Data-Intensive Text Processing
with MapReduce

Jimmy Lin and Chris Dyer
University of Maryland, College Park

Manuscript prepared April 11, 2010

This is the pre-production manuscript of a book in the Morgan & Claypool Synthesis
Lectures on Human Language Technologies. Anticipated publication date is mid-2010.

vww allitebooks.conl



http://www.allitebooks.org

ii

Contents

COMbENtS . et ii
Introduction . ... ... 1
1.1  Computing in the Clouds. ... 6
1.2 Big Ideas. ... 9
1.3 Why Is This Different? ... ... .o 15
1.4 What This Book Is Not ... ..o 17
MapReduce BasiCs . . ... 18
2.1  Functional Programming Roots .......... ... .. i it 20
2.2 Mappers and Reducers. ...... ... 22
2.3 The Execution Framework .......... . ... .. 26
2.4 Partitioners and Combiners .......... ... i 28
2.5 The Distributed File System ............ i 31
2.6 Hadoop Cluster Architecture............ ..o 36
2.7 SUININATY ..ottt et et e e e e e 38
MapReduce Algorithm Design........ ... 39
3.1 Local Aggregation .. ........oueit i 41

3.2
3.3
3.4
3.5

3.1.1 Combiners and In-Mapper Combining 41
3.1.2 Algorithmic Correctness with Local Aggregation 46

Pairs and Stripes. ... ..o 50
Computing Relative Frequencies ..., 57
Secondary SOTtING. ... ...t 60
Relational Joins. ... 62

3.5.1 Reduce-Side Join 64
3.5.2 Map-Side Join 66
3.5.3 Memory-Backed Join 67

vww allitebooks.conl



http://www.allitebooks.org

CONTENTS iii

3.6 SUIMIMNATY - oottt et e e 68
Inverted Indexing for Text Retrieval........ ... ... o i i i 70
4.1 Web Crawling. .. ..o 71
4.2 Inverted Indexes .. ... ..o 73
4.3 Inverted Indexing: Baseline Implementation ........................... 75
4.4  Inverted Indexing: Revised Implementation................... ... ... 7
4.5  Index COmpPreSSIOn . ... ...ttt et et 79

4.5.1 Byte-Aligned and Word-Aligned Codes 80
4.5.2 Bit-Aligned Codes 82
4.5.3 Postings Compression 84

4.6 What About Retrieval? ... ... ... 86
4.7  Summary and Additional Readings............ ... ... i, 89
Graph Algorithms. . ... e 91
5.1  Graph Representations. ..........ouioitenit i 93
5.2 Parallel Breadth-First Search.......... ... ... . 94
5.3 PageRank. ... ... 102
5.4 Issues with Graph Processing ..., 108
5.5 Summary and Additional Readings.............. .. ... .. ... ... 110
EM Algorithms for Text Processing ... .. 112
6.1 Expectation Maximization .......... ..., 115

6.1.1 Maximum Likelihood Estimation 115
6.1.2 A Latent Variable Marble Game 117
6.1.3 MLE with Latent Variables 118
6.1.4 Expectation Maximization 119
6.1.5 An EM Example 120
6.2 Hidden Markov Models ....... ... i 121
6.2.1 Three Questions for Hidden Markov Models 123
6.2.2 The Forward Algorithm 125
6.2.3 The Viterbi Algorithm 126

vww allitebooks.conl



http://www.allitebooks.org

iv

CONTENTS

6.2.4 Parameter Estimation for HMMs 129
6.2.5 Forward-Backward Training: Summary 133

6.3 EM in MapReduce. ... 134
6.3.1 HMM Training in MapReduce 135

6.4 Case Study: Word Alignment for Statistical Machine Translation..... 138
6.4.1 Statistical Phrase-Based Translation 139
6.4.2 Brief Digression: Language Modeling with MapReduce 142
6.4.3 Word Alignment 143
6.4.4 Experiments 144

6.5 EM-Like Algorithms ....... ... i 147
6.5.1 Gradient-Based Optimization and Log-Linear Models 147

6.6 Summary and Additional Readings.............. .. ... .. ... ... 150

Closing Remarks . . ... 152

7.1  Limitations of MapReduce ......... ...t 152

7.2 Alternative Computing Paradigms ............ ... ... .. ... ..., 154

7.3 MapReduce and Beyond ......... ... 156

vww allitebooks.conl



http://www.allitebooks.org

CHAPTER 1

Introduction

MapReduce [45] is a programming model for expressing distributed computations on
massive amounts of data and an execution framework for large-scale data processing
on clusters of commodity servers. It was originally developed by Google and built on
well-known principles in parallel and distributed processing dating back several decades.
MapReduce has since enjoyed widespread adoption via an open-source implementation
called Hadoop, whose development was led by Yahoo (now an Apache project). Today,
a vibrant software ecosystem has sprung up around Hadoop, with significant activity
in both industry and academia.

This book is about scalable approaches to processing large amounts of text with
MapReduce. Given this focus, it makes sense to start with the most basic question:
Why? There are many answers to this question, but we focus on two. First, “big data”
is a fact of the world, and therefore an issue that real-world systems must grapple with.
Second, across a wide range of text processing applications, more data translates into
more effective algorithms, and thus it makes sense to take advantage of the plentiful
amounts of data that surround us.

Modern information societies are defined by vast repositories of data, both public
and private. Therefore, any practical application must be able to scale up to datasets
of interest. For many, this means scaling up to the web, or at least a non-trivial frac-
tion thereof. Any organization built around gathering, analyzing, monitoring, filtering,
searching, or organizing web content must tackle large-data problems: “web-scale” pro-
cessing is practically synonymous with data-intensive processing. This observation ap-
plies not only to well-established internet companies, but also countless startups and
niche players as well. Just think, how many companies do you know that start their
pitch with “we’re going to harvest information on the web and...”?

Another strong area of growth is the analysis of user behavior data. Any operator
of a moderately successful website can record user activity and in a matter of weeks (or
sooner) be drowning in a torrent of log data. In fact, logging user behavior generates
so much data that many organizations simply can’t cope with the volume, and either
turn the functionality off or throw away data after some time. This represents lost
opportunities, as there is a broadly-held belief that great value lies in insights derived
from mining such data. Knowing what users look at, what they click on, how much
time they spend on a web page, etc. leads to better business decisions and competitive
advantages. Broadly, this is known as business intelligence, which encompasses a wide
range of technologies including data warehousing, data mining, and analytics.
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2 CHAPTER 1. INTRODUCTION

How much data are we talking about? A few examples: Google grew from pro-
cessing 100 TB of data a day with MapReduce in 2004 [45] to processing 20 PB a day
with MapReduce in 2008 [46]. In April 2009, a blog post’ was written about eBay’s
two enormous data warehouses: one with 2 petabytes of user data, and the other with
6.5 petabytes of user data spanning 170 trillion records and growing by 150 billion new
records per day. Shortly thereafter, Facebook revealed? similarly impressive numbers,
boasting of 2.5 petabytes of user data, growing at about 15 terabytes per day. Petabyte
datasets are rapidly becoming the norm, and the trends are clear: our ability to store
data is fast overwhelming our ability to process what we store. More distressing, in-
creases in capacity are outpacing improvements in bandwidth such that our ability to
even read back what we store is deteriorating [91]. Disk capacities have grown from tens
of megabytes in the mid-1980s to about a couple of terabytes today (several orders of
magnitude). On the other hand, latency and bandwidth have improved relatively little:
in the case of latency, perhaps 2x improvement during the last quarter century, and
in the case of bandwidth, perhaps 50x. Given the tendency for individuals and organi-
zations to continuously fill up whatever capacity is available, large-data problems are
growing increasingly severe.

Moving beyond the commercial sphere, many have recognized the importance of
data management in many scientific disciplines, where petabyte-scale datasets are also
becoming increasingly common [21]. For example:

e The high-energy physics community was already describing experiences with
petabyte-scale databases back in 2005 [20]. Today, the Large Hadron Collider
(LHC) near Geneva is the world’s largest particle accelerator, designed to probe
the mysteries of the universe, including the fundamental nature of matter, by
recreating conditions shortly following the Big Bang. When it becomes fully op-
erational, the LHC will produce roughly 15 petabytes of data a year.?

e Astronomers have long recognized the importance of a “digital observatory” that
would support the data needs of researchers across the globe—the Sloan Digital
Sky Survey [145] is perhaps the most well known of these projects. Looking into
the future, the Large Synoptic Survey Telescope (LSST) is a wide-field instrument
that is capable of observing the entire sky every few days. When the telescope
comes online around 2015 in Chile, its 3.2 gigapixel primary camera will produce
approximately half a petabyte of archive images every month [19].

e The advent of next-generation DNA sequencing technology has created a deluge
of sequence data that needs to be stored, organized, and delivered to scientists for
Ihttp://wuw.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/

2http://www.dbms2. com/2009/05/11/facebook-hadoop-and-hive/
Shttp://public.web.cern.ch/public/en/LHC/Computing-en.html
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further study. Given the fundamental tenant in modern genetics that genotypes
explain phenotypes, the impact of this technology is nothing less than transfor-
mative [103]. The European Bioinformatics Institute (EBI), which hosts a central
repository of sequence data called EMBL-bank, has increased storage capacity
from 2.5 petabytes in 2008 to 5 petabytes in 2009 [142]. Scientists are predicting
that, in the not-so-distant future, sequencing an individual’s genome will be no
more complex than getting a blood test today—ushering a new era of personalized
medicine, where interventions can be specifically targeted for an individual.

Increasingly, scientific breakthroughs will be powered by advanced computing capabil-
ities that help researchers manipulate, explore, and mine massive datasets [72]—this
has been hailed as the emerging “fourth paradigm” of science [73] (complementing the-
ory, experiments, and simulations). In other areas of academia, particularly computer
science, systems and algorithms incapable of scaling to massive real-world datasets run
the danger of being dismissed as “toy systems” with limited utility. Large data is a fact
of today’s world and data-intensive processing is fast becoming a necessity, not merely
a luxury or curiosity.

Although large data comes in a variety of forms, this book is primarily concerned
with processing large amounts of text, but touches on other types of data as well (e.g.,
relational and graph data). The problems and solutions we discuss mostly fall into the
disciplinary boundaries of natural language processing (NLP) and information retrieval
(IR). Recent work in these fields is dominated by a data-driven, empirical approach,
typically involving algorithms that attempt to capture statistical regularities in data for
the purposes of some task or application. There are three components to this approach:
data, representations of the data, and some method for capturing regularities in the
data. Data are called corpora (singular, corpus) by NLP researchers and collections by
those from the IR community. Aspects of the representations of the data are called fea-
tures, which may be “superficial” and easy to extract, such as the words and sequences
of words themselves, or “deep” and more difficult to extract, such as the grammatical
relationship between words. Finally, algorithms or models are applied to capture regu-
larities in the data in terms of the extracted features for some application. One common
application, classification, is to sort text into categories. Examples include: Is this email
spam or not spam? Is this word part of an address or a location? The first task is
easy to understand, while the second task is an instance of what NLP researchers call
named-entity detection [138], which is useful for local search and pinpointing locations
on maps. Another common application is to rank texts according to some criteria—
search is a good example, which involves ranking documents by relevance to the user’s
query. Another example is to automatically situate texts along a scale of “happiness”,
a task known as sentiment analysis or opinion mining [118], which has been applied to
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4 CHAPTER 1. INTRODUCTION

everything from understanding political discourse in the blogosphere to predicting the
movement of stock prices.

There is a growing body of evidence, at least in text processing, that of the three
components discussed above (data, features, algorithms), data probably matters the
most. Superficial word-level features coupled with simple models in most cases trump
sophisticated models over deeper features and less data. But why can’t we have our cake
and eat it too? Why not both sophisticated models and deep features applied to lots of
data? Because inference over sophisticated models and extraction of deep features are
often computationally intensive, they don’t scale well.

Consider a simple task such as determining the correct usage of easily confusable
words such as “than” and “then” in English. One can view this as a supervised machine
learning problem: we can train a classifier to disambiguate between the options, and
then apply the classifier to new instances of the problem (say, as part of a grammar
checker). Training data is fairly easy to come by—we can just gather a large corpus of
texts and assume that most writers make correct choices (the training data may be noisy,
since people make mistakes, but no matter). In 2001, Banko and Brill [14] published
what has become a classic paper in natural language processing exploring the effects
of training data size on classification accuracy, using this task as the specific example.
They explored several classification algorithms (the exact ones aren’t important, as we
shall see), and not surprisingly, found that more data led to better accuracy. Across
many different algorithms, the increase in accuracy was approximately linear in the
log of the size of the training data. Furthermore, with increasing amounts of training
data, the accuracy of different algorithms converged, such that pronounced differences
in effectiveness observed on smaller datasets basically disappeared at scale. This led to
a somewhat controversial conclusion (at least at the time): machine learning algorithms
really don’t matter, all that matters is the amount of data you have. This resulted in
an even more controversial recommendation, delivered somewhat tongue-in-cheek: we
should just give up working on algorithms and simply spend our time gathering data
(while waiting for computers to become faster so we can process the data).

As another example, consider the problem of answering short, fact-based questions
such as “Who shot Abraham Lincoln?” Instead of returning a list of documents that the
user would then have to sort through, a question answering (QA) system would directly
return the answer: John Wilkes Booth. This problem gained interest in the late 1990s,
when natural language processing researchers approached the challenge with sophisti-
cated linguistic processing techniques such as syntactic and semantic analysis. Around
2001, researchers discovered a far simpler approach to answering such questions based
on pattern matching [27, 53, 92]. Suppose you wanted the answer to the above question.
As it turns out, you can simply search for the phrase “shot Abraham Lincoln” on the
web and look for what appears to its left. Or better yet, look through multiple instances
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of this phrase and tally up the words that appear to the left. This simple strategy works
surprisingly well, and has become known as the redundancy-based approach to question
answering. It capitalizes on the insight that in a very large text collection (i.e., the
web), answers to commonly-asked questions will be stated in obvious ways, such that
pattern-matching techniques suffice to extract answers accurately.

Yet another example concerns smoothing in web-scale language models [25]. A
language model is a probability distribution that characterizes the likelihood of observ-
ing a particular sequence of words, estimated from a large corpus of texts. They are
useful in a variety of applications, such as speech recognition (to determine what the
speaker is more likely to have said) and machine translation (to determine which of
possible translations is the most fluent, as we will discuss in Section 6.4). Since there
are infinitely many possible strings, and probabilities must be assigned to all of them,
language modeling is a more challenging task than simply keeping track of which strings
were seen how many times: some number of likely strings will never be encountered,
even with lots and lots of training data! Most modern language models make the Markov
assumption: in a n-gram language model, the conditional probability of a word is given
by the n — 1 previous words. Thus, by the chain rule, the probability of a sequence of
words can be decomposed into the product of n-gram probabilities. Nevertheless, an
enormous number of parameters must still be estimated from a training corpus: poten-
tially V™ parameters, where V is the number of words in the vocabulary. Even if we
treat every word on the web as the training corpus from which to estimate the n-gram
probabilities, most n-grams—in any language, even English—will never have been seen.
To cope with this sparseness, researchers have developed a number of smoothing tech-
niques [35, 102, 79], which all share the basic idea of moving probability mass from
observed to unseen events in a principled manner. Smoothing approaches vary in ef-
fectiveness, both in terms of intrinsic and application-specific metrics. In 2007, Brants
et al. [25] described language models trained on up to two trillion words.* Their ex-
periments compared a state-of-the-art approach known as Kneser-Ney smoothing [35]
with another technique the authors affectionately referred to as “stupid backoff”.> Not
surprisingly, stupid backoff didn’t work as well as Kneser-Ney smoothing on smaller
corpora. However, it was simpler and could be trained on more data, which ultimately
yielded better language models. That is, a simpler technique on more data beat a more
sophisticated technique on less data.

4As an aside, it is interesting to observe the evolving definition of large over the years. Banko and Brill’s paper
in 2001 was titled Scaling to Very Very Large Corpora for Natural Language Disambiguation, and dealt with
a corpus containing a billion words.

5As in, so stupid it couldn’t possibly work.
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Recently, three Google researchers summarized this data-driven philosophy in
an essay titled The Unreasonable Effectiveness of Data [65].° Why is this so? It boils
down to the fact that language in the wild, just like human behavior in general, is
messy. Unlike, say, the interaction of subatomic particles, human wuse of language is
not constrained by succinct, universal “laws of grammar”. There are of course rules
that govern the formation of words and sentences—for example, that verbs appear
before objects in English, and that subjects and verbs must agree in number in many
languages—but real-world language is affected by a multitude of other factors as well:
people invent new words and phrases all the time, authors occasionally make mistakes,
groups of individuals write within a shared context, etc. The Argentine writer Jorge
Luis Borges wrote a famous allegorical one-paragraph story about a fictional society
in which the art of cartography had gotten so advanced that their maps were as big
as the lands they were describing.” The world, he would say, is the best description of
itself. In the same way, the more observations we gather about language use, the more
accurate a description we have of language itself. This, in turn, translates into more
effective algorithms and systems.

So, in summary, why large data? In some ways, the first answer is similar to
the reason people climb mountains: because they’re there. But the second answer is
even more compelling. Data represent the rising tide that lifts all boats—more data
lead to better algorithms and systems for solving real-world problems. Now that we’ve
addressed the why, let’s tackle the how. Let’s start with the obvious observation: data-
intensive processing is beyond the capability of any individual machine and requires
clusters—which means that large-data problems are fundamentally about organizing
computations on dozens, hundreds, or even thousands of machines. This is exactly
what MapReduce does, and the rest of this book is about the how.

1.1  COMPUTING IN THE CLOUDS

For better or for worse, it is often difficult to untangled MapReduce and large-data
processing from the broader discourse on cloud computing. True, there is substantial
promise in this new paradigm of computing, but unwarranted hype by the media and
popular sources threatens its credibility in the long run. In some ways, cloud computing

6This title was inspired by a classic article titled The Unreasonable Effectiveness of Mathematics in the Natural
Sciences [155]. This is somewhat ironic in that the original article lauded the beauty and elegance of mathe-
matical models in capturing natural phenomena, which is the exact opposite of the data-driven approach.

7On Ezactitude in Science [23]. A similar exchange appears in Chapter XI of Sylvie and Bruno Concluded by
Lewis Carroll (1893).
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is simply brilliant marketing. Before clouds, there were grids,® and before grids, there
were vector supercomputers, each having claimed to be the best thing since sliced bread.

So what exactly is cloud computing? This is one of those questions where ten
experts will give eleven different answers; in fact, countless papers have been written
simply to attempt to define the term (e.g., [9, 31, 149], just to name a few examples).
Here we offer up our own thoughts and attempt to explain how cloud computing relates
to MapReduce and data-intensive processing.

At the most superficial level, everything that used to be called web applications has
been rebranded to become “cloud applications”, which includes what we have previously
called “Web 2.0” sites. In fact, anything running inside a browser that gathers and stores
user-generated content now qualifies as an example of cloud computing. This includes
social-networking services such as Facebook, video-sharing sites such as YouTube, web-
based email services such as Gmail, and applications such as Google Docs. In this
context, the cloud simply refers to the servers that power these sites, and user data is
said to reside “in the cloud”. The accumulation of vast quantities of user data creates
large-data problems, many of which are suitable for MapReduce. To give two concrete
examples: a social-networking site analyzes connections in the enormous globe-spanning
graph of friendships to recommend new connections. An online email service analyzes
messages and user behavior to optimize ad selection and placement. These are all large-
data problems that have been tackled with MapReduce.’

Another important facet of cloud computing is what’s more precisely known as
utility computing [129, 31]. As the name implies, the idea behind utility computing
is to treat computing resource as a metered service, like electricity or natural gas.
The idea harkens back to the days of time-sharing machines, and in truth isn’t very
different from this antiquated form of computing. Under this model, a “cloud user” can
dynamically provision any amount of computing resources from a “cloud provider” on
demand and only pay for what is consumed. In practical terms, the user is paying for
access to virtual machine instances that run a standard operating system such as Linux.
Virtualization technology (e.g., [15]) is used by the cloud provider to allocate available
physical resources and enforce isolation between multiple users that may be sharing the

8What is the difference between cloud computing and grid computing? Although both tackle the fundamental
problem of how best to bring computational resources to bear on large and difficult problems, they start
with different assumptions. Whereas clouds are assumed to be relatively homogeneous servers that reside in a
datacenter or are distributed across a relatively small number of datacenters controlled by a single organization,
grids are assumed to be a less tightly-coupled federation of heterogeneous resources under the control of distinct
but cooperative organizations. As a result, grid computing tends to deal with tasks that are coarser-grained,
and must deal with the practicalities of a federated environment, e.g., verifying credentials across multiple
administrative domains. Grid computing has adopted a middleware-based approach for tackling many of these
challenges.

9The first example is Facebook, a well-known user of Hadoop, in exactly the manner as described [68]. The
second is, of course, Google, which uses MapReduce to continuously improve existing algorithms and to devise
new algorithms for ad selection and placement.
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same hardware. Once one or more virtual machine instances have been provisioned, the
user has full control over the resources and can use them for arbitrary computation.
Virtual machines that are no longer needed are destroyed, thereby freeing up physical
resources that can be redirected to other users. Resource consumption is measured in
some equivalent of machine-hours and users are charged in increments thereof.

Both users and providers benefit in the utility computing model. Users are freed
from upfront capital investments necessary to build datacenters and substantial reoccur-
ring costs in maintaining them. They also gain the important property of elasticity—as
demand for computing resources grow, for example, from an unpredicted spike in cus-
tomers, more resources can be seamlessly allocated from the cloud without an inter-
ruption in service. As demand falls, provisioned resources can be released. Prior to the
advent of utility computing, coping with unexpected spikes in demand was fraught with
challenges: under-provision and run the risk of service interruptions, or over-provision
and tie up precious capital in idle machines that are depreciating.

From the utility provider point of view, this business also makes sense because
large datacenters benefit from economies of scale and can be run more efficiently than
smaller datacenters. In the same way that insurance works by aggregating risk and re-
distributing it, utility providers aggregate the computing demands for a large number
of users. Although demand may fluctuate significantly for each user, overall trends in
aggregate demand should be smooth and predictable, which allows the cloud provider
to adjust capacity over time with less risk of either offering too much (resulting in in-
efficient use of capital) or too little (resulting in unsatisfied customers). In the world of
utility computing, Amazon Web Services currently leads the way and remains the dom-
inant player, but a number of other cloud providers populate a market that is becoming
increasingly crowded. Most systems are based on proprietary infrastructure, but there
is at least one, Eucalyptus [111], that is available open source. Increased competition
will benefit cloud users, but what direct relevance does this have for MapReduce? The
connection is quite simple: processing large amounts of data with MapReduce requires
access to clusters with sufficient capacity. However, not everyone with large-data prob-
lems can afford to purchase and maintain clusters. This is where utility computing
comes in: clusters of sufficient size can be provisioned only when the need arises, and
users pay only as much as is required to solve their problems. This lowers the barrier
to entry for data-intensive processing and makes MapReduce much more accessible.

A generalization of the utility computing concept is “everything as a service”,
which is itself a new take on the age-old idea of outsourcing. A cloud provider offering
customers access to virtual machine instances is said to be offering infrastructure as a
service, or laaS for short. However, this may be too low level for many users. Enter plat-
form as a service (PaaS), which is a rebranding of what used to be called hosted services
in the “pre-cloud” era. Platform is used generically to refer to any set of well-defined
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services on top of which users can build applications, deploy content, etc. This class of
services is best exemplified by Google App Engine, which provides the backend data-
store and API for anyone to build highly-scalable web applications. Google maintains
the infrastructure, freeing the user from having to backup, upgrade, patch, or otherwise
maintain basic services such as the storage layer or the programming environment. At
an even higher level, cloud providers can offer software as a service (SaaS), as exem-
plified by Salesforce, a leader in customer relationship management (CRM) software.
Other examples include outsourcing an entire organization’s email to a third party,
which is commonplace today.

What does this proliferation of services have to do with MapReduce? No doubt
that “everything as a service” is driven by desires for greater business efficiencies, but
scale and elasticity play important roles as well. The cloud allows seamless expansion of
operations without the need for careful planning and supports scales that may otherwise
be difficult or cost-prohibitive for an organization to achieve. Cloud services, just like
MapReduce, represents the search for an appropriate level of abstraction and beneficial
divisions of labor. TaaS is an abstraction over raw physical hardware—an organization
might lack the capital, expertise, or interest in running datacenters, and therefore pays
a cloud provider to do so on its behalf. The argument applies similarly to PaaS and
SaaS. In the same vein, the MapReduce programming model is a powerful abstraction
that separates the what from the how of data-intensive processing.

1.2 BIG IDEAS

Tackling large-data problems requires a distinct approach that sometimes runs counter
to traditional models of computing. In this section, we discuss a number of “big ideas”
behind MapReduce. To be fair, all of these ideas have been discussed in the computer
science literature for some time (some for decades), and MapReduce is certainly not
the first to adopt these ideas. Nevertheless, the engineers at Google deserve tremendous
credit for pulling these various threads together and demonstrating the power of these
ideas on a scale previously unheard of.

Scale “out”, not “up”. For data-intensive workloads, a large number of commodity
low-end servers (i.e., the scaling “out” approach) is preferred over a small number of
high-end servers (i.e., the scaling “up” approach). The latter approach of purchasing
symmetric multi-processing (SMP) machines with a large number of processor sockets
(dozens, even hundreds) and a large amount of shared memory (hundreds or even thou-
sands of gigabytes) is not cost effective, since the costs of such machines do not scale
linearly (i.e., a machine with twice as many processors is often significantly more than
twice as expensive). On the other hand, the low-end server market overlaps with the
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high-volume desktop computing market, which has the effect of keeping prices low due
to competition, interchangeable components, and economies of scale.

Barroso and Holzle’s recent treatise of what they dubbed “warehouse-scale com-
puters” [18] contains a thoughtful analysis of the two approaches. The Transaction
Processing Council (TPC) is a neutral, non-profit organization whose mission is to
establish objective database benchmarks. Benchmark data submitted to that organiza-
tion are probably the closest one can get to a fair “apples-to-apples” comparison of cost
and performance for specific, well-defined relational processing applications. Based on
TPC-C benchmark results from late 2007, a low-end server platform is about four times
more cost efficient than a high-end shared memory platform from the same vendor. Ex-
cluding storage costs, the price/performance advantage of the low-end server increases
to about a factor of twelve.

What if we take into account the fact that communication between nodes in
a high-end SMP machine is orders of magnitude faster than communication between
nodes in a commodity network-based cluster? Since workloads today are beyond the
capability of any single machine (no matter how powerful), the comparison is more ac-
curately between a smaller cluster of high-end machines and a larger cluster of low-end
machines (network communication is unavoidable in both cases). Barroso and Hélzle
model these two approaches under workloads that demand more or less communication,
and conclude that a cluster of low-end servers approaches the performance of the equiv-
alent cluster of high-end servers—the small performance gap is insufficient to justify the
price premium of the high-end servers. For data-intensive applications, the conclusion
appears to be clear: scaling “out” is superior to scaling “up”, and therefore most existing
implementations of the MapReduce programming model are designed around clusters
of low-end commodity servers.

Capital costs in acquiring servers is, of course, only one component of the total
cost of delivering computing capacity. Operational costs are dominated by the cost of
electricity to power the servers as well as other aspects of datacenter operations that
are functionally related to power: power distribution, cooling, etc. [67, 18]. As a result,
energy efficiency has become a key issue in building warehouse-scale computers for
large-data processing. Therefore, it is important to factor in operational costs when
deploying a scale-out solution based on large numbers of commodity servers.

Datacenter efficiency is typically factored into three separate components that
can be independently measured and optimized [18]. The first component measures how
much of a building’s incoming power is actually delivered to computing equipment, and
correspondingly, how much is lost to the building’s mechanical systems (e.g., cooling,
air handling) and electrical infrastructure (e.g., power distribution inefficiencies). The
second component measures how much of a server’s incoming power is lost to the power
supply, cooling fans, etc. The third component captures how much of the power delivered
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to computing components (processor, RAM, disk, etc.) is actually used to perform useful
computations.

Of the three components of datacenter efficiency, the first two are relatively
straightforward to objectively quantify. Adoption of industry best-practices can help
datacenter operators achieve state-of-the-art efficiency. The third component, however,
is much more difficult to measure. One important issue that has been identified is the
non-linearity between load and power draw. That is, a server at 10% utilization may
draw slightly more than half as much power as a server at 100% utilization (which
means that a lightly-loaded server is much less efficient than a heavily-loaded server).
A survey of five thousand Google servers over a six-month period shows that servers
operate most of the time at between 10% and 50% utilization [17], which is an energy-
inefficient operating region. As a result, Barroso and Holzle have advocated for research
and development in energy-proportional machines, where energy consumption would
be proportional to load, such that an idle processor would (ideally) consume no power,
but yet retain the ability to power up (nearly) instantaneously in response to demand.

Although we have provided a brief overview here, datacenter efficiency is a topic
that is beyond the scope of this book. For more details, consult Barroso and Hoélzle [18]
and Hamilton [67], who provide detailed cost models for typical modern datacenters.
However, even factoring in operational costs, evidence suggests that scaling out remains
more attractive than scaling up.

Assume failures are common. At warehouse scale, failures are not only inevitable,
but commonplace. A simple calculation suffices to demonstrate: let us suppose that a
cluster is built from reliable machines with a mean-time between failures (MTBF) of
1000 days (about three years). Even with these reliable servers, a 10,000-server cluster
would still experience roughly 10 failures a day. For the sake of argument, let us suppose
that a MTBF of 10,000 days (about thirty years) were achievable at realistic costs (which
is unlikely). Even then, a 10,000-server cluster would still experience one failure daily.
This means that any large-scale service that is distributed across a large cluster (either
a user-facing application or a computing platform like MapReduce) must cope with
hardware failures as an intrinsic aspect of its operation [66]. That is, a server may fail at
any time, without notice. For example, in large clusters disk failures are common [123]
and RAM experiences more errors than one might expect [135]. Datacenters suffer
from both planned outages (e.g., system maintenance and hardware upgrades) and
unexpected outages (e.g., power failure, connectivity loss, etc.).

A well-designed, fault-tolerant service must cope with failures up to a point with-
out impacting the quality of service—failures should not result in inconsistencies or in-
determinism from the user perspective. As servers go down, other cluster nodes should
seamlessly step in to handle the load, and overall performance should gracefully degrade
as server failures pile up. Just as important, a broken server that has been repaired
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should be able to seamlessly rejoin the service without manual reconfiguration by the
administrator. Mature implementations of the MapReduce programming model are able
to robustly cope with failures through a number of mechanisms such as automatic task
restarts on different cluster nodes.

Move processing to the data. In traditional high-performance computing (HPC)
applications (e.g., for climate or nuclear simulations), it is commonplace for a supercom-
puter to have “processing nodes” and “storage nodes” linked together by a high-capacity
interconnect. Many data-intensive workloads are not very processor-demanding, which
means that the separation of compute and storage creates a bottleneck in the network.
As an alternative to moving data around, it is more efficient to move the process-
ing around. That is, MapReduce assumes an architecture where processors and storage
(disk) are co-located. In such a setup, we can take advantage of data locality by running
code on the processor directly attached to the block of data we need. The distributed
file system is responsible for managing the data over which MapReduce operates.

Process data sequentially and avoid random access. Data-intensive processing
by definition means that the relevant datasets are too large to fit in memory and must
be held on disk. Seek times for random disk access are fundamentally limited by the
mechanical nature of the devices: read heads can only move so fast and platters can only
spin so rapidly. As a result, it is desirable to avoid random data access, and instead orga-
nize computations so that data is processed sequentially. A simple scenario!® poignantly
illustrates the large performance gap between sequential operations and random seeks:
assume a 1 terabyte database containing 10'° 100-byte records. Given reasonable as-
sumptions about disk latency and throughput, a back-of-the-envelop calculation will
show that updating 1% of the records (by accessing and then mutating each record)
will take about a month on a single machine. On the other hand, if one simply reads the
entire database and rewrites all the records (mutating those that need updating), the
process would finish in under a work day on a single machine. Sequential data access
is, literally, orders of magnitude faster than random data access.!!

The development of solid-state drives is unlikely the change this balance for at
least two reasons. First, the cost differential between traditional magnetic disks and
solid-state disks remains substantial: large-data will for the most part remain on me-
chanical drives, at least in the near future. Second, although solid-state disks have
substantially faster seek times, order-of-magnitude differences in performance between
sequential and random access still remain.

MapReduce is primarily designed for batch processing over large datasets. To the
extent possible, all computations are organized into long streaming operations that

10 Adapted from a post by Ted Dunning on the Hadoop mailing list.
M For more detail, Jacobs [76] provides real-world benchmarks in his discussion of large-data problems.
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take advantage of the aggregate bandwidth of many disks in a cluster. Many aspects of
MapReduce’s design explicitly trade latency for throughput.

Hide system-level details from the application developer. According to many
guides on the practice of software engineering written by experienced industry profes-
sionals, one of the key reasons why writing code is difficult is because the programmer
must simultaneously keep track of many details in short term memory—ranging from
the mundane (e.g., variable names) to the sophisticated (e.g., a corner case of an algo-
rithm that requires special treatment). This imposes a high cognitive load and requires
intense concentration, which leads to a number of recommendations about a program-
mer’s environment (e.g., quiet office, comfortable furniture, large monitors, etc.). The
challenges in writing distributed software are greatly compounded—the programmer
must manage details across several threads, processes, or machines. Of course, the
biggest headache in distributed programming is that code runs concurrently in un-
predictable orders, accessing data in unpredictable patterns. This gives rise to race
conditions, deadlocks, and other well-known problems. Programmers are taught to use
low-level devices such as mutexes and to apply high-level “design patterns” such as
producer—consumer queues to tackle these challenges, but the truth remains: concur-
rent programs are notoriously difficult to reason about and even harder to debug.

MapReduce addresses the challenges of distributed programming by providing an
abstraction that isolates the developer from system-level details (e.g., locking of data
structures, data starvation issues in the processing pipeline, etc.). The programming
model specifies simple and well-defined interfaces between a small number of compo-
nents, and therefore is easy for the programmer to reason about. MapReduce maintains
a separation of what computations are to be performed and how those computations are
actually carried out on a cluster of machines. The first is under the control of the pro-
grammer, while the second is exclusively the responsibility of the execution framework
or “runtime”. The advantage is that the execution framework only needs to be de-
signed once and verified for correctness—thereafter, as long as the developer expresses
computations in the programming model, code is guaranteed to behave as expected.
The upshot is that the developer is freed from having to worry about system-level de-
tails (e.g., no more debugging race conditions and addressing lock contention) and can
instead focus on algorithm or application design.

Seamless scalability. For data-intensive processing, it goes without saying that scal-
able algorithms are highly desirable. As an aspiration, let us sketch the behavior of an
ideal algorithm. We can define scalability along at least two dimensions.!? First, in terms
of data: given twice the amount of data, the same algorithm should take at most twice
as long to run, all else being equal. Second, in terms of resources: given a cluster twice

12See also DeWitt and Gray [50] for slightly different definitions in terms of speedup and scaleup.
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the size, the same algorithm should take no more than half as long to run. Furthermore,
an ideal algorithm would maintain these desirable scaling characteristics across a wide
range of settings: on data ranging from gigabytes to petabytes, on clusters consisting
of a few to a few thousand machines. Finally, the ideal algorithm would exhibit these
desired behaviors without requiring any modifications whatsoever, not even tuning of
parameters.

Other than for embarrassingly parallel problems, algorithms with the character-
istics sketched above are, of course, unobtainable. One of the fundamental assertions
in Fred Brook’s classic The Mythical Man-Month [28] is that adding programmers to a
project behind schedule will only make it fall further behind. This is because complex
tasks cannot be chopped into smaller pieces and allocated in a linear fashion, and is
often illustrated with a cute quote: “nine women cannot have a baby in one month”.
Although Brook’s observations are primarily about software engineers and the soft-
ware development process, the same is also true of algorithms: increasing the degree
of parallelization also increases communication costs. The algorithm designer is faced
with diminishing returns, and beyond a certain point, greater efficiencies gained by
parallelization are entirely offset by increased communication requirements.

Nevertheless, these fundamental limitations shouldn’t prevent us from at least
striving for the unobtainable. The truth is that most current algorithms are far from
the ideal. In the domain of text processing, for example, most algorithms today assume
that data fits in memory on a single machine. For the most part, this is a fair assumption.
But what happens when the amount of data doubles in the near future, and then doubles
again shortly thereafter? Simply buying more memory is not a viable solution, as the
amount of data is growing faster than the price of memory is falling. Furthermore, the
price of a machine does not scale linearly with the amount of available memory beyond
a certain point (once again, the scaling “up” vs. scaling “out” argument). Quite simply,
algorithms that require holding intermediate data in memory on a single machine will
simply break on sufficiently-large datasets—moving from a single machine to a cluster
architecture requires fundamentally different algorithms (and reimplementations).

Perhaps the most exciting aspect of MapReduce is that it represents a small step
toward algorithms that behave in the ideal manner discussed above. Recall that the
programming model maintains a clear separation between what computations need to
occur with how those computations are actually orchestrated on a cluster. As a result,
a MapReduce algorithm remains fixed, and it is the responsibility of the execution
framework to execute the algorithm. Amazingly, the MapReduce programming model
is simple enough that it is actually possible, in many circumstances, to approach the
ideal scaling characteristics discussed above. We introduce the idea of the “tradeable
machine hour”, as a play on Brook’s classic title. If running an algorithm on a particular
dataset takes 100 machine hours, then we should be able to finish in an hour on a cluster
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of 100 machines, or use a cluster of 10 machines to complete the same task in ten hours.'?
With MapReduce, this isn’t so far from the truth, at least for some applications.

1.3 WHY IS THIS DIFFERENT?

“Due to the rapidly decreasing cost of processing, memory, and communica-
tion, it has appeared inevitable for at least two decades that parallel machines
will eventually displace sequential ones in computationally intensive domains.
This, however, has not happened.” — Leslie Valiant [148]'

For several decades, computer scientists have predicted that the dawn of the age of
parallel computing was “right around the corner” and that sequential processing would
soon fade into obsolescence (consider, for example, the above quote). Yet, until very re-
cently, they have been wrong. The relentless progress of Moore’s Law for several decades
has ensured that most of the world’s problems could be solved by single-processor ma-
chines, save the needs of a few (scientists simulating molecular interactions or nuclear
reactions, for example). Couple that with the inherent challenges of concurrency, and
the result has been that parallel processing and distributed systems have largely been
confined to a small segment of the market and esoteric upper-level electives in the
computer science curriculum.

However, all of that changed around the middle of the first decade of this cen-
tury. The manner in which the semiconductor industry had been exploiting Moore’s
Law simply ran out of opportunities for improvement: faster clocks, deeper pipelines,
superscalar architectures, and other tricks of the trade reached a point of diminish-
ing returns that did not justify continued investment. This marked the beginning of
an entirely new strategy and the dawn of the multi-core era [115]. Unfortunately, this
radical shift in hardware architecture was not matched at that time by corresponding
advances in how software could be easily designed for these new processors (but not for
lack of trying [104]). Nevertheless, parallel processing became an important issue at the
forefront of everyone’s mind—it represented the only way forward.

At around the same time, we witnessed the growth of large-data problems. In the
late 1990s and even during the beginning of the first decade of this century, relatively
few organizations had data-intensive processing needs that required large clusters: a
handful of internet companies and perhaps a few dozen large corporations. But then,
everything changed. Through a combination of many different factors (falling prices of
disks, rise of user-generated web content, etc.), large-data problems began popping up
everywhere. Data-intensive processing needs became widespread, which drove innova-
tions in distributed computing such as MapReduce—first by Google, and then by Yahoo
I3Note that this idea meshes well with utility computing, where a 100-machine cluster running for one hour would

cost the same as a 10-machine cluster running for ten hours.
14Guess when this was written? You may be surprised.
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and the open source community. This in turn created more demand: when organiza-
tions learned about the availability of effective data analysis tools for large datasets,
they began instrumenting various business processes to gather even more data—driven
by the belief that more data leads to deeper insights and greater competitive advantages.
Today, not only are large-data problems ubiquitous, but technological solutions for ad-
dressing them are widely accessible. Anyone can download the open source Hadoop
implementation of MapReduce, pay a modest fee to rent a cluster from a utility cloud
provider, and be happily processing terabytes upon terabytes of data within the week.
Finally, the computer scientists are right—the age of parallel computing has begun,
both in terms of multiple cores in a chip and multiple machines in a cluster (each of
which often has multiple cores).

Why is MapReduce important? In practical terms, it provides a very effective tool
for tackling large-data problems. But beyond that, MapReduce is important in how it
has changed the way we organize computations at a massive scale. MapReduce repre-
sents the first widely-adopted step away from the von Neumann model that has served
as the foundation of computer science over the last half plus century. Valiant called this
a bridging model [148], a conceptual bridge between the physical implementation of a
machine and the software that is to be executed on that machine. Until recently, the
von Neumann model has served us well: Hardware designers focused on efficient imple-
mentations of the von Neumann model and didn’t have to think much about the actual
software that would run on the machines. Similarly, the software industry developed
software targeted at the model without worrying about the hardware details. The result
was extraordinary growth: chip designers churned out successive generations of increas-
ingly powerful processors, and software engineers were able to develop applications in
high-level languages that exploited those processors.

Today, however, the von Neumann model isn’t sufficient anymore: we can’t treat
a multi-core processor or a large cluster as an agglomeration of many von Neumann
machine instances communicating over some interconnect. Such a view places too much
burden on the software developer to effectively take advantage of available computa-
tional resources—it simply is the wrong level of abstraction. MapReduce can be viewed
as the first breakthrough in the quest for new abstractions that allow us to organize
computations, not over individual machines, but over entire clusters. As Barroso puts
it, the datacenter is the computer [18, 119].

To be fair, MapReduce is certainly not the first model of parallel computation
that has been proposed. The most prevalent model in theoretical computer science,
which dates back several decades, is the PRAM [77, 60].'° In the model, an arbitrary
number of processors, sharing an unboundedly large memory, operate synchronously on
a shared input to produce some output. Other models include LogP [43] and BSP [148].

15More than a theoretical model, the PRAM has been recently prototyped in hardware [153].
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For reasons that are beyond the scope of this book, none of these previous models have
enjoyed the success that MapReduce has in terms of adoption and in terms of impact
on the daily lives of millions of users.'®

MapReduce is the most successful abstraction over large-scale computational re-
sources we have seen to date. However, as anyone who has taken an introductory
computer science course knows, abstractions manage complexity by hiding details and
presenting well-defined behaviors to users of those abstractions. They, inevitably, are
imperfect—making certain tasks easier but others more difficult, and sometimes, im-
possible (in the case where the detail suppressed by the abstraction is exactly what
the user cares about). This critique applies to MapReduce: it makes certain large-data
problems easier, but suffers from limitations as well. This means that MapReduce is
not the final word, but rather the first in a new class of programming models that will
allow us to more effectively organize computations at a massive scale.

So if MapReduce is only the beginning, what’s next beyond MapReduce? We're
getting ahead of ourselves, as we can’t meaningfully answer this question before thor-
oughly understanding what MapReduce can and cannot do well. This is exactly the
purpose of this book: let us now begin our exploration.

1.4 WHAT THIS BOOK IS NOT

Actually, not quite yet... A final word before we get started. This book is about Map-
Reduce algorithm design, particularly for text processing (and related) applications.
Although our presentation most closely follows the Hadoop open-source implementa-
tion of MapReduce, this book is explicitly not about Hadoop programming. We don’t
for example, discuss APIs, command-line invocations for running jobs, etc. For those
aspects, we refer the reader to Tom White’s excellent book, “Hadoop: The Definitive
Guide”, published by O’Reilly [154].

16Nevertheless, it is important to understand the relationship between MapReduce and existing models so that we
can bring to bear accumulated knowledge about parallel algorithms; for example, Karloff et al. [82] demonstrated
that a large class of PRAM algorithms can be efficiently simulated via MapReduce.
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CHAPTER 2

MapReduce Basics

The only feasible approach to tackling large-data problems today is to divide and con-
quer, a fundamental concept in computer science that is introduced very early in typical
undergraduate curricula. The basic idea is to partition a large problem into smaller sub-
problems. To the extent that the sub-problems are independent [5], they can be tackled
in parallel by different workers—threads in a processor core, cores in a multi-core pro-
cessor, multiple processors in a machine, or many machines in a cluster. Intermediate
results from each individual worker are then combined to yield the final output.!

The general principles behind divide-and-conquer algorithms are broadly applica-
ble to a wide range of problems in many different application domains. However, the
details of their implementations are varied and complex. For example, the following are
just some of the issues that need to be addressed:

e How do we break up a large problem into smaller tasks? More specifically, how do
we decompose the problem so that the smaller tasks can be executed in parallel?

e How do we assign tasks to workers distributed across a potentially large number
of machines (while keeping in mind that some workers are better suited to running
some tasks than others, e.g., due to available resources, locality constraints, etc.)?

e How do we ensure that the workers get the data they need?
e How do we coordinate synchronization among the different workers?
e How do we share partial results from one worker that is needed by another?

e How do we accomplish all of the above in the face of software errors and hardware
faults?

In traditional parallel or distributed programming environments, the developer
needs to explicitly address many (and sometimes, all) of the above issues. In shared
memory programming, the developer needs to explicitly coordinate access to shared
data structures through synchronization primitives such as mutexes, to explicitly han-
dle process synchronization through devices such as barriers, and to remain ever vigilant
for common problems such as deadlocks and race conditions. Language extensions, like

IWe note that promising technologies such as quantum or biological computing could potentially induce a
paradigm shift, but they are far from being sufficiently mature to solve real world problems.
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OpenMP for shared memory parallelism,? or libraries implementing the Message Pass-
ing Interface (MPI) for cluster-level parallelism,® provide logical abstractions that hide
details of operating system synchronization and communications primitives. However,
even with these extensions, developers are still burdened to keep track of how resources
are made available to workers. Additionally, these frameworks are mostly designed to
tackle processor-intensive problems and have only rudimentary support for dealing with
very large amounts of input data. When using existing parallel computing approaches
for large-data computation, the programmer must devote a significant amount of at-
tention to low-level system details, which detracts from higher-level problem solving.

One of the most significant advantages of MapReduce is that it provides an ab-
straction that hides many system-level details from the programmer. Therefore, a devel-
oper can focus on what computations need to be performed, as opposed to how those
computations are actually carried out or how to get the data to the processes that
depend on them. Like OpenMP and MPI, MapReduce provides a means to distribute
computation without burdening the programmer with the details of distributed com-
puting (but at a different level of granularity). However, organizing and coordinating
large amounts of computation is only part of the challenge. Large-data processing by
definition requires bringing data and code together for computation to occur—no small
feat for datasets that are terabytes and perhaps petabytes in size! MapReduce addresses
this challenge by providing a simple abstraction for the developer, transparently han-
dling most of the details behind the scenes in a scalable, robust, and efficient manner.
As we mentioned in Chapter 1, instead of moving large amounts of data around, it is far
more efficient, if possible, to move the code to the data. This is operationally realized
by spreading data across the local disks of nodes in a cluster and running processes
on nodes that hold the data. The complex task of managing storage in such a process-
ing environment is typically handled by a distributed file system that sits underneath
MapReduce.

This chapter introduces the MapReduce programming model and the underlying
distributed file system. We start in Section 2.1 with an overview of functional program-
ming, from which MapReduce draws its inspiration. Section 2.2 introduces the basic
programming model, focusing on mappers and reducers. Section 2.3 discusses the role
of the execution framework in actually running MapReduce programs (called jobs).
Section 2.4 fills in additional details by introducing partitioners and combiners, which
provide greater control over data flow. MapReduce would not be practical without a
tightly-integrated distributed file system that manages the data being processed; Sec-
tion 2.5 covers this in detail. Tying everything together, a complete cluster architecture
is described in Section 2.6 before the chapter ends with a summary.

2http://www.openmp.org/
Shttp://www.mcs.anl.gov/mpi/
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Figure 2.1: Tllustration of map and fold, two higher-order functions commonly used together
in functional programming: map takes a function f and applies it to every element in a list,
while fold iteratively applies a function g to aggregate results.

2.1 FUNCTIONAL PROGRAMMING ROOTS

MapReduce has its roots in functional programming, which is exemplified in languages
such as Lisp and ML.* A key feature of functional languages is the concept of higher-
order functions, or functions that can accept other functions as arguments. Two common
built-in higher order functions are map and fold, illustrated in Figure 2.1. Given a list,
map takes as an argument a function f (that takes a single argument) and applies it to
all elements in a list (the top part of the diagram). Given a list, fold takes as arguments
a function g (that takes two arguments) and an initial value: g is first applied to the
initial value and the first item in the list, the result of which is stored in an intermediate
variable. This intermediate variable and the next item in the list serve as the arguments
to a second application of g, the results of which are stored in the intermediate variable.
This process repeats until all items in the list have been consumed; fold then returns the
final value of the intermediate variable. Typically, map and fold are used in combination.
For example, to compute the sum of squares of a list of integers, one could map a function
that squares its argument (i.e., Az.z?) over the input list, and then fold the resulting list
with the addition function (more precisely, AxAy.x + y) using an initial value of zero.
We can view map as a concise way to represent the transformation of a dataset
(as defined by the function f). In the same vein, we can view fold as an aggregation
operation, as defined by the function g. One immediate observation is that the appli-
cation of f to each item in a list (or more generally, to elements in a large dataset)

4However, there are important characteristics of MapReduce that make it non-functional in nature—this will
become apparent later.
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can be parallelized in a straightforward manner, since each functional application hap-
pens in isolation. In a cluster, these operations can be distributed across many differ-
ent machines. The fold operation, on the other hand, has more restrictions on data
locality—elements in the list must be “brought together” before the function g can be
applied. However, many real-world applications do not require g to be applied to all
elements of the list. To the extent that elements in the list can be divided into groups,
the fold aggregations can also proceed in parallel. Furthermore, for operations that are
commutative and associative, significant efficiencies can be gained in the fold operation
through local aggregation and appropriate reordering.

In a nutshell, we have described MapReduce. The map phase in MapReduce
roughly corresponds to the map operation in functional programming, whereas the
reduce phase in MapReduce roughly corresponds to the fold operation in functional
programming. As we will discuss in detail shortly, the MapReduce execution framework
coordinates the map and reduce phases of processing over large amounts of data on
large clusters of commodity machines.

Viewed from a slightly different angle, MapReduce codifies a generic “recipe” for
processing large datasets that consists of two stages. In the first stage, a user-specified
computation is applied over all input records in a dataset. These operations occur in
parallel and yield intermediate output that is then aggregated by another user-specified
computation. The programmer defines these two types of computations, and the exe-
cution framework coordinates the actual processing (very loosely, MapReduce provides
a functional abstraction). Although such a two-stage processing structure may appear
to be very restrictive, many interesting algorithms can be expressed quite concisely—
especially if one decomposes complex algorithms into a sequence of MapReduce jobs.
Subsequent chapters in this book focus on how a number of algorithms can be imple-
mented in MapReduce.

To be precise, MapReduce can refer to three distinct but related concepts. First,
MapReduce is a programming model, which is the sense discussed above. Second, Map-
Reduce can refer to the execution framework (i.e., the “runtime”) that coordinates the
execution of programs written in this particular style. Finally, MapReduce can refer to
the software implementation of the programming model and the execution framework:
for example, Google’s proprietary implementation vs. the open-source Hadoop imple-
mentation in Java. And in fact, there are many implementations of MapReduce, e.g.,
targeted specifically for multi-core processors [127], for GPGPUs [71], for the CELL ar-
chitecture [126], etc. There are some differences between the MapReduce programming
model implemented in Hadoop and Google’s proprietary implementation, which we will
explicitly discuss throughout the book. However, we take a rather Hadoop-centric view
of MapReduce, since Hadoop remains the most mature and accessible implementation
to date, and therefore the one most developers are likely to use.
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2.2 MAPPERS AND REDUCERS

Key-value pairs form the basic data structure in MapReduce. Keys and values may be
primitives such as integers, floating point values, strings, and raw bytes, or they may
be arbitrarily complex structures (lists, tuples, associative arrays, etc.). Programmers
typically need to define their own custom data types, although a number of libraries
such as Protocol Buffers,® Thrift,® and Avro” simplify the task.

Part of the design of MapReduce algorithms involves imposing the key-value struc-
ture on arbitrary datasets. For a collection of web pages, keys may be URLs and values
may be the actual HI'ML content. For a graph, keys may represent node ids and values
may contain the adjacency lists of those nodes (see Chapter 5 for more details). In some
algorithms, input keys are not particularly meaningful and are simply ignored during
processing, while in other cases input keys are used to uniquely identify a datum (such
as a record id). In Chapter 3, we discuss the role of complex keys and values in the
design of various algorithms.

In MapReduce, the programmer defines a mapper and a reducer with the following
signatures:

map: (ki,v1) — [(k2, v2)]
reduce: (ka, [v2]) — [(k3,v3)]

The convention [...] is used throughout this book to denote a list. The input to a
MapReduce job starts as data stored on the underlying distributed file system (see Sec-
tion 2.5). The mapper is applied to every input key-value pair (split across an arbitrary
number of files) to generate an arbitrary number of intermediate key-value pairs. The
reducer is applied to all values associated with the same intermediate key to generate
output key-value pairs.® Implicit between the map and reduce phases is a distributed
“group by” operation on intermediate keys. Intermediate data arrive at each reducer
in order, sorted by the key. However, no ordering relationship is guaranteed for keys
across different reducers. Output key-value pairs from each reducer are written persis-
tently back onto the distributed file system (whereas intermediate key-value pairs are
transient and not preserved). The output ends up in r files on the distributed file system,
where r is the number of reducers. For the most part, there is no need to consolidate
reducer output, since the r files often serve as input to yet another MapReduce job.
Figure 2.2 illustrates this two-stage processing structure.

A simple word count algorithm in MapReduce is shown in Figure 2.3. This algo-
rithm counts the number of occurrences of every word in a text collection, which may
be the first step in, for example, building a unigram language model (i.e., probability
Shttp://code.google.com/p/protobuf/

Shttp://incubator.apache.org/thrift/

"http://hadoop.apache.org/avro/
8This characterization, while conceptually accurate, is a slight simplification. See Section 2.6 for more details.
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Figure 2.2: Simplified view of MapReduce. Mappers are applied to all input key-value pairs,
which generate an arbitrary number of intermediate key-value pairs. Reducers are applied to
all values associated with the same key. Between the map and reduce phases lies a barrier that
involves a large distributed sort and group by.

1: class MAPPER

2 method Map(docid a,doc d)
3: for all term ¢ € doc d do
4 EMIT(term ¢, count 1)

1: class REDUCER

2 method REDUCE(term ¢, counts [cy, ¢, . . .])
3 sum < 0

4 for all count ¢ € counts [cy, ¢, ...] do

5 sum +— sum + ¢

6 EMIT(term ¢, count sum)

Figure 2.3: Pseudo-code for the word count algorithm in MapReduce. The mapper emits an
intermediate key-value pair for each word in a document. The reducer sums up all counts for
each word.
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distribution over words in a collection). Input key-values pairs take the form of (docid,
doc) pairs stored on the distributed file system, where the former is a unique identifier
for the document, and the latter is the text of the document itself. The mapper takes
an input key-value pair, tokenizes the document, and emits an intermediate key-value
pair for every word: the word itself serves as the key, and the integer one serves as the
value (denoting that we’ve seen the word once). The MapReduce execution framework
guarantees that all values associated with the same key are brought together in the
reducer. Therefore, in our word count algorithm, we simply need to sum up all counts
(ones) associated with each word. The reducer does exactly this, and emits final key-
value pairs with the word as the key, and the count as the value. Final output is written
to the distributed file system, one file per reducer. Words within each file will be sorted
by alphabetical order, and each file will contain roughly the same number of words. The
partitioner, which we discuss later in Section 2.4, controls the assignment of words to
reducers. The output can be examined by the programmer or used as input to another
MapReduce program.

There are some differences between the Hadoop implementation of MapReduce
and Google’s implementation.’ In Hadoop, the reducer is presented with a key and an
iterator over all values associated with the particular key. The values are arbitrarily
ordered. Google’s implementation allows the programmer to specify a secondary sort
key for ordering the values (if desired)—in which case values associated with each key
would be presented to the developer’s reduce code in sorted order. Later in Section 3.4
we discuss how to overcome this limitation in Hadoop to perform secondary sorting.
Another difference: in Google’s implementation the programmer is not allowed to change
the key in the reducer. That is, the reducer output key must be exactly the same as the
reducer input key. In Hadoop, there is no such restriction, and the reducer can emit an
arbitrary number of output key-value pairs (with different keys).

To provide a bit more implementation detail: pseudo-code provided in this book
roughly mirrors how MapReduce programs are written in Hadoop. Mappers and reduc-
ers are objects that implement the MAP and REDUCE methods, respectively. In Hadoop,
a mapper object is initialized for each map task (associated with a particular sequence
of key-value pairs called an input split) and the MAP method is called on each key-value
pair by the execution framework. In configuring a MapReduce job, the programmer pro-
vides a hint on the number of map tasks to run, but the execution framework (see next
section) makes the final determination based on the physical layout of the data (more
details in Section 2.5 and Section 2.6). The situation is similar for the reduce phase:
a reducer object is initialized for each reduce task, and the REDUCE method is called
once per intermediate key. In contrast with the number of map tasks, the programmer
can precisely specify the number of reduce tasks. We will return to discuss the details

9Personal communication, Jeff Dean.
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of Hadoop job execution in Section 2.6, which is dependent on an understanding of
the distributed file system (covered in Section 2.5). To reiterate: although the presen-
tation of algorithms in this book closely mirrors the way they would be implemented
in Hadoop, our focus is on algorithm design and conceptual understanding—not actual
Hadoop programming. For that, we would recommend Tom White’s book [154].

What are the restrictions on mappers and reducers? Mappers and reducers can
express arbitrary computations over their inputs. However, one must generally be careful
about use of external resources since multiple mappers or reducers may be contending
for those resources. For example, it may be unwise for a mapper to query an external
SQL database, since that would introduce a scalability bottleneck on the number of map
tasks that could be run in parallel (since they might all be simultaneously querying the
database).'” In general, mappers can emit an arbitrary number of intermediate key-value
pairs, and they need not be of the same type as the input key-value pairs. Similarly,
reducers can emit an arbitrary number of final key-value pairs, and they can differ
in type from the intermediate key-value pairs. Although not permitted in functional
programming, mappers and reducers can have side effects. This is a powerful and useful
feature: for example, preserving state across multiple inputs is central to the design of
many MapReduce algorithms (see Chapter 3). Such algorithms can be understood as
having side effects that only change state that is internal to the mapper or reducer.
While the correctness of such algorithms may be more difficult to guarantee (since the
function’s behavior depends not only on the current input but on previous inputs),
most potential synchronization problems are avoided since internal state is private only
to individual mappers and reducers. In other cases (see Section 4.4 and Section 6.5), it
may be useful for mappers or reducers to have external side effects, such as writing files
to the distributed file system. Since many mappers and reducers are run in parallel, and
the distributed file system is a shared global resource, special care must be taken to
ensure that such operations avoid synchronization conflicts. One strategy is to write a
temporary file that is renamed upon successful completion of the mapper or reducer [45].

In addition to the “canonical” MapReduce processing flow, other variations are
also possible. MapReduce programs can contain no reducers, in which case mapper
output is directly written to disk (one file per mapper). For embarrassingly parallel
problems, e.g., parse a large text collection or independently analyze a large number of
images, this would be a common pattern. The converse—a MapReduce program with
no mappers—is not possible, although in some cases it is useful for the mapper to imple-
ment the identity function and simply pass input key-value pairs to the reducers. This
has the effect of sorting and regrouping the input for reduce-side processing. Similarly,
in some cases it is useful for the reducer to implement the identity function, in which
case the program simply sorts and groups mapper output. Finally, running identity

10Unless, of course, the database itself is highly scalable.
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mappers and reducers has the effect of regrouping and resorting the input data (which
is sometimes useful).

Although in the most common case, input to a MapReduce job comes from data
stored on the distributed file system and output is written back to the distributed file
system, any other system that satisfies the proper abstractions can serve as a data source
or sink. With Google’s MapReduce implementation, BigTable [34], a sparse, distributed,
persistent multidimensional sorted map, is frequently used as a source of input and as
a store of MapReduce output. HBase is an open-source BigTable clone and has similar
capabilities. Also, Hadoop has been integrated with existing MPP (massively parallel
processing) relational databases, which allows a programmer to write MapReduce jobs
over database rows and dump output into a new database table. Finally, in some cases
MapReduce jobs may not consume any input at all (e.g., computing 7) or may only
consume a small amount of data (e.g., input parameters to many instances of processor-
intensive simulations running in parallel).

2.3 THE EXECUTION FRAMEWORK

One of the most important idea behind MapReduce is separating the what of distributed
processing from the how. A MapReduce program, referred to as a job, consists of code
for mappers and reducers (as well as combiners and partitioners to be discussed in the
next section) packaged together with configuration parameters (such as where the in-
put lies and where the output should be stored). The developer submits the job to the
submission node of a cluster (in Hadoop, this is called the jobtracker) and execution
framework (sometimes called the “runtime”) takes care of everything else: it transpar-
ently handles all other aspects of distributed code execution, on clusters ranging from
a single node to a few thousand nodes. Specific responsibilities include:

Scheduling. Each MapReduce job is divided into smaller units called tasks (see Sec-
tion 2.6 for more details). For example, a map task may be responsible for processing
a certain block of input key-value pairs (called an input split in Hadoop); similarly, a
reduce task may handle a portion of the intermediate key space. It is not uncommon
for MapReduce jobs to have thousands of individual tasks that need to be assigned to
nodes in the cluster. In large jobs, the total number of tasks may exceed the number of
tasks that can be run on the cluster concurrently, making it necessary for the scheduler
to maintain some sort of a task queue and to track the progress of running tasks so
that waiting tasks can be assigned to nodes as they become available. Another aspect
of scheduling involves coordination among tasks belonging to different jobs (e.g., from
different users). How can a large, shared resource support several users simultaneously
in a predictable, transparent, policy-driven fashion? There has been some recent work
along these lines in the context of Hadoop [131, 160].
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Speculative execution is an optimization that is implemented by both Hadoop and
Google’s MapReduce implementation (called “backup tasks” [45]). Due to the barrier
between the map and reduce tasks, the map phase of a job is only as fast as the slowest
map task. Similarly, the completion time of a job is bounded by the running time of the
slowest reduce task. As a result, the speed of a MapReduce job is sensitive to what are
known as stragglers, or tasks that take an usually long time to complete. One cause of
stragglers is flaky hardware: for example, a machine that is suffering from recoverable
errors may become significantly slower. With speculative execution, an identical copy
of the same task is executed on a different machine, and the framework simply uses the
result of the first task attempt to finish. Zaharia et al. [161] presented different execution
strategies in a recent paper, and Google has reported that speculative execution can
improve job running times by 44% [45]. Although in Hadoop both map and reduce tasks
can be speculatively executed, the common wisdom is that the technique is more helpful
for map tasks than reduce tasks, since each copy of the reduce task needs to pull data
over the network. Note, however, that speculative execution cannot adequately address
another common cause of stragglers: skew in the distribution of values associated with
intermediate keys (leading to reduce stragglers). In text processing we often observe
Zipfian distributions, which means that the task or tasks responsible for processing the
most frequent few elements will run much longer than the typical task. Better local
aggregation, discussed in the next chapter, is one possible solution to this problem.

Data/code co-location. The phrase data distribution is misleading, since one of the
key ideas behind MapReduce is to move the code, not the data. However, the more
general point remains—in order for computation to occur, we need to somehow feed
data to the code. In MapReduce, this issue is inexplicably intertwined with scheduling
and relies heavily on the design of the underlying distributed file system.'! To achieve
data locality, the scheduler starts tasks on the node that holds a particular block of data
(i.e., on its local drive) needed by the task. This has the effect of moving code to the
data. If this is not possible (e.g., a node is already running too many tasks), new tasks
will be started elsewhere, and the necessary data will be streamed over the network.
An important optimization here is to prefer nodes that are on the same rack in the
datacenter as the node holding the relevant data block, since inter-rack bandwidth is
significantly less than intra-rack bandwidth.

Synchronization. In general, synchronization refers to the mechanisms by which
multiple concurrently running processes “join up”, for example, to share intermediate
results or otherwise exchange state information. In MapReduce, synchronization is ac-
complished by a barrier between the map and reduce phases of processing. Intermediate
key-value pairs must be grouped by key, which is accomplished by a large distributed

1n the canonical case, that is. Recall that MapReduce may receive its input from other sources.
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sort involving all the nodes that executed map tasks and all the nodes that will execute
reduce tasks. This necessarily involves copying intermediate data over the network, and
therefore the process is commonly known as “shuffle and sort”. A MapReduce job with
m mappers and r reducers involves up to m x r distinct copy operations, since each
mapper may have intermediate output going to every reducer.

Note that the reduce computation cannot start until all the mappers have fin-
ished emitting key-value pairs and all intermediate key-value pairs have been shuffled
and sorted, since the execution framework cannot otherwise guarantee that all values
associated with the same key have been gathered. This is an important departure from
functional programming: in a fold operation, the aggregation function ¢ is a function of
the intermediate value and the next item in the list—which means that values can be
lazily generated and aggregation can begin as soon as values are available. In contrast,
the reducer in MapReduce receives all values associated with the same key at once.
However, it is possible to start copying intermediate key-value pairs over the network
to the nodes running the reducers as soon as each mapper finishes—this is a common
optimization and implemented in Hadoop.

Error and fault handling. The MapReduce execution framework must accomplish
all the tasks above in an environment where errors and faults are the norm, not the
exception. Since MapReduce was explicitly designed around low-end commodity servers,
the runtime must be especially resilient. In large clusters, disk failures are common [123]
and RAM experiences more errors than one might expect [135]. Datacenters suffer
from both planned outages (e.g., system maintenance and hardware upgrades) and
unexpected outages (e.g., power failure, connectivity loss, etc.).

And that’s just hardware. No software is bug free—exceptions must be appropri-
ately trapped, logged, and recovered from. Large-data problems have a penchant for
uncovering obscure corner cases in code that is otherwise thought to be bug-free. Fur-
thermore, any sufficiently large dataset will contain corrupted data or records that are
mangled beyond a programmer’s imagination—resulting in errors that one would never
think to check for or trap. The MapReduce execution framework must thrive in this
hostile environment.

2.4 PARTITIONERS AND COMBINERS

We have thus far presented a simplified view of MapReduce. There are two additional
elements that complete the programming model: partitioners and combiners.
Partitioners are responsible for dividing up the intermediate key space and assign-
ing intermediate key-value pairs to reducers. In other words, the partitioner specifies
the task to which an intermediate key-value pair must be copied. Within each reducer,
keys are processed in sorted order (which is how the “group by” is implemented). The
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simplest partitioner involves computing the hash value of the key and then taking the
mod of that value with the number of reducers. This assigns approximately the same
number of keys to each reducer (dependent on the quality of the hash function). Note,
however, that the partitioner only considers the key and ignores the value—therefore, a
roughly-even partitioning of the key space may nevertheless yield large differences in the
number of key-values pairs sent to each reducer (since different keys may have different
numbers of associated values). This imbalance in the amount of data associated with
each key is relatively common in many text processing applications due to the Zipfian
distribution of word occurrences.

Combiners are an optimization in MapReduce that allow for local aggregation
before the shuffle and sort phase. We can motivate the need for combiners by considering
the word count algorithm in Figure 2.3, which emits a key-value pair for each word
in the collection. Furthermore, all these key-value pairs need to be copied across the
network, and so the amount of intermediate data will be larger than the input collection
itself. This is clearly inefficient. One solution is to perform local aggregation on the
output of each mapper, i.e., to compute a local count for a word over all the documents
processed by the mapper. With this modification (assuming the maximum amount of
local aggregation possible), the number of intermediate key-value pairs will be at most
the number of unique words in the collection times the number of mappers (and typically
far smaller because each mapper may not encounter every word).

The combiner in MapReduce supports such an optimization. One can think of
combiners as “mini-reducers” that take place on the output of the mappers, prior to the
shuffle and sort phase. Each combiner operates in isolation and therefore does not have
access to intermediate output from other mappers. The combiner is provided keys and
values associated with each key (the same types as the mapper output keys and values).
Critically, one cannot assume that a combiner will have the opportunity to process all
values associated with the same key. The combiner can emit any number of key-value
pairs, but the keys and values must be of the same type as the mapper output (same as
the reducer input).'? In cases where an operation is both associative and commutative
(e.g., addition or multiplication), reducers can directly serve as combiners. In general,
however, reducers and combiners are not interchangeable.

In many cases, proper use of combiners can spell the difference between an imprac-
tical algorithm and an efficient algorithm. This topic will be discussed in Section 3.1,
which focuses on various techniques for local aggregation. It suffices to say for now that

12 A note on the implementation of combiners in Hadoop: by default, the execution framework reserves the right
to use combiners at its discretion. In reality, this means that a combiner may be invoked zero, one, or multiple
times. In addition, combiners in Hadoop may actually be invoked in the reduce phase, i.e., after key-value pairs
have been copied over to the reducer, but before the user reducer code runs. As a result, combiners must be
carefully written so that they can be executed in these different environments. Section 3.1.2 discusses this in
more detail.
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Figure 2.4: Complete view of MapReduce, illustrating combiners and partitioners in addi-
tion to mappers and reducers. Combiners can be viewed as “mini-reducers” in the map phase.
Partitioners determine which reducer is responsible for a particular key.

a combiner can significantly reduce the amount of data that needs to be copied over
the network, resulting in much faster algorithms.

The complete MapReduce model is shown in Figure 2.4. Output of the mappers
are processed by the combiners, which perform local aggregation to cut down on the
number of intermediate key-value pairs. The partitioner determines which reducer will
be responsible for processing a particular key, and the execution framework uses this
information to copy the data to the right location during the shuffle and sort phase.'?
Therefore, a complete MapReduce job consists of code for the mapper, reducer, com-
biner, and partitioner, along with job configuration parameters. The execution frame-
work handles everything else.

13In Hadoop, partitioners are actually executed before combiners, so while Figure 2.4 is conceptually accurate,
it doesn’t precisely describe the Hadoop implementation.
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2.5 THE DISTRIBUTED FILE SYSTEM

So far, we have mostly focused on the processing aspect of data-intensive processing,
but it is important to recognize that without data, there is nothing to compute on. In
high-performance computing (HPC) and many traditional cluster architectures, stor-
age is viewed as a distinct and separate component from computation. Implementations
vary widely, but network-attached storage (NAS) and storage area networks (SAN) are
common; supercomputers often have dedicated subsystems for handling storage (sepa-
rate nodes, and often even separate networks). Regardless of the details, the processing
cycle remains the same at a high level: the compute nodes fetch input from storage, load
the data into memory, process the data, and then write back the results (with perhaps
intermediate checkpointing for long-running processes).

As dataset sizes increase, more compute capacity is required for processing. But as
compute capacity grows, the link between the compute nodes and the storage becomes
a bottleneck. At that point, one could invest in higher performance but more expensive
networks (e.g., 10 gigabit Ethernet) or special-purpose interconnects such as InfiniBand
(even more expensive). In most cases, this is not a cost-effective solution, as the price
of networking equipment increases non-linearly with performance (e.g., a switch with
ten times the capacity is usually more than ten times more expensive). Alternatively,
one could abandon the separation of computation and storage as distinct components
in a cluster. The distributed file system (DFS) that underlies MapReduce adopts ex-
actly this approach. The Google File System (GFS) [57] supports Google’s proprietary
implementation of MapReduce; in the open-source world, HDFS (Hadoop Distributed
File System) is an open-source implementation of GF'S that supports Hadoop. Although
MapReduce doesn’t necessarily require the distributed file system, it is difficult to re-
alize many of the advantages of the programming model without a storage substrate
that behaves much like the DFS.1

Of course, distributed file systems are not new [74, 32, 7, 147, 133]. The Map-
Reduce distributed file system builds on previous work but is specifically adapted to
large-data processing workloads, and therefore departs from previous architectures in
certain respects (see discussion by Ghemawat et al. [57] in the original GFS paper.).
The main idea is to divide user data into blocks and replicate those blocks across the
local disks of nodes in the cluster. Blocking data, of course, is not a new idea, but DFS
blocks are significantly larger than block sizes in typical single-machine file systems (64
MB by default). The distributed file system adopts a master—slave architecture in which
the master maintains the file namespace (metadata, directory structure, file to block
mapping, location of blocks, and access permissions) and the slaves manage the actual

MHowever, there is evidence that existing POSIX-based distributed cluster file systems (e.g., GPFS or PVFS)
can serve as a replacement for HDFS, when properly tuned or modified for MapReduce workloads [146, 6].
This, however, remains an experimental use case.
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Figure 2.5: The architecture of HDF'S. The namenode (master) is responsible for maintaining

the file namespace and directing clients to datanodes (slaves) that actually hold data blocks
containing user data.

data blocks. In GFS, the master is called the GFS master, and the slaves are called
GFS chunkservers. In Hadoop, the same roles are filled by the namenode and datan-
odes, respectively.'® This book adopts the Hadoop terminology, although for most basic
file operations GFS and HDFS work much the same way. The architecture of HDFS is
shown in Figure 2.5, redrawn from a similar diagram describing GFS [57].

In HDFS, an application client wishing to read a file (or a portion thereof) must
first contact the namenode to determine where the actual data is stored. In response
to the client request, the namenode returns the relevant block id and the location
where the block is held (i.e., which datanode). The client then contacts the datanode to
retrieve the data. Blocks are themselves stored on standard single-machine file systems,
so HDFS lies on top of the standard OS stack (e.g., Linux). An important feature of
the design is that data is never moved through the namenode. Instead, all data transfer
occurs directly between clients and datanodes; communications with the namenode only
involves transfer of metadata.

By default, HDFS stores three separate copies of each data block to ensure both
reliability, availability, and performance. In large clusters, the three replicas are spread
across different physical racks, so HDFS is resilient towards two common failure sce-
narios: individual datanode crashes and failures in networking equipment that bring
an entire rack offline. Replicating blocks across physical machines also increases oppor-

15To be precise, namenode and datanode may refer to physical machines in a cluster, or they may refer to daemons
running on those machines providing the relevant services.
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tunities to co-locate data and processing in the scheduling of MapReduce jobs, since
multiple copies yield more opportunities to exploit locality. The namenode is in periodic
communication with the datanodes to ensure proper replication of all the blocks: if there
aren’t enough replicas (e.g., due to disk or machine failures or to connectivity losses
due to networking equipment failures), the namenode directs the creation of additional
copies;'% if there are too many replicas (e.g., a repaired node rejoins the cluster), extra
copies are discarded.

To create a new file and write data to HDFS, the application client first contacts
the namenode, which updates the file namespace after checking permissions and making
sure the file doesn’t already exist. The namenode allocates a new block on a suitable
datanode, and the application is directed to stream data directly to it. From the initial
datanode, data is further propagated to additional replicas. In the most recent release of
Hadoop as of this writing (release 0.20.2), files are immutable—they cannot be modified
after creation. There are current plans to officially support file appends in the near
future, which is a feature already present in GFS.

In summary, the HDFS namenode has the following responsibilities:

e Namespace management. The namenode is responsible for maintaining the file
namespace, which includes metadata, directory structure, file to block mapping,
location of blocks, and access permissions. These data are held in memory for fast
access and all mutations are persistently logged.

e Coordinating file operations. The namenode directs application clients to datan-
odes for read operations, and allocates blocks on suitable datanodes for write
operations. All data transfers occur directly between clients and datanodes. When
a file is deleted, HDFS does not immediately reclaim the available physical storage;
rather, blocks are lazily garbage collected.

e Maintaining overall health of the file system. The namenode is in periodic contact
with the datanodes via heartbeat messages to ensure the integrity of the system.
If the namenode observes that a data block is under-replicated (fewer copies are
stored on datanodes than the desired replication factor), it will direct the creation
of new replicas. Finally, the namenode is also responsible for rebalancing the file
system.'” During the course of normal operations, certain datanodes may end up
holding more blocks than others; rebalancing involves moving blocks from datan-
odes with more blocks to datanodes with fewer blocks. This leads to better load
balancing and more even disk utilization.

16Note that the namenode coordinates the replication process, but data transfer occurs directly from datanode
to datanode.
17In Hadoop, this is a manually-invoked process.
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Since GFS and HDFS were specifically designed to support Google’s proprietary and
the open-source implementation of MapReduce, respectively, they were designed with
a number of assumptions about the operational environment, which in turn influenced
the design of the systems. Understanding these choices is critical to designing effective
MapReduce algorithms:

e The file system stores a relatively modest number of large files. The definition of
“modest” varies by the size of the deployment, but in HDFS multi-gigabyte files
are common (and even encouraged). There are several reasons why lots of small
files are to be avoided. Since the namenode must hold all file metadata in memory,
this presents an upper bound on both the number of files and blocks that can
be supported.'® Large multi-block files represent a more efficient use of namenode
memory than many single-block files (each of which consumes less space than a
single block size). In addition, mappers in a MapReduce job use individual files as
a basic unit for splitting input data. At present, there is no default mechanism in
Hadoop that allows a mapper to process multiple files. As a result, mapping over
many small files will yield as many map tasks as there are files. This results in
two potential problems: first, the startup costs of mappers may become significant
compared to the time spent actually processing input key-value pairs; second, this
may result in an excessive amount of across-the-network copy operations during
the “shuffle and sort” phase (recall that a MapReduce job with m mappers and r
reducers involves up to m x r distinct copy operations).

e Workloads are batch oriented, dominated by long streaming reads and large se-
quential writes. As a result, high sustained bandwidth is more important than low
latency. This exactly describes the nature of MapReduce jobs, which are batch
operations on large amounts of data. Due to the common-case workload, both
HDFS and GFS do not implement any form of data caching.'®

e Applications are aware of the characteristics of the distributed file system. Neither
HDFS nor GFS present a general POSIX-compliant API, but rather support only
a subset of possible file operations. This simplifies the design of the distributed
file system, and in essence pushes part of the data management onto the end
application. One rationale for this decision is that each application knows best
how to handle data specific to that application, for example, in terms of resolving
inconsistent states and optimizing the layout of data structures.

18 According to Dhruba Borthakur in a post to the Hadoop mailing list on 6/8/2008, each block in HDF'S occupies
about 150 bytes of memory on the namenode.

9However, since the distributed file system is built on top of a standard operating system such as Linux, there
is still OS-level caching.
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e The file system is deployed in an environment of cooperative users. There is no
discussion of security in the original GFS paper, but HDFS explicitly assumes a
datacenter environment where only authorized users have access. File permissions
in HDFS are only meant to prevent unintended operations and can be easily
circumvented.?®

e The system is built from unreliable but inexpensive commodity components. As a
result, failures are the norm rather than the exception. HDFS is designed around
a number of self-monitoring and self-healing mechanisms to robustly cope with
common failure modes.

Finally, some discussion is necessary to understand the single-master design of HDFS
and GFS. It has been demonstrated that in large-scale distributed systems, simultane-
ously providing consistency, availability, and partition tolerance is impossible—this is
Brewer’s so-called CAP Theorem [58]. Since partitioning is unavoidable in large-data
systems, the real tradeoff is between consistency and availability. A single-master de-
sign trades availability for consistency and significantly simplifies implementation. If the
master (HDFS namenode or GFS master) goes down, the entire file system becomes
unavailable, which trivially guarantees that the file system will never be in an incon-
sistent state. An alternative design might involve multiple masters that jointly manage
the file namespace—such an architecture would increase availability (if one goes down,
another can step in) at the cost of consistency, not to mention requiring a more complex
implementation (cf. [4, 105]).

The single-master design of GFS and HDFS is a well-known weakness, since if
the master goes offline, the entire file system and all MapReduce jobs running on top
of it will grind to a halt. This weakness is mitigated in part by the lightweight nature
of file system operations. Recall that no data is ever moved through the namenode and
that all communication between clients and datanodes involve only metadata. Because
of this, the namenode rarely is the bottleneck, and for the most part avoids load-
induced crashes. In practice, this single point of failure is not as severe a limitation as
it may appear—with diligent monitoring of the namenode, mean time between failure
measured in months are not uncommon for production deployments. Furthermore, the
Hadoop community is well-aware of this problem and has developed several reasonable
workarounds—for example, a warm standby namenode that can be quickly switched
over when the primary namenode fails. The open source environment and the fact
that many organizations already depend on Hadoop for production systems virtually
guarantees that more effective solutions will be developed over time.

20However, there are existing plans to integrate Kerberos into Hadoop/HDFS.




36 CHAPTER 2. MAPREDUCE BASICS

namenode job submission node

namenode daemon jobtracker

=2 N,

-
-
- s ~,
--" ,/’
-
———
== ” \

tasktracker tasktracker tasktracker

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system

Figure 2.6: Architecture of a complete Hadoop cluster, which consists of three separate compo-

nents: the HDFS master (called the namenode), the job submission node (called the jobtracker),
and many slave nodes (three shown here). Each of the slave nodes runs a tasktracker for exe-
cuting map and reduce tasks and a datanode daemon for serving HDFS data.

26 HADOOP CLUSTER ARCHITECTURE

Putting everything together, the architecture of a complete Hadoop cluster is shown in
Figure 2.6. The HDFS namenode runs the namenode daemon. The job submission node
runs the jobtracker, which is the single point of contact for a client wishing to execute a
MapReduce job. The jobtracker monitors the progress of running MapReduce jobs and
is responsible for coordinating the execution of the mappers and reducers. Typically,
these services run on two separate machines, although in smaller clusters they are often
co-located. The bulk of a Hadoop cluster consists of slave nodes (only three of which
are shown in the figure) that run both a tasktracker, which is responsible for actually
running user code, and a datanode daemon, for serving HDFS data.

A Hadoop MapReduce job is divided up into a number of map tasks and reduce
tasks. Tasktrackers periodically send heartbeat messages to the jobtracker that also
doubles as a vehicle for task allocation. If a tasktracker is available to run tasks (in
Hadoop parlance, has empty task slots), the return acknowledgment of the tasktracker
heartbeat contains task allocation information. The number of reduce tasks is equal
to the number of reducers specified by the programmer. The number of map tasks,
on the other hand, depends on many factors: the number of mappers specified by
the programmer serves as a hint to the execution framework, but the actual number
of tasks depends on both the number of input files and the number of HDFS data
blocks occupied by those files. Each map task is assigned a sequence of input key-value
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pairs, called an input split in Hadoop. Input splits are computed automatically and the
execution framework strives to align them to HDFS block boundaries so that each map
task is associated with a single data block. In scheduling map tasks, the jobtracker tries
to take advantage of data locality—if possible, map tasks are scheduled on the slave
node that holds the input split, so that the mapper will be processing local data. The
alignment of input splits with HDFS block boundaries simplifies task scheduling. If it
is not possible to run a map task on local data, it becomes necessary to stream input
key-value pairs across the network. Since large clusters are organized into racks, with
far greater intra-rack bandwidth than inter-rack bandwidth, the execution framework
strives to at least place map tasks on a rack which has a copy of the data block.

Although conceptually in MapReduce one can think of the mapper being applied
to all input key-value pairs and the reducer being applied to all values associated with
the same key, actual job execution is a bit more complex. In Hadoop, mappers are Java
objects with a MAP method (among others). A mapper object is instantiated for every
map task by the tasktracker. The life-cycle of this object begins with instantiation,
where a hook is provided in the API to run programmer-specified code. This means
that mappers can read in “side data”, providing an opportunity to load state, static
data sources, dictionaries, etc. After initialization, the MAP method is called (by the
execution framework) on all key-value pairs in the input split. Since these method
calls occur in the context of the same Java object, it is possible to preserve state across
multiple input key-value pairs within the same map task—this is an important property
to exploit in the design of MapReduce algorithms, as we will see in the next chapter.
After all key-value pairs in the input split have been processed, the mapper object
provides an opportunity to run programmer-specified termination code. This, too, will
be important in the design of MapReduce algorithms.

The actual execution of reducers is similar to that of the mappers. Each re-
ducer object is instantiated for every reduce task. The Hadoop API provides hooks for
programmer-specified initialization and termination code. After initialization, for each
intermediate key in the partition (defined by the partitioner), the execution framework
repeatedly calls the REDUCE method with an intermediate key and an iterator over
all values associated with that key. The programming model also guarantees that in-
termediate keys will be presented to the REDUCE method in sorted order. Since this
occurs in the context of a single object, it is possible to preserve state across multiple
intermediate keys (and associated values) within a single reduce task. Once again, this
property is critical in the design of MapReduce algorithms and will be discussed in the
next chapter.
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2.7  SUMMARY

This chapter provides a basic overview of the MapReduce programming model, starting
with its roots in functional programming and continuing with a description of mappers,
reducers, partitioners, and combiners. Significant attention is also given to the underly-
ing distributed file system, which is a tightly-integrated component of the MapReduce
environment. Given this basic understanding, we now turn our attention to the design
of MapReduce algorithms.
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CHAPTER 3

MapReduce Algorithm Design

A large part of the power of MapReduce comes from its simplicity: in addition to
preparing the input data, the programmer needs only to implement the mapper, the
reducer, and optionally, the combiner and the partitioner. All other aspects of execution
are handled transparently by the execution framework—on clusters ranging from a
single node to a few thousand nodes, over datasets ranging from gigabytes to petabytes.
However, this also means that any conceivable algorithm that a programmer wishes to
develop must be expressed in terms of a small number of rigidly-defined components
that must fit together in very specific ways. It may not appear obvious how a multitude
of algorithms can be recast into this programming model. The purpose of this chapter is
to provide, primarily through examples, a guide to MapReduce algorithm design. These
examples illustrate what can be thought of as “design patterns” for MapReduce, which
instantiate arrangements of components and specific techniques designed to handle
frequently-encountered situations across a variety of problem domains. Two of these
design patterns are used in the scalable inverted indexing algorithm we’ll present later
in Chapter 4; concepts presented here will show up again in Chapter 5 (graph processing)
and Chapter 6 (expectation-maximization algorithms).

Synchronization is perhaps the most tricky aspect of designing MapReduce algo-
rithms (or for that matter, parallel and distributed algorithms in general). Other than
embarrassingly-parallel problems, processes running on separate nodes in a cluster must,
at some point in time, come together—for example, to distribute partial results from
nodes that produced them to the nodes that will consume them. Within a single Map-
Reduce job, there is only one opportunity for cluster-wide synchronization—during the
shuffle and sort stage where intermediate key-value pairs are copied from the mappers
to the reducers and grouped by key. Beyond that, mappers and reducers run in isolation
without any mechanisms for direct communication. Furthermore, the programmer has
little control over many aspects of execution, for example:

e Where a mapper or reducer runs (i.e., on which node in the cluster).

e When a mapper or reducer begins or finishes.

e Which input key-value pairs are processed by a specific mapper.

e Which intermediate key-value pairs are processed by a specific reducer.

Nevertheless, the programmer does have a number of techniques for controlling execu-
tion and managing the flow of data in MapReduce. In summary, they are:
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1. The ability to construct complex data structures as keys and values to store and
communicate partial results.

2. The ability to execute user-specified initialization code at the beginning of a map
or reduce task, and the ability to execute user-specified termination code at the
end of a map or reduce task.

3. The ability to preserve state in both mappers and reducers across multiple input
or intermediate keys.

4. The ability to control the sort order of intermediate keys, and therefore the order
in which a reducer will encounter particular keys.

5. The ability to control the partitioning of the key space, and therefore the set of
keys that will be encountered by a particular reducer.

It is important to realize that many algorithms cannot be easily expressed as a single
MapReduce job. One must often decompose complex algorithms into a sequence of jobs,
which requires orchestrating data so that the output of one job becomes the input to the
next. Many algorithms are iterative in nature, requiring repeated execution until some
convergence criteria—graph algorithms in Chapter 5 and expectation-maximization al-
gorithms in Chapter 6 behave in exactly this way. Often, the convergence check itself
cannot be easily expressed in MapReduce. The standard solution is an external (non-
MapReduce) program that serves as a “driver” to coordinate MapReduce iterations.

This chapter explains how various techniques to control code execution and
data flow can be applied to design algorithms in MapReduce. The focus is both on
scalability—ensuring that there are no inherent bottlenecks as algorithms are applied
to increasingly larger datasets—and efficiency—ensuring that algorithms do not need-
lessly consume resources and thereby reducing the cost of parallelization. The gold
standard, of course, is linear scalability: an algorithm running on twice the amount
of data should take only twice as long. Similarly, an algorithm running on twice the
number of nodes should only take half as long.

The chapter is organized as follows:

e Section 3.1 introduces the important concept of local aggregation in MapReduce
and strategies for designing efficient algorithms that minimize the amount of par-
tial results that need to be copied across the network. The proper use of combiners
is discussed in detail, as well as the “in-mapper combining” design pattern.

e Section 3.2 uses the example of building word co-occurrence matrices on large
text corpora to illustrate two common design patterns, which we dub “pairs” and
“stripes”. These two approaches are useful in a large class of problems that require
keeping track of joint events across a large number of observations.
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e Section 3.3 shows how co-occurrence counts can be converted into relative frequen-
cies using a pattern known as “order inversion”. The sequencing of computations
in the reducer can be recast as a sorting problem, where pieces of intermediate
data are sorted into exactly the order that is required to carry out a series of
computations. Often, a reducer needs to compute an aggregate statistic on a set
of elements before individual elements can be processed. Normally, this would re-
quire two passes over the data, but with the “order inversion” design pattern, the
aggregate statistic can be computed in the reducer before the individual elements
are encountered. This may seem counter-intuitive: how can we compute an aggre-
gate statistic on a set of elements before encountering elements of that set? As it
turns out, clever sorting of special key-value pairs enables exactly this.

e Section 3.4 provides a general solution to secondary sorting, which is the problem
of sorting values associated with a key in the reduce phase. We call this technique
“value-to-key conversion”.

e Section 3.5 covers the topic of performing joins on relational datasets and presents
three different approaches: reduce-side, map-side, and memory-backed joins.

3.1 LOCAL AGGREGATION

In the context of data-intensive distributed processing, the single most important as-
pect of synchronization is the exchange of intermediate results, from the processes that
produced them to the processes that will ultimately consume them. In a cluster environ-
ment, with the exception of embarrassingly-parallel problems, this necessarily involves
transferring data over the network. Furthermore, in Hadoop, intermediate results are
written to local disk before being sent over the network. Since network and disk laten-
cies are relatively expensive compared to other operations, reductions in the amount of
intermediate data translate into increases in algorithmic efficiency. In MapReduce, local
aggregation of intermediate results is one of the keys to efficient algorithms. Through
use of the combiner and by taking advantage of the ability to preserve state across
multiple inputs, it is often possible to substantially reduce both the number and size of
key-value pairs that need to be shuffled from the mappers to the reducers.

3.1.1 COMBINERS AND IN-MAPPER COMBINING

We illustrate various techniques for local aggregation using the simple word count ex-
ample presented in Section 2.2. For convenience, Figure 3.1 repeats the pseudo-code of
the basic algorithm, which is quite simple: the mapper emits an intermediate key-value
pair for each term observed, with the term itself as the key and a value of one; reducers
sum up the partial counts to arrive at the final count.
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1: class MAPPER
2: method Map(docid a,doc d)

3: for all term ¢ € doc d do

4: EMIT(term ¢, count 1)

1: class REDUCER

2 method REDUCE(term ¢, counts [c1, Ca, .. .])
3 sum « 0

4: for all count ¢ € counts [cq, ¢a,...| do

5 sum < sum +c

6 EMIT(term ¢, count sum)

Figure 3.1: Pseudo-code for the basic word count algorithm in MapReduce (repeated from
Figure 2.3).

The first technique for local aggregation is the combiner, already discussed in
Section 2.4. Combiners provide a general mechanism within the MapReduce framework
to reduce the amount of intermediate data generated by the mappers—recall that they
can be understood as “mini-reducers” that process the output of mappers. In this
example, the combiners aggregate term counts across the documents processed by each
map task. This results in a reduction in the number of intermediate key-value pairs that
need to be shuffled across the network—from the order of total number of terms in the
collection to the order of the number of unique terms in the collection.!

An improvement on the basic algorithm is shown in Figure 3.2 (the mapper is
modified but the reducer remains the same as in Figure 3.1 and therefore is not re-
peated). An associative array (i.e., Map in Java) is introduced inside the mapper to
tally up term counts within a single document: instead of emitting a key-value pair for
each term in the document, this version emits a key-value pair for each unique term in
the document. Given that some words appear frequently within a document (for exam-
ple, a document about dogs is likely to have many occurrences of the word “dog”), this
can yield substantial savings in the number of intermediate key-value pairs emitted,
especially for long documents.

IMore precisely, if the combiners take advantage of all opportunities for local aggregation, the algorithm would
generate at most m X V intermediate key-value pairs, where m is the number of mappers and V is the vo-
cabulary size (number of unique terms in the collection), since every term could have been observed in every
mapper. However, there are two additional factors to consider. Due to the Zipfian nature of term distributions,
most terms will not be observed by most mappers (for example, terms that occur only once will by definition
only be observed by one mapper). On the other hand, combiners in Hadoop are treated as optional optimiza-
tions, so there is no guarantee that the execution framework will take advantage of all opportunities for partial
aggregation.
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1: class MAPPER

2 method MAaPp(docid a, doc d)

3 H < new ASSOCIATIVEARRAY

4: for all term ¢ € doc d do

5 H{t} — H{t} +1 > Tally counts for entire document
6

7

for all term ¢t € H do
EMIT(term ¢, count H{t})

Figure 3.2: Pseudo-code for the improved MapReduce word count algorithm that uses an
associative array to aggregate term counts on a per-document basis. Reducer is the same as in
Figure 3.1.

This basic idea can be taken one step further, as illustrated in the variant of the
word count algorithm in Figure 3.3 (once again, only the mapper is modified). The
workings of this algorithm critically depends on the details of how map and reduce
tasks in Hadoop are executed, discussed in Section 2.6. Recall, a (Java) mapper object
is created for each map task, which is responsible for processing a block of input key-
value pairs. Prior to processing any input key-value pairs, the mapper’s INITIALIZE
method is called, which is an API hook for user-specified code. In this case, we initialize
an associative array for holding term counts. Since it is possible to preserve state across
multiple calls of the MAP method (for each input key-value pair), we can continue
to accumulate partial term counts in the associative array across multiple documents,
and emit key-value pairs only when the mapper has processed all documents. That is,
emission of intermediate data is deferred until the CLOSE method in the pseudo-code.
Recall that this API hook provides an opportunity to execute user-specified code after
the MAP method has been applied to all input key-value pairs of the input data split
to which the map task was assigned.

With this technique, we are in essence incorporating combiner functionality di-
rectly inside the mapper. There is no need to run a separate combiner, since all op-
portunities for local aggregation are already exploited.? This is a sufficiently common
design pattern in MapReduce that it’s worth giving it a name, “in-mapper combining”,
so that we can refer to the pattern more conveniently throughout the book. We'll see
later on how this pattern can be applied to a variety of problems. There are two main
advantages to using this design pattern:

First, it provides control over when local aggregation occurs and how it exactly
takes place. In contrast, the semantics of the combiner is underspecified in MapReduce.

2Leaving aside the minor complication that in Hadoop, combiners can be run in the reduce phase also (when
merging intermediate key-value pairs from different map tasks). However, in practice it makes almost no
difference either way.




44 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

1: class MAPPER

2 method INITIALIZE

3 H « new ASSOCIATIVEARRAY

4 method MAap(docid a, doc d)

5: for all term ¢ € doc d do

6 H{t} — H{t} +1 > Tally counts across documents
7

8

9

method CLOSE
for all term ¢t € H do
EmiT(term ¢, count H{t})

Figure 3.3: Pseudo-code for the improved MapReduce word count algorithm that demon-
strates the “in-mapper combining” design pattern. Reducer is the same as in Figure 3.1.

For example, Hadoop makes no guarantees on how many times the combiner is applied,
or that it is even applied at all. The combiner is provided as a semantics-preserving
optimization to the execution framework, which has the option of using it, perhaps
multiple times, or not at all (or even in the reduce phase). In some cases (although not
in this particular example), such indeterminism is unacceptable, which is exactly why
programmers often choose to perform their own local aggregation in the mappers.

Second, in-mapper combining will typically be more efficient than using actual
combiners. One reason for this is the additional overhead associated with actually ma-
terializing the key-value pairs. Combiners reduce the amount of intermediate data that
is shuffled across the network, but don’t actually reduce the number of key-value pairs
that are emitted by the mappers in the first place. With the algorithm in Figure 3.2,
intermediate key-value pairs are still generated on a per-document basis, only to be
“compacted” by the combiners. This process involves unnecessary object creation and
destruction (garbage collection takes time), and furthermore, object serialization and
deserialization (when intermediate key-value pairs fill the in-memory buffer holding map
outputs and need to be temporarily spilled to disk). In contrast, with in-mapper com-
bining, the mappers will generate only those key-value pairs that need to be shuffled
across the network to the reducers.

There are, however, drawbacks to the in-mapper combining pattern. First, it
breaks the functional programming underpinnings of MapReduce, since state is be-
ing preserved across multiple input key-value pairs. Ultimately, this isn’t a big deal,
since pragmatic concerns for efficiency often trump theoretical “purity”, but there are
practical consequences as well. Preserving state across multiple input instances means
that algorithmic behavior may depend on the order in which input key-value pairs are
encountered. This creates the potential for ordering-dependent bugs, which are difficult
to debug on large datasets in the general case (although the correctness of in-mapper
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combining for word count is easy to demonstrate). Second, there is a fundamental scala-
bility bottleneck associated with the in-mapper combining pattern. It critically depends
on having sufficient memory to store intermediate results until the mapper has com-
pletely processed all key-value pairs in an input split. In the word count example, the
memory footprint is bound by the vocabulary size, since it is theoretically possible that
a mapper encounters every term in the collection. Heap’s Law, a well-known result in
information retrieval, accurately models the growth of vocabulary size as a function
of the collection size—the somewhat surprising fact is that the vocabulary size never
stops growing.® Therefore, the algorithm in Figure 3.3 will scale only up to a point,
beyond which the associative array holding the partial term counts will no longer fit in
memory.*

One common solution to limiting memory usage when using the in-mapper com-
bining technique is to “block” input key-value pairs and “flush” in-memory data struc-
tures periodically. The idea is simple: instead of emitting intermediate data only after
every key-value pair has been processed, emit partial results after processing every n
key-value pairs. This is straightforwardly implemented with a counter variable that
keeps track of the number of input key-value pairs that have been processed. As an
alternative, the mapper could keep track of its own memory footprint and flush inter-
mediate key-value pairs once memory usage has crossed a certain threshold. In both
approaches, either the block size or the memory usage threshold needs to be determined
empirically: with too large a value, the mapper may run out of memory, but with too
small a value, opportunities for local aggregation may be lost. Furthermore, in Hadoop
physical memory is split between multiple tasks that may be running on a node con-
currently; these tasks are all competing for finite resources, but since the tasks are not
aware of each other, it is difficult to coordinate resource consumption effectively. In
practice, however, one often encounters diminishing returns in performance gains with
increasing buffer sizes, such that it is not worth the effort to search for an optimal buffer
size (personal communication, Jeff Dean).

In MapReduce algorithms, the extent to which efficiency can be increased through
local aggregation depends on the size of the intermediate key space, the distribution of
keys themselves, and the number of key-value pairs that are emitted by each individual
map task. Opportunities for aggregation, after all, come from having multiple values
associated with the same key (whether one uses combiners or employs the in-mapper
combining pattern). In the word count example, local aggregation is effective because

3In more detail, Heap’s Law relates the vocabulary size V' to the collection size as follows: V = kT?, where
T is the number of tokens in the collection. Typical values of the parameters k and b are: 30 < k < 100 and
b~ 0.5 ([101], p. 81).

4A few more details: note what matters is that the partial term counts encountered within particular input
split fits into memory. However, as collection sizes increase, one will often want to increase the input split size
to limit the growth of the number of map tasks (in order to reduce the number of distinct copy operations
necessary to shuffle intermediate data over the network).
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many words are encountered multiple times within a map task. Local aggregation is also
an effective technique for dealing with reduce stragglers (see Section 2.3) that result
from a highly-skewed (e.g., Zipfian) distribution of values associated with intermediate
keys. In our word count example, we do not filter frequently-occurring words: therefore,
without local aggregation, the reducer that’s responsible for computing the count of
‘the’ will have a lot more work to do than the typical reducer, and therefore will likely
be a straggler. With local aggregation (either combiners or in-mapper combining), we
substantially reduce the number of values associated with frequently-occurring terms,
which alleviates the reduce straggler problem.

3.1.2 ALGORITHMIC CORRECTNESS WITH LOCAL AGGREGATION

Although use of combiners can yield dramatic reductions in algorithm running time,
care must be taken in applying them. Since combiners in Hadoop are viewed as op-
tional optimizations, the correctness of the algorithm cannot depend on computations
performed by the combiner or depend on them even being run at all. In any MapReduce
program, the reducer input key-value type must match the mapper output key-value
type: this implies that the combiner input and output key-value types must match the
mapper output key-value type (which is the same as the reducer input key-value type).
In cases where the reduce computation is both commutative and associative, the re-
ducer can also be used (unmodified) as the combiner (as is the case with the word count
example). In the general case, however, combiners and reducers are not interchangeable.

Consider a simple example: we have a large dataset where input keys are strings
and input values are integers, and we wish to compute the mean of all integers associated
with the same key (rounded to the nearest integer). A real-world example might be a
large user log from a popular website, where keys represent user ids and values represent
some measure of activity such as elapsed time for a particular session—the task would
correspond to computing the mean session length on a per-user basis, which would
be useful for understanding user demographics. Figure 3.4 shows the pseudo-code of
a simple algorithm for accomplishing this task that does not involve combiners. We
use an identity mapper, which simply passes all input key-value pairs to the reducers
(appropriately grouped and sorted). The reducer keeps track of the running sum and
the number of integers encountered. This information is used to compute the mean once
all values are processed. The mean is then emitted as the output value in the reducer
(with the input string as the key).

This algorithm will indeed work, but suffers from the same drawbacks as the
basic word count algorithm in Figure 3.1: it requires shuffling all key-value pairs from
mappers to reducers across the network, which is highly inefficient. Unlike in the word
count example, the reducer cannot be used as a combiner in this case. Consider what
would happen if we did: the combiner would compute the mean of an arbitrary subset
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1: class MAPPER
2: method MAP(string ¢, integer r)
3 EMmIT(string ¢, integer r)

1: class REDUCER

2 method REDUCE(string ¢, integers [r1,72,...])
3 sum < 0

4 ent «— 0

5: for all integer r € integers [rq,72,...] do

6 sSum «— sum —+r

7 cnt «— cnt + 1

8 Tavg < Sum/cnt

9 EMIT(string ¢, integer 7,.,)

Figure 3.4: Pseudo-code for the basic MapReduce algorithm that computes the mean of values
associated with the same key.

of values associated with the same key, and the reducer would compute the mean of
those values. As a concrete example, we know that:

MEAN(1,2,3,4,5) # MEAN(MEAN(1,2), MEAN(3,4,5))

In general, the mean of means of arbitrary subsets of a set of numbers is not the same
as the mean of the set of numbers. Therefore, this approach would not produce the
correct result.’

So how might we properly take advantage of combiners? An attempt is shown in
Figure 3.5. The mapper remains the same, but we have added a combiner that partially
aggregates results by computing the numeric components necessary to arrive at the
mean. The combiner receives each string and the associated list of integer values, from
which it computes the sum of those values and the number of integers encountered (i.e.,
the count). The sum and count are packaged into a pair, and emitted as the output
of the combiner, with the same string as the key. In the reducer, pairs of partial sums
and counts can be aggregated to arrive at the mean. Up until now, all keys and values
in our algorithms have been primitives (string, integers, etc.). However, there are no
prohibitions in MapReduce for more complex types,® and, in fact, this represents a key
technique in MapReduce algorithm design that we introduced at the beginning of this

5There is, however, one special case in which using reducers as combiners would produce the correct result: if
each combiner computed the mean of equal-size subsets of the values. However, since such fine-grained control
over the combiners is impossible in MapReduce, such a scenario is highly unlikely.

SIn Hadoop, either custom types or types defined using a library such as Protocol Buffers, Thrift, or Avro.
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1: class MAPPER
2: method MAP(string ¢, integer r)
3 EMmIT(string ¢, integer r)

1: class COMBINER

2 method COMBINE(string ¢, integers [ry, ra,...])

3 sum <0

4 ent «— 0

5: for all integer r € integers [rq,72,...] do

6 sum < sum + 1

7 ent «<—cent + 1

8 EMmIT(string ¢, pair (sum, cnt)) > Separate sum and count

1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1,¢1), (S2,¢2) .. .])
3 sum «— 0

4 ent «<— 0

5: for all pair (s,c) € pairs [(s1,¢1), (S2,¢2)...] do
6 sum «— sum + s

7 ent < cent +c¢

8 Tavg <— sum/cnt

9 EMIT(string ¢, integer 7,,,)

Figure 3.5: Pseudo-code for an incorrect first attempt at introducing combiners to compute
the mean of values associated with each key. The mismatch between combiner input and output
key-value types violates the MapReduce programming model.

chapter. We will frequently encounter complex keys and values throughput the rest of
this book.

Unfortunately, this algorithm will not work. Recall that combiners must have the
same input and output key-value type, which also must be the same as the mapper
output type and the reducer input type. This is clearly not the case. To understand
why this restriction is necessary in the programming model, remember that combiners
are optimizations that cannot change the correctness of the algorithm. So let us remove
the combiner and see what happens: the output value type of the mapper is integer,
so the reducer expects to receive a list of integers as values. But the reducer actually
expects a list of pairs! The correctness of the algorithm is contingent on the combiner
running on the output of the mappers, and more specifically, that the combiner is run
exactly once. Recall from our previous discussion that Hadoop makes no guarantees on
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1: class MAPPER
2: method MAP(string ¢, integer r)
3: EMmIT(string ¢, pair (r,1))

1: class COMBINER

2 method COMBINE(string ¢, pairs [(s1,¢1), (S2,¢2) .. .])
3 sum <0

4 ent «— 0

5: for all pair (s,c) € pairs [(s1,¢1), (S2,¢2) ...] do

6 sum «— sum + s

7 cnt «—cent + ¢

8 EMIT(string t, pair (sum, cnt))

1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1,¢1), (S2,¢2) .. .])
3 sum «— 0

4 ent «<— 0

5: for all pair (s,c) € pairs [(s1,¢1), (S2,¢2)...] do
6 sum «— sum + s

7 ent «——cent +c¢

8 Tavg <— sum/cnt

9 EMIT(string ¢, integer 7,,4)

Figure 3.6: Pseudo-code for a MapReduce algorithm that computes the mean of values asso-
ciated with each key. This algorithm correctly takes advantage of combiners.

how many times combiners are called; it could be zero, one, or multiple times. This
violates the MapReduce programming model.

Another stab at the algorithm is shown in Figure 3.6, and this time, the algorithm
is correct. In the mapper we emit as the value a pair consisting of the integer and
one—this corresponds to a partial count over one instance. The combiner separately
aggregates the partial sums and the partial counts (as before), and emits pairs with
updated sums and counts. The reducer is similar to the combiner, except that the
mean is computed at the end. In essence, this algorithm transforms a non-associative
operation (mean of numbers) into an associative operation (element-wise sum of a pair
of numbers, with an additional division at the very end).

Let us verify the correctness of this algorithm by repeating the previous exercise:
What would happen if no combiners were run? With no combiners, the mappers would
send pairs (as values) directly to the reducers. There would be as many intermediate
pairs as there were input key-value pairs, and each of those would consist of an integer
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1: class MAPPER

2 method INITIALIZE

3 S «— new ASSOCIATIVEARRAY

4: C < new ASSOCIATIVEARRAY

5: method MAP(string ¢, integer )

6 S{t} — S{t} +r

7 C{t} —C{t} +1

8 method CLOSE

9: for all term ¢t € S do

10: EMIT(term ¢, pair (S{t}, C{t}))

Figure 3.7: Pseudo-code for a MapReduce algorithm that computes the mean of values asso-
ciated with each key, illustrating the in-mapper combining design pattern. Only the mapper is
shown here; the reducer is the same as in Figure 3.6

and one. The reducer would still arrive at the correct sum and count, and hence the
mean would be correct. Now add in the combiners: the algorithm would remain correct,
no matter how many times they run, since the combiners merely aggregate partial sums
and counts to pass along to the reducers. Note that although the output key-value type
of the combiner must be the same as the input key-value type of the reducer, the reducer
can emit final key-value pairs of a different type.

Finally, in Figure 3.7, we present an even more efficient algorithm that exploits the
in-mapper combining pattern. Inside the mapper, the partial sums and counts associated
with each string are held in memory across input key-value pairs. Intermediate key-value
pairs are emitted only after the entire input split has been processed; similar to before,
the value is a pair consisting of the sum and count. The reducer is exactly the same as
in Figure 3.6. Moving partial aggregation from the combiner directly into the mapper
is subjected to all the tradeoffs and caveats discussed earlier this section, but in this
case the memory footprint of the data structures for holding intermediate data is likely
to be modest, making this variant algorithm an attractive option.

3.2 PAIRS AND STRIPES

One common approach for synchronization in MapReduce is to construct complex keys
and values in such a way that data necessary for a computation are naturally brought
together by the execution framework. We first touched on this technique in the previous
section, in the context of “packaging” partial sums and counts in a complex value
(i.e., pair) that is passed from mapper to combiner to reducer. Building on previously
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published work [54, 94], this section introduces two common design patterns we have
dubbed “pairs” and “stripes” that exemplify this strategy.

As a running example, we focus on the problem of building word co-occurrence
matrices from large corpora, a common task in corpus linguistics and statistical natural
language processing. Formally, the co-occurrence matrix of a corpus is a square n X n
matrix where n is the number of unique words in the corpus (i.e., the vocabulary size). A
cell m;; contains the number of times word w; co-occurs with word w; within a specific
context—a natural unit such as a sentence, paragraph, or a document, or a certain
window of m words (where m is an application-dependent parameter). Note that the
upper and lower triangles of the matrix are identical since co-occurrence is a symmetric
relation, though in the general case relations between words need not be symmetric. For
example, a co-occurrence matrix M where m;; is the count of how many times word i
was immediately succeeded by word j would usually not be symmetric.

This task is quite common in text processing and provides the starting point to
many other algorithms, e.g., for computing statistics such as pointwise mutual infor-
mation [38], for unsupervised sense clustering [136], and more generally, a large body
of work in lexical semantics based on distributional profiles of words, dating back to
Firth [55] and Harris [69] in the 1950s and 1960s. The task also has applications in in-
formation retrieval (e.g., automatic thesaurus construction [137] and stemming [157]),
and other related fields such as text mining. More importantly, this problem represents
a specific instance of the task of estimating distributions of discrete joint events from a
large number of observations, a very common task in statistical natural language pro-
cessing for which there are nice MapReduce solutions. Indeed, concepts presented here
are also used in Chapter 6 when we discuss expectation-maximization algorithms.

Beyond text processing, problems in many application domains share similar char-
acteristics. For example, a large retailer might analyze point-of-sale transaction records
to identify correlated product purchases (e.g., customers who buy this tend to also buy
that), which would assist in inventory management and product placement on store
shelves. Similarly, an intelligence analyst might wish to identify associations between
re-occurring financial transactions that are otherwise unrelated, which might provide a
clue in thwarting terrorist activity. The algorithms discussed in this section could be
adapted to tackle these related problems.

It is obvious that the space requirement for the word co-occurrence problem is
O(n?), where n is the size of the vocabulary, which for real-world English corpora can
be hundreds of thousands of words, or even billions of words in web-scale collections.”
The computation of the word co-occurrence matrix is quite simple if the entire matrix

"The size of the vocabulary depends on the definition of a “word” and techniques (if any) for corpus pre-
processing. One common strategy is to replace all rare words (below a certain frequency) with a “special”
token such as <UNK> (which stands for “unknown”) to model out-of-vocabulary words. Another technique
involves replacing numeric digits with #, such that 1.32 and 1.19 both map to the same token (#.##).
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fits into memory—however, in the case where the matrix is too big to fit in memory,
a naive implementation on a single machine can be very slow as memory is paged to
disk. Although compression techniques can increase the size of corpora for which word
co-occurrence matrices can be constructed on a single machine, it is clear that there are
inherent scalability limitations. We describe two MapReduce algorithms for this task
that can scale to large corpora.

Pseudo-code for the first algorithm, dubbed the “pairs” approach, is shown in
Figure 3.8. As usual, document ids and the corresponding contents make up the input
key-value pairs. The mapper processes each input document and emits intermediate
key-value pairs with each co-occurring word pair as the key and the integer one (i.e.,
the count) as the value. This is straightforwardly accomplished by two nested loops:
the outer loop iterates over all words (the left element in the pair), and the inner
loop iterates over all neighbors of the first word (the right element in the pair). The
neighbors of a word can either be defined in terms of a sliding window or some other
contextual unit such as a sentence. The MapReduce execution framework guarantees
that all values associated with the same key are brought together in the reducer. Thus,
in this case the reducer simply sums up all the values associated with the same co-
occurring word pair to arrive at the absolute count of the joint event in the corpus,
which is then emitted as the final key-value pair. Each pair corresponds to a cell in the
word co-occurrence matrix. This algorithm illustrates the use of complex keys in order
to coordinate distributed computations.

An alternative approach, dubbed the “stripes” approach, is presented in Fig-
ure 3.9. Like the pairs approach, co-occurring word pairs are generated by two nested
loops. However, the major difference is that instead of emitting intermediate key-value
pairs for each co-occurring word pair, co-occurrence information is first stored in an
associative array, denoted H. The mapper emits key-value pairs with words as keys
and corresponding associative arrays as values, where each associative array encodes
the co-occurrence counts of the neighbors of a particular word (i.e., its context). The
MapReduce execution framework guarantees that all associative arrays with the same
key will be brought together in the reduce phase of processing. The reducer performs an
element-wise sum of all associative arrays with the same key, accumulating counts that
correspond to the same cell in the co-occurrence matrix. The final associative array is
emitted with the same word as the key. In contrast to the pairs approach, each final
key-value pair encodes a row in the co-occurrence matrix.

It is immediately obvious that the pairs algorithm generates an immense number
of key-value pairs compared to the stripes approach. The stripes representation is much
more compact, since with pairs the left element is repeated for every co-occurring word
pair. The stripes approach also generates fewer and shorter intermediate keys, and
therefore the execution framework has less sorting to perform. However, values in the
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1: class MAPPER

2 method MAap(docid a,doc d)

3 for all term w € doc d do

4 for all term u € NEIGHBORS(w) do

5 EmiT(pair (w,u), count 1) > Emit count for each co-occurrence

1: class REDUCER

2 method REDUCE(pair p, counts [cy, ¢a, .. .])

3 s—0

4: for all count ¢ € counts [cq, ¢o,...| do

5 s«—s+c > Sum co-occurrence counts
6 EMIT(pair p, count s)

Figure 3.8: Pseudo-code for the “pairs” approach for computing word co-occurrence matrices
from large corpora.

1: class MAPPER

2 method Map(docid a, doc d)

3 for all term w € doc d do

4: H < new ASSOCIATIVEARRAY

5 for all term u € NEIGHBORS(w) do

6 H{u} — H{u} +1 > Tally words co-occurring with w
7

Emit(Term w, Stripe H)

1: class REDUCER

2 method REDUCE(term w, stripes [Hy, Hs, Hs, .. .])

3 H; < new ASSOCIATIVEARRAY

4 for all stripe H € stripes [Hy, Hy, Hs,...] do

5 SuM(H;, H) > Element-wise sum

6: EMIT(term w, stripe Hy)

Figure 3.9: Pseudo-code for the “stripes” approach for computing word co-occurrence matrices
from large corpora.
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stripes approach are more complex, and come with more serialization and deserialization
overhead than with the pairs approach.

Both algorithms can benefit from the use of combiners, since the respective oper-
ations in their reducers (addition and element-wise sum of associative arrays) are both
commutative and associative. However, combiners with the stripes approach have more
opportunities to perform local aggregation because the key space is the vocabulary—
associative arrays can be merged whenever a word is encountered multiple times by
a mapper. In contrast, the key space in the pairs approach is the cross of the vocab-
ulary with itself, which is far larger—counts can be aggregated only when the same
co-occurring word pair is observed multiple times by an individual mapper (which is
less likely than observing multiple occurrences of a word, as in the stripes case).

For both algorithms, the in-mapper combining optimization discussed in the pre-
vious section can also be applied; the modification is sufficiently straightforward that
we leave the implementation as an exercise for the reader. However, the above caveats
remain: there will be far fewer opportunities for partial aggregation in the pairs ap-
proach due to the sparsity of the intermediate key space. The sparsity of the key space
also limits the effectiveness of in-memory combining, since the mapper may run out of
memory to store partial counts before all documents are processed, necessitating some
mechanism to periodically emit key-value pairs (which further limits opportunities to
perform partial aggregation). Similarly, for the stripes approach, memory management
will also be more complex than in the simple word count example. For common terms,
the associative array may grow to be quite large, necessitating some mechanism to
periodically flush in-memory structures.

It is important to consider potential scalability bottlenecks of either algorithm.
The stripes approach makes the assumption that, at any point in time, each associative
array is small enough to fit into memory—otherwise, memory paging will significantly
impact performance. The size of the associative array is bounded by the vocabulary size,
which is itself unbounded with respect to corpus size (recall the previous discussion of
Heap’s Law). Therefore, as the sizes of corpora increase, this will become an increasingly
pressing issue—perhaps not for gigabyte-sized corpora, but certainly for terabyte-sized
and petabyte-sized corpora that will be commonplace tomorrow. The pairs approach,
on the other hand, does not suffer from this limitation, since it does not need to hold
intermediate data in memory.

Given this discussion, which approach is faster? Here, we present previously-
published results [94] that empirically answered this question. We have implemented
both algorithms in Hadoop and applied them to a corpus of 2.27 million documents
from the Associated Press Worldstream (APW) totaling 5.7 GB.® Prior to working

8This was a subset of the English Gigaword corpus (version 3) distributed by the Linguistic Data Consortium
(LDC catalog number LDC2007T07).
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with Hadoop, the corpus was first preprocessed as follows: All XML markup was re-
moved, followed by tokenization and stopword removal using standard tools from the
Lucene search engine. All tokens were then replaced with unique integers for a more
efficient encoding. Figure 3.10 compares the running time of the pairs and stripes ap-
proach on different fractions of the corpus, with a co-occurrence window size of two.
These experiments were performed on a Hadoop cluster with 19 slave nodes, each with
two single-core processors and two disks.

Results demonstrate that the stripes approach is much faster than the pairs ap-
proach: 666 seconds (~11 minutes) compared to 3758 seconds (~62 minutes) for the
entire corpus (improvement by a factor of 5.7). The mappers in the pairs approach gen-
erated 2.6 billion intermediate key-value pairs totaling 31.2 GB. After the combiners,
this was reduced to 1.1 billion key-value pairs, which quantifies the amount of interme-
diate data transferred across the network. In the end, the reducers emitted a total of 142
million final key-value pairs (the number of non-zero cells in the co-occurrence matrix).
On the other hand, the mappers in the stripes approach generated 653 million interme-
diate key-value pairs totaling 48.1 GB. After the combiners, only 28.8 million key-value
pairs remained. The reducers emitted a total of 1.69 million final key-value pairs (the
number of rows in the co-occurrence matrix). As expected, the stripes approach pro-
vided more opportunities for combiners to aggregate intermediate results, thus greatly
reducing network traffic in the shuffle and sort phase. Figure 3.10 also shows that both
algorithms exhibit highly desirable scaling characteristics—linear in the amount of in-
put data. This is confirmed by a linear regression applied to the running time data,
which yields an R? value close to one.

An additional series of experiments explored the scalability of the stripes approach
along another dimension: the size of the cluster. These experiments were made possible
by Amazon’s EC2 service, which allows users to rapidly provision clusters of varying
sizes for limited durations (for more information, refer back to our discussion of utility
computing in Section 1.1). Virtualized computational units in EC2 are called instances,
and the user is charged only for the instance-hours consumed. Figure 3.11 (left) shows
the running time of the stripes algorithm (on the same corpus, with same setup as
before), on varying cluster sizes, from 20 slave “small” instances all the way up to 80
slave “small” instances (along the z-axis). Running times are shown with solid squares.
Figure 3.11 (right) recasts the same results to illustrate scaling characteristics. The
circles plot the relative size and speedup of the EC2 experiments, with respect to the
20-instance cluster. These results show highly desirable linear scaling characteristics
(i.e., doubling the cluster size makes the job twice as fast). This is confirmed by a linear
regression with an R? value close to one.

Viewed abstractly, the pairs and stripes algorithms represent two different ap-
proaches to counting co-occurring events from a large number of observations. This
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Figure 3.10: Running time of the “pairs” and “stripes” algorithms for computing word co-
occurrence matrices on different fractions of the APW corpus. These experiments were per-
formed on a Hadoop cluster with 19 slaves, each with two single-core processors and two disks.
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general description captures the gist of many algorithms in fields as diverse as text
processing, data mining, and bioinformatics. For this reason, these two design patterns
are broadly useful and frequently observed in a variety of applications.

To conclude, it is worth noting that the pairs and stripes approaches represent
endpoints along a continuum of possibilities. The pairs approach individually records
each co-occurring event, while the stripes approach records all co-occurring events
with respect a conditioning event. A middle ground might be to record a subset of
the co-occurring events with respect to a conditioning event. We might divide up the
entire vocabulary into b buckets (e.g., via hashing), so that words co-occurring with
w; would be divided into b smaller “sub-stripes”, associated with ten separate keys,
(w;, 1), (w;, 2) ... (wy, b). This would be a reasonable solution to the memory limitations
of the stripes approach, since each of the sub-stripes would be smaller. In the case of
b = |V|, where |V] is the vocabulary size, this is equivalent to the pairs approach. In
the case of b = 1, this is equivalent to the standard stripes approach.

3.3 COMPUTING RELATIVE FREQUENCIES

Let us build on the pairs and stripes algorithms presented in the previous section and
continue with our running example of constructing the word co-occurrence matrix M
for a large corpus. Recall that in this large square n x n matrix, where n = |V| (the
vocabulary size), cell m;; contains the number of times word w; co-occurs with word
w,; within a specific context. The drawback of absolute counts is that it doesn’t take
into account the fact that some words appear more frequently than others. Word w;
may co-occur frequently with w; simply because one of the words is very common. A
simple remedy is to convert absolute counts into relative frequencies, f(w;|w;). That is,
what proportion of the time does 