
www.allitebooks.com

http://
http://www.allitebooks.org

What Readers Are Saying About Designed for Use

An encyclopedic narrative of the life cycle of software UX design,

stuffed with best practices, timely examples, and solid design method-

ologies. I wish I had it years ago!

Keith Lang

COO and interaction designer, Skitch

It’s hard to write about usability concepts without sounding overly

academic, but that’s exactly what Lukas has done. This book is a

must-read if you are familiar with basic usability concepts and are

ready to learn more.

Jon Bell

Interaction designer, Windows Phone

Designed for Use distills Lukas’s brilliant insight into the much

neglected area of usability, UX, and UI design. An essential, authori-

tative, and enlightening read.

Paul Neave

Interaction designer, Neave Interactive

This book is smooth and pleasing like Swiss chocolate and has the

eloquence of a cherry blossom. It’s a must-read and real gem for

everybody who is eager to learn about usability.

Michael D. Trummer

Senior engagement manager, Appway, Inc.

Make good use of this book! It will help you to improve your work.

David Naef

Creative director, Design Management, Visionaer

www.allitebooks.com

http://
http://www.allitebooks.org

Designed for Use
Usable Interfaces for Applications and the Web

Lukas Mathis

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

www.allitebooks.com

http://
http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Jill Steinberg

Indexing: Potomac Indexing, LLC

Copy edit: Kim Wimpsett

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2011 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-675-3

Printed on acid-free paper.

P1.1a printing, July 2011

Version: 2011-7-8

www.allitebooks.com

http://www.pragprog.com
http://
http://www.allitebooks.org

For Regula and Werner

www.allitebooks.com

http://
http://www.allitebooks.org

Contents
Before We Start, a Word 12

Technique Chapters . 12

Idea Chapters . 13

How the Book Is Organized 15

Just One More Thing . 16

I Research 17

1 User Research 19

2 Job Shadowing and Contextual Interviews 23

2.1 Observing Your Audience 24

2.2 Job Shadowing . 24

2.3 Contextual Interviews 25

2.4 Remote Shadowing 26

2.5 Limitations of Contextual Interviews 26

3 Personas 30

3.1 Problems with Personas 31

3.2 Creating Personas . 32

3.3 Working with Personas 33

3.4 Personas Do Not Replace User Research 34

4 Activity-Centered Design 37

5 Time to Start Working on Documentation 40

5.1 The Manual . 41

5.2 Blog Posts . 41

5.3 Screencasts . 42

5.4 Press Releases . 42

5.5 Talk About Tasks . 43

www.allitebooks.com

http://
http://www.allitebooks.org

CONTENTS 7

6 Text Usability 46

6.1 Why Words Matter . 46

6.2 People Don’t Want to Read 47

6.3 Say Less . 48

6.4 Make Text Scannable 49

6.5 No Fluff . 49

6.6 Sentences Should Have One Obvious Interpretation 50

6.7 Talk Like a Human, Not Like a Company 51

6.8 Illustrate Your Points 52

6.9 Use Words People Understand 53

6.10 Test Your Text . 54

6.11 Display Legible Text 55

7 Hierarchies in User Interface Design 58

7.1 Creating Hierarchical Structure Visually 59

8 Card Sorting 63

8.1 Designing Hierarchies 64

8.2 Preparing for a Card Sort 65

8.3 Participants . 66

8.4 Running a Card Sort 67

8.5 Running a Remote Card Sort 69

8.6 Evaluating the Results 70

8.7 Guidelines for Creating Usable Hierarchies 71

9 The Mental Model 77

9.1 What People Think 77

9.2 Three Different Models 79

9.3 Hiding Implementation Details 79

9.4 Leaky Abstractions 82

9.5 Designing for Mental Models 83

II Design 93

10 Sketching and Prototyping 95

10.1 Designing the Structure 96

10.2 Flow Diagrams . 96

10.3 Storyboards . 97

10.4 Sketching . 97

10.5 Wireframes . 99

10.6 Mock-ups . 99

10.7 Tools . 101

Report erratum

this copy is (P1.1a printing, July 2011)www.allitebooks.com

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=7
http://
http://www.allitebooks.org

CONTENTS 8

11 Paper Prototype Testing 104

11.1 Guerilla Paper Prototype Testing 105

11.2 Running Full Usability Tests with Paper Prototypes 107

12 Realism 120

12.1 Symbols . 121

12.2 Virtual Versions of Real-World Objects 123

12.3 Replicating Physical Constraints in Digital Products 126

13 Natural User Interfaces 130

13.1 Avoid Gesture Magic 131

13.2 Recognizing Gestures 132

13.3 Accidental Input . 134

13.4 Conventions . 135

14 Fitts’s Law 138

14.1 Screen Edges Have Infinite Size 139

14.2 Radial Context Menus Decrease Average Distance . 140

14.3 Small Targets Need Margins 143

14.4 Sometimes, Smaller Is Better 143

15 Animations 145

15.1 Explaining State Changes 145

15.2 Directing User Attention 146

15.3 Avoid Unimportant Animations 148

15.4 Help Users Form Suitable Mental Models 148

15.5 Learning from Cartoons 150

16 Consistency 155

16.1 Identifying Archetypes 155

16.2 Behavioral Consistency 156

17 Discoverability 159

17.1 What to Make Discoverable 159

17.2 When to Make Things Discoverable 161

17.3 How to Make Things Discoverable 162

18 Don’t Interrupt 165

18.1 Make Decisions for Your User 166

18.2 Front Load Decisions 167

18.3 Interrupt Users Only For Truly Urgent Decisions . . 168

Report erratum

this copy is (P1.1a printing, July 2011)www.allitebooks.com

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=8
http://
http://www.allitebooks.org

CONTENTS 9

19 Instead of Interrupting, Offer Undo 171

19.1 Let Users Undo Their Actions 172

19.2 Temporary Undo . 173

20 Modes 175

20.1 Nonobvious Modes 176

20.2 Unexpected Modes 180

20.3 Sticky Modes . 180

20.4 Modes Are Not Always Bad 181

20.5 Quasimodes . 181

21 Have Opinions Instead of Preferences 183

21.1 Why Preferences Are Bad 185

21.2 How to Avoid Preferences 186

21.3 If You Can’t Avoid Preferences 187

22 Hierarchies, Space, Time, and How We Think About the

World 189

22.1 Hierarchies . 190

22.2 Space . 191

22.3 Time . 193

22.4 A Better Hierarchical System 194

23 Speed 198

23.1 Responsiveness . 199

23.2 Progress Feedback 199

23.3 Perceived Speed . 201

23.4 Slowing Down . 202

24 Avoiding Features 205

24.1 Remember the User’s Goals 206

24.2 The Five Whys . 206

24.3 Instead of Adding a New Feature, Make an Existing

Feature More Usable 208

24.4 Solve Several Problems with One Change 208

24.5 Consider the Cost . 209

24.6 Make It Invisible . 209

24.7 Provide an API and a Plug-in Architecture 209

24.8 Listen to Your Users 210

24.9 But Don’t Listen to Your Users Too Much 211

24.10 Not All Users Need to Be Your Users 212

Report erratum

this copy is (P1.1a printing, July 2011)www.allitebooks.com

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=9
http://
http://www.allitebooks.org

CONTENTS 10

25 Removing Features 215

25.1 Do the Research . 216

25.2 Inform Your Users . 217

25.3 Provide Alternatives 217

25.4 It’s Your Product . 218

26 Learning from Video Games 220

26.1 What’s Fun? . 220

26.2 Why Your Product Is Not Like a Game 222

26.3 What We Can Learn from Games 225

26.4 Fun vs. Usability . 231

III Implementation 233

27 Guerilla Usability Testing 235

27.1 How Often to Test . 236

27.2 Preparing for the Test 237

27.3 How Do You Find Testers? 237

27.4 How Many Testers . 237

27.5 Running the Test . 238

27.6 The Results . 238

28 Usability Testing 240

28.1 Usability Tests Don’t Have to Be Expensive 241

28.2 How Often to Test . 242

28.3 How Many Testers . 243

28.4 Who Should Test Your Product? 244

28.5 How to Find Testers 246

28.6 Different Types of Tests 246

28.7 Preparing for the Test 247

28.8 Running the Test . 248

29 Testing in Person 250

29.1 Running the Test . 250

30 Remote Testing 257

30.1 Moderated Remote Testing 258

30.2 Unmoderated Remote Testing 266

Report erratum

this copy is (P1.1a printing, July 2011)www.allitebooks.com

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=10
http://
http://www.allitebooks.org

CONTENTS 11

31 How Not to Test: Common Mistakes 268

31.1 Don’t Use Words That Appear in the User Interface 268

31.2 Don’t Influence the Tester 269

31.3 Avoid Stressful Situations 270

32 User Error Is Design Error 272

32.1 Don’t Blame Your Users in Your Error Messages . . 273

32.2 No Error, No Blame 275

33 A/B Testing 279

33.1 When to Do A/B Testing 281

33.2 What’s Success? . 281

33.3 Preparing for the Test 282

33.4 Running the Test . 282

33.5 Interpreting the Results 283

33.6 Keep in Mind . 283

34 Collecting Usage Data 287

34.1 Measure Speed . 287

34.2 Exit Points . 288

34.3 Measure Failure . 289

34.4 User Behavior . 289

35 Dealing with User Feedback 292

35.1 Unexpected Uses . 292

35.2 Bad Feedback . 293

36 You’re Not Done 295

A Acknowledgments 296

B Bibliography 299

Index 302

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=11
http://

Before We Start, a Word
This is a book for visual designers and programmers. It’s not, however,

about visual design or about code. Instead, it’s about something much

more important: the people who will be using your product.

The best product is of no consequence whatsoever if people don’t use it.

You can create the most beautiful, sturdiest, most elegant brush in the

world, but if nobody uses it to paint a picture, your work was in vain.

This book helps you make products—applications and websites—that

people will want to use.

There are two kinds of chapters in this book: “technique chapters” and

“idea chapters.” Each technique chapter explains a specific technique

you can use during the design process to make your product more

user-friendly: storyboarding, usability tests, or paper prototyping, for

example. Technique chapters explain concrete things you can do—the

tools for your designer’s tool belt.

Idea chapters, on the other hand, talk about ideas or concepts in more

general terms: how to write usable text, how realistic your designs

should look, when to use animations, and so on. Idea chapters explain

things to think about and consider while coming up with designs.

Technique Chapters

You can identify technique chapters by the cog on the first page.

All technique chapters follow the same basic outline. Since not all tech-

niques work well in all situations, I start by quickly outlining the kinds

of situations to which the technique applies. Then, I explain what the

technique is and how to use it. I end many of the technique chapters

with a specific example of the technique as applied to a fictional appli-

cation we design as we proceed through the book.

http://

IDEA CHAPTERS 13

Since Twitter1 apps are our generation’s “Hello World” example appli-

cation, for the technique chapters we’ll design a Twitter app. To make

things interesting, we’re not designing a generic Twitter app. Our app

is aimed at people who have to update Twitter accounts for their com-

panies. We call this fictional application BizTwit.

Think of the technique chapters as recipes. It’s OK to read the book

from start to finish, but it’s also OK to delve into a specific topic. To

that end, these chapters are typically short and to the point, and they

contain references to further information both inside the book as well

as in other books or on the Internet.

Idea Chapters

While technique chapters introduce specific techniques and explain

how to apply them, idea chapters are less specific. They introduce con-

cepts and are mostly meant as sources of inspiration, rather than as

strict rules. Some of the idea chapters mention techniques or refer to

technique chapters, but they focus on more general concepts: How real-

istic should design be? How can we use animation most effectively?

What are modes? What can we learn from video games?

You can identify idea chapters by the light bulb on the first page.

The ideas in these chapters may not always apply to the projects you’re

working on, because to some degree, people are unpredictable. When

using your products, they don’t always behave as you expect them to

behave. And they don’t always act as your rules predict.

To illustrate how people’s behavior is often different than predicted,

let’s look at an example outside of user interface design. Let’s assume

you are concerned with public health and safety. Where do you start?

Given that tens of thousands of cyclists are injured in traffic accidents

every year, bicycle safety is a good place to start.

Studies show that helmets help cyclists avoid injuries. So, getting peo-

ple to wear helmets should decrease the number of injuries, thereby

increasing people’s health and safety. The predicted outcome seems

1. In case you don’t know what Twitter is (possibly because you’re reading this

book in the year 2053, when brainjacking is how people communicate), Twitter (at

http://twitter.com) is a popular Internet service that people use to publish short text

messages—tweets—and subscribe to other people’s messages.

Report erratum

this copy is (P1.1a printing, July 2011)

http://twitter.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=13
http://

IDEA CHAPTERS 14

Typing Web Addresses

This book contains a lot of web addresses. Some of them are
pretty long. Maybe you’re reading a printed version of this
book. Copying these long addresses from your book to a web
browser can be cumbersome. To make it a little bit easier, I’ve
set up http://designedforuse.net. This site contains a list of all the
long addresses in this book. Instead of typing a long address,
type http://designedforuse.net, and click the link there.

obvious: people get into bike accidents, helmets prevent injuries, peo-

ple who wear bike helmets can avoid injuries. Conclusion: force people

to wear helmets.

Over the years, a number of bike-helmet laws have been introduced.

However, these laws have not led to the predicted outcome.

In a 2009 study titled “The Health Impact of Mandatory Bicycle Helmet

Laws,”2 Piet de Jong, from the Department of Actuarial Studies at the

Macquarie University in Australia, evaluated the effects of such laws.

He discovered that people really don’t like bike helmets, so much so

that many of them simply stop using their bikes altogether if they are

forced to wear helmets while riding.

This outcome prompted de Jong to conclude that bike-helmet laws

actually have a negative effect on societal health as a whole. Yes, the

laws prevent some injuries, but for people who stop using their bikes

entirely (and often use their cars instead), the health consequences are

overwhelmingly negative.

The bottom line is, no one bothered to test the laws before enacting

them. The people who were affected by the laws did something com-

pletely unexpected by the people who designed the laws.

You will often observe the same effect when designing user interfaces.

Design changes don’t always create the result you intended and some-

times have the opposite effect of what you expected.

When you read the ideas and rules in this book, I want you to keep

this in mind. You can do your best to come up with a usable solu-

tion; you can follow all the rules and make what seem like obviously

2. You can read the study at http://ssrn.com/abstract=1368064.

Report erratum

this copy is (P1.1a printing, July 2011)

http://designedforuse.net
http://designedforuse.net
http://ssrn.com/abstract=1368064
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=14
http://

HOW THE BOOK IS ORGANIZED 15

usable choices when designing your user interface. But people will still

surprise you by finding creative ways of misunderstanding your appli-

cation’s user interface, getting lost on your website, behaving in unpre-

dictable, seemingly illogical ways, and being unable to do the very tasks

that seem most obvious to you.

Never assume you can apply a list of usability rules to a product and

end up with something usable. Use common sense when designing user

interfaces, but don’t rely on it. Know the rules, but break them if it

improves your product. The point is not to do exactly what I tell you

to do but instead to take my words as a source of inspiration—and to

always test your designs.

How the Book Is Organized

The chapters in this book are presented roughly in the order in which

they are applicable during a typical design process, which I’ve divided

into three stages: research, design, and implementation.

Research

It’s tempting to jump right in and start designing a product as

early as possible (or perhaps even to start writing code if you’re

a programmer). In some cases, that may be OK, but it’s usually

better to start by doing a bit of research. Who is your product for?

What problems do you want to solve?

Design

Think about how to solve your audience’s problems. Design solu-

tions and then test them before writing any code. Fixing mistakes

on paper is a lot easier than fixing them in code.

From a design point of view, this stage is probably the most impor-

tant in the development process and, consequently, represents the

largest part of the book.

Implementation

Create the product, but keep testing it. Were your earlier assump-

tions correct? Does your design work? How do people interact with

it now that it’s running? Is your implementation good enough?

How does your product deal with errors and real data? Does it

perform well enough?

Deciding where to put idea chapters was more of a gut call than an

exact science. I’ve put these chapters where you’re likely to find them

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=15
http://

JUST ONE MORE THING 16

useful, but most ideas are applicable most of the time. The organization

is more pertinent for technique chapters.

I introduce each technique chapter with a timeline that looks like this:

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

This timeline should help you understand when a technique is most

important or most commonly used. The example timeline indicates a

technique that is typically used at the beginning of the “implementa-

tion” part of the product development process. However, many tech-

niques are useful at different times of the design process. The timelines

are there to help put techniques into context, not as strict rules.

Now, this representation makes it look like the

typical development process is a linear affair that

goes from research to design to implementation.

But typically, design processes are iterative. Your

development process is more likely to look a bit

like this circle.

!
"#
"$%&

'

()
*
+"
)
"
,
-$-./,0"

#.1
,

However, since we often think of our development process as a number

of linear iterations on a product, the linear timeline should be easy to

understand.

Just One More Thing

Before we start, I should note that this book has its own web page.3 It

offers a book forum and an errata page. Of course, now that I type this,

the errata page is still empty, but by the time you read it, it probably

won’t be.

And with that out of the way, let’s get started!

3. You can find it at http://www.pragprog.com/titles/lmuse.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.pragprog.com/titles/lmuse
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=16
http://

Part I

Research

http://

The first part of this book is about research. You’ll learn why research is important

and find out which kinds of research work well (and what you should avoid).

You’ll learn how to observe what people actually do and how to interview peo-

ple. You’ll see how to use personas to keep track of your research and to focus

your product’s design. Later, you’ll see how to structure your product using card

sorts.

So, let’s start by figuring out why research is important.

http://

Chapter 1

User Research
When designers talk about their design process, they usually mention

that it is “human centered” or “user centered.” In a very vague sense,

this means they are constantly thinking about the people who are going

to use their product and trying to create the best possible product for

these people.

But how do we do that?

This question is more difficult to answer than it seems, but the answer

generally starts with user research.

How do we find out what goals people have, and how we can solve

these goals? The most obvious answer would be to simply ask them.

Although this can sometimes lead to useful information, we need to be

careful when evaluating such opinions.

Henry Ford is quoted as saying, “If I’d asked people what they wanted,

they would have said faster horses.” And why shouldn’t they answer in

this way? Most people are not product designers. They don’t spend a lot

of time thinking about where their issues are (such as that they con-

stantly have to care for their horses) and how a new product could solve

these issues. They just work around the issues (by building stables for

their horses and hiring people to care for them) and then promptly

become blind to them. Rather than asking for something different that

actually fixes their problems, they ask for the same thing that’s slightly

better.

As a result, people often aren’t able to tell us how we can solve their

problems. Worse, people may not even be able to tell us what their prob-

lems are. And worst of all, people are pretty bad at predicting whether

and how they would use a product if we proposed to build it for them.

http://

CHAPTER 1. USER RESEARCH 20

Focus Group

The term focus group describes a kind of user research in which
a brand, a service, a new design, a device, or a similar prod-
uct is shown to a group of people and the group’s subjective
reaction and opinion are recorded. The goal is to use this data
to predict the general public’s response to the product.

Take the Atari Lynx, for example. Back in

the early 1990s, the Japanese video game

company Nintendo owned the handheld

gaming market with its Game Boy.

Almost every kid had one, and those who didn’t were adding it to their

wish lists and eagerly waiting for their birthdays to arrive. Atari, a com-

peting video game company, wanted in on the action.

After talking to focus groups, Atari decided to go with a console that

was much more powerful than Nintendo’s little gray device. Atari put a

color screen and a faster processor into its device and called it the Lynx,

clearly trumping the comparatively puny and punily named Game Boy.

Atari also went with a huge case for the device, because people in the

focus groups said they preferred a larger model.

The device bombed. Nobody wanted a Lynx.

When I contacted Lynx co-designer RJ Mical and asked him about

this,1 he told me the following:

One of the most valuable lessons I learned from the Lynx:

never trust focus groups. We did a lot of focus group test-

ing with the Lynx, especially regarding the size and shape

of the case. We presented a number of different models and

asked, “Which one do you like? Which one feels best to you?”

We showed them big ones and little ones. We showed them

gigantic ones and little tiny ones! Over and over again they

preferred the big ones. They all told us, “Big! Make it big! I

1. You can find out more about RJ Mical at http://www.mical.org.

Report erratum

this copy is (P1.1a printing, July 2011)www.allitebooks.com

http://www.mical.org
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=20
http://
http://www.allitebooks.org

CHAPTER 1. USER RESEARCH 21

want to feel like I’m really getting my money’s worth.” OK, so

we made it big. And then when Lynx came out, suddenly they

all said, “So big?! Why is this thing so big?” It was awful. The

original Lynx was mostly air space inside! We should have

followed our instincts; instead, we did what the focus groups

told us to do, and that was a mistake.

It turned out that people didn’t really know what they wanted from a

handheld gaming device; they were not capable of correctly predicting

how they would use it. Despite what people claimed, they did not want

large, powerful devices. Instead, kids liked to put these devices into

their school bags and carry them around. The Lynx was too large for

this, and the powerful processor and the color screen ate through a

set of batteries within less than four hours; in other words, a full set

of fresh batteries typically didn’t even last a single school day. What’s

more, all the hardware power of the Lynx made it expensive enough

that a lot of parents were not comfortable handing one to their kids.

People thought they wanted a big device with a powerful processor and

a color screen, because they imagined how awesome the games on such

a device would be. In reality, they wanted a cheap, small device they

could easily carry with them and play for a long time on a single set of

batteries.

Atari scrambled to release a smaller version of the console, but by the

time it hit the market, it was too late for the device. Atari sold a mere

500,000 Lynxes. Nintendo, on the other hand, went on to sell almost

120 million Game Boys.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=21
http://

CHAPTER 1. USER RESEARCH 22

At this point, we know who our audience is going to be. But we’ve found

out that they don’t know what they want, so we can’t just ask them

what they need. Instead, we need to figure it out on our own. Our goals

are rather straightforward:

Find Problems Find Solutions

Find out what people are currently

doing.

Find a way of making what they

are already doing easier and more

efficient.

Find out what people have to do

but really dislike doing.

Find a way of making the things

they dislike obsolete, or at least

more fun.

Find out what they would like to

be doing.

Find a way of making what they

want to be doing possible.

You’ll find out how to do that in the following chapters.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=22
http://

Chapter 2

Job Shadowing and Contextual
Interviews

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What Are the Techniques?

Job shadowing and contextual interviews are two techniques used to

find out what people actually do, where they need help, and how your

product can help them. To do that, you will be accompanying people

while they do their jobs and talking to them about their jobs.

Use these techniques if your application or website is targeted at a spe-

cific audience and if you have the ability to interact with people from

your audience. For example, if you’re creating a product for photogra-

phers, read this chapter. If you’re creating a product that will be used

by employees of a company and you can talk to employees of the com-

pany, read this chapter. If, on the other hand, the audience of your

product is not well-defined or you don’t have access to your audience,

don’t feel bad about skipping this chapter.

Why Is This a Good Idea?

Your users are different from you. Getting to know them and getting to

know their problems will help you understand how to create a product

that is truly usable to them.

http://

OBSERVING YOUR AUDIENCE 24

Users

It was astronomer and author Cliff Stoll who famously asked,
“Why is it drug addicts and computer aficionados are both
called users?” It’s unfortunate that the term user is used in both
contexts, but I don’t have a good alternative to the word. So, it
is with considerable chagrin that I admit defeat and begrudg-
ingly continue to use the word in this book.

Whenever possible, I try to use a better term, though. Human
and person and customer are each often perfectly service-
able replacements for user.

Are There Any Prerequisites?

You should have an idea of who your target audience is and be able to

easily access the people who make up your target audience.

2.1 Observing Your Audience

In the previous chapter, we established that most people are not prod-

uct designers. They are hard-pressed to explain what kind of product

they need to help them achieve their goals, and they are often unable

to correctly evaluate their own feelings about a product.

As a result, we can’t just ask people what they want. Instead, we need

to figure it out on our own. Job shadowing and contextual interviews

are two techniques we can use to do just that.

2.2 Job Shadowing

Since people don’t know what they want, a good approach is to simply

observe what they do. The idea of shadowing is to visit users in our

target audience at the place where they will use our product. The goal

is to find out how our product will help them achieve their goals. This

is a bit like doing a usability test, but instead of inviting people to test

and telling them what to do, we visit them and observe what they do.

With usability testing, the goal is to find issues with the user interface.

When you are shadowing somebody, the goal is to figure out what kind

of product to create or how to change your product on a more funda-

mental level.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=24
http://

CONTEXTUAL INTERVIEWS 25

• Are there specific tasks that this person is spending a lot of time

on?

• Is the person doing the same thing repeatedly?

• Is she doing something that looks like a workaround?

• Is she doing something that seems to bore or annoy her?

• Is she forced to memorize steps or technical aspects of a task or

other things that the computer could manage for her?

• Is she using other tools in conjunction with her computer, such

as paper lists or a calculator?

As a general rule, you should not interfere with the person while she’s

working, but if you’re unsure what she’s doing, feel free to ask.

2.3 Contextual Interviews

What you see is more important than what people say. Still, by asking

the right questions, you can often get some useful information out of

people.

After shadowing somebody, spend half an hour asking that person

about the things she was doing. The kinds of things you’re looking for

are areas where improvements seem possible. Don’t ask for opinions,

and avoid questions that force the person to play product designer.

We want to ask the person about tasks he is performing, so questions

should include the following:

• Are there tasks you often do that I did not see today?

• What kind of problem are you solving most often?

• Why are you doing [something you’ve seen] in this specific way?

• What happens if you don’t have all the information you need to

complete a task?

• Who are the people you regularly interact with, and how do you

do that?

• What do you have to do if somebody you need is not at work or if

some other problem occurs?

Keep in mind, though, that people are spontaneously providing this

information; therefore, it is often incomplete and may include personal

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=25
http://

REMOTE SHADOWING 26

idiosyncrasies or even errors. Still, contextual interviewing gives us

a useful overview of the things people do and potential areas where

improvements are possible. Also, by doing interviews with several peo-

ple, we can figure out much of the missing or misreported information.

2.4 Remote Shadowing

If visiting people is out of the question, you can ask them to start their

screen-recording software, let it run for half a day or so while they work,

and then have them send you the resulting movie. At first, this sounds

like it would create immensely large movie files. Fortunately, there are

a few factors working to our advantage:

• You can record at a low frame rate. In almost all cases, a frame

rate of one or two pictures per second is plenty to tell you what

the user is doing.

• You don’t need to see all the details, so you can scale the image

down to about 30 percent of the screen’s full resolution and use a

strong compression setting.

• You probably don’t need sound at all.

• Most of the time, only small parts of the screen change while peo-

ple are working, so the resulting movies typically compress well.

But do tell people to turn off their screensavers, especially if they

are using visually complex ones.

Using these guidelines, recording a screen for four hours can compress

down to a file size below 100MB while still yielding perfectly viewable

results.

Alternatively, if that is not an option, send them a video camera, and

have them set it up behind their workplace. That way, they can simply

return the camera to you once they’ve finished recording.

Fast-forwarding through this movie can give you a pretty good idea of

the kinds of things people do. Then, you can get back to them with

specific questions.

2.5 Limitations of Contextual Interviews

Humans can do something almost no other animal can: they can imag-

ine themselves in hypothetical situations. In his book Stumbling on

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=26
http://

LIMITATIONS OF CONTEXTUAL INTERVIEWS 27

Happiness [Gil07], Harvard psychologist Dan Gilbert explains that “the

greatest achievement of the human brain is its ability to imagine objects

and episodes that do not exist in the realm of the real, and it is this

ability that allows us to think about the future.”

Although thinking about the future is indeed a great achievement, the

unfortunate fact is that we’re quite bad at it, as we saw in the Atari Lynx

story in the previous chapter. Gilbert notes that “we make a systematic

set of errors when we try to imagine what it would feel like if.”

His explanations of why this is are fascinating,1 but for the purpose of

this book, you merely need to know that these errors exist.

As a result, you can’t rely on people’s opinions. When doing contextual

interviews, try to focus on finding out what people actually do, what

tasks they need to accomplish, and what problems they encounter.

Don’t expect them to be able to tell you how the solution to their prob-

lems should look. Figuring this out is your task.

The fact that humans are bad at predicting how they will use a product

is unfortunate. Even more unfortunate is that this also applies to us

designers. We simply don’t know what will work, and we can’t be sure

how a new product will be used.2

User research can help us make better predictions, but it can’t remove

all uncertainty. Don’t get drawn into endless research. At some point,

you have to take a leap of faith, try something, and see whether people

find it useful.

The BizTwit Case

For our BizTwit example app, we spend half a day with a number of

people at ACME Corp, a company that maintains a Twitter account,

both as a means of publishing information about the company (this

includes things such as links to articles that mention its products, links

to press releases, or quotes from customers) and as a way of interacting

with customers.

1. You should really read Dan Gilbert’s book; I believe that you would enjoy

it. Or, if the obviously wrong simulation of the future that your brain gener-

ated when it thought about reading the book disagrees with my statement that

you would enjoy said book, you should at least watch Dan Gilbert’s TED talk at

http://www.ted.com/talks/dan_gilbert_asks_why_are_we_happy.html.
2. Cognitive science expert Don Norman talks about this and other problems of design

research in a great presentation that you can watch at http://vimeo.com/12022651.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.ted.com/talks/dan_gilbert_asks_why_are_we_happy.html
http://vimeo.com/12022651
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=27
http://

LIMITATIONS OF CONTEXTUAL INTERVIEWS 28

While at ACME Corp we meet with the three people who update the

Twitter account to find out when and how they use Twitter. At the end of

each half day, we take 30 minutes to ask them some specific questions.

During our visits, we notice that the CEO of the company starts his

workday by browsing articles related to ACME Corp’s industry. Some-

times he publishes links to articles he likes on the company’s Twitter

account. For the rest of the day, he occasionally checks Twitter but

rarely writes or responds to messages. He writes about two or three

messages a week. He currently uses a desktop Twitter app to do this,

but during the interview, he explains that he sometimes posts from his

cell phone when he’s not at the office.

The second person who publishes to ACME’s Twitter account is the

company’s PR representative. It’s his job to get the company mentioned

in trade magazines, and when a magazine covers the company, he

writes about it on Twitter. He publishes a message on Twitter about

once a week.

The last person to publish messages on the company’s Twitter account

is an engineer, who is tasked with writing messages during the com-

pany’s events, when the CEO and PR rep are busy talking to guests.

During such events, she’ll mostly post short messages from her cell

phone, describing new announcements made at the event. She rarely

posts to Twitter, but when she does, she may post a half dozen mes-

sages within one or two hours.

While we are interviewing each of these three people after shadowing

them for half a day, some additional ideas come up. The PR rep says:

One of the issues I have is that our CEO tends to make

typos while publishing Twitter messages from his cell phone.

It would be great if I could somehow correct his messages.

The engineer explains:

During our events, the people who normally do these things

are busy, so it’s up to me to publish updates on Twitter. But

I’m not a trained writer, and I often worry that the things I

write sound too colloquial or don’t properly represent what

I’m intending to say.

ACME Corp is just one company we visit to find out what kinds of prob-

lems our Twitter app BizTwit should solve; however, these three people

alone have provided very valuable information that helps us under-

stand what kinds of problems our product needs to solve.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=28
http://

LIMITATIONS OF CONTEXTUAL INTERVIEWS 29

Takeaway Points

• People don’t know what they want, so you have to visit them and

observe what they do.

• If you ask specific questions, you may get useful information, but

do interview several people before coming to conclusions.

Further Reading

Cennydd Bowles and James Box have a chapter on this kind of user

research in the book Undercover User Experience Design [BB10]. Robert

Hoekman covers shadowing and contextual interviews in Designing the

Obvious [Hoe06].

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=29
http://

Chapter 3

Personas

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

This chapter explains how to create and use personas. Personas are

fictional people representing specific groups of your target audience.

Personas might be useful to you if you are doing user research and if

you are part of a larger team where the results of that research need to

be communicated. If you’re working alone or in a smaller team, don’t

feel bad about skipping this chapter.

Why Is This a Good Idea?

Personas can be useful because it’s easier to talk about an imaginary

person than it is to talk about a “market segment.” Personas also help

you focus your product.

Are There Any Prerequisites?

To create personas, you first need to do user research.

What Are Personas, Again?

By now, you’ve probably done some user research. You know what

problems your product should solve, and you know what kinds of peo-

ple will benefit from using it. While designing your product, you’ll often

www.allitebooks.com

http://
http://www.allitebooks.org

PROBLEMS WITH PERSONAS 31

refer to this information. But how do you do that? Talking about target

demographics can be hard. Which part of your target audience has this

problem? What’s their skill level?

Personas give you a way of synthesizing the information you’ve found

during user research into a limited number of imaginary people.

When Alan Cooper first introduces personas as a software design tech-

nique in his book The Inmates Are Running the Asylum [Coo99], he

describes them like this:

Personas are not real people...they represent them through-

out the design process. They are hypothetical archetypes of

actual users. Although they are imaginary, they are defined

with significant rigor and precision. Actually, we don’t so

much “make up” our personas as discover them as a byprod-

uct of the investigation process.

Personas help you communicate. But they have some other advantages:

• They force you to focus your product. By creating a small num-

ber of personas, you are clearly defining the audience for your

product. This takes away the futile idea that you have to please

everybody.

• They make it easier to talk about your audience, and by thinking

deeply about your target audience, they can help you make your

design process more human-centered.

3.1 Problems with Personas

The goal of using personas is to make the design process more human-

centered. But be aware that there are a number of problems with this.

Personas can be too elastic. Since personas are essentially imaginary

people, they can’t defend themselves. As a result, they can sometimes

reinforce predetermined conclusions: if you’re using imaginary people

as your target audience, you can always come up with an imaginary

scenario that validates whatever opinions you currently hold.

Personas give the impression of being human-centered without anyone

having to interact with actual humans. They can be a fig leaf used to

cover up a design process that is not human-centered at all. Personas

can absolve designers from actually doing any of the hard work, such

as going out there and testing design decisions on real people.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=31
http://

CREATING PERSONAS 32

Creating personas can be time-consuming. Distilling all of your user

research into specific people who represent parts of your target audi-

ence takes time. You also have to come up with back stories and com-

municate these to everyone involved in the process. Sometimes, the

time required to do this may not be worth the advantages personas

offer.

Talking about imaginary people can be uncomfortable. Pretending that

“Emma” is an actual human being who wants to use your product when

she’s just a story somebody made up is not something everyone on your

design team may want to do.

Especially on small teams, personas may not provide much benefit. It’s

likely that everybody involved has a pretty good grasp of who the tar-

get audience is. There’s not much need to create imaginary characters

to help with communication, and your product may already be tightly

focused by necessity, since a small team may not be able to create a

product that pleases a large audience even if it wanted to do so.

Still, if you keep these potential issues in mind, personas can be a

valuable tool.

3.2 Creating Personas

Start with contextual interviews. Talk to people. You may start out

thinking that there are many different people in your audience and that

you need many different personas to cover them all, but as you talk to

more people, you notice that a lot of them have similar goals. Based on

this information, create simplified characters that cover the goals of a

broad group of people in your audience. The fewer personas you create,

the better. Having about three personas works well, but depending on

your product, you may need more.

Each of your personas should have clearly defined goals. Why would

this persona use your product? What does he want to achieve?

Next, you should add details relevant to the design. What’s each per-

sona’s skill level? How old is this persona? What is the gender? What

does a typical day look like for her? Is one of the personas more impor-

tant than the other so that her goals should be satisfied even if it’s to

the disadvantage of another persona? What kinds of devices does each

of your personas use? For example, if you design a website, does one of

these people access it from a cell phone?

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=32
http://

WORKING WITH PERSONAS 33

Once you’ve nailed down the relevant details, it’s time to add some irrel-

evant, personal details. There are several reasons for doing this. First,

adding personal details makes it easier to remember personas. Human

brains like personal information. Second, details make personas less

elastic. I noted earlier when talking about disadvantages that it is easy

to project one’s own ideas on a persona, because the persona can’t

defend herself. Well, the more specific details you add, the harder it

becomes to do that. And finally, it’s always possible that some of the

details added here may suddenly become relevant during the design

process. Add information about the persona’s family, her job, and her

interests and hobbies.

Finally, give her a picture and a name.

The picture should be distinctive and easily recognizable but not a

photo of a person people know. Everything from stock photography to

simple drawings tends to work well.

It can make sense to pick names that tell you who the person is (for

example, the initials of the name could be the same as the first letter of

her job, or the person’s function could be used as a last name), but you

should avoid names that have might have negative connotations (such

as “Harry Hacker”) or that might remind people of specific real people

(like “Britney Bieber”).

3.3 Working with Personas

When we talk about a product’s design, we tend to think of our audience

as generic “users.” Will users like the ability to automatically upload a

picture to a photo-sharing site? Will they be able to figure out how to

use the uploading feature?

It’s hard to figure out users’ needs in such generic terms. With per-

sonas, this becomes easier.

Which one of our personas—if any—will want to upload a picture to

a photo-sharing site? Given that persona’s skills and intentions, how

should we design the feature to satisfy her goals?

Instead of speaking in generic terms, talk about specific personas.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=33
http://

PERSONAS DO NOT REPLACE USER RESEARCH 34

3.4 Personas Do Not Replace User Research

When using personas, it may be tempting to assume that since “Emma”

knows how to use her computer and we designed the product for people

like her, we don’t have to involve actual users in our design anymore.

That would be wrong.

Personas can help you communicate with other people involved in the

design process, evaluate data from user research, and use that data

when making design decisions. But they shouldn’t replace actual users.

You still need to test your design with real people to make sure it works.

The BizTwit Case

In the previous chapter, we visited a number of people working for dif-

ferent companies. The goal was to find out what kinds of problems our

Twitter application for businesses could solve.

Now, we want to distill this information into a number of archetypal

personas, each of which represents a specific part of our audience. Fig-

ure 3.1, on the following page shows how one of these could look.

This is a pretty succinct persona—in a real project you would probably

flesh it out with additional details.

Takeaway Points

• Personas are imaginary people who represent specific groups of

users in your target audience.

• Personas are not for everybody. Maintaining them takes time, and

it’s sometimes easy to project your own ideas onto a persona.

• Personas do not replace user research; they merely help you incor-

porate the results from user research into your product.

• Personas help you evaluate the information you find during user

research, focus your product on a well-defined group of people,

and communicate within the design team.

• Use personas to help with design decisions. Instead of talking

about generic “users,” talk about concrete personas. These are

questions to ask: Who is this feature for? Will any of your per-

sonas want to use it? What kind of preexisting knowledge does

this persona bring to the table? What kind of requirements does

the persona have? Does the feature meet the persona’s goals?

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=34
http://

PERSONAS DO NOT REPLACE USER RESEARCH 35

!"#$%!&''(#

!"# !")"*(+(),-%!"&)'.%&)/0'/(1%2&,3%4#0156,%

1(/('04+(),%")1%657,0+(#%"685&7&,&0)9%:5,%

70+(,&+(7%"'70%'&$(7%,0%;0657%0)%+"#$(,&)*-

$%& <=%.("#7

'&()&* !"'(

+,-.. >=%.("#7%0;%(?4(#&()6(%@7,"#,&)*%2&,3%")%A,"#&%

BCD%3"/(%*&/()%!"#$%*001%57(#E'(/('%

$)02'(1*(%0;%60+45,(#7%")1%7+"#,430)(7-%

F)027%302%,0%&)7,"''%"44'&6",&0)79%:5,%'("/(7%

04(#",&)*%7.7,(+%&)7,"''7%,0%,3(%7.7,(+%

"1+&)7%",%,3(%60+4").-

'"/.0 G05'1%'&$(%,0%:(%":'(%,0%407,%+(77"*(7%,0%

C2&,,(#%;#0+%3&7%HI%")1%3&7%430)(-%

!(77"*(7%0;,()%60)7&7,%0;%"%'&)$%,0%")%"#,&6'(9%

2&,3%"%;(2%20#17%0;%60++(),"#.-%G05'1%'&$(%

,0%3"/(%,3(%":&'&,.%,0%63(6$%0,3(#%4(04'(J7%

+(77"*(7%:(;0#(%,3(.%45:'&73%,3(+%,0%,3(%

60+4").J7%C2&,,(#%"6605),-

1/2,%*"3() K"7%,20%$&17%230%10)J,%'&/(%",%30+(%

").+0#(-%!"##&(1%,0%3&7%2&;(%!")1.9%230%

20#$7%"7%"%+"#$(,&)*%(?(65,&/(%",%"%

7,",&0)(#.%60+4").-%L&$(7%,0%1&76577%

+"#$(,&)*%,04&67%2&,3%3(#%")1%,()17%,0%:(%

85&,(%&)/0'/(1%&)%+"#$(,&)*%",%3&7%02)%

60+4").-

K&7%4(#70)"'%7,.'(%&7%70+(23",%5)1(#7,",(1-%

M#&/(7%"%7&'/(#%!(#6(1(7%")1%575"''.%2("#7%

"%1"#$%*#".%75&,-%N7(7%"%L()0/0%C3&)$H"1%

")1%60)7&1(#7%3&7%630&6(%,0%57(%")%A)1#0&1%

430)(%&)7,("1%0;%"%O'"6$O(##.%,0%:(%"%

;"73&0)%7,",(+(),-

H'".7%785"73%")1%,())&7%&)%3&7%74"#(%,&+(-

Figure 3.1: A Sample Archetypal Persona

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=35
http://

PERSONAS DO NOT REPLACE USER RESEARCH 36

Further Reading

Alan Cooper writes about personas in The Inmates Are Running the Asy-

lum [Coo99] and in About Face [Coo95].

A good book that focuses solely on personas is John Pruitt’s book The

Persona Lifecycle [PA06].

Software for Use [CL99] by Larry Constantine and Lucy Lockwood is

also a good place to get started on this general topic. The book advo-

cates a different approach that the authors call user role models.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=36
http://

Chapter 4

Activity-Centered Design
So far in this book, we’ve assumed that human-centered design pro-

cesses are always a good idea. The fact is, they are not always the best

idea. Another approach is to make activities the center of your design

process. For many products, this makes more sense.

In human-centered design, the idea is to get a deep understanding of

the people who are going to use your product and design something

that is tailor-made for them. In activity-centered design, products are

tailor-made for activities or goals.

This isn’t really a new idea; most design is activity-centered. A door

handle is not designed for a specific audience; it’s designed to make

the activity of opening a door as easy and obvious as possible. The

steering wheel of a car, the buttons in an elevator, probably most of the

applications on your computer, and a majority of the websites you use

on a regular basis—each is designed to make a specific activity, or a

number of activities, as easy and obvious as possible.

An activity-centered design process may not be the perfect solution for

all projects. Sometimes, you want to create a product that is optimized

for a limited audience. Compare, for example, the two computer mice

shown in Figure 4.1, on the next page.

The mouse on the left is the one that ships with Macs. It is designed

with the widest possible audience in mind. The person who touches

a mouse for the first time should be able to use it just as easily as

somebody with twenty years of computer experience. To that end, in

its default configuration, it has only a single button, and that single

button can be activated by pushing down anywhere on the mouse.

http://

CHAPTER 4. ACTIVITY-CENTERED DESIGN 38

Figure 4.1: Two different computer mice

The mouse on the left is simple. It might not be people’s perfect mouse,

but almost everybody will be able to use it.

The mouse on the right is the Cyborg R.A.T.,1 a mouse designed specif-

ically for people who play action games. It sports five different buttons

and a three-position mode switch, which allows people to assign fif-

teen different commands to the buttons. It comes with interchangeable

panels and palm rests that accommodate the different ways in which

gamers hold their mice. The mouse sensitivity can be adjusted on the

fly. It has removable weights so that people can make the mouse heav-

ier or lighter. It’s also a wired mouse. It’s wired because people who play

action games dislike the slight input lag that wireless connections can

cause.

All of these features make this mouse perfect for its target audience,

but many of these same features make the mouse less desirable to

people who are not in its target audience. A wired mouse with fifteen

programmable actions and removable weights is essentially unusable

for most people.

The mouse on the right is complex. This means it’s some people’s perfect

mouse, but it also means many people will not be able to use it.

Whether you want to focus on users or on activities depends on the

specific nature of your product. Each design process creates different

outcomes; deciding early where your focus lies is important.

1. Learn more at http://cyborggaming.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://cyborggaming.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=38
http://

CHAPTER 4. ACTIVITY-CENTERED DESIGN 39

So, how do you do activity-centered design? Don Norman, one of its

biggest proponents, says it’s mainly a difference in attitude. Framing

the problem in terms of activities, rather than individual users, allows

you to think about it differently. Larry Constantine and Lucy Lockwood,

authors of Software for Use [CL99], explain that “in the final analysis,

understanding your users as people is far less important than under-

standing them as participants in activities.”

Instead of designing for specific users or for personas, think of their

activities and then design your product for those activities. Rather than

adapting your product to individual people, design it in such a way that

they can adapt to it.

Takeaway Points

• Depending on your product, it may make sense to make activities

the focal point of your design process.

• Do user research to find out what activities you need to support,

but don’t design the activities themselves for specific people.

• Be critical when evaluating user feedback. Sometimes, making

your product better for a specific audience makes it worse for

everybody else.

• Keep in mind that people have the capacity to adapt to your prod-

uct; you don’t always need to adapt your product to them.

Further Reading

Don Norman writes about activity-centered design in his controversially

titled essay “Human-Centered Design Considered Harmful.”2

In Software for Use [CL99], Larry Constantine and Lucy Lockwood advo-

cate “usage-centered design,” rather than “user-centered design.”

Robert Hoekman writes about activity-centered design in Designing the

Obvious [Hoe06].

Of course, there are other kinds of design processes than the ones men-

tioned in this chapter. For example, Alan Cooper explains a design pro-

cess called Goal-Directed Design in About Face [Coo95].

2. At http://www.jnd.org/dn.mss/human-centered.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.jnd.org/dn.mss/human-centered.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=39
http://

Chapter 5

Time to Start Working on
Documentation

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

In this chapter, I’ll talk about manuals, blog posts, screencasts, press

releases, and similar things. Broadly put, this is about stuff that will

get people interested in your product and will help people learn how to

use your product. Starting to work on this at the very beginning of your

development process is sometimes called working backward.

Why Is This a Good Idea?

Creating documentation as early as possible will help you evaluate your

designs. If you can’t easily explain something, there’s a good chance

that it is not designed well.

Starting work on the manual during the design process also means

you’re less likely to regress into jargon and more likely to explain things

from a user’s point of view. The longer you work on something, the

harder it gets to explain it to people who don’t share your knowledge.

Are There Any Prerequisites?

Yes. You should have a general idea of who your audience is and what

kinds of problems your product will solve.

www.allitebooks.com

http://
http://www.allitebooks.org

THE MANUAL 41

5.1 The Manual

Many products come with some type of manual that explains how to

use the product. Most manuals are pretty awful, which is bad, because

people tend to open the manual when they can’t figure out how to use

a product. In other words, they’re already annoyed and unhappy, and

then they get to slog through a distressingly crappy manual.

Manuals don’t have to be crappy. But creating a great manual means

giving it high priority. And that means starting to think about—and

work on—the manual early on.

During the design process, your brain is still free of implementation

details. This helps you see the manual from the point of view of the

user, who also doesn’t have a clue about all the technical minutiae that

makes your product tick.

Starting to work on the manual early has another benefit: it forces you

to explain how your product works. Few things make you think about

the details of your design quite as much as having to describe how to

use it; if something is hard to explain, it’s probably hard to use and in

need of rethinking.

So, how do you go about writing a manual?

Look at the manual as part of your product. A great manual is a useful

feature; maintain it the same way you maintain other features. (If you’re

writing code as well as the manual, check the manual into your version-

control system.) Design the manual the same way you design any other

feature of your product. Ask yourself these questions: How will people

use the manual? How should the manual be structured? What should

be included?

Your product’s manual shouldn’t be an afterthought. It’s an important

feature of your product and deserves the same attention you give to any

other important feature.

5.2 Blog Posts

Manuals are important, but they are not the only way you can talk to

people about your product. In fact, some products don’t have manuals

at all.

Blog posts are another important tool for communicating what your

product can do, and like manuals, they have two advantages: they help

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=41
http://

SCREENCASTS 42

people understand your product, and they help you find potential prob-

lems with your product.

After designing a feature, write a blog post telling your users why the

feature is awesome and how they can use it to do cool stuff. You don’t

have to publish it (yet). Just write it. Can you easily explain why people

should care about the feature? Can you easily describe how simple the

feature is?

If the answer to one of these questions is “no,” then maybe there’s some

way you can change your design to make it more compelling, more

useful, or more easily explainable.

As a side note, you should probably save all of the design documents

and mock-ups you create during the design process. They might make

an awesome “this is how I came up with this design” blog post.

5.3 Screencasts

Screencasts are a great tool for introducing new products or new fea-

tures of existing products. If you’re working on a design, think about

how you would present it in a screencast. What hook could you use

to get people interested in a feature? Is there a specific problem that

you could show how to solve in a screencast? Can you explain the new

feature in a linear narrative?

If you have a prototype, go ahead and create a screencast explaining

how it works. You don’t have to publish it; merely creating the screen-

cast will probably alert you to issues with your design. (If you can’t

come up with a problem to solve in the screencast, maybe the feature

doesn’t need to exist at all.) What’s more, this is great practice for when

your product is done and you’re creating screencasts for public con-

sumption.

5.4 Press Releases

Press releases are another thing you can write during the design pro-

cess. Can you explain your product in the space of a press release,

making it sound exciting?

If the press release doesn’t sound useful and exciting, there’s probably

something wrong with your plan.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=42
http://

TALK ABOUT TASKS 43

One company that starts product design by writing a press release is

Amazon. Werner Vogels, Amazon’s CTO, notes1 that “writing a press

release up front clarifies how the world will see the product—not just

how we think about it internally.”

Similarly, you can try writing an ad or even just a slogan for your prod-

uct. Can you describe your product in a single sentence? If not, why

not?

5.5 Talk About Tasks

Whether you’re writing the manual, writing a blog post, or recording

a screencast, it’s always a good idea to talk about tasks, rather than

features.

Documentation often simply explains how the individual features of a

product work. But unless you are creating the most basic of products—

say, an alarm clock—explaining individual features is not particularly

helpful. People don’t want to learn how to use features; they want to

learn how to do things. People have goals, and they use your product

because they think it can help them reach these goals.

For example, rather than describing in your blog post how layers work

in a photo editor, explain how to frame a photograph and add cool

effects to it—and include layers in that process. Rather than showing

in your manual how tabs work in a word processor, explain how to

design a beautiful letter—and explain tabs as part of this.

In their book Getting Real [FHL09], the guys at 37signals recommend

that “if you do find yourself requiring words to explain a new feature or

concept, write a brief story about it.” Avoid technical details. Instead,

just talk about it.

Think of yourself as a teacher, rather than a technical writer.

The BizTwit Case

To clearly define what BizTwit does, the design team has written a blog

post that could be used to introduce the product once it is finished.

1. You can read more of his thoughts on the topic at

http://www.allthingsdistributed.com/2006/11/working_backwards.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.allthingsdistributed.com/2006/11/working_backwards.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=43
http://

TALK ABOUT TASKS 44

There are a lot of Twitter apps out there. A lot. We’ve tried

to look at all of them, but we gave up after we ran out of

disk space from downloading them. Clearly, what the world

needs right now is even more Twitter apps! So, today we’re

introducing our own. Say hello to BizTwit!

Why does the world need another Twitter app?

Well, most of the Twitter apps we’ve looked at are for every-

day Twitter users. They allow you to follow other people,

respond to their tweets, and write your own tweets. The more

advanced Twitter apps also support multiple accounts and

neat features such as integration with Instapaper. But they’re

pretty much all aimed at regular people.

BizTwit is different. It’s aimed at people who have to update

a company’s Twitter account:

• Several different people can use the same account.

• Everybody can share the same drafts.

• Different people can have different rights.

In the coming days, we’re going to explain these features and

more. For now, go ahead and download your copy!

Even a short, simple blog post like this one goes a long way toward

defining what kind of product you want to build.

Takeaway Points

• Writing manuals and blog posts, as well as creating screencasts,

forces you to explain your design to other people. This helps you

find issues with your design: if something is hard to explain, it

may be hard to use.

• People read manuals when they’re already unhappy, so manuals

should fix the problem, not make people even more unhappy.

• Press releases and blog posts help you think about your product’s

goals and put the focus on the problems you want to solve. Can

you explain your product in a single sentence? If not, maybe you’re

trying to do too much or you’re not solving a specific problem.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=44
http://

TALK ABOUT TASKS 45

Further Reading

In his essay on writing manuals, Bruce Tognazzini offers some valuable

ideas on how to improve manuals.2

If you’re working on user manuals and need ideas on how to test them,

you can find some in the paper “Towards a usability test procedure

for technical documents” by Menno de Jong and Pieter van der Poort,

which is on Google Books or in the book Quality of Technical Documen-

tation [SJ94].

If you want to know more about how to write, read the next chapter,

Chapter 6, Text Usability, on the following page.

Apple recommends starting out with an “application definition state-

ment,” which is similar to the idea of working backward.3

2. You can find the essay at http://www.asktog.com/columns/017ManualWriting.html.
3. You can read more at http://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/AppDesig

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.asktog.com/columns/017ManualWriting.html
http://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/AppDesign/AppDesign.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=45
http://

Chapter 6

Text Usability
When we discuss design and usability, we tend to focus on visual ele-

ments first—text often gets overlooked. This is unfortunate, because

text is one of the main ways in which people interact with your appli-

cation or website. In fact, in tests that track the movement of people’s

eyes as they scan a screen, text is often the first thing people look for.1

In his paper2 on how to write for the Web, usability expert Jakob Nielsen

says:

When asked for feedback on a web page, users will com-

ment on the quality and relevance of the content to a much

greater extent than they will comment on navigational issues

or the page elements that we consider to be “user interface”

(as opposed to simple information). Similarly, when a page

comes up, users focus their attention on the center of the

window where they read the body text before they bother

looking over headerbars or other navigational elements.

The guys at 37signals concur. In Getting Real [FHL09], they write that

“good writing is good design.” Words need to be considered as part of

the interface design.

6.1 Why Words Matter

Have you ever tried buying a computer online, and instead of telling

you in plain language what capabilities it has, the site lists a bunch

1. This article lists lessons gleaned from eye-tracking tests:

http://www.virtualhosting.com/blog/2007/scientific-web-design-23-actionable-lessons-from-eye-tracking-studies/.
2. You can find the paper at http://www.useit.com/papers/webwriting/writing.html.

http://www.virtualhosting.com/blog/2007/scientific-web-design-23-actionable-lessons-from-eye-tracking-studies/
http://www.useit.com/papers/webwriting/writing.html
http://

PEOPLE DON’T WANT TO READ 47

of marketing buzzwords? Hurm...do I want the one with “MagSafe” or

the one with “OneKey Theater” or the one with “One-button ThinkVan-

tage” or the one with “Multi-Convergence UltraTouch Enterprise Panel

Extensibility”? OK, I made the last one up, but the other ones are real.3

Words are how people interact with your product. Design is communi-

cation; if people don’t understand you, they can’t use your product.

Since words are used everywhere in your product, on your website, in

your manuals, in the things you say when people interact with you

personally, and even in the class names and comments in your code,

it’s best to get them right early on.

But how do you know which words to use?

6.2 People Don’t Want to Read

This might sound strange coming after a section about the importance

of text, but the hard truth is this: most people avoid reading whenever

possible.

Merely by reading this book, you have proven that you are quite unlike

most of your users. In 1987 in “Paradox of the Active User,”4 John

M. Carroll and Mary Beth Rosson pointed out that “learners at every

level of experience try to avoid reading.” Not much has changed in the

last two decades. In fact, it may be getting worse: a 2007 study by the

National Endowment for the Arts5 concluded that Americans are not

just reading less than they used to, but they are also reading less well.

You have probably been on the receiving end of a “my printer has

stopped working” call:

Friend: I really need to print this document, but my printer just doesn’t

work anymore.

Me: OK, what exactly happened?

Friend: I’m trying to print, but it doesn’t work.

Me: Did you get an error message?

3. Neven Mrgan mentions another example of a site that uses

words that make sense to the company but not to its customers at

http://mrgan.tumblr.com/post/3241126895/what-does-the-user-see.
4. You can read that paper at http://dl.dropbox.com/u/16760174/Papers/Paradox.pdf.
5. Find out more here: http://www.nea.gov/news/news07/TRNR.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://mrgan.tumblr.com/post/3241126895/what-does-the-user-see
http://dl.dropbox.com/u/16760174/Papers/Paradox.pdf
http://www.nea.gov/news/news07/TRNR.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=47
http://

SAY LESS 48

Friend: Oh, yes, an error popped up.

Me: What did it say?

Friend: How should I know? I just clicked it away, of course, but that

didn’t fix the problem.

A paper from the psychology department of the North Carolina State

University titled “Failure to Recognize Fake Internet Popup Warning

Messages”6 analyzed how people deal with fake pop-up warnings. When

discussing the results, the researchers note:

Data from the post task questionnaire indicated that 12% of

those who clicked on the OK button indicated that they did

so because the text told them to, while 23% said they always

click on that button when they encounter error messages.

Just under half (42%) responded that they just wanted to

“get rid of it.”

Pop-up windows don’t even consciously register with people before they

click them away. They are just a nuisance that keeps people from doing

their work, and making them go away usually seems to fix the problem.

But this doesn’t just apply to text in pop-up messages. People skip text

whenever they think they can get away with it.

6.3 Say Less

Since people don’t read, it’s best to avoid bothering them with text

whenever possible.

For example, don’t warn people when they are about to do something

destructive. Instead, allow them to undo their change.

Similarly, if an error occurs and you have a way to make your product

recover on its own without telling the user, do it. If the user has entered

a website address that is truncated but your website receives enough

information to identify the page he’s looking for, simply forward him

to that page. If your application tries to connect to a server but the

connection times out, make the application try again before telling the

user there’s something wrong. Notify the user only if your product really

can’t fix the problem on its own.

6. Read it at http://media.haymarketmedia.com/Documents/1/SharekWogalterFakeWarning_publicationFinal_805.pdf.

Report erratum

this copy is (P1.1a printing, July 2011)

http://media.haymarketmedia.com/Documents/1/SharekWogalterFakeWarning_publicationFinal_805.pdf
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=48
http://

MAKE TEXT SCANNABLE 49

If people don’t understand some part of your user interface, don’t add

explanatory text. This just adds more clutter and makes the problem

worse.

If it’s impossible to avoid communicating, design your user interface

under the assumption that people won’t read what you write. For exam-

ple, use verbs as button labels, and make sure that each button has a

specific, mutually exclusive label. Instead of labeling two buttons “Yes”

and “No,” label them “Delete File” and “Cancel.” That way, people don’t

have to read the text in the dialog box to figure out what each button

does.

6.4 Make Text Scannable

Often you can’t avoid text. To know how to write, first you need to know

how people read.

Jakob Nielsen’s research shows that people typically don’t read text on

the Web word by word. Instead, they “scan” the page, looking for sen-

tence fragments that contain what they are looking for. To help people

do that, Nielsen suggests7 the following rules:

• Use words that make sense to your audience.

• Convey one idea in each paragraph.

• Introduce the paragraph’s idea in the first sentence so people can

quickly decide whether to read the paragraph.

• Use meaningful headings.

• Highlight keywords.

• Use bullet lists.

• Keep text short, simple, and informal.

• Start text with conclusions, and include a summary of its content.

6.5 No Fluff

People are trying to achieve a goal and are reading your text because

they think it might help them with their task. Write short, clear, obvious

7. You can find a collection of Nielsen’s essays on this topic at this address:

http://www.useit.com/papers/webwriting/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/papers/webwriting/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=49
http://

SENTENCES SHOULD HAVE ONE OBVIOUS INTERPRETATION 50

sentences. Keep individual paragraphs short. Don’t waste your readers’

time. Keep their goal in mind.

As Patricia Wright puts it in the book Quality of Technical Documenta-

tion [SJ94], “Writers often believe that they should communicate more

than readers want to know.”

When you’re writing, ask yourself, “Does this sentence help the user?”

If it doesn’t, get rid of it.

6.6 Sentences Should Have One Obvious Interpretation

Avoid sentences that can be interpreted in two different ways and sen-

tences that lure your readers into an improper understanding when

they have read only part of them.8

Readers try to make sense of sentences before they reach the period at

the end. Some sentences can mislead the reader. Consider the first few

words of this headline:9

“Burger King fries the holy grail...”

Now why would Burger King fry the holy grail? The sentence’s meaning

becomes clear when you finish reading it:

“Burger King fries the holy grail for potato farmers”

Ah, the fries are the holy grail. It’s still not entirely unambiguous, but

the meaning is reasonably obvious now.

Reading such a sentence requires more work on the part of your read-

ers, since they’re forced to backtrack if they start with a wrong inter-

pretation. To avoid confusing them, ask yourself whether a sentence is

unambiguous even if you’ve read only part of it. A simple change makes

this sentence completely clear:

“Burger King fries are the holy grail for potato farmers”

Can you spot the problem with the following sentence?

8. These are often called garden-path sentences, from the saying “to be led up the gar-

den path.” The intuitive understanding of such a sentence is misleading; reaching the

end of the sentence forces the reader to backtrack, looking for a different interpretation.

Wikipedia has more on the topic: http://en.wikipedia.org/wiki/Garden_path_sentence.
9. I found this example via the excellent Language Log blog at

http://languagelog.ldc.upenn.edu/nll/?p=1762. Language Log is definitely worth reading

if you’re interested in writing.

Report erratum

this copy is (P1.1a printing, July 2011)www.allitebooks.com

http://en.wikipedia.org/wiki/Garden_path_sentence
http://languagelog.ldc.upenn.edu/nll/?p=1762
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=50
http://
http://www.allitebooks.org

TALK LIKE A HUMAN, NOT LIKE A COMPANY 51

“Lukas told his editor that he would write a project plan to finish the

book by the end of the month.”

Will I write the plan by the end of the month, or is the plan to finish the

book by the end of the month?

If your text requires less thinking on the readers’ behalf, they are more

likely to read it and get something out of it.

Clarity is especially important for titles. Start titles with relevant words

so people still get the meaning of the title, even if they view it on a device

with a small screen that cuts off words at the end of the title.

6.7 Talk Like a Human, Not Like a Company

Companies often use style guides to enforce a consistent tone through-

out all of the company’s content. Writers are encouraged to use the

third person and a neutral tone. As a result, they are discouraged from

letting their personalities show through in their writing.

Unfortunately, such guides encourage text that is boring and bland.

People don’t want to read that, and it can be a soul-crushing experience

for the people who have to write the text.

If you focus on consistency, you’ll bring everybody down to the level of

your worst writer. It’s better to focus on engaging your readers. Address

them directly. Write sentences that would sound natural when used in

a conversation. Be informal. Talk to the reader. Avoid marketing buz-

zwords. Say “you” and “we” when it works (although avoid that overly

patronizing “we” you sometimes hear when adults talk to children).

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=51
http://

ILLUSTRATE YOUR POINTS 52

The Passive Voice

When people give writing advice, they often claim you should
“avoid the passive voice.” Although there is some truth to that
(“click Backup to create a copy” is better than “a copy is cre-
ated by clicking Backup”), the case against the passive voice is
often overstated. There is nothing wrong with writing something
like “Don’t worry about the Backup button—your documents
will be backed up automatically,” even though “your docu-
ments will be backed up automatically” uses the passive voice.
In fact, changing this to active voice would simply add useless
words to the sentence, making the end result worse: “the appli-
cation will back up your documents automatically.”

I suspect that people don’t really mean you should avoid the
passive voice. After all, passive voice merely means that the
subject of the sentence doesn’t initiate the sentence’s action
but is its recipient.

Instead, what people mean is that you should avoid writing in
a way that makes it unclear who a sentence’s active party is.
People often use the passive voice to shift responsibility away
from themselves (“Mistakes were made”). Avoiding that kind of
writing is generally good advice.

Read the text out loud. Ask

yourself whether this is some-

thing you would want to read.

Ask yourself whether the text

contains information anyone

not working in your marketing

department would find useful.

6.8 Illustrate Your Points

Maintaining images and screenshots can be a lot of work. With each

product update, you have to go through all of the pictures and fix the

ones that are out-of-date. It’s tempting to just avoid pictures altogether.

But pictures can make your text more understandable and readable.

Pictures help illustrate points. A good screenshot can replace several

paragraphs of text and may be easier to understand. Depending on your

audience, even simple explanations can benefit from an illustration.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=52
http://

USE WORDS PEOPLE UNDERSTAND 53

Although the preceding text is reasonably clear, an image makes it even

more obvious.

!"#$%%%%&'"(%%%%!)*+,(%%%%-$#.!)*+,(

!)/(

0"1(*"23($

4#"5/

!#".

4#"5/%6$7(%&'5$1

4#"5/%8"59(%&'5$1

4#"5/%:).%&'5$1

4#"5/%;)(()+%&'5$1

Images can also give your text a more inviting look. Facing a wall of

text is discouraging, but add a few images, and the text looks more

enjoyable to read. In their paper “What’s Psychology Worth? A Field

Experiment in the Consumer Credit Market,”10 Marianne Bertrand et

al. show that that merely adding a picture of a woman to a loan offer

caused a statistically significant increase in loan interest. However,

Jakob Nielsen also revealed that users ignore photos if they look like

generic stock photography or pure filler.11

6.9 Use Words People Understand

Don’t let your pet peeves guide your writing. Some people don’t like to

use the word podcast. Some people don’t like blog. Some people don’t

like to use Lite for free versions of iPhone apps. But pretty much every-

10. Read it at http://karlan.yale.edu/fieldexperiments/pdf/Bertrand%20et%20al_2006.pdf.
11. Read more about his results at http://www.useit.com/alertbox/photo-content.html.

You can find links to other research on this topic at

http://uxmyths.com/post/705397950/myth-ornamental-graphics-improves-the-users-experience.

Report erratum

this copy is (P1.1a printing, July 2011)

http://karlan.yale.edu/fieldexperiments/pdf/Bertrand%20et%20al_2006.pdf
http://www.useit.com/alertbox/photo-content.html
http://uxmyths.com/post/705397950/myth-ornamental-graphics-improves-the-users-experience
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=53
http://

TEST YOUR TEXT 54

body else uses and understands these words. People know what a pod-

cast is, what a blog is, and what to expect if an iPhone app has the word

Lite after its name. Just use the words people understand, even if you

don’t like these words. As former Guardian science editor Tim Radford

puts it,12 “No one will ever complain because you have made something

too easy to understand.”

Keep in mind that the people who read your text probably use differ-

ent words than you do. If you know your audience, write for it. Your

audience may have an age range, skill level, or domain knowledge that

is different from the average person. Taking these things into account

when writing text will make it easier for your audience to read and

understand your text.

But above all, just keep it simple. In On Writing [Kin00], Stephen King

explains that “one of the really bad things you can do to your writing

is to dress up the vocabulary, looking for long words because you’re

maybe a little bit ashamed of your short ones.” His rule of thumb: “Use

the first word that comes to your mind, if it is appropriate and colorful.

If you hesitate and cogitate, you will come up with another word—of

course you will, there’s always another word—but it probably won’t be

as good as your first one or as close to what you really mean.”

Now, King is talking about writing novels. But then, why shouldn’t your

writing be just as engaging and interesting as a Stephen King novel?

6.10 Test Your Text

Since text is part of your user interface, you can test text as part of

a regular usability test. But that’s not all you can do. Usability expert

Angela Colter encourages also testing your text using a Cloze test.13

In a Cloze test, you remove some of the words of your text and then

ask test participants to find the missing words. A sample is shown in

Figure 6.1, on the next page.

Colter suggests picking sample text from your product that is between

125 and 250 words and then removing every fifth word. Ask partici-

pants to fill in the missing words. Calculate the test score by dividing

the number of correct answers by the total number of removed words.

12. Find Tim Radford’s “manifesto for the simple scribe” at

http://www.guardian.co.uk/science/blog/2011/jan/19/manifesto-simple-scribe-commandments-journalists.
13. You can read more of her suggestions for testing content at

http://www.alistapart.com/articles/testing-content/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.guardian.co.uk/science/blog/2011/jan/19/manifesto-simple-scribe-commandments-journalists
http://www.alistapart.com/articles/testing-content/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=54
http://

DISPLAY LEGIBLE TEXT 55

!"#$#%&$#%&%'()%************%!+,))#$%&--.%(/)%)"#$#0%************%'()0%

1#23#%)$,#4%)(%************%&)%&''%(5%)"#67%************%+#%8&3#%/-%

&5)#$%************%$&9%(/)%(5%4,.:%************%5$(6%4(+9'(&4,98%

)"#60%;(%************%<(/$.#7%)(4&=7%+#2$#%,9)$(4/<,98%************%

(+9%!+,))#$%&--0%;&=%************%)(%>,?!+,)@

Figure 6.1: A sample Cloze test

If the score ends up being below 0.4, your audience likely won’t be able

to understand your text, and you should rewrite it. If it’s below 0.6,

they might have a bit of difficulty, and some changes may be required.

Scores above that indicate audience-appropriate text.

6.11 Display Legible Text

Making the content itself usable is important, but the way you present

it also matters.

Pick a large font size. Although most people hold books quite close to

their faces, computer screens tend to be further away. While sitting in

front of your computer and looking at your site or application, hold up

a book at typical reading distance, and compare the font sizes.14

14. I first saw this idea mentioned in an essay by Oliver Reichenstein, which you can read

here: http://informationarchitects.jp/100e2r/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://informationarchitects.jp/100e2r/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=55
http://

DISPLAY LEGIBLE TEXT 56

If you notice that the text on your PC looks significantly smaller than

the text in the book, make the screen text larger. Keep in mind, though,

that the same font size can appear to be larger or smaller on screens

with lower or higher resolutions.

Of course, if you’re creating content for a cell phone, the situation

reverses. People typically hold their phones reasonably close to their

eyes, so you can get away with smaller font sizes.

Pick a readable typeface. There is a great difference in legibility between

different typefaces and even between different members of the same

type family. Choosing a good typeface matters.15

Takeaway Points

• Avoid text if you can.

• If you can’t avoid text, keep it succinct, clear, and scannable.

• Keep paragraphs short, and convey one idea per paragraph.

• Be engaging and personal, rather than boring and professional.

• Use pictures to illustrate your points and make your text look

more approachable.

• Use large font sizes and readable typefaces.

15. Note that studies show that whether a typeface has serifs or not probably doesn’t

make a difference in terms of legibility. If you are interested in reading studies on this

topic, you can find out more at http://www.alexpoole.info/academic/literaturereview.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.alexpoole.info/academic/literaturereview.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=56
http://

DISPLAY LEGIBLE TEXT 57

Further Reading

Jakob Nielsen has a number of good essays on the topic of writing

for the Web.16 If you’re writing a manual, Patricia Wright’s Quality of

Technical Documentation [SJ94] contains a ton of useful information.

Joel Spolsky tackles reading in User Interface Design for Programmers

[Spo11].

Science author Carl Zimmer has written an essay about good science

writing.17 Tim Radford has compiled a set of rules for good writing

based on his experience as a journalist.18 If you’re interested in good

writing in general, I really liked Stephen King’s On Writing [Kin00].

You should also read Angela Colter’s essay on testing content.19

16. At http://www.useit.com/papers/webwriting/.
17. At http://blogs.discovermagazine.com/loom/2011/01/12/death-to-obfuscation/.
18. Read the rules at http://www.guardian.co.uk/science/blog/2011/jan/19/manifesto-simple-scribe-commandments-journalists.
19. At http://www.alistapart.com/articles/testing-content/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/papers/webwriting/
http://blogs.discovermagazine.com/loom/2011/01/12/death-to-obfuscation/
http://www.guardian.co.uk/science/blog/2011/jan/19/manifesto-simple-scribe-commandments-journalists
http://www.alistapart.com/articles/testing-content/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=57
http://

Chapter 7

Hierarchies in
User Interface Design

In thinking about how websites are organized, you’ll find that they often

make use of hierarchies. Sometimes, these hierarchies are even used as

explicit user interface elements. Here is an example of a “breadcrumbs”

navigation element as it appears on sites like Google Directory:

!"#$%&'(

!"#$%"$&&'&&(#)*)+,&&'&&(#)#%-)./01#"2&&'&&!)-130.$

This navigation element tells people where in a hierarchy the current

page is and allows them to “jump up the hierarchy.”

The headers of many news sites also show a hierarchy of sorts but often

use two or three levels of tabs instead of breadcrumbs:

!"#$%

!"#$%&'''('''!)$&'''('''*$++,-'.&)/'''('''0&1&2

3454 .6#71- 8-%927,7:; <6)$2-)) 5%$-2%- =1$2$72

These two examples show how whole websites (or products in gen-

eral) can be organized into hierarchical structures. But the individ-

ual screens themselves also use hierarchies to structure their content.

Check out this screenshot from Google’s Chrome browser:

http://

CREATING HIERARCHICAL STRUCTURE VISUALLY 59

This is a very simple user interface, but even so, it implies a hierar-

chical structure. For example, buttons inside a tab only apply to other

things inside that tab. If you hit the “back” button, anything outside of

the currently active tab won’t be affected. But if you hit the window’s

“close” button, the whole window will be closed, including both open

tabs. Buttons affect only things that are on the same or on a lower

hierarchical level.

7.1 Creating Hierarchical Structure Visually

If you look at any user interface, usually you can discern a hierar-

chy of user interface elements relatively quickly. Most Western users

understand intuitively that hierarchies go from left to right, from top to

bottom, and from outside to inside. Here are several examples showing

representations of A hierarchically above B:

!

"

!

"

! " ! "! "

For example, take an MP3 player that shows the currently playing track

of an audio book. How would you arrange the following elements: track

number, chapter number inside a track (for audiobooks, or podcasts

with chapter markers), and the playhead’s current position in the chap-

ter? Obviously, the relationship between these elements is as follows:

Track→Chapter of current track→Playhead position in current chapter

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=59
http://

CREATING HIERARCHICAL STRUCTURE VISUALLY 60

Here’s how this is arranged in the iPod app on iPhones:

The chapter number and track number are shown in “reverse” order,

with the current track’s chapter number appearing above the track

number:

This visual arrangement implies the following, wrong hierarchy:

Chapter of current track→Track→Playhead position in current chapter

This trips me up every time and makes me think that the number next

to the playhead is the chapter number, rather than the track number.

The Audible app for iPhones solves this problem by not showing the

track number at all and moving the chapter number next to the play-

head, which fixes the misleading arrangement:

Report erratum

this copy is (P1.1a printing, July 2011)www.allitebooks.com

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=60
http://
http://www.allitebooks.org

CREATING HIERARCHICAL STRUCTURE VISUALLY 61

It’s natural to assume that the elements shown on-screen are in a

hierarchical relationship arranged from top to bottom. When designing

screen layouts, keep the visual hierarchy consistent with the hierarchi-

cal relationships between the individual elements.

Let’s go back to the browser example. Reduced to its main elements,

Chrome’s user interface looks like this:

When people look at this, they intuitively assume that the hierarchy of

the elements in this window looks a bit like this:

!"#$%&

'()

'()

'()

*+,,%#-

!.)/0(1.

'()

This assumed hierarchy allows people to figure out how the user inter-

face behaves: closing a tab causes everything that is hierarchically

below it to disappear. Clicking a button in the button bar influences

the part of the user interface that is hierarchically on the same level or

below the button bar.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=61
http://

CREATING HIERARCHICAL STRUCTURE VISUALLY 62

!"#$%&

'()

'()

'()

*+,,%#-

!.)/0(1.

'()

Interacting with a user interface element shouldn’t affect things that

are placed above it in the visual hierarchy.

Hierarchies are everywhere, and they affect how people expect your

product to behave. By using hierarchies properly, you can give people

hints that allow them to figure out how to use your product.

Takeaway Points

• Think about how the elements of your product can be arranged

hierarchically.

• Use hierarchies to give your users hints about how your product

works. Individual screens convey implicit or explicit hierarchies to

the user.

Further Reading

What most people call “organizing things,” designers call information

architecture. There are a number of great books on the topic. Donna

Spencer has written one called A Practical Guide to Information Architec-

ture [Spe10]. The book Information Architecture for the World Wide Web

[MR06] by Peter Morville and Louis Rosenfeld is another good place to

get started.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=62
http://

Chapter 8

Card Sorting

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

Card sorting allows us to gather data on where people think the individ-

ual parts of our product should be shown or what parts belong together.

Consider doing card sorts if your product is complex enough that you

have to “sort things.” For example, if you’re designing a site and have

to decide how to organize the individual pages, or you’re working on an

application that offers lots of different features that have to be organized

in a way that makes sense to your users, this chapter is for you.

Why Is This a Good Idea?

Our view of our product is very different from that of our users. For

example, if we’re creating a website for a company, we have a pretty

good idea of the company’s internal organization, which may influence

how we think the website should be organized. The people visiting the

website, on the other hand, probably don’t know how the company is

organized. This difference in knowledge may mean that something that

makes perfect sense to us is incomprehensible to our users.

Card sorting helps us find out how people really see things.

Are There Any Prerequisites?

No.

http://

DESIGNING HIERARCHIES 64

8.1 Designing Hierarchies

In the previous chapter, we saw that products are often organized using

hierarchies. Here’s another example.

Open any website, and it’s likely to be arranged in a hierarchy. Let’s

say your laptop’s internal camera doesn’t work anymore, and you need

help. You open the manufacturer’s website in your browser. Where do

you go to find help? If your computer is from a big electronics manu-

facturer, you probably start by clicking “Computers” and then “Note-

books.” Here you’ll see a list of laptop lines from your manufacturer.

Clicking the proper line of notebooks should take you to a list of laptop

models, and you should be able to find yours in that list. On the page

for the specific model, you’ll probably look for “Support.” Ideally, this

will show a support page for your model, with a number of potential

laptop issues. With some luck, you’ll find your problem (and a solution

to it) in that list.

Here’s the path you took through the site’s hierarchy:

Computers → Notebooks → Notebook Line → Notebook Model → Notebook

Model Support → Answer to a specific question

But that’s not the only way you could have arrived there. You could also

have gone straight to the Support section of the website. The question

is, if you are designing this website, how do you know what path the

user will take? And how do you know where people expect to find the

individual pages of your site?

Card Sorting

A common way of finding answers to these questions is to use card

sorting—a great way to determine where people expect to find things.

Card sorting is really easy. In her book Card Sorting: Designing Usable

Categories [Spe09], Donna Spencer explains that “at its core, card sort-

ing is a pretty simple technique—write things on index cards and ask

people to sort the cards into groups.”

Of course, there are nuances, so let’s look at some of the details of how

to do this.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=64
http://

PREPARING FOR A CARD SORT 65

8.2 Preparing for a Card Sort

To prepare for a sort, you simply take a bunch of index cards and put

the things you need to sort on them. For example, if you’re structuring

a website, you represent the individual pages or areas of your website

as the individual cards to sort. If you’re structuring an application,

you use the names of features, properties, menu items, commands,

windows, tasks, goals, or visible elements as your cards.

It sometimes makes sense to pick things that are roughly on the same

level in your product: don’t mix terms that are high up in the hierarchy

with terms that are far down in the hierarchy. Instead, do multiple card

sorts to get information on different levels of the hierarchy.

It’s best to use terms that are obvious and easily understandable. If

you absolutely can’t avoid using jargon, explain the meaning before the

card sort, and allow participants to substitute their own terms.

When coming up with words to use in the card sort, you need to make

sure they can’t be grouped on the basis of superficial similarities, such

as how the words look or sound. The risk of picking words that look or

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=65
http://

PARTICIPANTS 66

sound similar is that people may group them based on that similarity,

rather than on their meaning.1

You should end up with anywhere from twenty to eighty cards. If you

have fewer than twenty, then you’re probably not thinking hard enough.

If you have more than eighty, then you might overwhelm your partici-

pants.

Also prepare some empty cards.

Since people might write on cards during a card sort, or otherwise alter

them, and since you’ll want to do more than just one card sort, making

multiple card sets by hand is often too time-consuming. Instead, it’s

easier to print cards out and cut them up.

8.3 Participants

You can do each card sort with one person at a time or with several peo-

ple at once. Both have advantages. Having more than one user in one

session can be harder to schedule, and one person typically dominates

the process anyway. On the other hand, having multiple participants

may create conversations that offer valuable insights into how people

think about these things.

If you go with multiple participants, be careful not to overdo it. More

than three or four people typically won’t be able to participate in a card

sort at the same time.

1. Jakob Nielsen talks about this problems and offers solutions for it at

http://www.useit.com/alertbox/word-matching.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/alertbox/word-matching.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=66
http://

RUNNING A CARD SORT 67

How many card sorts should you do in total? Jakob Nielsen recom-

mends fifteen card sorts with one user each.2 Since card sorts are sim-

ple, doing many of them is easily possible. Different people may expect

things to be in different places; the more card sorts you do, the clearer

the picture becomes.

8.4 Running a Card Sort

After you’ve welcomed the participant or participants, explain what they

are about to do. This introduction should go something like this:

Hi, my name is Lukas Mathis. I’m currently working on the

design for a new Twitter application. Twitter is a social net-

working tool, similar to Facebook.

Right now, I’m working on the basic organization of the app—

you know, where to put which feature, stuff like that. The

exercise we’re about to do will help me understand where

people expect to find things in our application.

In a minute, I’m going to give you a bunch of index cards

that have words written on them. These words are things

that exist in our application, like features or objects. What I

want you to do is to group these index cards into little piles.

Each pile should contain things that, to your mind, belong

together. Let me explain this a little bit more clearly. We’re

not looking for superficial similarity, like grouping words that

sound similar or start with the same letter. Instead, imagine

that you are using this application. Which things would you

expect or want to see on the same screen, for example? If

there’s a list of items on a screen, which items would you

expect to see next to each other in the list?

If there are cards you can’t group anywhere or think don’t

belong in the application, feel free to put them in their own

group. I have empty cards handy, and there’s a marker on

the table, so if the word on a card seems unclear to you, feel

free to cross it out and replace it with a better word. You

can also make copies of cards, if you feel that certain cards

should be in more than one group.

Before we start this, let’s go through all the cards.

2. Read his essay at http://www.useit.com/alertbox/20040719.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/alertbox/20040719.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=67
http://

RUNNING A CARD SORT 68

Next, go through the cards with the people doing the card sort, and

make sure they understand what each word means in the context of

your product.

Now, ask the participants to sort these cards into categories that make

sense to them, stacking cards they think belong together.

Invite them to think out loud and to ask questions. Start taking notes

at this point. If participants come up with new words, you can either

make additional cards as necessary or add the words to existing cards

as relevant.

If the participants create many small groups of cards, encourage them

to merge similar groups. If they come up with only a few large groups,

encourage them to break them up.

Alternatively, depending on the situation, you can also do a “closed”

card sort, where you define a number of groups beforehand and let

participants sort the cards into the different groups.

It’s important to let people discard those cards that they feel don’t fit

anywhere. These rejected cards may indicate product features or web-

site areas that are not important enough to include or that are extra-

neous to the problems your users usually solve with your product.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=68
http://

RUNNING A REMOTE CARD SORT 69

Next, ask the participants to identify names for each stack of cards. Add

a card with the name of the stack to the top of each stack (preferably

in a different color).

If there are enough stacks, ask participants to arrange them so that

those that belong together are located near each other. Depending on

the people participating in your card sort and the words you’ve picked

to put on the cards, you might even want to ask people to draw con-

necting lines between associated stacks. (If you intend to do that, do

the card sort on a large sheet of paper.)

Finally, collect the data. A quick and easy way to do this is to take a

picture of the whole arrangement and then secure the individual groups

of cards with rubber bands.

8.5 Running a Remote Card Sort

You don’t necessarily have to invite people to a physical place to do

card sorts. Card sorting can easily be done remotely. In fact, there are a

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=69
http://

EVALUATING THE RESULTS 70

number of good card-sorting websites like websort.net or OptimalSort3

that are specifically designed for doing remote card sorts.

Remote card sorts give you more exact data, since you can do card

sorts with a lot more people. However, you’ll miss a lot of the qualita-

tive information you get from doing card sorts in person. What words

are people confused by? What synonyms do they use? What kinds of

associations do they have to the words on the cards? Remote card sorts

won’t tell you these things.

Of course, nothing prevents you from doing both kinds of card sorts.

8.6 Evaluating the Results

If you’re working with predefined groups of cards (a closed card sort),

evaluating the results is simple. Count how often each card got sorted

into each group, and you’ll get a pretty good idea of where most people

would expect to find the thing that the card represents.

!"#$%&

!"#$%'

!"#$%(

!"#$%)

!"#$%*

!"#$%+

,
#-
.
/
%&

,
#-
.
/
%'

,
#-
.
/
%(

,
#-
.
/
%)

,
#-
.
/
%*

,
#-
.
/
%+

,
#-
.
/
%0

) (

' +

0

* & &

*)

(&)

If you’re working with user-defined groups of cards, on the other hand,

start by defining the groups. Sometimes different people use different

words to describe the same group. In those cases, it may make sense

to combine these groups. Other times, different people come up with

entirely different ways of sorting the cards, creating entirely different

groups. If this happens, it may be an indicator that you need to provide

different ways of accessing the same things. Once you’ve hashed out

which groups to use, you again count how many times each card was

sorted into each group.

3. At http://www.optimalworkshop.com/optimalsort.htm.

Report erratum

this copy is (P1.1a printing, July 2011)www.allitebooks.com

http://www.optimalworkshop.com/optimalsort.htm
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=70
http://
http://www.allitebooks.org

GUIDELINES FOR CREATING USABLE HIERARCHIES 71

Now you can develop a hierarchy based on the information you’ve col-

lected and then use this hierarchy for your visual layout and for your

information architecture. I would advise against formal, statistical eval-

uations of the data because you probably haven’t collected enough

information. Card sorting provides input for your design decisions, not

proof that a specific solution is the “correct” one.

Simply take the information you’ve collected into consideration when

working out things like the storyboard of your application, the hierar-

chy of your website’s content, or the hierarchy of individual screens.

What you gain from a card sort is insight into how people think about

the things in your product, the criteria people use to put the concepts

present in your product into different mental boxes, and people’s men-

tal model of how your product is supposed to work.

After you’ve decided on a hierarchy, it is generally a good idea to cre-

ate a simple paper prototype and run a few short rounds of usability

testing. (See Chapter 11, Paper Prototype Testing, on page 104 for more

information on how to do this.) This way, you know whether your inter-

pretation of the results is correct.

8.7 Guidelines for Creating Usable Hierarchies

The data from card sorts can help you design good hierarchies. Here

are some additional guidelines that should help you do that.

Allow Things to Exist in Several Places

Keep in mind that hierarchies don’t have to be strict: things don’t have

to be in exactly one place inside the hierarchy. You can give users sev-

eral paths that lead to the same result. This is sometimes called a poly-

hierarchical classification. There’s an example in Figure 8.1, on the next

page.

I mentioned a bit earlier that some users who experience problems with

their computers might start by searching the website for their exact

laptop model. Others may prefer to go directly to the Support section

of the website to look for their laptop model. Still others may go to the

Support section and start a search based on their specific problem. If

you find that different people tend to sort cards into different groups in

a card sort, it makes sense to create such a nonstrict hierarchy.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=71
http://

GUIDELINES FOR CREATING USABLE HIERARCHIES 72

!

"

#

$

%&

!

"

#

$

%&

Figure 8.1: Example polyhierarchical classification

Shallow or Deep?

A lot of the time, people evaluate user interfaces by counting clicks.

How many times does the user have to click to reach the goal? It makes

intuitive sense to assume that fewer clicks are better.

This focus on counting clicks might tempt you to keep hierarchies

as shallow as possible, making every possible goal reachable with the

fewest clicks. Although it may often make sense to make sure that peo-

ple can access a small number of important, often used features with

few clicks, I advise against intentionally trying to achieve shallow hier-

archies, because these force users to choose from a bigger number of

possible actions at each level of the hierarchy. By cutting down on the

depth of a hierarchy, you are increasing the potential choices at each

level of the hierarchy.

In fact, research shows that optimizing for fewer clicks doesn’t neces-

sarily yield positive results. Summarizing the research,4 uxmyths.com

writes that “the number of necessary clicks affects neither user sat-

isfaction nor success rate. That’s right; fewer clicks don’t make users

happier and aren’t necessarily perceived as faster.”

4. At http://uxmyths.com/post/654026581/myth-all-pages-should-be-accessible-in-3-clicks.

Report erratum

this copy is (P1.1a printing, July 2011)

http://uxmyths.com/post/654026581/myth-all-pages-should-be-accessible-in-3-clicks
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=72
http://

GUIDELINES FOR CREATING USABLE HIERARCHIES 73

A rule similar to the “the fewer clicks, the better” rule is that you must

constrain the number of options given to the user; do not make her

choose from more than seven options. The reason given for this idea

is that humans are incapable of processing more than seven possible

choices. Like the “fewer clicks” rule, this rule is wrong.

The “seven rule” originates from a paper published in 1956 by Prince-

ton University’s cognitive psychologist George A. Miller.5 In the paper

the author concludes that the average human can hold only about

seven different objects in working memory. Although this may be true,

it doesn’t apply to picking from a number of options, because you don’t

have to keep all the options in working memory. You merely have to

look through them and pick the first one that seems like it would bring

you closer to your goal. This behavior is called satisficing, a term coined

by psychologist Herbert Simon in 1956. Instead of comparing all avail-

able options in order to find the perfect choice, most people will simply

pick the first option that seems sufficiently satisfying.

In The Paradox of Choice [Sch05], however, Barry Schwartz notes that

some people are “maximizers”—those who try to find the best possible

solution, rather than the first suitable one. What’s more, although most

people can cope with a large number of choices, many don’t like doing

so. Schwartz writes that “a large array of options may discourage con-

sumers because it forces an increase in the effort that goes into making

a decision.”

5. Wikipedia has a great article about this paper at

http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two.

Report erratum

this copy is (P1.1a printing, July 2011)

http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=73
http://

GUIDELINES FOR CREATING USABLE HIERARCHIES 74

In other words, even though most people are perfectly capable of pick-

ing from many choices, they may not like it.

A great user interface is not one where each goal can be reached with

the smallest number of clicks possible, or where the user has to pick

from only a small number of choices at each step, but one where each

individual click is as obvious as possible. If your users have a clear goal

in mind, each level of the hierarchy should have one option that clearly

satisfies their goal—or at least gets them closer to that goal. As long as

users feel that they are getting closer to their goal with each step, they

don’t mind drilling down into a deep hierarchy.

Grouping Things

Humans may be capable of picking from dozens of choices, but that

doesn’t mean you should throw ungrouped lists of choices at them.

Being confronted by a wall of seemingly equally valid choices is dis-

couraging.

It helps users when you group or order choices in a meaningful way.

Better grouping allows users to more easily scan the available options.

The maximum number of choices that can appear on a single screen

is mainly constrained by the design of the page that shows the choices

to the user. If many different choices appear at the current level of the

hierarchy, grouping them—in a way, adding a local, visual hierarchy to

the choices—helps users find the option they are looking for among a

large number of choices.

!"#$%&'(!"#$%&'

!"#$%&(

!"#$%&)

!"#$%&')

!"#$%&'*

!"#$%&'+

!"#$%&',

!"#$%&'-

!"#$%&'.

!"#$%&'/

!"#$%&'0

!"#$%&'(1

!"#$%&'((

!"#$%&'()

!"#$%&'(*

!"#$%&'(+

!"#$%&'(,

!"#$%&'(-

!"#$%&'(

!"#$%&')

!"#$%&'*

!"#$%&'+

!"#$%&',

!"#$%&'-

!"#$%&'.

!"#$%&'/

!"#$%&'0 !"#$%&'(1

!"#$%&'((

!"#$%&'()

!"#$%&'(*

!"#$%&'(+

!"#$%&'(,

!"#$%&'(-

Using proximity isn’t the only way you can create this kind of local

structure. In his book Vision Science: Photons to Phenomenology [Pal99],

Stephen E. Palmer describes a number of different ways of grouping

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=74
http://

GUIDELINES FOR CREATING USABLE HIERARCHIES 75

elements. These eight dots are ungrouped. Individual dots don’t seem

to belong together in any way.

Even by merely shifting them a bit, we can make it look as if there

were four pairs of dots, rather than eight individual dots. This is called

proximity, as mentioned earlier.

Here’s another way of grouping the dots into pairs: changing the col-

ors of four of the dots again turns the dots into four pairs of similarly

colored dots.

We can also change the size of the dots to achieve the same effect.

Or we can change the orientation.

These three examples show groupings based on color, size, and orienta-

tion. But these aren’t the only similarities you can use to group things.

Different font styles, for example, might be another way of achieving

this.

A more obvious way of grouping elements is to put them into common

regions.

Or you can connect them directly.

There are many ways of creating structure and grouping things. Use

these methods when you need to show a large number of individual

items on a single screen.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=75
http://

GUIDELINES FOR CREATING USABLE HIERARCHIES 76

Takeaway Points

• Don’t use internal structures as blueprints for hierarchies that

users see in your product or website.

• Use card sorts to find out where people think individual things

should go.

• Don’t optimize whole hierarchies for low click counts.

• Use grouping to organize individual screens.

Further Reading

There’s really only one book you need to read to find out pretty much

everything there is to know about card sorting: Donna Spencer’s Card

Sorting: Designing Usable Categories [Spe09].

If you’re interested in the larger field of information architecture, Infor-

mation Architecture for the World Wide Web [MR06] by Peter Morville

and Louis Rosenfeld and A Practical Guide to Information Architecture

[Spe10] by Donna Spencer are both good ways to get started. Spencer

also writes a great card sorting blog6 and a blog about information

architecture.7

If you’re interested in how humans perceive things, Vision Science: Pho-

tons to Phenomenology [Pal99] is a fascinating read.

6. At http://rosenfeldmedia.com/books/cardsorting/.
7. At http://practical-ia.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://rosenfeldmedia.com/books/cardsorting/
http://practical-ia.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=76
http://

Chapter 9

The Mental Model
The people who use your products are not neutral or unbiased. They

have ideas about how your product should work before they’ve ever

used it. And yet, most products don’t work the way people expect them

to; people have to learn how to use things.

Instead of forcing people to learn how to use your product, wouldn’t

it be better if you created products that work the way people already

expect them to work? Joel Spolsky notes in User Interface Design for

Programmers [Spo11], “A user interface is well designed when the pro-

gram behaves exactly how the user thought it would.”

Of course, different people have different ideas about how things work.

But even so, you can make an effort to minimize the gap between what

people expect from a product and how the product actually works.

9.1 What People Think

The concept a user forms about how something works is called a mental

model. Mental models are usually much simpler than reality. In About

Face [Coo95], Alan Cooper refers to mental models as “a cognitive short-

hand (...), one that is powerful enough to cover [the user’s] interactions

with [the product], but which doesn’t necessarily reflect its actual inner

mechanics.”

Jakob Nielsen says, “A mental model is what the user believes about

the system at hand.”1

1. At http://www.useit.com/alertbox/mental-models.html.

http://www.useit.com/alertbox/mental-models.html
http://

WHAT PEOPLE THINK 78

Here’s an example. Somebody driving

a car might think there is a direct

mechanical connection between the

gas pedal and the engine, assuming

that pushing down on the gas pedal

opens some sort of valve that causes

more fuel to enter the engine, thus

making the car run faster.

This mental model of how cars work is not actually correct. Instead, the

gas pedal is connected to a computer. The input from the gas pedal is

just one of many data points the computer takes into account, and the

fuel system is just one of many systems the computer controls.

!"#$

!%&'()*#

+")"

!%,)#%-.$

/"#0%(.$!"#$

1"#).

+")"$2#%&$

3)4*#$!"#$

1"#).

Based on all of this data, the computer then tries to figure out what the

driver is doing. Is he trying to accelerate quickly because he has just

gotten on the highway? Is he starting from a complete stop because the

red light has just turned green? Is he suddenly letting go of the gas

pedal because he’s trying to stop the car as quickly as possible?

If the computer works correctly, the driver doesn’t notice any of this.

Stepping on the gas pedal makes the car go faster, just as you’d expect

it to do.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=78
http://

THREE DIFFERENT MODELS 79

There’s an important point here: the user’s mental model of how the car

works is technically wrong. However, it still helps him understand how

to control the car, because the interaction logic of the mental model—

push the gas pedal to make the car go faster—matches the car’s behav-

ior (most of the time).

In other words, the user’s mental model doesn’t have to be correct. It

just has to be consistent with the product’s behavior.

9.2 Three Different Models

Our product actually reflects three different models:

• How the user thinks the product works. This is the user’s mental

model of the product.

• How the product is presented to the user in the user interface. I

call this the UI model.2

• How the product is implemented. I call this the implementation

model.3

In an ideal product, these three models are consistent with each other.

The user interface perfectly represents the implementation, and the

user perfectly understands what he sees.

9.3 Hiding Implementation Details

In reality, the three models are never entirely consistent. For example,

the implementation model may be complex and archaic, so you have to

simplify what the user sees. This is at odds with the goal of making the

implementation model consistent with the UI model.

2. The model espoused by the visual representation of the product (its user interface) is

sometimes also called the design model, manifest model, or designer’s model.
3. The model espoused by the implementation is sometimes also called the system model

or the programmer’s model.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=79
http://

HIDING IMPLEMENTATION DETAILS 80

Anthropomorphism

People tend to attribute human characteristics to applications,
websites, and other products.∗ This is a kind of mental model;
people assume that machines work similarly to humans. So
when a coin-counting machine finishes too quickly, we think
that it hasn’t put the proper effort into its task. We get angry
at our computers as if they ate our documents on purpose. We
suspect that our car’s navigation system has led us astray delib-
erately. We give our devices names.

Car manufacturers are especially good at making use of our
tendency to anthropomorphize their products. They intention-
ally design their cars to look as if they have human characteris-
tics, making them look friendly or aggressive.

As designers, we should keep an eye on what kinds of human
characteristics people will attribute to our products. Do our
products behave like nice people or like unfriendly ones? Do
they seem cold and unconcerned, or do they have a bit of
personality? Are they tardy or so efficient that people might
become suspicious?

∗. Clifford Nass writes about research on this topic in The Man Who Lied to His
Laptop [NY10].

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=80
http://

HIDING IMPLEMENTATION DETAILS 81

It’s a trade-off. You are simplifying the user interface so that most users

will have a better experience. But this means your UI model may not be

entirely consistent with the implementation model.

Let’s say you’re creating an online platform for purchasing download-

able movies. Your potential customers probably know how buying a

movie works:

1. Go to a store.

2. Browse through a number of movies until they find one they like.

3. Exchange money for the chosen DVD.

This is the user’s mental model of how buying a movie works.

But this isn’t how buying a movie works on the Internet. Your cus-

tomers don’t give you physical money; instead, software running on

your server asks a credit card company to change some numbers in

a database. Then, your software updates some stuff in your database,

signaling that the customer is now allowed to download a file. When

the customer starts the download, the file is typically watermarked

and possibly encrypted. Once the file is downloaded, software on the

customer’s computer decrypts the file, decodes the stored movie, and

shows it on the customer’s screen.

How do we represent this complex string of actions in the user inter-

face?

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=81
http://

LEAKY ABSTRACTIONS 82

You Know More Than Your Users

If you’re creating a user interface for a product, you proba-
bly know how the product is implemented. If you’re creating
a website representing a company, you probably know that
company’s internal structure. Your users (most likely) don’t know
these things. So, right from the beginning, your mental model
of how things work is different from your users’ mental models,
because yours is informed by things your users don’t know.

Just because something makes sense to you doesn’t mean it
will make sense to your users.

!"#$%&'(&')

*+&,-).+/)%)

*+0(,

12(33(&')4(56)

(&)%)47&#$)+.)

8%5%9%6,6:

The user interface sits between the customer’s mental model of how

movie-buying works and the implementation model. Those two things

are very different, so it’s the user interface’s job to translate between the

two worlds, to present all of those strange things that happen outside

of the user’s view in a way that the user can understand and relate to.

To help the user understand what is going on, the UI model has to be

closer to the user’s mental model than to the implementation model,

hiding some of the implementation’s complexity.

9.4 Leaky Abstractions

Hiding implementation details from the user makes your UI model eas-

ier to understand. But it creates a different problem: whenever some

of the hidden implementation details leak to the user, it will not match

his mental model of how your product behaves.

Going back to the earlier example of somebody buying a movie, let’s say

that same person now wants to buy a movie for her sister. Her mental

model of buying a movie as a gift is simple:

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=82
http://

DESIGNING FOR MENTAL MODELS 83

1. Go to a store.

2. Browse through a number of movies until she finds one her sister

likes.

3. Exchange money for a DVD.

4. Wrap the DVD in nice wrapping paper.

5. Deliver the wrapped DVD to her sister.

When it comes to buying a movie for her sister online, this user’s mental

model breaks down. The UI model hides a crucial aspect of the imple-

mentation model: the movie she bought is encrypted and needs to be

decoded in order to be viewed. It can be decoded and shown only on her

own computer. It would be reasonable for her to assume that she could

put the downloaded movie on a memory stick and give that to her sis-

ter, because that matches her mental model of how movies work. But

in fact, her sister would not be able to watch that movie.

How can you prevent these kinds of problems?

9.5 Designing for Mental Models

First, you need to find out how people think something works—by hav-

ing a conversation with them to figure out what their preexisting mental

model is (see Chapter 2, Job Shadowing and Contextual Interviews, on

page 23). Then you do a card sort to find out how people think things fit

together (see Chapter 8, Card Sorting, on page 63). Next up is usability

testing with paper prototypes (see Chapter 11, Paper Prototype Testing,

on page 104) to come up with designs that match people’s mental mod-

els. You show them your design, describe an interaction, and ask them

what they expect to happen. (“If I type some text and then close this

document, what do you think will happen?”)

Using the information you’ve gathered from conversations and usability

testing, you can design a UI model that is consistent with your users’

mental models. If you’re creating your product from scratch, make sure

that the implementation model matches that UI model.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=83
http://

DESIGNING FOR MENTAL MODELS 84

This isn’t always possible. Sometimes, you have to deal with an existing

product that simply doesn’t work the way people expect it to, and you

can’t change how it works. If that happens, make sure that the things

your users have to learn are few and simple so that people can easily

change their mental model of your product to fit how it actually works.

If you discover that people always form false mental models of your

product when they use it (say, during usability tests), try changing how

it looks, for example, by avoiding metaphors that don’t fit your prod-

uct’s behavior (for more on metaphors, check out Chapter 12, Realism,

on page 120). You can also try making your product appear unique so

that people will immediately understand that it behaves differently from

what they already know.

In their paper “Mental Models and Usability,”4 Mary Jo Davidson, Laura

Dove, and Julie Weltz describe seven user interface design principles

that help users form valid mental models:

Principle 1: Simplicity

Mental models are simplified versions of reality. If your product follows

a small number of simple rules, your users’ mental models are more

likely to be consistent with how the system actually works, and people

will be able to learn these rules more easily.

The Flip video camera,5 for example, has a huge red button on the back.

Even if people have never used one, they have to take only one look at

it to form a correct mental model of how the camera works. Push the

button to start recording. Push again to stop.

(Photo courtesy of Cisco)

4. You can read the paper at http://www.lauradove.info/reports/mental%20models.htm.
5. For more about the Flip, go to http://www.theflip.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.lauradove.info/reports/mental%20models.htm
http://www.theflip.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=84
http://

DESIGNING FOR MENTAL MODELS 85

Principle 2: Familiarity

Users bring a lot of prior knowledge to your product. You need to be

consistent across similar products and with how things work in the real

world, and people will be more likely to form correct mental models.

An example of this is the way people delete files in most modern oper-

ating systems: they throw them into a bin and then empty the bin. You

don’t need to explain to people how to tell an empty bin from one with

files in it; their prior knowledge of how bins work suffices.

Of course, this prior knowledge of how trash bins work can cause prob-

lems. On Mac OS X, dragging a DVD onto the Trash icon (which then

turns into an eject symbol) ejects the DVD. Predictably, a lot of peo-

ple are confused by this; after all, they don’t want to risk accidentally

destroying the DVD by throwing it into the trash.

A lot of the music apps on Apple’s iPad also make use of familiarity.

Figure 9.1, on the following page shows an app called djay.6

This looks exactly like a real, physical dual-turntable DJ system. As

a result, people familiar with such systems can start using this app

without having to learn anything. They already have the mental model

that allows them to make perfect sense of what they see.

Principle 3: Recognition

Instead of making people recall how to do something, show them the

cues or obvious choices that allow them to understand the options cur-

rently available to them.

For example, the menu bar in Windows 7 displays actions related to the

files the user is currently looking at. If she’s looking at pictures, it offers

commands related to sharing or viewing pictures, shown in Figure 9.2,

on the next page

People don’t have to remember how to show pictures in a slide show.

The option is right there when they are likely to need it.

6. Find out more at http://www.algoriddim.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.algoriddim.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=85
http://

DESIGNING FOR MENTAL MODELS 86

Figure 9.1: The jday application interface

Figure 9.2: Windows menus are context sensitive

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=86
http://

DESIGNING FOR MENTAL MODELS 87

Principle 4: Flexibility

Let users perform actions in any order, using different techniques if

possible.

In modern word processors, users can switch to the different styles they

want to use for different parts of a document while they’re typing. Or

they can type all of their text first and then go through the document

and apply different styles.

Principle 5: Feedback

Always give immediate, useful feedback to user interactions. If the user

clicks something, it should highlight immediately. If she drags some-

thing, it should move in line with her mouse or finger, without any

lag. If she initiates an action that takes a bit of time, show an activity

indicator such as a progress bar to inform her that the computer has

received her command and is working on it (there’s more about this in

Chapter 23, Speed, on page 198).

Getting immediate feedback helps people correct flaws in their mental

model and builds trust in their own actions when their mental model is

correct.

Figure 9.3, on the next page shows two pictures of different buttons

used in trams in Zürich. You push them when you want the tram

to stop. The one on the right lights up once pushed; the one on the

left doesn’t. While riding trams in Zürich, you will often notice peo-

ple repeatedly pushing the button in the style shown on the left, just

to make sure that their push was really registered; there’s no obvious

feedback that it was. You rarely see that with the one on the right.

Of course, it’s possible to overdo things. Buttons in some trains use

a scheme with different colors, one to indicate that the button can be

pushed (which activates only shortly before the train stops) and one

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=87
http://

DESIGNING FOR MENTAL MODELS 88

Figure 9.3: Push these to stop a tram

to indicate that it has already been pushed. Since people can never

remember which color is which, they tend to push the button several

times, just to make sure it has switched to the correct state. Adding

some feedback helps people form correct mental models. Adding too

much or unclear feedback can cause even more confusion.

Principle 6: Safety

User actions should not be harmful, unless the user intends them to

be. Closing a document with unsaved changes should not destroy those

changes without giving the user the opportunity to get them back.

Always allow users to undo their actions (see Chapter 19, Instead of

Interrupting, Offer Undo, on page 171). Give them the freedom to explore

without fear of permanent harm, and they’ll be more open to learning

and to adapting their mental model to how your product works.

For example, if someone closes a window containing several tabs in

Google Chrome and then decides that she really needs to get some of

those tabs back, she can simply restore the closed window using the

History menu.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=88
http://

DESIGNING FOR MENTAL MODELS 89

Assuming Causality

People tend to assume causality when things happen at the
same time or close to each other. If B happens right after the
user does A, he will often conclude that A caused B. Although
you can use this causality element as a way to help people
form correct mental models, keep in mind that this can easily
create incorrect mental models.

This issue often appears in troubleshooting behavior; if some-
thing doesn’t work and the user does something in an attempt
to fix it and then it works, it’s natural for the user to assume that
what he did fixed the problem. After all, the user doesn’t know
whether it would have worked if he hadn’t done anything.

In Switzerland, you often see people scratching coin-operated
machines with coins the machine didn’t accept on their first
attempt:

Since the coin is usually accepted after scratching the
machine, it’s natural to assume that scratching the machine
was what fixed the problem, even though the coin would have
worked on the second attempt independent of the scratching.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=89
http://

DESIGNING FOR MENTAL MODELS 90

Similarly, if Chrome crashes, she can restore all of the windows that

were open at the time of the crash.

Principle 7: Affordances

Your user interface elements should be created in a way that suggests

to your users how they can interact with them. Design details that

communicate possible interactions are called affordances.

In The Design of Everyday Things [Nor88], Don Norman writes:

A good designer makes sure that appropriate actions are per-

ceptible and inappropriate ones invisible.

Nintendo’s old NES controller (below, pictured on the left) doesn’t make

it obvious how you’re supposed to hold it. In fact, the two red buttons

are placed so far down the right side that it’s more comfortable to hold

the controller upside down. Compare this to Nintendo’s newer Game-

Cube controller. Although the newer controller is a lot more complex,

it’s immediately obvious how you’re supposed to hold it, thanks to the

nubs on each side of the controller that invite you to wrap your hands

around them.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=90
http://

DESIGNING FOR MENTAL MODELS 91

User interfaces often use bevels and highlights to indicate elements you

can interact with.

Highlighting user interface elements when you move the cursor over

them further indicates that they are clickable.

Of course, if this “hover effect” doesn’t work correctly, the affordance

is misleading, suggesting to the user that he can interact with a user

interface element when he really can’t. For example, Mac OS X high-

lights the buttons in its windows’ title bars even before the user moves

the cursor over a clickable area; this can cause users to click too early,

missing their target.

Similarly misleading affordances can often be found in audio software

like Propellerhead Software’s ReBirth. These apps often use knobs that

look like real knobs, indicating that the user can interact with them by

turning them.

Instead, you change their values by dragging vertically.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=91
http://

DESIGNING FOR MENTAL MODELS 92

I’ll talk a bit more about how affordances apply to user interface design

in Chapter 12, Realism, on page 120.

Takeaway Points

• Humans have ideas about how things work. The closer your prod-

uct matches these ideas, the less people have to learn in order to

use your product.

• To match your users’ mental models, you often have to hide imple-

mentation details from them. Watch out for leaky abstractions.

• To design for mental models, make your product simple, familiar,

flexible, and safe. Provide feedback, and make it obvious to people

what options they have at any given moment.

Further Reading

Alan Cooper has a good chapter on mental models in his book About

Face [Coo95]. Robert Hoekman also covers mental models in Designing

the Obvious [Hoe06]. Joel Spolsky’s User Interface Design for Program-

mers [Spo11] covers mental models from the perspective of a developer.

Jakob Nielsen has written about mental models.7

7. At http://www.useit.com/alertbox/mental-models.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/alertbox/mental-models.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=92
http://

Part II

Design

http://

By now, you have a pretty good idea of who your audience is and what kinds

of problems you want to solve. You probably even have a basic idea of how

the solution might work. But be careful: you don’t want to settle on any particu-

lar solution yet. The human mind is pretty good at rationalizing information that

goes against its current opinion. So, don’t form opinions too quickly. Try not to

focus on a specific design or solution; doing so might make you blind to better

approaches.

Instead of immediately going for fully formed ideas, start slowly. In this part of the

book, you’ll start by doing flow diagrams of your product. These are very simple,

high-level ideas that will help you figure out how your product might work. Slowly,

you’ll add details, moving from flow diagrams to storyboards to simple sketches

and eventually to fully formed mock-ups and even to interactive prototypes.

Always remain open to the possibility that you’re wrong. The longer you hold on

to a design that doesn’t work, the harder it will be to change it. Failing early is a

good thing.

To make sure you’re on the right track and to allow you to fail early, you’ll test

your design ideas with actual users. Pretty quickly, you’ll find out what works and

what doesn’t.

This part of the book is about iteration. Avoid strong opinions. Instead, design,

test, accept if something doesn’t work, and iterate.

http://

Chapter 10

Sketching and Prototyping

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

By now, you probably have a pretty good idea of what you want to

create. It’s time to flesh out the design, first by sketching the structure

of your product and then by progressively zooming in on the details by

designing the individual screens.

Why Is This a Good Idea?

Changes you make once you’ve started implementing your product can

be expensive. A small user interface change can have vast implications.

Changing a sketch, on the other hand, is cheap and quick. All you need

is an eraser, a pencil, and a few seconds.

Basically, you are creating simple prototypes of your product. If you’re

designing a remote control, you don’t create the molds and start pro-

ducing them. Instead, you start with simple wood or clay models of the

remote to get a feel for how it should be proportioned. Then, you add

more and more detail until you end up with the final design.

Sketching is the clay model prototype of your product. The more details

you nail down before committing to code, the better.

Are There Any Prerequisites?

You should have a pretty good idea of what your product is going to be.

http://

DESIGNING THE STRUCTURE 96

10.1 Designing the Structure

In Rework [FH10], Jason Fried and David Heinemeier Hansson write

that “architects don’t worry about which tiles go in the shower or which

brand of dishwasher to install in the kitchen until after the floor plan

is finalized.”

This is what flow diagrams and storyboards are: your product’s floor

plan. We’re at the very beginning of the “design” part of our design

process. Flow diagrams and storyboards are not about details. They

are about the big picture: the structure.

10.2 Flow Diagrams

Flow diagrams answer the following questions: What does the user have

to do to get what he wants? What steps does she have to follow to reach

her goal?

Pick the most important user goals, and think about the required steps.

For our Twitter app example, a simple flow diagram for replying to a

message would look a bit like this:

It’s OK to add branching to flow diagrams, but don’t make them too

complex. In theory, you could have one enormous flow diagram that

describes your whole product. In reality, it makes more sense to create

several flow diagrams for the most important user goals. That way, you

can keep the individual flow diagrams concise and clearly arranged.

The goal of this exercise is to think about what’s involved in each goal.

What kinds of screens do you need to show to the user? What kinds of

decisions does he have to make at what point?

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=96
http://

STORYBOARDS 97

10.3 Storyboards

Storyboarding is a technique originally developed to plan animations

for movies. Storyboards break animations down into their important

frames; they turn a moving picture into a comic book. In user interface

design, we use storyboards for a similar purpose. They break down the

user’s path into a series of snapshots.

Storyboards mostly ignore branching and focus instead on interaction

details. What exactly is the user seeing on each screen? What do you

want the user to do? Where should you use animations or graphics to

help the user understand what he should do?

You can indicate where and how interactions happen by drawing arrows

or hands (if it’s a touch-screen user interface).

Making storyboards can take a lot of time, so you want to use them

only for those parts of the application where the design is not obvious.

Everybody who is familiar with comic books can follow a storyboard—

it’s a great tool for communicating design. If you need to explain to a

programmer how to implement something, storyboards can be a huge

help.

10.4 Sketching

After architects design the floor plan, they design the individual rooms.

After you design the structure of your product, you want to design

the individual screens. By making flow diagrams and storyboards, you

should have a pretty good idea of what screens your product requires

and what functionality each screen should provide.

You’ve already done simple sketches of some of the screens while doing

storyboards. In the storyboard example, some of the screens already

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=97
http://

SKETCHING 98

contained things that were unrelated to the task performed in the sto-

ryboard. For example, the pop-over menu didn’t just have a “reply”

button; it also had a “retweet” button. Now, we want to nail down the

contents of the individual screens.

Usability consultant Bruce Tognazzini notes:1

Jumping into complex, finely-tuned prototypes is perhaps

the worst mistake a team can make. (...) Users (and clients)

[feel more free] to express contrary views if models look less

than perfected. But there’s another side, too: designers and

developers are more willing to listen to dissent if they haven’t

lavished ultimate care on what should have been a story-

board or quick-and-dirty prototype.

Experiment with using simple sketches to figure out how individual

screens should look at a very basic level. Everybody can sketch, so

you’re free to involve other people in the process. Show them your ideas,

and see whether they come up with their own.

Once you’re happy with the basic design of your screens, move on to

wireframes.

1. Read more at http://www.asktog.com/columns/005roughsketches.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.asktog.com/columns/005roughsketches.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=98
http://

WIREFRAMES 99

Lorem Ipsum

People often use filler text like Lorem Ipsum in wireframes. If you
really don’t have anything better, using filler text is OK. If you
can, however, include text that users might actually see. That
gives you a better idea of how well the user interface will work
and how big the text is going to be (if it’s something that has
specific lengths, like Twitter messages).

10.5 Wireframes

Wireframes represent the exact structure of a screen but without the

decoration—no colors, shadows, or pictures. Wireframes are about the

content. What do you want to show on each screen, and where do you

want to put it? How big should things be? How close to each other

should they be? Figure 10.1, on the following page shows a sample

wireframe (on the left).

This is also the time when you start working on the copy. You don’t

need to get this exactly right yet, but you should think about text you

want to include and where to put it.

The goal of wireframes is to identify exactly what you need to show on

each screen and where you want to put things. Once you’ve done this,

you can move on to decoration.

10.6 Mock-ups

Wireframes tell you about the layout of a screen. Mock-ups add the

decoration, or visual details: shadows, textures, images, transparency.

This is how you want the screen to look based on your current knowl-

edge. Compare the mock-up in Figure 10.1, on the next page (on the

right) with the wireframe (on the left).

Adding visual details is not just about making your product look pretty.

Of course, the goal is for the end product to look good, but visual

design can also give the user hints about the functionality of your prod-

uct. User interface designers often call these affordances. I’ll talk more

about this in Section 9.5, Principle 7: Affordances, on page 90. For now,

here are some examples of affordances: textures to let the user know

that he can touch and drag something, shadows and bevels to show

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=99
http://

MOCK-UPS 100

!"#$%"&'!#"()*'!"#$%"$&'"(')*+$(,-$
./")-,%0$12,$',)+"2)./,$3,)-4',
',54,+-$)-$)$-6*,7

+,-./012'!#"()*'8$*)9$%')#$/6:,$)$
;<$9"=$.4-$->,',$6+$2"->62($.,--,'$->)2$
)$+:,-?>$-"$*):,$+4',$"->,'+$@+,,$
#>)-8*,)2@7

3)"-,)'4"5'6",,"!

(.70/5(8/7,,4'!#"()*'A",.64+$)-$
#"':B>--&BCC.6-7/9C.3ADEF$D6%,"$62$
3',2?>$.4-$#"'->$#)-?>62($63$9"4G',
)$3)27

/79/&."#&804'!#"()*'H+$->,',$6+$
"',$)2%$"',$+-433$-"$#)-?>=$)?-4)//9$
#)-?>62($)29->62($+,,*+$-"$.,
(,--62($>)'%,'$)2%$>)'%,'7

,"57%)'!#"()*'I,$*"*,2-$"J-4
%K?"4L',+$54,=$"46=$M")22)$N,#+"*$
&)++)6-$,2$?"2?,'-=$54,=$2"2=$-4$2,$
+)L)6+$&)+=$,-$54,=$&6',=$-4

2G,+$&)+$/O=$?,$#,,:$,2%7

Figure 10.1: A sample wireframe (left) and mock-up (right)

that he can push something or to emphasize hierarchies, and colors to

convey importance and draw the user’s attention.

These are the kind of things you need to keep in mind when you do a

detailed mock-up of how your screen should look.

You don’t necessarily have to create mock-ups using a graphics appli-

cation. If you prefer, you can do mock-ups in code. Simply use the

medium that will be easiest for you when you have to make sweep-

ing changes. But keep in mind that you are creating prototypes, not

early versions of the final product. In The Pragmatic Programmer [HT00],

Andrew Hunt and David Thomas write:

With a prototype, you’re aiming to explore specific aspects of

the final system. With a true prototype, you will throw away

whatever you lashed together when trying out the concept,

and recode it properly using the lessons you’ve learned.

Even if you do mock-ups in code, the goal is still to explore ideas in a

way that makes it easy to throw things away if they don’t work out.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=100
http://

TOOLS 101

Terminology

In this book, I use the following terms:

Sketch Any representation of a user interface as a draw-
ing.

Wireframe A static representation of a user interface where
the individual elements are at least roughly where
they are supposed to go, at their supposed sizes.

Mock-up A (usually static) representation of a user interface
where decorations like shadows and colors are
introduced.

Prototype Any representation of a product that is not the final
product.

Not everybody uses these terms in that way. Sometimes, the
term prototype denotes only interactive, high-fidelity represen-
tations. Sometimes, the term mock-up is used for any type of
sketch of the final user interface. When you read about these
things on the Internet or in other books, be aware that the
author may use these words differently.

10.7 Tools

Sketching and prototyping are popular activities in the software devel-

opment community—enough to have given rise to a whole ecosystem of

products. The sole raison d’être for these applications and services is to

help you sketch or prototype your product.

There are many good reasons for using such products. One of the main

ones is that they make it easy to collaborate on designs even when

designers live far away from each other.

Balsamiq2 and Mockingbird3 are online tools that allow you to create

and share sketches of your user interface.

Google Docs has a drawing component called Google Drawings, which

allows several people to collaborate on a design. Morten Just has a set

of Google Drawings templates with user interface elements.4

2. At http://balsamiq.com.
3. At https://gomockingbird.com.
4. At http://mortenjust.com/2010/04/19/a-wireframe-kit-for-google-drawings/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://balsamiq.com
https://gomockingbird.com
http://mortenjust.com/2010/04/19/a-wireframe-kit-for-google-drawings/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=101
http://

TOOLS 102

On the Mac, OmniGraffle5 fills many of your user interface sketching

needs. People have created user interface stencils specifically for Omn-

iGraffle.6 If you’re an iPhone developer, check out Briefs7 and Review.8

Some people also use tools like PowerPoint9 or Keynote10 to create

mock-ups and prototypes. These tools even allow you to add simple ani-

mations and interactions. Sites like Keynotopia11 and Keynote Kung-

fu12 provide user interface templates for these applications. Templates

can help you create pixel-perfect mock-ups that use a platform’s stan-

dard user interface elements.

All of these tools can make your life a lot easier. On the other hand,

there are good reasons for going with paper. It’s faster, it’s more natural,

and as long as everybody is in the same room, it’s easy to collaborate

with other people; the only thing people need in order to contribute

ideas is their own pencil. And since everybody has some kind of gadget

with a built-in camera nowadays, sending the sketched user interface

to somebody else is as easy as taking a picture and emailing it.

Just use what’s easiest for you. If sketching on paper works best,

sketch on paper. If you prefer to use an application specifically cre-

ated for user interface designers, use that. If you want to use a graph-

ics application instead, that’s fine too. Or simply use all of these tools,

depending on your current task.

Takeaway Points

• Start with a bird’s-eye view and work your way down to the details,

from flow diagrams to storyboards to simple sketches to wire-

frames and eventually to detailed mock-ups.

• Fix problems early. The earlier you notice a problem with your

design, the cheaper it is to fix it.

• Flow diagrams help you make it as simple as possible for your

users to reach their goals.

5. At http://www.omnigroup.com.
6. For example, at http://graffletopia.com/categories/user-interface.
7. At http://giveabrief.com.
8. At http://www.getreviewapp.com.
9. At http://office.microsoft.com.
10. At http://www.apple.com/iwork.
11. At http://keynotopia.com.
12. At http://keynotekungfu.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.omnigroup.com
http://graffletopia.com/categories/user-interface
http://giveabrief.com
http://www.getreviewapp.com
http://office.microsoft.com
http://www.apple.com/iwork
http://keynotopia.com
http://keynotekungfu.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=102
http://

TOOLS 103

• Storyboards help you flesh out and communicate the interaction

design of your product.

• Simple sketches help you figure out what to put on individual

screens.

• Wireframes help you decide where to put things on individual

screens.

• Mock-ups help you iterate quickly on the visual design.

Further Reading

Flow diagrams, storyboards, wireframes, and mock-ups are the four

techniques I use most often. They allow me to start with a bird’s-

eye view and progressively move down to the details. Other designers,

however, prefer a different combination of techniques. Undercover User

Experience Design [BB10] by Cennydd Bowles and James Box teach

you these and other techniques.

Bill Buxton’s Sketching User Experiences [Bux07] is another great book

on this topic, and Robert Hoekman also covers some of these tech-

niques in Designing the Obvious [Hoe06].

Tyler Tate writes about different sketching and prototyping methods.13

13. At http://www.uxbooth.com/blog/concerning-fidelity-and-design/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.uxbooth.com/blog/concerning-fidelity-and-design/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=103
http://

Chapter 11

Paper Prototype Testing

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

In the previous chapter, I explained how to sketch your product. I said

that you should sketch before you commit to code because sketches

are easier to change. But I kind of skirted around the issue of how you

know what changes to make.

In some cases, issues with a design—such as features that are available

at the wrong time or overcrowded screens—become obvious once you

see it sketched out before you.

But in other cases, it’s not obvious. When is a design good? If you have

more than one idea of how to do something, which idea will work best?

Where are the issues with your current idea? This chapter will help you

find answers to these questions.

Your sketches are basically primitive forms—prototypes, if you like—

of your product. As such, you can run usability tests with them and

see whether your designs work the way you expect them to work. The

easiest way to do that is to show them to people and see whether they

understand them.

If you’re working alone or in a small team, feel free to skip the part

of this chapter that explains how to run full usability tests with paper

prototypes.

http://

GUERILLA PAPER PROTOTYPE TESTING 105

Why Is This a Good Idea?

The earlier you find issues with your design, the easier it is to fix them.

Every problem you fix with a pencil on paper is a problem you don’t

have to fix in code.

Are There Any Prerequisites?

You should have started doing sketches.

11.1 Guerilla Paper Prototype Testing

At this point in the process, you have static representations of your

product. Whether it’s simple, crude sketches, wireframes, or detailed

mock-ups, your product exists in the form of a series of pictures.

At its most basic, paper prototype testing simply means you get a real

person to “interact” with those pictures in order to gauge whether your

planned user interface is understandable to your users. This could be

as simple as showing somebody a drawing of a user interface and ask-

ing them something like “If you wanted to change the font size of the

text document on this screen, where would you click?”

You need a reasonably detailed sketch, wireframe, or mock-up of one

of your product’s screens to do paper prototype tests. Then, find some-

body willing to spend five minutes with you. Show them the screen, and

ask a generic question: “What do you see on this screen? What do you

suppose this product could be used for?”

Alternatively, you can ask a simple task-based question: “If you had to

use this application to add a picture to a document, what would you do?”

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=105
http://

GUERILLA PAPER PROTOTYPE TESTING 106

Paper?

This chapter is about “paper prototypes,” but the “paper”
part isn’t meant too literally. You don’t necessarily need to do
sketches on paper to do these kinds of tests. You can also do
mock-ups on a computer and print them out. Or, instead of
printing them, put them on a tablet computer, and show that
to people. You could even create a simple interactive proto-
type of your product by putting sketches into an application
like PowerPoint or Keynote.

I guess this chapter should really be called “how to do usabil-
ity tests with (mostly but sometimes not entirely) static sketches
or mock-ups of your final product,” but that didn’t fit into the
book’s layout.

This kind of test will give you a general idea of whether people under-

stand your design and what parts people don’t get. That way, you know

where you have to make changes and where you’re on the right track.

Simply showing people a mock-up of one screen of your product helps

you understand whether people understand that screen. This is useful,

but we can go a step further and test interactions. To do this, prepare

more than one screen in advance. If you need pop-up elements or other

elements that have to be added or removed from the screen, also pre-

pare them in advance; draw them on Post-it notes so you can easily

add them to the prototype.

Prepared in this way, you can run actual task-based usability tests. Of

course, you can’t let people veer too far off track, but if they do, you

already know that there’s a problem with your design, because people

don’t follow the path you expected them to take.

You can do this type of simple test with pretty much anyone. It takes

only a few minutes, and it’s quite easy to explain:

I’m working on a new Twitter app. You know what Twitter

is? OK, great. I’m currently working on the design of my app,

and I’m trying to figure out whether people understand what

I’ve done. You know, when you work on something for weeks,

you lose any objectivity, and it’s hard for me to tell whether

what I’m doing makes sense to anyone else. I was wondering

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=106
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 107

whether I could show you some of these designs and ask you

a few questions about them to see whether people can figure

them out? It won’t take more than five minutes.

You can start doing this with friends and family members to get used

to running these tests. Then, ask random people. A good place to start

is a café. People usually have a few minutes to spare.

Once you see how people interpret your designs, it will be easy to figure

out where your designs work and where potential problems lie.

11.2 Running Full Usability Tests with Paper Prototypes

The simple tests I’ve described so far will allow you to do some early

usability testing on your designs. There is, of course, a much more

elaborate way of doing prototype testing. I don’t recommend this pro-

cess for most smaller teams, but if you have the time and the people

required to do such tests, they can give great feedback even before a

single line of code is written.

A prototype typically represents only a subset of your finished product.

Not every screen of your final product will be part of your prototype. Not

every feature will be represented. For this reason, prototype usability

tests are almost always based on specific tasks: you will give a person

a specific task and ask that person to execute that task on your pro-

totype. That way, you have a pretty good idea of what screens and UI

elements you will need to prepare.

So, the first thing you want to do is define tasks you want to test.

Defining Tasks

Now that you’ve created a storyboard and mock-ups, you probably have

a pretty good idea of where potential user interaction problems might be

found. If it was hard to come up with a user interface for a feature, this

is probably something you want to test early. If it is a critical, central

feature of your product, it’s definitely something you want to test early.

Pick the features that are important to your product, that you think

might be hard to use, or that you think might cause problems.

Next, come up with tasks that use these areas of your product. You can

draw upon the user research you did in the first part of the book, if you

need.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=107
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 108

Remember that you’re not looking for opinions. Usability tests are not

focus groups. The goal of a usability test is to observe people as they

interact with your design so that you can find flaws in the interaction

design. Pick tasks that cause people to actually use the product.

It’s important that the task not be too prescriptive; tell the user what

goal he has to achieve, rather than what steps he has to follow. The

task should not look like this:

!"#$%&#'(&#)*&+#,&%%-.&)#/0''12#'1#34&-'&#-#2&+#5&%%-.&

6"#7893:#12#'(-5&4-#9312#'1#-''-3(#-#;93'04&

<"#=&8&3'#-#;93'04&#>415#'(&#/41+%&4?#-2@#3893:#)A@@#B93'04&)

C"#A@@#%15&#'&D'#'1#E104#5&%%-.&

F"#7893:#12#)B0/89%(#,&%%-.&)

!"#$%&'%()#*+,-%"%(+.*/01

A task like this tells you only whether people are capable of following

instructions. It doesn’t tell you whether your product is usable. Instead,

the task description should state the goals and leave the individual

steps up to the user. It should look something like this:

!"#$%&'$%($")'$"*$+"#&$,"-.%)+/0$,#0("-'&$'1')(02$!"#$3%)($

("$(%4'$%$.5,(#&'$"*$(6'$&""-$%)7$.#89506$5($")$+"#&$,"-.%)+/0$

:35(('&$%,,"#)(2

This is a scenario one of your users might find himself in. It will show

you how somebody in this situation might interact with your product.

Perhaps counterintuitively, tasks are one area where you should avoid

using your official terminology. If you use words in the task description

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=108
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 109

that people can find in the user interface, you are essentially giving

them a hint about how to perform the task.

It’s a good idea to prepare at least five or six tasks; more is better. Each

task should take between two and ten minutes. It’s likely that you won’t

make it through all of the tasks, but it’s hard to tell before doing the

actual test, so it’s better to be prepared if people blow through your

tasks quickly.

Creating the Paper Prototype

Based on the tasks you’ve come up with, it’s pretty easy to tell which

screens you will need to show to people (but be liberal when deciding

which screens to include in your prototype; people may not always take

the most obvious steps toward the goals you’ve set).

You can use existing sketches for paper prototypes, if they’re not too

crude and simple. Using very simple sketches can cause problems if

they are not easily readable by people who are not already familiar with

your product.

To turn a sketch or mock-up into something suitable for a usability test,

you need to add the user interface elements surrounding your own user

interface. For example, if you’re testing a website, add relevant parts of

the browser user interface to the prototype (forward and back buttons,

the address bar, the title bar, and so on). Similarly, if you’re testing an

application, you should add the menu bar and maybe even parts of the

desktop if it is an application running on a desktop operating system.

After you’ve created the screens, you should think about state changes

on individual screens.

What happens if somebody clicks a drop-down menu? You should pre-

pare any pop-up windows in advance. Some people like to use Post-it

notes for them, which makes it easy to stick them to the paper proto-

type once the user activates them.

What happens if the user has to type data into a field? There are several

ways of handling this. If you are not going to reuse the paper prototype,

you can simply give people a pencil and an eraser and let them change

the data on the screen using these tools. If you are going to reuse the

prototype (say, you’re doing more than one test), you could use trans-

parencies. Put them over your prototype, and let people draw on the

transparency.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=109
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 110

Finally, you should print each task on its own piece of paper. Since you

don’t know how many tasks a user will get through, using individual

pieces of paper for each task allows you to hand out tasks as you go

along or switch the order of the tasks on the fly if you need to do so.

At this point, you should run through each task. Make sure that the

individual goals are feasible and that you’ve included every screen and

pop-up element you’re likely to need.

Paper Prototype Creation Checklist

Prepare all the screens people are likely to progress through while

doing your tasks. Don’t make them too crude.

Add the surrounding user interface elements (such as browser

windows around sketches of a website) where necessary.

Create the pop-up elements you might need.

Prepare some way for people to draw on top of your prototype.

Print out the tasks on individual pieces of paper.

Do a test run of each task, and make sure you’ve prepared all of

the screens and pop-up elements you’re likely to need.

Preparing for the Test

To run a usability test with your paper prototype, you need at least one

additional person: the person who is going to do the tasks. This person

is sometimes called the test subject, but since you’re not testing this

person, I usually call her the tester. She’s the one who is testing your

design, after all.

I won’t go into great depth on how to recruit testers in this book. There

are many good resources on the topic,1 but generally, pretty much any-

one outside of your company will do. It’s best to avoid recruiting testers

from within your company. They are too familiar with your product

and your company’s jargon; this familiarity may mask usability prob-

lems with your product. It sometimes makes sense to recruit testers

from your product’s target audience, but generally, it doesn’t matter

too much. Almost anybody will do, including friends and family.

How many tests should you run with any version of the paper proto-

type? Paper prototypes take a bit of time to create, so it makes sense

to test each prototype with more than just one person. Additionally,

with a paper prototype, it’s easily possible to make small adjustments

1. This Nielsen Norman report does a great job: http://www.nngroup.com/reports/tips/recruiting/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.nngroup.com/reports/tips/recruiting/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=110
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 111

The Original Computers

It seems funny to us that we would call a human the computer.
Historically, though, computers actually were humans. The term
was first used around 1600 and referred to people who carried
out calculations.

It was only during World War II that machines started to
take over this task, when people like Konrad Zuse and
Alan Turing created the first computing machines. As these
machines became more prevalent, the term computer even-
tually changed its meaning.

between tests. A good solution is to invite three or four testers and

schedule them two or three hours apart. That way, you have enough

time between tests to quickly go through the issues you’ve found and,

if possible, make changes to the paper prototype accordingly.

While you can run a paper prototype usability test on your own, it’s

helpful to have at least one additional person there to assist you. Since

you have created the paper prototype and since you know how the sto-

ryboard of your application looks, you are the perfect person to “play

the computer” during the test. This means you will have to switch

screens, show pop-ups, and simulate the user interface. This leaves

you with little time to interact with the tester. Although you can do

both if you have to, it makes sense to find a second person who can

help you with this. This person is called the facilitator. Figure 11.1, on

page 114 shows a typical setup for paper prototyping.

The facilitator is the person who guides the usability test by introducing

the tester to how the test works by giving out tasks and by answering

any questions the tester might have.

Computer Controls the paper prototype, reacts to user input

Facilitator Introduces the tester to the process, gives tasks, answers

questions

Tester Interacts with the paper prototype according to the given

tasks

The facilitator should take notes during the test and (if you record the

session) add the recording’s timecode to the note so that each note

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=111
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 112

can be matched to a video of what occurred. Taking good notes during

the test can keep you from having to sift through hours of recorded

usability tests.

Recording the session can be a good idea. It allows you to go through

the session after it’s over. Viewing a session after the fact allows you

to focus specifically on what the tester is doing and will provide a ton

of insight into the kinds of problems she encountered; often these are

small things you might not have noticed during the test. Additionally,

if you’re not the one making the relevant decisions, a movie that shows

people repeatedly failing at the same task can often quickly persuade

people who otherwise don’t believe that there even is a problem with

the user interface.

I tend not to go into legal issues in this book. But remember that in

addition to having testers sign a consent form,2 the facilitator should

also explicitly get permission from the tester to record the session if a

recording will be made.

Test Preparation Checklist

Recruit three to five testers, and schedule them about two hours

apart.

Find and train somebody to act as the facilitator.

If you want to, prepare a way to record the test.

Prepare a consent form for the tester.

Preparing the Tester

Have the tester sit across from the person playing the computer so

that the computer can change the prototype in front of the tester. The

facilitator should sit next to the tester, preferably slightly behind her so

as not to be in the way.

Once everybody is ready, the first thing the facilitator has to do is to

explain to the tester that it is not she who is being tested, but the

user interface. This is basically the standard introduction you give at

every usability test; you can read more about it in Chapter 28, Usability

Testing, on page 240. A short version of the introduction might go:

2. If you don’t already have a consent form for usability tests, I suggest you write one

with the help of a lawyer familiar with the legal requirements in your location. Just make

sure that your testers will be able to understand any legal provisions in the consent form.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=112
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 113

Observers

The three roles I’ve mentioned so far are computer (the per-
son who controls the paper prototype), tester (the person who
interacts with the paper prototype), and facilitator (the per-
son who leads the test). For most smaller companies, these
are often all the people you will have in a usability test for a
paper prototype. However, in larger companies, it makes sense
to have more people participate and observe the tests. In my
experience, programmers and people from the management
team can profit tremendously from seeing how users interact
with their products.

We call the people who observe tests observers.

For a usability test of a paper prototype, observers can either
sit in the same room as the other three people, observe from a
different room, or watch the video after the fact. If they sit in the
same room, they need to know that they should not interfere
or influence the tester in any way. Generally, I think it is a bad
idea to have observers in the same room as the tester, but since
tests of paper prototypes already require a computer and a
facilitator, adding two or three observers might not make much
of a difference.

Tell your observers to take notes during the test. Afterward, you
should spend an hour or so going through the issues found dur-
ing the test. The more people who observe the test, the more
issues they will find. You can use affinity diagrams to prioritize
issues coming from several observers. This is explained in Car-
olyn Snider’s excellent book Paper Prototyping: The Fast and
Easy Way to Define and Refine User Interfaces [Sni03].

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=113
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 114

Figure 11.1: The roles in paper prototyping

Hi, I’m Michael. I work here as a software designer. This is

my friend Sandra. She also works in the design department,

and she will help me with this test.

First of all, I want to thank you again for taking the time to

help us with this.

Today, we are testing a new design for our product to see

whether it works the way we intended. I want to make it very

clear that we are testing the design, not you. This new design

has never been used outside of our design team, so we are

hoping to find problems in the design by observing people

interact with it. So, don’t worry if you get stuck or if some-

thing doesn’t work as you expect it to; this is exactly the kind

of feedback we are looking for!

As you can see, we haven’t implemented the design yet; it’s

still on paper. We want to iron out any problems before we

start writing code. So today, my friend Sandra will play the

part of the computer—she’ll do all the things the computer

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=114
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 115

would do. Since she’s playing the computer, she won’t say

much today, but she will change what you see according to

your input, like a real computer. While you interact with our

design, please feel free to tell me whatever is on your mind

and ask questions. Since we are trying to see how people

interact with this product when we are not around, I may

not always be able to answer your questions immediately,

but they will still help us understand what is going through

your mind.

With your permission, I will record this session. This is just

so we can go back and figure out how to improve our design.

We will never publish this recording in any way.

Do you have any questions about how this will work?

Then, have the tester sign the consent form.

It’s a good idea to make some notes or keep a checklist about what to

say beforehand, just to make sure that the facilitator mentions every

relevant point. There’s a lot of ground to cover, and it’s easy to forget

something.

Next, the facilitator should quickly introduce the tester to the paper

prototype. Explain what she is looking at: “This is the home page of our

new website.” Next, explain how to interact with it:

You can use this just like you would use a regular computer.

To click something, point with your finger. You can also drag

things as you would with a mouse. To type something, use a

pencil to write directly onto the prototype—don’t worry, we

have extra copies. To delete something, use the eraser. If

something you do changes the screen, our human computer

will take care of this and replace the screen or add pop-ups

or menus to this screen. Again, feel free to talk out loud. The

computer will only react to clicking and typing, though.

You can use an example sketch to demonstrate things such as pointing,

dragging, writing, and erasing while you explain this.

The facilitator should point out that the tester should talk only to him

or her, not to the computer. If the tester starts talking to the computer

during the test, make sure that the facilitator is always the one who

responds. And again, take care to point out that it’s the design that’s

being tested, not the tester.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=115
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 116

Running the Test

Finally, introduce the first task:

OK, now that we have that out of the way, let’s start test-

ing the design. I have written a task on this piece of paper.

Take your time to read it. Once you’re ready, you can start

interacting with the design.

There are a few things the facilitator should keep in mind during the

test. First of all, it’s important to avoid influencing the tester. This is

especially relevant when the tester gets stuck and starts asking ques-

tions. Once it becomes obvious that the tester won’t be able to solve the

problem by herself, it’s OK to give a hint (or move on to the next task),

but generally, the facilitator must take care not to lead the tester.

At most, the facilitator can ask questions but, again, should make sure

not to accidentally influence the tester by offering hints on how to use

the design. Avoid terminology seen in the design. The facilitator’s ques-

tions should be as generic as possible, along the lines of “What are you

thinking right now?” or, if the tester is stuck, “Tell me what you see on

that screen.” For more common mistakes made during usability tests,

see Chapter 31, How Not to Test: Common Mistakes, on page 268.

Generally, as long as the tester seems occupied by the interface, it’s

best to remain silent. After all, people using your product at home don’t

have one of your employees looking over their shoulder, constantly ask-

ing them how they feel about your product.

The facilitator should avoid doing anything that may make the tester

feel uncomfortable. Having people observe your errors can already be

stressful; don’t add to the stress. If the facilitator notices that the tester

is getting frustrated, it’s OK to intervene and offer a bit of help, encour-

agement, or even a quick break. Indicators that intervention is neces-

sary are the tester asking for help, the tester starting to blame herself

for problems, or the tester getting stuck. Make sure to avoid sounding

condescending when you offer encouragement or a break.

The computer’s job is to update the prototype based on the tester’s

input. If everything goes as planned, with paper prototype testing this

mainly consists of replacing the current screen with a different screen

or adding and removing Post-it notes of interface elements as needed.

In some cases (for example, when the tester uses the search function),

the computer can also erase things from screens or write text onto

screens. For data-heavy applications, especially if they include a promi-

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=116
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 117

nent search feature, it may make sense to prepare some screens that

you’ve already filled in with data for the path you expect the tester to

take.

Sometimes, the tester takes a route nobody expected. In those cases,

the computer can create a quick mock-up of the screen, or, if the tester

goes too far off track, the facilitator can intervene and either stop the

test or bring the tester back on track.

After the tester has finished the first task, both the facilitator and the

computer can take a minute to ask any questions they might have and

didn’t want to (or could not) ask during the test—for example, “You

hesitated before clicking the Buy button; do you remember what went

through your head at that point?” Personally, I prefer it if the facilitator

doesn’t ask too many questions during the test and instead waits until

the task is finished. This makes it less likely that the facilitator influ-

ences the tester’s behavior. The disadvantage is that the testers often

don’t clearly remember exactly what they did during the test or why

they did something.

Once this is done, give the tester the next task, and have her continue

with the test.

When the last task is over or you’re about to run out of time, you can

finish up by asking the tester for some opinions, if you want. Opinions

are generally not what we’re looking for, but people sometimes come

up with interesting thoughts after a test. For example, you could ask

what the tester didn’t like about the design, whether she would use

your product, and what she would use it for.

It’s a good idea to ask what the tester thought of the whole experience.

As a sort of meta-test, the things people point out after such a test can

often be useful input for improving future tests.

Finally, thank the tester again for her time, and make sure she under-

stands that the results of the test were helpful to you.

Analyzing the Results

Avoid any kind of statistical or formal evaluation. Usability tests pro-

vide qualitative data, not quantitative data. It would be misguided to do

formal analyses of the results of such a test. It would also be unneces-

sary. In fact, even from merely looking at a video of a usability test, it

is usually quite obvious where the big problems are.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=117
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 118

Instead of investing a lot of time into analyzing the results, identify

the problems, prioritize them, let each team member pick the ones

they want to solve, let them come up with possible solutions, make the

changes to the design, and test again as soon as possible (with another

set of testers).

Knowing When to Stop Testing

So, how do you know when your design is good enough and you can

stop doing usability tests?

Basically, you don’t stop testing. Testing is a constant part of the devel-

opment process. During this process, as you iron out the problems

with your paper prototypes and move toward writing real code, you will

also gradually move from testing paper prototypes toward testing run-

ning code. However, paper prototyping will remain a valuable tool every

time you work on a major design change. It’s always easier to test such

changes on paper first and implement them in code only once you’ve

settled on a workable, tested design.

Takeaway Points

• To know how to improve sketches and mock-ups, test them with

real people.

• Tests don’t have to be complex. Show sketches to people, and ask

them simple questions.

• For more extensive tests, define tasks that touch critical areas of

your product. Prepare at least five or six tasks. Each should take

between two and ten minutes. Tasks should not be prescriptive.

• Print out the tasks on individual pieces of paper.

• Recruit three to five testers, and schedule them about two hours

apart.

• You can run the whole test on your own, but it’s best if you focus

on simulating the computer and have another person act as the

facilitator.

• Prepare all the screens people are likely to progress through while

doing your tasks. Screens should not be too crude. People unfa-

miliar with your product should be capable of reading them.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=118
http://

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES 119

• Add the surrounding user interface elements (such as browser

windows around sketches of a website) where necessary. Create

the pop-up elements you might need.

• Do a test run of each task to make sure you’ve prepared all of the

screens and pop-up elements you’re likely to need.

• When the test starts, explain to the tester what is going on. Make

sure to emphasize that you are testing the design, not the tester.

• Make a checklist of everything you want to say, and check off the

points as you make them during the introduction. Don’t forget to

have the tester sign the consent form.

• Explain how the tester should interact with the “computer.” Allow

him or her to draw on top of your prototype.

• During the test, avoid influencing the tester. Don’t make the tester

feel uncomfortable. Intervene when you feel that the tester is get-

ting frustrated.

• After the test, do a short debriefing, and thank the tester for her

help.

Further Reading

Carolyn Snider has written the definitive book on paper prototyping. It’s

called Paper Prototyping: The Fast and Easy Way to Define and Refine

User Interfaces [Sni03]. If you’re serious about paper prototyping, you

need to read it.

Userfocus has a neat article about paper prototyping with links to more

resources.3

3. At http://www.userfocus.co.uk/articles/paperprototyping.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.userfocus.co.uk/articles/paperprototyping.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=119
http://

Chapter 12

Realism
Pick up any reasonably modern device—say, a tablet or a smartphone—

and you’ll quickly notice that a lot of work has gone into making the

user interface appear realistic.

You see shadows, gradients, 3D effects, and textures. On-screen ele-

ments and whole applications are based on real objects. Even the user

interactions themselves are patterned after the real world: you can

touch and move sliders, you can toggle switches, and if you give a scrol-

lable area a push, it keeps scrolling for a bit, steadily slowing down as

if there were actual friction. The book application on your tablet device

resembles an actual book, and the calendar application’s user interface

looks like an actual paper calendar.

Unlike objects in the real world, applications and websites are not

bound by the laws of nature; they can do anything. After all, they are

just a bunch of glowing dots on a screen. If someone picks up a rock

and lets it drop, she knows what’s going to happen. But if she touches

a pixel on a touch screen, there is no telling what kind of behavior the

http://

SYMBOLS 121

programmer imbued it with. For this reason, making an application or

a website look and behave like a real-world object can be a good idea.

That congruity helps people understand how things work—it tells them

that the same laws that govern the real world also apply to products.

It helps people understand what possibilities a user interface element

offers.

Realistic details can help communicate possible actions (also called

affordances, as discussed in Section 9.5, Principle 7: Affordances, on

page 90). The closer the product is to reality, the easier it is for the user

to figure out how it is supposed to work and to form a correct mental

model for using the product.

However, if you’re not careful about how you use realism, you can also

create confusion.

12.1 Symbols

Many of the visual elements in a modern user interface are meant to

stand for actions or ideas. The little pencil isn’t meant as a literal rep-

resentation of a physical pencil; it represents the idea “edit.” The stop

sign isn’t there as a signal to stop a car; it’s meant to alert you to a

potential problem.

What do you suppose this button is trying to convey?

Without any context, users can’t be sure, but a likely explanation would

be that they need to activate the button to take a picture.

What about this button?

Clearly, trying to make the button’s

camera look more like the actual object

doesn’t make it easier to figure out

what the button means. In fact, when

it comes to determining what the but-

ton does, the extra detail might just

increase the user’s confusion.

In his book Understanding Comics [McC94], cartoonist Scott McCloud

points out that adding details to an image makes it less universal. The

button with the realistic camera doesn’t “mean” anything; it depicts a

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=121
http://

SYMBOLS 122

The Case for Symbols

If symbols are so complicated, why use them at all? Wouldn’t it
be easier to just use text labels and omit images altogether?

In the book Information Visualization [War04], author Colin Ware
outlines research on how humans are really good at quickly rec-
ognizing pictures, pointing out:

The fact that visual images are easily recognized
after so little exposure suggests that icons in user inter-
faces should make excellent memory aids, helping
us recall functionality of parts of complex systems.
Icons that are readily recognized may trigger acti-
vation of related concepts in the semantic network
of long-term memory.

In other words, symbols can make a product easier to use.

specific camera. The button without the details, on the other hand, is

archetypal. It doesn’t display a specific camera. Instead, it conveys the

concept “camera.”

At the same time, having too few details makes it more difficult for users

to identify exactly what you’re trying to convey.

As usual, you can find the sweet spot between the two extremes. You

want to be somewhere in the middle of this entirely unscientific graph:

!"#$%&%"$

!"$'()%"$!"$'()%"$

*+&,%-)

Usability testing can help you identify the sweet spot for your particular

images.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=122
http://

VIRTUAL VERSIONS OF REAL-WORLD OBJECTS 123

!"#$%#$&#'()*#+(,-#%(#*./*(0)1.#,#
/2'&$1,-#(34.1%#%(#1*.,%.#,#5$*%),-#
5.*&$(6#("#,#%2$6+#%2,%#.7$&%&#$6#%2.#
.,-#8(-09#5$&),-#*.,-$&:#1,6#3.#,#
+((0#$0.,;#!%#2.-/&#'()*#)&.*&#"(*:#
,#:.6%,-#:(0.-#("#2(8#%(#$6%.*,1%#
8$%2#'()*#,//-$1,%$(6;#<"%.*#,--9#
:)&1,6&#,-*.,0'#=6(8#2(8#%(#
$6%.*,1%#8$%2#,#&.>).61.*?#-((=$6+#
,%#,#1(:/)%.*#(*#@A<#&1*..6#,60#
&..$6+#,#*.,-$&%$1#*./*.&.6%,%$(6#("#
,6#,1%),-#&.>).61.*9#%2.'#1,6#
$::.0$,%.-'#)60.*&%,60#2(8#%(#
$6%.*,1%#8$%2#%2.#,//-$1,%$(6;#
B$:$-,*-'9#8.#,--#=6(8#2(8#%(#)&.#,#
3((=;#B..$6+#,#*.,-$&%$1#
./.&.6%,%$(6#("#,#*.,-C8(*-0#
3((=#(6#,#&1*..6#,--(8&#)&#%(#
$::.0$,%.-'#)60.*&%,60#2(8#
8.#,*.#&)//(&.0#%(#)&.#$%;

Figure 12.1: Representing ideas, or real objects?

12.2 Virtual Versions of Real-World Objects

Although many of the visual elements in a modern user interface stand

for actions, tasks, or ideas, some act as representations of their real-

world versions. Unlike the pencil icon that is actually an edit button,

the knob in a music application doesn’t represent the idea of a knob;

instead, it represents a workable knob element that behaves like a real-

world knob and is used for the same tasks as a real-world knob. Simi-

larly, some e-book applications use a realistic depiction of an open book

as their user interface. The book in this application doesn’t represent

the idea of, say, reading; instead, it is meant to fulfill the exact same

functions as an actual physical book. (See Figure 12.1)

Visual realism—reproducing a physical object to create a virtual version

of a thing that exists in the real world—can be a good idea. It helps your

users form a mental model of how to interact with your product. After

all, musicians already know how to interact with a synthesizer; looking

at a computer or PDA screen and seeing a realistic representation of an

actual synthesizer, they can immediately understand how to interact

with the user interface.1

1. The synthesizer shown previous in the picture is Korg’s iELECTRIBE. Find out more

at http://www.korg.com/ielectribe.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.korg.com/ielectribe
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=123
http://

VIRTUAL VERSIONS OF REAL-WORLD OBJECTS 124

Skeuomorphs

When designers talk about realistic user interfaces, they some-
times call them skeuomorphs—new versions of objects that
retain purely ornamental design details from earlier versions
of the same kind of object. Example skeuomorphs: shoes with
parts that are glued together but have nonfunctional, purely
decorative stitching as well, or postage stamps as user inter-
face decoration in email applications (the screenshot on the
right shows an image-sharing app for the Mac called Courier).∗

Both the stitching and the stamps serve no actual use.

∗. Find out more at http://www.realmacsoftware.com/courier.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.realmacsoftware.com/courier
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=124
http://

VIRTUAL VERSIONS OF REAL-WORLD OBJECTS 125

However, enabling users to immediately form a strong mental model is

not necessarily always a good thing. It means that your users have very

specific expectations of how your product works before they even use it.

In other words, if you go with a realistic visual design, you’re obligated

to ensure that the interaction design is similarly realistic.

You can’t create a book-reader application that uses a realistic depic-

tion of a book as its user interface, only to then add “next” and “back”

buttons to let users move from page to page. If people see a realistic

book on a screen, they expect to be able to leaf through the book by

“flipping” the pages with their fingers. They also expect to be able to see

how far along they are in a book by looking at the layer of pages stacked

up on each side of the book, because that’s how real books work.

Conversely, offering realistic interactions in a nonrealistic user inter-

face is typically not harmful, but chances are people simply won’t dis-

cover these interactions unless you introduce some realism—textures,

for example—that provide hints. Such user interfaces don’t provide

enough affordances.

!
"#
$
%
&'
(
)
%
&"#
*

()%&"#+",'-.+)/%,+"0.'1)#"2.

If you are creating an application or website that represents a real-world

object, going with a realistic visual design and a realistic interaction

design sounds like a winner. However, there are potential problems with

this approach.

Report erratum

this copy is (P1.1a printing, July 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=125
http://

REPLICATING PHYSICAL CONSTRAINTS IN DIGITAL PRODUCTS 126

12.3 Replicating Physical Constraints in Digital Products

Although realistic user interface elements allow people to quickly form

accurate mental models, these elements also restrict what you can do.

In his essay “Overdoing the interface metaphor,” Instapaper developer

Marco Arment pinpoints the issue:2

It’s important to find the balance between real-world repro-

duction and usability progress. Physical objects often do

things in certain ways for good reasons, and we should try to

preserve them. But much of the time, they’re done in those

ways because of physical, technical, economic, or practical

limitations that don’t need to apply anymore.

Usability consultant Bruce Tognazzini agrees, noting that “in the hands

of an amateur, slavish fidelity to the way a real-world artifact would act

is often carried way too far.”3

Korg’s Synthesizer shown earlier looks like a real synthesizer. Here’s a

screenshot of Beatwave,4 a different synthesizer for the iPad:

It doesn’t look like a real synthesizer at all and makes use of an inter-

action model that wouldn’t be possible in the real world.

Here’s another example. A physical calendar exists on a limited number

of two-dimensional sheets of paper. Since the calendar manufacturer

2. Read the essay at http://www.marco.org/441168915.
3. Read his essay here: http://www.asktog.com/readerMail/1999-06ReaderMail.html.
4. Learn more about Beatwave at http://collect3.com.au/beatwave.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.marco.org/441168915
http://www.asktog.com/readerMail/1999-06ReaderMail.html
http://collect3.com.au/beatwave
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=126
http://

REPLICATING PHYSICAL CONSTRAINTS IN DIGITAL PRODUCTS 127

does not know how a particular person uses his time, each day has to

be the same size and include more hours than he probably needs, or

the hours need to be left out entirely, so he can enter his own numbers.

It’s hard to keep more than one view consistent if a user has to keep

track of every change in multiple places, so physical calendars typically

don’t have many different views of the same data.

!"#$ %&'(

!"#$%&'

()*+$%&,

-*$#*+$%&.

(/)0+$%& 1

203$%& 4

5%6)0$%& 7

A calendar on an electronic device is not bound by these restrictions;

you can make it look however you want. For example, you can show

a number of different views of the same data—including views that

mix several different zoom levels so you can see a detailed itinerary

for today, while still seeing how busy you are for the rest of the week.

Instead of trying to imitate real-world objects—and their limitations—

on a computer screen, in many cases you’d do better to find a user

interface that takes advantage of what computers can do. The Windows

Phone design team did a great job of this when it came up with the

Metro design language for Windows Phone 7. The team’s goal was to

create something “authentically digital.” Windows Phone design team

member Mike Kruzeniski writes that “a user interface is created of pix-

els, so in Metro we try to avoid using the skeumorphic shading and

glossiness used in some UIs that try to mimic real world materials and

objects.”5

Of course, in some ways, this is a bit of a false dichotomy. Often, it

makes sense to use design cues from the real world and take advan-

tage of the freedom digital devices offer. Take the Palm Pre’s calendar

5. Read more about it at http://windowsteamblog.com/windows_phone/b/wpdev/archive/2011/02/16/from-transportation-to-pixels.a

Report erratum

this copy is (P1.1a printing, July 2011)

http://windowsteamblog.com/windows_phone/b/wpdev/archive/2011/02/16/from-transportation-to-pixels.aspx
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=127
http://

REPLICATING PHYSICAL CONSTRAINTS IN DIGITAL PRODUCTS 128

application. Its layout somewhat resembles a real calendar, but it also

does things a real calendar could not. For example, it contracts free

time so a person sees only the parts of the day when she’s busy.

Takeaway Points

• Adding realistic details communicates possible actions, or affor-

dances, to users.

• Symbols shouldn’t be too realistic or they will lose their meaning.

• Replicating real objects can help users quickly form correct mental

models.

• Realistic graphics and an interaction design based on real objects

should go hand in hand.

• Sometimes, replicating the constraints of real objects can be lim-

iting in needless ways, since objects on screens are not bound by

physical laws.

• It’s possible to combine realistic elements that help people figure

out how to use your product with advanced features that would

not be possible in real life, but you need to make it obvious where

your product’s realism stops so that people can form a correct

mental model.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=128
http://

REPLICATING PHYSICAL CONSTRAINTS IN DIGITAL PRODUCTS 129

Further Reading

Scott McCloud’s Understanding Comics [McC94] offers insight into how

people “read” images. If you want to learn more about designing icons, I

also recommend Adrian Frutiger’s Signs and Symbols: Their Design and

Meaning [Fru98].

Max Steenbergen talks about the trade-off between attractiveness and

functionalism in his essay “Eye Candy vs. Bare-Bones in UI Design.”6

6. At http://facevalue.virb.com/blog/text/12959219.

Report erratum

this copy is (P1.1a printing, July 2011)

http://facevalue.virb.com/blog/text/12959219
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=129
http://

Chapter 13

Natural User Interfaces
Natural user interfaces (NUIs) are interfaces that ignore the traditional

conventions of GUIs in favor of an interaction design based on the

natural world. Instead of windows and buttons and menus, natural

user interfaces are based on realistic objects and gestures. Instead

of a mouse and keyboard, natural user interfaces rely on multitouch

screens, cameras, microphones, pens, and other devices that allow peo-

ple to interact with the interface directly with their hands and fingers,

with their voice, or by moving their whole body.

!"#

!"##$%&'()%*'+%,*-.$/*

+%,*-$/,)"%'0$1*&'"%'$'

2-*&*3%*&'1*,'".',*4,5$6'

/"##$%&17

$%#

8$,5-$6'91*-'+%,*-.$/*

+%,*-$/,)"%'0$1*&'"%'&)-*/,:'

%$,5-$6'#$%)256$,)"%'".'

-*$6)1,)/'"0;*/,17

&%#

<-$2=)/$6'91*-'+%,*-.$/*

+%,*-$/,)"%'0$1*&'"%'#*,>

$2="-1:'?),=')/"%1'-*2-*>

1*%,)%@'&$,$'$%&'/"##$%&17

The command-line interface makes you remember its strict syntax.

Graphical user interfaces improve upon this by showing you what you

can do at any given time, but you still have to remember what each

thing on the screen actually means. Natural user interfaces are based

on things you already know. In the best case, there’s nothing to remem-

ber—not how to do things (you do them as you would in real life) and

not what things mean (they mean the same thing as in the real world).

Trying to reproduce the real world is an admirable goal, since it makes

learning and using a product easier. But, it also has its problems; I’ve

already pointed out some of them in the chapter on the mental model

(Chapter 9, The Mental Model, on page 77) and in the chapter on realism

(Chapter 12, Realism, on page 120). In this chapter, I want to touch on

some ideas related to natural user interfaces that I haven’t touched on

before.

http://

AVOID GESTURE MAGIC 131

13.1 Avoid Gesture Magic

If you choose gestures, make sure they directly and immediately affect

things on the screen in a familiar way that users understand from the

real world. Gestures work best when the system gives constant feed-

back while the user is interacting with it. In Designing Gestural Inter-

faces [Saf08], Dan Saffer points out:

We’re used to instant reaction to physical manipulation of

objects. (...) When engaged with a gestural interface, users

want to know that the system has heard and understood

any commands given to it. This is where feedback comes in.

Every action by a human directed toward a gestural inter-

face, no matter how slight, should be accompanied by some

acknowledgment of the action—whenever possible and as

rapidly as possible.

This kind of interaction—where the user directly manipulates objects,

rather than giving commands and then watching the results—is called

direct manipulation, a term first used in this context by Ben Shneider-

man, a professor of computer science at the Human-Computer Interac-

tion Laboratory at the University of Maryland.1

Shneiderman notes that allowing people to manipulate objects directly

makes the user interface easier to learn and allows the user to focus on

her actual task, rather than the user interface itself.

Scrolling through text by touching the text and moving the finger, for

example, is an action that yields immediate feedback; as soon as the

user starts moving her finger, the text starts scrolling. If the user does

something wrong, it is immediately obvious that the gesture isn’t work-

ing, and she can try a different approach.2

On the other hand, telling people to draw an S in order to save a doc-

ument is bad. Like Harry Potter invoking a magic spell with his wand,

the user has to finish making the gesture before the action executes.

She receives no useful feedback while she is making the gesture, and if

the gesture fails, it is not obvious why the system did not recognize it.

1. For more, read Ben Shneiderman’s paper “Direct Manipulation for Comprehensible,

Predictable and Controllable User Interfaces.”
2. Though this interaction is not always easily discoverable, it can be made so by making

sure that the last visible element of a list is only partially visible, showing the user that

there is more content further down.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=131
http://

RECOGNIZING GESTURES 132

Furthermore, such “magic” gestures force users to remember which

gestures correspond to which commands and how to execute a gesture.

In that sense, it is no better than a command-line interface, except

that the user is entering commands by moving his fingers on a screen,

rather than by typing on a keyboard.

!
!"#

!"##$%&'()%*'+%,*-.$/*

01*-1'2$3*',"

$%&'()&(*)+%+,'-.%'

/"##$%&14

/0#

5-$62)/$7'01*-'+%,*-.$/*

1,)+%+,'-.&2-,(4'01*-1'

1**'$%&'-*/"8%)9*'

/"##$%&14

10#

:$,;-$7'01*-'+%,*-.$/*

<$/=',"'7*$-%)%8'$%&'

#*#"-)9)%8'/"#67*>'

8*1,;-*1?

Along similar lines, natural user interfaces often avoid “traditional,”

established user interface elements such as visible menus or buttons.

Features are sometimes hidden and accessed in a way that is not easily

discoverable by the user—for example by touching and holding user

interface elements until a menu pops up.

The point is, for natural user interfaces more than for any other type of

user interface, direct manipulation, visibility, and simplicity are impor-

tant. People need to be able to figure out how to interact with the things

on their screen without having to consult a manual.

13.2 Recognizing Gestures

When you observe people using a device with a touch screen, sooner or

later you will see them repeatedly fail at one of the simplest gestures:

swiping. Swiping is used in many applications—most prominently in

book readers to move from one page of the book to the next. If it is so

simple and used consistently across applications, why do people often

fail at executing the gesture properly?

One reason is that different applications implement the gesture slightly

differently; the exact same swipe gesture may be recognized in one

application but not in another. As a result, people may get used to

swiping in one application but then get confused when the same ges-

ture doesn’t work in another.

A more important reason is that there is often no useful feedback telling

the user the exact moment the device “accepts” the gesture. The user

doesn’t know when he can stop the gesture, because he doesn’t know

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=132
http://

RECOGNIZING GESTURES 133

at which point lifting the finger will cancel the gesture and at which

point it will cause the application to jump to the next screen. These

issues aren’t limited to swipes, of course. They affect all gestures. Don

Norman explains the problem like this:3

Gestures lack critical clues deemed essential for suc-

cessful human-computer interaction. Because gestures are

ephemeral, they do not leave behind any record of their path,

which means that if one makes a gesture and either gets no

response or the wrong response, there is little information

available to help understand why.

The solution is not always obvious, but it often boils down to making it

clear to users when the computer has recognized a gesture.

Something as simple as a toggle switch can benefit from this. On a

computer with a mouse, toggling a switch is easy; the user simply has

to click it. There is little room for error.

In a natural user interface, interactions feel gradual and nuanced. Ges-

tures don’t have a clear start and end, so it’s not always apparent when

the user can stop sliding the switch. Giving feedback on when the ges-

ture was successful tells the user when she is “done” and teaches her

how to use the system more efficiently.

Here’s an example from the official Twitter app. It tells people when

they can stop making the gesture:

3. Read his essay on NUIs at http://jnd.org/dn.mss/natural_user_interfaces_are_not_natural.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://jnd.org/dn.mss/natural_user_interfaces_are_not_natural.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=133
http://

ACCIDENTAL INPUT 134

!"#$" %&!"#$"

%&'()!*+,#+-*.+"!','*/'0/#!-.!.&1#&2!

3--4255*+,#+-'0/#"6$.75

'()"!*"+ ,!7*+"

8$$.&1*+9!-.!-3#!*:+.;!<.9"!'44=!

+.-'0/#!0#'9/#!.;+#&"!*+$/>1#!%3'&/#"!

<'&;*+6!?$*-'-*.++##1#1

-#./*""!0")1"! 22!7*+"

@#7#70#&!-3'-!9&#'-!*1#'!).>!3'1!

&#$#+-/)!0#A.&#!A'//*+9!'"/##4B!C#'3=!D!

A.&9.-!-.!;&*-#!-3'-!1.;+=!-..6

!"#$" %&!"#$"

%&'()!*+,#+-*.+"!','*/'0/#!-.!.&1#&2!

3--4255*+,#+-'0/#"6$.75

'()"!*"+ ,!7*+"

8$$.&1*+9!-.!-3#!*:+.;!<.9"!'44=!

+.-'0/#!0#'9/#!.;+#&"!*+$/>1#!%3'&/#"!

<'&;*+6!?$*-'-*.++##1#1

-#./*""!0")1"! 22!7*+"

@#7#70#&!-3'-!9&#'-!*1#'!).>!3'1!

&#$#+-/)!0#A.&#!A'//*+9!'"/##4B!C#'3=!D!

A.&9.-!-.!;&*-#!-3'-!1.;+=!-..6

Creating a simple gestural user interface is not easy, but some guide-

lines may help. Give immediate feedback telling users when a gesture

has been recognized or, if it hasn’t been recognized, why not. Simple,

error-tolerant gestures work best. Straight lines work best. Short ges-

tures work better than long ones. If people need to make gestures that

start or end in specific areas, make these areas large. And in case the

computer recognizes a gesture incorrectly, there should be a simple

way for the user to undo its effects.

13.3 Accidental Input

Some time ago, I switched from a simple pen-and-paper list to an appli-

cation on my cell phone for grocery checklists. Pretty quickly, I noticed

that I forgot to buy two or three items every time I went shopping. Fur-

ther investigation showed that I didn’t really forget these items as much

as accidentally remove them from my grocery checklist. While holding

my phone with one hand and putting an item into my shopping cart

with the other, I would often inadvertently touch the phone’s screen,

thereby accidentally marking an item as “done.”

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=134
http://

CONVENTIONS 135

Similarly, when friends and I played Kinect4 for the first time, the game

would constantly pause for no apparent reason. We finally figured out

that a person behind the players was leaning against a table, and Kinect

interpreted this as its “pause gesture.”

Brushing against a touch screen can delete things. Leaning against a

table can trigger an action in a video game. Speaking on the phone can

activate a nearby device’s voice recognition system. These mistakes are

easily made, but the results are often not immediately noticeable.

Of course, people make mistakes when using graphical user interfaces,

too. They click the wrong button, or they drag when they meant to

click. But in most cases, such mistakes are easily corrected, because

the problem is immediately obvious to the user. Just undoing the action

fixes it.

But when users don’t notice that there is a problem, they can’t undo it.

If the source of the problem isn’t obvious, users can’t easily prevent it

from happening again.

When designing a natural user interface, it’s important to spend some

time thinking about how to prevent accidental input, how to teach peo-

ple what went wrong when something does go wrong, and how to let

users reverse unwanted actions even if they didn’t notice the problem

immediately.

13.4 Conventions

Let’s say you want to give people the security they need to freely explore

your application. To achieve that, you want to implement a simple way

for them to undo their actions.

Designing a user interface for “undo” is easy if you’re working on a

desktop platform like Windows or Mac OS X. There are conventions

and guidelines that explain how to do it. Figure 13.1, on the following

page is a screenshot of BusyCal (at http://www.busymac.com).

If your product has a natural user interface, on the other hand, it’s a

lot harder. There aren’t many conventions or rules that help with this.5

4. Microsoft’s Kinect is a peripheral for the Xbox 360 video game console that enables

users to control games by moving their bodies and arms.
5. If people have expectations about how natural user interfaces should work, they often

come from science-fiction movies, as Chris Noessel and Nathan Shedroff explain in their

presentation Learning From SciFi Interfaces. Watch it at http://vimeo.com/15233780.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.busymac.com
http://vimeo.com/15233780
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=135
http://

CONVENTIONS 136

Figure 13.1: Undoing in BusyCal

You have to come up with your own design, preferably something that

feels “natural.” But in real life, you can’t turn back time and revert to

the way things were a few seconds ago. So, how do you present that

concept in a natural user interface?

Unfortunately, there is no simple, obvious solution to the problem of

designing “natural” user interfaces, but there are some ideas you can

follow:

• If possible, copy real-world behavior. Have the computer respond

immediately and behave in a way that the user will recognize and

understand. That way, people can apply real-world knowledge to

virtual systems.

• Copy what popular applications are doing. Chances are that your

users have already seen these other applications and are familiar

with their approach.

• Implement interactive prototypes of different ideas, and do usabil-

ity tests to see how people react to them.

Until NUIs become more popular, we will have to live with a lack of com-

monly accepted user interface conventions. This makes our job harder,

but fortunately, it also makes it more interesting.

Takeaway Points

• Allow direct manipulation whenever possible.

• Give immediate, live feedback to any user action.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=136
http://

CONVENTIONS 137

• Use gestures that don’t manipulate objects but instead invoke

commands only as shortcuts rather than as primary interactions.

• Make sure people don’t have to learn complex gestures.

• Make sure people don’t have to make precise gestures; be liberal

in accepting user input, but allow them to undo false input.

• Hardware that runs natural user interfaces is especially prone to

interpreting unintended user actions as input. Whenever possible,

prevent accidental input, and provide fallback solutions for when

it does happen.

• Follow what nature does.

• Follow what popular applications do.

• Regularly test interactive prototypes of your user interface with

actual people.

Further Reading

Dan Saffer’s Designing Gestural Interfaces [Saf08] covers some of the

things mentioned in this chapter and many additional topics. Josh

Clark talks about gestures (among many other things) in his excellent

book Tapworthy [Cla10].

Fred Beecher lists a number of useful guidelines for designing natural

user interfaces.6

6. At http://userexperience.evantageconsulting.com/2010/11/ui-guidelines-for-skeuomorphic-multi-touch-interfaces/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://userexperience.evantageconsulting.com/2010/11/ui-guidelines-for-skeuomorphic-multi-touch-interfaces/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=137
http://

Chapter 14

Fitts’s Law
Usability has very few universally accepted laws. Fitts’s law is one of

these few. It basically states that people can hit a target more quickly if

the target is bigger or closer to the user’s mouse cursor (on a desktop

system). The target could be a screen icon users are trying to click with

a mouse cursor or a button they are trying to tap on a touch screen.

!"
!"

The direction of the motion matters. The target object’s size should cor-

respond to the direction of the motion:

!" !"

http://

SCREEN EDGES HAVE INFINITE SIZE 139

Who’s Fitts?

Fitts’s law is named after its discoverer, Paul Fitts, a psychologist
at Ohio State University and later at the University of Michigan.

The law’s name is sometimes written as Fitts’ law, dropping the
possessive s, but “Fitts’s law” seems to be the form most com-
monly used by reputable sources, so I’m going with that ver-
sion in my book. Please don’t send me mail complaining about
it. But here’s my pledge to you: if you manage to change the
Wikipedia article and make the change stick, I’ll change it in
the book, too.

This idea seems pretty straightforward, and indeed, a number of stud-

ies have shown that it is correct.1 The relevant part of the formula used

to calculate the time it takes a user to achieve a task is the index of dif-

ficulty (ID), which basically measures how difficult it is to hit a target.

This part of the formula reads as follows:

!"#$%&'()$*)$%+,($

-".$/)*0)$%+,($)"&)."+('$"*&)*0)1*$"*&
2!)3)4*,56 789

Since the formula for the ID is logarithmic, even small changes in size

can result in comparatively big changes in difficulty if the target is small

to begin with. For larger targets, small changes have little effect.

Although the law itself seems obvious enough, some of its effects may

not be. Let’s look at a few.

14.1 Screen Edges Have Infinite Size

If you think about it, an interface element at the very edge of your

screen is essentially infinite in size if you’re trying to hit it with a mouse.

No matter how far in the direction of the screen edge you move your

mouse, it will never leave the screen and always remain on the target.

Thus, it makes sense to put important elements at the very edge of the

screen. Hitting such elements is much easier because people can just

slam the mouse toward the edge, and it will stop inside the target on

its own.

1. You can find references to some of the research on this topic here:

http://www.yorku.ca/mack/RN-Fitts_bib.htm.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.yorku.ca/mack/RN-Fitts_bib.htm
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=139
http://

RADIAL CONTEXT MENUS DECREASE AVERAGE DISTANCE 140

✦"#$%& !"#$%&

Corners are especially valuable, because they have two infinite edges.

In most cases, this same effect does not apply to touch screens, unfor-

tunately. Touching elements closer to the touch screen’s edge is not

easier than touching elements elsewhere. The areas the user can most

easily reach depend on how she holds the device instead.

Of course, when the user is dragging things, the touch screen’s edge

becomes an easier target again, because it’s not possible to drag things

outside of the screen.

14.2 Radial Context Menus Decrease Average Distance

As mentioned, corners are especially easy to hit, because they have two

infinite edges. There is, however, one point on the screen that is even

easier to hit: the point below the cursor. You don’t have to move the

mouse at all to hit it. Context menus make use of this.

If a menu pops up below the mouse cursor, it makes sense to arrange

the individual menu entries around the mouse cursor to decrease the

average distance to each entry. One way to achieve this is by using a

radial context menu.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=140
http://

RADIAL CONTEXT MENUS DECREASE AVERAGE DISTANCE 141

Many games use radial context menus. Here’s an example from the

LucasArts title Full Throttle:

The Firefox extension easyGestures also uses a radial context menu:

So if they work so well, why aren’t radial context menus used more

often? One reason may be that it’s hard to fit a lot of menu entries into

a small circle. Maya gets around this by using regular menu labels but

arranging them in a circle around the mouse:

A solution retaining the familiar look of traditional context menus yet

still offering some of the advantages of radial context menus would be

a regular context menu with more than one horizontal level. We could

just break up traditional context menus into several smaller groups of

commands and then use the horizontal space to arrange them around

the cursor.2

2. This is the type of context menu I use in Appway, a business process management

system. You can find it at http://www.appway.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.appway.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=141
http://

RADIAL CONTEXT MENUS DECREASE AVERAGE DISTANCE 142

Perceiving Circles and Lines

One of the reasons why radial context menus may not be more
popular can be found in Vision Science [Pal99] by Stephen
E. Palmer. When explaining one model of how humans per-
ceive visual information, he notes that “cells in the first area of
the visual cortex have elongated receptive fields that respond
most vigorously if stimulated by an edge or line at a particular
orientation and position.” In other words, it seems that humans
have special mechanisms for seeing lines. What’s more, we
may be better at seeing horizontal and vertical lines than
lines going in other directions. In Sensation and Perception
[Cor99], Stanley Coren speculates that since humans spend
most of their time in rectilinear environments and are constantly
exposed to vertical and horizontal lines, our brains are biased
toward lines in those orientations.

Indeed, a paper called “Perception of contour orientation in
the central fovea part I: Short lines” by D.P. Andrews notes that
in many experiments, “acuity for orientation was best near the
horizontal and vertical directions.” Other research agrees. For
example, in a paper titled “Human orientation discrimination
tested with long stimuli,” Guy A. Orban comes to the conclu-
sion that “orientation sensitivity is better for a narrow range of
orientations around the principal meridians.”

To make a really long story short, research seems to suggest that
people perceive horizontal and vertical lines more quickly and
correctly than oblique lines or circles.

!"#$

%#&'($)*

+,"-./0&#

1,&

1*"2

304&#

!"#$

%#&'($)*

+,"-./0&#

1,&

1*"2

304&#

Another benefit of this kind of menu is that better usage of horizon-

tal space allows you to show more menu items at the same time. As

a result, you don’t have to hide any menu items inside hard-to-use

submenus.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=142
http://

SMALL TARGETS NEED MARGINS 143

Finally, putting the horizontal menu elements to the left and right of

the cursor doesn’t just decrease distance, it makes the elements easier

to hit, since the cursor is moved toward the left or right, and thus the

direction of the cursor motion is in line with the target area’s longer

dimension.

14.3 Small Targets Need Margins

Since smaller targets are harder to hit, it’s very important that you put

margins between small targets. Otherwise, a user may miss the correct

target and accidentally trigger a wrong action.

!"#$%"&"'" !"#$%"&"'"

In a way, this also applies to keyboard shortcuts. Assigning destructive

and nondestructive keyboard shortcuts to letters that are right next to

each other on the keyboard makes it more likely that people will initiate

a destructive command by accident.

14.4 Sometimes, Smaller Is Better

Since making screen elements larger makes them easier to hit, it some-

times makes sense to make destructive elements smaller to decrease

the probability that a user will hit them unintentionally.

For example, in the Windows 7 Start menu, the “Shut down” button is

smaller than the clickable areas that start applications.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=143
http://

SOMETIMES, SMALLER IS BETTER 144

Takeaway Points

• If you want to make things easier to hit, make them bigger. If you

want them harder to hit, make them smaller.

• Things that touch the screen edge are easier to hit. Corners are

easiest.

• The motion of the cursor should be in line with the form of the

target—that is, if the user is moving the mouse horizontally to hit

a target, making the target’s form horizontal makes it easier to hit.

• Things that are closer to the cursor can be reached by the user

more quickly.

• Leave some room between different clickable things.

Further Reading

For a beautiful illustration of Fitts’s Law, check out Kevin Hale’s essay

“Visualizing Fitts’s Law.”3

3. At http://particletree.com/features/visualizing-fittss-law/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://particletree.com/features/visualizing-fittss-law/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=144
http://

Chapter 15

Animations
Working with a modern computer is an immensely visual experience.

Almost everything we do results in visible, graphical changes on our

screens. When we write a letter, images and characters appear. When

we look for something on the Web, the content of our browser window

changes to represent the web page we’re currently visiting. When we

read email, messages open and close.

Modern user interfaces make use of both very small visual changes (a

single dot next to a message disappearing or reappearing because we

read a message or chose to mark it as unread) and very large visual

changes (everything on our screen changing because we opened a dif-

ferent website). It’s often easy either to miss changes or to be confused

by the magnitude of a change.

Animations, when used properly, can help users understand what is

happening on their computers. Animations can help explain the causal

relationships between two different visual states of a screen, and they

can draw attention to changes that might otherwise go unnoticed. Ani-

mations can even help people form a correct mental model of how a

product works.

15.1 Explaining State Changes

Visual state changes can easily disorient people. If you’re running a

usability test or just teaching somebody how to use a product, often it

doesn’t take long until you hear someone ask, “What just happened?”

http://

DIRECTING USER ATTENTION 146

If you hear somebody say “What did I just do?” or “Where did this go?”

or “How do I get back?” it’s possible that you’ve found a problem that

could be solved with an animation.

Animating the change between the two states makes the state change

and the relationship between the two states obvious.

15.2 Directing User Attention

When people get confused by large state changes, they usually react

by asking themselves what just happened. When they miss small state

changes, their reaction is typically along the lines of “Did I just do some-

thing, or not? Did it take?”

Here’s something you’ve probably experienced. You click a link to down-

load a file, and nothing happens. So, you click again. Still nothing. It

isn’t until you’ve clicked a few more times that you notice that you’ve

downloaded the same file half a dozen times; the computer just didn’t

tell you about it.

!"#$%"&'()*$+ !"#$%"&'()*$+

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=146
http://

DIRECTING USER ATTENTION 147

You can solve problems of this type by animating the state change,

with the goal being to exaggerate the change. When somebody initiates

a download, it’s a good idea to show an exaggerated animation that

guides the user’s eyes from the link to the download window.

!"#$%"&'()*$+ !"#$%"&'()*$+!"#$%"&'()*$+ !"#$%"&'()*$+

Make it impossible for the user to miss what’s going on. Google Chrome,

for example, shows a big animated blue arrow when the user clicks a

download link to indicate that a new download has started and where

to look for it.

In the book Information Visualization [War04], Colin Ware points out

that it may not be motion itself that attracts attention but the appear-

ance of new objects. He writes:

When early man was outside a cave, intently chipping a lump

of flint into a hand axe, or when early woman was gathering

roots out on the grassland, awareness of emerging objects in

the periphery of vision would have had clear survival value.

Such a movement might have signaled an imminent attack.

Of course, the evolutionary advantage goes back much fur-

ther than this. Monitoring the periphery of vision for mov-

ing predators or prey would provide a survival advantage for

most animals. Thus, the most effective reminder might be an

object that moves into view, disappears, and then reappears

every so often.

This behavior is so deeply ingrained in our evolutionary history, it’s

impossible to turn off.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=147
http://

AVOID UNIMPORTANT ANIMATIONS 148

15.3 Avoid Unimportant Animations

As we’ve just seen, movement at the periphery of our vision simply

can’t be ignored. Our attention is naturally drawn to it. If there’s a

tiger sneaking through the bushes, you really, really don’t want to be

the last person to start running away. Unfortunately, the part of your

brain responsible for this behavior doesn’t know the difference between

a tiger and an animated ad.

!"#$%&'(&)*+,&

!"#$%&'%#()"*#"%%+,#-.'%-%+*#/*#*0%#1%2310%24#.5#

.)2#'3"3.+#"3-164#7/+&*#8%#39+.2%:;#<)2#/**%+*3.+#3"#

+/*)2/664#:2/$+#*.#3*;#=5#4.)&'%#%'%2#*23%:#*.#2%/:#/+#

/2*376%#.+#/#$%8"3*%#*0/*#0/"#/+3-/*%:#/:",#4.)#

>+.$#0.$#0/2:#3*#7/+#8%#*.#5.7)"#.+#*0%#*%?*@#*0%#

-.'%-%+*#/*#*0%#%:9%#.5#.)2#'3"3.+#3"#7.+"*/+*64#

*%-1*3+9#)"#*.#6..>#/$/4#52.-#*0%#*%?*;

=+#.*0%2#$.2:",#35#*0%2%&"#/#*39%2#"+%/>3+9#*02.)90#

0%#8)"0%",#4.)#2%/664,#2%/664#:.+&#$/+*#*.#8%#*0%#

6/"*#1%2".+#*.#"*/2*#2)++3+9#/$/4;#A+5.2*)+/*%64,#

0%#1/2#.5#4.)2#82/3+#2%"1.+"386%#5.2#*03"#8%0/'3.2#

:.%"+&*#>+.$#*0%#:355%2%+7%#8%*$%%+#/#*39%2,#/+:#

/+#/+3-/*%:#/:;

This kind of animation can drive people mad and make it impossible

for them to focus on the actual content.

Use animation only if you truly want to interrupt your users and force

them to look at something and if the animation is used to convey rele-

vant information. Otherwise, avoid it.

15.4 Help Users Form Suitable Mental Models

Animations can be used to influence the user’s mental model of your

product. The information that animations convey should be consistent

with the rest of the user interface. For example, if an animation replaces

the screen content by sliding a new screen in from the right, then the

back button should have an icon of a left-pointing arrow. Otherwise, the

icon is at odds with the animation; the two imply conflicting models.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=148
http://

HELP USERS FORM SUITABLE MENTAL MODELS 149

!
"#$%&$'

!
(#$%&$' ((((((((((('

)
)&*+

)
)&*+

Here’s an example from the iPhone app Kinetic:1

The icons are consistent with the animation. Arrows that point to the

right move the user to the right, and vice versa.

My Android phone’s home button is one example where the animation

and the actual behavior are inconsistent. If I’m in an application and

hit the home button, the animation implies that I’m moving to the right,

even though the home button’s icon—a house—doesn’t imply any spa-

tial relationship.

Indeed, if I then hit the back button, whose arrow icon implies that it

should move me back to the left, nothing happens.

1. It’s an app that helps you keep track of your running. You can learn more at

http://wearemothership.com/kinetic.

Report erratum

this copy is (P1.1a printing, July 2011)

http://wearemothership.com/kinetic
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=149
http://

LEARNING FROM CARTOONS 150

In newer versions of the OS, Google has replaced the home button’s

animation. This simple fix makes it less likely that people will think

that the back button works for jumping back into an application after

leaving it via the home button.

Think about the user’s mental model. Use animations wisely to rein-

force correct mental models and dissuade incorrect ones.

15.5 Learning from Cartoons

Cartoons have a hundred years of development behind them. Cartoon

animators have come up with a complex visual language that even

small children can easily understand. We can follow cartoons even if

they display a large number of objects or characters at the same time,

each exhibiting intricate behaviors. In their paper “Animation: From

Cartoons to the User Interface,”2 Bay-Wei Chang and David Ungar point

out a number of lessons we can learn from cartoons:

Solidity

In the real world, objects are solid: they have mass, inertia, weight,

and balance. These are attributes that people understand intuitively.

By replicating these attributes in your animations, it’s easier for users

to figure out what’s going on.

Let users interact with objects instead of showing outlines or other

placeholders during animations. For example, when people drag and

drop emails in some applications, these apps show only a single icon

below the mouse cursor (instead of the dragged messages). This breaks

the impression that emails are solid “things” similar to a paper letter.

2. You can read the paper at http://research.sun.com/techrep/1995/smli_tr-95-33.pdf.

Report erratum

this copy is (P1.1a printing, July 2011)

http://research.sun.com/techrep/1995/smli_tr-95-33.pdf
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=150
http://

LEARNING FROM CARTOONS 151

To make objects appear to be solid, there should be no perceptible lag

in your animations, and movements should seem smooth. In his paper

“Principles of traditional animation applied to 3D computer animation,”

Pixar’s chief creative officer John Lasseter notes:

As the speed of the action increases, so does the distance

between positions. When the distance becomes far enough

that the object does not overlap from frame to frame, the eye

then begins to perceive separate images.

As a rule of thumb, if an object moves more than half its size between

frames, stretching the object in the direction of motion or adding motion

blur to the animation allows users to see the object as solid, even

though it actually jumps from place to place.3

In the real world, solid objects never just pop into existence out of

nowhere. Chang and Ungar recommend that to maintain the illusion

of solidity, objects should fly in from offscreen, grow from a point, or

fade in (and exit the screen the same way).

3. As Keith Lang, COO and co-designer of Skitch points out,

motion blur can also make animations more aesthetically pleasing:

http://www.uiandus.com/blog/2009/7/2/blur-the-new-black.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.uiandus.com/blog/2009/7/2/blur-the-new-black.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=151
http://

LEARNING FROM CARTOONS 152

Exaggeration

You can take liberty with what’s possible in reality to make what’s hap-

pening on the screen more obvious. Exaggerating the important parts

of an animation can sometimes make the animation feel more realistic.

Similar to taking a step back before taking a leap, it can be a good idea

to start an animation with a small movement that is contrary to the

main movement of the animation. This is a specific form of exaggeration

called anticipatory movement.

John Lasseter notes “without anticipation many actions are abrupt,

stiff and unnatural.”

Acceleration and Deceleration

Real objects don’t start out at a specific speed; they have to accelerate

to that speed. So, it makes sense to start animations slowly, speed them

up, and then slow them down again toward the end (sometimes called

ease-in and ease-out). This logic also applies to growing and shrinking

animations.

Similarly, real-world objects rarely travel in straight lines. When you

throw a ball, it flies in an arc. For some kinds of animations, it makes

sense to mimic that behavior. For example, when you buy a Mac appli-

cation in Apple’s App Store, it flies into the Dock in an arc.

Finally, real-world objects such as springs sometimes overshoot their

target and bounce back. Replicating this kind of behavior can also rein-

force the physicality of an object.

After introducing the first iPhone at the Macworld Conference & Expo

2007 keynote and showing the device’s smooth, bouncy scrolling, Steve

Jobs told the following little anecdote:4

I was giving a demo to somebody a little while ago, who had

never seen this before, inside Apple. I finished the demo, and

he told me this. He said, you had me at scrolling.

Paying attention to these kinds of details turns a merely acceptable,

workable device into a delightful experience.

4. You can watch it here: http://www.apple.com/quicktime/qtv/mwsf07/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.apple.com/quicktime/qtv/mwsf07/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=152
http://

LEARNING FROM CARTOONS 153

User Interfaces Are Not Cartoons

It’s important to remember that the goal is not to turn the user interface

into a cartoon but to make it easier for people to understand how it

works by using the same kinds of tools that cartoons use.

Don’t use these tools, and animations in general, just because they

look cute or flashy. Android, for example, provides animated home-

screen wallpapers. Although it would be possible to use this feature

in meaningful ways, in practice most of these wallpapers just serve as

a distraction and do not show any useful information or provide any

useful functionality.

It’s sometimes OK to use animations to make a product more fun to

use, even though the animations provide no tangible benefit. However,

keep in mind that animations are distracting. Attempting to make a

product more fun at the expense of its usability typically doesn’t work

(see Section 26.4, Fun vs. Usability, on page 231 for more thoughts on

that).

Takeaway Points

• Use animations to draw attention to small or otherwise unnotice-

able changes.

• Use animations to make large state changes understandable.

• Animations, especially at the edge of vision, are attention magnets.

Don’t abuse them; it’ll drive people crazy.

• You can use animations to reinforce the user’s mental model of

your product.

• Cartoons have a visual language for animation that we can use:

objects should be solid and accelerate and decelerate realistically,

and movement should sometimes be exaggerated.

Further Reading

Information Visualization [War04] by Colin Ware has some information

on animations. Bay-Wei Chang and David Ungar’s paper “Animation:

From Cartoons to the User Interface”5 is also a great resource.

5. It can be found at http://research.sun.com/techrep/1995/smli_tr-95-33.pdf.

Report erratum

this copy is (P1.1a printing, July 2011)

http://research.sun.com/techrep/1995/smli_tr-95-33.pdf
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=153
http://

LEARNING FROM CARTOONS 154

Markus Weber talks about using animation in user interface design

in his blog.6 Keith Lang has written about using animation in user

interfaces.7 Max Steenbergen also tackles this topic in his blog.8

And finally, John Lasseter’s paper “Principles of traditional animation

applied to 3D computer animation” contains invaluable information on

how to use animation.9

6. At http://www.centigrade.de/en/blog/article/animations-in-user-interface-design-essential-nutrient-instead-of-eye-candy/.
7. At http://www.uiandus.com/blog/2009/2/1/interfaces-and-animation.html. He also points out

that people may be blind to certain kinds of changes in his essay “The Art of Expectations”

at http://www.uiandus.com/blog/2008/8/25/the-art-of-expectations.html.
8. At http://facevalue.virb.com/blog/text/12641234.
9. You can find it at http://portal.acm.org/citation.cfm?id=37407.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.centigrade.de/en/blog/article/animations-in-user-interface-design-essential-nutrient-instead-of-eye-candy/
http://www.uiandus.com/blog/2009/2/1/interfaces-and-animation.html
http://www.uiandus.com/blog/2008/8/25/the-art-of-expectations.html
http://facevalue.virb.com/blog/text/12641234
http://portal.acm.org/citation.cfm?id=37407
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=154
http://

Chapter 16

Consistency
Consistency is a pretty popular word in the area of user interface criti-

cism; when we dislike user interfaces, we often attribute our dislike to

a “lack of consistency.”

But what is consistency?

Merriam-Webster says that consistency is the “agreement or harmony

of parts or features to one another or a whole.” Simply put, when we say

that a user interface isn’t consistent, we mean that it isn’t in agreement

with its host system or with popular applications on its host system or

that different features in a product don’t agree with each other. We

mean that it is different from other products we already know or that

different parts of a product work differently.

16.1 Identifying Archetypes

But what kinds of differences are we talking about?

Quite often, we are talking about appearance. Things don’t look quite

right. Buttons in an application don’t look quite like the host system’s

default buttons. Windows look a bit different from each other. Scroll

bars look slightly strange.

Visual inconsistencies are very obvious, so people notice them easily.

However, this focus on how things look is misguided. Often, when it

comes to usability, appearance doesn’t matter all that much. Humans

are not stupid. You don’t need to make elements look exactly the same

in order for them to be immediately identifiable. For example, even

though they look quite different, all of these buttons are clearly identi-

fiable as buttons:

http://

BEHAVIORAL CONSISTENCY 156

!"#$ %&

'"()$*+,-.$,/0$1222

3-,4"/222

566222

(I’ve written more about how much detail a user interface element needs

to be easily identifiable in Chapter 12, Realism, on page 120.)

Elements of the same type don’t need to look exactly the same. They

just need to be immediately recognizable for what they are.

You can easily evaluate whether visual consistency is an issue with a

simple usability test: just show people pictures of your user interface

elements (preferably in the context of your whole user interface) and

ask them what they are. If users have no problem identifying items for

what they are, you don’t have to worry about visual consistency.

Or, as Ralph Waldo Emerson put it:

A foolish consistency is the hobgoblin of little minds, adored

by little statesmen and philosophers and divines. With con-

sistency a great soul has simply nothing to do.

So, let’s ditch the foolish consistencies and move on to the areas where

consistency actually matters.

16.2 Behavioral Consistency

Being good at recognizing user interface elements for what they are can

cause a bit of a problem for people: they tend to apply their existing

mental models liberally. The more a user interface element looks like

something users already know, the more they will expect it to work like

the thing they already know.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=156
http://

BEHAVIORAL CONSISTENCY 157

This problem often arises with custom versions of common user inter-

face elements, which you may sometimes need to create. Because peo-

ple will apply their existing mental models to your custom elements,

you need to ensure that these elements behave exactly like the com-

monly used elements. If you violate their expectations, you will make

them confused, frustrated, and maybe even angry.1

For example, the windows in Adobe Photoshop running on a Mac look

almost exactly like real Mac windows, but they are not.

Adobe implemented its own custom windows. Unfortunately, in doing

so, Adobe got some behavior wrong. For example, when a user clicks

the little close button on a regular Mac window, the button gets a little

bit darker to indicate to the user that he has hit the button. This doesn’t

happen with Adobe’s buttons. It’s just a small difference, a little detail

Adobe didn’t get right, but it causes a tiny bit of confusion every time

the user notices it and wonders for a fraction of a second just what

exactly has gone wrong.

If you don’t want your custom versions to behave like a regular user

interface element, they need to look very different from the regular

one—so different, in fact, that your users won’t identify your element

as a member of the regular type of element and thus won’t apply their

mental model of the element to your custom, inconsistent version of

it. This is pretty hard to achieve. Scroll bars, windows, buttons, and

menus, for example, always kind of look like scroll bars, windows, but-

tons, and menus. It’s almost impossible to make your custom scroll bar

1. If you do decide to reimplement existing user interface elements, don’t forget to also

take care of their accessibility features. These may not always be obvious to you, but

forgetting them means that people with certain disabilities may not be able to use your

custom user interface element.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=157
http://

BEHAVIORAL CONSISTENCY 158

so different from the commonly used one that people won’t try to apply

their expectations of how scroll bars work to your version.

It’s best to stick with common user interface elements and not change

their standard behavior.

Takeaway Points

• People are good at recognizing user interface elements, so user

interface elements don’t all need to look exactly the same.

• Things that do look similar need to do exactly the same thing, in

exactly the same way, since people will try to apply their existing

mental models to it.

• If you must create a version of a commonly used interface ele-

ment that behaves differently, make sure that it looks different

enough so that people won’t form false expectations. You don’t

want to frustrate your users by creating a user interface element

that doesn’t fit the behavioral model of a common, similar-looking

element.

Further Reading

In Getting Real [FHL09] from 37signals, the authors succinctly note

that “it’s OK to be inconsistent if your design makes more sense that

way.”

Joel Spolsky touches upon consistency in User Interface Design for Pro-

grammers [Spo11].

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=158
http://

Chapter 17

Discoverability
Designers use Discoverability to mean whether users will be able to find

and use a feature. Discoverability is important—from the user’s point

of view, there’s no difference between a feature she can’t find or can’t

use and one that doesn’t exist.

17.1 What to Make Discoverable

Discoverability often involves a trade-off. Make one thing more discov-

erable, and it may detract from other things. So, you want to start by

deciding which features to make more discoverable and (conversely)

which parts of your product you can make less discoverable. Some-

times it’s even OK to hide a feature if you know that the people who

require that feature will be able to find out how to use it.

For example, a lot of browsers ship with features used only by web

developers. These features are turned off by default, but the target

audience is assumed to be capable of finding out that the features exist

and knowing how to activate them. As Figure 17.1, on the next page

shows, in Safari this involves opening the settings window, switching

to the Advanced tab, and checking the “Show Develop menu in menu

bar” checkbox.

Once you’ve decided which features must be easily discoverable and

which ones can be relegated to the background, you need to assign

weights to the important features. You can’t make every feature equally

obvious.

http://

WHAT TO MAKE DISCOVERABLE 160

Figure 17.1: Enabling developer tools in Safari

Let’s look at some examples. Here’s the basic structure of three popular

websites:

!"#$%&'(&)#*(+,-'"(# ."/#&)#

0+(123'&0"3'2+4

!"#$&'(&

0+"3"#/

0+(123'&)#*(+,-'"(#

0+(123'&5-'4/(+"4% .266(+'

0"3'2+4&7*

8494%'&0+(123'

849&0+(123'&:(;"4%

0+(123'&

5-'4/(+"4% 0+(123'&0"3'2+4%

.4-+3< 5-+'

37signals’ Basecamp home page puts the greatest emphasis on acquir-

ing new customers; plans, pricing, and features take center stage. Less

weight is given to things like support and the “Sign in” link.

Apple puts its most recent product in the spotlight. Some room is given

to a navigation bar that allows people to reach other products; very little

room is given to other elements.

Amazon puts a lot more weight on navigation, providing a lot of room for

product categories and a search feature. Since Amazon sells so many

different items, making navigation and search easily discoverable is the

primary goal of the home page.

You should start by looking for important features and make it a priority

to make them discoverable. You should also think about a feature’s

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=160
http://

WHEN TO MAKE THINGS DISCOVERABLE 161

target audience. If the target audience is experienced with the subject

matter, it may be OK to make the feature a bit less discoverable and

trust the user’s ability to find it.

In 37signals’ and Apple’s case, the designers probably assumed that

the features aimed at existing customers can be a bit less obvious, since

these people already know where to find them. Potential new customers

have less experience with the site, so features aimed at them are given

more weight.

Then, there are cases where you can make features less discoverable

because they’re not strictly essential and because people are likely to

find out about them in some other way. For example, “pinching” an

image on an iPhone to zoom in or out is not easily discoverable, but

you don’t need to know about this feature to use an iPhone. Plus, the

feature is so compelling that people who know about it tell people who

don’t, creating an avenue for discovering the feature that is external

to the application itself. The “pinch-to-zoom” feature is so simple that

people easily remember it once they’ve seen it, and it works consistently

in many different apps. So, once people have learned to use it, they’re

unlikely to forget that it exists.

To recap, you can make a commonly used feature less discoverable if

• People can get along just fine without knowing that the feature

exists.

• They’re likely to find out about the feature even if it’s not directly

discoverable.

• The feature is compelling, simple, and used consistently so people

will remember it once they’ve learned it exists.

17.2 When to Make Things Discoverable

Not every feature of your product is relevant at all times. So after you’ve

decided which features should be discoverable, you should decide when

they need to be discoverable.

One way to do this is to use contextual or modal user interfaces. Let’s

see how this could work for a vector graphics editor. Your users prob-

ably want to be able to rotate objects, so you need to add a “Rotation”

property to your toolbar or inspector window:

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=161
http://

HOW TO MAKE THINGS DISCOVERABLE 162

!"#$#%"&' ()

But now you need a toolbar or an inspector window. And you need

to make sure that the “Rotation” property is disabled when the user

hasn’t selected anything. In other words, you’re adding user interface

elements that are cluttering the user interface, regardless of whether

the user has even selected something.

Another approach would be to assume that the “Rotation” property

needs to be discoverable only once the user has selected the object.

One approach would be to include a set of transient properties stored

in a small pop-up element that appears only when the user selects an

object that supports these properties.

!"#$#%& '(

(Of course, to determine whether they work, we need to test these kinds

of ideas with users.)

17.3 How to Make Things Discoverable

So far, we’ve considered the importance of the things in your product,

and we’ve thought about when they are important. Now, let’s take a

look at what you can do to make these things discoverable.

Spatial Properties

You can use properties such as size, position, form, and color to make

individual elements of your application more (or less) discoverable. The

bigger something is, the more easily discoverable it is. By putting things

at the top or down the left side of a screen or window, you make

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=162
http://

HOW TO MAKE THINGS DISCOVERABLE 163

Color

Recently, there’s been a bit of a trend toward using less color
in user interfaces. Apple’s iTunes, for example, has replaced its
colored icons with monochrome ones.

From a usability perspective, using color is beneficial. Colors
make things easier to perceive. Our brains are really good at
doing tasks such as “find the green icon on this screen.” In
Information Visualization [War04], Colin Ware notes that color
is “preattentively processed,” meaning that we identify color
before we give it conscious attention. In other words, when we
look at a user interface, we can find and identify user interface
elements with a specific color really quickly and easily.

Do use color (for example, to make it easier to differentiate
between icons), but don’t rely solely on color. Not everybody
can see color perfectly.

them more discoverable.1 Certain colors (most notably red) make things

appear more important. Conversely, you can use these properties to de-

emphasize things you consider to be less important but still need to put

somewhere visible.2

User Expectations

Once people have used your product for a while, they will get a feel

for where the important parts are. Be consistent. Use the same kind

of arrangement for every screen. Don’t put the important things on the

left of the screen in one layout and on the right in the next.

Similarly, if the user has an established mental model of how your prod-

uct works, she probably has pretty strong opinions on where things

should be. Often you can use this expectation to make things more (or

less) discoverable. (For more on this topic, read Chapter 9, The Mental

Model, on page 77.)

1. Jakob Nielsen calls this the “F-Pattern” because in eye-tracking studies, the heat

maps created by measuring what people actually focus on when reading websites

looks like a giant F superimposed over the user’s screen. You can see examples at

http://www.useit.com/eyetracking.
2. Neutral colors are also used for user interfaces in content creation applications. We

don’t want a colorful user interface to influence how people perceive their pictures in,

say, a photo-editing tool.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/eyetracking
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=163
http://

HOW TO MAKE THINGS DISCOVERABLE 164

Search

When people can’t discover things immediately, they may turn to your

product’s search feature, provided they can find it. To help your users

with search, you need to do these three things:

• Provide a search feature.

• Make the search feature itself discoverable.

• Make sure the search feature returns useful results.

The last point is often the hardest. Fortunately, you may be able to draw

from the card sorts you did way back in Chapter 7, Hierarchies in User

Interface Design, on page 58. This help comes in the form of feedback on

terminology. What kinds of words did people use back then? If people

put these words into your search engine, will they get the results they

expect?

Another way of improving search results is to pay attention to how

people use search once it’s available to them. Especially pay attention

to search terms that return zero or few results or to situations where

the user searches for something, the site returns results, but the user

doesn’t click any of them.

Animations

Animations are your most powerful tool for drawing a user’s attention.

Use them wisely and sparingly; never use animation for things that are

visible over longer periods of time. You can read more about animations

in Chapter 15, Animations, on page 145.

Takeaway Points

• Decide which things need to be easily discoverable and which

ones can be tucked away somewhere. Then, assign weights to the

things that you decide to make discoverable, and design accord-

ingly.

• Keep in mind that not every feature has to be available at all times.

Different things can be discoverable at different times.

• Use your visual layout, a good search function, and (in rare cases)

animations to make things discoverable.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=164
http://

Chapter 18

Don’t Interrupt
In his book Flow: The Psychology of Optimal Experience [Csi02], psy-

chology professor Mihály Csíkszentmihályi explained that when people

are completely absorbed by an activity they are doing, they reach a state

of total focus that he calls flow. When people talk about “being in the

zone,” they are often talking about that state of complete, single-minded

immersion in a task.

It usually takes us a bit of time to “get into the groove,” and it’s often

easy to pull us out again. Maybe I’m completely immersed in writing

this chapter, but suddenly—bing—goes the computer. I think, “New

email!” and then spend the next five minutes reading the new message.

Just like that, I’m out of the zone.

Interruptions are expensive. They don’t just cost the time it takes some-

body to deal with them. They also cost the time it takes to get back into

whatever they were doing when you interrupted them—if they can do

that at all. A recent Microsoft study showed that after being interrupted

by an incoming email or instant message, it took Microsoft workers an

average of 15 minutes to return to their previous tasks. People were

easily distracted, and it generally took them a long time to recover from

each distraction.1

So, interruptions cost time. They are also annoying and sometimes even

a bit rude. After all, an interruption is nothing but an outside influence

that stops people from doing what they’re currently doing.

Whenever possible, you should not interrupt your users. Here’s how to

do that.

1. Steve Lohr summarizes some of the research in a New York Times article at

http://www.nytimes.com/2007/03/25/business/25multi.html.

http://www.nytimes.com/2007/03/25/business/25multi.html
http://

MAKE DECISIONS FOR YOUR USER 166

18.1 Make Decisions for Your User

If there is a decision you can make for your users, make it. Don’t check

with them just to be sure.

For example, every time I plug a card reader into my Windows com-

puter, I get this message:

How likely is it that I want to use the 4GB memory card in my card

reader as a backup? How many people click the “Import pictures and

videos using Windows” button in this window? Why not just default to

opening the card’s window, instead of interrupting people with a set of

choices that most people probably will never even read?

The following happens a lot when I use my iPhone: I’m in an app, and

I’m making a specific choice, such as hitting Play in a video player or

tapping a link in a Twitter client. But instead of simply doing what I

said, the app throws up a screen offering me additional choices. Fig-

ure 18.1, on the next page shows two examples.

Air Video2 asks people where they want the movie to start after they hit

Play. Twitter client Osfoora3 asks people whether they want to view the

web page or add it to Instapaper after they tap a link.

Both of these interruptions are not strictly necessary. Instead, just

make the decision for people. Go with the most likely option, and offer

them a way of changing their decision.

2. Air Video is a brilliant app for streaming video to iOS devices. You can find out more

at http://www.inmethod.com/air-video.
3. Osfoora is a really neat, beautiful Twitter client you can find at http://www.osfoora.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.inmethod.com/air-video
http://www.osfoora.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=166
http://

FRONT LOAD DECISIONS 167

Figure 18.1: Don’t make me choose

For example, after a user selects to play a movie, simply start from the

last play position. It’s probably what he wanted, and if it isn’t, he will

easily be able to jump back to the beginning of the movie. Similarly,

if he taps a link, simply open the link. It’s probably what he wanted.

Then, offer a way of adding open web pages to Instapaper.

18.2 Front Load Decisions

In some cases you have to ask the user to make a decision. For those

instances, it’s a good idea to front load decisions as much as possible

so the user can make them all at once and then be left alone. For

example, it’s best to allow users to enter software-licensing information

at the beginning of the installation process and not stop the installation

in the middle to ask them for their licensing data.

Here’s another example of an unnecessary interruption, this time from

OpenOffice.org:

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=167
http://

INTERRUPT USERS ONLY FOR TRULY URGENT DECISIONS 168

Instead of interrupting the user during a search, simply add an option

to the search dialog, the way BBEdit4 does.

Or, best of all, don’t even ask the user. Simply default to wrapping

around, but show a short animation when the search wraps so that

people can stop their search when they don’t want to wrap around.

18.3 Interrupt Users Only For Truly Urgent Decisions

You should never interrupt a user

just to inform her that something

has happened.5

4. Find it at http://barebones.com.
5. Aza Raskin, Mozilla’s former creative lead for Firefox, says that decisionless interrup-

tions have “an efficiency of 0 percent,” because the user can do only one thing; the user

is never giving the computer any new information, regardless of how he reacts to such

an interruption. Read more at http://barebones.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://barebones.com
http://barebones.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=168
http://

INTERRUPT USERS ONLY FOR TRULY URGENT DECISIONS 169

What people are actually seeing in those cases is something like this:

�"#$%&'(&)&*%&+','-&.'/&0/'1&22,3&4

5$1'6"()*-3'!"#'/"'7/"8'9:,/'!"#$(&';"*-3<'=".'>&,+'?:*2<

5'(&)&*%&'+"@&-2'"A'-&.'/&0/'1&22,3&2'&%&(B'+,B4'7/"8'*-/&((#8/*-3'1&<

If the information is not particularly important, don’t show it. If it is

important but no immediate action is required, show the information

in a way that does not interrupt your users. For example, you could

use a nonmodal,6 nonintrusive way of alerting them. Here’s how HP’s

webOS shows new messages to the user:

When a new message arrives, the small black strip with a little message

icon slides up from the bottom of the screen. Touching the strip shows

some more information about the message. Touch the message itself,

and it opens inside its app.

6. If it’s nonmodal, it doesn’t prevent the user from doing something else. For more

about modes, see Chapter 20, Modes, on page 175.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=169
http://

INTERRUPT USERS ONLY FOR TRULY URGENT DECISIONS 170

Interruptions Are Rude

Unless you really have no other choice than to ask your users for their

input and unless you really require that information right now, don’t

interrupt them. It’s just rude.

Takeaway Points

• Don’t interrupt people. It makes them less happy and less produc-

tive, and it’s not polite.

• Make decisions for your users, rather than asking them questions.

• If you can’t make decisions for your users, ask everything you

need to know once, rather than interrupting them every time you

come up with a new question you need to ask.

• If there is something you really need to tell people, at least make

sure it’s as nonintrusive as possible so that they can deal with it

in their own time frame.

Further Reading

Flow: The Psychology of Optimal Experience [Csi02] by Mihály Csík-

szentmihályi explains how important it is for people to be able to focus

on a task without being interrupted.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=170
http://

Chapter 19

Instead of Interrupting,
Offer Undo

Have you ever accidentally done something stupid while using a com-

puter and the computer warned you about it, but you just clicked the

warning away, because you were thinking, “I know what I’m doing. Get

out of my way, computer!”?

It happens to me all the time. We get so used to these warning dialogs

that we often don’t even consciously notice them anymore. “Are you

sure you want to...?” Yeah, yeah, I wouldn’t have clicked the button if I

wasn’t sure, would I? “ Do you really want to delete these...?” Yes. Yes,

I really wanted to. “You will not be able to recover...” Yes! Yes! Yes! No,

wait, what did I just do?

Eventually, we reflexively click warning dialogs away. Psychologists call

this habituation; most of the time, dialog boxes are an annoying distrac-

tion, just background noise, so we get in the habit of ignoring them.

The one time we actually do something wrong, by the time we notice

our mistake, we’ve already clicked OK.

http://

LET USERS UNDO THEIR ACTIONS 172

!"#$%&'"$(%)*&%#$"%#+*&,%,*%-*%'*.",/012%-#12"$*&'3%45"#'"%,#6"%#%.*."1,%
,*%7*1'0-"$%8/",/"$%)*&%$"#55)%8#1,%,*%-*%,/0'3

9.:*$,#1,%;#$1012

<)%2**-1"''(%,/#16'%=*$%:$">"1,012%."%=$*.%-*012%,/0'? @#/(%9A.%'&$"3

B>"1%,/*&2/%)*&%#$"%8*$6012%*1%'*.",/012%0.:*$,#1,(%9A.%2*012%,*%01,"$$&:,%
)*&%1*8%+"7#&'"%+5#/%+5#/%+5#/%+5#/%+5#/%+5#/%+5#/%+5#/%+5#/%+5#/%+5#/%+5#/3

C11*)012%91,"$$&:,0*1

;/#,">"$(%5"#>"%."%#5*1"(%9A.%8*$6012%/"$"?

Warnings are good for shifting the blame to the users—after all, they

should have read the warning, right? They are not good, however, for

preventing problems.

Fortunately, in most situations, we can provide a better solution than

a warning dialog.

19.1 Let Users Undo Their Actions

Instead of forcing people to deal with constant warnings, undo offers a

simple, transparent solution. Unless users accidentally do something

unintended, undo is invisible. Once an accident happens, it’s easy to

go back.

One crucial note here is that people need to trust your implementation

of undo. That means you have to cover as many actions as possible and

offer multilevel, “deep” undo, which allows the user to undo more than

just the most recent action. If undo doesn’t work reliably or doesn’t go

back far enough, people will lose trust in your application. They will

hesitate to explore new features, they will be afraid to use features they

know, and eventually they will become unhappy with your application

altogether.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=172
http://

TEMPORARY UNDO 173

Trust

Allowing people to trust your application is one of your most
important tasks. A reliable undo function is just one aspect of
this. You also need to make your application predictable and
stable.

I once worked on a product that shipped with a very destruc-
tive bug. A specific feature of the application would destroy
user data. Even though we fixed the problem very quickly,
usability testing showed that people who were affected by the
problem would avoid using that specific feature years after the
problem had originally occurred.

Cutting down on warning dialogs in favor of undo has the added advan-

tage that people will be less likely to automatically click away actual

warning dialogs, because they won’t be quite as used to them.

19.2 Temporary Undo

There are some situations where implementing undo is impossible for

technical reasons. You can’t let the user undo sending an email; once

it’s sent, it’s out of your control. Similarly, while you can delete a tweet

once it’s sent and unpublish a blog post once it’s published, that’s not

quite the same as preventing the action altogether.

One solution to this is to delay the action and allow the user to undo

it temporarily. Instead of sending the mail right away, show an undo

button for a few seconds. If the user undoes the action, don’t send the

mail. Otherwise, remove the undo button and send the mail. Gmail

implements this in its web interface:

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=173
http://

TEMPORARY UNDO 174

Graphic and interaction designer Clayton Miller calls this “delayed pas-

sive confirmation,” because the user passively confirms the action by

not stopping it. Here is his mock-up of how this might look in a desktop

application:1

Takeaway Points

• Warning people before they do something potentially dangerous

doesn’t work, because people ignore these warnings.

• Instead, allow people to undo their actions so that they can revert

accidents.

• If it is not technically possible for you to offer undo, at least delay

the potentially dangerous action so that people can prevent it from

happening even after issuing the command.

1. You can read more about his ideas at http://iuface.net/7u8.

Report erratum

this copy is (P1.1a printing, July 2011)

http://iuface.net/7u8
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=174
http://

Chapter 20

Modes
In 1985, when writing Apple’s Mac developer documentation called

Inside Macintosh [Ros86], author Caroline Rose deemed modes to be

important enough to mention them at the very start of the very first

volume. She writes that “a mode is a part of an application that the

user has to formally enter and leave, and that restricts the operations

that can be performed while the mode is in effect.”

Basically, a mode is a state that an application or an individual window

is in that changes how the application or window reacts to user input.

Modes can be a source of usability problems. Rose writes that “since

people don’t usually operate modally in real life, having to deal with

modes in computer software reinforces the idea that computers are

unnatural and unfriendly.” There’s another issue with modes: if people

don’t understand what mode an application or window is in, their input

produces results that they did not expect.

Perhaps the most popular example of a mode is the Caps Lock key.

Whether the Caps Lock key is active or not is a state that changes the

user interface reaction to user input.

!"##$%&'(!"##$%&'(

In one mode, logging in works. In the other mode, using the exact same

input, logging in fails.

http://

NONOBVIOUS MODES 176

20.1 Nonobvious Modes

In The Humane Interface [Ras00], Jef Raskin explains that “modes are

a significant source of errors, confusion, unnecessary restrictions, and

complexity in interfaces.”

Modes are confusing when people do not realize what mode they are

in—in other words, when they are nonobvious. The Caps Lock key,

for example, indicates that it is active with a small light that is easily

overlooked.

Another example of a nonobvious mode is the currently active tool in

an image editor:

Since people may not realize what mode the user interface is in, their

actions may create unexpected results. Logging in doesn’t work prop-

erly, or the image editor creates a circle when the user wants to create

a rectangle.

Modes should be obvious even if the user doesn’t remember having acti-

vated them. For example, if you select the Open File menu command in

Mac OS X, a modal dialog box opens. This mode is obvious to the user

immediately after he has selected Open File, but if he then goes to get

a cup of coffee and comes back to his computer five minutes later, he

may not immediately realize that the computer is still in the Open File

mode.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=176
http://

NONOBVIOUS MODES 177

Now, clicking the text window merely makes the computer beep, and it

may not be immediately apparent why this occurs. Of course, in this

particular case, the mode isn’t necessary at all. There is no reason why

the Open File dialog box needs to block the whole application. How-

ever, in other cases, simply getting rid of the mode doesn’t work. For

example, an application installer may ask for the user’s password:

If we got rid of the “asking for the user’s password” mode, the user could

activate the installer window with the password window still open but

then couldn’t continue with the installation. This is even more confus-

ing than not being able to activate the installer window at all. You can’t

always get rid of modes; you just have to make it clear to the user what

exactly is going on.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=177
http://

NONOBVIOUS MODES 178

One way of making modes obvious is to provide visual feedback indi-

cating that a mode is active. In a paper called “The Prevention of Mode

Errors Through Sensory Feedback,”1 user interface designer Bill Bux-

ton describes the results of experiments, noting, “there were signifi-

cantly fewer mode errors in conditions with visual feedback than those

without for both novices and experts.” When testing visual and kines-

thetic feedback (the latter being based on perception of the motion of

one’s own body—for example, the vibration you feel when your phone’s

silent alert goes off), he further observes:

The benefits of visual and kinesthetic feedback were found

regardless of whether or not subjects were experienced users.

(...) Thus, even though many of the expert subjects com-

mented that they were used to keeping track of the mode

“in their head,” feedback of both kinds significantly reduced

their mode errors nonetheless.

If static visual feedback doesn’t work, an animation might just do the

trick; animations are much harder to ignore than static visuals, as dis-

cussed in Chapter 15, Animations, on page 145.

However, visual feedback is not the best possible solution. Buxton’s

research shows that kinesthetic feedback works even better. You’re

probably wondering how to give kinesthetic feedback without adding

special hardware to your users’ computers. You could use keys on

users’ keyboards as mode activators; for example, dragging a file in

the Mac OS X Finder moves the file, but by holding down the Alt key,

Mac OS X switches to a “copy” mode. Since the user has to touch and

press the Alt key to stay in this mode, this is a kind of kinesthetic, tac-

tile feedback constantly telling the user that he’s still in the copy mode.

Such temporary, constantly activated modes are called quasimodes. I’ll

get back to them at the end of this chapter.

In his essay “Visual Feedback and How Modes Kill,”2 Aza Raskin points

out another option:

Visual indication is one method for trying to bring your

attention to the system state, but as Buxton showed it has

a decent chance of failure. Using sound-based feedback is

more likely to succeed, because while you can avoid looking

1. Read it at http://www.billbuxton.com/ModeErrors.html.
2. Read it at http://www.azarask.in/blog/post/is_visual_feedback_enough_why_modes_kill/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.billbuxton.com/ModeErrors.html
http://www.azarask.in/blog/post/is_visual_feedback_enough_why_modes_kill/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=178
http://

NONOBVIOUS MODES 179

at a visual indication, you cannot avoid listening to an audio

indication (as every player who has been forced to listen to

Baby Mario’s cry in Yoshi’s Island 2 knows).

It’s probably a good idea to try various ways of dealing with this problem

and do usability tests on them to find out which ones work.

But even if designers realize that they need to make modes obvious

and find a workable way of doing so, people may still be confused by

the result, because the way the mode is exposed is unclear. Here’s an

example from Apple’s iPhone. The included camera application has an

HDR mode.3 Whether or not the mode is currently active is indicated

on the label of the button that changes the mode:

But what does “HDR On” actually mean? Does it mean that I can turn

on HDR by touching the button, or does it mean that it is currently on

and I can turn it off by touching it? In The Humane Interface [Ras00],

Jef Raskin recommends using checkboxes or radio buttons to indicate

active modes.

!"#

This is unambiguous.

3. High Dynamic Range images combine pictures with different exposures to create an

image that shows greater dynamic range than the camera would normally be able to

produce.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=179
http://

UNEXPECTED MODES 180

20.2 Unexpected Modes

Dialog boxes are a specific type of mode. Unlike nonobvious modes, dia-

log boxes are usually reasonably obvious, at least when they first pop

up. They are, however, often unexpected, therefore causing the same

problems as nonobvious modes: the user interface doesn’t do what the

user wants because it is not in the mode the user expects.

!"#$"%&'()*"()%+"%,(-"
.()/+.

!"#$"%&'()*"()%+"%,(-"
.()/+.011+12

34

Not only do dialog boxes change the mode of the user interface unex-

pectedly, but it’s also possible that the user’s input is mistakenly inter-

preted as input for the modal dialog box, rather than for the previously

active window. (This is called stealing focus, since it moves the com-

puter’s focus from where the user wants it to be to somewhere else.)

This means that the user may accidentally discard a modal window or

approve something she intended to reject. Instead of moving the cursor

to a new line, the Return key may unmount a network disk or delete a

file, because that was the default button’s action in the modal window.

20.3 Sticky Modes

This is my alarm clock. To change the

time the when the alarm goes off, I have

to push the topmost button. This puts

the clock into its “change alarm time”

mode. In that mode, the topmost button

now changes the hour of the alarm. So,

if I can’t push this button again to exit

the mode, how do I exit the mode?

It is often not obvious to the user how to resolve an active mode, and

this causes usability problems. Another example of this is the Insert

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=180
http://

MODES ARE NOT ALWAYS BAD 181

key on PC keyboards. Once the user has activated the overtype mode

by hitting the Insert key (perhaps by accident), it is entirely unclear and

nonobvious how to go back to the “normal” mode.

If you use modes, always make it clear how the user can exit the mode.

To solve the alarm clock riddle, you can’t actively leave the “change

alarm time” mode. You can push buttons all you want. In fact, push-

ing buttons merely ensures that you will remain stuck in that mode,

since the clock will exit the “change alarm time” mode on its own a few

seconds after the user stops frantically and randomly pushing buttons,

trying to get out of the mode.

20.4 Modes Are Not Always Bad

Because of the problems they can cause, it’s no surprise that modes

have a pretty bad reputation. In reality, that reputation is largely unde-

served. Trying to make a user interface entirely nonmodal increases its

complexity. Modes can be used to show functionality only when it is

wanted; nonmodal interfaces are forced to offer a much wider array of

possible user actions at any given time.

Modes are bad only when they are nonobvious, unexpected, or hard

to leave. If the user intentionally changes a user interface’s mode, that

mode is entirely obvious to her as long as it remains active, and she

always knows how to leave that mode, then there is nothing wrong with

using modes.

Keep these basic rules in mind, and your modes will improve your user

interface, rather than making it more confusing.

20.5 Quasimodes

Quasimodes, as Jef Raskin calls them, are modes that are temporary

and exist only as long as the user explicitly keeps them active. In Inside

Macintosh [Ros86], Rose calls them spring-loaded modes. The quasi-

modal counterpart to the Caps Lock key is the Shift key. Instead of

putting the computer into a permanent mode, the Shift key introduces

a transient mode that is active only as long as the user holds the key

down. Since the user has to keep the quasimode alive explicitly, there

is no chance that the mode will be nonobvious, unexpected, or hard to

leave.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=181
http://

QUASIMODES 182

Another quasimode that Rose mentions in her book is pressing down

on the mouse key; it’s active only as long as the user keeps pressing.

Computers behave differently when the mouse key is held down, but

people are never confused about whether they are currently pushing

the mouse key.

If you need to use modes, consider whether quasimodes might solve

your particular user interface need.

Takeaway Points

• Modes can be a source of confusion if they’re not designed prop-

erly.

• Modes can be useful since they help you avoid overcrowding your

product with user interface elements.

• To work well, modes should be obvious, expected, and easy to

leave.

• Use quasimodes instead of full modes whenever possible.

Further Reading

Modes are mentioned in many books on user interface design. About

Face [Coo95], for example, mentions modes in several different con-

texts. Jef Raskin’s The Humane Interface [Ras00] has a chapter on

modes. Aza Raskin has written a great essay on modes.4

Inside Macintosh [Ros86] only covers modes superficially, but it’s worth

reading in general.

4. At http://www.azarask.in/blog/post/is_visual_feedback_enough_why_modes_kill/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.azarask.in/blog/post/is_visual_feedback_enough_why_modes_kill/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=182
http://

Chapter 21

Have Opinions Instead of
Preferences

If you’re are not sure about a specific design choice, it’s always easiest

to leave it up to the user. When Mac users minimize windows into the

Dock, some probably want it to elegantly flow into the Dock. Others

may prefer their windows to just zoom away, linearly scaling down. So,

why not give them both?

Every unnecessary checkbox in your Settings window is a design deci-

sion that you’re leaving to a person who is less qualified at making that

decision than you are. You are in the best position to come up with

the correct solution. Don’t let somebody who knows less about your

http://

CHAPTER 21. HAVE OPINIONS INSTEAD OF PREFERENCES 184

product make that decision for you. Chances are, their decisions will

be worse than yours.

Designer and developer Mike Rundle puts it like this:1

If there’s a choice between setting a value to A or B and you

always choose A, why not just make A the main, unsettable,

unchangeable choice? If you think A is the best decision, why

even let people choose B? (...)

[Steve Jobs] builds what he wants because he knows he’s

building great stuff. That’s what you should do, too.

You are trained to make these decisions, and you have the necessary

information to do so correctly. Your users probably don’t.

What I’m Not Talking About

Not everything you see in a settings window is bad. I’m specifically talk-

ing about preferences—things that could work either way but that some

people prefer to work in a certain way. Let’s define how I use these

terms in this chapter:

Settings A global change the user can make to your product’s

function or behavior.

Configuration Settings that are necessary for your product to work

correctly, such as the screen resolution or network

settings. If you’re creating a Twitter client, for exam-

ple, you need to allow the user to configure it to show

his personal Twitter messages.

Preferences Settings that change your product’s behavior and are

not strictly necessary but that some people may pre-

fer to be set differently—for example, the number of

recent items in the Apple menu or Windows Start

menu, or the place where the scroll arrows appear

in Mac OS X’s scroll bars.

Personalization Settings that have purely visual effects and do not

change the actual behavior of your product—for

example, the desktop wallpaper.

1. Read his essay at http://flyosity.com/iphone/kill-the-settings-build-opinionated-software.php.

Report erratum

this copy is (P1.1a printing, July 2011)

http://flyosity.com/iphone/kill-the-settings-build-opinionated-software.php
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=184
http://

WHY PREFERENCES ARE BAD 185

When I say that you should avoid preferences, I’m explicitly not talking

about configurations (after all, these are necessary for your product to

work properly).

I’m also not talking about personalization. Although personalization

isn’t required for a product to work properly, it can increase the user’s

enjoyment tremendously. Being able to change the lock screen on your

phone to a picture of your dog will make the phone much more delight-

ful to you.

It’s not always completely clear whether a setting should be considered

a configuration, preference, or personalization. But thinking about set-

tings in terms of these three categories will help you make better deci-

sions about what to keep and what to throw out.

21.1 Why Preferences Are Bad

Preferences make your product unnecessarily complex in various ways.

First, since people will look in your product’s settings area for things

that they need to be able to change, every needless choice you offer

makes it harder for them to find what they’re looking for. Every pref-

erence they have to look through makes the one they actually need a

little bit harder to find, and the search a little bit more frustrating.

Second, preferences make your product inconsistent by introducing

modes; each preference is a mode (see Chapter 20, Modes, on page 175).

If you ever sit down at the computer of a user who likes to play around

with the operating system’s preferences, you’ll quickly discover that

you’re constantly annoyed by things that don’t quite behave the way

you want, because features are in different modes than you expect.

For example, on some computers, inserting a CD causes a CD icon to

pop up on the desktop; on others, this feature is turned off. On some

computers, clicking the trough of a scroll bar scrolls by one screen; on

others, it scrolls to the position you clicked. It’s easy to get used to these

things. If you use a computer with preferences that are set differently,

you will experience a bit of frustration every time the computer is in a

different mode than you expect. By avoiding preferences altogether, you

avoid putting your users in that position.

Third, preferences make your product harder to use for the people who

pick the wrong choice. Perhaps some people like to have the list of

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=185
http://

HOW TO AVOID PREFERENCES 186

unread RSS items to the left of the view of the currently open item, and

others prefer to have the list at the top of the view.

!"#$%&

!"#$%'

!"#$%(

!"#$%&

!"#$%'

!"#$%(

In reality, there is one solution that works best for most people. It’s

your job to find that solution. You can do usability tests with different

configurations of your product and see which one really works best.

Your users can’t.

Fourth, leaving the choice up to the user also means you’ll have to

support several different ways of using your product for the rest of its

lifetime. If you pick one of the options instead of leaving it up to your

users, you won’t have to spend time working on the other options; you’ll

have more time to make the one option you chose as good as it can

possibly be. And when problems do occur, preferences make it harder

to track them down. Every pointless preference increases the possible

code paths in your product. The more ways your users can change how

your product behaves, the harder it becomes to replicate problems and

to provide timely help if something goes wrong.

21.2 How to Avoid Preferences

Say no to your users (and have a look at Chapter 24, Avoiding Features,

on page 205). Some people might really like a smaller font size. Perhaps

they’ll even send you email, asking you to let them change the font

sizes. But that doesn’t mean that adding a preference for font sizes is

really the best course of action. You may make some of your customers

happy, but you’ll inconvenience everybody else, and you’ll be forced to

support windows with different font sizes.

Say no to yourself. Maybe a preference sounds really good. Often, it’s

the easiest way out. By simply making something a preference, you

don’t have to make that choice yourself. But you’re doing your users a

disservice. Remember way back in the beginning of the book (in Chap-

Report erratum

this copy is (P1.1a printing, July 2011)
Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=186
http://

IF YOU CAN’T AVOID PREFERENCES 187

ter 3, Personas, on page 30), when we talked about your users? For

every preference, ask yourself: How does this help my users? What

goal can this preference help my users reach that they couldn’t reach

before? If you can’t come up with an obvious answer, dump the prefer-

ence.

Be consistent. If you can’t decide between two choices and your users

might have used similar products, be consistent with those products.

Your users can then apply their existing knowledge to your product.

Run a usability test. If there are two solutions to a problem and you’re

not sure which way to go, create paper prototypes and test them (see

Chapter 11, Paper Prototype Testing, on page 104). Or implement both,

and run an A/B test (see Chapter 33, A/B Testing, on page 279). The

feedback and data you get from such tests may even help you come

up with a new idea that is better than the options you came up with

originally.

Have opinions. If there are two equally valid ways you could go with, go

with the one you like better. Which one would you prefer to use? It’s OK

to have opinions. If you try to please everybody, you will excite nobody.

Have implicit preferences. Rather than letting users set behavior explic-

itly, remember what they did the last time. Don’t let users set the

default window size; simply use the window size from the last time they

resized a window as the default window size. Don’t let users set their

preferred protocol in a file-sharing application; simply default to the

protocol they used the last time, and let them change it if necessary.

Don’t let users set whether they want to see a “new document” or an

“open document” dialog when they open an application; simply reopen

the files from the last time they used the application.

21.3 If You Can’t Avoid Preferences

If you truly can’t avoid preferences, make sure that the default choice

for each preference works well for a majority of your users. Most people

stick with the default values and never change them. Usability expert

Jakob Nielsen points out:2

Many previous studies, including my own, have shown that

the top few entries in search listings get the preponderance

2. See the full article at http://www.useit.com/alertbox/defaults.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/alertbox/defaults.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=187
http://

IF YOU CAN’T AVOID PREFERENCES 188

of clicks and that the number one hit gets vastly more clicks

than anything else. (...) Users rely on defaults in many other

areas of user interface design. For example, they rarely uti-

lize fancy customization features, making it important to

optimize the default user experience, since that’s what most

users stick to.

Give each preference a reasonable label with consistent terminology.

Avoid trademarks or jargon that may be unfamiliar to your users.

!"#$%&'(")&*(+&,-$(./

!"#$%&'(")&0(&+%1%23&233&"#)'(".

Avoid negative labels. Checkboxes should enable things, not disable

them.

!"#$%&'($)*+,$*"-(&+."/

0+.("/($)*+,$*"-$&&1

In the manual, explain what each individual preference does, and pro-

vide additional explanations using tooltips. If a preference is disabled

for some reason, use the tooltip to explain why.3

Takeaway Points

• Your product’s settings can be grouped into configurations (set-

tings that are necessary for your product to work properly), per-

sonalizations (purely visual changes that are not strictly necessary

but allow people to make your product “theirs”), and preferences

(functional changes that are not necessary for your product to

work properly).

• Preferences should be avoided, because they introduce unneces-

sary modes.

• Instead of offering preferences, go with the best default behaviors.

Further Reading

Designer and developer Mike Rundle has written about this topic.4

3. Some operating systems may not support tooltips on disabled user interface elements,

but I’m sure you’ll find another reasonably obvious way to explain to your users why a

specific preference is not enabled.
4. At http://flyosity.com/iphone/kill-the-settings-build-opinionated-software.php.

Report erratum

this copy is (P1.1a printing, July 2011)

http://flyosity.com/iphone/kill-the-settings-build-opinionated-software.php
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=188
http://

Chapter 22

Hierarchies, Space, Time, and
How We Think About the World

When computers allow people to organize their data, they often allow

people to organize that data into hierarchies. The file system on your

PC is the most obvious example of this.

Hierarchies work well for a lot of things. People are used to hierarchies,

since they encounter hierarchies all the time. Families are hierarchies

of people (the “family tree”). We look at animals and see that individual

species are related to each other in an evolutionary hierarchy. Stores

arrange their products using hierarchical logic. (For example, if you’re

looking for strawberry jam, you’ll go to the food section of the store. In

the area where you’ll also find peanut butter and honey, you’ll look

at the shelf with the jams, and you’ll find different kinds of straw-

berry jam.) Arranging music in a hierarchic fashion (Genre → Band →

Album→ Song) makes sense, and the arrangement is (usually) obvious

and easily understood.

http://

HIERARCHIES 190

When there is an obvious, generally understood way of arranging things

into a hierarchy, people typically don’t have a problem with under-

standing and using such hierarchies. The problem occurs when we ask

people to create and maintain hierarchies of arbitrary items.

22.1 Hierarchies

Humans are not good at organizing arbitrary things into a hierarchy

and then later remembering where exactly they sorted a specific thing.

For example, Mark Shuttleworth1 points to the hierarchical file system

as a main source of usability issues in Ubuntu, saying, “People save an

attachment they receive in email, and an hour later have no idea where

to find it.”2 Similarly, in a paper called “Improving the Usability of the

Hierarchical File System,”3 author Gary Marsden writes:

Anyone who has studied how application users store files

realizes that the file system is quite a large barrier to all but

the most advanced users.

In their paper “Hierarchical File Systems are Dead,” Margo Seltzer and

Nicholas Murphy write:4

Users no longer know where their files are stored. Moreover,

they tend to access their data in a more search-based fash-

ion. We encourage the skeptical reader to ask nontechnical

friends where their email is physically located. Can even you,

the technically savvy user, produce a path name to your per-

sonal email? Your Quicken files? The last Word document

you edited? The last program you ran? For that matter, how

many files are on your desktop right now? How many of them

are related to each other?

This issue is compounded by several people accessing the same data;

the hierarchical structure that may make sense for one person may

be utterly incomprehensible for another, and even if they agree on a

general structure, they will probably often disagree on where exactly to

put individual items.

1. Shuttleworth is the former CEO of Canonical Ltd., creator of the Ubuntu family of

Linux distribution. Ubuntu is an operating system that is based on the Linux kernel,

with a strong focus on usability.
2. Read his essay at http://www.markshuttleworth.com/archives/223.
3. You can find the paper at http://people.cs.uct.ac.za/~gaz/publ.html.
4. Read it at http://www.eecs.harvard.edu/~margo/papers/hotos09/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.markshuttleworth.com/archives/223
http://people.cs.uct.ac.za/~gaz/publ.html
http://www.eecs.harvard.edu/~margo/papers/hotos09/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=190
http://

SPACE 191

22.2 Space

Although we are able to understand reasonably obvious, intuitive hier-

archies such as family structures and the logic governing where a store

puts stuff, we’re not really good at coming up with hierarchies for most

other things. We typically don’t arrange the stuff we own in a deeply

hierarchical fashion. Sure, you may put all of your dinnerware into one

cupboard and all of your kitchenware into another, but that’s hardly

a hierarchy. Instead, you’re arranging things in space, putting related

things next to each other. You don’t remember where to find your plates

by any kind of hierarchy. Instead, you remember where to find your

plates because you know where you put them.

Similarly, your desk may be a huge mess, but you’ll probably have a

pretty good idea of where on your desk you put that letter you got last

week. Not because you’re using some kind of hierarchical organization

scheme for your desk but simply because you know where you put it.

This is called spatial reasoning. Humans are good at it. If your product

can make use of the human ability to think in terms of space and if you

can let your users arrange their data in space, do it.

One example of this is Firefox’s Group Your Tabs feature. It allows users

to get a spatial view of all the tabs in a window and group them on a

two-dimensional plane.5

5. Aza Raskin explains the thinking behind the feature at

http://www.azarask.in/blog/post/designing-tab-candy/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.azarask.in/blog/post/designing-tab-candy/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=191
http://

SPACE 192

Another example is Prezi,6 a presentation app that shows the whole

presentation on one flat surface and breaks it down into individual

screens by moving a camera across this plane.

6. At http://prezi.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://prezi.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=192
http://

TIME 193

Keep in mind that in real life, stuff doesn’t move on its own. In a spatial

system, people expect to be able to find things where they left them.

Make sure you never change things behind the user’s back.

Spatial systems tend to break down when users have to manage large

numbers of items. It’s easy to create and keep track of a spatial arrange-

ment of dozens or hundreds of items. It becomes harder when it’s thou-

sands of items, and it becomes almost impossible when the system has

to manage hundreds of thousands of items.

22.3 Time

Millennia of living in a spatial world have taught humans how to orga-

nize and find things in such a world. Similarly, we have become pretty

good at thinking about and organizing our world in temporal terms.

Although you may not remember exactly where inside a folder you’ve

filed that report you wrote last week, you know for sure that you wrote

it last week. You probably also remember the time of day it was, and

you may even remember the specific day as well.

So, depending on your product, it may make sense to let users access

their data in some kind of temporal view. Nintendo does a pretty good

job of this; instead of a file system, Nintendo likes to use calendars to

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=193
http://

A BETTER HIERARCHICAL SYSTEM 194

show user-created data. Using a Nintendo system, you never have to

file a drawing or photograph you’ve made; instead, you just have to

remember the month when you made it, and you’ll probably be able to

see a small version of the picture in the month view.

Another example of an application that uses a temporal view is Media

Atelier’s Mac app Alarms7—a to-do list that eschews the traditional

hierarchical list view used by other task lists, opting instead for a tem-

poral view in which to present to-do items.

If you can, allow people to access their data through a time-based view.

22.4 A Better Hierarchical System

In some cases, it is simply not possible to avoid hierarchical systems. If

you feel that you need to go with a hierarchy, here are a few ideas that

should help you make this system as usable as possible.

7. Find out more at http://www.mediaatelier.com/Alarms.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.mediaatelier.com/Alarms
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=194
http://

A BETTER HIERARCHICAL SYSTEM 195

Restrict Depth

If you give people just a little bit of rope, they’ll have a harder time

using it to hang themselves. If you give people the ability to create only

shallow hierarchies, they probably won’t get lost in them. One exam-

ple of such a system is the photo-sharing site Picasa, which allows its

users to sort their pictures into albums but doesn’t let them put one

album into another album. An album contains a number of pictures,

and that’s it. It’s unlikely that people will lose their albums, since they

can’t hide them inside other albums to begin with.

Show Hierarchies Spatially

When Apple added folders to its iOS operating system,8 it did a very

clever thing: as long as you don’t put more than nine apps into a folder,

you are always able to see all of the folder’s apps inside the folder’s

icon. So even though this is technically a hierarchical arrangement of

apps, users are unlikely to lose track of where things are, because the

hierarchical arrangement looks like a spatial arrangement to the user.

Allow Items to Exist in More Than One Place

It’s often not clear where individual items belong. Let’s say you are

using a document management system. It contains various directories,

such as an Insurance directory for documents from your insurance and

a Bills directory for your bills. Well, what happens if your insurance com-

pany sends you a bill? The same document needs to exist in two differ-

ent places. Hierarchical file systems should always let people put the

same file into more than one place.

Support Tagging and Other Metadata

Simply letting people sort items into a hierarchy is semantically weak.

Hierarchies often express only one aspect of an item’s nature. For exam-

ple, the biological classification of animals uses the principle of common

8. iOS is an operating system most prominently used by iPhone, iPad, and iPod touch.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=195
http://

A BETTER HIERARCHICAL SYSTEM 196

descent to sort animals into a hierarchy. That’s useful if you’re inter-

ested in how closely individual species are related to each other, but

it’s useless if you’re compiling a list of all animals that are poisonous

to humans, or a list of all aquatic animals. Allowing users to maintain

metadata for the individual items in a hierarchy allows them to main-

tain data that is not expressed by the hierarchy itself.

Support Alternative Ways of Accessing Data

Even if items are primarily sorted into a hierarchy, you should allow

users to access this data in nonhierarchical ways. For example, you

should let people search through their data. Similarly, if you keep track

of when individual items were changed, you can let people access their

hierarchical data in a temporal view. Think about how people might

want to search or browse through their data.

The BizTwit Case

Since every published Twitter message has a publication date, offering

people a temporal view of their messages makes a lot of sense and

makes it easy to go back to earlier conversations.

BizTwit lets people schedule messages that will be published auto-

matically on a specified date. The temporal view could be expanded

to include such messages, which would prevent any ambiguity about

when messages will be published. Figure 22.1, on the next page shows

a wireframe of how such a user interface might look.

In this view, people can filter what kinds of messages they want to see

(sent messages, replies from other people, drafts, scheduled messages,

or all messages). The dots in the individual days indicate the day’s activ-

ity, from zero dots (no messages were sent or received) to three dots (lots

of messages were sent or received). For days in the future, dots indicate

scheduled messages. Finally, tapping a day shows the day’s messages.

This kind of view should be familiar to anyone who uses calendar apps.

This user interface gives people a quick overview over their Twitter

account’s activity, allows them to easily find past messages, and lets

them quickly see what messages are scheduled to be tweeted when.

Takeaway Points

• Sometimes, hierarchies work well, but they need to be obvious and

commonly accepted.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=196
http://

A BETTER HIERARCHICAL SYSTEM 197

!"#"$%&'())

!**&+,$$-#,$&&&&.,/%&&&&0,1*2,$&&&&.34,5"*,5!**&+,$$-#,$

."/ +6/ 7", 8,5 74" 9:2 .-%

✁ " # $ % &

' () !* !! !" !#

!$!% !& !' !(!) "*

"! "" "# "$ "% "& "'

"(") #* #!

!"#$%"&'!#"()*';6<&56&1:6#:-=$&#,%&>*6-%,5?&@/,&

:,-$6/->*,&A,-%":,&:,B",$%&-%&-&%2=,C

+,-./012'!#"()*'D&=-E&5:-<&*2F,&-&)(&E6G&>"%&%4,:,&2$&

/6%42/#&>,%%,:&%4-/&-&$F,%34&%6&=-F,&$":,&6%4,:$&H$,,&<4-%&D&

=,-/HC

(.30/4(5/3,,6'!#"()*'+6,>2"$&-%&<6:F&I&4%%1IJJ>2%C*EJ>A+K'L&

K25,6&2/&A:,/34&>"%&<6:%4&<-%342/#&2A&E6"M:,&-&A-/C

/37/&."#&506'!#"()*'!$&%4,:,&2$&=6:,&-/5&=6:,&$%"AA&%6&

<-%34G&-3%"-**E&<-%342/#&-/E%42/#&$,,=$&%6&>,&#,%%2/#&4-:5,:&

-/5&4-:5,:C

,"43%)'!#"()*'N,&=6=,/%&6O&%"&5P36"Q:,$&B",G&6"2G&R6-//-&

S,<$6=&1-$$-2%&,/&36/3,:%G&B",G&/6/G&%"&/,&$-Q-2$&1-$G&,%&

B",G&12:,G&%"&/M,$&1-$&*TG&3,&<,,F&,/5C

Figure 22.1: Wireframe of BizTwit’s temporal view

• Hierarchies work less well if people have to come up with them on

their own, especially when several people share a hierarchy.

• Humans are pretty good at dealing with time and space. Try to use

them, rather than hierarchies, to organize user data.

• If you must use hierarchies, try to keep the structure shallow,

allow items to exist in more than one place, support metadata,

and support alternative ways of accessing the data.

Further Reading

Information Architecture for the World Wide Web [MR06] by Peter Morville

and Louis Rosenfeld provides some insight into hierarchical structures.

Margo Seltzer and Nicholas Murphy’s paper “Hierarchical File Systems

are Dead” is also worth reading.9

William Jones, a research associate professor in the Information School

at the University of Washington, has an interesting presentation about

structuring personal information.10

9. You can find it at http://www.eecs.harvard.edu/~margo/papers/hotos09/.
10. You can watch it at http://www.youtube.com/watch?v=aufuHuNRqaE.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.eecs.harvard.edu/~margo/papers/hotos09/
http://www.youtube.com/watch?v=aufuHuNRqaE
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=197
http://

Chapter 23

Speed
When we do usability tests, one thing that often gets little attention

is the product’s speed and responsiveness. Usability tests will quickly

show when users don’t understand what a button label means. But

they usually don’t show that your product responds too slowly. People

using your product in a usability test have a different motivation for

doing so than your actual customers. The people in a usability test

know that they are supposed to test your product; they won’t suddenly

abandon it and switch to a competitor because they grow frustrated

when they have to wait.

Your real customers might. Tech investor Fred Wilson explains:1

Speed is more than a feature. Speed is the most important

feature. If your application is slow, people won’t use it. I see

this more with mainstream users than I do with power users.

I think that power users sometimes have a bit of sympathetic

eye to the challenges of building really fast web apps, and

maybe they’re willing to live with it, but when I look at my

wife and kids, they’re my mainstream view of the world. If

something is slow, they’re just gone. (...) When we see some

of our portfolio company’s applications getting bogged down,

we also note that they don’t grow as quickly. There is real

empirical evidence that substantiates the fact that speed is

more than a feature. It’s a requirement.

1. Watch his presentation at http://thinkvitamin.com/web-apps/fred-wilsons-10-golden-principles-of-successful-web-apps/.

http://thinkvitamin.com/web-apps/fred-wilsons-10-golden-principles-of-successful-web-apps/
http://

RESPONSIVENESS 199

It’s important to keep an eye on performance problems even if usability

tests don’t show obvious signs that speed or responsiveness might not

be good enough.

23.1 Responsiveness

The first thing to look at is how responsive your product is. Research is

pretty consistent on this topic.2 If an action takes less than 0.1 second

to finish, the user perceives it as instantaneous. If it takes less than 1

second to finish, the user no longer perceives it as instantaneous but

will not lose track of what is going on. If an action takes longer than a

second, the chance increases that the user gets distracted while waiting

for it to finish.

Whenever possible, it’s best to make sure actions take less than 0.1

second.

A somewhat related topic is continuous interactions on natural user

interfaces, such as scrolling through a list by dragging the list with a

finger. In those cases, performance is especially important. The user

interface’s response to the user’s action must be immediate and fluid.

The user interface must be able to keep up with the user’s actions,

and it must be able to do so at a high frame rate. Responsiveness can

make the difference between the user getting the impression that she

is interacting with actual physical objects and her consciously noticing

that she is simply giving commands to a computer. In such user inter-

faces, indications of poor performance, such as input lag or choppy

animations, can destroy the user’s mental model of your product and

can be extremely irritating. (I’ve written more on this particular topic in

Chapter 13, Natural User Interfaces, on page 130.)

23.2 Progress Feedback

If an action takes longer than 0.1 second, you need to provide some

kind of feedback. Determining the type of feedback required depends

on two things: how long the action takes and what kind of action it is.

2. For more information, read Jakob Nielsen’s essay on response time:

http://www.useit.com/papers/responsetime.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/papers/responsetime.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=199
http://

PROGRESS FEEDBACK 200

If the action takes only one or two seconds, it’s OK to change the cursor

to an hourglass or add a small “I’m working” indicator that doesn’t

explicitly show how far the action has progressed.

!"#$%&'(((

The goal here is not to tell the user how long the action will take but

to make it obvious that the computer has received the user’s command

and is working on it. The word obvious is quite important. If you watch

people using web browsers, you will notice that they click a link repeat-

edly, thinking that the click didn’t “take” on the first try. Perhaps you

do this yourself. Why? Because the little “Loading” throbber or progress

bar most browsers show is not obvious enough, and it’s not where the

user’s focus is when she clicks a link.

There is no clear feedback that the browser has received the user’s

click, so people often try to click again and again.

For actions that take longer than a few seconds, you need to provide

some kind of progress feedback that indicates how long the action will

take. This is typically done using a progress bar.

!"#$%&'(((

In some cases, it may make sense to also tell the user what specific

thing the computer is currently working on. This is especially impor-

tant if it helps the user understand why he has to wait. For example, if

the user is uploading a movie from a movie-editing tool, the task typi-

cally has two stages. First, the movie needs to be rendered and encoded.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=200
http://

PERCEIVED SPEED 201

Second, it needs to be uploaded. You could add some short explanatory

text or even a little animation representing the active task near the

progress bar, giving the user some indication of what is currently going

on. Telling the user which stage the application is in provides an expla-

nation for why the whole process is taking so long and can help make

him comfortable with the idea of having to wait.

If a task takes a long time, it’s likely that people will focus on something

else. Eventually, they may forget that the task is running at all. You can

use audio feedback to indicate that the task is done; that way, people

will know even if they’re paying attention to something else.

23.3 Perceived Speed

Speed is perception. People are not going to measure your product’s

response time with stopwatches. What really counts isn’t how long an

action takes in seconds and milliseconds but how your users perceive

your product’s speed.

One thing you can do to improve speed perception is to start show-

ing partial results as soon as possible. If you are implementing a user

interface for a search system, don’t wait for the search to finish before

you show the results to the user. Instead, start showing search results

as soon as you start finding them.

Another way of improving speed perception is to make sure that actions

that take a long time don’t block your product’s user interface. If your

users can do something else instead of being forced to wait for a process

to finish, they are less likely to notice how long the process takes.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=201
http://

SLOWING DOWN 202

Here’s a final idea. Adding simple ripple effects that move counter to

the direction of a progress bar can make the progress bar appear to

move faster.3

23.4 Slowing Down

Slow products are annoying, but the opposite can also be true. Some-

times, things can be too fast. A typical example of this is scrolling.

If your application scrolls too quickly, users overshoot their target. It

often makes sense to artificially slow down your product so people can

keep up with it.

A similar problem once occurred to me when I was working on Appway,

a business process management system. Its process editor includes a

Save feature that allows users to manually save changes to a process.

When people used the editor and wanted to save their changes, they

often repeatedly clicked the Save button rather than just clicking once

and sometimes complained that it did not work properly.

It turned out that the application was simply too fast for them. Saving

the workflow took only a fraction of a second. The absence of a progress

indicator meant users had no obvious feedback indicating that the doc-

ument had actually been saved, but saving a document felt so impor-

tant to them that they expected to see something reasonably substan-

tial happen when they clicked the button. The solution was to throw up

a “fake” progress indicator that took about half a second to finish.

3. As shown here: http://www.newscientist.com/blogs/nstv/2010/12/best-videos-of-2010-progress-bar-illusion.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.newscientist.com/blogs/nstv/2010/12/best-videos-of-2010-progress-bar-illusion.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=202
http://

SLOWING DOWN 203

This reassured users that something substantial had happened. User

experience consultant Harry Brignull refers to a similar story4 about

coin-counting machines. Supposedly, the machines counted coins so

quickly that customers did not trust that they could have counted

them correctly. To fix this user experience problem, the manufacturer

changed the machines to display the results more slowly and added

speakers to produce coin-counting sounds while the machines waited

for the counter to get to the final amount. As a result, people felt that

the machine put the proper effort into counting their money and trusted

the result.

Takeaway Points

• Responsiveness and speed are extremely important properties of

your products. Usability tests don’t always reveal these kinds of

problems.

• To be perceived as instant, actions should take less than 0.1s.

• Actions taking more than a second should show some kind of indi-

cator that the application is working. This should appear where

the user’s focus is.

• Perceived speed is more important than actual speed. Sometimes,

tricks can help you make your product feel faster.

• It’s possible for things to happen too fast. In some cases, artificially

limiting the speed of some features of your product can improve

the user experience.

4. View the article at http://www.90percentofeverything.com/2010/12/16/adding-delays-to-increase-perceived-value-does-it-work/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.90percentofeverything.com/2010/12/16/adding-delays-to-increase-perceived-value-does-it-work/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=203
http://

SLOWING DOWN 204

Further Reading

Jakob Nielsen’s essay on response time is an invaluable source of infor-

mation on this topic.5

Bruce Tognazzini talks about latency in his list “First Principles of

Interaction Design.”6

5. Read it at http://www.useit.com/papers/responsetime.html.
6. At http://www.asktog.com/basics/firstPrinciples.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/papers/responsetime.html
http://www.asktog.com/basics/firstPrinciples.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=204
http://

Chapter 24

Avoiding Features
Product design is a never-ending race. To avoid being overtaken by

competitors, you need to keep running and running—or, in our case,

designing and designing. But this race has no clear finish line; your

product is never really “done.” At most, it simply becomes a bit less

unfinished with each new release. This is the best we can hope for.

Like a species of shark that needs to keep moving in order to supply

its gills with oxygenated water, if your product remains stagnant for too

long, it dies. This is a problem, because it means you must constantly

add new things. As a result, most products are forever acquiring new

features, without much thought going into it.

As you add new features, your product can quickly grow from its origi-

nal state—an elegant solution to a well-defined problem—into a byzan-

tine mess of unrelated functions. It may be that, on the whole, the

product solves a number of problems, but chances are that it solves

most of them poorly. The fact that a product could (in theory) solve

many problems is meaningless if its users have trouble figuring out

how to find the features that solve their particular problem.

Although those users with existing knowledge of your product may be

able to keep up with all of the features, you are essentially closing the

door for new users who do not have the benefit of starting out with a

simple product and learning how to use all of the additional features as

they appear.

http://

REMEMBER THE USER’S GOALS 206

What’s worse, your existing users, who grow alongside your product,

will turn into advanced users, which means they will continue to push

you to add more advanced features. If you do this, your customer base

will skew even more toward advanced users.1 It’s a vicious cycle.

How do you manage product growth and avoid adding countless new

features?

24.1 Remember the User’s Goals

Think about what your users want to achieve with your product. Does

the new feature help them produce better results? Does it allow them

to reach new goals? Does it make the product easier to use? As Kathy

Sierra puts it,2 “People are not into your tool, they are into what the

tool enables.”

24.2 The Five Whys

When receiving user feedback, your first task is to find out what exactly

the user is trying to achieve. Often, the solution to the user’s problem

can be found without adding new functionality to your product.

One process you can use to find the root cause of a problem is “The Five

Whys.” According to legend, this approach was originally developed by

Sakichi Toyoda, the founder of Toyota Industries. It works pretty well

when trying to find out what caused somebody to send in a particular

feature request: you simply keep asking “why?” (or something along

those lines that sounds a little less unfriendly) until you figure out

1. Chris Clark mentions this problem at http://releasecandidateone.com/236:crotchety_old_power_users.
2. You can read more of her writing at http://headrush.typepad.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://releasecandidateone.com/236:crotchety_old_power_users
http://headrush.typepad.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=206
http://

THE FIVE WHYS 207

what prompted your users to think they needed an additional feature.

You don’t have to ask exactly five times. Sometimes, fewer times does

the trick, and sometimes, more asking is required to get to the bottom

of the issue.

Let’s look at an example of how this works:

User: Hey, it would be awesome if you could add a feature where

BizTwit regularly saves a copy of the message I’m currently writing.

Designer: That sounds interesting. If it is OK with you, I’d like to ask

you a few questions to make sure I understand how you would use this

new feature. This way, I can do the best possible job of making the fea-

ture as useful to you as possible, if I decide to add it to the product.

Can I ask you what you would use this feature for?

User: Well, I often need to go back to an earlier version of a message

I’m writing.

Designer: Yes, I see how this could be useful. Is there a specific pur-

pose for which you want to use earlier versions of your documents?

User: I sometimes make changes to messages that I am unhappy with.

If I had earlier versions, I could just copy parts of one into my message.

Designer: There is already an Undo feature in the product that should

allow you to reverse unwanted changes. Does that not work for you?

User: It usually works, I guess, but every time I save my draft of the

message I’m writing, for some reason I can’t undo past that point. Also,

your product sometimes crashes when I try to paste formatted text into

a message, so I’ve made it a habit to save as often as possible, every

few minutes, which means that the Undo command often doesn’t work

properly.

In this example, the user’s initial request was for a versioning feature.

But it turns out that the actual root cause of her request was one

bug in BizTwit that prevented the Undo command from undoing saved

changes and another bug that caused it to crash regularly. Instead of

adding new features to the product, the user’s problem can be solved

by fixing these two bugs.

Always try to see the bigger picture. What do people really want? What

actual problem are they trying to solve with the feature they’ve asked

you to add to your product?

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=207
http://

INSTEAD OF ADDING A NEW FEATURE, MAKE AN EXISTING FEATURE MORE USABLE 208

24.3 Instead of Adding a New Feature, Make an Existing Feature

More Usable

If a lot of feature requests are coming in that can be solved using your

product’s existing feature set, chances are you should invest time into

fixing your existing features, rather than creating new ones. Similarly,

if your product has a neat feature that nobody seems to know about or

use, it’s generally a good idea to investigate how you can improve that

feature.

Essentially, rather than adding a completely new feature, the goal is

to make an existing feature available to more of your users. By taking

this approach, you’re actually simplifying your product—not making it

more complex. At the same time, you’re essentially adding functionality

for all of the people who didn’t realize the feature even existed or who

didn’t know how to use it.

It’s also possible that a new feature might replace an existing feature.

When considering a new feature, you should ask yourself whether it

makes an already existing feature obsolete. An argument in favor of

implementing the new feature is if you can remove an existing feature

because the new feature provides the same or similar functionality but

in a much better, easier-to-use way.

24.4 Solve Several Problems with One Change

Instead of adding new features individually, it often makes sense to

consider similar (or even seemingly unrelated) features as part of one

problem to solve.

For example, consider these feature requests for a word processor:

User 1: I often write letters, so it would be really useful if I could insert

my letterhead automatically into my documents.

User 2: I would like a way to change the default font.

User 3: Is there some way I can change the footer style on several

documents at the same time?

Ostensibly, these requests don’t have much in common. However, they

could all be satisfied by implementing a templating system. Giving peo-

ple the option to create their text document from a set of templates

solves a number of different user requests.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=208
http://

CONSIDER THE COST 209

24.5 Consider the Cost

Every new feature has both a value and a cost. To properly evaluate the

impact a new feature will have, it’s important to consider both aspects.

A feature’s value is usually quite obvious—namely, what it allows your

users to do.

But the cost of adding a new feature to your product might not be

readily apparent: the additional complexity might take a toll on people

who aren’t interested in using the feature. Adding a new feature to

your product prevents you from working on other things, and having it

in your product might slow down future progress because you have to

maintain yet another feature. A feature that relies on systems you can’t

control, or that is error-prone for other reasons, might lead to rising

costs in user support.

Consider the cost of a feature, rather than just its benefits.

24.6 Make It Invisible

If you can add a useful feature in a way that does not add to the user’s

“cognitive load,” do it. Invisible features are the best, because they make

your product better without making it more complex. Can you improve

text rendering so documents created with your product look better than

documents created with your competitor’s product? If you add HTTPS

support to your web application, can you just switch your users to

HTTPS and make them more secure without forcing them to enable the

new feature manually?

These features make your product better, but people don’t have to con-

sciously deal with them.

24.7 Provide an API and a Plug-in Architecture

You don’t have to implement every feature on your own. Often, it makes

sense to let others chip in and help. Twitter, for example, started out

with an extremely simple service. But its API3 allowed other develop-

ers to step in and create a whole ecosystem of great products that

revolve around Twitter. Photoshop is another great example. Although

3. An application programming interface (API) allows developers to create applications

that interact with your product.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=209
http://

LISTEN TO YOUR USERS 210

Adobe has added an incredible number of features to Photoshop, it

couldn’t possibly implement every feature that its customers might

want. Instead, Adobe allows third-party developers to create plug-ins

for Photoshop, thus broadening the market for the product without

investing any of their own money or making Photoshop even more com-

plex than it already is.

By adding an API and a plug-in architecture, you can avoid implement-

ing features that will help only part of your audience, leaving that to

other developers. You could even use your own plug-in architecture to

implement new features yourself.

24.8 Listen to Your Users

It’s important to keep in mind that you are not your users. At most,

you are one of your users; one user typically constitutes a minority of

all users. You may think that a new feature sounds extremely useful,

but chances are that many of your users disagree. This disconnect is

sometimes called the internal-audience problem: the people who design

and implement solutions do so for people who are like them, rather

than for people who are like their actual customers.

You know too much about how your product works and too little about

how people use it. Your users, on the other hand, know a lot about how

they use your product but very little about how it works.

It’s often tempting to add what amounts to useless complexity. You

understand how your product works, so it doesn’t seem complex to

you.

It is always smart to run new feature ideas by your users. Note that peo-

ple are often reluctant to provide negative feedback, so it’s important

to show them simple draft sketches, rather than actual implementa-

tions. This gives the impression that you’re not yet heavily invested in

the idea so they are less reluctant to burst your bubble. It also helps to

explicitly ask for negative feedback, saying, for example, “Tell me three

things you don’t like about this new feature.”

You might be surprised by your users’ reactions—I know I’ve been sur-

prised whenever someone has told me that a proposed new feature

sounded really cool but that they saw no reason to ever use it.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=210
http://

BUT DON’T LISTEN TO YOUR USERS TOO MUCH 211

24.9 But Don’t Listen to Your Users Too Much

Writing about the people who still tell him that the Mac version of

Microsoft Word 5.1 was the perfect version of the product,4 Microsoft’s

Rick Schaut points out that if you ask these same people what they

really want in a word processor, they almost always require at least

one unusual, additional feature. It’s not just “Word 5.1,” it’s “Word 5.1

plus one feature.” But everybody has a different “plus one” feature, and

if you add all of these additional features, Rick notes, you eventually

arrive at the feature set of a modern Word version.

When your users envision your product, they envision a product that is

tailor-made for them, a product where the features the product offers

are exactly the features they use. This often includes one or two spe-

cific, quirky features that almost nobody else uses.

If you add most of the “I just need one unusual feature” requests, you

end up with a product where most features are unusual and very few

features are used by many people. This works well for Microsoft, but

it’s not necessarily a good idea for your product.

!"#$%&

'(()$%"*$+,

-.#*&/,0

1,.#.")&20"*.30

!"#$%&

'(()$%"*$+,

-.
#*&/

,
0

1
,
.
#.
"
)&2
0
"
*.
30

/
,
0
&1
,
.
#
.
"
)&
2
0
"
*.
30

-.
#*
&/
,0

1
,.
#.
")
&2
0"
*.
30

-.#*
&/,0

1,.
#.")

&20"
*.30

-.
#*
&/
,0

1
,.
#.
")
&2
0"
*.
30

-.#*&/,01,.#.")&20"*.30
-.
#*&
/,
0

1,
.#
."
)&2
0"
*.3
0

-.#*&/
,0

1
,.#.")&20"*.30

-.#*&/,0

1,.#.")&20"*.30

-
.
#
*&/

,
0

1
,
.
#
.
"
)&2
0
"
*.
30

-
.
#
*&/

,
0

1
,
.
#
.
"
)&2
0
"
*.
30

-.
#*
&/
,0

1,
.#
."
)&2
0"
*.
30

-.
#*
&/
,
0

1
,
.
#.
"
)&2
0
"
*.
30

-.#
*&/,

0

1,.
#."

)&20
"*.3

0
-.
#*
&/
,0

1,
.#
."
)&2
0"
*.
30

-.#*&/
,0

1,.#.")&20"*.30-.
#*
&/
,
0

1
,
.
#.
"
)&2
0
"
*.
30

-.#*&/,0

1,.#.")&20"*.301,.#.")&20"*.30

-.#*&/,0
-.#

*&/,
0

1,.
#."

)&20
"*.3

0

-.
#*&
/,
0

1,
.#
."
)&2
0"
*.3
0 -.#*&/

,0

1
,.#.")&20"*.30

-.#*&/,0
1,.#.")&20"*.30

-.
#*&
/,
0

1,
.#
."
)&2
0"
*.3
0

-.
#*
&/
,0

1
,.
#.
")
&2
0"
*.
30

-.#*&/,01,.#.")&20"*.30
-.#*&/

,0

1,.#.")&20"*.30

-.#*&/
,0

1,.#
.")&2

0"*.3
0

-.
#*
&/
,0

1,
.#
."
)&2
0"
*.
30

-.#*&/,0

1,.#.")&20"*.30

Recent research by Debora Viana Thompson, Rebecca W. Hamilton,

and Roland T. Rust has shown that, when asked, most users say that

they prefer products with more features. People think that they might

4. You can read Rick Schaut’s entire essay here: http://blogs.msdn.com/rick_schaut/archive/2004/06/18/159325.aspx.

Report erratum

this copy is (P1.1a printing, July 2011)

http://blogs.msdn.com/rick_schaut/archive/2004/06/18/159325.aspx
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=211
http://

NOT ALL USERS NEED TO BE YOUR USERS 212

want to use these features in the future, even if they see no immediate

need for them.5 However, when the same people get around to using

the product they said they wanted, they wind up being frustrated by

all the features. They thought they would prefer a product with more,

but they end up being happier with fewer, even if a simplified product

doesn’t provide all the features they think they might want to use in

the future. People who pick up your product because it offers the most

features quickly turn into a liability when they end up being unhappy

with their purchase.

Similarly, in The Paradox of Choice [Sch05], Barry Schwartz notes that

as the number of choices people have goes up, the satisfaction they

derive from their choice goes down. Giving people more things to do

may make them less happy.

If you want satisfied, happy customers who will recommend your prod-

uct to their friends, be careful when adding new features.

24.10 Not All Users Need to Be Your Users

Finally, it’s important to keep in mind that you don’t have to own 100

percent of your market. It’s true that adding more features to your prod-

uct allows you to target more users, but doing so comes at a cost. Your

product becomes more desirable to the people who would not be able

to use it if it didn’t offer a specific feature. However, it also makes your

product less desirable to the people who have no use for that specific

feature.

It’s OK to let some people go to your competitors to get what they need;

you can’t be everything to everybody.

Isaac Hall, cofounder of Dropbox competitor Syncplicity, writes that

he ran into the CEO of Dropbox and asked him why Dropbox didn’t

support multifolder synchronization. The answer,6 Hall says, explains

why Dropbox is so popular. Dropbox added multifolder support early

on but, when beta testing the feature, found that it confused people.

Dropbox couldn’t get the user interface right. Because it was too hard

to use, Dropbox removed the feature.

5. You can read more about their research here: http://hbr.org/2006/02/defeating-feature-fatigue/ar/1.
6. Read his full answer at http://www.quora.com/Dropbox/Why-is-Dropbox-more-popular-than-other-programs-with-similar-functiona

Report erratum

this copy is (P1.1a printing, July 2011)

http://hbr.org/2006/02/defeating-feature-fatigue/ar/1
http://www.quora.com/Dropbox/Why-is-Dropbox-more-popular-than-other-programs-with-similar-functionality
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=212
http://

NOT ALL USERS NEED TO BE YOUR USERS 213

Not having that particular feature may have cost Dropbox a few cus-

tomers, but this less-is-more philosophy made Dropbox incredibly easy

to use and, consequently, the most popular application of its kind.

Being feature-rich comes at a cost. Users are more enthusiastic about

a product that does one thing incredibly well than a product that does

everything kind of OK.

In their book Rework [FH10], the people from 37signals explain that

“we’re willing to lose some customers if it means that others love our

products intensely. That’s our line in the sand.”

Takeaway Points

• Adding more features can make your product more desirable to

people who need those features but less desirable to the people

who don’t. Usually, for any given feature, the second group is the

larger one.

• Use “The Five Whys” to evaluate user feedback and find the root

of the problem.

• Instead of adding a new feature, improve an existing one.

• Try to add features that solve several problems at once and per-

haps allow you to remove existing features from your product.

• Consider the cost of a new feature as well as its benefits.

• Focus on features that make your product better without increas-

ing user interface complexity.

• Provide an API and a plug-in architecture. Implement niche fea-

tures as plug-ins, or leave them to third-party developers.

• Do proper user research before adding new features to find out

whether people really need the feature and what they need it for.

• If you implement every “I just need this one feature” request, you

end up with a product where most features are unpopular.

• Accept that not every person needs to be your customer.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=213
http://

NOT ALL USERS NEED TO BE YOUR USERS 214

Further Reading

Kathy Sierra’s blog has many, many of articles on this topic.7 The Para-

dox of Choice [Sch05] by Barry Schwartz is also worth reading, as is

the research by Debora Viana Thompson, Rebecca W. Hamilton, and

Roland T. Rust.8

On his blog, Mint.com lead designer Jason Putorti recommends some

tests for deciding which features to implement.9

Brent Simmons, developer of the popular Mac RSS application Net-

NewsWire, writes about how seemingly simple features can have a lot

of hidden complexity.10

7. Read it at http://headrush.typepad.com.
8. You can read about it at http://hbr.org/2006/02/defeating-feature-fatigue/ar/1.
9. Read it at http://jasonputorti.com/post/229492382/how-to-avoid-feature-creep/.
10. At http://inessential.com/2009/07/30/anatomy_of_a_feature.

Report erratum

this copy is (P1.1a printing, July 2011)

http://headrush.typepad.com
http://hbr.org/2006/02/defeating-feature-fatigue/ar/1
http://jasonputorti.com/post/229492382/how-to-avoid-feature-creep/
http://inessential.com/2009/07/30/anatomy_of_a_feature
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=214
http://

Chapter 25

Removing Features
The previous chapter was about avoiding feature creep—how to make

sure you don’t overload your product, and your users, with too many

features. But you might find yourself in situations where it’s not about

refraining from adding unnecessary features anymore. What you really

need to do is get rid of some of your existing features.

You might have reached this point for a number of reasons. Maybe

your technology has become outdated. A decade ago it might have been

absolutely reasonable to add FTP syncing to your application, but today

there are better ways, and the FTP feature has become a liability. Per-

haps you added a feature because the backend supported it and it was

free for you to add, but feedback shows that few people use it now.

Or maybe you inherited a product from somebody who wasn’t quite as

selective as you are about adding features.

No matter how you got there, you are now in the unfortunate and

unpopular position of having to take away features from your users.

Having to tell your users that you are removing a feature is much

harder than telling them that you are not going to implement some-

thing. Even your product’s most pointless feature will be someone’s

favorite. The fact is, removing any feature will make some of your cus-

tomers really unhappy.

But keeping unnecessary features in your product sends the message

that you don’t really care. Soon, these features start piling up, and

eventually, your product changes from a small, elegant solution that

people love into an unwieldy mess of outdated features that most people

don’t care to understand.

This chapter contains some ideas that might help you remove features

from your product.

http://

DO THE RESEARCH 216

25.1 Do the Research

Before deciding to remove a feature, make sure you have all the data.

Do you know how many of your customers use that particular feature?

The best approach is to get usage data from your customers. Add a

“Send anonymous usage statistics” checkbox to your settings, and ask

your users whether they would like to opt in.

!"#$%&'$()*"%+&,-.&/%01%23/)'2/&42##1%5"67&68

26)61')35%3528"%5/2/&5/&459

If you can’t get hard data, you can ask your users how they use your

product. Polling your users can lead to interesting results. You should

make sure to give people the option of also sending in a written reply to

your poll, detailing exactly how they use your product.

That’s what Mac and iOS developer Manton Reece did for his Mac app

Wii Transfer.1 As a result of the survey he ran on his users, he decided

to remove a feature from his app. He wrote:2

I eventually did remove a feature, and the survey to cus-

tomers served as a nice sanity check that the feature wasn’t

heavily used. The interesting part, to me, is that the feature I

removed was the entire 1.0 product for Wii Transfer. Literally

everything that 1.0 did is now gone.

It’s been two weeks so far without any complaints. I like to

think that it removes a distraction from the app—one less

place in the app that could lead the customer down the wrong

path. And hopefully it’ll eliminate a tiny part of my support

load, as no one can ask me questions or have problems with

that feature again!

Eventually, you should have a pretty good idea of the popularity of

your features. Should the results show that a feature is particularly

unpopular and therefore a good candidate for removal, you should ask

yourself the following:

• If only a few of my users use this feature, is it because the feature

was intentionally designed that way? Is it very important but only

rarely used because of its nature?

1. See his survey results at http://www.manton.org/2009/07/wii_transfer_survey.html.
2. Read what he had to say at http://www.manton.org/2010/02/removing.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.manton.org/2009/07/wii_transfer_survey.html
http://www.manton.org/2010/02/removing.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=216
http://

INFORM YOUR USERS 217

• Do few people use the feature because the user interface is incom-

prehensible, hidden, or poorly named? Would people use it more

often if they knew how?

• Do people largely ignore this feature because it is simply unnec-

essary?

Low usage data doesn’t necessarily mean you should or even can cut

a feature. For example, most users of a backup application very rarely

use the restore function. Obviously, that doesn’t mean it’s OK to cut

the restore function from your backup app.

Low usage is one indicator that something might be wrong. Use the

data to help you come to a conclusion, but rely on your knowledge and

experience to decide which features to remove, which to replace with

better solutions, and which to keep.

There’s more about collecting data in Chapter 34, Collecting Usage

Data, on page 287.

25.2 Inform Your Users

Before you yank a feature, it’s always best to tell your users what you

intend to do and ask for their input on your decision. It’s entirely pos-

sible that you missed something when deciding which features to cut.

Identify the features you intend to cut, and explain why you intend to

cut them.

Don’t let people vote on which features to cut (a vote doesn’t tell you

anything about why people voted the way they did, and if you have

to override the results, you’re inviting a user revolt), but do take their

opinions and feedback into account. These people are the ones who

actually use your product, so they might have useful insights into how

your product is being used in the real world—insights that you might

have missed.

25.3 Provide Alternatives

Only a few of your customers might use a particular feature; however,

it’s possible that they really rely on it. So, it’s always a good idea to

try to provide some kind of alternative. For example, you could contact

somebody who creates a product that could replace the feature you’re

removing and try to negotiate a discount for your existing users.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=217
http://

IT’S YOUR PRODUCT 218

When the people at Bohemian Coding3 wanted to remove the bitmap

features from their application DrawIt, they contacted Flying Meat’s

Gus Mueller.4 They were able to work out a deal, and every DrawIt

customer got a free copy of Flying Meat’s image editor Acorn. Bohemian

Coding’s Pieter Omvlee told me:

The feedback I got was mixed. Some people were happy with

the improvements I made to the vector part in the same

update and said they never used the bitmap part anyway.

Some complained because they only used the bitmap part,

but I could point them to Acorn. Lastly, I received some com-

plaints from people who really liked the combination of both

vector and bitmap in one app. Fortunately, only very few peo-

ple felt that way. In general, it all went well, and I think that’s

for a big part thanks to Gus Mueller’s generous offer.

If you can’t find a similar solution, another option would be to spin the

feature off into its own independent, small utility. However, this sets the

expectation that you will support this utility at least at a basic level. If

you aren’t ready for that responsibility, don’t pick this option.

If none of these options works for you, you can also consider keeping

the old version of your product available for a time so that everybody

who relies on its unique features has the opportunity to download it

again and, if necessary, create a local backup copy for later use.

25.4 It’s Your Product

The most important point is to remember that you are responsible for

your product. Your customers can switch to another product if yours

doesn’t suit them anymore. You can’t. You customers don’t know how

popular a feature is. You do. Your customers don’t know how much

work it is to support a feature and to keep it running. You do.

You are stuck with your product, so you should make sure it remains

something you want to work on and can be proud of.

3. Find them at http://www.bohemiancoding.com.
4. Flying Meat is at http://flyingmeat.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.bohemiancoding.com
http://flyingmeat.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=218
http://

IT’S YOUR PRODUCT 219

Takeaway Points

• Sometimes, you have to remove features from an existing product.

This is never an easy decision.

• Get usage data to find out how people use your product.

• If you’re considering removing a feature, get feedback from your

users before going ahead with your decision.

• Try to provide alternatives.

Further Reading

Mac developer Brent Simmons has written repeatedly about removing

features.5

On his blog, product manager Jeff Lash tells you not to be afraid of

removing features.6

5. Here’s a good essay on the topic: http://inessential.com/2008/07/22/more_about_deleting_features.
6. Read his article at http://www.goodproductmanager.com/2008/02/17/do-not-be-afraid-to-remove-features/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://inessential.com/2008/07/22/more_about_deleting_features
http://www.goodproductmanager.com/2008/02/17/do-not-be-afraid-to-remove-features/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=219
http://

Chapter 26

Learning from Video Games
We want to make our products fun. But how? A lot of different things

can be fun. For example, some people think that being scared is fun.

They like riding roller coasters and visiting haunted houses. Obviously,

in most cases, we can’t make our product more fun by making it scarier.

Instead, the kind of fun we most typically experience when we use appli-

cations and websites is the one associated with what psychology pro-

fessor Mihály Csíkszentmihályi calls flow.

26.1 What’s Fun?

Fortunately, there is a lot of great research on the psychology of this

kind of fun, and the results are rather consistent. In his book Flow:

The Psychology of Optimal Experience [Csi02], Mihály Csíkszentmihá-

lyi explains that people experience fun when they have a goal, a way

of measuring progress toward that goal, constant feedback on their

success, and skills that match the challenge, neither exceeding it nor

falling short. He notes that “by far the overwhelming proportion of opti-

mal experiences are reported to occur within sequences of activities

that are goal-directed and bounded by rules—activities that require the

investment of psychic energy, and that could not be done without the

appropriate skills.”

Similarly, in his book A Theory of Fun for Game Design [Kos04], Raph

Koster comes to the conclusion that people who play video games have

fun when they are able to master tasks; the game presents what appear

to be difficult problems that make sense to the player in the context of

the game’s world. The player’s ability to solve these problems is what

makes the game fun. Koster writes:

http://

WHAT’S FUN? 221

Fun is all about our brains feeling good—the release of endor-

phins into our system. (...) One of the subtlest releases of

chemicals is at that moment of triumph when we learn some-

thing or master a task. This almost always causes us to break

out into a smile. After all, it is important to the survival of the

species that we learn—therefore our bodies reward us for it

with pleasure. There are many ways we find fun in games,

but this is the most important.

So, let’s quickly recap these points. People experience fun when the

following three criteria are met:

• They have a meaningful challenge or task.

• They have a way of measuring whether they are getting closer to

mastering that challenge.

• They have the ability to master that challenge.

To be an actual challenge, the user’s task can’t feel too easy, because

that’s boring. On the other hand, the task can’t be too hard; otherwise,

it will be stressful. People experience fun when their skill level matches

the challenge.

!
"
#
$$%
&
'
%

()*$$+

The mechanism that makes a video game fun is very similar to the one

that makes your application or website fun.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=221
http://

WHY YOUR PRODUCT IS NOT LIKE A GAME 222

26.2 Why Your Product Is Not Like a Game

What we’ve discussed so far applies both to games and to your prod-

uct. However, there are two important differences between them: where

tasks come from and who sets the tasks’ difficulties.

Games Need to Provide Tasks; Your Product Doesn’t

When playing a game, the game itself provides the tasks. With your

product, the user provides the tasks.

I sometimes hear user interface designers say something like:

Games make the player do unnecessary tasks, such as col-

lecting coins. But people have fun playing games. So, it’s

probably OK for my application to make the user do unnec-

essary tasks; they’ll still have fun using my product.

This rationalization seems to offer some justification for overly compli-

cated design. Overly complicated design provides more things for the

user to do. Games also provide things for the player to do: evil Bowser

has kidnapped the princess, and the player needs to get her back by

jumping on turtles.

Your product, however, is different from a game. You don’t have to pro-

vide any tasks. The user will provide the tasks—for example, creating

a movie or a presentation or finding a specific piece of information. The

application or website is the tool used for accomplishing these tasks.

Games Need to Control the Difficulty; Your Product Doesn’t

In a game, the designer controls the difficulty of the task. With your

product, the user controls the difficulty of the task.

This might sound like an inconsequential difference, but it affects how

you should design your product. Here’s something I’ve heard designers

say about difficulty:

Games can be difficult to play, but people still have fun play-

ing them. So, it’s OK to make my application difficult to use.

That’ll just make it more fun for my users.

An application or website that is hard to use does not present a mean-

ingful challenge if the difficulty is unrelated to the actual task. It merely

makes the user feel stupid and gives him the impression that he is not

completely in control.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=222
http://

WHY YOUR PRODUCT IS NOT LIKE A GAME 223

You don’t need to make a task harder for your users. If a user doesn’t

feel sufficiently challenged by her task, she will make it harder. She will

add more complex transitions and titles to her movie. She will create a

beautiful letterhead for her letter. She will learn how to use layer effects

when editing photographs.

There’s an additional issue with the idea that we should emulate games

by making our products more difficult to use. As it turns out, most

modern games aren’t actually difficult; they are specifically and care-

fully designed to merely give the impression of being hard.

At the beginning of Nintendo’s seminal game Super Metroid, the heroine

of the game is attacked by a huge monster. The fight seems impossible,

and it takes all of the player’s skill to dodge the monster’s attacks while

still fighting back. Just when her energy is about to run out and she

thinks she’s done for, the monster gives up and flees. Wow, that was

hard! A lesser player wouldn’t have made it!

Actually, the monster always gives up seconds before the player dies.

Anyone would have made it. It just feels like it was a nearly insur-

mountable challenge.

In an article called “Hot Failure: Tuning Gameplay With Simple Player

Metrics,”1 game developer Chris Pruett describes the system he uses to

balance the difficulty of his Android game Replica Island.2 To test his

game, he released to players a version that reported where the players

died. From this data, he created a heat map, shown in Figure 26.1,

on the following page, that showed where in each level people died the

most. Brighter colors indicate areas where people died more often.

Using the heat map, he eliminated areas that were too difficult or

caused deaths that were unfair to the player (such as pits that were

invisible during a jump).

Additionally, his game employs a dynamic difficulty-adjustment system

that allows him to decrease the difficulty for players who die more often.

He explains:

This system secretly increases the player’s life and flight

power after a certain number of consecutive deaths.

1. Read it at http://www.gamasutra.com/view/feature/6155/hot_failure_tuning_gameplay_with_.php.
2. Find out more at http://replicaisland.net.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.gamasutra.com/view/feature/6155/hot_failure_tuning_gameplay_with_.php
http://replicaisland.net
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=223
http://

WHY YOUR PRODUCT IS NOT LIKE A GAME 224

Figure 26.1: Heat map showing where characters died in Replica Island

Many modern games use systems like these. When I talked to Bruce

Oberg, co-owner of Sucker Punch, a game studio that developed titles

like inFamous and the Sly Cooper series, he told me the following:3

We want people to make progress at a steady pace; we don’t

want them to die all the time. If we have a recording of where

everyone died and we see that everyone’s dying in one spot,

maybe we need to change that spot. (...)

Basically, we want everyone to be able to have a good time

playing the game, whether you’re high-skilled or low-skilled.

We want everyone to be able to make progress and have fun.

Modern games are not fun because they are hard. They are fun because

a lot of testing goes into making them appear to be challenging, while

still allowing players to overcome any problem thrown at them. Con-

stantly failing is not fun, but mastering challenges that seem hard is.

You can apply this to your product. People really love apps like Garage

Band for the iPad, because it takes something that is hard (creating

music that sounds good) and makes it possible for people to actually

3. You can read the whole interview at http://wisegamers.ch/artikel/417/gamescom_interview_bruce_oberg_infamous_2/.

Scroll down for the original English transcript of the interview.

Report erratum

this copy is (P1.1a printing, July 2011)

http://wisegamers.ch/artikel/417/gamescom_interview_bruce_oberg_infamous_2/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=224
http://

WHAT WE CAN LEARN FROM GAMES 225

achieve great results. It’s the same concept found in games: take a

challenge that seems hard and allow people to master it.

But that’s not all we can learn from games.

26.3 What We Can Learn from Games

Game designers have decades of experience in making things that are

fun. If we keep in mind how games are different from our own products,

user interface designers can learn a lot from how games are designed.

Progress

In his paper “Heuristics for Designing Enjoyable User Interfaces:

Lessons from Computer Games,”4 Thomas W. Malone notes:

For both toys and tools, however, users need some kind of

performance feedback to know how well they are achieving

their goals. In games, this performance feedback is provided

by things like the missing bricks in Breakout and the

position of the incorrect arrows on the number line in Darts.

There may be similar ways to incorporate performance

feedback for the external task into tools. For example, the

Writer’s Workbench developed at Bell Laboratories measures

various stylistic features of manuscripts such as word

length, sentence length, percentage of sentences using

passive voice, and so forth. These rudimentary kinds of

performance feedback for the external goal of producing a

readable manuscript may enhance the challenge of using

the tool.

In other words, measuring progress and providing feedback about that

progress makes an activity more fun.

Video games like Capcom’s Ghosts ’n Goblins provide an overview map.

After every world the player masters, the game’s knight progresses a

bit further. This shows the player’s task, and it also gives constant

feedback on her progress. EpicWin5 is an iPhone tasklist app that uses

the same metaphor to show the user’s progress at ticking items off the

tasklist.

4. Find it at http://portal.acm.org/citation.cfm?id=801756.
5. Get the app at http://www.rexbox.co.uk/epicwin.

Report erratum

this copy is (P1.1a printing, July 2011)

http://portal.acm.org/citation.cfm?id=801756
http://www.rexbox.co.uk/epicwin
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=225
http://

WHAT WE CAN LEARN FROM GAMES 226

Similarly, the online presentation program Prezi6 shows a small

progress bar that depicts how much of the tutorial the user has already

gone through. Until she finishes the tutorial, this small badge is always

visible, reminding her of her progress regardless of what she’s currently

doing.

I’m usually not the kind of person who goes through these tutorials,

but this simple progress bar induced me to finish Prezi’s tutorial.

6. At http://prezi.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://prezi.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=226
http://

WHAT WE CAN LEARN FROM GAMES 227

But progress doesn’t have to be shown quite so literally. When creating

a movie trailer in iMovie, progress is shown as a list of scenes the user

has to set up.

Again, this shows the task and tells the user how far he’s progressed.

Skill Growth

Another aspect of games design that can apply to product design in

general is skill growth, or learning. Games get harder as the player’s

skill improves. Users of your product will create greater challenges for

themselves on their own—if they can. To keep your users in the “flow

zone” where the challenge and the user’s skill match, your product

needs to be able to grow alongside the user’s skill.

A good example of this is the image-editing application Pixelmator.7 At

first its user interface seems deceptively simple. But as the user’s skill

grows, she can discover and learn new aspects of the application that

are initially hidden.

7. Find out more at http://www.pixelmator.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.pixelmator.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=227
http://

WHAT WE CAN LEARN FROM GAMES 228

To make it possible for people to increase their skills, your product

needs depth. It should be easy for new users to learn, but it also needs

to provide advanced features for advanced users to discover. Thomas

W. Malone suggests making this progression an explicit part of your

product:

For example, a multilayered text editor could be designed so

that beginning users need only a few simple commands and

more advanced users can use more complicated and more

powerful features of the system.

The point here is that a multilayered system could not only

help resolve the trade-off between simplicity and power, it

could also enhance the challenge of using the system. Users

could derive self-esteem and pleasure from successively mas-

tering more and more advanced layers of the system, and

this kind of pleasure might be more frequent if the layers are

made an explicit part of the system.

Discovery and Rewards

Modern games often combine conveying progress with discovery. They

do this using something called achievements. Microsoft’s Xbox first

introduced achievements, and other consoles have followed suit since

then. Some systems call them trophies, challenges, or badges, or they

use other names. By now, regular applications and websites have

started using them.

Achievements are awards given out to users either for discovering a

new aspect of a product or for doing something positive. They are used

both to encourage experimentation, as well as to reward good behavior.

Audible’s mobile app uses badges as well as usage statistics that show

the user’s progress to encourage people to listen to audiobooks more

often. Figure 26.2, on the next page shows this. Audible also uses this

data to assign different levels to users, from “newbie” to “master,” fur-

ther encouraging them to use the app more often.

Location-based social networking site Foursquare uses secret badges

to encourage exploration: users are rewarded for figuring out unusual

situations for using Foursquare.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=228
http://

WHAT WE CAN LEARN FROM GAMES 229

Figure 26.2: Progress feedback in Audible

Question-and-answer site Stack Overflow8 uses badges to encourage

and reward good behavior. In addition to this, Stack Overflow awards

points to users. It even has something called user flair, a piece of HTML

their users can include in other sites to showcase their points and their

badges.

Competition

Publicly showcasing points introduces another element commonly

found in games: competition. Systems like Nike+9 or RunKeeper10 use

scores and competition to get users to use their systems more regularly.

Twitter is another system that uses competition to engage users. Online

community architecture expert Amy Jo Kim notes11 that Twitter follow-

ers are less like a typical game score and more like a collection game.

Collecting Things

Trying to get followers in Twitter is very much like collecting baseball

cards or playing Pokémon and collecting monsters.

8. At http://stackoverflow.com.
9. At http://nikeplus.com.
10. At http://runkeeper.com.
11. Watch her presentation on the topic at http://www.youtube.com/watch?v=ihUt-163gZI.

Report erratum

this copy is (P1.1a printing, July 2011)

http://stackoverflow.com
http://nikeplus.com
http://runkeeper.com
http://www.youtube.com/watch?v=ihUt-163gZI
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=229
http://

WHAT WE CAN LEARN FROM GAMES 230

!"##"$%&' !"#$%

Many games and applications involve collecting things. iPhone owners

tend to collect apps, for example, in part because the beautiful icons

look valuable. It’s fun to collect them, even if you don’t use most of the

apps on your phone.

Consistent Rules

Finally, good games have an easily understandable, static, consistent

set of rules. If the rules change during the game, players feel cheated.

The same applies to your product. For example, a tool should always

have the same effect, regardless of where and to what it is being applied.

When discussing how rules in video games work in Rules of Play: Game

Design Fundamentals [SZ03], Katie Salen and Eric Zimmerman write:

Rules are complete and lack any ambiguity. For example, if

you were going to play a board game and it wasn’t clear what

to do when you landed on a particular space, that ambiguity

would have to be cleared up in order to play. (...)

Rules are repeatable from game to game and are portable

between sets of different players.

If the rules governing your product are ambiguous or not repeatable,

people will be unable to form correct mental models of how your prod-

uct works.

These kinds of elements commonly found in games can make your

product more fun to use and at the same time seduce your users into

exploring your product, learning more, and behaving in a positive way.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=230
http://

FUN VS. USABILITY 231

26.4 Fun vs. Usability

Being usable is a bit like being edible.12 A lot of things are edible, but

being edible alone doesn’t mean that something is also delicious. Sim-

ilarly, a lot of things are usable, but that alone doesn’t mean that we

want to use them.

But while being edible is not sufficient for being delicious, it is required.

Similarly, being usable is not sufficient for being fun, but it is required.

So although not every usable product is necessarily fun, every fun prod-

uct has to be usable—otherwise it will just be frustrating.

Actually, this may not be entirely true. There is a kind of product that

can be unusable yet still fun: art.

If challenging your user is your only goal, then you’re basically creating

art. This book is not about art; it is about applications and websites

that humans use to reach specific goals.

Victor Papanek was particularly harsh in his book Design for the Real

World [Pap05], when he wrote that “the cancerous growth of the cre-

ative individual expressing himself egocentrically at the expense of the

spectator and/or consumer has spread from the arts, overrun most of

12. I didn’t come up with the usable/edible comparison. I think I first saw it in Aar-

ron Walter’s essay “Emotional Interface Design: The Gateway to Passionate Users” at

http://thinkvitamin.com/design/emotional-interface-design-the-gateway-to-passionate-users/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://thinkvitamin.com/design/emotional-interface-design-the-gateway-to-passionate-users/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=231
http://

FUN VS. USABILITY 232

the crafts, and finally reached into design.” He lamented that many

designers no longer have the good of the consumer in mind.

Making your product fun is a great goal, but fun can and should never

come at the expense of usability.

Takeaway Points

• Merely being usable doesn’t make your product fun. However, if

your product isn’t usable, it’s probably not fun either.

• People experience fun if they have a meaningful challenge, a way

of measuring their progress toward mastering that challenge, and

the skills to master the challenge.

• Don’t provide the challenge. Your users will do that for you.

• You don’t need to set the difficulty. Your users will pick a challenge

that is suitably difficult for them.

• Providing feedback on people’s progress, and allowing them to

grow along with the challenges they master, makes their experi-

ence more fun.

• Try to find a way to reward exploration and positive behavior.

Further Reading

Both Flow: The Psychology of Optimal Experience [Csi02] by Mihály

Csíkszentmihályi and A Theory of Fun for Game Design [Kos04] by Raph

Koster provide useful insight into what makes things fun. Rules of Play:

Game Design Fundamentals [SZ03] by Katie Salen and Eric Zimmerman

is also worth reading, as is Thomas W. Malone’s paper “Heuristics for

Designing Enjoyable User Interfaces,”13

Replica Island developer Chris Pruett writes a great blog about game

design that sometimes touches on usability issues.14

On YouTube, there’s an interesting presentation called “Putting the Fun

in Functional: Applying Game Mechanics to Functional Software” by

Shufflebrain CEO Amy Jo Kim.15

13. You can find it at http://portal.acm.org/citation.cfm?id=801756.
14. At http://replicaisland.blogspot.com.
15. Watch it at http://www.youtube.com/watch?v=ihUt-163gZI.

Report erratum

this copy is (P1.1a printing, July 2011)

http://portal.acm.org/citation.cfm?id=801756
http://replicaisland.blogspot.com
http://www.youtube.com/watch?v=ihUt-163gZI
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=232
http://

Part III

Implementation

http://

Finally, we can start actually writing code!

We’ve done user research, looked at the problems people have, and figured out

solutions for them. We’ve come up with designs, tested these designs, iterated,

and made them as useful and usable as we possibly can.

At this point, you know what you want your product to look like. It’s time to start

actually creating it.

But this is not the end of your design process. In fact, it’s only just starting. This

is your opportunity to see your ideas in action, to find out whether they actually

translate, and to change the direction of your product as early as possible should

you find out that things aren’t working.

Once your product is out in the wild, you’ll start working on the next version.

But how do you know what to improve and what to keep? Techniques like A/B

testing and collecting usage data will help you make these decisions.

http://

Chapter 27

Guerilla Usability Testing

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

Usability testing typically involves inviting people to come to you. This

creates a number of issues with scheduling, setting up simple test labs,

and finding people who are willing to help you out as testers. You can

circumvent these problems by doing one simple thing: going to people

instead of having them come to you.

Why Is This a Good Idea?

You can do the best job possible planning and designing your product,

but until you test it with real people, you don’t know how well it works.1

By going out and asking people to do simple tasks with our product,

you can quickly identify areas where your design needs additional work

and fix these areas while the code is still easy to change. If you don’t

invest time in finding out where your product’s problems are now, you’ll

find out about them after you’ve launched it.

1. Expert opinions are no replacement for tests, as outlined in

http://uxmyths.com/post/3086989914/myth-30-if-you-are-expert-you-dont-need-to-test-your-des.

http://uxmyths.com/post/3086989914/myth-30-if-you-are-expert-you-dont-need-to-test-your-des
http://

HOW OFTEN TO TEST 236

Why “Guerilla”?

Ostensibly, it’s called guerilla usability testing because, analo-
gous to guerilla warfare, it circumvents many of the tools and
techniques of traditional usability testing in favor of a simpler,
less people-intensive approach that relies heavily on mobility
and on the element of surprise. However, I think, it’s mainly
called guerilla usability testing because we programmers and
designers like to make our jobs sound much more badass than
they really are. Hi there, Code Ninjas and Rock-Star Designers!

Are There Any Prerequisites?

Yes. You need to have running code, and at least part of your user

interface needs to be working. You also need to be able to run your

product on a portable device, such as a notebook, cell phone, or iPad.

Guerilla Style

In a typical usability test, you invite people to come to you. You sit

them down in front of a specially prepared workspace and ask them to

do specific tasks while you record their actions. You then use the infor-

mation gleaned from this interaction to improve your user interface.

This kind of testing involves quite a bit of preparation. You need to

set up a workspace and devise a way of recording your testers; you

need to find testers, schedule them, and maybe also pay them for their

participation.

As usability testing became more widespread in the software commu-

nity, people developed a set of techniques that circumvent all the pro-

cess issues. This is commonly known as guerilla usability testing.

The main difference to a regular usability test is that we go to testers,

instead of having them come to us.

27.1 How Often to Test

Guerilla testing is simple, requires almost no preparation, and can be

done pretty much at any time. As a result, it’s often a good idea to do

guerilla testing when you actually have a question you need answered.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=236
http://

PREPARING FOR THE TEST 237

Say you’ve come up with a new way of letting people send messages in

your Twitter app. You’ve implemented it, and it works. But will people

get it? Don’t guess. Instead, test.

27.2 Preparing for the Test

You should have your code running on a portable device. If your product

relies on a service or is a service, prepare a guest login so people don’t

have to supply their email addresses or other personal data. If your code

relies on an Internet connection, make sure this works where you’re

going. Check that your portable device’s battery is full (keep a spare if

possible and necessary).

You should also think about how to explain your product and come

up with some simple tasks you want people to perform. Then, make

sure your product is bug-free for these specific tasks; run through each

task to see whether it works. Your aim is to find issues with the user

interface, not bugs in your code.

If you want to, you can install something like Silverback or Jing2 on the

computer to record the user’s actions.

27.3 How Do You Find Testers?

Simply visit a nearby café, look for people who don’t appear to be buried

in the newspaper or a laptop, and ask them whether they are interested

in participating in a short usability test.

If you’re working in an office building, it’s often also possible to find

people near the watercooler or people who are on a cigarette break.

Unless you specifically want to find out how well a new feature works

for existing users, you should try to avoid people who are overly familiar

with your product, though.

27.4 How Many Testers

Since you don’t have to schedule testers in a guerilla-style usability

test, you can test with as many people as you need to until you feel you

have a solid answer to your question. Three to five people is usually

2. Find these products at http://silverbackapp.com and http://www.techsmith.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://silverbackapp.com
http://www.techsmith.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=237
http://

RUNNING THE TEST 238

a good idea, but even a single tester often yields useful insights into

potential issues with your design.

27.5 Running the Test

This is pretty simple. Find somebody willing to lend you five minutes.

Explain what exactly you are doing, what the application does, and

what the task is that you want the person to perform. If you intend to

record the session, get the user’s permission.

We’re working on a new Twitter app. You know what Twit-

ter is? OK, great. We’re working on this app, and in order

to make sure that we got the design right, we want to see

whether people can figure out how to use it, so we’re test-

ing our design. We’re not testing you. Don’t worry if you don’t

immediately get something, because that’s exactly the kind of

feedback we’re looking for. It means we got something wrong

with our design. If it’s OK with you, we’ll record this test so

that we can go through it later. We won’t publish the record-

ing or anything like that. OK? Great. For the first test, we

want to test our “new message” user interface. We’re already

logged in, and we just want to see whether people can figure

out how to post Twitter messages. Feel free to talk during the

test and explain what’s going through your mind while you’re

using the app.

Then, sit back, observe, and take notes.

It’s very likely that the tester will run into issues rather quickly. If you

feel that he gets frustrated, intervene and either give a hint or stop the

test. Otherwise, just keep your mouth shut.

I will talk more about how to run usability tests in later chapters, but

for now, this is really all you need to know.

27.6 The Results

Once you’ve done this with a few people, you’ll end up with a list of

problems. Some of them will likely have occurred with more than just

one person, and those are the ones you want to focus on first. Think

about why people didn’t get your design. Think about how to fix it.

Implement a fix. Test again, until people get it.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=238
http://

THE RESULTS 239

Takeaway Points

• Usability testing can be simple yet still yield useful, actionable

results.

• Run informal, guerilla-style usability tests whenever you need to

test a change to the user interface.

• Prepare for the test by installing your product on a portable device,

making sure it runs, and coming up with some simple tests.

• Go to a nearby café or find bored people in your office building.

Ask them whether they’re willing to spend five minutes helping

you out.

• If you find a tester, explain how the test works, explain the premise

of your product, and give him or her a simple task.

• Don’t interrupt, unless you feel the tester is getting frustrated or

is stuck. Take notes.

• After a few tests, you’ll have a pretty good idea of where your user

interface still has issues. Fix them, and then test again.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=239
http://

Chapter 28

Usability Testing

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

In the chapter about paper prototypes (Chapter 11, Paper Prototype

Testing, on page 104), you got a first taste of usability testing. Now, we

want to do the same kinds of tests with real running code. In many

ways, testing code is actually easier than testing paper prototypes,

because you don’t need to simulate a computer. Testing running appli-

cations also allows you much more freedom in how to perform a usabil-

ity test. This chapter reviews some ideas covered previously, while also

introducing a number of new concepts that are not applicable to paper

prototypes.

This chapter focuses on explaining usability testing and on preparing

for such a test. The next two chapters show how to run usability tests.

Some of the concepts introduced in this chapter work well for larger

teams; others work well for smaller teams or even for people running

the whole show on their own. There should be something for everybody

in this chapter, even if not everything directly applies to your situation.

Why Is This a Good Idea?

If you want to know if your design works, you need to see whether

people get it. You can do this using simple guerilla-style usability tests,

http://

USABILITY TESTS DON’T HAVE TO BE EXPENSIVE 241

shown in the previous chapter. Doing more extensive usability tests

allows you to get better results.

Are There Any Prerequisites?

Yes. You need to have running code, and at least part of your user

interface needs to be in working order.

You should also have read Chapter 11, Paper Prototype Testing, on

page 104, since that chapter introduces concepts that are used in this

and the following chapters and are not explained in detail again.

28.1 Usability Tests Don’t Have to Be Expensive

The basic goal of a usability test is to observe users while they use your

product or a prototype of your product and to thus identify areas of

your user interface that might be difficult for people to navigate.

At the expensive end of the spectrum, this can mean hiring a usability

expert, using a lab with two-way mirrors, planning the tests for weeks,

running several tests with different testers, evaluating and discussing

the results, and producing a report (possibly including videos) of all the

problems and possible solutions.

At the very low end of the spectrum, you can simply take your laptop

to a café and ask people to do some simple tasks with your product.

This chapter is about the middle ground: getting great results but still

keeping your investment as low as possible.

Usability expert Jakob Nielsen notes1 that even poor usability testing

yields some useful results.

Better usability methodology does lead to better results, at

least on average. But the very best performance was recorded

for a team that only scored 56% on compliance with best-

practice usability methodology. And even teams with a 20–

30% methodology (i.e., people who ran lousy studies) still

found 1/4 of the product’s serious usability problems.

1. Read more at http://www.useit.com/alertbox/discount-usability.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/alertbox/discount-usability.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=241
http://

HOW OFTEN TO TEST 242

Finding two serious usability problems in your design is well

worth doing, particularly if you can do so after testing only

three users—basically, an afternoon’s work. (...)

Bad user testing beats no user testing.

So, even doing poor tests is still a lot better than doing no tests at all.

But with a few simple guidelines, we can do pretty good usability tests

on a pretty small budget.

Many designers and developers don’t do usability tests, because they

think they don’t have the time. Schedules are often tight, and spending

even a day on something other than adding features to the product can

mean that the project is now one day behind schedule.

The problem isn’t that companies don’t do good enough usability tests;

it’s that they don’t test at all. This chapter isn’t about running the best

usability tests in the world—it’s about running simple, cheap usability

tests that still yield actionable results.

Here we’ll take a look at different approaches to running usability tests.

Some of them take more time than others, but you can get great results

by investing even a few hours each week.

28.2 How Often to Test

Doing usability tests is like jogging: the more you do it, the easier it gets,

and the better you become at it. Experts often recommend spending a

few days each month, but setting aside a few days for usability testing

can be hard to do—plus, if you do it only once a month, you won’t

get used to it. Between it being hard to reserve the time and you not

getting used to it, you’ll eventually stop doing tests altogether. So, I’m

recommending a schedule that is a lot simpler: set aside half a day each

week.

Soon you’ll discover that the feedback cycle becomes addictive. Each

week, you’ll find new problems, and after you’ve come up with potential

solutions, you’ll be eager to see whether they work. Instead of waiting

a month for the next test, it’s much more exciting to see early on how

our new design does—whether it solves the problem and whether it

introduces new issues.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=242
http://

HOW MANY TESTERS 243

28.3 How Many Testers

Jakob Nielsen famously wrote that only five users are needed to find

almost all the usability problems that a larger group would have found.2

But even testing with such a small group takes a lot of work. Remember,

our goal is to spend only half a day each week. Finding five testers,

scheduling them so they can all come in on the same day, making sure

somebody takes care of them if they come too early or too late, preparing

all the paperwork five times—you can’t do that in half a day.

Instead, you can get useful results by doing only one test with only one

person each week.

Before covering the reasons for testing a single user, let’s look at the

arguments against it. Nielsen points out two of the disadvantages in

his essay.

For one, you won’t have anybody to compare that one person’s results

to. If you test with five people, it’s easier to identify the pressing prob-

lems because more than one person will stumble upon them. Usually,

you can make a reasonable guess as to the importance of a problem

even when testing with only one person—but not always. However,

that’s not a huge problem; since you’re going to test your design each

week, you can just ignore problems if you’re not sure they’re urgent.

The urgent problems will pop up again pretty soon.

Another problem is that your test preparation yields only one test

result, which is especially problematic when running more extensive

tests that require more preparation. A pretty big investment can result

in a pretty meager outcome. If the plan is to run extensive usability

tests that require a lot of preparation, then you need to test with more

people. However, the kinds of tests introduced in this chapter do not

require a lot of preparation.

So, there are disadvantages. Fortunately, testing with only one person

also comes with clear advantages:

• It’s easier to find testers since you have to find only one person at

a time.

• It removes the overhead of trying to match the schedules of several

people. It’s usually easy to find a date that works for two people:

the designer and the tester. Trying to get an additional person to

2. Read more about it here: http://www.useit.com/alertbox/20000319.html.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.useit.com/alertbox/20000319.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=243
http://

WHO SHOULD TEST YOUR PRODUCT? 244

show up on the same day significantly increases the complexity.

There’s a reason why most people that we make appointments

with have waiting rooms in their offices: scheduling people is hard,

and it usually doesn’t work out properly.

Even if you manage to find a date that works for everybody, you

will run into problems during the test. With just one user, you can

let the test session run a bit longer than expected; if somebody

else is waiting, you’ll have to stop the test when the allocated time

is up.

• If you have only one user, it’s easy to run the whole thing by your-

self. If you have more than one user, you might need somebody

who can help take care of the people who are waiting and who can

welcome people who arrive while you’re in a test.

Of course, given sufficient time, budget, and helpers, testing with three

to five users offers more insight than testing with only one. But don’t

let a lack of time and budget prevent you from doing usability tests.

(Note that this restriction does not apply to guerilla-style usability tests

introduced in the previous chapter. If you go to your testers instead of

having them come to you, the issues with doing multiple tests essen-

tially disappear. In those cases, I recommend doing more than one test

at a time.)

28.4 Who Should Test Your Product?

Unless you are designing a product that targets a very specific group of

people, who you invite for usability tests typically doesn’t matter much.

And even if you do target a particular group, it still makes sense to test

with people from outside of that group as well. There are two reasons

for this.

One is that people are surprisingly consistent in how they behave. If you

have big problems in your design, you’ll probably find them regardless

of who you recruit as a tester.

The other is that even if you target specific groups of people, the mem-

bers of this group may not be entirely homogeneous. Certain people

will be more experienced with the topic than others. By intentionally

picking testers from a specific group of people, you could miss design

issues that affect less experienced members of the target group. For

example, say you’re testing a product used in a hospital. If you test

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=244
http://

WHO SHOULD TEST YOUR PRODUCT? 245

only with people who already work at that hospital, you will get testers

who are familiar with the hospital’s processes and all the related medi-

cal jargon. However, new hires at that hospital may not be familiar with

these things and may encounter usability issues that nobody in your

test group did. So although it makes sense to include people from your

target audience, you should never limit your testers to people from that

group.

The same applies to existing users or people who have already partic-

ipated in usability tests for a specific product. If you are designing an

update to a product, it often makes sense to do a subset of your tests

with people who have some familiarity with your product. These people

may have learned specific behaviors that cause them to navigate your

user interface differently from novice users. Focus on testing with peo-

ple who don’t bring any preconceptions to the test but do include some

tests with existing users.

When it comes to testing, one thing that can matter a lot is cultural

background. Symbols and colors mean different things to people from

different parts of the world. For example, Japanese video games often

indicate victory by displaying a huge red ring, which kind of looks like

a stop sign. Although this indicates winning to Japanese audiences, it

typically conveys the opposite message for Western audiences.

If you’re expecting a lot of people with different cultural backgrounds

to use your product, it makes sense to reflect this diversity with your

testers.

And finally, although this book doesn’t cover accessibility,3 I will men-

tion here that it often makes sense to do usability tests with people with

poor eyesight, with older people, and generally with people who have

disabilities that might affect how they can interact with your product.

Doing this can help uncover accessibility issues that would have gone

unnoticed.

The main point remains: don’t spend too much time trying to recruit

testers from a specific demographic. Most of the time, people will find

the same kinds of usability issues, regardless of their background.

3. If you’re looking for information on accessibility, check out Mark Pilgrim’s “Dive Into

Accessibility” at http://diveintoaccessibility.org, and Joe Clark’s website at http://joeclark.org.

Report erratum

this copy is (P1.1a printing, July 2011)

http://diveintoaccessibility.org
http://joeclark.org
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=245
http://

HOW TO FIND TESTERS 246

28.5 How to Find Testers

There are many different avenues you can use to find testers. Here are

some ideas to get you started:4

• Friends and relatives. The easiest way to start recruiting testers

is to ask friends and relatives. It’s OK to reuse testers, but don’t

overdo it by using the same people over and over. I would advise

against using workmates for testing, since they tend to have at

least some level of insight into your product that normal users

won’t have.

• Professional recruiting agencies. There are professional recruiting

agencies that will help you find testers, but definitely compare

costs before committing to one of them. If you use agencies, you’re

a bit more likely to get people who regularly participate in such

tests, which is not always what you’re looking for.

• Through your website. You can also look for testers through your

website; the downside there is that you’re likely to get existing

users of your product.

• Through a local newspaper. Simply putting an ad in a local news-

paper often works out well. If you live near a university, they prob-

ably have a pinboard where you can advertise for testers.

Keep in mind that depending on how the testers were recruited, it might

be necessary to compensate them.

28.6 Different Types of Tests

If you’re doing a paper prototype, you’re quite restricted in how you

can run usability tests. The nature of a paper prototype pretty much

dictates how you test it. Usability tests with actual running code are

more forgiving, and there are different schools of thought on how they

should be run. I’ll roughly group them into three different types of tests:

moderated tasks tests, unmoderated tasks tests, and free-form tests.

Since the type of test determines how you prepare for it, I’ll introduce

the different types of tests now and explain how to run each test later.

4. Christine Perfetti offers some additional ideas in this great video introduction to

usability testing: http://uxideas.com/shows/usability_tests_nutshell/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://uxideas.com/shows/usability_tests_nutshell/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=246
http://

PREPARING FOR THE TEST 247

Moderated Tasks Tests

In a moderated tasks test, a facilitator moderates the tests and intro-

duces the testers to different activities or tasks. The moderator then

observes the testers while they work on the tasks. The facilitator stays

with the testers during the test and interacts with them.

Unmoderated Tasks Tests

In an unmoderated tasks test, the facilitator introduces the user to

the usability test and explains how everything works. The facilitator

then gives the user a number of tasks on a sheet of paper and leaves

the room. There is no or very little interaction between the tester and

the facilitator in this type of test, which rules out any influence the

facilitator might exert on the tester.

Free-Form Tests

In a free-form test, the testers are given no tasks. Instead, the facilitator

encourages the testers to explore the product on their own and do the

tasks that interest them. This works best if you’ve recruited people who

already have an interest in your product (say, you’ve recruited testers

via your website).

In reality, you will often combine aspects of different types of tests. For

example, tests often start with the facilitator encouraging the tester to

explore the product and then switch to task-based tests.

28.7 Preparing for the Test

Depending on the type of test you’re running, there are different things

you need to do to prepare. In most cases, you will need a computer.

Uninstall all the extraneous stuff that might interrupt the test, such as

virus protection software. Install the product in a way that will allow

you to easily reset the system to its default state (you don’t want to

confuse testers with data other users have entered into the system).

Install screen-recording software and a microphone. If you decide to

record the user, you also need a webcam.

It’s important to be as faithful to the product as possible. For example,

you wouldn’t test an iPad application running in a simulator on a com-

puter if you could avoid it. Instead, you would get an iPad for the tests

and run the application on the device itself. Otherwise, you would miss

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=247
http://

RUNNING THE TEST 248

important problems—such as buttons that are too small to be touched

with a finger but can be clicked using a mouse.

If you’re going to test software that doesn’t run on a computer, you

might need a camera that allows you to record the session.

If you’re running a moderated test, where the facilitator stays with the

user, recording the session is not strictly necessary. It can sometimes

be useful, though.

Preparing Tasks

For a task test (either unmoderated or moderated), you prepare by cre-

ating tasks for your testers. Think back to the very beginning of this

book, where I talked about activities, and start with those. Focus on

the most basic, most important activities of the product.

Programmers use code coverage as a measure of how much of their

code is covered by a test suite. When testing user interfaces, you can’t

measure how much of the user interface is covered by a test quite so

easily. But keep “user interface coverage” in mind as a goal. You want

to design your tasks so that they touch on many different areas of your

user interface.

Just like with designing tasks for paper prototypes (in Chapter 11,

Paper Prototype Testing, on page 104—in fact, if you want to, you

can probably reuse tasks from your paper prototype usability test),

you don’t want your tasks to be too prescriptive, so you should come

up with a scenario that one of your users might actually experience.

Describe the situation and the goal; do not describe any of the actual

steps, and do not use words that are visible on-screen.

Prepare at least five tasks. For a moderated test, print each task on an

individual piece of paper. Otherwise, print them all on one piece.

28.8 Running the Test

When running the actual test, you basically have two choices: either

meet the tester in person or do a remote test. In most situations, doing

remote usability tests is a lot simpler and cheaper, and it removes some

of the issues that in-person tests have.

I recommend starting by doing a few in-person tests first to get a feel

for how usability tests work and to get used to interacting with testers.

This is a lot easier if you can sit right there next to them.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=248
http://

RUNNING THE TEST 249

In the next chapter, I explain how to do in-person usability testing. The

chapter after that will explain how remote testing works.

Takeaway Points

• If you want to know whether a user interface works, you need to

test it with actual people.

• Usability tests don’t have to be expensive or take a lot of time.

• You should do tests regularly; the more testing you do, the better

you get at it, and shorter iterations make it easier to test user

interface ideas to see whether they work.

• It’s better to do smaller tests more often, rather than testing less

often with more people. It’s fairly simple to do one usability test

with one (different!) person each week.

• You should test with novice users, as well as with people who

already know how to use your product, because the two groups of

people are likely to find different kinds of issues.

• When selecting testers, look for diverse cultural backgrounds.

Don’t forget to test accessibility issues as well.

• There are different kinds of usability tests, including moderated

or unmoderated, and they can be task-based or free-form. Often,

you will combine aspects of different types, first asking people to

explore the product on their own and then switching to predefined

tasks.

• If you’re doing a task-based test, you need to prepare tasks before-

hand. Tasks should not be too prescriptive, instead outlining a

scenario and letting the user come up with a solution.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=249
http://

Chapter 29

Testing in Person

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

Basically, you invite people, observe them while they use your product,

and use information from these tests to make your product better.

Why Is This a Good Idea?

Doing usability tests of any kind gives you great insight into where your

user interface has problems.

In addition to that, even if you want to focus on doing remote usability

tests, you should start by doing some in-person tests to get a feel for

how to run usability tests in general.

Are There Any Prerequisites?

Yes. You should read the previous chapter (Chapter 28, Usability Test-

ing, on page 240) before reading this one.

29.1 Running the Test

At this point, let’s assume you have found a tester and have prepared

everything you need for the test. So, let’s jump ahead to the actual test.

The first thing you’ll do is to introduce the tester to the test. Similar to

http://

RUNNING THE TEST 251

the paper prototype test (back in Chapter 11, Paper Prototype Testing,

on page 104), you give a short introduction to usability testing. Here’s

an example of what you might say:

Hi, I’m Lukas. I work for BizTwit Inc. as a software designer.

Today, we are testing a new version of our Twitter client

BizTwit to see whether it works the way we intended. I want

to make it very clear that we are testing the product, not you.

This new product has never been used outside of our team

here, so we are hoping to find problems by observing how

people interact with it. So, don’t worry if you get stuck or if

something doesn’t work as you expect it to—this is exactly

the kind of feedback we are looking for! Feel free to say what-

ever is on your mind while interacting with the product. This

will help us understand what you’re thinking while you’re

using the product, which will make it easier for us to figure

out how to improve the product. With your permission, I will

record this session. This will help us see what we can do

to fix problems with our design. We will never publish this

recording in any way.

Depending on what type of test you’re running, you also need to explain

how the test itself is going to work.

What happens next depends on the type of test.

Moderated Tasks Tests

You start by explaining how moderated tasks tests work. This includes

pointing out that while the tester is welcome to ask questions, you may

not always be able to respond.

Then you turn to the computer (or device). Before you initiate the test,

the computer should be in a neutral state. You start your product (if

it’s a website, by entering the URL into the browser’s address bar; if it’s

an application, by launching the application) and hand over control to

the tester.

The first thing you want to know is whether the tester can figure out

what the product is, so you start the test by saying something along

the lines of this:

Take a look at this website. Feel free to scroll around. What

kind of service do you think this website offers?

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=251
http://

RUNNING THE TEST 252

If the tester can’t figure out what the website is all about, you’ve found

your first usability problem.

Next, you want to know whether the tester can figure out how to use

the product. To do this, you have prepared a number of tasks, each one

on its own slip of paper. Say something like this:

To test this website, I’m going to give you a task. I’ll read it to

you first, and then I’ll give it to you in written form.

Then, hand the tester the piece of paper, shut up, and observe. It’s

OK to take notes, but try to avoid influencing the tester as much as

possible. Don’t make any noises. Definitely don’t laugh. Sit back a little.

If the tester finishes a task, say something to acknowledge that fact,

and move on to the next task. If, on the other hand, the tester looks

unhappy or seems to be stuck, feel free to stop the current task. If you

have to stop a task, you must avoid discouraging the tester; you can do

that by ensuring he knows that the result of the test was helpful, even

if he didn’t finish the task. Say something like this:

Yes, I had a hunch there might be a problem with this inter-

face. I can see what we have to change now. I think we’ve

learned all we can from this task—let’s move on to the next

one.

This is pretty much the only time you should interrupt the tester. If

you have something that you’d like to talk to the tester about, you can

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=252
http://

RUNNING THE TEST 253

make a note and ask after the task is done. If the tester has a question,

just reply in a noncommittal way:

How would you deal with this question at home, if you were

alone?

After the last task, ask any remaining questions, ask the tester to give

feedback on how the test was run, and thank your tester for his time.

Make sure to end the test on a positive note.

Unmoderated Tasks Tests

Moderated tasks tests pose a bit of a problem. That problem is us.

As facilitators, we have to stay with the tester during the test, so we

are very likely to influence her in subtle ways, even if we do our best

to avoid doing so (for more on this, see Chapter 31, How Not to Test:

Common Mistakes, on page 268).

Facilitators can also make people anxious; we probably wouldn’t like

it if somebody was constantly looking over our shoulder and making

notes about everything we are doing, either. Finally, testers often sub-

consciously try to please the facilitator, so if we’re sitting right next to

them, they will be more likely to keep trying until something works.

The simplest solution to this problem is to take ourselves out of the

equation.

In an unmoderated tasks test, you introduce the tester to the test, hand

him a list of tasks on a sheet of paper, start recording, and leave him

alone.

The one obvious problem with this approach is that you can’t easily

intervene when the tester gets stuck. At the beginning of the test you

need to explain what to do if this happens. Depending on your equip-

ment, there are different ways of dealing with this. If you’re doing the

test in a usability lab furnished with a two-way mirror, the question is

moot; you’ll be observing the test, and you’ll be able to communicate

with the tester.

If you’re doing the test in a place where communication is impossible,

you could say something like this:

If you get stuck on one of the tasks, don’t worry. This is

exactly the kind of thing we’re looking for. Feel free to keep

trying for a bit, but as soon as you get bored or think you

can’t figure out how to continue or that there’s a problem

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=253
http://

RUNNING THE TEST 254

with the product, which is entirely possible because it’s not

finished yet, just move on to the next task. If for any reason

this is not possible, I’m in the next room, so you can always

come over if there is any kind of problem.

Besides minimizing the influence of moderators, unmoderated tests are

less stressful for testers, because there is nobody sitting next to them,

constantly looking over their shoulder.

Free-Form Tests

In a free-form test, there are no tasks. The goal is to see what people

do if they don’t already know what they are supposed to do. Just intro-

duce the tester to the test, let him have at your product, and see what

happens. I do recommend observing the test, either in person or from

another room, in order to intervene when the tester gets bored or stuck.

If that happens, suggest some tasks, and move to a task-based test.

Should You Encourage Talking?

It’s a good idea to tell people that they are free to talk during the test

if they want to, but you should take care not to force the issue. Some

people just don’t like to talk, and constantly encouraging them to speak

their mind will make them uncomfortable or distract them (especially if

they have to speak in a non-native language, as is sometimes the case

when testing with people from different cultural backgrounds). Avoid

screening testers for people who like to talk; you don’t want to test your

product only with extraverts.

Although it is often useful to hear what’s on people’s minds, it’s not

required information. In most cases, the problems your testers find are

quite obvious even without knowing what’s going through their heads.

In my experience, people tend to offer opinions when they are encour-

aged to speak. Your main job is to pay attention to what people are

doing, not what they are saying. If people are getting sidetracked and

start offering their opinions rather than doing a task, just gently remind

them of what you need them to do. Say something like this: “What are

you looking for right now?” to get them back on track.

Should I Record Tests?

If you’re doing a moderated test, you don’t have to record the test, since

you can see what the tester is doing and take notes during the test. But

even if you don’t have to, should you record?

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=254
http://

RUNNING THE TEST 255

I usually don’t go back to watch recordings if I have them. But making

recordings is easy and cheap to do, and from time to time, they can be

extremely useful. If you can easily do it, record tests. But if that’s not

possible, don’t worry about it.

For Macs, I recommend Silverback, a screen-recording application that

is specifically geared toward usability tests.1 It’s also possible to do sim-

ple screen recordings using QuickTime Player by selecting File→New

Screen Recording.

For Windows PCs, TechSmith offers a number of different solutions.2

For Linux, use something like xvidcap.3

What Should You Do with the Results?

You need to list the problems you’ve found. Prioritize them. Fix the

most important ones. Test again. Don’t worry if it’s impossible to fix

all problems; if a problem is important and you haven’t fixed it, it will

eventually reappear in a future test.

If more than one person is observing the test, do a Post-it post-mortem.

Have everybody write their ten most important issues on Post-it notes.

Stick them on a wall, placing duplicate issues next to each other. Pretty

quickly, it’ll be clear which problems get more “votes” and should be

fixed sooner.

Don’t write reports unless it’s really necessary, because they often cre-

ate more work than simply fixing the problems would. Usually, no one

reads these reports anyway. Instead, identify the most pressing issues,

and make sure these get fixed.

Takeaway Points

• Do one test with one (different!) user each week. This makes it

easy to schedule testers, and you can iterate quickly.

• Use one of the test types explained in this chapter, or combine

them. It’s often a good idea to let users play around with your

1. Find out more at http://silverbackapp.com.
2. You can find TechSmith’s products at http://techsmith.com, where they also offer Mac

apps.
3. You can find xvidcap at http://xvidcap.sourceforge.net.

Report erratum

this copy is (P1.1a printing, July 2011)

http://silverbackapp.com
http://techsmith.com
http://xvidcap.sourceforge.net
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=255
http://

RUNNING THE TEST 256

product on their own, see how they do with it, and then move to a

task-based test.

• Always end tests on a positive note.

• Use common sense when evaluating test results. Find the most

pressing issues, fix them, and test again.

• If you are unsure about how widespread a problem is, simply post-

pone its resolution; since you will do another test soon, the prob-

lem will come up again at some point if it is important.

Further Reading

If you’re ready to learn more, I recommend that you start with Steve

Krug’s Rocket Surgery Made Easy [Kru09].

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=256
http://

Chapter 30

Remote Testing

!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

Doing traditional, in-person usability tests requires you to either go to a

tester or have a tester visit you. Scheduling and meeting people usually

involves quite a bit of work—so much work, in fact, that it gets put off

way too often.

Fortunately, you don’t have to physically meet with people to do usabil-

ity tests. Instead, you can do remote tests. This chapter explains how

to do that.

Why Is This a Good Idea?

Testing remotely is often easier than testing in person, since it gets

around some of the harder parts of usability testing, such as finding

willing testers who live nearby and scheduling them to show up for a

test. Being free of these problems means you can test more often, which

helps you identify and fix more usability problems.

Are There Any Prerequisites?

Yes. You should read the previous two chapters before reading this one.

http://

MODERATED REMOTE TESTING 258

Skype Can Do Screen Sharing?

Yes. But Skype’s screen-sharing feature is a bit hidden. To acti-
vate it on a Mac, first start a video call. Then, in the video win-
dow, click the button with the “square and arrow” icon, select
Share Screen, and select the screen you want to share.

On Windows, start a video call, and then select “Show entire
screen” from the pop-up that appears when you click the “two
rectangles” icon.

Since the tester has to share his screen, you will have to walk
him through this somewhat complex task if you use Skype.

30.1 Moderated Remote Testing

Let’s say you want to run a usability test, but you can’t find any testers

who live nearby. Or you want to test with a more diverse group of

testers, so it may make sense to test with people who live in different

places. Or you want to recruit testers on your website, so they might be

from all over the place. Or maybe you just want to simplify testing even

more and avoid that whole meeting-in-person thing.

You can do this using screen-sharing apps such as Skype, iChat, or

Copilot.1 Instead of meeting your testers physically, you meet them

online.

1. At https://www.copilot.com.

Report erratum

this copy is (P1.1a printing, July 2011)

https://www.copilot.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=258
http://

MODERATED REMOTE TESTING 259

Recruiting

When you do a traditional usability test, first you have to recruit testers,

and then you have to schedule a date for the test. So, recruiting often

happens days or weeks before the test. With remote testing, you don’t

have to schedule a physical meeting, so you don’t need to recruit as far

in advance of the test.

Remote testing offers another way of recruiting that isn’t possible with

a traditional usability test: “live recruiting.” Just put a note on your

website that you’re looking for people to help you test a new application

or website, with a link to a recruiting page.

To increase the number of respondents, you can offer participants some

kind of reward—a small Amazon gift certificate, for example.

People who click the link should get a form where they can enter their

contact info (perhaps their email address, Skype name, or phone num-

ber, depending on how you run the test) and any other information

you need in order to screen people for the test. In their book Remote

Research [BT10], Nate Bolt and Tony Tulathimutte recommend using

this form to weed out potentially poor testers who have visited your site

specifically to participate in a test. (This problem occurs only if you offer

rewards to participants.) They suggest asking a question like “Why did

you come to the site today?” They write:

This question not only helps determine whether a user’s

motives for coming to the site match the goals of the study,

but also helps to root out fakers. (...) Most authentic visi-

tors will have a good specific reason for being there, and by

asking open-ended questions, you can usually get a strong

intuitive feel for authentic visitors. We almost always begin

our screeners with the simple question “Why did you come to

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=259
http://

MODERATED REMOTE TESTING 260

[Web site name] today?” If the answer is suspiciously vague

(“for info,” “just looking around,” “to see the offerings”), you

should be careful to screen the user further if you choose to

contact him/her. If the answer is straightforward and specific

and fits the study goal nicely (“I came here to compare prices

between the iDongle and the iDongle Pro”), you can probably

be more confident.

They recommend Ethnio, their live web recruiting tool, for setting up a

live recruiting form.2 When somebody responds to your form, you can

immediately call them back and (if the potential tester agrees) start the

test.

Introductions

When doing remote testing, you’re not physically in the same place as

the tester, so building rapport and getting a feel for the tester’s mood

can be difficult.

Start the session with a phone call or a video chat to introduce your-

self and explain the procedure. The introduction should be similar to a

regular usability test: explain exactly what you’re doing and what you

want the tester to do (this is explained in the previous chapters). Make

sure that the tester understands that you will be able to see her screen

for the duration of the test. If this is unclear to the tester or if the tester

seems uncomfortable with what you’re asking, stop the test and find

somebody else to test with.

If the tester agrees to screen sharing, walk her through the process

of sharing her screen. (The details on how to do this depend on the

screen-sharing system you’re using.) Make sure you know exactly what

the tester has to do to access your application or website.3

Running the Test

In many ways, running a remote test is easier than running an in-

person test, since you’re a lot less likely to influence the tester. Simply

pay attention to what the tester is doing, and keep your mouth shut

unless the tester explicitly asks a question. As with any other usability

2. Check it out at http://www.ethnio.com.
3. If you’re testing a product that doesn’t appear on the tester’s screen, say, an iPhone

app, simply have her turn her webcam to the product so you can see what the tester is

doing.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.ethnio.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=260
http://

MODERATED REMOTE TESTING 261

test, avoid guiding the tester, but do stop the test if the tester seems

uncomfortable or agitated.

Because you’re not in the same room, it can be harder to sense when

the user is getting frustrated. Pay constant attention to the tester’s tone

of voice to make sure you catch any frustration before the test goes

south.

At the end of the test, you can pretty much do the same debriefing you

do in a traditional usability test. Ask any questions you might have had

during the test, ask the tester to give feedback on how the test was run,

thank your tester for his time, and finally give him his reward (if you’ve

offered one).

Disadvantages

There are a number of downsides to moderated remote testing, com-

pared to in-person testing.

Because you aren’t sitting next to the tester, you miss out on a number

of physical cues. Is the tester getting agitated or frustrated? It’s hard to

tell when doing remote testing, so you need to pay particular attention

to this and be prepared to stop the task if the tester shows signs of

fatigue or annoyance. Pay attention to the tester’s tone and choice of

words.

Additionally, you can’t see what the tester is looking at. If you get con-

fused by what the tester is doing or are not sure whether the tester

is still engaged in the task, simply ask, “What are you looking at right

now?” or tell the tester that it would be helpful if he indicated what he

is looking at by pointing at it with his mouse.

When testers aren’t in the same room, you need to go through some

extra steps to get your consent forms signed. You can send the con-

sent form by email in advance of the testing session. Then when you

call the tester, before starting the test, you review the main points that

she is consenting to and ask her to give a verbal agreement. Whether

these steps are enough to cover everything you need, in terms of get-

ting proper consent, depends on the laws in your particular location,

though.

When doing remote testing, you typically can’t control the tester’s envi-

ronment. The downside to this is that it might take a while to get your

product running; the upside is that it means you can observe the tester

in his own surroundings, so his behavior most likely is more natural

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=261
http://

MODERATED REMOTE TESTING 262

than in a controlled environment. Additionally, this lets you see how

your product performs on a typical computer, rather than the high-end

model you’re likely to be using. But it also means that he might get dis-

tracted during the test—for example, stopping to take a phone call or

check incoming email. If possible, ask the tester to turn off the phone,

shut down any chat programs, and disable periodic email checking.

Since you can’t set up the environment exactly the way you want it to

be, you need to walk the tester through some things before doing the

test. Find out what system he is running and what applications and

versions he has installed. (If you are recruiting using your website, you

can do that with a small questionnaire.) Make sure you know how to

walk him through getting everything up and running. Also, make sure

that the tester’s Internet connection is fast enough to allow for remote

testing.

As an alternative to having the tester share her screen with you, you

can use your own system for testing and share your screen with her. In

some cases, this can be necessary, because it’s not always possible to

get your product to run on the tester’s computer. But avoid this option,

if you can. Sharing your screen with the tester decreases the quality of

the graphics on her end and produces a small delay between input and

response, which can be very irritating to many people and may skew

the test results.

Advantages

I’ve already mentioned that one potential advantage of remote testing is

that you get to test your product in the tester’s natural surroundings.

This is not the only advantage that remote testing offers.

Another huge advantage of remote testing is that it allows you to easily

recruit testers if you have a website that is reasonably well visited.

Also, you pretty much eliminate the chance of unduly influencing the

tester. Since remote testers can’t see your facial expressions or body

posture, they won’t be influenced by your behavior.

And, of course, remote testing makes it easier to schedule testers—you

don’t have to physically meet them and can even eliminate scheduling

altogether.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=262
http://

MODERATED REMOTE TESTING 263

Pulling It All Together

To give you a feel for how a typical remote test would work, here’s a

hypothetical, somewhat abbreviated version of a session.

For this test, let’s assume that the tester provided his Skype name on

your online form, and you’re now contacting him via Skype. Be sure to

wear a headset so you have your hands free to take notes.

Facilitator: Hey, this is Lukas Mathis, from BizTwit.biz. How are you?

Listen, about twenty minutes ago, you filled in a form on our website,

indicating that you’d like to help us make BizTwit even better.

Tester: Right, yeah. Didn’t think I’d hear from you!

Facilitator: So, do you have fifteen minutes for this?

Tester: Yeah, sure.

If the tester replies in the negative, stop the test.

Next, we want to know if this is the kind of participant we’re looking

for.

Facilitator: So, have you ever used our Twitter app, BizTwit?

Tester: No, not so far.

Facilitator: And you visited our website because you might be inter-

ested in such an app?

Tester: Right. I was looking for a Twitter app for businesses and found

you on Google.

Facilitator: Great, you’re exactly the kind of person we’re looking for.

So, here’s what this is about. We’re currently testing a new design for our

app, and we want to know whether people can figure it out, you know,

find out what parts of the design we have to make better. This is about

testing the new design and seeing whether it works, not testing you. How

this works is, you’ll have to share your screen with me. Is this OK with

you? During the duration of the test, I’ll be able to see your screen.

Tester: Sure, not a problem.

Facilitator: OK. From now on, I’ll record this call. We’ll use this record-

ing to look for problems with our design. It won’t be made public—it’s

purely for us to improve our product.

Tester: OK.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=263
http://

MODERATED REMOTE TESTING 264

If there’s any hesitation with the last two questions or if the tester

doesn’t seem to be quite sure, stop the test. If everything is OK, start

recording now.

Facilitator: OK, great. Before you get to that, I sent you a consent form

by email. Did you receive that?

Tester: Yeah, got it a few minutes ago.

Facilitator: Did you have time to go through it?

Tester: Yeah, I skimmed it.

Facilitator: OK, let’s quickly go through the important points so you

know what you’re getting into here.

Explain exactly what he’s consenting to, and get verbal agreement (and

whatever else you need, according to the legal requirements where you

live).

Facilitator: Now that this is done, let’s start the actual test. First, you

need to share your screen with me. From now on, I can see everything

you do until this test is over. So if there’s anything personal on your

screen—emails, for example—now is the time to close them.

Explain how to share the screen.

Facilitator: Great, now I can see what you’re doing. First, we’re going

to get the most recent version of BizTwit running on your system. Go to

biztwit.biz...

Explain how to get your product running. Since people probably don’t

want to enter their own login information, you should set up an exam-

ple account in advance, if something like this is required by your appli-

cation.

Facilitator: Now that BizTwit is running, tell me what you think. Does

this look like something you might want to use? Do you think that just by

looking at the app, you have a pretty good idea of what it does and how

to use its features?

Do a short product introduction and ask for first impressions and then

move on to task-based tests.

Facilitator: OK, let’s start with the first task. I’m going to explain the

task to you. While you’re doing the task, please feel free to think out loud

and tell me what’s going through your mind. If you have questions, feel

free to ask, but I probably won’t be able to give you detailed answers.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=264
http://

MODERATED REMOTE TESTING 265

It’s just part of the test. If something doesn’t work or is boring you or

upsetting you, you can stop the test at any time. OK?

Tester: OK.

Give the first task. For information on how to design tasks, see the

previous chapters, as well as Chapter 11, Paper Prototype Testing, on

page 104.

Once the tasks are done, first explain how to stop screen sharing. Then

ask any questions you might have.

Finally, move on to the debriefing. The goal here is to end the test on

a positive note. Being observed while making mistakes can be a bad,

stressful experience. Telling the tester that his effort really helped you

can offset that bad experience and make the tester’s investment feel

worthwhile.

Facilitator: Now I can’t see your screen anymore. OK, that was great;

that helped clear up a lot of questions we had. Using the stuff we dis-

covered today, we’ll be able to improve BizTwit’s user interface a lot.

Thank you so much for helping us out! Now, do you have any questions

or feedback for me?

Tester: I was kind of confused at first about how to share my screen,

but I guess it worked out in the end.

Facilitator: Yeah, I’ll try to find a better way of explaining that in the

future. Now, we’ve promised you an Amazon gift certificate, and I’ll send

that to your email address, if that’s OK?

Tester: Sure.

Facilitator: Great. If you have any additional questions or comments,

just send me an email. I’ll put my email address into Skype’s chat win-

dow. Thanks again for helping us, and have a great day!

Don’t forget to send out the reward, if you’ve promised one.

Do not write any reports. Do not create movies showing the results.

Instead, after doing the test, make a list of the issues you found that

you feel are most important to you, and fix them for the next test.

If you are unsure about an issue, let it go for now, and see whether

other testers encounter the same issue in future tests. If an issue is

important, it will eventually show up again.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=265
http://

UNMODERATED REMOTE TESTING 266

To Remote, or Not to Remote?

Considering everything involved, when it comes to getting useful data

out of the test, how does moderated remote testing compare to regular

usability testing?

On the whole, whether remote testing yields better or worse results than

regular old in-person usability testing is a topic that is hotly debated in

the usability community. Remote testing may not be quite as effective

as in-person usability testing, but it’s definitely a lot better than not

testing at all. And since it is easier to set up, it allows you to do more

tests and run tests more regularly.

30.2 Unmoderated Remote Testing

An even easier way of doing remote testing is to completely avoid inter-

acting with the tester. Simply ask testers to record their screens while

they are using your product or while they follow a number of predefined

tasks.

As always, there are advantages and disadvantages to this approach.

With unmoderated, task-based remote testing, you can’t intervene if the

user gets stuck or frustrated. On the other hand, you get a pretty good

idea of what people do when using your product on their own, and this

situation is closer to how most of your real users will behave.

Another upside to unmoderated testing is that you don’t have to do

any scheduling at all. You can explain the procedure to the tester and

let her run the test when she has the time. In fact, you can even use

online remote testing services, which allow you to forego recruiting alto-

gether.4

Takeaway Points

• If you’ve never done any usability tests, start by doing a few tra-

ditional, in-person usability tests. You can ask your friends to act

as testers until you’re comfortable running tests.

• Once you have a pretty good feel for how to run usability tests,

move on to remote testing.

4. Online services such as http://usertesting.com or http://fivesecondtest.com. Both of these

services work only for testing websites, though, and not for desktop apps or mobile apps.

Report erratum

this copy is (P1.1a printing, July 2011)

http://usertesting.com
http://fivesecondtest.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=266
http://

UNMODERATED REMOTE TESTING 267

• Try to do at least one remote test every week.

• Recruit testers using your website, as well as other venues such

as mailing lists, discussion groups, or even newspapers. Using a

website for recruitment is extremely convenient and essentially

free, but if you only recruit this way, you may skew your results

toward people who already have experience with your products

because they’re more likely to visit your website.

• Screen out potential testers who are only in it for the reward.

• When calling a potential tester, make sure to alert her to the fact

that you’ll be able to see her screen, and get consent for the test.

• When running a remote test, you typically won’t be able to see

facial expressions or where people are looking. Make sure to watch

out for signs that the tester is getting frustrated or upset, and stop

the test if this happens.

• At the end of the test, thank the tester for his time, explain that

you can’t see his screen anymore, and send the reward (if you’ve

promised one). End the test on a positive note.

Further Reading

Remote Research [BT10] by Nate Bolt and Tony Tulathimutte contains a

ton of useful information on remote testing. If you’re considering remote

testing, you owe it to yourself to pick up this book.5

On A List Apart, Nate Bolt also has an article on remote usability test-

ing.6

5. You can find it at http://www.rosenfeldmedia.com/books/remote-research/.
6. Read it at http://www.alistapart.com/articles/quick-and-dirty-remote-user-testing/.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.rosenfeldmedia.com/books/remote-research/
http://www.alistapart.com/articles/quick-and-dirty-remote-user-testing/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=267
http://

Chapter 31

How Not to Test:
Common Mistakes

Usability tests are surprisingly resilient to mistakes. No matter how

poorly you do them, chances are that you will get some useful informa-

tion out of them. You might not uncover the most important problems,

and maybe you’ll get only a small subset of all problems, but you’ll get

something that will help you improve your product.

Still, if you take the time to test properly, you will get better results.

I’ve already mentioned some of these points in earlier chapters, but I

think it’s useful to do a quick recap here.

31.1 Don’t Use Words That Appear in the User Interface

It’s important not to use your application’s terminology when you create

tasks and when you talk to your tester. You want to know whether

people are capable of using your application. You don’t want to know

whether they are able to find a specific word in your user interface.

Let’s say you’re testing a word processor, and you want to see whether

people can use its spell-checker. Figure 31.1, on the next page, shows

how this feature might be accessed in one of your application’s menus.

Now, if you were to phrase the task along the lines of “Check your

document’s spelling,” your tester could simply look through your appli-

cation’s menus and find the one with the matching words. It’s best to

avoid describing the task at all; instead, describe the goal:“Make sure

that there are no typos in your text.”

http://

DON’T INFLUENCE THE TESTER 269

!"#$

%&"'

()"'

*+$

*',-

./0$)

*1)2345,)66#&7

Figure 31.1: Common words in a word processing menu

Tasks phrased like this are more aligned with what your users’ goals

might actually be, so the tester’s behavior is more along the lines of

how a real user might behave.

31.2 Don’t Influence the Tester

Wilhelm von Osten was a German math teacher who lived around the

early 1900s. As a hobby, he trained horses. You can probably see where

this story is going: he tried to teach his horse how to do math. To

everybody’s astonishment, the horse (aptly named Clever Hans) quickly

learned to do a number of reasonably complex math calculations: addi-

tions, subtractions, multiplications, divisions, and date calculations.

The horse was capable of understanding math questions asked in plain

German, and it could also read math questions if they were written on

a piece of paper.

Obviously, the horse could’nt write down the results. Instead, it tapped

the correct number with its hoof.

Psychologist Oskar Pfungst became suspicious and decided to inves-

tigate Clever Hans. Quite quickly, he was able to establish what was

happening: Clever Hans didn’t actually do any calculations. The animal

didn’t read, and it didn’t understand German. Instead, it responded to

involuntary cues in the body language of its trainer, von Osten, who,

in turn, was the one who solved the math problems. The horse simply

watched him and tapped its hoof until von Osten would indicate that it

had reached the correct number.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=269
http://

AVOID STRESSFUL SITUATIONS 270

Interestingly, von Osten was completely unaware that he was providing

these cues to the horse.

This piqued Pfungst’s interest, and he continued his experiments on

the topic. He was eventually able to show that the same kind of inter-

action occurs between humans and, furthermore, that it is impossible

to suppress these involuntary cues, even if we are completely aware of

their existence.

What does this mean for us?

It means it is easily possible for a facilitator to involuntarily lead the

tester through the whole test, thereby utterly invalidating the test. This

is why formal usability tests are always done behind two-way mirrors;

this eliminates any possibility of outside influence on the tester.

There are a few things you can do to improve the situation. First, even

though you can’t consciously avoid giving involuntary cues, you can cut

down on your voluntary cues. So, don’t interact with the tester unless

absolutely necessary.

Second, you have to remove yourself from the tester’s field of vision,

sitting a bit behind the tester so he is less aware of your presence.

Third, if possible, run a test that doesn’t require sitting with the tester.

Remote testing is perfect for this (see Chapter 30, Remote Testing, on

page 257).

Finally, don’t worry about it too much; just be attentive. You are not

doing a statistically valid double-blind study here; you are merely trying

to find problems in your user interface. If the tester hesitates or looks

to you for guidance, you already know that there might be a problem

with the user interface, even if your reaction allows her to figure out

what to do next.

31.3 Avoid Stressful Situations

All medical students are taught this principal precept of medical ethics:

“Primum non nocere,” or, “First, do no harm.” The same should apply to

usability professionals. When we run usability tests, we put people in a

situation where we want them to make mistakes. But making mistakes

can be a stressful situation; nobody likes to make mistakes. You can

do a number of things to make testers feel OK with the situation they

find themselves in.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=270
http://

AVOID STRESSFUL SITUATIONS 271

First, you need to make sure you explicitly and clearly point out that

you are not testing them, but the user interface.

Second, if a tester gets stuck and it becomes obvious that he’s on the

wrong track or becoming agitated, intervene. Say something to make it

clear that the tester is not to blame, something along the lines of, “This

is exactly why you’re running these tests. This design still has some

serious issues here. I think you’ll have to go back to the drawing board

on this one.” Then, move on to the next task.

Third, do not repeatedly tell testers to speak out loud. It’s OK to make

this point at the beginning of the test by saying something like, “Feel

free to speak out loud during the test; this helps me better understand

where problems in your user interface are.” It’s also OK to ask some-

thing like “What’s on your mind right now?” when it’s not clear what

the tester is doing during the test. But keep in mind that some people

just aren’t comfortable with what amounts to talking to themselves.

Fourth, if it appears that a tester is starting to get stressed out by the

experience, stop the test. Besides being at risk of putting the tester

through a horrible experience, you won’t get any value out of forcing

a tester who is upset and unable to concentrate to finish the test. His

behavior typically won’t be representative of your real users, who have

the ability to take a break or work on something else if your product is

annoying them.

Finally, always end tests on a positive note. Thank people for their time.

Tell them that their participation in the test was valuable to you and

will help you improve your product.

Takeaway Points

• When designing tasks or talking to users during usability tests,

avoid using words that appear in the user interface.

• Avoid influencing the tester during tests.

• Watch out for situations where the tester looks to you for guid-

ance, since these indicate usability problems.

• Avoid putting the tester through stressful situations.

• Don’t constantly ask the tester to speak out loud.

• Stop the test if the tester seems to get upset or annoyed.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=271
http://

Chapter 32

User Error Is Design Error
When people fail at using our products, we may be tempted to attribute

that failure to user incompetence. It’s a “user error,” we may say. This

response has its own acronym: “PEBKAC,” which stands for “Problem

Exists Between Keyboard And Chair.”

When you do your first usability test, it’s natural to experience some

amount of denial—surely your product can’t be that bad. You probably

just happened to pick a few truly inept people to test it, right?

This tendency to blame users is often supported by users themselves,

who also tend to blame themselves for problems with your product.

When they are unable to figure out how to use it and you show them

how, they will often respond with something like “Oh wow, I have no

idea how I did not see this! It seems so obvious now!” They tend to

blame themselves for not seeing something, rather than blaming your

product for not making it obvious enough.

Blaming the user for your product’s errors does not fix the error. If tens

of thousands of people use your product, every problem you see in a

usability test will be experienced by hundreds or even thousands of

users. Rather than assigning blame, fix the problem. In his book The

Design of Everyday Things [Nor88],1 Don Norman puts it like this:

Don’t think of the user as making errors; think of the actions

as approximations of what is desired.

People don’t make errors. Your product makes errors when it doesn’t

interpret the user’s actions correctly.

1. If you haven’t read The Design of Everyday Things [Nor88] yet, drop this book right

now and go pick up Don’s book instead.

http://

DON’T BLAME YOUR USERS IN YOUR ERROR MESSAGES 273

32.1 Don’t Blame Your Users in Your Error Messages

We’ve all encountered an error message like this:

The first thing people will read is, “You have typed the address incor-

rectly.” This error message blames the user for trying to access a URL

that doesn’t lead to a page. But the user very likely didn’t do anything

wrong. When people encounter “page can’t be found” errors, it’s more

likely that they simply clicked a broken link, probably a broken link on

the very website where the address leads to.

Instead of blaming the user, we should start by apologizing for the prob-

lem. This is good usability, because it helps people calm down and deal

with the issue. In The Man Who Lied to His Laptop [NY10], author Clif-

ford Nass writes about an experiment with a computer that provides

“emotional support” while the user plays a game. He concludes that

“actively acknowledging and addressing people’s emotional states alle-

viated the high negativity and high excitement associated with frustra-

tion. In other words, people feel better when you show that you have

heard them, understand their feelings, and sympathize.”

Another problem with the error page shown earlier is that it uses a lot

of jargon to explain what the problem is. Most people don’t know and

don’t care what 404 means or what a “URL” is.

And finally, the error page isn’t helpful. It offers reasons for the problem

but doesn’t offer any solutions. The site could determine where the

user intended to go, based on the information available to the site. For

example, links to blog posts often contain the year, month, and day

that a blog post was written. Even if the last part of the URL got cut off

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=273
http://

DON’T BLAME YOUR USERS IN YOUR ERROR MESSAGES 274

People Don’t Like to Be Insulted

At folklore.org, Andy Hertzfeld recounts a funny experience that
occurred while doing usability testing for Apple’s Lisa com-
puter.∗ He explains that the two default buttons in dialog boxes
were originally called Cancel and Do It. In usability testing, how-
ever, they found out that a few users regularly clicked Cancel
when they should have clicked Do It instead. When they talked
to a user who seemed particularly confused by the dialog box,
he replied “I’m not a dolt; why is the software calling me a
dolt?”

People simply didn’t notice the space between “Do” and “It”
and read it as “Dolt.” As a result, the Lisa team changed “Do It”
to “OK.”

∗. Read the full story, and many other interest-
ing stories about the development of the Mac, at
http://www.folklore.org/StoryView.py?project=Macintosh\&story=Do_It.txt\&sortOrder=Sort%20by%20Date\&detail=medium\&searc

or was entered incorrectly, the remaining information can be used to

determine likely candidates for the specific page the user was trying to

open. How about something this:

Rather than putting the blame on the user, this screen acknowledges

that the site itself is more likely at fault and apologizes for the problem.

It explains what went wrong in reasonably understandable language,

but it also offers possible solutions to the problem. If nothing helps, it

offers a direct way for people to contact you.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.folklore.org/StoryView.py?project=Macintosh&story=Do_It.txt&sortOrder=Sort%20by%20Date&detail=medium&search=Do%20it
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=274
http://

NO ERROR, NO BLAME 275

32.2 No Error, No Blame

It’s good practice not to blame users for the errors they make. It’s even

better practice to include error messages that help users figure out how

to fix the problem. But it’s best not to let the problem occur at all. If

something goes wrong, it’s usually not the user’s fault; it’s your fault.

If your product worked differently, then the problem might never have

occurred.

You can prevent a number of common errors from occurring simply by

changing the user interface. Let’s look at two sources of such errors.

Mode Errors

Problems we perceive as “user error” can often be attributed to products

not clearly indicating their current state or what specific action they

expect from the user. I’ve written about this in Chapter 20, Modes, on

page 175, but since modes are such a common source of errors that we

often perceive as “user errors,” let’s quickly recap.

A typical example of a mode error is a cell phone that goes off during

a movie; most cell phones don’t have obvious “silent” modes. A cell

phone’s current state is not clear just by looking at it. It’s too easy to

forget whether it is currently in “silent” mode.

An obvious hardware button on the device that toggles between the two

modes, like the one found on iPhones or webOS devices, would help

prevent this problem.

A similar issue can occur in modal applications when the application

doesn’t clearly indicate what mode it is in or when it switches the mode

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=275
http://

NO ERROR, NO BLAME 276

unexpectedly. For example, picture-editing applications often have a

modal tool selection that indicates the currently selected tool by chang-

ing the cursor. It’s easy for users to miss this hint and, say, paint a line

by clicking an image when they thought the clone tool (rather than the

paint tool) was currently active.

Using different cursor images for different tools would help prevent this

problem. Here’s how the same two tools look in Acorn:2

Acorn reminds users of the tool they’re using. The chance of being con-

fused about the active tool is much smaller.

2. Learn more about Acorn at http://www.flyingmeat.com/acorn.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.flyingmeat.com/acorn
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=276
http://

NO ERROR, NO BLAME 277

Input Errors

Another common example of “user errors” occurs when products don’t

clearly explain what they expect users to do, for example in overzealous

and nonobvious form data validation schemes:

!"#$%&'!("$')*+,#"-

.%"&/'0(&#-

It’s not clear what format the product expects for the date and credit-

card number. As a result, users will try to enter all kinds of different

formats. This often doesn’t work properly.

!"#$%&'!("$')*+,#"-

.%"&/'0(&#- 1*2*3&'45&/6'7898

:777'7777'7777'7777

;""<"-'=>#(3#'#?&#"'&/#'$(&#
*3%?2'&/#'@<>><A%?2'@<"+(&-
BBC00CDDD

;""<"-';?&#"'?*+,#"'(3
EEEEFEEEEFEEEEFEEEE

Apps and websites either should explicitly state what they expect the

user to do (for example, by entering example data into the fields) or

should be liberal in the kinds of user input they accept.

Another way of solving this problem is to provide a user interface that

doesn’t leave the input format up to the user. For example, rather than

asking people to enter a date into a text field, the user interface could

show a calendar.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=277
http://

NO ERROR, NO BLAME 278

Takeaway Points

• Take responsibility. “User errors” are really user interface design

failures; they are designer errors. Simply assuming that the user

is responsible for a problem doesn’t make the problem go away.

• Don’t blame the user in your user interface. It makes your cus-

tomers feel bad, and the problem was probably your fault to begin

with.

• Present useful error messages. If something goes wrong, explain

what went wrong, but more importantly, explain how the user can

fix the problem.

• Prevent the problem. It’s always best to avoid errors altogether.

If users encounter errors, think about how you can change the

product so that the error doesn’t occur again.

• Prevent mode errors by avoiding modes or by clearly indicating

your product’s current mode.

• Prevent input errors by clearly showing what you expect users to

do or by preventing invalid input from ever occurring.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=278
http://

Chapter 33

A/B Testing
!"#"$%&' ("#)*+ ,-./"-"+0$0)1+

What’s the Technique?

So far, I’ve mainly talked about usability tests that involve observing

how individual users behave. This is great for finding problems with

your designs, but it’s not good if you need to compare two (or more)

different designs and find the best one.

Let’s say you’re working on the text of your sign-up page, and you’re

not sure which version works best for convincing people to sign up. Or

you’re trying to decide between two different positions for the login form

on your home page, and you’re not sure which one will work better for

your users. The most common way to answer such questions is with

A/B testing. With an A/B test, you can find out which one of two (or

more) designs works best.

Even though it’s called A/B testing, you don’t need to compare only two

different designs; it can be used to test several different versions of a

design. For this reason, it’s sometimes also called A/B/n testing.

Why Is This a Good Idea?

A/B testing lets you improve your design using hard data. There’s no

guessing involved. If you need to make your design perform better, A/B

testing is the tool that will help you do that.

Are There Any Prerequisites?

Yes. You need to have a working version of your product, and it should

be used by a fair number of people.

http://

CHAPTER 33. A/B TESTING 280

Multivariate Testing

Multivariate testing (sometimes called multivariable testing) is a
version of A/B testing. With a regular A/B test, you test different
fully implemented designs.

! "

With multivariate testing, you test different versions of individual
parts of your design at the same time. (You have several vari-
ables in your design, which is why it’s called multivariate.)

! " ! "

#$%&&&! ! " "
! ! ! !

Think of multivariate testing as running a number of concur-
rent A/B tests on small parts of your design. Unless you have
good reasons for doing multivariate testing, I would avoid doing
it, because it can lead to Frankensteinian designs that have
a combination of elements that don’t match: the individual
design elements that performed best in a multivariate test often
don’t combine to form a great design when put together.
Instead, it’s usually better to pit two or more fully formed, coher-
ent designs against each other and then see which one per-
forms better.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=280
http://

WHEN TO DO A/B TESTING 281

33.1 When to Do A/B Testing

A/B testing is useful for comparing two or more designs and finding out

which one works better. Generally speaking, there are two situations

when this is useful:

• You’ve redesigned or rewritten something, and you want to know

whether the new design or the new copy works better than the

previous version.

• There are several possible solutions to a problem, and you want

to find out which one works best.

You can use A/B testing to compare everything from vastly different

layouts to small changes in color or wording.

If, like Google or Amazon, you have millions of people using your site

every day, even minuscule differences in usability can result in tens of

thousands of people either running into a problem or not. You probably

don’t have that many people using your product, so small differences

in usability may not matter much. There’s no need to check every little

change with an A/B test. But when making larger changes, or for areas

of your product that are particularly important (say, the sign-up screen

of your web service), A/B testing is tremendously useful.

33.2 What’s Success?

The basic idea behind A/B testing is to implement two different designs

and see which one works better. But there’s an inherent problem with

this. What exactly does “works better” mean? At what point has the user

successfully used your product? Sometimes, the answer is obvious. For

example, in designing a checkout system, the system “works” when the

user is able to finish the checkout process. Often, however, there is no

immediately obvious answer to what constitutes “success.”

One way to define “success” is to go back to the very beginning of the

design process and think about your users’ goals. If you know why they

use the product, then you can define success: the product works better

if a higher percentage of your users are able to reach their goals.

Sometimes, all it takes is to measure the percentage of people who

click a link on a website or the percentage of your website visitors who

sign up for your service. Other times, answering this question is more

involved. How many people who start a task actually finish it? The def-

inition of success depends on your product.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=281
http://

PREPARING FOR THE TEST 282

33.3 Preparing for the Test

At this point, you have two (or more) designs you want to test, and you

have a definition of success. Now, you have to implement both designs

and find a way of distributing them to your users.

If your product is a desktop application, either you need to create two

(or more) different builds and distribute the appropriate build to your

individual users or you need to add both designs to the same appli-

cation and decide which design to show when the user launches the

application.

If your product is a website, you need to implement a way of accessing

the different versions of your website, either by giving the two designs

different URLs or by deciding which design to show when the user

accesses the single URL. A number of online tools are available for run-

ning A/B tests on websites. You can use Google Analytics1 for A/B

testing, but Google also offers Website Optimizer2 to test changes to

websites. Vertster3 is another tool that helps you create multivariate

tests for websites.

33.4 Running the Test

When running A/B tests, you want to make sure that individual users

don’t switch between the two different designs. (Seeing one version of

the design and then, after clicking a link or restarting the application,

suddenly seeing the other version would be really confusing.) To do

that, you should partition your users into different groups that consis-

tently see the same design.

While the test is running, you’ll need a way of collecting the results.

This is simple when you’re dealing with a website (since you can “see”

what each user is doing), but it can be harder when dealing with a

desktop application.

You also need to inform users that you’re receiving usage data and

explain exactly what you’re going to send back and why. Here’s how

Google does this on Chrome’s download page:

1. To find out more on how to use Google Analytics to run A/B tests on your website,

read the essay by George Palmer at http://www.rowtheboat.com/archives/39.
2. At http://www.google.com/websiteoptimizer.
3. At http://www.vertster.com.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.rowtheboat.com/archives/39
http://www.google.com/websiteoptimizer
http://www.vertster.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=282
http://

INTERPRETING THE RESULTS 283

33.5 Interpreting the Results

Most A/B tools interpret the results for you; quite often, you can see

early trends indicating which design performs best. But be careful:

humans are pattern seekers, and it’s easy to see patterns where there

are none. One thing to keep in mind here is statistical significance. You

need to have some idea of how big the probability is that the results

you’re seeing have occurred because of random chance.

The company User Effect4 has a simple calculator5 that reveals whether

the results of an A/B test with two designs are statistically significant.

If they’re not, the calculator also tells you how many more visitors you

need to get a significant result.

If you have more than two designs in your A/B test, you can compare

individual designs to see whether the difference is significant.

33.6 Keep in Mind

If you use A/B testing to compare the performance of small, incremen-

tal changes to your design, keep in mind that A/B testing will only

4. Find them at http://www.usereffect.com.
5. You can find the calculator at http://www.usereffect.com/split-test-calculator.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.usereffect.com
http://www.usereffect.com/split-test-calculator
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=283
http://

KEEP IN MIND 284

Partitioning Users

Partitioning users into two groups is pretty simple when testing a
desktop application. Give each user one of the builds at ran-
dom when he downloads your app; typically each user down-
loads the app only once, so you don’t have to worry about
individual users switching from one design to the other. Simi-
larly, if both designs are in the same build, pick a design at ran-
dom when the user first launches the application, and store the
design you’ve picked as a user setting.

Dealing with a website is a bit more complex. One way of pick-
ing a design for each visitor is to use a modulo of the hash of
the visitor’s IP address to determine which design to show∗ and
then set a cookie indicating which design to show on the user’s
computer. For repeat visitors, first check whether they have a
cookie, and if they don’t, fall back to the IP address to deter-
mine which design to show. This system is not entirely fool-proof
(users might not allow cookies and change their IP address),
but it should cover almost all cases.

∗. Since IP addresses are not random, simply taking the modulo of the IP
address itself would skew the number of people in the different partitions; apply-
ing a hash function to the IP address removes that bias.

bring you to a local maximum of usability. Making many incremental

changes will get you to a good design but may not get you to the best

design possible.

Imagine all possible designs for your product. Some of them are more

usable; others less. If you could plot them on a graph, you might get

something like this:

If you change your design, the usability changes.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=284
http://

KEEP IN MIND 285

If the quality of your design is currently somewhere in the middle of

this graph, then you won’t be able to get to the best design possible by

making only small, iterative changes and A/B-testing them. Think of it

like this: if you go mountain climbing and decide to always climb up,

you’ll eventually reach the peak of the mountain, but you’ll never reach

the nearby mountain peak, which might be even higher. You have to

climb down first to reach that higher peak.

Similarly, you sometimes have to make a fresh start with a design that

performs worse if you want to eventually arrive at a design that works

much better.

To avoid this problem, you might need to let go of this type of iterative

design and take a chance on an entirely different design. A/B testing is

a great tool in every designer’s tool belt. Just be aware of its limitations.

Takeaway Points

• A/B testing allows you to compare different designs and find out

which one works best.

• The definition of what “works” depends on your users’ goals.

• Getting usage data is simple for websites but harder for desktop

or mobile applications. Remember to get your users’ consent and

tell them exactly what you’re doing.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=285
http://

KEEP IN MIND 286

• Make sure to check whether results are statistically significant

before basing decisions on this kind of data.

• When you compare your highly optimized old design to your new

design, realize that even if the new design performs worse in a

direct comparison, it might eventually perform better if you give it

the same kind of attention you gave to the previous design.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=286
http://

Chapter 34

Collecting Usage Data
!"#$%"%&'(')*&+%,%(-./ 0%,)1&

What’s the Technique?

Now that you’ve designed and released your product, it’s done, so your

job is done as well, right? Well, application and website design is never

really done. When people start to use your product, it’s time to figure

out how well your design works and what people do with your product.

This chapter presents some ideas that help you do exactly that.

Why Is This a Good Idea?

When your product is out in the wild, people use it in ways you never

expected. You need to know what people actually do in order to know

how to improve your product.

Are There Any Prerequisites?

Yes. You need to have a working, released version of your product.

34.1 Measure Speed

Performance matters. If your product involves a lot of waiting, people

will not like the experience. You can and should test your product’s per-

formance while it is still in development, using test data. But you just

know that your users are going to do crazy things with your product—

things you never even thought about.

http://

EXIT POINTS 288

If you’re writing a DVD cataloging application that allows people to keep

track of the movies they own, you might assume that most people would

own no more than 200 DVDs, so you might make sure that your prod-

uct performs well for collections around that size. In reality, a sizeable

portion of your customers are movie collectors (this being their reason

for buying your product in the first place). So instead of keeping track of

hundreds of DVDs, they might want to keep track of tens of thousands

of DVDs.

Or let’s consider a website that allows freelancers to track the time they

spend on their various projects and clients. The service might perform

beautifully during testing, so you figure you could just take the per-

formance you saw during testing and linearly scale up from that to

the number of users you expect to have after launch. However, this

assumes that each of your users will hit your sites in (what appear to

you as) random intervals. Consider what happens once you release your

product and people start using it. Every morning, many of the users liv-

ing in the same time zone start working at roughly the same time. They

all fire up their computers, open your website, and start working on a

project. In other words, all of them are hitting your service at the same

time, causing a spike in traffic. Instead of access being spread out over

the whole day, you get peaks and valleys of traffic. How does your ser-

vice perform during the peaks? Will your users’ first experience every

day be a bad one, because your servers are not able to cope with the

sudden peak in demand?

Once you’ve finished your product and people start using it, make sure

to keep track of how well it performs in real-world situations.

For more on how fast your product has to be, go back to Chapter 23,

Speed, on page 198.

34.2 Exit Points

One of the questions you want to answer when looking at how people

use your product is “when do people stop using it?” The point at which

people exit your product can tell you a lot about the kinds of problems

they are experiencing. Are they exiting the product once they’ve finished

a task? In that case, you’re probably in the clear. Are they exiting the

product in the middle of a task? For example, are they abandoning a full

shopping cart in your online store? If so, you probably have a problem

somewhere. Maybe people are getting bored with your product. Maybe

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=288
http://

MEASURE FAILURE 289

they don’t understand how to finish a task. Maybe they’re not sure

what will happen when they continue. But something is probably going

wrong.

Exit points in the middle of tasks are indicators of usability issues.

Keep track of them in order to find out where potential issues with your

product lie.

34.3 Measure Failure

It’s often obvious when your product has failed its users, so this is one

area where it can be simple to get useful data on areas that require

improvements.

If your users encounter a 404 page or a similar error when using your

website, you know that something went wrong. Keep track of such

errors and of the referring sites, and fix the issues if possible.

If your users search for something and get zero search results or don’t

click any of the search results they receive, it might make sense to look

at the search string they entered and try to figure out why they didn’t

find what they were looking for. Is there anything you can do to fix this

issue?

Whenever people undo something, it might be because your product

didn’t do what they expected it to do. Keep track of what people do

before they undo their changes.

Although crashes are not, strictly speaking, usability issues, they are

clearly very detrimental to the user experience. Make sure to give your

users a simple way of reporting crashes to you and fix the issue when-

ever possible (and sometimes even when impossible).

Similar to how game designers measure where exactly people die in

games (see Chapter 26, Learning from Video Games, on page 220), you

can measure where your product fails and fix these problems.

34.4 User Behavior

After you have deployed your product, you can start running analyt-

ics on it. Which links do people click, and which ones do they never

use? Which features are popular, and which ones are not? Services

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=289
http://

USER BEHAVIOR 290

like ClickTale and Crazy Egg1 allow you to get information on how your

users behave. Use this information to evaluate design and feature ideas

or even to help decide which features you can remove. (See Chapter 25,

Removing Features, on page 215 for a bit more on that.)

This doesn’t just apply to websites. You can also give users of a desktop

application the option of regularly sending you usage data.

Once somebody consents to sending you data, you need to determine

what kind of data is useful. Microsoft’s Jensen Harris writes2 that “we

collect anything we think might be interesting and useful as long as it

doesn’t compromise a user’s privacy.”

Microsoft collects keyboard shortcuts people use, how much time peo-

ple spend on different tasks, even what and how much people create

(such as how many mail folders they have), and much more. The better

you know what your users actually do, the better informed your design

decisions are.

When your product has been out in the wild for a while, you can also

start doing usability tests with experienced users or visit some of your

users and observe how they actually use your product (as opposed to

how you envisioned your product would be used in the real world—the

two are often vastly different).

Takeaway Points

• Once your product is being used by real people, it’s time to start

measuring how well it performs.

• Speed is one important aspect of performance, because it’s often

hard to figure out how well your product performs until it’s in your

users’ hands.

• Keep track of exit points, since they indicate potential issues with

your product.

• Measure failures such as broken links, empty search results, or

crashes.

• Measure user behavior to get a better grasp of where to improve

your product, which features to add, and which ones to remove.

1. Find these services at http://www.clicktale.com and http://www.crazyegg.com.
2. You can read the whole essay at http://blogs.msdn.com/b/jensenh/archive/2006/04/05/568947.aspx.

Report erratum

this copy is (P1.1a printing, July 2011)

http://www.clicktale.com
http://www.crazyegg.com
http://blogs.msdn.com/b/jensenh/archive/2006/04/05/568947.aspx
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=290
http://

USER BEHAVIOR 291

• Now that people are getting their hands on your product, it’s not

time to stop designing. It’s time to look into what people actually

do with your product and how you can use that information to

make it even better.

Further Reading

Jensen Harris, director of Program Management for the Microsoft Win-

dows User Experience Team, writes a fascinating blog.3 He often writes

about how Microsoft uses data when making design decisions.

3. At http://blogs.msdn.com/b/jensenh.

Report erratum

this copy is (P1.1a printing, July 2011)

http://blogs.msdn.com/b/jensenh
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=291
http://

Chapter 35

Dealing with User Feedback
Once your product is out there, the hard part starts. Real people will

use your product in ways you’ve never imagined. They will encounter

issues you never thought of, and they’ll complain to you about them.

I’ve already mentioned some aspects of how to deal with user feedback

in Chapter 24, Avoiding Features, on page 205, where I explained how

to use “The Five Whys” to evaluate feedback. In other parts of the book,

I’ve talked about when to listen to your users and when to take their

feedback with a grain of salt.

This chapter covers some additional aspects of user feedback.

35.1 Unexpected Uses

One important thing to keep an eye out for is unexpected ways people

use your software. In the 1970s and 1980s, IBM vastly underestimated

the market for personal computers, not realizing that people would find

uses for these devices that IBM itself could not think of.

When Tim Berners-Lee proposed the World Wide Web at CERN in 1989,

his stated goal for the technology was “to link and access information of

various kinds as a web of nodes in which the user can browse at will.”

Today, we write whole applications that run on his platform.

For a more recent example, when the podcasting company Odeo came

up with the idea of building a simple system for posting the kinds of sta-

tus messages that people would otherwise put into their Skype status,

they had no clue that their users would “abuse” Twitter as a microblog-

ging site.

http://

BAD FEEDBACK 293

The point is that people do not always use your product the way you

want them to or the way you thought they would use it when you built

it. And that’s not a bad thing; it means you’ve stumbled upon a market

you didn’t know would be interested in your product or perhaps didn’t

even know existed.

There are three ways of dealing with this:

• Ignore it. This mostly applies if the additional market is smaller

than your “main” market. If these people are happy with what

your product does, great. You’re getting a few more users for free.

• Adapt your product to it. If this new market is much bigger than

your original target market, it may make sense to change the

direction of your product and specifically target this new market.

• Split your product. If both your original market and this new mar-

ket seem interesting, create specific editions of your product that

are uniquely targeted at each individual market.

Each of these choices can be valid, but it’s important that you think

about your options before going with one.

35.2 Bad Feedback

People are often vicious when writing feedback. One of the reasons for

this is that people sometimes don’t expect anybody to read their mes-

sages. So, they use your feedback form as a way of venting their frus-

tration.

Don’t take it personally. After all, the fact that these people took the

time to yell at you means they at least care enough about your product

to take the time to yell at you. It could be worse: they could not care at

all.

When I talked about his design process with interaction designer Chris

Clark,1 he told me the following:2

I’m kind of weird; I love negative feedback. Unsolicited com-

plaint means somebody cared enough to write it down, and

then when you fix their pet peeve, they transform into a fan.

Plus you got to fix a real problem for a real person, which is

1. Find him at http://releasecandidateone.com.
2. Read the whole interview at http://ignco.de/320.

Report erratum

this copy is (P1.1a printing, July 2011)

http://releasecandidateone.com
http://ignco.de/320
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=293
http://

BAD FEEDBACK 294

pretty rewarding. The oft-bemoaned fact that iOS developers

can’t reply directly to App Store commenters is all the more

reason to fix the root of the problem.

Customer comments do ease the planning of future soft-

ware releases a little. They’re the squeaky wheels. It’d be

foolish to ignore your own ideas and priorities in favor of

being 100 percent feedback-driven...you’d find yourself in the

Henry Ford “my customers wanted a faster horse” situation

pretty quickly, but it’s helpful nonetheless. Popular feature

requests jump up the queue, others languish.

Some negative feedback just isn’t helpful, but that’s life. The

world has its share of caustic assholes with nothing better to

do than give one-star reviews on iTunes, but if mean words

really bother you, you have no business making things and

selling them to the public. Don’t be a musician, either. Or a

writer. Or a chef.

Rather than taking bad feedback as an insult, take it as an opportunity

to turn a passionate user of your product into a passionate fan of your

product.

Take a deep breath. Don’t be defensive. Think about what the user

actually said. Does he have a valid reason for being angry? Is there

anything you can do to help this person? Is there something you can

do to make sure that nobody else encounters the problem this person

encountered?

We are designing products because we want to help people achieve their

goals. This is exactly why you’ve read this book: you want to make

people’s lives better. Bad user feedback doesn’t mean you’ve failed. It

merely means that you still have work to do.

Takeaway Points

• People may not use your product the way you intended. This can

often be a great opportunity to take your product into new direc-

tions.

• Don’t let bad feedback get you down. Instead, use it to turn an

angry customer into a fan.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=294
http://

Chapter 36

You’re Not Done
This is the last chapter of the book but not of your development process.

At the very beginning of this book, I said that a typical development

process looks a bit like this:

!
"#
"$%&

'

()
*
+"
)
"
,
-$-./,0"

#.1
,

It’s not a coincidence that the last chapters of the implementation

part of the book are about collecting data and dealing with user feed-

back. These things are research. In other words, you’re back where you

started. Now that you’ve reached the end of the implementation part

of your development process, it’s time to start anew, to rethink every-

thing. Are people using your product the way you expected them to use

it? Who is your real audience? Did your product solve the problems you

wanted to solve?

This chapter may be

!"#$%&'

of the book, but your work has really only just begun.

http://

Appendix A

Acknowledgments
A ton of people helped me create this book. I’ll do my best to list them

all, but if I’ve missed you, please accept my sincerest apologies and a

box of Swiss chocolate to make up for my mistake.

Speaking of mistakes, all the mistakes in the book are, of course, my

own, and none of the fine people listed here should be blamed for any

of them.

First and foremost, I want to thank my editor Jill Steinberg, who turned

my incoherent babbling into proper English.

I want to thank my tech editors, who scoured the book for mistakes

and offered tons of amazingly great feedback and ideas. In no particular

order, they are as follows:

Keith Lang, interaction designer at skitch.com. You can find his blog at

http://UIandUs.com.

Jon Bell. He’s an experience designer for Windows Phone. Read his

personal blog at http://www.lot23.com and his design blog at http://www.

designdare.com.

Max Steenbergen. As a resident graphic and UI designer, he designs the

UI and graphics for software used on the bridge of luxury yachts. His

blog is at http://facevalue.virb.com, and you can find him on Twitter at

@maxsteenbergen.

Charlotte Simmonds, who is an author of poetry and short stories. You

can find out more about her book The World’s Fastest Flower [Sim09].1

1. At http://www.victoria.ac.nz/vup/2008titleinformation/worldsfastestflower.aspx.

http://UIandUs.com
http://www.lot23.com
http://www.designdare.com
http://www.designdare.com
http://facevalue.virb.com
http://www.victoria.ac.nz/vup/2008titleinformation/worldsfastestflower.aspx
http://

APPENDIX A. ACKNOWLEDGMENTS 297

Duncan Wilcox writes software for Macs, iPhones, and iPads. You can

read his blog at http://duncanwilcox.com.

Chris Clark, or Clarko, is an interaction designer and enfant terrible.

His website can be found at http://releasecandidateone.com.

Sharmila Egger, who will finish her studies in psychology at University

Zürich in 2012. As well as editing the book, she also helped me with

research.

David Naef, creative director and member of the management at a Swiss

identity firm. You can read his writings at http://www.wisegamers.ch.

Sibylle Aregger is an expert developer who writes risk management tools

for banks. Unfortunately, she does not have a blog I can link to.

Michael Trummer is a senior Appway engagement manager at Numcom

Software AG. You can find him at http://ch.linkedin.com/in/trummer, and

you can read his thoughts on the development of business applications

at http://twitter.com/DrummeratWork.

I also want to thank Chris Pruett (find him at http://replicaisland.blogspot.

com) for allowing me to use his Replica Island death heat map in Chap-

ter 26, Learning from Video Games, on page 220, as well as Clayton

Miller (at http://rclayton.net), for allowing me to use his “delayed pas-

sive confirmation” mock-up in Chapter 19, Instead of Interrupting, Offer

Undo, on page 171.

Amadé Fries from http://zuendung.ch took the two car pictures in Chap-

ter 23, Speed, on page 198 and kindly allowed me to use them in this

book.

I want to thank Lynx co-designer RJ Mical for answering my questions

about the development of the Lynx video game console (see Chapter 1,

User Research, on page 19). You can find him at http://www.mical.org.

Pieter Omvlee from Bohemian Coding helped me out with Chapter 25,

Removing Features, on page 215 when he talked to me about his experi-

ence with removing features from DrawIt. Bohemian Coding is at http://

www.bohemiancoding.com.

I want to thank Amanda Kiefer for helping me with the psychology

research for this book.

Many more people helped me with this book by allowing me to use

quotes from their books or blogs, and I want to thank all of them as

well.

Report erratum

this copy is (P1.1a printing, July 2011)

http://duncanwilcox.com
http://releasecandidateone.com
http://www.wisegamers.ch
http://ch.linkedin.com/in/trummer
http://twitter.com/DrummeratWork
http://replicaisland.blogspot.com
http://replicaisland.blogspot.com
http://rclayton.net
http://zuendung.ch
http://www.mical.org
http://www.bohemiancoding.com
http://www.bohemiancoding.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=297
http://

APPENDIX A. ACKNOWLEDGMENTS 298

A lot of people have allowed me to use their Twitter pictures, names,

and tweets in this book’s pictures. Their Twitter handles are, in alpha-

betical order: 7WP, aidanhornsby, AlphabUX, CoryCalifornia, design-

dare, fetjuel, gauravmishr, ienjoy, jonbell, larryv, lorentey, louije, maxs-

teenbergen, neave, oliverw, shawnblanc, thibautsailly, timeboxed, and

workjon. Thank you!

And finally, I want to thank Damaris Kiefer. She shot some of the pic-

tures in this book and also appears in a few.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=298
http://

Appendix B

Bibliography

[BB10] Cennydd Bowles and James Box. Undercover User Experi-

ence Design. New Riders Press, 1 edition, 2010.

[BT10] Nate Bolt and Tony Tulathimutte. Remote Research. Rosen-

feld Media, 2010.

[Bux07] Bill Buxton. Sketching User Experiences: Getting the Design

Right and the Right Design. Morgan Kaufmann, 2007.

[CL99] Larry Constantine and Lucy A.D. Lockwood. Software for

Use: A Practical Guide to the Models and Methods of Usage-

Centered Design. Addison-Wesley Professional, 1999.

[Cla10] Josh Clark. Tapworthy: Designing Great iPhone Apps.

O’Reilly Media, 2010.

[Coo95] Alan Cooper. About Face: The Essentials of User Interface

Design. John Wiley & Sons, New York, 1995.

[Coo99] Alan Cooper. The Inmates Are Running the Asylum. Sams,

1999.

[Cor99] Stanley Coren. Sensation and Perception. John Wiley &

Sons, 1999.

[Csi02] Mihaly Csikszentmihalyi. Flow. Rider, 2002.

[FH10] Jason Fried and David Heinemeier Hansson. Rework.

Crown Business, 2010.

[FHL09] Jason Fried, David Heinemeier Hansson, and Matthew Lin-

derman. Getting Real. 37signals, 2009.

http://

APPENDIX B. BIBLIOGRAPHY 300

[Fru98] Adrian Frutiger. Signs and Symbols: Their Design and Mean-

ing. Watson-Guptill, 1998.

[Gil07] Daniel Gilbert. Stumbling on Happiness. Vintage, 2007.

[Hoe06] Robert Hoekman. Designing the Obvious: A Common Sense

Approach to Web Application Design. New Riders Press,

2006.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Kin00] Stephen King. On Writing. Scribner, New York, 2000.

[Kos04] Raph Koster. A Theory of Fun for Game Design. Paraglyph

Press, 2004.

[Kru09] Steve Krug. Rocket Surgery Made Easy: The Do-It-Yourself

Guide to Finding and Fixing Usability Problems. New Riders

Press, 2009.

[McC94] Scott McCloud. Understanding Comics. Harper Paperbacks,

1994.

[MR06] Peter Morville and Louis Rosenfeld. Information Architecture

for the World Wide Web. O’Reilly Media, 3rd edition, 2006.

[Nor88] Donald A. Norman. The Design of Everyday Things. Double-

day/Currency, New York, 1988.

[NY10] Clifford Nass and Corina Yen. The Man Who Lied to His Lap-

top: What Machines Teach Us About Human Relationships.

Current Hardcover, London, 2010.

[PA06] John Pruitt and Tamara Adlin. The Persona Lifecycle. Mor-

gan Kaufmann, 2006.

[Pal99] Stephen E. Palmer. Vision Science: Photons to Phenomenol-

ogy. The MIT Press, 1999.

[Pap05] Victor Papanek. Design for the Real World. Academy Chicago

Publishers, 2nd edition, 2005.

[Ras00] Jef Raskin. The Humane Interface: New Directions for

Designing Interactive Systems. Addison-Wesley Professional,

Reading, MA, 2000.

[Ros86] Caroline Rose. Inside Macintosh. Addison Wesley, 1986.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=300
http://

APPENDIX B. BIBLIOGRAPHY 301

[Saf08] Dan Saffer. Designing Gestural Interfaces. O’Reilly Media,

2008.

[Sch05] Barry Schwartz. The Paradox of Choice: Why More Is Less.

Harper Perennial, 2005.

[Sim09] Charlotte Simmonds. The World’s Fastest Flower. Victoria

University Press, 2009.

[SJ94] Michael Steehouder and Carel Jansen. Quality of Technical

Documentation. Editions Rodopi, 1994.

[Sni03] Carolyn Snider. Paper Prototyping: The Fast and Easy Way

to Define and Refine User Interfaces. Morgan Kaufmann,

2003.

[Spe09] Donna Spencer. Card Sorting: Designing Usable Categories.

Rosenfeld Media, 2009.

[Spe10] Donna Spencer. A Practical Guide to Information Architec-

ture. Five Simple Steps, 2010.

[Spo11] Joel Spolsky. User Interface Design for Programmers. Apress,

2011.

[SZ03] Katie Salen and Eric Zimmerman. Rules of Play: Game

Design Fundamentals. The MIT Press, 2003.

[War04] Colin Ware. Information Visualization: Perception for Design.

Morgan Kaufmann, 2 edition, 2004.

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=301
http://

Index
Symbols
37signals, 43, 46, 158, 160, 213

A
A/B testing, 187, 279–286

About Face, 36, 39, 77, 92, 182

abstractions, leaky, 82

acceleration and animations, 152

accessibility, 157, 245

accidental input, 134, 180, 277

achievements, 228

Acorn, 217, 276

activity-centered design, 37–39

Adobe Photoshop, 157, 210

affinity diagrams, 113

affordances

mental models, 90

mock-ups, 100

realism, 91, 121, 125

AirVideo, 166

Alarms, 194

Amazon, 43, 160

Andrews, D.P., 142

Android, 149, 153

“Animation: From Cartoons to the User

Interface”, 150, 153

animations, 145–154, 164, 178

anthropomorphism, 80

anticipatory movement, 152

APIs (Application Programming

Interfaces), 210

apologizing for errors, 273, 274

Apple, 160, 274

application definition statement, 45

application programming interfaces

(APIs), 210

Appway, 141, 202

archetypes, 31, 121

Arment, Marco, 126

“The Art of Expectations”, 154

assuming causality, 89

Atari Lynx, 20–21

attention, directing user, 147

Audible, 60, 228

audience

discoverability and, 161

internal-audience problem, 210

job shadowing and contextual

interviews, 23

limited vs. general, 37

usability testers, 245

vocabulary, 49, 54

see also personas; user research;

users

B
badges, see Achievements

Balsamiq, 101

Basecamp, 160

BBEdit, 168

Beatwave, 126

Beecher, Fred, 137

behavioral consistency, 156

Berners-Lee, Tim, 292

Bertrand, Marianne, 53

bevels, 91, 100

BizTwit

about, 13

blog post, 43

features request, 207

flow diagram, 96

personas, 34

sketching, 97

storyboards, 97

temporal view, 196

testing, 238, 251, 263–265

user research, 27

see also Twitter

http://

BLAMING USERS FOR ERRORS DECELERATION AND ANIMATIONS

blaming users for errors, 272–275

blog posts, 41, 43

blur, motion, 151

Bohemian Coding, 217

Bolt, Nate, 259, 267

Bowles, Cennydd, 29, 103

Box, James, 29, 103

breadcrumbs navigation, 58

Briefs, 102

Brignull, Harry, 203

Buxton, Bill, 103, 178

buzzwords, see jargon

C
calendars, 126, 194, 277

Capcom Ghosts ’n Goblins, 225

card sorting, 63–71, 76, 83, 164

Card Sorting: Designing Usable

Categories, 64, 76

Carroll, John M., 47

cartoons, 150–153

causality, 89

challenges and fun, 221, 222, 224, 227

see also Achievements

Chang, Bay-Wei, 150, 153

checklists for paper prototype testing,

110, 112

choices

grouping, 74

in hierarchies, 73

satisfaction, 212

Chrome, see Google Chrome

circles, 142

clarity, 40–44, 50

Clark, Chris, 206, 293

Clark, Joe, 245

Clark, Josh, 137

classification, hierarchical, 71

Clever Hans, 269

CLI, see command-line interfaces

clicks

Fitts’s Law, 138–144

hierarchies and number of, 72

ClickTale, 290

closed card sorting, 68, 70

Cloze test, 54

coin-counting machines, 203

collecting things, 230

color

discoverability, 162

grouping with, 75

indicating importance with, 100

perception, 163

Colter, Angela, 54, 57

command-line interfaces, 130, 132

comparing designs, see A/B testing

competition, 229

complexity, 210, 214

computer in paper prototype testing,

111, 117

configuration, 184

confirmation, delayed passive, 174

consent forms, 112, 261, 264

consistency, 155–158

behavioral, 156

custom elements, 157

defined, 155

discoverability, 163

mental models, 79–83, 156

preferences, 185, 187

rules, 230

visual, 155

Constantine, Larry, 36, 39

constraints, replicating physical,

126–128

context menus, 140

contextual interviews, 23, 25, 26, 32

continuous interactions, 199

Cooper, Alan, 31, 36, 39, 77, 92

Copilot, 258

copy, see text

Coren, Stanley, 142

corners, 140

costs

features, 209

usability tests, 241

crashes, 289

Crazy Egg, 290

Csíkszentmihályi, Mihály, 165, 170,

220, 232

culture and usability testing, 245

cursors and Fitts’s law, 138–144

custom elements and consistency, 157

Cyborg R.A.T., 38

D
data organization, see file systems;

hierarchies

Davidson, Mary Jo, 84

de Jong, Menno, 45

de Jong, Piet, 14

deceleration and animations, 152

303

http://

DECISIONS FIREFOX

decisions, limiting user, 166–170

default preferences, 187

delayed passive confirmation, 174

delaying actions, 173

deleting features, see removing features

design

clarifying with early documentation,

40–44

iterative, 284

principles for UI model, 84–92

principles from cartoons, 150–153

stages, 15, 94, 295

Design for the Real World, 232

design model, see UI model

The Design of Everyday Things, 90, 272

designer’s model, see UI model

Designing Gestural Interfaces, 131, 137

Designing the Obvious, 29, 39, 92, 103

details

skeuomorphs, 124

symbol, 121

dialog boxes, 180

difficulty, controlling, 222, 223

direct manipulation, 131

“Direct Manipulation for

Comprehensible, Predictable and

Controllable User Interfaces”, 131

directing user attention, 147

discoverability, 159–164

discovery and rewards, 228

Dive Into Accessibility, 245

djay, 85

documentation, 40–44, 188

Dove, Laura, 84

dragging and screen edges, 140

DrawIt, 217

Dropbox, 212

E
ease-in/out, 152

easyGestures, 141

“Emotional Interface Design”, 231

EpicWin, 225

errors, 272–278, 289

Ethnio, 260

exaggeration and animations, 152

exit points, 289

“Eye Candy vs. Bare-Bones in UI

Design”, 129

eye-tracking tests, 46

F
F-Pattern, 162

facilitators

free-form tests, 247, 254

moderated tasks tests, 247,

251–253, 258–266

paper prototype testing, 111–117

unmoderated tasks tests, 247, 253,

266

see also usability testing

“Failure to Recognize Fake Internet

Popup Warning Messages”, 48

failures, measuring, 289

familiarity and mental models, 85

features

alternatives to, 217

APIs and plug-ins, 210

avoiding, 205–214

complexity, 210, 214

costs, 209

creep, 205, 211

describing in documentation, 43

discoverability, 159–164

hiding, 159, 209

increasing usability, 208

removing, 215–219, 290

requests for, 206

spinning off, 218

feedback

audio, 201

gestures, 133

importance of, 87

kinesthetic, 178

mental models, 87

modes, 178

progress, 199–203, 225–227

state changes, 147

see also feedback, user

feedback, user

cycle, 242

evaluating, 39

feature removal, 217

features, 206, 210–213

limitations, 211

negative, 293

uses, 292

file systems, 189–197

filler

illustrations, 53

text, 99

Firefox, 141, 191

304

http://

“FIRST PRINCIPLES OF INTERACTION DESIGN” HIERARCHIES

“First Principles of Interaction Design”,

204

Fitts’s law, 138–144

Fitts, Paul, 139

“The Five Whys”, 207

flair, see Achievements

flexibility and mental models, 87

Flip video camera, 84

flow, 165, 220

flow diagrams, 96

Flow: The Psychology of Optimal

Experience, 165, 170, 220, 232

Flying Meat, 217

focus groups, 20

focus, stealing, 180

folklore.org, 274

fonts, 55, 75

form and discoverability, 162

Foursquare, 228

free-form tests, 247, 254

Fried, Jason, 96

front loading decisions, 167

Frutiger, Adrian, 129

Full Throttle, 141

fun

animations and, 153

challenges, 221, 222, 224, 227

games, 220

goals, 220

progress measurements, 225

tasks, 221

vs. usability, 153, 231

G
Game Boy, 20–21

GameCube, 90

games, 220–232

challenges, 222, 227

collecting things, 230

competition, 229

consistency, 230

difficulty, 222

discovery and awards, 228

fun, 220

progress, 225–227

skill growth, 227

tasks, 221, 222

Garage Band, 225

garden-path sentences, 50

gestures, 131–134, 199

Getting Real, 43, 46, 158

Ghosts ’n Goblins, 225

Gilbert, Dan, 26

goals

A/B testing, 281

activity-centered design, 37

flow diagrams, 96

fun, 220

personas’, 32

usability tests, 108, 248, 268

user research, 22, 281

Google Analytics, 282

Google Chrome

animations, 147

hierarchy of, 58, 61

restoring windows, 90

usage data collection, 282

Google Drawings, 101

Google Website Optimizer, 282

graphical user interfaces, 130, 132

grouping things in hierarchies, 74

growing animations, 152

guerilla paper prototype testing,

105–107

guerilla usability testing, 235–239, 244

GUI, see graphical user interfaces

H
Hale, Kevin, 144

Hall, Isaac, 212

Hamilton, Rebecca W., 212, 214

Hansson, David Heinemeier, 96

Harris, Jensen, 290, 291

HDR mode, 179

headings, 49

“The Health Impact of Mandatory

Bicycle Helmet Laws”, 14

helmet laws, 13

Hertzfeld, Andy, 274

“Heuristics for Designing Enjoyable

User Interfaces”, 225, 232

hiding features, 159, 209

“Hierarchical File Systems are Dead”,

190, 197

hierarchies

card sorting, 63–71, 76, 83

choice in, 73

depth, 72, 195

examples, 189

file systems, 190, 194–197

grouping things, 74

guidelines, 71–76, 194–196

305

http://

HIGH DYNAMIC RANGE MODE LASH

indicating with affordances, 100

memory and, 190

screen, 58

strictness, 71

visual structure, 59–62

websites, 58, 64

High Dynamic Range mode, 179

highlights, 91

Hoekman, Robert, 29, 39, 92, 103

“Hot Failure: Tuning Gameplay With

Simple Player Metrics”, 223

hover effect, 91

HP webOS, 169

“Human orientation discrimination

tested with long stimuli”, 142

human-centered design, 19, 37, 39

see also user research

“Human-Centered Design Considered

Harmful”, 39

The Humane Interface, 176, 179, 182

Hunt, Andrew, 100

I
iCal, 277

iChat, 258

icons, 122, 129

see also symbols

ID (index of difficulty), 139

iELECTRIBE, 123

illustrations, 52

iMovie, 227

implementation model, 79–83

implementation stage of design

process, 15, 234, 295

implicit preferences, 187

“Improving the Usability of the

Hierarchical File System”, 190

index of difficulty, 139

infinite edges, 139

information architecture, 62, 76

see also hierarchies

Information Architecture for the World

Wide Web, 62, 76, 197

Information Visualization, 122, 147,

153, 163

The Inmates Are Running the Asylum,

31, 36

input errors, 277

input, accidental, 134, 180, 277

Inside Macintosh, 175, 181, 182

internal-audience problem, 210

interruptions

animations, 148

avoiding, 165–170

vs. undo, 171–174

usability tests, 253

interviews, contextual, see contextual

interviews

invisible features, 209

iOS, 195

IP addresses and partitioning users,

284

iPhone, 60, 102, 179, 230, 277

iPod app hierarchy, 60

iterative design, 284

J
jargon

card sorting, 65

documentation, 40

error messages, 273

preferences, 188

text, 47, 51

usability testing, 109

see also vocabulary

Jing, 237

job shadowing, 23–27

Jobs, Steve, 152, 184

Jones, William, 197

Just, Morten, 101

K
keyboard shortcuts, 143

Keynote, 102

Keynote Kungfu, 102

Keynotopia, 102

keywords, 49

Kim, Amy Jo, 229, 232

Kinect, 135

kinesthetic feedback, 178

Kinetic, 149

King, Stephen, 54, 57

Korg iELECTRIBE, 123

Koster, Raph, 220, 232

Krug, Steve, 256

Kruzeniski, Mike, 127

L
Lang, Keith, 151, 154

Language Log, 50

Lash, Jeff, 219

306

http://

LASSETER NIELSEN

Lasseter, John, 151, 152, 154

latency, 204

leaky abstractions, 82

Learning From SciFi Interfaces, 135

legibility, 55

lines, 142

Lisa (computer), 274

lists, 49

live recruiting, 259

see also testers

Lockwood, Lucy, 36, 39

Lorem Ipsum, 99

Lynx, 20–21

M
Malone, Thomas W., 225, 228, 232

The Man Who Lied to His Laptop, 80,

273

manifest model, see UI model

manipulation, direct, 131

manuals, 41, 44, 188

margins, target, 143

marketing buzzwords, see jargon

Marsden, Gary, 190

Maximizers, 73

McCloud, Scott, 121, 129

Media Atelier Alarms, 194

memory

gestures and, 132

hierarchies and, 190

spatial systems and, 193

symbols and, 122

working, 73

mental models, 77–92

affordances, 90

animations and, 145, 148

anthropomorphism, 80

causality, 89

consistency, 79–83, 156

defined, 77

designer’s, 82

discoverability, 163

familiarity, 85

feedback, 87

flexibility, 87

implementation model, 79–83

recognition, 85

responsiveness and, 199

safety, 88

simplicity, 84

UI model, 79–92

user research, 83

see also realism

“Mental Models and Usability”, 84

menus, context, 140, 141

meta data, 196

Metro, 127

Mical, RJ, 20

mice for limited vs. general audiences,

37

Microsoft Kinect, 135

Microsoft Word 5.1, 211

Microsoft Xbox, 228

Miller, Clayton, 174

Miller, George A., 73

Mint.com, 214

mock-ups, 42, 99

Mockingbird, 101

mockups

see also prototypes; sketching

moderated remote tests, 258–266

moderated tasks tests, 247, 251–253,

258–266

modes, 175–182

defined, 175

errors, 275

feedback, 178

nonmodal alerts, 169

nonobvious, 176–179

preferences and, 185

quasimodes, 178, 181

sticky, 181

unexpected, 180

monohierarchical classification, 71

Morville, Peter, 62, 76, 197

motion blur, 151

MP3 player hierarchy, 59

Mrgan, Neven, 47

Mueller, Gus, 217

multivariate testing, 280, 282

see also A/B testing

Murphy, Nicholas, 190, 197

N
names of personas, 33

Nass, Clifford, 80, 273

natural user interfaces (NUIs),

130–137, 199

navigation, breadcrumbs, 58

Nielsen, Jakob

card sorting, 66, 67

defaults, 187

307

http://

NIKE+ PREDICTABILITY

F-Pattern, 162

illustrations, 53

mental models, 77, 92

response time, 199, 204

text usability, 46, 49, 53

usability testing, 241, 243

writing, 57

Nike+, 229

Nintendo calendar file system, 194

Nintendo Game Boy, 20–21

Nintendo GameCube, 90

Nintendo NES, 90

Nintendo Super Metroid, 223

Noessel, Chris, 135

nonobvious modes, 176–179

Norman, Don, 27, 39, 90, 133, 272

NUI, see natural user interfaces

O
Oberg, Bruce, 224

observation, audience, see contextual

interviews; job shadowing

observers, test, 113, 254, 255

Odeo, 292

OmniGraffle, 102

Omvlee, Pieter, 217

On A List Apart, 267

On Writing, 54, 57

OpenOffice.org, 167

opinions vs. preferences, 183–188

OptimalSort, 69

Orban, Guy A., 142

organizing data, see file systems;

hierarchies

orientation, grouping with, 75

Osfoora, 166

“Overdoing the interface metaphor”,

126

P
Palm Pre, 128

Palmer, George, 282

Palmer, Stephen E., 75, 142

Papanek, Victor, 232

paper prototype testing, 104–119

checklists, 110, 112

consent forms, 112

creating prototypes, 109

guerilla, 105–107

limitations, 246

mental models, 83

observers, 113

preferences, 187

preparation, 110, 112

recording, 112

running tests, 116–117

tester opinions, 117

usability testing, 106–118

Paper Prototyping, 113, 119

The Paradox of Choice, 73, 212, 214

“Paradox of the Active User”, 47

paragraphs, 49

partitioning users, 282, 284

passive confirmation, delayed, 174

passive voice, 52

PEBKAC, 272

perception

color, 163

lines and circles, 142

speed, 201

“Perception of contour orientation in

the central fovea”, 142

Perfetti, Christine, 246

performance, 287

see also speed

permissions, recording, 112, 238

see also consent forms

The Persona Lifecycle, 36

personalization, 184

personas, 30–36

see also audience; users

Pfungst, Oskar, 269

Photoshop, 157, 210

physical constraints, replicating,

126–128

Picasa, 195

Pilgrim, Mark, 245

pinch-to-zoom, 161

Pixelmator, 227

plug-ins, 210

polyhierarchical classification, 71

pop-up warnings, 48

position and discoverability, 162

Post-it post-mortem, 255

PowerPoint, 102

A Practical Guide to Information

Architecture, 62, 76

The Pragmatic Programmer, 100

Pre, 128

predictability

mental models, 77

product, 173

308

http://

PREFERENCES SCREENCASTS

user behavior, 13, 27, 292

preferences, 183–188

press releases, 42, 44

“The Prevention of Mode Errors

Through Sensory Feedback”, 178

Prezi, 192, 226

“Principles of traditional animation

applied to 3D computer

animation”, 151, 154

programmer’s model, see

implementation model

progress feedback, 199–203, 225–227

Propellerhead Software ReBirth, 91

prototypes, 95–103

creating paper, 109

defined, 101

premature, 98

sketches as, 95

testing paper, 83, 104–119, 187, 246

tools, 101

proximity, 75

Pruett, Chris, 223, 232

Pruitt, John, 36

Putorti, Jason, 214

“Putting the Fun in Functional”, 232

Q
Quality of Technical Documentation, 45,

50, 57

quasimodes, 178, 181

see also modes

QuickTime Player, 255

R
Radford, Tim, 54, 57

radial context menus, 140

Raskin, Aza, 168, 178, 182, 191

Raskin, Jef, 176, 179, 181, 182

reading, avoidance of, 47

real-world objects, see realism

realism, 91, 120–129

see also natural user interfaces

ReBirth, 91

recognition and mental models, 85

recording

paper prototype tests, 112

remote job shadowing, 26

usability tests, 237, 247, 254

recruiting agencies, 246

recruiting testers, see testers,

recruiting

Reece, Manton, 216

regions, grouping with, 75

Reichenstein, Oliver, 55

remote card sorting, 69

remote job shadowing, 26

Remote Research, 259, 267

remote usability testing, 257–267

advantages, 248, 262

disadvantages, 261

moderated, 258–266

running, 261–266

services, 266

unmoderated, 266

removing features, 215–219, 290

Replica Island, 223

research stage of design process, 15,

295

see also user research

responsiveness, 198, 199

see also speed

restoring, see undo

Review, 102

rewards

achievements, 228

testing, 259, 261, 265

Rework, 96, 213

ripple effects, 202

“Rocket Surgery Made Easy”, 256

Rose, Caroline, 175, 181, 182

Rosenfeld, Louis, 62, 76, 197

Rosson, Mary Beth, 47

rules and consistency, 230

Rules of Play: Game Design

Fundamentals, 230, 232

Rundle, Mike, 184, 188

RunKeeper, 229

Rust, Roland T., 212, 214

S
safety and mental models, 88

Saffer, Dan, 131, 137

Salen, Katie, 230, 232

satisficing, 73, 212

scannable text, 49

Schaut, Rick, 211

Schwartz, Barry, 73, 212, 214

science fiction and natural user

interfaces, 135

screen edges, 139

screen sharing, 258, 260, 262, 264

screencasts, 42, 44

309

http://

SEARCH TESTING

search, 164, 196

Seltzer, Margo, 190, 197

Sensation and Perception, 142

sentence clarity, 50

serifs, 56

settings, 183–188

“Seven Rule”, 73

shadowing, see job shadowing

shadows, 100

Shedroff, Nathan, 135

Shneiderman, Ben, 131

shortcuts

keyboard, 143

web addresses, 14

shrinking animations, 152

Shuttleworth, Mark, 190

Sierra, Kathy, 206, 214

Signs and Symbols, 129

Silverback, 237, 255

Simmons, Brent, 214, 219

Simon, Herb, 73

simplicity, 82, 84

size

discoverability, 162

fonts, 55

grouping with, 75

targets, 143

sketching, 95, 97, 101, 210

see also prototypes

Sketching User Experiences, 103

skeuomorphs, 124

skill growth, 227

Skype, 258

slowing down, 202

Snider, Carolyn, 113, 119

Software for Use, 36, 39

solidity and animations, 150

spatial properties and discoverability,

162

spatial reasoning, 191

spatial systems, 191, 195

speed, 198–203, 287

Spencer, Donna, 62, 64, 76

spinning off features, 218

splitting products, 293

Spolsky, Joel, 57, 77, 92, 158

spring-loaded modes, see quasimodes

stability, 173

Stack Overflow, 229

state changes, 109, 145–147

statistics, see usage data

stealing focus, 180

Steenbergen, Max, 129, 154

stencils, 102

stock photography, 53

Stoll, Cliff, 24

storyboards, 97

Stumbling on Happiness, 26

style guides, 51

Sucker Punch, 224

Super Metroid, 223

symbols, 121–122

Syncplicity, 212

system model, see implementation

model

T
tagging, 196

Tapworthy, 137

targets

Fitts’s Law, 138–144

margins, 143

overshooting in animations, 152

varying size, 143

tasks

defining for usability tests, 107, 237,

248, 268

describing in documentation, 43

exit points, 289

fun, 221

games, 221, 222

see also moderated tasks test;

unmoderated tasks tests

Tate, Tyler, 103

TechSmith, 255

templates, 101

temporal view, 193, 196

temporary undo, 173

testers

influencing, 116, 252, 253, 262, 269

motives, 259

number of, 238, 243

opinions, 117, 254

paper prototype testing, 110, 112,

117

preparing, 112

recruiting, 110, 237, 244–246, 259,

262

stress, 270

testing

A/B testing, 187, 279–286

Cloze test, 54

310

http://

TEXT USABILITY TESTING

importance of, 14

manuals, 45

multivariate, 280, 282

paper prototypes, 83, 104–119, 187,

246

text, 54, 57

updates, 245

see also usability testing

text

clarity, 50

filler, 99

illustrating, 52

importance of, 47

legibility, 55

limiting, 48

scannable, 49

style and tone, 51

testing, 54, 57

usability, 46–57

wireframing, 99

textures, 100

A Theory of Fun for Game Design, 220,

232

Thomas, David, 100

Thompson, Debora Viana, 212, 214

time-based filing systems, 193

timeline, 16

titles and clarity, 51

Tognazzini, Bruce, 45, 98, 126, 204

tooltips, 188

touch screens, 140

see also gestures

Toyoda, Sakichi, 207

trophies, see Achievements

troubleshooting and causality, 89

trust, 172, 173

Tulathimutte, Tony, 259, 267

Turing, Alan, 111

Twitter

about, 13

API, 210

competition in, 229

gesture feedback, 133

Osfoora, 166

see also BizTwit

typefaces, 56

U
Ubuntu, 190

UI model

affordances, 90

consistency, 79–83

defined, 79

design principles, 84–92

familiarity, 85

feedback, 87

flexibility, 87

recognition, 85

safety, 88

simplicity, 82, 84

Undercover User Experience Design, 29,

103

Understanding Comics, 121, 129

undo

accidental input, 135

vs. interruptions, 171–174

mental models and, 88

natural user interfaces conventions,

135

temporary, 173

tracking, 289

trust and, 172

vs. warnings, 48, 171

Ungar, David, 150, 153

unmoderated remote testing, 266

unmoderated tasks tests, 247, 253,

266

unpredictability, see predictability

updates testing, 245

URL shortcuts, 14

usability testing

accessibility, 245

advanced users, 290

consent forms, 112, 261, 264

costs, 241

cultural differences, 245

evaluating results, 255, 265

free-form tests, 247, 254

frequency, 242

goals, 108, 248, 268

guerilla, 105–107, 235–239, 244

mistakes to avoid, 116, 252, 253,

262, 268–271

moderated tasks tests, 247,

251–253, 258–266

need for, 118, 241, 250

observers, 113, 254, 255

paper prototypes, 83, 106–118, 246

in person, 248, 250–256

preferences, 187

preparation, 110, 112, 236, 237,

240–249

311

http://

USAGE DATA WRITING

recording, 112, 237, 247, 254

remote, 248, 257–267

running, 238, 248, 251–254,

261–266

single user, 243

speed and responsiveness, 198

tasks, 107, 237, 248, 268

terminology in, 109, 268

types, 246

unmoderated tasks tests, 247, 253,

266

updates, 245

see also A/B testing; testers

usage data

collecting, 287–291

informing users, 282

removing features, 216

usage-centered design, see

activity-centered design

user behavior

analytics, 290

consistency, 156

state changes, 145

unpredictability, 13, 27, 292

see also mental models

User Effect, 283

user errors, see errors

user flair, see Achievements

User Interface Design for Programmers,

57, 77, 92, 158

user interface model, see UI model

user research

activity-centered design, 39

card sorting, 63–71, 76, 83

contextual interviews, 23, 25, 26

features, 210, 216

goals, 22, 281

job shadowing, 23–27

limitations, 19, 27

mental models, 83

personas, 30–36

user-centered design, see

human-centered design

UserFocus, 119

users

advanced, 198, 206, 228, 290

partitioning, 282, 284

terms for, 24

user role models, 36

see also audience; feedback, user;

personas; user behavior; user

research

uxmyths.com, 72

V
van der Poort, Pieter, 45

Vertster, 282

videogames, see games

Vision Science: Photons to

Phenomenology, 75, 76, 142

visual consistency, 155

“Visual Feedback and How Modes Kill”,

178

visual realism, 123–128

“Visualizing Fitts’s Law”, 144

vocabulary

audience and, 49, 54

paper prototype testing, 116

usability testing, 268

see also jargon

Vogels, Werner, 43

von Osten, Wilhelm, 269

W
wallpapers, 153

Walter, Aaron, 231

Ware, Colin, 122, 147, 153, 163

warnings vs. undo, 48, 171

web addresses shortcuts, 14

Weber, Markus, 154

webOS, 169

Website Optimizer, 282

websites

for this book, 16

hierarchies, 58, 64

websort.net, 69

Weltz, Julie, 84

“What’s Psychology Worth?”, 53

Wii Transfer, 216

Wilson, Fred, 198

Windows calendar, 277

Windows Phone 7, 127

wireframes, 99, 101, 196

see also prototypes

Word 5.1, 211

“working backward”, 40, 45

Wright, Patricia, 50, 57

Writer’s Workbench, 225

writing, see documentation; text

312

http://

XBOX ZUSE

X
Xbox, 228

xvidcap, 255

Z
Zimmer, Carl, 57

Zimmerman, Eric, 230, 232

Zuse, Konrad, 111

313

http://

More from PragProg.com

HTML5 and CSS3
HTML5 and CSS3 are the future of web

development, but you don’t have to wait to start

using them. Even though the specification is still in

development, many modern browsers and mobile

devices already support HTML5 and CSS3. This

book gets you up to speed on the new HTML5

elements and CSS3 features you can use right now,

and backwards compatible solutions ensure that

you don’t leave users of older browsers behind.

HTML5 and CSS3: Develop with Tomorrow’s

Standards Today

Brian P. Hogan

(280 pages) ISBN: 9781934356685. $33.00

http://pragprog.com/titles/bhh5

The RSpec Book
RSpec, Ruby’s leading Behaviour Driven

Development tool, helps you do TDD right by

embracing the design and documentation aspects

of TDD. It encourages readable, maintainable

suites of code examples that not only test your

code, they document it as well. The RSpec Book will

teach you how to use RSpec, Cucumber, and other

Ruby tools to develop truly agile software that gets

you to market quickly and maintains its value as

evolving market trends drive new requirements.

The RSpec Book: Behaviour Driven

Development with RSpec, Cucumber, and

Friends

David Chelimsky, Dave Astels, Zach Dennis, Aslak

Hellesøy, Bryan Helmkamp, Dan North

(450 pages) ISBN: 978-1-9343563-7-1. $42.95

http://pragprog.com/titles/achbd

http://pragprog.com/titles/bhh5
http://pragprog.com/titles/achbd
http://

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Homepage for Designed for Use

http://pragprog.com/titles/lmuse

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/lmuse.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/lmuse
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/lmuse
www.pragprog.com/catalog
http://

	Contents
	Before We Start, a Word
	Technique Chapters
	Idea Chapters
	How the Book Is Organized
	Just One More Thing

	Research
	User Research
	Job Shadowing and Contextual Interviews
	Observing Your Audience
	Job Shadowing
	Contextual Interviews
	Remote Shadowing
	Limitations of Contextual Interviews

	Personas
	Problems with Personas
	Creating Personas
	Working with Personas
	Personas Do Not Replace User Research

	Activity-Centered Design
	Time to Start Working on Documentation
	The Manual
	Blog Posts
	Screencasts
	Press Releases
	Talk About Tasks

	Text Usability
	Why Words Matter
	People Don't Want to Read
	Say Less
	Make Text Scannable
	No Fluff
	Sentences Should Have One Obvious Interpretation
	Talk Like a Human, Not Like a Company
	Illustrate Your Points
	Use Words People Understand
	Test Your Text
	Display Legible Text

	Hierarchies in User Interface Design
	Creating Hierarchical Structure Visually

	Card Sorting
	Designing Hierarchies
	Preparing for a Card Sort
	Participants
	Running a Card Sort
	Running a Remote Card Sort
	Evaluating the Results
	Guidelines for Creating Usable Hierarchies

	The Mental Model
	What People Think
	Three Different Models
	Hiding Implementation Details
	Leaky Abstractions
	Designing for Mental Models

	Design
	Sketching and Prototyping
	Designing the Structure
	Flow Diagrams
	Storyboards
	Sketching
	Wireframes
	Mock-ups
	Tools

	Paper Prototype Testing
	Guerilla Paper Prototype Testing
	Running Full Usability Tests with Paper Prototypes

	Realism
	Symbols
	Virtual Versions of Real-World Objects
	Replicating Physical Constraints in Digital Products

	Natural User Interfaces
	Avoid Gesture Magic
	Recognizing Gestures
	Accidental Input
	Conventions

	Fitts's Law
	Screen Edges Have Infinite Size
	Radial Context Menus Decrease Average Distance
	Small Targets Need Margins
	Sometimes, Smaller Is Better

	Animations
	Explaining State Changes
	Directing User Attention
	Avoid Unimportant Animations
	Help Users Form Suitable Mental Models
	Learning from Cartoons

	Consistency
	Identifying Archetypes
	Behavioral Consistency

	Discoverability
	What to Make Discoverable
	When to Make Things Discoverable
	How to Make Things Discoverable

	Don't Interrupt
	Make Decisions for Your User
	Front Load Decisions
	Interrupt Users Only For Truly Urgent Decisions

	Instead of Interrupting, Offer Undo
	Let Users Undo Their Actions
	Temporary Undo

	Modes
	Nonobvious Modes
	Unexpected Modes
	Sticky Modes
	Modes Are Not Always Bad
	Quasimodes

	Have Opinions Instead of Preferences
	Why Preferences Are Bad
	How to Avoid Preferences
	If You Can't Avoid Preferences

	Hierarchies, Space, Time, and How We Think About the World
	Hierarchies
	Space
	Time
	A Better Hierarchical System

	Speed
	Responsiveness
	Progress Feedback
	Perceived Speed
	Slowing Down

	Avoiding Features
	Remember the User's Goals
	The Five Whys
	Instead of Adding a New Feature, Make an Existing Feature More Usable
	Solve Several Problems with One Change
	Consider the Cost
	Make It Invisible
	Provide an API and a Plug-in Architecture
	Listen to Your Users
	But Don't Listen to Your Users Too Much
	Not All Users Need to Be Your Users

	Removing Features
	Do the Research
	Inform Your Users
	Provide Alternatives
	It's Your Product

	Learning from Video Games
	What's Fun?
	Why Your Product Is Not Like a Game
	What We Can Learn from Games
	Fun vs. Usability

	Implementation
	Guerilla Usability Testing
	How Often to Test
	Preparing for the Test
	How Do You Find Testers?
	How Many Testers
	Running the Test
	The Results

	Usability Testing
	Usability Tests Don't Have to Be Expensive
	How Often to Test
	How Many Testers
	Who Should Test Your Product?
	How to Find Testers
	Different Types of Tests
	Preparing for the Test
	Running the Test

	Testing in Person
	Running the Test

	Remote Testing
	Moderated Remote Testing
	Unmoderated Remote Testing

	How Not to Test: Common Mistakes
	Don't Use Words That Appear in the User Interface
	Don't Influence the Tester
	Avoid Stressful Situations

	User Error Is Design Error
	Don't Blame Your Users in Your Error Messages
	No Error, No Blame

	A/B Testing
	When to Do A/B Testing
	What's Success?
	Preparing for the Test
	Running the Test
	Interpreting the Results
	Keep in Mind

	Collecting Usage Data
	Measure Speed
	Exit Points
	Measure Failure
	User Behavior

	Dealing with User Feedback
	Unexpected Uses
	Bad Feedback

	You're Not Done
	Acknowledgments
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

