
www.allitebooks.com

http://www.allitebooks.org

Developing Microsoft Dynamics
GP Business Applications

Build dynamic, mission-critical applications with this
hands-on guide

Leslie Vail

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Developing Microsoft Dynamics GP Business
Applications

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1191212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-026-4

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Leslie Vail

Reviewers
Mohammad R. Daoud

Frank Hamelly

Vaidhyanathan Mohan

Jivtesh Singh

Acquisition Editor
Rashmi Phadnis

Lead Technical Editors
Susmita Panda

Dayan Hyames

Technical Editors
Arun Nadar

Jalasha D'costa

Prashant Salvi

Copy Editors
Insiya Morbiwala

Aditya Nair

Alfida Paiva

Project Coordinator
Arshad Sopariwala

Proofreaders
Maria Gould

Sandra Hopper

Indexer
Hemangini Bari

Graphics
Valentina D'silva

Aditi Gajjar

Production Coordinators
Conidon Miranda

Pooja Chiplunkar

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Leslie Vail is a CPA and has been working as a Microsoft Dynamics GP
Consultant for nearly 20 years. She began with Version 1.0 in 1993. During
this period she completed numerous implementations, conversions, and
custom-development projects. She has been a Session Leader at many partner
and customer-technical conferences, and conducts training classes throughout
Northern and Central America.

Leslie has been a Microsoft Dynamics GP Microsoft Most Valuable Professional
(MVP) since 2007. She is recognized throughout the industry for her product
expertise and contributions to the Dynamics community. She is the Principal
of ASCI, Inc., a consulting firm located in Dallas, TX.

As a Microsoft Certified Trainer (MCT), she serves as a Subject Matter Expert
(SME) for the Microsoft Assessments and Certification Exams (ACE) team. She
is a member of the US MCT Advisory Council, and has been listed as one of the
Microsoft Dynamics Top 100 most influential people by DynamicsWorld. She is
one of the top contributors to the Microsoft Dynamics GP Newsgroup and the
Dynamics Community forum. Leslie maintains the popular Dynamics Confessor
Blogspot blog (http://dynamicsconfessions.blogspot.com/).

Leslie has reviewed and developed Microsoft Courseware, coauthored the book
Confessions of a Dynamics GP Consultant published by Accolade Publications, Inc., and
has been the Technical Editor of several books dedicated to Microsoft Dynamics GP.

Leslie provides implementation and consulting services for companies ranging
from a family office to a multinational manufacturing firm. She is a Microsoft
Certified IT Professional in Microsoft Dynamics GP Applications and Microsoft
Dynamics GP Installation & Configuration, as well as a Microsoft Certified
Database Administrator (DBA).

She holds a Microsoft Certified Technology Specialist certification in Dexterity,
Modifier with VBA, Integration Manager, Report Writer, HR/Payroll, Financials,
Inventory and Order Processing, FRx Report Designer, SQL Server 2000, SQL
Server 2008, and Microsoft XP Professional.

www.allitebooks.com

http://www.allitebooks.org

A skilled developer, Leslie uses Dexterity, Modifier with VBA, Integration Manager,
and eConnect to provide custom solutions to her clients. She is a Certified Integration
Developer (CID), a Dexterity CID, a Dynamics Tools CID, and a Dexterity Certified
Systems Engineer.

Her training proficiency spans the entire Microsoft Dynamics GP product line.
She is an experienced trainer and gives classes for Dexterity, Financials, Inventory
& Order Processing, HR/Payroll, Integration Manager, Modifier with VBA, FRx
Report Designer, SQL Server Reporting Services, Report Writer, Crystal Reports,
SmartList Builder, Excel Report Builder, Integrated Excel Reports, Extender, and
System Manager.

Prior to working with Microsoft Dynamics GP, Leslie was the Tax Director for a
large financial institution; before that, she worked for one of the original "Big Eight"
accounting firms as a Senior Tax Accountant.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

First and foremost, I would like to thank Kerry George for asking me to write this
book in the first place. Your unwavering encouragement kept me pressing on one
page at a time. I thank the army of kind people at Packt Publishing for your tireless
help and support. You were unbelievably patient and calming throughout the
process. I couldn't have done it without you.

I would especially like to thank my editors, Jalasha D'costa and Prashant Salvi, for
making the book actually flow smoothly. You corrected so many little things and
gave me such superb suggestions. People reading this book will think I have excellent
grammar and punctuation skills because of you. They are of course wrong, but they
won't be reading this acknowledgement, so it won't be found out.

To my reviewers Mohammad R. Daoud, Jivtesh Singh, Vaidhyanathan Mohan, and
Frank Hamelly, I thank you for your valuable time, ideas, and insights. You are this
author's secret weapon. You helped me close up the holes in my content and kept
me honest when I skipped over things. This is a much better, more complete book
because of you and your willingness to help and advise me. I was truly blessed the
day you said "yes" when Packt asked you to review this book.

I thank David Musgrave, the worldwide wizard of Dexterity, and his trusty sidekick,
Mariano Gomez, for their unending motivation and friendship. I have learned so
much from you two guys over the years. The development community relies on your
expertise and your willingness to share your knowledge, to move forward. I hope that
outpouring of knowledge never stops, because when I use it it makes me look smart.

A special shout goes out to Diane Bilyeu for putting up with me when I spent all
night at her kitchen table writing Chapter One. Diane has taken the gesture of a
nod and a smile to a whole new level, and I appreciate it immensely.

www.allitebooks.com

http://www.allitebooks.org

To my friends, family, colleagues, and clients, can you believe it's finally over? At
last you will not have to listen to my unending chatter about this book. Of course,
the unending chatter will continue, but the topic will be different.

Last but not least, I thank everyone on the Dynamics community forum. Anyone
who has ever asked a question, or suggested an answer, and even those who lurk
without posting, I thank you. While researching content for this book, I found so
many answers from community postings. Keep up the good work! I'll see you online.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mohammad R. Daoud has been working as a Microsoft Dynamics GP
Consultant since 2004. His began his career by working with Dynamics GP Version
7.5; he studied every single detail of the application's technicalities and did a lot of
successful implementations that included functional consultations, analysis, and
custom development projects. He holds a graduate degree in Computer Science
and is currently pursuing an MBA degree in Accounting.

In January 2007 he was nominated to receive the MVP certificate, and was
certified in April 2008 for his online contributions to the Dynamics community
(Dynamics GP newsgroups, forums, user groups, and his blog http://mohdaoud.
com). He was listed as one of Microsoft Dynamics's Top 100 most influential people
in 2009 by DynamicsWorld (http://dynamicsworld.co.uk/Top-100-List.php)

Mohammad's certificates include:

• Microsoft Most Valuable Professional (MVP)
• Microsoft Certified Trainer (MCT)
• Microsoft Certified Technology Specialist (MCTS)
• Microsoft Certified Professional (MCP)
• Microsoft Certified IT Professional – Dynamics (MCITP)
• Microsoft Certified Technology Specialist (MCTS)

Mohammad has successfully completed the following Microsoft Certification Exams:

• Microsoft Dynamics GP 2010 Installation & Configuration
• Managing Microsoft Dynamics Implementations
• Microsoft Dynamics GP 10.0 Inventory & Order Processing
• Microsoft Dynamics GP 10.0 Financials
• Microsoft Dynamics GP 10.0 Installation & Configuration
• Microsoft SQL Server 2005 – Implementation and Maintenance

www.allitebooks.com

http://mohdaoud.com/
http://mohdaoud.com/
http://dynamicsworld.co.uk/Top-100-List.php
http://www.allitebooks.org

• Microsoft Dynamics GP 9.0 Financials
• Microsoft Dynamics GP 9.0 Inventory & Order Processing
• Microsoft Dynamics GP 9.0 Modifier with VBA
• Microsoft Dynamics GP 9.0 Report Writer
• Microsoft Dynamics GP 9.0 Installation & Configuration
• Installing, Configuring, and Administering Microsoft SQL Server 2000
• Designing and Implementing Databases with Microsoft SQL Server 2000

Frank Hamelly is a business and technology professional with over 25 years of
experience in implementing and supporting various ERP systems and business
process reengineering initiatives across all organizational areas and across various
industries, for small, mid-sized, and even Fortune 500 companies. He has held
numerous positions in accounting, finance, customer service, and information
systems. His application experience includes SAP R/3, Baan, Fourth Shift, Peachtree,
MAS 90/200, Quickbooks, and Microsoft Dynamics ERP. His industry experience
includes manufacturing, telecom, aerospace, life sciences, utilities, and media.

Frank holds a degree in Business Administration with an Accounting major
from the University of Pittsburgh. He is a Microsoft Certified Professional (MCP),
Microsoft Certified IT Professional (MCITP), Microsoft Certified Trainer (MCT),
and has been named an MVP every year since 2008. He writes articles for
Dynamics-related websites and is a regular speaker at Microsoft Dynamics
Convergence, MSDynamicsWorld's Decisions virtual conference. He is also
a trainer and presenter for Great Plains Users Group (GPUG), and has
reviewed a number of books written by fellow MVPs.

Frank is the author of the GP2themax blog, with 5,000 visits per month.

Frank is also the owner at NOVA Solutions, LLC, located in the
Raleigh-Durham-Chapel Hill area of North Carolina. He is also the
reviewer of the book Dynamics GP Cookbook, Mark Polino, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

Vaidhyanathan Mohan is a Microsoft Dynamics GP consultant and
an enthusiast of all related technologies. He started his career as a Microsoft
Dynamics GP developer, gained invaluable experience with that, and became
a consultant who now handles implementation, analysis, development, and
administration of Microsoft Dynamics GP.

Vaidhyanathan possesses a Bachelor's degree in Mathematics and a Master's
degree in Computer Applications. He is an active blogger who blogs about
Microsoft Dynamics GP and related technologies. His blog, Dynamics GP – Learn
& Discuss, has been recognized and added to Microsoft's Community Blog List.
His active presence on many Dynamics GP forums is felt as he answers users'
queries and shares his knowledge.

I sincerely thank my parents, Mohan and Vijaya, for their
unconditional love and sacrifices in molding me. I thank my
brother, Karthikeyan Mohan, from my heart. Without his care
and inspiration, I would be nothing.

I thank all my peers, who were instrumental in building my career
and experience. To name a few, Rajesh Hari, Geeth, Subhash, Suresha,
Ravindranath, Sajeesh KA, David Musgrave, Mariano Gomez, Mark
Polino, and the entire GP community.

I thank Jimmy Grewal and Prem Nair, for their tremendous guidance
and support.

Finally, I thank my wife Rajeswari and my daughter Sreenidhi.
They are the meaning to my life. Their love and understanding
will forever drive me to learn and achieve more.

Jivtesh Singh is a Dynamics GP consultant, Systems Implementer, and has
been associated with Microsoft technologies since the launch of the Microsoft
.NET framework. Jivtesh has over 10 years of experience in the development and
maintenance of enterprise software using best practices of coding, refactoring and
usage of design patterns, and test-driven development.

Jivtesh recently built a Kinect interface to control Microsoft Dynamics GP 2010 R2
Business Analyzer with gestures. Later, he built a part of the GP Future demo for the
Convergence GP Keynote event.

Jivtesh has set up a custom search engine directory for the Dynamics GP blog at
www.gpwindow.com to help with easier access of Dynamics GP resources for the
GP community. With MVP Mark Polino, he has also set up a Dynamics GP product
directory at www.dynamicsgpproducts.com.

Jivtesh's accomplishments include:

• His blog on Dynamics GP – www.jivtesh.com
• Jivtesh's custom search engine for GP blogs – www.gpwindow.com
• Dynamics GP products website – www.dynamicsgpproducts.com

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Microsoft Dynamics GP Architecture 9

The native user interface 10
Horizontal 11
Vertical 11

Dexterity overview 12
Resource Explorer 13
sanScript scripting language 14
Extensive function library 15
Structured exception handling 15
Integrated source code control 15
Built-in Report Writer 15
COM support 16
Graphical forms designer 16
Debugging tools 16
Dexterity design 17

Components of the Dynamics GP application 17
Start your engines! 18
The launch file (Dynamics.set) 19
The preferences file (Dex.ini) 21

SQLLogSQLStmt 22
SQLLogODBCMessages 23
SQLLogAllODBCMessages 23
Synchronize 23
Workstation=WINDOWS 23
Workstation2 24
OLEPath 25
RememberUser 26
ShowAdvancedMacroMenu 27
ExportOneLineBody 28

Table of Contents

[ii]

The Dexterity Runtime Engine (Dynamics.exe) 31
SQL table and procedure names 32

Original table-naming convention 33
00000 – Master tables 36
40000 – Setup tables 36
50000 – Temp tables 36
60000 – Relation or Cross Reference tables 36
70000 – Report Options tables 37
80000 – Posting Journal Reprint tables 37
90000 – Miscellaneous tables 38

10000, 20000, and 30000 - Work, Open, and History Transaction tables 38
Stored procedures 39
Current table-naming convention 41

What you see – the User Interface (UI) 43
Push buttons 44
Note button (record level) 45
Printer icon 45
Zoom fields 45
Lookup button 46
Browse buttons 46
Sort-by List 46
Note button (window level) 47

Additional window elements 48
E-mail Link 48
Map Link 49
Quantity alert button 50
Multicurrency button 50
Show Details 50
Information button 51
Expansion arrow 52
Help button 53

Summary 54
Chapter 2: Integrating Application Fundamentals 55

Defining the project 56
Changing a window's look or behavior 56
Changing current functionality 58
Creating new functionality 58
Exchanging data between systems 58
Storing additional data 58
Types of integrations 59

Table of Contents

[iii]

Overview of available tools 60
Dexterity 60

Capabilities of Dexterity 61
Limitations 63
Developer skills required 63
End-user prerequisites 63

Visual Studio Tools for Dynamics GP (VS Tools) 63
Capabilities of VS Tools 64
Developer skills required 64
End-user prerequisites 64

Modifier with VBA (Visual Basic for Applications) 65
Capabilities of Modifier with VBA 67
Developer skills required 67
End-user prerequisites 67

Continuum 68
Capabilities of Continuum 68
Developer skills required 69
End-user prerequisites 69

Extender / eXtender Enterprise 69
Capabilities of Extender and eXtender Enterprise 69
Developer skills required 70
End-user prerequisites 70

DDE \ ODBC \ ADO \ OLE Automation 70
DDE 71
ODBC 71
ADO 71
OLE Automation 72
Capabilities of DDE \ ODBC \ ADO \ OLE Automation 72
End-user prerequisites 72

Integration Manager 73
Capabilities of Integration Manager 73
Developer skills required 74
End-user prerequisites 74

Table Import 74
Capabilities of Table Import 75
Developer skills required 76
End-user prerequisites 76

eConnect 76
Capabilities of eConnect 78
Developer skills required 79
End-user prerequisites 79

Web services 79
Capabilities of web services 80
Developer skills required 80
End user prerequisites 81

Table of Contents

[iv]

Modifying the user interface 81
Dexterity 81
VS Tools 83

WinForm properties 84
WinForm control properties 84

Modifier with VBA 87
Extender / eXtender Enterprise 88

Forms 89
Detail forms 90
Windows 90
Detail windows 91
Notes 93

Changing or adding functionality 94
Dexterity 94

Form events 94
Window events 95
Field events 95
Scrolling window events 96

Triggers 96
Five triggers in Dexterity 97

VS Tools 98
Form events 100
Window events 100
Scrolling window events 102
Field events 105
Procedure events 106
Function events 106

Modifier with VBA 107
Window events 108
Modal dialog events 108
Field events 109
Scrolling window events 110
Report events 112
Band events 112

Continuum 113
eXtender Enterprise 114

Adding information not previously collected 114
DUOS 114

Summary 116
Chapter 3: Getting Started with Dexterity 117

Overview of the development process 117
Installing the software 118
Preparing your development environment 118

Table of Contents

[v]

Developing the application 118
Creating the chunk file 119
Delivering the final product 120

Preparing the development environment 121
Installing Dexterity and the SDK 121
Modifying the Dex.ini file 122
Creating the development dictionary 123
Moving to test mode 124

Dynamics GP desktop 126
Modifying user security 126
Installing DexSense 129
Installing the Support Debugging Tool (SDT) 130
Blast off! 130

Overview of Dexterity 130
Components of Dexterity 131
Resources and their relationships 132

DataType 133
Format 133
Field 134
Composite 138
Table 139
Form and window 140
Scrolling window 142

Navigating the Resource Explorer 148
Worksets 149

Summary 150
Chapter 4: Building the User Interface 151

Overview 152
Workset 153

Base resources 155
Data types 155
Format 157
Fields 158

Creating tables and keys 159
Tables 160

Customer Contact Master 160
Contact Phone Master 163
Table naming conventions 164
Table options 165
Types of tables 166

Table of Contents

[vi]

Creating forms and windows 167
Maintenance form and window creation 167

Attaching tables 169
Setting window properties 170
Removing window fields 171

Adding fields to the window 173
New scrolling window 180

Lookup form and window creation 181
Window fields 182

Scrolling windows 185
Working with window fields 188

Adding static text 188
Column headings 189

Summary 190
Chapter 5: sanScript – Making It Work 191

Introduction to sanScript 192
Scripts 192

Syntax rules 194
Script flow 194
Script naming conventions 195

Table operations 196
get 198
change 198
remove 199
save table 199
release table 199
copy to table 199
copy from table 200

Creating a record 200
Retrieving a record 202

Customer 202
Customer zoom 203
Browse buttons 206

Updating a record 209
Deleting a record 209
Ranges 210

Setting a range 210
Creating a virtual key 214
range where 218

Scrolling windows 220
Big and Small Line item 222
BrowseOnly windows 224

Lookup windows 225

Table of Contents

[vii]

Editable windows 228
Line events 229

AddsAllowed windows 230
Triggers 230

Form trigger 232
Form trigger registration 232
Form trigger considerations 233
Cross-dictionary considerations 233

Focus trigger 233
Focus trigger registration 234
Focus trigger considerations 235
Cross-dictionary considerations 235

Database trigger 235
Database trigger registration 235
Database trigger considerations 237
Cross-dictionary considerations 237

Procedure trigger 237
Procedure trigger registration 237
Procedure trigger considerations 238
Cross-dictionary considerations 239

Function trigger 239
Function trigger registration 239
Function trigger considerations 240
Cross-dictionary considerations 240

Create your form trigger! 240
Processing procedure 240

Summary 243
Chapter 6: Deploying a Dexterity Solution 245

System requirements 246
General requirements 246
Feature-specific requirements 247

Minding versions and builds 251
Table creation routines 253

Using the SQL Maintenance window 255
Building a utilities window 257
Automatically creating the tables upon launch 263

Completing the application 263
Forms and windows 263

Linking your prompts 264
Linking your lookups 264
Adding tool tips 264
Hyperspacing your lookup buttons 265
Linking your formats 265
Setting your tab order 266
Complying with user interface standards 267

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[viii]

Tables 267
Reports 267

Referential diagnostics 268
Linked prompts 269
Table relationships validation 271

Creating the chunk file 272
Extracting resources 273
Transfer dictionary module 275

Testing in a multi-dictionary environment 281
Chunk doesn't unchunk 281
Testing tools and techniques 282
Additional resources available 283

Distributing the completed application 284
Sending the chunk 284
Windows Installer services 285

Summary 285
Chapter 7: Creating Customizations with Modifier 287

Overview of Modifier 287
Two tools in one! 288

Modifying windows and window fields 288
Launching Modifier 289
The window properties 291

Size 292
Opening position 292
The tab sequence 295

The window layout 298
Modifying the General Entry window 304

Adding and modifying window fields 307
Adding fields to the scrolling window 309
Modifying static text 313
Adding or changing graphic elements 319

Changing global resources 325
Pictures and native pictures 325
Strings 328
Formats 328
Data types 332
Messages 333

Summary 334
Chapter 8: Creating Customizations with VBA 335

VBA overview 336
Components 336

Table of Contents

[ix]

Objects 338
Properties 339
Methods 342
Events 343

UserForms 345
Modules 346
Debugging 346
Setting options 348

Windows and window fields 348
Creating the Summary button 349
Creating the Go To button 350
Adding objects to the project 352

Adding the Vendor Maintenance window 353
Adding additional windows and window fields 354

Using methods and properties 354
Setting field values 356
Cross-dictionary access 358

Referencing the Collections module 358
Scrolling windows 361

Adding a scrolling window to the project 362
Grid events 362

Line got focus 362
Line lost focus 363
Line change 363

Filtering records 363
BeforeLinePopulate 364

Fun with dialogs 367
BeforeModalDialog 368
AfterModalDialog 370

The Dynamic User Object Store 370
Architecture 371
Declaring the objects 372
Retrieving data 372
Saving data 373
Deleting data 374

Deploying a Modifier/VBA customization 378
Creating package files 378
Limitations of packages 380
Editing packages 380
Known issues with Windows 7 381

Summary 383

Table of Contents

[x]

Chapter 9: Code-free Customization 385
Overview of tools 385

SmartList Builder 386
Excel Report Builder 386
Drill-Down Builder 387
Extender 387

SmartList Builder 387
Getting Started with SmartList Builder 388

Importing the templates 390
Creating a SmartList object 392
Adding tables 394
Fields 397
Field options 400

Currency fields 402
Date fields 402
Integer and long integer fields 402
String fields 402

Calculated fields 403
Calculated field 1: QTY Available for Sale 405
Calculated field 2: List of On Hand QTY 406
Calculated field 3: CONSTANT 2 407
Calculated field 4: CONSTANT 4 408

Restrictions 408
Go Tos 410

Go To: Item maintenance 412
Go To: Item transaction inquiry 413

Granting security to a SmartList Builder object 417
Excel Report Builder 419
Drill Down Builder 422
Extender 429

Overview 429
Extender editions 429

Extender Standard 429
eXtender Enterprise 430
Working with Extender 430

Summary 444
Chapter 10: Creating Customizations with VS Tools 445

Architecture 446
Dexterity Shell 446
Dexterity Bridge 447
Application assemblies 447
Add-ins folder 447

Table of Contents

[xi]

Installing VS Tools 448
Download it 448
Run the installation 450

Vendor Quick Entry project 451
Creating the new project 451
Adding the new window 453
Window controls 454

Button 455
TextBox 457
Label 459
RadioButton and GroupBox 460
ComboBox 460

Adding window controls 460
TextBox controls and properties 460
Label controls and properties 461
Button controls and properties 462
RadioButton and GroupBox 464
ComboBox 465

Accessing dictionary resources 465
Referencing the application assembly 466
Referencing the namespace 467

Building dictionary assemblies 468
Dictionary Assembly Generator (DAG) 468
Using the DAG 468
Creating the AddIn assembly 470

Opening your window 471
Code the action 472
Building and testing your assembly 474

Table operations 474
Creating a record 475
Retrieving a record 477
Updating a record 478
Deleting a record 478

Clearing the window 480
Working with ranges 480
Building and deploying the application 483
Dynamics GP 2013 consideration 484
Summary 485

Chapter 11: Upgrading Customizations 487
Using the SDK 487

Script changes 489

Table of Contents

[xii]

Data model changes 491
New tables 492
Deleted tables 492
New columns 492
Deleted columns 493
New indexes 493
Deleted indexes 493
Different data types 494
Different segments 494
Different index columns 494
New RW relations 495
Deleted RW relations 495

Table changes 495
Table changes – summary 496
Table changes – detail 497

Form changes 498
Dexterity 500

Setting up generic source code control 500
Installing Dexterity Source Code Control Server (DSCCS) 501
Configuring the DSCCS 504
Resolving validation errors 506

Checking in the old dictionary 507
Checking in the old dictionary to start the
new project 510
Creating the new development dictionary 511
Making changes to your code 514

Data type changes 514
Field changes 516
Procedure or function changes 516
Table changes 516
Functionality changes 517

Completing the update 517
Converting the data 517
Recreating alternate forms and reports 518
Updating forms and report dictionaries 518
GP 2013 considerations 518
Testing your application and building the
update chunk 519

Modifier with VBA 519
Modifier 520
VBA 520

Environment changes 521
Window changes 522
Report changes 524
GP 2013 considerations 524

Table of Contents

[xiii]

Extender and Builder(s) 525
Extender 525
SmartList Builder and Excel Report Builder 526

Visual Studio Tools (VS Tools) 526
Downloading the application 526
Opening the solution 527
Rebuilding application assemblies 529
Updating references to the assemblies 531
Fixing the code 532
Building the new solution 532

GP 2013 considerations 533
Summary 534

Index 563

Preface
Microsoft Dynamics GP (Dynamics GP) is an exceptional Enterprise Resource
Planning system used throughout the world. Released in 1993, it was the first in
its class to deliver a solution that was completely re-written to capitalize on the
Windows operating system. Dynamics GP was designed and built so that outside
developers could easily enhance its functionality by writing add-ons, or so called
third-party applications.

In the beginning, you had only one development tool, Dexterity. Today there are
so many tools available making it difficult to choose which one is right for you and
your project. This book can help you decide by giving you the chance to work with
seven of the most popular tools available today.

What this book covers
Chapter 1, Microsoft Dynamics GP Architecture, includes a description of the
components making up Dynamics GP and how they interact. This chapter
also provides a description of the Dynamics GP table naming conventions,
data flow, and elements of the user interface.

Chapter 2, Integrating Application Fundamentals, includes a short description of
how an integrating application works and a brief overview of various tools
you can use to build an integration. You will learn which tools can modify
the user interface or change the functionality of Dynamics GP.

Preface

[2]

The tools discussed include:

• Dexterity
• Visual Studio Tools for Dynamics GP (VS Tools)
• Modifier with Visual Basic for Applications (VBA)
• Continuum
• Extender and eXtender Enterprise
• Dynamic Data Exchange (DDE)
• Open Database Connectivity (ODBC)
• ActiveX Data Objects (ADO)
• Object Linking and Embedding (OLE) Automation
• Integration Manager
• Table Import
• Web Services

Chapter 3, Getting Started with Dexterity, will teach you how to prepare your
development environment for creating an integrating application with Dexterity.
You will learn about the various components making up Dexterity and how they
work together.

Chapter 4, Building the User Interface, introduces you to your first hands-on exercise in
which you will build the user interface for your project. Additionally you will create
the tables, forms, windows, and base resources you need for your sample integration.

Chapter 5, sanScript – Making It Work, will teach you the basics of the sanScript
language and will continue your integration project. You will bring life to the
window you created in Chapter 4 by adding code to object events.

Chapter 6, Deploying a Dexterity Solution, will help you finalize your Dexterity
integration project by creating deployment scripts and building your chunk
file. You will then install this chunk file and see your program run in the
multi-dictionary environment of Dynamics GP.

Chapter 7, Creating Customizations with Modifier, will help you start a new project
using the Modifier. In this project you will modify the user interface you created
in Chapter 4, as well as numerous alterations to native Dynamics GP windows.

Chapter 8, Creating Customizations with VBA, covers how VBA is used in Dynamics
GP. The Dynamics GP object model, VBA object properties, and object events are
covered in this chapter. Several projects are included in this chapter that will put
code behind the modifications that you created in Chapter 7 using the Modifier tool.

Preface

[3]

Chapter 9, Code-free Customizations, shows you how you can create some very
functional customizations using no code at all! You will create a customization
using each of the tools listed as follows:

• SmartList Builder
• Excel Report Builder
• Drill Down Builder
• Extender

Chapter 10, Creating Customizations with VS Tools, will help you use Visual Studio
along with the Software Development Kit for Visual Studio Tools for Dynamics GP
(VS Tools). This chapter starts with how to install VS Tools, and ends with your
having created a VS Tools add-in for Dynamics GP. The various VS Tools
components are described as you work through your project.

Chapter 11, Upgrading Customizations, shows that once you complete your
customization you need to know how to keep it up-to-date so that it will work
with future releases of Dynamics GP. This chapter guides you through what to
do, and how to do it. Included in this chapter are projects in which you will take a
Dexterity project and a VS Tools project through an actual upgrade. The following
customization types are covered:

• Dexterity
• Modifier with VBA
• Extender
• SmartList Builder
• Report Builder
• VS Tools

Chapter 12, The Wrap Up, asks you the question – so where do you go from here?
In addition, it provides a run down on what we covered as well as information
on books, blogs, websites, and training that can help you further your skills as
a Dynamics GP developer.

Chapter 12, The Wrap Up, is not present in the book but is available as a free download
from the following link: http://www.packtpub.com/sites/default/files/
downloads/0264EN_12_The_Wrap_Up.pdf.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Appendix A, Dexterity Control Types, provides more complete information about the
control types supported by Dexterity. Here you'll find images of the control types
as well as a brief description of their characteristics and usage. Appendix A is not
present in the book but is available as a free download from the following link:
http://www.packtpub.com/sites/default/files/downloads/0264EN_AppA_
Dexterity_Control_Types.pdf.

Appendix B, Event Matrix, provides a matrix of the window events across Dexterity,
VS Tools, and VBA. Use this matrix to compare how the events of each tool aligns
with the others. Appendix B, is not present in the book but is available as a free
download from the following link: http://www.packtpub.com/sites/default/
files/downloads/0264EN_AppB_Event_Matrix.pdf

What you need for this book
To complete all of the projects in this book you need to have a basic understanding
of the functionality of Dynamics GP. You also need to have had a little experience
with some (any) computer programming language to help you understand the
concepts of scripting.

In addition, you need the following software:

• Dynamics GP 2010 with the following modules installed, registered, and
working:

 ° Modifier (installs automatically with Dynamics GP system files)
 ° SmartList Builder
 ° Extender
 ° Fixed Assets

• The current build of the Support Debugging Tool for Dynamics GP 2010.
• Dynamics GP 2010 installation media. You will need this to install Dexterity

2010 and the Dynamics GP Software Development Kit.
• The current build of DexSense for Dexterity 2010.
• Microsoft Visual Studio version 2005 or later installed and working.
• Software Development Kit for Visual Studio Tools for Dynamics GP 2010.

Information on how to obtain the Support Debugging Tool, DexSense, and the
Software Development Kit for Visual Studio Tools is provided within the chapter
that the tool is discussed.

Preface

[5]

Who this book is for
This book is for a developer who is just starting to work with Dynamics GP and is
looking for a good introduction to what's going on under the covers of the application
as well as the customization tools available to enhance it.

This book will introduce you to several of the tools available and give you a chance
to work with each one of them. You will get a feel for what it's like to use the tool,
and perhaps learn which of the tools you may like to explore further.

This book includes step-by-step instructions for completing small integration projects
using each of the tools listed as follows:

• Dexterity
• Modifier with VBA
• Extender
• SmartList Builder
• Excel Report Builder
• Drill Down Builder
• Visual Studio Tools for Dynamics GP

The intent of these projects is not to create complete working applications, nor to make
you an expert on any of these applications, but rather to provide insight into how the
tool works. Think of it as a plate of appetizers for tasting each of the tools included.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You can register a function trigger
against any dictionary in the application using the function Trigger_
RegisterFunctionByName()".

A block of code is set as follows:

range clear table RM_Customer_MSTR;

range table RM_Customer_MSTR where
physicalname('State' of table RM_Customer_MSTR) + "'= IL'";
fill window Customer_Lookup_Scroll;

range clear table RM_Customer_MSTR;

Preface

[6]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Your
new Additional menu will be on the Customer Maintenance window".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[7]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output.You can download this file from http://www.packtpub.com/sites/
default/files/downloads/0264EN_graphics.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Microsoft Dynamics GP
Architecture

You can develop applications that seamlessly integrate with Microsoft Dynamics
GP, so that the user will not be able to tell when your code is running versus the
original Dynamics GP code. Creating such integrating applications first requires that
you have an intimate knowledge of Dynamics GP's architecture. By architecture, we
mean the design that allows the product to evolve with technological advancements
and embrace the increasing demands for performance and capacity. This lasting
design is a framework of interdependent components that weave together to create
the application we know today. Understanding the components of Dynamics GP
and how they work together will prepare you to design a solution that will evolve
alongside Dynamics GP as it meets the demands of this ever-changing market.

This chapter is a 10,000 foot view of Dynamics GP, how it was built, why it was built
that way, and how this affects your application. Upon completion of this chapter,
you will understand the components that make up Dynamics GP and how your
application fits into that architecture. This chapter will provide an overview of the
following topics:

• The native user interface
• Dexterity overview
• Components of the Dynamics GP application
• SQL table and procedure names
• What you see – the user interface (UI)

Microsoft Dynamics GP Architecture

[10]

The native user interface
In developing an application exposed to the user, you must give careful
consideration to the user's experience. By using objects that mimic the native user
interface, the user will see your windows as if they were the native windows of
the core application, and in many ways they will be. When Dynamics GP was
released back in 1993, it was platform and database independent. It would run on
both Macintosh and Windows clients. It would run on a Faircom Server as handily
as it would run on an NT Server. In the beginning, Dynamics GP supported three
database management systems: Btrieve (later named PSQL 2000), FairCom's c-tree
Plus, and Microsoft SQL Server (starting with Dynamics GP release 3.15).

While today Dynamics GP only supports Microsoft SQL Server (SQL), be mindful
that Dexterity continues to support the legacy databases. In building your own
solution, these other databases are available for you to exploit. For instance, many
developers use the c-tree database to create local temp tables. They are faster to
access than SQL tables and easier to create. As an example, the On-Line Field
Descriptions are held in c-tree tables on the workstation (OLFD001.dat and OLFD001.
idx), as well as the AutoComplete data (AutoCmpl.dat and AutoCmpl.idx).
Dynamics GP has a unique architecture that lends itself to functional enhancements
created by third-party developers. In fact, third-party add-ons were encouraged from
day one in order to increase the software's appeal in different industries. From the
beginning, the plan was for Dynamics GP to provide the base, the foundation, and
for developers to build on that base to create cohesive integrating applications. New
products are released daily that expand and complement the core functionality of
Dynamics GP. Today there are upwards of 5,000 third-party products that have been
registered as Dynamics GP add-ons.

Customizations are typically called add-on or third-party products because they
supplement Dynamics GP functionality. These add-on or third-party solutions
are developed and distributed by Microsoft Partners worldwide.

While customization opportunities abound, the source code, screen designs,
and report constructions are protected from permanent changes. Because of the
distinctive architecture of Dynamics GP, a developer can neither see nor modify the
original code, so the business logic is not directly altered. You can build a completely
integrated application with no access to the source code. In other words, you as
the developer cannot hurt the original code by creating add-on modules or a new
version of a window or report.

Add-on solutions are broadly grouped into two categories:

• Horizontal
• Vertical

Chapter 1

[11]

Horizontal
A horizontal add-on solution supplements one of the existing functions of Dynamics
GP or adds a new function that is not targeted at a specific industry. Horizontal
solutions can be used in nearly any industry and have a broad appeal. For example,
an application that monitors user activity to log the user out after a certain period of
inactivity, or an application that allows you to find a specific record using multiple
search criteria, would be examples of horizontal solutions. Horizontal solutions work
together to make Dynamics GP a feature-rich product with near-unlimited options.

A sampling of available horizontal solutions would include the following:

• Collections management
• Sorted lookups
• Commissions management
• Login management
• Advanced password controls
• Cross-company period close controls
• Tools for finding field and table information
• Navigation tools for finding windows
• Search tools for locating reports
• Helpers for designing user security
• Task schedulers
• Pop-up notes

Vertical
A vertical add-on expands Dynamics GP's functionality to focus on a specific
industry. Specialized applications for healthcare, manufacturing, publishing, life
sciences, banking, and so on are examples of vertical add-ons. These are also known
as industry-specific oriented solutions. Some vertical solutions morph Dynamics
GP into looking like a program that was designed from the beginning to satisfy the
razor-sharp needs of a specific trade. This ability is part of what makes Dynamics
GP so fascinating to work with. You can take a generalized Enterprise Resource
Planning (ERP) system and turn it into what looks and feels like it was a customized
solution from the ground up.

Microsoft Dynamics GP Architecture

[12]

A sampling of available vertical solutions would include the following:

• Field service
• Project management
• Construction
• Education
• Government
• Healthcare
• Retail
• Professional services
• Not for profit

To find out more information about existing solutions, try Microsoft's Solution
Finder at http://pinpoint.microsoft.com/. Solution Finder is an online tool
you can use to search for an existing third-party application to fit your business
need. Another excellent source of information is ISV-Central at http://www.isv-
central.com/search/products.aspx.

ISV Central is a community resource designed to share product information
between partners and customers.

Both sites will provide you with product overviews as supplied by the software
publisher (no independent analysis here), links to the website of the developer,
and information as to whether the software is certified for Microsoft Dynamics
(CfMD). CfMD products have met Microsoft's highest standard for partner-developed
products. Having the CfMD logo beside your solution is a very high
achievement indeed.

Looking for an existing product is one of the steps often overlooked by even the
best programmers. It's always a good idea to make sure someone else hasn't already
written the application before you get too involved in coding it!

Dexterity overview
Dexterity is more than a programming language; it is a comprehensive Integrated
Development Environment (IDE). Dexterity is the tool that was used to create
Dynamics GP in the first place. This proprietary tool was created by Great Plains
Software, Inc. in the late 1980s. While most other financial application vendors were
using toolsets developed in Visual Basic, Dexterity was written in C++ with the .NET

http://pinpoint.microsoft.com/
http://pinpoint.microsoft.com/
http://www.isv-central.com/search/products.aspx
http://www.isv-central.com/search/products.aspx

Chapter 1

[13]

elements written in C#. This is significant because Visual Basic is only available from
one vendor, Microsoft. On the other hand, C++ is a standards-based programming
language. As a standards-based language, you can purchase it from any number
of vendors.

C++ is compatible with C and other languages, thereby offering portability and
modularity. Being a standards-based language means there is an actual ISO standard
defining the C++ architecture. You can purchase a copy of the latest currently
published C++ standard at http://goo.gl/DP72P.

This section describes Dexterity in general and the features comprising it.

Resource Explorer
The Resource Explorer is the home page of the development environment. You design
the user interface, build the code that defines the business logic, and create reports,
all from this single interface. In short, it is from within the Resource Explorer that
you create every aspect of your Dexterity application. The Resource Explorer is
illustrated in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics GP Architecture

[14]

Resources are stored in a file with a .dic extension called a dictionary. Each
dictionary file includes all of the resources necessary to deliver a complete
application. We'll talk about Dexterity resources in more detail in Chapter 3,
Getting started with Dexterity, but in general, resources include:

• Application Information – the product's name and build number
• Base components:

 ° Composites – a group of fields that form a single data type
 ° Constants – an alias for another value used in scripts for readability
 ° Data types – the type of information displayed or stored in a field
 ° Fields – a single element of data
 ° Formats – defines how a data type is displayed
 ° Globals – fields that are available to any script at any time
 ° Icons – a picture resource
 ° Libraries – resource libraries and COM type libraries
 ° Messages – predefined string values with an associated numeric

reference used in scripts allowing for translation and substitution
 ° Native Pictures – images that can be displayed on only one platform
 ° Pictures – images that can be displayed across platforms
 ° Strings – every occurrence of a string used in a dictionary
 ° Table Groups – logical collections of related tables

• Tables – a defined group of global fields
• Forms – a collection of windows, scripts, menus, commands,

and related tables
• Reports – displaying or printing of a result set from a database query
• Function scripts – global routines using parameters to pass data that always

return a value
• Procedure scripts – global routines using parameters to pass data

sanScript scripting language
sanScript is the internal programming language you will use to write the code that
provides business logic to the application. Scripts are attached to object events such
as opening or closing a window, changing the value of a field, selecting a push button,
picking a menu item, and so on. Your scripts run when the user causes the object event
to occur. This behavior is what makes Dexterity an event-driven language.

Chapter 1

[15]

Extensive function library
The function library contains hundreds of specialized functions encompassing 45
different areas that allow you to implement key functionality in the application.
Actions such as adding an auto-complete value to a specified field or adding an
item to a list view field are examples of functions included in the function library.

Structured exception handling
Dexterity includes a built-in process you can use to recover from and document
errors that occur while your application is running. Exception handling allows
you to save the current state of execution at a specified point and then switch the
execution to a subroutine known as an exception handler. The exception handler
attempts to resolve the exception and then returns execution to the previously
saved position.

Dexterity uses the throw and catch method to handle exceptions. The exception
is raised, or thrown, to the exception handler. The catch method is the exception
handler taking over code execution.

Integrated source code control
Dexterity supports integration with Microsoft Visual SourceSafe and Team
Foundation Server. A generic provider is also included if you want to use another
source code control program. The Generic provider uses a collection of text files to
implement source control. You will be setting up and using the Generic provider
in Chapter 11, Upgrading Customizations.

Built-in Report Writer
A single-pass, banded report writer is integrated into Dexterity. You can create
simple text reports and lists or you can create presentation-quality documents
with graphics and colors. However, since it only passes through the data once, a
single-pass report writer has some pretty big limitations. For example, if you need
to calculate a sum from which you can derive a percentage that you can show in the
detail band of the report, you will need to write your own function to create the sum.
Also, you cannot create the simple page X of Y notation.

To help with some of the limitations of a single-pass report writer, hundreds of
user-defined functions are available to you for retrieving or manipulating data in
a manner that you otherwise could not. For example, the RW_AccountNumber
and RW_AccountDescription functions return the account number and account
description of an account according to the account index you pass to the function.

Microsoft Dynamics GP Architecture

[16]

The downside is that you won't find these user-defined functions documented in the
software manuals. You will need to search the Knowledge Base in CustomerSource
or PartnerSource to find instructions on how to use several of the functions. Using
simply RW in your search criteria will retrieve many articles with instructions for
several user-defined functions.

Report Writer also includes 21 built-in (well-documented) system functions that you
can use to create calculated fields. Functions such as MONTH_NAME, used for pulling
the name of the month out of a date value, and STRIP, for removing trailing spaces
from a string field, are both examples of system functions.

As a developer, you can write your own user-defined functions to use with the
Report Writer in order to solve problems similar to the derived percentage issue
discussed earlier.

COM support
Component Object Model (COM) automation is a method you can use to access
features and objects across different applications and languages. An object is
something that can be acted upon, such as a button or a window. When using COM,
one application can cause the other application to do something by following the
rules described in an Application Programming Interface (API). Dynamics GP can
provide access to its objects, which can be used by other programs. When it provides
access to its objects, it is acting as an automation server. Dynamics GP can also
access objects exposed by other applications. When Dynamics GP accesses objects on
another automation server, it is acting as an automation client. The thing that allows
access to objects is a server, and the one that is accessing the objects is a client. With
Dexterity's COM support, Dynamics GP can act as both.

Graphical forms designer
The Graphical forms designer is a WYSIWYG (What You See Is What You Get) tool
used to layout and design the visual components of the application. You will create
all of the components of the user interface using the Graphical forms designer.

Debugging tools
Dexterity includes a source-level script debugger that you can use for interactive
debugging of your application. These built-in tools provide the ability for you to set
breakpoints in any script, apply conditions to break points, access scripts that are
currently in the call stack, step through scripts one line at a time, display and set the
values of fields and variables, and otherwise examine the state of your application
at breakpoint.

Chapter 1

[17]

In addition to the internal debugging tools, a Dexterity-based suite of tools called the
Support Debugging Tool is available from Microsoft that allows you to examine,
with precision, the specific series of events that led up to an error in your application.
With the Support Debugging Tool, you can control and monitor all aspects of script
execution. And best of all, it's free! Support for this tool is located at the Support
Debugging Tool Portal at http://aka.ms/SDT.

Dexterity design
Dexterity was ahead of its time, and is still unequaled in the development world. As
we said earlier, Dexterity is both platform independent and database independent.
Only the runtime engine is dependent on the platform. Standalone applications you
develop using Dexterity can run on the Macintosh as well as the PC. Dynamics GP
itself, however, no longer supports the Macintosh.

Dexterity currently supports three different databases Pervasive Software's P.SQL
2000 (formerly known as Btrieve), FairCom Corporation's c-tree Plus, and Microsoft's
SQL Server. Switching between platforms or databases does not require any changes
in the business logic code. If you're using the Microsoft SQL database, you can even
use Dexterity to create and call SQL Stored Procedures.

The unique design of Dexterity keeps the technology piece of the application
separate from the business logic. This strategy provides a means for Dynamics GP to
update its technology without changing its code. For instance, Dynamics GP updated
from a 16-bit application to a 32-bit application without re-writing the business
logic. Beginning with version 7.0, Dexterity added COM (Component Object Model)
support. Again, no code changes were required.

Components of the Dynamics GP
application
As discussed earlier, if you are going to build solutions that integrate with Dynamics
GP, it is critical that you know how it works. By "know how it works" we don't
mean you should learn the intricacies of how to run the general ledger, but rather
understand what makes this program tick. Learn how data is exchanged and how
you can interact with that exchange. You need to understand the table structure and
how to discover the location of the data you seek.

http://aka.ms/SDT

Microsoft Dynamics GP Architecture

[18]

Remember, Dynamics GP is essentially just another database program. When
working with any database application, you need to know your CRUD!

• C = Create a Record
• R = Read a Record
• U = Update a Record
• D = Delete a Record

Start your engines!
Let's find out what it takes to launch the application – what happens when a user
double-clicks on the Dynamics GP program icon?

If you look at the properties of the Dynamics GP shortcut, you'll see the expected
executable file (Dynamics.exe) and something extra. The extra is a reference to the
Dynamics.set file. The full shortcut on my machine looks like this:

"C:\Program Files (x86)\Microsoft Dynamics\GP2010\Dynamics.exe"
Dynamics.set

There is no path designation for the Dynamics.set file because that file is in the
same location as the runtime engine. If you place the Dynamics.set file in a different
location, you would also need to provide the full path to its location.

For example, if you placed the Dynamics.set file in the folder C:\LaunchFile, the
properties of your shortcut would look like this:

"C:\Program Files (x86)\Microsoft Dynamics\GP2010\Dynamics.exe" "C:\
LaunchFile\Dynamics.set"

Without the Dynamics.set parameter, the Dynamics runtime engine will launch
and you will get the following window:

Chapter 1

[19]

Selecting the File menu will provide you with the opportunity to either Open
Launch File… or Create Launch File…. Do not select Create Launch File… as
the file that is created is not usable. Instead, open the Dynamics.set file, which
is Dynamics GP's proper launch file.

We have just identified two of the files involved in getting Dynamics GP to run.
These two files are components of Dexterity. The runtime environment consists
of seven main components:

• The launch file (Dynamics.set) defines each of the components included
when Dynamics GP loads

• The Preferences file (Dex.ini) stores settings such as OLE pathname and
the location of the help files

• The Dexterity Runtime engine (Dynamics.exe) interprets the resources
in the dictionary to present a functioning application

• The Application dictionary (Dynamics.dic) holds all resources in
an application

• The Forms dictionary (Forms.dic) stores forms modified by the user
• The Reports dictionary (Reports.dic) stores reports modified by the user
• The Microsoft SQL Server databases hold all of the data elements of the

system and the companies

The launch file (Dynamics.set)
As stated earlier, the Dynamics.set file is also known as the launch file. It defines
each of the components included when Dynamics GP loads. Several pieces of
information are necessary for a successful launch. The combination of information in
the Dynamics.set file and the Dex.ini file identify each of these components. From
the Dynamics.set file we get the following information:

• The total number of dictionaries used by the Dynamics GP application when
launched from this workstation

• The product ID assigned to each dictionary
• Each product's name
• The name of each set of dictionary locations in this Dynamics.set file
• The path to and the name of the product's core Application dictionary
• The path to and the name of the product's modified Forms dictionary
• The path to and the name of the product's modified Reports dictionary

Microsoft Dynamics GP Architecture

[20]

The following screenshot shows the various elements of a Dynamics.set file:

The path locations must be listed in the same order that they appear in the top
section of the file. The elements should be in the following order:

• Application dictionary
• Modified Forms dictionary
• Modified Reports dictionary

The Dynamics.set file illustrated earlier contains two dictionary location IDs,
Windows and Sam. The Workstation2= switch in the Dex.ini file indicates which
set of paths should be used by the workstation. We'll talk about the Dex.ini file
in the next section.

The product ID is assigned to the developer by Microsoft; no two products can
have the same ID. The dictionary names are determined by you, the developer, but
can be changed by the user without ill effect. Any time you refer to an application
dictionary in your code, you identify it by the product ID, not the name. The
Dynamics.set file is a simple text file and can be read and edited using Notepad.

Chapter 1

[21]

The dictionaries are accessed by Dynamics GP in the order that they are listed in the
Dynamics.set file. The products may be listed in any order with the exception that
the Dynamics.dic file must always be listed first, and always has the product ID
of zero.

Dynamics GP may respond differently if the order of the products is changed. Be
aware of this possibility as you test your add-on application.

If there is a deviation in the order across different products' dictionaries, Dynamics
GP will not launch. If there is a deviation in the order of the dictionaries for the same
product (Application dictionary, Forms dictionary, Reports dictionary), Dynamics
GP will launch, but upon accessing the resources, an error message will display.
Study the position of products and dictionaries in the Dynamics.set file carefully
if unusual errors are presented at launch.

The preferences file (Dex.ini)
The Dex.ini file lives in the Data folder inside of the GP2010 folder. In releases 9
and before, the Dex.ini file was located in the same folder as the Dynamics.exe file.

The location of the Dex.ini file in a default 32-bit installation is as follows: C:\
Program Files\Microsoft Dynamics\GP2010\Data\Dex.ini.

The location of the Dex.ini file in a default 64-bit installation is as follows: C:\
Program Files (x86)\Microsoft Dynamics\GP2010\Data\Dex.ini.

The Dex.ini file is also known as the Preferences file. It works the same as all other
.ini files in that it stores settings that are later read by the application in performing
some task. Like the Dynamics.set file, you can read and edit the Dex.ini file using
Notepad, as it is also a simple text file.

The Dex.ini file is divided into sections by a bracketed word and each section
contains zero or more lines of switches that control Dynamics's behavior. Some
switches are mandatory and are typically added by the application itself; other
switches are optional according to user preferences; still other switches are included
by the application that do nothing at all. The bracketed section names should never
be changed, but you have a wide variety of switches to choose from.

Microsoft Dynamics GP Architecture

[22]

An excerpt of a typical Dex.ini file is shown in the following screenshot.
Explanations will be included for each of the Dex.ini switches enclosed in a box.
An extensive list of Dex.ini switches is available at http://dynamicsconfessions.
blogspot.com/2010/07/dexini-switches-now-available-to.html.

SQLLogSQLStmt
When set to TRUE, the SQLLogSQLStmt switch causes the system to create
(or append to) a text file named DEXSQL.LOG and logs all SQL statements being
sent to the SQL Server. This file is created in the same folder that holds the Dex.ini
file; the DEXSQL.LOG file is used to troubleshoot errors in the application.

http://dynamicsconfessions.blogspot.com/2010/07/dexini-switches-now-available-to.html

Chapter 1

[23]

SQLLogODBCMessages
When set to TRUE, the SQLLogODBCMessages switch causes the system to create
(or append to) a text file named DEXSQL.LOG and logs all ODBC messages returned
from the SQL Server. This file is created in the same folder that holds the Dex.ini
file. The DEXSQL.LOG is used to troubleshoot errors in the application.

SQLLogAllODBCMessages
The SQLLogAllODBCMessages switch is one of those settings that appears in the
Dex.ini file that does nothing at all. The only setting you need for ODBC logging is
SQLLogODBCMessages=TRUE. Nearly every technology support person will tell you
that this has to be set to TRUE if you want to include ODBC messages in the Dexsql.
log and that is just wrong. You can delete this setting from the Dex.ini file if
you want.

Synchronize
The Synchronize switch indicates whether Dynamics Utilities has aligned the
Dynamics.dic to the account framework. The account framework was defined when
Dynamics GP was initially installed. FALSE signifies that the Dynamics.dic has been
synchronized. TRUE indicates that synchronization is needed. You use the Dynamics
Utilities application to accomplish synchronization. The account framework is stored
in the DYNAMICS database and is not consistent across installations.

Workstation=WINDOWS
The Workstation switch was used to read the Location Translation table (DYNAMICS.
dbo.SY03600) to determine if any string substitutions needed to be made to the
pathnames listed inside the Dynamics.set file. You will find this entry in every Dex.
ini file, but Dynamics GP will launch just fine without it. Although WINDOWS
is populated as the default setting on windows workstations, the entry was not
dependent on the operating system. You could have changed it to CLARK and as
long as you had CLARK defined in the Location Translation table, the program
would have been just fine. The Location Translation table exists in the DYNAMICS
database as table SY03600.

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics GP Architecture

[24]

Workstation2
The Workstation2 switch identifies which set of dictionary locations listed in
the Dynamics.set file should be used by the runtime engine. Though rarely
implemented, the Dynamics.set file could contain several sets of file locations.
Revisiting our earlier Dynamics.set file (refer to the following screenshot), we
see that there are two sets of dictionary locations defined: Windows and Sam. If
Workstation2=Sam were used in the Dex.ini file, any modified reports would come
from the Reports.dic file at //ServerName/ShareName/GP2010/SAM/Reports.
dic. Conversely, if the Dex.ini file setting was Workstation2=Windows, modified
reports would come from the Reports.dic file at //ServerName/ShareName/
GP2010/Data/Reports.dic.

The Workstation2 switch is required in order to launch Dynamics GP. If it is missing,
you will be presented with the following dialog box asking you to select a dictionary
location ID. Notice that the system reads the Dynamics.set file in order to determine
the available choices.

Chapter 1

[25]

Upon selecting a Dictionary Location ID, Dynamics GP will launch normally.
The default setting for the Workstation2 switch is Windows.

OLEPath
The OLEPath switch is used to indicate where the OLE object container is
located. A user can attach and/or link documents to certain record types in
Dynamics GP. The ability to take advantage of this functionality is dependent on
the OLEPath switch properly pointing to the location of the OLE container. This is
an often-overlooked switch. It is either absent, and therefore no OLE support exists,
or it is improperly set. You should include some logic in your application to check
for this switch if you need to interact with OLE objects.

If the switch is missing, the user is not even aware that OLE attachments are a
possibility because the visual queue is missing from the window, as shown in the
following screenshot:

If the switch is set to a local path (that is the default), then only one workstation can
access the objects. If each user on the system should have the ability to read the OLE
objects, then OLEPath should point to a shared location.

Microsoft Dynamics GP Architecture

[26]

If the shared location is a mapped network drive, then each user's profile on each
machine they use to access Dynamics GP must include the same drive mapping.
While drive mapping may involve a little more diligence in creating the appropriate
network login scripts, its advantage is that the directory structure necessary to store
OLE notes will be created automatically by the application the first time the OLE
container is accessed.

If the shared location is indicated by a Uniform Naming Convention (UNC) path
then the full directory structure supporting OLE notes for each company must exist
before the workstation attempts to attach or access OLE objects.

That's a lot of rules for a simple switch, but this switch opens up a very powerful
feature in Dynamics GP that should be exploited.

To illustrate what the full directory structure looks like, let's assume your installation
has two company databases, DB1 and DB2. Let's further assume that you want to
store the OLE Notes in \\ServerName\ShareName\GP2010\Data\ and you want
to use a UNC reference for the OLEPath switch in the Dex.ini file. Since the note
folders will not be created automatically if you use the UNC reference, you must
create the folders yourself. The following structures are needed:

\\ServerName\ShareName\GP2010\Data\DB1\OLENotes\

\\ServerName\ShareName\GP2010\Data\DB2\OLENotes\

If you create these folders manually, your UNC reference in the Dex.ini file
will work.

RememberUser
The RememberUser switch indicates whether the checkbox on the Welcome to
Microsoft Dynamics GP window (the Welcome window) is available.

file:///\\ServerName\ShareName\GP2010\Data\DB1\OLENotes\
file:///\\ServerName\ShareName\GP2010\Data\DB1\OLENotes\
file:///\\ServerName\ShareName\GP2010\Data\DB2\OLENotes\
file:///\\ServerName\ShareName\GP2010\Data\DB2\OLENotes\

Chapter 1

[27]

If the setting is TRUE, then the checkbox on the Welcome window will be active and
you can click on it and mark it. If it is set to FALSE, then the field will be disabled.

Your ability to click in the box, however, does not change whether the user and
password are in fact remembered. If the option Remember the user and password
has not been selected in the System Preferences window, the fact that you checked
the box on the Welcome window has no impact on system behavior. When you close
Dynamics GP, the Dex.ini setting is changed to FALSE if the System Preferences
object has not been checked. It's odd behavior, but it's good to know that changing
the Dex.ini setting doesn't cause the user and password to be stored.

ShowAdvancedMacroMenu
When the ShowAdvancedMacroMenu switch is set to TRUE, an Advanced menu
item is revealed under Microsoft Dynamics GP | Tools | Macro that contains
several additional utilities which you can use to work with Macros. Refer to the
following screenshot:

Microsoft Dynamics GP Architecture

[28]

Since the macro language built into Dynamics GP is used extensively in testing, it
is definitely something you should learn to use. ShowAdvancedMacroMenu = TRUE
should be automatically added every time you set up your Dynamics GP environment.

One of the handiest Advanced Macro utilities gives you the ability to jump to a
specific line in a macro. This is especially helpful if your macro should fail (imagine!).
The dialog that comes up tells you what line it failed on; if it's line 587, it could be a
long day trying to count down to that line. The Macro Status tool lets you jump to
that specific line to inspect your macro.

ExportOneLineBody
When the ExportOneLineBody switch is set to TRUE, any fields in the body of a
report in Report Writer come out as a single line when printing the report to a file.
It isn't displayed on the window like that, but in the file it is. This is very helpful if
you want to save a report to a spreadsheet-friendly format, such as a tab-delimited
file for instance. The Report Writer layout window is only as wide as the paper size
set under Printer Setup. It is very easy to run out of space if you have to set the
fields horizontally across the layout. An old trick to get more space was to load print
drivers for a plotter because plotter paper was so much wider. With this switch in
the Dex.ini file, you can simply list the fields vertically and they will come out as a
single row once the report is printed to a file.

Chapter 1

[29]

There are some benefits to using Report Writer to export data. One, it doesn't require
that you have access to a SQL tool, and two, you can make use of data in temporary
tables, and you can embed Excel formulas into the report.

The following screenshot shows the Report Writer view of a short sales report.
Notice that the last four lines of the screenshot are really Excel formulas. When
the report is printed to the screen, it looks much like the layout, only with data.
However, if you look at the file, all of the fields come out in a single row per record.
If you open this file using Excel with the R1C1 reference style, the hardcoded fields
become valid Excel formulas.

Microsoft Dynamics GP Architecture

[30]

The following screenshot represents what the report looks like when printed to the
screen. The screen output follows the same form as the report layout.

The following spreadsheet is the result of opening the tab-delimited file produced
by the report. Notice how the formula =ABS(+rc[-2])*rc[-3] coded into the report
layout resolves to the formula =ABS(+L2)*K2 in cell N2.

Chapter 1

[31]

As you can see, these simple .ini switches can be used to your advantage when
working with Dynamics GP. It's worth your time to find them and engage them
to help cut down the time you spend navigating through the complexities of the
application. Even better, develop some of your own .ini switches to store settings
or reveal functionality for your application.

The Dexterity Runtime Engine (Dynamics.exe)
The Dynamics.exe file is the runtime engine. Information from the Dynamics.set
and Dex.ini files locate the Dynamics.dic file. The Dynamics.dic file contains
all of the resources and scripting that results in the functioning application when
interpreted by the runtime engine. Resources include all of the fields, forms,
windows, tables, scripts, reports, buttons, boxes, formats, strings, procedures,
functions, and so on. In short, everything, that is the application, you have come to
know is Dynamics GP.

Two additional dictionary files, Reports.dic and Forms.dic, are generated if the
user launches the Report Writer (for reports) or the Modifier (for forms). Remember,
only user-created (or modified) resources live in these dictionaries. All of the original
resources remain in the Dynamics.dic.

Microsoft Dynamics GP Architecture

[32]

The following diagram presents the components of Dynamics GP if only the core
modules were loaded. In reality, a typical Dynamics GP installation includes
nearly 20 dictionaries. We have seen implementations that are comprised of over
40 dictionaries. Each module has its own modified forms and reports dictionaries.
You determine what these dictionaries, if created, are named when you build your
application's chunk file. The chunk file is a self-installing data dictionary file that
extracts to become the application dictionary of your customization.

SQL table and procedure names
A typical installation of Dynamics GP adds roughly 500 tables to the DYNAMICS
database and each company can generate another 2,000 tables. In addition to
the tables, there are over 400 views and 20,000 stored procedures per company.
That's right, 20,000. This is a big data model to navigate! What makes it even more
challenging is that there are no foreign keys defined for the tables. Without foreign
keys you cannot easily discern which tables are related to which other tables. As you
can see in the following screenshot, a quick scan of SQL Server Management Studio
doesn't yield much more information:

Chapter 1

[33]

It is no surprise when clients tell me they are very confused by the seemingly cryptic
table names. We're so used to those legacy table names that we don't appreciate what
a wonder it must be for a new user or developer.

Any effort that involves manipulating data or creating reports will sooner or later
result in the question How do we know which table to use? This query spawns much
gnashing of teeth and all sorts of unusual behavior. So, what do the table names mean?

Original table-naming convention
There is actually a very good naming convention for Dynamics GP data
tables. However, this is only a convention. While you will not be arrested by the
table-naming police for not following the convention, adhering to a standard makes
it easier on everybody. The published naming conventions were followed by the
Dynamics GP programmers pretty diligently, but not so much by many third-party
developers. Here are the basics: the first two or three characters will indicate the
module name, and the remaining numbers indicate the type of table.

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics GP Architecture

[34]

Some of the more popular module prefixes are listed in the following table:

Prefix Module

AA Analytical Accounting

AF Advanced Financial Analysis

AHR Advanced Human Resources

APR Advanced Payroll

ASI SmartList Favorites

BM Bill of Materials

CM Cash Management (Bank Rec)

DD Direct Deposit

DTA Multi-dimensional Analysis

ECM Enhanced Commitment Management

EDCML Multilingual Checks

EDCVAT VAT Daybook

EHW Employee Health and Wellness

ENC Encumbrance Management

ERB Excel ReportBuilder

EXT Extender

FA Fixed Assets

GL General Ledger

HR Human Resources

IV Inventory

IVC Invoicing (NOT Sales Order Processing)

LK Linked Transactions

MC Multicurrency

ME EFT (Electronic Funds Transfer)

MX Electronic Signatures / Audit Trails

Chapter 1

[35]

Prefix Module

PA Project Accounting

PM Payables Management (Accounts Payable)

POP Purchase Order Processing

RM Receivables Management (Accounts Receivable)

RVLP Payables Document Management

SLB SmartList Builder

SOP Sales Order Processing

SVC Field Service

SY System or Company

UPR US Payroll (Canadian payroll is CPR)

WDC Field-Level Security (Advanced Security)

After the prefix, the number indicates the table type. Knowing these numbers will
help you zero in on the correct table. The following table sets out the numbering
convention used to indicate the table type.

Developers often put their company's initials at the beginning of the table name.
For instance, table WDC41101 is the Advanced Security Setup table, which is part of
the Advanced Security module. The Advanced Security module was developed by
Winthrop Dexterity Consultants (WDC).

Table number Description Abbreviation

00000 Master tables MSTR

10000 Work tables WORK

20000 Open tables OPEN

30000 History tables HIST

40000 Setup tables SETP

50000 Temp tables TEMP

60000 Relation tables REL

Microsoft Dynamics GP Architecture

[36]

Table number Description Abbreviation

70000 Report Options tables ROPT

80000 Posting Journal Reprint tables REPRINT

90000 A mixed bag. There is no
consistency in this group

An explanation of how data flows through the WORK, OPEN, and HIST tables
deserves its own section; the remaining table types are covered next.

00000 – Master tables
Master tables are mostly what you find under the "Cards" area. These are your
Customers, Vendors, Inventory Items, GL Accounts, and the like. For instance,
the information you see on the Customer Maintenance window is stored in the
RM00101 table.

40000 – Setup tables
Setup tables include choices you have made to initiate a module. For instance, the
information entered on the Payables Management Setup window is stored in the
PM40100 table.

50000 – Temp tables
Temp tables are tables that are used temporarily by the system and the records
in those tables can normally be deleted without issue. For instance, the Net Profit
Temporary table or AF50000 table is used by the Advanced Financial Analysis
module to hold the Net Profit amount that will be used on one of the financial
statements. Once the statement has been printed, the number is irrelevant.

60000 – Relation or Cross Reference tables
Relational tables are used to store information that spans more than one module.
For instance, the SOP/POP link table (SOP60100 table) holds the information about
POP documents linked to SOP documents. Another example is the Sales Customer
Item Cross Reference (SOP60300 table). This table stores how customer item numbers
relate to regular item numbers. There are not that many tables in the 60000 range.

Chapter 1

[37]

70000 – Report Options tables
Report Options tables contain all of the information you enter in any of the report
options windows that defines what information you would like to appear on a
particular report. The following screenshot comes from the Payables Trial Balance
Report Options window; information recorded on this window would be stored in
the Report Options series of tables (PM70500).

80000 – Posting Journal Reprint tables
Posting Journal Reprint tables contain all of the information you need to reprint the
posting journals. So, don't feel like you MUST print all of those reports the system
generates after posting a transaction. The data is waiting for you in these tables,
should you ever need to reprint them.

Microsoft Dynamics GP Architecture

[38]

90000 – Miscellaneous tables
The Miscellaneous tables group is a mixed bag of information. To give you an idea of
what kind of information is included in the 90000 tables, take a look at the following
table. There you can see the Display names of several 90000 tables.

Physical name Display name
CM90000 CM Transmission Log
CM90001 Checkbook EFT Log
CN90000 Collections - User Preferences
ERB90100 Data Connection Products
ERB90200 Data Connection Series
ERB90300 Data Connections
ERB90400 Data Connection Restrictions
ERB90450 Data Connection Restriction Values
PA91301 PA Contract Segment Override Header
PA91304 PA Contract Segment Override Detail
PA92301 PA Contract Template Seg Override Header
PA92304 PA Contract Template Seg Override Detail
PDK90003 PDK File Error Log
PDK90100 PDK Security
PP900000 Deferral Opened Periods
PTO90000 PTO Pending Master Conversion
SE90001 Account Rollups Account List Accelerator
SE988977 Account Rollups Options Columns
SLB90000 Third Party GoTo Types
SY90000 SY_User_Object_Store (Dynamics User Object Store)
SY90100 Default Chart of Accounts

10000, 20000, and 30000 - Work, Open, and
History Transaction tables
If your customization will be interacting with transactions, you need to understand
how the transactions flow through the transaction tables. Generally, there are three
phases to a transaction: Work, Open, and History. How transactions move through
each of these phases varies by module, with no two modules working exactly the
same way, but the concepts are the same.

Chapter 1

[39]

With a broad brush we will paint the Work phase of a transaction as an unposted
transaction. In my world, the term posted means to be committed to the ledger.
Once a transaction is posted, it cannot be deleted nor can it be unposted. Before
it is posted, you can still work on it. Therefore, work transactions are not posted.
Transactions in the Work phase are stored in the 10000 tables. For example, if you
were looking for an unposted inventory adjustment, you would start by looking in
the IV10000 table.

The next phase of a transaction is the Open phase. What we know about an Open
transaction is that it has been posted, but it is not yet in history. Examples of Open
transactions include a vendor invoice that has not been paid by the company or an
amount due from a customer as an account receivable. Often, transactions that are
in the Open phase are called outstanding transactions. Open transactions are stored
in the 20000 tables. If you were hunting down an unpaid vendor invoice, you would
look in the PM20000 table.

The final phase of a transaction is the History phase. A transaction in history has
been closed and settled. No amounts are outstanding, nothing is unapplied, and it
is a fully completed transaction. How a transaction moves to history is different for
each module; whether a transaction can come out of history and move back into the
Open phase also varies by module. What we do know about a transaction in history
is that it has been posted and is no longer considered open. History transactions are
stored in the 30000 tables. A void sales order would be found in the SOP30200 table.

Victoria Yudin has some great information on the popular tables from each module
at http://victoriayudin.com/gp-tables/.

You can find a more thorough explanation of how transactions flow through the
Work, Open, and History tables at http://tinyurl.com/d5townx.

Stored procedures
Whenever Dexterity is used to create a SQL table, a number of stored procedures
are automatically created and are used to optimize database performance when
performing table operations. The names of most of the auto-generated stored
procedures that apply to normal table operations typically begin with zDP_, followed
by the table's physical name and a suffix that indicates the purpose of the stored
procedure. The following table lists the purpose and numbers of these procedures:

Suffix Purpose Quantity
F First record One per key
L Last record One per key
N Next record One per key

http://victoriayudin.com/gp-tables/
http://victoriayudin.com/gp-tables/
http://tinyurl.com/d5townx

Microsoft Dynamics GP Architecture

[40]

Suffix Purpose Quantity
SD Delete a record One per table
SI Insert a record One per table
SS Select a record One per key
UN Unpositioned Next One per non-unique key

For example, the following table shows that the stored procedures are
auto-generated for the PM Class Master file (PM00100). This table has three keys;
keys 1 and 2 are unique, key 3 is not.

Stored procedure Function
zDP_PM00100F_1 Get the first record using key 1
zDP_PM00100F_2 Get the first record using key 2
zDP_PM00100F_3 Get the first record using key 3

zDP_PM00100L_1 Get the last record using key 1
zDP_PM00100L_2 Get the last record using key 2
zDP_PM00100L_3 Get the last record using key 3

zDP_PM00100N_1 Get the next record using key 1
zDP_PM00100N_2 Get the next record using key 2
zDP_PM00100N_3 Get the next record using key 3

zDP_PM00100SD Delete a record from the table
zDP_PM00100SI Insert a record into the table

zDP_PM00100SS_1 Select a record using key 1
zDP_PM00100SS_2 Select a record using key 2
zDP_PM00100SS_3 Select a record using key 3

zDP_PM00100UN_3 Unpositioned next for key 3 which is a non-
unique key. Keys 1 and 2 are unique keys

Chapter 1

[41]

Other automatically generated stored procedure prefixes include:

Prefix Purpose
Smxxx System Manager stored procedures found in the DYNAMICS

database
GLxxx General Ledger
glpxxx General Ledger Posting
glpmc General Ledger Multicurrency Posting
Duxxx Microsoft Dynamics GP Utilities
Frlxxx Microsoft FRx

Current table-naming convention
Back in the Dark Ages, we had only eight characters to work with for naming tables
and fields. Who needed more than eight characters, right? By following the strict
but sensible naming convention described in the previous section, thousands of
integrating products have been created including tens of thousands of tables. Using
the old naming convention, very few duplicate table names have cropped up.

The new table naming convention includes real words and abbreviations that we
all can understand instead of the eight characters we were limited to before. Sounds
good, but can you imagine working with an application containing 3,000 tables that
are not named in any consistent manner? As with most things, when it comes to
naming database tables, consistency is a virtue.

While there is still no table-naming-convention police that will visit your office, we
think you will find the table-naming convention described next to be a best practice.
This new naming convention is both easy to understand and easy to implement.
Dexterity programmers will recognize this as the table's Technical Name.

Table names will comprise of a module abbreviation, followed by a term that
describes the contents of the table, followed by a subtype abbreviation (if
appropriate), and then by a main type abbreviation:

MODULE_Contents_SUB_MAIN

So the General Ledger chart of accounts would be translated to:

GL_Account_MSTR

The common module abbreviations are the same ones described in the Original table-
naming convention section. It's from this table that you would get the GL portion of
the previous table name.

Microsoft Dynamics GP Architecture

[42]

The following table shows common subtable abbreviations and the type of subtable.
For the Asset Financial Detail Master table of the Fixed Assets module, the new
physical name would be FA_Financial_DTL_MSTR. The DTL portion of the name
would come from the following table:

SUB table abbreviation Subtype
ADDR Address
BHDR Batch Header
DTL Detail
HDR Header
HTAX Tax Header
LINE Line Item
LTAX Line Item Tax
SERL Serial/Lot Number
DIST Account Distributions

The following table shows common Main table abbreviations. For the Invoicing
Transaction History table, the physical name would be IVC_HDR_HIST. The subtype
of HDR comes from the previous table and the Main table type of HIST comes from
the following table:

MAIN table abbreviation Main type
MSTR Master tables
WORK Work tables
OPEN Open tables
HIST History tables
SETP Setup tables
TEMP Temp tables
REL Relation tables
ROPT Report Options tables
REPRINT Posting Journal Reprint tables

Chapter 1

[43]

Although SQL allows a table name of 128 characters, the Dexterity limit is 80
characters. Adhering to the most restrictive case of 80 characters will help ensure
the portability of integrating applications. As a side note, if we need more than 80
characters for a table name, perhaps we need to reconsider our approach.

The previous tables certainly do not represent the exhaustive list of all possible table
abbreviations, but they will get you off to a good start. Your fellow developers will
thank you for your consistency. Don't forget to add your company's initials at the
beginning of the name; this will both help reduce duplicate table names, and make
your module's tables easier to spot.

What you see – the user interface (UI)
If you intend to create a user experience, you need to know the design standards
so that you can build your interface to appear and behave exactly like the native
Dynamics GP windows. Changing from the Dynamics GP native windows to your
windows must be seamless. The "look and feel" must be identical.

Just how tall is that Save button? How wide is it supposed to be? What is expected
from a scrolling window or a lookup window? Have you provided for the addition
of a record note or a Linked Lookup? Can you add records "on the fly"? Did you
include scroll buttons and expansion buttons?

Not only must your application be bug free, it also needs to be free of distractions
such as fat buttons and strange icons. Fortunately, you do not have to guess the
answers to the earlier questions. Dynamics GP has each of the properties spec'd
out for you. In Appendix F of the Dexterity Basics training manual, the user
interface guidelines are covered in detail. Depending on the enhancement plan
you've signed up for, you can download the Dexterity Basics training manual from
http://tinyurl.com/btpbnk7. Contact your partner regarding how to acquire the
Dexterity Basics training manual if you cannot download it.

www.allitebooks.com

http://tinyurl.com/btpbnk7
http://tinyurl.com/btpbnk7
http://www.allitebooks.org

Microsoft Dynamics GP Architecture

[44]

For now, let's review some of the more common window elements that users expect
to find on a window. The following image shows the Vendor Maintenance window
with some of its window elements highlighted.

A description of each of the highlighted controls is as follows:

Push buttons
Push buttons appear in the window's control area. Push buttons define actions that
you can perform on the record displayed. Depending on the type of window, the
buttons expected are as follows:

Window type Buttons
Maintenance Save, Clear, Delete
Transaction Save, Delete, Void, Post
Inquiry OK, Redisplay
Non-modal Dialog OK, Cancel
Modal Dialog OK

Chapter 1

[45]

Note button (record level)
Record-level notes are big text fields that will hold up to 32,000 characters. The
note icon will change appearance to indicate the presence of a note (as shown in
the following screenshot). Record-level notes pertaining to all records are typically
centrally stored in the company database in the Record Notes Master table
(SY03900).

Printer icon
For any given window, a button should typically be available that will print a list
report containing the contents of the window. This is the same report that prints
from the File | Print command when navigating the user interface.

Zoom fields
These fields allow a user to drill down to a lower level of detail from the current
window. You can identify a zoom field by the blue underlined prompt. When the
mouse passes over a zoom field it turns into a zoom pointer. If the field is a master
record, the zoom typically goes to a setup or maintenance window for that item. If
the zoom field is a financial field, the zoom navigation is normally from a summary
level to a more detailed level.

Microsoft Dynamics GP Architecture

[46]

The following screenshot highlights the zoom pointer and the blue underlined prompt:

Lookup button
Pressing a lookup button should open a lookup window that contains a listing of
records. You select a record on the lookup window and that value will be returned
to the originating window. For example, the Lookup button next to the Customer
Number on the Customer Maintenance window will open the Customers Lookup
window. Selecting a customer from the lookup list will bring the selected customer's
information back into the Customer Maintenance window.

Browse buttons
Browse buttons provide a means of navigation between records in the table.
The left-most button will take you to the first record in the table. The right-most
button will take you to the last record in the table. The two inner buttons will
navigate forward or backward one record at a time.

Sort-by List
Next to the browse buttons, you will normally find a list field that is used to sort by a
stated criteria . There is usually one record listed for each key in the table. Choosing
a specific sort-by will set the table so that the records scroll according to the key
you have selected, and the records will be listed in that order when displayed in the
lookup window.

Chapter 1

[47]

The following screenshot highlights the sort-by list:

Note button (window level)
Window-level notes provide a place to store information regarding a window.
The notes are stored by company so that two companies do not share the same set
of window notes even though they each have a similar window. For example, each
company has a Vendor Maintenance window, but the two windows do not retrieve
the same notes.

Window notes provide an excellent place for the user to document instructions
on the proper way to fill out a window, to document naming conventions such as
Vendor, Customer IDs, and so on. While this element may not directly relate to the
functionality of your application, it's one of the elements a Dynamics GP user has
come to expect. The icon changes to an image with lines on it when a window
note is present.

The following screenshot highlights what the icon looks like when a note is present:

Microsoft Dynamics GP Architecture

[48]

Additional window elements
The following screenshot shows the Sales Transaction Entry window with several
window elements highlighted:

A description of the selected controls is as follows:

E-mail Link
Selecting the E-mail Link button opens the Sales E-mail Detail Entry window
as shown in the following screenshot:

Chapter 1

[49]

Map Link
Pushing the Map Link button will launch Bing Maps and throw it the address
listed on the window. This is a very handy feature. If you use an address in your
application, it should include this behavior, as it is an expected piece of functionality.

You do not have to use Bing Maps if you don't want to. Mariano Gomez has an
article on his blog regarding how to change the default map services. Use this URL to
access the article: http://tinyurl.com/c6vosoy.

Microsoft Dynamics GP Architecture

[50]

Quantity alert button
The quantity alert icon will appear next to a line-item quantity if you still have a
process to complete regarding that quantity amount. For instance, if you have not
fully allocated the quantity on an invoice, the icon will show up on that line. By
selecting that line and then pushing the Quantity Alert button, you will be greeted
with a message telling you what the system is unhappy about.

Multicurrency button
By pressing the multicurrency button, you can switch the display between the
originating and functional currency. You can also modify the reporting currency rate
if applicable. The following screenshot shows you what the window looks like when
the multicurrency button is pressed:

Show Details
The Show Details button always shows additional information about the line
item selected. These buttons are used to expand and shrink the view of a scrolling
window. Sometimes the grid view is just expanded to show more lines of
information for a single record. Other times, you'll see a larger area that doesn't look
anything like a scrolling window.

Chapter 1

[51]

In the case of the Sales Transaction Entry window, much more than just another
row of information is revealed, as shown in the following screenshot. Lately, the
Show Details view has been used in this way to deliver information using a more
attractive layout.

Information button
This button is more fully described as the "line-item information" button. It's used
on the Sales Transaction Entry and Purchase Order Entry windows. This button is
identified in the following screenshot:

Microsoft Dynamics GP Architecture

[52]

Pressing this button on the Sales Transaction Entry window or the Purchase Order
Entry window opens a Sales Quantity Status window with information pertaining
to the line item selected. The following is a screenshot of both the Sales Quantity
Status window and the Purchasing Quantity Status window.

Expansion arrow
Expansion arrows can reveal a whole host of information. You can take a
straightforward-looking window such as the Sales Transaction Entry window
and stuff a massive amount of information in it via the use of expansion arrow
buttons. Indeed, the Sales Transaction Entry window contains thirteen expansion
arrow buttons.

If you need a lot more information about a particular record and want to keep your
user interface clean, expansion arrow buttons are a good solution for you.

The following screenshot shows the window that you open when you press the
Item Detail expansion arrow on the Sales Transaction Entry window:

Chapter 1

[53]

Help button
By pressing the Help button in the lower right-hand corner of the window (or F1),
you launch a context-sensitive help screen, as shown in the following screenshot:

Microsoft Dynamics GP Architecture

[54]

The Help window includes four sections: Overview, Fields, Buttons, and Menus.
Each of these sections reveals information specific to the selected window. For
example, the Fields section of the Sales Transaction Entry window defines, in
alphabetical order, each field that appears on the window.

Your help file should also be context sensitive and include similar information.

Summary
In this chapter, we learned that Dynamics GP was designed as a platform- and
database-independent application. We were introduced to the foundation that
Dynamics GP is built upon and how from the beginning, developers have been
enriching its functionality by creating a wide array of integrating applications.
We explored the features of the Dexterity toolset and how we can create our own
custom applications using the very toolset Dynamics GP was written with.

We learned about the seven main components of the Dynamics GP runtime
environment and how they interact. We know the details of what happens when
Dynamics GP is launched. We also have a new collection of switches we can use
with the Dex.ini file to achieve more functionality or change the behavior of
Dynamics GP.

The table-naming conventions have been demystified as well as the general flow
of transactions through those tables. We know the purpose and naming conventions
for the auto-generated stored procedures and that they aid in optimizing the
performance of table operations. Finally, many of the standard window elements
were introduced, such as zooms and note buttons.

In the next chapter, we will learn the fundamentals of integrating applications.

Integrating Application
Fundamentals

This chapter will present a series of questions developers should ask themselves,
and answer, before beginning development. You will learn about the various tools
available for customizing Dynamics GP along with the skills required to use them.
We will also go over any additional products the end user may need to implement
your solution. Finally, you will learn what you should have in your development-
tool arsenal and where to get it.

Key topics in this chapter include:

• Defining the project
• Overview of available tools
• Modifying the user interface
• Changing or extending functionality
• Adding information not previously collected

Integrating Application Fundamentals

[56]

Defining the project
Before you start installing software and designing windows, you need a plan. It's
almost time to search for your flowcharting template, but first you need to answer
this query: Just what are you trying to accomplish? Let's begin to define the project
by responding to some fundamental questions:

• Do you want to change the way a window looks or behaves?
• Do you want to change or extend current Dynamics GP functionality?
• Do you need to create brand-new functionality?
• Do you need to exchange data between dissimilar systems?
• Are you just trying to store some additional static data?

Changing a window's look or behavior
Maybe the field prompts are wrong or the tabbing order is unacceptable. Perhaps
there are not enough, or even too many, fields on the window. The window may
need additional navigation options such as menus or buttons. You might want a
field to be created only if certain criteria are met. For instance, if your customer
were a reseller, the Tax Schedule ID field would not be required; but if your
customer were not a reseller, the Tax Schedule ID field would be required.
Maybe more visual cues should be present on the window, such as a red/green
light indicator on the Customer Maintenance window to represent their payment
pattern similar to the following screenshot:

Chapter 2

[57]

You may want a more obvious cue if a record note exists, like a bigger icon or an icon
that flashes! You might want to see the quantity of a stock item available in the Sales
Order Processing lookup window. This list could go on forever.

Integrating Application Fundamentals

[58]

Changing current functionality
Many times Dynamics GP is just missing a little something with the way it processes
certain transaction types. For example, perhaps you would like to be warned if you
are entering a Payables Transaction for a vendor with an outstanding purchase
order, or you need a receivables document to move to a history table automatically
when you pay it, instead of having to run a monthly routine.

This list does go on forever.

Creating new functionality
This category is filled with things that Dynamics GP doesn't do at all. As we
discussed in Chapter 1, Microsoft Dynamics GP Architecture, Dynamics GP was
built with these types of customizations in mind. Dynamics GP constructed the
foundation, and developers like you make its functionality boundless. Many of
our vertical solutions are present here; applications for running mining operations,
restaurants, and retail stores have been developed for Dynamics GP. The unique
needs of a myriad of industries have been satisfied by third-party applications.

Exchanging data between systems
Very often, you accumulate detailed information in a different system of record and
you need to import it into Dynamics GP. Sometimes you need to export information
out of Dynamics GP in order to update another system.

For instance, Point of Sale (POS) systems update the general ledger with daily
sales, and payroll services send weekly payroll details to upload into the general
ledger. Vendors send new price sheets that cause adjustments in the list price.
These list price changes need to update the website as well as the accounting
system. A constant stream of data flows back and forth every day and it needs to
update other systems, or be updated itself. The goal is to take the information from
the point of original entry, and electronically place it wherever it needs to go. We
only want to touch the data once; dual entry needs to be eliminated. Our aim is to
have only one version of the truth.

Storing additional data
Quite often the fields available for user customization, so called user-defined fields,
are far too few. This problem is nearly universal when it comes to the inventory.

Chapter 2

[59]

Take, for example, a company that trades in high-end audio equipment. For
a preamp they may need to know the distortion percentage, the number and
types of inputs, outputs available, and so on.

For speakers, they need a completely different set of information, such as sizes
and types of drivers. Yes, there is much more information that needs to be at a
salesperson's fingertips than the part number and the price.

All of that additional information needs a place where you can enter it, and a table
to call home.

Types of integrations
At the end of the day, there are generally two types of integrations:

Database-level integrations include tasks such as the following:

• Importing data into Dynamics GP
• Exporting data out of Dynamics GP
• Storing additional data in new tables
• Synchronizing data between Dynamics GP and peripheral systems

User-interface-level integrations include tasks such as the following:

• Adding entirely new windows
• Adding fields or controls to an existing window
• Adding navigation items to the home page
• Adding new menus
• Changing field locations on a window
• Changing a window's tab order

A single customization often involves both types of integrations.

OK, so now that the interrogation is complete, it's time to find that template and
start flowcharting!

Integrating Application Fundamentals

[60]

Overview of available tools
Once you have defined what you are trying to do, you need to find a tool that will
do it. Fortunately, there are many tools available to help you accomplish your goal.

Each tool does something a little different from the others. Which tool to select may
be obvious, but often there are several ways to achieve the same result. A hybrid
approach may be necessary when no single tool will go the distance.

The several tools at your disposal, which we will discuss in this section, include:

• Dexterity
• Visual Studio Tools for Dynamics GP (VS Tools)
• Modifier with VBA (Visual Basic for Applications)
• Continuum
• Extender / eXtender Enterprise
• DDE / ODBC / ADO / OLE Automation
• Integration Manager
• Table Import
• eConnect
• Web services

The decision of which tool to use requires careful consideration of the type of
customization, the capabilities of the tool, the skills of the developer, and any
prerequisites or licensing requirements imposed on the end user.

Dexterity
Dexterity is a complete Integrated Development Environment (IDE) and
the native language of Dynamics GP. You can create the tightest, most seamless
integrations using Dexterity. All of the resources of a Dexterity integration are stored
in a dictionary file. By resources we mean the business logic, fields, windows, table
definitions, push buttons, and so on. The runtime engine interprets these resources
and presents a single application to the user.

Chapter 2

[61]

The extensibility of Dynamics GP allows multiple Dexterity integrations to run at the
same time, yet appear to the end user as a single program running alone. This unique
environment is referred to as a multidictionary environment. The following diagram
illustrates a multidictionary environment where several dictionaries are functioning
together to create the end-user application.

Dexterity Multidictionary Environment

If you need your application to have access to all of the resources in the Dynamics
dictionary and behave exactly as Dynamics GP, Dexterity is your tool.

Capabilities of Dexterity
Using Dexterity, you can perform the following:

• Access and manipulate all of the resources exposed by the Dynamics.dic file.
• Create new custom windows using the built-in WYSIWYG graphical forms

designer in a style indistinguishable from the native Dynamics GP windows.

Integrating Application Fundamentals

[62]

• Create your own version of an existing window to use in place of the original
Dynamics GP window (an Alternate Window).

• Create new reports using the built-in report writer.
• Create your own version of an existing report to use in place of the original

Dynamics GP report (an Alternate Report).
• Use the sanScript scripting language to create business logic that extends

existing Dynamics GP functionality or creates wholly new functionality.
Scripts can respond to user actions such as pushing a button, changing a
field, or closing a window.

• Use Dexterity triggers to watch for events such as opening a window or
tabbing off a field. You can trigger off events in any customization written
in Dexterity; you are not limited to just the Dynamics.dic file. When the
trigger fires, it runs a procedure written by you.

• Use the extensive library of over 1,000 pre-written functions to perform
otherwise complicated tasks.

• Use the integrated debugging tools to debug your application, even when
your application is running in multidictionary mode.

• Create structured error handling.
• Call the same procedures used by Dynamics GP to execute subroutines.
• Create SQL tables and automatically generate stored procedures to handle

table operations.
• Include the resources you create in the Dynamics GP security model without

writing a line of code.
• Access the .NET Framework, web services, and any other features made

available by other applications through Component Object Model (COM).
• Provide access to end-user customization tools such as Report Writer,

Modifier with VBA, and the Import utility.
• Create your own toolbar.
• Create navigation to your application from the homepage.
• Create a navigation list exposing your data.

Even though Dynamics GP is not open source, all of these capabilities are
available because Dynamics GP was written to embrace the creation of integrating
applications. In short, if you use Dexterity to create your customization, it can do
anything Dynamics GP can do.

Chapter 2

[63]

Limitations
As robust as it is, Dexterity does have its limitations:

• You cannot modify a form in a third-party dictionary, meaning you
cannot modify a Dexterity window that lives in a dictionary other than the
dynamics.dic file

• Dexterity does not support Unicode; so if you need support for Chinese,
Japanese, and Korean hieroglyphs, you have a problem to solve

• Dexterity cannot access fields added using the Modifier tool; therefore, you
cannot attach sanScript code to those fields

• Dexterity does not support dynamically loading images from a database

Developer skills required
The following skills are generally necessary to develop an integration using Dexterity:

• Thorough knowledge of the sanScript scripting language
• Experience working with the data model of Dynamics GP
• Experience navigating the user interface of Dynamics GP
• A proficiency in database design
• An understanding of SQL Server
• An understanding of SQL Server stored procedures

End-user prerequisites
There are no end-user prerequisites. The customization results in a .cnk file that any
user could drop into the folder containing dynamics.exe. The next time Dynamics
GP is launched, the .cnk file gets extracted, adds the appropriate settings to the
Dynamics.set file, and becomes a .dic dictionary file.

Visual Studio Tools for Dynamics GP
(VS Tools)
The Dynamics GP development community was elated when VS Tools was released.
Finally, a non-Dexterity programmer had a real opportunity to customize Dynamics
GP! The world was buzzing with rumors that Dynamics GP was being rewritten in
.NET, and Dexterity would soon be a thing of the past. Well, that didn't happen; but
VS Tools really opened the floodgates for customizations. It turns out that there are
actually more .NET programmers than Dexterity programmers! Imagine that.

Integrating Application Fundamentals

[64]

VS Tools is the .NET API (Application Programmer's Interface) for Dynamics GP.
By creating your customization in managed code (a .NET assembly), you can use
the exhaustive list of features provided by the .NET Framework against the
resources in Dexterity-created dictionaries.

Capabilities of VS Tools
Using VS Tools, you can perform the following:

• Create WinForm Windows
• Access tables, table fields, and table buffers
• Access Original, Alternate, and Modified windows
• Access window fields and global variables
• Access fields created using the Modifier tool
• Execute Dexterity commands, functions, and procedures
• Use the runtime engine's trigger system to respond to events

such as a window opening or a field changing

Developer skills required
The following are the skills the developer requires:

• Knowledge of the .NET Framework
• Experience creating applications with Microsoft Visual Studio
• Understanding of a .NET language, like Visual Basic.NET or C#
• Experience working with the data model of Dynamics GP to understand

which tables to access
• Familiarity with Dexterity is helpful if you want to invoke Dexterity

functions or procedures
• Experience navigating the user interface of Dynamics GP to understand

which events to register

End-user prerequisites
There are no end user prerequisites. The customization results in a .dll file that any
user could drop into the AddIns folder inside the main Dynamics GP folder. Using
a default installation, the AddIns folder exists here for a 64-bit machine: C:\Program
Files (x86)\Microsoft Dynamics\GP2010\AddIns and for a 32-bit machine it is
located here: C:\Program Files\Microsoft Dynamics\GP2010\AddIns.

Chapter 2

[65]

Modifier with VBA (Visual Basic for
Applications)
Modifier with VBA is actually two tools: Modifier and VBA. You cannot separate
them, but they each do very different things. Modifier is largely a stripped-down
version of the graphical forms designer found in the Dexterity tool. Using Modifier,
you can make changes to existing windows, such as adding or removing fields,
moving things around, or changing the tab order. Changes made with Modifier
are stored in a separate dictionary. Modifications to forms in the Dynamics.dic
file are stored in the Forms.dic file. Modified windows are not part of, nor do they
change, the original resources in the application dictionary. Each application creates
its own dictionary for storing changes made with Modifier. For example, the Fixed
Asset module's modified windows are stored in the F309.dic file, while modified
windows of the Human Resources module are stored in the HRPFRMS.dic file. The
filenames that store modified forms are defined in the Dynamics.set file.

The following screenshot shows the Vendor Maintenance window as it appears in
the Modifier. To add new fields from the PM_Vendor_MSTR table to the window,
simply select a field from the toolbar and then drag it onto the window.

Integrating Application Fundamentals

[66]

New fields created using Modifier have no life. You can use Modifier to put the
button on the window, but you cannot make it do anything when pushed. The
VBA side of Modifier with VBA provides the means for you to attach code to new
or existing fields. The code is VBA code, not sanScript (Dexterity) code. Once you
attach some VBA to the new button's change event, it has life. Modifier is aware of
any window created with Dexterity no matter which application dictionary (.dic
file) houses it. This fact makes Modifier an attractive tool to use when you need to
add a button to a third-party window with the least amount of effort.

Modifier is largely an end-user tool; VBA code runs as clear text and is easily
modified by others. You need to keep this in mind if you develop your integrations
using Modifier with VBA. Protect your customizations!

Use the Protection tab in the Project Properties window to lock your VBA project
from viewing:

Chapter 2

[67]

Capabilities of Modifier with VBA
The following is a list of capabilities of Modifier with VBA:

• Modify the appearance of existing windows
• Add new objects and fields to windows
• Change the tab order on a window
• Add additional business logic to windows and reports using VBA
• Add new VBA forms
• Modify windows and reports of other integrating applications created

in Dexterity
• Modifier with VBA is COM compliant

Developer skills required
Different skills are required for different actions using Modifier with VBA. The
primary difference is that the window changes themselves do not involve any
coding, nor require any knowledge of the data model. Once you start adding
VBA code to the project, developer skills become necessary.

• Knowledge of VBA is necessary for adding event code or VBA forms
• Experience navigating the user interface of Dynamics GP is helpful
• Knowledge of SQL commands is needed as the project becomes

more complex
• Developer skills are not required to make window changes using

the Modifier

End-user prerequisites
You, as the developer, will create a package file once the customization is complete.
Any end user can import this package file, provided the Customization Site License
or Modifier with VBA module is registered. Customizations created with Modifier
and VBA need to be installed on each user's workstation rather than on a network
share. Depending on the number of workstations, deployment and maintenance can
be inconvenient.

Integrating Application Fundamentals

[68]

Continuum
Continuum provides the COM API for Dynamics GP. Continuum, such as
VS Tools, takes advantage of the extensive triggering system of the runtime engine.
You identify which Dexterity events your application wants to be notified of, such as
opening a window or changing a field, and when that event occurs, your application
is notified and can execute a procedure in response to the event.

This tool, although no longer being developed, is a favorite among Visual Basic
and Delphi programmers. One of the beauties of Continuum is that it comes with
add-in wizards that walk you through each step required for creating an integration
using a point-and-click interface. Using the wizards, you choose the windows,
fields, and controls you want to integrate with, and then it generates the Visual
Basic (or Delphi) code needed to complete the integration. Continuum for Visual
Basic takes full advantage of Object Linking and Embedding Automation
"OLE Automation" to keep data fields and buttons completely synchronized.
What could be better than that?

You use a special subset of sanScript with Continuum; that subset is documented
in the sanScript Supplement that comes with the Continuum. The Continuum API
provides you a means to write pass-through sanScript that will execute against the
Dynamics GP application. The files you need to set up a Continuum project, as well
as the Continuum API Guide and Continuum sanScript Supplement, are located
inside the Tools\Continuum folder of the installation DVD for Dynamics GP.

Capabilities of Continuum
The following are the capabilities of Continuum:

• Create a form-level integration to add additional business logic to Dynamics
GP using pass-through sanScript

• Create a process integration that reacts to Dynamics GP events
• Create a database-level integration using pass-through sanScript to register

triggers in Dynamics GP
• Access Dynamics GP resources using COM

Chapter 2

[69]

Developer skills required
The following are the skills the developer requires:

• Experience navigating the user interface of Dynamics GP to understand
which events to register

• Experience with whichever COM-capable development tool you selected
to create the integrating application (such as Visual Basic .NET)

• Experience creating applications with Microsoft Visual Basic or Delphi
is helpful

• Knowledge of the Dynamics GP dictionary resources
• Familiarity with the sanScript statements used by Continuum

End-user prerequisites
There are no end-user prerequisites.

Extender / eXtender Enterprise
Extender is an integration tool that gives you the ability to add additional data
entry windows to Dynamics GP. If you have the Enterprise version of the product,
you can add new functionality using scripts. eXtender Enterprise is as close to
point-and-click Dexterity as you can get. The Enterprise edition is available only
from eOne Solutions; it is not sold by Microsoft as part of Dynamics GP.

Extender allows for complete custom applications to be built by end users without
a single line of code being written. The new Extender application you create comes
automatically linked with all the features of Dynamics GP: SmartList objects, drill
downs, advanced lookups, notes, as well as unique Extender features such as detail
note tracking, e-mail merges, user-defined searches, imports, and more.

Capabilities of Extender and eXtender Enterprise
The following are the capabilities of Extender and eXtender Enterprise:

• Create new data-entry windows
• Link additional windows to any form in any dictionary
• Create new dialog windows

Integrating Application Fundamentals

[70]

• Create new note windows with expanded functionality
• Create new menus
• Automate macro execution
• Create conditional windows using criteria set by the developer
• Create SQL views of the data collected in the new windows
• Import information into the new Extender data-entry windows
• Apply templates to set default values for fields
• Embed business logic behind Extender data-entry windows

(eXtender Enterprise only)

Developer skills required
The following are the skills the developer requires:

• Experience navigating the user interface of Dynamics GP
• Development experience using sanScript is necessary for using the scripting

functionality of the eXtender Enterprise edition
• None required for using the Extender module purchased from Dynamics GP;

this tool is predominantly an end-user tool

End-user prerequisites
The user needs to have purchased the Extender module or eXtender Enterprise,
depending on whether scripting is required.

DDE \ ODBC \ ADO \ OLE Automation
DDE (Dynamic Data Exchange), ODBC (Open Database Connectivity), ADO
(Active Data Objects), and OLE Automation (Object Linking and Embedding
Automation), are industry standards for accessing and exchanging data.

Chapter 2

[71]

DDE
The primary function of DDE is to allow applications to share data. It uses
the Windows Messaging Layer functionality within Windows to allow two
running applications to share the same data. DDE is a method of asynchronous
communication called a DDE Conversation, which allows one program to
communicate with another program. The client application sends a Windows
message to the server application. Windows holds the message and sends it
to the server application when the server application is ready to process it. The
client application can continue processing; it does not need to wait for a response
from the other applications.

The only thing DDE can do is transmit data. It only appears to control another
application if the other application can treat data as a command. DDE is lean
and clean from the programmer's point of view; there are no .dlls required
and it doesn't interrupt processing.

ODBC
ODBC is a technique used for accessing database information using drivers. The
drivers provide a universal middleware layer that uses a standard set of commands
to communicate with a Database Management System (DBMS). The driver then
translates those standard commands into the correct instructions for the specific
DBMS. Using ODBC, you can write programs that access data without knowing how
the database is implemented. ODBC drivers are considered OLE Providers.

ADO
ADO is a collection of COM objects used for accessing data sources. Like ODBC,
ADO is a language-neutral object model that exposes data raised by an underlying
OLE Provider. ODBC drivers are the most commonly used OLE Providers.

Integrating Application Fundamentals

[72]

OLE Automation
OLE Automation is a mechanism that allows for the exchange of data between
applications. It provides an infrastructure whereby applications, called automation
controllers, can access and manipulate shared automation objects that are exposed
by automation servers. Automation controllers are also known as automation
clients. This concept of client and server is also used in DDE conversations.
Dynamics GP can be either an automation server or an automation client.

Capabilities of DDE \ ODBC \ ADO \ OLE Automation
There are some subtle differences between these applications, but we're going to
group them together for the purpose of customizing Dynamics GP. These tools have
the following capabilities:

• Create new data records
• Read existing records
• Update existing records
• Delete existing records
• DDE is capable of asynchronous communication

None of these tools provide a means to modify the user interface of Dynamics GP.

Developer skills required
The following are the skills the developer requires:

• Experience with the chosen development tool used to access the data.
• If using OLE Automation, knowledge of how to call the objects is required.
• If using DDE, knowledge of the supported DDE commands is required.
• Experience working with the data model of Dynamics GP is essential. No

data validation is provided, so it is up to you, the developer, to ensure the
correct tables are being accessed.

• An understanding of how to create a database connection string is helpful.
• ODBC and ADO require no specific developer skills.

End-user prerequisites
There are no end-user prerequisites. It's possible the end user may require an access
license to the database if the database is being accessed outside of the Dynamics GP
user interface.

Chapter 2

[73]

Integration Manager
Integration Manager is an end-user tool used to import data into Dynamics GP.
This tool could be used for a one-time import to convert data from an old system,
or a periodic import of data in an ongoing manner. VBScript can be added to many
events of an integration, allowing for some very complex logic to be executed.
Integration Manager has a user-friendly interface for mapping data from a wide
array of sources.

The following screenshot shows the destination mapping window for a Payables
Transaction where you would identify the source for the data being imported.
Most fields have a default value that will be used if the source data does not
include a value for that specific field.

Capabilities of Integration Manager
The following is a list of the capabilities of Integration Manager:

• Import transactions with full business-logic validation
• Import or update master files with full business-logic validation
• Use VBScript at distinct points in the integration to expand functionality

Integration Manager is restricted to a predefined set of import destinations. New
destinations cannot be added by the user.

Integrating Application Fundamentals

[74]

Developer skills required
The following are the skills the developer requires:

• No knowledge of the database is required; this is an end-user tool
• VBScript can be used, so a proficiency in VBScript would be helpful to

fully exploit the capabilities of this tool
• Integration Manager can be automated using Windows Scheduler, so

experience with the Windows Scheduler is a plus

End-user prerequisites
The end user needs to own the Integration Manager module. This module is
not included with any of the Dynamics GP Business Ready Licensing models.

Table Import
Table Import is a utility that comes with Dynamics GP and can be used to import
data into any Dynamics GP table, regardless of the dictionary. Table Import does
only one thing, but it does it very well and very fast. Think of Table Import as the
data-slam method of importing data.

You must provide a properly formatted comma-or tab-delimited text file, and then
map the file data into the fields in the target table. No translation is available, no
links are made to other tables, and you cannot use ODBC. No validation against
the business logic is performed. It is a direct-to-table import that you use at your
own risk.

A word of caution: although there is nothing stopping you from importing
transaction data, you should tread lightly in this area. Remember, you have no
business logic validation with the Table Import utility. You would most likely use
this utility for populating master file tables, especially tables without an adapter
that you can use with Integration Manager. For example, you might use Table
Import to bring in account categories or sales tax details.

The Dynamics GP Software Development Kit includes information that will
help you use this tool to import master file data as well as a limited number
of transaction types.

Table Import can only add data; it cannot update data.

Chapter 2

[75]

The following screenshot shows the Table Import Definition window. The data you
want to import is in the source file. The destination table is where the data will land
in Dynamics GP. The scrolling window lists all of the fields in the destination table
and how they are mapped to the fields in the source file.

Capabilities of Table Import
The following are the capabilities of Table Import:

• Import new data into any table in the database
• Import values into a multi-select listbox field

Integrating Application Fundamentals

[76]

If you use SQL Server Management Studio to look at a multi-select
listbox field, such as the DSPLKUPS (display in lookups) field in the
GL00100 table, you will see <Binary data> as the field value. If
you use Table Import, you can use a 32-character string field made
up of T and F characters and populate the database field correctly.
Integration Manager does not support this level of integration with
multi-select listboxes.

Developer skills required
The skill required by the developer is as follows:

• As no validation is done on the imported data, an in-depth knowledge of
the Dynamics GP data model is required

End-user prerequisites
None; the end user simply opens the Table Import Definition window, selects
the appropriate Definition ID, and then executes the import.

eConnect
At its root, the eConnect product is a collection of encrypted, stored procedures,
and the methods to access them. These stored procedures allow external applications
to create, retrieve, update, delete, and void Dynamics GP documents. Unlike the
Table Import utility, eConnect uses the Dynamics GP business logic to validate
all transactions.

eConnect has become the integration tool of choice across the development world
because it can interface with nearly anything. It contains a rich set of interoperability
tools that you can use to extend the functionality of Dynamics GP. You can create
stored procedures to run before or after the eConnect document exchange. As a
bonus, eConnect is very fast.

The principal components and interfaces of eConnect include a .NET-managed
code assembly, a Microsoft BizTalk AIC (Application Integration Component),
and MSMQ (Microsoft Message Queuing) services. When you install eConnect, it
creates a WCF (Windows Communication Foundation) service named eConnect for
Microsoft Dynamics GP 2010 Integration Service (eConnect Integration Service).
This integration service replaces the eConnect COM+ object that was used in
eConnect versions prior to Dynamics GP 2010.

Chapter 2

[77]

eConnect uses specially formatted XML (Extensible Markup Language) documents
to integrate with Dynamics GP; therefore, your application must be able to create
or consume XML documents. Business rules are enforced during the integration
ensuring all of the necessary tables are updated with each imported item. Over 200
integration points are supported by eConnect. The required XML document schemas
are provided in the eConnect documentation.

By using eConnect, external applications such as CRM programs, point-of-
sale systems, web services, warehouse management systems, and other legacy
applications can interact with Dynamics GP. These external applications can import
or update master files and import or void transactions. The following diagram
illustrates the different layers and components incorporated with eConnect.

eConnect configuration

Integrating Application Fundamentals

[78]

In order to communicate with eConnect Integration Service, you need to include
the eConnect assembly and namespace in your development project. However, if
you use a Service Reference to interact with eConnect, you do not need to add the
Dynamics GP eConnect assembly or namespace to your development project. With
a Service Reference, your application will be able to work directly with the eConnect
Integration Service.

By using MSMQ services, eConnect integrations can run without user interaction.
The MSMQ services do not post the transactions however, so you can't automate the
entire process. There is a tool available from Microsoft, the autopost.dll file, that
uses the Continuum API to call the Dynamics GP posting procedures. By using this
tool, you can post imported transactions automatically instead of requiring the user
to complete the post. On the downside, in order for the autopost.dll file to work
Dynamics GP must be running. Since Dynamics GP must be running, a user license
is consumed.

There is an application available from eOne Solutions, called SmartConnect, that
provides a point-and-click interface to eConnect. The SmartConnect application
transforms eConnect into a drag-and-drop end-user tool without losing the
development capabilities of eConnect.

SmartConnect ships with a shared web service that allows for data to be pushed
into Dynamics GP from external applications such as Access or Excel. You can also
fully automate posting without the need for autopost.dll. Using the web service,
you can update Dynamics GP without requiring a Dynamics GP login; thus you
still have all of your user licenses available.

Capabilities of eConnect
The following are the capabilities of eConnect:

• eConnect allows external applications to access real-time Dynamics GP data
• eConnect provides tools that you can use to create, retrieve, update, delete,

and void a wide array of Dynamics GP documents
• Imported data is validated against the Dynamics GP business logic
• eConnect is compatible with Visual Basic objects, stored procedures, BizTalk

Server AIC adapters, COM integration, MSMQ, XML document exchange,
and other industry-standard technologies

Chapter 2

[79]

Developer skills required
The following are the skills the developer requires:

• Expertise working with XML documents and schemas is a must
• Experience with the selected programming application you're using to create

the integration is necessary
• Knowledge of Windows Communication Foundation is needed if you are

using a Service Reference
• Familiarity with Dynamics GP documents and operations

End-user prerequisites
To use an eConnect integration, the eConnect runtime components must be installed.
In order to use the private message queues for the incoming and outgoing services,
Windows Message Queuing must be installed and operating. In order to use the
eConnect BizTalk adapter, BizTalk 2006 or later must be installed.

Web services
Web services use XML documents and acts as middleware between eConnect
and Dynamics GP. There is no user interface with web services; you design the user
interface with your tool of choice and then use the web services to manipulate the
data. In order to use web services, the type of transaction you want to execute must
be listed as one supported by this tool.

Web services for Dynamics GP integrates with web-based applications using the
industry standards of XML, SOAP (Simple Object Access Protocol), WSDL (Web
Services Description Language) and UDDI (Universal Description, Discovery,
and Integration) on an Internet protocol across a network.

XML provides the language that you can use between different platforms and
development tools. XML uses tags to define, transmit, validate, and interpret the
data. A tag is written between angled brackets and marks the start point and end
point of each logical unit or element of an XML document. The following is an
example of a simple XML tag:

<email>
 <to>Leslie Vail</to>
 <from>Superman</from>
 <body>Hello World!</body>
</email>

Integrating Application Fundamentals

[80]

SOAP is a messaging protocol you can use to encode request and response messages.
SOAP messages are independent of any operating system or programming language,
so they can be transported using popular Internet protocols such as SMTP (Simple
Mail Transfer Protocol), MIME (Multipurpose Internet Mail Extensions), IMAP
(Internet Message Access Protocol), and HTTP.

WSDL is the language used to describe what the web service does and provides
information on how to interface with it.

UDDI is used for listing which specific services are available. UDDI listings are
written in WSDL.

Capabilities of web services
The following are the capabilities of web services:

• Allows integration with external applications
• Customers
• Vendors
• General Ledger accounts
• Sales Order documents
• Purchase Order documents
• Receivable transactions
• Payable transactions
• General Ledger transactions
• Through the web service, an external application can create, retrieve, update,

delete, and void supported Dynamics GP documents
• Provides a means to interact with Dynamics GP using a web browser

Developer skills required
The following are the skills required by the developer:

• Expertise working with XML documents and schemas is a must
• Experience with the selected programming application you select to create

the integration
• Familiarity with Dynamics GP documents and operations
• Knowledge of the Dynamics Security Service
• Knowledge of Windows Communication Foundation
• .NET programming abilities

Chapter 2

[81]

End user prerequisites
A web service solution will need to be installed by qualified IT personnel; after that,
there are no end-user requirements.

Modifying the user interface
Don't like what you see? Change it. Despite the number of hours the fine people
at Microsoft spent designing the user interface of Dynamics GP, sometimes changes
are necessary. The changes may be purely cosmetic, such as adding a company logo
to the window, or they may bring with them additional functionality, such
as creating an XML document of the displayed record.

The question at hand is, which of the tools that we just discussed can you use to
make a change to the user interface. Tools having the capability of modifying the
user interface include:

• Dexterity
• VS Tools
• Modifier with VBA
• Extender and eXtender Enterprise

Dexterity
Using Dexterity you can change any existing window by creating an Alternate Form
(window) to be used in place of the original. You start with the original window as a
base and then make modifications to suit your needs.

Modifications should only be additive; removing any of the
existing controls will break the Dynamics GP application.

A word of caution: Alternate Forms and Reports can be very expensive for you to
maintain. With each release of Dynamics GP, you run the risk of having to re-create
the Alternate Form or Report from scratch. It is for this reason that using Alternate
Forms and Reports should be avoided if at all possible.

You can also create completely new windows with Dexterity, thereby creating an
interface specifically for your integrating application. This is normally the road you
will travel down rather than modifying existing Dynamics GP resources.

Integrating Application Fundamentals

[82]

During the development of a Dexterity integration, you will actually be working
with all of the resources in the core application dictionary of Dynamics GP. The core
application dictionary is named Dynamics.dic and contains nearly 60,000 resources
that you can use.

The core modules that comprise the Dynamics.dic dictionary include:

• System Manager
• General Ledger
• Payables Management (Accounts Payable)
• Receivables Management (Accounts Receivable)
• Bank Reconciliation
• Purchase Order Processing
• Sales Order Processing
• Inventory

In Dexterity, windows are included in Forms. A Form can contain any number
of windows that work together for a common purpose. For example, the RM_
Customer_Maintenance form includes four other windows in addition to the RM_
Customer_Maintenance window.

The following screenshot shows the Form Definition window for the RM_Customer_
Maintenance form as seen in Dexterity. Note the additional four windows:

Chapter 2

[83]

Dynamics.dic includes over 1,600 Forms. Forms contain windows and windows
contain window objects; window objects are the push buttons, pictures, fields, and
such that appear on a window. You have access to all existing window objects and
can add one or more of them to a window that you create. Window objects include:

• Static text (field prompts)
• Pictures
• Push buttons
• Drop-down lists
• Comboboxes
• Listboxes
• Multi-select listboxes
• Horizontal listboxes
• Scrolling windows
• Visual switches
• Radio groups
• Lines and shapes
• Progress indicators
• Tree views
• List views
• String, integer, currency, date, and time fields
• Big text fields

Any resource you create becomes what is known as a third-party resource and
eventually ends up in a separate dictionary that is your integrating application.

Adding sanScript code to the objects on the window will cause your program to
spring into action when the user pushes a button.

VS Tools
Using VS Tools, you can add a new window but you cannot change any existing
windows. WinForms are used to create new windows for add-ins developed using
VS Tools. As such, you can use any WinForm control in a window design.

Integrating Application Fundamentals

[84]

WinForm properties
In order to more closely match the look of a window created in Dexterity, VS Tools
has added additional WinForm properties to its windows:

• AutoSetDexColors: Set it to True to match the color of the Dynamics
GP window

• ControlArea: Set it to True to create a band at the top of the WinForm
where the Save, Clear, and Delete buttons are normally placed

• StatusArea: Set it to True to draw a divider line across the bottom of the
WinForm where you would normally place the browse, window note, and
help buttons, and sort-by fields

WinForm control properties
In addition to the extra WinForm properties for the windows, VS Tools added
additional properties to, or updated the characteristics of, several controls to
more closely match the look of Dynamics GP window objects.

The VS Tools controls that were modified to better integrate with Dynamics
GP include:

• Buttons
• TextBoxes
• Labels
• ComboBoxes
• ListBoxes

Buttons
Buttons include the new property ButtonType with the following values:

• Standard: There are no Dynamics GP specific appearance changes to
the Standard button type for VS Tools.
The following screenshot shows two Standard buttons:

Chapter 2

[85]

• Toolbar: The Toolbar button type has a flat appearance, often has a picture
on it, appears highlighted when the mouse is placed over it, changes to a
darker color when pushed, and you would typically place it in the window's
control area. The printer button found in the upper right-hand corner of most
windows is a Toolbar button.
The following screenshot shows the printer Toolbar button in the window
control area:

• ToolbarWithSeparator: The ToolbarWithSeparator button type is similar
to a Toolbar button with the addition of a vertical separator line drawn to
the right of each button. The standard Save, Delete, and Cancel buttons
that you place in the control area at the top of a window are examples of
ToolbarWithSeparator buttons.
The following screenshot shows three ToolbarWithSeparator buttons:

• StatusArea: The StatusArea button type displays only graphics, has a 3D
border drawn around it, and a tooltip describing the button's purpose when
the mouse is placed over it. The window note and help buttons at the bottom
of a window are examples of StatusArea buttons.
The following screenshot shows a StatusArea button.

Integrating Application Fundamentals

[86]

• Field: A field button type displays only graphics and is placed next to other
controls on the form. The lookup button, record notes button, and expansion
arrow button are examples of Field buttons.

The following screenshot shows two Field buttons: the lookup button and
the record notes button.

Pictures for button controls are provided in the .png files included with VS Tools.
These pictures match the images found on Dynamics GP windows and buttons.

TextBoxes
You would use a TextBox control to display string, integer, currency, date, and time
values. The TextBox control includes the new property AutoSetDexColors; when
set to True, the TextBox will match the colors of Dynamics GP.

Labels
Label controls in VS Tools correspond to the field prompts in Dynamics GP. To
mimic the traditional underline on Dynamics GP prompts, the LinkField property
was added to the Label control. The LinkField property is set to the name of the
corresponding TextBox on the window. A convenient drop-down list of control
names makes it easier to select the correct field.

ComboBoxes
You would use a ComboBox control to imitate the drop-down list or
combobox in Dynamics GP. The ComboBox control includes the new property
AutoSetDexColors; when set to True, the ComboBox will match the colors of
Dynamics GP. The following screenshot shows a VS Tools ComboBox control
being used as a Dynamics GP drop-down list.

ListBoxes
You would use a ListBox control in place of the list box or multiselect list box of
Dynamics GP.

Chapter 2

[87]

Modifier with VBA
Using Modifier you can make extensive changes to existing windows in Dynamics
GP, but you cannot add a new window. You can change any window created with
Dexterity; you are not limited to just the windows in the dynamics.dic dictionary.

Modifier is an end-user tool, but may be appropriate if, for example, changes would
otherwise result in the creation of an alternate window using Dexterity. Since
Modifier is a stripped-down version of Dexterity, the graphical design tools in
Modifier are a subset of the corresponding tools found in Dexterity.

The following are some of the changes you can make to a window with this tool; we
cover Modifier in more detail in Chapter 7, Creating Customizations with Modifier:

• Add graphics such as a company logo to a window
• Change field prompts or add other static text to the window
• Move objects around on the window
• Move objects off the window
• Drag additional fields onto the window from the AutoLinked table (if any)
• Make fields required
• Hide fields

The following are several types of new fields you can add to a window:

• Push button
• Drop-down list
• String field
• Integer field
• Currency field
• Date field

Modifier does not alter the original window; it creates a copy of the window and
you make changes to the copy. Modified windows are stored in a separate forms
dictionary that cannot include any sanScript code. Each application dictionary
installed creates a separate forms dictionary in which to store that application's
modified forms. As you recall, the location of the forms dictionary is dictated by the
Dynamics.set file.

Integrating Application Fundamentals

[88]

Extender / eXtender Enterprise
Using Extender or eXtender Enterprise, you can add a new independent window or
attach a new window to an existing Dynamics GP window. Although you can create
a new window, that window comes with a predefined layout. You do not have the
freedom of designing the window from scratch.

You create new windows using the Extender Windows window. The following
screenshot shows this window being used to define a new window named Vendor
Extra. The new window's name is determined by the Description field. Note that
you can only put 15 fields on an Extender window. You can include as many
windows as you like, but they can each contain only 15 fields.

The following screenshot shows what the Vendor Extra window defined earlier
looks like when opened in Dynamics GP.

Chapter 2

[89]

Using Extender or eXtender Enterprise, you can add several different types of
data-entry windows. These are explained as follows:

Forms
An Extender form creates a standalone data-entry window that is not attached to an
existing Dynamics GP window. You can use Extender forms to create new master
records for information not stored anywhere else in Dynamics GP. For instance, you
could create a master file describing vacation destinations.

An Extender form contains two columns of 12 fields each. Our new Vacation
Destination window is shown in the following screenshot:

Integrating Application Fundamentals

[90]

Detail forms
An Extender Detail form creates a standalone scrolling window similar to an
invoice-entry screen. You can use it for any data that has multiple line items
associated with a header record. For example, if the header record is a travel agency,
the line items could be trips booked by that travel agency.

Each Extender Detail form can contain two columns of six fields each per header
record. Each line item can contain 12 fields and may be two rows tall.

Our new Travel Agencies window is shown in the following screenshot:

Windows
An Extender window creates a window that is attached to any existing Dynamics
GP window. You would use Extender windows to link additional data fields to an
existing record. Use an Extender window when you need to track more information
than the Dynamics GP window can hold.

Chapter 2

[91]

For example, if your inventory consists of tomato plants, you may need to track
information such as days to harvest, fruit size, and hardiness. Each Extender
window can contain up to 15 fields that are presented in a single column. You
can attach numerous Extender windows to a single Dynamics GP window, but
each Extender window is limited to 15 fields. You can also attach an Extender
window to a scrolling window such as a purchase order or sales order line item.

The following screenshot shows an Extender window that supplements
item information:

Detail windows
An Extender Detail window creates a window that can track multiple line items for
a single Dynamics GP window record. A Detail window looks similar to a scrolling
window. Using our tomato plant as an example, you could use a Detail window to
list pests and problems inherent to this variety of tomato.

You can attach numerous Detail windows to a single Dynamics GP window.
For our tomato plant, we could use a second Detail window to list Pruning and
Staking methods.

Integrating Application Fundamentals

[92]

The following screenshot shows two Detail windows that are attached to the Item
Maintenance window:

Each Detail window can contain ten fields. These fields can be distributed between
two rows. You can also attach a Detail window to a scrolling window, such as an
invoice line item.

The following screenshot shows a Detail window displaying two rows per line:

Chapter 2

[93]

Notes
An Extender Notes window allows you to create multiple notes for a window
record. The notes can be categorized and are stamped with the user ID, time, and
date when the note was created. A Dynamics GP Notes window allows only a single
note as a continuous text field, without the ability to categorize or date-stamp it.

The following screenshot shows an Extender Note created for the Employee
Maintenance window:

Notice that the notes are categorized into different types and include the user ID,
date, and timestamp with each note.

You cannot modify existing Dynamics GP windows with Extender or
eXtender Enterprise.

Integrating Application Fundamentals

[94]

Changing or adding functionality
What's the point of creating an integrating application if you can't sneak in some
extra functionality? Building a user interface is nice, but the real power is in making
those new buttons do something when they are pushed. Enter the tools you can use
to change the way Dynamics GP behaves. You may want to change the way the
software currently accomplishes something, or add a brand-new talent to its list
of abilities.

The tools highlighted in this section are capable of adding to or altering the
Dynamics GP business logic:

• Dexterity
• VS Tools
• Modifier with VBA
• Continuum
• eXtender Enterprise

Dexterity
Dexterity uses the sanScript scripting language to create Dynamics GP logic.

sanScript is an event-driven language. When the events occur, whether initiated by
the user or through code, scripts attached to those events are executed. Scripts can
be attached to forms, windows, fields, and scrolling windows.

For the forms and windows that you have created, sanScript code will be attached
directly to the object events. For forms and windows that you did not create, you
will use triggers to watch for the events' occurrences. When the event occurs, you
can run a global procedure known as Trigger Processing Procedure to execute
custom business logic.

Dexterity events are used by other tools, so it is important to understand when they
occur. The primary events are listed as follows:

Form events
The form events are as follows:

• Pre: The Pre event occurs when the form is opened.
• Post: The Post event occurs when the form is closed.

Chapter 2

[95]

Window events
The windows events are as follows:

• Pre: The Pre event occurs when the window is opened.
• Activate: The Activate event occurs each time the window gains focus.

The Activate event occurs after the window Pre event when the window
is opened.

• Post: The Post event occurs when the window is closed.
• Print: The Print event occurs when the Print item is selected from the File

menu. The Print menu selection will only be active if a script is attached to
the window's Print event.

• ContextMenu: The ContextMenu event occurs when the right mouse button
is clicked by the user. The mouse pointer must be on the window and not
over a field, in order for this event to occur. This event enables scripts to
create the right-click menu seen in most other
Windows applications.

Field events
The field events are as follows:

• Pre: The Pre event occurs when the field is entered.
• Change: The Change event occurs when the field is exited and there

has been a change in the value of the field. For toggle fields such as push
buttons and visual switches, the Change event occurs when the user clicks
on the field.

• Post: The Post event occurs when the field is exited. The field Post event
occurs after the field's Change event.

• MouseEnter: The MouseEnter event occurs when the mouse pointer moves
over the field.

• MouseExit: The MouseExit event occurs when the mouse pointer moves off
the field.

• ContextMenu: The ContextMenu event occurs when the right mouse button
is clicked by the user while the mouse pointer is over the field. This event
allows for a field-specific menu to be displayed when the user right-clicks on
the field.

Integrating Application Fundamentals

[96]

Scrolling window events
Dexterity can only evaluate one record at a time; each line of a scrolling window
represents a single record. Therefore, each time a line is populated with data and is
displayed on the screen, the line events occur. When a scrolling window is initially
filled, the line events run over and over again until the scrolling window is filled.

The scrolling window events are as follows:

• LineFill: The LineFill event occurs each time a new line is displayed in
the scrolling window and each time focus is moved to an existing line that
already contains data. When the scrolling window is initially filled, the
LineFill event occurs repeatedly until the scrolling window is completely
full. The LineFill event occurs before the LinePre event.

• LinePre: The LinePre event occurs when focus moves into the line. The
LinePre event occurs after the LineFill event.

• LineChange: The LineChange event occurs when focus leaves the line and
there has been a change to one of the fields on the line. A script placed on this
event is typically used to save the line record to the table.

• LinePost: The LinePost event occurs when focus leaves the line.
• LineDelete: The LineDelete event occurs when the Delete Row item is

selected from the Edit menu. The Delete Row menu selection will only be
active if a script is attached to the LineDelete event.

• LineInsert: The LineInsert event occurs when the Insert Row item is
selected from the Edit menu. The Insert Row menu selection will only be
active if a script is attached to the LineInsert event.

• ContextMenu: The ContextMenu event occurs when the user right-clicks on
the line. This event allows for a line-specific (not record-specific) menu to be
displayed when the user right-clicks on the line.

Triggers
When you need to alter the business logic of Dynamics GP, you will use triggers. A
trigger monitors one of the previously defined events, and when that event occurs
the trigger is activated. Once activated, your scripts are called. What's more is that
you get to decide whether your script runs before or after the Dynamics GP script.
Often, if your script runs before, you can cancel the Dynamics GP script so that it
does not run at all.

Chapter 2

[97]

For example, let's assume your application is storing additional information about
a vendor. If the vendor is deleted by Dynamics GP, you want to delete your data
too. You need to register triggers in order to be notified that the user has selected
to delete a vendor, and whether the delete was successful. Alternatively, perhaps
you do not want to allow the vendor to be deleted under certain circumstances.
When the user selects to delete the vendor, your code can cancel the delete
operation, thereby changing the Dynamics GP business logic.

You can register a trigger against the events in any dictionary; you are not limited
to the events of the Dynamics.dic dictionary.

Triggers give us the ability to interact with other dictionaries without needing the
source code of the other application.

It is important to note that Dexterity triggers can only see operations
performed by Dexterity. Any operations performed by SQL-stored
procedures are unknown to Dexterity. This is true even if the SQL-
stored procedure was called by a Dexterity script.

Five triggers in Dexterity
The following are the five triggers in Dexterity:

• Database trigger
• Focus trigger
• Form trigger
• Function trigger
• Procedure trigger

More information on each trigger type is provided as follows:

• Database trigger: A Database trigger is activated by successful table
operations. The table operation must be performed by sanScript code.
Table operations performed by SQL-stored procedures will not activate
the trigger. Table operations that you can monitor include:

 ° Reading a record without locking it
 ° Reading a record and placing a lock on it
 ° Adding a new record
 ° Deleting an existing record
 ° Updating an existing record

Integrating Application Fundamentals

[98]

• Focus trigger: A Focus trigger is activated when the specified focus event
occurs. Available focus events are summarized in the following table:

Object Event
Field Pre, Change, Post, or ContextMenu

(Note: only the change event applies to toggle fields such as
push buttons and visual switches)

Form Pre or Post
Window Pre, Post, Activate, Print, or ContextMenu
Scrolling Window LineFill, LinePre, LineChange, LinePost, LineInsert,

LineDelete, or ContextMenu
Menu Item Change
Script Command Change (Note: script commands are typically used for

navigation)

• Form trigger: A Form trigger is activated when the specified form opens.
Form triggers are used to add menu items to the Additional menu on an
existing form. You will often use an Additional menu item to provide
navigation to your custom windows.

• Function trigger: A Function trigger is activated when the specified
function is called.

• Procedure trigger: A Procedure trigger is activated when the specified
procedure is called.

VS Tools
Using .NET assemblies, VS Tools can both alter existing business logic and create
new functionality in Dynamics GP. We learned earlier that you can use VS Tools to
create a user interface with WinForms that have been enhanced so that they more
closely match Dynamics GP. In fact, it's difficult to tell the difference between a
well-formatted WinForm and a native Dexterity window.

Next to Dexterity, VS Tools is the richest toolset we have for creating integrating
applications. For some jobs, such as accessing resources in third-party dictionaries,
it is arguably superior.

Chapter 2

[99]

You can access any dictionary's resources by including a reference to that dictionary's
application assembly in your VS Tools project. Application assemblies for the
Dynamics.dic file and the other integrating applications included with Dynamics
GP are bundled with VS Tools.

If your customization requires integration with a different third-party dictionary,
you can create your own application assembly using the Dictionary Assembly
Generator (DAG). The DAG utility ships with VS Tools.

Dictionary resources exposed to VS Tools through the application assembly include:

• Forms
• Windows
• Alternate windows
• Modified windows
• Window fields
• Tables
• Table fields
• Global variables
• Commands
• Functions
• Procedures

In addition to its capability of accessing dictionary resources, VS Tools can also
monitor events similar to those we discussed in the previous section. When a
monitored event is activated, your custom code is executed to carry out
whatever functions are necessary for your customization.

The code that executes is called an event handler. You register the event handler
against the event you want to monitor and it will run your code when the event
occurs. Conceptually, this architecture is very similar to what we do in Dexterity.
Registration is required in both tools and the VS Tools event handler takes the
place of Dexterity's Trigger Processing Procedure.

Similar to Dexterity, you can run the event handler either before or after the
Dynamics GP code for that event. If you run it before, you can often cancel the
Dynamics GP scripts and take control of the application.

The following events are available in VS Tools; notice how similar they are to
the Dexterity events:

Integrating Application Fundamentals

[100]

Form events
The following is a list of Form events:

• OpenBeforeOriginal: The OpenBeforeOriginal event occurs when the form
is opened, but before the Dynamics GP form Pre Script executes.

• OpenAfterOriginal: The OpenAfterOriginal event occurs when the form is
opened, but after the Dynamics GP form Pre Script executes.

• CloseBeforeOriginal: The CloseBeforeOriginal event occurs when the
form is closed, but before the Dynamics GP form Post Script executes.

• CloseAfterOriginal: The CloseAfterOriginal event occurs when the form
is closed, but after the Dynamics GP form Post Script executes.

Window events
The following is a list of window events:

• OpenBeforeOriginal: The OpenBeforeOriginal event occurs when the
window is opened, but before the Dynamics GP window Pre script executes.

• OpenAfterOriginal: The OpenAfterOriginal event occurs when the
window is opened, but after the Dynamics GP window Pre script executes.

• ActivateBeforeOriginal: The ActivateBeforeOriginal event occurs when
the window gains focus, but before the Dynamics GP window Activate
script executes.

• ActivateAfterOriginal: The ActivateAfterOriginal event occurs when
the window gains focus, but after the Dynamics GP window Activate
script executes.

• CloseBeforeOriginal: The CloseBeforeOriginal event occurs when the
window is closed, but before the Dynamics GP window Post script executes.

• CloseAfterOriginal: The CloseAfterOriginal event occurs when the
window is closed, but after the Dynamics GP window Post script executes.

• PrintBeforeOriginal: The PrintBeforeOriginal event occurs when the
user selects Print from the File menu, but before the Dynamics GP Print
script executes.

Chapter 2

[101]

• PrintAfterOriginal: The PrintAfterOriginal event occurs when the
user selects Print from the File menu, but after the Dynamics GP Print
script executes.

• BeforeModalDialog: The BeforeModalDialog event occurs when Dynamics
GP has opened a modal dialog box, but before it has been presented to the
user. This event is often used to programmatically answer the dialog, thereby
preventing the user from ever seeing it, or to change the text of the dialog to
a more understandable message.
You can have some fun with this event by changing the message on a dialog
box to something more clever than the original. Something like This will
delete all open transaction records from the database, do you want to
continue? and then you only present them with the OK button. This sort of
message always wakes people up.
However, the more mainstream use of this function is to make dialogs less
of a nuisance. For example, if you create a new transaction and type in a new
batch ID, the following modal dialog is displayed:

Your event handler code for BeforeModalDialog could push the Add button
so the user never even sees the question.

• AfterModalDialog: The AfterModalDialog event occurs when the user has
acted on a modal dialog displayed by a window. The event handler code can
evaluate the user's response to the dialog and use that information for further
processing. For example, if you needed to add a record to your customization
every time a new Batch ID is added, you would use the AfterModalDialog
event to find out if the user did indeed want to add the new Batch ID.

Integrating Application Fundamentals

[102]

Scrolling window events
The following is a list of scrolling window events:

• LineFillBeforeOriginal: The LineFillBeforeOriginal event occurs
before the Dynamics GP LineFill event. This event is activated before
the Dynamics GP LineFill script executes. The LineFill event occurs
before the LinePre event. Event handler code for this event can cancel
the Dynamics GP LineFill event.
The events execute in this order:

1. VS Tools LineFillBeforeOriginal
2. Dexterity LineFill
3. Dexterity LinePre

• LineFillAfterOriginal: The LineFillAfterOriginal event occurs
after the Dynamics GP LineFill event. This event is activated after
the Dynamics GP LineFill script executes. The LineFill event
occurs before the LinePre event.
The events execute in this order:

1. Dexterity LineFill
2. VS Tools LineFillAfterOriginal
3. Dexterity LinePre

• LineEnterBeforeOriginal: The LineEnterBeforeOriginal event occurs
when focus moves into a line on the scrolling window, but before the
Dynamics GP LinePre event occurs. Event handler code for this event
can cancel the Dynamics GP LinePre event.
The events execute in this order:

1. VS Tools LineEnterBeforeOriginal
2. Dexterity LinePre

• LineEnterAfterOriginal: The LineEnterAfterOriginal event occurs when
focus moves into a line on the scrolling window, but after the Dynamics GP
LinePre event occurs.
The events execute in this order:

1. Dexterity LinePre
2. VS Tools LineEnterBeforeOriginal

Chapter 2

[103]

• LineChangeBeforeOriginal: The LineChangeBeforeOriginal event occurs
when focus moves out of a line on the scrolling window and a field on that
line has changed. This event occurs before the Dynamics GP LineChange
event. Event handler code for this event can cancel the Dynamics GP
LineChange event.
The events execute in this order:

1. VS Tools LineChangeBeforeOriginal
2. Dexterity LineChange

• LineChangeAfterOriginal: The LineChangeAfterOriginal event occurs
when focus moves out of a line on the scrolling window and a field on
that line has changed. This event occurs after the Dynamics GP
LineChange event.
The events execute in this order:

1. Dexterity LineChange
2. VS Tools LineChangeAfterOriginal

• LineLeaveBeforeOriginal: The LineLeaveBeforeOriginal event occurs
when focus moves out of a line on the scrolling window. This event occurs
before the Dynamics GP LinePost event. Event handler code for this event
can cancel the Dynamics GP LinePost event.
The events execute in this order:

1. VS Tools LineLeaveBeforeOriginal
2. Dexterity LinePost

• LineLeaveAfterOriginal: The LineLeaveAfterOriginal event occurs when
focus moves out of a line on the scrolling window. This event occurs after the
Dynamics GP LinePost event.
The events execute in this order:

1. Dexterity LinePost
2. VS Tools LineLeaveAfterOriginal

Integrating Application Fundamentals

[104]

• LineInsertBeforeOriginal: The LineInsertBeforeOriginal event occurs
when the user selects Insert Row from the Edit menu. This event occurs
before the Dynamics GP LineInsert event. Event handler code for
this event can cancel the Dynamics GP LineInsert event.
The events execute in this order:

1. VS Tools LineInsertBeforeOriginal
2. Dexterity LineInsert

• LineInsertAfterOriginal: The LineInsertAfterOriginal event occurs
when the user selects Insert Row from the Edit menu. This event occurs
after the Dynamics GP LineInsert event.
The events execute in this order:

1. Dexterity LineInsert
2. VS Tools LineInsertAfterOriginal

• LineDeleteBeforeOriginal: The LineDeleteBeforeOriginal event occurs
when the user selects Delete Row from the Edit menu. This event occurs
before the Dynamics GP LineDelete event. Event handler code for this event
can cancel the Dynamics GP LineDelete event.
The events execute in this order:

1. VS Tools LineDeleteBeforeOriginal
2. Dexterity LineDelete

• LineDeleteAfterOriginal: The LineDeleteAfterOriginal event occurs
when the user selects Delete Row from the Edit menu. This event occurs
after the Dynamics GP LineDelete event.

The events execute in this order:

1. Dexterity LineDelete
2. VS Tools LineDeleteAfterOriginal

To wrap it up, the Line navigation events execute in the following order:

1. VS Tools LineFillBeforeOriginal
2. Dexterity LineFill
3. VS Tools LineFillAfterOriginal
4. VS Tools LineEnterBeforeOriginal

Chapter 2

[105]

5. Dexterity LinePre
6. VS Tools LineEnterAfterOriginal
7. VS Tools LineChangeBeforeOriginal
8. Dexterity LineChange
9. VS Tools LineChangeAfterOriginal
10. VS Tools LineLeaveBeforeOriginal
11. Dexterity LinePost
12. VS Tools LineLeaveAfterOriginal

Field events
The order of execution for Field events work in much the same way as the Line
events covered earlier. However, be aware that each line of a scrolling window
also includes fields, and the field events occur for those scrolling window fields
just as they do everywhere else. The Line events are simply an accessory unique
to scrolling windows. Let's go over the Field events available, using VS Tools:

• Change: This event occurs when the value of the field changes, whether
changed by the user or by Dynamics GP code, and the user attempts to
leave the field.

• ClickBeforeOriginal: This event applies to push buttons and visual switches.
The ClickBeforeOriginal event occurs when the user clicks on the button
or switch. This event occurs before the Dynamics GP field Change event.
Event handler code for this event can cancel the Dynamics GP Change event.

• ClickAfterOriginal: This event applies to push buttons and visual switches.
The ClickAfterOriginal event occurs when the user clicks on the button
or switch. This event occurs after the Dynamics GP field Change event.

• EnterBeforeOriginal: The EnterBeforeOriginal event occurs when focus
moves into a field, but before the field Pre event occurs. Event handler code
for this event can cancel the Dynamics GP Pre event.

• EnterAfterOriginal: The EnterAfterOriginal event occurs when focus
moves into a field. This event occurs after the Dynamics GP field Pre
event occurs.

• LeaveBeforeOriginal: The LeaveBeforeOriginal event occurs when focus
moves out of a field, but before the field Post event occurs. Event handler
code for this event can cancel the Dynamics GP Post event.

• LeaveAfterOriginal: The LeaveAfterOriginal event occurs when focus
moves out of a field after the Dynamics GP field Post event occurs.

Integrating Application Fundamentals

[106]

• ValidateBeforeOriginal: When a field changes (other than a push
button or visual switch) and focus moves out of the field, the Validate
in CIT event occurs. The Validate in CIT event can be invoked using the
ForceValidate() method so that the Validate event will occur when focus
leaves the field, whether the field has changed or not. At this point, any VS
Tools validation code attached to that event will execute. This event occurs
before the fields' Validate in CIT event. Event handler code for this event
can cancel the Validate in CIT event. In Dexterity terms, this is similar to the
TRIGGER_REGISTER_FOCUS/TRIGGER_BEFORE_ORIGINAL event.

• ValidateAfterOriginal: When a field changes (other than a push button or
visual switch) and focus moves out of the field, the Validate event occurs.
The Validate event can be invoked using the ForceValidate() method so
that the Validate event will occur when focus leaves the field, whether the
field has changed or not. At this point, any VS Tools validation code attached
to that event will execute. This event occurs after the fields' Validate event.

Procedure events
The procedure events are as follows:

• InvokeBeforeOriginal: This event occurs when a Dynamics GP procedure
is invoked, but before the procedure runs. The event handler can access
the values of any parameters passed into the procedure and can change
the values of the out and inout parameters.

• InvokeAfterOriginal: This event occurs when a Dynamics GP procedure
is invoked after the procedure has run. The event handler can access the
values of any parameters passed into the procedure and can change the
values of the out and inout parameters.

Function events
The function events are as follows:

• InvokeBeforeOriginal: This event occurs when a Dynamics GP function
is invoked, but before the function runs. The event handler can access the
values of any parameters passed into the function as well as the return value.
The event handler can change the values of out and inout parameters.

• InvokeAfterOriginal: This event occurs when a Dynamics GP function is
invoked after the function has run. The event handler can access the values
of any parameters passed into the function as well as the return value.
The event handler can change the values of the out and inout parameters.

We'll see in the next section that VBA events follow this same pattern.

Chapter 2

[107]

Modifier with VBA
Modifier with VBA is two tools in one. Using the Modifier component, you can
make extensive changes to the user interface, as we discussed earlier. Using the
VBA component, you can make those changes come to life.

One of the changes you can make using Modifier is the creation of new fields on a
window. These new fields are not tied to a table, nor do they have any script behind
them to make them operational. When we push the new button on the window,
nothing happens. Using the VBA component, you can attach VBA code behind those
buttons. Now, when the button is pushed, those new fields can be populated.

VBA is a powerful language and you can use it to create some sophisticated business
logic changes, but it does not create a running application on its own. If extensive
changes are necessary, you would be better served using Dexterity or VS Tools to
create a new application. VBA was not intended to be used as a tool that significantly
alters the nature of the application.

One big advantage that VBA holds over other tools is that it is blind to the dictionary
construct, so it is simple to modify windows in any third-party dictionary. You can
easily put buttons on a window in fixed assets and use VBA to cause that button to
open a window in Grant Management.

In order to manipulate data, VBA makes an external connection to the database.
Any data validation must be provided by you as the developer.

VBA can modify the business logic by running event procedures upon the activation
of a VBA event. Event procedures can run either before or after the Dynamics GP
event script executes.

For example, when a window first opens, the following events occur in this order:

1. Dexterity Form Pre script
2. VBA BeforeOpen window event
3. Dexterity window Pre script
4. VBA AfterOpen window event
5. VBA BeforeGotFocus field event
6. Dexterity field Pre script
7. VBA AfterGotFocus field event
8. VBA BeforeActivate window event
9. Dexterity Activate window event

VBA events are similar to those used in VS Tools; they also correspond to Dexterity
events. VBA events are explained in the following sections.

Integrating Application Fundamentals

[108]

Window events
The window events are as follows:

• BeforeOpen: The BeforeOpen window event occurs as the window opens,
but before the Dynamics GP window Pre script executes. Therefore, the
Dynamics GP Pre script could override any field presets that were made
by the VBA code. VBA event procedure code can cause the window to
open invisibly.

• AfterOpen: The AfterOpen window event occurs as the window opens,
but after the Dynamics GP window Pre script executes. In this event, your
VBA event procedure code can override any values set by the Dynamics
GP Pre script.

• BeforeClose: The BeforeClose window event occurs as the window closes,
but before the Dynamics GP window Post script executes.

• AfterClose: The AfterClose window event occurs as the window closes,
but before the Dynamics GP window Post script executes. You can use
the AfterClose event to update values in your integrating application.

• BeforeActivate: The BeforeActivate event occurs when focus comes
to the window, but before the Dynamics GP window Activate script
executes. Keep in mind that the Activate event also occurs each time
a window is opened.

• AfterActivate: The AfterActivate event occurs when focus comes to the
window after the Dynamics GP window Activate script executes. Keep in
mind that the Activate event also occurs each time a window is opened.

Modal dialog events
Modal dialog events work in the sameway in VBA as they do in VS Tools. A
modal dialog is a window you must dismiss before you can do anything else in the
application. The dialog may be informational and just have an OK button on it,
or it could be an ask dialog with up to three buttons on it.

For example, whenever you enter a new batch ID on a transaction, a modal dialog
pops up and asks you if you want to create the batch. The following modal dialog
is displayed:

Chapter 2

[109]

Until you dismiss this dialog, you will not be able to do anything else in
the application.

The following are modal dialog events:

• BeforeModalDialog: The BeforeModalDialog event occurs when
Dynamics GP raises a modal dialog, but before it has been displayed to
the user. You can programmatically dismiss the dialog by answering the
question or pressing the OK button, as appropriate. For the dialog box
shown here, a VBA event procedure could push the Add button and the
user would never see this dialog.
Instead of dismissing the dialog, the event procedure could change the text
of the dialog displayed. This event can be loads of fun because you can check
the User ID and then "personalize" the message for that user. Instead of the
dialog shown earlier, what would happen if the dialog looked like the one
shown next? Imagine the possibilities!

• AfterModalDialog: The AfterModalDialog event occurs when Dynamics
GP raises a modal dialog and the user dismisses it. Use this event to
determine how the user answered the dialog.

Field events
The field events are as follows:

• BeforeGotFocus: The BeforeGotFocus event occurs when the user enters
a field. This event occurs before the Dynamics GP Pre event for this field.
The VBA event procedure can prevent the Dynamics GP field Pre script
from executing by setting the CancelLogic parameter to True. If the
Pre script does not execute, then any event procedure attached to the
AfterGotFocus event will not execute.

Integrating Application Fundamentals

[110]

• AfterGotFocus: The AfterGotFocus event occurs when the user enters
a field. This event occurs after the Dynamics GP Pre event for this field.

• BeforeUserChanged: The BeforeUserChanged event occurs when the user
has changed the data in a field and attempts to leave the field. For push
buttons and visual switches, the event occurs when the user clicks on the
push button or visual switch. This event occurs before the Dynamics GP
Change event.
The VBA event procedure can prevent the Dynamics GP field Change
script from executing by setting the CancelLogic parameter to True. If
the Change script does not execute, any event procedure attached to the
AfterUserChanged event will not execute.

• AfterUserChanged: The AfterUserChanged event occurs when the user
has changed the data in a field and attempts to leave the field. For push
buttons and visual switches, the event occurs when the user clicks on the
push button or visual switch. This event occurs after the Dynamics GP
Change event.

• BeforeLostFocus: The BeforeLostFocus event occurs when the user
attempts to leave the field. This event occurs before the Dynamics GP
Post event.
The VBA event procedure can prevent the Dynamics GP field Post
script from executing by setting the CancelLogic parameter to True.
If the Post script does not execute, any event procedure attached to
the AfterLostFocus event will not execute.

• AfterLostFocus: The AfterLostFocus event occurs when the user attempts
to leave the field. This event occurs after the Dynamics GP Post event.

Scrolling window events
The scrolling window events are as follows:

• BeforeLineGotFocus: The BeforeLineGofFocus event occurs when the user
enters a line on the scrolling window. This event occurs before the Dynamics
GP LinePre event.
The VBA event procedure cannot prevent the GP LinePre event from
occurring.

• AfterLineGotFocus: The AfterLineGofFocus event occurs when the user
enters a line on the scrolling window. This event occurs after the Dynamics
GP LinePre event.

Chapter 2

[111]

• BeforeLineChange: The BeforeLineChange event occurs when the user
attempts to leave a line on the scrolling window and one of the fields on
the line has changed. This event occurs before the Dynamics GP
LineChange event.
The VBA event procedure cannot prevent the GP LineChange event
from occurring.

• AfterLineChange: The AfterLineChange event occurs when the user
attempts to leave a line on the scrolling window and one of the fields
on the line has changed. This event occurs after the Dynamics GP
LineChange event.

• BeforeLinePopulate: The BeforeLinePopulate event occurs before the
Dynamics GP LineFill event. This event is activated before the Dynamics
GP LineFill script executes. The LineFill event occurs each time a new
line is displayed in the scrolling window and each time focus is moved
to an existing line that already contains data. When the scrolling window
is initially filled, the LineFill event occurs repeatedly until the scrolling
window is completely full. The LineFill event occurs before the
LinePre event.
The BeforeLinePopulate event is commonly used to filter out any records
you do not want to display on the grid.

• AfterLinePopulate: The AfterLinePopulate event occurs after the
Dynamics GP LineFill event. This event is activated after the Dynamics
GP LineFill script executes. The LineFill event occurs each time a new
line is displayed in the scrolling window and each time focus is moved
to an existing line that already contains data. When the scrolling window
is initially filled, the LineFill event occurs repeatedly until the scrolling
window is completely full. The LineFill event occurs before the
LinePre event.

• BeforeLineLostFocus: The BeforeLineLostFocus event occurs when
the user exits a line on the scrolling window. This event occurs before the
Dynamics GP LinePost event.

• AfterLineLostFocus: The AfterLineLostFocus event occurs when the user
exits a line on the scrolling window. This event occurs after the Dynamics GP
LinePost event.

Integrating Application Fundamentals

[112]

Report events
In addition to windows, VBA can interact with Report Writer reports to set or
retrieve values of a field and to include new fields added with the Modifier to
a report.

The report events are as follows:

• Start: The Start event occurs once at the beginning of a report just before
the report starts to print. No data values are available during this event.
The Start event is typically used to populate report legends, open an ADO
connection to SQL Server, and to initialize any module-level variables you
use in the report.
Legends are fields used to display information that is passed to the report
when it is printed. Legend fields are string fields that are normally used to
display the sorting and restriction options used in the report. Legend fields
can be used in calculated fields.

• End: The End event occurs once after the report prints. The End event is
often used to close an ADO connection to SQL Server.

Band events
Report Writer is a single-pass, banded report writer. Each report contains several
sections; these sections are called bands. Each band has a corresponding band event.
When a report prints, each band event occurs just before the data in the band prints.
The following screenshot shows the bands that make up a report; reports may
contain several Additional Header and Additional Footer sections.

Chapter 2

[113]

The BeforePH event occurs before the BeforeRH event. Likewise, the BeforePF
event occurs after the BeforeRF event. Therefore, on the first page of the report,
the page header is printed before the report header. On the last page of the
report, the report footer is printed before the page footer.

The band events are as follows:

• BeforePH (Page Header): The BeforePH event occurs just before any data
in the page header prints. The page header prints at the top of every page,
including the first page. Therefore, the BeforePH event occurs first and then
the BeforeRH event occurs.

• BeforeRH (Report Header): The BeforeRH event occurs only on the first
page of the report before any items in the report header print. The BeforeRH
event occurs after the BeforePH event.

• BeforeAH (Additional Header): TheBeforeAH event occurs before items in
the report's additional header print. If the report uses multiple additional
headers, a BeforeAH event occurs for each additional header.

• BeforeBody (Line Items): The BeforeBody event occurs before each line item
in the body section prints. If there are five body records, the BeforeBody
event will occur five times.

• BeforeAF (Additional Footer): The BeforeAF event occurs before items in
the report's additional footer print. If the report uses multiple additional
footers, a BeforeAF event occurs for each additional footer.

• BeforeRF (Report Footer): The BeforeRF event occurs only on the last page
of the report and before any items in the report footer print. The BeforeRF
event occurs first, and then the BeforePF event occurs.

• BeforePF (Page Footer): The BeforePF event occurs just before data in
the page footer prints. The page footer prints at the bottom of every page,
including the last page. Therefore, the BeforePF event occurs after the
BeforeRF event.

Continuum
The Continuum API allows any COM-compliant development environment
to interact with Dynamics GP.

Designed originally to be used with Visual Basic and Delphi, it gives you the ability
to access the OLE layer of Dynamics GP and pass commands through the application
at runtime.

Integrating Application Fundamentals

[114]

eXtender Enterprise
Using eXtender Enterprise you can attach sanScript to newly created forms, thereby
adding functionality or modifying existing functionality. Procedures added through
eXtender Enterprise can create brand-new modules to meet specific needs.

eXtender Enterprise is itself a hybrid because much of the code is built in to the
application and you will not have to write those procedures. Using this, you can create
some pretty impressive changes in a very short period of time, across the tables.

Sometimes modifying the user interface and business logic is not necessary because
the only thing you need to do is interact with the database itself. Many tools can
access a SQL database, and we have three choices:

• eConnect and SmartConnect
• Integration Manager
• Continuum

Adding information not previously
collected
If you just need to add some additional static information to records in the database,
several of the tools we have discussed can satisfy that need. The best tool for that
sort of thing is Extender. That's all good and fine, but if you don't happen to own
the Extender module, that's not a good answer.

This section explores how you can store additional data using the DUOS tables.

DUOS
DUOS stands for Dynamic User Object Store. The DUOS table is stored in the
company database and has the following characteristics.

Table information:

Display name Technical name Physical name Series
SY_User_Object_Store SY_User_Object_Store SY90000 Company

Chapter 2

[115]

Field information:

Field name Physical name Storage type Field Position
GPS_Reserved GPS_RESERVED Long Integer 1
ObjectType ObjectType String 5
ObjectID ObjectID String 37
PropertyName PropertyName String 99
PropertyValue PropertyValue String 131

Key Information:

Key name DUOS_Key1 DUOS_Key2
Segment1 ObjectType ObjectType

Segment2 ObjectID PropertyName

Segment3 PropertyName PropertyValue

The DUOS tables were constructed so that a user could store additional
information, which did not have anywhere else to live, in the tables. They were
designed to be used with the Modifier with VBA module so that extra fields added
to a window could be stored without requiring you to create additional SQL tables.
The DUOS table is misunderstood or unknown by most, so they do not get much
attention out there in Dynamics GP land; but that stops now. You can either write
to it directly from outside of Dynamics GP, or use VBA to programmatically access
the table. The VBA developer's guide will walk you through the entire process.
The VBA developer's guide is installed with Dynamics GP. Using the default
settings, you can find it here for a 64-bit machine: C:\Program Files (x86)\
Microsoft Dynamics\GP2010\Documentation\ VBADevelopersGuide.pdf.
Find it here for a 32-bit machine: C:\Program Files\Microsoft Dynamics\
GP2010\Documentation\ VBADevelopersGuide.pdf.

Integrating Application Fundamentals

[116]

Summary
Choosing a development tool is influenced by four prominent considerations:

• Type of integration
• Capabilities of the toolset
• Skills of the developer
• Prerequisites of licensing to the end user

In this chapter we described how the following ten development tools fit into the
considerations just mentioned:

• Dexterity
• VS Tools
• Modifier with VBA
• Continuum
• Extender and eXtender Enterprise
• DDE, ODBC, and ADO,and OLE Automation
• Integration Manager
• Table Import
• eConnect
• Web services

We looked at which of the tools would modify the user interface, add functionality,
or just access the database directly. At the end of the day, the solution needs to meet
the specification, be supportable, affordable, and upgradable.

The next chapter is more of a hands-on case study. We are going to use a couple
of techniques discussed in this chapter to create a small integrating application
using Dexterity.

Getting Started
with Dexterity

In the next few chapters, you will create your first integrating application using
Dexterity. As you develop this application, we will see the key concepts of Dexterity
in action. You can create a standalone application using Dexterity, but our focus is
on creating an application that will integrate with Dynamics GP.

In this chapter, you will set up your development environment, explore the different
components that make up Dexterity, and learn how to navigate the Dexterity
Resource Explorer.

The key topics in this chapter include:

• Overview of the development process
• Preparing the development environment
• Overview of Dexterity
• Navigating the Resource Explorer

Overview of the development process
Developing an integrating application using Dexterity involves several steps.
This section will provide an overview of those steps.

Getting Started with Dexterity

[118]

Installing the software
The first step in the development process seems somewhat obvious, but there are
several items involved. The first step is to install the software that you'll use to
create your customization. The software you will install to develop an integrated
application using Dexterity includes the following:

• Dynamics GP
• Dexterity
• Dynamics GP Software Development Kit
• DexSense
• Support Debugging Tool

Preparing your development environment
After you install the software, you need to prepare your development environment.
Preparing the development environment involves the following steps:

• Creating a folder in which to develop your application
• Making a copy of the Dynamics.dic file from your production environment

and copying it to your development folder
• Renaming the development copy of the Dynamics.dic file to something

appropriate for your project

Developing the application
As you create your user interface and business logic code, you will repeatedly
switch back and forth between test mode (also called Debug mode) and tools mode
in order to test your application. When you're in test mode, you're actually running
Dynamics GP from your development dictionary. While in tool mode, you can use
the source debugging tools and the script editor to perfect your code.

While developing your application, you will, no doubt, create additional forms,
windows, reports, procedures, and so on. These objects are each considered to
be a resource that is added to the development dictionary. Every resource in the
dictionary has a resource ID. Dexterity assigns the resource ID automatically,
and you cannot change it. The resources you create will have a resource ID
greater than or equal to 22000.

Chapter 3

[119]

Creating the chunk file
At the end of the development process, you will use the Dexterity Utilities
application to create a Chunk or .cnk file. During this procedure, you will
extract all of the resources that you created from the development dictionary.
The extracted resources create what is known as an Extract dictionary. Additionally,
if you modified any existing Dynamics GP form or report, you will need to manually
transfer those resources to your Extract dictionary. A modified form or report is
known as an Alternate form or report.

This extracted dictionary will be used to create a self-extracting Chunk file. This
Chunk file becomes your final product dictionary. You will add product information
to the Extract dictionary, such as:

• Your application's name
• Your application's delivered dictionary name
• The names for your form and report dictionaries
• Version and build information
• Installation scripts
• The Compression method (whether or not to strip out the source code)

The development environment is graphically depicted in the following diagram:

Client Environment Developer Environment

PROJECT.DIC

Resources >=22000Copy & Rename
Dynamics.dic

DYNAMICS.EXE
Runtime Engine

DYNAMICS.SET

+
DEX.INI

Launch File

Preferences File

DYNAMICS.DIC
Product ID: 0 PRODUCT.CNK

No source

Create chunk fileDevelop 3 Party
Customization

rd

Extract resources

Transfer Alternates

Add Product Information

EXTRACT.DIC
with source

Alternate Forms &
Reports

Product Information

Getting Started with Dexterity

[120]

Delivering the final product
After testing and debugging and testing some more, and testing more after that, it's
at last time to deliver your final application. You have a couple of different choices
on how to deliver your product.

The easiest method is to just ship the .cnk file and instruct your user to copy the
.cnk file into the Dynamics GP application folder and then launch Dynamics GP.
The .cnk file will automatically expand and become your .dic file according to
the information you provided during the chunking process.

Alternatively, you can create a Windows Installer file using the WiX installer template
that is included with Dexterity. You can find the template with instructions in the \
Microsoft Dexterity\Dex 11.0\Samples\InstallerDexterity\Samples folder.

The following illustration depicts the client environment once your application has
been deployed:

DYNAMICS.EXE
Runtime Engine

DYNAMICS.SET

DEX.INI
+

Launch File

Preferences File

NEW_APP.DIC
Product: 1234

1234_FRM.DIC
Modifier

1234_RPT.DIC
Report Writer

DYNAMICS.DIC
Product ID: 0

FORMS.DIC
Modifier

REPORTS.DIC
Report Writer

Chapter 3

[121]

Preparing the development environment
Before you start programming, you need to set up your environment. As you gain
more experience working with Dexterity, you will develop your own favorite ways
to do things. For now, we will create a good basic starting point. At last, you get to
install the software!

We are presuming that a test installation of Dynamics GP and Microsoft SQL is
already set up and running on the workstation. The test installation of Dynamics GP
should not be connected to the production copy of Dynamics GP. A test company
is not sufficient; the entire environment should be for testing. We will focus on
installing the Dexterity program, the Dynamics GP Software Development Kit (SDK),
and other software you need for establishing your development environment.

After installing the software, you'll create the development dictionary, modify the
Dex.ini file, and make some necessary changes to Dynamics GP security. With the
security changes made, you will make sure that you can switch into test mode, and
then you'll be ready to start creating your application.

Installing Dexterity and the SDK
The Dexterity installation files are located in the Dynamics GP installation media.
You can download the installation DVD from the locations listed as follows:

From PartnerSource: http://tinyurl.com/76z68gy

From CustomerSource: http://tinyurl.com/7vpm69q

Alternatively, search for "Product release downloads Dynamics GP 2010 R2" and
you will be directed to the correct site.

To install Dexterity, right-click on the file \Tools\Dex\setup.exe and select Run
as Administrator. If you are not installing the software on a computer that has UAC
(User Account Control) enabled, you can just double-click on the setup.exe file.
Accept all of the defaults when prompted, and just press Next.

To install the SDK, run the following file:

\Tools\SDK\Dynamics GP\Microsoft_DynamicsGP11_SDK_x86_en-us.msi

Again, accept all of the defaults when prompted and press Next.

http://tinyurl.com/76z68gy
http://tinyurl.com/7vpm69q

Getting Started with Dexterity

[122]

Modifying the Dex.ini file
Since your integrating application needs to be connected to the Dynamics GP data
tables, copy the Dex.ini file from the Dynamics GP installation to the Dexterity
installation. The following pathnames will presume that you have accepted all of
the defaults during the installation:

• For a 32-bit machine, copy the Dex.ini file
from C:\Program Files\Microsoft Dynamics\GP2010\Data\Dex.ini
to C:\Program Files\Microsoft Dexterity\Dex 11.0\Data\Dex.ini

• For a 64-bit machine, copy the Dex.ini file

from C:\Program Files (86)\Microsoft Dynamics\GP2010\Data\Dex.ini

 to C:\Program Files (86)\Microsoft Dexterity\Dex 11.0\Data\Dex.ini

It's OK to overwrite the existing file. Open the Dex.ini file in the Dex 11.0\Data
folder and add the following line at the bottom of the file:

ShowResIDs=TRUE

This switch adds a column named ID to the Resource Explorer, as shown in the
following screenshot. The ID column displays the resource number of each item. All
of the existing items will have resource IDs less than 22,000; the resources you create
will have IDs that start at 22,000. Sorting the ID column is a quick way to find the
resources you created.

Chapter 3

[123]

You also need to change the DexHelpPath= setting so that it points to the location
of the Dexterity help file. If you do not change it, nothing will happen in Dexterity
when you press F1.

If you accepted the default settings during the installation, you can modify the
DexHelpPath= setting as follows:

• For a 32-bit machine, modify it to DexHelpPath=C:\Program Files\
Microsoft Dexterity\Dex 11.0\.

• For a 64-bit machine, modify it to DexHelpPath=C:\Program Files (86)\
Microsoft Dexterity\Dex 11.0\.

Creating the development dictionary
You will develop your application in a copy of the Dynamics.dic file that was used
in production. Never open the production dictionary; instead, copy it. Follow these
steps to create your development dictionary:

1. Create a folder to hold your development dictionary. Let's create a folder
named DEXDEVELOP inside your My Documents folder.

2. Copy the Dynamics.dic file from the production installation of
Dynamics GP to the DEXDEVELOP folder.
If you used the default installation paths for Dynamics GP, the Dynamics.
dic file used in production will be located in the folders indicated as follows:
For a 32-bit machine:
C:\Program Files\Microsoft Dynamics\GP2010\Dynamics.dic.

For a 64-bit machine:

C:\Program Files (86)\Microsoft Dynamics\GP2010\Dynamics.dic.

3. Rename the Dynamics.dic file in the DEXDEVELOP folder to PROJECT.dic.

Your development dictionary is ready to go. Launch Dexterity from All Programs |
Microsoft Dexterity | Dex 11.0 | Dexterity, and open the PROJECT.dic dictionary
from the DEXDEVELOP folder inside of your My Documents folder.

The Dexterity Resource Explorer window will open; your screen should look similar
to the previous screenshot.

Getting Started with Dexterity

[124]

To change the Dynamics GP desktop so that the area pages appear in Dexterity Test
mode, copy the [cit]Background[/cit] folder from your Dynamics GP workstation
installation into the folder containing your development dictionary.

Moving to test mode
The first thing you need to do is to make sure you can switch from tools mode into
test mode, sometimes called Debug mode. To change over into test mode, use the
following navigation:

Debug | Test Mode (you could also press Ctrl + T on your keyboard)

The Dynamics GP login window should be displayed. If, instead, you get the
following error message, you need to do one more thing.

To resolve this error, simply copy the GPDWIN32.dll file from your Dynamics GP
application folder into your Dexterity application folder.

Once you get the Dynamics GP login window, log in as the sa user. Select Fabrikam
as the company. As soon as your login is complete, you will be greeted with the
following dialog:

Chapter 3

[125]

Select OK to dismiss the dialog. Dynamics GP will complete its launch and the
following window will open:

Close the Developer Assistant window. Having to close two windows each time you
go into Test mode will get real old, real fast. To keep these windows from opening,
you need to add two more entries to your Dex.ini file. Open the Dex.ini file in the
Microsoft Dexterity\Dex 11.0 folder and add the following switches at the bottom:

SAMPLEDATEMSG=FALSE
DevAssistHide=TRUE

The first switch prevents the sample company dialog from appearing. The second
prevents the Developer Assistant window from automatically opening.

Getting Started with Dexterity

[126]

Dynamics GP desktop
When you switch into Test mode, the regular Dynamics GP homepage will not look
the same as what you are accustomed to. The following screenshot should be similar
to how your desktop will look:

To change the Dynamics GP desktop so that the area pages appear in Dexterity Test
mode, copy the Background folder from your Dynamics GP workstation installation
into the folder containing your development dictionary.

Modifying user security
The Lookup windows in Dynamics GP are not stored in the Dynamics.dic
dictionary; they are in the SmartList dictionary EXP1493.dic. When running
in test mode, you will have access only to the resources in the Dynamics.dic
dictionary. Because the Lookup windows do not exist in that dictionary, you
must change the Alternate/Modified Forms and Reports settings to point the
security to the original Lookup windows.

Chapter 3

[127]

If you attempt to open a lookup window without changing the security settings,
you will encounter the following error:

To resolve this error, press Ctrl + T to switch into test mode and then open the
Alternate/Modified Forms and Reports window. To open this window, use the
navigation PROJECT.dic | Tools | Setup | System | Alternate/Modified Forms
and Reports, as shown in the following screenshot:

Instead of changing an existing ID, it's a good idea to create a new ID that will be
used for testing and development. For now, let's just use the DEFAULTUSER ID.

Getting Started with Dexterity

[128]

You will be using the customer lookup window in your project, so you only need
to change the security for the Customers and Prospects window. Set the field values
for the top part of the Alternate/Modified Forms and Reports window as follows:

Field Value
ID DEFAULTUSER
Description Default User
Product All Products
Type Windows

When you tab off the Type field, the bottom of the window will list each series that
contains an Alternate or Modified window. It may take a couple of moments to
load, so have patience. Expand the Sales series, navigate down to the Customers
and Prospects node, expand it, and then mark the radio button next to PROJECT.
dic; press Save to commit your changes. Your window should look similar to the
following screenshot:

Chapter 3

[129]

Now if you open the Customer Maintenance window from Cards | Sales |
Customer and press the lookup button next to the Customer ID field, the following
lookup window should open. This window is known affectionately as the old "green
bar" lookup window:

You'll notice that this old lookup window has far fewer features than the lookup
window provided by the SmartList dictionary. One of the differences is that you
cannot click on the column headings to sort the data. There are other differences,
but that is the one that you will probably miss the most.

Installing DexSense
Download DexSense, an IntelliSense-like tool for Dexterity, from its creator Tim
Gordon at Alpine Consulting http://www.alpinelimited.com.

This application makes coding considerably faster because it saves you a substantial
amount of time that you would otherwise have spent in hunting down the names
of your dictionary resources. It works much like the IntelliSense feature, which we all
like so much, found in other Microsoft programming tools. DexSense is available as
a free download for all Dynamics GP developers, and supports the Dexterity
versions 8, 9, 10, and 2010.

http://www.alpinelimited.com

Getting Started with Dexterity

[130]

Tim Gordon created this for the good of the community and he continues to enhance
it and support it. After you see how terrific it is, please take the time to drop an
e-mail to Tim at tim@alpinelimited.com and let him know how much you like it.

Installing the Support Debugging Tool (SDT)
David Musgrave, Escalation Engineer from the Asia Pacific Microsoft Dynamics
GP Support Team, wrote the Support Debugging Tool. With this tool you have an
unbelievably robust software package. David packed this tool with so many utilities
and functions that it would take an entire book to explore it completely. The SDT
is a necessary aid that will greatly assist you in debugging your application and
identifying potential performance issues.

Currently, a login for Microsoft's PartnerSource portal is necessary to download
the SDT. There is no charge for this software, but you may have to get it from
your Dynamics GP partner if you do not have a PartnerSource login. For more
information on the SDT, visit the Support Debugging Tool Portal at
http://aka.ms/SDT

Blast off!
At last, your development environment is ready to go!

Overview of Dexterity
When developing integrated applications using Dexterity, you will be working
with a copy of the actual Dynamics GP dictionary. You will have access to all of
the preexisting resources, except the scripts, and can re-use them in your application.

While it is possible to change existing Dynamics GP forms and reports and use them
in your application as alternate forms and reports, best practices dictate that you
should avoid creating alternate forms and reports because of the tremendous amount
of work you might be saddling yourself with to maintain them. For example, with
each new release of Dynamics GP, you quite possibly will need to recreate
these resources from scratch.

In addition, you will be limiting your users because they can only use one alternate
of the same form at a time. If two developers modify the same form, somebody's
functionality will lose.

http://aka.ms/SDT
http://aka.ms/SDT

Chapter 3

[131]

Components of Dexterity
Several files are used together to create a Dexterity application. This section briefly
describes certain files that are copied to your hard drive when you install Dexterity.

Filename Description
Dex.exe The Dexterity application.
Dex.dic The dictionary that contains resources

used by Dexterity, Dexterity Utilities, the
Process Server, and the Runtime engine.

Dex.chm The Dexterity help file.
DexUtils.exe The Dexterity Utilities application.
DexUtils.dic The dictionary that contains resources

used by Dexterity Utilities.
DexUtils.chm The Dexterity Utilities help file.
Dynamics.exe or Runtime.exe The Dexterity runtime engine.
Contain.exe The OLE container application.
Dps.exe The Process Server application can be

used to offload background processes to a
different machine called a Process Server.

Dpm.exe The Distributed Process Manager
application performs load balancing
among multiple Process Servers.

IG.chm The help file describing how to create
Dexterity applications that integrate with
Dynamics GP. This is required reading!
It is much easier to navigate through
this information using the help file than
the IG.pdf document that is in the \
Microsoft Dexterity\Dex 11.0\
Manuals folder.

Import.chm The Import Utility help file.
MiniDex.chm A help file describing the Customization

Maintenance windows, Process Monitor
windows, and Report Destination
windows.

ResDesc.chm The Resource Descriptions tool help
file. This help file describes the Table,
Window, and Field description windows
that you can access from the Tools menu
of nearly every Dynamics GP window.

Getting Started with Dexterity

[132]

Filename Description
.dll files Dynamics Link Libraries used to perform

a variety of operations, such as calling 32-
bit DLLs, .NET-managed shell assemblies,
.NET eventing, access to c-tree Plus tables,
and the data dictionary API (allows
external applications to access Dexterity
resources).

.tlb files Type Libraries that allow COM support
for Dexterity applications.

Resources and their relationships
Dexterity uses a unique method for defining resources. Each resource created in
Dexterity stands alone and has its own resource ID. For instance, a field is a global
resource that exists outside of a table. You can use that same field definition in any
table regardless of the information stored in it. For example, if you create a 15-character
string field, you can use that string field in any table without needing to redefine it.

Dexterity uses a bottom-up approach when creating resources. You create the lowest
level of resource first, and then you build up to the highest level of resource.

The following diagram illustrates the bottom-up approach used by Dexterity:

The following is a description of several types of dictionary resources in the order in
which you would be likely to create them:

Chapter 3

[133]

DataType
The DataType is the lowest level of resource, and you use it to define what type
of information can be contained in a field and that field's characteristics. DataTypes
control the following elements:

• Control Type
• Keyable length
• Storage size
• Number of decimal places
• Static values
• Format
• Composite definition

The Control Type is the main attribute of the DataType as it controls what kind of
field you have. A field can be many things. It could be a string, picture, date, push
button, or drop-down list, to name a few. Details of the different Control Types
supported by Dexterity are in Appendix A, Dexterity Control Types.

Format
A Format controls how Dynamics GP displays the field. For example, you may want
your ID field to be all capital letters; a format can convert all the letters typed into
that field into capital letters. In the case of a phone number, you may want the area
code in parentheses and a dash in its correct place. A format can accomplish this
using placeholders. The capital X is the placeholder, and all other characters are
displayed as they were typed. Any capital X is substituted with data from the field.
For example:

Format Data Display
(XXX) XXX-XXXX 2145555555 (214) 555-5555

Many DataTypes can use the same format. If you change the format,
you change it for all of the DataTypes that use it.

Getting Started with Dexterity

[134]

Field
A Field is a distinct bit of information that is stored in a table or displayed on a
window. Its attached DataType governs the kind of data you can store in the field.
Like Formats and DataTypes, fields are global and you can use them on any
resource in the dictionary.

For example, say field Phone1 uses a DataType we'll call PHONE. Multiple fields
could be using the PHONE DataType. Let's say the Phonefmt format is attached to
the PHONE DataType. If you modified the Phonefmt format by changing the format
string, like changing the dash to a period, you would be changing the display of the
field Phone1 wherever it appears in the application.

Like formats and DataTypes, fields are global resources and you can use them on
any window or in any table.

Field properties
Each field has an assortment of properties that govern its behavior and appearance.

Object properties
Object properties control the function or behavior of a field. Some common object
properties are discussed as follows:

• AutoCopy:The AutoCopy property determines whether a field is
automatically written to the window or table when you execute a copy to
or copy from sanScript statement

• Cancel: The Cancel property identifies the button whose script (Change
script) will run when the user presses the Esc key on the keyboard. The
Cancel property is only available for push button fields.

• DataType: The DataType property identifies the DataType attached to
the field.

• Default: The Default property identifies the button whose script (Change
script) will run when the user presses the Enter key on the keyboard. The
Default property is only available for push button fields.

Chapter 3

[135]

• DefaultDblClick: The DefaultDblClick property determines whether the
Default push button's script (Change script) will run when you double-click
on a line in the list. If this property were not set, nothing would happen
when you double-clicked on the line. Typically, the Select button is marked
as the Default push button.

• Editable: The Editable property determines whether or not the user can
type into the field. If the Editable property is set to False, the user will
not be able to change the value of the field.

• Field: The Field property sets the field's name. You use the field name
when you refer to the field in your sanScript code.

• Hyperspace: The Hyperspace property is applied to push button fields only.
If Hyperspace is set to true, the focus will not move away from the previous
field when the push button is pressed. If the focus doesn't move, then only
the script (Change script) for the push button runs and no scripts will run for
the previous field. If the Hyperspace property is not set to true, any script
written to identify a change in the previous field's value (Change script), or
any script written to identify the event of leaving the previous field (Post
script) would run in addition to the button's script (Change script) when the
button is pushed. This property is commonly used on lookup buttons and
clear buttons.

• LinkedLookup: The LinkedLookup property identifies the lookup button
associated with the field. Typing Ctrl + L in the field will push the linked
lookup button, thereby executing the script (Change script) attached to
that button.

• LinkedPrompt: The LinkedPrompt property identifies the prompt associated
with the field. By linking the prompt to the field, some of the prompt's visual
properties will correspond to certain properties of the field.

• Required: The Required property determines whether a value is required
in the field before a record can be saved. This property does not set the
behavior; it sets a characteristic that you can check from the sanScript code.

Visual properties
Visual properties control the display characteristics of a field. Some common visual
properties are discussed as follows:

• AltLineColor: The AltLineColor property determines whether alternate
lines of a listbox appear in a different color. You can control the color using
the Field_SetAltLineColor() function.

Getting Started with Dexterity

[136]

• Appearance: The Appearance property defines the type of border that is
used around the field. The choices include 2D Border, 3D Border, and 3D
Highlight. The 3D Highlight choice is the Dynamics GP standard; this is the
setting that results in the underline appearing below the prompt. The borders
must be visible for the line to show up.

• Border: The Border property controls whether or not the border is visible.
• Position-Left: The Position-Left property sets the position of the left side

of the field in pixels.
• Position-Top: The Position-Top property sets the position of the top side

of the field in pixels.
 ° The intersection of the Position-Left property and the Position-

Top property identifies the location of the upper left-hand corner of
the field.

• Size-Height: The Size-Height property sets the height of the field in pixels.
• Size-Width: The Size-Width property sets the width of the field in pixels.
• Visible: The Visible property determines whether or not the field can be

seen by the user.
• WordWrap: The WordWrap property determines if the text in a Text field will

be wrapped when it hits the right edge of the field, or if it will continue as a
single line until the Enter key is pressed. If the WordWrap property is set to
true, the horizontal scroll bar is removed from the bottom of the field.

• Zoom: The Zoom property determines whether the push button or prompt
will take on the visual characteristics of a zoom field. If the Zoom property
is set to True on a prompt, the text will be blue and underlined, or it will be
whatever is set in User Preferences for a zoom field. If the Zoom property is
set to True on the push button, the mouse pointer will turn into the image
of a little hand, pointing its index finger when the mouse passes over
the button.

Linking prompts
Linking a field prompt marries the field to the prompt. On the face of it, doesn't seem
important, but it is. Always, always link your field prompts. The prompt will match
the field's behavior if you link them. Here are some situations where a linked
prompt makes all the difference:

• Hiding a field: the prompt of a hidden field will also be hidden
• Disabling a field: the prompt of a disabled field will also be grayed out
• A required field: the prompt of a required field will be displayed according

to the user's display preferences.

Chapter 3

[137]

• When using VBA:

 ° The prompt becomes the VBA field name
 ° The caption property can be used to change the prompt
 ° The enabled property will also act upon the prompt
 ° The required property follows the user's display preferences
 ° The visible property will also show or hide the prompt

To link a prompt, select Tools | Link Prompt from the menu bar or select Ctrl + E
on the keyboard. Click on the field and drag the mouse to the prompt you want to
link to. Once linked, both the field and the prompt will flash a black outline similar
to the following screenshot:

You can link multiple fields to a single prompt. However, you cannot link a field
in a scrolling window to a prompt in the main or host window.

When you have finished linking the prompts, select Tools | Link Prompt again
or select Ctrl + E on the keyboard to turn it off.

Linking lookup buttons
Similar to prompts, you need to link your lookup buttons to the field that is being
looked up. Linking the lookup button provides the Ctrl + L functionality. For
example, if you're on the Customer ID field and hit Ctrl + L, the Customers and
Prospects lookup window will open. If you hadn't linked the lookup button to
the Customer ID field, nothing would have happened when you hit Ctrl + L.

To link a lookup button, select Tools |Link Lookup from the menu bar. Click on
the field you want to link the lookup with and drag your mouse to the lookup
button. Once linked, both the field and the lookup button will flash a black
outline similar to the following screenshot:

Getting Started with Dexterity

[138]

When you have finished linking the lookups, select Tools | Link Lookup again to
turn it off.

Composite
A Composite field is a different animal; it is the combination of several fields
acting together as a single field. The Account Number field is a popular example
of a composite. Each segment of the Account Number is an independent field
and appears as such in SQL. The composite resource creates a new field used
by Dexterity, which is a grouping of all of the independent field segments. The
segments become components of the composite, but you can still refer to them
individually in sanScript.

Using composites to pass parameters in functions and procedures is a very handy
technique. Instead of passing multiple fields, put all of the fields in a composite and
simply pass the composite as a single parameter. The called script can evaluate the
value of each segment for its use in the procedure or function. Each segment of a
composite can be a different DataType.

There are several steps involved in creating a composite:

1. Creating segment DataTypes.
2. Creating segment fields.
3. Creating the composite resource (this is a separate base resource type).
4. Creating the DataType for the Composite.
5. Assigning a format to the composite DataType (a format is required for a

Composite).
6. Creating the composite field.

Chapter 3

[139]

This sounds like a lot of work, but it will go fine if you follow the steps and don't
try to get ahead of yourself.

The following diagram is a graphical representation of the steps for creating a
four-segment composite field; the numbers correspond to the number of the step
that was set out earlier:

Data Type (for composite field)

Field5 (composite field)

Composite Resource

Format

Field1 Field2 Field3 Field4

Data
type

Data
type

Data
type

Data
type

Field1 Field2 Field3 Field4

(5)

(1)

(2)

(3)

(4)

(6)

The previous explanation presumes that each of the segments is a new field. You can
use existing fields in a composite as well. If you used existing fields, you would start
with step three.

Composite fields have the same properties available to them as any other field.

Table
A Table is a single store of related information containing a group of fields. While
a Dexterity table is no different from other database tables, they are unique in how
they are constructed. Conventional databases create the table first and then define
the fields unique to that table. With Dexterity, you can define the field once and
then you use it in any table.

The table-naming convention for Dynamics GP tables was set out in Chapter 1,
Microsoft Dynamics GP Architecture.

Getting Started with Dexterity

[140]

Form and window
A Form is a collection of related resources grouped together for a common purpose.
A form can contain windows, tables, menus, commands, constants, and scripts.
A window represents the user interface. Every screen in Dynamics is a window
resource, and all window resources are contained in forms. You cannot create a
window outside of a form. A form can contain many windows or no windows at
all. While the windows are displayed and defined separately, they work together
to perform a specific function.

For example, the Item Maintenance window contains basic information about
a single item, such as the Item Number and Description. If you click on the
Options button at the bottom of the window, the Item Maintenance Options
window will open. This window contains more information, such as Warranty
Days and ABC Code.

The Item Maintenance window and the Item Maintenance Options window
are both contained in the same form.

Window properties
Each window has an assortment of properties that govern its behavior
and appearance.

Object properties
Object properties control the function or behavior of the window. Some common
object properties are discussed as follows:

• AutoLinkTable: The AutoLinkTable property identifies the table from
which users can add additional fields to the window using the Modifier
tool. While identifying an AutoLinkTable is optional, it's a very
user-friendly element to include.

• AutoOpen: The AutoOpen property determines if the window will open
automatically when the form opens. By default, the main window on the
form will automatically open. The main window is the window that is
listed first on the form. You can turn this behavior off, or cause one or more
windows to automatically open using this property.

Chapter 3

[141]

• CloseBox: The CloseBox property determines if a Close box will be active
on the window. The Close box is identified in the following screenshot:

• Name: The Name property sets the name of the window object. You can use
the window's name to refer to it in your sanScript code.

• Title: The Title property determines what will be displayed at the top of
the window so it can be identified by the user. The window title has been
pointed out in the following screenshot:

Getting Started with Dexterity

[142]

Visual properties
Visual properties control the display characteristics of the window. A common
visual property is discussed as follows:

• ControlArea: The ControlArea property changes the appearance of the
window to draw a band across the top of the window that is commonly used
for the placement of action push buttons. The following screenshot identifies
the control area of a window.

Scrolling window
While not its own separate resource, the scrolling window deserves its own
section because of its unique characteristics. A scrolling window looks like a grid
or table and presents data in a row and column format. It may look like a grid, but
it behaves very differently from your classic Visual Basic or Visual Studio grid.
You will learn more about the behavior of scrolling windows in Chapter 5, Deploying
a Dexterity Solution - sanScript - making it work when you add your sanScript code to
this application.

The first thing that is different about it is that you have to place it on another
window. A scrolling window cannot exist on its own. Let's call the window on
which you place the scrolling window the "host" window. You literally have to
draw the scrolling window onto the host window. The next section will show
you how.

Chapter 3

[143]

Creating a scrolling window
To create a scrolling window, select the Scrolling window button in the Toolbox.
Do not hold down your mouse button and do not try to drag this object on to the
window. Just push the button and move your mouse away from the Toolbox.
The mouse pointer will change to a little scrolling window pointer. The Scrolling
window button and mouse pointer are identified in the following screenshot:

Hold down your left mouse button and draw a box on the window layout
representing the size and placement of the scrolling window, as shown in the
following screenshot:

Getting Started with Dexterity

[144]

When you release the mouse button, a scrolling window will appear where your box
was drawn and a dialog will open prompting you for information about the new
scrolling window. The new scrolling window is shown in the following screenshot:

Scrolling window properties
Each scrolling window has an assortment of properties that govern its behavior
and appearance.

Object properties
Object properties control the function or behavior of the scrolling window. Some
common object properties are discussed as follows:

• DefaultDblClick: The DefaultDblClick property determines whether the
Default push button's script (Change script) will run when you double-click
on a line in the scrolling window. If this property was not set, nothing would
happen when you double-clicked on the line. Typically, the Select button is
marked as the Default push button.

• LinkTable: The LinkTable property sets the default table that will fill the
scrolling window. Another feature of the Linked Table is that the user can
use the Modifier tool to drag any of the Linked Table's fields into the layout
area of the scrolling window.

Chapter 3

[145]

• LinkTableKey: The LinkTableKey property sets which key of the Linked
Table will be used to sort the data as it fills the scrolling window, if no other
key is indicated.

• Name: The Name property identifies this scrolling window's name. You can
use this name to refer to the scrolling window in your sanScript code.

• WindowType: The WindowType property sets the type of the scrolling
window that you're working with. scrolling windows come in three types:

 ° BrowseOnly: This type of scrolling window is a "look but don't
touch" kind of scrolling window. Your Customer_Contact_Lookup
window will include a browse-only scrolling window. You can view
the data, but you cannot modify it, add to it, or delete it.

 ° Editable: This type of scrolling window allows you to modify the
current record values, but you can neither add new records nor
delete existing records. A good example of this type of scrolling
window is the Audit Trail Codes Setup window in Posting Setup.

 ° AddsAllowed: This type of scrolling window allows you to add
new rows to the window and delete existing rows from the window.
The best examples of this type of scrolling window are the line item
sections of the Sales Transaction Entry screen and the Purchase
Order Entry screen. You will be using one of these types of scrolling
windows to hold the phone numbers on your Customer Contact
Maintenance window.

Visual properties
Visual properties control the display characteristics of the scrolling window. There
are not many visual properties to choose from. The most common one is as follows:

• AltLineColor: The AltLineColor property determines whether the
alternate lines of the scrolling window will appear in a different color. This
property is normally set to True. You can control the color using the Field_
SetAltLineColor() function.

Getting Started with Dexterity

[146]

Adding fields to a scrolling window
In order to put fields on a scrolling window, you must first open it to access its
layout area. Fortunately, opening it is easy—just double-click on it. Once it is open,
you can drag fields from the Toolbox to the scrolling window exactly as you do on
the host window. The only trick with a scrolling window is that you have to put the
fields in the part of the scrolling window that will be visible.

The scrolling window uses a dashed line to mark the bottom of the visible area.
The scrolling window's layout area, as shown in the following screenshot, has only
a single row visible:

You cannot drag that line down to expand the visible area on the scrolling window;
you have to change where the line falls using the Big and Small Line Item tools.

A scrolling window has two areas in which you can place data fields. The Big Line
Item and the Small Line Item define those areas. All scrolling windows default to a
single row, as was shown in the previous screenshot. The dashed line you see is the
Small Line Item mark. You can create a Big Line Item, or expand the Small Line Item
by opening the Scrolling window layout area and then selecting Tools | Mark Small
Line Item or Tools | Mark Big Line Item.

Chapter 3

[147]

Many people have difficulty marking the line item where they want it, but you'll
know the secret. Mark the line inside (not below) the last row that you want in
that section.

From the Tools menu select Mark Big Line Item. The mouse pointer will change
to resemble a little scrolling window with a plus sign in the upper left-hand corner.
Move the pointer to the last row of what will be the Big Line Item area and click
on it. Refer to the following screenshot for guidance:

If you do it as mentioned previously, the border will be exactly where you want it.
The following screenshot identifies the visual areas of a scrolling window with an
expanded Small Line Item and the addition of a Big Line Item.

Getting Started with Dexterity

[148]

Navigating the Resource Explorer
The Resource Explorer is the first window you will see upon launching Dexterity.
Starting from this window, you will complete virtually every task in your program.
You will create and manage all of the resources in your dictionary from this window.
Think of it as the landing page for Dexterity. There is a lot going on here, so let's take
a look at some of the primary components.

The Resource Explorer is divided into four main areas:

• Resources Tree
• Resources List
• Toolbar
• Status area

Each of these areas are identified in the following screenshot:

Chapter 3

[149]

A brief description of each area in the Resource Explorer window is as follows:

• Resources Tree: The Resources Tree is the left pane of the Resource Explorer
window. It displays a hierarchical structure that is used for navigating to the
various resource types used to create a Dexterity application.

• Resources List: The Resources List is the right pane of the Resource Explorer
window. It displays a detailed list of each resource of the type selected in
the Resources Tree. In the previous screenshot, Forms is selected in the
Resources Tree; each form in the PROJECT.dic is listed in the Resources
List to the right.

• Toolbar: The Resource Explorer toolbar provides access to the actions that
can be performed on resources, such as compiling scripts, importing or
exporting resources, and copying resources.

• Status Area: At the bottom of the window is the Status Area, which displays
information such as the total number of resources in the list and the quantity
selected. Information about error messages also appears in the Status Area.

Worksets
A Workset is more of a tool than a traditional resource. Essentially, it is a group
of shortcuts that you can use to quickly find the selected resources. You can include
any combination of objects, such as forms, reports, fields, tables, and so forth in
a Workset.

Using a Workset is a great way to isolate the select set of resources that you are
working with. Without a Workset, you would have to scroll through the long list
of items in the Resources List to locate the one you want.

You can create as many Worksets as you like, but you cannot nest them. Worksets
are listed in the Resources Tree of the Resource Explorer. You will use a Workset
to complete the Dexterity project in this book.

You can create Worksets using the Workset button in the Resource Explorer toolbar.
The following screenshot identifies the Workset button:

Summary
You covered a lot of ground in this chapter. Best of all, you are ready to start your
Dexterity project. In this chapter, you gained knowledge on the development process
using Dexterity, how to create your development environment, how to create your
development dictionary, how Dexterity resources interrelate, and how to navigate
the Dexterity Resource Explorer.

Your next step is to begin building your application by creating the user interface for
your Dexterity project. Read on; we start that project in the next chapter.

Building the User Interface
In this chapter, you will create the user interface for your customer contacts
integration. The customization will provide a means for users to store information
about the contacts they have with their customers. In addition, they will be able to
enter a limitless number of phone numbers for each contact.

As you develop this application, you will see the key concepts of Dexterity in action.
While you can create a standalone application using Dexterity, our focus will be on
creating an application that integrates with Dynamics GP.

Creating the user interface will take you through the following key topics:

• Creating base resources
• Creating tables and keys
• Creating forms and windows
• Creating scrolling windows
• Working with window fields
• Completing your windows

Because this is likely your first project, we'll venture through it like a tutorial so that
you don't miss a thing.

Let's get started!

Building the User Interface

[152]

Overview
You will create a window named Customer Contact Maintenance in which you
will enter the contact information, as well as create a new table and other resources
needed to get the job done. You will also create the Customer Contact Lookup
window that you will open from the Contact ID field. To get your new window
to open, you will add a menu item to the native Dynamics GP Customer
Maintenance window.

The completed Customer Contact Maintenance window will be similar to the
following screenshot:

The completed Customer Contacts lookup window will be similar to the following
screenshot:

Chapter 4

[153]

First, you will create a new workset and then create your base resources.

Workset
Recall that a workset is just a group of shortcuts to certain resources so that you
might access them more quickly. Worksets really come in handy when navigating
a large dictionary, and your development dictionary would certainly be considered
large.

To create a workset, select the Workset button, identified in the following screenshot,
from the Resource Explorer toolbar. Select Define Worksets... from the menu that
opens, as shown in the following screenshot:

Building the User Interface

[154]

Click on the New button on the Define Worksets window, and then enter the
Workset Name as Contacts. Select OK to complete creating the workset, and then
press the Close button on the Define Worksets window.

Expand the Worksets resource in the Resource Explorer window and select your
new Contact workset.

Your Resource Explorer window should look much like the window shown in
the following screenshot:

When you create resources with your workset selected, the resources will
automatically be added to the selected workset. You can add resources to your
workset at any time; it's just more convenient if it happens automatically. If you want
to delete a resource, you cannot do that from the workset, you will need to go down
to the regular resource list and delete it there.

For this entire project, if the value for the field is not specified, then accept whatever
the default value is, even if it is blank. Also, if you are creating multiples of the same
type of resource, push the Add button instead of the OK button. Your resource will
be saved and the window will stay open, ready to accept your next record.

Chapter 4

[155]

Base resources
Dexterity has two types of resources: base resources and standard resources. As you
might expect, the base resources are the building blocks that you need to create first.
A field is one of the base resources. A field needs a data type, which is another base
resource. A data type can hold a format, which is another base resource. A window
may have a picture on it, which is again another base resource. You get the idea. Each
of the base resources was discussed in Chapter 3, Getting Started with Dexterity. In this
chapter, you're going to actually create the base resources you need for your project.

Data types
With your workset selected, create a data type for the Contact ID field. In the
Resource Explorer window, create a new data type resource by selecting the new
resource drop-down arrow and then selecting Data Type.... Refer to the following
screenshot for navigation:

Building the User Interface

[156]

When you create the new data type, you are going to use an existing global format
that came from the dynamics.dic dictionary that you turned in to your development
dictionary. Right out of the chute you get to start capitalizing on existing resources. To
enter the value for the Format requested (as shown in the following screenshot), you
can just type it in, or push the ellipses button and select it from the list that opens.

In the Data Type Definition window, enter the following information:

Field Value
Data Type Name STR15_RM_Customer_Contact_ID
Control Type String
Keyable Length 15
Format STR_LBAU

Upon completion, the Data Type Definition window should look similar to the
following screenshot:

Create a second data type using the following information:

Data Type Name STR30_Contact_Dept

Control Type String

Keyable Length 30

Chapter 4

[157]

Format
You will create one format for the STR30_Contact_Dept data type. In the Resource
Explorer window, select the new resource drop-down arrow and then select Format.

In the Format Definition window, enter the following information:

Format Name STR15_RM_Customer_Contact_ID
Format Type String
Alignment Left
Fill Asterisk
String Options Alphanumeric Only

Upon completion, your Format Definition window should look similar to the
following screenshot:

Select OK to save your new format and close the window.

Building the User Interface

[158]

Fields
You're going to create four fields. In the Resource Explorer window, select the
new resource drop-down arrow and then select Field.

In the Field Definition window, enter the following information:

Field Name Contact Department
Physical Name Contact_Department
Data Type STR30_Contact_Dept

Upon completion, your Field Definition window should look similar to the
following screenshot:

Select the Add button on the Field Definition window. The new field will be
saved and the screen will clear so that you can continue adding new fields.

Create three additional fields using the following information:

Field Name Customer Contact ID

Physical Name Customer_Contact_ID

Data Type STR15_RM_Customer_Contact_ID

Chapter 4

[159]

Field Name Customer Contact Text

Physical Name Customer_Contact_Text

Data Type TX32000

Field Name Phone Description

Physical Name Phone_Description

Data Type STR20

Creating tables and keys
Your project requires two new tables: one in which to store the contacts and
another in which to store their phone numbers. Because you would like to create
tables with names longer than eight characters (Imagine!), you need to change
an option in Dexterity.

Select Edit | Options from the menu bar. In the Table Options section of the
Options window, mark the checkbox next to Allow Long Physical Table Names.
With this option marked, you can create table names with up to 28 characters.

The 28-character limitation is imposed by Dexterity, not by SQL.

Building the User Interface

[160]

Tables
You will use the Table Definition window to create your tables. In the Resource
Explorer window, select the new resource drop-down arrow and then select Table.
The Table Definition window will open. A table definition contains the table's
name, fields, relationships, and so on.

Customer Contact Master
First, you will create the table for storing the contact information. Leave any fields
not mentioned in the following table at their default values, even if blank:

Table Name RM_Customer_Contact_MSTR

Display Name Customer Contact Master

Physical Name RM_Customer_Contact_MSTR

Series Sales

Database Type SQL

Insert the following fields into the table by selecting each in the Global Fields
column and then clicking on the Insert button. Unfortunately, you can only select
one field at a time. Just to keep us in step, select your fields in the same
order as they appear in the following table:

Field Name
Customer Number

Customer Name

Customer Contact ID

Contact Person

Contact Department

Address 1

Address 2

Address 3

City

State

Zip Code

User Defined 1

User Defined 2

Customer Contact Text

Note Index

Chapter 4

[161]

You can't save the table yet! You don't have any table keys. So far, your Table
Definition window should look similar to the following screenshot. Note the
Record Size should be 510:

Next, you have to define some keys for this table. The table cannot be created until
you define at least one key.

Table keys
You use keys to enforce unique records, create table relationships, determine sorting
order, and so on. The records are sorted in the order of the key segments. As we said
before, each table must have at least one key. A table needs a primary key to ensure
duplicate records are not inserted into the table.

You will create two keys for the Customer Contact Master table:

• Customer Contact Master Key1
To create the first key, open the Key Definition window by clicking on the
New button in the upper right-hand corner of the Table Definition window.
The Key Definition window will open. To insert a table field into the Key
Segments area, select the field in the Table Fields area and then click on the
Insert button.
Use the following table to complete the key definition. It is important that
your key segments appear in the same order as they appear in the table;
therefore, insert the fields in the order listed. Leave any fields not mentioned
at their default values.

Building the User Interface

[162]

Key Name RM_Customer_Contact_MSTR_Key1

Key Segments Customer Number
Customer Contact ID

SQL Key Options Mark the Primary checkbox

Click on OK to save the key and close the Key Definition window.

• Customer Contact Master Key2

Now, you are going to create a second key. Select the New button on
the Table Definition window once more. Use the following values for
the second key:

Key Name RM_Customer_Contact_MSTR_Key2

Key Segments Customer Contact ID

Customer Number

The second key is different from the first key in how it sorts the records. The records
are sorted by the order of the key segments. Whenever you execute table operations,
the records will be acted upon in the order of the selected key. If you do not specify
a key, the first key is used.

For example, if you browse through a table using get next table RM_Customer_
Contact_MSTR, the records will advance to the next customer number because the
table defaults to the first key. If instead you use get next table RM_Customer_
Contact_MSTR by number 2, then the second key will be used. The records will
advance to the next Customer Contact ID instead of the next Customer Number.

You can specify the key using its number or its name. Therefore, the statements
get next table RM_Customer_Contact_MSTR by number 2 and get next table
RM_Customer_Contact_MSTR by RM_Customer_Contact_MSTR_Key2 yield the same
results.

Your completed Table Definition window should include two keys and the Record
Size in the lower right-hand corner should still be 510.

Chapter 4

[163]

Contact Phone Master
Create a second table to store the phone numbers.

Table Name RM_Contact_Phone_MSTR

Display Name Contact Phone Master

Physical Name RM_Contact_Phone_MSTR

Series Sales

Database Type SQL

Insert the following fields in the table.

Field Name
Customer Number

Customer Contact ID

Phone Number

Phone Description

Table keys
You will create three keys for the Contact Phone Master table:

• Contact Phone Master Key1
For the first key, open the Key Definition window by clicking on the New
button in the upper right-hand corner of the Table Definition window.
The Key Definition window will open.
Use the following table to complete the key definition. It is important that
your key segments appear in the same order that they appear in the table.
Leave any fields not mentioned at their default values:

Key Name RM_Contact_Phone_MSTR_Key1

Key Segments Customer Number

Customer Contact ID

Phone Number

SQL Key Options Mark the Primary checkbox

Click on OK to save the key and close the Key Definition window.

Building the User Interface

[164]

• Contact Phone Master Key2
Create the second key next. Select the New button on the Table Definition
window again to open the Key Definition window. Use the following
values to complete the Key Definition window:

Key Name RM_Contact_Phone_MSTR_Key2

Key Segments Phone Number

Customer Contact ID

Customer Number

Click on OK to save the key and close the Key Definition window.

• Contact Phone Master Key3

Finally, you are going to create the third key. Select New on the Table
Definition window once more. Use the following values to complete
the Key Definition window:

Key Name RM_Contact_Phone_MSTR_Key3

Key Segments Customer Contact ID

Phone Number

Customer Number

Click on OK to save the key and close the Key Definition window.
Click on OK to save the table and close the Table Definition window.

Table naming conventions
Deciding on a name for your new table should not be arbitrary. You learned
in Chapter 1, Microsoft Dynamics GP architecture about the necessity for naming
conventions and the current best practice. We have adhered to the naming
conventions for the tables you just created:

Module
abbreviation

Table contents Table type

RM Customer_Contact MSTR
RM Contact_Phone MSTR

Chapter 4

[165]

In addition, you have used a display name that is user-friendly. Too many
developers get lazy and do not take the time to change the display name for the
benefit of the user. Display names appear in the Report Writer, SmartList Builder,
Extender, and others. You, however, will follow the naming conventions and make
your applications just as friendly as the Dynamics GP core, because you're good!

Table options
There are five table options in the Table Definition window, but only a couple
of them merit our attention right now. Those are Allow Active Locking and
Use Row Timestamp.

Allow Active Locking permits you to lock an individual record so that no other
user may change it. They may still read the record; they just cannot modify nor
delete it. Very few tables in the Dynamics GP dictionary are set up for active locking.
Dexterity uses passive locking. Passive locking allows multiple users to modify the
same record at the same time; they just can't modify the same field concurrently. If
they attempt it, Dexterity will display a warning dialog. Microsoft calls this locking
scheme Optimistic Concurrency Control (OCC).

For example, let's say two users have the same customer card open. One of the
users changes the Name field and saves it. When the other user changes the
Name field and hits the Save button, the following error will display:

This customer record has been updated since you opened this window. Changes
won't be saved.

On the other hand, if one user modifies the Name field and saves it, and the other
user modifies the City field and saves it, both changes will save.

Not using active locking also allows high availability of the data and the system runs
much faster. You should rarely mark a table to allow active locking.

By using passive locking, multiple users can change or even delete
a record at the same time.

Use Row Timestamp adds an additional field to the table named DEX_ROW_TS. When
you select this option, the UTC (Coordinated Universal Time) and date of when the
record was created or modified is automatically written to this field. Do not mistake
this as an audit trail code, or as a means to provide any audit control on the data.
The field is merely there to hold the date and time that the record was last modified.

Building the User Interface

[166]

Types of tables
You can create three different types of tables in Dexterity:

• Physical tables
These are your standard, run-of-the mill tables. They are physically stored
in the SQL database and their data is available to all for manipulation.

• Temporary tables
These are tables with the physical name of temp. If the Database Type is
SQL or Default, the table will be created in SQL's tempdb system database.
If the Database Type is c-tree or P.SQL, a file will be created in the user's
Temp folder with a name beginning with TNT. For Windows 7, look in C:\
Users\username\AppData\Local\Temp for the files. Temporary tables
and files are supposed to be deleted by Dexterity after they are used, but
sometimes we have to help. Feel free to delete any files in the user's local
Temp folder that begin with TNT. Please note that by default, the C:\Users\
username\AppData folder is a hidden folder.

• Virtual tables

These are not actually tables, they are Views. Virtual tables are not created
in the Table Definition window. They are created in the Virtual Table
Definition window. To access the Virtual Table Definition window, use
Resource Explorer, select the new resource drop-down arrow, and then
select Table (Virtual).
You add the tables and fields, define the table relationships, and establish
the keys for your view in this window. When the virtual table is created, an
actual SQL view is added to the database.

Chapter 4

[167]

Creating forms and windows
Forms can contain windows, tables, menus, constants, scripts, and commands.
Every screen you see in Dynamics GP belongs to a form. You need two forms for
your customer contact application. Each form will contain a single window.

Maintenance form and window creation
The first form will hold the Customer Contact Maintenance window; the second
form will hold the Contact Lookup window.

You're going to create the Customer Contact Maintenance form and window in
a rather unconventional way. Instead of using the WYSIWYG graphical forms
designer to create the form, you are going to copy an existing form, change its
name, and then modify it.

The form you're going to use is the RM_Customer_Address form, because it most
closely resembles the form you need. Find this form by selecting Forms in the
Resources tree of the Resource Explorer window. Look in the Resources list and
select the form named RM_Customer_Address. With the form selected (do not
double-click, you do not want to open the Form Definition window), click on the
Export to Text File button on the toolbar as shown in the following screenshot:

Building the User Interface

[168]

The Export to Text File window will open. Make note of the Location for Export File
and the File Name; you will need it later:

Select the OK button to complete the export.

Next, you are going to open the RM_Customer_Address.form file in Notepad
and turn it into your Customer Contact Maintenance form. So, open the RM_
Customer_Address.form file in Notepad. In order to see the filename in your
browse menu, you may need to change the criteria to All Files (*.*).

Execute a search and replace by pressing Ctrl + H on your keyboard. Fill in the
fields with the data in the following table, and then select Replace All:

Find what: RM_Customer_Address

Replace with: RM_Customer_Contact_Maintenance

When you click on the Replace All button, the Notepad text on your computer
screen will look like you executed an Edit | Select All command just for a second.
First, all of the text will appear selected, and then it will return to normal. The search
and replace is finished when that happens; you will not get a dialog on the screen
telling you so.

Chapter 4

[169]

Close the Replace window and then click on Save to save the RM_Customer_
Address.form file. Next, you are going to import this file into
your dictionary.

With your contacts workset selected, click on the Import from Text File button
on the toolbar; see the following screenshot for the button's location:

The Import From Text File window will open. Browse to the RM_Customer_
Address.form file and click the Import button. You should have 77 conversion
errors; they are of no consequence to us. Dismiss the dialog by pushing the OK
button and then the Close button to close the Import From Text File window.

You should now have a form named RM_Customer_Contact_Maintenance in
your forms resource list.

If it's not already included, add the form to your Contacts workset. With the new
RM_Customer_Contact_Maintenance selected, click on the Worksets button on
the Resource Explorer toolbar, then on Add Resources to Workset, and then
on Contacts.

Open the Form Definition window by double-clicking on your new
RM_Customer_Contact_Maintenance form.

Attaching tables
The first thing you need to do is attach the correct tables to your form and remove
the ones you don't need. Select the Tables tab on the Form Definition window;
select each table except the RM_Customer_MSTR table and push the Detach button.
Sadly, you have to do these one at a time. Do not close the Form Definition window
when you're done; you still have more work to do.

Building the User Interface

[170]

Hitting the Space bar when the Are you sure . . . dialog opens will push
the Yes button and dismiss the dialog.

Now you're going to add the tables you previously created to the RM_Customer_
Contact_Maintenance form. From the Tables tab, click on the Attach button.

The Table Lookup window will open. Double-click on the RM_Customer_Contact_
MSTR table to attach it to the form. Attach the RM_Contact_Phone_MSTR table in
the same manner.

When you've finished, the Form Definition window should look similar to the
following screenshot:

Setting window properties
Go back to the Windows tab and open the RM_Customer_Contact_Maintenance
window. You can open the window by double-clicking on it or selecting the Open
button on the right-hand side of the window. You should now be looking at the
window in the WYSIWYG graphical design window. There is a lot going on here,
but we do not need most of these fields so we are about to delete them. First, we
need to change a couple of the window's properties.

On the right-hand side of the layout window, the Properties window should be
displayed. If it is not present, push Ctrl + M to open it. As you can see by looking at
the Properties window, this is where you can control visual characteristics as well as
object features of your RM_Customer_Contact_Maintenance window. You're going
to change two object features. Select the Object tab in the Properties window. Select
[Window] from the object drop-down list at the top of the Properties window. Make
the following changes to the window object properties:

Chapter 4

[171]

Property Initial Setting Your Setting
AutoLinkTable RM_Customer_MSTR_ADDR RM_Customer_Contact_MSTR
Title Customer Address Maintenance Customer Contact Maintenance

Refer to the following screenshot, from the Before and After view of the
Properties window:

Removing window fields
With that bit of housekeeping done, let's take care of all of those extra fields on the
window. Expand the layout window so that you can see all of the fields below the
displayed window. If you cannot see any fields below the window, then you need
to turn on the Show Invisible Fields setting. You also need to make sure the Show
Field Names option is not selected.

To do that, select Layout from the menu bar. Make sure there is a checkmark next
to the Show Invisible Fields menu item, and no checkmark next to the Show Field
Names menu item. Clicking on the menu item will toggle between it being checked
or unchecked.

Building the User Interface

[172]

Delete fields from the window according to the following screenshot. You should
delete the circled fields. You can select and delete them one at a time, or you can
lasso the fields by holding down the left mouse button and drawing a box around
them. Only the fields completely within the box will be selected.

Chapter 4

[173]

When you are finished removing the extra fields, your window should look similar
to the following screenshot:

Close and Save the window. Click on the OK button on the Form Definition
window to close it.

Using the import/export technique can save you hours of
development time.

Adding fields to the window
Now that you've deleted all of the unwanted fields from your window, it's time to
add some new fields. Before starting this adventure, turn the Show Field Names
option back on from the Layout menu. Next, in order to make room for the Contact
Department field, you need to move all of the fields below the Contact Person field
down one line. If you use the field properties set out in the following section, you'll
get them into the correct position.

Building the User Interface

[174]

Global fields
To add a global field to the window, drag it from the Toolbox and place it on the
layout area. As you drag it onto the window, an outline of the field will become
visible to aid you in positioning it on the window. Refer to the following screenshot
to get an idea of how the cursor will look, and where the fields are positioned:

Add the following global fields to the Customer Contact Maintenance window.
Don't concern yourself with placement right now; you'll set this when you set
your properties.

Global Field Name
Customer Contact ID

Contact Department

User Defined 1

User Defined 2

Customer Contact Text

Show Detail Button

Show Summary Button

Eventually, Show Detail Button and Show Summary Button will be stacked on top
of one another next to the yet-to-be-created scrolling window. For now, leave them
separate so that you can select each of them for attaching your code. Set properties
for the text prompts and global fields as indicated in the following tables:

Chapter 4

[175]

Window text properties
[Text] Address

Tab Property Value
Visual Position-Left 8

Visual Position-Top 140

Visual Size-Width 103

[Text] City

Tab Property Value
Visual Position-Left 8

Visual Position-Top 197

Visual Size-Width 103

[Text] State

Tab Property Value
Visual Position-Left 8

Visual Position-Top 216

Visual Size-Width 103

[Text] Zip Code

Tab Property Value
Visual Position-Left 8

Visual Position-Top 235

Visual Size-Width 103

Global field properties
Address 1

Tab Property Value
Visual Position-Left 110

Visual Position-Top 140

Visual Size-Width 256

Building the User Interface

[176]

Address 2

Tab Property Value
Visual Position-Left 110

Visual Position-Top 159

Visual Size-Width 256

Address 3

Tab Property Value
Visual Position-Left 110

Visual Position-Top 178

Visual Size-Width 256

City

Tab Property Value
Visual Position-Left 110

Visual Position-Top 197

Visual Size-Width 256

State

Tab Property Value
Visual Position-Left 110

Visual Position-Top 216

Visual Size-Width 256

Customer Contact ID

Tab Property Value
Visual Position-Left 110

Visual Position-Top 83

Visual Size-Width 154

Chapter 4

[177]

Contact Department

Tab Property Value
Visual Position-Left 110

Visual Position-Top 121

Visual Size-Width 256

User-Defined 1

Tab Property Value
Visual Position-Left 110

Visual Position-Top 254

Visual Size-Width 256

User-Defined 2

Tab Property Value
Visual Position-Left 110

Visual Position-Top 273

Visual Size-Width 256

Customer Contact Text

Tab Property Value
Visual Position-Left 8

Visual Position-Top 310

Visual Size-Height 95

Visual Size-Width 624

Object WordWrap True

Show Detail Button

Tab Property Value
Visual Position-Left 614

Visual Position-Top 34

Visual Appearance 2D Border

Visual Border True

Building the User Interface

[178]

Show Summary Button

Tab Property Value
Visual Position-Left 598

Visual Position-Top 34

Visual Appearance 2D Border

Visual Border True

Local fields
In addition to the global fields you previously added, you are going to add a single
local field below the visible area of the window. A local field is not stored in a table,
but is instead used either to hold an interim value on the window or to house a piece
of code. Local fields are prefixed with an (L) and can be used on any window that is
part of the form on which it was created. Even though two forms can contain a local
field with the same name, they are not the same field.

You need to create a local field named Temp Control Number on your RM_
Customer_Contact_Maintenance window. To create this field, select the drop-down
arrow on the Toolbox and select the Local Fields list item. Refer to the following
screenshot for the location of these entries:

Chapter 4

[179]

The Local Field Definition window will open. This local field will hold the value
your user has selected, so that your application can check to make sure there are no
unsaved changes that haven't been handled before switching to the new selection.
Complete the local field definition according to the following screenshot:

Push the OK button to save the temporary field and then drag the field from the
Local Fields list to the space below the visible area of the RM_Customer_Contact_
Maintenance window. Note that the (L) prefix is automatically added to the field
by Dexterity.

Set the field properties for this local field as follows:

(L) Temp Control Number

Tab Property Value
Visual BackColor Yellow

Object AutoCopy False

Object Editable False

Building the User Interface

[180]

New scrolling window
According to the specifications for your application, you need a spot to enter a
limitless number of phone numbers for each contact. To satisfy that requirement,
you must add a scrolling window to the Customer Contact Maintenance window.
Refer to the screenshot at the beginning of this chapter to determine the approximate
placement for your new scrolling window.

Draw the scrolling window on your Customer Contact Maintenance window and
complete the Scrolling Window Options dialog to match the following screenshot:

Set the visual properties for the scrolling window according to the following table:

RM_Customer_Contacts_Scroll

Tab Property Value
Visual Position-Left 424

Visual Position-Top 101

Visual Size-Height 192

Visual Size-Width 192

Open the scrolling window by double-clicking on it. In order to display two
rows of information for each phone number, you need to add a Big Line item
to the scrolling window.

Chapter 4

[181]

Add the following fields to the scrolling window and set their properties according
to the following tables:

Phone Number

Tab Property Value
Visual Border False

Visual Position-Left 0

Visual Position-Top 0

Visual Size-Height 20

Visual Size-Width 192

Phone Description

Tab Property Value
Visual Border False

Visual Position-Left 32

Visual Position-Top 19

Visual Size-Height 20

Visual Size-Width 192

In accordance with Dynamics GP standards, be sure to use the Line tool to draw
a line between the two fields.

Lookup form and window creation
The second form holds the Contact Lookup window. This window will open
allowing you to pick a contact from a list, thereby populating the Customer Contact
Maintenance window. You'll create this form and window using the conventional
method – from scratch. Look in the Overview section of this chapter to see what your
completed lookup window will look like.

In the Resource Explorer window, select the new resource drop-down arrow and
then select Form. The Form Definition window will open. Enter the following data:

Form Name RM_Contact_Lookup

Series Sales

Building the User Interface

[182]

Select the Tables tab and then press the Attach button. From the Table Lookup
window, select the tables listed as follows, one at a time; push the OK button after
each selection to complete the process:

• RM_Customer_MSTR

• RM_Customer_Contact_MSTR

Select the Windows tab and then click on the New button to create a new
window. Close the window layout to save the changes. You have not actually
created the window until you save it. You'll want to save it before you spend any
time designing it. Open the window backup by double-clicking on it in the Form
Definition window.

Window fields
Next, you're going to add a couple of push buttons and a field to the window.
Most importantly, you're going to add a scrolling window that will become the
actual lookup area.

Before you get started, let's make sure your desktop matches mine. The toolbox
should be on the left; if it isn't, select Ctrl + B on the keyboard (or Layout | Toolbox
from the menu bar). The Properties window should be to the right of your layout
window; if it isn't, select Ctrl + M on the keyboard (or Layout | Properties from
the menu bar).

As you go through the layout and design instructions, always accept the default
value for any settings not specifically mentioned in the instructions. Also, it's a good
idea to periodically save your work. There is no Save button on the layout window,
so you'll need to close and then re-open the window to save it.

First, you're going to set the window properties. Click on a blank section of the
window; the Properties window should show [Window] in the Object drop-down
box. If it doesn't, you can select [Window] from the Object drop-down box. The
[Window] object will be the last item on the list. On the Properties window, set the
properties as indicated in the following table:

Window

Tab Property Value
Object AutoLinkTable RM_Customer_Contact_MSTR

Object Name Customer_Contact_Lookup

Object Title Customer Contacts

Object WindowType Modeless Dialog

Chapter 4

[183]

Tab Property Value
Visual Size-Height 320

Visual Size-Width 620

The 320 x 620 size is the Dynamics GP default for a lookup window.

Next, you're going to add some fields to your window.

Drag the Sort by, Cancel Button, and Select Button global fields from Toolbox
onto your window. Don't concern yourself with exact placement at this time, you'll
set placement using your properties settings.

Like you did with the RM_Customer_Contact_Maintenance window, add the global
fields to your window by dragging them from the list of global fields in Toolbox and
drop them onto the window.

One of the great things about working in the development dictionary is the rich
assortment of fields you don't have to create yourself. Even the pictures are already
on the buttons!

Next, you need to draw a separator line near the bottom of the window, above
the buttons. To draw the line, push the Line tool button in the toolbox, do not hold
down your mouse button and do not try and drag this object onto the window. Move
the mouse away from the toolbox and you'll see it has changed into a +/ symbol, as
shown in the following screenshot:

Hold down your left mouse button and draw the line. Don't worry about positioning
or length, you will set that in the properties window.

Building the User Interface

[184]

Set the properties of your line as follows:

Separator Line

Tab Property Value
Visual Position-Left 0

Visual Position-Top 280

Visual Size-Width 620

Set the properties of your fields as follows:

Sort By

Tab Property Value
Visual Position-Left 93

Visual Position-Top 290

Visual Size-Width 145

Cancel Button

Tab Property Value
Visual Position-Left 542

Visual Position-Top 290

Object Cancel True

Select Button

Tab Property Value
Visual Position-Left 462

Visual Position-Top 290

Object Default True

Chapter 4

[185]

Scrolling windows
It's time for the scrolling window.

Draw a scrolling window on the face of the Customer_Contact_Lookup window.
Make it big enough to cover nearly the entire window.

Complete the visual properties of the Scrolling Window Options window as
shown in the following screenshot:

Setting properties for a scrolling window is a little different from other fields. The
visual properties for the scrolling window are set from the host window. In our case,
the host window is the Customer_Contact_Lookup window.

Select the scrolling window and you'll see you have only the Visual tab in the
Properties window. In order to access the object properties, you need to double-click
on the scrolling window to open it. For now, just set the visual properties according
to the following table:

Building the User Interface

[186]

Scrolling Window

Tab Property Value
Visual Position-Left 8

Visual Position-Top 15

Visual Size-Height 230

Visual Size-Width 590

You'll set the object properties later.

Before you add the fields to the scrolling window, change the layout settings so that
you can see the field names. Select Layout from the menu bar and then select Show
Field Names.

Add the following global fields to the scrolling window and set the field properties
according to the following tables:

• Customer Contact ID

• Contact Person

• User Defined 1

Customer Contact ID

Tab Property Value
Visual Border False

Visual Position-Left 3

Visual Position-Top 0

Visual Size-Height 20

Visual Size-Width 132

Contact Person

Tab Property Value
Visual Border False

Visual Position-Left 137

Visual Position-Top 0

Visual Size-Height 20

Visual Size-Width 301

Chapter 4

[187]

User Defined 1

Tab Property Value
Visual Border False

Visual Position-Left 442

Visual Position-Top 0

Visual Size-Height 20

Visual Size-Width 144

After you put the data fields in place, your completed scrolling window will be
similar to the following screenshot:

Next, you need to dress up the scrolling window a bit. Since each fields in the
scrolling window is going to have its Border property turned off, why not set them
all at once, instead of one at a time?

Hold down the Shift or Ctrl key and click on each one of the fields.

Set the property according to the following table:

Scrolling window fields

Tab Property Value
Visual Border False

Now that you've turned off the borders, you need to use the Line tool to visually
separate the fields and the row. Draw a line the width of the scrolling window
beneath the fields. After that place a line between each field. This is the Dynamics GP
standard on how a scrolling window is supposed to look. Close to save the scrolling
window as well as the Customer_Contact_Lookup window when
you've finished.

Building the User Interface

[188]

Open the Customer_Contact_Lookup window, and then your scrolling window
(remember, you just have to double-click on it), so that you can access its object
properties.

Set the object properties according to the following table:

Scrolling window object properties

Tab Property Value
Object DefaultDblClick True

Object WindowType Browse Only

Working with window fields
In order to finish the layout of your two windows you need to know how to put
static text on the window and how to link prompts and lookups.

Adding static text
Static text includes any words you see on the window that are not data fields. The
value never changes, hence the word static. The most obvious static text is a field
prompt. Some static text is identified on the following screenshot:

Chapter 4

[189]

To type text on a window, use the toolbox button with the letter A on it.

Push the button and then click on the window where you want to add or modify
text. When the cursor changes to a flashing vertical line and the mouse pointer is
shaped as an I bar, you are ready to type.

Column headings
To complete your lookup window, you need column headings. The column
headings are actually static text on the host window, not the scrolling window.
In order to know where to place the headings, you need to uncheck the Show
Field Names option. Open the layout menu to access the Show Field Names item.

With the Show Field Names option off, you should be able to place your headings
by following the lines you drew on the scrolling window. Your lookup window will
look like the following screenshot after you add the appropriate column headings
to your lookup window:

Building the User Interface

[190]

Summary
In this chapter, you've created the entire user interface for you customization,
including the scrolling windows.

Don't forget about the import/export trick you used to bypass the tedious job
of building the Customer Contact Master window from scratch.

Your next step is to code your application and bring it to life. In the next chapter,
you'll dive into using sanScript, the life's blood behind Dexterity.

sanScript – Making It Work
You will give life to your application in this chapter using sanScript! Soon, a looking
glass button on your Customer Contact Maintenance window will open a lookup
window. You will scroll through the data using browse buttons, and zoom around
the windows with ease. Working with an assortment of features will give you a good
idea of what it is like to develop using Dexterity.

Table operations come first: creating, retrieving, updating, and deleting records.
Table operations will lead you to ranges. You'll use ranges to fill scrolling windows
and filter data. The introduction to triggers will provide a means for you to interact
with third-party applications and to provide rich functionality without the need for
alternate forms.

Welcome to Dexterity!

Key topics in this chapter include:

• Introduction to sanScript
• Scrolling windows
• Triggers

It's time to start making your application function.

sanScript – Making It Work

[192]

Introduction to sanScript
sanScript is the engine of Dynamics GP. Like any other programming language,
you will never really appreciate what it can do until you see it in action. This chapter
will provide that action. sanScript uses a natural language syntax making the scripts
very easy to read and easy to learn. It comes with a rich function library, a graphical
forms designer, an embedded report writer, a source-level script debugger, and
supports COM and .NET technologies. A well-written application in Dexterity
provides a seamless integration with Dynamics GP. Your users will not be able
to detect when they have switched from the native Dynamics GP code, to yours.

You can get more information about the history and structure of sanScript in the
first three chapters of this book.

Scripts
Before you get started writing scripts, you need to understand a few basics about
sanScript. There are not that many rules, but still, if you don't follow them your
script will never compile. sanScript does not support Microsoft's Intellisense. A
fully qualified field name can get quite long, so some help in looking these names
up can be a lifesaver. For example, the fully qualified field name of the Customer
Number field on the Customer Contact Maintenance window looks as follows:

'Customer Number' of window RM_Customer_Contact_Maintenance of form
RM_Customer_Contact_Maintenance

To assist you with the long field names, you have two tools. The first, native to
Dexterity, is the Names window. To get the field name from the Names window,
select the Names button from the Script Editor. When the Names window opens,
select the Forms tab and choose the correct form name. With the correct form
selected, click on the Windows button and highlight the desired window. Click
on the Fields button and then double-click on the field you want to reference.
The Names window will close and you will be returned to the Script Editor. Since
Dexterity does not support the right-click mouse action, you need to use the Ctrl +
V keyboard shortcut to paste the field name into the Script Editor. The following
screenshot shows the components of the Names window:

Chapter 5

[193]

The second tool is the DexSense application written by Tim Gordon. In one of
the steps of preparing your development environment, you installed DexSense.
DexSense works from within the Script Editor. As you type, it monitors your
keystrokes waiting for the sequence of keys indicating that you need to select
an object name. At that point, a small window opens listing the available object
names. When you select the desired object and press the Enter key, the object
name will paste into the Script Editor. The DexSense window is shown in the
following screenshot:

sanScript – Making It Work

[194]

Syntax rules
Every language has standards and conventions. The following is a quick list of
some of the basic rules of sanScript:

• All statements end with a semi-colon
• Statements may span multiple lines without a continuation character
• sanScript is case sensitive
• Reserved words are all lowercase.
• Constants are all uppercase
• Object names containing spaces must be set off by 'single quotes'
• Comments are bounded by French braces {} and can go anywhere
• Comments can span multiple lines
• Scripts can be 24,000 characters long including spaces and comments

Script flow
You attach scripts to events using the Script Editor. When the event occurs, the
script assigned to that event executes. Determining the correct event to place your
scripts in is of the utmost importance.

Generally speaking, each object has several states or events. We will be focusing on
three of them: Pre, Change, and Post:

• The Pre event occurs just as you're opening a form or window, or entering
a field.

• The Change event occurs when you change the value of a field and exit the
field. For toggling fields, such as checkboxes, push buttons, radio groups,
list boxes, and visual switches, the change event occurs when you click on
the field.

• The Post event occurs just as you're closing a form or window, or exiting
a field.

Forms and windows do not have a Change event.

Chapter 5

[195]

The Change script is the default script. When you issue a run script statement, you
execute the Change script of the object. You need to qualify any other scripts.

Scripts run in the following order:

Script naming conventions
Script naming conventions are very straightforward. What is even better, Dexterity
automatically suggests a script name that follows the convention! Script names are
made up from three parts: [window name] [field name]_[type]. The [type]
segment refers to the type of script; it is abbreviated to PRE, CHG, POST, and so on.

For example, the name of the Change script for the Save button on the Customer
Contact Maintenance window is RM_Customer_Contact_Maintenance Save
Button_CHG, where RM_Customer_Contact_Maintenance is the window name, Save
Button is the field name, and CHG is the type.

Procedures and functions do not suggest decent names, so you will always want to
rename them. There are no hard-and-fast rules for naming functions and procedures.
Generally, you would want to name them according to the action being performed:
names such as INITIALIZE and HANDLE CHANGES are popular.

sanScript – Making It Work

[196]

Table operations
To know any database language is to have an intimate knowledge of table
operations. Therefore, building a foundation in sanScript would naturally begin
with learning a lot of CRUD. To know your CRUD, you need to be able to do the
following:

• Create a record
• Retrieve a record
• Update a record
• Delete a record

Once you have mastered these actions, the rest is just syntax.

Understanding the interaction of data between the tables and the windows is
paramount to understanding Dexterity and sanScript. Data displayed in the
windows gets there from either you pounding it in or you retrieving it from the
database via the table buffer. A table buffer is a temporary storage area in memory
and acts as an intermediary between you and the data. Only one record at a time
can occupy a table buffer, and it will stay there until you tell the table buffer to put
it back or to clear it out. In computer-speak, the table buffer contains values from
the last table operation.

If you want to display the table buffer values on a window, you need to get a copy
of those values from the table buffer and copy them up to the window. Now you
have three versions of the data. The one stored in the physical table, the copy in
the table buffer, and the copy on the window.

When a user makes a change to the values on the window, nothing changes in the table
buffer nor the physical table. Changing values on a window is not a table operation.
The windows are not bound to the tables; the changes are stored in memory until you
decide what to do with them. If you decide you would like to update the values in the
physical table, you need to copy the record from the window to the table buffer, and
then from the table buffer to the physical table. Nothing happens automatically, you
will need to code each of these actions deliberately.

That's the gist of it. Just keep in mind that the table buffer's copy of the record
doesn't change until you tell it to change. As with any programming language, there
are several exceptions to this dictate, but we'll keep it straightforward in this writing.

Chapter 5

[197]

It is critical that you understand this concept of window, table buffer, and table
before you can go forward with Dexterity. Recite every morning:

 "The table buffer can only hold one record at a time."

As you tackle more advanced concepts in your future programming endeavors,
you'll discover more about managing records in the table buffer, but for now, let's
go with the one record concept.

Where do table buffers come from? I am so glad you asked! As you learned in the
last chapter, you can attach tables to forms. Unless you have instructed the form
not to, when you open a form, it creates a table buffer for each of its attached tables.
Each table buffer is loaded into memory ready to receive the values of a single
record. It stays in memory until the form is closed.

You can attach the same table to multiple forms. If multiple forms open with the
same table attached, you get a table buffer for each form. The table buffers are
independent of each other. Nevertheless, they are the property of the form they
came with. The form that opened it owns the table buffer. If you open more than
one form, you get more than one table buffer. When you close the form, the table
buffer closes as well.

To facilitate these table operations, you will use the following sanScript statements:

• get

• change

• remove

• save table

• release table

• copy to table

• copy from table

The word table refers to the table buffer in some statements, and the physical table
in others. As you might imagine, picking the right statement is sometimes confusing
until you get accustomed to it. The quote "a picture is worth a thousand words"
comes to mind whenever the table buffer discussion begins.

sanScript – Making It Work

[198]

Perhaps the following diagram will help clarify the concept:

Keeping the previous diagram in mind, the following is a brief description of each
of the statements mentioned:

get
• Use get to retrieve a record from the database to the table buffer
• No lock is placed on the record
• You cannot change the values
• Inquiry windows and lookup windows use get to retrieve records
• Retrieving a record from the RM_Customer_MSTR table looks like this:

get table RM_Customer_MSTR;

change
• Use change to retrieve a record from the database to the table buffer
• A passive lock is placed on the record
• You can change the values

• Maintenance windows and transaction windows use change to retrieve
records

• Retrieving a record from the RM_Customer_MSTR table looks like this:

change table RM_Customer_MSTR;

Chapter 5

[199]

remove
• Use remove to delete the record in the table buffer from the physical table.

You may also use remove range to delete a range of records. If you use the
range modifier, and have not defined a range, you delete all of the records,
ouch!

• remove does not clear the table buffer.
• Removing a record from the RM_Customer_MSTR table looks like this:

remove table RM_Customer_MSTR;

Always use Table_IsRangeSet(tablename) to check for the
existence of a range before using the remove range statement!

save table
• Use save table to save the contents of the table buffer to the physical table
• It releases any lock on the record whether or not the save operation

is successful
• save table does not clear the table buffer
• Saving a record to the RM_Customer_MSTR table looks like this:

save table RM_Customer_MSTR;

release table
• Use release table to release the lock placed on the record by the change

table statement. You must release the lock before you can read another
record into the table buffer.

• release table does not clear the table buffer.
• It has no impact on the physical table.

copy to table
• Use copy to table to copy the values of all auto-copy fields from the

selected form to the table buffer.
• It copies values from the current form to the table buffer.

sanScript – Making It Work

[200]

• Notice we said form and not window. Whenever we say form, we are
including all of the windows on the form.

• The window does not have to be open for the field values to copy. The values
are copied to the table buffer in the order in which the windows are listed on
the form definition window.

auto-copy is a field property that defaults to TRUE. If a field is
not an auto-copy field, the copy statements will skip that field.

copy from table
• Use copy from table to copy the value of all auto-copy fields from the

table buffer to the windows on the selected form
• It does not release the lock on the row
• It does not clear the table buffer

Creating a record
You will begin coding table operations by creating a record.

Because everything has to go through the table buffer, creating a record is a
two-step process. First, you copy the record from the window to the table buffer,
and then you save the record from the table buffer to the physical database table.

Turning focus to your project, let's write the code for the Save button.

Launch Dexterity and open the Project.dic dictionary. Launch DexSense
from Start Menu | All Programs | Dexsense | DexSense and wait for it to
connect. DexSense runs as a tray icon in your system tray. Once it connects,
the tray icon should turn to blue; if it is red, review the DexSense manual for
troubleshooting steps.

After DexSense is up and running, open the RM_Customer_Contact_Maintenance
form and then open the RM_Customer_Contact_Maintenance window. If the
window is displaying the field names, you may want to turn them off. To hide the
field names, select Layout from the toolbar and then uncheck the Show Field
Names menu item.

Double-click on the Save button to open the Script Editor window. Your script will
copy the values on the form into the table buffer, and then save the values from the
table buffer to the database table. If the record already exists in the database table,
this script will update it.

Chapter 5

[201]

Enter the script as shown in the following screenshot into the Script Editor. Close
the Script Editor window when finished and compile the script when prompted:

Congratulations! You have satisfied the first and third requirements of CRUD;
you can now create and update a record.

As you type in the Script Editor, your DexSense application should open a small
window and present you with a list of object names. All you need to do is select a
name from the list and DexSense will copy the text into the Script Editor. DexSense
is a tool that can save you hours of time looking for and typing in long descriptions.
However, keep in mind that it does not validate your sanScript code, nor does it
display sanScript functions or statements.

Since we are so close to the Clear button, let's add a script to it. When you push the
Clear button, you want your script to clear all field data on the window and return
the screen to its default state. Double-click on the Clear button to open Script Editor.
The following script will do the trick:

sanScript – Making It Work

[202]

The Clear Button script looks simple, but it accomplishes many things. The restart
form statement sets your form up to accept another record. Specifically, the restart
form statement completes the following:

• Clears the window fields (the window buffer)
• Clears the change flag on the form
• Sets focus to the first field in the tab order of the main window
• Runs the window PRE script of the main window on the form
• Runs the field PRE script of the first field in the tab order on the main

window (because focus is moved to that field)
• Releases any lock on the record in the table buffer
• Does NOT clear the table buffer
• Does NOT run the form PRE script.

Retrieving a record
Like saving a record, retrieving a record is also a two-step process. First, you set
the table buffer with the key field values, and then you tell the system to go looking
for the matching record in the database. If it finds the record, the table buffer will fill
with the remaining field values from the auto-copy fields in the table. You specify
whether you want to change the record, or just read the record, by the statement
you've used to request it.

Using the Change statement will allow you to modify the record values.

Using the Get statement retrieves the record as read-only.

Customer
For your project, if the user changes the value of the Customer ID field, you'll
presume they want to retrieve that record. Therefore, you need to put your code
on the change script of the Customer ID field. If the Customer ID doesn't exist,
then you are going to tell the user to try again. Double-clicking on a field in the
form layout window will open the change script for that field. Since you want to
attach a script to the Customer ID field, double-click on the Customer Number
field to open its Change script. Enter the code from the following screenshot into
Script Editor. Any text bounded by French braces { } is part of a comment and
will not affect the code if not included:

Chapter 5

[203]

Script analysis
This script does not use the copy from table statement because you only want to
copy Customer Number and Customer Name from RM_Customer_MSTR. If you
use the copy from table statement, any field on the window that matches the field
name in the table would be overwritten. You don't want that because you do not
want to populate the address fields on the Customer Contact Maintenance window
with the customer's address. You are going to be populating those address fields
with the contact's address, not the customer's address.

Customer zoom
Dynamics GP windows often contain window elements called zoom fields.
A zoom field allows the user to drill down on that field for additional information.
Two things are in play to visually alert the user of a zoom: the color of the prompt
is blue and underlined, and the mouse changes to a pointing finger when it passes
over the prompt.

sanScript – Making It Work

[204]

When the user clicks the pointing finger, another window opens. Depending on what
kind of field it is, the additional information returned by the zoom varies. An ID field
should bring up the related set-up, or maintenance window. A summary field should
bring up the related detail.

Users expect these window elements to be present; therefore, to deliver a truly
seamless customization, your windows must include them too.

The Customer ID field on your Customer Contact Maintenance window should
be a zoom. Because you copied an existing Dynamics GP form, the window already
contains all of the necessary elements for a zoom.

First, you need to delete CustomLinks Zoom Button; you won't be using it. Simply
highlight it and delete it. Refer to the following screenshot to locate the button field:

Move down the Customer ID profile button that is on top of the Customer ID
field prompt and you will see that the characters of the field prompt are blue and
underlined; refer to the following screenshot:

This behavior (the blue color and underline) is controlled by the Zoom property of the
field prompt; it has nothing to do with the linked field itself.

Chapter 5

[205]

Setting any prompt's Zoom property to True will cause it to be blue and underlined.
(The User Preferences settings actually control the color, but the default is blue and
underlined).

The pointing finger is achieved by setting the Zoom property to True of the invisible
push button that is positioned on top of the prompt. The Customer ID profile button
that you moved down to uncover the field prompt is the invisible button in this case.

When your user clicks on the Customer ID field prompt, the Customer Maintenance
window should open. Since you cannot attach code to a bit of static text, you use the
invisible push button to do your bidding. You attach your code to the invisible push
button; when the user clicks on the prompt, they are really pushing your button!

The following screenshot shows the Properties window of the Customer ID prompt
and the invisible push button:

sanScript – Making It Work

[206]

Put the invisible button back on top of the Customer ID prompt. Double-click on the
invisible push button ((L) Customer ID Profile Button) to open its Change script in
Script Editor. Copy the script below to Script Editor. When the user clicks the zoom,
this script will execute and open the Customer Maintenance window displaying the
customer from the Customer Contact Maintenance window:

Move (L) Customer ID Profile Button back on top of the Customer ID prompt.

Browse buttons
The next bits of functionality you need to take care of are the browse buttons at
the bottom of the Customer Contact Maintenance window. They are supposed to
browse through the customer records in the RM_Customer_MSTR table. This one is
simple: set the value of the table buffer to whatever is on the window and just read
up and down the table in Customer Number order. We could use a different order,
but we do not have a sort by field on the window to indicate a different order. With
no instruction to the contrary, the first table key is used. The only segment in the first
table key is Customer Number.

Before coding your browse buttons, you first need to drag the global field named
Display Existing Record to the area below the visible section of the window.

Double-click on each browse button to open the Script Editor window and then type
in the relevant code from the following screenshots.

Chapter 5

[207]

The left-most button retrieves the first record in the table. If you are on the first
record in the table, your script causes a beep sound to play:

The get previous button retrieves the record just before the displayed record. If the
displayed record is the first record in the table, your script causes a beep sound to play.

sanScript – Making It Work

[208]

The get next button retrieves the record after the displayed record. If the displayed
record is the last record in the table, your script causes a beep sound to play.

The get last button retrieves the last record in the table. If the displayed record is the
last record in the table, your script causes a beep sound to play.

Chapter 5

[209]

Updating a record
At this point, with your Save button active, you can retrieve records by typing in
the customer ID or browsing to it using the browse buttons. Updating a record
involves simply bringing it up to the screen, changing it, and then pushing the
Save button. Looks like you have Create, Retrieve, and Update in the bag; Delete
is just moments away.

Deleting a record
The following sanScript statement provides the last component of learning the table
operations of a new language. To delete a record, you copy the record into the table
buffer and then use the remove table statement to delete it.

Double-click on the Delete button to open the Script Editor window and then type
in the code from the following screenshot:

Congratulations! You are now CRUD qualified.

sanScript – Making It Work

[210]

Ranges
A range is a subset of data. Nearly every script you write will be acting against a
range of records rather than the entire table. If you are adept at defining ranges, you
have come a long way toward mastering your task. Using sanScript, you describe
the beginning of the range, and then issue a range start statement. You describe
the end of the range, and then issue a range end statement. The range is then set
and until you remove it any table operation on this form will act against this range
as if the records in the range comprised the entire table.

In your application, contacts are grouped by a customer, so you need a way to filter
your data so that you only display contacts for one customer at a time. Setting a
range allows you to bring up a customer and only see the contacts associated with
that particular customer.

After establishing a range, a get first statement will retrieve the first record in the
range, and a get last statement will retrieve the last record in the range. The table
name becomes the range name once the range is set; it's as if the only records in the
table are the records in your defined range. A range is associated with a key; if you
do not specify a key, the table's first key is used. If you want to use a different key,
you must specify that key with every table operation statement. You can refer to the
key by name or by number.

Setting a range
Next, you're going to write the code to retrieve a list of phone numbers for a distinct
customer contact. Since you only want to retrieve phone numbers for a single contact
of a particular customer, you are going to use Customer ID and Contact ID as a filter
on the RM_Contact_Phone_MSTR. Whether you browse through existing contacts
or use the lookup window, you only want to see phone numbers associated with the
selected customer contact.

After the user selects a Customer ID field, there are three ways for the user to
retrieve a Contact ID value:

• Type the contact ID into the Contact ID field
• Scroll to the contact ID using the left and right browse buttons on either

side of the Contact ID field
• Open the Contact ID lookup window and pick the contact from the

lookup window

Chapter 5

[211]

Let's open the lookup window and pick the contact off the list. Double-click the
lookup button next to the Contact ID field and type the sanScript mentioned in the
following screenshot into the Script Editor window:

It looks simple enough, and it is, so long as you set a range on the RM_Customer_
Contact_MSTR table.

You're going to use a range so that you only have to deal with those contacts that
are attached to the selected customer. There are a lot of opinions about how to set
a range in Dexterity. You're going to learn how to set a range that is easy to do, easy
to read, easy to troubleshoot (read debug), and works every time. In Dexterity circles,
it is known as a well-behaved range.

In the beginning, a well-behaved range was necessary because of some subtle, and
not so subtle, differences in the supported databases. It had to do with whether the
range was exclusive or inclusive. Today, Dynamics GP uses only SQL; therefore,
we do not have so many problems with ranges. Nevertheless, ranges are the single
most important thing you should be adept at in order to be a superior Dexterity
programmer. If you learn nothing else, learn ranges. Let's begin.

To establish a range, you must give the system a beginning point and an end point.
To establish a well-behaved range, you need to provide that beginning and end point
for each segment in the table key you are using. Here are the basics to setting a range:

1. Clear existing ranges.
2. Set the beginning key values.
3. Start the range.
4. Set the ending key values.
5. End the range.

sanScript – Making It Work

[212]

The secret is to set a value for each segment of the key. It may seem repetitive to you,
but believe me, it's the way to go. Let's say you have a table with a four-segment key.
The table's Key Definition would look similar to the following screenshot:

The item identified by the arrow, is a segment in a composite field. You have some
additional flexibility when you work with composites. Instead of dealing with the
entire composite, you can use each segment of a composite just as you would an
independent field. If you were creating an inquiry, and needed to sort the records
according to IV_Item_MSTR_Key3 above, you would set a range for each field in
the key.

For instance, let's suppose you needed a report that included only items with the
type of Warranty, sold by departments 500 through 900, at a price of $10,000 or
above. Dexterity ranges can handle this sort of a request quite nimbly. For those
segments where there is no absolute low or high end, you use the statements of
clear for the low end and fill for the high end.

clear is the lowest possible value accepted by the field, and fill is the highest
possible value. You need to consider all item numbers in your report, so your begin
value for the item number is clear and your end value is fill.

Chapter 5

[213]

The easiest way to portray the beginning and ending points for a range is to fashion
a table like the following one that includes each segment in the table's key that you
are using. Here's what the table would look like for your inventory report:

Segment
Number

Segment Name Begin Range End Range

1 Item Number Clear Fill
2 Item Type Warranty Warranty
3 Account Number: Department 500 900
4 Price 10,000 Fill

You don't need to type this script anywhere as part of this project; it is merely
an example.

If the code for a warranty is equal to 4, the sanScript code for setting the
four-segment range described above would look like the following screenshot:

You see how each segment of the key is included in both the range start section
and in the range end section? Also, you can refer to the key either by the key
number or the name of the key. In the previous script, the range start statement
uses the key's name, whereas the range end statement uses the key's number.

If you deal deliberately with every segment of your key, you will never go wrong.

sanScript – Making It Work

[214]

Creating a virtual key
If you do not have the key you need predefined in the table, you can create a
virtual key.

Let's say you need to display contacts of a specific customer that live in a specific
state. Does that sound like a range to you? Of course it does! The first thing you
need is a table key that includes all of the elements required for the restriction.
You need a key containing the following segments:

• State of table RM_Customer_Contact_MSTR

• "Customer Number" of table RM_Customer_Contact_MSTR

• "Customer Contact ID" of table RM_Customer_Contact_MSTR

A quick look at your table definition will reveal that you do not have a key with
the previously mentioned segments. Rather than modifying your table definition,
Dexterity has a means to alleviate situations like this with the introduction of the
virtual key.

A virtual key is kind of like an on-demand key. You define it for a one-time use,
and then it goes away. First, let's define the virtual key.

To see how this works, you need to add a few more fields to your window.
Add a local string field with the following properties:

(L) RestrictState (local field)

Tab Property Value
Object DataType RestrictState

Object Field RestrictState

Object LinkedLookup Lookup Button 3

Object SetChangeFlag False

Object Tooltip Enter state
restriction

Visual Position-Left 318

Visual Position-Top 83

Visual Size-Width 48

Your window will look similar to the following screenshot with the extra
fields added:

Chapter 5

[215]

How this will work is that if you enter a state restriction in the local field, a virtual
key will be used. By using this key, you will limit the contacts retrieved to just those
that live in the state indicated. If the (L) RestrictState field is empty, then all of
the contacts will be retrieved. You'll need to add your code to the PRE script of the
Customer_Contact_Lookup window.

Using Resource Explorer, double-click on the RM_Contact_Lookup form, and then
open the Customer_Contact_Lookup window. In the Properties window, click on
the Scripts tab and then double-click on the Pre script. Your Properties window
will look similar to the following screenshot:

Next, you need to add the script that creates your virtual key, sets a range using the
new key, and then populates the scrolling window of phone numbers according to
the range.

sanScript – Making It Work

[216]

First, create the virtual key and assign it to the table by typing the following script:

Next, you need to set the range using each segment of your virtual key. The range
start and range end clauses are highlighted in the following code depicted in the
screenshot so you can more easily pick them out. Notice that in the range start,
range end, and fill window statements the by qualifier is used to direct Dexterity
to use your new virtual key:

Chapter 5

[217]

If no state restriction has been entered on the window, set your range using the
table's first key using the following script. The range start and range
end statements have been highlighted:

Now that you have your contact selected, you need to retrieve that contact's phone
numbers. You will need to set another range to accomplish this filtering. This code
will be attached to the Change script of the Contact ID field. Double-click on the
Contact ID field to open Script Editor. Type the following script to set the range
on the RM_Contact_Phone_MSTR table:

sanScript – Making It Work

[218]

To complete your contact selection, you need to fill the scrolling window with the
selected contact's phone numbers and the Customer Contact Maintenance window
with the rest of the information about your selected contact. Complete the Contact
ID Change script with the following code:

range where
An alternative to using a virtual key is the range where statement. Using range
where, you can pass a where clause to SQL to put additional restrictions on the
data returned. You would be writing pass-through SQL if you used this approach.
For example, if you wanted to limit the customers that appear in a lookup window
to just those customers that lived in IL, your code would look something like the
following code:

range clear table RM_Customer_MSTR;

range table RM_Customer_MSTR where
physicalname('State' of table RM_Customer_MSTR) + "'= IL'";
fill window Customer_Lookup_Scroll;

range clear table RM_Customer_MSTR;

Chapter 5

[219]

When writing any kind of pass-through code, whether it be pass-through sanScript
or pass-through SQL, you need to be mindful of the string terminator used by the
recipient language. For instance, the where clause previously used, if written in
T-SQL (Transact SQL), would look like the following code:

WHERE STATE = 'IL'

Looks straightforward enough, but one challenge is turning the Dexterity table
and field names into the equivalent physical names found in SQL. The second
challenge is getting all of the quotes and apostrophes and such to come out right.

Luckily, sanScript has a function that will translate the technical names of our
objects into the physical names found in SQL. It is the physicalname() function you
see being used. Using this function, you put the full technical name of the object
between the parentheses and physicalname('State' of table PM_Vendor_MSTR)
translates into STATE.

Using the physicalname() function, you can get the physical name of a global field,
the physical name of a table, or the column name of a field in a SQL table.

Next we have to fashion a sanScript statement that will resolve to = 'IL'. It
looks easy on the face of it, but these statements can get quite involved. The
complication
comes with the string terminators. The basics are that Dexterity uses the quotation
sign as a string terminator and T-SQL uses the single quote. You could get some
code that was very hard to read if you tried using the keyboard characters of "" and
''. Imagine if your source data included quotes and apostrophes! It would be easy
for your code to fail.

The old stand by for testing your pass-through SQL is to use a warning dialog
or debug dialog for short things and a text field for longer things. You would
display your code in these fields and work through it until you got it right.
Another popular idea is to use constants or the char() function instead of the
actual keyboard character.

You have thousands of predefined constants in the development dictionary. Among
them are a set of constants that return punctuation and special characters. The
following tables list those constants that can take the place of special characters.

Of course, you can always create your own. Notice that the double quote is missing;
that's odd. Use char(34).

sanScript – Making It Work

[220]

Constant Value Constant Value
CH_ACCENT ` CH_LEFTPAREN (

CH_AMPERSAND & CH_LESSTHAN <

CH_ASTERISK * CH_MASK X

CH_ATSIGN @ CH_PERCENT %

CH_BACKSLASH \\ CH_PERIOD .

CH_BRACKET_LEFT [CH_PLUS +

CH_BRACKET_RIGHT] CH_POUND #

CH_CARAT ^ CH_QUESTIONMARK ?

CH_COLON : CH_RIGHTPAREN)

CH_COMMA , CH_SEMICOLON ;

CH_DASH - CH_SINGLEQUOTE '

CH_DOLLARSIGN $ CH_SLASH /

CH_EQUAL = CH_SPACE \ \""

CH_GREATERTHAN > CH_TILDE ~

CH_LEFTPAREN (CH_UNDERSCORE _

Using the previous constants, our where clause would look like this:

physicalname('State' of table PM_Vendor_MSTR) + char(34) + CH_
SINGLEQUOTE + CH_EQUAL + IL + CH_SINGLEQUOTE + char(34);

Scrolling windows
Scrolling windows are everywhere! You find them on lookup windows, line items
on invoices, line items on purchase orders, distribution screens, kit components,
accounting periods, units of measure, they're everywhere! Very often, when you are
working with a scrolling window, you are working with a range. If you are making a
list of those things to really master when working with Dexterity, ranges are number
one, scrolling windows are number two.

First, what is a scrolling window? Simply put, it is the grid on a window. It usually
presents itself as rows and columns, but it has much more ability than that. We have
been told that a Dexterity scrolling window is like nothing else. You cannot compare
it with VB, Java, COBOL, nothing.

Chapter 5

[221]

Scrolling windows come in three flavors:

• BrowseOnly

• Editable

• AddsAllowed

Before we delve into the different scrolling window sections, let's go over some
characteristics common to them all. The following screenshot shows a typical
scrolling window:

A scrolling window is an object on another window, much like a push button or
a field. The window that houses the scrolling window, we will refer to as the Host
window. That is not an official name, but it makes it easier to talk about. The scrolling
window itself is the box just below the headers. Make note that the headers reside
on the host window, not on the scrolling window.

The looking glass buttons used to look up U of M and Equivalent are likewise on
the host window.

sanScript – Making It Work

[222]

Big and Small Line item
The button with the chevron on it changes the display of a record in the scrolling
window from one line to two, and back. We labeled it as the Show/hide button in
the previous screenshot. The following screenshot shows the comparison between
a scrolling window's Show state and its Hide state:

To achieve the two views, you separate the scrolling window into two partitions.
The partition at the top is called the small line item, and the partition at the bottom
is called the big line item. The big line item is optional. The following screenshot
shows the layout view of the item number lookup window with the big and small
line item markings revealed:

Chapter 5

[223]

By marking the small line item so that it is at the bottom of the scrolling window,
you can achieve a one-row window. You can use this as a window embedded in a
window that you can show or hide at the press of a button. You do not have to make
the two line items the same height. You can put checkboxes, drop-down lists, push
buttons, and the whole shebang on your scrolling window. However, the shebang
cannot include another scrolling window. You are not allowed to nest scrolling
windows. As you can see from the markings in the previous screenshot, items
placed below the big line item are not visible at runtime.

To mark the big or small line item, navigate to the Tools menu and select either
Mark Small Line Item or Mark Big Line Item. Your mouse pointer will change to
a scrolling window icon as shown in the following screenshot. The biggest trick to
marking these partitions is to know where to position the cursor to make the mark.
You make the mark by simply clicking on the left mouse button. The following
screenshot shows you exactly how to position the pointer. So many people put the
mouse pointer under the area where they want the mark. They end up getting the
mark too low. All you need to do is position your cursor in the last row that you
want included in the partition. Do not put it below the last row, but in the last row.
The line marking the bottom of the section will appear:

sanScript – Making It Work

[224]

As we go through the different types of scrolling windows, know that most of the
features of one are available for the others. You're going to learn the high points
today, so let's get after it.

BrowseOnly windows
A BrowseOnly scrolling window is a look but don't touch window. It prevents you
from making any changes to the data, no additions and no deletions; the window
is for scanning only. Lookup and inquiry windows are commonly BrowseOnly
windows. You tell Dexterity what type of window you want to create by setting the
WindowType property. The following screenshot shows both the Visual properties
and the Object properties:

You modify the visual properties of the scrolling window from the host window.
If you think of the scrolling window as just another object on the window, then
it makes sense for the visual properties to be available. You adjust the size of the
scrolling window from the host window too. Size and position are considered
visual properties. One visual property that is notable is the AltLineColor property.
The default setting is True, but you can change it here.

You tweak the object properties of the scrolling window with the scrolling
window open. We will cover the object properties in the section, Lookup windows.

Chapter 5

[225]

Lookup windows
We have a BrowseOnly scrolling window in our project that is on the RM_Contact_
Lookup window. A lookup window is loaded with functionality. When you build
your lookup windows, they need to behave just like a Dynamics GP lookup window.
A closer look at one of the lookup windows will inspire you to copy one already
finished. You can build the window from scratch, but it would be very tedious.

We've highlighted several features of a Dynamics GP lookup window in the
following screenshot:

Lookup windows are in fact what you will use most often to find data. SmartList
gets a lot of press, but lookup windows are what we rely on. Everyone knows how
to use a lookup window: click on the looking glass button and a scrolling window
opens. You don't even have to click; you can use the keyboard shortcut Ctrl + L. After
keyboarding or clicking, the grid fills with your records. You can double-click on one
of the records, and the selected record pops onto your entry screen, slick.

sanScript – Making It Work

[226]

For Ctrl + L to work, you must link the lookup button to the
lookup field.

Calling the lookup form
As part of the SDK, you have instructions on how to call procedures to open over 100
Dynamics GP lookup windows. To find these procedures, look on the opening page
of the SDK under Procedures and functions as shown in the following screenshot:

You're going to put some code in your project to open the Dynamics GP Customers
and Prospects lookup window.

As stated earlier, you need to be able to do the following:

1. Open the lookup window.
2. Return the value of the selected item.
3. Close the lookup window.

Sounds straightforward enough; let's do it.

Chapter 5

[227]

Normally you would use two sanScript statements to accomplish your lookup.
The first one goes on the calling form, and the other goes on the called form. The
form where you want the value returned is the calling form. The form where the
value comes from is the called form. Because we are using an existing Dynamics GP
procedure for the Customers and Prospects lookup window, you do not need any
script on the called form; it's already there.

Attach the script mentioned in the following screenshot to the change event of
Lookup Button 1. This lookup button is next to the Customer Number field on the
RM_Customer_Contact_Maintenance window. Double-click on the lookup button
to open the Script Editor window:

You can return any value you want from the lookup window to any field you choose
in the calling window. Here, you are returning the value to the Customer Number
field, but you could just as easily return it to the Address 1 field.

The INITIALIZE procedure is an existing resource in the Dynamics.dic dictionary.
Instructions in the SDK explain the eight parameters, and give you the correct syntax
to pass them. You cannot look at the code for this procedure, but you can utilize it
with the previously mentioned call.

The INITIALIZE procedure contains over 100 lines of sanScript
source code.

You already entered the script for the lookup button next to the Customer Contact
ID field back in the Setting a range section.

sanScript – Making It Work

[228]

From the Debug menu, select Test Mode and give your customer lookup button
a try. You can't double-click and return a value because you don't have any scripts
for that.

Defaulting the double-click
To get the double-click to select a value action working, you need the
DefaultDblClick object property of the scrolling window set to True, and the
Default object property of the Select button set to True. How this works is that by
setting the window as a DefaultDblClick object, the change script of the Default
Button will automatically run. Check the properties of the objects on your windows
and set them appropriately.

Editable windows
You can change the field values in an editable scrolling window. However, you
cannot add new records nor delete any existing records. The Audit Trail Codes
Setup window shown is a good example of an editable window. You can change
the values in the Reprint, Origin, Next Number, and Source Document columns,
but you cannot add any new ones, nor delete the ones that are there. You will not
find too many of these windows in the system:

Chapter 5

[229]

No matter what kind of scrolling window you are creating, you must link the
scrolling window to one of the tables attached to the form. The attached table
normally contains the fields you want to add to the scrolling window. Additionally,
you will be required to select a table key. Unless you specify otherwise, the scrolling
window will fill according to the linked key.

Since you can change the values on this window, you must have the ability to save
those changes. There is no Save button on the window, so what gives? Scrolling
windows have a set of events attached to the row itself. You still have all of the
events for each of the fields on the scrolling window, but you have a new set.

Line events
You can attach sanScript code to the Line Events of a scrolling window. Moving
from line to line is indeed an event.

LineFill
The LineFill event occurs each time a new line displays in the scrolling window.
When the scrolling window first fills, the LineFill event runs repeatedly until
the scrolling window is full. The LineFill event happens before the
LinePre event.

LinePre
The LinePre event occurs just as the line gains focus. You can use this event to
bring in data from another table or window and display it with the selected
record. The LinePre event occurs after the LineFill event.

LineChange
The LineChange event occurs just as the line loses focus and one of the fields
on the line has changed. You will find this event most useful for saving records.

LinePost
The LinePost event occurs just as the line loses focus. You would use this event
to clear any records brought into the line by the LinePre event.

sanScript – Making It Work

[230]

LineInsert
The LineInsert event occurs when you select Insert Row from the Edit menu.
Insert Row is only active in the Edit menu if you have attached a script to the
LineInsert event. You could use this event if you need to place records in a
certain order.

LineDelete
The LineDelete event occurs when you select Delete Row from the Edit menu.
Delete Row is only active on the Edit menu if you have attached a script to the
LineDelete event.

AddsAllowed windows
The final type of scrolling window is the AddsAllowed type. You can add, edit,
update, or delete records displayed in an AddsAllowed scrolling window. This is
the type of window used by sales transaction entry, purchase order entry, item
transaction entry, and so on.

AddsAllowed is the only type of scrolling window that can use the LineInsert
and LineDelete Events.

Triggers
Triggers watch for events and then respond to those events. This section will
introduce you to the five different types of object triggers supported by Dexterity.
You will learn what they do, how to register them, and some considerations for
using them. At the end of this section, you will register a form trigger on the
RM_Customer_Maintenance form to open your Customer Contact Maintenance
window.

Triggers can help you do the following:

• Add functionality where source code already exists
• Change functionality where source code already exists
• Make changes to the same form another developer has modified
• Avoid creating alternate forms so that you do not have to recreate them

with each new release

Chapter 5

[231]

Dexterity supports the following five types of object triggers:

• Form
• Focus
• Database
• Procedure
• Function

You can attach a trigger anywhere you can attach sanScript code. You can monitor
events such as opening a form, deleting a record, or calling a procedure.

Before you can use a trigger, you have to register it with the runtime engine. When
you register a trigger, you tell the system what kind of trigger it is and what to do
when it fires. Each trigger has a specific procedure to describe itself and pass along
instructions. You can register triggers from any procedure in your application, but
if you want to follow best practices (which you do), you will use a procedure
named startup.

The startup procedure runs prior to the form's Pre event of the main menu.
Nearly every third-party application uses triggers and registers those triggers
in a procedure named startup. Not all of these startup procedures can run at the
same time, so they run in the order their products are listed in the Dynamics.set
file. Similarly, whenever two developers have triggers responding to the same
event, the triggers will fire in the order they are listed in the Dynamics.set file.

Triggers are client-side only, they do not respond to SQL events. Do not confuse
Dexterity triggers with SQL triggers. Just as SQL is blind to Dexterity, Dexterity
is unaware of SQL. If Dexterity did not complete the action, the trigger event will
never fire. For instance, if you used Dexterity to call a SQL stored procedure that
deleted a record, the Dexterity database trigger will not fire.

Using triggers can significantly change the business logic of Dynamics GP.
Combining the changes you are making with the changes other developers are
making could lead to unanticipated results! Rigorous testing in a multi-dictionary
environment is critical for you to use triggers successfully.

sanScript – Making It Work

[232]

Form trigger
A Form trigger fires whenever the form opens. It adds an item to the Additional
form menu. If the form does not already have an Additional form menu, this trigger
will create one. While you can have a form trigger perform any action you like,
typically you would use it to provide navigation for your custom application.

The following screenshot shows the results of a properly registered form trigger:

Form trigger registration
The registration procedure bears the following syntax:

Trigger_RegisterForm(form form_name, menu_item_name, accelerator_key, script
processing_procedure {, tag})

Let's take this procedure apart so you can understand better what each parameter is
telling the runtime engine, as given in the following list:

• Trigger_RegisterForm: This alerts the application that it's about to get a
form trigger definition.

• form form_name: This states the technical name of the form that will fire
this trigger whenever it opens.

• menu_item_name: This states the name of your menu item that will come
under the Additional form menu. In the previous screenshot of the
Customer Maintenance window, the menu_item_name is Contacts.

• accelerator_key: This states which key to use with the Alt + any key
combination to select the menu item. In the previous screenshot, the
T key is the accelerator key.

Chapter 5

[233]

• script processing_procedure: This states the name of the global procedure
to run whenever this menu item is selected.

• tag: This states the name of the variable you would like to use to store a
number assigned by Dexterity to uniquely identify this trigger.

Form trigger considerations
Keep the following things in mind when you use form triggers:

• You should use a message resource instead of a literal string to name your
menu. If you're not the only developer who registers a trigger against this
form, it's possible for the Additional menu item to be the same word. The
end user can use Modifier to change the message resource if conflicts in
naming occur. There would be no functional conflicts with having the same
name, but it could be confusing. As a bonus, by using a message resource
you can more easily translate your code into another language!

• Like the menu name, conflicts in the accelerator key could be created
because of multiple developers. For the same reasons as the menu, you
should use a message resource to define the shortcut key.

• A form trigger will fire even if the window has been modified, is an
alternate window, or is a modified alternate window.

Cross-dictionary considerations
You can register a form trigger against any dictionary in the application using the
function Trigger_RegisterFormByName(). This function adds the product ID of
the dictionary containing the form as its first parameter. The full syntax is shown as
follows:

Trigger_RegisterFormByName(product_ID, form_name, menu_item_name, accelerator_
key, script processing_procedure {, tag})

Focus trigger
A Focus trigger responds to focus events such as moving in or out of a field,
opening or closing a form, or pushing a button. Focus events are often called user
interface events. You can register a focus trigger against any action where you can
attach sanScript code.

sanScript – Making It Work

[234]

Focus trigger registration
The registration procedure follows the following syntax:

Trigger_RegisterFocus(anonymous (qualified_resource), focus_type, attach_type,
script processing_procedure {, tag})

Let's take this procedure apart so you can understand better what each parameter
is telling the runtime engine, as given in the following list:

• Trigger_RegisterFocus: This alerts the application that it's about to get
a focus trigger definition.

• anonymous(qualified_resource): This states the fully qualified technical name
of the resource whose focus event is being monitored. A fully qualified name
includes the entire string of objects you need to identify the specific resource.
Use the anonymous() function so that Dexterity will not try to open the
resource. Because you register the trigger in the startup script, Dexterity
does not yet recognize it.
Fully qualified resource names look as mentioned in the following list:

a. For a menu: menu menu_name of form form_name
b. For a command: command command_name of form form_name
c. For a field: field_name of window window_name of form form_name
d. For a window: window_name of form form_name
e. For a scrolling window: scrolling_window_name of form form_name
f. For a form: form_name

• focus_type: This identifies the focus event the trigger is monitoring. You
identify the event using a constant or its integer value. The constants and
their corresponding integer values are listed in the following table:

Focus event constants Integer value
TRIGGER_FOCUS_PRE 0
TRIGGER_FOCUS_CHANGE 1
TRIGGER_FOCUS_POST 2
TRIGGER_FOCUS_PRINT 3
TRIGGER_FOCUS_FILL 4
TRIGGER_FOCUS_INSERT 5
TRIGGER_FOCUS_DELETE 6
TRIGGER_FOCUS_CONTEXT_MENU 7

Chapter 5

[235]

• attach_type: This states whether the trigger's processing procedure should
run before or after any sanScript code attached to the event.

• script processing_procedure: This states the name of the global procedure
to run whenever the trigger fires.

• {, tag}: This states the name of the variable you would like to use to store
a number assigned by Dexterity to uniquely identify this trigger.

Focus trigger considerations
Keep the following things in mind when you use focus triggers:

• The focus event will fire the trigger whether or not sanScript is attached to
the event. Therefore, if no sanScript is attached, the processing procedure
will run immediately.

• Another developer may issue a reject script that will preclude your
processing procedure from running. Remember, the triggers fire in the order
they are listed in the launch file. You can manipulate the firing order by
moving your application up to a higher position in the launch file.

Cross-dictionary considerations
You can register a focus trigger against any dictionary in the application using the
function Trigger_RegisterFocusByName(). This function adds the product ID of
the dictionary containing the focus object as its first parameter. The full syntax looks
as follows:

Trigger_RegisterFocusByName(product_ID, focus_type, attach_type,_name, script
processing_procedure {, tag})

Database trigger
A database trigger responds to successful table operations. You can monitor multiple
table events in the same trigger.

Database trigger registration
The registration procedure uses the following syntax:

Trigger_RegisterDatabase(anonymous(table table_name), form form_name,
table_operations, script processing_procedure {, tag})

sanScript – Making It Work

[236]

Let's take this procedure apart so you can better understand what each parameter
is telling the runtime engine as given in the following list:

• Trigger_RegisterDatabase: This alerts the application that it's about to
get a database trigger definition.

• anonymous(table table_name): This states the name of the table this trigger
is monitoring.
Use the anonymous() function so that Dexterity will not try to open the
resource. Because you register the trigger in the startup script, Dexterity
does not yet recognize any table names.

• form form_name: If a form name is provided, then only database operations
that originate from the given form's table buffer will fire the trigger. You
might use a form restriction, for instance, if you wanted to monitor any
address changes from a specific screen. Use a zero if no form restriction is
used.

• table_operations: This identifies the table operations that the trigger is
monitoring. You can use an integer, or one or more constants to specify the
operation(s). To monitor more than one table operation, add the values of
the constants together. For example, to monitor a table add and a table
update, the integer value would be 4 + 8 = 12:

Database event constants Integer value
TRIGGER_ON_DB_READ 1
TRIGGER_ON_DB_READ_LOCK 2
TRIGGER_ON_DB_ADD 4
TRIGGER_ON_DB_UPDATE 8
TRIGGER_ON_DB_DELETE 16

• script processing_procedure: This states the name of the global procedure
to run whenever the trigger fires.

• {, tag}: This states the name of the variable you would like to use to store
a number assigned by Dexterity to uniquely identify this trigger.

Chapter 5

[237]

Database trigger considerations
Keep the following things in mind when you use database triggers:

• The table operation must be successful.
• Database triggers are NOT SQL triggers and do not respond to operations

completed outside of Dexterity.
• Table operations not caused by a Dexterity command will not fire the trigger.

For example, calling a SQL stored procedure using Dexterity, will not fire
the trigger.

• The table buffer passed to the processing procedure is available to that
procedure even if the table operation fails.

• If you are using a range, the trigger will fire for each record in the range.
• You can restrict the trigger to monitor operations that were initiated by a

certain form.

Cross-dictionary considerations
You can register a database trigger against any dictionary in the application using
the function Trigger_RegisterDatabaseName(). This function adds the product ID
of the dictionary containing the table as its first parameter. The full syntax looks as
follows:

Trigger_RegisterDatabaseByName(product_id, table_name, form_name, table_
operations, script processing_procedure {, tag})

Procedure trigger
A procedure trigger fires when the specified procedure is called using the call
statement. You will use procedure triggers to monitor posting procedures, aging
procedures, closing procedures, and so on.

Procedure trigger registration
The registration procedure uses the following syntax:

Trigger_RegisterProcedure(script (procedure_name) {of form form_name},
attach_type, script processing_procedure {, tag})

sanScript – Making It Work

[238]

Let's take this procedure apart so you can better understand what each parameter
is telling the runtime engine as given in the following list:

• Trigger_RegisterProcedure: This alerts the application that it's about to
get a procedure trigger definition.

• script (procedure_name) { of form form_name}: This identifies the fully
qualified technical name of the procedure being monitored. Form procedures
can be monitored so long as the qualified name is used. The qualified name
includes the name of the form.

• attach_type: This determines whether the trigger's processing procedure
should run before or after the procedure being monitored.

• script processing_procedure: This states the name of the global procedure
to run whenever the trigger fires.

• {, tag}: This passes the name of the variable you would like to use to store
a number assigned by Dexterity to uniquely identify this trigger.

Procedure trigger considerations
Keep the following things in mind when you use procedure triggers:

• Ignoring the parameters from the original procedure is considered a
best practice.

• Modifying the values of parameters is not suggested because of unexpected
results. If you do use parameters, use the same ones in the same order. This
is especially true if the parameter is an out parameter. For out parameters, it
is mandatory that your parameters exactly match the monitored procedure's
parameters, as the next process after that procedure would be expecting this
out parameter's value. It could prove disastrous, especially if it is a table
buffer which is passed as an out parameter. Conceptually, your trigger
would be an intermediate process which has interfered with the execution
flow, and therefore should not break it by ignoring the out parameters.

• Pay particular attention to background calls; the parameters are passed to
the processing procedure and the background procedure at the same time.

Chapter 5

[239]

Cross-dictionary considerations
You can register a procedure trigger against any dictionary in the application using
the function Trigger_RegisterProcedureByName(). This function adds the product
ID of the dictionary containing the procedure as its first parameter. The full syntax
looks as follows:

Trigger_RegisterProcedureByName(product_ID, procedure_name {of form form_
name}, attach_type, script processing_procedure {, tag})

Function trigger
A function trigger fires when the specified function runs. Like procedure triggers,
you will use a function trigger to monitor things such as advancing document
numbers or monitoring transaction types, and so on.

Function trigger registration
The registration procedure uses the following syntax:

Trigger_RegisterFunction (function (function_name) {of form form_name},
attach_type, [function processing_function | script processing_procedure] {, tag})

Let's take this procedure apart so you can better understand what each parameter is
telling the runtime engine as given in the following list:

• Trigger_RegisterFunction: This alerts the application that it's about to
get a function trigger definition.

• function (function_name) { of form form_name}: This states the fully
qualified technical name of the function being monitored. Form functions
can be monitored so long as the qualified name is used. The qualified name
includes the name of the form.

• attach_type: This states whether the trigger's processing procedure or function
should run before or after the function being monitored.

• function processing_function: This states the name of the global function
to run whenever the trigger fires. This is the only type of trigger that can
respond by running a function instead of a procedure.

• {, tag}: This states the name of the variable you would like to use to store a
number assigned by Dexterity to uniquely identify this trigger.

sanScript – Making It Work

[240]

Function trigger considerations
Keep the following things in mind when you use function triggers:

• If a procedure (versus a function) runs when the trigger fires, that procedure
cannot have any parameters. Consequently, the procedure does not have
access to any of the parameters of the monitored function.

• If a function responds when the trigger fires, that function must have
parameters. Those parameters must match exactly the parameters of the
monitored function. Accordingly, the processing function does have access
to all of the parameters of the monitored function.

Cross-dictionary considerations
You can register a function trigger against any dictionary in the application using
the function Trigger_RegisterFunctionByName(). This function adds the product
ID of the dictionary containing the monitored function as its first parameter. The full
syntax looks as follows:

Trigger_RegisterFunctionByName(product_ID, function_name {of form form_
name}, attach_type, [function processing_function | script processing_procedure] {,
tag})

Create your form trigger!
To give one of these triggers a try, let's register a form trigger that will create a menu
item to open your Customer Contact window.

Processing procedure
First, create the trigger processing procedure. This must be a global procedure,
so you will create it directly in the Resource Explorer window. In the Resource
Explorer window, create a new script resource by selecting the new resource drop-
down arrow from the toolbar and then selecting Script (Procedure).

Chapter 5

[241]

Name the procedure OpenCustomerContacts and enter the script mentioned in
the following screenshot. This script will open the Customer Contact Maintenance
window displaying the record from the Customer Maintenance window:

sanScript – Making It Work

[242]

Next, we have to register this trigger. To register it, create the Startup procedure.
From the Resource Explorer window, create another script resource by selecting
the new resource drop-down arrow from the toolbar and then selecting Script
(Procedure). Name the new procedure Startup and enter the script mentioned
in the following screenshot to register the new form trigger:

Go into the test mode and try out your new navigation! Your new Additional menu
will be on the Customer Maintenance window.

Chapter 5

[243]

Summary
You covered a lot of ground in this chapter! Starting with the basic rules of sanScript,
you started writing procedures right away. The new concept of table buffers is a
good foundation for understanding table operations. Moving on, you worked with
the most important concept in database programming – ranges. Ranges moved into
scrolling windows. Where you not only created a range, but also created a range
based on another range! You tried out the new technique of setting up a temporary
index using a virtual key. Using the range where statement gave you a glimpse
at pass-through SQL. You closed the chapter with the most powerful tool in the
Dexterity toolset: object triggers.

In the next chapter, we will take this customization to its ultimate goal – deployment.

Deploying a Dexterity
Solution

This chapter will guide you through the steps necessary to deploy your Dexterity
solution. All of that debugging has finally gotten you to the point where you're
ready to go public! You think, anyway.

Now it's time to get acquainted with the Dexterity Utilities program and set yourself
up so that your application is easily upgradable. It's also time to make sure your
application plays nice with other third-party programs. Remember, Dexterity's test
mode only plays with one dictionary. A minimal Dynamics GP installation includes
more like 20 dictionaries! In addition, most installations include non-Microsoft
applications, such as yours.

It would probably be a good idea to install a few of the more popular third-party
applications such as Rockton Software's SmartFill and eOne Solutions' SmartConnect
or SmartView into your test environment. The more, the merrier.

You need to make sure your triggers fire under as many scenarios as it's reasonable
to test. You might also consider writing some code into your installation routine that
moves your application to the top of the launch file. It's always better to be the first
application on the list (under Dynamics) so that nobody else can issue a reject script
statement on you.

It's time for you to make some decisions about whether you are going to create a
nice Windows Installer package, or if your users are going to have to do all of the
work themselves.

Don't forget that your users may not have the kind of equipment that you do. You
need to figure out what it takes to run your application so that everyone can surely
meet those requirements before they try to install it.

Deploying a Dexterity Solution

[246]

It's up to you to make sure your users can deploy your application with ease
and confidence.

Key topics in this chapter include the following:

• System requirements
• Versions and builds
• Table creation routines
• Completing the application
• Creating the chunk file
• Testing in a multi-dictionary environment
• Distributing the completed application

System requirements
Sometimes we overlook one of the most basic components of our new application.
Does the client's system meet the requirements for Dynamics GP? Fortunately, this
is well documented.

General requirements
Check the following link for the current list of general requirements for Dynamics
GP 2010:

http://www.microsoft.com/en-us/dynamics/using/gp-system-requirements.
aspx

Check the following link for requirements if you need any of the Dynamics GP 2010
web applications:

http://www.microsoft.com/en-us/dynamics/using/gp-web-apps.aspx

We've seen clients running unsupported versions of SQL Server, and even outdated
versions of Windows on the client machines. You can't assume everyone keeps
up to date like you do.

http://www.microsoft.com/en-us/dynamics/using/gp-system-requirements.aspx

Chapter 6

[247]

The following table lists the basic minimums for Dynamics GP release 2010:

Client Server
Not applicable to client SQL Server 2008 R2

SQL Server 2008 with SP1 or later
SQL Server 2005 with SP3 or later

Windows 7 (Professional or Ultimate
Editions), or Windows Vista SP2 or
later (Business or Ultimate Editions), or
Windows XP with SP3 or later (Professional
Edition)

Microsoft Windows Server 2008 with SP2
or later, or Windows Small Business Server
2008 with SP2 or later, or Windows Server
2003 R2, or Windows Server 2003 with SP2,
or later. Windows Small Business Server
2003 R2

2 GB of available RAM 2 GB of available RAM (more is better)
2010 Microsoft Office system, or 2007
Microsoft Office system
Windows Internet Explorer (7, 8, or 9)
Adobe (8, 9, or 10)

Dynamics GP supports both 32-bit and 64-bit environments; it can also be installed in
a virtual environment. Review the details about the supported virtual environments
at http://support.microsoft.com/kb/937629. You can install the rich client on
the desktop, or on a terminal server. You need to be sure your application will run
in each of these environments, or be very clear as to its limitations.

In addition to the general requirements previously listed, some features of Dynamics
GP have other requisites.

Feature-specific requirements
If your enhancement leverages any of the additional features of Dynamics GP,
 be sure to disclose any extra software your application needs. You don't want any
surprises when your end user tries to use your application and then finds out they
need several thousand dollars' worth of additional software. Requirements of
several features are provided as follows:

http://support.microsoft.com/kb/937629

Deploying a Dexterity Solution

[248]

• Word form documents: The Word Form feature provides a means to use
Microsoft Word to create forms and reports from XML files produced by
Report Writer. The software required for the Word Form feature includes
the following:

 ° Microsoft Office 2007 32 bit or Microsoft Office 2007 64 bit
 ° Microsoft Office 2010 32 bit or Microsoft Office 2010 64 bit
 ° Open XML SDK 2.0 for Microsoft Office: The SDK is installed

automatically with Microsoft Dynamics GP 2010
 ° Microsoft Dynamics GP add-in for Microsoft Word: This

add-in is installed from the Dynamics GP 2010 DVD media under the
Additional Products section, as shown in the following screenshot:

• E-mail functionality: The e-mail functionality feature allows you to mail
documents such as invoices and purchase orders to customers and vendors.
You can send the documents singularly or by batch. To use this feature, the
following is the requirement:

Chapter 6

[249]

 ° Microsoft Office 2007 32 bit or Microsoft Office 2010 32 bit
 ° Extended MAPI compliant e-mail application

E-mail functionality is not yet compatible with 64-bit versions
of Microsoft Office.

• Charts and KPIs (Key Performance Indicators): Microsoft SQL Server
Reporting Services 2008 or 2008 R2 32 bit or 64 bit

• Unified communications: Microsoft Office Communicator 2007 R2 or later
• Word form template generator: Microsoft Office 2007 or 2010 32 bit

Word form template generator is currently only available
to partners and is not yet compatible with 64-bit versions of
Microsoft Office.

• Business analyzer: Microsoft SQL Server Reporting Services 2008 or 2008
R2 32-bit or 64-bit

• Business Portal 5.0: These are for 32-bit environments only
 ° IIS (Internet Information Services) 6.0 or IIS 7.0
 ° Windows SharePoint Services 3.0 32-bit, or Microsoft Office

SharePoint Server 2007 Enterprise Edition 32-bit SP 2 or later
 ° Web Services for Microsoft Dynamics GP 2010

Web Services for Microsoft Dynamics GP 2010 is required only if you
use Microsoft Office SharePoint Server 2007 Enterprise Edition 32-bit
SP 2 or later

 ° An instance of Microsoft SQL Server

To view charts and KPIs on the Executive Center page, you need
Microsoft SQL Server Reporting Services 2008 or later.

 ° Internet Explorer 7, 8, or 9

Deploying a Dexterity Solution

[250]

• Business Portal 5.1: This is for 64-bit environments only
 ° IIS 7.0
 ° Microsoft SharePoint Foundation Server 2010, Microsoft SharePoint

Server 2010 Enterprise Edition, or Microsoft SharePoint Server 2010
Standard Edition (for Business Portal 5.1 R2 or later)

 ° Internet Explorer 7, 8 or 9
 ° Web Services for Microsoft Dynamics GP 2010

NOTE: To view Charts & KPI's on the Executive Center Page, you
need Microsoft SQL Server Reporting Services 2008 or later.

• Workflow in 32-bit environments
 ° IIS 6.0 or IIS 7.0
 ° Windows SharePoint Services 3.0, or Microsoft Office SharePoint

Server 2007 Enterprise Edition 32-bit SP 2 or later
 ° Internet Explorer 7, 8, or 9
 ° Microsoft Office 2007 32-bit or 64 bit, or Microsoft Office 2010 32 bit

or 64 bit
 ° Web Services for Microsoft Dynamics GP 2010

• Workflow in 64-bit environments
 ° IIS 7.0
 ° Microsoft SharePoint Foundation Server 2010, Microsoft SharePoint

Server 2010 Enterprise Edition, or Microsoft SharePoint Server 2010
Standard Edition

 ° Internet Explorer 7, 8, or 9
 ° Microsoft Office 2007 32 bit or 64 bit, or Microsoft Office 2010 32 bit

or 64 bit
 ° Web Services for Microsoft Dynamics GP 2010

Each of the products previously listed require that you install a specific version of
the software. This is true of Dynamics GP and your application as well. In the next
section, we will discuss why versions and builds matter.

Chapter 6

[251]

Minding versions and builds
When you create your chunk file for deployment, you will be asked to assign it
a major version, minor version, and build number. The runtime engine reads the
version and build numbers and compares them to any existing dictionary for that
product ID. If the version numbers match, the build numbers are examined. If
the build number in the chunk is equal to or greater than the build number of the
existing dictionary, a new dictionary will be created by your chunk.

If the version numbers do not match, or the build number is lower than the existing
dictionary, the file will remain a .cnk file and a message similar to the following
message will be written to the installerrors.txt file:

Version 11.0.17 of Contacts.cnk is not compatible with version 11.1.15
of CONTACTS.DIC

This keeps you from accidentally installing an older version of a dictionary. On
the downside, these rules could keep your application from updating if it is on a
different major version than Dynamics. The fix is often as simple as deleting the old
dictionary and reinstalling the new one. If you lose track of your version and build
numbers, you can retrieve them using the Runtime_GetModuleInfo() function.
You should create an About window that will display this information as part of
your application.

Another version and build guardian is the DU000020 table in the Dynamics database.
This table is the duCompanyVersions table and it keeps track of the version and
build numbers for each product expected to be installed on the workstation. When
you attempt to log in, Dynamics GP checks the dictionaries installed locally to the
versions in the DU000020 table. If the version on your workstation does not match,
you will be presented with the following error:

Deploying a Dexterity Solution

[252]

The GP_LoginErrors.log is stored in the Temp folder of your user profile on the
workstation that generates the error. For Windows 7, you can find the log file here:

C:\Users\user_name\AppData\Local\Temp\GP_LoginErrors.log

One problem with the previously mentioned location is that the AppData folder is
hidden in a typical windows installation.

As an example, let's say a record in your DU000020 table in the DYNAMICS database
held the following values:

CompanyID PRODID versionMajor versionMinor versionBuild
-1 1493 9 0 1734

Assuming you do not actually have Version 9 installed on your workstation, you
would be prevented from logging in until the situation was corrected. If you could
get to your GP_LoginErrors.log file, it would hold the following message:

Product Name: SmartList Database Version: 901734 Client Version:
1101734

It's not terribly informative, but you get the gist of what's going on. Fortunately,
changing the database version from 9 to 11 makes everything right with the
DU000020 table and you would be allowed to log in. Warning! You would be
overriding a Dynamics GP setting, so be very certain the data in the table is wrong.

Each service pack, feature pack, and so on, comes with a new build of the dynamics.
dic. If you created your product using a different build of dynamics.dic, you need
to confirm that the changes made to the new dynamics.dic do not conflict with your
dictionary. Always use the same version and build number to develop your product
that your product will be deployed in.

We'll talk about how you designate the version and build for your application in this
chapter's section, Creating the chunk file.

Chapter 6

[253]

Table creation routines
The tables used by your application are not automatically created. Back in
the Pervasive PSQL 2000 and FairCom ctree Plus days, the table was created
automatically the first time you accessed it. SQL doesn't work that way. If you try
to use the application without creating your tables, you will get an error message
similar to the one shown in the following screenshot. The message will not be
displayed until the system tries to access one of your tables:

Likewise, if the table exists but its structure does not match the table definition in
your application, you will receive the following error:

Deploying a Dexterity Solution

[254]

The More Info button provides the reason your application could not access the
SQL data; namely, there was a column in the Dexterity table definition that did not
exist in the physical table:

Your job now is to provide an easy way for your user to create the SQL Tables
and *zdp procedures required by your application, to grant permissions to those
tables, and to bind the default values to those tables.

The method you choose to build the tables depends in part on how you deploy
your application. If it's deployed in-house, the method will probably be much
easier to craft.

Two things to keep in mind:

• If you are not already logged in to the SQL Server, you will be presented
with a standard SQL login dialog. You want to avoid that because it's messy.

• The person creating the tables must have sufficient SQL authority to do so.
Typically you will satisfy this requirement by only allowing sa or DYNSA to
create the tables.

This section is limited to the initial creation of the tables; upgrading an existing
table is covered in Chapter 11, Upgrading Customizations.

You'll learn about the following methods in this section:

• Using the SQL Maintenance window
• Building a separate utilities window
• Automatically creating the tables upon launch

Chapter 6

[255]

Using the SQL Maintenance window
You can launch the SQL Maintenance window from within the user interface of
Dynamics GP. The navigation is shown as follows:

Microsoft Dynamics GP | Maintenance | SQL

After the SQL Maintenance window opens, change Database to the name of the
database in which you want to create the tables. This is typically your company
database. Select the name of your application from the drop-down box for Product.
The products are listed in the order they appear in the Dynamics.set file. The
Company will default to the company you are logged in to, and cannot be changed.

Deploying a Dexterity Solution

[256]

Any table resource defined in your application will populate the scrolling
window. Our Customer Contacts example has two tables as shown in the
following screenshot:

The SQL Maintenance window has several checkboxes on the right-hand side.
To create your tables and auto procedures, check the lower four boxes.

The system will create the two tables according to the Dexterity table definitions
and grant the appropriate permissions to the DYNGRP database role. Additionally,
the system will create the *.zdp stored procedures to handle basic table operations
in SQL.

That's all there is to it. You have the two tables created, permissions granted, defaults
bound, and the .zdp procedures in place. It's short and simple. But wait! Can you
see any risk involved in using this procedure? The user could accidentally drop any
table in any Dynamics GP database, and even the Dynamics database itself! Not fun.

The next method will take you a little longer, but it gets the job done in a more
controlled environment.

Chapter 6

[257]

Building a utilities window
Building a separate utilities window used to be a very popular method. New
procedures came on the scene a few years ago that will hopefully make this
technique obsolete. You want your application to be installed without risking
accidental disaster. For quick and dirty table creation without the risk of betting the
farm, this is a good way to go.

Using this method, you can build a separate window that contains local push
buttons. The script behind the buttons will add the tables, create the procedures,
grant permissions, and bind defaults.

You will be using pass-through SQL to create a stored procedure named am_
AutoGrant. The am_AutoGrant procedure grants SELECT, INSERT, UPDATE, and
DELETE permissions to the DYNGRP database role. It also grants the DYNGRP role the
right to execute the am_AutoGrant procedure.

Getting the syntax exactly right for pass-through SQL usually takes a few runs.
Using a text field as a preview is very helpful in making sure your commas and
apostrophes end up in the right place. We will be using this technique for
your window.

The utilities window method does require your user to find this window and push
the buttons. For this reason, you need to make this window really easy to find. The
best answer is to cause the window to open automatically based on criteria about
the state or existence of the tables.

Deploying a Dexterity Solution

[258]

For practice, we are going to create the window shown in the following screenshot,
followed by the instructions after the screenshot. The text in the preview window is
an example of what a pass-through SQL statement preview would look like:

Create the Installation_Utils form using the following information:

Form Name Installation_Utils

Series Company

Chapter 6

[259]

Create the Installation_Utils window using the following information:

Name Installation_Utils

Title Installation Utilities

Back Color True

Control Area True

Size-Height 580

Size-Width 530

Create a new global field to display your SQL statement using the
following information:

Field Name SQL_Statements

Physical Name SQL_Statements

Data Type TX32000

You're going to use this global text field to preview your pass-through SQL
statement as you build it. Simply drag the global field over to the window and
size it using the Properties window.

Global Field SQL_Statements

Position-Left 15

Position-Top 66

Size-Height 494

Size-Width 496

You're going to use a couple of local push buttons to fire off your code. Place
the controls on the window according to the previous screenshot. Create the
new local resources with the following information:

Global Field Cancel Button

Local Field Name Create Sproc

Control Type Push Button

Static Values Create AutoGrant Stored Proc

Local Field Name Create Tables

Control Type Push Button

Static Values Create Tables and Grant Permissions

Deploying a Dexterity Solution

[260]

You will add the words that appear on the button in the Button Items window as
shown in the following screenshot:

Next, add Change scripts to each of the buttons.

The Cancel button will simply clear the form. Create the following Change script:

The Create AutoGrant Stored Proc button's, Change script accomplishes
the following:

• Uses pass-through SQL to create the SQL stored procedure named am_
AutoGrant. The am_AutoGrant procedure uses SQL statements to grant
SELECT, INSERT, UPDATE, and DELETE permissions to the DYNGRP
database role.

• Uses pass-through SQL to give the DYNGRP role GRANT and EXECUTE
permissions to the am_AutoGrant SQL stored procedure.

Chapter 6

[261]

It's necessary to give the DYNGRP role access to the stored procedure so that you can
access the procedure from Dexterity. If you don't give access to DYNGRP, you will
need to use SQL Server permissions to grant access.

Create the Change script as shown in the following screenshot for this local button;
it will not compile. Save the uncompiled script by selecting Script from the menu
bar, and then Save Source (or Ctrl + S). Finally, click on the Close button on the
Script Editor window:

Now, let's create the CreateAutoGrantSproc global procedure. To create the
new global procedure, select the new resource drop-down arrow and then select
Script (Procedure).

Deploying a Dexterity Solution

[262]

Name the procedure CreateAutoGrantSproc:

You can download the entire script for the CreateAutoGrantSproc procedure
at http://www.packtpub.com/support . This script is taken largely from
the Integration Guide manual that comes with Dexterity and various Microsoft
Knowledge Base articles.

The Create Tables and Grant Permissions button will call the Create_Tables
procedure. The Create_Tables procedure accomplishes the following tasks:

• Uses the Dexterity Table_SetCreateMode function to create the SQL
Tables and zdp procedures

• Uses the GrantAccess stored procedure to give permission to the DYNGRP
role for the Tables and zdp procedures

Create the following Change script for this local button:

Now let's design the Create_Tables global procedure. Select the new resource drop-
down arrow and then select Script (Procedure). Name the global procedure Create_
Tables. This procedure will use Dexterity sanScript to create your third-party tables
(rather than pass-through SQL) and set permissions to those tables.

You can download the entire script for the Create_Tables procedure at
http://www.packtpub.com/support.

OK, now we have two tables created, permissions granted, defaults bound, and
auto- stored procedures in place. Just a note on the defaults; this is largely so that
you can access the tables from outside of Dexterity without creating null values.
Dexterity tables do not allow nulls, so you need to fill them with default values when
the field would otherwise be blank.

Chapter 6

[263]

Automatically creating the tables upon launch
Instead of requiring the user to launch a utilities window, you can trigger off
the Add_Successful_Login_Record procedure. Triggering off this procedure
guarantees the user is already logged in to the SQL Server, thereby avoiding the
second login window.

When the procedure executes, it will create your Tables and *zdp procedures
automatically if they do not already exist. Your trigger processing procedure is
called Create_Tables. If the tables already exist, no action will be taken
by Dexterity.

Include the following code in a global procedure named Startup. When the trigger
is activated, the Create_Tables procedure that you previously created will execute:

{---------Register the Procedure trigger-----------------}

 l_result =
 Trigger_RegisterProcedure(
 scriptAdd_Successful_Login_Record,
 TRIGGER_AFTER_ORIGINAL,
 scriptCreate_Tables,
 l_tag);
 ifl_result<> SY_NOERR then
 warning "The Add_Successful_Login_Record " +char(13)+
 " trigger registration failed.";
 end if;

Completing the application
To complete an application is to stand back and make sure it's tight. To make
sure you have followed the user interface design standards and to really look at
the application from the user's point of view. This section will help you begin to
develop your own completion checklist.

Forms and windows
Consider each of your windows and be sure you have met the following standards:

Deploying a Dexterity Solution

[264]

Linking your prompts
If you don't link your prompts, you won't get a visual notice of the required fields,
hidden prompts when the field is hidden, and grayed-out prompts when they are
disabled. This is easy to forget; don't let it happen to you. Refer to the Linked prompts
section to aid you in this quest.

To link prompts, select Tools from the menu bar, and then Link Prompt. The
Tools menu is shown in the following screenshot:

Linking your lookups
If you don't link your lookups, Ctrl + L will not open the lookup window as it is
supposed to. If you have moved your buttons around, this is especially critical.
You don't want your user hitting Ctrl + L and have the lookup window of
another field open.

To link your lookups, select Tools from the menu bar, and then Link Lookup.
The previous screenshot displays the Tools menu.

Adding tool tips
Tool tips can really help your application look polished. While context-sensitive help
(read F1) may be above the call of duty, your users deserve tool tips. At a minimum,
make sure every lookup button has Ctrl + L as a tool tip.

You can create tool tips in the Properties window. The following screenshot
highlights where you can find the Tooltip object property:

Chapter 6

[265]

Hyperspacing your lookup buttons
The Hyperspace property applies only to push buttons. It is an object property
that prevents the Change script or Post script from running on the field that has
focus when the button is pushed. Imagine having the Change script and Post script
running when you push the Lookup button. It will keep asking you if you want
to add a new record instead of opening the lookup window and navigating to the
closest match. Check your Clear buttons and your lookup buttons to make sure this
property is set.

Linking your formats
Maybe a bigger plea would be to use linked formats. The format of a string or
currency field can vary based on the value of another field. Think about the decimal
places currency field that is part of the item card. How the quantity field displays
for an item is based on the selection in the decimal places currency field.

For strings, the position of the format in the Format Definition window determines
the index number of the format. Take a look around your application and make
sure the field's format changes according to the appropriate selection.

Deploying a Dexterity Solution

[266]

Setting your tab order
As you develop a window, you move, change, and add window fields at different
times. While you may have set the tab order during your original work, circling back
around is a good idea to make sure the tab order still makes sense. Be consistent,
window-to-window, and follow the method used by Dynamics GP when you can.

Setting the windows’ opening positions and sizes
Get that window out of the upper left-hand corner! Consider the user sitting in
front of the monitor. Where should your window open? Should it open relative to
another window? Take the table names window (Microsoft Dynamics GP | Tools
| Resource Descriptions | Tables). In my opinion, it is one of the worst-designed
windows in the application. Love the information it provides, but I want it to look
like the following screenshot:

Take a look at your own windows and consider resizing any that may be awkward
or limiting.

Chapter 6

[267]

Complying with user interface standards
This is especially important if you want your application to achieve the Certified
for Microsoft Dynamics GP accreditation. Check your windows for some of the most
common errors:

• The toolbar often has several problems. Don't get caught in this; it really looks
bad (and sloppy) if not done properly. The following list will help you out:

 ° The buttons should be 72 pixels wide and 24 pixels tall
 ° The buttons should have a 16 pixel vertical line between them
 ° There should be a 16 pixel vertical line after the last toolbar button
 ° There should be a horizontal line at the lower border of the

toolbar/Control area

• The prompts are not underlined due to improper border properties.
• The fields and prompts are not lined up or do not align to the grid.
• Browse buttons are missing, in the wrong position, or not formatted properly.

Tables
Tables have far fewer things to check, but look for:

• Each master file table should have a note index field
• Make sure your tables have friendly display names
• Follow the standard naming conventions when naming your tables

Reports
There are several reports available that you may even use during the development
process. However, before you deem the application complete, run these as part of
the completion process.

Deploying a Dexterity Solution

[268]

Referential diagnostics
This report will alert you to any resource that references something that doesn't
exist. Your testing could easily miss this kind of problem.

You run the Referential Diagnostics report in Dexterity Utilities. Open your
dictionary as a source dictionary. Select the Reports button-drop and then select
Referential Diagnostics from the list:

The report will list very specifically those items that require attention. An invalid
direct reference occurs when one resource refers to another resource and the second
resource does not exist. For example, if you delete a table that you used in the
Installation_Utils form, you get the form error that is listed in the following
report excerpt.

Chapter 6

[269]

An invalid transitive reference occurs when one resource is referred to by another
resource and the first resource does not exist. For example, if you remove a field
from the RM_Customer_Contact_MSTR table that is used in a relationship or a key,
you get the table error listed in the following report excerpt.

The following is an excerpt from a Referential Diagnostics Report file:

You need this kind of report to alert you of changes you may have made after you
compiled your code.

Linked prompts
This report will alert you to any field on the selected form that does not have a linked
prompt. Making sure your prompts are linked is also mentioned in the Forms and
windows section covered earlier. You can run the linked prompts report in Dexterity
Utilities. Open your development dictionary as a source dictionary, select the
Reports drop-down button and then select Linked Prompt from the list.

Deploying a Dexterity Solution

[270]

On the Linked Prompt Report window (shown in the following screenshot), all of
the dictionary's form resources are listed on the left. Select just those forms you want
to analyze and insert them into the list on the right. Select the Print button and name
the text file that will be the report:

This is a very handy report. As you can see from the report excerpt in the
following screenshot, some fields don't need a prompt; those fields are easy to
identify. However, we can also see that the Contact Department field needs a
linked prompt as shown in the following screenshot:

Chapter 6

[271]

You need to use the development dictionary as the source dictionary; otherwise,
the report will show [Not Found] next to any field that uses a resource from
Dynamics.dic.

Table relationships validation
This report will alert you to relationships that you have defined incorrectly. For
instance, you might have a data type mismatch, such as an integer to a string. Again,
we make a lot of changes during the development process, this report should be on
your checklist as a must do item.

Deploying a Dexterity Solution

[272]

An excerpt of the report follows, showing several relationship errors:

Other reports are available in Dexterity Utilities that will help you create
documentation for your application. But now, let's create our chunk file.

Creating the chunk file
Just like a child leaving home for the first time, your application needs to survive
on its own. Moving from the comfort of the development dictionary to a standalone
dictionary is a process known as chunking.

A chunk has the extension .cnk and stands literally for a chunk of code. The chunk
file is a self-extracting file that contains all of the Dexterity resources of your
customization. Once extracted, a chunk file becomes a dictionary file ready for
execution by the Dynamics.exe runtime. The following KB article will provide
additional information on this topic:

• How to create a chunk file in Dexterity in Microsoft Dynamics GP KB 894700

http://support.microsoft.com/kb/894700

The process of isolating your resources from the development dictionary is achieved
by the Dexterity Utilities application. The short process extracts all of the resources
with an ID of 22,000 or above. You individually transfer any alternate forms or
reports, add the application information, and hit the Go button. Voilà, you've created
a .cnk file.

Take the produced chunk file, drop it in the GP2010 folder, and then launch
Dynamics GP. The chunk will turn into a dictionary and be added to the Dynamics.
set file. Your Dexterity application will now be included with the other applications
and the functionality of your product will be available to all.

Let's create the chunk file for our Customer Contacts customization.

Chapter 6

[273]

The following is the checklist for creating a chunk file:

1. Extract all resources numbered 22,000 and above into a new dictionary
2. Transfer any alternate forms reports
3. Enter dictionary details
4. Enter product information
5. Create the .cnk file

Extracting resources
Close Dexterity and then open the Dexterity Utilities application. In the Dexterity
Utilities application, select File | Open Source Dictionary and open the Project.
dic file. The file will open, but no dialog will appear informing you that
the file has been loaded.

Select the Utilities drop-down list on the toolbar, and then Extract from the list,
as shown in the following screenshot:

Deploying a Dexterity Solution

[274]

The Extract window will open identifying the source dictionary name and
its location:

Selecting OK on the Extract window will open the Extracted Dictionary Name
window. In this window, you type in the name of the dictionary that will be created
to hold the extracted resources. This time we will accept the default of Extract.dic
as shown in the following screenshot:

Select Save on this window. A small progress window will display as the third-party
resources are extracted. Only the resources you created are included in the Extract.
dic file.

Next, we need to transfer any alternate forms or reports.

Chapter 6

[275]

Transfer dictionary module
If you have created any alternate forms or reports, you need to use the Transfer |
Dictionary Module tool. You create an alternate form or report when you modify
the original. Because you modified the original, its resource ID is less than 22,000.
Your extracted dictionary only includes resources numbered 22,000 or above;
therefore, you need to select the modified resource and transfer it individually
to the extracted dictionary. Select the Transfer drop-down list on the toolbar,
and then Dictionary Module from the list. The navigation is shown in the
following screenshot:

If you had modified the Customer Maintenance window to include a button that
would open your Contacts Maintenance window, you would need to transfer the
modified Customer Maintenance form to the extracted dictionary. To accomplish
this transfer, select Sales as the Series and Forms as the Dictionary Module Type. In
the Source Dictionary Modules list, select [Form] RM_Customer_Maintenance and
then click on the Transfer button. No dialog will appear, but the Total Size field in
the lower right-hand corner will increase by the size of the selected modules:

Deploying a Dexterity Solution

[276]

Close the source and destination dictionaries. Open the Extract dictionary as an
editable dictionary. Select Auto-Chunk from the Utilities drop-down list:

Chapter 6

[277]

Use the Auto-Chunk window to define the names of the resulting chunk file and
the ultimate merged dictionary. You can specify installation and version information.
Let's explore this window and discuss each of the relevant fields:

The following list describes the various fields present in the Auto-Chunk window:

• Current Dictionary: This is the name of the editable dictionary whose
resources will be transferred to the chunk dictionary.

• Chunk Dictionary: This is the name of the chunk dictionary created by
the Auto-Chunk process. To name the chunk dictionary, click on the
ellipses button and type the desired name for the .cnk dictionary in the
File name field.

Deploying a Dexterity Solution

[278]

The chunk dictionary's name does not have to be the same as the merged
dictionary; in practice, they often are the same.

• Version Information: Version information is used by the runtime engine to
determine whether a chunk should be unchunked. Typically, the major and
minor versions are matched to the Dynamics GP version and then your build
number is evaluated to make sure it isn't an older version of your product.

• Module: Today the Module field is largely unused. In the past, words were
used in the names of modules. It was converted to a list of numbers and can
be used in code if you want. Leaving this at Module 001 will be fine.

• Major Version: Normally this is set to the same number as the application
you are integrating with. For example, Dynamics GP 2010 is version 11.

• Minor Version: In the past, when there was a major version that had a
substantial change, this number was incremented. For instance version 3.0
versus 3.15. Today, use this to match the numbers of Dynamics GP.

• Build Number: Use this field to number each release of your software for
the same major version. How often you do this is up to you, but you should
definitely increment it each time you deploy a different chunk of your
product. This number should start at 0001 for each major version and is then
incremented from there.

Enter the following in your Internet search engine to find more
information about version and build numbers:
MSDN Blogs>Developing for Dynamics GP>Quick Tip:
Best Practice for Dexterity Version and Build

Numbers.
This article is accessible at http://goo.gl/ovn71.

• Installation Scripts: These are global procedures you write that can run after
the unchunking process. You could use an installation script to read or write
to a text file, for instance. It is no longer relevant to create both a before and
after script because both scripts run at essentially the same time.

You cannot check values of system variables using an installation
script because these variables are set after your installation scripts
have run.

http://blogs.msdn.com/
http://blogs.msdn.com/
http://blogs.msdn.com/b/developingfordynamicsgp/archive/2011/08/09/quick-tip-best-practice-for-dexterity-version-and-build-numbers.aspx
http://blogs.msdn.com/b/developingfordynamicsgp/archive/2011/08/09/quick-tip-best-practice-for-dexterity-version-and-build-numbers.aspx
http://blogs.msdn.com/b/developingfordynamicsgp/archive/2011/08/09/quick-tip-best-practice-for-dexterity-version-and-build-numbers.aspx

Chapter 6

[279]

• Compression: This determines whether your source code will be available
in your completed dictionary. Total Compression removes the source code;
Remove Unused Blocks leaves the source code in the dictionary.

Whether or not you leave the code in the dictionary is largely a matter
of ownership. If you strip the code out, don't lose the development
dictionary, or at least the Extract.dic file. For chunk files created to test
multi-dictionary environments, leave the code intact. With the code present,
you can debug your application during multi-dictionary operation.

Click on the OK button at the bottom of the window. A dialog box will open asking
you if you want to add product information. See the following screenshot:

Click on Yes and the Product Information window will open (see the following
screenshot). Let's review each field on the window so that you know how your
answers here impact your installed dictionary:

Deploying a Dexterity Solution

[280]

The following list will guide you through all the fields in the Product
Information window:

• Dictionary: This bears the name of the dictionary created by the
Extract utility.

• Launch File: This bears the name of the file you will be using with the main
application to unchunk your application. Be careful to spell this correctly,
otherwise your file will not unchunk.

• Launch ID: This value is always 0 for Dynamics GP.
• Product Name: This is what your product will be called in the

Dynamics.set file.
• Product ID: This is the unique number you received from Microsoft that is

assigned to your application. Don't make up this number; it is essential that
the number be unique. Microsoft will not charge you to give you a product
number, so do it.

• Forms Dictionary: This is the name of the dictionary that will be created to
hold any user-modified forms. This is not created until the user launches the
Modifier module.

Chapter 6

[281]

• Reports Dictionary: This is the name of the dictionary that will be created to
hold any user-modified reports. This is not created until the user launches the
Report Writer module.

• Compatibility ID: Whatever you put here will be checked against what's
in this position on the new chunk. If they don't match, the compatibility
message will be displayed.

• Compatibility Message: The message displayed to the user if the
Compatibility IDs do not match.

Click on the OK button once you have filled out this window and you will be
returned to the Auto-Chunk window. Click on the OK button on this window and
you will create your chunk file.

You will be performing the chunking process many times during
development. Record a macro so that you don't have to re-type all
of the previously mentioned information every time. Make sure that
you change the version in your macro file before you run it to create
the final chunk. Otherwise, the chunk will have the same version
as it was when the macro was recorded. You need to update your
build number each time you create a new chunk file for distribution.

Now it's time to test your application with all of the other dictionaries loaded.

Testing in a multi-dictionary environment
First, let's install your application. Copy the chunk file into the Dynamics GP
application folder. Out of the box, the location of the application folder is as follows:

C:\Program Files\Microsoft Dynamics\GP2010

Chunk doesn't unchunk
Sometimes the testing process runs into problems before it even gets off the ground.
Let's imagine that your chunk file won't unchunk.

Deploying a Dexterity Solution

[282]

Various things can be creating this problem. Some reasons are obvious, some not
so obvious. Let's go through the list of possible culprits. Don't feel bad if you find
yourself here. We've all been there; how do you think we got the list?

The following are the things to check if your chunk file doesn't unchunk:

1. Check the GP_LoginErrors.log file in C:\Users\username\AppData\
Local\Temp\

2. Make sure you put your chunk file in the correct folder. It goes in the same
folder where the Dynamics.exe lives.

3. Make sure your chunk file is not marked read-only.
4. Make sure you have adequate permissions at the operating-system level.
5. Make sure the launch file is named DYNAMICS.SET and the launch file you

entered on the Product Information window was DYNAMICS.SET.
6. Check for a previous installation using a different extracted dictionary name.
7. The chunk file should be 12 characters or less. Dex Utilities will not let you

put in a longer name, but someone could have changed it.
8. Start Dynamics using the run as administrator selection.

If you find another problem, be sure to add it to the list and share it with the
Dynamics GP community!

Now that you've got your product installed, let's test it.

Testing tools and techniques
Download a copy of the testing framework for Dynamics GP 2010 R2! This kit will
make testing (almost) fun and easy. The testing framework is a collection of scripts,
sample data files, examples, and utilities you can use for testing.

Several samples are included that show you how to load data, run a macro, execute
a report, save results to a file, and then compare those results to a known baseline.
Get your copy at:

http://archive.msdn.microsoft.com/MDGPTestFramework

Chapter 6

[283]

Regardless of the testing tool you use, keep the following points in mind:

• Make sure you can return to your starting point. Without a repeatable
baseline, it will be impossible to adequately evaluate the changes you make.

• Your test environment should mimic the production environment as closely
as possible.

• Never, ever, test in production.
• Include both a server and a workstation. So many other developers forget to

test the application on anything but the server.
• Test both on Fabrikam and a newly created company.
• Log in as a user other than sa or DYNSA.

• Make one change at a time. This should be in all caps; it's that important.
• Document everything.

If your trigger processing procedures are not running, put your application in
different positions in the Dynamics.set file. Many things are controlled by the
application's position in the launch file. For one, triggers fire in the order the
applications are listed. Test how your application reacts if a different product's
processing procedure prevents your procedure from running.

Additional resources available
• The macro language

Recording test cases using the macro language is a great way for carrying
out the same set of actions repeatedly. A white paper discussing how to use
macros when testing an application is available on the web at the following
address:
www.microsoft.com/download/en/details.
aspx?displaylang=en&id=16233

• Dexterity documentation
Read the Dexterity documentation on testing in Chapter 34 of Volume 2 of
the Dexterity Programmers Guide for Dynamics GP 2010:
http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=8651

Deploying a Dexterity Solution

[284]

• The Support Debugging Tool
The Support Debugging Tool is a brilliant set of tools and utilities that you
can use when developing, supporting, and testing Dynamics GP. At this
time, this tool is only available to a Dynamics GP partner, so you will need to
ask your reseller for a copy. There is no charge for the tool. Partners should
go to the following web address to download the Support Debugging Tool:
http://blogs.msdn.com/developingfordynamicsgp/pages/support-
debugging-tool.aspx

• Date-related issues
An article that discusses some resolutions to issues related to dates that
you might encounter while testing your application is available at the
following site:
https://community.dynamics.com/product/gp/gptechnical/b/
developingforgp/archive/2009/12/18/testing-date-driven-
features-in-gp.aspx

Now that your application has been tested and debugged, it's time to distribute it to
your end user.

Distributing the completed application
You have two ways to deliver your application. They are as follows:

• As a chunk file.
• As a Windows Installation file.

Sending the chunk
Dexterity customizations are one of the easiest applications to deliver. A vanilla
integration, as is the Customer Contacts application, requires only that you copy
the .cnk file to the installation folder of Dynamics GP. It's as simple as that. Fire
up Dynamics GP and your application is installed.

Chapter 6

[285]

Windows Installer services
You can use Windows Installer services to create an installer program for your
Dynamics GP integration. Any tool that will create an installation file will work fine,
but a template is provided for you to use with the WiX (Windows Installer XML)
toolset. WiX is a free download from http://wix.codeplex.com/.

Chapter 44 of the Dynamics GP 2010 Integration Guide contains step-by-step
instructions on how you can use the sample template to create your own installer.
An installation file looks so much more professional than asking the user to copy
a chunk file into the client folder. If you need to include several files with your
installation, such as a manual or help file, creating the installation file is the
preferred method.

Summary
This chapter took you through the process of completing and deploying your
Dexterity application. Starting with the system requirements, you explored the
importance of versions and builds, and how they are created. You looked at three
different methods for creating the SQL tables that you defined for your application.

With your table creation procedures in place, it was time to extract your application
from the development dictionary. With chunk in hand, you started down the long
road of testing and debugging. To your delight, you learned about the new testing
framework available to help you test in a controlled environment!

We talked about distributing your completed application using just the chunk file,
or creating an installer for it. You have new tools in your toolkit to help you deploy
your application, such as a completion checklist and some white paper articles.
We'll be leaving Dexterity now and switching over to using Modifier with VBA
to create customizations.

Creating Customizations
with Modifier

In this chapter, you'll learn how to build a customization using the Modifier tool.
The full name of the module is Modifier with VBA. In this chapter, however, we
will cover only the Modifier component; in Chapter 8, Creating Customizations with
VBA, we will add the VBA component.

In this chapter, you will learn about the following topics:

• How the Modifier tool fits into the development environment
• How to modify windows and window properties
• How to change global resources

Using Modifier, you can customize forms from any dictionary in the application.
You can make global changes to pictures, strings, and formats that affect the entire
application, including third-party products. The things you can do with the Modifier
provide a method to create new fields, remove existing fields, rearrange fields, and
change the tab order of fields on a window.

You cannot create any actions in your customization with Modifier alone. Chapter 8
will explore how to fuel your Modifier additions using VBA.

Overview of Modifier
Modifier is an end-user tool that allows you to make changes to the user interface
without using a full-blown application development environment. Rather than
creating a new window, you can seize an existing window and change nearly
everything about it.

Creating Customizations with Modifier

[288]

Changes to windows made with theModifier are stored in a separate dictionary known
as a Forms dictionary; each application has its own Forms dictionary. For example, the
Forms dictionary for the core application is named Forms.dic; the Forms dictionary
for Fixed Assets is named F309.dic. You can find the name and location of the Forms
dictionary for each Dexterity application in the Dynamics.set file.

Two tools in one!
As the name implies, the Modifier with VBA comprises of two components. The first,
Modifier, has been around as long as Dynamics GP itself. It's a scaled-down version
of the Dexterity window design tool.

Essentially, Modifier allows you to make visual changes to the windows. You can
also make certain object changes such as making a field required, or changing
its format. You have access to a fixed list of properties and methods that you can
manipulate with the Modifier.

You can add new fields and objects, such as push buttons and pictures, to a window,
but they are for display only. Your changes are static; they cannot "do" anything.
You can add a push button to a window, but when you push it, nothing happens.
You cannot attach code to any object using the Modifier alone. Enter VBA.

VBA is a subset of Microsoft Visual Basic 6.0, which is an event-driven structured
programming language. VBA comes with its own IDE (Integrated Development
Environment) and is built into most Microsoft Office applications. Using VBA, you
can give life to that push button you added with Modifier, you can populate those
new fields with your own data, and you can alter the business logic of Dynamics GP.
You'll learn more on VBA in Chapter 8.

Let's start exploring the Modifier.

Modifying windows and window fields
Hands-on learning is probably the best way to experience a new program. With that
in mind, we're going to dive right in and start manipulating windows and window
fields. Windows and window fields have characteristics known as Properties. When
you open a window in the Modifier, the Properties window is typically visible in
the area to the right of the window's layout. You will also get the chance to modify
certain window and field properties while working through our ensuing sample.

Chapter 7

[289]

Launching the Modifier
The Modifier is not a separate application that runs independent from Dynamics GP.
It's actually a part of Dynamics GP itself—kind of like Report Writer.

Let's launch the Modifier and take a tour. We are going to open the general ledger's
Transaction Entry window in the Modifier.

Open the Financial home page, go to the Transactions content pane, and then
select Journal Entry. See the following screenshot for the navigation:

While you have the Transaction Entry window open, open the Transaction Entry
window in the Modifier through Tools | Customize | Modify Current Window:

Creating Customizations with Modifier

[290]

The Tools menu is on the window, not the desktop.

Alternatively, you can press Ctrl + F10 on the keyboard.

If you see the options grayed out, make sure
you have a license for the Modifier, and that it is
enabled from the Registration window.

You are greeted with the Modifier's main window. Your form's layout window along
with the Toolbox and Properties windows will be displayed. Your window should
look similar to the following screenshot:

If this appears familiar to you, it should. It looks just like the Dexterity WYSIWYG
Form Designer window.

Chapter 7

[291]

The window properties
The Properties window controls two kinds of properties: Object and Visual. You can
change any of the window's visual properties, but only a few of the object properties.

The following table provides a brief description of certain window object properties.
An asterisk (*) after the name of the property means you can change it using
the Modifier.

Property Description
AutoLinkTable If a window has an AutoLinkTable property, then you can easily add

any of that table's fields to your window. All you need to do is select it
from the list of fields and drag it out onto the window layout.
Sadly, not all windows have the AutoLinkTable property; the Sales
Transaction Entry window, for example, does not have this property.
You cannot add or change the AutoLinkTable property.

AutoOpen If this is set to True, which it normally is, the window will open
automatically when the form opens. Secondary windows such as the
Date Entry window on the GL_Transaction_Entry form are normally
set to False. Secondary windows open using navigation on the main
window, like a push button or an expansion arrow.

CloseBox* If this is set to True, which it normally is, the window will contain a
box in the upper right-hand corner with an X on it. When you click on
that box, the window closes.
If it doesn't have a close box, the window will need to have an Exit
menu, or some other closing mechanism. The screenshot following
this table identifies the close box.

Name This is the technical name of the window. You use this name if you
are a Dexterity programmer. Your users will not see this name in the
ordinary course of business.

Title* This appears at the top of the window and it is what your users see.
The title is also known as the window's display name. The following
image identifies the window's title.

Creating Customizations with Modifier

[292]

Size
You can set the size of a window in the following two different ways:

• Change its Size-Height and/or Size-Width visual property
• Use the mouse to size it as displayed

To use the Properties window, you need to select the object by either clicking on it
or selecting it from the drop-down list. For the window, click on a gray area wherein
no other objects exist. You then need to select the property you want to change and
type the new value in the settings box. The following screenshot identifies each of
these areas:

Opening position
If you don't like where the window opens, you can change it. Using the Properties
window, simply change the Position-Left or Position-Top setting. Alternatively, you
can just move the window to the place you want, and set it there.

If you are in Modifier, switch back to Dynamics GP (File | Microsoft Dynamics GP).
We'll go through an example of how to change a window's opening position using
the Buyer Maintenance window.

Chapter 7

[293]

Open the Buyer Maintenance window from the Cards section of the Purchasing
home page.

Note the opening position of the window. It should open in the upper left-hand
corner of the desktop, as in the following screenshot:

Now, press Ctrl + F10 to open the window in Modifier. Once in Modifier, go to the
application's menu bar and select Layout | Position Window.

Creating Customizations with Modifier

[294]

The Position Window window will display in the same location that the Buyer
Maintenance window opens (see the following screenshot), showing you its exact
location on the desktop:

Referencing this screenshot, look at the numbers next to Pos:. These numbers
indicate the location of the upper left-hand corner of the window and the lower
right-hand corner of the window. All measurements on the Position Window
are in pixels.

The first set of numbers (4, 26) means the upper left-hand corner is four pixels from
the left side of the desktop and 26 pixels down from the top. The second pair of
numbers (464, 276) means the lower right-hand corner is 464 pixels from the left side
of the desktop and 276 pixels down from the top. These numbers are highlighted in
the following screenshot:

Chapter 7

[295]

Beneath the position numbers, are numbers indicating the size of the window. The
pair of numbers to the right of Size: tell you the width and height of the window. In
this example, our window is 460 pixels wide and 250 pixels tall. These numbers are
highlighted in the following screenshot:

To adjust the opening position of the Buyer Maintenance window, click the left
mouse button and hold in the Position Window's title. While still holding down
the mouse button, drag the Position Window object to where you want the Buyer
Maintenance window to open. Once you are satisfied with its position, click the
OK button.

Be sure you are moving the Position Window object and
not the Buyer Maintenance window itself.

To check your work, press Ctrl + 5 to open the Preview window. The Preview
window will open in the same position that the Buyer Maintenance window will
open in Dynamics GP.

The tab sequence
The tab sequence refers to the order in which the cursor advances through the
window fields when you press the Tab button on the keyboard. If you add new
fields, or rearrange existing fields, you will most likely need to change the tab order.

Creating Customizations with Modifier

[296]

To set the tab sequence of a window, open the particular window, select Layout from
the menu bar, and then Set Tab Sequence:

Double-click on the first field you want in the tab sequence and then press the Tab
key. Even if the cursor lands on the first field, double-click on it and press Tab.
Double-click on the second field in the tab sequence and press Tab again. Double-
click on the third field in the tab sequence and press Tab again. Continue this until
you finish the entire tab sequence.

In order to test your tab settings, press Ctrl + 5 to open the Preview window. The
cursor should be sitting in the first field of your tab order. Tab around the window
and see if it behaves the way you want.

It is often difficult to get the hang of this in the beginning. The key is to remember
to double-click on the field and to ALWAYS press the Tab key even if it advances to
the field you want. You are probably wondering if you can set the tab sequence by
putting an index in the Properties window—you cannot. You can only say whether
or not the field is included in the tab sequence. You can see the TabStop property
in the following screenshot; TabStop is one of the few Object properties you can
change in the Modifier:

Chapter 7

[297]

Give it a try! Set the tab sequence on the Buyer Maintenance window as indicated
on the following screenshot:

Creating Customizations with Modifier

[298]

The following table summarizes the tab stops indicated by the screenshot:

Tab Stop Field
1 Description
2 Sort by (drop-down list)
3 The Remove button

4 The OK button
5 Buyer ID

This is a crazy tab sequence, but it will make it easy for you to see if your changes
were properly executed.

When you finish with the tab order exercise, close the Buyer Maintenance window,
and return to Dynamics GP using File | Microsoft Dynamics GP.

Do not save the changes you made to the
Buyer Maintenance window.

The window layout
A window layout refers to a window that you have open in the Modifier. Heretofore,
you have used the Ctrl + F10 keyboard shortcut, or the Modify Current Window
menu item to open the Modifier. This time, you are going to launch Modifier through
the main menu system: Microsoft Dynamics GP | Tools | Customize | Modifier.

The first thing that comes up is a dialog box asking you which product you want to
work with. If you expand the drop-down list, you will see each of the products listed
in the Dynamics.set file (the launch file).

Chapter 7

[299]

If you cannot make any sense out of the order in which the products are listed, do
not feel alone. The products are actually listed in the order in which they appear in
the Dynamics.set file. The descriptions come from the Dynamics.set file as well.

Select Microsoft Dynamics GP, and click on the OK button.

If this is the first time anyone has opened the Modifier, there will be a slight lag
while the system creates the dictionary to hold the modified reports. In the case
of Dynamics GP, that dictionary is named FORMS.DIC. You set the name of your
application's modified forms dictionary when you create your Chunk (.cnk) file.

When the Modifier opens, you will see a gray desktop with a single window named
Modified Forms. As you can see from the following screenshot, the Modifier tool can
be a lonely place the first time you go into it:

If you opened the GL Transaction Entry window and the Buyer Maintenance
window earlier in this section, your Modifier window will look similar to the
preceding screenshot. If you did not open these two windows in Modifier, the
Modified Forms window will be empty.

When you use the Ctrl + F10 option to open the Modifier, the product and window
are selected automatically, and the target window is opened, revealing its layout.
If you open Modifier from the menu as we did above, and you want to modify a
window that is not listed, you need to click on the New button on the Modified
Forms window, and then pick the form yourself.

Creating Customizations with Modifier

[300]

The window that opens when you click on the previously mentioned New button,
is the Select a form to modify window. Looking at the following screenshot, you can
see a list of names that may be unfamiliar to you:

They are unfamiliar because the list contains all the forms included in the DYNAMICS.
DIC file. There are nearly 1,700 of them. It's easy to appreciate the Ctrl+F10 shortcut
after you spend time searching through a seemingly endless list of forms.

Chapter 7

[301]

You may have noticed that we were referring to the objects as windows earlier, but
here everything says forms. What's the difference? You may remember from our
discussion in Chapter 3, Getting Started with Dexterity, that forms contain windows.
The window is not an object on its own; all windows live on forms. For instance, if
you want to modify the Customer Maintenance window, you need to modify the
RM_Customer_Maintenance form.

For our project, you want to modify the Transaction Entry window. Therefore, you
need to open the GL_Transaction_Entry form. If your Modified Forms window
lists the GL_Transaction_Entry form, select it and click the Open button. You can
also double-click on it to open it.

If your Modified Forms window does not list the GL_Transaction_Entry form,
click the New button and pick the GL_Transaction_Entry form from the list.

At this point, the Form Definition window should be open. The form definition
window listing the GL_Transaction_Entry form is shown in the following screenshot:

Creating Customizations with Modifier

[302]

Select the GL_Transaction_Entry window, and click the Open button; the window
layout will open. Your Modifier desktop will look similar to the following screenshot:

A little housekeeping before we get started—let's take a quick tour of the Layout
menu, shown in the following screenshot:

Chapter 7

[303]

You will use the bottom two choices, Show Field Names and Show Invisible Fields,
frequently. Toggle each of them on and off, and look at how the layout window
changes. With both of these menus selected, as they are in this screenshot, your
layout window will look similar to the following screenshot:

Some of the fields are in different colors, depending on the standards set by the
Dexterity programmers who created this window. The color standards for invisible
fields are as follows:

• Yellow background: Code is attached to this field
• Pink background: There is no code attached, but the field may be used to

store an interim value
• Teal background: The field is a composite field used as an object
• Bright green background: The field is a reference field

Creating Customizations with Modifier

[304]

Leave the Show Invisible Fields option checked, and uncheck the Show Field
Names option. Now you are ready to modify your window's layout.

Modifying the General Entry window
You are going to modify the general ledger Transaction Entry window by adding
fields and their associated prompts to both the main and the scrolling window. In
addition, you will change the tab sequence of the window and adjust the location of
certain fields.

When you finish your modifications, your window should look similar to the
following screenshot:

Chapter 7

[305]

For perspective, in the following screenshot, you can see the original Transaction
Entry window on the left, and the modified Transaction Entry window on the right:

While the details are difficult to distinguish, you can see that your modified window
will be a little longer than the original. It is longer because your modified scrolling
window will have four rows per line item instead of three. In addition, you are
adding a new field below the Journal Entry field.

Let's begin modifying the Transaction Entry window, and learn some key concepts
about Modifier along the way.

You will be adding the following objects to the window in the specified locations:

Window Location Field Field Prompt
Transaction Entry main window Last Date Edited Date Last Edited
Transaction Entry main window Originating Posted Date Sub ledger Posted Date
Scrolling window Originating Master ID Column heading:

Master ID
Scrolling window Originating Master Name Column heading:

Master Name
Scrolling window Originating Document

Number
Column heading:
Source Document

Creating Customizations with Modifier

[306]

The column headings describing the fields added to the scrolling window are on the
Transaction Entry screen above the scrolling window. They are not located on the
scrolling window itself.

When you add the Date Last Edited and the Sub ledger
Posted Date to the Transaction Entry main window, don't
forget to link your prompts.

The added fields are described in the following table:

Field Name Field Description
Last Date Edited The system date of the computer the last time

someone edited the entry. This date is updated each
time the entry is edited.

Originating Posted Date The date the subsidiary ledger transaction was posted
Originating Document Number The document number of the subsidiary ledger

transaction
Originating Master ID The Vendor ID, Customer ID, Checkbook ID, and so

on, from the subsidiary ledger transaction
Originating Master Name The name associated with the Originating Master ID

described previously

A subsidiary ledger is a module that sends transactions to the general ledger.
Examples of subsidiary ledgers include:

• Payables Management
• Receivables Management
• Bank Reconciliation
• Payroll
• Fixed Assets

Chapter 7

[307]

Adding and modifying window fields
First, you are going to add the date on which the entry was posted to the sub-ledger.
Put it underneath the Reversing Date field. To see this field, switch the Show Field
Names menu item back on by selecting Layout | Show Field Names. You'll need to
move the Adjustment Transaction field out of the way. Move it to underneath the
(L)Intercompany field. Use the Visual tab of the Properties window to make changes
to the field's location:

Adjustment Transaction Field
Position-Left 223

Position-Top 53

To add the field, drag the Originating Posted Date field from the Toolbox on the
left to the layout window, as shown in the following screenshot. Place it below the
Reversing Date field:

Set the properties of the Originating Posted Date field to the following values:

Originating Posted Date
Position-Left 399

Position-Top 110

Size-Height 20

Size-Width 102

Creating Customizations with Modifier

[308]

Add the Sub ledger Posted Date field prompt, and set the properties according to
the following screenshot:

Continue by adding the Last Date Edited field to the window.

Go back to your Originating Posted Date field, and check its Object and Visual
properties against the Properties windows, as show in the following screenshot:

Chapter 7

[309]

Add your field prompts and link them to the appropriate fields. We covered linking
prompts in Chapter 3, Getting Started with Dexterity. Finally, set your tab order. We
also covered setting the tab order in Chapter 3.

Adding fields to the scrolling window
Next, you are going to add three fields to the scrolling window. You need to make
the Transaction Entry window bigger, and make the scrolling window longer to
accommodate the extra fields. Move the other fields around so they fit underneath
the larger scrolling window.

Creating Customizations with Modifier

[310]

As a guide, the following table shows certain visual properties of the Transaction
Entry window, and the scrolling window object on the Transaction Entry window:

Transaction Entry window Scrolling window object
Position-Left 285 Position-Left 8

Position-Top 17 Position-Top 300

Size-Height 558 Size-Height 154

Size-Width 562 Size-Width 528

Double-click on the scrolling window to open it. We need a fourth line in the
scrolling window, so we need to move the Big Line Item down one row. The trick to
getting the big line item in the right place is to click inside the last row (marked by a
dotted line). So many people try to click the big line item under the last row, or try to
click right on the line, and that just doesn't work.

You cannot drag the Big Line Item into the right position; you must use the Tools
menu and the mouse.

The following screenshot shows where to position the cursor to get the big line item
to move down one row:

From the Toolbox window, drag the three fields from the GL_TRX_LINE_WORK
table on to the scrolling window as shown in the following screenshot:

Chapter 7

[311]

Set the properties for each of the fields to the values specified in the following table:

Originating Document Number
BackColor Yellow

Border False

Pattern 75% Shading

Originating Master ID
BackColor Yellow

Border False

Pattern 75% Shading

Originating Master Name
BackColor Yellow

Border False

Pattern 75% Shading

An important part of completing a scrolling window is to make sure you have
created a visual grid by using the line tool in the Toolbox window. Your fields
will not show borders, so you need to provide the lines. Also, be sure you set the
tab order of the fields inside the scrolling window.

Creating Customizations with Modifier

[312]

Close the scrolling window, save your changes, and return to the Transaction
Entry window.

The final step is to add the column headings for the new fields you added to the
scrolling window. If you are showing field names in the layout, it's nearly impossible to
get the headings properly lined up with the columns. Change your layout so that field
names are not being displayed. If you did your grid right, you should be able to see the
lines in the scrolling window. Now, you can easily line up your column headings.

Finish your modifications and return to GP. Go to Microsoft Dynamics GP menu |
Tools | Setup | System | Alternate/Modified Forms and Reports and change the
Alternate/Modified Forms and Reports settings to point to the modified window as
shown in the following screenshot:

Open the General Entry window and check out its new look!

Chapter 7

[313]

Modifying static text
A window prompt is a piece of static text that normally describes something; often
that thing is a field. If it were in front of a field, you would call it a field prompt. You
may want to modify these prompts to reflect terminology more appropriate for your
business, or to clarify ambiguous terms. You also may want to modify text such as
window titles, words on push buttons, and items in drop-down lists.

As an example of something often changed, let's use the Paid Sales Transaction
Removal window in the Receivables Management module. This window has often
been the source of confusion—What does "remove" mean anyway? Remove it to
where?

In order to open the Paid Sales Transaction Removal window, navigate to Sales |
Routines | Paid Transaction Removal. The following window will open:

It's a nice compact window, but not terribly self-evident as to its function. Let's think
of this as the before window. You can make it better!

Creating Customizations with Modifier

[314]

In Dynamics GP, you would use this window to transfer closed, completed, or
finished receivables transactions to the history file. Although this should be a part of
the monthly closing, your users may not run it for fear that they might remove the
transactions forever.

You're going to transform this window to make it friendlier and more
understandable. The following screenshot shows your new after window:

The window elements you are going to change are listed below, followed by
instructions on how you can change them:

Chapter 7

[315]

Press Ctrl + F10 to open this window in Modifier.

Change the window title
The window title is what your users see in the top band of the window. You change
the title in the Object tab of the Properties window.

Creating Customizations with Modifier

[316]

Change the text prompt
In order to change the text prompt, click on the Static Text tool in the Toolbox
window, as shown in the following screenshot:

The mouse pointer will turn into a text pointer as in the following screenshot.
Highlight the text you want to change, and type in the changes:

Chapter 7

[317]

Change the static text of a checkbox
The text that appears to the right of the checkbox is a part of the checkbox field itself
rather than a word written on the screen. Similarly, the words and images appearing
on push buttons, the items on drop-down lists, the images on visual switches, and
the labels for radio buttons are all static values. You can change these values in
Modifier by changing the DataType attached to the field object.

In this section, you'll change the text for a checkbox on the Paid Transaction
Removal window to something more desirable.

Follow the instructions as numbered in the following screenshot to change the text of
the (L)Waived field checkbox:

1. Select the (L)Waived field on the layout window.
2. Double-click on the DataType property in the Properties window.
3. Click on the ellipses button on the Local Field Definition window.
4. Click on the static text value in the Static Text Values: window, and change

the value to Waived Finance Charges in the New Value: field.

Creating Customizations with Modifier

[318]

5. Click on the Replace button.
6. Click on the OK button.
7. Press Ctrl + 5 to preview your changes.

Add a dividing line
The section of the screen containing the checkboxes is confusing, in that you cannot
easily tell which dates are associated with which checkboxes. In order to more clearly
identify the bottom date field as pertaining to the Checks item, use the line tool to
draw a horizontal line separating the checkboxes.

The line tool is located in the Toolbox window.When you select the line tool, the
mouse pointer changes to the image identified in the following screenshot:

Simply draw the line where you want to set off the area.

To the right of the line tool you'll find the shape tool. You can use the shape tool to
draw an ellipse (circle), rectangle, and rounded rectangle on a window.

Chapter 7

[319]

Adding a tool tip
Adding a tool tip is easy, and fun! It's fun because you can surprise your users with
your own clever message when they hover over a field. This text doesn't wander
into those treacherous waters, so you will add the ho-hum tool tip Transfer
transactions to history to the Process button. To add the tool tip, follow the
instructions following the screenshot below:

1. Select the Process button.
2. Select Tooltip from the Object tab of the Properties window.
3. In the Settings box, type the text for your tool tip.

Check your work by pressing the Ctrl + 5 shortcut key.

Adding or changing graphic elements
Graphic elements is a fancy way of saying pictures. Let's say you want to add a
picture, such as a company logo, to one of your windows (or all of your windows!).
Maybe you've already added a picture, and now the picture has changed. If you
have that same picture on thirty windows, changing the picture by bringing up each
window will get real old, real fast.

Creating Customizations with Modifier

[320]

In this section, you are first going to add a banner to the Master Posting window.
After that, you are going to change the banner by changing the picture in the picture
library. When you open the Master Posting window, you will see that the original
banner has changed to the new picture. Basic sounding, but very powerful when you
are trying to design a theme for your windows.

The first banner you add to the window will look like the one in the
following screenshot:

Without touching the window again, you'll change the banner and the window will
look like the following screenshot:

Chapter 7

[321]

Adding a new picture
Start out by creating a simple WordArt object. We created the object above using a 48
point, Calibri font.

Open the Master Posting window from Administration | Routines | Master Posting.

Press Ctrl + F10 to open the window in Modifier. Make the window longer to make
room for the banner, and move all the fields on the window towards the bottom,
leaving some empty real estate at the top. We set the Visual properties of the
window to the following:

Property Setting
Size-Height 482

Size-Width 647

We moved the fields down so that the Series field was 148 pixels from the top. Do
whatever is pleasing to you, but these measurements will work for this example.

Once you have your window stretched out and your fields moved, follow these steps
to add the banner:

1. Select and copy your WordArt object to your clipboard, and return
to Modifier.

2. Select the picture tool from the Toolbox window; the mouse pointer will
change into an outline of the picture tool as shown in the
following screenshot:

Creating Customizations with Modifier

[322]

3. Click on the upper left-hand corner of the Master Posting window in the
position where you would like the picture to begin. The Pictures window
will open. This window displays a list of items—this is the picture library.

4. Select the New button on the Pictures window, and the Picture Definition
window will open.

5. Type Master Posting Banner in the Picture Name: field, and then select
the picture area of the window as highlighted in the following screenshot:

6. When you select the picture area, a bounding box will outline it. The
bounding box appears as a dotted line going all the way around the
rectangle.

7. From the Edit menu, choose Paste to transfer the WordArt object you
previously copied to the clipboard. Once you paste the image, you cannot
undo it. If you make a mistake, just click on Cancel, and try again.

8. After you paste your WordArt object, click on the OK button. Your Picture
Definition window will close, and you will return to the Pictures window.

9. In the Pictures window, scroll down until you find the Master Posting
Banner item, and select it.

10. When you click on the OK button, you will close the Pictures window and
your image will appear in the heading of the Master Posting window similar
to the following image:

Chapter 7

[323]

11. Close and save your window, and then return to Dynamics GP.
12. Change the ID field in the Alternate/Modified Forms and Reports settings to

match the value in the following screenshot:

Creating Customizations with Modifier

[324]

13. Open the Master Posting window via Administration | Routines |
Master Posting.

14. Admire your new window!

Changing the Picture
Now you are going to change the banner by changing the picture. You won't open
the window again; you will simply edit the picture stored in the picture library.
When you change the picture library, you will change the old picture to the new one
on every window that was previously showing the old picture.

Let's do it; follow these steps to change the existing Master Posting
Banner picture:

1. Go back to your WordArt object and change it to, say, Super Posting.
2. Copy your modified WordArt object to your clipboard.
3. Launch Modifier using the application menu via Microsoft Dynamics GP |

Tools | Customize | Modifier.
4. Open the picture library using the Modifier menu Resources | Pictures…, as

shown in the following screenshot:

Be careful not to open Native Pictures….

Chapter 7

[325]

5. Find the Master Posting Banner item in the picture library, and click on the
Open button.

6. Click in the Picture: area and notice the bounding box surrounding the
picture. Your window will look similar to the following window:

7. From the Edit menu, choose Paste to replace the picture with the new
WordArt object you previously copied to the clipboard.

8. Click on the OK button to close the Picture Definition window and switch
back to Dynamics GP.

9. Open the Master Posting window through Administration | Routines |
Master Posting.

10. Marvel at how easy it is to change the picture using the Modifier.

Changing global resources
Global resources are available to all objects in the dictionary. If you change a global
resource, you will change each object in the dictionary that uses that resource. You
just learned how changing the picture you added to the picture library will change
the existing picture on the Master Posting window.

This section describes how to change existing resources using Modifier.

Pictures and native pictures
You learned in the previous section how to change pictures. The method to change
native pictures is the same. So what's the difference between a picture and a native
picture? A little Dynamics GP history is the root of this difference.

Use Alt + F10 to launch Modifier. Open the Native Pictures window from the menu
bar through Resources | Native Pictures.

Creating Customizations with Modifier

[326]

Open the AboutPictureDynamics item from the Native Pictures window. In the
Native Picture Definition window, you will see the Native Picture Name, and a
Synchronized With option.

Back when Dynamics GP supported the Mac, you needed to create a picture that was
compatible with each operating system. You needed to synchronize the Mac pictures
with the Windows pictures to be sure they were assigned the same internal ID. By
having the same internal ID, you could be sure the correct picture was displayed on
each platform.

Not a problem today, but that's why you find most of the old window pictures in the
native pictures library.

Today, you will change the picture on the lookup button. It currently sports the
image of a looking glass; let's change it to the red X from the delete button.

First, we need to figure out the name of the picture on the delete button. This should
be easy because the name of the image on a lookup button is stored in the DataType
property for the button.

The following are the steps to change the image on the lookup button:

1. Use the Alt + F10 shortcut key to launch the Modifier.
2. Open the GL_Transaction_Entry form from the Modified Forms window.
3. Open the GL_Transaction_Entry window from the Form Definition

window.
4. Select Delete Button on the window layout.
5. On the Properties window of Delete Button, double-click on the DataType

object property.
6. Select the ellipses button next to the Static Values field on the Data Type

Definition window.
7. Widen the Button Items window so that you can see the Image Name. The

entire image name is WindowToolbar_Delete_PB_Up.
8. Close all the windows opened in Modifier (do not close Modifier).
9. Open the Pictures window from the menu bar via Resources | Pictures.
10. Scroll down and open the WindowToolbar_Delete_PB_Up picture.
11. Click on the picture to place the bounding box around the picture. From the

Edit menu, select Copy.
12. Use the same method described in steps 2 through 7 to discover the

name of the picture on the lookup button. The name of the picture is
Field_Lookup_PB_Up.

Chapter 7

[327]

13. Open the Pictures window from the menu bar by going to
Resources | Pictures.

14. Open the Field_Lookup_PB_Up picture.
15. Click on the lookup button picture.
16. From the Edit menu, select Paste. The picture should change to the red X

from the Delete Button field.
17. Close the Picture Definition window and return to Dynamics GP.

Changing a picture resource does not create a modified window. The lookup button
image on all windows will now sport the red X instead of the magnifying glass.

Open the Payables Transaction Entry window; your window should look similar to
the following screenshot:

Next, let's look at string resources.

Creating Customizations with Modifier

[328]

Strings
A string resource describes any static text, wherever it appears in the user interface.
If you want Customer to read Client, change each instance of the word Customer to
Client in the Strings window. This sounds simple, but it is not. When you open the
Strings resource window, notice that there is no search and replace option anywhere
in sight. While you are looking for search and replace, see if you can find a revert
function—you will find neither.

You can create a resources report that will provide you with a list of each of the
strings. But this report will just give you a road map; it will not provide a quick
access method.

In order to print the resource report, select File | Generate Resource Reports from
the menu bar. You will create a text report that lists each resource in the Dynamics.
dic file. Nearly 70,000 resources are listed. When you search the string resources,
you will discover 281 resources that include the word Customer. Now, all you have to
do is find those 281 phrases in the Strings window, and change the word Customer
to Client—not an easy task, but doable.

We'll pick something easier. Let's change the word on the delete button from Delete
to Go Away. If you open the DataType property for the delete button, you'll see the
caption is actually &Delete. Therefore, you need to change the string &Delete, not
Delete. Open the Strings window and change &Delete to &Go Away.

Now, when you open any window that contains a delete button, it will look similar
to the following screenshot:

Formats
Formats control how data is displayed. Formats put the dash in the phone number;
determine how many decimals show up on the invoice, control field alignment, and
so on. Changing a format changes every field whose data type includes that format;
so be very careful before you change formats.

Chapter 7

[329]

Your Dexterity skills can come in handy if you are contemplating changing formats
or data types. You can use Dexterity to generate the references table, and then check
to see which fields you would be changing if you modified a format or data type.

In addition to changing existing formats, you can create your own unique formats
and assign them to existing data types. You should exercise the same caution when
creating new formats as you do when modifying existing ones; many fields could
be using the data type you changed.

The following screenshot shows the Format Definition window; you can create
and/or modify formats in this window. By selecting a format type, you activate the
corresponding options in the window:

In order to see how this works, let's modify the format associated with the Customer
Number field such that a dash is included after the eighth character.

To easily find the correct format definition, open the Customer Maintenance
window in Dynamics GP by going to Sales | Cards | Customers.

Creating Customizations with Modifier

[330]

Launch Modifier using the Alt + F10 shortcut key. The following steps show how to
modify the format:

1. Select the Customer Number field on the RM_Customer_Maintenance
window.

2. Double-click on the DataType property under the Object tab of the
Properties window, to open the Data Type Definition window.

3. Click on the ellipses button on the Data Type Definition window as seen in
the following screenshot:

4. When you click on the button, you will open the Format Lookup window.
The Customer_Number format will be selected when the Format Lookup
window opens.

Chapter 7

[331]

5. Click on the Open button on the Format Lookup window to open the
Customer_Number Format Definition window displayed in the following
screenshot. It's here that you'll add the format to include the dash.

You need to make the following two changes to the Customer_Number format:

1. Check the box next to Alphanumeric Only to prevent users from entering
special characters in the Customer Number field.

2. Create a format string that is eight capital Xs and a hyphen, followed by four
capital Xs.

Switch back to Dynamics GP and open the Customer Maintenance window by
going to Sales | Cards | Customers.

Creating Customizations with Modifier

[332]

Notice that you have hard-coded a dash in the Customer ID field, and changed the
maximum number of characters to 12. Your Customer Maintenance window should
look similar to the window in the following screenshot:

Be sure you to fill your format with enough capital Xs to accommodate
the whole field length, or you will shorten the number of characters in the
field.

Data types
We've already covered how you can change the format attached to a data type in the
Formats section, so we won't go over it again here. There's one last point we need to
look at and that is changing the data type itself. We'll use the Item Description field
as an example.

The Item Description field in the Item Maintenance window is 100 characters long.
However, the SOP invoice form can only display about 50 characters. Moreover, the
longest field the Report Writer can handle is 80 characters. Let's say you want to limit
the keyable length of the item description to 60 characters.

You can do it using modifier.

First, you need to find out what data type the Item Description field is using. That
is simple enough to do by opening the Item Maintenance window in Modifier, and
checking the DataType property of the Item Description field.

Chapter 7

[333]

If you double-click on the property, the Data Type Definition window will open. As
you can see in the following screenshot, the STR100 data type is attached to the Item
Description field:

You can't change which data type is attached to the field, but you can change the
properties of the data type. Using our example, if you want to limit the number of
characters in the Item Description field to 60, simply change the Keyable Length
from 100 to 60. You can use this method to reduce the length of a field, but you
cannot use this method to increase the length of a field.

The final resource we'll discuss is messages.

Messages
Message resources are words or phrases that are associated with an ID. For instance,
the phrase appearing in the following dialog box is message 1,003:

Creating Customizations with Modifier

[334]

By changing the text associated with the aforesaid message, you can change the
dialog. Let's look at the Messages window for message 1,003. Notice there is no
lookup window, no print icon, or any other way to see the list of messages with
their associated numbers.

In order to determine what number goes with which message you need to print a
resource report from Modifier. Print this report from the application menu bar by
going to File | Generate Resource Report.

The resource report is quite long. For the Dynamics.dic file, the report is nearly
67,000 lines long. Within that report there is a list of nearly 14,000 message resources.
A search tool is definitely needed. From your point of view, as a developer you can
modify resources to achieve more appropriate dialogs or menu names.

For instance, two different developers may add a menu to the Customer
Maintenance window named Contacts. If the developers have used messages to
name their windows instead of literal strings, you can modify the message to clear
up any ambiguity. You can change existing messages using Modifier, but you
cannot create new ones.

Summary
You now have a pretty good understanding of the Modifier tool and all that you can do
with it. You had opportunities to work hands-on with the product, and see for yourself
how it works. You made several changes to the windows themselves, even adding
fields and pictures. You learned the secret of how to set the big line item boundary
properly, add fields from the AutoLink table, and even learned how to properly line
up the column labels. You made tons of changes to the window fields themselves,
including changing the static text attached to checkboxes and adding tooltips.

Beyond windows, you learned how to make changes to global resources that affect
the entire application. You can even add new pictures to the picture library!

In the next chapter, we are going to add the VBA component to the Modifier, and
turn our changes into action-capable objects.

Creating Customizations
with VBA

This chapter will introduce you to the basics of building customizations for
Dynamics GP with Visual Basic for Applications (VBA). You will get a feel for
how you can enhance the functionality of Dynamics GP windows. You will learn
how to work with multiple dictionaries within your VBA project. This chapter will
also introduce how you can change field values, populate data fields, and store and
retrieve additional data from a special table in the company database.

Key points in this chapter include the following:

• How to work with windows and window fields
• The special characteristics of scrolling windows
• How to read and manipulate modal dialogs
• How to store and retrieve data using the Dynamic User Object Store
• Important considerations when deploying Modifier/VBA customizations

Creating Customizations with VBA

[336]

VBA overview
Visual Basic for Applications (VBA) is an event-driven programming language that
has full core-language parity with the popular Microsoft Visual Basic product. To
become better acquainted with VBA, you can access many free, online tutorials
and sample applications. The following sites will get you started:

• http://tinyurl.com/VBA-MSDN

• http://dynamicsgpblogster.blogspot.com/p/code.html

• http://support.microsoft.com/kb/163435

• http://blogs.msdn.com/b/developingfordynamicsgp/archive/tags/
vba/

• http://www.gpwindow.com/DEVELOPMENT/VBA/

Components
The heart of the VBA program is the Visual Basic Editor (VBA Editor). The VBA
Editor in Dynamics GP is the same one that you will see in any of the Microsoft
Office products. To launch the editor from within Dynamics GP, use the
following navigation:

Microsoft Dynamics GP | Tools | Customize | Visual Basic Editor

Alternatively you can choose to use the hot key combination Alt + F11.
The following screenshot represents the VBA Editor window:

Chapter 8

[337]

You will create a VBA project the first time you open the VBA Editor. One file is
created for each product in your launch file (Dynamics.set), regardless of whether
you have included any objects from that product in your VBA customization.

The files created are local to the workstation and are created in the same folder as
the Dynamics executable (Dynamics.exe). You cannot share a single group of .vba
files like you can for reports or forms dictionaries. Each workstation creates its own
set of files.

Creating Customizations with VBA

[338]

The files are named after the dictionary they represent with the extension of .vba.
For example, the file containing code for Dynamics.dic is Dynamics.vba; the file
containing code for HR.dic is named HR.vba.

A project includes the following elements:

• Dynamics GP objects
• Object properties
• Object methods
• Object events
• User forms
• Variables

You define which Dynamics GP objects are included in the project and then use
VBA code to manipulate the object's properties, methods, and events.

Objects
Dynamics GP exposes objects to VBA. VBA code can only be applied to exposed
objects. Programmable objects for Dynamics GP include the following:

• Windows
• Reports
• Grids (scrolling windows)
• Dynamics User Object Store (DUOS) objects

The following diagram represents the Dynamics GP object hierarchy and how
they relate to one another:

Chapter 8

[339]

Knowing the hierarchy is important because you have to navigate down the tree in
order to work with the objects further down.

For example, let's say you wanted to change the value of the PO Number field on
the Payables Transaction Entry window; your fully qualified code would look
something like the following code snippet:

'set the value of the PO Number field using the fully qualified name

Microsoft_Dynamics_GP.PayablesTransactionEntry.PONumber.Value = "123"

Notice how each object in the hierarchy is referenced as you move down the tree.
The previous code translates to:

Project_Name.Window_Name.Field_Name.Property_Name.Property_Value

Rarely will you have to name each object in the hierarchy as we previously have,
but you get the idea.

As you can see, the Dynamics GP object model is quite small. If you have ever
worked with VBA in any of the other Office products, you will appreciate the
simplicity of Dynamics GP's model. In contrast, Microsoft Excel has over 250
different objects in its model where Dynamics GP has only ten.

Properties
A property defines a characteristic of an object. The list of properties varies
according to the type of object selected.

The following table contains the Field properties:

Property Definition
Caption The caption is the text you see on the screen as the label to the field.

For instance, Vendor ID is the caption of the VendorID field. This is
sometimes called the field prompt.

Empty The Empty property tells you whether the field holds a value; True
means a value is present.

Enabled If Enabled is set to False, you cannot change the value of the field but
you can still see it. In addition, the field's Linked Prompt is grayed out
on the window.

Height The Height property tells us the height of the object, in pixels.
Left The Left property denotes the horizontal position of the field, in pixels.

Creating Customizations with VBA

[340]

Property Definition
Locked The Locked property specifies whether you can change the value of a

field. It works just as a disabled field except the visual characteristic of
the field's Linked Prompt is not changed.

Name The name is what you use in VBA code to refer to the object. The name
comes from the Linked Prompt of the field. If the field does not have a
Linked Prompt, then the field's name is used (excluding spaces).

Required The Required property indicates whether the field requires data before
the record can be saved.

Tab stop The Tab stop property controls whether you can gain focus to the
field using the Tab key. This property does not allow you to set the tab
sequence. You can set the tab sequence using the Modifier product.

Top The Top property specifies the vertical position of the field, in pixels.
Value Value refers to the contents of the field. The value property is the

default property so you do not have to include the word in your code.
PONumber.value = "123" is the same as PONumber = "123".

ValueSeg The ValueSeg holds the value of a specific segment of a composite field.
Visible The Visible property determines whether you can see the field on the

window. If a field is not visible, neither the field nor the Linked Prompt
will be visible on the window.

Width The Width property tells you how wide the field is, in pixels.

Many of the window properties are the same as their equivalent field properties;
therefore, the following table will only show properties with unique characteristics
to windows.

Chapter 8

[341]

The following table contains Window properties:

Property Definition
Caption The Caption property sets the value of the window title.

Changed The Changed property returns whether any fields on the window
have changed. If the value of Changed = True, then one of the
fields have changed.

EventMode The EventMode property controls whether the VBA window events
will occur for the original or modified version of the window. This
can also be set so that window events never occur for the window.

IsLoaded The IsLoaded property indicates whether the window is open. It is
possible for a window to be loaded and not be visible.

Required The Required property returns whether all of the required fields on
the window contain data.

While you have a lot of flexibility using the object properties, you cannot override
certain settings made at the Dexterity level. For instance, if a field is required in
Dynamics GP, you cannot make it unrequired using VBA; nor can you make
it invisible.

For fields that are not required at the Dexterity level you can use the Visible
property to make the field invisible. To make the Shipping Method field
invisible, use the following code:

ShippingMethod.Visible = False

Using the Caption property, you can change the field prompt of a field. To change
the prompt for the CustomerID field, use the following code:

CustomerID.Caption = "Patient ID"

In short, a property tells you something about an object or causes a characteristic
of the object to change.

Creating Customizations with VBA

[342]

Methods
Methods are actions you can perform for a given object. Methods include actions
such as opening or closing a window, moving a field, hiding a field, or bringing
focus to a field. You set a property and you call a method.

You would use the close method to close a window; the window is performing
the action of closing:

PayablesTransactionEntry.Close

By contrast, you would use the caption property to change the window's title.
You're changing the appearance of the window; the window isn't doing anything.
Hence, you use a property instead of a method:

PayablesTransactionEntry.Caption = "Enter Vendor Invoices"

When you use the VBA Editor, you can tell which item is a method and which is a
property thanks to a visual queue. The pointing finger indicates a property and the
green box indicates a method. Take a look at the following screenshot to see what
the different queues look like.

The methods available include the following:

• Window methods
 ° Activate: This method makes a window the frontmost window
 ° Hide: This method makes a visible window invisible
 ° PullFocus: This method removes focus from a window and specifies

if the data of the currently focused field is valid
 ° Move: This method changes the location of a window
 ° Open: This method opens the window and loads it into memory
 ° Show: This method makes a hidden window visible again
 ° Close: This method closes a window

Chapter 8

[343]

• Grid methods
 ° Hide: This method makes a visible grid invisible
 ° Move: This method changes the location of a grid
 ° Show: This method makes a hidden grid visible again

• Field methods
 ° Move: This method changes the location of a field
 ° Focus: This method moves the cursor to the subject field
 ° FocusSeg: This method moves the cursor to a specified segment

of a composite field
• Beep: This method causes a sound to be played through the computer's

speakers
As you can see, not all objects support the same methods.

To view the full complement of objects, properties, and methods, open the
Object Browser from the toolbar as shown in the following screenshot:

Events
Events are actions, typically initiated by the user, to which your code can respond.
In other words, events specify when the VBA code should execute. Events include
actions such as opening or closing a window, pushing a button, or selecting a radio
button. Remember we said that VBA is an event-driven programming language;
these are the kinds of events we were talking about.

VBA code can execute either before or after any Dexterity sanScript code which
may be attached to the same event. Therefore, a window's BeforeClose event isn't
something that happens before the window closes; the user has already closed the
window. It determines whether the VBA code runs before or after the Dexterity code.
The window's POST event would contain the Dexterity code. For example, VBA code
attached to the BeforeClose event runs before any Dexterity script attached to that
same event (the window POST event in this case). In many of the Before events, you
are able to set a CancelLogic parameter to prevent the Dexterity script from running.

Creating Customizations with VBA

[344]

It's critical that you understand what before and after means in the context of VBA.
The code you attach to the BeforeOpen event isn't running before the window opens;
it's running before the Dexterity code attached to the window's PRE event executes.
The user has already opened the window.

Similarly, the BeforeClose event runs after the window closes, but it runs before
the Dexterity code runs for the window's POST event.

The after and before clauses refer to when the VBA code runs with respect to the
Dexterity code. The software does not anticipate the user's wanting the window to
open or close; rest assured, the user has already requested that the window close or
open. The only issue is whether your VBA script runs before the Dexterity sanScript
or your VBA script runs after the Dexterity sanScript.

This is the single most misunderstood concept related to Dynamics GP VBA.

VBA code can respond to the following events in Dynamics GP:

• Window events
 ° Before or After Activate: This event occurs when the window

becomes the front-most window
 ° Before or After Close: This event occurs when the window closes
 ° Before or After Modal Dialog: This event occurs when a modal

dialog is called to be presented to the user
 ° Before or After Open: This event occurs when the window opens

• Field events
 ° Changed: This event occurs any time a field's value changes and

the cursor moves off the field. It does not matter what initiated the
change; the fact that the field's value changed causes the event.

 ° Before or After Got Focus: This event occurs when the user moves
the cursor into the field.

 ° Before or After Lost Focus: This event occurs when the user
moves the cursor out of the field.

 ° Before or After User Changed: This event occurs whenever the
user changes the value of a field and moves the cursor off that field.

Chapter 8

[345]

• Scrolling window events (called Grid events in VBA)

 ° Before or After Line Changed: This event occurs when the value
of a field on the line changes, and the user advances to the next line.

 ° Before or After Line Got Focus: This event occurs when a line
is entered.

 ° Before or After Line Lost Focus: This event occurs when a line
is exited.

 ° Before Line Populate: This event occurs each time a new line of
data on a grid is displayed. There is no "After Line Populate" event.

In the pages that follow, you will create VBA code in Dynamics GP that will
respond to window, field, and scrolling window events. We will not be working
with Report events.

UserForms
UserForm is a VBA form created by the user that is not part of the Dexterity
application dictionary. You can put buttons and controls, among others, on a
UserForm just like you can in any other Visual Basic application. The key difference,
of course, is that this window is not part of Dynamics GP's business logic.

You create a UserForm from the navigator's Insert menu, as shown in the
following screenshot:

Creating Customizations with VBA

[346]

While you can use VBA code to interact with the Dynamics GP objects and create
some very powerful customizations, there is no way for you to make your VBA
UserForm look and behave like a native Dynamics GP window. If you copy the
images from the buttons, for instance, you can make your button resemble Dynamics
GP, but that's about it. The window itself behaves differently in that it is always the
front-most window. You can move it out of the way, but you can't open another
window on top of it.

An additional property available to a UserForm is the ShowModal property. If you
want to require the user to dismiss the UserForm before using any other part of the
application, you can set UserForm's ShowModal property to TRUE. For example,
an error message presented that forces you to select OK or Cancel before you can
do anything else, is a modal window. The default setting for a UserForm is Modal.

Modules
You will normally use Modules, also known as Standard Code Modules, or just
Code Modules, to hold custom functions that you can call from other parts of your
application. Using modules is a good way to organize your code. You could put any
calls to Windows APIs, DLLs, or other external functions in separate modules.

You can call functions or procedures in one module from any other module or
procedure in the application. You can think of modules as places to store global bits
of code. You can have as many modules as you want, but it's a good idea to organize
them so they can be more portable and thus, reusable.

For example, you could put your table operations in one module and your data
translation procedures in another.

Debugging
The VBA module contains a robust collection of source-level script debugging tools
that you can use to analyze your application. Using the debugging tools, you can
set breakpoints, apply conditions to breakpoints, step through scripts one line at a
time, examine and set the values of variables and fields, and control where the code
should start and stop. You can also check your code for syntax errors before you run
it in your application. Bear in mind though, just because its syntax is correct doesn't
mean it will deliver the functionality you were hoping for.

Chapter 8

[347]

You can access the debugging tools from the Debug menu as shown in the
following screenshot:

The following list will gives on each item in the Debug menu:

• Compile: This checks to verify that your syntax is correct and that there are
no obvious errors such as an unknown variable, a CASE statement without
an END, or an If block with no End If.

• Step Into\Over\Out: These control the execution of the code when it is
stopped at a breakpoint.

• Run To Cursor: This tells VBA to execute the code until it reaches the line
on which the cursor is positioned. VBA enters break mode when it reaches
this line. Run To Cursor is similar to putting a temporary breakpoint on a
line of code.

• The Watches: These provide a means for you to monitor a specified variable
or expression. You can cause code execution to enter break mode based on
the value of that variable or expression. You can have many watches active
at the same time.

• Toggle and/or Clear All Breakpoints: This will place or remove a
breakpoint on a line of code. Place your cursor on the line and then press F9
to place or remove a breakpoint on that line. Press Ctrl + Shift + F9 to remove
all breakpoints.

• Set Next Statement: This changes the path of execution of the code. At
breakpoint, you can identify the particular line where you want the execution
to start. You can skip over entire sections of code or pick a previous line to
have the code run again.

• Show Next Statement: This will display a yellow arrow to mark the line that
will be executed next when you continue execution of the code.

Creating Customizations with VBA

[348]

Setting options
Before we start writing code, we need to change at least one option for the navigator
itself. To access the Options window, go to Tools | Options.

The Options window will open. On the Editor tab, check the box next to Require
Variable Declaration. This setting will automatically insert Option Explicit in new
code modules. This setting will help reduce errors from misspelled variables in your
code. If you don't mark this, and the VBA compiler encounters a name that it doesn't
recognize, it will create a new variable for you. Therefore, if you declare a variable
named str_Name, and then later misspell it as sr_Name, a new variable named
sr_Name would be created for you. If the Option Explicit statement is at the start
of the code module, an error will be thrown when the unknown sr_Name variable is
encountered by the compiler. This can save you hours of debugging time later.

Windows and window fields
Now we are ready to set VBA loose! For our project we will add a button to the
Vendor Maintenance window,which, when pushed, will open the Vendor Credit
Summary window. We are also going to add a Go To button to the Vendor
Maintenance window to provide quick navigation to the following windows:

• Payables Transactions Entry
• Payables Transaction Inquiry
• PO Document Inquiry
• Vendor Yearly Summary
• Vendor Period Summary
• Vendor Summary

First, we need to use the Modifier to add our new buttons to the window. The easiest
way to do this is to open the window you want to modify (in our case the Vendor
Maintenance window), and then select Ctrl + F10 on the keyboard. The Modifier
will open with the Vendor Maintenance layout window displayed.

Chapter 8

[349]

Now, you are going to put the two new buttons on this window and then you will
put the VBA code behind them so that they will do something when you push them.
At the end of the project, the Vendor Maintenance window should look similar to
the following screenshot. The trailing period in the window title tells you that the
window has been included in a VBA project:

Creating the Summary button
In this section you will create a button with the the caption Summary on it and
position it on the Vendor Maintenance window. When the button is pushed, the
Vendor Credit Summary window will open. Refer to the following screenshot for
more guidance regarding each step of the creation of the Summary button:

1. Select the push button icon from the Toolbox window and your mouse
cursor will change to a plus sign (+) with the image of an OK button next
to it. Click wherever you want the button to be created; you can move it
and resize it later.

2. Position your button between the Withholding and Options buttons at the
bottom of the window. You will need to move the Withholding button to
the left to make room.

3. Double-click on the Field line of the Properties window and the Local Field
Definition window will open.

4. On the Local Field Definition window, change the Field Name value to
SummaryPB.

Creating Customizations with VBA

[350]

5. Click on the ellipses button next to the Static Values field to open the
Button Items window.

6. Change the Caption to Summary. This text will appear on the face of the
new button.

Creating the Go To button
In this section, you're going to add a Go To button to the
Vendor Maintenance window.

1. Select Local Fields on the Toolbox window.
2. Push the New button at the bottom of the Toolbox window.
3. In the Local Field Definition window, name the field GoToPB and set

the Control Type to Button Drop List.
4. Select the ellipses button next to the Static Values field to open the

Button Items window.

Chapter 8

[351]

5. On the Captions tab, enter the following values:

Type Caption Image
Up &Go To GoTo_1_Up

Down &Go To GoTo_1_Down

Over &Go To GoTo_1_Up

6. On the Drop Items tab, unmark the Sort List checkbox and add the
following values:

Index Drop Item
1 Payables Trx

2 Inquiry - PM Trx

3 Inquiry - PO Docs

4 Inquiry - Yearly Summary

5 Inquiry - Period Summary

6 Inquiry - Vendor Summary

7. Change the object properties of (L)GoToPB to the following values:

SetChangeFlag False

Tooltip Go To

8. Change the visual properties of (L)GoToPB to the following values:

Appearance 3D Highlight

BackColor System-Toolbar

Position-Left 596

Size-Width 30

Style Graphic Only

9. Select the File menu and then select Microsoft Dynamics GP to exit the
Modifier and go back to Dynamics GP.

10. Change the Alternate/Modified Forms and Reports ID to display the
modified Vendor Maintenance window. Use the following navigation
to access the Alternate/Modified Forms and Reports window:

Microsoft Dynamics GP menu | Tools | Setup | System | Alternate/
Modified Forms and Reports.

Creating Customizations with VBA

[352]

Your window should look substantially similar to the following screenshot:

Next, you are going to create your VBA project by adding Dynamics GP objects.

Adding objects to the project
Initially, there are no objects in your VBA project. You have to individually add
each window and window field that you want to use in your VBA customization.

First, you add the window to VBA, and then you add the individual fields by
clicking on them one at a time. Once you've added a field to the project, the only
way to remove it is to remove the entire window. Removing the window will also
remove all of the fields you have added for that window, including any code
you've added to those fields. Therefore, you need to be careful when adding
fields or removing windows.

If you put some extra fields into the project, it probably will not be a problem, but
the cleaner you can keep your project, the better. You will never know how future
changes might affect your VBA project. If Dynamics GP takes a field that you have
in your VBA project off the window, you will get an error at startup. Therefore,
only adding the objects you need is the best practice.

Chapter 8

[353]

Adding the Vendor Maintenance window
You are going to add VBA code to the Vendor Maintenance window, so you need
to add it to your project. Open the Vendor Maintenance window. Notice the leading
period in front of the window title; this is a subtle visual queue that indicates that
you have modified the window. However, it might be a little too subtle. Before you
start coding your VBA, you may want to change the Title property of the window
so that it is more obvious that you are dealing with a modified window.

A better practice may be for you to put a more obvious prefix to the window title.
Something like one of the following prefixes would be suitable:

• m: Use this is if the window is modified.
• v: Use this if the window is part of a VBA project.
• mv: Use this if the window is both modified and part of a VBA project.

In this case, you would name it mv Vendor Maintenance to indicate that the
window is both modified and included in a VBA project. The leading period is a
very slight change and can easily be overlooked.

You should see your new button to the left of the Options button at the bottom of
the window, and the new Go To button in the upper right-hand corner. Right now,
the new buttons are just eye candy. They do not do anything when you push them.

The Withholding button that you saw in the Modifier will not be visible unless
you have set up Withholding in the Company Setup Options window. Since
Withholding is not normally set up, you moved the Withholding button over to
the left so that you wouldn't have a gap in your buttons.

Select the Ctrl + F11 keyboard combination to add the current window to the
VBA project. Alternatively, you can use the following navigation:

Tools | Customize | Add Current Window to Visual Basic

With the window added, you can now go about adding the fields.

Creating Customizations with VBA

[354]

Adding additional windows and window fields
You need to add the Vendor ID field from the Vendor Maintenance window, the
Vendor Credit Summary window, and the Vendor ID field from the Vendor Credit
Summary window. To add the window fields to your project, select Shift + F11 and
then click on each field you want to add.

To get started, include the following objects in your VBA project:

Window Window fields
Vendor Maintenance Vendor ID

Vendor Maintenance SummaryPB (your new button)

Window Window Fields
Vendor Credit Summary Vendor ID

With your objects added, it is time to launch the VBA Editor window and go about
the business of writing your code. Select Alt + F11 on the keyboard or use the
following navigation to launch the VBA Editor:

Tools | Customize | Visual Basic Editor

Using methods and properties
First, you are going to attach code to your button so that it opens the Vendor Credit
Summary Inquiry window for the displayed vendor when it is pushed. Pushing
the button triggers the Changed event; you will use the Open method to open the
window. With the window open, you will set the Value property to be equal to the
Vendor ID displayed on the Vendor Maintenance window. Follow these steps to
accomplish this course of action:

1. In the VBA Navigator, select the Project - Microsoft_Dynamics_GP.
2. Move down the object list and double-click on the entry

VendorMaintenance (Window).
3. Select the Summary object and the Changed procedure in the code window.

Chapter 8

[355]

4. Type the code as it appears in the following screenshot. The Value property
is the default property and therefore you do not need to state it when setting
the value of Vendor ID. If you need more than one line to complete a line of
code, use the underscore and space for your continuation indicator.

Now that you have the feel of typing code in the VBA Navigator, add the remaining
objects needed for the Go To button.

Add the following additional objects to your VBA project:

Window Window fields
Payables Transaction Entry Vendor ID

Window Window fields
Payables Transaction
Inquiry - Vendor

 Vendor ID
 Redisplay button
 Work checkbox
 History checkbox

Window Window fields
Purchase Order Processing
Document Inquiry

Vendor ID

Redisplay button
Open Purchase Orders checkbox
Receipts Received checkbox

Creating Customizations with VBA

[356]

Window Window fields
Vendor Yearly Summary Inquiry Vendor ID

Calculate button
Summary View

Window Window fields
Vendor Period Summary Inquiry Vendor ID

Window Window fields
Vendor Credit Summary Inquiry Vendor ID

 Calculate button

You will need to populate a number of different fields in several Dynamics GP
windows to make your Go To button functional.

Setting field values
Since you want the windows you open from your Go To menu to display data for
the current vendor, you will need to set the value of Vendor ID when the window
opens. For all but two of the windows, you will need to set the value for more than
one field.

When you need to push a button or mark a checkbox, set the value of the field to 1.
Enter the following code in the Changed event for the Go To button:

Private Sub GoTo_Changed()

 With Me.GoTo

 Select Case .Value

 Case 1 'Payables Transaction Entry
 PayablesTransactionEntry.Open
 PayablesTransactionEntry.VendorID = Me.VendorID

 Case 2 'Payables Transaction Inquiry - Vendor
 PayablesTransactionInquiry.Open
 PayablesTransactionInquiry.VendorID = Me.VendorID
 PayablesTransactionInquiry.Include = 0
 PayablesTransactionInquiry.Include2 = 0
 PayablesTransactionInquiry.Redisplay = 1

Chapter 8

[357]

 Case 3 'Purchase Order Processing Document Inquiry
 PurchaseOrderProcessingDocu.Open
 PurchaseOrderProcessingDocu.StartVendorID = Me.VendorID
 PurchaseOrderProcessingDocu.EndVendorID = Me.VendorID
 PurchaseOrderProcessingDocu.OpenPurchaseOrders = 1
 PurchaseOrderProcessingDocu.ReceiptsReceived = 1
 PurchaseOrderProcessingDocu.Redisplay = 1

 Case 4 'Vendor Yearly Summary Inquiry
 VendorYearlySummaryInquiry.Open
 VendorYearlySummaryInquiry.VendorID = Me.VendorID
 VendorYearlySummaryInquiry.SummaryView = 3
 VendorYearlySummaryInquiry.Calculate = 1

 Case 5 'Vendor Period Summary Inquiry
 VendorPeriodSummaryInquiry.Open
 VendorPeriodSummaryInquiry.VendorID = Me.VendorID

 Case 6 'Vendor Credit Summary Inquiry
 PayablesSummaryInquiry.Open
 PayablesSummaryInquiry.Ranges = Me.VendorID
 PayablesSummaryInquiry.Ranges1 = Me.VendorID
 PayablesSummaryInquiry.Calculate = 1

 End Select

 End With

End Sub

You should now have a Vendor Maintenance form with a Go To navigation button
that looks and acts like the native Go To buttons. Take a look at the Go To button on
the Item Maintenance screen and compare it to yours. You will not see any difference
between the button you created in VBA and the button created with Dexterity.

Creating Customizations with VBA

[358]

Cross-dictionary access
VBA has no limitations as to what dictionaries you can access. When you look
at your VBA customization, you will see a project for each dictionary in your
Dynamics.set file, shown as follows:

You can tell which projects have objects added to the application by the presence
of a plus (+) sign next to the name of the project. In the previous Project screenshot,
only the Microsoft_Dynamics_GP and the Collections_Management projects
include any objects.

If you want to build cross-dictionary applications with VBA, you need only to
include a reference to that project.

Referencing the Collections module
Let us build a customization that will provide a push button on the Customer Inquiry
window that will open the Collection Main window for the selected customer.

First, add a new button to the Customer Inquiry window:

1. Select the push button icon from the Toolbox window and your mouse
cursor will change to a plus sign (+) with the image of an OK button next
to it. Click on the control area to add the button to the top of the window.

2. Double-click on the Field line of the Properties window and the Local Field
Definition window will open.

3. On the Local Field Definition window, change Field Name to Collection.

Chapter 8

[359]

4. Click on the ellipses button next to the Static Values field to open the Button
Items window.

5. Change the Caption field to Collections. This text will appear on the face
of the new button.

Your Customer Inquiry window should look similar to the following
screenshot:

To set up the reference to the Collections Management module, perform the
following steps:

1. With the Microsoft_Dynamics_GP project highlighted, select Tools |
References from the VBA Navigator menu.

2. In the References window, mark the box next to the Collections
Management item to set up the reference.

Creating Customizations with VBA

[360]

This will add a reference object to the Microsoft_Dynamics_GP project,
as shown in the following screenshot:

One limitation on VBA references is that they cannot be circular. Once you have
set up a reference to Collections Management from Microsoft_Dynamics_GP,
you cannot then set up a reference to Microsoft_Dynamics_GP from Collections
Management. With the reference set, you use standard VBA coding to act upon
objects in the Collections Management dictionary.

In the Changed event for the Collections button, type in the following code:

Chapter 8

[361]

Since we are calling across projects, we would need to fully qualify the object names
if they were the same in both projects. For example, if the Dynamics dictionary also
contained a window named CollectionsManagementMainWi, we would need to
open it using the following code:

If you need more than one line for a VBA statement, the continuation character is a
space plus the underscore, as shown in the previous screenshot.

Scrolling windows
Scrolling windows are called Grids in VBA. Scrolling windows are used extensively
throughout the application. The body of the Sales Transaction Entry and Purchase
Order Entry windows are scrolling windows. A single screen can contain a number
of separate scrolling windows. The following screenshot shows two screens that
contain scrolling windows:

Creating Customizations with VBA

[362]

Adding a scrolling window to the project
When you add a window containing a scrolling window to a project, you
automatically add a separate object for each scrolling window. You do not have
to do anything extra; the VBA system does it for you. In your project, you should
have several scrolling windows, called grids, listed as objects. Your project will
look something like the following screenshot:

Grid events
The fields on a grid have the same events as the fields on a window. The grid itself,
however, has some unique events that apply only to grids.

Line got focus
The LineGotFocus events occur as soon as you enter a new line. You might use this
event to set the value of a field on the new line. The BeforeLineGotFocus event
executes before any Dexterity code that runs when you enter a new line. Unlike the
Field Got Focus events, you cannot cancel the Dexterity code from running when
switching to a new line. The AfterLineGotFocus event runs after the Dexterity code
that normally runs when switching to a new line.

Chapter 8

[363]

Line lost focus
The LineLostFocus events occur as soon as you leave the line. You might also use
this event to check the values of fields on the line, or to save additional data from
your customization. The BeforeLineLostFocus event executes before any Dexterity
code that normally runs when you leave a line. The AfterLineLostFocus event
executes after any Dexterity code that runs when you exit a line.

When you switch from line to line, two events happen each time. The LineGotFocus
events run for the new line and the LineLostFocus events run for the old line.

Line change
The LineChange events occur when you have changed the value of a field in the line
and then leave the line. The BeforeLineChange event is useful if you want to check
the value of a field and then not allow the user to advance to a new line if you don't
like the value. You accomplish this by setting the value of the KeepFocus parameter
to True. The BeforeLineChange event runs before any Dexterity code that normally
runs when you change lines. Rows of data are normally saved by the Dexterity code
when you change lines, so if you prevent this code from running, you can control the
information that can be written to the tables.

The following code illustrates how you could check the quantity field on a purchase
order line and not allow the user to advance if that quantity ordered is more than ten:

Filtering records
Using VBA, you can filter the records allowed to fill the scrolling window. You can
use the BeforeLinePopulate event to create the filter.

Creating Customizations with VBA

[364]

BeforeLinePopulate
This event happens each time you display a new record on a line. When you first open
the grid, the BeforeLinePopulate event runs repeatedly until the grid is full. When
you scroll down the grid and display new lines of data, the BeforeLinePopulate
event executes for each new line of data displayed. You can use this event to filter the
items filling the scrolling window by using the RejectLine parameter.

For example, if you want to restrict the records populating the Vendor Lookup
window to vendors belonging to the class "USA-US-M," you could use the
following code:

This particular task is a little tricky because the Vendor Class ID field is not actually
displayed on the Vendor Lookup window. To access the field so that you can add
it to your VBA project, you must first modify the window and drag the field into a
visible area.

Follow these steps to accomplish this task:

1. Open the Vendor Maintenance window and then open the Vendor Lookup
window.

2. With the lookup window open, select Ctrl + F10 from the keyboard. The
Modifier will open with the lookup window's layout displayed.

3. Double-click in the middle of the scrolling window. The layout of the
scrolling window will open.

4. If the field names are not showing, select Layout from the menu bar and
be sure a checkmark appears next to both the Show Field Names menu
item and the Show Invisible Fields menu item.

5. Select the Vendor Class ID field, change its Visible property to True,
and then drag it up into the visible area of the scrolling window.

Chapter 8

[365]

6. Switch back to Dynamics GP by selecting Alt + Q on the keyboard; be sure to
save your modifications.

7. Change your Alternate/Modified Forms and Reports values so that it uses
the modified version of the Vendors window in the SmartList dictionary. The
following window shows the security window with the correct item selected:

Creating Customizations with VBA

[366]

8. Now, open the Vendor Lookup window and press Ctrl + F11 on the
keyboard to add the lookup window to your VBA project.

9. Select Shift + F11 and add Vendor Class ID to your VBA project. The
Vendors lookup window will look something like the following screenshot:

10. Select Alt + F11 to launch the Visual Basic Editor and change the
VendorsDetail Grid's EventMode property back to 0 - emOriginalOnly
(as shown in the following screenshot):

Chapter 8

[367]

11. Change the Alternate/Modified Forms and Reports security back to
the unmodified SmartList under the Vendors window (as shown in the
following screenshot):

Using the RejectLine statement is the best way to apply your own record filtering.
There is no "After Line Populate" event.

Fun with dialogs
Several dialog boxes open at various times throughout Dynamics GP. Some of
these dialogs are hard to understand while others are simply a nuisance. Using VBA,
you can change the text of a dialog, automatically answer the dialog before it is
presented, or monitor your user's response to a dialog.

Creating Customizations with VBA

[368]

BeforeModalDialog
The BeforeModalDialog event is a window event that executes when a modal dialog
opens but before it is visible to the user. This event is useful if you want to change the
wording of a dialog or automatically answer it. You could also complete other actions
based on which dialog was being displayed, such as setting the value of variables.

You can have a lot of fun with this event by customizing dialogs for individual users.

The following dialog is a prime candidate for you to dismiss using this event:

The following code will check the text of the dialog, and if it matches, will
automatically push the Add button. The Batch Entry window will open and the user
will never know the dialog existed. The prompt string test is case sensitive, so you
need to enter the text exactly as it appears in the dialog window.

Something else you can do is change the prompt itself so that the dialog is more
understandable or informative. The following dialog can be confusing because it
does not define what it means by record:

Chapter 8

[369]

You will get this dialog if you push the Delete button on the Edit Payables Checks
window. This dialog can be especially confusing to a new user. The user doesn't
know if they are deleting the vendor record, the voucher record, the payment record,
or what.

Alternatively, suppose the following dialog displayed instead:

You can change the dialog box prompt with the following code attached to the
BeforeModalDialog window event:

Creating Customizations with VBA

[370]

AfterModalDialog
Sometimes you want the dialog displayed, but you also need to know how the user
responded. The AfterModalDialog window event provides a means for you to check
which button the user pushes in response to the dialog's question. Code attached to
this event executes after the modal dialog is displayed to the user.

This is especially necessary if you have added your own custom data and need to
know if you should save it or delete it based on what happens to the master record.

The following code will monitor modal dialogs on the Customer Maintenance
window and return a message stating how the user responded to the dialog:

The Dynamic User Object Store
It is likely that your customization will involve collecting additional data. The
common scenario is that you add additional fields using the Modifier and then you
use VBA to store that data. However, where will you store it?

While you could create your own tables, there may be an easier method. The
company database includes a table called the Dynamics User Object Store or DUOS
table. The DUOS table is a powerful object that is woefully underused. Over the next
few pages, you will learn how to store additional data without adding any tables to
your database.

Chapter 8

[371]

Architecture
The DUOS object is comprised of the DUOSObjects collection, the DUOSObject
object, the DUOSProperties collection, and the DUOSProperty object.

The DUOSObjects collection is essentially a user-created set of data. You define
the collection and can have as many collections as you wish. Common collections
include customer, vendor, item, or employee. Inside the DUOSObjects collection is
the DUOSObject. The collection is a set of data; the object is a single object record
within the collection. If you had a collection of customer records, a specific customer
would be an object in the collection.

The DUOSProperties collection is basically a list of the new fields you have created
for each object. The DUOSProperty object represents the field value.

The following illustration represents the hierarchy of the DUOS:

The following table contains two object collections, four objects, four properties
collections, and six property values. The Objects collection represents a category of
records. In our example they are your vendors and items. The objects are individual
Vendor IDs and Item IDs. The Properties collection contains the field name of the
new fields you have created for the objects. Property is the individual value for the
new field:

Collections Objects Properties Property
Vendors ADVANCED0001 Home_Page www.fitz.com

Vendors BEAUMONT0001 AR_Manager Sally Cooper

Vendors DOLECKIC0001 Home_Page www.baker.com

Items 100XGL Manufacturer AAMCO

Items 100XGL Target_User Home

Items 24XIDE Manufacturer Carllite

Items 256DRAM EDI No

As you can see from the previous table, you can have an unlimited number of new
properties for any object. Your object collections do not have to be your master files.
You can create properties for anything you can uniquely identify, such as an Item
Class or a Document Type.

http://www.fitz.com/

Creating Customizations with VBA

[372]

Declaring the objects
Saving data to the DUOS table first involves declaring the collection and object so
that you can access it. You would usually do this in the module's General Declarations
section so that the DUOS objects will be available to all procedures within the
module. The following code will declare the collection and object. This is the first
step whenever working with DUOS objects:

Retrieving data
After declaring the object and collection, you need to name the collection that will
contain the objects. You will use the DUOSObjectsGet method to create the collection.
The following code creates a collection called Vendor Information in the Changed
event for the Vendor ID field. This also demonstrates how to retrieve the fields and
populate the window:

Chapter 8

[373]

Saving data
To save your DUOS data you need to monitor the Save button and watch for any
dialogs Dynamics GP may present that will ask you to save the data. For example,
if a vendor record is changed and you try to close the window or browse to another
field without saving the data, the following modal dialog will appear:

Using VBA's AfterModalDialog event you can find out how the user responded to
this question. If they pushed the Save button, then you need to continue monitoring
the progression of the save. If the save is successful, you will need to save your
DUOS data as well. The circled part of the following code will return the user's
response to the previous dialog:

Creating Customizations with VBA

[374]

When you click on the Save button, Dexterity code examines the record for the
presence of required fields. If the required fields have values, Dynamics GP will
save the record. By using the BeforeUserChanged event of the Save button, you can
check for required fields first and then save your data if the requirements are met.
You do not want to use the AfterUserChanged event because the Dexterity code
normally clears the window upon a successful save. Remember, the user has already
pushed the Save button, but your VBA code gets to run first. By running first, your
code can even stop the Dexterity code from ever running by setting the value of the
CancelLogic parameter to True.

The following is the code for the BeforeUserChanged event of the Save button:

Deleting data
You need to delete your DUOS data when the user deletes the corresponding
record in Dynamics GP. You don't want to leave orphaned records in your
database. Just as you did when saving a record, you need to respond to events
that could result in a deleted record. The deleting process, like the saving process,
has some obstacles in the way. Several dialogs could pop up and deny deletion of
the record. It is important that you explore the user interface to familiarize yourself
with those dialogs and what causes them to present.

Since you are using vendors, it makes sense to try to delete a few vendors to see how
the system reacts. As soon as you click on the Delete button, you are presented with
the following modal dialog:

Chapter 8

[375]

You will need an AfterModalDialog event to capture the user's answer. However,
you are not out of the woods yet. Even after you confirmed that the user wants to
delete the record, Dynamics GP may not allow it and may throw up this message:

Initially, you may think that the above is a modal dialog, but it is not. It is a regular
Dynamics GP window and you need to include it in your VBA project. Select Ctrl +
F11 when the window opens to add this window to your project.

This window is a modal window, but it is not a modal dialog. If you look at the
modal dialogs and compare them to this window, you will notice the information
icon on this window is different.

To summarize, in order to confirm a delete, you need to monitor three things:

1. The Delete button – when the user tries to delete the record.
2. The user's response to the Are you sure modal dialog – if yes, then the user

wants to go ahead with the delete.
3. Dynamics GP's decision as to whether the record can be deleted – Dynamics

GP may forbid the deletion of the record.

You will need three global variables to monitor the process. The circled code in the
following code window shows the declaration of the variables:

Creating Customizations with VBA

[376]

The variables are initialized in the VendorID_Changed() event. The circled code in
the following window shows the variables being initialized:

The OKtoDeleteVendor variable starts out with a value of True. This value changes
to False if the Dynamics GP window opens and informs you that you cannot delete
the vendor.

The WanttoDeleteVendor variable starts out with a value of False. The value
changes to True, if you answer Yes to the modal dialog that asks Are you sure you
want to delete this record?.

Both the OKtoDeleteVendor and the WanttoDeleteVendor variables must have
a value of True before you can delete the vendor.

The circled code in the following window returns the user's response to the
Are you sure . . . modal dialog. If the answer is Yes, it changes the value of the
WanttoDeleteVendor variable to True.

Chapter 8

[377]

The following code checks to see if the window opened telling you that you
couldn't delete the vendor because it had open transactions. If it does open, the
OKtoDeleteVendor variable is set to False.

Creating Customizations with VBA

[378]

The following window is the final step in the delete process. You put this code on the
Delete button's AfterUserChanged event. The user has pushed the button to initiate
the delete. This code checks both variables for a value of true. If it passes the test, the
Remove method deletes the record. This is shown in the following screenshot:

Deploying a Modifier/VBA customization
Modifier/VBA customizations are very easy to deploy. You export your
customizations into a .package file and then import the package file into each of the
receiving workstations. You cannot put .vba files on a shared drive like you can for
reports; each workstation must have its own set of .vba files.

Creating package files
To create a package file, go to the Customization Maintenance window using the
following navigation:

Microsoft Dynamics GP | Tools | Customize | Customization Maintenance

On the Customization Maintenance window, highlight those customizations you
want to distribute and click on Export. You can highlight several at a time using the
Shift and Ctrl buttons on your keyboard:

Chapter 8

[379]

You can see what kind of customization is listed by looking at the Type column.
The Product column tells you from which dictionary the objects originated.

When you create your package file keep in mind that you cannot pick and
choose which customizations you import; it's all or nothing. Also, if the receiving
workstation does not have the dictionary installed for each of the customizations in
the package, none of the customizations will import.

Rather than exporting all of the customizations into a single package file, consider
exporting them by type and dictionary for additional protection.

In addition to a vehicle for distribution, package files can serve as a backup for your
VBA project. You will have invested many hours in your customizations; be sure
there is a regular backup plan to protect your work.

Don't forget to import your package files occasionally to test the integrity of the file.
A backup that cannot be restored is worthless.

Creating Customizations with VBA

[380]

Limitations of packages
Using package files is a clean and quick method for distributing Modifier/VBA
customizations. However, you should be aware of the following points about
package files:

• Package files do not include any modifications made to global resources. For
instance, if you changed or added any format definitions, or made any string
modifications, you cannot export them to a .package file. The only way to
get those kinds of customizations distributed is to copy the forms dictionary
and the .vba file to the client installation.

• Importing customizations from a package file will overwrite any existing
changes for the same form or report. You will be warned if this is the case
and you can cancel the import.

• You cannot selectively import modifications from a package file. You have
to import all of them, even if it will overwrite your existing customizations.

• All windows belong to a form. Several related windows can be part of the
same form. Even if you modify only one window, when you create the
package file you export the form, which brings all of the windows with it.
Even if your existing customization modified a different window on the
form, the entire form is overwritten.

• You have to import VBA customizations on each workstation, even if the
dictionaries are shared. The .vba file must be in the same folder as the
runtime engine.

Finally, in order to use a Modifier/VBA customization, you need to either own the
Modifier module or have the Customization Site Enabler registered. Any version
of Dynamics GP purchased under the new Business Ready Licensing structure
automatically includes the Customization Site Enabler.

Editing packages
Package files are text files and present some opportunities for editing to tweak the
customization or make mass changes via search and replace. The following is the
section of a package file that includes the list of items from the Go To button you
added to the Vendor Maintenance window:

Chapter 8

[381]

The ability to edit the .package file for a modified report gives you a way to
copy calculated fields and copy report formats. For instance, you can copy the
SOP Open Invoice Form to the SOP History Invoice Form rather than redoing all
of your modifications.

Known issues with Windows 7
You may run into a couple of issues if you have MS Office 2010 installed with
Dynamics GP 10 or Dynamics GP 2010. Two different scenarios have been identified
related to the VBA component:

• Scenario 1: Dynamics GP crashes and creates a Dr. Watson fault bucket
1474386816

• Scenario 2: Dynamics GP freezes up and displays a warning dialog stating
File not found: VBA6.DLL

Should you experience either of these situations, you can find some helpful tips at
the following sites:

• http://tinyurl.com/VBA6-DLL-Error

• http://tinyurl.com/importing-VBA

• http://community.dynamics.com/product/gp/f/32/p/54186/97749.aspx

Creating Customizations with VBA

[382]

Your VBA customizations will work just as they always have using the Dynamics
GP 2013 rich client. By rich client, we mean the regular Dexterity written workstation
installation that you use today. What is ground-breaking about Dynamics GP 2013,
is that the first Web client has been introduced. The Web client is a breakthrough for
Dynamics GP, and one that has long been anticipated, but it comes at a price. Your
VBA customization will not work on the Web client. The screen modifications you
have made using the Modifier work just fine, but the VBA code will not execute.

Do not despair, you can still make your window changes using the Modifier, but
you'll be giving life those changes with Visual Studio Tools instead of VBA. The
window events are very similar to the VBA events you use now. You can find a
table in Appendix B containing a side-by-side matrix comparing VBA, VS Tools,
and Dexterity events. As you will see in the table, the events across all three tools
are very similar. Appendix B is available as a free download from the following link
:http://www.packtpub.com/sites/default/files/downloads/0264_EN_AppB_
Event_Matrix.pdf

Go through the exercises in Chapter 10, Creating Customizations using VS Tools, if you
want to get a feel for programming using that tool. As you go through the exercises,
bear in mind that you will be using your modified window and not the WinForms
described in the chapter. Dynamics GP 2013 does not recognize WinForms.

Perhaps this would be a good time to dive into Dexterity; you'll find good
information and exercises to start you along the path of Dexterity in Chapter 3,
Getting Started with Dexterity, Chapter 4, Building the User Interface, and Chapter 5,
sanScript - Making It Work. Dexterity works perfectly with all aspects of the new
Web client.

Chapter 8

[383]

Summary
In this chapter we explored the VBA module and some of the things you can do
with VBA to customize Dynamics GP. We now know the components of the VBA
application and how to use the VBA Editor. We have worked through the objects in
the Dynamics GP object module and have used several of their properties, methods,
and events. We know that you can create new user forms with VBA and attach code
that will interact with Dynamics windows and reports.

Our projects included adding a new button for navigation to the Vendor Credit
Summary window and using an existing Dynamics GP object to add a Go To
button to the Vendor Maintenance window. We walked through how to create,
save, retrieve, and remove data from the DUOS table.

We also know how to deploy our VBA customizations along with some issues to
keep in mind when creating and importing package files.

In the next chapter we will learn how to create robust customizations without
writing a single line of code.

Code-free Customization
Dynamics GP has an impressive assortment of end-user tools available that you
can use to produce an exciting array of enhancements. You can develop these
enhancements without writing a single line of code.

This chapter will introduce you to some of the more inspiring code-free tools. We
will be covering the following tools:

• SmartList Builder
• Excel Report Builder
• Drill-Down Builder
• Extender

At the end of this chapter, these tools will be added to your repertoire to make
Dynamics GP behave the way you want it to.

Overview of tools
In the beginning, you had only Dexterity to create customizations. A few years
later, VBA was embedded into the product, providing access to a stress-free cross-
dictionary functionality. After that, Continuum entered the scene for Visual Basic
and Delphi programmers. Continuum provided even more access to third-party
dictionaries and was an efficient tool for smaller-scale customizations.

In Version 7 of Dexterity, COM objects were supported. Now you could integrate web
services with Dynamics GP and call them. Using COM, Continuum was repurposed
as an Application Programming Interface (API) for Dynamics GP objects.

Code-free Customization

[386]

Then, Visual Studio Tools (VS Tools) came along. VS Tools opened the black box
that was the Dynamics dictionary, and the ability to customize Dynamics GP
spread like a virus. Suddenly, there was a long list of options for you to choose from
for custom development.

On the home front, tools were being acquired that were targeted at power users
instead of programmers. At last, you could customize Dynamics GP without
knowing a programming language.

SmartList Builder
SmartList Builder gives you the ability to create new SmartList objects. A SmartList
object is different from a favorite. A favorite is a subset of an object. Favorites are
what end-users create from an object.

Average Days to Pay and Customer Balance are the names of two prebuilt SmartList
favorites that ship with Dynamics GP. To reveal these prebuilt favorites, and the
objects from which they were built, launch SmartList from the menu bar using
Microsoft Dynamics GP | SmartList. Expand the Sales folder. Inside the Sales
folder you'll find the Customers folder. The Customers folder is a SmartList object.
Now, expand the Customers folder. Inside the Customers folder are several prebuilt
favorites including Average Days to Pay and Customer Balance.

If you wanted to build a favorite that included information regarding unposted
batches, you could not accomplish it using the prebuilt objects. To satisfy this
requirement, you would need to build your own SmartList object based on the
Posting Definitions Master table. SmartList Builder is the tool you would use to build
that SmartList object.

Excel Report Builder
Excel Report Builder is a component of SmartList Builder. It takes SmartList Builder
a step further by producing refreshable Excel spreadsheets. While you can export
data from SmartList to Excel, you cannot refresh the exported data with the current
database information. The exported data is static. It is no longer connected to
the database.

Excel Report Builder allows you to create a spreadsheet using live information that
you can update with current information whenever you choose. You can even use
this tool to take a SmartList object you created in SmartList Builder, and turn it into a
refreshable Excel spreadsheet.

Chapter 9

[387]

Imagine being able to format and organize a spreadsheet once, and then use it
over and over again with the push of a button. No additional exporting or
formatting required.

Drill-Down Builder
Using Drill-Down Builder, you can provide drill-down capability to a report.
Drill-down capability means that you can double-click on a linked object and open
Dynamics GP to look at the details behind the data. You are not limited to Excel
reports using this tool. You can place a drill-down object anywhere in a report
that will accept a hyperlink connection. So now you can take Word documents,
board reports, charts, graphs, and of course spreadsheets, and transform them into
interactive documents.

Extender
Extender gives you the power to add a near-unlimited amount of additional
information to existing Dynamics GP windows. In addition, you can create
brand-new windows that store information not related to an existing window.
But Extender goes far beyond just windows.

SmartList Builder
We'll start with SmartList Builder. You can use SmartList Builder to create custom
views for the database using a point-and-click interface. No SQL knowledge is
required, unless you need advanced reports with custom business logic. These
custom SmartList objects meld seamlessly with the out-of-the-box SmartList objects.
The SmartList Builder's module satisfies the need for a user-friendly, on-demand
reporting tool. SmartList Builder is likely the most popular end-user tool out there,
even more popular than Modifier/VBA.

Your accountants will love SmartList Builder.

A SmartList is a simple report presented in a column-and-row format resembling
Microsoft Excel. You can use SmartList objects wherever you need a simple display
of the data; you can even download SmartList data into Microsoft Excel (Excel).
Accounting managers often use this kind of report as a simple tool for managing
receivables and payables.

In this section, you are going to create a SmartList object that you can use to manage
inventory quantities in different warehouses. From this SmartList object, you will
be able to jump to the Item Maintenance window, and the Item Transaction Inquiry
window. These jumps are known as Go Tos.

Code-free Customization

[388]

Your job as the developer is to build the query that pulls the base dataset. It is from
this dataset that your users develop SmartList favorites. A SmartList favorite is a
saved set of parameters your user can run repeatedly.

Getting Started with SmartList Builder
The very first thing to do is to purchase SmartList Builder. SmartList Builder is not
included in the Business Essentials package, or the Advanced Management package.
You also need to make sure you install SmartList Builder. To check if it's already
installed, or to add the feature, go to the control panel's Programs and Features
section, select Microsoft Dynamics GP 2010 and then click on the Change button in
the upper half of the window. The Select Features window will open. Scroll down
the feature list until you find the SmartList Builder item. If the feature is installed
you will not see a red X mark across it. The following screenshot shows what the
window will look like if SmartList Builder has been installed:

Once you've installed it, you may want to download the SmartList templates
provided by Microsoft from the CustomerSource/PartnerSource website. You can
access those templates in the Reports Library section of the website as shown in the
following screenshot:

Chapter 9

[389]

From the Reports Library page, select Microsoft Dynamics GP | Microsoft
Business Solutions-Great Plains.

From the Microsoft Dynamics GP/Great Plains Reports Library page, scroll down
until you see the SmartList Templates link. Click on the SmartList Templates link:

Code-free Customization

[390]

The SmartList Templates for Microsoft Dynamics GP 10.0 window will open.
Several templates are available for download that you can use to replace the
out-of-the-box SmartList objects. Download the templates you use in your business:

These templates benefit you because you cannot edit the default SmartList objects.
The downside is that you will have to recreate any favorites that come with
Dynamics GP. It is easy to do though; all you have to do is look at the existing
favorites and duplicate the settings.

Importing the templates
Once downloaded, you need to import the templates into your current installation.
You only need to do this once because SmartList objects are system-level objects
rather than company-level objects. Extract the ZIP files you downloaded and put
the extracted files in your Documents folder. You should have several .xml files
after you have extracted the ZIP file's contents.

Navigate to the SmartList import window: Microsoft Dynamics GP | Tools |
Customize | SmartList Builder | Import.

Chapter 9

[391]

The window as shown in the following screenshot will open:

Click on the Import button and choose one of the downloaded .xml files, and then
click on the Open button. Click on the Import button and the import will begin. It
may take a little while because there are quite a few objects included in the .xml file.
Repeat this process for each of the .xml files you want to import. Sadly, you cannot
import more than one file at a time.

When you are ready to deploy the imported SmartList objects, change the Product
field from SmartList Builder to Microsoft Dynamics GP and select the appropriate
series. This process will take the imported SmartList objects out of the Additional
SmartLists folder and move them into their appropriate series. Your window should
look substantially similar to the one shown in the following screenshot:

Code-free Customization

[392]

When you are ready to put your new SmartList objects into service, take the security
away from the existing SmartList objects and assign it to the imported SmartList
objects. By doing this security swap, you will be allowed to replace the out-of-the-
box SmartList objects with SmartList Builder's SmartList objects.

If, upon opening the SmartList navigator, you have any SmartList object recorded
under the Additional SmartLists folder (shown in the following screenshot), you
have failed to change the Product field's value from SmartList Builder to Microsoft
Dynamics GP.

Once you assign the SmartList object to the Microsoft Dynamics GP product and the
correct Series, it will move down to its appropriate position as explained previously.

Creating a SmartList object
You will be creating a SmartList object that provides information about the inventory
quantities in three specific warehouses. Your completed SmartList object will be
similar to the following screenshot:

Chapter 9

[393]

You will be using the following features of SmartList Builder while developing your
SmartList object:

• Adding and relating tables
• Designating fields to be included in the default view
• Setting field options
• Specifying the column ordering of the default view
• Designating additional fields that the user can add
• Creating calculated fields
• Creating a restriction
• Building a Go To

To begin building your SmartList object, open the SmartList Builder window using
the following navigation: Microsoft Dynamics GP | Tools | SmartList Builder |
SmartList Builder.

Complete the fields at the upper half of the window with the following values:

Field Name Value
SmartList ID WHSE_QTY

SmartList Name Warehouse Quantities

Item Name Warehouse Quantities

Product Microsoft Dynamics GP

Series Inventory

Code-free Customization

[394]

Once completed, your SmartList Builder window will look similar to the
following screenshot:

Adding tables
Now you need to add the tables from which the fields you just listed will originate.
Selecting the correct table is probably the trickiest part of building a SmartList object.
The following are a few hints to help you through the maze of tables:

• Cards: The data appearing in the Cards section is typically stored in a table
containing the word Maintenance or Master; sometimes it is abbreviated
to MSTR.

• Unposted transactions: Unposted transactions are typically found in tables
containing the word Work.

• Posted transactions: Posted transactions are regularly found in tables
containing the word Open or History.

The first table you add to a new SmartList object is the base table. All future tables
you add will be related directly or indirectly to the base table. Therefore, choosing
the correct base table is paramount. It's usually pretty safe to pick the table that
contains the bulk of the data you want to display.

To add a table, click on the plus sign (+) and select Microsoft Dynamics GP Table
from the button-drop list as shown in the following screenshot:

Chapter 9

[395]

The Add Table window will open. Select Microsoft Dynamics GP as the value of the
Product field, Inventory as the value of the Series field, and Item Quantity Master
as the value for the Table field. Your window should look like the window shown in
the following screenshot:

Click on the Save button to save the table and close the window.

As you also want to include the item's description, you need to add the Item Master
table to the SmartList object. To add the additional table, click on the Item Quantity
Master table and then click on the plus sign (+) again.

Code-free Customization

[396]

Like you did with the Item Quantity Master table, select Microsoft Dynamics GP
as the value for the Product field, and Inventory as the value for the Series field.
This time, select Item Master as the value for the Table field. This Add Table
window contains a field that the first Add Table window didn't. The Link Method
field is the extra field.

Whenever you add a table other than the base table, you need to identify how that
table is related to the other table. You accomplish this with the Link To Table field
and the Link Method field. You have two choices of link methods: Equals and Left
Outer. You will be using the Equals link method because you want to include only
records that are in both the Item Quantity Master table and the Item Master table.
Your Add Table window will look like the following screenshot once completed:

Click on the Save button to save the table just added and close the window.

The final table houses the List Price field. To retrieve the list price, you need to add
the Item Currency Master table.

With the Item Master table selected, click on the plus (+) sign once more. Complete
the Add Table window using the information shown in the following screenshot:

Chapter 9

[397]

Click on the Save button to save the table just added and close the window.

Now that you have all of the tables added, you need to decide which fields to display
by default. You also need to decide which additional fields should be available for
the user to add at his or her discretion.

Fields
You want your SmartList object to display the following fields by default:

Field Name
Item Number
Item Description
Location Code
QTY on Hand
QTY Allocated
QTY Available for Sale
List Price

Code-free Customization

[398]

Field Name
List of On Hand QTY
Standard Cost
Current Cost
Item Type
Item Shipping Weight
Item Class Code

After you select the default fields, you need to choose the optional fields that your
user can pick to be displayed. Your field selection should be deliberate. Do not just
select every available field. Not only will it be confusing, but also the data may be
wrong for the context in which you want to use it.

For example, it is not necessary for you to display the Item Number field from
both the Item Master table and the Item Quantity Master table. This information
is redundant and can be confusing.

Using the column of checkboxes on the far right-hand side, indicate which fields
appear on the SmartList object's default view. The default view is the base list of
fields that come up when you first open a SmartList object, before you select any
favorite. A field is considered a default field if it appears on this base list.

Using the column of checkboxes to the left-hand side of the default list,
you can indicate which fields are available for the user to add at their discretion.
User-selected fields are displayed in the SmartList object's views created by the
user, which are called favorites. The following screenshot is of the SmartList
Builder window showing the fields available for display or those that are
default from the Item Master table:

Chapter 9

[399]

You must select at least one field in the Default column in order to save the
SmartList object. Now, go back to your list of fields and consider from which table
each field should originate. Mark the following fields from the tables indicated, as a
default for your SmartList object:

Field Name Originating Table
Item Number Item Quantity Master
Item Description Item Master
Location Code Item Quantity Master
QTY on Hand Item Quantity Master
QTY Allocated Item Quantity Master
List Price Item Currency Master
Standard Cost Item Master
Current Cost Item Master
Item Type Item Master
Item Shipping Weight Item Master
Item Class Code Item Master

Code-free Customization

[400]

When you check the fields, there are multiple options available for you to change the
display characteristics of the field. These changes apply to both the default fields and
the optionally displayed fields.

Field options
You can set field options either individually or globally by field type. When
selections are available, a blue expansion arrow gets activated in the column
header. See the arrow circled in the following screenshot. By selecting this arrow,
you will open a supplementary window that displays various options depending
on the type of field you have selected. The name of the supplemental window is
Set Field Options and is shown in the following screenshot to the left-hand side
of the SmartList Builder window:

If you want to apply the same settings for all fields of a particular type, follow the
menu navigation: Options | Edit Field Settings.

Chapter 9

[401]

If you select, for example, the Integer Fields option, you'll open the Set Field
Options window specifically for integers. Listed on the left-hand side of the window
are all the integer fields available for your SmartList object. All the fields are
displayed, not just the fields you checked. You can individually select fields using
the checkboxes, or select all the fields at once. On the right-hand side of the window
are the available field options for integer fields. The field options you select on the
right-hand side will apply to the checked fields on the left-hand side.

The Set Field Options window for integer fields is displayed in the
following screenshot:

Several field types have some unique options. We'll take a closer look at the
following field types:

• Currency fields
• Date fields
• Integer and Long Integer fields
• String fields

Code-free Customization

[402]

Currency fields
You have the ability to choose the value to appear as negative based on a number
of factors. For instance, you could select the document type field as the determining
item. You can then choose which values in that field should result in a negative
number. For example, if you choose the document type as the determining field,
you may select the values representing credit memos and payments to display as
negative numbers.

The Record Note index is a currency field; you can choose to display the note's text
instead of the index number itself.

Another unique setting for a currency field is that you can choose to display the
currency symbol, percentage symbol, or thousands separator.

Date fields
Dynamics GP uses 1/1/1900 as the default bound for all date fields. If no date value
has been entered into the field, the value displayed is 1/1/1900. Using the Set Field
Options window, you can choose to display a blank field instead of 1/1/1900.

Integer and long integer fields
Integer fields share the same characteristics as currency fields, with one exception.
The Account Number index is an integer field. Similar to the note index, you can
choose to display the account number instead of the account index.

String fields
You can use a mask when displaying a string field. You can apply the same mask
to a few fields, or no field, by using the checkboxes. The phone number and social
security number masks are built-in, but you can design any type of mask you want
using the Set Field Options window.

When you build a mask, you use the capital X as a placeholder. Field data will fill the
capital Xs and any other value will appear as static text in your output. For example,
let's say you want your output to always contain nine characters with a space,
hyphen, and a space between each set of three characters, for example: 123 - 456 -
789; your mask would look like this: XXX - XXX - XXX.

The following screenshot shows the Set Field Options window using the mask
just described:

Chapter 9

[403]

Should you choose a phone number field to appear on your SmartList object, you
will probably need to assign the phone number mask to it. If you do not, the phone
number will appear as a simple string of 10 numbers without any hyphen
or parenthesis.

If you want the field values to appear just as they do in the database, select None as
the value of the String Format field.

Calculated fields
You may need a field that doesn't exist in any table, as you do in this project. You
will create this field using a formula. This type of field is called a Calculated Field.
You will need several calculated fields for the SmartList objects you are going to
build in this section.

Code-free Customization

[404]

The first step in creating a calculated field is to click the Calculations button on the
SmartList Builder window, as shown in the following screenshot:

Clicking the Calculations button opens the Calculated Fields window. Press the
plus (+) sign on the Calculated Fields window to create a new calculated field. The
Add Calculated Field window will open. You can use simple arithmetic, + (add),
- (subtract),* (multiply), / (divide), or % (modulus) or virtually any Transact SQL
(T-SQL) expression in the calculation area to create your calculated field.

On the right-hand side of the Add Calculated Field window, you have a button-
drop menu that you can use to toggle between functions and table field names. You
will only see a few of the more popular T-SQL functions listed in the Functions list
as a matter of convenience. This in no way is intended as a limitation on the T-SQL
functions or statements you can use. You can use any valid T-SQL statement to build
your calculated field, not just the ones listed.

The screenshot that you see next shows the windows you will use when creating one
of your calculated fields:

Chapter 9

[405]

The formula shown in the screenshot subtracts the allocated quantity from the
quantity on hand, resulting in the quantity available for sale.

You can place the calculated fields in the SmartList object just like table fields.
You cannot, however, include a calculated field within another calculated field.

To create the calculated field, you can either type the values into the calculation area
directly, or double-click on the field or function in the list on the right-hand side to
move the field name or function into the calculation area.

Create the four calculated fields you need for this project using the
following instructions:

Calculated field 1: QTY Available for Sale
The QTY Available for Sale field subtracts the allocated quantity from the
quantity on hand. Follow these steps to create the QTY Available for Sale
calculated field:

1. Open SmartList Builder.
2. Open the WHSE QTY SmartList object in the SmartList Builder window.

Code-free Customization

[406]

3. Click on the Calculations button in the upper half of the window.
4. Click on the plus (+) button in the Calculated Fields window.
5. Use the following table to complete the fields of the Add Calculated

Fields window:

Field Name Field Type
QTY Available for Sale Currency

6. Toggle to the Fields option using the drop-down arrow at the upper-left
corner of the second column in the Add Calculated Fields window.

7. Expand the Item Quantity Master table in the field tree.
8. Scroll until you find the QTY On Hand field. Double-click on the QTY On

Hand field. The fully qualified field's name will appear in the calculation area.
9. Scroll until you find the QTY Allocated field. Double-click on the QTY

Allocated field. The fully qualified field's name will appear in the
calculation area.

10. Place your cursor in between the two fields and insert the minus sign
(hyphen). The complete formula in the calculation area will be shown on a
single line as follows:

{Item Quantity Master:QTY On Hand}
- {Item Quantity Master:QTY Allocated}

Calculated field 2: List of On Hand QTY
The List of On Hand QTY field calculates the total of the On Hand QTY field
multiplied by the List Price field. Follow these steps to create the List of On
Hand QTY calculated field:

1. Open SmartList Builder.
2. Open the WHSE QTY SmartList object in the SmartList Builder window.
3. Click on the Calculations button in the upper half of the window.
4. Click on the plus (+) button in the Calculated Fields window.
5. Use the following table to complete the fields of the Add Calculated

Fields window:

Field Name Field Type
List of On Hand QTY Currency

Chapter 9

[407]

6. Toggle to the Fields option using the drop-down arrow at the upper-left
corner of the second column in the Add Calculated Fields window.

7. Expand the Item Currency Master table in the field tree.
8. Scroll until you find the List Price field. Double-click on the List Price field.

The fully qualified field's name will appear in the calculation area.
9. Expand the Item Quantity Master table in the field tree.
10. Scroll until you find the QTY On Hand field. Double-click on the QTY On

Hand field. The fully qualified field's name will appear in the calculation area.
11. Place your cursor in between the two fields and insert the multiplication sign

(*). The complete formula in the calculation area will be as shown on a single
line as follows:

{Item Currency Master:List Price}
* {Item Quantity Master:QTY On Hand}

Calculated field 3: CONSTANT 2
The CONSTANT 2 field creates a calculated field that always returns the value of 2.
You will use this field in creating the Item Transaction Inquiry Go To in the next
section. Perform the following steps to create the CONSTANT 2 calculated field:

1. Open SmartList Builder.
2. Open the WHSE QTY SmartList object in the SmartList Builder window.
3. Click on the Calculations button in the upper half of the window.
4. Click on the plus (+) button on the Calculated Fields window.
5. Use the following table to complete the fields of the Add Calculated

Fields window:

Field Name Field Type
CONSTANT 2 Currency

6. Type the digit 2 in the calculation area. The complete formula in the
calculation area will be shown as follows:

2

Code-free Customization

[408]

Calculated field 4: CONSTANT 4
The CONSTANT 4 field creates a calculated field that always returns the value of 4.
You will use this field in creating the Item Transaction Inquiry Go To in the next
section. Perform the following steps to create the CONSTANT 4 calculated field:

1. Open SmartList Builder.
2. Open the WHSE QTY SmartList object in the SmartList Builder window.
3. Click on the Calculations button in the upper half of the window.
4. Click on the plus (+) button in the Calculated Fields window.
5. Use the following table to complete the fields of the Add Calculated

Fields window:

Field Name Field Type
CONSTANT 4 Currency

6. Type the digit 4 in the calculation area. The complete formula in the
calculation area will be as follows:

4

Now that you have created the calculated fields, go back to the SmartList Builder
window and mark the following calculated fields as default for the WHSE QTY
SmartList object:

• QTY Available for Sale
• List of On Hand QTY

Restrictions
A restriction is a filter. You are going to add a restriction to your SmartList object to
limit your data to three specific locations, instead of all locations.

To create a restriction, click on the Restrictions button in the SmartList Builder
window as shown in the following screenshot:

Chapter 9

[409]

Upon clicking the Restrictions button, the Restrictions window will open. In the
Restrictions window, click on the plus (+) sign to add a new restriction.

The Add Restriction window will now open. Use the data in the following table to
complete the fields in this window. For the individual list values, type them into the
Value field one at a time and then click on the Add button after each value.

Field Name Value
Table Item Quantity Master

Field Location Code

Restriction Is Not Equal To

Value Is Equal To One of List

List Values • NORTH

• WAREHOUSE

• SOUTH

Code-free Customization

[410]

Your completed windows should look like the following screenshot:

Click on the Save button in the lower half to close the Add Restriction window.
Click on the OK button in the lower half of the Restrictions window to accept the
restriction and close the window.

Go Tos
A Go To provides a link between a SmartList object and any of the following:

• A Dynamics GP form/window
• Another SmartList object
• A website
• A file
• A procedure
• An Extender resource
• A drill-down

Chapter 9

[411]

You can designate a default Go To that will launch when you double-click on a line
in your SmartList object. The other Go Tos you create are available from the Go To
menu on the SmartList navigator screen as shown in the following screenshot:

Your Go Tos will provide links to the following:

• The Item Maintenance window
• The Item Transaction Inquiry window (default Go To)

To get started, click on the Go To… button on the SmartList Builder window, as
shown in the following screenshot:

Code-free Customization

[412]

Go To: Item maintenance
On the Go To window, click on the Add button on the right-hand side and then
select the Open Form option from the button-drop menu that opens.

Start with the simpler Go To of opening the Item Maintenance window. Complete
the following steps to add the first Go To:

1. Open the SmartList Builder window.
2. Click on the Go To… button to open the Go To window.
3. Click on the Add button and then select the Open Form menu item to open

the Add Go To – Open Form window.
4. Complete the Add Go To – Open Form window with the values from the

following table. The Add Go To – Open Form window values are as follows:

Field Name Value
Description Item Maintenance

Product Microsoft Dynamics GP

Series Inventory

Form Item Maintenance

Task: Item Number field
Complete the task for the Item Number field following these steps:

5. Click on the Add button to open the Add Task window.
6. Complete the Add Task window with the values from the following table.

The Add Task window values are as follows:

Field Name Value
Task Type Set a field value and run the

field script

Field (L) Temp Control Number

Table Item Master

Value Item Number

7. Click on the Save button.

Upon completion, your windows should look like the windows shown in the
following screenshot:

Chapter 9

[413]

The first Go To is complete. Let's move on to the second, more advanced Go To.

Go To: Item transaction inquiry
The second Go To will open the Item Transaction Inquiry window. Complete the
following steps to add the second Go To:

1. Open the SmartList Builder window.
2. Open the WHSE QTY SmartList object in the SmartList Builder window.
3. Click on the Go To… button to open the Go To window.
4. Click on the Add button on the Go To window to open the Add Go To –

Open Form window.

Code-free Customization

[414]

5. Complete the Add Go To – Open Form window with the values from the
following table. The Add Go To – Open Form window values are as follows:

Field Name Value
Description Transaction Inquiry

Product Microsoft Dynamics GP

Series Inventory

Form Item Transaction Inquiry

When this Go To is executed, the Item Transaction Inquiry window will be
populated with values pertaining to the selected item number. If item number 128
SDRAM at the WAREHOUSE site ID had been selected, the window would look
similar to the window shown in the following screenshot:

There are five tasks required to complete this Go To. Each task is defined separately.

Chapter 9

[415]

Task 1: Item Number field
This task sets the value of the Item Number field in the Item Transaction Inquiry
window. Complete the task for the Item Number field by following these steps:

1. Click on the Add button to open the Add Task window.
2. Complete the Add Task window with the values from the following table.

The Add Task window values are as follows:.

Field Name Value
Task Type Set a field value and run the

field script

Field Item Number

Table Item Quantity Master

Value Item Number

3. Click on the Save button.

Task 2: (L) Display Options field
This task sets the value of the (L) Display Options field in the Item Transaction
Inquiry window. The value 4 means the documents are queried according to Site
ID. Complete the task for the (L) Display Options field by following these steps:

1. Click on the Add button to open the Add Task window.
2. Complete the Add Task window with the values from the following table.

The Add Task window values are as follows:

Field Name Value
Task Type Set a field value and run the

field script

Field (L) Display Options

Table Calculated Fields

Value CONSTANT 4

3. Click on the Save button.

Code-free Customization

[416]

Task 3: (L) Display By field
This task sets the value of the display options' radio button group in the Item
Transaction Inquiry window. This task changes it from the default value of all to the
value of from. Complete the task for the (L) Display By field by following these steps:

1. Click on the Add button to open the Add Task window.
2. Complete the Add Task window with the values from the following table.

The Add Task window values are as follows:

Field Name Value
Task Type Set a field value and run the

field script

Field (L) Display By

Table Calculated Field

Value CONSTANT 2

3. Click on the Save button.

Task 4: (L) Start Location field
This task sets the value of the first site in the range of sites to be queried in the Item
Transaction Inquiry window. Complete the task for the (L) Start Location field by
following these steps:

1. Click on the Add button to open the Add Task window.
2. Complete the Add Task window with the values from the following table.

The Add Task window values are as follows:

Field Name Value
Task Type Set a field value and run the

field script

Field (L) Start Location

Table Item Quantity Master

Value Location Code

3. Click on the Save button.

Chapter 9

[417]

Task 5: (L) End Location field
This task sets the value of the last site in the range of sites to be queried in the Item
Transaction Inquiry window. Complete the task for the (L) End Location field by
following these steps:

1. Select the Add button to open the Add Task window.
2. Complete the Add Task window with the values from the following table.

The Add Task window values are as follows:

Field Name Value
Task Type Set a field value and run the

field script

Field (L) End Location

Table Item Quantity Master

Value Location Code 2

3. Click on the Save button.

The second Go To is complete.

In order to give additional users access to your new SmartList object, you need to
add it to the security model of Dynamics GP.

Granting security to a SmartList Builder
object
Having built your new SmartList object, you'll want others to be able to enjoy it
too. As only you have access to the object just after you create it, you need to grant
security to others.

Security for SmartList Builder objects, in general, can be a little tricky. In this section,
we'll keep it simple and grant security to this object by adding it to the existing
DEFAULTUSER task.

Open the administration area page from the shortcut bar. Go to the Setup content pane
and expand the system menu. Select the Security Tasks menu item from the system
menu to open the Security Task Setup window. Open the DEFAULTUSER task.

Code-free Customization

[418]

Complete the Security Task Setup window using values from the following table.
The Security Task Setup window values are as follows:

Field Value
Task ID DEFAULTUSER

Task Name Default User

Task Description Default User

Series Company

Product SmartList

Type SmartList Object

Series SmartList Objects

The Access List: section in the lower half of the Security Task Setup window
identifies the SmartList objects available. To grant access to your new SmartList
object, check the Warehouse Quantities checkbox. With that done, any user who has
a security role assigned to him or her that includes the DEFAULTUSER task will
have access to the new SmartList object.

Your completed Security Task Setup window should look like the
following screenshot:

Chapter 9

[419]

Now that security is set up, your users can try out your new SmartList object and be
delighted at how clever you are!

Excel Report Builder
Excel Report Builder is a lot like SmartList Builder except the product is a refreshable
Excel spreadsheet. It's refreshable because it is linked to the company's database
instead of the static data you get from downloading information from a SmartList
object. It's a kind of Excel SmartList object.

Let's build one!

You'll use the Warehouse Quantities SmartList object that you just built and turn it
into an Excel report using Excel Report Builder.

Open the SmartList Builder module using the following navigation: Microsoft
Dynamics GP | Tools | SmartList Builder | SmartList Builder.

The SmartList Builder window will open. Open the WHSE_QTY object, click on the
Options menu item from the menu bar, and then click on the Duplicate button.

The Duplicate window will open. Select the Excel Report option for the New List
Type field and then click on the Duplicate button as shown in the
following screenshot:

Now, launch Excel Report Builder by following this navigation: Microsoft Dynamics
GP | Tools | SmartList Builder | Excel Report Builder | Excel Report Builder.

Code-free Customization

[420]

As you can see, the Excel Report Builder window is reminiscent of the SmartList
Builder window. The steps to build an Excel report are very similar to those for
building a SmartList object. You can even copy one type of list to another, as you
just did.

Look at the upper half of the Excel Report Builder window and you will see two
new buttons: the Drill Down button and the Publish button. In addition, two
new fields were added: the Report Type and View Name fields. Something is also
missing: the Default field. With Excel Report Builder, each of the fields you had in
the SmartList's Display column will get copied to the Excel report. The following
screenshot shows the Excel Report Builder window:

You'll use the new Drill Down button in the next section. For now, you will use the
Publish button to create a new Excel spreadsheet and a matching data connection.

Click on the Publish button and the Publish Report window will open. For best
results, you may want to publish the report and data connection to a network so that
everyone can use them.

Don't forget to assign permissions to the appropriate database roles so that your users
can access the objects. You created the database roles automatically when you installed
SmartList Builder. Use the Permissions button to open the Permissions window. The
following screenshot shows the Publish Report and the Permissions windows:

Chapter 9

[421]

After providing locations for the data connection as well as the Excel report
and assigning permissions, click on the Publish button to create the report and
data connection.

To open the report in Excel, look in the location where you published the report.
You should see a new Excel file. The name of the Excel file will be the name of your
report, prefixed with the database name of the company for which you published
it. For example, the published report for Fabrikam was named TWO Warehouse
Quantities.xlsx.

Code-free Customization

[422]

Open the Excel file; it should look similar to the report shown in the
following screenshot:

You can refresh the data, by selecting the Data tab and then clicking on the Refresh
or Refresh All button.

Close Excel, if you've opened it.

In the next section, you will build a drill-down using Drill Down Builder. You will
then add that drill-down to your Excel report.

Drill Down Builder
Drill Down Builder can take Excel Report Builder to the next level. Excel Report
Builder provides a way for you to create Excel spreadsheets that are linked to the
live databases. Drill Down Builder provides you with a way to create URLs that can
be used by your Excel report, or any other external program, to drill down into the
Dynamics GP application.

Open Drill Down Builder using the following navigation: Microsoft Dynamics GP |
Tools | SmartList Builder | Drill Down Builder.

On the Drill Down Builder window, you can create three different types of
drill-downs.

• Form: A Form drill-down opens a Dynamics GP window and sets the
value(s) in the window.

• SmartList: A SmartList drill-down opens a SmartList object and sets search
parameters.

• Extender: An Extender drill-down opens an Extender form or Detail form
and sets the value(s) of the ID fields.

Chapter 9

[423]

Drill-downs are comparable to the Go Tos you created for a SmartList object.

For this project, you will create a Form drill-down that will open the Item
Inquiry window.

Complete the Drill Down Builder window as follows:

Field Value
Drill Down ID ITEM_INQ

Description OpenItemInquiry

Drill Down Type Form

Product Microsoft Dynamics GP

Series Inventory

Form Item Inquiry

In the Parameters section, click on the plus (+) button and add the following
parameters to the Add Parameter window:

Field Value
Parameter Name ItemNumber

Field Type String

Click on the Save button.

In the Actions section, select the Add button and add the following actions to the
Add Action window:

Field Value
Action Type Set field value and run the field

script

Field Item Number

Parameter ItemNumber

Click on the Save button.

Code-free Customization

[424]

Upon completion, your Drill Down Builder window should look like the
following screenshot:

Click on the Save button in the Drill Down Builder window to save the drill-down
and then close the window.

The next step is to add this drill-down to your Excel report. Launch Excel Report
Builder following this navigation: Microsoft Dynamics GP | Tools | SmartList
Builder | Excel Report Builder | Excel Report Builder.

Using the following screenshots as a guide, perform the following steps:

1. Open the WHSE_QTY Excel report that you created in the last project:

Chapter 9

[425]

2. On the Excel Report Builder window, click on the Drill Down button in the
upper half of the window to open the Drill Down window:

Code-free Customization

[426]

3. In the Drill Down window, click on the Add button to open the Add Drill
Down window:

4. In the Add Drill Down window, click on the drop-down menu next to the
Column field and then select the Item Number option.

5. In the Add Drill Down window, click on the drop-down menu next to the
Drill Down field and then select the Drill Down you just created; it would be
the OpenItemInquiry option.

6. In the Add Drill Down window, select the ItemNumber parameter in the
Parameters scrolling window.

7. In the Add Drill Down window, click on the Edit button to open the Map
Drill Down Parameter window:

Chapter 9

[427]

8. In the Map Drill Down Parameter window, click on the drop-down menu
next to the Table field and then select the Item Quantity Master table as its
value.

9. In the Map Drill Down Parameter window, click on the drop-down menu
next to the Field field and then select the Item Number field as its value.

10. Click on the Save button in the Map Drill Down Parameter window.
11. The Add Drill Down window should now look like the following screenshot:

12. Click on the Save button in the Add Drill Down window.
13. Click on the OK button in the Drill Down window.
14. Publish the report again and overwrite any data connection if asked.
15. Click on the Save button in the Excel Report Builder window.

Code-free Customization

[428]

Open the Excel report in Microsoft Excel. Click on a cell in the Item Number column
and then move your mouse cursor over the contents. Your report should look similar
to the following screenshot:

What's shown in the tooltip is the full hyperlink, not the shortcut that's in the
formula bar. The full link is in a DrillBack column that is hidden so that it isn't
visible on the report. In this worksheet, it's in column B.

If you click the mouse when the select finger cursor is displayed, you will open the
Item Inquiry window for the selected item. Excel will not minimize; you will need to
switch over to Dynamics GP to see the window.

Imagine what you can do with this feature! You can use this URL in any application
and provide a drill-back functionality into any Dynamics GP window. To test this
theory, copy one of the complete URLs, not the shortcut. Create a hyperlink in a
Microsoft Word document using the copied URL as the address. You should be able
to press Ctrl + click on the hyperlink to drill back into the Dynamics GP application
just like you did with the Excel report.

The hyperlink URL for the 100XGL item in the sample company looks like this:
dgpp://DynamicsGPDrillBack/?DatabaseInstance=INSTANCEONE&ServerName=
DV4-1547&CompanyID=TWO&ProductID=3830&ActionType=OPEN&FunctionName=IT
EM_INQ&ItemNumber=100XLG

If you edit this hyperlink by changing the ItemNumber parameter appearing at the
end, it will point the hyperlink to a different item.

This feature surely deserves a Wow! And don't forget: you did this with zero code.

In the next section, you are going to continue with codeless customization by
creating new Dexterity windows, without Dexterity!

Chapter 9

[429]

Extender
Extender is one of the most remarkable modules available for Dynamics GP. Using
Extender, you can build an unlimited number of additional data-entry windows that
you can tie to existing Dynamics GP windows. You can even tie additional windows
to the rows in a scrolling window. Furthermore, you can create your own standalone
forms that do not need to be associated with an existing Dynamics GP window. You
get all of this functionality through a point-and-click interface.

Overview
Your Dynamics GP system tracks a plethora of information, but still we crave for
more. The native user forms often do not provide enough fields to house all of the
data you need to store. For example, would you like to have line item notes on the
Sales Transaction Entry window? How about an Inventory options window that
displays different sets of information based on the kind of item you selected?

All of the features just mentioned, and more, are available if you use the Extender
module. As a bonus, Dynamics GP maintains the upgrade path for future releases
of Extender! You will not have to worry about changes to the data tables or business
logic with each new release. Your customization is upgraded automatically.

Extender editions
Extender comes in two flavors:

• Extender Standard
• eXtender Enterprise

Extender Standard
Extender Standard is the module you buy from Microsoft. This module allows you to
create Extender resources quickly and easily.

An Extender window can hold a maximum of 15 data fields, and you can attach an
unlimited number of windows to an existing Dynamics GP window.

Extender provides a means to add objects using a point-and-click interface. You can
create the following object types using Extender:

• Forms: A form is a data-entry screen that is independent of other Dynamics
GP windows.

Code-free Customization

[430]

• Detail forms: A detail form is a data-entry screen containing a scrolling
window that is independent of other Dynamics GP windows.

• Windows: A window is a single data-entry screen that is related to an
existing Dynamics GP window.

• Detail windows: A detail window is a scrolling window that is related to
an existing Dynamics GP window.

• Window groups: A window group is a set of windows that open according
to the conditions you assign.

• Notes windows: A note window is an enhanced version of the Dynamics GP
note window. The Extender note window is better because you can create
multiple notes for a single window that are date stamped and classified.

• Lookups: A Lookup is a window you can use on an Extender window to
select and validate existing Dynamics GP data.

• Imports: An import is a tool you can use to populate your new Extender
fields with data.

• Menus: An Extender menu is used to add navigation to your Extender forms
using the Dynamics GP menu structure. You can also use an Extender menu
to build your own navigation path to existing Dynamics GP windows.

• Dialogs: An Extender dialog is something you would create if you wanted to
send a message to the user. Any response from the user can be stored in table
EXT30200 in the company's database. The basic Extender product cannot
invoke actions based on dialog responses. eXtender Enterprise can.

You will do a project a little later where you'll work with several of the objects
just listed.

eXtender Enterprise
This flavor of eXtender comes from eOne Solutions at
http://www.eonesolutions.net. It does everything that a basic Extender will
do, and you can add code to it! eOne Solutions calls these code parts logic scripts.
Essentially, what they have done is create a point-and-click Dexterity. You can
even download several logic script templates and samples from the eOne
Solutions website to get you started.

Working with Extender
To help you get a feel of Extender, you are going to create some Extender objects and
see how they interface with Dynamics GP. Creating each of the Extender objects is
beyond the scope of this book, but you will be working with quite a few.

http://www.eonesolutions.net

Chapter 9

[431]

You will be working with the following objects:

• Forms
• Windows
• Detail windows
• Window groups
• Lookups
• Menus
• Notes

These objects will be included in a variety of projects.

Your first project will be the Event form project. You have a client that plans different
party events. They need some new forms and fields to track information about the
events they plan.

In this project, you will create a new form that will serve as the Event Maintenance
window. You will also create some Lookups that you will use with fields on the
Event Maintenance window. You will then create extra windows that will include
additional information about the event that you didn't want on the main window.
Finally, you need a way to open this new window, so you will add a line to the
existing Cards menu to handle navigation.

Your second project will be the Customer Window Group project. In this project, you
will create three different windows. Each window will capture different information
about a customer according to the customer's class.

Your third project will be the Customer Contacts project. In this project, you will
create a Detail window to store multiple contacts for each customer.

Your final project will be the Line Item Note project. In this project, you will add a
note to each line of the Sales Transaction Entry window.

Event form project
This project will work with the following Extender objects:

• Form
• Lookup
• Menu added to the existing Cards menu.
• Extra windows

Code-free Customization

[432]

At the end of the day, your Extender form will look substantially similar to the
following screenshot:

Let's create the new form!

Open the Extender window using the following navigation: Microsoft Dynamics GP
| Tools | Extender | Extender.

Select the Forms object from the list on the left-hand side and then click on the New
button or select Forms from the New button drop-down list:

Chapter 9

[433]

When the Extender Forms window opens, create the new form by using the field
values from the window as shown in the following screenshot:

Enter the following values in the header fields:

Field Name Value
Form ID EVENTS

Form Name Event Maintenance

ID Field Prompt Event ID

Description Prompt Event Description

Enter the following values in the body fields:

Column 1 Column 2
Field ID Value Value
Field 1 Event Type List Event Location Short String
Field 2 Catering

Company
Lookup

Code-free Customization

[434]

Column 1 Column 2
Field ID Value Value
Field 3 Furniture

Rental?
Checkbox

Field 4 Rental Company Lookup
Field 5 Planning Start

Date
Date

Field 6 Event Date Date
Field 7 Event Time Time
Field 8
Field 9 Customer Lookup
Field 10 City Lookup
Field 11
Field 12

You need to set some field options. Select the desired field and then click on the
blue arrow that will become active if options are available. Refer to the preceding
screenshot for the location of the blue arrow button.

Set the field options to the values described next.

Field 1: Event Type field
The Event Type is a list field. You will identify the items on the list using the List
Field Settings window. Access this window by clicking on the blue expansion
arrow to the right-hand side of Field 1. Follow the screenshot to create the list:

Chapter 9

[435]

Field 2: Catering Company field
The Catering Company field is a Lookup. A lookup field can be associated with
existing lookups in Dynamics GP, such as customers or vendors. Additionally,
you can create your own lookups using data from your Extender windows. For this
lookup, select Vendor in the Lookup Settings window.

Field 3: Rental Company field
The Rental Company field is also a Lookup field. It too will be associated with the
existing vendor lookup. Select vendor in the Lookup Settings window.

Field 4: Rental Location field
The Rental Location field is a Short String field. You may also have seen the Long
String field in the list of field types. A short string can have a maximum length of
30 characters. A long string allows for up to 255 characters. A unique feature of the
short string is that you can apply a mask to the string, limit the type of data that can
be entered, and also limit the number of characters. When defining a mask, you use
the capital X as a placeholder. Your data flows into the placeholder positions, and
any other static values included in the mask will print as entered. For example, if
you wanted your short string to represent a social security number, your mask
would look like this: XXX-XX-XXXX.

Field 9: Customer field
The Customer field is a Lookup field; associate it with the customer lookup.

Field 10: City field
The City field is also a Lookup field, but there is not a pre-existing lookup associated
with the vendor's city. You will build an Extender Lookup to use for this field.

Field 1, Column 2: Event Location field
The Event Location field is also a short string. Like the Rental Location field, you
will not apply a mask.

Code-free Customization

[436]

Creating the City Lookup object
To create the City Lookup object, select the Lookups option from the Extender
Objects list and then click on the New button. Complete the Extender Lookup
Maintenance window using the following screenshot as your guide. Associate
this new lookup with the City field after you save it:

Extra windows
You create the Consumables, Flowers, Wine and Spirits buttons appearing in the
lower half of your Event Maintenance form using the Extra Windows button at the
lower right-hand corner of the Extender Forms window.

Click on the Extra Windows button on the Extender Forms window to open the
Extra Windows window. Click on the plus (+) button to open the Extra Window
Setup window. Create your four extra windows using the following screenshot
as your guide:

Chapter 9

[437]

The last thing you need to do is to create a way to open your new form. You are
going to use an Extender Menu object to add a selection to the existing Cards menu.

Extender menu
Select the Menus option from the Extender Objects list, and then click on the New
button. In the Extender Menus window fill in the details about your menu, including
the text you want to appear on the menu and the menu group you would like to join.
Use the following screenshot as a guide to create your menu:

Restart or launch Dynamics GP, navigate to the Cards menu, and select Event
Maintenance to open your Event Maintenance window. Try out your lookups
and extra windows and be amazed at how simple it was to create this masterpiece!

Customer window group
This project will show you how window groups work. You use a window group
when you need different Extender windows to open, based on the criteria you set.
For instance, imagine your inventory includes both plastic plants and real plants.
For your real plants, you might want to include information such as hardiness zone,
watering needs, soil requirements, and the like. For plastic plants, all you need are its
dimensions and weight. To collect the same information for the plastic plants and the
real plants wouldn't make any sense. A window group will solve this dilemma. You
would have one window for plastic plants and a different window for real plants.
The window that would be displayed would depend on the value in a certain field,
for example the item's class field.

Code-free Customization

[438]

In this project, you will use a customer class as your differentiator. You'll create three
different windows and associate each of them with a different Customer class. When
you view a customer in the Customer Maintenance window, you will see that only
the window you associated with that customer's class will be available. Additionally,
you will set a hot key that you can use to open the Extender window.

Let's get started.

First, you need to create the three windows. From your Extender Objects list click
on the Window button and then click on the New button. You're going to create
three windows, each of which will pertain to a unique customer class. In this project,
you will name your windows Churches, Distributors, and Radio Stations. Create
each of the three windows using the following screenshot as your guide. Note that
both Customer Name and Customer Number fields have been added to the Key
Fields section:

The customer's name is optional, but if you include it, the
Customer Name field will display on the Extender window.

If you're using the sample company, you will need to create the three customer
classes that correspond with your new windows. Add a few customers to each class
so that you have some data to test.

Chapter 9

[439]

You're going to use two additional features of Extender in this project. The first
feature will cause the window to open and close automatically; the second feature
marks a field as required. To set up these additional features click on the Options
button in the upper half of the Extender Windows window. In the Options window,
check the boxes next to Auto Open and Auto Close; choose the Field Exit option as
the value for the Open Method field and the Customer Name option as the value for
the Field field. Check the box next to the Call Letters checkbox to make Call Letters
a required field. Complete the window using the following screenshot as your guide:

With the preceding settings, your Extender window will open automatically whenever
you exit the Customer Name field on the Customer Maintenance window. When you
tab off the last field on the Extender window, it will close automatically and return
focus to the Customer Maintenance window. In addition, you will not be able to save
the data on the Extender window if the Call Letters field is blank.

After you complete all three windows, you can move on to building the
window group.

To create the window group, click on the Window Groups button from the Extender
Objects list and then click on the New button. The Window Group Maintenance
window will open. Click on the plus (+) button in the Windows section to add
your windows to the group. Once your windows are added, select one of the
windows and click on the plus (+) button in the Conditions section. The condition
tells Dynamics GP which window(s) to make available according to the criteria you
specify. You can make more than one window available.

Code-free Customization

[440]

You want to assign each window to a specific customer class. Add conditions to
each of your windows. You are not limited to one window per condition nor one
condition per window. You have a lot of flexibility on how you want the windows in
your window group to behave. Our conditions will associate each of your windows
to a specific customer class. The conditions you will enter will be similar to the ones
in the Add Condition window shown in the following screenshot:

Define a hot key for opening your Extender window to reduce the quality time you
spend with your mouse. Also, define an open method so that the Extender window
will automatically open when you leave the Customer Name field on the Customer
Maintenance window.

To define these choices, click on the Options radio button in the upper half of the
Window Group Maintenance window. Use the following screenshot as your guide
for completing the Options window:

Chapter 9

[441]

Restart Dynamics GP after you have saved your changes. Now, open a customer
that you have associated with one of the classes of your window group. When you
go to the additional menu and select the name of your window group, only the
window for that customer's class will open. None of the other windows in the
group will be available.

All of this without a single line of code.

Customer contacts
This project will work with the following Extender object:

• Detail window

Often, you need to keep track of multiple people associated with a customer. You
may have an accounts payable person as well as your sales representative, who you
interact with on an on-going basis. You would like to keep those individuals' contact
information with customer IDs, but Dynamics GP does not offer sufficient fields
to accomplish this task. With Extender, it's easy to add a window that will track as
many contacts as you need.

The Extender object you will use to solve this dilemma is called a Detail window.
Essentially, a scrolling window can hold ten fields on two rows per record. Let's
build one so that you can see how this works.

From the Extender Objects list, click on the Detail Windows button and then click
on the New button. Use the following screenshot as a guide for completing the
Detail Windows window. Use the R1 and R2 checkboxes to indicate whether you
want the field to appear in the first or second row of your scrolling window:

Code-free Customization

[442]

Save your new window and then open the Customer Maintenance window and pull
up a customer. In the additional menu, you will now have a menu item that matches
with the Description field you entered in the Detail Windows window, shown in
the following screenshot:

When you select the Customer Contacts item, a window similar to the one shown in
the following screenshot will open:

If one of your fields is not visible, go back to the Details Window window in
Extender and make sure you checked one of the boxes indicating whether you
wanted the field in row one or row two.

Chapter 9

[443]

Line item note
Our final project uses the Notes object to add a note to the line item of a Sales
Order Processing document. An Extender note is far more versatile than the native
Dynamics GP note. You can attach multiple notes to a window instead of the single
note that is allowed using the out-of-the-box version. In addition, Extender will
automatically stamp your note with the date and time, as well as your user ID. If
you compare the native Dynamics GP note (shown in the following screenshot) to
the Extender note (also shown in the following screenshot), there is really no contest.
Extender wins!

From the Extender Objects list click on the Notes button and then click on the
New button. The Extender Notes window will open. Complete the Extender Notes
window using the following screenshot as your guide:

Code-free Customization

[444]

Summary
This chapter focused on the wide variety of enhancements you can create without
any coding. You created animated SmartList objects that allowed your users to
navigate to other windows and forms by merely clicking on a selected line item. You
created Drill Down instances that could integrate Dynamics GP with any program
that can accept hyperlinks.

Your SmartList objects morphed into Excel reports that you could link to live
company databases. Now you can have refreshable spreadsheets that you only need
to format once. You created data connections that you could use in any Microsoft
Office application.

Beyond reporting, you moved into creating new windows that melded seamlessly
into the Dynamics GP user interface. You created windows that could stand
alone, such as the new Event Maintenance window, as well as support windows,
such as the Customer Contact window and the Line Item Notes windows. These
supplemental windows became a part of your standard user experience as if they
had been part of the native code.

You can create cross-dictionary actions, such as opening any window in any dictionary
using a SmartList object GoTo. You can use Extender to achieve more cross-dictionary
integration by adding companion windows to any window in any dictionary.

The tools you have added in this chapter give you a broad variety of possibilities for
a wide-range of enhancements.

In the next chapter you'll learn about using Visual Studio Tools to create Dynamics
GP customizations.

Creating Customizations
with VS Tools

When Microsoft introduced Visual Studio Tools (VS Tools) for Microsoft Dynamics
GP, the development opportunities for Dynamics GP increased vastly. Now C#
(C Sharp) and VB.NET (Visual Basic .NET) programmers could build .NET-based
integrated applications using tools they were already familiar with. Dexterity didn't
rule the roost anymore.

In this chapter, you will get to work with Visual Studio Tools. We'll explore several
areas, which include the following:

• The architecture of the VS Tools add-in for Dynamics GP
• Installing VS Tools for Dynamics GP
• Using the tool to create a custom entry window
• Accessing resources in the Dynamics dictionary
• Building an assembly to access resources in a third-party dictionary
• Providing navigation to open your custom window
• Basic table operations
• Working with ranges
• Building and deploying your application

That's a lot to touch on in one chapter, but we can do it! Roll up your sleeves and
we'll dig into VS Tools for Dynamics GP.

Creating Customizations with VS Tools

[446]

Architecture
Special runtime components give VS Tools the ability to work with Dynamics GP
resources. You must install these runtime components before you can use VS Tools
to create a Dynamics GP integration project. You will install the runtime components
when you install VS Tools for Dynamics GP SDK. The runtime components include:

• Dexterity Shell
• Dexterity Bridge
• Application assemblies
• AddIns folder

Dexterity Shell
The Dexterity Shell assembly (Microsoft.Dexterity.Shell.UI.dll) provides
the means for you to develop windows using VS Tools that look like native
Dynamics GP windows. The assembly adds the following three additional
properties to WinForms you created:

• AutoSetDexColors: This property is used to match the color of Dynamics GP
windows and controls

• ControlArea: This property denotes the area located at the top of the window
containing the button bar (refer to the following screenshot)

• StatusArea: This property denotes the area located at the bottom of the
window containing the browse buttons and help icon (refer to the
following screenshot)

Every integration project must provide a reference to this assembly.

Chapter 10

[447]

Dexterity Bridge
The Dexterity Bridge assembly (Microsoft.Dexterity.Bridge.dll) provides
VS Tools access to the resources and events stored in the application dictionaries
(the .dic files). Every integration project must provide a reference to this assembly.

Application assemblies
An application assembly provides VS Tools access to the resources and events of
a single dictionary. Each dictionary that your integration project uses will have a
corresponding application assembly.

The name of the application assembly will follow the name of the dictionary. For
example, the name of the resource dictionary for fixed assets is fam.dic. Therefore,
the name of the application assembly for fixed assets is Application.FA.dll.

Similarly, the name of the application assembly for the core modules is Dynamics.
dic. The name of the application assembly for the core modules is Application.
Dynamics.dll.

Every integration project must provide a reference to the appropriate application
assembly or assemblies.

VS Tools for Dynamics GP ships with prebuilt application assemblies for each of the
modules that come with Dynamics GP. You will select the application assemblies
you want to include within the integration project when you install the runtime for
VS Tools.

If you are working with an application provided by a third-party developer, either
the developer will provide you with an application assembly or you will build one
using the DAG tool. We will discuss the DAG tool a little later in this chapter.

Add-ins folder
We consider this a runtime component because it's where Dynamics GP looks for
assemblies created with VS Tools. If it finds any, it will try to launch them as part of
the startup routine.

Creating Customizations with VS Tools

[448]

Installing VS Tools
Before we can use VS Tools for Dynamics GP, we need to install the following:

• Visual Studio 2005 or higher
• Microsoft Dynamics GP version 9.0 or higher
• Visual Studio Tools for Dynamics GP SDK for the corresponding version of

Dynamics GP

We presume that you have the first two software of the preceding list installed. In
this chapter, we will be using Visual Studio 2010 and Dynamics GP release 2010 R2.

Download it
To install VS Tools, the first thing you need to do is download it. It can be a little
difficult to find on your own. Using the following steps will lead you right to it:

1. To find the download link, navigate to
http://msdn.microsoft.com/en-us/dynamics/gp

2. Click on Downloads from the landing page, which is shown in the
following screenshot:

http://msdn.microsoft.com/en-us/dynamics/gp
http://msdn.microsoft.com/en-us/dynamics/gp

Chapter 10

[449]

3. On the Microsoft Dynamics GP page that opens, click on the Software
Development Kits (SDKs) link.

4. On the Software Development Kits page that opens, scroll down and click
on the Visual Studio Tools for Microsoft Dynamics GP 2010 SDK link.

5. Clicking the CustomerSource link will launch the CustomerSource
login page. Log in and the SDK download article will open. Click on the
Downloads link.

6. From the Downloads section of the CustomerSource article, click on the most
recent download:

7. Extract the files from the .zip file and then navigate to where you
extracted them.

At last! You are now ready to install VS Tools.

Creating Customizations with VS Tools

[450]

Run the installation
Execute the Microsoft_DynamicsGP11_VSToolsSDK_x86_en-us.msi installation
file. In the Select Features window (shown in the following screenshot), select the
assemblies you wish to install. Be sure to install the assembly generator. Install the
Visual Studio templates that match the version of Visual Studio that you intend to
use. We are using Version 2010 in this chapter, so we're not installing the templates
for versions 2005 or 2008. We are also using the default installation location:

The installation reconfigures Visual Studio so that it recognizes the new templates.
This process will take a few minutes to complete, so be patient.

The programmer's guide for VS Tools can be found at the location specified by
you in the Location field within the Select Features window. You should probably
print this programmer's guide; you will find it very helpful as you begin to use these
new templates.

Chapter 10

[451]

Vendor Quick Entry project
Your first VS Tools project will be to create a new window that you can use to quickly
set up a new vendor. The window will include a much smaller number of fields than
the regular Vendor Maintenance window. This project will show you how to create
a WinForm and add controls to the new form. At the end of the project, your new
window will look similar to the window shown in the following screenshot:

Creating the new project
Launch Visual Studio and click either the New Project link or select File | New |
Project from the menu bar. Use the following steps to create your new project:

1. In the New Project window, set the .NET framework version drop-down
menu to .NET Framework 4.

2. Expand the Visual C# option in the Installed Templates section.
3. Select the Dynamics GP template. If the Dynamics GP template does not

appear in your list of installed templates, it means VS Tools did not get
installed properly. Reinstall the templates and try again.

4. Name the project Vendor_Quick_Entry, accept the default location,
and name the solution Vendor_Quick_Entry.

5. Mark the Create directory for solution checkbox.

Creating Customizations with VS Tools

[452]

6. Click on the OK button to create the project. The new project window should
look similar to the window shown in the following screenshot, but you're not
done yet:

7. In the Solution Explorer pane, right-click on the Vendor_Quick_Entry
project name and then select Properties from the menu.

8. Set the target framework to .NET Framework 2.0, as shown in the following
screenshot. Respond with a yes to the warning dialog that will be presented
to you:

Now you're done with creating the project. Next we'll create a window.

Chapter 10

[453]

Adding the new window
With your project created, your next step is to create the new Vendor_Quick_Entry
window and add controls to it. To create the new window, you need to add a new
form to the Vendor_Quick_Entry project. Perform the following steps to add a
new form:

1. Right-click on the Vendor_Quick_Entry item in the Solution Explorer pane.
2. From the flyout menu, select Add and then Component.
3. The Add New Item - Vendor_Quick_Entry window will open. Select

Microsoft Dynamics GP Form from the list of installed templates. Name the
new form Vendor_Quick_Entry.

Alternatively, you can create the new window using these instructions:

1. Select Project from the menu bar.
2. Select Add Windows Form from the menu. Your Add New Item - Vendor_

Quick_Entry window should look similar to the following screenshot:

3. Select Add, and the newly created Vendor_Quick_Entry window will open.
4. Set the following properties for the Vendor_Quick_Entry window:

Category Property Value
Appearance Text Vendor Quick Entry
Layout Size 500,275
Location X 230
Location Y 230

Creating Customizations with VS Tools

[454]

5. At this point, your new window should now look similar to the
following screenshot:

The next step in our project is to add controls to the window.

Window controls
To add a control to a window, simply select the control from the Toolbox pane
and drag it out onto the form. If your Toolbox pane is not displayed, click on the
toolbox icon to open it. The names of the controls are listed in the Toolbox pane.
The Toolbox pane and toolbox icon are identified in the following screenshot:

Chapter 10

[455]

You're going to add the following types of controls to your new window:

• Button
• TextBox
• Label
• RadioButton and GroupBox
• ComboBox

Many controls in the VS Tools Dynamics GP template have additional properties
specific to Dynamics GP integration projects. These additional properties are listed
in the Dexterity section of the Properties window.

Button
A button control appears as a push button in the window. Pushing the button causes
a Click event in Visual Studio. The button control includes two Dexterity properties:

• ButtonType on dexButtonProvider
• AutoSetDexColors

Creating Customizations with VS Tools

[456]

ButtonType on dexButtonProvider
Five types of buttons are available. The table in the following screenshot shows each
button type and how the button looks in a window. These are merely examples;
many more button images are available.

The ToolbarWithSeparator button type describes the buttons that appear at the top
of the window in the Control area.

The Toolbar button type describes the buttons in the Control area that are typically
just a single icon with no words, such as the printer button.

The Field button type describes the buttons that you would normally attach to fields.
The lookup button, expansion button, and record notes button are all examples of
Field button types.

The Standard button type is the generic Visual Studio button; it is not a special
button designed for the Dynamics GP template, and it looks the same even if you
are not working on a Dynamics GP customization.

The StatusArea button type is for buttons you place at the bottom of the window in
the Status area. The so-called VCR buttons and the help icon are StatusArea buttons.

VS Tools provides many, but not all, of the standard images for Dynamics GP
buttons. They come as .png files; you installed these files when you installed VS
Tools SDK. The images and their names are shown in the following screenshot:

Chapter 10

[457]

Any images that you did not get as part of VS Tools, such as the Print Preview icon
for example, can easily be extracted from Dexterity's Picture resource or Native
Picture resource library.

AutoSetDexColors
When set to True, the AutoSetDexColors property will cause a Visual Studio button
control to take on the colors that match the colors in Dynamics GP. The default
setting is True.

TextBox
The TextBox control is equivalent to the following Dynamics GP controls:

• String
• Integer
• Currency
• Date
• Time

Creating Customizations with VS Tools

[458]

Since there are no separate controls dedicated to each of the data types that were
just listed, you need to set the format for the TextBox control. You'll use a small bit
of code to accomplish this. For example, in order to change the format of a TextBox
control to display currency, you could use the DataBindings property.

The following example code will format textBox1 to display the currency as
$1,234.56:

textBox1.DataBindings.Add(new Binding ("Text", data_source_name,
"table_name.field_name", true, DataSourceUpdateMode.OnValidation,
0 "C"));

The last parameter ("C") is what formats the field to the currency format.

The following table lists the string-formatting parameters and their results:

Name Parameter Result
Currency C $1,234.56

Scientific Exponential E

Percentage P 45.6%

Fixed Decimal F? ? is number of decimal places
For example: F4 = 1234.5678

ShortDate d M/d/yyyy

LongDate D MMMM dd, yyyy

LongDate ShortTime f dddd,MMMM dd, yyyy HH:mm aa

LongDate LongTime F dddd,MMMM dd yyyy HH:mm:ss:aa

Month and Day M MMMM dd

General G Date and Time format comes from your
system locale settings.

Visual Studio will build the code for you using the DataBindings property and the
Formatting and Advanced Binding window. You will first need to add a data
source before you can use the DataBindings property. Use the Data menu to add
the data source.

Additionally, you can read an article dedicated to the formatting types at
http://msdn.microsoft.com/en-us/library/fbxft59x(v=vs.80).aspx

The TextBox control includes the following Dexterity properties.

http://msdn.microsoft.com/en-us/library/fbxft59x(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/fbxft59x(v=vs.80).aspx

Chapter 10

[459]

AutoSetDexColors
When set to True, the AutoSetDexColors property will cause a Visual Studio TextBox
control to take on the colors that match the colors in Dynamics GP. The default
setting is True.

Label
A Label control is equivalent to the static text that appears next to a field on a
Dynamics GP window.

The Label control includes the following Dexterity property.

LinkField on dexLabelProvider
Using this property, you can provide the name of the control to which you are
linking the label. An example of this control is shown in the following screenshot.

By filling this out, you will cause an underline to appear below the linked label,
which is a standard Dynamics GP user interface feature.

After you have linked the labels, they will look like the following screenshot:

Creating Customizations with VS Tools

[460]

RadioButton and GroupBox
RadioButton and GroupBox controls do not have any Dexterity properties.
These controls operate as you would expect any radio group to behave.

ComboBox
Use a ComboBox control when you want to present a drop-down list to the user.

In order to display an uneditable drop-down list, you need to set the Style property
on the control.

Style
The ComboBox control has three DropDownStyle options:

• Simple: With the Simple option selected, you can always see the item list;
you can also edit the text portion of the list.

• DropDown: Using the DropDown option, you can display the list by clicking
on an arrow button on the right-hand side of the field. You can also edit the
text portion of the list.

• DropDownList: Like the DropDown style, you can display the list by
clicking on an arrow button on the right side of the field. However, the
text portion is not editable when DropDownList is selected.

The ComboBox control includes the following Dexterity property:

AutoSetDexColors
When set to True, the AutoSetDexColors property will cause the Visual Studio
ComboBox control to take on the colors that match the colors in Dynamics GP.
The default setting is True.

Adding window controls
To build your Quick_Vendor_Entry window, you need to add several controls.
In this project, you will add the controls one control type at a time for convenience.
When you add your controls, position them on the window similarly to the
preceding screenshot displayed at the beginning of this project.

TextBox controls and properties
Add seven TextBox controls to the window and then set their properties according to
the information in the following table:

Chapter 10

[461]

Control Category Property Value
textBox1 Design (Name) txtVendorID

Misc AutoCompleteMode SuggestAppend

Misc AutoCompleteSource RecentlyUsedList

Behavior CharacterCasing Upper

Behavior MaxLength 15

textBox2 Design (Name) txtVendorName

Behavior MaxLength 64

textBox3 Design (Name) txtVendorAddress

Behavior MaxLength 60

textBox4 Design (Name) txtCity

Behavior MaxLength 35

textBox5 Design (Name) txtState

Behavior CharacterCasing Upper

Behavior MaxLength 35

textBox6 Design (Name) txtZipCode

Behavior MaxLength 10

textBox7 Design (Name) txtPhoneNumber

Behavior MaxLength 14

Label controls and properties
Add seven Label controls to the window and then set their properties according to
the information in the following table:

Control Category Property Value

label1

Design (Name) lblVendorID

Appearance Text Vendor ID

Dexterity LinkField on
dexLabelProvider

txtVendorID

label2

Design (Name) lblVendorName

Appearance Text Vendor Name

Dexterity LinkField on
dexLabelProvider

txtVendorName

Creating Customizations with VS Tools

[462]

Control Category Property Value

label3

Design (Name) lblVendorAddress

Appearance Text Address

Dexterity LinkField on
dexLabelProvider

txtVendorAddress

label4

Design (Name) lblCity

Appearance Text City State, Zip
Dexterity LinkField on

dexLabelProvider
txtCity

label5

Design (Name) lblPhoneNumber

Appearance Text Phone Number

Dexterity LinkField on
dexLabelProvider

txtPhoneNumber

label6
Design (Name) lbl1099Type

Appearance Text 1099 Type

Dexterity LinkField on
dexLabelProvider

cb1099Type

label7
Design (Name) lblPaymentMethod

Appearance Text Payment Method

Button controls and properties
Add eleven Button controls to the window and then set their properties according to
the information in the following table:

Control Category Property Value

button1

Design (Name) btnSave

Dexterity ButtonType on
dexButtonProvider

ToolbarWithSeparator

Appearance Text Save

Appearance TextAlign MiddleRight

Appearance Image Toolbar_Save

Appearance ImageAlign MiddleLeft

Chapter 10

[463]

Control Category Property Value

button2

Design (Name) btnClear

Dexterity ButtonType on
dexButtonProvider

ToolbarWithSeparator

Appearance Text Clear

Appearance TextAlign MiddleRight

Appearance Image Toolbar_Clear

Appearance ImageAlign MiddleLeft

button3

Design (Name) btnDelete

Dexterity ButtonType on
dexButtonProvider

ToolbarWithSeparator

Appearance Text Delete

Appearance TextAlign MiddleRight

Appearance Image Toolbar_Delete

Appearance ImageAlign MiddleLeft

button4

Design (Name) btnPrinter

Dexterity ButtonType on
dexButtonProvider

Toolbar

Appearance Text (blank out):
Appearance Image Toolbar_Print

Appearance ImageAlign MiddleCenter

button5

Design (Name) btnVCR_First

Dexterity ButtonType on
dexButtonProvider

StatusArea

Appearance Text (blank out):
Appearance Image VCR_First

button6

Design (Name) btnVCR_Previous

Dexterity ButtonType on
dexButtonProvider

StatusArea

Appearance Text (blank out):
Appearance Image VCR_Previous

button7

Design (Name) btnVCR_Next

Dexterity ButtonType on
dexButtonProvider

StatusArea

Appearance Text (blank out):
Appearance Image VCR_Next

Creating Customizations with VS Tools

[464]

Control Category Property Value

button8

Design (Name) btnVCR_Last

Dexterity ButtonType on
dexButtonProvider

StatusArea

Appearance Text (blank out):
Appearance Image VCR_Last

button9

Design (Name) btnHelpIcon
Dexterity ButtonType on

dexButtonProvider
StatusArea

Appearance Text (blank out):
Appearance Image HelpImage

button10

Design (Name) btnNotePresent
Dexterity ButtonType on

dexButtonProvider
StatusArea

Appearance Text (blank out):
Appearance Image Window_NotePresent

button11

Design (Name) btnNoteAbsent
Dexterity ButtonType on

dexButtonProvider
StatusArea

Appearance Text (blank out):
Appearance Image Window_NoteAbsent

Position the btnNotePresent and btnNoteAbsent controls on top of one another on
the right-hand side of the status area next to the btnHelpIcon control.

RadioButton and GroupBox
Add one GroupBox control with two RadioButton controls to the window.
The GroupBox control is in the Containers section of the Toolbox pane.
Use the following table to set their properties:

Control Category Property Value

groupBox1
Design (Name) grpPaymentMethod

Appearance Text (blank out)

radioButton1
Design (Name) rbEFT

Appearance Text EFT

radioButton2
Design (Name) rbCheck

Appearance Text Check

Chapter 10

[465]

ComboBox
Add one ComboBox control to the window and then set its properties according to
the information in the following table:

Control Category Property Value

comboBox1

Design (Name) cb1099Type

DataBindings Items Not a 1099 Vendor
Dividend
Interest
Miscellaneous

Appearance DropDownStyle DropDownList

Dexterity

Accessing dictionary resources
When you installed VS Tools, you installed assemblies for each dictionary that ships
with Dynamics GP. If you followed the instructions in this chapter, you installed all
of the assemblies. In order for your application to read those assemblies, you need
to tell it where they are. You can accomplish this using a reference. Two references
are required:

• Referencing the application assembly
• Referencing the namespace

Creating Customizations with VS Tools

[466]

Referencing the application assembly
When you initially created your VS Tools project, you automatically created a reference
to the Dynamics assembly. You can see that reference in the following screenshot:

Since that reference already exists, let's imagine that your application will also be
accessing resources in the Fixed Assets dictionary. Under that scenario, you would
need to create a reference to the Fixed Assets assembly. Follow these steps to add the
reference to your application:

1. Right-click on the Vendor_Quick_Entry project.
2. Select Add Reference from the menu.
3. The Add Reference window will open; click on the Browse tab and browse

for the Application.FixedAssets.dll file:

Chapter 10

[467]

Referencing the namespace
A reference to the namespace is not required, but it makes coding much easier
because you will not have to provide fully qualified references to dictionary
resources. For example, if you want to open the Vendor Maintenance window,
here's how it looks:

• Without the namespace reference:
Microsoft.Dexterity.Applications.Dynamics.Forms.Vendor.Open()

• With the namespace reference:
Dynamics.Forms.Vendor.Open()

Convinced?

When you created your project, the following code was automatically added to
reference the listed namespaces:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using Microsoft.Dexterity.Bridge;
using Microsoft.Dexterity.Applications;
using Microsoft.Dexterity.Shell;

Creating Customizations with VS Tools

[468]

What do you do about applications that are prepared by third-party developers?
Read on.

Building dictionary assemblies
If you need to access resources in a dictionary that did not ship with Dynamics GP,
you need to build an application assembly yourself. You're in luck! VS Tools includes
a tool called the Dictionary Assembler Generator (DAG). You should never
generate an assembly for dictionaries shipped with Dynamics GP. If you
didn't install an assembly you need, rerun the VS Tools installation.

The dag.exe file is in the GP2010 VS Tools SDK folder. For you to try it out, you
need a third-party application dictionary. You're in luck again!

When you installed Dexterity (I'm presuming you installed Dexterity), a sample
integrating application was also installed. You can find it in the following folder:

 … \Microsoft Dexterity\Dex 11.0\Samples\Develop

Copy the Develop.cnk file and drop it into your Dynamics GP installation
folder. Launch Dynamics GP to expand the .cnk file, thereby creating the
Develop.dic dictionary.

Now you're ready to create the application assembly for the Develop dictionary.

Dictionary Assembly Generator (DAG)
DAG is a command-line utility that creates two files when you run it against a
dictionary. It creates an application assembly file and an IntelliSense file.

The application assembly file provides access to resources in the third-party
dictionary. The IntelliSense file is used by Visual Studio to list available resources
that you can choose from as you use the code editor. You can still integrate with the
dictionary without the IntelliSense file, but you will have to know the names of each
resource that you want to access. Unless you know those resource names by heart,
this is not a good plan.

Using the DAG
As this is a command-line utility, you need to run it from the command prompt. To
open the command prompt, you can type cmd in the Run window or navigate to All
Programs | Accessories | Command Prompt.

Chapter 10

[469]

At the command prompt, navigate to the folder where the DAG.exe file resides. To
see all of the options available for this application, enter the following command and
hit the Enter key:

dag.exe /?

You can enter the following command at the command prompt to go directly to the folder
you want (modify Program Files as appropriate):

cd %programfiles(x86)%.\microsoft dynamics\gp2010 vs tools sdk

To generate the assembly, the first thing you need is the product ID of your target
dictionary. You can find the product ID in the Dynamics.set file. A Dynamics.
set file is shown in the following screenshot; note that the product ID for Sample
Integrating App. is 3333:

Armed with the dictionary ID, you can now create the assembly.

Creating Customizations with VS Tools

[470]

Using DAG, you can create an assembly for the main dictionary or an assembly for
the forms dictionary. To generate the desired assembly, use the following commands:

• Main dictionary:
dag.exe 3333 /M

• Forms dictionary:

dag.exe 3333 /F

Creating the AddIn assembly
It's time to create the assembly for the sample integration application. Copy the
dag.exe file to the folder containing your Dynamics.set file. Navigate to that
folder using the command prompt and execute the following command:

dag.exe 3333 /M

When you have completed the process, open your GP2010 folder and look for the
following two files:

• Application.SampleIntegratingApp.dll

• Application.SampleIntegratingApp.xml

To prove the validity of the application assembly, include a reference to it in your
project and then enter the following code:

SampleIntegratingApp.Forms.IgLeadMaintenance.

As you type in each period, the IntelliSense file should take over and present a list of
choices to you from the application assembly. The following screenshot shows you
what the screen looks like when you enter a dot after IgLeadMaintenance:

Chapter 10

[471]

Opening your window
Now that you have your Vendor Quick Entry window constructed, you need
to provide a method to open it in Dynamics GP. You're going to use the
Additional menu on the Vendor Maintenance window to open your Vendor
Quick Entry window.

Creating Customizations with VS Tools

[472]

Code the action
The following screenshot shows you what the Additional menu will look like:

To create the Additional menu and add an item to it, you need to add some C# code
to the GpAddin.cs file. To open the code window, double-click on the filename as
shown in the following screenshot:

Add the following snippet to the code window:

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.Dexterity.Bridge;
using Microsoft.Dexterity.Applications;

Chapter 10

[473]

using Microsoft.Dexterity.Applications.DynamicsDictionary;

namespace Vendor_Quick_Entry
{
 public class GPAddIn : IDexterityAddIn
 {
 // Add a variable reference to the PM Vendor Maintenance form
 static PmVendorMaintenanceForm VendorMaintenanceForm =
Dynamics.Forms.PmVendorMaintenance;

 // Keep a reference to the Vendor_Quick_Entry WinForm
 static Vendor_Quick_Entry Vendor_Quick_EntryForm;

 public void Initialize()
 {
 // Sets the menu text to -- Vendor Quick Entry --
 // and the Alt+ shortcut to -- Q --
 VendorMaintenanceForm.AddMenuHandler(OpenVendor_Quick_
Entry, "Vendor Quick Entry", "Q");
 }

 static void OpenVendor_Quick_Entry(object Sender, EventArgs e)
 {
 // check to make sure the form is not either empty or
already created
 if (Vendor_Quick_EntryForm == null)
 Vendor_Quick_EntryForm = new Vendor_Quick_Entry();
 else
 if (Vendor_Quick_EntryForm.Created == false)
 Vendor_Quick_EntryForm = new Vendor_Quick_Entry();

 // make the form visible
 Vendor_Quick_EntryForm.Show();

 // make the form the window in focus
 Vendor_Quick_EntryForm.Activate();
 }
 }
}

With your code entered, build your assembly to create the Vendor_Quick_Entry.
dll file.

Creating Customizations with VS Tools

[474]

Building and testing your assembly
Save any changes to your project, select Build from the menu bar, and then select
Build Vendor_Quick_Entry from the submenu. If all goes well, you will be
rewarded with the Build succeeded message shown in the following screenshot:

The build created a file named Vendor_Quick_Entry.dll. If you chose to leave your
application in the default location, you will find this file in C:\Users\User_Name\
Documents\Visual Studio 2010\Projects\Vendor_Quick_Entry\
Vendor_Quick_Entry\bin\Debug.

If it isn't in the Debug folder, check the folder C:\Users\User_Name\Documents\
Visual Studio 2010\Projects\Vendor_Quick_Entry\Vendor_Quick_Entry\
bin\Release.

Copy the file and paste it into the AddIns folder at C:\Program Files (x86)\
Microsoft Dynamics\GP2010\AddIns\.

Now launch Dynamics GP, open the Vendor Maintenance window, and check
out the Additional menu selections. The Vendor Maintenance window should
be sporting a new Additional menu.

Table operations
As with any database program, you need to get down to the basic table operations
before you do anything fancy. Now is the time for you to put some code behind
those buttons and see your window in action.

Chapter 10

[475]

Knowing the basic table operations is the first thing you need to learn using any
database programming. Learning table operations is often referred to as "knowing
your CRUD." Let's do it. This is what CRUD means:

• Creating a record
• Retrieving a record
• Updating a record
• Deleting a record

Creating a record
You're going to attach your code to the Click event of the Save button. When you
click on the Save button, you will add a record to the PM Vendor Master table. Open
the code window by double-clicking on the Save button. Add the following code to
the Save button's Click event:

 //////////////////// SAVE BUTTON //////////////

 //The SAVE button SAVES a record to the vendor master table
 private void btnSave_Click(object sender, EventArgs e)
 {
 //Variable for table operation error
 TableError err;

 //Create a reference to the PM Vendor Mstr table
 PmVendorMstrTable VendorMSTRTable;
 VendorMSTRTable = Dynamics.Tables.PmVendorMstr;

 // Release any existing lock
 VendorMSTRTable.Release();

 //set the window field values in the table
 VendorMSTRTable.VendorId.Value = txtVendorID.Text;
 VendorMSTRTable.VendorName.Value = txtVendorName.Text;
 VendorMSTRTable.VendorCheckName.Value = txtVendorName.
Text;
 VendorMSTRTable.Address1.Value = txtVendorAddress.Text;
 VendorMSTRTable.State.Value = txtState.Text;
 VendorMSTRTable.City.Value = txtCity.Text;
 VendorMSTRTable.ZipCode.Value = txtZipCode.Text;
 VendorMSTRTable.PhoneNumber1.Value = txtPhoneNumber.Text;

Creating Customizations with VS Tools

[476]

 //set default values for other fields in the table
 VendorMSTRTable.VendorAddressCodePrimary.Value =
"PRIMARY";
 VendorMSTRTable.VendorStatus.Value = 1;
 VendorMSTRTable.FreeOnBoard.Value = 1;
 VendorMSTRTable.KeepCalendarHistory.Value = true;
 VendorMSTRTable.KeepGlDistHistory.Value = true;
 VendorMSTRTable.KeepPeriodHistory.Value = true;
 VendorMSTRTable.KeepTrxHistory.Value = true;
 VendorMSTRTable.Hold.Value = true;
 VendorMSTRTable.CreditLimit.Value = 1;
 VendorMSTRTable.RevalueVendor.Value = true;
 VendorMSTRTable.FreeOnBoard.Value = 1;

 //save the new vendor
 err = VendorMSTRTable.Save();

 if(err== TableError.NoError)
 {
 //If no error, clear the window after the save
 txtVendorID.Text = string.Empty;
 txtVendorName.Text = string.Empty;
 txtVendorAddress.Text = string.Empty;
 txtCity.Text = string.Empty;
 txtState.Text = string.Empty;
 txtZipCode.Text = string.Empty;
 txtPhoneNumber.Text = string.Empty;
 cb1099Type.SelectedItem = null;
 }

 else if (err == TableError.Duplicate)
 {
 //If there is a duplicate vendor error
 MessageBox.Show("Vendor already exists, choose another
vendor ID");
 }
 else
 {
 //If there is some other kind of error
 MessageBox.Show(err.ToString());
 }

 //close the vendor master table
 //VendorMSTRTable.Close();
 }

Chapter 10

[477]

Retrieving a record
Retrieving a record is a two-step operation. First you need to determine which table
key you will use to uniquely identify the record. Next, you need to set the values
to that key, and finally you need to request the record from the table. If you use the
Change() method, you can make changes to the record and update it. If you use the
Get() method, it's a look but don't touch retrieval.

The following code could be placed on the TextChanged event of the txtVendorID
field to retrieve a record:

 ////////////// RETRIEVING A ROW /////////////// }
 private void txtVendorID_TextChanged(object sender, EventArgs e)
 {
 //Variable for table operation error
 TableError err;

 //Create a reference to the PM Vendor Mstr table
 PmVendorMstrTable VendorMSTRTable;
 VendorMSTRTable = Dynamics.Tables.PmVendorMstr;

 //set the key to use for the table
 //we are using key 1 because it contains the vendor ID
 VendorMSTRTable.Key = 1;

 // Release any existing lock
 VendorMSTRTable.Release();

 //set the key field in the table
 VendorMSTRTable.VendorId.Value = txtVendorID.Text;

 //try to read the row. The Change() method will put a
passive lock on the row.
 //If you had used the Get() method, no lock would be put on
the row
 err = VendorMSTRTable.Change();

 //check for table operation error
 if (err == TableError.NoError)

 //Display the values from the table to the window
 txtVendorID.Text = VendorMSTRTable.VendorId.Value;
 txtVendorName.Text = VendorMSTRTable.VendorName.
Value;
 txtVendorAddress.Text = VendorMSTRTable.Address1;

Creating Customizations with VS Tools

[478]

 txtCity.Text = VendorMSTRTable.City.Value;
 txtState.Text = VendorMSTRTable.State.Value;
 txtZipCode.Text = VendorMSTRTable.ZipCode.Value;
 txtPhoneNumber.Text = VendorMSTRTable.
PhoneNumber1.Value;
 cb1099Type.SelectedItem = VendorMSTRTable.
Number1099Type.Value;

 //close the table
 VendorMSTRTable.Close();
 }

Updating a record
Updating a record does not require any special procedure. You simply need to
retrieve the record using the Change() method, change whichever fields you
want, and then use the Save() method to commit the changes to the database.

Deleting a record
To delete a row from the database, attach the following code to the Delete button's
Click event:

 //////////// DELETE BUTTON ///////////////////////

 private void btnDelete_Click(object sender, EventArgs e)
 {
 //Create a reference to the PM Vendor Mstr table
 PmVendorMstrTable VendorMSTRTable;
 //here we are accessing a form level table buffer to view
its contents.

 {
 //Variable for table operation error
 TableError err;

 VendorMSTRTable = Dynamics.Tables.PmVendorMstr;

 //set the key to use for the table
 //we are using key 1 because it contains the vendor ID
 VendorMSTRTable.Key = 1;

 //set the key field in the table

Chapter 10

[479]

 VendorMSTRTable.VendorId.Value = txtVendorID.Text;

 //try to read the row. The Change() method will put a
passive lock on the row.
 err = VendorMSTRTable.Change();

 //check for table operation error
 if (err == TableError.NoError)
 {
 //try to remove the record
 err = VendorMSTRTable.Remove();

 if (err == TableError.NoError)
 {
 //If no error, clear the window after the save
 txtVendorID.Text = string.Empty;
 txtVendorName.Text = string.Empty;
 txtVendorAddress.Text = string.Empty;
 txtCity.Text = string.Empty;
 txtState.Text = string.Empty;
 txtZipCode.Text = string.Empty;
 txtPhoneNumber.Text = string.Empty;
 //cb1099Type.SelectedItem = null;
 }
 else //There was some sort of table error
 {
 MessageBox.Show("The following error occurred
deleting the record: " + err.ToString());
 }
 }

 //close the table
 // VendorMSTRTable.Close();

 }

Creating Customizations with VS Tools

[480]

Clearing the window
To add functionality to the Clear button, you simply need to add code that
will remove all of the data from the window fields. Enter the following code to
accomplish this task:

/////////////////// THE CLEAR BUTTON /////////////////////
 // The CLEAR button simply blanks out the fields on the form
 private void btnClear_Click(object sender, EventArgs e)
 {
 //Variable for table operation error
 TableError err;

 //Create a reference to the PM Vendor Mstr table
 PmVendorMstrTable VendorMSTRTable;
 VendorMSTRTable = Dynamics.Tables.PmVendorMstr;

 // Release any existing lock
 VendorMSTRTable.Release();

 txtVendorID.Text = string.Empty;
 txtVendorName.Text = string.Empty;
 txtVendorAddress.Text = string.Empty;
 txtCity.Text = string.Empty;
 txtState.Text = string.Empty;
 txtZipCode.Text = string.Empty;
 txtPhoneNumber.Text = string.Empty;
 cb1099Type.SelectedItem = null;

 //close the vendor master table
 VendorMSTRTable.Close();
 }

Working with ranges
Similar to Dexterity, working with ranges should be on the top of your list of things
to master. Establishing a range allows you to work with a subset of data instead of
everything in the database's table. When you define a range, the software treats the
records in the range as if they were the only records in the database's table.

Chapter 10

[481]

For example, if your range is set to include only documents dated in 2012, then the
GetFirst() method would return the first document dated in 2012. Similarly, the
GetLast() method would return the last document dated in 2012. In reality, the
table could include documents spanning 20 years, but setting a range would make
the other records invisible to your code. Pretty cool!

To set a range, you first need to decide which table key you will use to define the
series of records. For example, if you only want to evaluate invoices in PM Paid
Transaction History File, you would need to find a key that included
Document Type (the DOCTYPE field) as one of the elements.

An investigation of PM Paid Transaction History File (PM30200) would reveal nine
keys. These keys have the following components:

• Key1
 ° Vendor ID

• Key2
 ° Document Type
 ° Voucher Number

• Key3
 ° Document Number

• Key4
 ° Document Date

• Key5
 ° TRX Source
 ° Voucher Number

• Key6
 ° Voucher Number

• Key7
 ° Document Type
 ° Document Number

• Key8
 ° Vendor ID
 ° Document Date

Creating Customizations with VS Tools

[482]

• Key9

 ° Document Type
 ° Voided
 ° Document Date
 ° Purchases Amount

Three of the keys, Key2, Key7, and Key9, include Document Type as one of the
components. You could use any of these keys to establish your range of documents,
but the fewer components you have to deal with, the better. In light of that, Key2 or
Key7 would be better choices than Key9. Choosing between Key2 or Key7 would
depend on your preference of the secondary sorting order. Let's assume we want the
secondary sorting order to be Document Number. Then Key7 would be our choice.

To create the range, you'll use the RangeStart() and RangeEnd() methods. To clear
the range, use the RangeClear() method. Here's what the code will look like if you
want to establish a range on the PM Paid Transaction History File file that
includes only invoices:

////////////////// SETTING A RANGE //////////////////

 //declare a variable for table operation errors
 TableError err;

 //create a reference to the table
 PmPaidTransactionHistTable PMTrxHistory;
 PMTrxHistory = Dynamics.Tables.PmPaidTransactionHist;

 //set the table key to use for the range
 //key 7 will be used.
 //Its components include doc type and doc number
 PMTrxHistory.Key = 7;

 //specify the beginning of the range
 //specify a value for each component of the key
 //type 1 denotes an invoice
 PMTrxHistory.DocumentType.Value = 1;

 //set the minimum value for the doc number
 PMTrxHistory.Clear();
 PMTrxHistory.RangeStart();

//specify the end of the range
//specify a value for each component of the key
//type 1 denotes an invoice

Chapter 10

[483]

 PMTrxHistory.DocumentType.Value = 1;

//set the maximum value for the doc number
 PMTrxHistory.Fill();
 PMTrxHistory.RangeEnd();

//retrieve the first invoice in the range
 err = PMTrxHistory.GetFirst();

Building and deploying the application
Once your coding is complete, it's time to build and deploy your application. This
time, however, you are going to set the assembly information for your integration.
Setting this information will allow you to establish a version number and a build
number for your program.

Assembly information is stored in the AssemblyInfo.cs file. This file should be
included in the Properties section of your project. Open the file by double-clicking
on it. Fill in the various values for the assembly information similarly to the
following screenshot:

Creating Customizations with VS Tools

[484]

Close and save all of the objects you have opened. Select Build from the menu bar
and then select Build Vendor_Quick_Entry, as shown in the following screenshot:

When the build has succeeded, copy the Vendor_Quick_Entry.dll file from your
project folder to the AddIns folder of your Dynamics GP application.

Launch Dynamics GP and admire your new integrated customization!

Dynamics GP 2013 consideration
Your VS Tools customizations will work just as they always have using the
Dynamics GP 2013 rich client. Rich client implies the regular Dexterity written
workstation installation that you use today. Using the Web Client is a different
matter. The Web Client is a ground-breaking achievement for Dynamics GP
and one that has long been anticipated, but it comes at a price. Any user interface
that you created using WinForms will not work with the Web Client. The screen
modifications you have made using Modifier work just fine, but the WinForm
events will not fire when using the Web Client.

Your code will work just fine, but you need to rework your interface and register
your events against a window created with Dexterity. You have two choices here.
You can use Modifier and make changes to existing windows, or you can learn
Dexterity and build your own windows using its graphical forms designer. You'll
find the graphical forms designer feature easy to use, and making the reference
change shouldn't be that difficult.

The window, function, and procedure events in Dexterity are very similar to the
 VS Tools events you use today. You can find a table in Appendix B, Event Matrix,
that contains a side-by-side matrix comparing Dexterity, VS Tools, and VBA events.
As you will see in the table, the events across all three tools are very similar.
Appendix B, Event Matrix is available as a free, downloadable chapter from
the following link: http://www.packtpub.com/sites/default/files/
downloads/0264EN_Appendix_B_Event_Matrix.pdf

Chapter 10

[485]

To get a feel for Dexterity, go through the exercises in Chapter 3, Getting Started with
Dexterity, Chapter 4, Building the User Interface, and Chapter 5, sanScript – Making It
Work. Who knows, you may give up VS Tools and move your entire application
to Dexterity!

Summary
We covered a lot of ground in this introduction to VS Tools for Dynamics GP. You
found it on the Web, installed it, built a window that looks just like one of the native
Dexterity windows, and set it in motion. But remember, this just scratches the
surface. So many more things are possible. You can work with scrolling windows,
call lookup lists, respond to window events, integrate with web services, call native
procedures, query the SQL database, and even record macros.

Several sample applications are available online. Use the search argument VS Tools
for Dynamics GP sample applications and you'll find many more resources to
help you excel with this exciting development tool.

Upgrading Customizations
It is inevitable; with each enhancement we create, another release of Dynamics GP is
just around the corner. In this chapter, we'll explore what you need to do to update
your customizations when you upgrade to the next release of Dynamics GP. Some
customizations will require few, if any, upgrade tasks, while others will require
quite a number of steps.

This chapter is not intended to be a comprehensive upgrade guide, but rather an
introduction to what the upgrade process looks like. We will cover the following
key topics:

• How to use Dynamics GP SDK
• Upgrading a Dexterity customization
• Upgrading a customization using Modifier with VBA
• Upgrading Extender, SmartList Builder, and Excel Report

Builder customizations
• Upgrading a Visual Studio Tools add-in

Determining if there were any changes to the resources that your customization
uses is an important part of every customization upgrade, regardless of the type of
customization. Studying the SDK is the right place to start.

Using the SDK
The SDK makes it very easy to determine those, if any, Dynamics GP objects
that changed from release to release. One of the steps included in setting up
your Dexterity development environment was installing Dynamics GP SDK
(Chapter 3, Getting started with Dexterity). It's time to go over some of the goodies
in Dynamics GP SDK that will help you move through the upgrade process.

Upgrading Customizations

[488]

Launch Dynamics GP SDK using the Start button. If you accepted the default
locations during installation, the Dynamics GP SDK selection will be within the
Microsoft Dynamics folder in the Start menu.

If it isn't in the Start menu (and you accepted the defaults), double-click on the
following file to open it:

C:\Program Files (x86)\Microsoft Dynamics\GP 11.0 SDK\DynamicsGP_SDK.
chm

The opening screen of Dynamics GP SDK looks like the following screenshot:

From the preceding screenshot, click on the Dictionary Changes for Microsoft
Dynamics GP item. In the screen that opens, you'll find links to information on the
following types of changes:

• Script changes
• Data model changes
• Table changes
• Form changes

Let's explore each one of these selections to understand what they reveal.

Chapter 11

[489]

Script changes
Click on the Script Changes link from the list of topics. The script changes s
ection provides details regarding which global procedures, global functions, form
procedures, and form functions have changed since the last two releases. Each
release is listed separately. You'll see one section for changes between releases 10
and 11, and another for changes between releases 9 and 10. For each release, you
can find changes to scripts in the following dictionaries:

Product Name ID Dictionary
Microsoft Dynamics GP 0 Dynamics.dic

Project Accounting 258 PA258.DIC

Fixed Assets 309 fam.dic

Manufacturing 346 ICONMFG.DIC

Human Resources 414 HR.DIC

FieldService 949 SrvcAdv.DIC

SmartList 1493 EXP1493.dic

Although the dictionaries in the following table are also contained in the installation
media, their script changes are not included in Dynamics GP SDK:

Product Name ID Dictionary
Interfund Management 1042 IFund.dic

Revenue Expense Deferrals 1045 D1045.DIC

Collections Management 1157 CPro.dic

Safe Pay 1235 SFPAY.dic

Electronic Reconcile 1428 AREC.dic

Cash Flow Management 1632 CFM.DIC

Technical Service Tools 1838 TAUTIL.DIC

Excel-Based Budgeting 1878 XLBudget.dic

HRM Solution Series 1911 HRMSS.DIC

Payment Document Management 2150 PMNTDOC.DIC

Purchase Order Enhancements 2277 POE2277.DIC

Control Account Management 2416 CAM2416.dic

Enhanced Commitment Management 2547 ECM2547.DIC

CopierSeries 2992 QK2992.DIC

VAT Daybook 3096 vatDaybk.dic

Advanced Security 3104 AdvSecur.dic

Upgrading Customizations

[490]

Product Name ID Dictionary
Extender 3107 extud.dic

Analytical Accounting 3180 AA.dic

Encumbrance Management 3258 ENC3258.dic

Report Scheduler 3278 RPTSCHED.dic

SmartList Builder 3830 SLBuild.dic

ML Checks 4067 MLChecks.dic

Grant Management 4421 GTM4421.dic

Payroll Integration to Payable 4522 PIP.dic

Advanced Go Tos 4612 advgoto.dic

Analysis Cubes for Excel 4621 WHPivot.dic

Certification Manager 4933 CLTM.DIC

Employee Health and Wellness 4955 EHW.DIC

Electronic Signatures 4965 4965MS.DIC

Audit Trails 4966 4966MS.dic

HITB Report 5597 HTB5597.DIC

Dynamics Online Services 6499 DO6499.DIC

Date Effective Tax Rates 6831 DET.dic

Your best bet for finding out about changes to the dictionaries not included in the
SDK is to start a support case with Microsoft or post a question on the Dynamics
community website (https://community.dynamics.com/product/gp/f/32.aspx).
One advantage of using the Dynamics community is that it's free. On the downside,
the information you receive might be wrong.

Our experience has been that the information received from the Dynamics
community website is excellent and often better than what you may get from
Microsoft Support. Be sure you validate anything you plan to rely on coming
from the Dynamics community website, because the fine people providing
suggested solutions are 100 percent volunteers.

The following screenshot is an example of what you'll see if there is a change in a
global procedure:

Chapter 11

[491]

The name of the procedure in the preceding screenshot is Backout_Allocation_
Account. There was a change to the procedure's parameters. Parameters from the
old dictionary are listed in the top section. Parameters from the new release are
listed in the lower section. Unfortunately, the parameter that changed has not
been easily identified.

However, the changes to data model can easily be identified; we'll look at those next.

Data model changes
Select the Data Model Changes link from the list of topics. The data model changes
section provides information on changes in the database tables.

Upgrading Customizations

[492]

New tables
Database tables added in the new release that did not exist in the old release are
identified in the new tables section. A portion of the Dynamics GP SDK window
documenting new tables is shown in the following screenshot:

Deleted tables
Database tables that existed in the old release but do not exist in the new release are
identified in the deleted tables section. A portion of the Dynamics GP SDK window
documenting the deleted tables is shown in the following screenshot:

New columns
Fields (columns) added to tables in the new release that did not exist in the tables of the
old release are identified in the new columns section. A portion of the Dynamics GP
SDK window documenting new table columns is shown in the following screenshot:

Chapter 11

[493]

Deleted columns
Fields (columns) that existed in the tables in the old release but do not exist in the
tables of the new release are identified in the deleted columns section. Only one
field was deleted between releases 10 and 11. The Dynamics GP SDK window
documenting that change is shown in the following screenshot:

New indexes
Indexes added to existing tables that did not exist in the tables of the old release are
identified in the new indexes section. A portion of the Dynamics GP SDK window
documenting new table indexes is shown in the following screenshot:

Deleted indexes
Indexes deleted from the tables that existed in the old release are identified in the
deleted indexes section. A portion of the Dynamics GP SDK window documenting
the deleted indexes is shown in the following screenshot:

Upgrading Customizations

[494]

Different data types
This section documents any instances where a field was assigned a different data
type in the new release. For example, if a field's data type was STR15 in release 10
and that field's data type changed to STR20 in release 11, this would fall into the
different data types category. Only two data type changes were made between
releases 10 and 11. A portion of the Dynamics GP SDK window documenting
those changes is shown in the following screenshot:

Different segments
Any changes to the segment of a composite field are identified in the different
segments section. There were no segment changes between releases 10 and 11.

Different index columns
Any changes to the components of an existing index are identified in the different
index columns section. For example, if you look at the following screenshot, you will
see where the first and third key of the GL_Budget_SUM_MSTR table changed between
releases 9 and 10. The first and third keys no longer include the Period Date column:

Chapter 11

[495]

New RW relations
This section describes any new table relationships that were created for Report
Writer. These new relationships are used exclusively by Report Writer to create
reports. They do not enforce referential integrity, nor are all possible relationships
represented. A portion of the Dynamics GP SDK window documenting new RW
relations is shown in the following screenshot:

Deleted RW relations
This section describes the Report Writer table's relationships that existed in release
10 but were deleted for release 11. A portion of the Dynamics GP SDK window
documenting the relationships that were deleted is shown in the following screenshot:

As you can see, Microsoft makes it easy to determine changes to the metadata from
release to release.

Table changes
The table changes section includes the same information as the Data model changes
section we just discussed; it's just presented to you in a different way. In some
respects, you may find that data model changes are a little easier to spot using the
table changes section's documents.

Upgrading Customizations

[496]

There are two choices per dictionary for table changes: Summary, which is a list of
each of the tables that changed, and Detail, which shows the details for each changed
table. A portion of the Dynamics GP SDK window listing the table changes section's
topics is shown in the following screenshot:

Table changes – summary
This section displays a list of all of the tables that have changed since the last release
of Dynamics GP. This is actually a text file and not the HTML file that you find in the
data model changes section.

As you can see in the following screenshot, a comment next to the physical name of
the table identifies the new tables. Table DD10400 included only a change to a key,
which you can tell by the comment next to the table. At the bottom of the list, you
can see how many tables changed out of the total number of tables in the dictionary.

The file can be searched easily when in text format. Also, you can readily copy the
data to an Excel worksheet from the text file. Using information from the Main
dictionary Table Changes – Summary file, you'll quickly be able to determine if
any of the tables your customization relies on have changed.

The actual text file for summary changes to the Dynamics dictionary (assuming the
default location was selected), can be found at C:\Program Files (86)\Microsoft
Dynamics\GP 11.0 SDK\Content\10.0to11.0\ CoreTableSummary_1000_1100.
txt. If you are running a 32-bit machine, look at C:\Program Files\Microsoft
Dynamics\GP 11.0 SDK\Content\10.0to11.0\ CoreTableSummary_1000_1100.
txt.

Chapter 11

[497]

Table changes – detail
The detail report is a one-stop shop to view all the relevant changes made to a table.
Instead of needing to look at each type of change separately (fields, indexes, and so
on), you can see everything at once. Look at the following screenshot; it shows the
detail report for the GL_YTD_TRX_OPEN table. You can quickly see the two fields that
were added, and their specifications, in this report. You also have a good view of the
new key that was added, as well as the change to an existing key's segments:

Upgrading Customizations

[498]

If you are upgrading a customization that uses third-party application tables, the
information regarding table changes may not be readily available.

An easy way to figure out the changes is possible if you have a copy of both the old
database version and the new database version. You can then use Visual Studio's
Schema Compare tool or any other SQL schema compare tool to compare the
changes between the tables. For details about using schema compare tools, refer
to this article:

http://www.mssqltips.com/sqlservertip/2089/sql-schema-comparison-
with-visual-studio-2010/

A tool that is often used for schema comparison is Red Gate's SQL Compare:

http://www.red-gate.com/products/sql-development/sql-compare/

The final element of the data model section of Dynamics GP SDK is form changes.
Let's look at how you can discover the changes made to forms.

Form changes
The form changes section is determined from running the Compare utility in
Dexterity Utilities. The comparison is between an unmodified release 10 dictionary
as the source dictionary and a release 11 dictionary as the compared dictionary.

As part of your code update, you should also run this utility against your own code
dictionaries to keep track of changes.

Look at the following screenshot. Each form resource appearing on the report
has changed in some way. Not every form is included in the report; only those
that have changed are included. If something was added to a form, such as a menu,
a constant, a string, and so on, you would see an asterisk next to the new resource.
Not all of the resources in a form are presented; just the ones that changed or new
ones that were added:

http://www.mssqltips.com/sqlservertip/2089/sql-schema-comparison-with-visual-studio-2010/
http://www.mssqltips.com/sqlservertip/2089/sql-schema-comparison-with-visual-studio-2010/
http://www.mssqltips.com/sqlservertip/2089/sql-schema-comparison-with-visual-studio-2010/
http://www.red-gate.com/products/sql-development/sql-compare/
http://www.red-gate.com/products/sql-development/sql-compare/

Chapter 11

[499]

Taken together, you can discern a great deal of information from the dictionary
change section of Dynamics GP SDK. Too often, dictionary changes are not studied
sufficiently and more problems are discovered after the deployment of the upgrade.
I know you'll do your homework and not be one of those developers who send what
is essentially a beta copy of the upgrade to their users.

Upgrading Customizations

[500]

Dexterity
This section describes how to upgrade your Dexterity customization. You'll go
through several steps to upgrade your code; it can be tedious, but it isn't difficult.
Remember, this chapter is not about troubleshooting an upgrade, nor is it a step-by-
step guide; it's an introduction to the process.

The first step, of course, is to install the new release of Dynamics GP. Once you
install the new release, we can begin.

Starting with release 6, you could no longer use the Developer Update utility in
Dynamics Utilities to upgrade your code to the new release. Instead, you now have to
use Source Code Control. You can use Visual Source Safe or Team Foundation Server.
If your Source Code Control application isn't supported, or you don't have one, use the
generic source code control included with Dexterity to perform the upgrade.

You will complete the following tasks in the upgrade process:

1. Set up generic Source Code Control server.
2. Create the new development dictionary.
3. Transfer third-party resources to the new release of the Dynamics dictionary.
4. Review the Microsoft Dynamics GP changes and make any necessary

modifications to your application.
5. Redo any customizations made for alternate forms and reports.
6. Test your application using the Test mode in Dexterity.
7. Build a chunk dictionary for your upgraded code.
8. Test your application in multidictionary mode.
9. Repeat steps 6 through 8 until you get it right (c'mon, nobody's code is

perfect the first time through).
10. Prepare the chunk file for distribution.

Setting up generic source code control
We will be using the built-in generic source code control to perform the upgrade.
The first thing to do is set it up. This section explains how to do that.

Chapter 11

[501]

Installing Dexterity Source Code Control Server
(DSCCS)
The first step won't make much sense right now, but you'll see why you need this
as we progress through the installation and update.

In our example, release 11 of Dexterity is installed in the C:\DEX_GP2010 folder.
Perform the following steps:

1. Create the following folder structures:
 ° C:\DEX_GP2010\SCC\PROJECT_1 (to hold the source code control

objects for Project1)
 ° C:\DEX_GP2010\PROJECTS\ORIG_DICS (to hold a copy of the

unmodified original dictionary)
 ° C:\DEX_GP2010\PROJECTS\PROJECT_1 (to hold a copy of the

development dictionary)
 ° C:\DEX_GP2010\SCC\TEMP (to hold the temporary files used by the

DSCCS)

The default location for the temp folder is the user's default temp folder.
The user's temp folder can normally be found in the following location:
C:\Users\user_name\AppData\Local\Temp\

When you name your folders during an actual update, you can name them
anything. The names of the folders do not matter. The names used here are
just for this example, not as a best practice. Develop a naming convention
for yourself and use it consistently.

2. Navigate to the following folder in the Dynamics GP installation media: …\
Tools\Dex\DSCCS\. Launch the file in the DSCCS folder. There should only
be one file in that folder. The name of the DSCCS installation file is
Microsoft_Dexterity11_SourceCodeControlServer_x86_en-us.msi.

3. Accept the default location for the installation.

Upgrading Customizations

[502]

4. Check the Local System account checkbox, as shown in the following
screenshot, and then click on the Install button:

If you are on a domain, do not select the Local System account. Instead, fill
out the window below with the correct domain information and the name
of the user that will run the service. For the sake of simplicity, we'll just
check the box.
The Dexterity Source Code Control Server window will open.

5. On the Dexterity Source Code Control Server window, select Generic as the
value of the provider and set the Root Directory field to C:\DEX_GP2010\
SCC. Your window should look like the following screenshot:

Chapter 11

[503]

Should you ever need to change the location of the root directory, use
the Dexterity SCCS (32-bit) applet in the control panel of your computer's
operating system. The following screenshot shows you what the applet
looks like in Control Panel:

6. The finish screen will come up next. Click on the Finish button and that's
all there is to the installation. Simple, right?

Create a separate folder in the root directory for each of your development projects.
These project folders will store the resources for each project. The folder you created
earlier for this project was C:\DEX_GP2010\SCC\PROJECT_1. Next, you'll configure
the Source Code Control server to work with Dexterity.

Upgrading Customizations

[504]

Configuring the DSCCS
1. First, confirm that the Microsoft Dexterity SCCS service shows the status as

Started. You do this by launching Control Panel | Administrative Tools |
Services. The navigation is shown in the following screenshot:

2. Copy your old development dictionary and all the associated .dat and .idx
files into the C:\DEX_GP2010\PROJECTS\PROJECT_1 folder.

3. Copy the dex.ini file from the new release of Dexterity and paste it into the
C:\DEX_GP2010\PROJECTS\PROJECT_1 folder. Each project must have its
own dex.ini file because the DSCCS settings are stored in this file.

4. Create a shortcut to launch this specific project using its unique dex.ini file.
Always use this project-level shortcut to open the development dictionary.
The shortcut includes the path to Dex.exe, the development dictionary, and
the unique dex.ini file.

5. Your shortcut for the project in this chapter will appear as follows: "C:\DEX_
GP2010\Dex.exe" "C:\DEX_GP2010\PROJECTS\PROJECT_1\ DEV_
PROJECT_1.dic" "C:\DEX_GP2010\PROJECTS\PROJECT_1\ dex.ini"

6. Open your old development dictionary in Dexterity using your new shortcut.
Navigate to the Options window (Edit | Options…), click on the Source
Control tab in the Options window, and perform the following steps:

Chapter 11

[505]

i. Check the Use Source Control checkbox.
ii. Check all the three boxes at the bottom of the window and then

complete the window with the following values:

Field Name Value
Repository Name localhost.
User Name Leave blank.
Password Leave blank.
Project Name PROJECT1—if you click the ellipses button, the values

presented are the names of any folders you have created in
the root directory of the DSCCS.

Temp File Location C:\DEX_GP2010\SCC\TEMP—this can be any valid
folder; many people use their local temp folder. You
need available disk space equal to twice the size of your
development dictionary.

Original Dictionary C:\DEX_GP2010\PROJECTS\ORIG_DICS—this must
be an unmodified copy of the original dictionary of the
release you are upgrading from.

7. Upon completion, your window should look like the following screenshot:

8. Click on the Validate Connection button. If everything is fine, you will get
the Connection Validated message.

Upgrading Customizations

[506]

Resolving validation errors
If the connection cannot be validated, you may get one of the messages shown in
the following screenshot (or worse, nothing at all):

To resolve validation errors like these, check the following steps:

1. Confirm that the Microsoft Dexterity SCCS service is running.
2. Verify that the repository name is correct. If you are using a single machine

to run Dexterity and the source code control provider, you can use
localhost or 127.0.0.1 as the repository name.

3. Make sure that all of the folders, including the root folder, are properly
set up.

4. Ensure that the firewall has port 2725 open.
5. Change the TCP/IP port number if necessary.

The service uses port 2725 by default. If any other application is trying to use that
port, there will be a conflict. To change the port, you will need to edit the registry
as follows:

Open the registry key with HKEY_LOCAL_MACHINE | SOFTWARE | Great
Plains Software | Dexterity Source Code Control Server | DSCCSProvider.

Create a new DWORD named Port.

Set the value to the port number that you want DSCCS to use. You'll need to do
this for each workstation.

The next step is to transfer your third-party resources to the new release of the
Dynamics GP dictionary. This process involves checking in your old development
dictionary, creating a new development dictionary including the checked-in
resources, and then performing the update operation.

Chapter 11

[507]

Checking in the old dictionary
Now that Dexterity Source Code Control is properly configured, you need to
perform the initial check in of your old development dictionary. Checking in the
old dictionary puts all of your resources into the repository so that they may be
transferred to the new development dictionary. Only the resources you added to
the old dictionary, including any alternate forms and reports, will be held in the
repository.

Before you start checking in your resources, add the following line to the
Dex.ini file:

ShowResIDs=TRUE

This .ini parameter will add another column to your Dexterity Explorer window
that shows the Dexterity resource ID of each object in the opened dictionary. Your
new Dexterity Explorer window will look like the following screenshot:

With this parameter in your .ini file, your resources are much easier to find because
the ID in the ID column of your resources is 22000 or higher.

Follow these steps to check in your dictionary:

1. Open the copy of your old development dictionary using your new shortcut.
2. In the Edit menu, select the Options menu item and then click on the

Source Control tab.

Upgrading Customizations

[508]

3. Add \10-0-1841 after the name in the Project Name field in the
Options window. After the change, your Project Name field's value will
be PROJECT_1\10-0-1841. Do not attempt to validate it (because it won't
get validated). The suffix you just added represents the build number of
the old release. You can use any naming convention that pleases you.
By changing the project name, you will create a separate project folder in
your SCC folder for this initial project.

4. From the Dexterity Explorer menu, select Source Control | Update
SCC State.

5. Open the definition for each of the alternate forms or reports that you c
reated and then click on the OK button to close it.
You do not need to do anything to the definitions other than simply opening
and closing them. This process is known as touching the alternate forms and
reports. When you do this, you update the Source Code Control (SSC) state
of the resource. Updating the SCC state will change the state of the form or
report in the main product to New. See the following screenshot:

6. Next, check in the old dictionary. From the Dexterity Explorer menu,
select Source Control | Check in. After a few moments, the Check In to
Repository: PROJECT1 window will open. Click on the Insert All button
and add Initial 10.0.1841 Check in as the check-in comment. After
that, click on the Check In button. Close the window when the check in has
completed. The following screenshot shows the Check In to Repository:
PROJECT1 window:

Chapter 11

[509]

Resolve any errors displayed after the check in before moving on to the
next step. Common errors are described in chapter 43 of the integration
manual (IG.pdf) shipped with Dexterity. You can find this manual in
the …\Microsoft Dexterity\Dex 11.0\Manuals folder.

7. Update the index file by selecting the Explorer menu and then selecting
Source Control | Update Index File. Respond with a yes to the dialog
question that will be presented.

Updating the index file ensures that all of your resources maintain
the same resource ID throughout the upgrade. More information
about the index file is in Knowledge Base (KB) 894699. You can
get a copy of this KB at http://support.microsoft.com/
kb/894699.

Now would be a good time to back up (copy) the repository directory. In this
example, the repository directory is C:\DEX_GP2010\SCC\PROJECT_1\10-0-1841.

Now that you've checked in your resources, updated the index, and backed up the
repository, it's time to start your new Dexterity project.

http://support.microsoft.com/kb/894699

Upgrading Customizations

[510]

Checking in the old dictionary to start the
new project
The starting point of your new Dexterity project is to first check in the old dictionary
into the new project. This check in will put your resources into the repository so that
you can transfer them into the new development dictionary. You will essentially
do the same thing that you did in the last section, only this time you'll transfer the
resources to a new dictionary. Perform the following steps:

1. Use your shortcut to open the old development dictionary.
2. In the Edit menu, select the Options menu item and then click on the

Source Control tab.
3. Change the suffix of the project name from \10-0-1841 to \11-00-1935. The

complete new project name will be PROJECT_1\11-00-1935. Do not attempt
to validate it (because it won't get validated). The suffix represents the build
number of the new release. You can use any naming convention that pleases
you. It's done this way merely as an example.
When you change the project name, you will create a separate project folder
in your SCC folder for your new project.

4. From the Dexterity Explorer menu, select Source Control | Update
SCC State.

5. Open the form or report definition for each of the alternate forms or reports
that you created and then click on the OK button to close it.
You do not need to do anything to the alternate form or report definitions
other than simply opening and closing them. This process is known as
touching the alternate forms and reports. When you do this, you will change
the SCC state of the resource. Updating the SCC state will change the state
of the form or report in the main product to New.

6. From the Dexterity Explorer menu, select Source Control | Check in. After
a few moments, the Check In to Repository: PROJECT1 window will open.
Click on the Insert All button. Add Initial 11.00.1935 Check in as the
check-in comment and then click on the Check In button. Close the window
when the check in is complete.
Resolve any errors displayed after the check in before moving to the next
step. Common errors are described in chapter 43 of the integration manual
(IG.pdf) shipped with Dexterity. You can find this manual in the …\
Microsoft Dexterity\Dex 11.0\Manuals folder.

Chapter 11

[511]

7. Update the index file by selecting the Explorer menu and then selecting
Source Control | Update Index File. Respond with a yes to the
dialog question.

Updating the index file ensures that all of your resources maintain
the same resource ID throughout the upgrade. More information
about the index file is in KB 894699. You can get a copy of this KB
at http://support.microsoft.com/kb/894699.

With the resources now checked in to the new project's repository, it's time to create
the new development dictionary.

Creating the new development dictionary
Your new development dictionary will start with a copy of the new release's
dynamics.dic file. You'll add your resources to that dictionary and then update
it. After the update, your code will reflect the new release. You can then test your
code and make any changes necessary for it to work with the new release.

Follow these steps to create the new dictionary and update your code:

1. After you've made a backup copy, delete your old development dictionary.
2. Make a copy of the new Dynamics.dic file and paste it into

your C:\DEX_GP2010\PROJECT_1 folder. This will become your
new development dictionary.

3. Rename the new dictionary to the name of the old dictionary. In this
example, you'll name your new dictionary DEV_PROJECT_1.dic.

4. Make another copy of the new Dynamics.dic file and paste it into your
virgin dictionary folder. Rename the new dictionary to reflect that it is an
original unmodified dictionary. In this example, we'll use C:\DEX_GP2010\
ORIG_DICS\Virgin_11-00-1935.dic.

5. Use your project shortcut to open the new dictionary in Dexterity.
6. Change Source Code Control's Options window to specify the location of

the unmodified copy of the new dictionary just created.

To access Source Code Control's Options window, use the
navigation Edit | Options.

http://support.microsoft.com/kb/894699
http://support.microsoft.com/kb/894699

Upgrading Customizations

[512]

7. Transfer your resources to the new development dictionary using the
Update operation.

To perform the Update operation, open the Update from Repository:
PROJECT1 window using the navigation Explorer | Source Control |
Update.

Complete the window using the following options:

Field Name Value
Resources section:
 Update All marked
 By Tip marked

New Resources section
 Prompt to Overwrite marked

Reports section
 Run SCC Error Report checked
 Run Compile Error Report checked

Compile section
 With Debug Information marked

Options section
 Use Index File checked

Upon completion, the window should look like the following screenshot:

Chapter 11

[513]

8. Click on the OK button to perform the update; print the reports when
prompted. The Resources to Update window will open. Make sure all of
the source file objects, other than the alternate reports, are checked and
then click on the OK button.

9. Resolve any errors displayed after the check in before advancing to the
next step. Common errors are described in chapter 43 of the integration
manual (IG.pdf) shipped with Dexterity. You can find this manual in
the \Microsoft Dexterity\Dex 11.0\Manuals folder.

Your development dictionary for the new release is now complete! This would
be a good time to back it up. Using your newly created dictionary, move on with
your upgrade.

Upgrading Customizations

[514]

Making changes to your code
Use Dynamics GP SDK to analyze how any changes to the Dynamics GP data
model could affect your application. Specifically, you should look for the following:

• Data type changes
• New or deleted fields
• Changes to procedures or functions
• Table changes
• Functionality changes

Other changes might affect your application, such as changes to stored SQL
procedures or views, but the ones just listed are the primary culprits for errors.

Data type changes
Change to a data type, such as increasing or decreasing the keyable (allowable)
length of a string, will change the data type's storage size. If your table includes a
field with one of the changed data types, the size of your table will change. This type
of change would require you to convert the table. Likewise, if you have any reports
referencing fields with a changed data type, you will need to update your report.

Also, watch out for changes to a data type's control type, such as changing a listbox
to a multiselect listbox. Any data type change can cascade changes throughout an
application, so be very mindful of this when you analyze a change to a data type.

Use the Reference Information window in Dexterity to see what objects a resource
refers to or is referenced by. Before you can see this reference information, you must
first build the reference table using Dexterity options.

To build the reference table, select Edit | Options from the Dexterity menu bar.
In the Options window, click on the Reference tab and then click on the Build
Table button. You might also want to consider checking the Update Reference
Information on Compile checkbox in order to keep your reference table up to
date. For the Dynamics dictionary, it will take about five minutes to build the table.
The Reference tab of the Options window is shown in the following screenshot:

Chapter 11

[515]

With the reference table built, you can open any Dexterity resource and click on the
reference button to discover which other resources may have been affected by the
change. The following screenshot identifies the location of the reference button on
the Data Type Definition window:

Upgrading Customizations

[516]

Select the Refers To item from the menu to open the Reference Information
window. The following screenshot shows the Reference Information window for
the STR20_Document_Number data type. The left-hand side of the window lists
the format attached to the data type; the right-hand side lists each field that uses this
data type:

Field changes
New fields added to the new release may have the same name as one of your fields;
you may need to rename your field and then modify all of the scripts that reference
it. If a field has been removed, you'll get an illegal address error if any of your scripts
refer to a missing field.

Procedure or function changes
Changes to procedures or functions are most often changes to the number, order, or
type of its parameters. If your script calls one of these procedures or functions, it will
not get compiled. You will need to modify your script to comply with the changed
parameter details.

Table changes
Check tables for the following changes:

• Adding, changing, or removing fields
• Adding, changing, or removing keys
• Adding or removing a table

Chapter 11

[517]

If any part of a table definition changes, you may need to modify your code. Any
type of change to a global field can affect a table's storage size. If fields have been
added to or removed from a table, the storage size will also change. Table changes
will require you to convert the existing data, recreate the table, and recreate the
autogenerated procedures.

If a table is removed when an update takes place and you reference the missing table,
you'll get an illegal address error.

Refer to Volume 1 of the Dexterity programmer's guide for more information on
how to handle table changes. This document was installed as PRGV1.pdf within
the Microsoft Dexterity\Dex 11.0\Manuals folder.

Functionality changes
In addition to resource changes, a new release of Dynamics GP is likely to include a
new functionality. Review this new business logic and make sure it is still consistent
with the routines in your application. Each new release of Dynamics GP includes
a what's new document that describes its new features to the user. This document
might be a good place to start if you're researching functionality changes. You can
find more detailed information about functionality changes on the CustomerSource/
PartnerSource website.

Completing the update
So many things can go wrong during an update. Consider creating an upgrade
checklist for your application to make the process more streamlined. Take into
account any changes to the items just discussed, combined with the changes we
are about to discuss shortly. You're close, but you're not done yet. Make sure
you have a good backup of your old dictionary.

Converting the data
Changes to any global fields that you have used in one of your tables will necessitate
a table update routine. For example, if you included the Customer Name field in
one of your tables, and Dynamics GP changes the length of that field from 65 to 75
characters, your table's record length will change. At that point, data in your old
table will be incompatible with the new table definition and will create errors.

To incorporate the new table definition in your application, you need to convert the
existing data. Essentially, converting existing data involves transferring the data into
a temporary table, dropping and recreating the table with a new table definition,
and then transferring the data back into the updated table.

Upgrading Customizations

[518]

You'll most likely use the SQL pass-through technology to convert the existing data
in your SQL tables. You can find more information on how to convert SQL tables
in Volume 1 of the Dexterity programmer's guide. This document was installed
as PRGV1.pdf within the Microsoft Dexterity\Dex 11.0\Manuals folder.

Recreating alternate forms and reports
If you created any alternate forms, scrutinize them closely to determine if the
update operation adequately updated your forms.

If you created any alternate reports, you'll need to recreate those reports from
scratch. The update operation does not attempt to update alternate reports.

Updating forms and report dictionaries
There are special considerations if your users have created any modified forms or
reports. It's important that you ensure they are updated properly when your new
chunk file is installed. The easiest way to deploy modified forms and reports is
to export the modifications to a package file before the upgrade. After the export,
rename the existing form and report dictionaries for your application.

Once the upgrade is complete, you can import the package file back into the
dictionary. As the changes are imported, Dynamics GP will create new form and
report dictionaries for your application. Most, but not all, of the modifications will
be recovered. What won't be recovered are any modifications the user has made
to global resources, such as formats or strings.

GP 2013 considerations
Looking forward, to maximize your Dexterity application's performance with
GP 2013 Web Client, you'll want to clean up your code. As you update your
applications, remove any unnecessary comments and scripts with no executable
code. For example, you may have large chunks of code that you've commented
out to keep track of code changes. The Dexterity runtime engine simply skips
over these comments, but Web Client will pass the comments back and forth
between the Windows Communication Foundation (WCF) GP Runtime service
and the Silverlight client. More traffic means slower performance. Getting rid of
the unnecessary clutter will keep messaging efficient.

Another change to prepare for is that GP 2013 allows you to name the system
database to something other than DYNAMICS (for new installations only). Being
able to name the system database gives you the opportunity to have multiple
copies of Dynamics GP running on the same SQL Server instance.

Chapter 11

[519]

You will want to search your code to make sure you don't have DYNAMICS hardcoded
as the database name anywhere. You also need to make sure you change any code,
including the constants SQL_SYSTEM_DBNAME or ST_DYNAMICS, or any constants you
may have created yourself that resolve to the word DYNAMICS.

Replace any instances of these constants or the hard-coded name with code by using
the new GetSystemDatabaseName() function.

Testing your application and building the
update chunk
After an upgrade, it is especially important to test your application thoroughly
before delivering it to your users. Be sure to test it in both multidictionary mode
and Dexterity's Test mode.

To determine which modules need to be included in the updated chunk file,
use the Compare Dictionaries utility in Dexterity Utilities to create the dictionary
comparison report. The Compare Dictionaries utility also generates the
CHANGES.TXT report, which will reveal changes to any of your forms and reports.

It is considered best practice to release a beta version of your upgraded application
to a limited set of users for testing. If the customization is client specific, then a
complete test upgrade of Dynamics GP with your customization is recommended
before performing the production upgrade.

When building the update, include data conversion procedures that operate as
seamlessly as possible without requiring a lot of user interaction. In addition,
including a procedure that will not allow a user to go forward without updating
the tables is a good idea.

Now you're done with your Dexterity upgrade!

Modifier with VBA
Modifier/VBA customizations can open a mixed bag of issues at upgrade time.
Moreover, it's not just Dynamics GP upgrades you need to concern yourself with;
issues such as intervening operating system updates can also ruin your day.
For example, Microsoft Security Bulletin MS08-070, originally published on
December 9, 2008, addressed security holes found in Visual Basic 6 Runtime.
While this critical update may have fixed the runtime vulnerabilities, it broke
many a VBA customization.

This section will review some hazards that could affect your Modifier/VBA
customizations.

http://www.microsoft.com/technet/security/Bulletin/ms08-070.mspx

Upgrading Customizations

[520]

Modifier
You can only make visual changes using the Modifier tool. You can add or remove
buttons and fields, move things around, hide things, change the tab order, colors,
fonts, and so on. You cannot change or attach code using only the Modifier tool
(without VBA), but you can completely change the look and feel of a window.

Upgrades to Dynamics GP can change the layout and content of any window. If
the changes affect one of your modified windows, you may need to tweak your
modified window.

For instance, imagine you have modified the Sales Transaction Entry window so
that it displays the entire 100 characters of the item description. If the new release
of Dynamics GP placed a new field in the original window at exactly the same
position as your expanded description field, you would need to change your
modified window to move things around.

Any changes you make to a window are stored in a forms dictionary for the
appropriate application. Before starting any upgrade, it is critical that you do
the following:

• Back up (copy) your modified forms dictionary
• Export form changes to a package file

Copying and pasting the dictionary's folder will suffice to back up the forms
dictionary. Use the Customization Maintenance window to create the package
file. This package file will later be imported after your update is complete.

Put these steps on your upgrade checklist; you don't want to risk losing those
valuable modifications!

VBA
VBA may be the trickiest upgrade of all. You need to worry about any changes to
the environment as well as changes to Dynamics GP. So really, any changes to the
workstation could cause you to upgrade your VBA code. Something else to consider
during an upgrade is that your VBA code itself could be causing problems with
the upgrade.

So many events, such as security patches, Windows version updates, Modifier
changes, adding another third-party product, and others can ruin your VBA code.
These kinds of changes can happen at any time, and not just as part of a Dynamics
GP release upgrade.

Chapter 11

[521]

The good news is that with most upgrades, nothing at all will impinge on your VBA
additions to Dynamics GP. On the other hand, some changes may look simple but
may prove to be more challenging.

While this is in no way a complete list, here are some key changes to look for:

• Environment changes
 ° Processing system (32 or 64-bit)
 ° Operating system (XP, VISTA, Windows 7, Windows 8)
 ° Other installed software (Microsoft Office)
 ° Service packs
 ° Device drivers

• Window changes
 ° Moving fields
 ° Deleting fields
 ° Changing a field's data type
 ° Changing the control type of a data type

• Report changes

 ° Changes to the fields
 ° Changing the sort order
 ° Changing restrictions
 ° Changing report sections

Environment changes
Over the last couple of years, we've seen many environment changes that proved
difficult to resolve. We had a major change in operating systems with the move
to Windows 7. Many problems were introduced by changing from an x86 (32-bit)
processor to a 64-bit processor.

Major changes in the operating system environment, such as this, can wreak havoc
on Dynamics GP VBA customizations. The change just mentioned created massive
problems. VBA would simply stop working and start throwing the error message:

File not found: VBA6.DLL

Upgrading Customizations

[522]

At the same time, a change in Microsoft Office 2010 (Office 2010) created a problem
in the system registry keys that would cause Dynamics GP to crash and make a call
to Dr. Watson. To further complicate matters, the order in which you installed the
programs and whether or not you ever had the previous version installed made a
difference. Several environment changes were at work, causing errors. It seemed as
if a new slant on the same problem was creeping up everywhere!

Just to make things more interesting, new device drivers being released to support
the 64-bit processor were battling with the existing device drivers and crashing
the system.

If you find yourself running into odd problems, such as these, don't despair! Reach
out to the web community and search for a solution; you will not be left alone in the
dark. The 32-bit/64-bit, Office 2010 registry changes, and the device driver problems
were all worked out in time.

You can read all about the reason behind the file not found error and how
to ultimately resolve it by typing in the following search criteria in your
Internet browser:

VBA6.DLL File Not Found GP

Of particular interest is a series of articles posted by Vaidy Mohan that begin with
the article posted at http://vaidymohan.com/2010/08/23/.

The move to Windows 8, SQL Server 2013, and Office 2013 is at our doorstep,
so beware!

Window changes
Because most VBA customizations rely heavily on objects and fields in the windows;
a change to a window could impair your code in a big way.

For example, the upgrade from release 9.0 to release 10.0 changed the Sales
Transaction Entry window a great deal. In release 9.0, you had buttons in the
control area of the window. In release 10.0, the buttons disappeared. A single
button with a drop-down list appeared in their place, called the Action button.

This change was fantastic for users; it cleaned up the screen and matched actions
to the document type. On the developer's side, however, the change was painful.
Suddenly, your code was trash if it referenced the Save, Delete, Void, Post, Transfer,
or Purchase buttons. There was a lot of garbage, ah, code, that you needed to rewrite.
Take a look at the following change.

http://vaidymohan.com/2010/08/23/
http://vaidymohan.com/2010/08/23/

Chapter 11

[523]

The release 9.0 window looked like the following screenshot:

The release 10 window looked like the following screenshot:

Upgrading Customizations

[524]

Without thoroughly testing every function and procedure of your code, this kind of
change could be devastating.

Another window-change consideration involves newly modified windows. If your
VBA code was running on an unmodified window, and later the window is modified
(using the Modifier tool), your code will not work anymore. The reason for the
breakdown is that you specify whether your VBA code runs against the original or
modified version of the window. You can only pick one; it cannot run against both.
If you want your code to start running against a modified version of the window,
you'll need to change the EventMode property for the window in the VBA editor.

Report changes
As VBA can also be used with Report Writer, we'll touch on a couple of things to
consider during an update.

Changes to the report fields can cause similar problems with reports as they do with
windows. For example, if a currency field is changed to an integer field, some of your
calculations may fail. Similar to windows, any changes to a data type or control type
that your code depends on may require code modification. Studying the SDK makes
it easier to identify many changes before you start the upgrade.

Also documented in the SDK are changes to the data tables themselves as well as
changes to Report Writer relationships. If your code references one of the changed
tables, you may need to update it. Even changes in Report Writer relationships can
lead you to potential difficulties.

Changes to report sections could be very problematic for a VBA application because
report sections control data grouping.

If any of your VBA code pulls in a SQL view, you'll want to double-check the SQL
object to make sure it is still the same.

Most often, you won't have any major issues while updating your VBA code.
You still need to test, test, and test it again, but you probably will not need to
change a thing.

GP 2013 considerations
Your VBA code will still work fine with the Rich Client (read Dexterity) installation
of GP 2013, but it will not be supported when using the Web Client. You might want
to start learning Dexterity and VS Tools!

Chapter 11

[525]

Extender and Builder(s)
Upgrading applications you created with Extender, SmartList Builder, or Excel
Report Builder is simpler than updating a VBA project.

Somebody else, say Microsoft, will work out any code problems with the
functionality of the actual Extender or Builder modules themselves!

Your job is to check the dataset delivered by your SmartList objects or Excel reports,
and make sure your Go Tos go to the right place. Test your Extender windows to
make sure they open at the right time, the conditions work, the linked tables work,
and the fields show up in a SmartList object.

Extender
More specifically, for Extender, you need to examine the GP windows that you have
used with your Extender windows to make sure that there weren't any changes that
might affect your customization. You can use the SDK, as explained in an earlier
section, to discover any changes.

For example, if you are using a field on the Customer Maintenance window to
determine which Window Group window(s) should open, and that field is moved
to another window in the new release, you'll need to rework your Window Group's
condition statement(s).

Similarly, if you are using any of the auto-open options, you need to make sure
the Dynamics GP window field you're using is still in the window and correct tab
sequence to satisfy your customization's requirements.

For example, if you want your Extender window to open when the user tabs off the
last field in the Customer Maintenance window, and the last field in that window
changes, you'll need to adjust your Extender window accordingly.

In short, you need to test each of the touch points between your Extender resources
and Dynamics GP. Some of the things to check include:

• Form and window names
• Fields used as key fields
• Fields used in condition statements
• Fields used for auto-open options
• SmartList integrations
• Table links

Upgrading Customizations

[526]

SmartList Builder and Excel Report Builder
For the Builder objects, your job is much the same as it is for Extender, except
that you will need to concentrate on data table changes. Changes to forms are
important too, because they may affect your Go Tos, but table information is
the king of these tools.

In addition to any data model changes, if you have built any SmartList objects or
Excel reports using custom views or stored procedures, you'll need to make sure
those SQL objects are still returning the correct data.

For example, the Analytical Accounting tables were changed in Dynamics GP 10
SP2, which caused some custom SmartList Builder reports to stop working. This also
served as a wake-up call to many, reminding us that service packs need to be tested
as well, and not just major release changes. More information about this change is
available on Jivtesh Singh's blog at http://www.jivtesh.com/2009/02/aa-table-
changes-with-gp-10-sp2.html.

Visual Studio Tools (VS Tools)
Upgrading a customization created with VS Tools is a very straightforward operation.
There are fewer steps than those needed to upgrade a Dexterity application.

Before getting started, be sure you have the most current release of VS Tools installed.

In this section, you'll walk through the steps to upgrade a VS Tools integration from
Dynamics GP release 10 to Dynamics GP release 2010. The procedure is the same for
both C# and Visual Basic.

Downloading the application
This example uses a sample application, which you can download. Download
this release 10 integration from the address https://www.box.com/s/
eqvsyrsv89i6o5p3ahyq. From the web page, select the PostingSOPBatches.zip
item as shown in the following screenshot:

http://www.jivtesh.com/2009/02/aa-table-changes-with-gp-10-sp2.html
http://www.jivtesh.com/2009/02/aa-table-changes-with-gp-10-sp2.html

Chapter 11

[527]

After you have downloaded the file, create a new folder named Samples in
the \GP2010 VS Tools SDK folder. Extract the contents of the PostingSOPBatches.
zip file into that folder. Delete the hidden file PostingSOPBatches2.suo from the
extracted files.

Opening the solution
Launch VS Tools and open the solution file of the target integration. Be sure you
have a backup of the solution files before you embark on this journey. The extension
of a solution file is typically .sln.

From the File menu select Open | Project/Solution. Navigate to the …\GP2010 VS
Tools SDK\Samples\PostSOPBatchDemo_10\PostSOPBatchDemo100 folder and
open the PostingSOPBatches2.sln file.

If you created your solution with an earlier release of VS Tools, an update wizard
will ask you if you want to update your solution. You do. Follow the instructions
from the wizard to update the solution files to the current release. At the end of
the conversion, you'll get a report that will show you any conversion errors and
warnings. The following screenshot is a copy of the conversion error report you may
receive. This report shows no errors and only one warning. Click on the plus (+) sign
to the left-hand side of the file generating the warning to get more information.

Upgrading Customizations

[528]

The warning in the following screenshot is telling you that you probably want to
update your .NET settings. It's not directly saying that, but if you read between the
lines a bit, that's the gist of the .NET warning (I can hear your groans). Actually,
this project references .NET 4.0 resources (look at the system references):

Fortunately, changing the .NET framework is easy. Close the conversion report and
double-click on the Properties folder under the PostingSOPBatches2 solution. In
the window that opens, change the target framework to 4.0 and then answer with
a yes to the dialog that pops up. The following screenshot shows the location of the
framework selection field:

Chapter 11

[529]

Rebuilding application assemblies
If you used a dictionary other than those shipped with Dynamics GP, then you
created an application assembly. You may also have created an assembly for a
forms dictionary. You need to rebuild those assemblies.

Use the DAG program to create the new assembly. You installed DAG at the same
time you installed VS Tools. You'll find it in the GP2010 VS Tools SDK folder. It is
a command-line utility; you need to run it from the command prompt.

Our sample project does not use any outside dictionaries. In order to illustrate
the process, we'll use the sample integrated application you installed when you
installed Dexterity.

Drop the C:\Program Files (x86)\Microsoft Dexterity\Dex 11.0\Samples\
Develop\DEVELOP.CNK file into the Dynamics GP's root folder. Launch Dynamics GP
to unchunk the file, thereby creating the Develop dictionary and updating the launch
file. The dictionary ID for Develop.dic is 3333. You can discover a dictionary's ID by
looking in the Dynamics.set file.

Upgrading Customizations

[530]

To generate an assembly for this (main) dictionary, you'll need to use the /M
parameter with the DAG command. To generate an assembly for a modified
forms dictionary, use the /F parameter.

From the command prompt, navigate to the location of the DAG.exe file and generate
the assembly. If you installed everything in the default locations, the command to
generate the assembly files is as follows:

• For a 32-bit computer:
dag.exe 3333 "C:\Program Files\Microsoft Dynamics\GP2010\Dynamics.
set" /M

• For an x64 computer:

dag.exe 3333 "C:\Program Files (x86)\Microsoft Dynamics\GP2010\
Dynamics.set" /M

You may need to use an elevated command prompt to execute the second
command shown. To obtain an elevated command prompt, run the cmd.exe file as
the administrator. The command-line shortcut is located in the Accessories group
in the All Programs menu. The following screenshot shows the Command Prompt
menu item. Right-clicking on the item will open the second menu where you
select the Run as Administrator menu item:

If your command was successful, you'll have two new files:

• Application.SampleIntegratingApp.dll

• Application.SampleIntegratingApp.xml

If you used the /F parameter and built an assembly for a forms dictionary, you'll
create the following two files:

• Application.SampleIntegratingApp.ModifiedForms.dll

• Application.SampleIntegratingApp.ModifiedForms.xml

Chapter 11

[531]

You'll find the files in the same folder as the DAG.exe file.

With the assemblies rebuilt, we move on to fixing the references.

Updating references to the assemblies
You need to update the assembly references because they are most likely pointing to
the wrong location. Your task is to change the path so that they are pointing to the
correct file. The PostingSOPBatches2 project uses the following assemblies, which
we need to change:

• Application.Dynamics
• Application.SmartList
• Microsoft.Dexterity.Bridge
• Microsoft.Dexterity.Shell

First, delete the current references. You can do this by selecting the reference, right-
clicking on it, and then selecting the Remove menu item. Do this for each of the four
references just listed.

Next, add a new reference for each of the references that you deleted. Do this by
right-clicking on the References folder and then select the Add Reference… menu
item. See the following screenshot as an example:

Upgrading Customizations

[532]

Add the following references, as indicated, from the \Microsoft Dynamics\
GP2010\ folder:

• Application.Dynamics.dll

• Application.SmartList.dll

• Microsoft.Dexterity.Bridge.dll

• Microsoft.Dexterity.Shell.dll

Fixing the code
These instructions would certainly be incomplete without this section. You should
always start by reviewing Dynamics GP SDK to see if you need to make any obvious
changes. Beyond that, it is test, test, test, and then test again!

Not only do you have to worry about the new features you want to include in your
application, but you also need to make sure Dynamics GP hasn't done anything to
mess you up.

We put "Fixing the code" as if it were a one-time event. As you know, the Fixing the
code section happens over and over (and over) again.

Building the new solution
The final step is to build the updated solution and test it in multidictionary mode,
and then fix the code again!

As we suggested in the Testing your application and building the update chunk section,
releasing a beta version to a select number of users is considered the best practice for
testing updates. That suggestion certainly applies to your VS Tools customizations
as well. Likewise, if the customization is client specific, then you should consider
a complete test upgrade of Dynamics GP with your customization installed before
performing the production upgrade.

Once testing is complete, building the new solution is relatively painless. From the
Build menu, simply select the Build PostingSOPBatches2 menu item. You'll get
an Error List section (report) informing you of any errors, warnings, or messages
generated from the build. Of course, you will need to clean up any errors and decide
whether you care about the warnings or messages. The following screenshot shows
what the postbuild error list looks like:

Chapter 11

[533]

You're done! Now you can bundle up your customization and send it off
for deployment.

GP 2013 considerations
Your .NET code will function just fine with the Web Client, but WinForms will not
be recognized. Without a user interface, your event-driven code won't get executed.
To get it up and running on the GP 2013 Web Client, you need to create your user
interface using Dexterity and change your .NET code to trigger off the Dexterity
window events.

You can find a table in Appendix B, Event Matrix, that contains a side-by-side matrix
comparing Dexterity, VS Tools, and VBA events. As you will see in the table, the
events across all three tools are very similar. Appendix B, Event Matrix is available
as a free, downloadable chapter from the following link:
http://www.packtpub.com/sites/default/files/downloads/0264EN_
Appendix_B_Event_Matrix.pdf

To get a feel for how to build your user interface using Dexterity instead of
WinForms, go through the exercises in Chapter 4, Building the User Interface.

Upgrading Customizations

[534]

Summary
In this chapter, we learned about what the process looks like when you are faced
with an upgrade. As you see, each type of customization goes down a different
path to arrive at the same destination.

You learned that Dynamics GP SDK is a fabulous resource when you need to learn
about the changes to the data model from version to version.

You did a sample upgrade of both a Dexterity customization and a VS Tools add-in.
The two most feature-rich tools also require the most effort to update.

You looked at several scenarios that can bring down a VBA customization, and
where you can find some help for this. Finally, the best of the bunch in terms of
upgrade effort has to be SmartList Builder and Excel Report Builder. If there aren't
any SQL complications or widespread metadata changes, upgrading Dynamics GP
to a new release will automatically upgrade your Builder customization.

In the next chapter, you'll learn where to go from here and how to get there. The
chapter is rich with information about support forums, blogs, books, web links, and
training materials that will help you learn more about creating customizations for
Dynamics GP.

Index
Symbols
.dic files 447
.dll files 132
(L) Display By field 416
(L) Display Options field 415
(L) End Location field 417
(L) Start Location field 416
.NET assembly 64
.NET Framework 62
.tlb files 132

A
account framework 23
Active Data Objects. See ADO
AddIn assembly

creating 470
AddIns folder 447
AddsAllowed scrolling window 230
ADO

about 71
capabilities 72
developer skills requisites 72
features 71

Advanced Security module 35
AfterActivate event 344
AfterClose event 344
AfterGotFocus event 344
AfterLineChanged event 345
AfterLineGotFocus event 345, 362
AfterLineLostFocus event 345, 363
AfterModalDialog event 344, 370-375
AfterOpen event 344

AfterUserChanged event 344, 374, 378
Allow Active Locking 165
Alternate form 119
Alternate/Modified Forms and Reports

settings 126
Alternate Report 62
Alternate Window 62
AltLineColor property

about 135, 145
setting 224

Appearance property 136
application

building 483, 484
deploying 483, 484
testing 519

application assembly
about 447
referencing 466

Application.Dynamics.dll 447
Application.FA.dll 447
Application Programming Interface

(API) 385
articles, Vaidy Mohan

URL 522
assembly

building 474
testing 474

AssemblyInfo.cs file 483
Auto-Chunk window

about 277
Chunk Dictionary 277
Current Dictionary 277
Product Information window 280

[536]

AutoCopy property 134
AutoLinkTable property 140, 291
automation clients 72
automation controllers 72
automation servers 72
AutoOpen property 140, 291
AutoSetDexColors

property 84, 446, 457, 459, 460

B
Band events, VBA

about 112
BeforeAF 113
BeforeAH 113
BeforeBody 113
BeforePF 113
BeforePH 113
BeforeRF 113
BeforeRH 113

base resources, Dexterity
about 155
data types 155, 156
fields 158
format 157

base table 394
Beep method 343
Before Activate event 344
BeforeClose event 344
BeforeGotFocus event 344
BeforeLineChange event 345, 363
BeforeLineGotFocus event 345, 362
BeforeLineLostFocus event 345, 363
BeforeLinePopulate event 345, 364, 365
BeforeModalDialog event 344, 368, 369
BeforeOpen event 344
BeforeUserChanged event 344, 374
Big Line Item 146, 310
big line item, scrolling windows

about 222
marking 223

boolean, Dexterity control types 551
Border property 136
bottom-up approach 132
browse buttons, Vendor Maintenance

window 46

BrowseOnly scrolling window
about 224
lookup windows 225
visual properties, modifying 224

Btrieve 10
built-in report writer 15
button control 455
button control, properties

AutoSetDexColors 457
ButtonType on dexButtonProvider 456

Button controls
about 462
properties 462-464

button drop list, Dexterity control types 551
Buttons, VS Tools controls

about 84
field 86
Standard 84
StatusArea 85
Toolbar 85
ToolbarWithSeparator 85

ButtonType on dexButtonProvider
property 456

C
C# 445
calculated fields, SmartList objects

about 403-405
CONSTANT 2 407
CONSTANT 4 408
List of On Hand QTY 406, 407
QTY Available for Sale 405, 406

CancelLogic parameter 343, 374
Cancel property 134
capabilities, Continuum 68
capabilities, DDE \ ODBC \ ADO \ OLE

Automation 72
capabilities, Dexterity 61, 62
capabilities, eConnect 78
capabilities, Extender / eXtender

Enterprise 69
capabilities, Integration Manager 73
capabilities, Modifier with VBA 67
capabilities, Table Import 75
capabilities, VS Tools 64

[537]

capabilities, Web services 80
caption property 339, 341
Cards section 394
Catering Company field 435
Certified for Microsoft Dynamics.

See CfMD
CfMD 12
Changed property 341
Change() method 477, 478
Change script 195
change, table operations 198
char() function 219
check box, Dexterity control types 551
Chunk Dictionary

Build Number 278
Compression 279
Installation Scripts 278
Major Version 278
Minor Version 278
Module 278
Version Information 278

Chunk file
creating 119

chunk file, Dexterity application
creating 272
dictionary module, transfer 275-277
resources, extracting 273, 274

City field 435
City Lookup object

creating 436
CLARK 23
classroom training, Dynamics GP 536, 537
Click event 455
CloseBox property 141, 291
Code Modules 346
Collections module

referencing 358-361
column headings, static text 189
ComboBox control

about 460, 465
properties 465

ComboBox control, DropDownStyle options
DropDown 460
DropDownList 460
Simple 460

ComboBox control, properties
AutoSetDexColors 460

combo box, Dexterity control types 552
ComboBoxes, VS Tools controls 86
COM objects 385
Compare Dictionaries utility 519
Component Object Model (COM) 62
components, Dexterity 131
components, VBA

about 336
events 343
methods 342
objects 338, 339
properties 339, 340

Composite
about 138, 552
creating 138, 139

COM support 16
considerations, Dynamics GP 2013 484
CONSTANT 2 field 407
CONSTANT 4 field 408
Contact Department field 173
Contact Lookup window 181
Contact Person field 173
Contact Phone Master Key1 163
Contact Phone Master Key2 164
Contact Phone Master Key3 164
Contact Phone Master table

creating 163
table keys 163, 164

Contain.exe 131
Continuum

about 68, 113, 385
capabilities 68
developer skills requisites 69
features 68

ControlArea property 446 84, 142
controls

adding, to window 454, 455
control type 551
copy from table statement 203
copy from table, table operations 200
copy to table, table operations 199

[538]

core modules, Dynamics.dic dictionary
Bank Reconciliation 82
General Ledger 82
Inventory 82
Payables Management 82
Purchase Order Processing 82
Receivables Management 82
Sales Order Processing 82
System Manager 82

cross dictionary access
about 358
Collections module, referencing 358-361

CRUD 475
currency, Dexterity control types 552
currency fields 402
current table naming convention 41
Customer Contact Lookup window

creating 152
Customer Contact Maintenance form

and window
creating 167

Customer Contact Maintenance window
about 181
creating 152

Customer Contact Master Key1 161
Customer Contact Master Key2 162
Customer Contact Master table

creating 160
table keys 161, 162

Customer contacts, Extender 441, 442
Customer Contacts lookup window

creating 152
customer exmaple, record retrieving

about 202, 203
browse buttons 206-208
customer zoom 203-206

Customer field 435
Customer ID field 202
Customer Number field 202
Customers and Prospects lookup

window 226
Customer window group, Extender 437-441

D
DAG

about 468
using 468-470

dag.exe file 468, 469
database-level integrations

about 59
tasks 59

Database Management System (DBMS) 71
database trigger

about 97, 235
considerations 237
cross-dictionary considerations 237
registration procedure 235

DataBindings property 458
data model changes, Dynamics GP SDK

about 491
deleted columns 493
deleted indexes 493
deleted RW relations 495
deleted tables 492
different data type 494
different index columns 494
different segments 494
new columns 492
new indexes 493
new RW relations 495
new tables 492

data table naming convention,
Dynamics GP

about 33
current table naming convention 41-43
module prefixes 34, 35
numbering convention 35, 36
stored procedure 39, 40

DataType
about 133
composite definition 133
Control Type 133
elements 133
format 133
Keyable length 133
static values 133
storage size 133

[539]

data type changes 514-516
Data Type Definition window 156
DataType property 134
data types

changing, Modifier used 332, 333
creating 155, 156

date, Dexterity control types 553
date fields 402
DDE

about 71
capabilities 72
developer skills requisites 72
features 71

DDE Conversation 71
debugging 346, 347
debugging tools 16
Debug menu 347
Debug mode 124
Default Button 228
DefaultDblClick property 144, 228
detail form 430
detail window 430
developer skills requisites, Continuum 69
developer skills requisites, DDE \ ODBC \

ADO \ OLE Automation 72
developer skills requisites, Dexterity 63
developer skills requisites, eConnect 79
developer skills requisites,

Extender / eXtender Enterprise 70
developer skills requisites, Integration

Manager 74
developer skills requisites, Modifier with

VBA 67
developer skills requisites, Table Import 76
developer skills requisites, VS Tools 64
developer skills requisites, Web services 80
Developer Toolkit articles and links 548
Developing for Dynamics blog

about 547
Developer Toolkit articles and links 548
Dexterity articles and links 548
Dynamics GP blogster 549
DynDeveloper.com 550
Modifier & VBA articles and links 548
Support Debugging Tool 549

development dictionary
creating 123

development environment, integrating
application

development dictionary, creating 123
Dex.ini file, modifying 122
DexSense, installing 129
Dexterity, installing 121
SDK, installing 121
SDT, installing 130
setting up 121
test mode 124, 125
user security, modifying 126-129

development process, integrating
application

application, developing 118
Chunk file, creating 119
development environment, preparing 118
final product, delivering 120
software, installing 118

Development Tool
reference link 538

Dex.chm 131
Dex.dic 131
Dex.exe 131
Dex.ini file

modifying 122
DexSense

about 118, 193
installing 129

Dexterity
about 12, 60, 118, 385
built-in report writer 15, 16
capabilities 61, 62
components 131
COM support 16
debugging tools 16
design 17
developer skills requisites 63
development environment, setting up 121
development process 117
dictionary resources 132
end user prerequisites 63
exception handling 15
features 60

[540]

Form Definition window 82
Forms 82
function library 15
Graphical forms designer 16
limitations 63
multidictionary environment 61
overview 12, 13, 130
Resource Explorer 13, 148
resources 132
sanScript 14
source code control 15
Table Definition window 160
triggers 97
used, for modifying UI 81, 82

Dexterity application
chunk file, creating 272
completing 263
deploying 245
distributing 284
forms and windows 263
reports 267
resources available 283
tables 267
testing, in multi-dictionary

environment 281
Dexterity application deployment

about 245
system requisites 246
table creation routines 253
versions and builds 251

Dexterity application, distributing
chunk, sending 284
Windows Installer services 285

Dexterity application, testing
chunk file, doesn't unchunk 282
tools and techniques, testing 282, 283

Dexterity articles and links 548
Dexterity Basics training manual

downloading 43
Dexterity Bridge assembly 447
Dexterity control types

about 551
boolean 551
button drop list 551
check box 551

combo box 552
composite 552
currency 552
currency (variable) 553
date 553
drop-down list 553
horizontal list box 553
integer 553
list box 554
list view 554
long integer 554
multi-select list box 555
non-native list box 555
picture 556
progress indicator 556
push button 556
radio button 556
Radio group 556
reference 556
string 556
text 556
time 556
tiny integer 557
tree view 557
visual switch 557

Dexterity customization
code, changing 514
generic source code control, setting up 500
new development dictionary,

creating 511-513
new project, starting 510, 511
old dictionary, checking in 507-509
upgrade checklist, creating 517
upgrading 500

Dexterity design 17
Dexterity documentation

URL 283
Dexterity events

about 94
Field events 95
Form events 94
scrolling window events 96
Window events 95

[541]

Dexterity integration guide 537
Dexterity object events

Activate (Window) 559
Change (Field) 560
ContextMenu (Field) 561
ContextMenu (Line) 561
ContextMenu (Window) 561
LineChange 560
LineDelete 560
LineFill 559
LineInsert 560
LinePost 560
LinePre 559
MouseEnter 560
MouseExit 561
Post (Field) 560
Post Script (Form) 560
Post (Window) 559
Pre (Field) 560
Pre Script (Form) 560
Pre (Window) 559
Print (Window) 560

Dexterity Runtime Engine
(Dynamics.exe) 31, 32

Dexterity sample applications
reference link 539

Dexterity Shell assembly
about 446
AutoSetDexColors property 446
ControlArea property 446
StatusArea property 446

Dexterity Source Code Control Server.
See DSCCS

Dexterity, triggers
Database 97
Focus 98
Form 98
Function 98
Procedure 98

Dexterity WYSIWYG Form Designer
window 290

DexUtils.chm 131
DexUtils.dic 131
DexUtils.exe 131
dialogs 367

dictionary assemblies
building 468

Dictionary Assembly Generator. See DAG
dictionary resources

accessing 465
application assembly, referencing 466
namespace, referencing 467, 468

dictionary resources, Dexterity
Composite 138
DataType 133
Field 134
form 140
Format 133
Scrolling window 142
Table 139

dictionary resources, VS Tools 99
documentation for Developer Toolkit

reference link 538
Dpm.exe 131
Dps.exe 131
Drill Down Builder 387, 422-428
drill downs, types

Extender 422
Form 422
SmartList 422

drop-down list, Dexterity control types 553
DSCCS

configuring 504, 505
installing 501-503

DUOS
about 114, 338, 370
architecture 371
data, deleting 374-378
data, retrieving 372
data, saving 373, 374
field information 115
key information 115
object, declaring 372
table information 114

DUOS data
deleting 374-378
retrieving 372
saving 373, 374

DUOS object
about 371
declaring 372

[542]

DUOSObjects collection 371
DUOSObjectsGet method 372
DUOSProperties collection 371
DUOSProperty object 371
DUOS table

about 114, 115, 370
information, adding 114

Dynamic Data Exchange. See DDE
Dynamics communities

about 539, 540
URL 539

Dynamics.dic dictionary 82, 83
Dynamics.exe 131
Dynamics GP

about 9, 118, 385
additional data, storing 114
additional window elements 48
Btrieve 10
classroom training 536, 537
data table naming convention 33
FairCom's c-tree Plus 10
functionality, changing 94
Microsoft SQL Server 10
native user interface 10
online training 536
project, defining 56
resources 538
Sales Transaction Entry window 48
software manuals 537
SQL table 32
SQL table names 32
tools 60
user interface, modifying 81
User Interface (UI) 43

Dynamics GP 2013
considerations 484

Dynamics GP application
components 17
launching 18, 19
runtime environment 19

Dynamics GP data model changes
data type changes 514-516
field changes 516
functionality changes 517
procedure or function changes 516
table changes 516

Dynamics GP Most Valuable
Professionals (MVPs) 539

Dynamics GP MVP blog
URL 526

Dynamics GP SDK
about 487
data model changes 491
form changes 498
launching 488
reference link 538
screen 488
script changes 489-491
table changes 495

Dynamics GP Software Development
Kit 118

Dynamics.set file 63, 358, 469
dynamics user group forum

about 542
URL 542

Dynamic User Object Store. See DUOS
DynDeveloper.com 550

E
eConnect

about 76
capabilities 78
components 76
developer skills requisites 79
end user prerequisites 79
features 76
interfaces 76

eConnect for Microsoft Dynamics GP 2010
Integration Service 76

Editable property 135
editable scrolling window

about 228, 229
Line Events 229

editions, Extender
eXtender Enterprise 430
Extender Standard 429

e-mail link button, Sales Transaction Entry
window 48

Empty property 339
Enabled property 339

[543]

end user prerequisites, Dexterity 63
end user prerequisites, eConnect 79
end user prerequisites, Modifier with

VBA 67
end user prerequisites, VS Tools 64
end user prerequisites, Web services 81
environment changes, VBA customizations

521-523
eOne Solutions

about 78, 430
URL 430

event form project, Extender
about 431-434
Catering Company field 435
City field 435
City Lookup object, creating 436
Customer field 435
Event Location field 435
Extender menu 437
Extra Windows button 436, 437
Rental Company field 435
Rental Location field 435

event handler 99
Event Location field 435
EventMode property 341
events 343
Event Type field 434
Excel Report

Builder 386, 419-422, 526
exception handler 15
exception handling 15
expansion arrows, Sales Transaction

Entry window 52
ExportOneLineBody switch 28-31
Export to Text File window 168
Extender

about 69, 387, 429, 525
Customer contacts 441, 442
Customer window group 437-441
editions 429
event form project 431-434
line item note 443
object types 429, 430
overview 429
working with 430

Extender Detail form 90
Extender Detail window 91, 92
Extender dialog 430
Extender drill down 422
eXtender Enterprise

about 69, 114, 430
using 114

Extender / eXtender Enterprise
capabilities 69
Detail Forms 90
Detail Windows 91
developer skills requisites 70
end user prerequisites 70
features 69
Forms 89
Notes window 93
used, for modifying UI 88
windows 90

Extender form
about 89
fields 89

Extender menu 430, 437
Extender Notes window 93
eXtender sample applications

reference link 539
Extender Standard 429
Extender window 90
Extender Windows window 88
Extract dictionary 119
Extra Windows button 436, 437

F
FairCom's c-tree Plus 10
fam.dic 447
favorite 386
feature specific requisites,

Dynamics GP 2010
about 247
business analyzer 249
Business Portal 5.0 249
Business Portal 5.1 250
Charts and KPIs (Key Performance

Indicators) 249
e-mail functionality 248

[544]

Unified communications 249
Word form documents 248
Word form template generator 249
Workflow in 32-bit environments 250
Workflow in 64-bit environments 250

features, SmartList Builder 393
feld changes 516
Field

about 134
lookup buttons, linking 137
prompts, linking 136, 137

field button 86
Field button type 456
Field Definition window 158
field events, Dynamics GP

about 344
After Got Focus 344
After Lost Focus 344
After User Changed 344
Before Got Focus 344
Before Lost Focus 344
Before User Changed 344
Changed 344

field events, Dexterity
about 95
change 95
ContextMenu 95
MouseEnter 95
MouseExit 95
post 95
pre 95

field events, VBA
AfterGotFocus 110
AfterLostFocus 110
AfterUserChanged 110
BeforeGotFocus 109
BeforeLostFocus 110
BeforeUserChanged 110

field events, VS Tools
about 105
Change 105
ClickAfterOriginal 105
ClickBeforeOriginal 105
EnterAfterOriginal 105
EnterBeforeOriginal 105

LeaveAfterOriginal 105
LeaveBeforeOriginal 105
ValidateAfterOriginal 106
ValidateBeforeOriginal 106

field methods
Focus 343
FocusSeg 343
Move 343

field options, SmartList Builder 400, 401
field properties

about 134, 135, 339
caption 339
Empty 339
Enabled 339
Height 339
Left 339
Locked 340
name 340
object properties 134
Required 340
Tab stop 340
Top 340
Value 340
ValueSeg 340
Visible 340
visual properties 135
Width 340

fields
displaying, SmartList object used 397, 398,

399, 400
fields, Dexterity

creating 158
Field_SetAltLineColor() function 145
fields, form and windows

adding 173
global field, adding 174
global field properties 175
local fields 178, 179
window text properties 175

field types, SmartList Builder
currency fields 402
date fields 402
integer fields 402
long integer fields 402
string fields 402, 403

[545]

field values
setting 356, 357

fill window statement 216
final product

delivering 120
Focus trigger

about 98, 233
considerations 235
cross-dictionary considerations 235
registration procedure 234

form
about 140, 429
adding, to Vendor Quick Entry project 453

form and windows, Dexterity
Customer Contact Maintenance form 168
Customer Contact Maintenance form and

window 167
Export to Text File window 168
Import From Text File window 169
Replace window 169
RM_Customer_Address form 167
RM_Customer_Contact_Maintenance form

169
scrolling window 180, 181
tables, attaching 169
window fields, removing 171, 173
window properties, setting 170

form and windows
Contact Lookup window 181
creating 167
window fields 182

form and windows, Dexterity application
about 263
fields, adding 173
formats, linking 265
lookup buttons, hyperspacing 265
lookups, linking 264
maintenance 167
prompts, linking 264
tab order, setting 266
tool tips, adding 264
user interface standards, complying

with 267
windows opening positions and sizes,

setting 266

Format
about 133
changing, Modifier used 328, 329

Format Definition window
creating 157

format, Dexterity
creating 157

form changes, Dynamics GP SDK 498
Form Definition window 82, 181
Form drill down 422
Form events, Dexterity

about 94
Post 94
Pre 94

Form events, VS Tools
about 100
CloseAfterOriginal 100
CloseBeforeOriginal 100
OpenAfterOriginal 100
OpenBeforeOriginal 100

Forms
about 82
window objects 83
windows 83

Form trigger
about 98, 232
considerations 233
creating 240
cross-dictionary considerations 233
processing procedure, creating 240-242
registration procedure 232

forums
about 539
Dynamics communities 539
Dynamics user group 542
GPWindow 543
MSDN 546
Tek-Tips forum 541

functionality changes 517
Function events, VS Tools

InvokeAfterOriginal 106
InvokeBeforeOriginal 106

function library 15

[546]

function trigger
about 98, 239
considerations 240
cross-dictionary considerations 240
registration procedure 239

G
General Entry window modifications

about 304-306
fields, adding to scrolling window 309-312
graphic elements, adding or

changing 319, 320
static text, modifying 313, 314
window fields, adding 307-309
window fields, modifying 307-309

general requisites, Dynamics GP
2010 246, 247

generic source code control
DSCCS, configuring 504, 505
DSCCS, installing 501-503
setting up 500
validation errors, resolving 506

GetFirst() method 481
get first statement 210
GetLast() method 481
Get() method 477
GetSystemDatabaseName() function 519
get, table operations 198
global field properties 176, 177
global fields 174
global resources

changing, Modifier used 325
data type, changing 332, 333
formats, changing 328-332
message resources , changing 333, 334
native pictures, changing 326
pictures, changing 325, 327
string resource, changing 328

Go To button
creating 350-352

Go Tos
about 387, 410, 411
Item Maintenance window 411, 412
Item Transaction Inquiry window 411-414

GP 2013 considerations, VBA
customizations 524

GpAddin.cs file 472
GPWindow

about 543-545
URL 543

Graphical forms designer 16
graphic elements, General Entry

window modifications
about 319
adding or changing 319, 320
new picture, adding 321-324
picture, changing 324, 325

Grid methods
Hide 343
Move 343
Show 343

Grids 361
GroupBox control

about 464
properties 464

H
Height property 339
Help icon button, Sales Transaction Entry

window 53, 54
History phase, transaction tables

about 39
URL 39

horizontal add-on
about 11
sampling 11

horizontal list box, Dexterity control
types 553

HTTP 80
Hyperspace property 135, 265

I
IDE (Integrated Development

Environment) 288
IG.chm 131
IMAP (Internet Message

Access Protocol) 80
import 430

[547]

Import.chm 131
information icon, Sales Transaction Entry

window 51, 52
INITIALIZE procedure 227
installation, VS Tools 448

running 450
integer, Dexterity control types 553
integer fields 402
Integrated Development Environment

(IDE) 60
Integration Manager

about 73
capabilities 73
developer skills requisites 74
features 73

integrations, types
about 59
database-level integrations 59
user interface level integrations 59

invalid direct reference 268
invalid transitive reference 269
IsLoaded property 341
Item Maintenance window

about 412
Item Number field 412

Item Number field 412, 415
Item Transaction Inquiry window

(L) Display By field 416
(L) Display Options field 415
(L) End Location field 417
(L) Start Location field 416
about 413, 414
Item Number field 415

K
Knowledge Base (KB)

about 509
URL 509

L
Label control, properties

LinkField on dexLabelProvider 459
Label controls

about 459-462
properties 461, 462

Labels, VS Tools controls 86
launch file (Dynamics.set)

about 19
components 19
elements 20, 21

Left property 339
limitations, Dexterity 63
LineChange events

about 229, 363
BeforeLineChange 363

LineDelete event 230
Line Events, editable scrolling window

about 229
LineChange 229
LineDelete 230
LineFill 229
LineInsert 230
LinePost 229
LinePre 229

LineFill event 229
LineGotFocus events

about 362
AfterLineGotFocus 362
BeforeLineGotFocus 362

LineInsert event 230
line item note, Extender 443
LineLostFocus events

about 363
AfterLineLostFocus 363
BeforeLineLostFocus 363

Line navigation events 104
LinePost event 229
LinePre event 229
LinkedLookup property 135
LinkedPrompt property 135
LinkField on dexLabelProvider

property 459
LinkField property 86
LinkTableKey property 145
LinkTable property 144
list box, Dexterity control types 554
ListBoxes, VS Tools controls 86
List of On Hand QTY field 406, 407
list view, Dexterity control types 554
Local Field Definition window 179
local fields 178, 179

[548]

Locked property 340
long integer, Dexterity control types 554
long integer fields 402
Lookup 430
lookup button, Vendor Maintenance

window 46
lookup windows

about 126, 225
double-click, defaulting 228
lookup form, calling 226-228

M
macro language

URL 283
Main table abbreviations 42, 43
map link button, Sales Transaction Entry

window 49
Master tables 36
menus, Visual Studio Tools for Dynamics

reference link 538
message resources

changing, Modifier used 333, 334
methods

about 342
using 354-356

Microsoft 445
Microsoft BizTalk AIC (Application

Integration Component) service 76
Microsoft.Dexterity.Bridge.dll 447
Microsoft.Dexterity.Shell.UI.dll 446
Microsoft Dynamics GP. See Dynamics GP
Microsoft Dynamics GP Architecture

reference link 538
Microsoft Office 2010 522
Microsoft SQL Server 10
MIME (Multipurpose Internet Mail

Extensions) 80
MiniDex.chm 131
Miscellaneous tables 38
Modal Dialog events, VBA

about 108
AfterModalDialog 109
BeforeModalDialog 109

Modifier
about 65, 233, 287
overview 287

Modifier customizations 520
Modifier & VBA articles and links 548
Modifier/VBA customizations

about 378, 519
hazards 519
issues, with Windows 7 381
Modifier 520
package files, creating 378, 379
package files, editing 380
package files, limitations 380
VBA 520

Modifier with VBA
about 65, 107, 287, 288
capabilities 67
developer skills requisites 67
end user prerequisites 67
features 65, 66
used, for modifying UI 87

Modifier with VBA sample applications
reference link 539

modifying tools, Dynamics GP
Dexterity 81
Extender / eXtender Enterprise 88
Modifier with VBA 87
VS Tools 83

MSDN
about 546
URL 546

MSMQ (Microsoft Message Queuing)
service 76

MSTR 394
multicurrency icon, Sales Transaction Entry

window 50
multidictionary environment, Dexterity 61
multi-select list box, Dexterity control

types 555

N
name property 141, 145, 291, 340
namespace

referencing 467, 468
naming conventions, tables 164
native user interface, Dynamics GP

about 10
Horizontal add-on 11
Vertical add-on 11

[549]

navigation list 62
NET API 64
non-native list box, Dexterity control

types 555
note button (record level), Vendor

Maintenance window 45
note button (window level) Vendor

Maintenance window 47
note window 430
numbering convention, Dynamics GP

data tables
00000 - Master tables 36
10000 - Work transaction tables 38
20000 - History transaction tables 39
20000 - Open transaction tables 39
40000 - Setup tables 36
50000 - Temp tables 36
60000 - Relation or Cross Reference

tables 36
70000 - Report Options tables 37
80000 - Posting Journal Reprint tables 37
90000 - Miscellaneous tables 38

O
Object Linking and Embedding

Automation. See OLE Automation
object properties, Field

AutoCopy 134
Cancel 134
DataType 134
Default 134
Editable 135
Field 135
Hyperspace 135
LinkedLookup 135
LinkedPrompt 135
Required 135

object properties, Scrolling window
properties

about 144
DefaultDblClick 144
LinkTable 144
LinkTableKey 145
Name 145
WindowType 145

object properties, window properties
AutoLinkTable 140
AutoOpen 140
CloseBox 141
Name 141
Title 141

objects
about 338, 339
adding, to VBA project 352

object types, Extender
detail form 430
detail window 430
dialog 430
form 429
import 430
Lookup 430
menu 430
note window 430
window 430
window group 430

ODBC
about 71
capabilities 72
developer skills requisites 72
features 71

OKtoDeleteVendor variable 376
OLE Automation

about 72
capabilities 72
developer skills requisites 72
features 72

OLEPath switch 25, 26
OLE Providers 71
online training, Dynamics GP 536
Open Database Connectivity. See ODBC
Open phase, transaction tables 39
Optimistic Concurrency Control (OCC) 165
Options window

accessing 348

P
package files

creating 378, 379
editing 380
limitations 380

[550]

parameters, database trigger registration
anonymous 236
form_name 236
script processing_procedure 236
table_operations 236
tag 236
Trigger_RegisterDatabase 236

parameters, Focus trigger registration
anonymous 234
attach_type 235
focus_type 234
script processing_procedure 235
tag 235
Trigger_RegisterFocus 234

parameters, Form trigger registration
accelerator_key 232
form_name 232
menu_item_name 232
script processing_procedure 233
tag 233
Trigger_RegisterForm 232

parameters, function trigger registration
attach_type 239
function_name 239
function processing_function 239
tag 239
Trigger_RegisterFunction 239

parameters, procedure trigger registration
about 237
attach_type 238
script 238
script processing_procedure 238
tag 238
Trigger_RegisterProcedure 238

passive locking 165
PHONE 134
Phonefmt 134
physicalname() function 219
physical tables 166
picture, Dexterity control types 556
picture resources

changing, Modifier used 325
PM Paid Transaction History File

(PM30200) 481
Point of Sale (POS) systems 58
Position-Left property 136
Position-Top property 136

posted transactions 394
Posting Journal Reprint tables 37
Preferences file (Dex.ini)

about 21
ExportOneLineBody switch 28-31
OLEPath switch 25
RememberUser switch 26
ShowAdvancedMacroMenu switch 27, 28
SQLLogAllODBCMessages 23
SQLLogODBCMessages 23
SQLLogSQLStmt switch 22
Synchronize switch 23
Workstation2 switch 24
Workstation switch 23

printer icon, Vendor Maintenance
window 45

Procedure events, VS Tools
InvokeAfterOriginal 106
InvokeBeforeOriginal 106

procedure or function changes 516
procedure trigger

about 98, 237
considerations 238
cross-dictionary considerations 239
registration procedure 237

processing procedure, Form trigger
creating 240

Product Information window
Compatibility ID 281
Compatibility Message 281
dictionary 280
Forms Dictionary 280
launch file 280
launch ID 280
product ID 280
product name 280
Reports Dictionary 281

progress indicator, Dexterity control
types 556

project
additional data, storing 58, 59
current functionality, changing 58
data, exchanging between systems 58
defining 56
functionality, creating 58
integrations, types 59
scrolling window, adding to 362

[551]

windows behavior, changing 56
windows look, changing 56

property 339
push button, Dexterity control types 556
push buttons, Vendor Maintenance

window 44

Q
QTY Available for Sale field 405, 406
quantity alert icon, Sales Transaction

Entry window 50

R
RadioButton control

about 464
properties 464

radio button, Dexterity control types 556
Radio groups, Dexterity control types 556
range

about 210, 480
establishing 211, 212
range where statement 218, 219
setting 210-213
virtual key, creating 214-218
well-behaved range 211
working with 481, 482

RangeClear() method 482
RangeEnd() method 482
range end statement 216
RangeStart() method 482
range start statement 216
range where statement 218
record

creating 475
deleting 478
filtering 363-367
retrieving 477
updating 478

record-level notes 45
Record Note index 402
record, table operations

creating 200, 201
deleting 209
example, for retrieving 202
retrieving 202

updating 209
reference, Dexterity control types 556
referential diagnostics 268
RejectLine parameter 364
Relation or Cross Reference tables 36
release table, table operations 199
RememberUser switch 26
remove, table operations 199
Rental Company field 435
Rental Location field 435
report changes, VBA customizations 524
Report events, VBA

End 112
Start 112

Report Options tables 37
reports, Dexterity applications

about 267
linked prompts 269, 270
referential diagnostics 268
table relationships validation 271

Required property 135, 340, 341
ResDesc.chm 131
resource 118
Resource Explorer

about 13, 14, 122, 148
navigating 148
Resources List 149
Resources Tree 149
Status Area 149
toolbar 149
Workset 149

Resource Explorer toolbar 149
Resource Explorer window 181
resources

Dexterity documentation 283
macro language 283
Support Debugging Tool 284

Resources List 149
Resources Tree 149
restriction

adding, to SmartList object 408-410
creating 408, 409

RM_Customer_Address form 167
RM_Customer_Contact_Maintenance

window 178
RM_Customer_Maintenance window 82

[552]

runtime components, VS Tools
AddIns folder 447
application assembly 447
Dexterity Bridge assembly 447
Dexterity Shell assembly 446

runtime environment, Dynamics GP
application

Application dictionary (Dynamics.dic) 19
Dexterity Runtime engine

(Dynamics.exe) 19
Forms dictionary (Forms.dic) 19
launch file (Dynamics.set) 19
Microsoft SQL Server databases 19
Preferences file (Dex.ini) 19
Reports dictionary (Reports.dic) 19

Runtime.exe 131

S
Sales Transaction Entry window

about 48
e-mail link button 48
expansion arrows 52
Help icon button 53, 54
information icon 51
map link button 49
multicurrency icon 50
quantity alert button 50
show details button 50
window elements 48

sanScript 62
about 14, 83, 94, 192
ranges 210
script analysis 203
Script Editor 202
scripts 192
table operations 196

Save() method 478
save table, table operations 199
script analysis 203
script changes, Dynamics GP SDK 489-491
script flow, sanScript

Change event 194
Post event 194
Pre event 194

script naming conventions 195

scripts, sanScript
about 192, 193
naming conventions 195
script flow 194
syntax rules 194

scrolling window
about 142, 180, 185, 220, 221, 361
adding, to project 362
AddsAllowed scrolling window 230
big line item 222
BrowseOnly scrolling window 224
creating 143, 180-188
editable scrolling window 228
fields, adding 146, 147
properties 188
small line item 222
types 221

scrolling window events, Dynamic GP
about 345, 362
After Line Changed 345
After Line Got Focus 345
After Line Lost Focus 345
Before Line Changed 345
Before Line Got Focus 345
Before Line Lost Focus 345
Before Line Populate 345

scrolling window events, Dexterity
about 96
ContextMenu 96
LineChange 96
LineDelete 96
LineFill 96
LineInsert 96
LinePost 96
LinePre 96

scrolling window events, VBA
AfterLineChange 111
AfterLineGofFocus 110
AfterLineLostFocus 111
AfterLinePopulate 111
BeforeLineChange 111
BeforeLineGofFocus 110
BeforeLineLostFocus 111
BeforeLinePopulate 111

scrolling window events, VS Tools
LineChangeAfterOriginal 103

[553]

LineChangeBeforeOriginal 103
LineDeleteAfterOriginal 104
LineDeleteBeforeOriginal 104
LineEnterAfterOriginal 102
LineEnterBeforeOriginal 102
LineFillAfterOriginal 102
LineFillBeforeOriginal 102
LineInsertAfterOriginal 104
LineInsertBeforeOriginal 104
LineLeaveAfterOriginal 103
LineLeaveBeforeOriginal 103

scrolling window fields 187
Scrolling window properties

about 144
object properties 144
visual properties 145

scrolling windows
SDK for eConnect

reference link 538
SDT

about 17, 284
installing 130
URL 130, 284, 549

security
granting, to SmartList Builder

object 417-419
Service Reference 78
Setup tables 36
ShowAdvancedMacroMenu switch 27, 28
Show Details button, Sales Transaction

Entry window 50
Size-Height property 136
Size-Width property 136
Small Line Item 146
small line item, scrolling windows

about 222
marking 223

SmartConnect 78
SmartList Builder

about 386, 387, 526
features 393
field options 400, 401
field types 401
introducing 388-390
templates, importing 390-392

SmartList Builder object
security, granting to 417-419

SmartList drill down 422
SmartList favorite 388
SmartList object

about 386, 392, 394
calculated fields 403-405 creating 393
fields, displaying 397, 399, 400
Go Tos 410, 411
restriction, adding to 408-410
tables, adding to 394-397

SMTP (Simple Mail Transfer Protocol) 80
SOAP (Simple Object Access Protocol) 79
Software development kit (SDK) for Visual

Studio Tools
reference link 538

software manuals, Dynamics GP
Dexterity integration guide 537
training manuals 537

sort-by-list field, Vendor Maintenance win-
dow 46

source code control program 15
SQLLogAllODBCMessages switch 23
SQLLogODBCMessages switch 23
SQLLogSQLStmt switch 22
standard buttons 84
Standard button type 456
Standard Code Modules 346
standard resources, Dexterity 155
static text

adding, to window fields 188, 189
column headings 189

static text, General Entry window
modifications

checkbox text, changing 317
line, adding 318
modifying 313
text prompt, changing 316
tool tip, adding 319
window title, changing 315

Status Area, Resource Explorer window 149
StatusArea button 85, 456
StatusArea property 446 84
stored procedure 39, 40
string, Dexterity control types 556
string fields 402, 403
string resource

changing, Modifier used 328

[554]

string terminators 219
subsidiary ledger

about 306
exmaples 306

Summary button
creating 349, 350

Support Debugging Tool. See SDT
Synchronize switch 23
syntax rules, sanScript 194
system requisites, Dexterity application

deployment
feature specific requisites 247
general requisites 246, 247

T
Table 139
table buffer 196, 197
table changes 516
table changes, Dynamics GP SDK

about 495, 496
detail report 497, 498
summary 496

table creation routines, Dexterity
application

about 253, 254
SQL Maintenance window, using 255
tables, creating automatically 263
utilities window, building 257-262

Table Import
about 74
capabilities 75
developer skills requisites 76
features 74

Table Lookup window 170
table operations

about 474
record, creating 475
record, deleting 478
record, retrieving 477
record, updating 478

table operations, sanScript
about 196
change 198
copy from table 200
copy to table 199
CRUD 196

get 198
record, creating 200, 201
record, deleting 209
record, retrieving 202
record, updating 209
release table 199
remove 199
save table 199

table options
about 165
Allow Active Locking 165
Use Row Timestamp 165

table relationships validation 271
tables

adding, to SmartList object 394-397
attaching, to form and windows 169

tables and keys, Dexterity
creating 159

tables, Dexterity
about 160, 267
Contact Phone Master 163
Customer Contact Master 160
naming conventions 164, 165
options 165
types 166

table types
creating 166
physical tables 166
temporary tables 166
virtual tables 166

tab sequence, window properties 295
Tab stop property 340
tags 79
Technical Name 41
Tek-Tips forum

about 541
URL 541

templates
importing 390-392

temporary tables 166
Temp tables 36
test mode, development environment

about 124, 125
Dynamics GP desktop 126

TextBox control
about 457-461
properties 460, 461

[555]

TextBox control, properties
AutoSetDexColors 459

TextBox control, VS Tools controls 86
TextChanged event 477
text, Dexterity control types 556
third-party dictionary 107
third-party resource 83
time, Dexterity control types 556
tiny integer, Dexterity control types 557
Title property 141, 291
Toolbar button 85, 456
ToolbarWithSeparator button 85, 456
tools

ADO 70
Continuum 68
DDE 70
Dexterity 60
eConnect 76
Extender 69
eXtender Enterprise 69
Integration Manager 73
Modifier 65
ODBC 70
OLE Automation 70
Table Import 74
VBA 65
VS Tools 63
Web services 79

tools documentation, Continuum API
reference link 538

tools documentation, Modifier with VBA
reference link 538

tools, Dynamics GP
Drill-Down Builder 387, 422-428
Excel Report Builder 386, 419-422
Extender 387, 429
SmartList Builder 386, 387

Top property 340
training manuals

about 537
reference links 537

transaction tables
about 38
History phase 39
Open phase 39
Work phase 39

Transact SQL (T-SQL) 404
transfer dictionary module 275, 277
tree view, Dexterity control types 557
Trigger Processing Procedure 94
Trigger_RegisterDatabaseName()

function 237
Trigger_RegisterFocusByName()

function 235
Trigger_RegisterFormByName()

function 233
Trigger_RegisterFunctionByName()

function 240
Trigger_RegisterProcedureByName()

function 239
triggers, Dynamics GP

about 96, 97, 230, 231
database 235
Focus 233
Form 232
function 239
procedure 237
startup procedure 231

txtVendorID field 477

U
UDDI 79, 80
Universal Description, Discovery, and

Integration. See UDDI
unposted transactions 394
update chunk

building 519
upgrade checklist, Dynamics GP data model

alternate forms and reports, creating 518
data, converting 517
forms and report dictionaries, updating 518
GP 2013 considerations 518

UserForm
about 345
creating 345, 346

User Interface, Dexterity
base resources 155
building 151
forms and windows, creating 167
scrolling windows 185
tables and keys, creating 159
window fields, working 188

[556]

user interface events 233
user interface level integrations

about 59
tasks 59

User Interface (UI)
about 43, 44
modifying 81
modifying tools 81
scrolling windows 185
Vendor Maintenance window 44

user security
modifying 126, 127, 128

UTC (Coordinated Universal Time) 165

V
validation errors

resolving 506
Value property 340
ValueSeg property 340
VBA

about 65, 107, 288, 335, 385
components 336
debugging 346, 347
Modules 346
online tutorials and sample

applications 336
Options window, accessing 348
overview 336
UserForm 345

VBA customizations
about 520
environment changes 521
key changes 521
report changes 521
Window changes 521

VBA Developer's Guide 115
VBA Editor

about 336
launching 336, 338

VBA events
about 107
band 112
Field 109
Modal Dialog 108
report 112

scrolling window 110
window 108

VBA project
objects, adding to 352
Vendor Maintenance window, adding to

353
window fields, adding 354
windows, adding 354

VB.NET 445
VBScript 73
Vendor Extra window 88
VendorID_Changed() event 376
Vendor Maintenance window

about 44, 353
adding, to VBA project 353
browse buttons 46
lookup button 46
note button (record level) 45
note button (window level) 47
printer icon 45
push buttons 44
sort-by-list field 46, 47
zoom fields 45

Vendor Quick Entry project
about 451
creating, steps 451, 452
form, adding 453
window, creating 453, 454

Vendor Quick Entry window
assembly, building 474
assembly, testing 474
clearing 480
code, adding 472, 473
creating 453, 454
opening 471
window controls, adding 460

version and build, Dexterity application
minding 251, 252

vertical add-on
about 11
sampling 12

virtual key
about 214
creating 214-218

virtual tables 166
Visible property 136, 340

[557]

Visual Basic for Applications. See VBA
visual properties, Field

about 135
AltLineColor 135
Appearance 136
Border 136
Position-Left 136
Position-Top 136
Size-Height 136
Size-Width 136
Visible 136
WordWrap 136
Zoom 136

visual properties, Scrolling window
properties

AltLineColor 145
visual properties, window properties

ControlArea 142
Visual Studio Tools. See VS Tools 386
Visual Studio Tools sample applications

reference link 539
visual switch, Dexterity control types 557
VS Tools

about 63, 98, 445, 526
architecture 446
capabilities 64
developer skills requisites 64
dictionary resources 99
downloading 448, 449
end user prerequisites 64
features 63
installation, running 450
installing 448
URL, for downloading 448
used, for modifying UI 83
WinForm control properties 84
WinForm properties 84

VS Tools controls
about 84
Buttons 84
ComboBoxes 86
Labels 86
ListBoxes 86
TextBoxes 86

VS Tools events
about 99
Field 105
Form 100
Function 106
Procedure 106
scrolling window 102
window 100

VS Tools integration, upgrading
about 526
application assemblies, rebuilding 529- 531
application, downloading 526
code, fixing 532
GP 2013 considerations 533
new solution, building 532, 533
references to assemblies, updating 531, 532
solution, opening 527, 528

W
WanttoDeleteVendor variable 376
WCF (Windows Communication

Foundation) service 76
Web services

about 79
capabilities 80
developer skills requisites 80
end user prerequisites 81

Web Services Description Language.
See WSDL

Web services sample applications
reference link 539

Web services SDK for Dynamics GP
reference link 538

well-behaved range 211
Width property 340
window

about 348, 349, 430
adding, to VBA project 354
clearing 480
field values, setting 356, 357
methods, using 354,-356
properties, using 354-356

window controls
about 454
button 455

[558]

ComboBox 460
GroupBox 460
Label 459
RadioButton 460
TextBox 457, 458

window events, Dynamics GP
about 344
After Activate 344
After Close 344
After Modal Dialog 344
After Open 344
Before Activate 344
Before Close 344
Before Modal Dialog 344
Before Open 344

window events, Dexterity
about 95
Activate 95
ContextMenu 95
Post 95
Pre 95
Print 95

window events, VBA
AfterActivate 108
AfterClose 108
AfterOpen 108
BeforeActivate 108
BeforeClose 108
BeforeOpen 108

window events, VS Tools
ActivateAfterOriginal 100
ActivateBeforeOriginal 100
AfterModalDialog 101
BeforeModalDialog 101
CloseAfterOriginal 100
CloseBeforeOriginal 100
OpenAfterOriginal 100
OpenBeforeOriginal 100
PrintAfterOriginal 101
PrintBeforeOriginal 100

window fields
about 182, 183, 348, 349
adding, to VBA project 354
static text, adding 188, 189
working with 188

window group 430

window layouts
modifying 298-303

window level notes 47
window methods

Activate 342
Close 342
Hide 342
Move 342
Open 342
PullFocus 342
Show 342

window object properties 17
window objects

big text fields 83
Comboboxes 83
currency field 83
date field 83
Dropdown lists 83
Horizontal listboxes 83
integer field 83
Lines and shapes 83
Listboxes 83
List views 83
Multi-select listboxes 83
Pictures 83
Progress indicators 83
Push buttons 83
Radio groups 83
Scrolling windows 83
Static text 83
String field 83
time field 83
Tree views 83
Visual switches 83

window properties
about 140, 291
AutoLinkTable 291
AutoOpen 291
Caption 341
Changed 341
CloseBox 291
EventMode 341
IsLoaded 341
Name 291
object properties 140
opening position, changing 292-295
Required 341

[559]

size, setting 292
tab sequence, setting 296-298
Title 291
visual properties 142

WINDOWS 23
windows and window fields

modifying 288
windows and window fields modifications

about 288
General Entry window, modifying 304
Modifier, launching 289, 290
window layouts 298
window properties 291

Windows Communication Foundation
(WCF) 518

Windows Installer services 285
Windows Messaging Layer functionality 71
Windows Scheduler 74
window text properties 175
WindowType property

about 145
AddsAllowed 145
BrowseOnly 145
Editable 145
setting 224

WinForm control properties, VS Tools 84
WinForm properties, VS Tools

about 84
AutoSetDexColors 84
ControlArea 84
StatusArea 84

Winthrop Dexterity Consultants (WDC) 35
WordWrap property 136
Work phase, transaction tables 39
workset

about 153
creating 153, 154

Workset 149
Workstation2 switch 24
Workstation switch 23
WSDL 79, 80

X
XML (Extensible Markup Language) 77
XML tag 79

Z
zoom fields 203
zoom fields, Vendor Maintenance

window 45
Zoom property 136

Thank you for buying
Developing Microsoft Dynamics GP

Business Applications

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Dynamics AX 2012
Development Cookbook
ISBN: 978-1-849684-64-4 Paperback: 372 pages

Solve real-world Microsoft Dynamics AX
development problems with over 80 practical recipes.

1. Develop powerful, successful Dynamics AX
projects with efficient X++ code with this book
and eBook

2. Proven recipes that can be reused in numerous
successful Dynamics AX projects

3. Covers general ledger, accounts payable,
accounts receivable, project modules and
general functionality of Dynamics AX

Microsoft Dynamics GP
2010 Reporting
ISBN: 978-1-849682-18-3 Paperback: 360 pages

Create and manage business reports with
Dynamics GP

1. Identify the major reporting challenges facing
your organization and select the most effective
reporting tool to meet those challenges

2. Empower users from top to bottom in your
organization to create their own reports

3. Discover how to use reporting tools to mine
and analyze your Dynamics GP data for
maximum competitive advantage

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics GP 2010
Implementation
ISBN: 978-1-849680-32-5 Paperback: 376 pages

A step-by-step guide to implementing Mircosoft
Dynamics GP 2010

1. Master how to implement Microsoft Dynamics
GP 2010 with real world examples and guidance
from a Microsoft Dynamics GP MVP

2. Understand how to install Microsoft Dynamics
GP 2010 and related applications, following
detailed, step-by-step instructions

3. Discover the additional tools available from
Microsoft for Dynamics GP

Microsoft Dynamics GP 2010
Cookbook
ISBN: 978-1-849680-42-4 Paperback: 324 pages

Solve real-world Dynamics GP problems with
over 100 immediately usable and incredibly
effective recipes

1. Discover how to solve real-world Dynamics GP
problems with immediately useable recipes

2. Understand the various tips and tricks to
master Dynamics GP, improve your system's
stability, and enable you to get work
done faster

3. Covers the new features in Dynamics GP 2010

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Microsoft Dynamics GP Architecture
	The native user interface
	Horizontal
	Vertical

	Dexterity overview
	Resource Explorer
	sanScript scripting language
	Extensive function library
	Structured exception handling
	Integrated source code control
	Built-in report writer
	COM support
	Graphical forms designer
	Debugging tools
	Dexterity design

	Components of the Dynamics GP application
	Start your engines!
	The launch file (Dynamics.set)
	The Preferences file (Dex.ini)
	SQLLogSQLStmt
	SQLLogODBCMessages
	SQLLogAllODBCMessages
	Synchronize
	Workstation=WINDOWS
	Workstation2
	OLEPath
	RememberUser
	ShowAdvancedMacroMenu
	ExportOneLineBody

	The Dexterity Runtime Engine (Dynamics.exe)

	SQL table and procedure names
	Original table-naming convention
	00000 – Master tables
	40000 – Setup tables
	50000 – Temp tables
	60000 – Relation or Cross Reference tables
	70000 – Report Options tables
	80000 – Posting Journal Reprint tables
	90000 – Miscellaneous tables

	10000, 20000, and 30000 - Work, Open, and History Transaction tables
	Stored procedures
	Current table-naming convention

	What you see – the User Interface (UI)
	Push buttons
	Note button (record level)
	Printer icon
	Zoom fields
	Lookup button
	Browse buttons
	Sort-by List
	Note button (window level)

	Additional window elements
	E-mail Link
	Map Link
	Quantity alert button
	Multicurrency button
	Show Details
	Information button
	Expansion arrow
	Help button

	Summary

	Chapter 2: Integrating Application Fundamentals
	Defining the project
	Changing a window's look or behavior
	Changing current functionality
	Creating new functionality
	Exchanging data between systems
	Storing additional data
	Types of integrations

	Overview of available tools
	Dexterity
	Capabilities of Dexterity
	Limitations
	Developer skills required
	End-user prerequisites

	Visual Studio Tools for Dynamics GP
(VS Tools)
	Capabilities of VS Tools
	Developer skills required
	End-user prerequisites

	Modifier with VBA (Visual Basic for Applications)
	Capabilities of Modifier with VBA
	Developer skills required
	End-user prerequisites

	Continuum
	Capabilities of Continuum
	Developer skills required
	End-user prerequisites

	Extender / eXtender Enterprise
	Capabilities of Extender and eXtender Enterprise
	Developer skills required
	End-user prerequisites

	DDE \ ODBC \ ADO \ OLE Automation
	DDE
	ODBC
	ADO
	OLE Automation
	Capabilities of DDE \ ODBC \ ADO \ OLE Automation
	End-user prerequisites

	Integration Manager
	Capabilities of Integration Manager
	Developer skills required
	End-user prerequisites

	Table Import
	Capabilities of Table Import
	Developer skills required
	End-user prerequisites

	eConnect
	Capabilities of eConnect
	Developer skills required
	End-user prerequisites

	Web services
	Capabilities of web services
	Developer skills required
	End-user prerequisites

	Modifying the user interface
	Dexterity
	VS Tools
	WinForm properties
	WinForm control properties

	Modifier with VBA
	Extender / eXtender Enterprise
	Forms
	Detail forms
	Windows
	Detail windows
	Notes

	Changing or adding functionality
	Dexterity
	Form events
	Window events
	Field events
	Scrolling window events

	Triggers
	Five triggers in Dexterity

	VS Tools
	Form events
	Window events
	Scrolling window events
	Field events
	Procedure events
	Function events

	Modifier with VBA
	Window events
	Modal dialog events
	Field Events
	Scrolling window events
	Report Events
	Band events

	Continuum
	eXtender Enterprise

	Adding information not previously collected
	DUOS

	Summary

	Chapter 3: Getting Started with Dexterity
	Overview of the development process
	Installing the software
	Preparing your development environment
	Developing the application
	Creating the Chunk file
	Delivering the final product

	Preparing the development environment
	Installing Dexterity and the SDK
	Modifying the Dex.ini file
	Creating the development dictionary
	Moving to test mode
	Dynamics GP desktop

	Modifying user security
	Installing DexSense
	Installing the Support Debugging Tool (SDT)
	Blast off!

	Overview of Dexterity
	Components of Dexterity
	Resources and their relationships
	DataType
	Format
	Field
	Composite
	Table
	Form and window
	Scrolling window

	Navigating the Resource Explorer
	Worksets

	Summary

	Chapter 4: Building the User Interface
	Overview
	Workset

	Base resources
	Data types
	Format
	Fields

	Creating tables and keys
	Tables
	Customer Contact Master
	Contact Phone Master
	Table naming conventions
	Table options
	Types of tables

	Creating forms and windows
	Maintenance form and window creation
	Attaching tables
	Setting window properties
	Removing window fields

	Adding fields to the window
	New scrolling window

	Lookup form and window creation
	Window fields

	Scrolling windows
	Working with window fields
	Adding static text
	Column headings

	Summary

	Chapter 5: sanScript – Making It Work
	Introduction to sanScript
	Scripts
	Syntax rules
	Script flow
	Script naming conventions

	Table operations
	get
	change
	remove
	save table
	release table
	copy to table
	copy from table

	Creating a record
	Retrieving a record
	Customer
	Customer zoom
	Browse buttons

	Updating a record
	Deleting a record
	Ranges
	Setting a range
	Creating a virtual key
	range where

	Scrolling windows
	Big and Small Line item
	BrowseOnly windows
	Lookup windows

	Editable windows
	Line events

	AddsAllowed windows

	Triggers
	Form trigger
	Form trigger registration
	Form trigger considerations
	Cross-dictionary considerations

	Focus trigger
	Focus trigger registration
	Focus trigger considerations
	Cross-dictionary considerations

	Database trigger
	Database trigger registration
	Database trigger considerations
	Cross-dictionary considerations

	Procedure trigger
	Procedure trigger registration
	Procedure trigger considerations
	Cross-dictionary considerations

	Function trigger
	Function trigger registration
	Function trigger considerations
	Cross-dictionary considerations

	Create your form trigger!
	Processing procedure

	Summary

	Chapter 6: Deploying a Dexterity Solution
	System requirements
	General requirements
	Feature-specific requirements

	Minding versions and builds
	Table creation routines
	Using the SQL Maintenance window
	Building a utilities window
	Automatically creating the tables upon launch

	Completing the application
	Forms and windows
	Linking your prompts
	Linking your lookups
	Adding tool tips
	Hyperspacing your lookup buttons
	Linking your formats
	Setting your tab order
	Complying with user interface standards

	Tables
	Reports
	Referential diagnostics
	Linked prompts
	Table relationships validation

	Creating the chunk file
	Extracting resources
	Transfer dictionary module

	Testing in a multi-dictionary environment
	Chunk doesn't unchunk
	Testing tools and techniques
	Additional resources available

	Distributing the completed application
	Sending the chunk
	Windows Installer services

	Summary

	Chapter 7: Creating Customizations with Modifier
	Overview of Modifier
	Two tools in one!

	Modifying windows and window fields
	Launching Modifier
	The window properties
	Size
	Opening position
	The tab sequence

	The window layout
	Modifying the General Entry window
	Adding and modifying window fields
	Adding fields to the scrolling window
	Modifying static text
	Adding or changing graphic elements

	Changing global resources
	Pictures and native pictures
	Strings
	Formats
	Data types
	Messages

	Summary

	Chapter 8: Creating Customizationswith VBA
	VBA overview
	Components
	Objects
	Properties
	Methods
	Events

	UserForms
	Modules
	Debugging
	Setting options

	Windows and window fields
	Creating the Summary button
	Creating the Go To button
	Adding objects to the project
	Adding the Vendor Maintenance window
	Adding additional windows and window fields

	Using methods and properties
	Setting field values
	Cross-dictionary access
	Referencing the Collections module

	Scrolling windows
	Adding a scrolling window to the project
	Grid events
	Line got focus
	Line lost focus
	Line change

	Filtering records
	BeforeLinePopulate

	Fun with dialogs
	BeforeModalDialog
	AfterModalDialog

	The Dynamic User Object Store
	Architecture
	Declaring the objects
	Retrieving data
	Saving data
	Deleting data

	Deploying a Modifier/VBA customization
	Creating package files
	Limitations of packages
	Editing packages
	Known issues with Windows 7

	Summary

	Chapter 9: Code-free Customization
	Overview of tools
	SmartList Builder
	Excel Report Builder
	Drill-Down Builder
	Extender

	SmartList Builder
	Getting Started with SmartList Builder
	Importing the templates

	Creating a SmartList object
	Adding tables
	Fields
	Field options
	Currency fields
	Date fields
	Integer and long integer fields
	String fields

	Calculated fields
	Calculated field 1: QTY Available for Sale
	Calculated field 2: List of On Hand QTY
	Calculated field 3: CONSTANT 2
	Calculated field 4: CONSTANT 4

	Restrictions
	Go Tos
	Go To: Item maintenance
	Go To: Item transaction inquiry

	Granting security to a SmartList Builder object
	Excel Report Builder
	Drill Down Builder
	Extender
	Overview
	Extender editions
	Extender Standard
	eXtender Enterprise
	Working with Extender

	Summary

	Chapter 10: Creating Customizations with VS tools
	Architecture
	Dexterity Shell
	Dexterity Bridge
	Application assemblies
	AddIns folder

	Installing VS Tools
	Download it
	Run the installation

	Vendor Quick Entry project
	Creating the new project
	Adding the new window
	Window controls
	Button
	TextBox
	Label
	RadioButton and GroupBox
	ComboBox

	Adding window controls
	TextBox controls and properties
	Label controls and properties
	Button controls and properties
	RadioButton and GroupBox
	ComboBox

	Accessing dictionary resources
	Referencing the application assembly
	Referencing the namespace

	Building dictionary assemblies
	Dictionary Assembly Generator (DAG)
	Using the DAG
	Creating the AddIn assembly

	Opening your window
	Code the action
	Building and testing your assembly

	Table operations
	Creating a record
	Retrieving a record
	Updating a record
	Deleting a record

	Clearing the window
	Working with ranges
	Building and deploying the application
	Dynamics GP 2013 consideration
	Summary

	Chapter 11: Upgrading Customizations
	Using the SDK
	Script changes
	Data model changes
	New tables
	Deleted tables
	New columns
	Deleted columns
	New indexes
	Deleted indexes
	Different data types
	Different segments
	Different index columns
	New RW relations
	Deleted RW relations

	Table changes
	Table changes – summary
	Table changes – detail

	Form changes

	Dexterity
	Setting up generic source code control
	Installing Dexterity Source Code Control Server (DSCCS)
	Configuring the DSCCS
	Resolving validation errors

	Checking in the old dictionary
	Checking in the old dictionary to start the
new project
	Creating the new development dictionary
	Making changes to your code
	Data type changes
	Field changes
	Procedure or function changes
	Table changes
	Functionality changes

	Completing the update
	Converting the data
	Recreating alternate forms and reports
	Updating forms and report dictionaries
	GP 2013 considerations
	Testing your application and building the
update chunk

	Modifier with VBA
	Modifier
	VBA
	Environment changes
	Window changes
	Report changes
	GP 2013 considerations

	Extender and Builder(s)
	Extender
	SmartList Builder and Excel Report Builder

	Visual Studio Tools (VS Tools)
	Downloading the application
	Opening the solution
	Rebuilding application assemblies
	Updating references to the assemblies
	Fixing the code
	Building the new solution
	GP 2013 considerations

	Summary

	Index

