
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Data Manipulation with R

Perform group-wise data manipulation and deal with
large datasets using R efficiently and effectively

Jaynal Abedin

BIRMINGHAM - MUMBAI

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

[FM-2]

Data Manipulation with R

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1080114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-109-1

www.packtpub.com

Cover Image by Huzzatul Mursalin (apu_mb@yahoo.com)

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

[FM-3]

Credits

Author
Jaynal Abedin

Reviewers
A. Dhandapani

Colman McMahon

Vignesh Prajapati

Acquisition Editors
Kartikey Pandey

Owen Roberts

Commissioning Editor
Priyanka Shah

Technical Editors
Manan Badani

Ankita Jha

Copy Editor
Aditya Nair

Project Coordinator
Sageer Parkar

Proofreader
Maria Gould

Indexer
Rekha Nair

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

[FM-4]

About the Author

Jaynal Abedin currently holds the position of Statistician at the Centre for
Communicable Diseases (CCD) at icddr,b (www.icddrb.org). He attained his
Bachelor's and Master's degrees in Statistics from the University of Rajshahi,
Rajshahi, Bangladesh. He has vast experience in R programming and Stata
and has efficient leadership qualities. He is currently leading a team of statisticians.
He has hands-on experience in developing training material and facilitating training
in R programming and Stata along with statistical aspects in public health research.
His primary area of interest in research includes causal inference and machine
learning. He is currently involved in several ongoing public health research projects
and is a co-author of several work-in-progress manuscripts. In the useR! Conference
2013, he presented a poster—edeR: Email Data Extraction using R, available at
http://www.edii.uclm.es/~useR-2013/abstracts/files/34_edeR_Email_
Data_Extraction_using_R.pdf—and obtained the best application poster award.
He is also involved in reviewing scientific manuscripts for the Journal of Applied
Statistics (JAS) and the Journal of Health Population and Nutrition (JHPN). He is
also a successful freelance statistician on online platforms and has an excellent
reputation through his high-quality work, especially in R programming. He can be
contacted at joystatru@gmail.com, http://bd.linkedin.com/in/jaynal; his
Twitter handle is @jaynal83.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

[FM-5]

About the Reviewers

A. Dhandapani is currently working as a professor of Statistics and Computer
Applications at the National Academy of Agricultural Research Management
(NAARM), Hyderabad, India. He holds a Master's and a Ph.D. degree in Agricultural
Statistics from the Indian Agricultural Research Institute, New Delhi, specializing
in sampling techniques. He joined the Agricultural Research Service of the Indian
Council of Agricultural Research in the discipline of Agricultural Statistics in 1996 and
was posted as a scientist at New Delhi. He has worked in the area of pest surveillance,
pest forewarning models, and developed several information systems (both
web-and desktop-based) in the area of plant protection. He has also developed a
web-based application for the generation of Hadamard Matrices. Currently, he is
teaching business management students of Business Statistics, Business Analytics,
Marketing Research, Management Information System, and Enterprise Resource
Planning for Agribusiness. Besides this, he trains agricultural scientists in data analysis
using SAS. He is also involved in creating information systems for the collection and
analysis of data collected from large-scale coordinated trials in agriculture.

Colman McMahon is a PhD fellow in the Dynamics Lab, University College,
Dublin. His research is on policy network analysis and data visualization of the EU's
proposed General Data Protection Regulation. This project is a part of the Simulation
Science program run under the auspices of the Complex Adaptive Systems
Laboratory (CASL). In addition to research, he has lectured on data visualization
and knowledge management for M.Sc Computer Science courses. Prior to his full
immersion into academia, he has worked in visual effects for film and television in
Los Angeles and was an independent technology consultant.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

[FM-6]

Vignesh Prajapati is a Big Data scientist at Pingax. He loves to play with open
source technologies like R, Hadoop, MongoDB, and Java. He has been working on
data analytics with machine learning, R, Hadoop, RHadoop, and MongoDB. He has
expertise in algorithm development for Data ETL and generating recommendations,
prediction, and behavioral targeting over e-commerce historical Google Analytics,
and other datasets. He has also written several articles on R, Hadoop, and machine
learning fields for producing intelligent Big Data applications. He can be contacted at
vignesh2066@gmail.com and http://in.linkedin.com/in/vigneshprajapati/.

Vignesh has worked on another book with Packt Publishing. He has written Big Data
Analytics with R and Hadoop (https://www.packtpub.com/big-data-analytics-
with-r-and-hadoop/book).

Firstly, I would like to thank my teachers, who introduced me to
this wonderful open source technology during my undergraduate
years. Then I would like to express my gratitude to my family,
friends, colleagues, and well wishers, who always motivated me
to contribute to this technology. Last but not least, I would like to
express my deepest gratitude to Packt Publishing and its team, who
gave me the opportunity to write this book. Finally, I am grateful to
all of the reviewers for their time and constructive suggestions.

www.allitebooks.comwww.allitebooks.com

http://in.linkedin.com/in/vigneshprajapati/
https://www.packtpub.com/big-data-analytics-with-r-and-hadoop/book
https://www.packtpub.com/big-data-analytics-with-r-and-hadoop/book
http://www.allitebooks.org
http://www.allitebooks.org

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.comwww.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org
http://www.allitebooks.org

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

[FM-9]

Dedicated to my late grandmother

 -Jaynal Abedin

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: R Data Types and Basic Operations	 7

Modes and classes of R objects	 8
R object structure and mode conversion	 13
Vector	 16
Factor and its types	 17

Data frame	 19
Matrices	 21
Arrays	 23
list	 24

Missing values in R	 25
Summary	 26

Chapter 2: Basic Data Manipulation	 27
Acquiring data	 27
Factor manipulation	 30

Factors from numeric variables	 32
Date processing	 33
Character manipulation	 36
Subscripting and subsetting	 37
Summary	 40

Chapter 3: Data Manipulation Using plyr	 41
The split-apply-combine strategy	 41

Split-apply-combine without a loop	 42
Split-apply-combine with a loop	 43

Utilities of plyr	 44
Intuitive function names	 45
Input and arguments	 48

Table of Contents

[ii]

Comparing default R and plyr	 49
Multiargument functions	 52

Summary	 54
Chapter 4: Reshaping Datasets	 55

The typical layout of a dataset	 56
Long layout	 56
Wide layout	 57

The new layout of a dataset	 58
Reshaping the dataset from the typical layout	 59
Reshaping the dataset with the reshape package	 60

Melting data	 60
Missing values in molten data	 62

Casting molten data	 63
The reshape2 package	 65
Summary	 65

Chapter 5: R and Databases	 67
R and different databases	 68

R and Excel	 69
R and MS Access	 70

Relational databases in R	 70
The filehash package	 71
The ff package	 73

R and sqldf	 75
Data manipulation using sqldf	 76
Summary	 79

Bibliography	 81
Index	 83

Preface
This book, Data Manipulation with R, is aimed at giving intermediate to advanced level
users of R (who have knowledge about datasets) an opportunity to use state-of-the-art
approaches in data manipulation. This book will discuss the types of data that can be
handled using R and different types of operations for those data types. Upon reading
this book, readers will be able to efficiently manage and check the validity of their
datasets with the effective use of R programming, including specialized packages for
data management. Readers will come to know about the split-apply-combine strategy,
which is the state-of-the-art approach in data management. This book ends with an
introduction to how R can be utilized with different database software.

What this book covers
Chapter 1, R Data Types and Basic Operations, discusses the different types of data used
in R and their basic operations. Before introducing the data types in this chapter, we
will highlight what an object in R is and its mode and class. The mode of an object
could be either numeric, character, or logical, whereas its class could be vector, factor,
list, data frame, matrix, array, or others. This chapter also highlights how to deal with
objects in different modes and how to convert from one mode to another and what
caution should be taken during conversion. Missing values in R and how to represent
missing character and numeric data types are also discussed here. Along with the data
types and basic operations, this chapter sheds light on another important aspect, which
is almost never mentioned in other text books—the object naming convention in R. We
talk about popular object-naming conventions used in R.

Preface

[2]

Chapter 2, Basic Data Manipulation, introduces some special features that we need to
consider during data acquisition. Then, an important aspect of factor manipulation
will be discussed, especially when subsetting a factor variable and how to remove
unused factor levels. Date processing is also covered using an efficient R package:
lubridate. Dealing with the date variable using the lubridate package is much more
efficient than any other existing packages that are designed to work with the date
variable. Also, string processing will be highlighted and the chapter ends with a
description of subscripting and subsetting.

Chapter 3, Data Manipulation Using plyr, introduces the state-of-the-art approach
called split-apply-combine to manipulate datasets. Data manipulation is an integral
part of data cleaning and analysis. For large data, it is always preferable to perform
the operations within the subgroup of a dataset to speed up the process. In R, this
type of data manipulation can be done with base functionality, but for large data it
requires considerable amount of coding and eventually takes more processing time.
In the case of large datasets, we can split the data and perform the manipulation or
analysis and then again combine them into a single output. This chapter contains a
discussion on the different functions in the plyr package that are used for group-wise
data manipulation and also for data analysis.

Chapter 4, Reshaping Datasets, deals with the orientation of datasets. Reshaping data
is a common and tedious task in real-life data manipulation and analysis. A dataset
might come with different levels of grouping and we need some reorientation to
perform certain types of analysis. To perform statistical analysis, we sometimes
require wide data and sometimes long data, and in that case we need to be able to
fluently and fluidly reshape data to meet the requirements. Important functions
from the reshape package will be discussed in this chapter with examples.

Chapter 5, R and Databases, talks about dealing with database software and R. One
of the major problems in R is that its memory is bound by RAM, and that is why
working with a dataset requires the data to be smaller than its memory. But in
reality, the dataset is larger than the capacity of RAM and sometimes the length of
arrays or vectors exceeds the maximum addressable range. To overcome these two
limitations, R can be utilized with databases. Interacting with databases using R and
dealing with large datasets with specialized packages and data manipulation with
sqldf will be discussed with examples in this chapter.

Bibliography, provides a list of citations used in the book.

Preface

[3]

What you need for this book
Readers are expected to have basic knowledge of R and some knowledge of
statistical data. To run the examples from this book, R should be installed,
and it can be found at http://www.r-project.org. The example files are
produced on R 2.15.2 and R 3.0.1.

Who this book is for
This book is for intermediate to advanced level users of R who have knowledge
about datasets. Also, this book is for those who regularly deal with different
research data, including but not limited to public health, business analysis,
and the machine-learning community.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Once we have an R object we can easily assess its mode by using mode()."

A block of code is set as follows:

num.obj <- seq(from=1,to=10,by=2)
logical.obj<-c(TRUE,TRUE,FALSE,TRUE,FALSE)
character.obj <- c("a","b","c")

is.numeric(num.obj)
[1] TRUE

is.logical(num.obj)
[1] FALSE

is.character(num.obj)
[1] FALSE

Preface

[4]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

Calling xlsx library
library(xlsx)
importing xlsxanscombe.xlsx
anscombe_xlsx <- read.xlsx2("xlsxanscombe.xlsx",sheetIndex=1)

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on the Add... button and select an appropriate ODBC driver and then
locate the desired file and give a data source name."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

R Data Types and Basic
Operations

R is an object-oriented programming language that is a variation of the S language,
and was written by Ross Ihaka and Robert Gentleman (hence the name R), the R
Core Development Team, and an army of volunteers. What can we do using R?
The answer is we can do anything we can think of that is logical and/or structural.
With R, we can perform data processing, write functions, produce graphs, perform
complex data analysis, and also produce our own customized packages (a collection
of functions for performing specified tasks) to solve specific problems. We can
develop up-to-date statistical techniques through R packages, and most importantly,
R is open source and a freely available software and it will remain free.

Assuming you have preliminary knowledge on where to get R and how to install
it, we will discuss R data types and different operations related to data types. But
before introducing data types, we will briefly discuss R objects, modes, and classes
because whenever we work in R, we have to deal with these three terminologies
frequently. In this chapter, we are going to discuss the following:

•	 Modes and classes of R objects
•	 R object structure and mode conversion
•	 Vector
•	 Factor and its types
•	 Data frames, matrices, and arrays
•	 Lists
•	 Missing values in R

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

R Data Types and Basic Operations

[8]

Modes and classes of R objects
Whatever we do in R, R stores as objects. An R object is anything that can be assigned to
a variable of interest. This could be a single number or a set of numbers, characters, and
special characters; for example, TRUE, FALSE, NA, NaN, and Inf. Also, these can be the
things that are already defined in R as functions, such as seq (to generate a sequence of
numbers with a specified increment), names (to extract names such as variable names
from a dataset), row.names (to extract the row names of the data, if any), or col.names
(this is equivalent to names and it extracts column names from a matrix or data frame).
Some of the examples of R objects are as shown in the following code:

Constant
2
[1] 2
"July"
[1] "July"
NULL
NULL
NA
[1] NA
NaN
[1] NaN
Inf
[1] Inf
Object can be created from existing object
to make the result reproducible means every time we run the
following code we will get the same results # we need to set
a seed value
set.seed(123)
rnorm(9)+runif(9)
[1] -0.2325549 0.7243262 2.4482476 0.7633118 0.7697945
2.7093348 1.1166220 -0.5565308 -0.1427868

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

One important thing about objects in R is that if we do not assign an object to any
variable, we will not able to re-use it and it does not store the object internally. In the
preceding example, all are different objects, but they are not assigned to any variable
so they are not stored and we cannot use them later until we enter the object's
value itself. So whenever we deal with an object, we will assign it to an appropriate
variable, and interestingly the assigned variable is also an object in R!

http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[9]

To assign an object in R to a variable, we can define the variable name in various
ways, such as lowercase, uppercase, a combination of upper and lowercase, or even a
combination of uppercase, lowercase, and a number and/or a dot; but there are some
rules to define variable names. For example, the name cannot start with numbers;
it will start with a character or underscore. There is no special character allowed in
variable names, such as @, #, $, and *. Though R does not have a standard guideline for
naming conventions, according to Bååth (in the paper The State of Naming Conventions
in R, which can be found at http://journal.r-project.org/archive/2012-2/
RJournal_2012-2_Baaaath.pdf), the most popular function naming convention is
lower CamelCase while the most popular naming convention for arguments is period
separated. For a variable name, we can use the same naming convention as that of
arguments, but again there is no strict rule for naming conventions in R. The following
table is reconstructed from the same article by Bååth to give you an idea of the different
naming conventions used in R and their popularity:

Object type Naming conventions Percentage

Function
lowerCamelCase 55.5
period.separated 51.8
underscore_separated 37.4
singlelowercaseword 32.2
_OTHER.conventions 12.8
UpperCamelCase 6.9

Parameter (argument)
period.separated 82.8
lowerCamelCase 75.0
underscore_separated 70.7
singlelowercaseword 69.6
_OTHER.conventions 9.7
UpperCamelCase 2.4

Once we store the R object into a variable, it is still treated as an R object. Each
and every object in R has some attributes to describe the nature of the information
contained in it. The mode and class are the most important attributes of an R object.
Commonly encountered modes of an individual R object are numeric, character,
and logical. When we work with data in R, problems might arise due to incorrect
operations in incorrect object modes. So before working with data, we should study
the mode; we need to know what type of operation is applicable.

http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf

R Data Types and Basic Operations

[10]

The mode function returns the mode of R objects. The following example code
describes how we can investigate the mode of an R object:

Storing R object into a variable and then viewing the mode

num.obj <- seq(from=1,to=10,by=2)
mode(num.obj)
[1] "numeric"

logical.obj<-c(TRUE,TRUE,FALSE,TRUE,FALSE)
mode(logical.obj)
[1] "logical"

character.obj <- c("a","b","c")
mode(character.obj)
[1] "character"

For the numeric mode, R stores all numeric objects into either a 32-bit integer or
double-precision floating point.

If an R object contains both numeric and logical elements, the mode of that object
will be numeric and in that case the logical element automatically gets converted
to numeric. The logical element TRUE converts to 1 and FALSE converts to 0. On the
other hand, if any R object contains a character element along with both numeric
and logical elements, it automatically converts to the character mode. Let's have
a look at the following code:

R object containing both numeric and logical element
xz <- c(1, 3, TRUE, 5, FALSE, 9)
xz
[1] 1 3 1 5 0 9
mode(xz)
[1] "numeric"

R object containing character, numeric, and logical elements
xw <- c(1,2,TRUE,FALSE,"a")
xw
[1] "1" "2" "TRUE" "FALSE" "a"
mode(xw)
[1] "character"

Chapter 1

[11]

The mode() function is not the only way to test R object modes; there are alternative
ways too, which are is.numeric(), is.charater(), and is.logical(), as shown
in the following code. The output of these functions is always logical.

num.obj <- seq(from=1,to=10,by=2)
logical.obj<-c(TRUE,TRUE,FALSE,TRUE,FALSE)
character.obj <- c("a","b","c")

is.numeric(num.obj)
[1] TRUE
is.logical(num.obj)
[1] FALSE
is.character(num.obj)
[1] FALSE

Other than these three modes (numeric, logical, and character) of objects,
another frequently encountered mode is function; for example:

mode(mean)
[1] "function"
Also we can test whether "mean" is function or not as follows
is.function(mean)
[1] TRUE

The class() function provides the class information of an R object. The primary
purpose of the class() function is to know how different functions, including
generic functions, will work. For example, with the class information, the generic
function print or plot knows what to do with a particular R object. To assess the
class information of the object created earlier, we can use the class() function.
Let's have a look at the following code:

num.obj <- seq(from=1,to=10,by=2)
logical.obj<-c(TRUE,TRUE,FALSE,TRUE,FALSE)
character.obj <- c("a","b","c")

class(num.obj)
[1] "numeric"	

class(logical.obj)
[1] "logical"

class(character.obj)
[1] "character"

R Data Types and Basic Operations

[12]

Although we can easily assess the mode and class of an R object through mode()
and class(), there is another collection of R commands that are also used to assess
whether a particular object belongs to a certain class. These functions start with
is., for example; is.numeric(), is.logical(), is.character(), is.list(),
is.factor(), and is.data.frame(). As R is an object-oriented programming
language, there are many functions (collectively known as generic functions) that
will behave differently depending on the class of that particular object.

The mode of an object tells us how it's stored. It could happen that two different
objects are stored in the same mode with different classes. How those two objects
are printed using the print command is determined by its class; for example:

Output omitted due to space limitation
num.obj <- seq(from=1,to=10,by=2)
set.seed(1234) # To make the matrix reproducible
mat.obj <- matrix(runif(9),ncol=3,nrow=3)
mode(num.obj)
mode(mat.obj)
class(num.obj)
class(mat.obj)
prints a numeric object
print(num.obj)
prints a matrix object
print(mat.obj)

Like character and numeric, there is another method you can use to store data
when the data is categorical in nature. In categorical data, we usually have some
unique values and their corresponding labels. To store this type of object in R,
we use the class factor, which allows less storage location because it is required
to store only unique levels once.

Interestingly, once we try to see the mode of a factor object, it always shows
numeric even if it displays character data. For example:

character.obj <- c("a","b","c")
character.obj
[1] "a" "b" "c"

is.factor(character.obj)
[1] FALSE

Converting character object into factor object using as.factor()
factor.obj <- as.factor(character.obj)

Chapter 1

[13]

factor.obj
[1] a b c
Levels: a b c

is.factor(factor.obj)
[1] TRUE

mode(factor.obj)
[1] "numeric"

class(factor.obj)
[1] "factor"

We have to be careful when dealing with the factor class data in R. The important
thing to remember is that for vectors (we will discuss vectors in the Vector section in
this chapter), the class and mode will always be numeric, logical, or character.
On the other hand, for matrices and arrays (we will discuss matrices and arrays in
the Factor and its type section in this chapter), a class is always a matrix or array,
but its mode can be numeric, character, or logical.

R object structure and mode conversion
When we work with any statistical software, such as R, we rarely use single values
for an object. We need to know how we can handle a collection of data values (for
example, the age of 100 randomly selected diabetic patients) along with what type of
objects need to store those data values. In R, the most convenient way to store more
than one data value is vector (a collection of data values stored in a single object is
known as a vector; for example, storing the ages of 100 diabetic patients in a single
object). In fact, whenever we create an R object, it stores the values as a vector. It could
be a single-element vector or multiple-element vector. The num.obj vector we have
created in the previous section is a kind of vector comprising of numeric elements.

One of the simplest ways to create a vector in R is to use the c() function.
For example:

creating vector of numeric element with "c" function
num.vec <- c(1,3,5,7)
num.vec
[1] 1 3 5 7
mode(num.vec)
[1] "numeric"
class(num.vec)
[1] "numeric"
is.vector(num.vec)
[1] TRUE

R Data Types and Basic Operations

[14]

If we create a vector with mixed elements (character and numeric), the resulting
vector will be a character vector. For example:

Vector with mixed elements
num.char.vec <- c(1,3,"five",7)
num.char.vec
[1] "1" "3" "five" "7"
mode(num.char.vec)
[1] "character"
class(num.char.vec)
[1] "character"
is.vector(num.char.vec)
[1] TRUE

We can create a big new vector by combining multiple vectors, and the resulting
vector's mode will be character if any element of any vector contains a character.
The vector could be named or without a name; in the previous example, vectors
were without names. The following example shows how we can create a vector
with the name of each element:

combining multiple vectors
comb.vec <- c(num.vec,num.char.vec)
mode(comb.vec)
[1] "character"

creating named vector
named.num.vec <- c(x1=1,x2=3,x3=5)
named.num.vec
x1 x2 x3
1 3 5

The name of the elements in a vector can be assigned separately using the names()
command. In R, any single constant is also stored as a vector of the single element.
For example:

vector of single element
unit.vec <- 9
is.vector(unit.vec)
[1] TRUE

Chapter 1

[15]

R has six basic storage types of vectors and each type is known as an atomic
vector. The following table shows the six basic vector types, their mode, and
the storage mode:

Type Mode Storage mode
logical logical logical
integer numeric integer
double numeric double
complex complex complex
character character character
raw raw raw

Other than vectors, there are different storage types available in R to handle
data with multiple elements, which are matrix, dataframe, and list.
We will discuss each of these types in the subsequent sections.

To convert the object mode, R has user friendly functions that can be depicted
as follows: as.x. Here, x could be numeric, logical, character, list, data.frame,
and so on. For example, if we need to perform a matrix operation that requires the
numeric mode and the data is stored in some other mode, the operation cannot be
performed. In that case, we need to convert that data into the numeric mode.

In the following example, we will see how we can convert an object's mode:

creating a vector of numbers and then converting it to logical
and character
numbers.vec <- c(-3,-2,-1,0,1,2,3)
numbers.vec
[1] -3 -2 -1 0 1 2 3
num2char <- as.character(numbers.vec)
num2char
[1] "-3" "-2" "-1" "0" "1" "2" "3"
num2logical <- as.logical(numbers.vec)
num2logical
[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE

creating character vector and then convert it to numeric and logical

R Data Types and Basic Operations

[16]

char.vec <- c("1","3","five","7")
char.vec
[1] "1" "3" "five" "7"
char2num <- as.numeric(char.vec)
Warning message:
NAs introduced by coercion
char2num
[1] 1 3 NA 7
char2logical <- as.logical(char.vec)
char2logical
[1] NA NA NA NA

logical to character conversion
logical.vec <- c(TRUE, FALSE, FALSE, TRUE, TRUE)
logical.vec
[1] TRUE FALSE FALSE TRUE TRUE
logical2char <- as.character(logical.vec)
logical2char
[1] "TRUE" "FALSE" "FALSE" "TRUE" "TRUE"

Note that when we convert the numeric mode to the logical mode, only 0 (zero)
gets FALSE and all the other values get TRUE. Also, if we convert a character object
to numeric, it produces numeric elements and NA (if any actual character is present),
and a warning will be issued. Importantly, R does not convert a character object
into a logical object, but if we try to do this, all the resulting elements will be NA.
However, logical objects get successfully converted to character objects. Finally,
we can say that any object can be converted to a character without any warning,
but if we want to convert character objects to any other type, we have to be careful.

Vector
The R vector can be contiguous cells containing data. In R, the basic data storage
type is vector. The vector itself could be numeric, character, and logical based on
the elements. In fact, there are six types of vectors used in R. We can easily access
elements of a vector through indexing. The following example shows how we can
create a vector and access its individual elements and group of elements:

creating a vector and accessing elements
vector1 <- c(1,3,5,7,9)
vector1
[1] 1 3 5 7 9

Chapter 1

[17]

accessing second elements of "vector1"
vector1[2]
[1] 3
accessing three elements starting from second element
vector1[2:4]
[1] 3 5 7

another way of creating vector. Here "from" is the starting point
of the vector and "to" is the end point of the vector and "by" is
increment
vector2 <- seq(from=2, to=10, by=2)
is.vector(vector2)
[1] TRUE

Factor and its types
A factor is another important data type in R, especially when we deal with
categorical variables. In an R vector, there is no limit on the number of distinct
elements, but in factor variables, it takes only a limited number of distinct elements.
This type of variable is usually referred to as a categorical variable during data
analysis and statistical modeling. In statistical modeling, the behavior of a numeric
variable and categorical variable is different, so it is important to store the data
correctly to ensure valid statistical analysis.

In R, a factor variable stores distinct numeric values internally and uses another
character set to display the contents of that variable. In other software, such as
Stata, the internal numeric values are known as values and the character set is
known as value labels. Previously, we saw that the mode of a factor variable is
numeric; this is due to the internal values of the factor variable.

A factor variable can be created using the factor command; the only required
input is a vector of values, which will return as a vector of factor values. The input
can be numeric or character, but the levels of factor will always be a character.
The following example shows how to create factor variables:

#creating factor variable with only one argument with factor()
factor1 <- factor(c(1,2,3,4,5,6,7,8,9))
factor1
[1] 1 2 3 4 5 6 7 8 9
Levels: 1 2 3 4 5 6 7 8 9
levels(factor1)

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

R Data Types and Basic Operations

[18]

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9"
labels(factor)
[1] "1"
labels(factor1)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9"

#creating factor with user given levels to display
factor2 <- factor(c(1,2,3,4,5,6,7,8,9),labels=letters[1:9])
factor2
[1] a b c d e f g h i
Levels: a b c d e f g h i
levels(factor2)
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i"
labels(factor2)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9"

In a factor variable, the values themselves are stored as numeric vectors, whereas the
labels store only unique characters, and it stores only once for each unique character.
Factors can be ordered if the ordered=T command is specified, otherwise it inherits
the order of the levels specified.

A factor could be numeric with numeric levels, but direct mathematical operations
are not possible with this numeric factor. Special care should be taken if we want to
use mathematical operations. The following example shows a numeric factor and its
mathematical operation:

creating numeric factor and trying to find out mean
num.factor <- factor(c(5,7,9,5,6,7,3,5,3,9,7))
num.factor
[1] 5 7 9 5 6 7 3 5 3 9 7
Levels: 3 5 6 7 9
mean(num.factor)
[1] NA
Warning message:
In mean.default(num.factor) :
argument is not numeric or logical: returning NA

From the preceding example, we see that we can create a numeric factor, but the
mathematical operation is not possible. And when we tried to perform a mathematical
operation, it showed us a warning and produced the result NA. To perform any
mathematical operation, we need to convert the factor to its numeric counterpart. One
can assume that we can easily convert the factor to numeric using the as.numeric()
function, but if we use the as.numeric() function, it will only convert the internal
values of the factors, not the desired values.

Chapter 1

[19]

So the conversion must be done with levels of that factor variable; optionally,
we can firstly convert the factor into a character using as.character() and
then use as.numeric(). The following example describes the scenario:

num.factor <- factor(c(5,7,9,5,6,7,3,5,3,9,7))
num.factor
[1] 5 7 9 5 6 7 3 5 3 9 7
Levels: 3 5 6 7 9
#as.numeric() function only returns internal values of the factor
as.numeric(num.factor)
[1] 2 4 5 2 3 4 1 2 1 5 4
now see the levels of the factor
levels(num.factor)
[1] "3" "5" "6" "7" "9"
as.character(num.factor)
[1] "5" "7" "9" "5" "6" "7" "3" "5" "3" "9" "7"

now to convert the "num.factor" to numeric there are two method
method-1:
mean(as.numeric(as.character(num.factor)))
[1] 6

method-2:
mean(as.numeric(levels(num.factor)[num.factor]))
[1] 6

Data frame
A data frame is a rectangular arrangement of rows and columns of vectors and/or
factors, such as a spreadsheet in MS Excel. The columns represent variables in the
data and the rows represent observations or records. In other software, such as a
database package, each column represents a field and each row represents a record.
Dealing with data does not mean dealing with only one vector or factor variable,
rather it is the collection of variables. Each column represents only one type of data:
numeric, character, or logical, and each row represents case information across all
columns. One important thing to remember about R data frames is that all vectors
should be of the same length. In an R data frame, we can store different types of
variables, such as numeric, logical, factor, and character. To create a data frame,
we can use the data.frame() command. The following example shows how to
create a data frame using different vectors and factors:

#creating vector of different variables and then creating data frame
var1 <- c(101,102,103,104,105)

R Data Types and Basic Operations

[20]

var2 <- c(25,22,29,34,33)
var3 <- c("Non-Diabetic", "Diabetic", "Non-Diabetic", "Non-Diabetic",
"Diabetic")
var4 <- factor(c("male","male","female","female","male"))
now we will create data frame using two numeric vectors one
character vector and one factor
diab.dat <- data.frame(var1,var2,var3,var4)
diab.dat
 var1 var2 var3 var4
1 101 25 Non-Diabetic male
2 102 22 Diabetic male
3 103 29 Non-Diabetic female
4 104 34 Non-Diabetic female
5 105 33 Diabetic male

Now if we see the class of individual columns of the newly created data frame, we
will see that the first two columns' classes are numeric and the last two columns'
classes are factor, though initially the class of var3 was character. One thing is
obvious here—when we create data frames and any one of the column's classes is
character, it automatically gets converted to factor, which is a default R operation.
But there is one argument, stringsAsFactors=FALSE, that allows us to prevent
the automatic conversion of character to factor during data frame creation. In the
following example, we will see this:

#class of each column before creating data frame
class(var1)
[1] "numeric"
class(var2)
[1] "numeric"
class(var3)
[1] "character"
class(var4)
[1] "factor"

To access individual columns (variables) from a data frame, we can use a dollar ($)
sign along with the data frame name; for example, diab.dat$var1. There are some
other ways to access variables from a data frame, such as the following:

•	 Data frame name followed by double square brackets with variable names
within quotation marks; for example, diab.dat[["var1"]]

•	 Data frame name followed by single square brackets with the column index;
for example, diab.dat[,1]

Chapter 1

[21]

Besides these, there is one other way that allows us to access each of the individual
variables as separate objects. The R attach()function allows us to access individual
variables as separate R objects. Once we use the attach() command, we need to use
detach() to remove individual variables from the working environment. Let's have
a look at the following code:

class of each column after creating data frame
class(diab.dat$var1)
[1] "numeric"
class(diab.dat$var2)
[1] "numeric"
class(diab.dat$var3)
[1] "factor"
class(diab.dat$var4)
[1] "factor"
now create the data frame specifying as.is=TRUE
diab.dat.2 <- data.frame(var1,var2,var3,var4,stringsAsFactors=FALSE)
diab.dat.2
var1 var2 var3 var4
1 101 25 Non-Diabetic male
2 102 22 Diabetic male
3 103 29 Non-Diabetic female
4 104 34 Non-Diabetic female
5 105 33 Diabetic male

class(diab.dat.2$var3)
[1] "character"

Matrices
A matrix is also a two-dimensional arrangement of data but it can take only one
class. To perform any mathematical operations, all columns of a matrix should
be numeric. However, in data frames we can store numeric, character, or factor
columns. To perform any mathematical operation, especially a matrix operation,
we can use matrix objects. However, in data frames, we are unable to perform certain
types of mathematical operations, such as matrix multiplication. To create a matrix,
we can use the matrix() command or convert a numeric data frame to a matrix
using as.matrix(). We can convert the data frame that we created earlier as diab.
dat to a matrix using as.matrix(), but this is not suitable to perform mathematical
operations, as shown in the following example:

data frame to matrix conversion
mat.diab <- as.matrix(diab.dat)

R Data Types and Basic Operations

[22]

mat.diab
 var1 var2 var3 var4
[1,] "101" "25" "Non-Diabetic" "male"
[2,] "102" "22" "Diabetic" "male"
[3,] "103" "29" "Non-Diabetic" "female"
[4,] "104" "34" "Non-Diabetic" "female"
[5,] "105" "33" "Diabetic" "male"

class(mat.diab)
[1] "matrix"
mode(mat.diab)
[1] "character"

matrix multiplication is not possible with this newly created matrix

t(mat.diab) %*% mat.diab
Error in t(mat.diab) %*% mat.diab :
requires numeric/complex matrix/vector arguments

creating a matrix with numeric elements only
To produce the same matrix over time we set a seed value
set.seed(12345)
num.mat <- matrix(rnorm(9),nrow=3,ncol=3)
num.mat
 [,1] [,2] [,3]
[1,] 0.5855288 -0.4534972 0.6300986
[2,] 0.7094660 0.6058875 -0.2761841
[3,] -0.1093033 -1.8179560 -0.2841597

class(num.mat)
[1] "matrix"
mode(num.mat)
[1] "numeric"

matrix multiplication
t(num.mat) %*% num.mat
 [,1] [,2] [,3]
[1,] 0.8581332 0.36302951 0.20405722
[2,] 0.3630295 3.87772320 0.06350551
[3,] 0.2040572 0.06350551 0.55404860

Chapter 1

[23]

Arrays
An array is a multiply-subscripted data entry that allows the storing of data
frames, matrices, or vectors of different types. Data frames and matrices are of two
dimensions only, but an array could be of any number of dimensions. Sometimes,
we need to store multiple matrices or data frames into a single object; in this case,
we can use arrays to store this data. The following is a simple example to store
three matrices of order 2x2 in a single array object:

mat.array=array(dim=c(2,2,3))

To produce the same results over time we set a seed value
set.seed(12345)

mat.array[,,1]<-rnorm(4)
mat.array[,,2]<-rnorm(4)
mat.array[,,3]<-rnorm(4)

mat.array
, , 1

 [,1] [,2]
[1,] 0.5855288 -0.1093033
[2,] 0.7094660 -0.4534972

, , 2

 [,1] [,2]
[1,] 0.6058875 0.6300986
[2,] -1.8179560 -0.2761841

, , 3

 [,1] [,2]
[1,] -0.2841597 -0.1162478
[2,] -0.9193220 1.8173120

R Data Types and Basic Operations

[24]

list
A list object is a generic R object that can store other objects of any type. In a list
object, we can store single constants, vectors of numeric values, factors, data frames,
matrices, and even arrays. Recalling the vectors var1, var2, var3, and var4; the data
frame created using these vectors; and also recalling the array created in the Arrays
section, we will create a list object in the following example:

var1 <- c(101,102,103,104,105)
var2 <- c(25,22,29,34,33)
var3 <- c("Non-Diabetic", "Diabetic", "Non-Diabetic", "Non-Diabetic",
"Diabetic")
var4 <- factor(c("male","male","female","female","male"))
diab.dat <- data.frame(var1,var2,var3,var4)

mat.array=array(dim=c(2,2,3))

set.seed(12345)

mat.array[,,1]<-rnorm(4)
mat.array[,,2]<-rnorm(4)
mat.array[,,3]<-rnorm(4)

creating list
obj.list <- list(elem1=var1,elem2=var2,elem3=var3,elem4=var4,elem5=di
ab.dat,elem6=mat.array)

obj.list
$elem1
[1] 101 102 103 104 105

$elem2
[1] 25 22 29 34 33

$elem3
[1] "Non-Diabetic" "Diabetic" "Non-Diabetic" "Non-Diabetic"
"Diabetic"

$elem4
[1] male male female female male
Levels: female male

Chapter 1

[25]

$elem5
 var1 var2 var3 var4
1 101 25 Non-Diabetic male
2 102 22 Diabetic male
3 103 29 Non-Diabetic female
4 104 34 Non-Diabetic female
5 105 33 Diabetic male

$elem6
, , 1

 [,1] [,2]
[1,] 0.5855288 -0.1093033
[2,] 0.7094660 -0.4534972

, , 2

 [,1] [,2]
[1,] 0.6058875 0.6300986
[2,] -1.8179560 -0.2761841

, , 3

 [,1] [,2]
[1,] -0.2841597 -0.1162478
[2,] -0.9193220 1.8173120

To access individual elements from a list object, we could use the name of that
component or use double square brackets with the index of those elements. For
example, obj.list[[1]] will give the first element of the newly created list object.

Missing values in R
Missing values are part of the data manipulation process and we will encounter
some missing values in almost every dataset. So, it is important to know how R
handles missing values and how they are represented. In R, a numeric missing value
is represented by NA while character missing values are represented by <NA>. To test
if there is any missing value present in a dataset (data frame), we can use is.na()
for each column or we can use this function in combination with the any() function.
The following example shows how we can see if there are any missing values present
in a dataset:

missing_dat <- data.frame(v1=c(1,NA,0,1),v2=c("M","F",NA,"M"))
missing_dat

R Data Types and Basic Operations

[26]

 v1 v2
1 1 M
2 NA F
3 0 <NA>
4 1 M

is.na(missing_dat$v1)
[1] FALSE TRUE FALSE FALSE
is.na(missing_dat$v2)
[1] FALSE FALSE TRUE FALSE
any(is.na(missing_dat))
[1] TRUE

Summary
In this chapter, we firstly talked very briefly about what R is. We did not cover where
to get it and how to install it as we are assuming the reader will have some preliminary
knowledge in those areas. Then we introduced what R objects are and their modes and
classes. We also highlighted how we can convert modes of objects using R functions
such as as.numeric and as.character. Finally, we discussed different R objects, such
as vector, factor, data frame, matrix, and list. The chapter ended with an introduction
to how missing values are represented and dealt with in R. In the next chapter, we will
discuss data manipulation with different R objects in greater detail.

Basic Data Manipulation
When preparing a dataset for statistical analysis, data processing and manipulations
such as checking, cleaning, and creating new variables are two of the important
tasks. In this chapter, the basics of data manipulation will be discussed with
examples that will give us an idea about checking a dataset and cleaning it if
necessary. This chapter will deal with the following topics:

•	 Importing datasets from different sources
•	 Factor manipulations
•	 Numeric variables and date processing
•	 Character manipulations
•	 Subscripting and subsetting datasets

Acquiring data
A dataset can be stored in a computer or any other storage device in different
file formats. R provides the useful facility to access different file formats through
different commands. Some of the commonly used file formats are:

•	 Comma separated values (*.csv)

•	 Text file with Tab delimited

•	 MS Excel file (*.xls or *.xlsx)

•	 R data object (*.RData)

Other than the file formats mentioned in the preceding list, the dataset can be
stored in another statistical software format; for example, Stata, SPSS, or SAS.
In R, using the foreign library, we can acquire a dataset from other statistical
software. In the following examples, we will see how we can acquire data in R
from different file formats.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Basic Data Manipulation

[28]

Firstly, we will import a .csv file, CSVanscombe.csv. This file contains four pairs
of numeric variables, (x1,y1) to (x4,y4). The noticeable feature of this file is
that the actual data starts from the third row and the first two rows contain a brief
description about the dataset. Now we will use read.csv() to import the file and
store it in the anscombe object in R, which will be a data frame, as shown in the
following code:

Before running the following command we need to set the data
location using setwd(). For example setwd("d:/chap2").

anscombe <- read.csv("CSVanscombe.csv",skip=2)

Note that in the preceding code, the skip=2 command is used, which tells R that the
actual data starts from the third row.

If a .csv file contains both numeric and character variables and we use read.
csv(), the character variables get automatically converted to the factor type. We can
prevent character variables from this automatic conversion to factor by specifying
stringsAsFactors=FALSE within the read.csv() command, as shown in the
following code:

import csv file that contains both numeric and character variable
firstly using default and then using stringsAsFActors=FALSE

iris_a <- read.csv("iris.csv")
str(iris_a)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..:
1 1 1 1 1 1 1 1 1 1 ...

In the following example, we will see the difference if we specify the
stringsAsFactors = FALSE argument:

Now using stringsAsFactors=FALSE
iris_b <- read.csv("iris.csv",stringsAsFactors=F)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : chr "setosa" "setosa" "setosa" "setosa" ...

Chapter 2

[29]

We see that in the first data frame, the class of the Species variable is factor,
whereas in the second data frame the class of the same variable is character.
So we have to be careful while importing the .csv file with mixed variables.

Sometimes, it could happen that the file extension is *.csv but the data is not
comma separated; rather, the data supplier has used a semicolon (;) as a separator,
or any other symbol. In that case, we can still use the read.csv() command,
but this time we have to specify the separator. Let's look at the example with
a semicolon-separated .csv file of the same iris data:

iris_semicolon <-
 read.csv("iris_semicolon.csv",stringsAsFactors=FALSE,sep=";")
str(iris_semicolon)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species : chr "setosa" "setosa" "setosa" "setosa" ...

Similarly, if the values are tab separated, we can use read.csv() with sep= "\t".
Alternatively, we can use read.table(). The following is an example:

anscombe_tab <- read.csv("anscombe.txt",sep="\t")
anscombe_tab_2 <- read.table("anscombe.txt",header=TRUE)

Notice that here when we used read.table(), we have to specify whether the
variable name is present or not using header=TRUE.

If the dataset is stored in the *.xls or *.xlsx format, we have to use certain R
packages to import those files; one of the packages is xlsx, which is designed
to read files formatted as *.xlsx. The following is an example to import the
xlsxanscombe.xlsx file:

Calling xlsx library
library(xlsx)
importing xlsxanscombe.xlsx
anscombe_xlsx <- read.xlsx2("xlsxanscombe.xlsx",sheetIndex=1)

In R, single or multiple data frames or other objects can be stored in the *.RData
format. This file format is convenient to store more than one dataset into a single file.
To acquire a dataset for any other type of objects from the *.RData file, we can use
the load() function. The following is an example to load multiple datasets and a
vector of R objects from a single *.RData file:

loading robjects.RData file
load("robjects.RData")

Basic Data Manipulation

[30]

to see whether the objects are imported correctly
objects()
"character.obj" "diab.dat" "logical.obj" "num.obj" "var1"
 "var2" "var3" "var4"

Note that the objects() command is used to look at all of the objects in the current
R session. Now to see the mode and class of each object, we can easily use the mode()
and class() function.

To import a Stata file into R, we need to call the foreign library and then use
the read.dta() function. Similarly, if we want to import an SPSS data file, the
corresponding command will be read.spss(); the output will always be a data
frame. Here is an example of importing a Stata file:

library(foreign)
iris_stata <- read.dta("iris_stata.dta")

In this section, we saw that a dataset can be stored in different formats and R has
some user friendly functionality to deal with each of them. The noticeable feature of
this section is some of the arguments within the read.csv() function, such as skip,
stringsAsFactors, and sep. To import any data correctly, we have to use these
arguments carefully.

Factor manipulation
A variable that takes only a limited number of distinct values is usually known
as a categorical variable, and in R, this is known as a factor. During data analysis,
sometimes the factor variable plays an important role, particularly in studying
the relationship between two categorical variables. In this section, we will see
some important aspects of factor manipulation. When a factor variable is first
created, it stores all its levels along with the factor. But if we take any subset
of that factor variable, it inherits all its levels from the original factor levels.
This feature sometimes creates confusion in understanding the results. Let
us now see an example of this feature.

We will firstly create a factor variable from the datamanipulation character string
with the English alphabet in lowercase as levels. Each letter of this string represents a
value of that factor variable. Then, we will display the data with the table() function,
where we will see lots of zero frequency corresponding to the letters that did not
appear in the factor variable, as shown in the following code. We then drop those
levels that are not part of the original factor variable and will display the data again.

creating an R object whose value is "datamanipulation"
char.obj <- "datamanipulation"

Chapter 2

[31]

creating a factor variable by extracting each single letter from
the character string. To extract each single letter the substring()
function has been used. Note: nchar() function gives number of
character count in a character type R object
factor.obj <- factor(substring(char.obj,1:nchar(char.obj),
1:nchar(char.obj)),levels=letters)

Displaying levels of the factor variable
levels(factor.obj)
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"
"o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

Displaying the data using the table() function
table(factor.obj)
factor.obj
a b c d e f g h i j k l m n o p q r s t u v w x y z
4 0 0 1 0 0 0 0 2 0 0 1 1 2 1 1 0 0 0 2 1 0 0 0 0 0

Notice that there are only a few nonzero values in the table because the original factor
variable does not have the entire alphabet as its value. Now we will drop the levels
that do not appear in the original factor variable. To do so, we will create another factor
variable from the original factor variable, as shown in the following code:

re-creating factor variable from existing factor variable
factor.obj1 <- factor(factor.obj)

Displaying levels of the new factor variable
levels(factor.obj1)
 [1] "a" "d" "i" "l" "m" "n" "o" "p" "t" "u"

displaying data using table() function
table(factor.obj1)
factor.obj1
a d i l m n o p t u
4 1 2 1 1 2 1 1 2 1

The important feature to notice here is that we can drop unused factor levels by
recreating factor variables from the original factor variable. This is most useful
when we use a subset of a factor variable.

Basic Data Manipulation

[32]

Factors from numeric variables
Numeric variables are convenient during statistical analysis, but sometimes we
need to create categorical (factor) variables from numeric variables. We can create a
limited number of categories from a numeric variable using a series of conditional
statements, but this is not an efficient way to perform this operation. In R, cut is a
generic command to create factor variables from numeric variables. In the following
example, we will see how we can create factors from a numeric variable using a series
of conditional statements. We will also use the cut command to perform the same task.

creating a numeric variable by taking 100 random numbers
from normal distribution
set.seed(1234) # setting seed to reproduce the example
numvar <- rnorm(100)

creating factor variable with 5 distinct category

num2factor <- cut(numvar,breaks=5)
class(num2factor)
[1] "factor"
levels(num2factor)
[1] "(-2.35,-1.37]" "(-1.37,-0.389]" "(-0.389,0.592]"
"(0.592,1.57]" "(1.57,2.55]"
table(num2factor)
num2factor
(-2.35,-1.37] (-1.37,-0.389] (-0.389,0.592] (0.592,1.57] (1.57,2.55]
 7 43 29 13 8

By default, the levels are produced using the actual range of values. Sometimes,
the range of values are given a specific name for convenience. For example, the five
categories of the preceding factor might be called the lowest group, lower-middle
group, middle group, upper-middle group, and highest group, as shown in the
following code:

creating factor with given labels
num2factor <- cut(numvar,breaks=5,labels=c("lowest group","lower
middle group", "middle group", "upper middle", "highest group"))

displaying the data is tabular form

data.frame(table(num2factor))
 num2factor Freq
1 lowest group 7

Chapter 2

[33]

2 lower middle group 43
3 middle group 29
4 upper middle 13
5 highest group 8
creating factor variable using conditional statement
num2factor <- factor(ifelse(numvar<=-1.37,1,
 ifelse(numvar<=-0.389,2,ifelse(numvar<=0.592,3,ifelse
 (numvar<=1.57,4,5)))),labels=c("(-2.35,-1.37]",
 "(-1.37,-0.389]", "(-0.389,0.592]",
 "(0.592,1.57]", "(1.57,2.55]"))

displaying data using table function
table(num2factor)
num2factor
 (-2.35,-1.37] (-1.37,-0.389] (-0.389,0.592] (0.592,1.57] (1.57,2.55]
 7 43 29 13 8

Once we have converted the numeric variable to the factor variable and discarded
the numeric variable, we cannot go back to the original numeric variable if needed.
Therefore, we should be careful when converting the numeric variable to the
factor variable.

Date processing
R can handle date variables in several ways. There are built-in R functions available
to deal with date variables, and there are also some useful contributed packages
available. The built-in R function as.Date() can handle only dates but not time,
whereas the chron package, contributed by James and Hornik in 2008, can handle
both date and time. However, it cannot deal with time zones. Using the POSIXct
and POSIXlt class objects, we can deal with the inclusion of time zones. But there is
another R package, lubridate, contributed by Grolemund and Wickham in 2011,
that gives much more user friendly functionality to deal with date and time with
time zone support. In this section, we will see how we can easily deal with date and
time using the lubridate package and compare it with built-in R functions.

Like other statistical software, R also has a base date, and using that base date, R
internally stores date objects. In R, dates are stored as the number of days elapsed
since January 1, 1970. So if we convert any date object to its internal number, it will
show the number of days. We can reformat the number into a date using the date
class. The following are some examples:

creating date object using built in as.Date() function
as.Date("1970-01-01")

Basic Data Manipulation

[34]

[1] "1970-01-01"

looking at the internal value of date object
as.numeric(as.Date("1970-01-01"))
[1] 0

Second January 1970 is showing number of elapsed day is 1.
as.Date("1970-01-02")
[1] "1970-01-02"
as.numeric(as.Date("1970-01-02"))
[1] 1

Using the as.Date() function, we can easily create the date object; the typical
format of the date object in this function is year, month, and then day. But we
can also create a date object with other formats by specifying the format within
the as.Date() function, as shown in the following example:

creating date object specifying format of date
as.Date("Jan-01-1970",format="%b-%d-%Y")
[1] "1970-01-01"

Note that when specifying the format of the date, we have to give the format that
is aligned with the input string. For the complete list of code that is used to specify
date formats, users are directed to the help documentation of the strptime function.
Users can access the complete list by just typing in help(strptime) in the R console.

The lubridate package provides intuitive functionality to deal with the date object
in R. The following are some of the examples to create the date object using the
lubridate package:

loading lubridate package
library(lubridate)

creating date object using mdy() function
mdy("Jan-01-1970")
"1970-01-01 UTC"

Note that the default time zone in the mdy, dmy, or ymd function is Coordinated
Universal Time (UTC). One of the most interesting and important features of the
lubridate package is that it can deal with heterogeneous formats. Heterogeneous
formats means users can store date information in various ways; for example,
second chapter due on 2013, august, 24, first chapter submitted on
2013, 08, 18, or 2013 aug 23. From this heterogeneous date, we can extract
the valid date object that can be processed further within R using the lubridate
package, as shown in the following code:

creating heterogeneous date object
hetero_date <- c("second chapter due on 2013, august, 24",
"first chapter submitted on 2013, 08, 18", "2013 aug 23")

Chapter 2

[35]

parsing the character date object and convert to valid date
ymd(hetero_date)
[1] "2013-08-24 UTC" "2013-08-18 UTC" "2013-08-23 UTC"

Although the lubridate package can handle heterogeneous dates, the sequence
of year, month, and day should be similar across all values within the same object,
otherwise during date extraction there will be a missing value that will be generated
along with a warning message. For example, if we alter the last date to 23 aug 2013,
this will not get converted into a valid date, as shown in the following code:

hetero_date <- c("second chapter due on 2013, august, 24",
"first chapter submitted on 2013, 08, 18", "23 aug 2013")
ymd(hetero_date)
[1] "2013-08-24 UTC" "2013-08-18 UTC" NA
Warning message:
1 failed to parse.

During the date manipulation, sometimes we need to change the month only within
an existing R date object. The following is an example of doing this using the default
R function and also using the lubridate package:

Creating date object using based R functionality
date <- as.POSIXct("23-07-2013",format = "%d-%m-%Y", tz = "UTC")
date
[1] "2013-07-23 UTC"
extracting month from the date object
as.numeric(format(date, "%m"))
[1] 7

manipulating month by replacing month 7 to 8
date <- as.POSIXct(format(date,"%Y-8-%d"), tz = "UTC")
date
[1] "2013-08-23 UTC"

The same operation is done using lubridate package
date <- dmy("23-07-2013")
date
[1] "2013-07-23 UTC"
month(date)
[1] 7
month(date) <- 8
date
[1] "2013-08-23 UTC"

Basic Data Manipulation

[36]

In a dataset, the variable might have both date and time information and we
need to round them to the nearest day or month. The following example shows
the date-rounding functionality; this example also displays how to convert the
time zone:

accessing system date and time
current_time <- now()
current_time
[1] "2013-08-23 23:43:01 BDT"

changing time zone to "GMT"
current_time_gmt <- with_tz(current_time,"GMT")
current_time_gmt
[1] "2013-08-23 17:43:01 GMT"

rounding the date to nearest day
round_date(current_time_gmt,"day")
[1] "2013-08-24 GMT"

rounding the date to nearest month
round_date(current_time_gmt,"month")
[1] "2013-09-01 GMT"

rounding date to nearest year
round_date(current_time_gmt,"year")
[1] "2014-01-01 GMT"

In this section, we saw that dealing with dates using the lubridate package is
really user friendly and intuitive.

Character manipulation
In any statistical software, all the data is expected to be either numeric or at least
a factor, but sometimes we have to work with character data. In the area of text
mining, character or string manipulation is the most important. R has complete
functionality to manipulate character (string) data for further analysis. Besides
default R functionality, there is one contributed package to deal with character
data, which is more user friendly and intuitive compared to the base R counterpart.
Wickham developed the stringr package in 2010 to manipulate character data with
some user friendly functions. In this section, we will introduce different functions
and their counterparts in a table so that the readers are able to use the functions
from the stringr package easily:

Chapter 2

[37]

Base R functions stringr functions
paste(): This function is used to
concatenate a vector of characters
with a default separator as a space.

str_c(): This has a functionality similar to
paste(), but it uses empty as the default
separator. It also silently removes zero-length
arguments.

nchar(): This returns the number
of characters in a character string.
For NA, it returns 2, which is not
expected. For example:

nchar(c("x","y",NA))
[1] 1 1 2

str_length(): This is the same as nchar(),
but it preserves NA. For example:

str_length(c("x","y",NA))
[1] 1 1 NA

substr(): This extracts or replaces
substrings in a character vector.

str_sub(): This is the equivalent of substr(),
but it returns a zero-length vector if any of its
inputs are of zero length. It also accepts negative
positions, which are calculated from the left of
the last character. The end position defaults to -1,
which corresponds to the last character.

Unavailable str_dup(): This is used to duplicate the
characters within a string.

Unavailable str_trim(): This is used to remove the leading
and trailing whitespaces.

Unavailable str_pad(): This is used to pad a string with
extra whitespaces on the left, right, or both sides.

Other than the functions listed in the preceding table, there are some other
user friendly functions for pattern matching. Those functions are str_detect,
str_locate, str_extract, str_match, str_replace, and so on. To get more details
about these functions, readers should refer to the stringr: modern, consistent string
processing paper, by Wickham, which can be found at http://journal.r-project.
org/archive/2010-2/RJournal_2010-2_Wickham.pdf.

Subscripting and subsetting
Subscripting and subsetting a dataset is an integral part of data manipulation. If
we need to extract a smaller part of any R object (vector, data frame, matrix, or list)
that contains more than one element, we need to use subscripts. Subscripting is
an approach to access individual elements of an R object, for example, accessing
particular element of a vector. Usually, numeric integers are used for subscripting,
but logical vectors can also be used for the same purposes. In R, the subscript starts
from 1, and if we specify any negative subscript, it omits that position from the
source object.

www.allitebooks.comwww.allitebooks.com

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://www.allitebooks.org
http://www.allitebooks.org

Basic Data Manipulation

[38]

The following is an example of an R vector with 10 elements and the effect of
positive and negative subscripting:

creating a 10 element vector
num10 <- c(3,2,5,3,9,6,7,9,2,3)
accessing fifth element
num10[5]
[1] 9

checking whether there is any value of num10 object greater
than 6
num10>6
[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE

keeping only values greater than 6
num10[num10>6]
[1] 9 7 9

use of negative subscript removes first element "3"
num10[-1]
[1] 2 5 3 9 6 7 9 2 3

Note that the subscripted indexes are written within square brackets.
For one-dimensional vectors, we use a single index to access elements,
but for two-dimensional objects such as data frames or matrices, we have
to use two-dimensional subscripts. In that case, we have to use double square
brackets for indexing. The first index is for representing rows and the second
is for representing columns; for example:

creating a data frame with 2 variables
data_2variable <- data.frame(x1=c(2,3,4,5,6),x2=c(5,6,7,8,1))

accessing only first row
data_2variable[1,]
 x1 x2
1 2 5

accessing only first column
data_2variable[,1]
[1] 2 3 4 5 6

accessing first row and first column
data_2variable[1,1]
[1] 2

Chapter 2

[39]

Similar indexing is used for matrices. For the list object, the indexing is different
than that of data frames or matrices. To get access to a list object, we have to use
[[]] for indexing; for example, [[1]] to get the first element of a list. If the list is
nested within another list, we need to use a series of double square brackets within
double square brackets. The following example creates a list object and accesses
its elements:

list_obj<- list(dat=data_2variable,vec.obj=c(1,2,3))
list_obj
$dat
 x1 x2
1 2 5
2 3 6
3 4 7
4 5 8
5 6 1

$vec.obj
[1] 1 2 3
accessing second element of the list_obj objects
list_obj[[2]]
[1] 1 2 3

Now, if we want to get access to the individual elements of list_obj[[2]],
we have to use the following command:

list_obj[[2]][1]
[1] 1

If the list object is named, we can get access to the elements of that list using
the name as follows:

accessing dataset from the list object
list_obj$dat
x1 x2
1 2 5
2 3 6
3 4 7
4 5 8
5 6 1

Subsetting is just storing subscripted objects. Once we extract any subscripted R
object and store it in another variable, the newly created object is the subset of the
original variable.

Basic Data Manipulation

[40]

Summary
In this chapter, we have covered some of the special features that we need to
consider during data acquisition. We also discussed the important aspect of factor
manipulation, especially when subsetting a factor variable and how to remove
unused factor levels. The processing of date variables was covered with the use
of the lubridate package, with its user friendly and intuitive functions, and also
string processing has been highlighted. The chapter ended with an explanation of
the concepts of subscripting and subsetting. For more details on date processing
and string manipulation, readers should refer to the stringr: modern, consistent string
processing paper, by Wickham, which can be found at http://journal.r-project.
org/archive/2010-2/RJournal_2010-2_Wickham.pdf., and the Dates and Times
Made Easy with lubridate journal, by Grolemund and Wickham, which can be found
at http://www.jstatsoft.org/v40/i03/paper.

In the next chapter, we will discuss data manipulation with the plyr package,
where we will focus on the split-apply-combine strategy, a state-of-the-art
approach in the group-wise data manipulation using R.

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf

Data Manipulation Using plyr
In any data analysis task, a majority of the time is dedicated to data cleaning and
preprocessing. It is considered that sometimes about 80 percent of the effort is devoted
to data cleaning before conducting actual analysis (Exploratory Data Mining and
Data Cleaning, Dasu T. and Johnson T.). Data manipulation is an integral part of data
cleaning and analysis. For large sets of data, it is always preferable to perform the
operation within subgroups of a dataset to speed up the process. In R, this type of data
manipulation can be done with base functionality, but for large-scale data it requires
a considerable amount of coding and eventually takes more processing time. In the
case of large-scale data, we can split the dataset, perform the manipulation or analysis,
and then combine it into a single output again. This type of split using default R is not
efficient, and to overcome this limitation, Wickham, in 2011, developed an R package
called plyr, in which he efficiently implemented the split-apply-combine strategy.
This chapter starts with the concept of split-apply-combine and is followed by the
different functions and utilities of the plyr package.

The split-apply-combine strategy
Often, we require similar types of operations in different subgroups of a dataset,
such as group-wise summarization, standardization, and statistical modeling. This
type of task requires us to break up a big problem into manageable pieces, perform
operations on each piece separately, and finally combine the output of each piece into
a single piece of output (the paper The Split-Apply-Combine Strategy for Data Analysis, by
Wickham, which can be found at http://www.jstatsoft.org/v40/i01/paper). To
understand the split-apply-combine strategy intuitively, we could compare this with
the map-reduce strategy for processing large amounts of data, recently popularized by
Google. In the map-reduce strategy, the map step corresponds to split and apply and
the reduce step consists of combining. The map-reduce approach is primarily designed
to deal with a highly parallel environment where the work has been done by several
hundreds or thousands of computers independently.

Data Manipulation Using plyr

[42]

The split-apply-combine strategy creates an opportunity to see the similarities of
problems across subgroups that were previously unconnected. This strategy can
be used in many existing tools, such as the GROUP BY operation in SAS, PivotTable
in MS Excel, and the SQL GROUP BY operator.

To explain the split-apply-combine strategy, we will use Fisher's iris data. This
dataset contains the measurements in centimeters of these variables: sepal length
and width, and petal length and width, for 50 flowers from each of the three species
of iris. The species are Iris setosa, Iris versicolor, and Iris virginica. We want to calculate
the mean of each variable and for each species separately. This can be done in
different ways using a loop or without using one.

Split-apply-combine without a loop
In this section, we will see an example of the split-apply-combine strategy without
using a loop. The steps are as follows:

1.	 Split the iris dataset into three parts.
2.	 Remove the species name variable from the data.
3.	 Calculate the mean of each variable for the three different parts separately.
4.	 Combine the output into a single data frame.

The code for this is as follows:

notice that during split step a negative 5 is used within the
code, this negative 5 has been used to discard fifth column of the
iris data that contains "species" information and we do not need
that column to calculate mean.

iris.set <- iris[iris$Species=="setosa",-5]
iris.versi <- iris[iris$Species=="versicolor",-5]
iris.virg <- iris[iris$Species=="virginica",-5]

calculating mean for each piece (The apply step)
mean.set <- colMeans(iris.set)
mean.versi <- colMeans(iris.versi)
mean.virg <- colMeans(iris.virg)

combining the output (The combine step)
mean.iris <- rbind(mean.set,mean.versi,mean.virg)

giving row names so that the output could be easily understood
rownames(mean.iris) <- c("setosa","versicolor","virginica")

Chapter 3

[43]

Split-apply-combine with a loop
The following example will calculate the same statistics as in the previous section,
but this time we will perform this task using a loop. The steps are similar but
the code is different. In each iteration, we will split the data for each species and
calculate the mean for each variable and then combine the output into a single data
frame, as shown in the following code:

split-apply-combine using loop
each iteration represents split
mean calculation within each iteration represents apply step
rbind command in each iteration represents combine step

mean.iris.loop <- NULL
for(species in unique(iris$Species))
{
iris_sub <- iris[iris$Species==species,]
column_means <- colMeans(iris_sub[,-5])
mean.iris.loop <- rbind(mean.iris.loop,column_means)
}

giving row names so that the output could be easily understood
rownames(mean.iris.loop) <- unique(iris$Species)

An important fact to note in the split-apply-combine strategy is that each piece
should be independent of the other. If the calculation in one piece is somehow
dependent on the other, the split-apply-combine strategy will not work. This strategy
is not applicable in running an average type of operation, where a current average
is dependent on the previous one. This strategy is only applicable when the big
problem can be broken up into smaller manageable pieces and we can perform the
desired operation on each piece independently. For running average calculations,
the split-apply-combine strategy is not suitable; we can use a loop instead. But if
processing speed is a concern, we can write the code in some lower-level language
such as C or ForTran.

Data Manipulation Using plyr

[44]

Utilities of plyr
The plyr package is a set of tools for a common set of problems. We want to split
the big problem into smaller pieces, apply functions, and then combine all the
outputs back together. The example we presented using the iris data is one where we
applied this strategy. Though it is already possible to perform split-apply-combine
operations with base R, such as the split and apply family of functions, plyr makes
things much easier and intuitive with its consistent naming convention, various
types of input-output processing, and built-in error recovery and informative
messages. In general, plyr provides a replacement for the for loop. We do not
need to replace the for loop just because it is slow, but we need to replace it to
avoid extra, unimportant bookkeeping code. The following examples will clarify
the need to replace a for loop with its plyr counterpart.

The mean calculation of each variable within each species in the iris dataset
using the for loop in base R can be coded as follows:

mean.iris.loop <- NULL
for(species in unique(iris$Species))
{
 iris_sub <- iris[iris$Species==species,]
 column_means <- colMeans(iris_sub[,-5])
 mean.iris.loop <- rbind(mean.iris.loop,column_means)
}
rownames(mean.iris.loop) <- unique(iris$Species)

mean.iris.loop
 Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

The same mean calculation, but this time using the plyr package, can be coded
as follows:

library (plyr)
ddply(iris,~Species,function(x) colMeans(x[,-
which(colnames(x)=="Species")]))

mean.iris.loop

Chapter 3

[45]

 Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Note that we can easily perform the same calculation with very little code using
the plyr package compared to the for loop in base R.

Intuitive function names
To perform any kind of data processing, we need to know the type of input we
have to provide and the expected format of output. In most R functions, it is difficult
to understand from function names what type of input they accept and what the
expected outputs are. Function names in plyr packages are much more intuitive and
instructive about their input and output type. Each function is named according to
the type of input it accepts and the type of output it produces. The first letter of the
function name specifies the input and the second letter specifies the output type;
a represents array, d represents data frame, l represents list, and _ (underscore)
represents the output discarded. For example, the function name adply() takes
input as array and produces output as a data frame. The following table gives
us a complete idea about function-naming conventions used in the plyr package:

Input Output
Array Data frame List Discarded

Array aaply adply alply a_ply

Data frame daply ddply dlply d_ply

List laply ldply llply l_ply

We can see that there are three types of input and four types of output. Users
can easily get an idea of the types of input and output from the function names.
Another interesting feature is that we do not need to learn all the 12 functions;
rather, it is sufficient to learn the three types of input and four types of output.

Other than the function names in the table, there are some special cases of operating
on arrays that correspond to the mapply() function in base R. In base R, mapply()
can take multiple inputs as separate arguments, whereas a*ply() takes only a single
array argument. However, the separate argument in mapply() should be of the same
length. The mapply() functions that are equivalent to plyr are maply(), mdply(),
mlply(), and m_ply().

Data Manipulation Using plyr

[46]

Note that whenever a function name is written using a star symbol, such as a*ply(),
it indicates that the common input is an array. The output can be in any format:
array, data frame, or list. Optionally, the output can be discarded.

To explain the intuitive nature of the input and output, we will now provide an
example using the iris data that we used in an earlier example. This time, we will
use the iris3 dataset; this is the same data, but stored in a three-dimensional array
format. We will calculate the mean of each variable for each species as shown in the
following code:

class of iris3 dataset is array
class(iris3)
[1] "array"

dimension of iris3 dataset
dim(iris3)
[1] 50 4 3

The following code snippet calculates the column mean for each species with the
input as an array and the output as a data frame:

Calculate column mean for each species and output will be data
frame
iris_mean <- adply(iris3,3,colMeans)

class(iris_mean)
[1] "data.frame"

iris_mean
 X1 Sepal L. Sepal W. Petal L. Petal W.
1 Setosa 5.006 3.428 1.462 0.246
2 Versicolor 5.936 2.770 4.260 1.326
3 Virginica 6.588 2.974 5.552 2.0266

The following code snippet calculates the column mean for each species with the
input as an array and the output as an array too:

again we will calculate the mean but this time output will be an
array
iris_mean <- aaply(iris3,3,colMeans)
class(iris_mean)
[1] "matrix"

Chapter 3

[47]

iris_mean

X1 Sepal L. Sepal W. Petal L. Petal W.
 Setosa 5.006 3.428 1.462 0.246
 Versicolor 5.936 2.770 4.260 1.326
 Virginica 6.588 2.974 5.552 2.026

note that here the class is showing "matrix", since the output is a
two dimensional array which represents matrix

Now calculate mean again with output as list
iris_mean <- alply(iris3,3,colMeans)
class(iris_mean)
[1] "list"

iris_mean
$'1'
Sepal L. Sepal W. Petal L. Petal W.
 5.006 3.428 1.462 0.246

$'2'
Sepal L. Sepal W. Petal L. Petal W.
 5.936 2.770 4.260 1.326

$'3'
Sepal L. Sepal W. Petal L. Petal W.
 6.588 2.974 5.552 2.026

attr(,"split_type")
[1] "array"
attr(,"split_labels")
 X1
1 Setosa
2 Versicolor
3 Virginica

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Data Manipulation Using plyr

[48]

Input and arguments
The functions in the plyr package accept various input objects: data frames,
arrays, and lists. Each input object has its own rule to split the process. In this
section, we will discuss input and arguments. The rules of splitting can be
described shortly as follows:

•	 Arrays are sliced by dimension into lower dimensional pieces, and the
corresponding common function is a*ply(), where the array is the common
input and the output can be one among an array, data frame, or list.

•	 Data frames are sliced and subset by a combination of variables from
that dataset. The corresponding common function is d*ply(), where
the data frame is the common input and the output can be one among
an array, data frame, or list.

•	 The elements of a list are processed separately, and the common function
is l*ply(), where the common input is a list and the output can be an array,
data frame, or list.

Depending on the input type, there are two or three main arguments for the common
functions: a*ply(), d*ply(), and l*ply(). The following are the main arguments
for these common functions:

•	 a*ply(.data, .margins, .fun, ..., .progress = "none")

•	 d*ply(.data, .variables, .fun, ..., .progress = "none")

•	 l*ply(.data, .fun, ..., .progress = "none")

The first argument, .data, is the input dataset that needs to be processed by splitting
up, and the output will be combined from each split. The .margins or .variables
argument specifies how the data should be split up into smaller pieces. The .fun
argument specifies the processing task; this can be any function that is applicable to
each split of the input. If we omit the .fun argument, the input data is just converted
to the output structure specified by the function. If we want to monitor the progress
of the processing task, the .progress argument should be specified. It will not show
the progress status by default.

In the following example, we will see what will happen if we do not specify the .fun
argument in any function of the plyr package. If we give the input as an array and
want the output as a data frame, but we haven't given a .fun argument, the adply()
function will just convert the array object into a data frame. Here is an example:

converting 3 dimensional array to a 2 dimensional data frame
iris_dat <- adply(iris3, .margins=3)
class(iris_dat)

Chapter 3

[49]

[1] "data.frame"
str(iris_dat)
'data.frame': 150 obs. of 5 variables:
$ X1 : Factor w/ 3 levels "Setosa","Versicolor",..: 1 1 1 1 1 1 1
1 1 1 ...
$ Sepal L.: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal W.: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal L.: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal W.: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

The .margins argument works in a similar manner to the apply function in base R.
It does the following:

•	 Slices up a row by specifying .margins = 1
•	 Slices up a column by .margins = 2
•	 Slices up the individual cells by .margins = c(1,2)

The .margins argument works correspondingly for higher dimensions, with a
combinatorial explosion in the number of possible ways to slice up the array.

Comparing default R and plyr
In this section, we will compare code side by side to solve the same problem
using both default R and plyr. Reusing the iris3 data, we are now interested
in producing five number summary statistics for each variable group by species.
The five numbers will be minimum, mean, median, maximum, and standard
deviation. The output will be a list of data frames.

To calculate the summaries for the five numbers, follow these steps:

1.	 Define a function that will calculate five number summary statistics
for a given vector.

2.	 Produce the output of this function in a data frame object.
3.	 Apply this function in the iris3 dataset using a for loop.
4.	 Apply the same function using the apply() function of the plyr package.

Data Manipulation Using plyr

[50]

An example that explains the calculation of the five number summary statistics
is as follows:

Function to calculate five number summary
fivenum.summary <- function(x)
{
 results <-data.frame(min=apply(x,2,min),
 mean=apply(x,2,mean),
 median=apply(x,2,median),
 max=apply(x,2,max),
 sd=apply(x,2,sd))
 return(results)
}

The following is how we calculate the summaries for the five numbers using
a for loop with default R:

initialize the output list object
all_stats <- list()

the for loop will run for each species
for(i in 1:dim(iris3)[3])
{
 sub_data <- iris3[,,i]
 all_stat_species <- fivenum.summary(sub_data)
 all_stats[[i]] <- all_stat_species
}

class of the output object
class(all_stats)
[1] "list"

all_stats
[[1]]
 min mean median max sd
Sepal L. 4.3 5.006 5.0 5.8 0.3524897
Sepal W. 2.3 3.428 3.4 4.4 0.3790644
Petal L. 1.0 1.462 1.5 1.9 0.1736640
Petal W. 0.1 0.246 0.2 0.6 0.1053856

[[2]]
 min mean median max sd
Sepal L. 4.9 5.936 5.90 7.0 0.5161711
Sepal W. 2.0 2.770 2.80 3.4 0.3137983
Petal L. 3.0 4.260 4.35 5.1 0.4699110
Petal W. 1.0 1.326 1.30 1.8 0.1977527

Chapter 3

[51]

[[3]]
 min mean median max sd
Sepal L. 4.9 6.588 6.50 7.9 0.6358796
Sepal W. 2.2 2.974 3.00 3.8 0.3224966
Petal L. 4.5 5.552 5.55 6.9 0.5518947
Petal W. 1.4 2.026 2.00 2.5 0.2746501

Let's calculate the same statistics, but this time using the alply() function from
the plyr package:

all_stats <- alply(iris3,3,fivenum.summary)

class(all_stats)
[1] "list"

all_stats
$'1'
 min mean median max sd
Sepal L. 4.3 5.006 5.0 5.8 0.3524897
Sepal W. 2.3 3.428 3.4 4.4 0.3790644
Petal L. 1.0 1.462 1.5 1.9 0.1736640
Petal W. 0.1 0.246 0.2 0.6 0.1053856

$'2'
 min mean median max sd
Sepal L. 4.9 5.936 5.90 7.0 0.5161711
Sepal W. 2.0 2.770 2.80 3.4 0.3137983
Petal L. 3.0 4.260 4.35 5.1 0.4699110
Petal W. 1.0 1.326 1.30 1.8 0.1977527

$'3'
 min mean median max sd
Sepal L. 4.9 6.588 6.50 7.9 0.6358796
Sepal W. 2.2 2.974 3.00 3.8 0.3224966
Petal L. 4.5 5.552 5.55 6.9 0.5518947
Petal W. 1.4 2.026 2.00 2.5 0.2746501

attr(,"split_type")
[1] "array"
attr(,"split_labels")
 X1
1 Setosa
2 Versicolor
3 Virginica

Data Manipulation Using plyr

[52]

Multiargument functions
Sometimes, we have to deal with functions that take multiple arguments, and the
values of each argument can come from a data frame, a list, or an array. The plyr
package has intuitive and user friendly functions to work with multiargument
functions. In this section, we will see an example of generating random numbers
from normal distribution with various combinations of mean and standard
deviation. The values of mean and standard deviation are stored in a data frame.
Now, we will generate random numbers using default R functions, such as the for
loop, and also using the mlply() function from the plyr package. The parameter
combinations are given in the following table:

n Mean Standard deviation
25 0 1
50 2 1.5
100 3.5 2
200 2.5 5
500 0.1 2

With these parameter combinations, we will generate normal random numbers
using default R and plyr as shown in the following code:

define parameter set
parameter.dat <- data.frame(n=c(25,50,100,200,400),mean=c(0,2,3.5,2.5
,0.1),sd=c(1,1
.5,2,5,2))

displaying parameter set

parameter.dat
 n mean sd
1 25 0.0 1.0
2 50 2.0 1.5
3 100 3.5 2.0
4 200 2.5 5.0
5 400 0.1 2.0

random normal variate generate using base R
set seed to make the example reproducible
set.seed(12345)

initialize blank list object to store the generated variable

Chapter 3

[53]

dat <- list()
for(i in 1:nrow(parameter.dat))
{
 dat[[i]] <- rnorm(n=parameter.dat[i,1],
 mean=parameter.dat[i,2],sd=parameter.dat[i,3])
}

estimating mean from the newly generated data
estmean <- lapply(dat,mean)
estmean
[[1]]
[1] -0.001177287

[[2]]
[1] 2.417842

[[3]]
[1] 3.667193

[[4]]
[1] 2.999662

[[5]]
[1] 0.1765926

Performing same task as above but this time use plyr package

dat_plyr <- mlply(parameter.dat,rnorm)
estmean_plyr <- llply(dat_plyr,mean)
estmean_plyr
$'1'
[1] 0.4252469

$'2'
[1] 2.037528

$'3'
[1] 3.070231

$'4'
[1] 2.144276

$'5'
[1] 0.05399488

Data Manipulation Using plyr

[54]

Summary
In this chapter, we discussed the importance of the split-apply-combine strategy.
We understood what the split-apply-combine strategy is and why it is important
in data manipulations. The split-apply-combine strategy can be implemented
using base R, but requires a large amount of code and is not memory or time
efficient. To overcome this limitation, we discussed the plyr package, in which
group-wise data manipulation can be implemented efficiently. The functions within
plyr are intuitive and instructive in terms of input and output type. A large variety
of data processing can be done using only a few functions with common input and
various outputs. For further reading, an interested user can look up (at the paper The
Split-Apply-Combine Strategy for Data Analysis, by Wickham, which can be found at
http://www.jstatsoft.org/v40/i01/paper). In the upcoming chapter, we will
learn about reshaping a dataset, which is another important aspect of group-wise
data manipulation.

Reshaping Datasets
Reshaping data is a common and tedious task in real-life data manipulation
and analysis. A dataset might come with different levels of grouping and we
need to implement some reorientation to perform certain types of analyses.
Datasets layout could be long or wide. In long-layout, multiple rows represent a
single subject's record, whereas in wide-layout, a single row represents a single
subject's record. Statistical analysis sometimes requires wide data and sometimes
long data, and in such cases, we need to be able to fluently and fluidly reshape
the data to meet the requirements of statistical analysis. Data reshaping is just a
rearrangement of the form of the data—it does not change the content of the dataset.
In this chapter, we will show you different layouts of the same dataset and see how
they can be transferred from one layout to another. This chapter mainly highlights
the melt and cast paradigm of reshaping datasets, which is implemented in the
reshape contributed package. Later on, this same package is reimplemented
with a new name, reshape2, which is much more time and memory efficient
(the Reshaping Data with the reshape Package paper, by Wickham, which can be
found at http://www.jstatsoft.org/v21/i12/paper). In this chapter, we will
discuss the layout of a dataset and how we can change the layout using the new
paradigm of reshaping datasets with melt and cast. To run the example of this
chapter, readers need to install both the reshape and reshape2 packages.

Reshaping Datasets

[56]

The typical layout of a dataset
A single dataset can be rearranged in many different ways, but before going into
rearrangement, let's look back at how we usually perceive a dataset. Whenever we
think about any dataset, we think of a two-dimensional arrangement where a row
represents a subject's (a subject could be a person and is typically the respondent in
a survey) information for all the variables in a dataset and a column represents the
information for each characteristic for all subjects. This means rows indicate records
and columns indicate variables, characteristics, or attributes. This is the typical layout
of a dataset. In this arrangement, one or more variables might play a role as an
identifier and others are measured characteristics. For the purpose of reshaping, we
could group the variables into two groups: identifier variables and measured variables.

•	 Identifier variables: These help to identify the subject from whom we took
information on different characteristics. Typically, identifier variables are
qualitative in nature and take a limited number of unique values. In database
terms, an identifier is termed as the primary key, and this can be a single
variable or a composite of multiple variables.

•	 Measured variables: These are those characteristics whose information
we took from a subject of interest. These can be qualitative, quantitative,
or a mix of both.

Long layout
In this layout, the dataset is arranged in such a way that a single subject's
information is stored in multiple rows. We need a composite identification
variable to identify a unique row. This type of layout is usually seen in a
longitudinal dataset. The following is an example of this type of dataset:

sid exmterm math literature language
1 1 50 40 70
1 2 65 45 80
2 1 75 55 75
2 2 69 59 78

Chapter 4

[57]

Notice that in the dataset we have repeated sid, but if we consider both sid and
exmterm, each row can be identified uniquely. This layout is known as the
long layout. The following is the R code to produce this data frame:

Example of typical two dimensional data

A demo dataset "students" with typical layout. This data
contains two students' exam score of "math", "literature"
and "language" in different term exam.
students <- data.frame(sid=c(1,1,2,2),
exmterm=c(1,2,1,2),
math=c(50,65,75,69),
literature=c(40,45,55,59),
language=c(70,80,75,78))
students
 sid exmterm math literature language
1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78

Wide layout
In this layout, each row represents all the information of a single subject.
Usually, only one identification variable is enough to identify a unique subject,
but a composite identification variable can be used. The main difference between
wide and long layout is that the wide layout contains all the measured information
in different columns. The following is the wide layout of the same data that we
initially stored in long layout:

sid math.1 literature.1 language.1 math.2 literature.2 language.2
1 50 40 70 65 45 80
2 75 55 75 69 59 78

Notice that in this layout, each row contains all the information corresponding
to a single value of sid. This layout is known as the wide form. In a later section,
we will see how we can convert long to wide and vice versa using R.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Reshaping Datasets

[58]

The new layout of a dataset
In R, the layout of a dataset is known differently than the typical layout we discussed
in previous section. This new layout of a dataset consists of only the identification
variables and a value per variable. The identification variable identifies a subject
along with which measured variable the value represents, which is the long layout
in this paradigm. In this new paradigm, each row represents one observation of
one variable. Interestingly, the typical long and wide layouts are both known as
wide layout in this new paradigm. In the new paradigm, long data is also known
as molten data and the process of producing molten data is known as melting from
the wide layout. The difference between this new layout of the data and the typical
layout is that it now contains only the ID variable and a new column, value, which
represents the value of that observation. The following is an example of molten data
that comes from the typical long layout:

sid exmterm variable value
1 1 math 50
1 2 math 65
2 1 math 75
2 2 math 69
1 1 literature 40
1 2 literature 45
2 1 literature 55
2 2 literature 59
1 1 language 70
1 2 language 80
2 1 language 75
2 2 language 78

In this dataset, we see that each row contains all the information of one student,
which is known as the wide data. The following is the R code to generate this
molten data:

Example of molten data
library(reshape)
molten_students <- melt.data.frame
 (students,id.vars=c("sid","exmterm"))

Chapter 4

[59]

The melt.data.frame function converts the wide data to long (molten) form,
and the new layout will contain only the identification variables along with two
other columns named variable and value. In the new layout, each row contains the
observation of a single variable, which is also known as the long form. The variable
column represents the identification information along with what is being measured
and the value column contains the measurement itself.

Reshaping the dataset from the typical
layout
In this section, we will see how we can convert a typical long layout to a typical wide
layout and vice versa. To perform this conversion, we will use the built-in reshape()
function, which takes several arguments, but we will use the following arguments:

•	 data: This argument specifies the dataset that we want to change the
layout of.

•	 direction: This argument specifies whether the data is long or wide.
Note that here long and wide indicates the typical layout.

•	 idvar: This argument specifies the identification variable. It could be
a single variable or multiple variables.

•	 timevar: This argument specifies how many times the values of idvar
repeats for each subject.

The following example converts the long layout to a wide layout of the students'
data that was created earlier:

Reshaping dataset using reshape function

wide_students <- reshape
(students,direction="wide",idvar="sid",timevar="exmterm")

wide_students
sid math.1 literature.1 language.1 math.2 literature.2 language.2
 1 50 40 70 65 45 80
 2 75 55 75 69 59 78

Reshaping Datasets

[60]

After reshaping the data, we see that the rows contain each student's exam record.
Now we will change the layout from wide to long using the same function:

Now again reshape to long format
long_students <- reshape
(wide_students,direction="long",idvar="id")
long_students
 sid exmterm math.1 literature.1 language.1
 1 1 50 40 70
 2 1 75 55 75
 1 2 65 45 80
 2 2 69 59 78

The limitation of this default reshape function is that it can only deal with the
long and wide structures. In reality, data might contain multiple nested levels.
To deal with complex data structures, the reshape function is not useful; we
could use the reshape package instead.

Reshaping the dataset with the reshape
package
As we have seen, there are two different paradigms for defining the layout of a
dataset. To change the layout of a dataset following the steps of a new paradigm,
we need to use the reshape packages, where all the functions are implemented
following the new layout. The main idea of the reshape package is melting a dataset
and then casting it to a suitable layout. In the section The new layout of a dataset, we
have mentioned melting a dataset and what it looks like. Just to recall, in molten
data, each row represents a single observation of a single variable in the dataset.
Also, it contains only the identifier variables and a value variable to represent
what is being measured. In this section, we will discuss melting with more examples
and casting with molten datasets.

Melting data
In R, melting is a generic operation and can be applied to various data types,
including data frames, arrays, and matrices. Though melting can be applied to
different R objects, the most common use is melting a data frame. To perform
melting operations using the melt function, we need to know what the identification
variables are and what the measured variables in the original input dataset are.

Chapter 4

[61]

If we do not specify the identification variables and measured variables, by default
any factor variables are assumed as the ID variables and any numeric variables
are assumed as measured variables. To avoid this ambiguous operation, it would
be good to specify it explicitly. If we specify only one type of variable, either
identification or measured, the function assumes the remaining variable is of the
other category. For example, if we specify only the ID variables, the remaining
variables will be considered as measured variables and vice versa. The following
example will clarify these points:

original data

students
 sid exmterm math literature language
1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78

Melting by specifying both id and measured variables

melt(students,id=c("sid","exmterm"),
 measured=c("math","literature","language"))

 sid exmterm variable value
1 1 1 math 50
2 1 2 math 65
3 2 1 math 75
4 2 2 math 69
5 1 1 literature 40
6 1 2 literature 45
7 2 1 literature 55
8 2 2 literature 59
9 1 1 language 70
10 1 2 language 80
11 2 1 language 75
12 2 2 language 78

Melting by specifying only id variables

melt(students,id=c("sid","exmterm"))

Reshaping Datasets

[62]

 sid exmterm variable value
1 1 1 math 50
2 1 2 math 65
3 2 1 math 75
4 2 2 math 69
5 1 1 literature 40
6 1 2 literature 45
7 2 1 literature 55
8 2 2 literature 59
9 1 1 language 70
10 1 2 language 80
11 2 1 language 75
12 2 2 language 78

In the melting process, the melt function does not assume the ID or measured
variables; there could be any number of variables in any order, which gives flexibility
to deal with the complex dataset. One important thing to note is that whenever we
use the melt function, all the measured variables should be of the same type; that is,
the measured variables should be either numeric, factor, character, or date.

Missing values in molten data
There could be two types of missing values in practice: one is sampling zero (that is,
no response) and the other is structural missing. The sampling zeros are explicitly
coded and represented in the dataset, but the structural missing depends on the
structure of the dataset. The structural missing is implicit in the dataset represented
by the absence of a certain combination of the ID variable. If we change the structure
of a dataset from nested to crossed, the implicit missing no longer exists in the data,
rather it explicitly appears in the new structure and care should be taken to deal
with that data. The following simple example taken from the Reshaping Data with the
reshape Package paper, by Wickham, which can be found at http://www.jstatsoft.
org/v21/i12/paper, clearly explains implicit and explicit missing in two different
data structures.

Consider a dataset with two ID variables, sex (male or female) and pregnant
(yes or no). When the variables are nested, the missing value "pregnant male"
is represented by its absence in the dataset, as shown in the following table.
However, in a crossed view, we need to add the explicit missing value as
there will now be a cell that must be filled with a value.

http://www.jstatsoft.org/v21/i12/paper
http://www.jstatsoft.org/v21/i12/paper

Chapter 4

[63]

Sex Pregnant Value
Male No 10

Female No 14
Female Yes 4

The cross view of this table can be represented as follows:

Sex Pregnant Not Pregnant
Male 10

Female 4 14

To deal with the implicit missing value, it is good to use na.rm=TRUE with the
melt function to remove the structural missing. If we do not specify na.rm=TRUE
during melting, we have to specify this during data analysis.

Casting molten data
Once we have molten data, we can rearrange it in any layout using the cast
function from the reshape package. There are two main arguments required
to cast molten data:

•	 data: This is the molten data that we want to reshape.
•	 formula: This is the casting formula to determine the layout of the

output data; for example, which variable should go into columns and
which should go into rows. If we do not specify a formula, the cast
will return the classic data frame.

There are other argument options for performing certain types of operations,
if required. The basic casting formula is col_var_1+col_var_2 ~ row_var_1+
row_var_2, which describes the variables to appear in columns and rows. The
following example shows how the cast function works:

Melting students data

molten_students <- melt(students,id.vars=c("sid","exmterm"))
molten_students
 sid exmterm variable value
1 1 1 math 50
2 1 2 math 65
3 2 1 math 75
4 2 2 math 69
5 1 1 literature 40

Reshaping Datasets

[64]

6 1 2 literature 45
7 2 1 literature 55
8 2 2 literature 59
9 1 1 language 70
10 1 2 language 80
11 2 1 language 75
12 2 2 language 78

Now use the cast function to return to the original data structure by specifying
both row and column variables, as follows:

cast(molten_students,sid+exmterm~variable)
 sid exmterm math literature language
1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78

The following is the same operation, but specifying only row variables:

cast(molten_students,...~variable)
 sid exmterm math literature language
1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78

We now rearrange the data in a way that sid is now a separate column for each
student, as follows:

cast(molten_students,...~sid)
 exmterm variable 1 2
1 1 math 50 75
2 1 literature 40 55
3 1 language 70 75
4 2 math 65 69
5 2 literature 45 59
6 2 language 80 78

We again rearrange the data in a way that exmterm is now a separate column for
each term, as follows:

cast(molten_students,...~exmterm)
 sid variable 1 2
1 1 math 50 65
2 1 literature 40 45
3 1 language 70 80
4 2 math 75 69
5 2 literature 55 59
6 2 language 75 78

Chapter 4

[65]

Note that the column names of the last two examples are not valid
column names because they contain numbers. It is a limitation of R.
R cannot automatically label row or column names unambiguously,
so we have to be careful about column names during analysis.

The reshape2 package
Though the reshape package has various functions to perform various tasks that
cannot be done using built-in R functions, this package is slow. To make this more
time and memory efficient, Wickham reimplemented this package and developed
another package, reshape2. The reason behind the development of the new
reshape2 package is to keep the functionality of the original reshape package
so that users do not get confused. Some important new features of the reshape2
package are as follows:

•	 It is much better than the original reshape package in terms of memory
and time efficiency

•	 It uses several functions instead of only the cast function
•	 The multidimensional marginal total can be calculated

Summary
This chapter introduced the theoretical framework for reshaping a dataset. The
limitations of conventional approaches were pointed out and the new paradigm
of data layout was highlighted. In the new paradigm, only two functions allow users
to rearrange datasets into various layouts as required. This chapter also discussed
structural missing and sampling zero, and how to deal with those missing during
the melting process. For faster and large data rearrangement, readers were redirected
to the reshape2 package. In the next chapter, we will discuss how R can be
connected with databases and handle large-scale data.

R and Databases
We noticed earlier that a dataset can be stored in any format using different software
as well as relational databases. Usually, large-scale datasets are stored in database
software. In data mining and statistical learning, we need to process large-scale
datasets. One of the major problems in R is memory usage. R is RAM intensive, and
for that reason, the size of a dataset should be much smaller than its RAM. Also, one
of the major drawbacks of R is its inability to deal with large datasets.

This chapter introduces how to deal with large datasets that are bigger than
the computer's memory and dealing with a dataset by interacting with database
software. In the first few sections, we describe how to interact with database software
with Open Database Connectivity (ODBC) and import datasets. This chapter will
present an example of memory issues and then describe ODBC using an example of
MS Excel and MS Access, dealing with large datasets with specialized contributed R
packages. This chapter ends with an introduction to data manipulation using SQL
through the sqldf package.

The first are two examples demonstrating memory problems in R:

•	 The following example explains the memory limitation of a computer
system. R stores everything in RAM, and a typical personal computer
consists of limited RAM (depending on the computer's operating system,
that is, 32-bit or 64-bit).
Trying to create a vector of zero with length 2^32-1.
Note that the RAM of the computer on we are generating
this example is 8 GB with 64-bit Windows-7
Professional edition. Processor core i5.

x <- rep(0, 2^31-1)
Error: cannot allocate vector of size 16.0 Gb

R and Databases

[68]

In addition: Warning messages:
1: Reached total allocation of 8078Mb: see help(memory.size)
2: Reached total allocation of 8078Mb: see
help(memory.size)
3: Reached total allocation of 8078Mb: see
help(memory.size)
4: Reached total allocation of 8078Mb: see
help(memory.size)

•	 The preceding example clarifies that R cannot allocate a vector that has size
larger than the RAM. Now we will see another example that is related to the
maximally addressable range of different types of numbers. The maximum
addressable range for integers is 231-1.

Maximum addressable range of inter vector
as.integer(2^31-1)
[1] 2147483647

If we try to assign a vector of length greater than
maximum addressable length then that will produce NA

as.integer(2^31)
[1] NA
Warning message:
NAs introduced by coercion

R and different databases
Before going on to discuss large-scale data handling using R, we will discuss how R
can interact with database software through ODBC. There are two principal ways to
connect to a database: the first uses the ODBC facility available on many computers
and the second uses the DBI package of R along with a specialized package for the
particular database needed to be accessed. If there is a specialized package available
for a database, we may find that the corresponding DBI-based package gives better
performance than the ODBC approach. On the other hand, if a database does not
have a specialized package to access, using ODBC may be the only option.

Chapter 5

[69]

R and Excel
An Excel file can be imported into R using ODBC. We will now create an ODBC
connection with an MS Excel file with the connection string xlopen.

To create an ODBC connection string with an MS Excel file, we need to open the
control panel of the operating system and then open Administrative Tools and then
choose ODBC. A dialog box will now appear. Click on the Add... button and select
an appropriate ODBC driver and then locate the desired file and give a data source
name. In our case, the data source name is xlopen. The name of the Excel file can be
anything, and in our case the file name is xlsxanscombe.xlsx. The following R code
will import the corresponding Excel file into the R environment:

calling ODBC library into R
library(RODBC)

creating connection with the database using odbc package.
We created the connection following the steps outlined in the
preceding paragraph

xldb<- odbcConnect("xlopen")

In the odbcConnect() function the minimum argument required
is the ODBC connection string.

Now the connection created, using that connection we will import data

xldata<- sqlFetch(xldb, "CSVanscombe")

Note here that "CSVanscombe"is the Excel worksheet name.

We can use other packages to import an Excel file, but at the same time R
has the facility to import data using the ODBC approach. To use the ODBC
approach on an Excel file, we firstly need to create the connection string using
the system administrator.

R and Databases

[70]

R and MS Access
To import data from the MS Access database, the procedure is the same as with
Excel. First, we need to create a connection string from the system administrator
and then connect with the database from R using the RODBC package.

Let us consider the Access database containing three different tables: coveragepage,
questionnaire1, and questionnaire2. The connection string to access this
database is accessdata. The following command can be used to import all the
three tables as separate data frames in R:

calling odbc library
library(RODBC)

connecting with database
access_con<- odbcConnect("accessdata")

import separate table as separate R data frame
coverage_page<- sqlFetch(access_con, "coverpage")
ques1 <- sqlFetch(access_con, "questionnaire1")
ques2 <- sqlFetch(access_con, "questionnaire2")

Using MS Excel and MS Access, we can deal with fairly large datasets, but sometimes
it so happens that the dataset is too large and handling with Excel or Access is difficult.
Also, Excel cannot deal with relational databases. To overcome this limitation, R has
another functionality, which we will discuss in the following sections.

Relational databases in R
In this section, we will try to provide a concise overview of different packages in R
for handling massive data and illustrate some of them.

A popular approach to dealing with bigger datasets is the use of SQL, a different
programming language. It might not be difficult for someone to learn another
programming language, but as we are dealing with and talking about using R,
the community of R users try to develop specialized packages to deal with large
datasets. Those contributed packages successfully create interfaces between R and
different database software packages that use relational database management
systems (RDBMS), such as MySQL (RMySQL), PostgreSQL (RPgSQL), and Oracle
(ROracle). To get the full benefit of these specialized packages, we have to install
third-party software, and one of the most popular packages is RMySQL. This package
allows us to make connections between R and the MySQL server.

Chapter 5

[71]

MySQL, which can deal with a mid-size, multi-platform RDBMS is a popular software
in the open source community. Some of its advantages include high-performance,
being open source, and being free for non-commercial use. In order to install this
package properly, we need to download both the MySQL server and RMySQL.

There are several R packages available that allow direct interactions with large
datasets within R, such as filehash, ff, and bigmemory. The idea is to avoid
loading the whole dataset into memory.

The filehash package
The filehash package, which is used for solving large-data problems, was contributed
by Roger Peng (The Interacting with Data using the filehash Package for R paper, available
at http://cran.r-project.org/web/packages/filehash/vignettes/filehash.
pdf). The idea behind the development of this package was to avoid loading the
dataset into a computer's virtual memory. We must rather dump the large dataset into
the hard drive and then assign an environment name for the dumped objects. Once
a dataset is dumped into the hard drive, we can access the data using the assigned
environment. In this way, we can deal with larger datasets and avoid the use of the
computer's virtual memory and allow faster data manipulation. We will now discuss
the basic steps of using this package through some examples.

Firstly, create a database that can be accessed later on. To create a database, we have
to use the dbCreate function, which needs to be initialized (via dbInit) in order
to be accessed, as shown in the following code. The dbInit function returns an S4
object that inherits from the filehash class.

library(filehash)
dbCreate("exampledb")
filehash_db<- dbInit("exampledb")

The primary interface of filehash databases consists of the functions dbFetch,
dbInsert, dbExists, dbList, and dbDelete. All of these functions are generic in
nature and specific methods exist for the database that work in the backend. The
first argument that is taken by the functions within this package is an object of the
filehash class. To insert some data into the database, we can simply call dbInsert.
We retrieve those data values with dbFetch, as shown in the following code:

dbInsert(filehash_db, "xx", rnorm(50))
value<- dbFetch(filehash_db, "xx")
summary(value)

R and Databases

[72]

The dbList function lists all of the keys that are available in the database, the
dbExists function tests to see if a given key is in the database, and the dbDelete
function deletes a key-value pair from the database, as shown in the following code:

dbInsert(filehash_db, "y", 4709)
dbDelete(filehash_db, "xx")
dbList(filehash_db)
dbExists(filehash_db, "xx")

There is another very useful command, dbLoad(), that works in a similar way to the
attach() function. Using the filehash package, the objects are attached but stored
on the local hard disk. We may also assess the objects in the filehash database
using the usual standard R subset and accessor functions such as $, [[, and [, as
shown in the following code:

filehash_db$x<- runif(100)
summary(filehash_db$x)
summary(filehash_db[["x"]])
filehash_db$y<- rnorm(100, 2)
dbList(filehash_db)

After initializing a database using the default DB1 format, it opens a file connection
for reading and writing to the database file on the disk. This file connection will
remain open until the database is closed via dbDisconnect or the database object in
R is removed. There is a limit on the number of file connections that can be open at
the same time, so to protect any database from unexpected results, we need to make
sure the file connections are closed properly.

Just like save.image in base R, there are some utilities included in the filehash
package and two of them are dumpObjects and dumpImage. The dumpObjects utility
saves an object into the filehash database so that it can be accessed in the future
if required. It does not save objects into R itself, which allows faster processing.
Similarly, dumpImage saves the entire workspace to a filehash database. The
dumpList function takes a list and creates a filehash database with values from the
list. The list must have a non-empty name for every element in order for dumpList
to succeed. The dumpDF utility creates a filehash database from a data frame where
each column of the data frame is an element in the database. Essentially, dumpDF
converts the data frame to a list and then calls dumpList. The following example
shows how we can use dumpDF:

dumpDF(read.table("anscombe.txt", header=T), dbName="massivedata")
massive_environment<- db2env(db="massivedata")

Chapter 5

[73]

The first element of dumpDF() is a data object. R will read the data within dumpDF(),
so its memory does not have a copy of it. Space saved! So now our pretended large
dataset, anscombe.txt, can be accessed through the env01 environment. To access
it, we use with(). Suppose we want to perform a linear regression of y on x and
access the data using the variable names. In such cases, if you assign an object name
for the read.table command, the memory will have a copy of the data, which is
not desirable. Using the with()function, we can fit a model or compute summary
statistics as usual as follows:

fit<- with(massive_environment, lm(Y1~X1))
with(massive_environment, summary(Y1))
with(massive_environment, Y1[1] <- 99))

The ff package
As we have seen in the example in the introductory section of this chapter, R can
only address objects that fit within the memory limits of its RAM and the maximally
addressable range of 231-1 bytes. To overcome this limitation, Adler and Glaser, in
2010, developed the ff package. This package extends the R system and stores data
in the form of native binary flat files in persistent storage such as hard disks, CDs,
or DVDs rather than in the RAM. This package enables users to work on several
large datasets simultaneously. It also allows the allocation of vectors or arrays that
are larger than the RAM. The package comprises of two parts: one is the low-level
layer written in C++ and the other is the high-level layer in R. This package is
designed for convenient access to large datasets.

As users will only deal with the high-level layer, the following are the tasks we
do in this layer:

•	 Opening/creating flat files: There are two basic functions, ff and ffm, to deal
with opening and creating flat files. If we specify the length argument or the
dim argument, a new file is created, otherwise R will open an existing file.

•	 I/O operations: These operations are controlled by the [] (for reading)
and the [] <- (for writing) operators.

•	 Generic functions and methods for the ff and ffm objects: Methods
for dim and length are provided and the sample function is converted
to a generic function.

R and Databases

[74]

The primary argument for the functions ff and ffm require a filename in the file
argument to specify the flat file. Whenever length (for ff) or dim (for ffm) is
specified, as shown in the following code, a new flat file is created, otherwise
an existing file is opened:

A flat file with a length 10 is created
library(ff)
file1 <- ff(filename="file1", length=10,vmode="double")
str(file1)

list()
 - attr(*, "physical")=Class 'ff_pointer' <externalptr>
 ..- attr(*, "vmode")= chr "double"
 ..- attr(*, "maxlength")= int 10
 ..- attr(*, "pattern")= chr "/"
 ..- attr(*, "filename")= chr "D:/Book on R/Writing/outline/data_ch2/
file1"
 ..- attr(*, "pagesize")= int 65536
 ..- attr(*, "finalizer")= chr "close"
 ..- attr(*, "finonexit")= logi TRUE
 ..- attr(*, "readonly")= logi FALSE
 ..- attr(*, "caching")= chr "mmnoflush"
 - attr(*, "virtual")= list()
 ..- attr(*, "Length")= int 10
 ..- attr(*, "Symmetric")= logi FALSE
 - attr(*, "class") = chr [1:2] "ff_vector" "ff"

The entries of file1 can be modified with the []<- operator. For example, the first
10 entries of the rivers dataset that contains the length of the 141 rivers in North
America can be stored in an ff object, as shown in the following code:

calling rivers data
data(rivers)
file1[1:10] <- rivers[1:10]

Note that here file1 is an ff object whereas
file1[...] returns default R vector

str(file1)

Chapter 5

[75]

If required, we can perform sampling on the ff objects as follows:

set seed to reproduce the example
set.seed(1337)
sample(file1,5,replace=FALSE)

[1] 735 392 524 450 600

Flat file objects are referenced when forming R objects using external pointers.
In order to clear the references, the garbage collector, gc(), can be used as follows:

gc()

Calling gc() clears the reference to the file, but does not delete the file from the hard
drive. Since the data is still present, the flat file can be opened again at a later stage.

R and sqldf
The sqldf package is an R package that allows users to run SQL statements
within R. SQL is the popular programming language for manipulating data
from relational databases, and the sqldf package creates an opportunity to
work directly with SQL statements on an R data frame. With this package,
the user can do the following tasks easily:

•	 Write alternate syntax for data frame manipulation, particularly for purposes
of faster processing, since using sqldf (with SQLite as the underlying
database) is often faster compared to performing the same manipulations
in built-in R functions

•	 Read portions of large files into R without reading the entire file

The user need not perform the following tasks once they use sqldf because
these are automatically done:

•	 Database setup
•	 Writing the create table statement, which defines each table
•	 Importing and exporting to and from the database
•	 The coercing of the returned columns to the appropriate class in

common cases

R and Databases

[76]

Data manipulation using sqldf
We can perform any type of data manipulation to an R data frame either in memory
or during import. The following example shows the selection of a portion of the iris
dataset using the sqldf package:

Selecting the rows from iris dataset where sepal length > 2.5
and store that in subiris data frame

library(sqldf)
subiris<- sqldf("select * from iris where Sepal_Width> 3")
head(subiris)

 Sepal_Length Sepal_Width Petal_Length Petal_Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
5 5.4 3.9 1.7 0.4 setosa
6 4.6 3.4 1.4 0.3 setosa

nrow(subiris)
[1] 67

We can also select a smaller number of columns while filtering out some of the rows
with a specified condition. The following example selects only sepal length, petal
length, and species; however, this time, rows are filtered by values for petal length
greater than 1.4:

subiris2<-
sqldf("select Sepal_Length,Petal_Length,Species from iris where Petal_
Length> 1.4")

nrow(subiris2)
[1] 126

head(subiris2)
 Sepal_Length Petal_Length Species
1 4.6 1.5 setosa
2 5.4 1.7 setosa
3 5.0 1.5 setosa
4 4.9 1.5 setosa
5 5.4 1.5 setosa
6 4.8 1.6 setosa

Chapter 5

[77]

If the dataset is too large and cannot entirely be read into the R environment,
we can import a portion of that dataset using sqldf. The following example shows
how we can import a portion of a csv file using the sqldf functionality. We will use
the read.csv.sql() function to perform this task. This is an interface to sqldf that
works like read.csv in R, except that it also provides a sql= argument. Not all of
the other arguments of read.csv are supported.

In the following example, we will import the iris.csv file. We will import only
sepal width and petal width along with the species information where petal width
is greater than 0.4:

iriscsv<-read.csv.sql("iris.csv",sql="select
Sepal_Width,Petal_Width,Species from file where Petal_Width>0.4")

head(iriscsv)
 Sepal_Width Petal_Width Species
1 3.3 0.5 "setosa"
2 3.5 0.6 "setosa"
3 3.2 1.4 "versicolor"
4 3.2 1.5 "versicolor"
5 3.1 1.5 "versicolor"
6 2.3 1.3 "versicolor"

An important thing to note is that in the original iris.csv file, the variable
names were dot separated, but when we pass a SQL statement, we need to use
an underscore as the variable name, otherwise it will output an error as follows:

iriscsv<-read.csv.sql("iris.csv",sql="select Sepal.Width,Petal.
Width,Species from file where Petal.Width>0.4")

Error in sqliteExecStatement(con, statement, bind.data) :
 RS-DBI driver: (error in statement: no such column: Sepal.Width)

We sometimes need to draw a random sample from a dataset but the original data
file might be too large. In the following example, we will show how we can draw a
random sample size of 10 from the iris data that is stored in the iris.csv file:

iris_sample<-
read.csv.sql("iris.csv",sql="select * from file order by random(*)
limit 10")

iris_sample

R and Databases

[78]

 Sepal_Length Sepal_Width Petal_Length Petal_Width Species
1 6.5 3.0 5.2 2.0 "virginica"
2 5.0 3.5 1.3 0.3 "setosa"
3 6.0 2.2 4.0 1.0 "versicolor"
4 6.9 3.1 5.4 2.1 "virginica"
5 6.2 2.8 4.8 1.8 "virginica"
6 5.1 3.8 1.9 0.4 "setosa"
7 5.8 2.6 4.0 1.2 "versicolor"
8 5.9 3.2 4.8 1.8 "versicolor"
9 6.4 2.9 4.3 1.3 "versicolor"
10 6.4 3.1 5.5 1.8 "virginica"

We can perform group-wise processing and aggregation using sqldf, which is a
faster alternative to the aggregate function. For example, if we want to calculate
the mean of each variable in the iris data for each species, the following is the code:

Calculate group wise mean from iris data
iris_avg<-sqldf("select Species, avg(Sepal_Length),avg(Sepal_
Width),avg(Petal_Length),avg(Petal_Wid
th) from iris group by Species")

colnames(iris_avg) <- c("Species","Sepal_L","Sepal_W","Petal_L","Peta
l_W")

iris_avg
 Species Sepal_L Sepal_W Petal_L Petal_W
1 setosa 5.006 3.428 1.462 0.246
2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026

The base R counterpart for performing the same operation is as follows:

aggregate(iris[,-5],list(iris$Species),mean)

 Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width
1 setosa 5.006 3.428 1.462 0.246
2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026

Though both functions give us the same results, for larger datasets, sqldf is much
faster than base R.

Chapter 5

[79]

Summary
At the beginning of this chapter, we showed you how we can deal with an MS Excel
file as a database and how an MS Access database table can be imported into R.
One of the major problems in R is that its memory is bound by the system virtual
memory, and that is why the data should be smaller in size than the memory of
a dataset to be able to work with it. But in reality, datasets are often larger than
the virtual memory and sometimes the length of the array or vector exceeds the
maximum addressable range. To overcome these two limitations, R can be utilized
with relational databases. Contributed R packages exist to help in dealing with such
large datasets, and they have been highlighted in this chapter, particularly filehash
and ff. We also discussed sqldf for faster data manipulation.

Bibliography
The citations for this book are as follows:

•	 Exploratory Data Mining and Data Cleaning, Dasu T. and Johnson T., available at
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471268518.
html

•	 Interacting with Data using the filehash Package for R, Peng R., available
at http://cran.r-project.org/web/packages/filehash/vignettes/
filehash.pdf

•	 The Reshaping Data with the reshape Package, Wickham H., Journal of Statistical
Software, Volume 21, Issue 12, available at http://www.jstatsoft.org/v21/
i12/paper

•	 chron: Chronological objects which can handle dates and times, James D. and Hornik
K., R package Version 2.3-44, available at http://cran.r-project.org/web/
packages/chron/index.html

•	 stringr: modern, consistent string processing, Wickham H., available at http://
journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf

•	 Dates and Times Made Easy with lubridate, Grolemund G. and Wickham H.,
Journal of Statistical Software, Volume 40, Issue 3, available at http://www.
jstatsoft.org/v40/i03/paper

•	 The Split-Apply-Combine Strategy for Data Analysis, Wickham H., Journal of
Statistical Software, Volume 40, Issue 1, available at http://www.jstatsoft.
org/v40/i01/paper

•	 The State of Naming Conventions in R, Bååth R., The R Journal Vol. 4/2, December
2012, available at http://journal.r-project.org/archive/2012-2/
RJournal_2012-2_Baaaath.pdf

•	 ff: memory-efficient storage of large data on disk and fast access functions, Adler D.
et al., R package Version 2.2-12, available at http://cran.r-project.org/
web/packages/ff/index.html

http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471268518.html
http://cran.r-project.org/web/packages/filehash/vignettes/filehash.pdf
http://cran.r-project.org/web/packages/filehash/vignettes/filehash.pdf
http://www.jstatsoft.org/v21/i12/paper
http://www.jstatsoft.org/v21/i12/paper
http://cran.r-project.org/web/packages/chron/index.html
http://cran.r-project.org/web/packages/chron/index.html
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://www.jstatsoft.org/v40/i03/paper
http://www.jstatsoft.org/v40/i03/paper
http://www.jstatsoft.org/v40/i01/paper
http://www.jstatsoft.org/v40/i01/paper
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
http://cran.r-project.org/web/packages/ff/index.html
http://cran.r-project.org/web/packages/ff/index.html

Index
A
Add... button 69
adply() function 51, 67
aggregate function 78
any() function 25
array 23
as.Date() function 34
as.numeric() function 18
attach() command 21

B
base R functions

nchar() function 37
paste() function 37
substr() function 37

C
cast function 64
categorical variable 30
character

manipulating 36, 37
class() function 11
Coordinated Universal Time (UTC) 34

D
data

acquiring 27-30
manipulating, sqldf package used 76-78

data frame 19, 20
data.frame() command 19
data reshaping 55
dataset

about 55

layout 56
new layout 58
reshaping, from typical layout 59
reshaping, with reshape package 60, 62, 64

dataset layout
about 56
identifier variables 56
long layout 56
measured variables 56
wide layout 57

date
processing 33-36

dbCreate function 71
dbInit function 71
dbList function 72
dbLoad() command 72
default R

comparing 49-51
multiargument functions 52

dumpObjects utility 72

E
Excel file

about 69
ODBC connection string, creating 69

F
factor 17, 18, 30
factor variable 17, 18
ff package

about 73, 74
high-level layer, dealing with 73
parts 73

filehash package 71, 72

[84]

I
identifier variables 56

L
list 24, 25
load() function 29
lubridate package 35

M
mapply() function 45
map-reduce strategy 41
matrix 21
matrix() command 21
measured variables 56
melt.data.frame function 59
melt function 62
missing values

about 25
R 25

mlply() function 52
mode() function 11
molten data

casting 63, 64
missing values 62

MS Access
data, importing from 70

MS Excel file. See Excel file

N
names() command 14
numeric variables

about 32
factors 32, 33

O
objects() command 30
ODBC 67
Open Database Connectivity. See ODBC

P
plyr

about 41
comparing 49-51
utilities 44-48

plyr, utilities
arguments 48
function names 45
input type 48
splitting rules 48

print command 12

R
R

about 7
and Excel 69
factor variable 17
melting 60
memory problems, examples 67, 68
missing values 25
MS Access 70
objects 8
relational databases 70
sqldf package 75

R attach()function 21
read.csv() command 29
read.csv() function 30
read.csv.sql() function 77
read.dta() function 30
references 81
relational databases, R

about 70
ff package 73, 74
filehash package 71, 72

reshape2 package
about 65
features 65

reshape function 60
R objects

about 8-13
class 9-13

[85]

stringr functions
str_c() 37
str_dup() 37
str_length() 37
str_pad() 37
str_sub() 37
str_trim() 37

structural missing 62
subscripting 37-39
subsetting 38, 39

T
table() function 30

W
with()function 73

examples 8, 9
mode 9-13
mode conversion 13-16
naming conventions 9
structure 13-16

R vector 16

S
sampling zero 62
skip=2 command 28
split-apply-combine strategy

about 41, 42
loop, not using 42
loop, using 43

sqldf package
tasks, performing 75
used, for data manipulation 76-78

Thank you for buying
Data Manipulation with R

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

[88]

Web Application Development
with R Using Shiny
ISBN: 978-1-78328-447-4 Paperback: 110 pages

Harness the graphical and statistical power of R
and rapidly develop interactive user interfaces
using the superb Shiny package

1.	 Helps you to use Shiny's built in functions
to produce engaging and useful user interfaces
in hours, not days

2.	 Enables you to extend Shiny using JavaScript
and jQuery with minimal coding

3.	 Shows you how to write cutting-edge
interactive content for the Web

R Statistical Application
Development by Example
Beginner's Guide
ISBN: 978-1-84951-944-1 Paperback: 344 pages

Learn R Statistical Application Development from
scratch in a clear and pedagogical manner

1.	 A self-learning guide for the user who needs
statistical tools for understanding uncertainty
in computer science data

2.	 Essential descriptive statistics, effective data
visualization, and efficient model building

3.	 Every method explained through real
datasets enables clarity and confidence
for unforeseen scenarios

Please check www.PacktPub.com for information on our titles

[89]

Instant Heat Maps in R How-to
ISBN: 978-1-78216-564-4 Paperback: 72 pages

Learn how to design heat maps in R to enhance
your data analysis

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2.	 Create heat maps in R using different
file formats

3.	 Learn how to make choropleth maps and
contour plots

4.	 Generate your own customized heat maps
and add interactivity for displaying on the web

Instant Data Intensive Apps
with pandas How-to
ISBN: 978-1-78216-558-3 Paperback: 50 pages

Manipulate, visualize, and analyze your data
with pandas

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate results

2.	 Follow simple recipes that will teach
common tasks when performing data
analysis with pandas

3.	 Build a data product for displaying
information over the Web

4.	 Create visualizations of the data including
displaying tables and line graphs

Please check www.PacktPub.com for information on our titles

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: R Data Types and Basic Operations
	Modes and classes of R objects
	R object structure and mode conversion
	Vector
	Factor and its types
	Data frame
	Matrices
	Arrays
	list

	Missing values in R
	Summary

	Chapter 2: Basic Data Manipulation
	Acquiring data
	Factor manipulation
	Factors from numeric variables

	Date processing
	Character manipulation
	Subscripting and subsetting
	Summary

	Chapter 3: Data Manipulation Using plyr
	The split-apply-combine strategy
	Split-apply-combine without a loop
	Split-apply-combine with a loop

	Utilities of plyr
	Intuitive function names
	Input and arguments

	Comparing default R and plyr
	Multiargument functions

	Summary

	Chapter 4: Reshaping Datasets
	Typical layout of a dataset
	Long layout
	Wide layout

	The new layout of a dataset
	Reshaping the dataset from the typical layout
	Reshaping the dataset with the reshape package
	Melting data
	Missing values in molten data

	Casting molten data

	The reshape2 package
	Summary

	Chapter 5: R and Databases
	R and different databases
	R and Excel
	R and MS Access

	Relational databases in R
	The filehash package
	The ff package

	R and sqldf
	Data manipulation using sqldf
	Summary

	Bibliography
	Index

