantitative
approach is applied, which uses failure data reported in the literature to develop
several quantitative assessments of mobile network reliability, based on types of
failures and responses to the failures. In other cases, such as context-aware mobile
computing, where there is no quantitative data relating reliability and performance
to the context of the mobile environment, a qualitative analysis is provided.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
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Major Risks Posed By NMobile Devices

Security

While mobile devices are productivity-enhancing tools, they bring new security
threats to the enterprise. A security breach on the device can be expensive to the
user organization. The increasing numbers of mobile users and the explosion of
Internet connectivity have demolished the concept of a “fixed” information perim-
eter for organizations. A company network protected only by a central firewall is no
longer adequate. Users frequently travel outside the perimeter, where they can
expose confidential data and risk attacks. Mobile devices are at risk of carrying
viruses and other malware. These information corruptions may be released into the
network [TRE]. In order to counteract security threats, a network firewall, light-
weight encryption, intrusion detection, and antimalware software should be
employed, as shown in Figure 15.1.

Intrusion Detection

Of particular concern in the protection of mobile networks is intrusion detection
because if intrusion is successful, it could disrupt an entire network. Intrusion detec-
tion techniques sense intrusions while they are acting on an information system.
Existing intrusion detection techniques fall into two major categories: signature
recognition and anomaly detection [DEL04, ESA98]. Signature recognition tech-
niques match entities in an information system with signatures of known entity

intrusion detection
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Figure 15.1 Mobile device connectivity for security and performance.
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intrusions and signal an intrusion when there is a match. For example, consider the
entities: user, file, program, host, network, and so on. Signature recognition tech-
niques establish a profile of the entity’s normal behavior, for example, the files a
user is authorized to access. Then, anomaly detection compares the observed behav-
ior of the entity with the profile, and signals intrusions when the entity’s observed
behavior deviates significantly from its profile, for example, when the user is access-
ing unauthorized files [YEO2]. A successful intrusion increases the noise in a mobile
network and, thus, lowers the signal-to-noise ratio (S/N).

Power Loss

Another important risk of operating mobile devices is the challenge of power man-
agement and potential loss of power. These devices are increasingly being used in
multimedia streaming-type applications, common examples being on-demand movie
streaming and video conferencing. In spite of technological advances, battery life
still remains a major limitation of portable devices. The main power consuming
components of a mobile device are: central processing unit (CPU), display, and
network interface. Running multimedia applications further aggravates the situation,
because these programs are both CPU and network intensive. However, while the
CPU and network may benefit from managing the power budget (see Fig. 15.1),
displays need to be on at all times and thus limits the possibilities for saving power
without severely impacting the user experience [COR06]. The risk of power loss
can be mitigated by the use of power monitoring, as shown in Figure 15.1.

MOBILE DEVICE RELIABILITY
Software Mobile Network Products

In mobile ad hoc networks, wireless media have limited and variable ranges, as
distinguished from wired media. Each mobile device moves in an arbitrary manner
and routes are subject to frequent breakage [QINO3]. In software mobile network
products, often the failure rate decreases after installation, eventually reaching a
steady state. The time it takes for a product to reach its specified reliability depends
on different product parameters. Stabilization time is the operating time during
which specified reliability is achieved [SAUO06]. In mobile devices, achieving sta-
bilization is a function of parameters, such as quality of communication between
mobile devices and between mobile devices and mobile network, as represented by
S/N stability (i.e., S/N >> 1), in Figure 15.1.

Radio frequency (RF) interference, large-scale path loss, and fading cause
adverse channel conditions by reducing the S/N of the wireless communications.
When the S/N is lower than a certain threshold, the bit error rate of the wireless
communication rises over the acceptable limit, thus disrupting the wireless connec-
tion. Therefore, the key to maintaining wireless communication under adverse
channel conditions is to provide as high an S/N as possible [WANO7]. Furthermore,
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this important parameter can be related to reliability, as will be shown later. Reli-
ability becomes even more important as new critical applications emerge for mobile
phones (e.g., robot control, traffic control, and telemedicine). In such scenarios, a
phone failure affecting the application could result in a significant loss or hazard
(e.g., a robot performing uncontrolled actions) [CINO7]. Thus, device mobility,
designed to make devices less dependent on particular locations and resources, is
essential, as illustrated in Figure 15.1.

Wireless Communication

Wireless communication must be maintained under adverse channel conditions.
Wireless channel conditions are inherently more vulnerable than those of wireline
communications due to the existence of problems such as multiple access conten-
tion, RF interference, large-scale signal path loss, and signal fading. Industrial
environments make these problems worse due to large obstructions and possible
electromagnetic interferences (EMI). An example is the EMI from electric welding
or an electric motor that can last for hours or even days. Wireless local area net-
works (WLANSs) require much higher reliability than wired local area networks
(LANSs) for office or home use. Most office or home wired LANS allow a few
seconds or even minutes of adverse channel conditions. They just need to back off
or shut down until the channel condition recovers and then retransmit. However,
WLANS do not have the luxury of delay or shut down. Delay or shut down would
cause deadlines to be missed, which result in poor reliability and performance
[WANO7].

Reported Failure Data

In this section, failure data reported in the literature are analyzed. Failure data were
obtained from the analysis of failure reports posted between January 2003 and March
2006. There were a total of 533 reports. Phone models from many major vendors
are represented: Motorola, Nokia, Samsung, Sony Ericsson, LG, Kyocera, Audio-
vox, HP, Blackberry, Handspring, and Danger [CINO7]. Twenty-two point three
percent (22.3%) of failure reports are from smartphones, although smartphones
represented only 6.3% of the market share in 2005. This is attributed to the fact that
smartphones: (1) have more complex architecture than voice-centric mobile phones
and (2) are open for users to download and install third-party applications or develop
their own applications, which results in high failure rates.

Data for this study were obtained from publicly available Web forums, where
users post information on their experiences in using handheld devices. Symbian
operating system (OS)-based smartphone failure data were collected from 25 phones
(in Italy and the United States) over a period of 14 months [CINO7]. Key findings
indicate that: (1) the majority of OS kernel failures are due to memory access viola-
tion errors (56%) and memory management problems (18%) and (2) users experi-
ence a failure (freeze or self-shutdown) every 11 days, on average [CINO7].
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Failure Types

The following failure types are the way vendors classify failures [CINO7]:

Freeze (Lock-Up or a Halting Failure). The device’s output becomes con-
stant, and the device does not respond to the user’s input.

Input Failure. User inputs have no effect on device behavior (e.g., device
keys do not work).

Output Failure. The device, in response to an input sequence, delivers an
output sequence that deviates from the expected one. Examples include inac-
curacy in battery charge indicator, ring or music volume different from the
configured one, and event reminders going off at wrong times.

Self-Shutdown (Silent Failure). The device shuts down itself, and no service
is delivered to the user.

Unstable Behavior (Erratic Failure). The device exhibits erratic behavior
without any input from the user, (e.g., backlight flashing and device self-
activation of applications).

Recovery Actions

A disruption due to the failure of one of the participating (e.g., mobile device) or
intermediary (e.g., cellular network) systems typically results in the user having to
restart the application, often at significant expense to both the user and to the service
provider For mobile users accessing digital cellular networks, such disruptions occur
frequently, as the wireless link is much less reliable than wired connections [VANO3].
Therefore, it is important to discuss and evaluate actions to recover from a device
failure. Recovery actions are classified as follows [CINO7]:

Service the Phone. The user has to bring the phone to a service center for
assistance. Often, when the failure is firmware related (computer program-
ming instructions that are stored in a read-only memory unit rather than being
implemented through software), the recovery consists of either a master reset
(all the settings are reset to the factory settings and the user’s content is
removed from the memory) or a firmware update (i.e., uploading a new
version of the firmware).

e Reboot. The user turns off the device and then turns it on to restore the correct

operation (a temporary corrupted state is cleaned up by the reboot).

* Remove Battery. Battery removal is mainly performed when the phone

freezes. In this case, the phone often does not respond to the power on/off
button. Battery removal can clean up a permanent corrupted state; however,
this is a crude way to invoke power management. Improved power manage-
ment is needed in mobile devices to increase their utilization [ YUKO3].
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o Wait an Amount of Time. Often it is sufficient to wait for a certain amount
of time to let the device deliver the expected service.

Repeat the Action. Repeating the action is sometimes sufficient to get the
phone working properly (i.e., the problem was transient).

Optimistic Message Logging. In optimistic message logging, the task of
logging mobile device messages is assigned to a centralized mobile station,
so that in the event of a mobile device failure, the device may be able to
recover the message from the centralized mobile station. A number of message-
logging algorithms have been proposed to support fault tolerance of mobile
computing systems. However, little attention has been paid to the optimistic
message logging scheme. Optimistic message logging has a lower failure-free
operation cost compared to other logging schemes [PARO2].

Automated Failure Data Logger. There is still little understanding of how
and why mobile phones fail or of the methods and techniques needed to
gain such understanding. A well-established methodology to evaluate the
reliability of operational systems and to identify its bottlenecks is field
failure data analysis. However, today’s smartphones do not have a means to
detect and collect failures. A solution is the automated failure data logger.
Upon failure detection, the logger gathers useful information, such as the
phone’s activity, the list of running applications, and error conditions
in system and application modules. The technique has been implemented
in Symbian OS smartphones. The main objective of the logger is to detect
and record the occurrences of freezes and reboots. It is important to detect
the status of the phone during a failure. For example, assume that a phone
freezes when a text message is received. It is important to answer questions
such as: (1) do we know that a text message was being received? (2) do we
know whether some module failed? and (3) are we aware of other applica-
tions running during the failure that may have contributed to the freeze)?
[WANO7]

Failure Severity

Failure severity is classified according to the user perspective and defines severity
levels corresponding to the difficulty of the recovery action(s) [CINO7]:

e High. A failure is considered to be high severity when recovery requires the
assistance of service personnel.

* Medium. A failure is considered to be of medium severity when the recovery
requires reboot or battery removal.

e Low. A failure is considered to be of low severity if the device operation can
be reestablished by repeating the action or waiting for a certain amount of
time.

All failures occurring during emergency calls (e.g., 911) are high severity.
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Table 15.1 Failure Frequency and Recovery Action Distribution: Fraction of Total Number of

Failures

Recovery Action

Service Remove Wait for  Repeat

Failure type Severity phone Reboot battery response operation Unreported Totals

Freeze Medium 0.0365 0.0236  0.0901  0.0429 0 0.0601 0.2532

Input High 0.0064 0.0064 0.0021 0 0.0064 0.0086 0.0299
failure

Output Low 0.0687 0.088  0.0043  0.0064 0.0579 0.1373 0.3604
failure

Self- High 0.0665 0 0.0215  0.0043 0 0.0773 0.1696
shutdown

Unstable High 0.0687 0.0172 0.0021  0.0021 0.0064 0.088 0.1845
behavior

Totals 0.2468 0.1352  0.1201  0.0557 0.0707 0.3713

Table 15.1 shows the distribution of failures and recovery actions. Despite their
high occurrence, output failures are low severity, since repeating the action is often
sufficient to restore the device to the correct operation. On the other hand, self-
shutdown and unstable behavior are high-severity failures because they must be
corrected by servicing the phone or removing the battery. Phone freezes are medium
severity, since rebooting only occurs in 2.36% of the total number of failures. While
input failures are high severity because device keys do not work, their frequency of
occurrence is low.

From the recovery action perspective, it should be noted that reboots are an
effective way to recover from output failures (8.80% of the total number of failures).
This indicates that output failures are often due to a temporary software corrupted
state, which is cleaned up by the reboot. This is also confirmed by the fact that
repeating the action is often sufficient to restore a correct device operation. Freezes
are usually recovered by pulling out the battery (9.01%), even if a significant number
of them (4.29%) are recovered by simply waiting for the phone to respond. This
may indicate that a certain fraction of battery removals and reboots in response to
freezes is due to impatient users. In general, this leads to the conclusion that freezes
are more annoying than output failures.

Additionally, failure occurrences can be associated with the user activity at the
time of the failure (not shown in Table 15.1). In particular, 13% of failures occur
during voice calls, 5.4% while creating, sending, and receiving text messages, 3.6%
while using Bluetooth, and 2.4% when manipulating images. Finally, several reports
provide insight into the failure causes. There are indications of loss of memory data,
incorrect use of the device resources, bad handling by software of indexes and point-
ers to objects, and incorrect management of buffer sizes.
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Table 15.2 Expected Number of Failures, Failure Rates, and Recovery Rates

Recovery Action

Service Remove Wait for  Repeat n Failure
Failure type  phone Reboot battery response operation Unreported Totals rate A
Freeze 19.45 12.58 48.02 22.87 0.00 32.03 134.96 9.64
Input 3.41 3.41 1.12 0.00 3.41 4.58 15.94 1.14
Output 36.62  46.90 2.29 3.41 30.86 73.18 193.27  13.80
Self- 35.44 0.00 11.46 2.29 0.00 41.20 90.40 6.46
shutdown
Unstable 36.62 9.17 1.12 1.12 3.41 46.90 98.34 7.02
behavior
Totals 131.54  72.06 64.01 29.69 37.68 197.90 n
Recovery 9.40 5.15 4.57 2.12 2.69 14.14
rate

Further elaboration of failure types and corresponding recovery actions are
documented in Table 15.2, showing expected number of failures and failure rates
for the various failure categories.

RELIABILITY CALCULATIONS
Probability of Failure

Using the data from Tables 15.1 and 15.2, and assuming that failures occur according
to a Poisson distribution, we are able to calculate several interesting reliability
metrics. The Poisson distribution is most often used in situations where the probabil-
ity of the next state in a process is only dependent on the present state—the so-called
memoryless systems. For example, when the probability of the next failure is only
dependent on the present state (e.g., loss of battery power) of the mobile phone when
a failure occurs [MUSS87]. This is a reasonable assumption because, for example,
prior calls by the mobile device should have no effect on the current failure probabil-
ity of the device. Then the probability of x mobile phone failures occurring during
operating time t, is given by Equation 15.1:

(15.1)

—At X
P ==

where A is the failure rate. Note that when x = 0, Equation 15.1 yields the classical
reliability expression R(t) = e™.

Using the fraction of failures in each category in Table 15.1 and the 533 total
failure reports that are available, you can compute the expected number of failures

shown in Table 15.2 by multiplying the fraction of failures by 533. In addition, the
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Figure 15.2 Mobile phone: probability of one or more failures P(x > 0) versus operating time t.
Series 1: Input failure, high severity; expected number of failures = 15.94; failure rate = 1.14 failures
per month. Series 3: Unstable behavior, high severity; expected number of failures = 98.74; failure
rate = 7.02 failures per month.

failure rate was computed for each failure type and recovery action by A = n/t, where
n is the “Totals” column and row of Table 15.2 and t is equal to 14 months—the
length of time during which the failure data was collected. With the failure rate in
hand, you can compute the probability of one or more failures during the operational
time for each failure type (i.e., unreliability at operational time t). This is done in
Equation 15.2:

(15.2)

-\t X
P(x > 0,1) =1—[ﬂ}.

x!

The result is shown in Figure 15.2, where two of the high severity failure categories
are plotted. The figure indicates that over the life of a mobile phone—reports indicate
that phones are discarded every 18 months—it is highly unlikely that there would
be failure-free service for these failure categories. The same result was obtained for
the other failure categories but it was infeasible to include them in the same figure.
The results suggest that, given the fact that memory violations are the cause of the
majority of the failures, vendors should provide better protection against memory
violations, such as validity checks on memory access to ensure that the correct area
of memory is being accessed.

Figure 15.3 shows an application of Equation 15.1 applied to the input failure
category where an improvement in reliability is achieved by switching from a failed
phone to a nonfailed phone in the backup network. This process is only possible in
the case of an organization with multiple cell phone users at various locations, such
that a user with a working phone can take over communication from a user with a
failed phone.
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network split. Improvement in reliability = 0.3592. Cell phone 2 exhibits context awareness and
mobile connectivity to obtain GPS location information.

Another perspective of failure characteristics is shown in Figure 15.4, where
interestingly, you can identify the best customer strategy, based on using the expected
number of failures and failure rates corresponding to the recovery action categories.
Figure 15.4 shows that for mobile phone usage time of less than 4 months, the best
customer action is to wait for a response from the phone. For extended usage (i.e.,
t > 4), none of the alternatives would be more advantageous than the others.

Stabilization Time

It is of interest to compute the operating time during which a specified reliability
requirement is achieved. This is the stabilization time mentioned earlier that increases
with decreasing failure rate for a specified reliability. This time is computed by
solving R(t) = e™ for t, as follows:

t= M (15.3)
A
where R(t) is now the specified reliability.
Again using the high severity types of failures, Equation 15.3 is computed in
Figure 15.5, where you can see that for low failure rate, input failures, the specified
reliability is achieved for a longer stabilization time than for high failure rate,
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Figure 15.6 Mobile phone: stabilization time t versus specified reliability R(t) for recovery actions.
Series 1: Service phone, failure rate = 9.40 failures per month, meets requirement for 0.34 days of
operation. Series 2: Wait for response, failure rate = 2.12 failures per month, meets requirement for
1.49 days of operation. Series 3: Repeat operation, failure rate = 2.69 failures per month, meets
requirement for 1.17 days of operation.

unstable behavior failures. Figure 16.6 presents the corresponding information for
recovery actions, where the finding of Figure 15.4 is confirmed: the best customer
strategy is to wait for a response. Doing so would result in the longest stabilization
time of the various recovery actions.

MOBILE DEVICE CONTEXT AWARENESS

Information about the user’s environment offers new opportunities to improve per-
sonalized applications. Such applications constantly need to monitor the environ-
ment (e.g., connectivity to access points, as identified by sending test signals)—called
context—to allow the application to react according to this context. Context aware-
ness is especially interesting in mobile scenarios where the context of the application
is highly dynamic in which the application must deal with the constraints of presen-
tation (e.g., small display screen) and communication restrictions (e.g., noisy signal
propagation conditions) [HOF03]. With regard to location awareness, most WLANs
positioning systems use received signal strength (RSS) as important information to
estimate the location of a mobile station (see Fig. 15.1). RSS can be obtained at the
access points or at the mobile device [YEUO7].
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A user who is moving with his or her mobile device is not permanently con-
nected to a network, as depicted in Figure 15.1. In the case of WLAN, Bluetooth,
or other wireless connections, if a user gets out of range of access points, the user
is switched to other access points. Since permanent connections are not guaranteed,
an application cannot rely on remote servers. This discontinuity of network connec-
tions has to be taken into account when designing an architecture for mobile devices.
But the network connection is not the only difference of mobile versus nonmobile
applications. Mobile devices are much more personal, meaning that the user of a
mobile device seldom changes [HOF03]. This characteristic is a benefit in disguise
because, unlike the case of nonmobile users, there is only a single user who can be
the source of user-injected errors.

Regarding the need to save energy, a mobile device can be turned off, or some
features can be disabled when they are not required. While this saves energy, a
deactivated sensor cannot sense any information about the context and, therefore,
the context cannot be determined until the sensor is turned on again [HOF03].

On the basis of these special characteristics of a mobile device scenario, the
following requirements for an architecture to support context awareness on mobile
devices have been identified:

 Lightweightness. The framework has to take into account the restrictions on
limited processing power. For example, current IEEE 802.11 power saving
schemes provide limited savings for Voice over Internet Protocol (VoIP) wire-
less traffic. A novel scheme named Adaptive Microsleep (AMS) can be
applied to solve this problem. AMS is well suited for power saving on mobile
VoIP devices by adapting to power needs. For example, when power require-
ments are low, the amount of time that devices spend in a low power sleep
state is increased, but doing so without introducing additional delays that
would noticeably deteriorate voice quality [CHAO7].

* Extensibility. Since available sensors (i.e., a mobile device part that can sense
information, such as connectivity with an access point) and extension slots
are limited, it is not possible for a single device to sense all context informa-
tion. Therefore, the architecture should support connections to sensors that
are the most important for a given application.

* Robustness. The architecture has to guard against disconnections of remote
sensors (e.g., sensor associated with access point).

» Context Sharing. Provide a mechanism for sharing context information (i.e.,
information about wireless environment [S/N]) with other mobile devices.

The context architecture comprises the following types of context:

* Time. The current time, as provided by the system clock of the mobile device.

* Location. Represents the current (physical) position of the mobile device
using Global Positioning System (GPS) coordinates. This context is typically
set by an adaptor, which reads a GPS receiver. This is illustrated in Figure
15.3 where cell phone 2 obtains GPS-provided location information.



390 Computer, Network, Software, and Hardware Engineering with Applications

 Device Identification. Consists of an identifier, which should be unique, and
a device type, which can be used to distinguish between different types of
devices, such as desktop PCs, laptops, and personal digital assistants (PDAs).

e User. Identifies the current user of the device [HOF03].

e Network. Contains information about the available network connection types
of the device (e.g., access point, wired network). This context can provide
additional information, such as the likelihood of the abort of a connection and
the connection available bandwidth.

e Operating Context (OC). This is defined by the device hardware and soft-
ware, the target user, and other characteristics, such as the communications
carrier. For example, consider the following two OCs:

e OCl: target device = Nokia N90 (defines device hardware and software),
target user = subscribers of carrier A.

* OC2: target device = Nokia N90 (defines device hardware and software),
target user = subscribers of carrier B.

Note that both OCs are for the same physical device.

Interoperability of Mobile Devices with Other
Computing Infrastructures

In the near future, personal mobile devices will become ingredients of other infra-
structures, such as electric power grids. Computing techniques have been devised
to enhance mobile devices so that their interoperability with grid infrastructures will
be achieved by employing Personal Augmented Computing Environment (PACE).
PACE characteristics include (1) collaborative mobile device visualization (e.g.,
electric utility and customer meter reading), (2) context-aware methods for mobile
devices to achieve efficient utilization of grid resources (e.g., electric utility mobile
device senses power outage and invokes backup power supply), and (3) integration
of mobile devices and environmental infrastructures (e.g., amalgamation of electric
utility and customer mobile devices with electric utility substation to achieve effi-
cient power usage) [LUOO7]. This development is important because it facilitates
the production of common power utility software and common customer software,
thus achieving software portability [MIKO7].

Context-Aware Migratory Service

Due to the vagaries of context aware services, a model is needed of service interac-
tion in ad hoc networks, based on the concept of context-aware migratory service.
Unlike a regular service that always executes on the same node, a context-aware
migratory service is capable of migrating to different nodes in the network in order
to effectively accomplish its task. For example, a mobile device lacking connectivity
to an access point can migrate to another access point. The service migration is
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context aware because it is triggered by context changes of the nodes in the ad hoc
network [RIVO7]. An example is cell phone mobility in Figure 15.1, triggered by
sensing an intrusion.

When failures occur, the mobile network has to try to find other devices to
execute the mobile programs. If it is successful in finding such a device, it will
transfer program control to that device [KUN]. You can consider the probability
P(x > 0) of one or more failures x of the failing device versus the probability of
x = 0 failures P (x = 0) of the nonfailing device, and compute the improvement in
reliability. This process is illustrated in Figure 15.3.

NETWORK-AWARE APPLICATIONS

A network-aware application attempts to adjust its resource demands in response to
network performance variations. In most current network-aware applications,
changes in network environments refer to changes in the following parameters of
network quality: bandwidth, which is the minimum link capacity among all the links
from a source mobile device to a destination mobile device; throughput, which is
measured in rate of data transfer [CAOO04]; and reliability. When these parameters
decrease, the network-aware application slows the utilization of resources to reflect
the decrease in performance. Contrariwise, when parameters increase, resource
utilization is increased.

MOBILE DEVICE PERFORMANCE
User-Perceived Response Time

Today, most personal mobile devices are multimedia enabled and support a variety
of concurrently running applications, such as audio and video players, word proces-
sors, and Web browsers. Media-processing applications are often computationally
complex. As a result, the user-perceived application response times are often poor
when multiple applications are concurrently executed. By using application-specific
buffering techniques, as shown in Figure 15.1, the workload of these applications
can be “shaped” to fit the available processor bandwidth [CHAO6].

Mobile Phone Performance Assessment

Performance is an important quality attribute of a software system but it is not always
considered when mobile phone software is designed. Furthermore, software evolves
and these changes can negatively affect performance. New requirements could
introduce performance problems and the need for a different design. Performance
assessment is a way to highlight design flaws or inefficiencies. Periodic performance
assessments can help to discover potential bottlenecks [DELO4]. For example, in
Figure 15.1, a potential bottleneck to accurately locate the Internet Protocol (IP)
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phone is the RSS. This parameter can be tuned to avoid a bottleneck by adjusting
receiver sensitivity in the phone.

Storage Capabilities

Mobile computing devices with several networking interfaces have become com-
monplace (e.g., text messaging, Internet Web sites). Networked data storage facilities
greatly extend their use. The storage architecture for such devices is a critical per-
formance factor. A two-level structure is used in which one component, the mobile
memory cache, moves when the device is mobile [MAPO7], as illustrated in Figure
15.1. In addition, there is a fixed location secondary storage component that is
capable of storing large amounts of mobile network data.

Signal-to-Noise Ratio

As mentioned previously, and as shown in Figure 15.1, S/N is an important perfor-
mance attribute of a mobile network. Data from mobile device vendors about actual
S/N are not available for this analysis; however, surrogates in Equation 15.4 are
based on the ratio of reliability (R(t) = signal) to unreliability (U(t) = noise):

S/N=R(t)/U(t). (15.4)

Using this metric, you can see in Figure 15.7 that the mobile phone customer would
not enjoy a good S/N for more than 4 months of usage.

Problem: Is there a limitation to computing S/N as shown above, and if so,
what is the limitation? Answer the question by formulating an equivalent
equation for S/N.

Solution: To obtain the answer, compute S/N as follows:

S_R(t)_ R() _ 1

N U(t) 1-R(t) 1
R(1)

-1

Thus, S/N is only a function of reliability (i.e., signal) instead of signal and noise!
However, given the lack of signal and noise data, this is the best we can do.

SUMMARY AND CONCLUSIONS

In conformance with the chapter objective, a variety of mobile device issues have
been addressed that differ dramatically from those of wired networks. Where data
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Figure 15.7 Mobile phone: signal-to-noise ratio S/N versus operational time t. Series 1: Input
failure, high severity, failure rate = 1.14 failures per month. Series 2: Wait for response, failure
rate = 2.12 failures per month.

were available, as in the case of reliability, quantitative methods were employed to
assess reliability. A conclusion based on this analysis is that mobile device reliability
is only satisfactory for the first few months of operation. If significant advances are
to be made in reliability, it will be necessary to make improvements in both hardware
and software reliability, particularly as it relates to memory management.

Where quantitative data were not available for issues such as context and
network awareness in mobile networks, it was shown how mobile networks can
adapt to changing conditions, such as a network split in Figure 15.3, using a network-
awareness approach. There is an urgent need for further research centered on col-
lecting and analyzing reliability and performance data related to context and network
awareness because these applications represent the greatest potential for improve-
ment in mobile networks, supporting, for example, the intelligent use of resources
in an electric grid network.
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Chapter 16

Signal-Driven Software Model
for Mobile Devices

There is a paucity of software models that deal with mobile devices. Therefore, the motiva-
tion for this chapter is to build on the mobile device material learned in Chapter 15 and apply
it to the development of important mobile device software models. Issues in mobile device
reliability are explored, using a signal-driven software model for mobile devices. Based on
mobile phone failure data reported in the literature, the model is implemented in two dimen-
sions: by type of failure and by type of failure recovery action. Based on these calculations,
it can be concluded that current mobile devices are unable to provide highly reliable service
for more than a few months of operation. In addition, a novel signal-to-noise ratio (S/N)
representation of reliability is developed and applied to the failure and recovery action data.
Having discovered that S/N influences test effectiveness, it can be shown that S/N can be
used to prioritize software modules for testing.

INTRODUCTION

You may ask: what is so important about signal-driven software models? How do
they differ from plain old input-driven software models? Well, there are significant
differences because mobile devices operate in a hostile communications environ-
ment, confronted by adverse atmospheric conditions and physical barriers to signal
propagation. Thus, software models for mobile devices must take these conditions
into account.

The key issues in mobile computing include mobility-related reliability and
testing problems, such as loss or degradation of wireless connections, high latency
wireless networks, and low quality connections (e.g., caused by network failures)
[POUO0G6]. To address the reliability issue, a signal-driven software model for mobile
devices is developed and shown in Figure 16.1. In the physical mobile device
system, signal strength is critical to effective communication. Mobile devices use
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Figure 16.1 Signal-driven software model for mobile devices.

received signal strength to estimate the location of other devices and stations
[YEUO7]. Analogously, signal strength in a software model is important because,
with high signal strength S, representing the number of correct software modules,
and low noise strength N, representing the number of failed software modules, reli-
ability will be increased, as shown in Figure 16.1, by decreasing the ratio N/S. This
formulation of signal-to-noise ratio (S/N) may seem strange because traditionally,
signal and noise are represented by electrical signals. This is appropriate for hard-
ware that can process signals represented by voltage, but, for software, a representa-
tion is needed that pertains to the correctness of the software production process.

Mobile Device Software Reliability and Testing

In software products, often the failure rate decreases after installation, eventually
reaching a steady state. The time it takes for a product to reach its steady-state reli-
ability depends on different product parameters. Stabilization time is the time taken
after installation for the reliability of the product to asymptotically approach a con-
stant value [SAUO6]. In mobile devices, achieving stabilization is a function of
parameters, such as quality of communication between mobile devices and between
mobile devices and mobile network, as represented by S/N. Interestingly, S/N does
not have to be limited to measurement in physical systems. It can be used as a
measure of software reliability in Figure 16.1.

Reliability becomes even more critical as new applications emerge for mobile
phones (e.g., robot control, traffic control, and telemedicine). In such scenarios, a
device failure affecting the application could result in a significant loss or hazard
(e.g., arobot performing uncontrolled actions) [CINO7]. The challenges to reliability
are amplified because of the problems with current-generation wireless technologies.



398 Computer, Network, Software, and Hardware Engineering with Applications

Whether it be due to signal dead zones, environmental conditions, a crowded con-
centration of mobile devices, or simply a device going offline to save data charge
costs, mobile wireless devices do not have the same communication reliability as
their wired counterparts [LARO7].

Testing Challenges

Users have high expectations for the reliability of the software on mobile devices.
Users require devices to be reliable and stable. They will not be comfortable with a
mobile device that crashes and loses personal data. This requires the device manu-
facturer and software vendors to guarantee the high quality of their products. Testing
is their most important tool. The testing of mobile devices is difficult because the
environment is complex. To be effective, the execution of tests should interact with
end users, wireless signals, and the wireless network. The diversity of mobile devices
reduces the reusability of test cases. The devices are highly resource constrained in
terms of processing and communication ability and in memory capacity; test plans
must recognize these constraints.

The testing approach must be highly nonintrusive to the mobile device environ-
ment in order that test results reflect realistic operating conditions. Also, device
behavior is highly interactive. The devices constantly accept activations from users
and send responses back for the user to take further action. Since it is difficult to
predict a user’s actions, many of the usage scenarios are difficult to automate.

The development of software for mobile computing devices is very difficult due
to the limited computational resources of these devices (i.e., a great deal of func-
tionality must be squeezed into a small memory space). This highly compact func-
tionality must be reflected in the testing strategy (i.e., testing must be performed in
the constrained memory of the mobile device, not in the software development
platform). Furthermore, mobile device tasks are susceptible to errors because
changes in network connectivity and locations may lead to sudden and unpredict-
able changes. A change in mobile network and mobile device location may imply
movement away from the servers currently in use, and toward new ones. For
example, a handheld computing device with a short-range radio link, such as IEEE
802.11b or Bluetooth, carried across the floors of an office building, may have
access to different resources, such as printers and directory information for visitors,
on each floor. Therefore, to construct reliable application software, the developer
must test it in the operating environment of the mobile devices [SAT03]. However,
it is impractical to physically visit all the places where the device may operate.
Therefore, it is necessary to emulate the operational environment as shown in
Figure 16.1.

Another testing challenge is to include the number of active users connected to
mobile networks. This is an important aspect that affects the reliability of the con-
nection and the performance of the device, as perceived by the user. More active
users lead to fewer available communication timeslots, which decreases the through-
put per user and, as a result, the latency increases [HOLO6]. Latency is defined as
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the time required for the data signal to be transmitted through the communications
medium [ROUO4]. Latency is the reciprocal of data rate that is tabulated for mobile
devices in Table 16.1. A queuing model—not covered in this chapter—could be
developed, using message transmission rate as queue arrival rate, and a variable
number of active users, in order to estimate latency during performance testing.

MOBILE DEVICE CHARACTERISTICS

Mobile devices have unique characteristics that must be taken into consideration
when modeling reliability and testing. These characteristics are the following
[FITO7]:

Static versus Dynamic

The static part of the mobile device is its hardware; the dynamic part that can respond
to changing operating conditions, is its software. The industry is developing a
software-defined device that can be dynamically defined in real time. The software-
defined device provides needed functionality (e.g., short-range to long-range com-
munication). The specification of requirements for such a device is suggested in
Figure 16.1.

Interfaces

Interfaces have been a major source of failures in computer systems because the
joining of disparate components of a system is a complex process, subject to many
failures, for example the interface between a mobile device and a mobile network.
Thus, interfaces represent the major software modules to be developed by the mobile
device process in Figure 16.1: user interface (e.g., user keying of mobile device),
communication interface (e.g., mobile device to cellular communication), and built-
in resources (e.g., interface between mobile device built-in video reception and its
display).

Communication Systems

Various mobile device characteristics are tabulated in Table 16.1. Assembling these
data helps us to identify a mobile device technology with a relatively low reliability
rating, appropriate for applying a reliability model for worst-case analysis—General
Packet Radio Service (GPRS). The reliability analysis of GPRS has general appli-
cability because it is used in several applications. An important characteristic of
mobile devices is that a given device may communicate with more than one com-
munications carrier [COM]. Thus, in Figure 16.1 we show GPRS requirements
being translated to software code compatible for operating with a communications
carrier.
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In order to understand how mobile devices fail and the consequent recovery
actions, the following definitions are provided in the succeeding sections, followed
by elaborations of failure and recovery action characteristics [CINO7].

Failure Types

e Freeze (Lock-Up or a Halting Failure). The device’s output becomes con-
stant, and the device does not respond to the user’s input.

* Input Failure. User inputs have no effect on device behavior (e.g., device
keys do not work).

* Qutput Failure. The device, in response to an input sequence, delivers an
output sequence that deviates from the expected one. Examples include inac-
curacy in battery charge indicator, ring or music volume different from the
configured one, and event reminders going off at wrong times.

o Self-Shutdown (Silent Failure). The device shuts itself down, and no service
is delivered at the user.

e Unstable Behavior (Erratic Failure). The device exhibits erratic behavior
without any input inserted by the user (e.g., backlight flashing and self-
activation of applications). Unstable behavior can be caused by programming
errors induced by the trend toward integration of complete systems on a chip
that requires the placement of larger and larger chips into complex and small
mobile devices [ZAN93].

Recovery Actions

User-initiated actions to recover from a device failure can be classified according to
the following categories:

* Service the Phone. The user has to bring the phone to a service center for
assistance. Often, when the failure is firmware related, the recovery consists
of either a master reset (all the settings are reset to the factory settings and
the user’s content is removed from the memory) or a firmware update (i.e.,
uploading a new version of the firmware). Firmware is software instructions
embodied in a read-only memory as opposed to using a read—write memory.
Problems are fixed by substituting malfunctioning components (e.g., screen,
keypad, firmware) or by replacing the entire device with a new one.

e Reboot (Reset the Mobile Device). The user turns off the device and then
turns it on to restore the correct operation (a temporary corrupted state is
cleaned up by the reboot). Related to reboot is a panic event. A panic event
represents a nonrecoverable error condition signaled to the mobile device
operating system kernel by either the user or by applications. Information
associated with a panic event is delivered to the operating system kernel,
which decides on the recovery action (e.g., system reboot).
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* Remove Battery. Battery removal is mainly performed when the phone
freezes. In this case, the phone often does not respond to the power on/off
button. Battery removal can clean up a permanent corrupted state (e.g., cor-
rupted memory contents); however, this is a crude way to invoke power
management. Improved power management is needed in mobile devices to
increase their utilization [YUKO3]. Battery problems can be mitigated by
using a power-saving technique that increases the amount of time devices
spend in a low power sleep state, but doing so without introducing additional
delays that would noticeably degrade performance [CHAO7].

e Wait for a Response. Often it is sufficient to wait for a certain amount of time
to let the device deliver the expected service.

* Repeat the Action. Repeating the action is sometime sufficient to get the
mobile device working properly (i.e., the problem was transient).

Failure Severity

Failure severity is classified according to the user perspective and defines severity
levels corresponding to the difficulty of the recovery action(s).

e High. A failure is considered to be of high severity when recovery requires
the assistance of service personnel.

e Medium. A failure is considered to be of medium severity when the recovery
requires reboot or battery removal.

e Low. A failure is considered to be of low severity if the device operation can
be reestablished by repeating the action or waiting for a certain amount of
time.

Failure Characteristics

Mobile device failure characteristics are compiled in Table 16.1. Despite their high
occurrence, output failures are low severity, since repeating the action is often suf-
ficient to restore the device to correct the operation. On the other hand, self-shutdown
and unstable behavior are considered to be high-severity failures because they must
be corrected by servicing the phone or removing the battery. Phone freezes are
medium severity, since rebooting occurs only in 2.36% of the freeze failures. While
input failures are high severity when device keys do not work, their frequency of
occurrence is low.

Additionally, failure occurrences can be associated with the user activity at the
time of the failure. In particular, 13% of failures occur during voice calls, 5.4% while
creating, sending, and receiving text messages, 3.6% while using Bluetooth, and
2.4% when manipulating images. Finally, the history of mobile device usage indi-
cates that there are memory leaks (i.e., loss of data in mobile device memory),
incorrect use of the device resources (e.g., excessive activation of wireless com-
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munication links by the user), bad handling by software of pointers to mobile device
instructions and data, and incorrect management of buffer sizes (e.g., too little
memory space allocated to buffers, resulting in buffer overflow).

Recovery Action Characteristics

From the recovery action perspective, reboots are an effective way to recover from
output failures (8.80% of the total number of failures). This indicates that output
failures are often due to a temporary software corrupted state, which is cleaned up
by the reboot. This is also confirmed by the fact that repeating the action is often
sufficient to restore a correct device operation. Freezes are usually recovered by
pulling out the battery (9.01%) or recovered by simply waiting for the phone to
respond (4.29%). This may indicate that a certain fraction of battery removals and
reboots in response to freezes is due to frustrated user actions.

Probability of Failure and Recovery Action

The empirical failure probability for different types of failures and the probability
of recovery action, given a failure, are shown in Table 16.2 [YUKO3]. These prob-
abilities allow us to estimate both the signal (number of correct modules) and noise
(number of failed modules) in Figure 16.1 and, hence, the reliability of a mobile
device. For the purpose of illustration, assume that the data in Table 16.2 apply to

Table 16.2 Probability of Failure and Corresponding Recovery Action

Probability of recovery action given a failure

Recovery action

Service Remove Wait for  Repeat Probability
Failure type ~ Severity phone Reboot battery response operation Unreported of failure
Freeze Medium 0.0365 0.0236  0.0901  0.0429 0 0.0601 0.2532
Input failure  High 0.0064 0.0064 0.0021 0 0.0064 0.0086 0.0299
Output Low 0.0687 0.088  0.0043  0.0064  0.0579 0.1373 0.3626
failure
Self- High 0.0665 0 0.0215  0.0043 0 0.0773 0.1696
shutdown
Unstable High 0.0687 0.0172  0.0021  0.0021 0.0064 0.088 0.1845
behavior
Totals
Probability of 0.2468 0.1352  0.1201  0.0557 0.0707 0.3713 0.9998

recovery
action
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the GPRS mobile device whose communication characteristics were defined in Table
16.1. The reason for this is that, as mentioned previously, GPRS has a relatively low
reliability rating (see Table 16.1). Thus, it would be interesting to focus on this
device.

MOBILE DEVICE RELIABILITY MODEL
Focus on Failure Type

Using the mobile device empirical probabilities of failure and recovery in Table 16.2,
construct a simple model of reliability based on the S/N shown in Figure 16.1,
focusing on failure type. This analysis will allow you to understand the relationship
between failures, recovery actions, and reliability. Assuming the probabilities P;; of
a recovery action of type j, given a failure of type i, are independent, the probability
of a failure of type i is estimated in Equation 16.1. This equation sums the probability
of a failure of type i over all recovery actions n. Regarding the assumption of inde-
pendence, we have no reason to believe, for example, that rebooting, as the result
of a freeze failure, depends on servicing the device:

P=)P, (16.1)
j=1

Failure severity is reflected in the model according to the following severity codes
that were defined earlier: severity high, code = 3; severity medium, code = 2; and
severity low, code = 1. Then, the expected number of failed modules of failure type
i, where M is the total number of modules in a mobile device, is given by Equation
16.2; this is the noise factor N in Figure 16.1:

Ni = PISM (16'2)

The total number of modules M must be equal to the number of correct modules S;
(signal) plus the number of failed modules N; (noise). Thus the signal S, based on
failure type i, is computed in Equation 16.3:

S;=M-N, =(1-Ps)M. (16.3)

As indicated in Figure 16.1, reliability R; of a mobile device when failures of type
i occur is related to the inverse of the S/N (i.e., unreliability). Using this fact and
Equations 16.2 and 16.3, produce Equation 16.4:

R, =1-(N,/S;) = 1 - (P,sM/(1- P;s)M), for R, > 0. (16.4)

Again, using Equations 16.2 and 16.3, the S/N, based on failure type i, is computed
as follows:

Si/N; = (1-P;s)M/P;sM = (1-P;s)/P;s. (16.5)
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It is also important to estimate the feedback control signal C; in Figure 16.1 that
refers to the difference between number of correct modules (S;) and number of failed
modules (N;) for failure type i. This feedback would be used to revise mobile device
requirements for the purpose of driving N; to 0 and C; to = S;. This idea is imple-
mented for failure type i in Equation 16.6. However, if C; is negative, it indicates
that there is more noise than signal and that the software is in need of significant
software development process improvement to reduce failures of type i.

Focus on Recovery Action Type

Again, using the mobile device empirical probabilities of failure and recovery, Py,
in Table 16.2, construct another part of the reliability model based on the S/N shown
in Figure 16.1, focusing on recovery action type j. In this case, estimate P; in Equa-
tion 16.7 as the probability of failure across the failure types i associated with a
given recovery action type j:

f
P—

1

where f is the number of failure types.

Whereas previously the interest was in assessing reliability as a function of
failure type, now the focus is on reliability as a function of recovery action type.
This assessment identifies which recovery actions produce the highest reliability.
Analogues to the failure type analysis, develop the reliability and S/N equations for
recovery type as follows.

Since the expected recovery action is a probabilistic function of the failure
types, compute a weighted sum of the probabilities P;, weighed by the failure sever-
ity code s;. The idea, as in the case of failure types, is to represent failure severity
in the computation of expected number of failed modules, where now severity
reflects both failure type and recovery type. Thus, the expected number of failed
modules of recovery type j, where M is the total number of mobile device modules,
and f is the total number of failures, is given by Equation 16.8:

f
N, = MZPU-S-,J-, forj=1,...,n. (16.8)
i=1

In order to compute the signal, use the fact that M must equal the sum of correct
modules S; and failed modules N;. Thus the signal S;, the number of correct modules,
based on recovery action j, is computed in Equation 16.9 by using Equation 16.8:

f
S, =M-N; =M(1—2Pijsijj. (16.9)
i=1
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Reliability R;, based on recovery action type j, is related to the inverse of the S/N,
as follows:

f

MZRSU
R;=1-(N;/S;)=1-| —=——| forR; >0. (16.10)

(M-N;)

In addition, the S/N, based on recovery type j and reliability R;, from Equation 16.10,
is computed as follows:

Si/N; =1/(1-R;). (16.11)

Again it is important to estimate the difference that exists between correct modules
and failed modules. This feedback would be used to revise requirements for the
purpose of driving the noise N; to 0 and C; to be equal to the signal S;. This idea is
implemented in Equation 16.12 for recovery action type j in Equation 16.12.
However, if C; is negative, it indicates that there is more noise than signal and
that the recovery method j is dysfunctional and that other recovery options should
be considered, for example central server monitoring of the health of the mobile
device.

C;=S;-N; (16.12)

Model Limitations

In revising software requirements, it is important to recognize that there are both
explicit and implied requirements [MCCO02]. In the case of mobile devices, this is a
tricky issue because there is no direct developer—customer relationship (i.e., develop-
ers produce for a mass mobile device market). Almost all requirements are implicit
(e.g., able to connect to a mobile network on demand) as opposed to explicit require-
ments, such as the obvious one of having power when the device is turned on. This
issue illustrates the fact that there are aspects of mobile device development that
cannot be quantified in a model, such as the one in Figure 16.1. For example, noise
in the figure, representing requirements ambiguity, and quantified as number of
failed modules, may capture power failure but not unsatisfactory Web search results.

Another limitation of the model is the absence of workload in Figure 16.1.
Measurements show that software reliability results cannot be considered representa-
tive unless the system workload is taken into account [IYE85]. For example, the
reliability of a mobile device will decrease nonlinearly with the amount of interactive
processing (e.g., number of simultaneous mobile network connections). This prop-
erty could be simulated but is difficult to address in an analytical model.

Question for Reader: It was stated above that S/N would not be an appropriate
metric for evaluating Web search results if noise is represented by number
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Figure 16.2 Noise N; (number of failed modules) versus total number of modules M. Failure types:
Series 2: Input: high severity; Series 3: Output: low severity; Series 4: Self-shutdown: High severity,
freeze: medium Severity; Series 5: Unstable behavior: high severity.

of failed modules. That being the case, is there an appropriate metric that
uses S/N for evaluating Web search results?

Answer: Signal could be represented by the number of successful Web search
results and noise could be represented by the number of unsuccessful Web
search results. The Web search application objective would be to maximize
the S/N.

Failure-Type Estimation Results

Figure 16.2 identifies major noise contributors: unstable behavior and self-shutdown
that the noise suppression process in Figure 16.1 needs to emphasize in order to
improve the S/N. In Figure 16.3, the S/N indexes reliability (e.g., high S/N yields
high reliability). Only two failure types are shown because the others have negative
reliability (i.e., noise exceeds signal). Thus, S/N can be used to rank the reliability
of mobile device software.

Figure 16.4 shows that the feedback signal C; = S; — N; is negative in Figure
16.1 for freeze and unstable behavior failure types. Therefore, negative feedback
is needed to correct modules because in these cases there are more failed modules
than correct modules. Although positive feedback is also important, the modules
with failure types associated with negative feedback should receive priority
attention.
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Figure 16.3 Signal-to-noise ratio S/N versus probability of failure P; for failure type i.
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EXPECTED NUMBER OF FAILURES AND FAILURE
RATE ANALYSIS

In order to extend the modeling effort into the mobile device operating time domain,
use the expected number of failures and failure rate data, organized by failure type
and recovery type, in Table 16.3 [YUKO3]. These data permit more than one dimen-
sion to be represented in the model. The dimension presented so far has been static,
confined to, for example, reliability as a function of module count. There has been
no accounting of mobile device operating time. Unfortunately, the distribution of
failures over time is not available. Only the expected number of failures shown in
Table 16.3 and the operating time t = 14 months, which were used to compute the
failure rates A, were available. Thus, the model is limited to using a simple time-
based reliability model, like the one based on the classical exponential distribution.
A justification of the model is that it is conservative because it does not exhibit reli-
ability growth. In fact, it shows just the opposite—reliability decreasing with operat-
ing time. In addition, exponentially distributed failure times reflect a high probability
of short times and a low probability of long times. Furthermore, my aim is to
compare reliabilities by failure type and recovery action type, and not to accurately
predict reliability for particular types. Therefore, any shortcoming in the model will
occur for all failure and recovery action-type predictions. Thus, predict reliability
over a specified operating time of the mobile device t, using Equation 16.13:

R(t)=e™. (16.13)

Table 16.3 Expected Number of Failures and Failure Rates

Recovery action )
Failure

Service Remove Wait for  Repeat type failure
Failure type  phone Reboot battery response operation Unreported Totals rate (L)

Freeze 19.45 12.58 48.02 22.87 0.00 32.03 134.96 9.64

Input 341 341 1.12 0.00 341 4.58 15.94 1.14
failure

Output 36.62  46.90 2.29 341 30.86 73.18 193.27 13.80
failure

Self- 35.44 0.00 11.46 2.29 0.00 41.20 90.40 6.46
shutdown

Unstable 36.62 9.17 1.12 1.12 3.41 46.90 98.34 7.02
behavior

Totals 131.54  72.06 64.01 29.69 37.68 197.90

Recovery 9.40 5.15 4.57 2.12 2.69 A Failures per
action month
recovery

rate
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Operating Time

It is of interest to compute the operating time during which a specified reliability
requirement R(t) is to be achieved. This time is equal to the mission duration that
can be achieved for a specified R(t). This time is computed by solving R(t) in Equa-
tion 16.13 for t as follows:

_ “LNR(®)

tn
A

(16.14)

You can see that for a specified reliability requirement R(t), the larger the failure
rate A, the shorter the mission duration that can be achieved.

Results Based on Failure Rate Analysis

Figure 16.5 is interesting because it shows that only one failure type—Input—has
acceptable reliability, and, then, only at low operating times. The other types require
drastic reductions in failure rate by eliminating software faults to qualify as accept-
able. This result is reinforced by Figure 16.6, which shows failure type Input being
the only type that achieves the required mission duration of one month.

0.70 —&—Series 1
—— Series 2

0.60 )
Series 3
S 050 Series 4
[ —¥— Series 5

Only acceptable reliability

0.00 + T T T . =
1 2 3 4 5 6 7 8 9 10 1" 12 13 14

t (months)

Figure 16.5 Reliability R(t) versus operating time t. Failure types: Series 1: Freeze, failure

rate = 0.69 failures per month; Series 2: Input, failure rate = 0.08 failures per month; Series 3: Output,
failure rate = 0.99 failures per month; Series 4: Self-shutdown, failure rate = 0.46 failures per month;
Series 5: Unstable behavior, failure rate = 0.50 failures per month.
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Figure 16.6 Mission duration t,, versus failure rate lambda.

MOBILE DEVICE TESTING EFFECTIVENESS

Testing and reliability have a synergistic relationship, as shown in Figure 16.1. That
is, module device failure data generated from test results drive reliability model
analysis and the analysis highlights the parts of the software that deserve priority in
testing, and reliability predictions influence the selection of test cases. The signal
and noise relationships can be used to quantify test effectiveness. Test effectiveness
of failure type i, E,, is defined as the ratio of the change in noise AN; (i.e., number
of corrected failed modules) to the total number of modules M. Test effectiveness
is expressed in Equation 16.15:

g, = AN (16.15)
M

To compute AN;, define N; as the reduced noise accomplished through testing of
failure type i (i.e., reduced number of failed modules):

AN; =N; —N.. (16.16)

Recalling from Equation 16.5 the computation of S/N, express N; as shown in Equa-
tion 16.17:

N; =(S;Ps)/(1-P;s). (16.17)
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Then Equation 16.16 is reformulated for failure type i, substituting Equation 16.2
for N; and Equation 16.17 for N;, as follows:

AN; =N; —=N; = (MP;s—(S;P;s)/(1-Ps)). (16.18)

Finally, Equation 16.15 is recomputed in Equation 16.19 to obtain the final form of
test effectiveness by failure type:

E; = (MP;s—(S;P;s)/(1-P;s))M. (16.19)

Note that E; > 0 corresponds to a small signal S; and E; < 0 corresponds to a large
signal. The first case reflects the fact that large gains in noise reduction would be
achieved through testing if the number of correct modules, due to eliminating fail-
ures of type i, is already small. The second case reflects the fact that small gains in
noise reduction would be achieved through testing if the number of correct modules
is already large. Thus, test effectiveness can be used to prioritize modules for testing:
the higher the value of E; (low signal), the higher the priority of modules for testing.

Using similar reasoning for recovery action types and calling on Equations
16.8-16.10, test effectiveness for recovery action type j is computed in Equation
16.20:

AN, .
E, = M’ =(N;=Nj)/M =(2Pijsij)—(sj(1—Rj)/M), forR; 20.  (16.20)
i=1

In this case, note that E; > 0 corresponds to a small signal S; and E; < 0 corresponds
to a large signal. The first case reflects the fact that large gains in noise reduction
would be achieved through testing if the number of correct modules, due to recovery
action j, is already small. The second case reflects the fact that small gains in noise
reduction would be achieved through testing if the number of correct modules, due
to recovery action j, is already large. Thus, again, test effectiveness can be used to
prioritize modules for testing: the higher the value of E; (low signal), the higher the
priority of modules for testing.

Test Time

Related to test effectiveness is the duration of test necessary to achieve that effec-
tiveness. Estimate this time based on the reduction in number of failed modules AN;
achieved by test effectiveness E;, for failure rate A; and failure type i, which is tabu-
lated in Table 16.3. Thus, test duration t; is estimated for failure type i, and number
of failures f, using Equation 16.15, in Equation 16.21 that expresses the fact that
test time is equal to the number of failed modules that are corrected divided by the
failure rate. Test duration serves as a test stopping rule:

t; = (FE;M)/A,, for E; >0, (16.21)

where EEM = AN; and f is the number of failures per failed module.
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A similar equation is formulated for recovery action types:

It is recognized that this formulation of test time may understate the time required
to identify all mobile device hazards. To adequately evaluate the reliability of a
mobile device, the analyst must stress it to identify both hardware and software
failures. Using failure data, such as that in Tables 16.1-16.3, the analyst can run
realistic tests that stress the hardware and software to fail by using the test times
given by Equations 16.21 and 16.22 as baselines, and gradually increasing them
until the device fails [STA97]. Applying a stress test to a mobile device is shown in
Figure 16.1.

FAILURE TYPE AND RECOVERY
ACTION TYPE RESULTS

Signal-to-Noise Ratio

Figure 16.7 shows the plots of S/N failure type and S/N recovery action type along
with the S/N limit = 1 (i.e., number of correct modules = number of failed modules).
Failure types below the limit should be investigated to identify the cause of exces-
sive failures in the mobile device software development process. Correspondingly,
recovery action types below the limit need attention to identify why the recovery
software is not able to provide effective recovery.
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Figure 16.7 Signal-to-noise ratio S/N versus probability of failure and probability of recovery
action. Series1: Failure type S/N. Series 2: Recovery action type S/N.
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Reliability

Figure 16.8 shows, as Figure 16.7 had shown, that one of the best user recovery
actions is to wait for a response. This strategy showed the second best S/N in Figure
16.7 and the highest reliability in Figure 16.8 (the other recovery action reliabilities
are all lower, but are not shown). However, recovery action reliability lags the input
failure reliability and never achieves the reliability limit. This result indicates that
these example mobile devices need improved reliability even after responding to a
failure.

Mission Duration

Assume that an acceptable mission duration for the mobile device user is 1 month
to achieve a specified reliability of 0.90. Then Figure 16.9 demonstrates that the only
situation in which this could occur is when the mobile device is subject to an input
failure. All other failures would result in unacceptable mission duration at the speci-
fied reliability. Also note that all recovery actions are deficient with respect to
achieving the desired mission duration after failures occur. Thus, mobile device
manufacturers should improve the quality of their recovery action software. In
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0.90 ;\ & & & & L & & & & L & L |
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0.60 1
£0.50 H
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0.00 T T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Figure 16.8 Reliability R(t) versus operating time t. Series 1: Input failure type, failure rate = 0.08
failures per month. Series 2: Reliability limit. Series 3: Wait for response recovery action, failure
rate = 0.15 failures per month.
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Figure 16.9 Mission duration t,, versus failure rate lambda. Series 1: Recovery action type. Series
2: Failure type.

particular, users should not have to wait for a response in order to recover from a
failure. Response to failures should be so effective that users should be unaware of
this strategy! The best way of avoiding user frustration is by designing in higher
quality.

Test Effectiveness

Figure 16.10 demonstrates, perhaps counterintuitively, that test effectiveness
increases with lower S/N. The reason is that lower S/N means higher noise, which
represents many failed modules that are subject to correction. Figure 16.10 allows
one to identify the test effectiveness for a given number of modules that are being
tested for a mobile device. The other two failure types are not shown because their
test effectiveness are negative and do not plot well on the same graph.

Test Time

Test time is modeled as a two-phase sequence: first, test cases are based on type of
failure (e.g., freeze) followed by test cases that are based on recovery action (e.g.,
remove battery). In the first phase, test time increases with decreasing S/IN (i.e.,
many failed modules compared with the number of correct modules), as shown in
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Figure 16.10 Test efficiency E; for failure type i versus total number of modules M. Series 1:
Freeze failure, S/N = 0.97. Series 2: Self-shutdown failure, S/N = 0.88. Series 3: Unstable behavior
failure, S/N = 0.81.

Figure 16.11. In the second phase, the focus of testing and debugging is recovery
actions. Recovery action testing takes less time than failure type testing because
many bugs have already been removed by failure type testing by the time recovery
action testing takes place. In addition, recovery type testing is based on test cases
under the control of the tester (e.g., try removing the battery, and see what happens).
In the case of failure type testing, the tester is at the mercy of the operating environ-
ment of the mobile device (e.g., failures caused by noise in the communications
network). Thus, failure type testing takes more time. Another characteristic of both
failure type and recovery action type testing is that decreasing reliability necessitates
increasing test time, as shown in Figure 16.11.

SUMMARY OF RESULTS

Whichever measure was being analyzed, whether noise, S/N, reliability, minimum
acceptable operating time (mission duration), or test effectiveness, and whether the
focus was failure type or recovery action type, the sample of mobile devices did not,
in general, meet requirements. Since this is a large, representative, and recent
sample, the results suggest that mobile devices should be improved so that they are
really usable by customers. While it is true that users discard mobile devices on
average every 18 months [CINO7], results indicate that severe reliability problem
will prevail short of 18 months. For example, see Figure 16.5.
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Figure 16.11 Test time t for failure type and recovery action type versus total number of modules.
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FUTURE MOBILE DEVICE DEVELOPMENTS
AND RESEARCH

Grid Computing

In the near future, personal mobile devices will become ingredients of other infra-
structures, such as the electric grid. Computing techniques have been devised to
enhance mobile devices so that their interoperability with other mobile devices and
electric grid infrastructure will be improved, such as the Personal Augmented Com-
puting Environment (PACE). PACE characteristics include (1) collaborative visual-
ization using display clusters composed by mobile devices, for example, electric
utility and customer mobile electric meter reading devices collaborating in the pre-
sentation of meter readings, and (2) context-aware methods for mobile devices to
achieve efficient utilization of grid resources, for example, intelligent mobile meter
readers being aware of, and communicating with, electric substations [LUOO7].
Future research will be directed toward creating software development models
for mobile devices to communicate with the electric grid in a collaborative process-
ing mode.

Context-Aware Migratory Service

Because a mobile process can involve context-aware migratory tasks (e.g., sudden
need for the mobile device to move with the user [context aware] and connect to a
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hot spot [migratory]) and heterogeneous mobile devices (e.g., smartphones, meter
readers), the mobile device model must account for context and migration. When
failures occur, the mobile network has to try to find another mobile device to execute
the current process. If it is successful in finding such a device, it will transfer the
process to this device [KUN]. Unlike a stationary service that always executes on
the same node, a context-aware migratory service is capable of migrating to different
nodes in the network in order to effectively accomplish its task. Thus, the interaction
between a user application and a migratory service can continue uninterrupted,
except for small delays generated by the migration process. This model provides
two advantages. First, when a node becomes unsuitable for hosting a service, the
user application does not need to perform any new service discovery because the
current service can automatically migrate to a node that is qualified for accomplish-
ing the current task (e.g., when an electric grid substation fails, the mobile meter
reader can be automatically connected to an operational substation). Second, the
migratory service incorporates all the state information (e.g., power usage reported
at the failed substation before it failed) necessary to resume the interaction with the
user when the migration to a different node has completed [RIV07].
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Chapter 17

Object-Oriented Analysis
and Design Applied to
Mathematical Software

Object—oriented (0-O) methods are highly touted in the literature as the solution to the
world’s software reliability problems. While this may be true, there seems to be little support-
ing evidence. Also, based on O-O project results in the literature, you would wonder how
well earlier methods, such as structured analysis and design, would have fared. There is a
natural relationship between O-O attributes and the modeling of physical systems, such as
the software for controlling a nuclear reactor. However, such a relationship is not obvious for
modeling mathematical software, such as programs designed to predict software reliability.
The rationale for using mathematics as the basis of comparison with O-O methods is that the
solution of mathematical equations is a common computer application; indeed, it was the
reason the first computers were developed. While some O-O diagrams are useful for provid-
ing high-level visibility of computer program structure, in the main, prediction equations,
coupled with a directed graph representation of the computer program, are better tools for
modeling mathematical software. Thus, it is important for the reader to learn for which appli-
cations O-O methods can be applied and for which applications O-O methods would be
misapplied.

INTRODUCTION

It is assumed that the reader has a basic understanding of probability and statistics.
Where this is not the case, the following reference will be helpful: David M. Levine,
Patricia P. Ramsey, and Robert K. Smidt, Applied Statistics for Engineers and Sci-
entists (New York: Prentice-Hall, 2001).

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.

© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.
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Definitions

First, definitions are presented to assist the reader in understanding the sections that
follow.

Object. In a computer program, any entity that can execute in a computer or
can support execution, such as an interrupt from an input device and the
software instructions that support interrupt processing.

Class. A classification of objects, such as program interrupts, where an interrupt
from an input device is an object.

Inheritance. A property of object-oriented design that allows an object to
acquire the properties of its class (e.g., the object input device interrupt
inherits the property jump to first interrupt processing instruction from the
class of interrupts).

Directed Graph. A graph whose edges are ordered pairs of nodes. That is, each
edge is preceded by a node and followed by another node. A directed graph
can be used to represent a computer program, where edges represent program
branches and nodes represent program statements.

Unified Modeling Language (UML). Standardized notation and set of diagrams
for supporting object-oriented (O-O) analysis and design.

Activity Diagram. In the UML, activity diagrams are used to describe the
operational step-by-step workflows of software components in a system. An
activity diagram shows computer program control flows.

Sequence Diagram. A sequence diagram in UML is an interaction diagram that
shows how software processes (e.g., computer code for computing a math-
ematical function) operate with one another and in what order.

State Diagram. A diagram that shows states (e.g., a computer program is pro-
cessing an interrupt) and transitions between states (e.g., transition from the
state of processing an interrupt to the state of returning to the interrupted
program).

Cyclomatic Complexity Metric. (Number of edges — number of nodes) + 1 in
a directed graph. Cyclomatic complexity can be used to represent the
number of independent paths in a computer program, where an independent
path is one that cannot be formed by combining other paths in the directed
graph.

Information Hiding. A software design technique that “hides” system details
(e.g., disk format) in the interface between modules rather than in modules,
so that system changes will only affect the interface, and hopefully increase
software reliability, as a result.

Procedure. Portion of software code (e.g., subroutine) within a software program

Encapsulation. In O-O programming, encapsulation is the inclusion within a
program object of all the resources needed for the object to function. For
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example, the object interrupt processing would include instructions for pro-
cessing an interrupt, pointer to the first interrupt processing instruction in
memory, and the return address of the instruction that would have been
executed if the interrupt had not occurred.

CAN O-O METHODS BE APPLIED TO
MATHEMATICS?

To see whether O-O methods can be applied to mathematical software, experiments
are conducted to compare this approach with using equations and directed graph
representations of computer program code to see whether O-O analysis, design, and
language are applicable in general to mathematical models and, in particular, to
developing the mathematics for software reliability models. It is recognized that
there are many applications of O-O methods other than mathematical models, but
this is such a fundamental computer application that it is expected that any design
method would do well.

The perfect mathematical programming environment would automatically
transform systems of equations into efficient symbolic and numerical programs. It
would select solution routines that have good convergence properties for the given
problem. It would also formulate equations from problem specifications. Although
it is easy to imagine such an automatic environment, it is more realistic to assume
that the user will interact with the system, supplying information to help it choose
the right algorithms and transformations. Such a system is ObjectMath, which is a
high-level programming environment with a modeling language based on the com-
puter algebra language Mathematica. The ObjectMath language augments Mathe-
matica with classes and other O-O language constructs. However, ObjectMath
focuses on mathematical modeling rather than on O-O programming [FRI95]. While
this development is impressive, it is focused on the mathematical modeling of physi-
cal objects rather than on mathematical software reliability, which is the application
that is evaluated for O-O applicability in this chapter.

0-0O Approach versus Mathematics

The ease of mapping real-world objects to the O-O model, enabling software reuse
and the support of various tools, have led to its wide acceptance [SENO7]. While it
is easy to see that the O-O approach is compatible with developing, let us say, an
elevator system or Web site, it is not clear how this approach applies to developing
mathematical functions. In the case of a Web site, there are activities (e.g., user
access to a Web server) so that an activity diagram would apply. Also, in the case
of an elevator system, there are the activities of passengers accessing and riding in
elevators. Interestingly, even in applications such as elevator systems, there can be
limitations to the O-O approach. For example, although the UML sequence diagrams
are capable of representing sequential interactions (e.g., only a single elevator floor
request at a time), they are not capable of properly representing concurrent interac-
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tions (e.g., elevator passengers on different floors concurrently pressing up and down
buttons). Therefore, it is necessary to have a model capable of representing both
sequential and concurrent interactions between objects [RYA06].

Now, in the case of equations, would activity diagrams and state diagrams
apply? Would it make sense to consider an equation as an object? To pursue answers
to these questions, the O-O approach will be used to model facets of the software
reliability models and compare the result with the mathematical model approach.

In explicating the mathematical model approach, you can use the directed graph
representation of the mathematical model. This approach has the advantages of
showing iteration, computing cyclomatic complexity metrics from the directed
graph, and identifying the key parts of the program to test [MCC76]. Interestingly,
there seems to be no comparable features of the O-O approach. For example, itera-
tion in O-O is defined as: an operation that permits all parts of an object to be
accessed in a well-defined order [BOO94]. Note that repetition is not explicitly
mentioned. This definition does not ring true for writing a mathematical program in
which we simply want to repeat the execution of an equation.

Proponents of O-O claim many benefits. Unfortunately, these claims are not
accompanied by a discussion of disadvantages. An obvious one is that O-O is highly
abstract, and based on experience in teaching this model, students find the abstrac-
tions difficult to grasp. In fact, some researchers employ UML without stating why
they are using it [SEL0O4]. The O-O approaches suffer because they are too syntax
oriented (e.g., emphasis on UML diagramming techniques) and lack a proper and
simple semantic foundation (e.g., mathematical equations that communicate the
meaning of the application). A precise description and common understanding of
the semantics, as well as the relations between the various UML diagrams for the
description of software systems, is missing [BROO1].

As claimed, the benefits of O-O analysis and design specifically include the
following [GRA] (comments added where the claim is challenged):

* Required changes are localized and unexpected interactions with other
program modules are unlikely. (How is this different from information hiding
and modular design?)

¢ Inheritance makes O-O systems more extensible, contributing to more rapid
development. (Equations have variables and parameters that can be made
extensible by changing the data used in the variables and parameters.)

* Object-based design is suitable for distributed, parallel, or sequential
implementation. (Equations can be used in any of the aforementioned
implementations)

* Objects correspond more closely to the products and processes in the con-
ceptual worlds of the designer and user, leading to greater traceability of
product and process. (This can be accomplished by effective software man-
agement requiring traceability among software products and the process steps
that produce them; also, mathematical models do not preclude the use of
objects.)
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» Shared data areas are protected, reducing the possibility of unexpected modi-
fications or other update anomalies; this is an operating and security system
property, not a property of the design paradigm. (Independent of the design
paradigm, data can be protected by access controls and encryption.)

* O-O provides various views of a software system that are useful for under-
standing and maintaining the code [SALO4]. (While this is true, equations
provide an excellent view of its implemented software, which is useful for
debugging.)

* 0-O can be effective for reengineering from a software system designed with
procedures to an O-O perspective to provide better code visibility [ZOU02].

e 0-O can be used for transforming the states of legacy software (i.e., software
that, while old, must be maintained because it is still valuable to the using
organization) to O-O software, thus providing greater clarity of system states
[ZOU021].

ELEMENTS OF A REQUIREMENT

In analysis and design, models are built to seek an understanding of the requirements
or to specify the systems to be built. To be useful, the model should be abstract (does
not contain unnecessary details), complete (captures all relevant aspects), unambigu-
ous (meaning is clearly expressed), and well integrated (the various parts fit together
to form a coherent whole) [KGU96]. Although a worthy statement of the objectives
of analysis and design, it is a tall order because it is difficult to not include unneces-
sary details and at the same time capture all relevant aspects. It is difficult, particu-
larly in the requirements phase of a project, to know what is unnecessary and what
is relevant. The following is an approach to identifying the elements of a requirement
for the purpose of making a requirement understandable.

Object. The focus of attention (e.g., software reliability).

Function. A function is the task that the object must achieve (e.g., software
reliability [object] must achieve its specification [task] during test and operat-
ing time). In programming languages, a function is a subroutine that can, if
required, return a single value to the caller (the part of the program which
invoked the function). The strength of functions lies in the fact that they are
programs within a program. Functions are written for two major reasons: (1)
to provide frequently used operations that can be accessed by many programs
or from many points within a single program and (2) to modularize complex
programs and make the maintenance and understanding of such programs
easier. In C++, a function is a named, independent section of code that per-
forms a specific task and optionally returns a value to the calling program.
User-defined functions are functions that programmers create for specialized
tasks.

Limit. Constraint imposed on a function (e.g., software reliability must exceed
0.9500 for all operating times).
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Parameter. A model numerical factor estimated from data (e.g., software reli-
ability parameters estimated from failure data).

Variable. A model predictor specified in a function (e.g., predictor of software
reliability).

Equation. Mathematical implementation of a function: relationship among vari-
ables and parameters (e.g., reliability = R(t) = 5 (p(t)dt), where p(t) is a
probability density function.

Model. Representation of objects, functions, limits, parameters, variables, and
equations.

Requirement Implementation

Programming Language Statements. Statements that implement a model on a
computer (e.g., C4++ statements).

Data. Historical data (e.g., failure counts in time intervals) for estimating model
parameters and for computing actual model quantities, based on historical
failure data (e.g., actual reliability).

Iteration. Repetition of an operation (e.g., reading failure data from a file).

Decision Operations. Control program flow (e.g., processing failure data depen-
dent on its value).

EXAMPLE OF COMPARING O-O WITH
MATHEMATICAL APPROACHES

The mathematical concept of a function expresses dependence between two or more
quantities, one of which is known and the other which is produced. A function
associates a single output to each input element drawn from a fixed set. In Equation
17.1, P(x,, t) is a function of x, and t.

A variable assumes values based on a function, such as x, and t in Equation
17.1. The term usually occurs in opposition to parameter, which is a symbol for a
nonvarying value, such as A in Equation 17.1.

You can use Equation 17.1 to see an example of how a Poisson failure occur-
rence model and its associated function, reliability, would be implemented with the
two approaches. In developing the implementation approaches, each facet of the
failure model is defined and analyzed in order to illustrate how well the two
approaches apply.

In the Poisson distribution of failure occurrence, P(x, t), in Equation 17.1, A is
the failure rate, x, is failure count at test or operating time t, and t is the time of
failure occurrence:

x¢ a—(At)
P(x,, 1) =O‘t)—°;. a7.1)
X, !
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In order to compute Equation 17.1, the failure rate A must be computed in Equa-
tion 17.2:

g (17.2)

where t, is the last failure time.
Now, reliability, with exponentially distributed operating times t, can be obtained
from Equation 17.1 by setting x, = 0. Reliability R(t) is shown in Equation 17.3:

R(t)=e™. (17.3)

Comparing 0-O and Mathematical
Definition of Terms

Table 17.1 contains definitions and comparisons of terms from the O-O and math-
ematical domains. Multiple definitions are valid because the appropriate definition
depends on the context of the application. For example, mathematical terms could
be cast in the context of developing a failure model, such as Equation 17.1.

0-O CONCEPTS APPLIED TO POISSON
FAILURE MODEL

At this stage in the comparison, the O-O representation of the Poisson failure
model is developed by first defining the model objects and then showing how the
UML diagrams can be used to model the elements. In showing these diagrams, it is
not suggested that all of them are needed to model mathematical software (e.g.,
Poisson failure model). Rather, the goal is to illuminate the various perspectives
that the diagrams provide and determine which are the best for a mathematical
application.

Objects

Objects have two characteristics: state and behavior [BOO94] (e.g., Poisson failure
model object is executed [state] and the result is stored [behavior]). Objects also
possess attributes (e.g., failure rate, failure count, and failure time).

Activity Diagram

The purpose of the activity diagram is to model the procedural flow of actions in a
system. [DOU9S]. Activity diagrams can be used to model the activities associated
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Compute A
failure rate

Compute failure
function
P(xi, t)

Read failure
time t

Read failure
count x;

End of data

input

Plot P(x;, t)
Versus X

Plot P (x, t)

versus t

Figure 17.1 Activity diagram for Poisson failure model. t,, last failure time.

with implementing a function, such as the Poisson failure model. The activity
diagram for the Poisson failure model is shown in Figure 17.1. Notice that in addi-
tion to modeling the flow of producing the function, th