
www.allitebooks.com

http://www.allitebooks.org

Praise for Development with the Force.com
Platform, Second Edition

“When the first edition of this book came out, it was welcomed by everyone
working on the Force.com platform.The book did an excellent job of locating the
Force.com platform in the overall code development sphere.And it was the first
comprehensive guide to the platform. But that was 2009, before Chatter, before
the REST API, before releases 16 through 21 of the Force.com platform.

“The second edition adds a whole new chapter on Chatter. In the new chapter,
Mr. Ouellette continues his clear, logical explanation of the underlying data mod-
els and explains what you can, and cannot, do with Chatter and Apex code and
Visualforce pages. I learned more about using and developing Chatter apps in 30
minutes with the new edition than in countless Salesforce.com keynotes, sessions,
and webinars.

“REST (Representational State Transfer), another new topic, also is covered in
detail. Many of the coding examples in the original edition have been reworked to
use REST.This not only provides the reader with a good understanding of how to
use REST but also explains when to use REST.”

—David Claiborne, Principal,The Claiborne Company

“Development with the Force.com Platform continues to be the only book with
beginning-to-end information on developing Force.com applications.This second
edition keeps readers up-to-date with the latest additions to the platform.”

—John Rotenstein,Author of theEnforcer.net blog on Force.com development

“Jason Ouellette’s book is a must-have for all Salesforce developers. It can act as an
introductory text on the Salesforce platform for a new developer and can also act
as a reference book for an experienced Salesforce developer.The book provides
depth as well as breadth on Apex,Visualforce, and other related technologies.”

—Naveen Gabrani, CEO,Astrea IT Services

www.allitebooks.com

http://www.allitebooks.org

“There is no substitute for learning the unique aspects of the Force.com platform
and Apex language directly from an expert such as Jason Ouellette, who shares his
practical experience in this well-written and updated guide.This invaluable
resource for learning to use the platform correctly and efficiently is truly a gift for
anyone learning to build applications in the Salesforce.com cloud.”

—Mark Richer, Internet Consultant,Able Minds

“Literally everything you need to know to develop a product on Force.com…who
you need on the team, what tools to use, and how to use them in a clear, concise,
and complete package.A must-have for Force.com development teams.”

—Jason Monberg,VP of Product Management, MarkLogic Corporation

“Development with the Force.com Platform is a perfectly practical and consistently
useful guide to developing on the leading cloud business platform. It is for begin-
ners and pros alike, without any of the usual dogma or fluff that often serves as
filler in technical publications.”

—Titash Bardhan, Product Manager, PSA, FinancialForce.com

“Jason Ouellette is clearly a master of this domain. He distills its complexity into
simplified, choice paths, creating the perfect companion for any Force.com aspi-
rant.This second edition includes an exceptional chapter on social applications
where Jason combines his experience with his intuitive and accessible writing style
to demystify the Collaboration Cloud. Using this book as your guide with the lat-
est Force.com technical documentation as your library, you will have all you need
to succeed on the platform.”

—Adam Purkiss, Force.com Architect and Twilio Developer Contest Winner

“Jason does a thorough job explaining how to develop a business application on the
Force.com platform, leaving out the hype often surrounding Salesforce.com.Web
developers and DBAs will find the book valuable in learning to apply their rela-
tional modeling skills to the Force.com data model, designed to reduce develop-
ment time. Experienced Force.com developers are likely to find new features of the
platform that they may have overlooked in the quarterly updates to the platform.”

—Christian G.Warden, Director of Marketing Systems, CRC Health Group

“This is an indispensable reference for all Force.com developers. If there is some-
thing we need to know about building on Force.com, we turn to Development
with the Force.com Platform, Second Edition. It is that good.”

—Howard A. Brown, Founder and CEO, DemandResults

www.allitebooks.com

http://www.allitebooks.org

Development with
the Force.com

Platform

Second Edition

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Development with
the Force.com

Platform

Second Edition

Building Business Applications
in the Cloud

Jason Ouellette

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial capi-
tal letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

Screenshots © 2012 Salesforce.com, Inc. All rights reserved.

ISBN-13: 978-0-321-76735-6
ISBN-10: 0-321-76735-7
First printing July 2011

Library of Congress Cataloging-in-Publication Data

Ouellette, Jason, 1973-
Development with the Force.com platform : building business applications in the cloud /

Jason Ouellette.
p. cm.

ISBN 978-0-321-76735-6 (pbk. : alk. paper)
1. Web services. 2. Application software—Development. 3. Force.com (Electronic

resource) 4. Cloud computing. 5. Business—Data processing. 6. Service-oriented
architecture (Computer science) I. Salesforce.com (Firm) II. Title.

TK5105.88813.O94 2012
004.6’54—dc23

2011015142

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development
Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Paula Lowell

Indexer
Erika Millen

Proofreader
Water Crest
Publishing

Technical
Reviewers
David Cheng
Naveen Gabrani
Colin Loretz

Publishing
Coordinator
Olivia Basegio

Book Designer
Gary Adair

Compositor
Nonie Ratcliff

www.allitebooks.com

http://www.allitebooks.org

❖

To Tracey

“Life can only be understood backwards;
but it must be lived forwards.”

—Søren Kierkegaard

❖

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface xvi

Foreword xxi

1 Introducing Force.com 1
Force.com in the Cloud Computing Landscape 1

Platform as a Service (PaaS) 2

Force.com as a Platform 4

Force.com Services 7

Inside a Force.com Project 9

Project Selection 9

Team Selection 11

Lifecycle 13

Tools and Resources 16

Sample Application: Services Manager 18

Background 18

User Roles 19

Development Plan 19

Summary 20

2 Database Essentials 23
Overview of Force.com’s Database 23

Objects 23

Fields 25

Relationships 27

Query Language 28

Data Integration 31

Working with Custom Objects 33

Force.com Developer Edition 33

Tools for Custom Objects 35

Object Creation 36

Field Creation 39

Entering and Browsing Data 42

www.allitebooks.com

http://www.allitebooks.org

ixTable of Contents

Sample Application: Data Model 45

Logical Data Model 45

Force.com Data Model 50

Implementing the Data Model 52

Importing Data 58

Summary 64

3 Database Security 65
Overview of Database Security 65

Object-Level Security 67

Profiles 68

Field-Level Security 70

Record-Level Security 71

Record Ownership 72

User Groups 72

Sharing Model 73

Sample Application: Securing Data 77

Designing the Security Model 78

Implementing the Security Model 81

Testing the Security Model 86

Summary 91

4 Additional Database Features 93
Dependent Fields 94

Record Types 95

Defining Record Types 95

Securing Record Types 97

Using Record Types 99

Roll-Up Summary Fields 100

Field History Tracking 102

Tags 104

Enabling Tags 104

Using Tags 104

Force.com Connect Offline 104

Administration of Force.com Connect Offline 105

Using Force.com Connect Offline 106

www.allitebooks.com

http://www.allitebooks.org

x Table of Contents

Custom Settings 107

Using List Custom Settings 108

Using Hierarchy Custom Settings 109

Sample Application: Applying the Features 110

Dependent Fields for Skill Types 111

Roll-Up Summary Fields for Project Reporting 113

Force.com Connect Offline for Staffing 114

Summary 116

5 Business Logic 119
Introduction to Apex 120

Introducing the Force.com IDE 121

Installation 121

Force.com Perspective 121

Force.com Projects 122

Problems View 123

Schema Explorer 123

Apex Test Runner View 124

Execute Anonymous View 124

Apex Language Basics 124

Variables 125

Operators 129

Arrays and Collections 130

Control Logic 132

Understanding Governor Limits 136

Database Integration in Apex 137

Database Records as Objects 137

Database Queries 139

Persisting Database Records 144

Database Triggers 146

Database Security in Apex 149

Object-Oriented Apex 149

Encapsulation 150

Information Hiding 154

Modularity 155

Inheritance 155

Polymorphism 157

xiTable of Contents

Debugging and Testing 158

Debugging 158

Testing 161

Sample Application: Validating Timecards 162

Force.com IDE Setup 163

Creating the Trigger 163

Unit Testing 164

Summary 166

6 Advanced Business Logic 169
Aggregate SOQL Queries 170

Aggregate Functions 170

Grouping Records 171

Grouping Records with Subtotals 172

Additional SOQL Features 174

Inner Join and Outer Join 174

Semi-Join and Anti-Join 176

Multi-Select Picklists 179

Salesforce Object Search Language (SOSL) 180

SOSL Basics 180

SOSL in Apex 181

Transaction Processing 182

Data Manipulation Language (DML)
Database Methods 183

Savepoints 184

Record Locking 185

Apex Managed Sharing 187

Sharing Objects 187

Creating Sharing Rules in Apex 188

Sending and Receiving Email 192

Sending Email 193

Receiving Email 197

Dynamic Apex 200

Dynamic Database Queries 200

Schema Metadata 202

Custom Settings in Apex 204

Sample Application: Adding Email Notifications 206

Summary 207

xii Table of Contents

7 User Interfaces 209
Introduction to Visualforce 210

Overview of Visualforce 210

Getting Started with Visualforce 212

Visualforce Controllers 215

Standard Controllers 215

Custom Controllers 217

Controller Extensions 221

View Components 222

View Component Basics 222

Data Components 224

Action Components 227

Primitive Components 228

Force.com-Styled Components 229

Force.com User Interface Components 232

Visualforce and the Native User Interface 236

Standard Pages 237

Standard Buttons 240

Page Layouts 240

Custom Buttons and Links 240

Custom Tabs 242

Visualforce in Production 242

Debugging and Tuning 243

Security 245

Error Handling 247

Governor Limits 248

Unit Tests 249

Sample Application: Skills Matrix 250

Basic Implementation 251

Full Implementation 252

Implementation Walkthrough 252

Summary 259

8 Advanced User Interfaces 261
Asynchronous Actions 261

Partial Page Refresh 262

Action as JavaScript Function 263

xiiiTable of Contents

Action as Timed Event 264

Action as JavaScript Event 265

Indicating Action Status 266

Modular Visualforce 268

Static Resources 268

Inclusion 269

Composition 269

Custom Visualforce Components 271

Extending Visualforce 273

Using JavaScript Libraries 273

Adobe Flex and Visualforce 274

Force.com Sites 281

Sample Application: Enhanced Skills Matrix 285

Summary 288

9 Batch Processing 291
Introduction to Batch Apex 292

Batch Apex Concepts 292

Understanding the Batchable Interface 293

Applications of Batch Apex 294

Getting Started with Batch Apex 295

Developing a Batch Apex Class 295

Working with Batch Apex Jobs 296

Using Stateful Batch Apex 299

Using an Iterable Batch Scope 300

Limits of Batch Apex 302

Testing Batch Apex 303

Scheduling Batch Apex 303

Developing Schedulable Code 304

Scheduling Batch Apex Jobs 304

Sample Application: Missing Timecard Report 306

Creating the Custom Object 307

Developing the Batch Apex Class 308

Testing the Missing Timecard Feature 310

Summary 310

xiv Table of Contents

10 Integration 313
Force.com Integration Solutions 313

Outbound Messaging 314

Salesforce-to-Salesforce (S2S) 319

Developing Custom Integrations 329

Calling Web Services from Apex Code 329

Using HTTP Integration 331

Sample Application: Anonymous Benchmarking 334

Visualforce Page Design 334

Visualforce Controller Design 336

Integrating the Web Service 337

Sample Implementation 339

Summary 342

11 Advanced Integration 345
Understanding Force.com Web Services 346

Basics of Force.com Web Services 346

Generating Stub Code 349

Logging In 351

Force.com Data Types in SOAP 355

Error Handling 356

Using the Enterprise API 357

Retrieving Records 357

Writing Records 359

Building Custom Web Services in Apex 362

Understanding Custom Web Services 362

Service Definition 363

Calling a Custom Web Service 364

Introduction to the Metadata API 365

Overview 366

Getting Started with the Metadata API 366

Using the Force.com REST API 368

Overview of Force.com REST API 368

Authentication 369

API Walkthrough 369

xvTable of Contents

Sample Application: Database Integration 373

Integration Scenario 373

Implementation Strategy 373

Sample Implementation 374

Summary 377

12 Additional Platform Features 379
Workflow and Approvals 379

Introduction to Workflow 380

Getting Started with Approval Processes 382

Introduction to Analytics 388

Working with Reports 389

Configuring Dashboards 392

Using Analytic Snapshots 393

Force.com for International Organizations 395

Multilingual Support 395

Using Multiple Currencies 398

Advanced Currency Management (ACM) 400

Using Single Sign-On 402

Federated Single Sign-On 402

Delegated Single Sign-On 407

Sample Application: Project Map Dashboard 410

Summary 416

13 Social Applications 417
Overview of Chatter 418

Chatter Concepts 418

Configuring Chatter 419

Understanding the Chatter Data Model 424

Chatter Posts 425

Chatter Comments 429

Feed-Tracked Changes 430

Followed Records 431

Chatter in Visualforce 432

Sample Application: Follow Project Team 434

Summary 437

Index 439

Preface

I wrote this book to help developers discover Force.com as a viable, even superior tool
for building business applications.

I’m always surprised at how many developers I meet who aren’t aware of Force.com
as a platform.They know of Salesforce, but only that it’s a CRM. Even those who have
heard of Force.com are amazed when I describe what Appirio and other companies are
building with it.“I didn’t know you could do that with Force.com” is a common reac-
tion, even to the simplest of things such as creating custom database tables.

Since this book was first published, Salesforce has continued to innovate, adding many
new capabilities to the Force.com platform.Thanks to solid demand for the book, I got
the chance to write this second edition. It contains updates throughout to reflect excit-
ing developments like aggregate functions in SOQL, simplified governor limits, and the
REST API. It also features two entirely new chapters:“Batch Processing” (Chapter 9)
and “Social Applications” (Chapter 13).

I hope that the second edition of this book is effective in introducing business appli-
cation developers to what Force.com offers.This is a combination of its features as a
development platform and the benefits of it being “in the cloud,” delivered over the
Internet as a service rather than installed on your own servers. I believe you’ll find, as I
did, that Force.com can save you significant time and effort throughout the software
development lifecycle of many types of applications.

Key Features of This Book
This book covers areas of Force.com relevant to developing applications in a corporate
environment. It takes a hands-on approach, providing code examples and encouraging
experimentation. It includes sections on the Force.com database,Apex programming lan-
guage,Visualforce user interface technology, integration to other systems, and supporting
features such as workflow and analytics. SFA, CRM, customer support, and other pre-
built applications from Salesforce are not discussed, but general Force.com platform skills
are helpful for working in these areas as well.The book does not cover cloud computing
in general terms. It also avoids comparing Force.com with other technologies, platforms,
or languages. Emphasis is placed on understanding Force.com on its own unique terms
rather than as a database, application server, or cloud computing platform.

Although Force.com is a commercial service sold by Salesforce, all the material in this
book was developed using a free Force.com Developer Edition account.Additionally,
every feature described in this book is available in the free edition.

Throughout the text, you will see sidebar boxes labeled Note,Tip, or Caution. Notes
explain interesting or important points that can help you understand key concepts and
techniques.Tips are little pieces of information that will help you in real-world situa-
tions, and often offer shortcuts to make a task easier or faster. Cautions provide informa-
tion about detrimental performance issues or dangerous errors. Pay careful attention to
Cautions.

Target Audience for This Book
This book is intended for application developers who use Java, C#.NET, PHP, or other
high-level languages to build Web and rich-client applications for end users. It assumes
knowledge of relational database design and queries,Web application development using
HTML and JavaScript, and exposure to Web services.

Code Examples for This Book
The code listings in this book are also available on the book’s Web site:
http://www.informit.com/title/9780321767356.They are also available as a
Force.com package, freely available on Force.com AppExchange:
https://sites.secure.force.com/appexchange/listingDetail?listingId=a0N30000003KG5cE
AG.The package can be installed directly into your own Force.com organization.

http://www.informit.com/title/9780321767356
https://sites.secure.force.com/appexchange/listingDetail?listingId=a0N30000003KG5cEAG
https://sites.secure.force.com/appexchange/listingDetail?listingId=a0N30000003KG5cEAG

Acknowledgments

There are many people to thank for this book.
n Mark Taub: Mark is the Editor-in-Chief at Pearson.At Dreamforce 2008, Mark

attended my presentation on using Google Data APIs with Force.com. During
the Q&A session, he approached me with an idea on a book for Force.com
development.

n Trina MacDonald: Trina is the Acquisitions Editor at Pearson. She’s not only a
talented editor and wrangler of introverted authors, but a smooth salesperson as
well. I don’t know how else to explain the existence of this second edition.

n David Cheng, Naveen Gabrani, Colin Loretz: The technical reviewers for this
book have consistently provided insightful feedback and fact-checking of the
material.

n Songlin Qiu: Songlin is my development editor at Pearson. I continue to appre-
ciate and benefit from her detailed feedback on my chapters.

n Olivia Basegio: Olivia is the Editorial Assistant at Pearson. She worked behind
the scenes to make the publishing process run smoothly.

n Heather Fox: As my publicist at Pearson, Heather has repeatedly succeeded in
getting me out of my headphoned comfort zone and into activities to promote the
book.

n Kavindra Patel, Nick Tran, Jon Mountjoy: These three work for
Salesforce.com and have been longtime supporters of the book, especially this sec-
ond edition. I can’t thank them enough.

n Steve Fisher: Steve is EVP of Technology at Salesforce.com. I’m honored to have
him as the book’s foreword author.

n Craig Weissman: Craig is CTO of Salesforce.com. I’m very grateful to him for
writing the stellar foreword for the first edition book.

n Kraig Swensrud: Kraig is SVP of Marketing at Salesforce.com and the provider
of much support over the years.

n Jeff Douglas, Kyle Roche: Jeff and Kyle are always on the social media circuit
promoting the book. Never mind a beer: I owe them a keg at this point.

n David Schach, Abhinav Gupta, Ajay Deewan,Tom Hedgecoth, Adam
Toups: Thanks to these super-fans who have gone the extra mile to contribute to
the book.

n Tracey: This book would not be possible without my wife Tracey. She is my ulti-
mate, unconditional supporter, cheerleader, caretaker, family, and source of sanity.

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jason Ouellette led the development of popular AppExchange applications such as
Appirio Cloud Sync, CloudWorks, and Professional Services Enterprise. He is an inde-
pendent technology consultant with deep experience in cloud and enterprise integra-
tion. He has been inventing cutting-edge enterprise software for more than 15 years at
Appirio, Composite Software, and webMethods. He was recognized by Salesforce as a
Force.com MVP in 2011 and Force.com Developer Hero in 2009.

He lives with his wife and two geriatric cats in San Francisco, California.

Foreword

In the time since the first edition of Development with the Force.com Platform, technology’s
influence in our lives has grown and changed.The world we live in is now social and
mobile: Facebook has more than 500 million users. 110 million tweets are posted to
Twitter each day. Smartphone sales are expected to outpace PC sales by 2012 (Morgan
Stanley).

This monumental shift toward technology becoming a pivotal position in our per-
sonal lives is also, naturally, happening in the workplace. Employees expect the same
immediacy that epitomizes these consumer applications, coupled with proven trust, secu-
rity, and scalability required by businesses.As such, the way we work is changing, as are
the applications we use. Building the applications to drive this new era is not only a
tremendous opportunity for today’s developers but the path to long-term career success.

Development on traditional platforms such as J2EE, Microsoft .NET, or LAMP stacks
is not designed for what we demand from technology today.The increasing consumption
of apps via mobile devices results in massive backlogs of app requests because developers
must master multiple programming languages to build and maintain apps across different
mobile operating systems. Building social applications requires learning a new skill set,
and integration is painstaking.As a result, app development using traditional platforms is
complex, slow, and expensive.

The Force.com cloud platform-as-a-service is changing the way developers work in
stride with how technology is changing. It makes it easier and faster to build social,
mobile, and open cloud apps that meet the myriad of ways businesses use technology in
this new era.Apps that run in the cloud are delivered as a service so companies don’t
have to buy and maintain hardware and software to run them—or manage and maintain
complicated client/server deployments.

Force.com gives developers application development velocity to increase for multiple
uses, devices, and operating systems. Because it is cloud-based, developers can build and
deploy powerful applications much faster and for half the cost, allowing them to focus
on innovation and not infrastructure.

Force.com is
n 100% cloud—requires no hardware or software
n Mobile—runs your apps on any platform or device
n Social—adds collaboration features to every app

n Open—supports open standards,APIs, and multiple languages, giving developers
choice

n Proven—runs more than 185,000 apps for enterprises around the world

It’s no wonder that Force.com has quickly become the leading cloud platform for busi-
ness apps with a rapidly growing developer community responsible for building 185,000
apps and counting.The Force.com developer ecosystem encompasses companies of all
sizes and across all industries building a wide variety of applications.

Kelly Services, a global provider of workforce solutions, has taken advantage of the
time-to-market and productivity benefits of cloud development by building custom apps
on Force.com that have enabled it to close new business, retain existing customers, and
expand customers into new areas. For example, it used Force.com to provide a major
insurance company client with a centralized database of prescreened insurance sales pro-
ducer candidates for its franchised agents to search, interview, and hire more efficiently
on demand. Kelly Services was able to design, develop, test, and deploy this solution in
just 10 days.

As a result, the insurance company experienced a 78% cost reduction over previous
methodologies.

Smaller companies like Critical Systems, a fire alarm inspection and testing company,
have used Force.com to build a custom inspections app for the iPhone and deploy it to
its field inspection team in less than four weeks.The company estimates building the app
on Force.com was about 10 times faster than it would have taken using an on-premise
development platform.

There are also independent software vendors (ISVs) who are using Force.com to
deliver their cloud strategies to customers. For example, BMC’s RemedyForce offering
built on the Force.com platform provides businesses a simple and fast path to transform
how they think about IT service management and provide tangible results such as
streamlined IT support processes and reduced costs.

ServiceMax has built its business from the ground up on the Force.com platform to
reinvent field service management, particularly enabling the mobility of its field service
or “man in the van” agents using custom Force.com iPad apps.As a result, customers are
up and running quickly in a low-cost subscription model, tightly integrated to their
CRM, and can quickly take advantage of new cloud innovations, such as social collabo-
ration with Salesforce Chatter, that are built right into the Force.com platform.
ServiceMax has been able to focus all its resources on its business and not on maintain-
ing IT infrastructure.

These examples only begin to illustrate the myriad of ways that apps built on
Force.com can revolutionize businesses and enable them to harness the opportunities of
the social and mobile world we now live in.As such, Jason Ouellette’s second edition
Development with the Force.com Platform is a timely and important guide to app develop-
ment in this new era. Developers today, whether at an in-house IT department big or

small or at an ISV, see the light at the end of tunnel and are looking for ways to get
started developing in this new paradigm.

As one of the foremost Force.com developers and architects, Ouellette’s expertise
provides guidance to other developers on how to build today’s social, mobile, and open
enterprise cloud applications.With the addition of a new chapter on building social
apps, he is one of the first to detail how to be successful in an enterprise environment.As
with the first edition of Development with the Force.com Platform, Ouellette’s talent is in
striking the optimal balance of defining and illustrating technical concepts in an under-
standable and applicable way.With a sample application for every topic, he provides the
tangible guidance enterprise developers need to succeed in this exciting era of innova-
tion brought to us through the power of cloud computing.

—Steve Fisher
Executive Vice President,Technology, Salesforce.com

This page intentionally left blank

1
Introducing Force.com

This chapter introduces the concepts, terminology, and technology components of the
Force.com platform and its context in the broader Platform as a Service (PaaS) landscape.
The goal is to provide context for exploring Force.com within a corporate software
development organization. If any of the following sentences describe you, this chapter is
intended to help:

n You have read about cloud computing or PaaS and want to learn how Force.com
compares to other technologies.

n You want to get started with Force.com but need to select a suitable first project.
n You have a project in mind to build on Force.com and want to learn how you can

leverage existing development skills and process.

This chapter consists of three sections:

n Force.com in the Cloud Computing Landscape: Learn about PaaS and
Force.com’s unique features as a PaaS solution.

n Inside a Force.com Project: Examine how application development with
Force.com differs from other technologies in terms of project selection, technical
roles, and tools.

n Sample Application: A sample business application is referenced throughout this
book to provide a concrete basis for discussing technical problems and their solu-
tions. In this chapter, the sample application’s requirements and use cases are out-
lined, as well as a development plan, mapped to chapters of the book.

Force.com in the Cloud Computing Landscape
Phrases like “cloud computing” and “Platform as a Service” have many meanings put
forth by many vendors.This section provides definitions of the terms to serve as a basis
for understanding Force.com and comparing it with other products in the market.With
this background, you can make the best choice for your projects, whether that is
Force.com, another PaaS product, or your own in-house infrastructure.

2 Chapter 1 Introducing Force.com

Platform as a Service (PaaS)
The platform is infrastructure for the development of software applications.The function-
ality of a platform’s infrastructure differs widely across platform vendors, so this section
focuses on a handful of the most established vendors.The suffix “as a Service” (aaS) means
that the platform exists “in the cloud,” accessible to customers via the Internet. Many
variations exist on this acronym, including SaaS (Software as a Service), IaaS (Infrastruc-
ture as a Service), and so forth.

PaaS is a category within the umbrella of cloud computing.“Cloud computing” is a
phrase to describe the movement of computing resources away from physical data centers
or servers in a closet in your company and into the network, where they can be provi-
sioned, accessed, and deprovisioned instantly.You plug a lamp into an electrical socket to
use the electrons in your region’s power grid. Running a diesel generator in your base-
ment is usually not necessary.You trust that the power company is going to provide that
service, and you pay the company as you use the service.

Cloud computing as a general concept spans every conceivable configuration of infra-
structure, well outside the scope of this book.The potential benefits are reduced com-
plexity and cost versus a traditional approach.The traditional approach is to invest in
infrastructure by acquiring new infrastructure assets and staff or redeploying or optimizing
existing investments. Cloud computing provides an alternative.

Many companies provide PaaS products.The following subsections introduce the
mainstream PaaS products and include brief descriptions of their functionality. Consult
the Web sites of each product for further information.

Amazon Web Services
Amazon Web Services refers to a family of cloud computing products.The most relevant
to PaaS is Elastic Beanstalk, a platform for running Java applications that provides load
balancing, auto-scaling, and health monitoring.The platform is actually built on several
other Amazon Web Services products that can be independently configured by advanced
users, with the most significant being Elastic Compute Cloud (EC2). EC2 is a general-
purpose computing platform, not limited to running Java programs.You can provision
virtual instances of Windows or Linux machines at will, loading them with your own
custom operating-system image or one prebuilt by Amazon or the community.These
instances run until you shut them down, and you are billed for usage of resources such as
CPU, disk, and network.

A raw machine with an OS on it is a great start, but to build a business application
requires you to install, manage access to, maintain, monitor, patch and upgrade, back up,
plan to scale, and generally care and feed in perpetuity an application platform on the
EC2 instance. Many of these tasks are still required of Amazon’s higher-level Elastic
Beanstalk offering. If your organization has the skills to build on .NET, J2EE, LAMP, or
other application stacks, plus the OS, database administration, and IT operations experi-
ence,Amazon’s virtual servers in the cloud could be a strong alternative to running your
own servers in-house.

3Force.com in the Cloud Computing Landscape

Amazon provides various other products that complement Elastic Beanstalk and EC2.
These include Simple Queue Service for publish-and-subscribe-style integration between
applications, Simple DB for managing schemaless data, and Simple Storage Service, a con-
tent repository.

Microsoft Azure
Azure consists of two products.The first is Windows Azure, an operating system that can
utilize Microsoft’s data centers for general computation and storage. It is a combination of
infrastructure and platform designed to take existing and new .NET-based applications
and run them in the cloud, providing similar features for scalability and elasticity as Ama-
zon Web Services. Most Azure applications are developed in C# using Microsoft Visual
Studio, although other languages and tools are supported.The second part is SQL Azure, a
hosted version of Microsoft SQL Server.The cost of these products is based on resource
consumption, defined as a combination of CPU, network bandwidth, storage, and number
of transactions.

Google App Engine
App Engine is a platform designed for hosting Web applications.App Engine is like
having an unlimited number of servers in the cloud working for you, preconfigured
with a distributed data store and Python or Java-based application server. It’s much like
Amazon’s Elastic Beanstalk but focused on providing a higher-level application platform.
It lacks the configurable lower-level services like EC2 to provide an escape hatch for
developers requiring more control over the infrastructure.App Engine includes tools for
managing the data store, monitoring your site and its resource consumption, and debug-
ging and logging.

App Engine is free for a set amount of storage and page views per month.Applications
requiring more storage or bandwidth can purchase it by setting a maximum daily dollar
amount they’re willing to spend, divided into five buckets: CPU time, bandwidth in,
bandwidth out, storage, and outbound email.

Force.com
Force.com is targeted toward corporate application developers and independent software
vendors. Unlike the other PaaS offerings, it does not expose developers directly to its own
infrastructure. Developers do not provision CPU time, disk, or instances of running oper-
ating systems. Instead, Force.com provides a custom application platform centered around
the relational database, one resembling an application server stack you might be familiar
with from working with .NET, J2EE, or LAMP.

Although it integrates with other technologies using open standards such as SOAP and
REST, the programming languages and metadata representations used to build applica-
tions are proprietary to Force.com.This is unique among the PaaS products but not
unreasonable when examined in depth. Force.com operates at a significantly higher level
of abstraction than the other PaaS products, promising dramatically higher productivity to
developers in return for their investment and trust in a single-vendor solution.

4 Chapter 1 Introducing Force.com

To extend the reach of Force.com to a larger developer community, Salesforce and
VMware provide a product called VMforce.VMforce brings some of the features of the
Force.com platform to Java developers. It consists of development tools from the Sales-
force community and virtualized computing resources from VMware.With VMforce, you
can create hybrid applications that use Force.com for data and services, but are built with
Java standard technologies such as Spring.Along the same lines, Salesforce’s acquisition of
Heroku is expected to extend Force.com features to Ruby developers.

Force.com is free for developers. Production applications are priced primarily by stor-
age used and number of unique users.

Facebook
Facebook is a Web site for connecting with your friends, but it also provides developers
with ways to build their own socially aware applications.These applications leverage the
Facebook service to create new ways for users to interact while online.The Facebook
platform is also accessible to applications not built inside Facebook, exposing the “social
graph” (the network of relationships between users) where permitted.

Much of the value of Facebook as a platform stems from its large user base and consis-
tent yet extensible user experience. It is a set of services for adding social context to
applications. Unlike Force.com and App Engine, for example, Facebook has no facility to
host custom applications.

Force.com as a Platform
Force.com is different from other PaaS solutions in its focus on business applications.
Force.com is a part of Salesforce.com, which started as a SaaS Customer Relationship
Management (CRM) vendor. But Force.com is not CRM. It provides the infrastructure
commonly needed for any business application, customizable for the unique requirements
of each business through a combination of code and configuration.This infrastructure is
delivered to you as a service on the Internet.

Because you are reading this book, you have probably developed a few business appli-
cations in your time. Consider the features you implemented and reimplemented in mul-
tiple applications, the unglamorous plumbing, wiring, and foundation work. Some
examples are security, user identity, logging, profiling, integration, data storage, transac-
tions, workflow, collaboration, and reporting.This infrastructure is essential to your appli-
cations but expensive to develop and maintain. Business application developers do not
code their own relational database kernels, windowing systems, or operating systems.This
is basic infrastructure, acquired from software vendors or the open-source community and
then configured to meet user requirements.What if you could do the same for your
application infrastructure? This is the premise of the Force.com.

The following subsections list differentiating architectural features of Force.com with
brief descriptions.

5Force.com in the Cloud Computing Landscape

Multitenancy
Multitenancy is an abstract concept, an implementation detail of Force.com, but one with
tangible benefits for developers. Figure 1-1 shows a conceptual view of multitenancy.
Customers access shared infrastructure, with metadata and data stored in the same logical
database.

The multitenant architecture of Force.com consists of the following features:

n Shared infrastructure: Every customer (or tenant) of Force.com shares the same
infrastructure.They are assigned an independent logical environment within the
Force.com platform.

At first, some might be uncomfortable with the thought of handing their data to a
third-party where it is co-mingled with that of competitors. Salesforce’s whitepaper
on its multitenant technology includes the technical details of how it works and
why your data is safe from loss or spontaneous appearance to unauthorized parties.

Note
The whitepaper is available at http://wiki.developerforce.com/index.php/Multi_Tenant_
Architecture.

n Single version: Only one version of the Force.com platform is in production.The
same platform is used to deliver applications of all sizes and shapes, used by 1 to
100,000 users, running everything from dog-grooming businesses to the Japanese
national post office.

Meta-
data Data

P
la

tfo
rm

 S
er

vi
ce

s

Customer 1

Customer 2

…

Customer n

Figure 1-1 Multitenant architecture

www.allitebooks.com

http://wiki.developerforce.com/index.php/Multi_Tenant_Architecture
http://wiki.developerforce.com/index.php/Multi_Tenant_Architecture
http://www.allitebooks.org

6 Chapter 1 Introducing Force.com

n Continuous, zero-cost improvements: When Force.com is upgraded to include
new features or bug fixes, the upgrade is enabled in every customer’s logical envi-
ronment with zero to minimal effort required.

Salesforce can roll out new releases with confidence because it maintains a single version
of its infrastructure and can achieve broad test coverage by leveraging tests, code, and con-
figurations from their production environment.You, the customer, are helping maintain
and improve Force.com in a systematic, measurable way as a side effect of simply using it.
This deep feedback loop between the Force.com and its users is something impractical to
achieve with on-premise software.

Relational Database
The heart of Force.com is the relational database provided as a service.The relational
database is the most well-understood and widely used way to store and manage business
data. Business applications typically require reporting, transactional integrity, summariza-
tion, and structured search, and implementing those on nonrelational data stores requires
significant effort. Force.com provides a relational database to each tenant, one that is
tightly integrated with every other feature of the platform.There are no Oracle licenses
to purchase, no tablespaces to configure, no JDBC drivers to install, no ORM to wrangle,
no DDL to write, no queries to optimize, and no replication and backup strategies to
implement. Force.com takes care of all these tasks.

Application Services
Force.com provides many of the common services needed for modern business applica-
tion development.These are the services you might have built or integrated repeatedly in
your past development projects.They include logging, transaction processing, validation,
workflow, email, integration, testing, reporting, and user interface.

These services are highly customizable with and without writing code.Although each
service can be valued as an individual unit of functionality, their unification offers
tremendous value.All the features of Force.com are designed, built, and maintained by a
single responsible party, Salesforce. Salesforce provides documentation for these features as
well as support staff on-call, training and certification classes, and accountability to its cus-
tomers for keeping things running smoothly.This is in contrast to many software projects
that end up as a patchwork of open-source, best-of-breed tools and libraries glued
together by you, the developer, asked to do more with fewer people, shorter timelines,
and cheaper, often unsupported tools.

Declarative Metadata
Almost every customization configured or coded within Force.com is readily available as
simple XML with a documented schema.At any point in time, you can ask Force.com for
this metadata via a set of Web services.The metadata can be used to configure an identical
environment or managed with your corporate standard source control system. It is also

7Force.com in the Cloud Computing Landscape

helpful for troubleshooting, allowing you to visually compare the state of two environ-
ments.Although a few features of Force.com are not available in this declarative metadata
form, Salesforce’s stated product direction is to provide full coverage.

Programming Language
Force.com has its own programming language, called Apex. It allows developers to script
interactions with other platform features, including the user interface. Its syntax is a blend
of Java and database stored procedure languages like T/SQL and can be written using a
Web browser or a plug-in to the Eclipse IDE.

Other platforms take a different approach. Google’s App Engine simultaneously
restricts and extends existing languages such as Python so that they play nicely in a PaaS
sandbox.This offers obvious benefits, such as leveraging the development community, ease
of migration, and skills preservation. One way to understand Apex is as a domain-specific
language. Force.com is not a general-purpose computing platform to run any Java or C#
program you want to run.Apex is kept intentionally minimalistic, designed with only the
needs of Force.com developers in mind, built within the controlled environment of Sales-
force R&D.Although it won’t solve every programming problem,Apex’s specialized
nature leads to some advantages in learning curve, code conciseness, ease of refactoring,
and ongoing maintenance costs.

Force.com Services
Force.com can be divided into four major services: database, business logic, user interface,
and integration.Technically, many more services are provided by Force.com, but these are
the high-level categories that are most relevant to new Force.com developers.

Database
Force.com is built around a relational database. It allows the definition of custom tables
containing up to 800 fields each. Fields contain strongly typed data using any of the stan-
dard relational database data types, plus rich types such as currency values, picklists, for-
matted text, and phone numbers. Fields can contain validation rules to ensure data is
clean before being committed, and formulas to derive values, like cells in a spreadsheet.
Field history tracking provides an audit log of changes to chosen fields.

Custom tables can be related to each other, allowing the definition of complex data
schemas.Tables, rows, and columns can be configured with security constraints. Data and
metadata is protected against accidental deletion through a “recycling bin” metaphor.The
database schema is often modifiable instantly, without manual migration. Data is imported
from files or other sources with free tools, and APIs are provided for custom data-loading
solutions.

Data is queried via a SQL-like language called SOQL (Salesforce Object Query Lan-
guage). Full-text search is available through SOSL (Salesforce Object Search Language).

8 Chapter 1 Introducing Force.com

Business Logic
Apex is the language used to implement business logic on Force.com. It allows code to be
structured into classes and interfaces, and it supports object-oriented behaviors. It has
strongly typed collection objects and arrays modeled after Java.

Data binding is a first-class concept in Apex, with the database schema automatically
imported as language constructs. Data manipulation statements, trigger semantics, batch
processing, and transaction boundaries are also part of the language.

The philosophy of test-driven development is hard-wired into the Force.com plat-
form. Methods are annotated as tests and run from a provided test harness or test API
calls.Test methods are automatically instrumented by Force.com and output timing infor-
mation for performance tuning. Force.com prevents code from being deployed into pro-
duction that does not have adequate unit test coverage.

User Interface
Force.com provides two approaches for the development of user interfaces: Page Layouts
and Visualforce. Page Layouts are inferred from the data model, including validation rules,
and then customized using a WYSIWYG editor. Page Layouts feature the standard Sales-
force look-and-feel. For many applications, Page Layouts can deliver some or all of the
user interface with no development effort.

Visualforce allows developers to build custom user interfaces. It consists of a series of
XML markup tags called components with their own namespace.As with JSP,ASP.NET,
Velocity, and other template processing technologies, the components serve as containers
to structure data returned by the Controller, a class written in Apex.To the user, the
resulting Web pages might look nothing like Salesforce, or adopt its standard look-and-
feel.Visualforce components can express the many types and styles of UIs, including basic
entry forms, lists, multistep wizards,Ajax,Adobe Flex, mobile applications, and content
management systems. Developers can create their own components to reuse across
applications.

User interfaces in Visualforce are public, private, or some blend of the two. Private user
interfaces require a user to log in before gaining access. Public user interfaces, called Sites,
can be made available to anonymous users on the Internet.

Integration
In the world of integration, more options are usually better, and standards support is
essential. Force.com supports a wide array of integration technologies, almost all of them
based on industry-standard protocols and message formats.You can integrate other tech-
nologies with Force.com using an approach of configuration plus code. Here are some
examples:

n Apex Web Services allows control of data, metadata, and process from any platform
supporting SOAP over HTTP, including JavaScript.This makes writing composite
applications that combine Force.com with technology from other vendors in many

9Inside a Force.com Project

interesting and powerful ways possible. Force.com’s Web services API has evolved
over many years, spanning more than 20 versions with full backward compatibility.

n The Force.com database is accessible via Representational State Transfer (REST)
calls.This integration method is much lighter weight than Web Services, allowing
Web applications to query and modify data in Force.com with simple calls accessi-
ble to any development language.

n Business logic developed in Apex can be exposed as a Web service, accessible with
or without a Force.com user identity. Force.com generates the WSDL from your
Apex code.Additionally, Force.com converts WSDL to Apex bindings to allow
access to external Web services from within the platform.

n You can create virtual email inboxes on Force.com and write code to process the
incoming email. Sending email from Force.com is also supported.

n Force.com provides an API for making HTTP requests, including support for
client-side certificates, SSL, proxies, and HTTP authentication.With this, you can
integrate with Web-based resources, everything from static Web pages to REST
services returning JSON.

n Salesforce-to-Salesforce (S2S) is a publish-and-subscribe model of data sharing
between multiple Force.com environments. If the company you need to integrate
with already uses Force.com and the data is supported by S2S, integration becomes
a relatively simple configuration exercise.There is no code or message formats to
maintain.Your data is transported within the Force.com environment from one ten-
ant to another.

If your requirements dictate a higher-level approach to integration, software vendors like
IBM’s Cast Iron Systems and Informatica offer adapters to Force.com to read and write
data and orchestrate complex transactions spanning disparate systems.

Inside a Force.com Project
This section discusses what makes a Force.com project different from a typical corporate
in-house software development effort, starting with project selection. Learn some tips for
selecting a project in Force.com’s sweet spot.Then examine how traditional technical
roles translate to development activities in a Force.com project and how technologies
within Force.com impact your product development lifecycle. Lastly, get acquainted with
the tools and resources available to make your project a success.

Project Selection
Some projects are better suited to implementation on Force.com than others. Running
into natural limits of the PaaS approach or battling against the abstraction provided by the
platform is possible.Always strive to pursue projects that play into Force.com strengths.

10 Chapter 1 Introducing Force.com

No absolute rules exist for determining this, but projects with the following characteris-
tics tend to work well with Force.com:

n The project is data-centered, requiring the storage and retrieval of struc-
tured data.

Structured data is the most important point. Implementing a YouTube-like applica-
tion on Force.com is not the best idea, because it primarily works with unstruc-
tured data in the form of video streams. Force.com supports binary data, so a
video-sharing Web site is certainly possible to build. But handling large amounts of
binary data is not a focus or core competency of Force.com.A hotel reservation
system is an example of a more natural fit.

n The user interface is composed primarily of wizards, grids, forms, and
reports.

Force.com does not restrict you to these user interface patterns.You can implement
any type of user interface, including “rich” clients that run using Flash in the
browser, and even full desktop applications that integrate with Force.com via its
Apex Web Services API. But to capture the most benefit from the platform, stick
with structured, data-driven user interfaces that use standard Web technologies such
as HTML, CSS, and JavaScript.

n The underlying business processes involve email, spreadsheets, threaded
discussions, and hierarchies of people who participate in a distributed,
asynchronous workflow.

Standard Force.com features such as Chatter, workflow, approvals, and email services
add a lot of value to these applications.They can be configured by business analysts
or controlled in-depth by developers.

n The rules around data sharing and security are fine-grained and based on
organizational roles and user identity.

User identity management and security are deep subjects and typically require high
effort to implement in a custom system.With Force.com, they are standard, highly
configurable components that you can leverage without coding.You can then spend
more time thinking through the “who can see what” scenarios rather than coding
the infrastructure to make them possible.

n The project requires integration with other systems.

Force.com is built from the ground up to interoperate with other systems at all its
layers: data, business logic, and user interface.The infrastructure is taken care of, so
you can focus on the integration design. Exchange a million rows of data between
your SQL Server database and Force.com. Call your Apex services from a legacy
J2EE application or vice versa.Add an event to a Google calendar from within
yourVisualforce user interface.These scenarios and more are fully supported by the
platform.

11Inside a Force.com Project

n The project manipulates data incrementally, driven by user actions rather
than a calendar.

Force.com is a shared resource. Simultaneously, other customers of varying sizes are
using the same infrastructure.This requires Force.com to carefully monitor and
fairly distribute the computing resources so that all customers can accomplish their
goals with a high quality of service. If one customer’s application on Force.com was
allowed to consume a disproportionate share of resources, other customers’ applica-
tions would suffer resource starvation.The limitations in place, called governors,
prevent too much memory, CPU, disk, or network bandwidth from being concen-
trated in the hands of any one customer.The platform strongly enforces these gov-
ernor limits, so the best Force.com applications involve computing tasks that can be
split into small units of work.

n The data volume is limited, below a few million records per table.

Data volume is important to think about with any system: How large is my data
going to grow and at what rate? Force.com consists of a logical single transactional
database. No analytical data store exists.Applications that require access to large vol-
umes of data, such as data warehousing and analytics, cannot be built on Force.com.
Other software vendors such as GoodData provide solutions in this area, but all
involve copying data from Force.com to their own products.

Force.com is not an all-or-nothing proposition. If your project does not fit within these
guidelines, you might still want to explore Force.com but in conjunction with other PaaS
solutions such as Amazon’s EC2.Thanks to Force.com’s integration capabilities, EC2 and
Force.com can be used together as a composite solution, EC2 augmenting Force.com
where general-purpose computing is needed.VMforce takes a similar augmentation
approach to give Java developers a streamlined way to extend the platform without the
hassles of maintaining their own hardware, or even managing their own EC2-based envi-
ronments.

Team Selection
The best people to staff on Force.com projects might already work at your company. Pro-
jects do not require brand-new teams staffed with Force.com experts.With the majority
of the platform based in mature technology such as relational databases and Web develop-
ment, adapting existing teams can be a straightforward task.

Here are some examples of traditional software development roles and how they can
contribute to a Force.com project:

n Business Analyst

Substantial Force.com applications can be built entirely by configuration, no com-
puter science background or coding skills required. Salesforce refers to this as
“clicks, not code.” Business analysts who are proficient with Microsoft Excel and its
macro language, or small-scale databases like Microsoft Access and FileMaker Pro,

12 Chapter 1 Introducing Force.com

can get hands-on with the Force.com data model, validation rules, workflows,
approval rules, and page layouts.

n Data Modeler

A data model forms the core of a Force.com application. Data modelers can use
their existing Entity-Relationship tools and techniques to design the data layer,
with some deltas to account for Force.com-specific idiosyncrasies. Rather than
scripts of DDL statements, their work output is Force.com’s metadata XML or
manual configuration of the data objects. Data modelers can also design reports and
report types, which define data domains available to business users to build their
own reports.

n Database Administrator

Many traditional DBA tasks are obsolete in Force.com because there is no physical
database to build, monitor, and tune. But a DBA still has plenty of work to do in
planning and implementing the Force.com object model.There are objects to
define or permissions to configure, and the challenges of data transformation and
migration are still as relevant in Force.com as in any database-backed system.

n Database Developer

The design of Force.com’s programming language,Apex, has clearly been inspired
by stored procedure languages like T-SQL and PL/SQL. Existing database develop-
ers can adapt their skills to writing Apex code, particularly when it requires detailed
work on the data like triggers.

n Object-Oriented Analysis and Design Specialist

Force.com includes an object-oriented language, and persistent data is represented
as objects.With all of these objects floating around, people with skills in traditional
techniques like Unified Modeling Language (UML) are valuable to have on your
project team. Larger applications benefit from a well-designed object model, and as
in any language, designing before writing Apex code can be a real timesaver.

n User Interface Designer

Force.com supports modernWeb standards for creating usable, flexible, and main-
tainable UIs. UI designers can help by building screen mock-ups, page layouts, and
the static portions ofVisualforce pages to serve as templates and assets for developers.

n Web Developer

Developers who have built Web applications can quickly learn enough Apex and
Visualforce and build similar applications on Force.com, typically with much less
effort. Skills in HTML, CSS, JavaScript, or Adobe Flex are needed to build custom
Force.com user interfaces.

13Inside a Force.com Project

n 4GL Developer

Developers proficient in fourth-generation languages such as Java, C#.NET, and
PHP usually have no problem picking up Apex code. It has the same core syntax as
Java, without the Java-specific libraries and frameworks.

n Integration Specialist

Force.com is a producer and consumer of Web services and supports REST as well
as any integration strategy based on HTTP.An integration expert can design the
interaction between systems, define the remote operations, and implement them
using Force.com or a specialized integration product.

n Quality Assurance Engineer

Testing is a critical part of any software project, and on Force.com testing is manda-
tory before code is deployed to production.A QA engineer can write automated
unit tests in Apex and test plans for security and integration testing. Standard tools
like Selenium can be used to automate UI testing.

n Operations Specialist

Although there are no servers or operating systems to manage, larger deployments
of Force.com can involve integration with on-premise systems. Single Sign-On
(SSO) integration and data migration are two common examples. Operations
experts can help in this area, as well as with application deployment and Force.com
administration tasks such as user maintenance.

Lifecycle
The software development lifecycle of a Force.com project is much like an on-premise
Web application development project, but with less toil. Many moving parts exist in
J2EE, .NET, or LAMP projects. Most require a jumble of frameworks to be integrated
and configured properly before one line of code relevant to your project is written.

This section describes areas of Force.com functionality designed to streamline the
development lifecycle and focus your time on the value-added activities related to your
application. Each of these areas has implicit costs and benefits. On the cost side, there is
usually a loss of control and flexibility versus technologies with less abstraction. Evaluat-
ing these features and judging whether they constitute costs or benefits for your project is
up to you.

Integrated Logical Database
Relational databases are still the default choice for business applications, despite the avail-
ability of alternatives like NoSQL, XML, and object-oriented databases.The relational
model maps well onto business entities, data integrity is easily enforceable, and implemen-
tations scale to hold large datasets while providing efficient retrieval, composition, and
transactional modification.

14 Chapter 1 Introducing Force.com

For business applications coded in an object-oriented language, accessing relational
databases introduces an impedance mismatch. Databases organize data in terms of
schemas, tables, and columns. Programs organize data and logic into objects, methods, and
fields. Many ways exist to juggle data between the two, none of them ideal.To make mat-
ters more complicated, many layers of protocol are needed to transport queries, resultsets,
and transactions between the program and the database.

In Force.com, the database tables are called objects.They are somewhat confusingly
named because they do not exhibit object-oriented behavior.The name comes from the
fact that they are logical entities that act as tables when being defined, loaded with data,
queried, updated, and reported on, but are surfaced to programs as typed data structures.
No mismatch exists between the way data is represented in code and the way it’s repre-
sented in the database.Your code remains consistent and concise whether you are work-
ing with in-memory instances of your custom-defined Apex classes or objects from the
database.This enables compile-time validation of programs, including queries and data
manipulation statements, to ensure that they adhere to the database schema.This one
seemingly simple feature eliminates a whole category of defects that were previously dis-
covered only through unit tests or in production by unfortunate users.

The logical aspect of the database is also significant. Developers have no direct access
to the physical databases running in Salesforce’s data centers.The physical data model is a
meta-model designed for multitenant applications, with layers of caches and fault toler-
ance, spanning servers in multiple data centers.When you create an object in Force.com,
no corresponding Oracle database table is created.The metadata describing your new
table is stored and indexed by a series of physical tables, becoming a unified, tenant-
specific vocabulary baked into the platform’s higher-level features.The synergy of
integrated, metadata-aware functionality makes Force.com more than the sum of its
individual features.

Metadata-Derived User Interface
As described previously, the definition of your objects becomes the vocabulary for other
features. Nowhere is this more evident than in the standard Force.com user interface,
commonly referred to as the “native” UI.This is the style pioneered by the Salesforce
Sales and Service Cloud products: lots of tabular displays of data, topped with fat bars of
color with icons of dollar signs and telescopes, and a row of tabs for navigation.

It is worth getting to know the capabilities of native UI even if you have reservations
about its appearance or usability.To some, it is an artifact of an earlier era of Web applica-
tions.To others, it is a clean-cut business application, consistent and safe. Either way, as a
developer, you cannot afford to ignore it.The native UI is where many configuration
tasks are performed, often for features not yet visible to Eclipse and other tools.

If your project’s user interface design is amenable to the native UI, you can build
screens almost as fast as users can describe their requirements. Rapid application proto-
typing is an excellent addition or alternative to static screen mock-ups. Page layouts are

15Inside a Force.com Project

descriptions of which fields appear on a page in the native UI.They are automatically
created when you define an object and configured with a simple drag-and-drop
layout tool.

Simplified Configuration Management
Configuration management is very different from what you might be accustomed to
from on-premise development. Setting up a development environment is trivial with
Force.com.You can provision a new development environment in a few clicks and deploy
your code to it using the familiar Eclipse IDE.

When added to your Eclipse IDE or file system, Force.com code and metadata are
ready to be committed to an existing source control system. Custom Ant tasks are avail-
able to automate your deployments. Sandboxes can be provisioned for testing against real-
world volumes of data and users.They are automatically refreshed from snapshots of
production data per your request. Force.com’s packaging feature allows you to partition
your code into logical units of functionality, making it easier to manage and share with
others at your company or in the larger community.

Integrated Unit Testing
The ability to write and execute unit tests is a native part of the Apex language and
Force.com development environment.Typically, a test framework is an optional compo-
nent that you need to integrate into your development and build process.With the facil-
ity to test aligned closely with code, writing and executing tests becomes a natural part of
the development lifecycle rather than an afterthought.

In fact, unit tests are required by Force.com to deploy code into production.This
applies to all Apex code in the system: user interface logic, triggers, and general business
logic.To achieve the necessary 75% test coverage often requires as much if not more code
than the actual Apex classes.

To make sure you don’t code yourself into a corner without test coverage, a great time
to write tests is while you code. Many development methodologies advocate test-driven
development, and writing tests as you code has benefits well beyond simply meeting the
minimum requirements for production deployment in Force.com. For example, a com-
prehensive library of tests adds guardrails to refactoring and maintenance tasks, steering
you away from destabilizing changes.

Integrated Model-View-Controller (MVC) Pattern
The goal of the MVC pattern is maintainable user interface code. It dictates the separa-
tion of data, visual elements that represent data and actions to the user, and logic that
mediates between the two. If these three areas are allowed to collide and the codebase
grows large enough, the cost to fix bugs and add features becomes prohibitive.

Visualforce adopts MVC by design. For example, its view components do not allow
the expression of business logic and vice versa. Like other best practices made mandatory

www.allitebooks.com

http://www.allitebooks.org

16 Chapter 1 Introducing Force.com

by the platform, this can be inconvenient when you just want to do something quick and
dirty. But it is there to help.After all, quick-and-dirty demos have an uncanny tendency
to morph into production applications.

Integrated Interoperability
Force.com provides Web services support to your applications without code.You can des-
ignate an Apex method as a Web service.WSDL is automatically generated to reflect the
method signature.Your logic is now accessible to any program that is capable of calling a
Web service, given valid credentials for an authorized user in your organization.You can
also restrict access by IP address or open up your service to guests.

As in other languages,Apex provides you with a WSDL-to-Apex tool.This tool gener-
ates Apex stubs from WSDL, enabling you to integrate with SOAP-enabled business
processes existing outside of Force.com. Lower-level Apex libraries are also available for
raw HTTP and XML processing.

End of Life
Retiring a production application requires a few clicks from the system administrator.
Users can also be quickly removed or repurposed for other applications.Applications can
be readily consolidated because they share the same infrastructure. For example, you
might keep an old user interface online while a new one is being run in parallel, both
writing to the same set of objects.Although these things are possible with other tech-
nologies, Force.com removes a sizable chunk of infrastructure complexity, preserving
more intellectual bandwidth to devote to tackling the hard problems specific to your
business.

Tools and Resources
Force.com has a rich developer ecosystem, including discussion groups for reaching out
to the development community on specific subjects, a source-code repository for open-
source projects, a Web site called AppExchange where you can browse for free and paid
extensions to the platform, services companies to help you plan and implement your
larger projects, and Ideas, a site for posting your ideas for enhancing the platform.

The following subsections list some tools and resources that exist to make your
Force.com projects successful.

Developer Force (http://developer.force.com)
Developer Force is a rich source of information on Force.com. It contains documenta-
tion, tutorials, e-books written by Salesforce, a blog, and a wiki with links to many more
resources inside and outside of Salesforce.

Developer Discussion Boards (http://community.salesforce.com)
The developer discussion boards are a public discussion forum for the Force.com devel-
opment community, divided into a dozen separate boards by technology area. Users post

http://developer.force.com
http://community.salesforce.com

17Inside a Force.com Project

their questions and problems, gripes, and kudos. Other users in the community con-
tribute answers and solutions, including Salesforce employees.The boards are a great way
to build a reputation as a Force.com expert and keep current on the latest activity around
the platform.

Ideas (http://ideas.salesforce.com)
If you have a suggestion for improving Force.com or any Salesforce product, visit the
Ideas site and post it. Other users in the community can vote for it. If your idea is popular
enough, it might be added to the next release of Force.com. Incidentally, Ideas is a
reusable component of Force.com, so you can build your own customized idea-sharing
sites for your company.

Code Share (http://developer.force.com/codeshare)
Code Share is a directory of open-source code contributions from the Force.com com-
munity, with links to the source code hosted on Google Code. Salesforce employees have
contributed many projects here. Code Share projects include the Facebook Toolkit, a
library for integrating with Facebook, and the Toolkit for PayPal X Payments platform, to
leverage PayPal’s Adaptive Payments API in Force.com applications.

Platform Documentation
Salesforce provides documentation through online, context-sensitive help within the Web
user interface, as well as HTML and PDF versions of its reference manuals.You can find
all documentation at Developer Force.

AppExchange (http://www.appexchange.com)
AppExchange is a directory of ready-to-install applications developed on Force.com.The
applications consist of metadata, such as Visualforce pages and Apex code, deployable into
your Force.com environment. Users can rate applications from one to five stars and write
reviews. Many free applications are written by Salesforce employees to illustrate new plat-
form features. Commercial applications are also available for trial and purchase.AppEx-
change is how independent software vendors distribute their Force.com applications to
Salesforce customers.

Dreamforce
Salesforce has a series of user conferences every year called Dreamforce. San Francisco
hosts the largest Dreamforce venue, with thousands attending to participate in training
sessions, booths, product demos, keynote speeches, breakout sessions, executive briefings,
and, of course, the parties. Dreamforce is a fun way to stay up to date with the technology.

http://www.appexchange.com
http://ideas.salesforce.com
http://developer.force.com/codeshare

18 Chapter 1 Introducing Force.com

Systems Integrators
For deployments including significant numbers of users, integration with other enterprise
systems, or complex data migrations, consider contracting the services of a systems inte-
grator.You can find systems integrators who have competency with Force.com, Sales
Cloud, Service Cloud, and other Salesforce products.They include pure-play cloud con-
sultancies such as Appirio and Model Metrics, as well as traditional players like Accenture
and Deloitte.

Technical Support
When you encounter undocumented or incorrect behavior in the system, submit a defect
report. If the issue can be described simply, like a cryptic error message, search for it in the
discussion groups. In many cases, someone else has already run into the same problem
before you, posted about it, and attracted the attention of Salesforce employees. If not, the
ability to log and track Force.com platform support cases is available in Force.com’s Web
user interface.

Sample Application: Services Manager
Every following chapter in this book contributes to the construction of a sample applica-
tion called Services Manager. Services Manager is designed for businesses that bill for
their employees’ time.These businesses need accurate accounting of when and where
employees are staffed, numbers of hours worked, skills of the employees, project expenses,
amounts billed to customers, and so forth.This section describes these features in prepara-
tion for later discussions of their design and implementation.

The goal is not to build a fully functional application for operating a professional serv-
ices business, but to provide a logically related set of working code samples to accompany
the technical concepts covered in this book.

Background
Imagine you own a professional services business.The services your company provides
could be architecture, graphic design, software, law, or anything with the following
characteristics:

n High cost, highly skilled employees
n Complex projects lasting a week or more
n Resources billed out at an hourly rate
n High cost of acquiring new customers

Your profit comes from the difference between the billing rate and the internal cost of
resources.This is typically small, so your process must be streamlined, repeatable, and scal-
able.To increase profit, you must hire more resources and win more customer projects.

19Sample Application: Services Manager

User Roles
The users of the Services Manager application span many roles in the organization.The
roles are covered in the following subsections, with a summary of their responsibilities
and how they use Services Manager.

Services Sales Representative
Sales reps work with customers to identify project needs and manage the relationship
with the customer. Reps use the Sales Cloud product from Salesforce to manage their
sales process. In general, they do not use Services Manager directly, but start the process
by winning the contract.

Staffing Coordinator
Staffing coordinators manage and schedule resources for projects.When the opportunity
is closed, they are notified via email.They then create a project using Services Manager
and staff it by matching the availability and skills of resources against the scheduling and
skill requirements of the project.

Project Manager
Project managers are responsible for success of projects on a daily basis.They direct and
prioritize project activities.They use Services Manager to manage the detailed weekly
schedules of their consultants and monitor the health and progress of their projects.

Consultant
The consultant is engaged directly with the customer and is responsible for the project
deliverables. In Service Manager, he or she logs time spent on the project, indicates the
completion of project milestones, and submits expenses.

Accounts Receivable
Accounts receivable is responsible for invoicing and collecting customers based on work
that has been delivered.At the end of each billing cycle, they use Services Manager to
generate invoices for customers.

Services Vice President
The VP is responsible for the services P&L and success of the team. Services Manager
provides the VP with reports on utilization and other metrics for assessing the team’s
overall performance.

Development Plan
The Services Manager sample application is developed incrementally throughout this
book, each chapter building on the previous. Every chapter covers a set of technical con-
cepts followed by the relevant Services Manager requirements, design, and implementa-
tion.The goal is to expose you to the abstract technology and then make it practical by
getting your hands dirty on the sample application.

20 Chapter 1 Introducing Force.com

The following list names the remaining chapters in this book, with brief descriptions
of the features of Services Manager to be covered:

n Chapter 2,“Database Essentials”: Design and create the database and import
data.

n Chapter 3,“Database Security”: Define users, roles, and profiles. Configure
sharing rules.

n Chapter 4,“Additional Database Features”: Define fields for reporting and
make a subset of data accessible offline.

n Chapter 5,“Business Logic”: Build triggers to validate data and unit test them.
n Chapter 6,“Advanced Business Logic”: Write services to generate email noti-

fications based on user activity.
n Chapter 7,“User Interfaces”: Construct a custom user interface for tracking the

skills of consultants.
n Chapter 8,“Advanced User Interfaces”: Enhance the skills-tracking user inter-

face with Ajax.
n Chapter 9,“Batch Processing”: Locate missing timecards using a batch process.
n Chapter 10,“Integration”: Calculate and transmit corporate performance met-

rics to a fictional industry benchmarking organization.
n Chapter 11,“Advanced Integration”: Develop a Java program to update

Force.com with information from a human resources database.
n Chapter 12,“Additional Platform Features”: Build a custom dashboard com-

ponent to visualize the geographic distribution of consultants on projects.
n Chapter 13,“Social Applications”: Automate built-in platform collaboration

features to help project teams communicate.

Summary
This chapter has introduced you to Force.com, explained how it differs from other PaaS
technologies and what infrastructure it’s designed to replace, and given guidelines for its
use on your projects. Here are a few thoughts to take away from this chapter:

n Force.com is a PaaS uniquely designed to make business applications easy to build,
maintain, and deliver. It consists of database, business logic, user interface, and inte-
gration services, all of them interoperable and interdependent, accessible through
configuration or code.

n The most suitable applications for implementation on Force.com operate primarily
on structured data.Traditional software development roles are still relevant in the
Force.com world, particularly Web and client/server developers. Data modeling

takes on a new importance with the platform, as data objects are tightly integrated
with the rest of the technology stack, and unit testing is mandatory.

n Services Manager is the sample application built on throughout this book. It’s
designed to serve companies in the professional services space, those selling projects
to customers and billing them for the time of its skilled employees.

21Summary

This page intentionally left blank

2
Database Essentials

In Force.com, the database provides the framework for the rest of your application. Deci-
sions you make on how to represent data have significant consequences for flexibility and
maintainability. Understanding the unique behaviors of the Force.com database is critical
for successful applications. Force.com operates at a higher level of abstraction than a rela-
tional database, so although existing relational database skills are helpful, the Force.com
database is a completely different animal.

This chapter covers topics in Force.com database design and development:

n Overview of Force.com’s Database: Get an overview of the Force.com data-
base and how it’s different from familiar relational databases.

n Working with Custom Objects: Custom objects are components within the
Force.com database that store your data. Learn how they are created and then test
them by entering and browsing their data.

n Sample Application: Design a logical data model for the Services Manager, map
it to Force.com objects, implement the objects, and import sample data.

Overview of Force.com’s Database
This section provides background on the database functionality within Force.com. It cov-
ers objects, fields, relationships, queries, and how data is integrated with your application
logic. Each Force.com-specific database feature is described and contrasted with its equiv-
alent in a standard relational database.

Objects
Strictly speaking, Force.com does not store objects in its database. Force.com’s objects are
more closely related to database tables than they are to anything in object-oriented pro-
gramming. Objects contain fields, which are equivalent to the columns of a database table.
Data is stored in objects in the form of records, like rows in a database table.

Objects belong to one of two categories: standard and custom. Standard objects pro-
vide data for Salesforce applications like CRM or core platform functionality such as user

24 Chapter 2 Database Essentials

identity.They are built in to Force.com and cannot be removed, although you can extend
them by adding your own fields. Custom objects are defined by you, the developer, and
you’ll be spending most of your time with them as you build your own applications.

Beyond the name, custom objects differ from their relational table counterparts in
some significant ways.

Logical, Not Physical, Objects
Unlike relational database tables, custom objects have no physical representation accessible
to the developer.There are no physical storage parameters to tune, no tablespace files to
create and manage. Force.com does not even create physical database tables for your cus-
tom objects.This abstraction layer allows Force.com to make decisions about how best to
represent, index, back up, migrate, relate, and tune your database.

Delegated Tuning and Operations
Force.com does not provide access to its database indexes. It is the job of Salesforce to
tune their physical databases, and they use everything from standard database indexes to
proprietary, tenant-optimized SQL generation that accounts for the characteristics of your
data storage and access patterns.You as a developer reap the benefits of this tuning by
virtue of the fact that you are building on the platform. Improving its product is in Sales-
force’s best interest. If you do encounter problems with database performance, file a sup-
port request with Salesforce.

When you run your own database software and hardware, you inevitably face opera-
tional tasks such as backup, recovery, and replication for scalability.Although nothing pre-
vents you from exporting the data from your Force.com instance and backing it up to
your own servers, normally no reason exists to do so.

Undelete Support
Normally when a row is deleted in a standard relational database and you need to recover
it after a commit, you’re out of luck unless you have backups of the database or are using
a database that provides some proprietary technology, such as Oracle’s Flashback.To avoid
this situation, you could implement your own support for undeleting rows, such as trig-
gers to copy data to an audit table or a “deleted” column to accomplish a “soft” delete.
Or, you could use Force.com, which provides undelete functionality on every object.
When records are deleted, they go into a “Recycle Bin,” where they stay until they expire
and are gone for good or an administrator undeletes them. Deleted records can be
queried and programmatically undeleted as well.

Accidentally dropping a table or another database object can also lead to a lot of
unpleasant work for a system administrator. If your database vendor doesn’t offer special-
ized recovery features, you are stuck recovering data from backups. In Force.com, deleting
objects sends them to the Recycle Bin.They stay there until they expire (30 days after

25Overview of Force.com’s Database

deletion) or are explicitly erased or undeleted by an administrator. If an object is
undeleted, its definition and all its data are restored.

Fields
Fields are like columns in a database.They belong to a parent table (custom object) and
have a name and constraints such as data type and uniqueness.

Force.com has two classes of fields: standard and custom. Standard fields are fields that
are created by Force.com for its own internal use, but that are also available to users.They
can be hidden from view and unused, but not completely removed or redefined.They are
a part of the Force.com data model that is static, relied on to exist by other layers of
Force.com technology. Examples of standard fields are Id (unique identifier) and Created
By (the user who created the record). Custom fields are created by you, the developer, to
store data specific to your applications.

Logical, Not Physical, Fields
When you define a new field for your custom object, Force.com does not create a corre-
sponding field in its physical database. Instead, it associates your new field with an existing
“Flex” field, a VARCHAR column of its generic data table.This provides Force.com with the
flexibility to redefine data types, add richer data types, and perform other processing on
the data outside of the database’s typically rigid rules.Although this implementation detail
of Force.com is not relevant to learning how to use Force.com’s database, it does help
explain some of its underlying behavior.

Unique Identifiers
Typical database tables include one or more columns to contain the primary key, the
unique identifier for each row. In Force.com, every object has a standard field called Id.
This field is automatically populated with an 18-character, case-insensitive, alphanumeric
string to uniquely identify your records. Unique identifiers can also be expressed as
15-character, case-sensitive strings, and this is how they appear in the Salesforce user
interface. In most cases, the two styles of unique identifiers can be used interchangeably.
So, when you are designing your Force.com database, you do not need to add a field to
contain a unique identifier.

Validation Rules
Validation rules place restrictions on the values of a new or updated record.They prevent
users and programs from inserting data that your application defines as invalid. Rules are
defined in an expression language similar to the function language found in the cells of a
Microsoft Excel worksheet.The validation rule in Listing 2-1 prevents a record from con-
taining a Start Date greater than its End Date.

www.allitebooks.com

http://www.allitebooks.org

26 Chapter 2 Database Essentials

Listing 2-1 Sample Validation Rule

AND(

NOT(

ISNULL(Start_Date__c)

),

NOT(

ISNULL(End_Date__c)

),

(Start_Date__c > End_Date__c)

)

When the expression evaluates to true, it is treated as a validation failure. For the rule
to evaluate as true, the value in the fields Start_Date__c and End_Date__c must be
non-null, and the value of Start_Date__c must be greater than End_Date__c.

Formula Fields
Formula fields contain values that are automatically calculated by Force.com, derived
from other fields in the same object or in different objects.They use the same expression
language as validation rules.

For example, Listing 2-2 shows a formula for a field called Billable_Revenue__c.
It’s defined on a Timecard object and calculates the billable revenue contained in the
Timecard.

Listing 2-2 Sample Formula Field

Billable Revenue (Currency) = Week_Total_Hrs__c * Rate_Per_Hour__c

Week_Total_Hrs__c and Rate_Per_Hour__c are custom fields on the Timecard
object.When a new record is inserted in the Timecard object, the two fields are multi-
plied, and the result is stored in the Billable_Revenue__c field.

Rich Data Types
Force.com supports a few flavors of the typical string, number, date/time, and Boolean
data types. It also supports richer data types that lend themselves to direct usage in user
interfaces with prebuilt validation, input masks, and output formatting.The rich types are
phone, picklist, multi-select picklist, email, URL, and rich text area. Picklists are the most
powerful types of the bunch because they address the clutter of “lookup tables” dangling
off of most relational data models. Lookup tables usually contain only a key and descrip-
tion and can be readily replaced with picklist fields. Internally, picklists maintain their
own identifiers for values, allowing their labels to be modified without updating the
records that reference them.

27Overview of Force.com’s Database

History Tracking
Most databases do not provide developers a way to track every change made to records in
a table.Typically this is something that you implement using another table and some code.
In Force.com, any object can have History Tracking enabled on it, which allows up to 20
fields to be audited. Every field with History Tracking enabled that is changed gets a new
record inserted in a corresponding History object containing the old and new values.
Records in the History object cannot be deleted.

Relationships
The capability to define and manage relationships between data entities is the basis for
much of the value of relational databases. Relationships allow data from one entity to be
logically separated from others.With this separation, data can be modified without
integrity loss, and combined with other entities for analysis.

Data relationships in Force.com resemble those found in standard relational databases.
You can express one-to-one, one-to-many, and many-to-many relationships. But relation-
ships in Force.com are closely controlled and managed by the platform and also inte-
grated with many platform features. Some important points are listed in the subsections
that follow.

Integrity Enforced
When you define a relationship in Force.com, a relationship field is created to contain the
foreign key. Force.com prevents you from using a foreign key to a different object. It
enforces that the foreign key points to an object of the correct type.

This is basic foreign key constraint checking, like in a relational database.The differ-
ence in Force.com is that you can never elect to turn it off. It is a mandatory, always-on
feature, protecting your data from inconsistency.

This rule has one minor exception. Many standard objects contain special fields that
can be related to multiple object types. For example, a support case can be assigned to an
individual user or a group representing a collection of users. In the Case object, the
OwnerId field can contain the ID of a record in the User object or the Group object.
Both types of foreign keys are valid. Note that these polymorphic foreign key fields are
not permitted in custom objects.

Explicitly Defined
In Force.com, all relationships are predefined, established when objects and fields are cre-
ated.With the exception of semi- and anti-joins, you do not specify join conditions when
you write queries. Instead you specify the fields you want, and Force.com takes care of
traversing the necessary relationships to retrieve the data.

28 Chapter 2 Database Essentials

Query Language
Force.com has two query languages. One is called Salesforce Object Query Language
(SOQL) and is used for structured queries.The other language, Salesforce Object Search
Language (SOSL), is used for searching the full text of one or more objects.

SOQL
Don’t let the name confuse you. Despite some similarities in syntax, SOQL is very differ-
ent from SQL. It has more in common with a reporting or object query language than its
more mathematically grounded ancestor.

Listing 2-3 shows a sample SOQL query on a custom object. It returns the names, sta-
tuses, and expected revenue amounts for the top-ten largest uninvoiced projects started in
the last quarter, in descending order by pending revenue.

Listing 2-3 Sample SOQL Query

SELECT Name, Total_Billable_Revenue_Pending_Invoice__c, Project_Status__c

FROM Proj__c

WHERE Invoiced__c = FALSE and Start_Date__c = LAST_QUARTER

ORDER BY Total_Billable_Revenue_Pending_Invoice__c DESC LIMIT 10

The query specifies a list of columns to be returned (SELECT), the object to query
(FROM), filter conditions (WHERE), sorting results (ORDER BY) in descending (DESC) order,
and a hard limit on the maximum number of rows to return (LIMIT).

Selecting a single object is the simplest type of SOQL query. More advanced queries
select fields from multiple related objects, nested resultsets from child objects using sub-
queries, and perform semi-joins and anti-joins using IN and NOT IN.

The following subsections describe the four most significant differences between SQL
and SOQL.

Implicit Join
In SQL, you can join any table with any other table, typically with one or more Boolean
expressions involving pairs of columns.Assuming that the data types of the columns in
the join expression are comparable, the join query returns the corresponding rows of
both tables as specified in your join expression.

In Force.com, data from multiple standard and custom objects can be combined, but
only in ways predetermined by you when you designed your database. SOQL itself does
not support any concept of joins, other than semi-join and anti-join. Using SOQL, you
tell the Force.com platform which fields of which objects to retrieve, and the platform
does the work of traversing the data, maintaining the integrity between objects in accor-
dance with the relationships you defined.

This behavior has its pros and cons.You cannot perform truly ad-hoc queries, in
which data from multiple objects is combined in ways possibly unanticipated by the

29Overview of Force.com’s Database

Table 2-1 Results of SQL Join Query

Orders.OrderId OrderLineItems.LineItemId

1 1

1 2

1 3

2 4

2 5

2 6

database designer. But it results in much simpler, more concise queries that can be opti-
mized entirely by the platform.

Nested Resultsets
In SQL, querying two tables in a one-to-many relationship without aggregate functions
and GROUP BY results in a cross product of the rows. For example, assume you have a
table containing orders and another table with their line items, and issue the query in
Listing 2-4.

Listing 2-4 Relationship Query in SQL

SELECT Orders.OrderId, OrderLineItems.LineItemId

FROM Orders, OrderLineItems

WHERE Orders.OrderId = OrderLineItems.OrderId

Assume that there are two orders (1 and 2), each with three line items (1–3 and 4–6).
Table 2-1 shows the results of executing the query.

To begin comparing this to Force.com, Listing 2-5 shows an equivalent query in SOQL.

Listing 2-5 Relationship Query in SOQL

SELECT OrderId, (SELECT LineItemId FROM OrderLineItems)

FROM Orders

Note the lack of a WHERE clause to perform the join and the use of a subquery to nest
the line items. Force.com is aware of the parent-child relationship between Orders and
OrderLineItems, so it performs the join automatically.The result can be visualized as
arrays of nested records, as shown in Figure 2-1.The outer record is the order, and each
order contains an array of line items.

30 Chapter 2 Database Essentials

Orders

Id: 1

Id: 2

Id: 3

Id: 1
Line Items:

Id: 4

Id: 5

Id: 6

Id: 2
Line Items:

Figure 2-1 Nested results of SOQL query

No Functions in Column List
You might have included functions like LEFT, RIGHT, MID, LEN, and IFF along with your
columns in a SQL SELECT statement. SOQL does not permit functions in the SELECT list.
The only exceptions are built-in aggregate functions such as COUNT, which returns the
number of records in the query. But aggregate functions can’t be used in a query contain-
ing any other fields in the SELECT list.

Governor Limits
Force.com prevents a single user from consuming more than its fair share of system
resources.This ensures a consistent level of system performance for all tenants. Limitations
placed on resource consumption are called governor limits.A few examples of governor
limits are the number of records that can be queried at one time, the amount of memory
used by your code, and the size of messages sent between Force.com and external hosts.
Some governor limits vary based on the type of licensing agreement you have in place
with Salesforce.

SOSL
SOSL provides full-text search capabilities across many objects and fields simultaneously.
This task is inefficient and often impossible in SOQL. SOSL statements can perform a
search over all records, or incorporate SOQL to narrow the search scope and achieve the

31Overview of Force.com’s Database

best of both worlds: structured and unstructured search.The SOSL expression in Listing
2-6 returns the IDs of records in four custom objects that begin with the word java in
any of their fields.

Listing 2-6 Query in SOSL

FIND 'java*' IN ALL FIELDS

RETURNING Project__c, Resource__c, Assignment__c, Skill__c

Data Integration
Integration refers to the incorporation of the database into the rest of your application,
the business logic and user interface. If your application consists solely of stored proce-
dures, there is no integration; your code runs inside the database process and hits database
objects directly. More commonly application servers exist that need to communicate with
the database.

With Force.com, either you are coding “on the platform,” which is akin to writing
stored procedures, or you are developing a “composite application,” which executes some-
where else but integrates with Force.com data and logic.The following subsections
describe how integrating data in Force.com differs from traditional Web application
development.

Web Services API
Force.com provides a Web services API for accessing data from outside of its platform.
This is the equivalent to a JDBC or ODBC driver, but uses SOAP and HTTP instead of
lower-level protocols.You can run SOQL and SOSL queries, update the data using Data
Manipulation Language (DML) operations, and query metadata.

To make using the raw SOAP services easier, language-specific bindings are available
for Adobe Flex, Microsoft C#.NET andVisual Basic, Ruby, Perl, Java, JavaScript, PHP,
and Python.

Object-Relational Mapping
In traditional Web application development, one of the most important integration tech-
nologies is Object Relational Mapping (ORM).This layer of infrastructure maps data
objects from the database to and from the data structures in your program.Any ORM
technology must be well integrated into your development process, efficient at runtime,
and flexible to accommodate all data access patterns required by your application and
allow for future schema changes. Java developers use Hibernate, Ruby has ActiveRecord,
and so forth.

With Force.com, the ORM layer is built in to the platform. Data objects, metadata
objects, and queries have direct representation in Apex code.When you create a new cus-
tom object, it’s immediately accessible by name in Apex code. If you accidentally mistype
the name of a field in your new object, your code will not compile.

32 Chapter 2 Database Essentials

For example, the snippet of Apex code in Listing 2-7 selects a single record from the
Resource object, updates the value of its Hourly Cost Rate field, and commits the
updated record to the database.

Listing 2-7 Apex Code Snippet

public void grantRaise(String resourceName, Decimal newRate) {

Resource__c r = [select Id, Hourly_Cost_Rate__c

from Resource__c

where Name = :resourceName limit 1];

if (r != null) {

r.Hourly_Cost_Rate__c = newRate;

update r;

}

}

Note the use of an inline SOQL query (in square brackets), the custom object as a
first-class object in code (Resource__c), and inline DML (update statement).

Metadata in XML
Metadata in Force.com is created using a Web user interface, the Eclipse IDE, or the
Metadata API. Force.com does not use Data Definition Language (DDL), but has its own
XML schema for metadata. Listing 2-8 shows a simple example of Force.com’s XML
metadata.

Listing 2-8 Metadata XML for a Custom Object

<?xml version="1.0" encoding="UTF-8"?>

<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">

<deploymentStatus>Deployed</deploymentStatus>

<fields>

<fullName>Start_Date__c</fullName>

<label>Start Date</label>

<type>Date</type>

</fields>

<label>Project</label>

<nameField>

<label>Project Name</label>

<type>Text</type>

</nameField>

<pluralLabel>Projects</pluralLabel>

<searchLayouts/>

<sharingModel>ReadWrite</sharingModel>

</CustomObject>

33Working with Custom Objects

This XML describes an object with a human-readable name of Project. It contains a
single custom field called Start Date, of type Date.The Sharing Model of ReadWrite
means that all users in the organization can edit the records in the Project object.
Force.com provides a Metadata API for importing metadata XML into the platform.This
is how development tools such as the Force.com IDE operate.

Generated User Interfaces
In the process of defining a custom object, described in the next section, you will see a
number of settings related to the visual appearance of your object.These settings help
Force.com generate a user interface for manipulating the data in your object. From here
on, this is referred to as the “native” user interface, native meaning that it is built in to
Force.com.

Force.com’s native user interface is tightly integrated with your data model.The defi-
nitions of your objects, fields, and relationships are combined with additional configura-
tion settings to create full-featured user interfaces that can perform CRUD (create,
replace, update, delete) operations on your data.

Working with Custom Objects
This section describes how to create and manage custom objects in Force.com.This is an
introduction to the process, so you can experiment with your own objects and data. It
starts with instructions for getting your own Force.com Developer Edition account and
gives a brief introduction to the tools available for working with custom objects.The rest
of the section covers object creation and customization, field creation, and entering and
viewing data using the native user interface.

Force.com Developer Edition
To get hands-on with Force.com development, you need a development environment.
Environments are known as organizations, or “orgs” for short. Orgs come in different
shapes and sizes based on the licensing agreement with Salesforce. Salesforce gives its
Developer Edition (DE) away free. DE orgs are full-featured but have hard limits on the
amount of storage (20MB of files, 20MB of data) and number of users (two full users
and three platform-only users).When you are ready to test your application with pro-
duction data and user volumes, license a Force.com Sandbox or Force.com Enterprise
Edition (EE).

Salesforce offers one other licensing option geared toward developers called Free Edi-
tion (FE).As its name suggests, FE is free for a single application with up to 100 users,
10 custom objects, 1GB of storage, and an additional linked DE org called a Developer
Sandbox.The Sandbox can be refreshed with the full contents of your FE account
(metadata and data) with a single click.Although its increased user and storage limits are
helpful, FE is not a drop-in replacement for DE due to its license restrictions. It is most
useful for testing your app with a larger org before upgrading to EE.

34 Chapter 2 Database Essentials

Figure 2-2 Force.com password change page

Tip
Contact a Salesforce sales representative for more information about the different licensing
options for Force.com.

Registration
Visit http://developer.force.com with your Web browser. On this page is a link or button
to create a free DE account. Complete the sign-up form.Within a few minutes, two
emails are sent to the address you provide.The first email is a login confirmation contain-
ing a temporary password and a link to log in.The second email is a welcome message to
Force.com, with links to resources for developers.

Logging In
Click the login link in the first email.Your browser is directed to a page that forces you to
change your password. Passwords must be at least eight characters long and alphanumeric.
Here you also choose a security question and answer, as shown in Figure 2-2.The security
challenge is used in the event that you forget your password.

At this point, you are logged in to your own Force.com organization.

http://developer.force.com

35Working with Custom Objects

Tools for Custom Objects
Many tools are available that work with Force.com, created by Salesforce and independent
software vendors. But if you’re new to Force.com, starting with the free tools supported
by Salesforce is best. Unless noted otherwise, all tools are available from the Developer
Force Web site (http://developer.force.com).After you’re comfortable with the standard
tools, explore the range of solutions offered by the Force.com community.

Tools for Metadata
Metadata is the description of a Force.com application, from the data model to the user
interface and everything in between. In this chapter, the focus is on the data model, and
two tools are available from Salesforce for building it.

Force.com App Builder Tools
App Builder Tools are built in to the native Web user interface of Force.com.They are the
easiest and most full-featured tools for working with objects and many other features.
When new features are added to Force.com, you’ll find them supported in the App
Builder Tools first. For an example of using the App Builder Tools, log in to Force.com
and click Setup. In the App Setup area, click Create ➝ Objects.

Force.com IDE
The Force.com IDE is an Eclipse-based development environment. Its strength is devel-
oping Apex code and Visualforce pages and managing the metadata for larger deployments
involving multiple Force.com organizations. It provides some functionality for working
with custom objects, but the objects are presented in Metadata XML, not in a friendly
user interface.This makes the Force.com IDE a better tool for maintaining objects than
for creating new ones from scratch.

Tools for Data
Data tools enable you to import and export data in bulk.You usually use them in a migra-
tion, in which data you load from an existing system into Force.com.

Force.com Data Loader
Data Loader has the richest data import features of any Salesforce-provided data tool. It is
available for Windows only, although a Mac port is available in the community. Find it by
logging in to Force.com, going to the Administration Setup area, and clicking Data Man-
agement ➝ Data Loader.

Import Wizard
The Import Wizard is a tool built in to the native user interface. It allows bulk data to be
imported as new or updated records of custom objects.To use it, log in to Force.com and
click Setup. In the Administration Setup area, click Data Management ➝ Import Custom
Objects.The Import Wizard walks you through a seven-step process for getting the data
from a Comma Separated Values (CSV) file into Force.com.

www.allitebooks.com

http://developer.force.com
http://www.allitebooks.org

36 Chapter 2 Database Essentials

Figure 2-3 Custom objects in Force.com App Builder Tools

Force.com Excel Connector
Excel Connector is an add-in to Microsoft Excel that allows bidirectional data movement
between a worksheet and a Force.com object.You can fill an Excel worksheet with
records from a Force.com object. In the worksheet, you can change values by simply edit-
ing the corresponding cells.The modified values can then be written back to the
Force.com object. If you’re an Excel power user, you will appreciate this tool.You can
download it at http://wiki.developerforce.com/index.php/Force.com_Excel_Connector.

Object Creation
The easiest way to understand the object creation process is to try it. Log in to Force.com
using your DE account and click Setup. In the App Setup area, click Create ➝ Objects.
Figure 2-3 shows the screen as it appears in a new Force.com organization, with no
objects yet defined.

To begin, click the New Custom Object button.

Object Definition
The first step of building the custom object is its definition screen.This looks like a com-
plex screen, but only two values are required: the label and its plural form. From that,
Force.com does the rest.The label is the human-readable name of your custom object.

http://wiki.developerforce.com/index.php/Force.com_Excel_Connector

37Working with Custom Objects

Setting a description for your object if you’re working with other developers is a good
practice.

Before leaving this screen, glance at the other options:

n Object Name:This is a very important name. It is how you refer to your custom
object when you write Apex code, formula fields, and validation rules. It is automat-
ically populated from the label, but it can be set manually.Although it is not shown
on this screen, internally Force.com appends the Object Name with “__c” to differ-
entiate it from standard objects.

n Record Name Label and Format: Every object has a standard field called
Name. It is used in the native user interface as a label for your record. Name can
have an Auto Number data type, which causes names to be automatically generated
from a pattern, or a Text data type with a maximum length of 80 characters. Name
values are not required to be unique.

n Allow Reports: If checked, this custom object can participate in the reporting fea-
ture of Force.com.

n Allow Activities: If this is checked, users can associate calendar events and tasks to
records of your custom object.You can find the calendar and tasks features on the
Home tab.

n Track Field History: If this option is checked, Force.com creates an additional
object to work alongside yours, recording changes to selected fields.

n Deployment Status (in development, deployed): If an object is in develop-
ment status, it is hidden from the users in your org, except those with the Cus-
tomize Application permission. Deployed objects become visible to any user, as
dictated by the security configuration of the object and org.

n Object Creation Options: Unlike the other options, which can be changed later,
these options are available only when a custom object is first created.Add Notes and
Attachments Related List to Default Page Layout allows external documents to be
attached to records of your custom object, like attachments on an email. Launch
New Custom Tab Wizard is a shortcut for building a custom tab at the same time as
you define your object.

n Help Settings: This setting dictates how the Help for This Page link in the corner
of every page behaves on your custom object. By default, it shows the standard
Force.com help.You can configure it to display a custom Visualforce page instead.
Visualforce pages are discussed in Chapter 7,“User Interfaces.”

After you’ve clicked the Save button on the definition page, the detail page of your new
custom object is shown. It contains a series of bordered boxes with titles. Each box con-
tains configuration options for a different aspect of the object. Most aspects are described
in the following subsections.

38 Chapter 2 Database Essentials

Standard Fields
Standard fields are automatically part of every object.They are used for platform-wide
functions.The Created By, Last Modified By, and Owner fields help provide record-level
access control of your data. Data security is discussed further in Chapter 3,“Database
Security.”

Custom fields are created by you, the developer, to store data specific to your applica-
tions. Custom relationships express associations between the records in a pair of objects,
such as a purchase order and its line items. Initially your object does not contain any cus-
tom fields or relationships.After you’ve added some, they are listed here and can be edited
and deleted.

Validation Rules
Validation rules define what constitutes a valid record, preventing records that do not con-
form from being stored in the database.When a validation rule is added, it applies to data
coming from anywhere: a bulk import process, a user interface, or a Web service call from
another application.When validation rules are defined, they are shown in this list and can
be edited and deleted.

Triggers
Triggers are much like triggers in relational databases, except written in Apex code.They
fire before or after a data manipulation action, such as insert, update, delete, and undelete.
They can inhibit the action or extend it by acting on other database objects, modifying
data, or even calling out to external Web services.

Standard Buttons and Links
When a custom object is created, a native user interface is also created for that object to
enable CRUD operations without coding.The native user interface contains a collection
of standard buttons, and this list allows you override their behavior.With overrides, you
can use Visualforce to develop a custom user interface to be shown for actions that require
special treatment, such as the creation of a new record in your object.

Custom Buttons and Links
This section allows the definition of one or more custom buttons to appear in the native
user interface for your object. For example, you might want to add a Verify button, which
would pop up a new window and allow the user to view the results of some analysis per-
formed on the record.

Page Layouts
A Page Layout brings together all the native user interface elements for a custom object.
This includes the buttons along the top and bottom of the screen, the fields displayed, and
related lists, which are records of child objects.

Page Layouts are assigned to profiles.This allows different user interfaces to be shown
to different types of users. For example, you need one user interface for entering a contact

39Working with Custom Objects

for a support case, but a different one for entering job applicant information. Both end up
as records in the Contact object, but the user interfaces can appear very different.

Search Layouts
In this section, you can customize the display of your object in the native search user
interfaces. Make a point of editing the Tab layout. It is the most frequently used and worth
customizing to save yourself time.The Tab layout displays recently viewed, created, or
modified objects on your custom tab. By default, it contains only the Name field.

Field Creation
As in object creation, the easiest way to understand field creation is to try it. Return to
your custom object detail page and click the New button in the Custom Fields & Rela-
tionships section.The first page of the New Custom Field Wizard prompts for field type.
The data types can be thought of in terms of seven categories:

1. Text,Text Area,Text Area (Long),Text Area (Rich): Text fields are varying
lengths of Unicode text. Force.com does not allow fields with other encodings.Text
stores 1 to 255 characters,Text Area stores the same number of characters but allows
line breaks, and Text Area (Long) and Text Area (Rich) store up to 32,000 charac-
ters.The Rich Text Area field allows images, links, and basic formatting information
to be stored inline with the text. One limitation of both the Long and Rich Text
Areas is that Force.com’s full-text search feature looks at only the first 2,048
characters.

2. Picklist, Picklist (Multi-Select): A Picklist is a list of suggested values that is pre-
sented to the user. Multi-Select enables a user to select multiple values. Record
Types can be used to create multiple lists of suggested values for the same field, to be
shown to different types of users. Picklist values are not enforced at the database
level without the addition of a trigger or validation rule.

3. Number, Percent, Currency: Number can store signed values from 1 to 18 digits
long, decimal places included. Currency and Percent are also Numbers but add
type-specific formatting, such as a dollar sign.

4. Checkbox: Checkbox is a Boolean field. It stores a true or false value, and is
represented in the native user interface as a check box.

5. Date, Date/Time: In the native user interface, dates are rendered with a calendar
picker component and times with a separate, time-masked field with AM/PM
selector.

6. Email, Phone, URL: These types are provided to enhance the experience in the
native user interface. For example, URLs are clickable and open in a new Web
browser window.

40 Chapter 2 Database Essentials

7. Relationship (Lookup, Master-Detail): These define relationships between two
objects.They are covered in more detail in the section,“Relationship Fields.”

After you’ve established the field type, the detail page is shown.The only required fields
are Label and Name.The label is the human-readable name of your field. Setting a
description for your field to document its purpose if not readily apparent from the label is
good practice.

Before leaving this screen, examine the other detail settings:

n Field Name: Like Object Name, this is an important name. It is the name used to
refer to your field in Apex Code, formula fields, and validation rules. It is automati-
cally populated from the label, but it can be set manually. Field names cannot con-
tain spaces.Although it is not shown on this screen, internally Force.com appends
the Field Name with “__c” to differentiate it from Standard Fields.

n Help Text: If you provide help text for your field, a small blue circle icon contain-
ing the letter “i” is shown beside it in the native user interface. If a user hovers the
mouse over this icon, your help text is displayed.

n Required: If this is checked, a record cannot be saved unless this field contains a
value.This applies to records created anywhere, in the native user interface, imported
from other systems, and programmatically.

n Unique:Text and Number fields allow a uniqueness constraint to be applied. If this
is checked, new records must contain a unique value for this field, one that does not
occur in other records, or it cannot be saved. Like the Required attribute, this is
enforced at the database level.

n External ID: Text and Number fields can be designated as External IDs. By
default, the only unique identifier on an object is the standard Id field. But if Exter-
nal ID is checked, your custom field can be used to uniquely identify records.
External IDs are also searchable from the Search sidebar. Note that each object can
have at most three External ID fields.

n Default Value: In a new record, this optional expression is evaluated and shown as
a default value, but can be overwritten by the user.The expression is written in the
same language as formula fields and validation rules. It can be as simple as a static
value or a series of calculations performed on other fields.

Relationship Fields
Relationship fields can express one-to-one, one-to-many, and many-to-many relationships
between objects. Creating relationships keeps data normalized, but also adds to the com-
plexity of the data model, causing greater complexity in code and user interfaces that rely
on it.When moving to Force.com from a relational database, do not blindly create an
object for every table and expect to join them all together with relationships. Force.com
has hard limits on the distance between objects that can be joined together for purposes of
user interface, reporting, formulas, and triggers.When you are querying a child object and

41Working with Custom Objects

Table 2-2 Comparing Lookup and Master-Detail Relationships

Lookup Relationship Master-Detail Relationship

Child records exist independent of parent Child records cannot exist without parent

Independent ownership Always owned by parent record

No cascading behavior Deletion of parent cascades to delete children

No roll-up fields Roll-up summary fields supported

Unlimited nesting, although limited by SOQL Up to four nested levels

referencing data from parent objects, the maximum number of objects that can be refer-
enced is five. In the reverse scenario in which the query is against a parent and references
the child, the maximum is one.You can use workarounds, such as using formula fields to
consolidate fields from distant objects, but keeping your object and relationship count low
pays dividends later in the development process.

The two types of relationship fields are Lookup and Master-Detail. Lookup relation-
ships are the default choice.They are the most flexible and transparent in their operation.
You can create up to 25 of them on a single object, they maintain their own record of
ownership, child records can be reassigned to a new parent, and they do not have any
automatic behaviors such as cascade delete.

Master-Detail relationships are useful for enforcing mandatory relationships, in which a
child record cannot exist without its parent record.All child records in a Master-Detail
relationship must have a parent record specified.When the master record in a Master-
Detail relationship is deleted, all associated detail records are also deleted. Up to four
nested levels of Master-Detail relationships can be created, counting from the master
object to the most deeply nested child object. Master-Detail relationships have some other
special behaviors, such as allowing aggregation of child records through roll-up summary
fields, discussed in Chapter 4,“Additional Database Features.”

Table 2-2 summarizes the differences between Lookup and Master-Detail relationships.

Additional Field Types
Some field types have special behavior, different than simply storing a value.These are
listed here:

n Auto Number: Most databases have an identity or sequence field, a field that auto-
matically increments itself when a new record is added. In Force.com,Auto Num-
ber fields are read-only text fields with a maximum length of 30 characters.You
define the length, a display format used to generate values, and the starting number.
For example, if you define an Auto Number field with a display format of Project-
{0000} and a starting number of 100, the Auto Number field in your first record
will contain a value of Project-0100.

42 Chapter 2 Database Essentials

n Formula: Formula fields are read-only fields that are calculated by Force.com based
on an expression you provide when defining the field.The output of a formula can
be a currency, date, date/time, number, percent, or text value.

n Roll-Up Summary: Roll-up summary fields allow child records in a Master-
Detail relationship to be summarized and the result stored in the parent record.

Entering and Browsing Data
Force.com’s native user interface might or might not be suitable for presenting directly to
users of your application. But few people can argue its value as a database front end for
developers and administrators.

Use it to test your data model by creating records with dummy values.This helps iden-
tify missing fields, non-intuitive Page Layouts, and additional validation rules needed.After
your object contains some records, browse them using Views and Search. Customize Views
to show the optimal set of columns. Usable Views are helpful later in the development
process for troubleshooting data problems.

Getting Started
Salesforce often adds new features that users must opt-in to use. For example, users must
opt-in to features that involve significant changes to the user interface. Salesforce recently
released a faster, more powerful user interface for working with lists of records and for
editing records with fewer clicks. Before starting this section, check to make sure your org
has these features enabled. Go to the Setup,App Setup area, click Customize ➝ User
Interface, and then check the Enable Enhanced Lists and Enable Inline Editing options;
click the Save button.

Entering Data
Custom tabs are containers for developer-defined user interfaces.These tabs, such as the
Home tab, are displayed at the top of the page.Tabs are the gateway to the native list view
and CRUD user interfaces for an object and can also present entirely custom user inter-
faces built in Visualforce.

If you have not created a custom tab for your object, do so now by going to Setup and,
in the App Setup area, clicking Create ➝ Tabs. Click the New button in the Custom
Object Tabs section. In the details page, select your custom object from the drop-down
list, pick a tab style, and optionally enter a description. Skip through the remaining pages,
accepting the default values.

To create a new record in your custom object, click the Create New drop-down on
the left side of the screen and select your object from the list.An edit screen is shown, as
in Figure 2-4, which shows editing a new record in a custom object named Resource.
This screen is defined by the Page Layout. Make note of things you don’t like as you enter
test data and return to the Page Layout to fix them.

When your new record is saved, the page changes to a view mode.This is also con-
trolled by the Page Layout. If you’ve enabled Inline Editing, you can double-click the
editable fields to change their values.

43Working with Custom Objects

Figure 2-4 Creating a new record

Browsing Data
Your first encounter with a list of records is usually on the home page of your custom
object. Click your custom object’s tab, and you’ll see a section listing recently viewed
records. It shows only the Name of your records.To customize this list of recently viewed
records to show more fields, go to the custom object definition, Search Layouts section,
and edit the Tab layout to add more fields. Figure 2-5 shows an example of a tab layout
with several fields visible.

Another way to browse data is a View.A View is a native user interface that displays the
records of a single object as a list. It includes such features as sorting, pagination, columns
that can be dragged to reorder, and the capability to delete and edit data inline without
switching to another user interface.To define a View, you specify the list of fields to be dis-
played and, optionally, filter criteria to restrict the list to a manageable size.

To show a View on your own object’s data, click its tab and then click the Go button.
This displays the selected View, which is All by default. Unless you’ve already customized
your All View, it contains only the Name field. Customizing Views is another task, like
building tabs and Page Layouts, that can increase developer productivity, even if you don’t
plan to use the native user interface outside of administration. Figure 2-6 shows a View
customized with additional fields.

44 Chapter 2 Database Essentials

Figure 2-6 View of custom object

Figure 2-5 Custom tab home

45Sample Application: Data Model

Sample Application: Data Model
In this section, you’ll build a first iteration of the Force.com database for the Services
Manager sample application and populate it with data. It starts with a discussion of the
design of the Services Manager data model.The remainder of the section describes how
to implement the data model on Force.com and load it with sample data.

Logical Data Model
To build a database in Force.com, begin with a logical model. Identify the data entities,
the logical groupings for information. Draw these as boxes and add lines connecting
related entities.Annotate these lines with the cardinality of the relationship.

The logical data model of the Services Manager sample application is illustrated in
Figure 2-7.

The seven data entities are described here.

Customer
The customer is the organization to which professional services are delivered. Customers
have a mailing address, a phone number, and zero or more clients associated with them.
Table 2-3 lists the columns in the Customer entity.

Project

Client

1-1

0-1

0-1

1-1

1-1

1-11-1

0-n

0-n

0-n

0-n

0-n

0-n

0-n

Timecard

Resource

Skill

CustomerAssignment

Figure 2-7 Logical data model for Services Manager

www.allitebooks.com

http://www.allitebooks.org

46 Chapter 2 Database Essentials

Table 2-5 Project Columns

Column Name Type Description

Name Text Project name

Type Text Type of project (e.g., Billable, Non-Billable)

Start Date Date Date project begins

End Date Date Date project ends

Client
The client is a person who is employed by a customer. Each client has a first and last
name, an email address, a phone number, and a mailing address. Clients also have a named
position within an organizational unit of their company. Clients are associated with a sin-
gle customer at a time.Table 2-4 contains the columns in the Client entity.

Project
A project is a unit of work that the customer has contracted. It has financial attributes
such as the number of hours allocated for its completion, the expected revenue, and how
billing is to be handled. It also has attributes for tracking its lifecycle, such as start and end
date, status, stage, and notes.

Projects have zero or more resources associated with them to deliver the scope of
work. Projects also have zero or more timecards logged to them. Performing aggregate
calculations on the timecards and resources provides important project financial metrics,
such as total billable hours, total assigned hours, total billable revenue, total projected rev-
enue, and total cost.Table 2-5 contains the full list of columns in the Project entity.

Table 2-3 Customer Columns

Column Name Type Description

Name Text Customer name

Address Text Customer billing address

Phone Phone Customer phone number

Table 2-4 Client Columns

Column Name Type Description

First Name Text Client first name

Last Name Text Client last name

Address Text Client address

Phone Phone Client phone number

Email Email Client email address

Title Text Title (e.g., VP of Sales)

Department Text Organizational unit (e.g., Sales)

47Sample Application: Data Model

Resource
A resource is a consultant, a person who works for the services organization to deliver the
project. Resources contain basic contact information, such as first and last name, email
address, phone number, and mailing address.They also have information specific to
services delivery, such as primary skill, number of years of experience, education, and the
hourly cost rate.The full list of columns is shown in Table 2-6.

Table 2-5 Project Columns

Column Name Type Description

Billable Hours Number Number of billable hours allocated for this project,
usually specified in the SOW

Consulting Budget Currency Amount budgeted for consulting portion of this project

Expense Budget Currency Amount budgeted for expenses

Invoiced Boolean Has the customer been invoiced?

Location Text Geographic location of this project

Project ID Text Human-readable unique ID for this project

Notes Long Text General notes on the project

Stage Picklist Stage of the project (Planned, In Progress, Completed,
Canceled)

Status Picklist Status of the project (Green, Yellow, Red)

Status Notes Text Explanation of the project status

Table 2-6 Resource Columns

Column Name Type Description

First Name Text Resource first name

Last Name Text Resource last name

Address Text Resource address

Phone Phone Resource phone number

Email Email Resource email address

Active Boolean If false, this consultant has left the company or is
otherwise unavailable

Education Text College(s) attended, degrees attained

Highest Education
Level

Picklist High School, AA, BS, MS, MA, PhD

Hourly Cost Rate Currency Internal cost of resource, per hour

Home Office Text Office that this consultant typically works out of and/or
lives nearest to

Region Picklist Area in the country this consultant works in
(Unspecified, East, West, Central)

48 Chapter 2 Database Essentials

Table 2-7 Assignment Columns

Column Name Type Description

Start Date Date Date that the assigned resource begins work on the
project

End Date Date Date that the assigned resource finishes work on the
project

Description Text Description of this assignment (e.g., Design,
Development)

Role Text Role of the resource on this project (e.g., Developer,
Instructor)

Currently
Assigned?

Boolean,
Calculated

If true, today is between Start Date and End Date

Status Text Tentative, Scheduled, Closed

Total Hours Number Number of hours to be worked during this assignment

Hourly Cost Currency Internal cost of the assigned resource

Hourly Rate Currency Rate at which the assigned resource is billed out

Planned Cost Currency,
Calculated

Expected cost of this assignment, equal to Total Hours
multiplied by Hourly Cost

Planned
Revenue

Currency,
Calculated

Expected revenue from this assignment, equal to Total
Hours multiplied by Hourly Rate

Planned
Margin

Currency,
Calculated

Expected margin from this assignment, equal to Planned
Cost minus Planned Revenue

Table 2-6 Resource Columns

Column Name Type Description

Start Date Date Date started with consulting company

Start Date in
Industry

Date Date started in the field

Years of Experience Number,
Calculated

Calculated from Start Date in Industry

Assignment
Projects are staffed with resources by the creation of assignments.Assignments associate a
resource with a project for a specified period. Projects can have many resources assigned
to them, and a single resource can be assigned to multiple projects.Assignments contain a
status, the role the resource is performing on the project, information about the hours
billed and remaining, and expected and actual revenue.All Assignment columns are listed
in Table 2-7.Assignments are not valid unless they are associated with a Project and a
Resource.

49Sample Application: Data Model

Skill
To ensure that projects are staffed with qualified resources, the application must store
information about the skills of each resource. Each resource has zero or more associated
skills, but a skill must be associated with a resource.A skill contains a name, description,
and numeric rating of the competency level of the associated resource.Table 2-8 provides
the list of columns in the Skill entity.

Timecard
As resources work on projects, they keep track of their time.The hours spent each day are
logged to a Timecard. Each Timecard represents a week of work on the project. Multiply-
ing the number of hours worked by the internal cost of the consultant produces a cost.
Timecards are not valid unless they are associated with both a Resource and a Project.You
can find the full list of columns in the Timecard entity in Table 2-9.

Table 2-8 Skill Columns

Column Name Type Description

Type Text Type of skill (e.g., Java)

Rating Picklist On a scale of 0 (none) to 5 (expert), proficiency of associ-
ated resource in this skill

Notes Text Additional detail to back up the rating

Table 2-9 Timecard Columns

Column Name Type Description

Billable Boolean If true, hours in this timecard are billable

Sunday Hours Number Hours worked on Sunday

Monday Hours Number Hours worked on Monday

Tuesday Hours Number Hours worked on Tuesday

Wednesday Hours Number Hours worked on Wednesday

Thursday Hours Number Hours worked on Thursday

Friday Hours Number Hours worked on Friday

Saturday Hours Number Hours worked on Saturday

Invoiced Boolean If true, this timecard has been invoiced

Invoice Number String Invoice number associated with this timecard

Invoice Date Date Date timecard was invoiced

Status Picklist Saved, Submitted, or Approved

Notes Text Any comments on the timecard, entered by the
consultant

50 Chapter 2 Database Essentials

Table 2-9 Timecard Columns

Column Name Type Description

Week Ending Date Last day in the week recorded by this Timecard (a
Saturday)

Total Hours Number,
Calculated

Total number of hours worked this week, equal to
the sum of the individual hours columns (Sunday
to Saturday)

Force.com Data Model
In this section, the logical design is translated to a design that can be implemented on
Force.com.To do this requires knowledge of how Force.com represents relationships and
fields and how standard objects can be leveraged to save development time and create a
consistent, maintainable, interoperable application.

Figure 2-8 diagrams the Force.com standard and custom objects for the Services Man-
ager sample application.

As you can see, the Force.com data model closely resembles the logical model.The
main changes are the addition of object type (standard versus custom) and the translation
of cardinality to Force.com’s relationship types of Lookup and Master-Detail.The incor-
poration of standard objects and the use of relationships are critical to making a successful
Force.com data model.They are examined in more detail in the subsections that follow.

Standard Objects
The logical diagram contained the Client and Customer entities.These are replaced by
the standard objects Contact and Account. Force.com comes built in with these objects.
They contain many standard fields for such things as name, addresses, phone numbers, and
email address, which can be customized to meet the needs of your application. If the stan-
dard fields are not sufficient, you can also add custom fields, the same type of fields you
add to custom objects.

Many advantages exist to using standard objects wherever possible.They are the foun-
dation of Force.com’s CRM heritage, so special tools, functionality, and support for them
is built in to the platform.Also, if you plan to build or install other applications in your
Force.com environment, they probably also use CRM concepts. Interoperating and coex-
isting is usually much easier when applications share the same core data objects.

Relationship Types
Table 2-10 lists the relationships in the logical model and the Force.com relationship types
corresponding to them.

The Lookup relationships in the Services Manager are between Contact and Account,
and Account and Project.A relationship between Contact and Account already exists, so
you do not need to create one. Between Account and Project is a Lookup relationship
because it is optional.An Account does not require a Project, and a Project does not
require an Account.

51Sample Application: Data Model

Contact

AccountAssignment Timecard

Skill

Project

Lookup Relationship

Master-Detail Relationship

Custom Object

Standard Object

Resource

Figure 2-8 Force.com data model for Services Manager

Table 2-10 Relationships in Service Manager

Parent Child Child Requires Parent? Force.com Relationship Type

Account Project No Lookup

Project Timecard Yes Master-Detail

Resource Timecard Yes Master-Detail

Project Assignment Yes Master-Detail

Resource Assignment Yes Master-Detail

Resource Skill Yes Master-Detail

Contact Resource No Lookup

Account Contact No Lookup

52 Chapter 2 Database Essentials

The remainder of the relationships are Master-Detail. In all of them, the child record
requires a parent record. For example, Skill records cannot exist without a corresponding
Resource. For mandatory relationships like this, Master-Detail is a good starting point
because referential integrity is enforced. If a Resource record is deleted, all child Skill
records are also deleted.

You might wonder why Skill and Resource are not a many-to-many relationship. It
would be the more normalized way to go. But with the simpler, single Master-Detail
relationship, the only repeated field is Skill Type.You can use a Picklist field to keep users
working from the same list of valid skills and a validation rule to increase data integrity. If
Skill had a larger set of its own attributes and they could not be expressed as Picklists, it
would be a good candidate for a many-to-many relationship.

Here are some limitations of Master-Detail relationships to be aware of:

n Force.com supports a maximum of four levels of cascading Master-Detail relation-
ships. So, a child object in a Master-Detail relationship can be the parent of another
Master-Detail relationship, and so on.The four-level limit in genealogical terms
means that a child can have a great-grandparent object but not a great-great-grand-
parent.The canonical example of cascading Master-Detail is the purchase order:A
purchase order contains one or more line items, and each line item contains one or
more line item details.

n A single object cannot be the child in more than two Master-Detail relationships.
When an object is the child of two Master-Detail relationships, that object is
referred to as a Junction Object. It joins two parent objects in a many-to-many rela-
tionship. In the Services Manager data model,Assignment and Timecard are Junc-
tion Objects.

n After a child record has referenced its parent record, it cannot be reassigned to a
new parent record.This is a significant restriction. In Services Manager, that means if
some Timecard records were mistakenly entered to the wrong Project, they must be
deleted and re-created as children of the correct Project.They cannot simply be
reassigned to the Project.

In Force.com, as in any technology, many ways exist to do the same things, some better
than others. Given this first cut of the Services Manager data model, these restrictions on
Master-Detail do not seem to be a problem. Incidentally, all the reasons that Master-Detail
relationships were chosen can be also satisfied using Lookup fields in conjunction with
other Force.com features, to be discussed in later chapters.

Implementing the Data Model
This section walks through the creation of the Services Manager data model in Force.com
using Force.com App Builder Tools.This includes a Custom Application to contain the
user interface components, the five custom objects, and the relationship fields required
between them.

53Sample Application: Data Model

The Force.com App Builder Tools are used in all the instructions in this section.To
begin, log in to your DE account and click Setup to navigate to the Builder.

Creating a Custom Application
Defining your application first so that you can add tabs to it as you build them is a good
practice:

1. In the App Setup section, click Create ➝ Apps.A list of applications appears. Ignore
the built-in applications. Most come with the DE account and cannot be removed.
Click the New button.

2. Enter a label for the application, a name, and a description, and then click the Next
button.The label is the human-readable label for the application, displayed to users.
Name is an internal name, used by Force.com at the API level.

3. Optionally, select an image to be displayed as the logo for your application.This
image is shown in the upper-left corner when your application is active.When
you’re done, click the Next button.

Tip
To prepare an image for use as an application logo, first go to the Documents tab and click
the New button. Check the Externally Available Image check box, enter a name to identify the
image, and click the Browse button to locate a file on your computer. Click the Save button
to upload the image.

4. This screen is for selecting the tabs to be included in the custom application.
Home tab is a system-provided tab included in every application and cannot be
removed. No tabs are defined for the application yet, so do nothing here. Click the
Next button.

5. You can restrict access to your application by Profile, a grouping of users discussed
in the following chapter. For now, grant access to System Administrator by clicking
the last check box in the Visible column.Then click the Save button.

You are returned to the list of applications, but it now contains your new application. If
you activate your application by selecting it from the list in the upper-right corner drop-
down, you’ll see that it contains a single tab, the Home tab.

Project Custom Object
The following steps define the custom object for Project, including its custom tab and fields:

1. In the App Setup section, click Create ➝ Objects. Click the New Custom Object
button.

2. Enter Project for the label, Projects for plural. Object name defaults to Project,
but change it to Proj to avoid collision with a Force.com reserved word. Enter a

54 Chapter 2 Database Essentials

one-line description of the object in the description field. Select the Launch New
Custom Tab Wizard option.This is a shortcut to launch the Custom Tab Wizard.
Although not every custom object in Services Manager needs its own tab, tabs tend
to come in handy and can always be deleted. Enter Project Name for the Record
Name Label, and leave the data type Text. Click the Save button to continue.

3. The object has been created, and the New Custom Object Tab wizard is now dis-
played. Note that the Object field is already prepopulated with Project. Click the
Lookup icon (magnifying glass) to select a style for the tab and then click the
Next button.

4. Visibility of this tab by Profile is easy to change later, so leave this screen unchanged
and click the Next button.This means the new tab is visible for all profiles.

5. Click the Include Tab check box at the top to uncheck it for all applications, and
then check it for Services Manager only. Click the Save button to complete the
creation of the custom tab.

6. You are now viewing the details of the Project object.To begin adding its fields,
click the New button in the Custom Fields & Relationships section.

7. Project Name is already a standard field, so start with the Type field. It can contain
one of three predetermined values, making it a Picklist. Select Picklist and then
click the Next button.

8. Enter Type for the label.When your cursor exits the label, the Field Name is auto-
matically populated. For the list of values, enter Billable. Press Enter to start a
new line, and then enter Non-Billable. Select to use the first value as the default.
Click the Next button.

9. Skip the field-level security settings by clicking the Next button.

10. The last screen adds the new field to the default Page Layout. Leave this option
checked. Click the Save and New button to save this field and start the wizard over
again for a new field.

Repeat steps 7 through 10 until all the fields of Project are created.A few notes on the
fields:

n Billable Hours is Number with a length of 7 and 0 decimal places.
n Currency fields (Consulting Budget, Expense Budget) have a length of 16, with 2

decimal places.
n Make the Location field a length of 255, the maximum for a Text type.
n Project ID is an Auto Number Field; format Project-{00000}, starting with num-

ber 1, and make sure that External ID is checked.

55Sample Application: Data Model

n Stage and Status are Picklists.
n Status Notes is a Text Area, to allow for multiple lines of text.

At this point, you have finished defining the first custom object of the Services Manager
sample application.To create the remainder of the objects, follow the same steps, starting
with the corresponding table from the logical model.The following sections highlight
Force.com-specific details on the fields in each object.

Resource Custom Object
The first five fields on the Resource object contain basic information about the person,
such as name and address.This is CRM stuff, so it is more effectively incorporated into
the Resource object through a relationship to the Contact object rather than as a series of
custom fields. Do not add these fields to the Resource object.The following list provides
detail on the remaining fields:

n The first field is Active, a Checkbox, with a default value of Checked.
n Education and Home Office are Text fields, length 255.
n Highest Education Level is a Picklist field with no default value.
n Hourly Cost Rate is a Currency field with length 16, decimal places 2.
n Region is a Picklist with the first value the default.

Years of Experience is a Formula field. Set it to Number type with 0 decimal places.The
formula subtracts the current date from the date the Resource started in the industry,
rounded down to the nearest whole number of years. If the Resource does not yet have a
value for its industry start date, the formula should evaluate to a blank value, designating it
as unknown rather than a misleading zero.

The formula in Listing 2-9 is one way to approximate the number of years of
experience.

Listing 2-9 Formula for Years of Experience Field

FLOOR((TODAY() - Start_Date_in_Industry__c) / 365)

Assignment Custom Object
In Project and Resource, the standard field Name has been left to its default behavior—
that is, a Text of length 80. Projects and Resources have well-defined, meaningful names
for storage in the Name field. But an Assignment does not. It is a housekeeping object,
maintaining the link between a Resource and Project. Users, both end users and
Force.com developers on your team working with this object, should not be required to
provide a name for an Assignment record. So, in step 2, in the Record Name Label and
Format section, set the Record Name to Assignment #,Type Auto Number, Format
{MMDDYYYY}-{000}.This defaults the name to the current date plus a counter value.

56 Chapter 2 Database Essentials

The following list describes the rest of the fields in the Assignment object:

n Description and Role are Text, length 255.
n Currently Assigned is a Formula field, type Text.

Listing 2-10 shows the formula, which returns Yes if today’s date is greater than or
equal to the start date and less than or equal to the end date, and No otherwise.

Listing 2-10 Formula for Currently Assigned Field

IF (AND (Start_Date__c <= TODAY(), End_Date__c >= TODAY()), "Yes", "No")

n Status is a Picklist, with the first value as the default.
n Total Hours is a Number field, length 5, decimal places 2.
n Hourly Cost and Hourly Rate are Currency fields, length 4, decimal places 2.
n Planned Cost, Planned Revenue, and Planned Margin are all Formula fields of Cur-

rency type with 2 decimal places, and treat blank fields as blanks.The formulas are
Total_Hours__c * Hourly_Cost__c, Total_Hours__c * Hourly Rate__c, and
Planned_Revenue__c - Planned_Cost__c, respectively.

Skill Custom Object
Use the following list to help you create the fields of the Skill object:

n Skill is a Detail object in a Master-Detail relationship with Resource.The standard
field Name is not valuable for this object, because individual Skill records do not
have names. So, define Name as an Auto Number, typeText, format Skill-{00000}.

n Type is a Picklist of valid Skills; for example, Java, C#, Ruby, Perl, PHP, and Apex
Code.

n Rating is a Picklist with values 0 to 5 (with text descriptions), using the first value
as the default value.

n Notes is a Text of length 255.

After creating the fields, define a new validation rule to enforce that Type contains a
value. Having a Skill record without a Skill Type doesn’t make sense.The error condition
formula in Listing 2-11 checks for an empty Picklist value.

Listing 2-11 Validation Rule for Skill Type

ISPICKVAL(Type__c, '')

57Sample Application: Data Model

Timecard Custom Object
The following list provides details on the fields of the Timecard object:

n Timecard is another housekeeping object, maintaining a link between a Resource
and Project for financial purposes. It does not need an editable standard Name field.
Set the Record Name to type Auto Number, Format {MMDDYYYY}-{00000}.This
defaults the name to the current date plus a counter value.

n All the fields named after days of the week are Number, length 2, decimal places 2,
defaulting to 0.

n Invoice Number is a Text, length 255.
n Week Ending is a Date field, and a value is required.
n Notes is a Long Text Area.
n Total Hours is a Formula field, Number type with 2 decimal places.The formula is

the sum of the hours fields, as shown in Listing 2-12.

Listing 2-12 Formula for Total Hours

Sunday_Hours__c + Monday_Hours__c +

Tuesday_Hours__c + Wednesday_Hours__c +

Thursday_Hours__c + Friday_Hours__c +

Saturday_Hours__c

Relationships
For each relationship listed earlier in Table 2-10 except the last one, which is already pro-
vided in the platform, create a relationship field by following this procedure:

1. Navigate to the child object in Force.com App Builder Tools.To do this, click Setup
➝ Create ➝ Objects.Then click the label of the child object.

2. In the Custom Fields & Relationships section, click the New button.

3. Select the relationship type; this is either Lookup or Master-Detail.Then click the
Next button.

4. In the Related To drop-down list, select the parent object and then click the
Next button.

5. Click the Next button to navigate past the remaining screens, accepting the
default values.These screens control who is allowed to see the new relationship
field and how it appears in the native UI on the Page Layouts of both the parent
and the child.

One of the most important parts of creating relationships is making sure that they are cre-
ated on the correct object. In the one-to-many relationship, the “one” side is the parent,

58 Chapter 2 Database Essentials

Figure 2-9 Service Manager custom objects list

and “many” is the child.Always create the relationship field on the child, relating it to the
parent.You can always delete the field and start over if you make a mistake.

When you’re done, return to the list of custom objects (Setup ➝ Create ➝ Objects).
Figure 2-9 shows the list. Compare it with yours, paying particular attention to the values
in the Master Object column.

Importing Data
In this section, you will import sample project and resource data into the Force.com data-
base using the Data Loader tool.This process is divided into three stages: preparing the
data, importing it, and then verifying it visually using the native user interface.This is cer-
tainly not the only way to import data into Force.com, and probably not the easiest. But
it employs a free, widely used, fully supported tool from Salesforce that can scale up to
support large numbers of records and complex objects.

Data Preparation
Data Loader operates on CSV files.The first line of the file contains a header listing the
columns present in the data.The following lines are the body of the data, with each line a
record, values separated by commas.You should have access to Microsoft Excel or an
equivalent tool for working with CSV files.

To begin, export CSV files for the Project and Resource objects. Because no data exists
yet in the database, these files will be empty except for the header line.This serves as a tem-
plate for the import file, conforming the data to the layout expected by the Data Loader.

59Sample Application: Data Model

To export, perform the following steps:

1. Launch Data Loader. Click the Export button.

2. Enter your username and password and click the Log In button. Make sure your
password includes a Security Token appended to it. If you have not yet obtained a
Security Token, log in to Force.com using your Web browser, navigate to Setup ➝
My Personal Information ➝ Reset My Security Token, click the Reset Security
Token button, and get the Security Token from the email sent to you by
Force.com. Click the Next button when your login is completed.

3. Select the object to export, and click the Browse button to name the export file
and specify its directory. Name the file the same as the object name, and save it
where you’ll readily find it, such as the desktop.Then click the Next button.

4. Click the Select All Fields button.Then remove the system fields, which are ID,
OwnerId, IsDeleted, CreatedDate, CreatedById, LastModifiedDate, LastModified-
ById, and SystemModstamp. Click the Finish button.

5. Answer Yes to the confirmation dialog.The export is performed, and a summary
dialog is shown. Click the OK button to dismiss it.You now have a CSV file on
your desktop containing a single line with the names of the exported fields.

Repeat this process for both the Project and the Resource objects. Repeat the process for
Account and Contact as well, but this time select only the ID and Name fields for export.
Force.com is preconfigured with a handful of Account and Contact records, used in this
section as related records for the Projects and Resources.

You should have four files on your desktop. Open account.csv using Excel. Create a
new worksheet and import contact.csv into it. Repeat this for project.csv and
resource.csv. Reverse the order of the ID and Name columns in the contact and
account worksheets so that Name is before ID.

Importing relationships can be a messy process, depending on the tool you’re using for
the import. Projects are related to Accounts, and Resources are related to Contacts. In the
absence of external ID fields, Force.com requires the ID of the related record in order to
perform a successful import.Account and Contact do not have External ID fields defined
by default, so the ID field must be used.

Because you’re working with a small number of records, you could manually enter the
ID of each Account and Contact. But for a more realistic scenario, imagine you have a
much larger data set.To automate the resolution of ID from Name, use the VLOOKUP func-
tion in Excel. In the Resource worksheet, CONTACT_C column, enter the formula
given in Listing 2-13 and fill it downward to populate five rows.

Listing 2-13 Excel Formula for Populating Contact ID

=VLOOKUP(A2, contact!A1:B32, 2, FALSE)

60 Chapter 2 Database Essentials

The formula tells Excel to look up the Resource name (in Column A) in the contact
worksheet and, if a match is found, set the cell’s value to the second column of the con-
tact worksheet corresponding to the match, which is the ID of the Contact.

Enter the formula given in Listing 2-14 in the Project worksheet’s ACCOUNT_C
column and copy it down five rows.

Listing 2-14 Excel Formula for Populating Account ID

=VLOOKUP(A2, account!A1:B32, 2, FALSE)

Listing 2-15 is a sample import file containing five Resource records. Listing 2-16
contains five sample Project records.You can use these samples, replacing the last column
with the IDs valid for your Force.com environment, or create your own sample data.
Make sure you save the Project and Resource Excel worksheets as two separate CSV files
when you’re done. (Note: Only a certain number of code characters will fit on one line
on the page.The arrow symbol indicates where code that should be entered as one line
wrapped to the next line.)

Listing 2-15 CSV Import File for Resource

NAME,ACTIVE__C,EDUCATION__C,HIGHEST_EDUCATION_LEVEL__C,

➥HOURLY_COST_RATE__C,HOME_OFFICE__C,REGION__C,START_DATE__C,

➥START_DATE_IN_INDUSTRY__C,YEARS_OF_EXPERIENCE__C,CONTACT__C

Tim Barr,TRUE,University of Chicago,MS,

➥100,Chicago,Central,2/3/2003,

➥6/1/1983,,0038000000YzufcAAB

Rose Gonzalez,TRUE,St. Edwards University,BS,

➥50,Austin,Central,5/15/2006,

➥5/15/2006,,0038000000YzufXAAR

Josh Davis,TRUE,Cascade College,BS,

➥40,Portland,West,7/1/2008,

➥1/1/2005,,0038000000YzufhAAB

Jane Grey,TRUE,University of Arizona,PhD,

➥120,Tucson,West,10/15/2004,

➥3/1/1992,,0038000000YzufiAAB

Arthur Song,TRUE,Fordham University,MS,

➥125,New York,East,6/28/2007,

➥5/1/1979,,0038000000YzufjAAB

Listing 2-16 CSV Import File for Project

NAME,TYPE__C,START_DATE__C,END_DATE__C,BILLABLE_HOURS__C,

➥CONSULTING_BUDGET__C,EXPENSE_BUDGET__C,INVOICED__C,LOCATION__C,

➥PROJECT_ID__C,NOTES__C,STAGE__C,STATUS__C,STATUS_NOTES__C,ACCOUNT__C

GenePoint,Billable,1/12/2009,,800,

➥200000,20000,FALSE,"Mountain View, CA",

➥,Phase 2,In Progress,Green,,0018000000PAmpWAAT

61Sample Application: Data Model

Grand Hotels & Resorts Ltd,Billable,2/16/2009,,100,

➥30000,0,FALSE,"Chicago, IL",

➥,,In Progress,Green,,0018000000PAmpdAAD

United Oil & Gas Corp.,Billable,2/9/2009,,500,

➥75000,10000,FALSE,"New York, NY",

➥,,In Progress,Green,,0018000000PAmpgAAD

Burlington Textiles Corp of America,Billable,2/2/2009,,200,

➥40000,5000,FALSE,"Burlington, NC",

➥,,In Progress,Green,,0018000000PAmpaAAD

Express Logistics and Transport,Non-Billable,3/1/2009,,0,

➥0,0,FALSE,"Portland, OR",

➥,Presales,In Progress,Green,,0018000000PAmpeAAD

Data Import
Now that the data is prepared, you’re ready to import it. Launch Data Loader again, log
in, and then follow these steps:

1. From the File menu, select Insert.

2. Select Resource from the list of Salesforce objects.

3. Click the Browse button and locate your Resource.csv file, and then click the
Next button.

4. The file structure is verified, and a small dialog is displayed showing the number of
records contained in the file. Check to make sure that this matches the number of
records you expected. Click the OK button to continue.

5. The mapping dialog takes columns from your file and matches them with fields in
the Force.com object. Click the Create or Edit a Map button.

6. The easiest way to create the mapping is to click the Auto-Match Fields to
Columns button. Because the import files were actually once export files, the
columns should match perfectly. Figure 2-10 shows the result of this mapping.All
the available Force.com fields except for OwnerId were mapped to columns of the
CSV file.TheYEARS_OF_EXPERIENCE__C column has no mapping because it
is an Auto Number field and cannot be modified. Click the OK button to continue.

7. The new mapping is copied to the current mapping screen. Click the Next button.

8. Click the Browse button to locate a directory to save the results of the import. Data
Loader creates two files, one containing errors and another containing success mes-
sages. Click the Finish button to begin the import and click Yes to confirm.

62 Chapter 2 Database Essentials

Figure 2-10 Column to field mapping
for Resource.csv

9. A dialog is shown with the results of the import. If you received errors, click the
View Errors button to examine them, fix your import file accordingly, and try the
import again.

Repeat this process for the Project CSV file.

Verify the Data
Data Loader outputs a CSV file containing the records successfully imported. But a
friendlier way to look at the successfully imported data is to log in to Force.com and
browse the records using the native user interface.

After you log in, select the Services Manager application from the application drop-
down list in the upper-right corner of the screen. It contains five tabs, one for each of the
custom objects defined in this chapter. Click the Resources tab and then click the Go but-
ton to display the view named All, which contains all the records of the Resource object.

You should see a list of the resources you just imported. By default, only the names are
shown.You can modify this view to show more fields by clicking the Edit link to the
right of the Create New View link and then adding fields in the Select Fields to Display
section. Figure 2-11 shows a modified All view of Resources.

Figure 2-12 shows the detail of an individual Resource record.Verify that the currency
and dates imported correctly. Notice that the number of years of experience was calcu-
lated from the Start Date in Industry field. Examine the Contact field. It should contain a
link to the Contact record corresponding to this Resource.

63Sample Application: Data Model

Figure 2-11 Modified All Resources view

Figure 2-12 Resource record detail

64 Chapter 2 Database Essentials

To complete your rounds, browse to the Projects tab. Make sure that the Project
records are properly related to their parent Account records and that all the field types
were imported correctly.

Summary
This chapter engaged you with the Force.com database in areas essential for application
development.The skills covered in this chapter should enable you to build various data-
driven applications, all through configuration rather than coding. Here are some key
points to take forward.

n The Force.com database is not a standard relational database. It is a logical database
based on Objects and Fields, like Tables and Columns but tuned for business appli-
cations and integrated into every feature of the platform.

n Custom objects are the backbone of development in Force.com. By defining them
and their fields, you are also defining a user interface that is programmatically gen-
erated by Force.com.This interface allows data to be entered and browsed without
coding, while preserving the data integrity called for in your object definition.

n Services Manager consists of five custom objects and leverages two standard objects
(Account and Contact).The process of translating a logical data model to a
Force.com database must account for the unique field data types, relationship types,
and limitations imposed by the platform in order to be effective.

3
Database Security

For many developers, securing an application is the drudge work left after the fun and
challenging development work is done.The good news is that Force.com makes security
relatively painless, whether you think about it before, during, or after an application is
built.The concepts of user identity, data ownership, and fine-grained access control are
baked into the platform, requiring configuration rather than coding in most cases.

You might wonder why this chapter is about only database security rather than being a
general discussion of security.After all, Force.com is more than a database.The reason is
that the database is the center of Force.com development. Just as object definitions are
leveraged throughout the platform to construct native user interfaces and strongly typed
procedural code expressions, data security measures are equally pervasive.

This chapter contains the following sections:

n Overview of Database Security:Take a high-level view of the database security
features available in Force.com and how they interact to protect your data.

n Object-Level Security: Get into depth on the methods for protecting individual
data objects and their fields.

n Record-Level Security: Learn how to control access to individual records within
your Force.com database.

n Sample Application: Walk through the design and implementation of the secu-
rity model for the Services Manager.

Overview of Database Security
Force.com provides a multilayered approach to data security. Each layer secures data using
a different approach, and the layers build on each other to provide a deep, configurable
defense. Figure 3-1 identifies the layers of security and their relationship to data and
other layers.

The box enclosing the Object represents object-level security, which is provided by
profiles.A profile is a unit of Force.com metadata used to group users with common data
access requirements. It contains a set of permissions for every object defined in the

66 Chapter 3 Database Security

(Sharing Reason)

Record-Level Security
(Organization-Wide Defaults)

Object-Level Security
(Profiles)

Object

Field-Level
Security

Figure 3-1 Security architecture

Force.com organization.These permissions determine whether users belonging to the
profile are authorized to read, create, edit, and delete records of each object.Also within
the profile are rules determining access to individual fields of an object. Fields can be hid-
den entirely or defined as read-only directly in the profile or in page layouts.

Record-level security is layered on top of object-level security. It further restricts
access to data based on the concept of record ownership. But it can never override
object-level security. Organization-wide defaults define the default, most restrictive shar-
ing behavior of each object, and sharing reasons create exceptions to this default behavior,
granting access to specific groups of users.

Another way to think about Force.com security features is to imagine them as a fun-
nel, as in Figure 3-2. Requests for data enter the top of the funnel and descend, filtered
through successive layers of security technology. If the requests survive until the bottom
of the funnel, they have passed security clearance and are granted.

The four filters in the funnel are described here:

1. Object Permissions: At the top of the funnel, the data request is evaluated against
the object permissions.They ensure that the requesting user is authorized by its
profile to take the desired action on this object.The solid line under this level indi-
cates that requests denied at this point stop moving through the funnel.

2. Field Accessibility: The requesting user’s profile is consulted again to determine
whether fields are included in the request that are read-only or hidden.

3. Sharing Model: If the user is not the owner of this record or otherwise privileged
with an administrative profile, organization-wide defaults are applied.These defaults

67Object-Level Security

Object Permissions

Field Accessibility

Sharing Model

Sharing Reasons

?Data Request

(User, Action, Object, Field, Record)

Figure 3-2 Security architecture as a funnel

designate records of each object as private, public with read and write access, or
public with read-only access. In a slight break of the funnel concept indicated by
the dashed line, if the sharing model prohibits access, the request has one more
chance to be granted through exceptions called sharing reasons.

4. Sharing Reasons: Sharing reasons override the organization-wide defaults.The
owner of the requested record is matched against a list of sharing reasons relevant to
its group affiliation. If a sharing reason is found, access is granted. Groups are
defined as simple lists of users and other groups or as a hierarchy, allowing permis-
sions of subordinates to be inherited by their superiors.

Object-Level Security
Object-level security is governed by the profile. Profiles control data access for a group of
users on the level of objects and fields.This section describes profiles and how they are
configured.

68 Chapter 3 Database Security

Profiles
Profiles are the primary way to customize the Force.com user experience.They contain a
large number of settings to control the user interface and data security of your organiza-
tion. Users are assigned to profiles based on the tasks they need to perform in your system.

The two types of profiles are standard and custom. Standard profiles are provided with
Force.com and cannot be renamed or deleted, although they can be reconfigured. Cus-
tom profiles have the same functionality as standard profiles but can be named.They can
also be deleted if no users are assigned to them.

To manage profiles, click Setup, and in the Administration Setup area, click Manage
Users ➝ Profiles. In the realm of data security, the two primary sections to focus on are
Administrative Permissions and Object Permissions.

Tip
Make sure Enhanced Profile List Views are enabled for your organization. This feature allows
up to 200 profiles at a time to be compared and modified easily, with far fewer clicks than
the default user interface. To enable it, click Setup, and in the App Setup area, click Cus-
tomize ➝ User Interface and select Enable Enhanced Profile List Views.

Administrative Permissions
Two administrative privileges in a profile trump all other security features in Force.com:
Modify All Data and View All Data. Users of a profile with these permissions can modify
and view all records of all objects, overriding all Force.com security measures.These per-
missions are powerful, so grant them with extreme care in a production environment.
Developers need these permissions to work with tools such as the Force.com IDE, but
this applies only in a sandbox or development environment.

Object Permissions
Object permissions are divided into two sections, one for standard objects and another for
custom objects.They have identical functionality. Note that object permissions cannot be
edited on standard profiles. Figure 3-3 shows the section of a custom profile that defines
object permissions.

Each object name is followed by a row of check boxes. Each check box corresponds to
a permission for that object.The permissions are described in the following list:

n Read:The Read permission allows users to view records of this object. Unless
overridden with field-level permissions, this access applies to all fields of the object.

n Create:The Create permission permits Read access and the addition of new
records to the object.

n Edit: The Edit permission allows records in this object to be read and modified.
n Delete:This permission enables users to read, edit, and remove records from this

object. Deleted records are moved to the Recycle Bin, where they can be
undeleted or permanently erased.

69Object-Level Security

Figure 3-3 Configuring object permissions on a custom profile

n View All:The View All permission is like the system-wide View All administrative
permission but scoped to a single object. It’s designed for use in exporting data
because it circumvents other security features of the platform, ensuring that all
records are accessible.

n Modify All: Like View All, this permission is intended for bulk data operations
such as migration and cleansing. It allows users to modify all fields of all records in
this object, overriding every other security measure.

New custom objects initially have all permissions disabled for all profiles, except those
with View All Data or Modify All Data permission.This platform behavior of defaulting
to the most secure configuration ensures that your data is not unintentionally exposed.

Licensing
Profiles are associated with a user license. Licenses are how Salesforce charges for the
Force.com platform when you’re ready to go into production with an application. Sales-
force has many license types to provide flexibility in pricing, but the most basic licenses
are Salesforce and Salesforce Platform.The Salesforce Platform license allows full use of
Force.com but disables the business domain-specific functionality such as CRM or SFA.
For example, a Salesforce license grants you the use of the Opportunity and Case objects,
but a Salesforce Platform license does not. Sometimes even infrastructure features are
downgraded. For example, profiles for a full Salesforce license can delegate administration

70 Chapter 3 Database Security

on standard and custom objects.The Salesforce Platform license limits this feature to cus-
tom objects only.

Planning ahead pays in regard to licensing Force.com. If you are sure you do not need
the extra features of the Salesforce license, select the Salesforce Platform license for your
profiles.This cuts down on the number of objects and features you see during develop-
ment and prevents you from accidentally referencing one of them.Also, in order to assign
a user to a profile, that user must have a user license that matches the profile.Your custom
profile cannot be associated with a different license after it has been created.

Field-Level Security
Security of fields is determined by a combination of the profile and the page layout.The
more restrictive of the two always takes precedence.The two ways to edit field-level secu-
rity are through the profile directly using the Field-Level Security section or through a
feature called Field Accessibility. Field Accessibility is a bit more sophisticated because it
provides a consolidated view of fields across page layouts and profiles.

Field-Level Security in Profiles
To reach the field-level security section, click Setup, and in the Administration Setup area,
click Manage Users ➝ Profiles. Select a profile by clicking its name and scroll down to
the Field-Level Security section. Click the View link next to the object name, such as
Project, shown in Figure 3-4.

Figure 3-4 Configuring field-level security for the Project object

71Record-Level Security

The two possible states for a field are visible and read-only. Fields marked as visible are
available for display on page layouts belonging to this profile. Read-only fields might also
be visible on a page layout, but values in these fields cannot be modified.

Field Accessibility
Field Accessibility addresses the finer control of fields provided through the combination
of page layout and profile.The more restrictive of two settings always wins. So, if a page
layout defines a field as read-only that is defined in the profile as being invisible, the pro-
file takes precedence, and the field is hidden. Field Accessibility provides an easy way to
see this behavior in action.

To use Field Accessibility, click Setup, and in the Administration Setup area, click
Security Controls ➝ Field Accessibility. Select an object and then drill in by Field or Pro-
file to see the corresponding field accessibility table. Each field has one of four accessibil-
ity values:

n Required: If a field is defined as required in its page layout and visible in its pro-
file, it is a required field.This means for a record to be saved, it must contain a value
for this field.

n Editable: A field defined as visible in both the page layout and the profile is desig-
nated as editable.This field appears to the user and can be modified.

n Read-Only: If a field is declared read-only on its profile or visible in its profile and
read-only in its page layout, then it is a read-only field. It appears in the page lay-
out, but its value cannot be modified.

n Hidden: Fields that are set to invisible on their profile or page layout are hidden.
Hidden fields are never shown to the users of this profile.

Try marking a field as read-only in its page layout but invisible in its profile.Then hover
the cursor over the word Hidden in the Field accessibility table.You’ll see the message that
the field is hidden because of Field Security. If you edit the field again and make it visible
via the profile, the field becomes read-only per the page layout.

Record-Level Security
In Force.com, individual data records within an object are secured through a combination
of three concepts:

1. Record Ownership: All records except those on the child side of a Master-Detail
relationship have a single named owner. Record owners are individual users or
groups of users. Ownership of a record can be transferred manually to another user
or group.

2. User Groups: Users can be organized into flat lists and placed in a hierarchy.
Groups can contain individual users as well as other groups.

72 Chapter 3 Database Security

3. Sharing Model: The sharing model consists of two parts, organization-wide
defaults and sharing reasons.The organization-wide defaults can be configured to
lock down all records by object, regardless of their owner. Sharing reasons selec-
tively override the defaults to allow access based on record ownership or arbitrary
criteria.

This section discusses each concept in more depth.

Record Ownership
When a new record is created, it’s owned by the user who created it.The owner has full
control over the record.The owner can read, edit, and delete the record; share with other
users; and transfer ownership to a different user.

You can experiment with record ownership by creating a record in the native user
interface and examining its detail. Notice that its owner field is set to your user, the user
creating the record.To share the record with others, click the Sharing button.To transfer
ownership, click the Change link beside the owner name.

Owners are typically individual users, but a queue can be also an owner.A queue is a
holding area for records to which users are assigned.When a user takes ownership of a
record in queue, it leaves the queue and is assigned directly to that user.To configure
queues, go to the Administration Setup area and click Manage Users ➝ Queues.

Most objects support record ownership.The notable exception is child objects in a
Master-Detail relationship. Records in these child objects have no owners.They inherit
ownership from their parent records.

User Groups
Record-level sharing operates on groups of users, not individual users. Force.com pro-
vides two mechanisms for grouping users relevant to sharing: Public Groups and Roles.

Public Groups
At its simplest level, a public group is a named list of users included in the group.This list
can also contain other public groups.To define a public group, click Setup. In the Admin-
istration Setup area, click Manage Users ➝ Public Groups.

A best practice for public groups is to keep the membership list as short as possible.
This improves performance and simplifies maintenance. Build larger groups up from
smaller subgroups rather than working with individual users.

Roles
Roles are also groups of users but are organized in a hierarchy. Users in roles can inherit
the privileges of the roles below them in the hierarchy.This includes record ownership.

A user belongs to one role at a time, and all applications in your Force.com organiza-
tion use a single role hierarchy.

73Record-Level Security

To define roles, click Setup. In the Administration Setup area, click Manage Users ➝
Roles.The first time you use this feature, Force.com asks you to select a sample set of
roles to get started. Figure 3-5 shows the territory-based sample configuration of roles.

Sharing Model
The sharing model defines how record-level privileges are granted to users who do not
own the record. Configuring the sharing model is a two-part process. Organization-wide
defaults are used to establish the most restrictive level of access for each object. Sharing
reasons override the defaults to grant access to individual records.

Organization-Wide Defaults
Every object that allows record ownership has an organization-wide default setting dictat-
ing how records are shared between the owner and other users. Custom objects have
several default settings:

n Private: Records belong to the owner and only the owner.With the exception of
the data administration-level privileges View All and Modify All, records are accessi-
ble only to their owners.

n Public Read-Only: Any user can view records in this object but cannot edit or
delete them. Only the owner and users with administrative privileges have rights to
edit and delete.

Figure 3-5 Sample roles configuration

74 Chapter 3 Database Security

n Public Read/Write: Any user can view, edit, and delete records in this object.All
newly created custom objects default to this setting.

n Controlled by Parent: This option is available only to child objects in Lookup
relationships. It delegates record-sharing decisions to the parent record.The child
records behave as if they lack an owner. Objects with this default setting have the
same record-sharing behavior as children in a Master-Detail relationship.

When setting organization-wide defaults, begin with the user to receive the minimum
access to data. Set the organization-wide default settings with this user in mind.All users
then have at least this level of access to records.

To configure organization-wide defaults, click Setup. In the Administration Setup area,
click Security Controls ➝ Sharing Settings. Figure 3-6 shows the screen with organiza-
tion-wide defaults.

The rightmost column of check boxes called Grant Access Using Hierarchies deter-
mines whether the role hierarchy is used on this object to propagate permissions upward
to superior roles. By default, this behavior is enabled. Disabling it causes roles to function
like public groups. Record permissions are shared only between a pair of roles, never
aggregated up the role hierarchy.

Figure 3-6 Configuring organization-wide defaults

75Record-Level Security

Sharing Reasons
Sharing reasons override the organization-wide defaults to allow individual records to be
shared between groups of users.The groups can be roles or public groups.The behavior
of the sharing reason depends on the groups involved and the type of sharing reason.

Sharing between roles results in asymmetric privileges. Users in subordinate roles do
not receive any privileges of their superiors, but superiors receive all the privileges of
their subordinates. Sharing with public groups is symmetric, granting equal rights to both
parties. In other words, a user has access to all records that are accessible to its descendants
in role hierarchy. For example, in Figure 3-5, the SVP of Customer Service & Support
has access to records that are accessible to Customer Support, International and Customer
Support, North America.

The four types of sharing reasons are as follows:

1. Manual: The owner of a record can elect to manually share it with another user or
group of users.The owner specifies the level of access (Read Only or Read/Write)
to be granted.To configure manual sharing, click the Sharing button on a detail
record in the Force.com native user interface. Figure 3-7 shows the user interface
for sharing a record named GenePoint in the Project object.

Figure 3-7 Manually sharing a Project record

76 Chapter 3 Database Security

2. Sharing Rules: Sharing rules allow records to be shared automatically by
Force.com based on group membership or arbitrary criteria. In Figure 3-8, a shar-
ing rule is being created for the Project object. It specifies that members of the
Central business unit can automatically read and write all Project records owned by
their colleagues in the same business unit. In Figure 3-9, a criteria-based sharing
rule is being defined to provide users in the Executive role with read and write
access to billable projects.

3. Procedural: Records can be shared programmatically using Apex code.This allows
a developer to define the conditions that govern the sharing of a record.This is dis-
cussed in Chapter 6,“Advanced Business Logic.”

4. Delegated Administration: Profiles contain a special object permission category
called Data Administration. It contains View All and Modify All permissions. If these
are granted, they exempt users in that profile from all sharing rules, giving them
access to all records regardless of owner.This privilege is intended for data import,
export, and cleansing programs that need to run unencumbered by sharing rules.

Figure 3-8 Creating a sharing rule for projects

77Sample Application: Securing Data

Figure 3-9 Creating a criteria-based sharing rule for projects

Sample Application: Securing Data
The fictional organization driving the development of your Services Manager sample
application is organized into independent business units by geography. Business units gen-
erally do not share resources or projects, but might do so in special circumstances.All
business units roll up to an executive team, which has access to all data.The employees of
each business unit perform essentially the same tasks: booking deals, staffing projects,
billing time on projects, and invoicing their clients.

From this description of the organization’s structure, consider how to make the best
use of the data security features of Force.com.The goal is to allow users access to pre-
cisely the right data they need in order to perform their jobs, no more and no less.The
configuration of Force.com security features necessary to achieve the goal will be referred
to as the security model.

In this section, you will walk through the design, implementation, and testing of the
security model for the Services Manager application.

78 Chapter 3 Database Security

Table 3-1 Services Manager Profiles

Profile Project Resource Timecard Assignment Skill Account Contact

Sales Rep Read Read Read Read Read

Create Create

Edit Edit

Delete Delete

Staffing
Coordinator

Read
Create
Edit
Delete

Read
Create
Edit
Delete

Read
Create
Edit
Delete

Read Read
Create
Edit

Read
Create
Edit

Project
Manager

Read
Edit

Read Read
Create
Edit
Delete

Read Read
Create
Edit
Delete

Read Read

Designing the Security Model
To begin the design process, review the fundamentals of Force.com security and the sam-
ple application’s security requirements:

n Force.com data security has two facets: profiles and the sharing model. Profiles pro-
tect objects and their fields, and the sharing model controls access to individual
records.

n Data security in the sample application is determined by an employee’s job function
and business unit. Job functions are identical across business units, and business units
do not normally share data.

The design strategy followed in the remainder of this section examines each of the sample
application’s security requirements and discusses the configuration of the Force.com secu-
rity features necessary to satisfy them.

Security by Job Function
Job functions dictate what type of data a user is allowed to view and modify. For exam-
ple, consultants should not create projects or assignments.A staffing coordinator creates
projects and assigns resources to them. But a consultant is allowed to create and edit
timecards.

As you’re thinking about job functions, you’re naturally discussing the objects that
make up the application. In Force.com, profiles control access to objects and fields.To
design profiles for the Services Manager application, start by listing all job functions and
objects in a grid.At the intersection of each job function and object, determine the level
of access needed.The level of access is expressed as a series of permissions.The permis-
sions are read, create, edit, and delete.Table 3-1 shows the output of this exercise.

79Sample Application: Securing Data

Table 3-1 Services Manager Profiles

Profile Project Resource Timecard Assignment Skill Account Contact

Consultant Read Read Read Read Read Read Read

Create Create

Edit Edit

Delete

Accounts
Receivable

Read
Create
Edit
Delete

Read Read
Edit

Read Read Read
Create
Edit

Read
Create
Edit

Vice
President

Read
Create
Edit
Delete

Read
Create
Edit
Delete

Read
Create
Edit
Delete

Read
Create
Edit
Delete

Read
Create
Edit
Delete

Read
Create
Edit
Delete

Read
Create
Edit
Delete

Executive

West Central East

Figure 3-10 Services Manager business units

Security by Business Unit
Business units are autonomous minicompanies that have a somewhat competitive rela-
tionship with each other.All business units report to an executive team.The sample
organization is shown in Figure 3-10.

The Force.com security model must account for the following facts about the
organization:

n In normal day-to-day operations, business units do not share data.This includes
projects, resources, customers, and contacts.All data is private, belonging to the
business unit that created it.

n In some cases, business units might need to share records. For example, a consultant
with specialized skills is needed on projects in all three business units.

n Members of the executive team are able to read and write all data.

80 Chapter 3 Database Security

In the preceding section, you designed profiles to provide each job function in the organ-
ization with access to objects and fields. Now you must look at the requirements to pro-
tect each record of data.This is where Force.com’s record-level security features come
into play.To design for record-level security, use the following three steps:

1. Establish the Sharing Model: For each object, determine the most restrictive
mode of sharing that is called for on its records. For the custom objects found in
Services Manager, the options are Private, Public Read Only, and Public
Read/Write. Private means that records remain under the control of their owners.
Do not consider objects on the Detail side of Master-Detail relationships because
records in these objects inherit ownership from their parent record.The output of
this step is a list of objects, each with a default access setting (Private, Public Read
Only, or Public Read/Write).

2. Build Groups of Users: Identify scenarios in which users need to share data out-
side of the restrictive defaults defined in the sharing model. Look for groups of
users involved in these exceptions to the sharing model. Examine the flow of infor-
mation between the two groups. It can be symmetric, with both groups getting
equal access to the data. Or it can be one-sided, with one group receiving elevated
rights to another group’s data without reciprocation.The output of this step is a list
of Roles and Public Groups. Use Roles where the sharing relationship is one-sided,
and Public Groups where the relationship is equal.

3. Set Sharing Rules: Using the list of Roles and Public Groups from the preceding
step, build a list of sharing rules.To build each rule, follow three steps, as shown here:

1. Determine which group owns the record to be shared.

2. Identify the other group requiring access to the records owned by the first
group.

3. Decide whether the other group requires Read Only or Read/Write access
to the shared record.

Following the first step creates the results given in Table 3-2, which shows the sharing
model chosen for each object. Note that Contact is a child in a Lookup relationship, so it
has the option of deferring sharing decisions to its parent (Controlled by Parent).This
causes it to function like the child in a Master-Detail relationship.

In the second step, the groups of users are defined. In Services Manager, the only
groups relevant to sharing are the business units. Each business unit will become a role,
including the executive team.

81Sample Application: Securing Data

Table 3-2 Sharing Model for Services Manager

Object Sharing Model

Project Private

Resource Private

Account Private

Contact Controlled by Parent

For the final step of defining sharing rules between the groups, the requirement is to
allow users in the same business unit to collaborate on records.To accomplish this task, grant
each business unit Read/Write access to records owned by users in their business unit.

Implementing the Security Model
In the preceding section, you designed the sharing model for the Services Manager sam-
ple application. In this section, you will implement it in your Force.com DE organization.
The implementation involves five separate tasks:

1. Create Profiles: Profiles control access to objects and fields.The profiles in Ser-
vices Manager are modeled after job functions such as Consultant and Project
Manager.

2. Configure Field Accessibility: Profiles also provide fine-grained control over the
fields within an object. In Services Manager, several cases exist in which a particular
type of user needs Read access to an object, but not the whole object. Some fields
are sensitive and should be hidden. Supporting these cases using field-level accessi-
bility settings is easy.

3. Set Organization-Wide Defaults: This is the first step in defining record-level
control over data.All records have an owner, initially the user who created the
record. Organization-wide defaults are defined on each object and dictate which
users besides the owner, if any, also receive access to the records.

4. Establish Role Hierarchy: Roles provide a way to group users into a hierarchy.
Users at higher levels in the hierarchy receive access to all records owned by their
subordinates. In the Services Manager example, roles are used to model geographi-
cally distinct business units. By default, business units do not share data with each
other.An executive team at the top of the hierarchy receives access to all data.

5. Add Sharing Rules: Sharing Rules are one way to override the organization-
wide defaults.They automatically share records between two groups of users based
on record ownership and group membership. In Services Manager, sharing rules are
used to allow record owners in the same business unit to collaborate on the same
data. For example, if two Project Managers are in the West, they should be able to
see each other’s Project records because they work on the same team.

82 Chapter 3 Database Security

Figure 3-11 Services Manager profiles

Create Profiles
On the Setup screen in the Administration Setup area, click Manage Users ➝ Profiles.
For each profile identified in Table 3-1, follow these steps:

1. Click the New Profile button.

2. Select an existing profile to use as the starting point for the new custom profile. Use
Standard Platform User.

3. Enter the profile name and click the Save button.

4. The new profile is created—a copy of the existing one. Click the Edit button to
customize it.

5. In Custom App Settings, select Services Manager as the default.

6. Scroll down to the Standard Object Permissions section. Check off the boxes as
appropriate to grant access to Accounts and Contacts. Repeat the same process in
the Custom Object Permissions section for the five custom objects in the Services
Manager application.

7. Click the Save button.As a shortcut to create more profiles, click the Clone button
and start building the next profile from step 3.

When you’re done, your Profiles screen should look as shown in Figure 3-11.

83Sample Application: Securing Data

Configure Field Accessibility
In addition to object-level security, you also need to protect sensitive fields. By default, all
fields of an object are visible. For example, you have granted all profiles at least Read
access to the Project object. But a Consultant should not see the finance-related fields
Consulting Budget, Expense Budget, and Invoiced.

Follow this procedure to change the visibility of fields in an object:

1. Click Setup, and in the Administration Setup area, click Security Controls ➝ Field
Accessibility.

2. Click the object to configure—for example, Project.

3. Click View by Profiles.

4. Select the profile—for example, Consultant.At a glance, you can see the access level
of every field in the profile.

5. For each field to change, click its corresponding field access value.

6. Click the first Visible check box to make the field invisible to this profile.

7. Click the Save button.

8. Repeat from step 4 until every profile is assigned the correct access levels for this
object.

When you’re done with these steps for the Project object, your Field Accessibility screen
for the Consultant profile should resemble that shown in Figure 3-12.

Repeat this process on the following objects:

n Timecard: Hide the invoice-related fields (Invoiced, Invoice Number, Invoice
Date) from the Consultant profile.

n Assignment: Hide the finance-related fields (Hourly Cost, Hourly Rate, Planned
Cost, Planned Margin, Planned Revenue) from the Consultant profile.

n Resource: Hide the Hourly Cost Rate from the Consultant profile.

Set Organization-Wide Defaults
Follow these steps to configure the organization-wide defaults:

1. Click Setup. In the Administration Setup area, click Security Controls ➝ Sharing
Settings.

2. Click the Edit button.

3. In the Project row, select Private.Also select Private in the Resource row.

4. Click the Save button.

84 Chapter 3 Database Security

Figure 3-12 Accessibility of invoiced field in Project object

All Projects and Resources are now private.This means that only the owner of a Pro-
ject and Resource is able to see it.Although this is not the desired behavior, it is the most
restrictive setting. From there, you will use Sharing Rules to open access to members of
the same business unit.

Establish Role Hierarchy
In the Services Manager sample application, business units are represented using Roles.
Roles are chosen over Public Groups because they provide the one-way sharing needed
between business units and the executive team.

To configure the Roles, follow these steps:

1. Click Setup. In the Administration Setup area, click Manage Users ➝ Roles. If
you’ve never used this feature before, click the Set Up Roles button to continue
past the display of sample role hierarchies.

2. Rename CEO to Executive.

3. Rename three of the roles reporting to Executive to West, Central, and East.

4. Delete the unneeded roles, starting with those at the lowest level of the hierarchy.

When you’re done, your role hierarchy should appear as shown in Figure 3-13.

85Sample Application: Securing Data

Figure 3-13 Services Manager roles

Add Sharing Rules
The goal in using Sharing Rules is to allow users in the same business unit to collaborate
and share data.A record created by one user should be available to all users in the same
business unit and their superiors, the executive team.

To configure Sharing Rules, follow these steps:

1. Click Setup. In the Administration Setup area, click Security Controls ➝ Sharing
Settings.

2. Scroll to the bottom of the screen. Click the New button in the Project Sharing
Rules section.

3. The first pair of drop-down lists identifies the record owners who will be sharing.
Select Roles from the first drop-down list and a Role from the second—for exam-
ple,West.

4. Select the group of users to share with.To share records within the same business
unit, set this pair of drop-downs to the same values as those in the preceding step—
for example, Roles and West.

5. The final drop-down list,Access Level, specifies the level of access that the second
group of users receives to the shared records. Select Read/Write.

86 Chapter 3 Database Security

Figure 3-14 Services Manager Sharing Rules

Testing the Security Model
Although Services Manager is a sample application, it’s a good idea to get into the habit of
testing the security of all Force.com applications before you go into production with them.
If you do not take the time to test methodically, a user or group of users could be unable to
perform their jobs or become exposed to confidential data intended for other users.

Security testing requires the same level of patience and attention to detail as the actual
configuration. If you’ve kept a spreadsheet or another document with the details of your
configuration, you can use it to construct a test plan.Where feasible, make sure you test
from the perspective of every group of uniquely privileged users.The native user interface
is a great tool for security testing, since it exposes the underlying security model accu-
rately, without the distortion of potentially buggy custom code found in custom user
interfaces.

Repeat this process to share Project records within the other two business units, Central
and East, and Resource records in all three business units. Records are automatically
shared with executives because they lie above the business units on the role hierarchy.
Figure 3-14 shows the completed list of Sharing Rules.

87Sample Application: Securing Data

Test object and field visibility by visiting tabs.Test access levels by looking for buttons
that modify the state of the record on the pages in these tabs.Test sharing rules by creat-
ing records with different owners and checking their visibility to other users.

In the following subsections, you will create three additional users for testing, prepare
some test data, verify object and field visibility for three profiles, and test manual sharing
between two Roles.

Creating Additional Users
Force.com Developer Edition provides you with up to five free users for your testing.
Two of the users are licensed to use the full Salesforce functionality, which includes all the
standard objects.Three of the users are Salesforce Platform Users, meaning they have
access to a subset of the standard objects. Service Manager can be tested using Salesforce
Platform Users.

Although you could use one user and cycle him through the various roles and profiles,
creating as many users as you can makes testing more efficient and intuitive. Start with a
Staffing Coordinator in the West, a Consultant in the West, and a Vice President in the
Executive team.

Follow these steps to create each new Salesforce Platform user:

1. Click Setup. In the Administration Setup area, click Manage Users ➝ Users.

2. Click the New User button.

3. Enter First and Last name, and Email. Set Profile to one of the custom Services
Manager profiles and select a Role. Make sure that the check box Generate New
Password and Notify User Immediately is selected.Then click the Save button.

4. You will receive an email with a link to log in as your new user.Visit this login link.

5. Set your new password.

6. Click Setup. In the Personal Setup area, click My Personal Information ➝ Grant
Login Access.

7. Grant login access to your administrator by entering a date in the second input
field and clicking the Save button.This is a time-saving step that allows you, the
administrator, to log in temporarily as the user without going through the full login
process of entering a username and password.

Repeat this process for each new user.When you’re done, you should have a list of users
resembling the one shown in Figure 3-15.

88 Chapter 3 Database Security

Figure 3-15 Services Manager users

Data Preparation
If you log in as a non-administrator, you’ll notice that no Project or Resource records are
visible. But you imported some in the preceding chapter, so where are they? Because your
sharing model is set to Private for these objects, they are accessible only to the owner,
which is the administrator user you used to import them.

To get started with testing profiles, you need to transfer ownership of some records.
Log in as the administrator. Grant your Consultant user ownership of a Resource record
by visiting the record and clicking the Change link beside the owner name. Figure 3-16
shows the record with a new owner. Note that the owner is different from the user who
created the record.

Repeat the same process to transfer ownership of a Project to your user in the Staffing
Coordinator profile.

Testing the Consultant Profile
Now log in as a user in the Consultant profile. Click the Resources tab and click the Go
button.You should see the Resource record.There are New Timecard and New Skill
buttons, but not a New Assignment button.That’s because the Consultant profile pro-
hibits this user from creating an Assignment record.Also notice that the Hourly Cost field
is hidden.

89Sample Application: Securing Data

Figure 3-16 Resource record with new owner

Before you leave this record, click the New Skill button and add a few skills to the
consultant.Then click around in the other tabs to verify that the consultant cannot create
a Project or Resource and cannot see the hidden fields in these objects.

Testing the Staffing Coordinator Profile
When you’re satisfied with the Consultant, log out and log in as a Staffing Coordinator.
Verify the following behaviors of this profile:

n Can create, edit, and delete Projects and view all their fields
n Can create, edit, and delete Assignments
n Can create, edit, and delete Resources
n Cannot create, edit, or delete Skills
n Cannot create, read, edit, or delete Timecards

Testing the Executive Role, Vice President Profile
Log in as your Executive VP user and verify that this user has full access to any of the
records owned by the other users.This includes the ability to edit, delete, and change
ownership and share the records.

90 Chapter 3 Database Security

Recall that the privileged access of this user stems from a combination of two
Force.com security features:

1. Executive Role: The Executive role is at the top of the role hierarchy.All Project
and Resource records owned by users below this level are automatically shared with
users belonging to the Executive role.

2. Vice President Profile: The Vice President profile has full access to all the objects
and fields used in the Services Manager.

Testing Business Unit Collaboration
Say that the Central business unit’s Staffing Coordinator requests a specialized consultant
for a high-profile project, but this consultant works in the West.Verify that the security
model supports this scenario using the following steps:

1. Log in as the System Administrator or an Executive VP user.

2. Locate the record of a Resource working in the West.Verify this by clicking the
Resource record’s Owner field and examining the value of that user’s Role.

3. Click the Sharing button.

4. Click the Add button.

5. In the Search drop-down list, select Roles.

6. Select Role: Central and click the Add button.The Share With list now contains
Role: Central. Keep the Access Level at Read Only because you do not want the
Central users to be modifying this West-owned resource.

7. Click the Save button.

The sharing detail screen for this Resource should look as shown in Figure 3-17. Note
the presence of both the sharing rule and the newly added manual share.

Now that the record is shared with Central, it’s time to test it. Make sure you’re logged
in as the System Administrator. Modify the Staffing Coordinator user so that it belongs to
the Central role, and log in as that user. Staff the West consultant to a project by creating
an Assignment, setting this consultant as the Resource. If you are able to do this, the man-
ual share is working as intended.

91Summary

Figure 3-17 Sharing detail for Resource record

Summary
This chapter introduced the data security features provided by the Force.com platform.
These features can eliminate much of the effort required in traditional application devel-
opment to build basic security infrastructure. Here are a few points to consider before
moving on:

n Data can be protected at the object, field, and record level.
n Profiles control access to objects and fields.A combination of object and field permis-

sions plus page layouts determines the degree to which a field is accessible to users.
n Most records have a built-in concept of ownership.The record’s owner, plus organi-

zation-wide defaults and sharing reasons that override these defaults, determines
non-owners’ rights to view and modify records.

This page intentionally left blank

4
Additional Database Features

This chapter introduces a set of features that go hand-in-hand with the Force.com data-
base.Their configuration and behavior build on the definition of objects and fields,
extending them to support more complex native user interfaces, calculations performed
on groups of records, and offline access to your data.

The following features are discussed in this chapter:

n Dependent Fields: Dependent fields enable the standard “cascading picklist” user
interface pattern, in which user selection in one picklist filters the available values
in a second.

n Record Types: Record types allow records in a single object to take on multiple
personalities in the native user interface. For example, the standard object Account
is designed to store information on businesses, but with minor adjustments can sup-
port data on individuals as well.This can be accomplished with record types.

n Roll-Up Summary Fields: Roll-up summary fields are like formula fields that
operate on a group of records, calculating their sum, minimum, maximum, or a
record count.

n Field History Tracking: Field History Tracking is an audit trail for your objects.
As records are updated, details of the changes are stored in a separate history object.
Details include the user modifying the record, the fields modified, and the old and
new values.

n Tags: Tags are an alternative way to search for records.They are user-created,
informal annotations of records that can be easily searched and shared to drive
collaboration.

n Force.com Connect Offline: This feature brings portions of your Force.com
database directly to your desktop.You can work disconnected from the Internet,
and your data is synchronized with Force.com when you reconnect.

94 Chapter 4 Additional Database Features

n Custom Settings: Custom settings store and manage user preferences, aspects of an
application that can be configured by users rather than hard-coded by developers.

n Sample Application: Three of the preceding features are applied to enhance the
Services Manager sample application.

Dependent Fields
Dependent fields are primarily used to define cascading picklists. Cascading picklists are a
user interface pattern in which the values in one picklist depend on the selection in
another picklist. For example, a picklist for state/province might depend on another pick-
list for country.When a user selects a country, the state/province picklist is populated with
a set of values that make sense given the selected country. In Force.com, the first picklist is
called the dependent field, and the second is the controlling field.The controlling field
can be a standard or custom picklist (with at least 1 and fewer than 300 values) or a check
box field, but cannot be a multi-select picklist.The dependent field can be a custom pick-
list or multi-select picklist.

A dependent field is an ordinary picklist field with an additional attribute to relate it to
a controlling field.To visualize the relationship between the fields, modify your object’s
page layout so that the controlling field appears above the dependent field.Then perform
the following steps to define the relationship between their values:

1. Navigate to the Custom Field Definition Detail page for the dependent field.

2. In the Picklist Options subsection, click the New link next to the label for Con-
trolling Field.

3. Select the controlling field and click the Continue button.

4. Use the grid to specify which values of the controlling field should be included in
the dependent field. Picklist values of the controlling field are shown as columns.
Values of the dependent field appear as rows. Double-click individual values to
include or exclude them or hold down the Shift key while clicking multiple values
and click the Include Values and Exclude Values buttons to make changes in bulk.

Dependent fields can be challenging to incorporate in dynamic user interfaces and are
not supported in Force.com Connect Offline.The main alternative to dependent fields is
a Lookup relationship between two objects that contain your valid values. If you already
have an investment in picklists and want to migrate, create two objects. One object con-
tains the values of the controlling field; the other contains the dependent field’s values.
Add a lookup relationship field on the second object, relating it to the first. Load the first
object with records, one for each of the controlling field’s picklist values.Then add
records to the second object, assigning them the correct parent controlling record.

95Record Types

Record Types
Record types overload the native user interface behavior of a single object.This allows
you to get more mileage out of your existing objects or limit the complexity of a new
data model.

For example, Salesforce uses this feature in its CRM product. Person Accounts are a
record type of the Account object.Accounts ordinarily store information about busi-
nesses, but the Person Account record type adapts Account to store information about
individuals. Salesforce opted to overload Account with a record type rather than creating
an entirely new object.

Before creating a separate object to represent every business entity, ask yourself
whether the entity is truly new or merely a slight variation of another entity.Where you
find slight variations, consider using a single object to do the work of many.The single
object contains a superset of the objects’ fields.The record type of each record determines
which variation of the business entity is stored. Force.com consults the record type and
the user’s profile to display the correct native user interface.

Even if you don’t plan to use the native user interface, record types can expand the
flexibility of your data model. By using record types, you gain an additional standard field
called RecordTypeId. In custom user interfaces, you can use this to drive different func-
tionality. Of course, you can always add your own custom field to accomplish the same
thing, but record types force you to make your design explicit at the native Force.com
level and provide tight integration with native Force.com security.

Record types can be tricky to configure because they interact with many other fea-
tures of Force.com.This section examines record types across three areas:

1. Defining Record Types: Record types enable picklist fields to be customized to
show different values for different record types of an object.They also add another
dimension of flexibility when designing page layouts.

2. Securing Record Types: Users gain access to record types through their profiles.

3. Using Record Types: The native user interface changes in some significant ways
when a user has rights to multiple record types.

Defining Record Types
Record types are defined at the object level after an object is created. In the object defini-
tion is a section called Record Types for creating, editing, and deleting record types. Click
the New button there to start.

Every object has a default record type called Master. It contains the master list of val-
ues for all picklist fields in the object. New record types are cloned from the Master

96 Chapter 4 Additional Database Features

record type if no other record types exist, and given a name, label, and description. Nor-
mally record types are in an active state, which makes them available to users who are cre-
ating and editing records. Deactivating a record type is required before it can be deleted.

The list at the bottom of the page is a shortcut for adding this record type to many
profiles at once.You can skip it. If you do use it, do so with caution. If you add your
record type to many profiles and later decide you want to delete it, you must manually
visit each profile to remove the record type first. Record types cannot be deleted if they
are referenced by profiles.

The next page allows you to associate your new record type with one or more page
layouts.This determines which native user interface is shown when a user creates or edits
a record of this type.The default is to show one page layout to all users, regardless of their
profiles.This page can also be skipped.There is another user interface to do the same
thing, but across multiple record types and profiles simultaneously.

After the record type is saved, it enters an edit mode. Edit mode permits the mainte-
nance of picklist values for the record type.The list of picklist type fields in the object is
shown, with Edit links beside each.These Edit links take you to Figure 4-1, a screen that
allows picklist values to be customized. Here you can select all, or a subset of the picklist
values, and provide a custom default value.

Figure 4-1 Edit picklist values for record type

97Record Types

Figure 4-2 Adding picklist values with multiple record types

This is just one way to manipulate the picklist values of a record type.When adding new
picklist values in an object with more than one record type defined, you are asked which
record types they apply to. Figure 4-2 depicts this scenario. By default, new picklist values
are added only to the Master record type, leaving other record types unchanged.

Securing Record Types
Users are granted access to record types according to their profiles. Profiles contain a sec-
tion called Record Type Settings. Every one of your custom objects is displayed there,
along with a list of the record types the profile is allowed to access and an Edit link.
Figure 4-3 is the result of clicking the Edit link on a custom object called Resource in
the System Administrator profile. It shows that the System Administrator profile is allowed
to access two record types.The default record type is Internal, and the impact of this is
discussed in the subsequent section.

Another part of security is field visibility, which is partially determined by the page
layout. Record types add another dimension of configurability for assigning page layouts
to users.Without record types, the page layout is determined by a user’s profile. But with
record types, you have the additional option of splitting the decision by record type.This
configuration matrix of profiles and record types is shown in Figure 4-4.You reach the
screen by clicking the Page Layout Assignment button in the Page Layouts section of the
object definition.

98 Chapter 4 Additional Database Features

Figure 4-4 Page layout assignment for record types

Figure 4-3 Configuring record types for a profile

99Record Types

Figure 4-5 New record creation with multiple record types

In this screen, an administrator can quickly review and modify the page layouts
assigned to all combinations of record type and profile.

Using Record Types
You’ve learned how to define record types and how they help determine which page lay-
out is shown to a user and the picklist values within it. But how does a record get
assigned a record type in the first place?

If a user has access to only one record type, that record type is automatically assigned
to the record.Things become more interesting for users with access to more than one
record type.The first step of creating a new record becomes selecting its record type, as
shown in Figure 4-5.

Users who find this extra step in record creation unnecessary can disable it by visiting
their Personal Setup area and clicking My Personal Information ➝ Record Type Selec-
tion. Here they can opt to always use the default record type.The default record type is
chosen by the administrator and stored in the user’s profile.

A record begins life as a particular record type, but its type can be changed later by the
record owner. If the Record Type field is added to your page layout, you’ll see a Change
link beside it. Clicking it reveals the screen shown in Figure 4-6.After the record type is

100 Chapter 4 Additional Database Features

Figure 4-6 Change record type

Roll-Up Summary Fields
Summarizing data in SQL databases is a routine matter of invoking GROUP BY and an
aggregate function like SUM. Force.com’s SOQL query language supports summarization
as well but comes with limitations. Built-in reporting in Force.com provides some sum-
marization functionality, but it’s an independent feature with its own user interface, not
integrated with your custom application’s user interface. For the flexibility to use sum-
mary data anywhere, Force.com requires that it be calculated incrementally, either by the
database itself or in Apex code.As a result, planning for summary-level data as the database
is designed is best.

Roll-up summary fields are the mechanism for instructing the database that you would
like summary data to be calculated without custom code or ad-hoc queries.You specify

Note
Every object has a special field named RecordTypeId to indicate the record type of individ-
ual records. This allows record types to be queried and assigned to records programmatically.

changed, the Force.com user interface automatically enters edit mode on the record to
allow you to fix any picklist values that are no longer valid.

101Roll-Up Summary Fields

Figure 4-7 Defining a roll-up summary field

the child object to summarize, the function to apply to the child records, and filter criteria
on the child records.The database then takes care of keeping the roll-up summary values
up to date as child records are created, modified, and deleted. For example, given an
Invoice Header object and Invoice Line Item child object, you could use a roll-up sum-
mary field on the Invoice Header to maintain a running count of invoice line items.

Roll-up summary fields are added to objects using the same process as adding other
types of fields.After you have provided a label and selected the Roll-Up Summary Field
type, the summary calculation is defined as shown in Figure 4-7.

The summary calculation consists of three parts:

n Summarized Object: A drop-down list contains the objects you are permitted to
summarize.This is restricted to child objects in a Master-Detail relationship with
the object on which you’re creating the roll-up summary field. Lookup relationships
are not supported.

n Roll-Up Type: Select the calculation to be performed on the child records and the
field of the child object to perform it on.The fields available in this list depend on
the calculation. If your calculation is Sum, the list contains fields of type Number,
Currency, and Percent.With Min or Max, you can also summarize Date and
Date/Time fields. Note that you cannot roll up other roll-up summary fields or for-
mula fields that contain references to other objects, merge fields, or functions
returning dynamic values, such as TODAY and NOW.

102 Chapter 4 Additional Database Features

n Filter Criteria: By default, all records are included in the summary calculation.
Alternatively, you can also specify one or more filter criteria to restrict the records
involved in the calculation. Build filter criteria by selecting a field to filter, the
operator to apply, and the value. If you add more than one criteria, the effect is
additive.All filter criteria must be satisfied for the record to be included in the sum-
mary calculation.

After you have specified the summary calculation and saved the new field, Force.com
begins calculating the summary values on existing records.This can take up to 30 minutes.
An icon is displayed beside the field to indicate that the calculation is running.

You can define at most ten roll-up summary fields per object. Make a point of creating
them toward the end of your database design process, because they make changing your
objects more difficult. For example, you can’t convert a Master-Detail relationship to a
Lookup relationship without first removing the roll-up summary fields.

Field History Tracking
Field history tracking provides an audit trail of changes to one or more fields of your
objects.This audit trail is accessible in the native user interface by adding a special related
list to your page layout and also in your own custom code. No user can remove or edit
entries in the audit trail, not even a system administrator.

To get started with field history tracking, follow these steps:

1. Go to your custom object’s definition page and click the Edit button.

2. In the Optional Features section, selectTrack Field History and click the Save button.

3. Click the Set HistoryTracking button in the Custom Fields & Relationships section.

4. Check off the fields you would like to track.Your screen should resemble what’s
shown in Figure 4-8.You can track up to 25 fields per object.You cannot track the
history of formula, roll-up summary, or auto-number fields.

5. Edit the page layout for your object and add the related list corresponding to your
object’s history.

6. To test, find a record to change in your object. Edit the value of one of the fields
you’ve enabled field history tracking on.When the edit is complete, notice that the
field history related list contains the details, as shown in Figure 4-9.This field history
related list cannot be customized, but you can create your own custom user inter-
face for viewing field history using Visualforce.

103Field History Tracking

Figure 4-8 Configuring field history tracking

Figure 4-9 Field history related list

104 Chapter 4 Additional Database Features

Tags
Tags are keywords that users can place on records to make them easier to find.These key-
words can be private to a specific user or shared among all users.Tagging can reduce the
complexity of your objects by providing a catch-all way for users to search, without addi-
tional dedicated search fields.The primary disadvantage is that the search is unstructured.
Tags are always strings and cannot be treated as numbers or dates.

Enabling Tags
Initially, tags are disabled.To enable them, go to the App Setup area and click Customize
➝ Tags ➝ Tag Settings. One check box enables personal tags, and the other enables public
tags. Personal tags placed on a record are visible only to the user creating the tags. Public
tags are visible to all users. Public tags can be configured to appear on reports, documents,
notes, and dashboards.

To finish, select the page layouts to enable tagging on. Selected page layouts are
enhanced with a gray subheading containing controls for viewing and editing tags.

Using Tags
Visit a record whose page layout has tagging enabled on it. Click the Add Tags link.
Depending on how you’ve configured tags, you could see an input field for public tags,
private tags, or both. Enter tags separated by commas.

When you’re done, your record contains a list of your tags across the top.The record in
Figure 4-10 has the private tags delayed and hot and the public tag hotel.

If you create a tag on a second record, notice that Force.com assists you by suggesting
tags that you’ve added on other records.This helps make the tags consistent, improving the
quality of search results.

To search using tags, enter a tag in the search sidebar.The tags section of the search
results returns the matching tags, as well as other tags found in the same records as your
search tag. Click a tag to view a list of records that contain the tag.

Force.com Connect Offline
Force.com provides a solution for offline access called Force.com Connect Offline. It
allows read and write access to Force.com data while you’re disconnected from the net-
work.When you’re connected again, the data you’ve created or modified offline is syn-
chronized and reconciled with Force.com, and any new records created by other users
while you were disconnected are cached on your computer.

You should consider two viewpoints when getting to know Force.com Connect
Offline. First, an administrator configures the feature for users, specifying the data available
for offline access.Then there are the users themselves, who must be running a Windows
operating system.They use a dedicated client application to access Force.com when dis-
connected, in place of their normal Web browsing application.

105Force.com Connect Offline

Figure 4-10 Record with personal and public tags

Administration of Force.com Connect Offline
Two independent tracks exist within offline configuration. One is called the Briefcase, and
it allows users to directly control the data they need to access offline.The Briefcase is lim-
ited to sales objects: accounts, contacts, opportunities, and leads.This option is not dis-
cussed further because it is a CRM-specific feature and does not work with custom
objects.

The full version of offline configuration is performed by administrators at the profile
level. It allows any custom object to be available for offline access and provides filters to
limit the amount of data.

To define your own offline configuration, in the Administration Setup area, click Desk-
top Administration ➝ Offline Briefcase Configurations. Figure 4-11 shows an offline con-
figuration.Two profiles are granted access to a data set made up of records from seven
objects.

The majority of the work in creating an offline configuration is in defining the data
sets.A data set is simply a group of records cached on users’ machines that they can interact
with while disconnected from the network. Data sets consist of the following components:

n Objects: Select one or more objects to enable for offline access. Objects can be
nested in a hierarchy, leveraging relationships between objects to filter records.

106 Chapter 4 Additional Database Features

Figure 4-11 Offline configuration

n Record Ownership Filters: Four options are available for restricting data by
owner.The default is to include all records the user has access to read.Two other
options filter on owner, limiting records to those owned by the user directly or by
the user and its subordinates in the role hierarchy.The final option provides search
access to all records but doesn’t actually synchronize the data.

n Field Filters: Field filters restrict data based on their values. Filters consist of a
field, an operator to compare the values, and a static value. Multiple filters are addi-
tive by default but can be chained together in more complex ways using the
Advanced Filter Conditions.

n Record Limits:You can set a maximum number of records to retrieve for a given
data set. If you do not set a limit, Force.com internally limits the data set to 5,000
records per object.

Using Force.com Connect Offline
In the Personal Setup area, click Desktop Integration ➝ Force.com Connect Offline.
Click the Install Now button to download the desktop client. It is available only for Win-
dows operating systems.After proceeding through the installation program, you should
have an icon on your desktop and in your Start menu called Offline Edition. Launch it
and enter your username and password in the login dialog. Be sure to include your secu-
rity token after your password.

107Custom Settings

Figure 4-12 Offline client application

After you’re logged in and the initial synchronization is performed, you should see the
tabs associated with objects included in your offline configuration.You are now working
offline. Figure 4-12 shows a detail record in the offline client application.The user inter-
face is similar to the standard Force.com native user interface, with some elements
removed.The list of applications in the upper-right corner is gone, so the tabs from all
applications are shown together in a single line.

At this point, you can browse your offline data sets, search, create new records, edit exist-
ing records, and delete records. Click the Synchronize Briefcase link in the upper-right
corner to send your changes back to Force.com when you’re connected to the network.

If conflicts occur between the data entered offline and data in Force.com, you get the
opportunity to manually reconcile the changes. Figure 4-13 illustrates the data reconcilia-
tion user interface. Each pair of conflicting changes is displayed side-by-side, and you
decide which version of the data is correct.

Custom Settings
Custom settings are a special data storage feature designed for relatively simple, frequently
accessed data.The type of data stored in custom settings is ancillary, used to configure or
control your application rather than the operational data itself, which belongs in standard
and custom objects. For example, user preferences in a Java application might be stored in

108 Chapter 4 Additional Database Features

Figure 4-13 Conflict resolution

an XML or properties file. In Force.com, they are stored in custom settings. Data in cus-
tom settings is readily accessible throughout the Force.com platform in Apex,Visualforce,
formula fields, validation rules, and Web Services API.As an example, a custom setting
named Expert might indicate whether a given user receives the default or advanced ver-
sion of a user interface.

A custom setting is an object definition, much like a standard or custom database
object. It consists of a name, a type, and one or more fields.The two types of custom set-
tings are List and Hierarchy:

n List: The List is the simpler form, behaving like a database object except for the fact
that records are accessed one at a time, by unique name. For example, you might
define a custom setting with fields representing configurable options in your appli-
cation, and each named record representing a collection of those options, such as
Test and Production.

n Hierarchy: The Hierarchy type expands upon the List type, adding the ability to
relate data to organization, profile, and user. If a value is not provided for a given
level, it defaults to the levels above it.With Hierarchy types, you can create applica-
tions that manage settings for individual users, but defer to a profile or organization-
wide default when necessary without storing and maintaining redundant,
overlapping information.

Using List Custom Settings
The following steps describe how to build a simple custom settings object and manage the
values stored in it:

1. Go to the App Setup area and click Develop ➝ Custom Settings.This is where you
define custom settings and maintain their values.

109Custom Settings

2. Click the New button to define a new custom settings object. Label is the display
name for your object; Object Name is the name you’ll refer to it by in programs.
Enter Config Setting as the Label, and ConfigSetting as the Object Name. For
Setting Type, select List.Visibility controls how this setting behaves when packaged.
Leave it as Protected. Use the Description field to explain the purpose of your cus-
tom setting to other developers in your organization.

Tip
Following a naming convention for your custom settings so that they can be easily differenti-
ated from custom objects is a good practice. For example, append the word “Setting” to the
end of any custom setting name. The value of naming conventions will become more appar-
ent when you write Apex code that interacts with the database.

3. Click the Save button.Your custom setting is now created and needs some fields
and data. Each custom setting can have up to 300 fields.

4. In the Custom Fields section, click the New button to create a new field. Custom
settings fields use a subset of the data types available to custom object fields.They
are Checkbox, Currency, Date, Date/Time, Email, Number, Percent,Text,Text
Area, and URL. Select Checkbox for your field and click the Next button. For the
field label, enter Debug.The Field Name, used to refer to the field in code, is auto-
matically populated. Click the Next button.

5. Click the Save button to finish your field definition.You should see a page resem-
bling Figure 4-14.

You’re ready to store values in your custom settings object. Force.com provides a standard
user interface for this purpose. Click the Manage button and then the New button.There
is a field for the Name of the setting record, which serves as a human-readable identifier
for the record. Following the name are the custom fields you’ve defined on the custom
setting. In this case, you have a single checkbox field named Debug. Enter Default for
the name, select the Debug box, and click the Save button.

Using Hierarchy Custom Settings
Hierarchy type custom settings provide additional options when storing values.To see
them in action, create a new custom setting object called Hierarchy Setting with an
object name of HierarchySetting.Again, add a checkbox field named Debug.The default
value of Debug selected here is the organization-level setting, which applies if no values
are defined for a user or profile.

When you’ve finished creating the custom setting, add a new value to it.You are
prompted to set the value of the Debug field as with the List custom setting example. But
there is an additional system field called Location. Location determines at which level in
the hierarchy the setting applies.The two options are Profile and User.Try to create two
custom setting records, one with Debug selected for the System Administrator profile, and

110 Chapter 4 Additional Database Features

Figure 4-14 Custom settings object definition

the other a user in that profile with Debug deselected. Figure 4-15 shows the result of
this, with a custom view (named Custom View) that pulls in the value of the Debug field
to show it varying across the two custom settings records.

Caution
Storage limits exist on custom settings data. For example, in a Developer Edition organiza-
tion, you cannot store more than 2MB total in all of your custom setting objects. Current
usage and the limit for your organization is shown on the Custom Settings main page. To
view it, go to the App Setup area and select Develop ➝ Custom Settings.

Sample Application: Applying the Features
This section walks through three scenarios to enhance the Services Manager sample
application with features discussed in this chapter.The following list describes the three
features to be covered and their contribution to Services Manager:

1. Dependent Fields for Skill Types: Services Manager users have outgrown the
skill type picklist you built in Chapter 2,“Database Essentials.” It contains too many
values to effectively navigate.Add a skill category picklist field to filter the values of
skill type down to a more manageable size.

111Sample Application: Applying the Features

Figure 4-15 Hierarchy custom setting data

2. Roll-Up Summary Fields for Project Reporting: Management has requested
summary information about projects on the project records themselves.Add roll-up
summary fields to the Project object that calculate sums on Timecard and Assign-
ment fields.

3. Force.com Connect Offline for Staffing: Make portions of the Services Man-
ager database available offline so that staffing coordinators and project managers can
browse, search, and assign resources to projects while disconnected.

Dependent Fields for Skill Types
The Services Manager data model includes a Skill object, which is a child of the
Resource object.This pair of objects allows each consultant to have zero or more skills.
The Skill object contains a picklist to capture the type of skill and another picklist to
store a rating value, measuring the strength of the resource in the selected skill type.

Imagine that consultants and staffing coordinators using the system have complained
that a single list of skill types is too limited.The list of skill types has grown and become
difficult to scroll through.They agree that grouping skills into categories would address
the issue.The users would like to select a skill category and see a shorter list of types
belonging to that category.

112 Chapter 4 Additional Database Features

Figure 4-16 Editing values in a dependent picklist

To accomplish this task, you will use the dependent fields feature to add a skill cate-
gory field to the Skill object, assigning it as the controlling field to the existing Type
picklist.

To start, create a new picklist field named Category on the Skill object. Modify the
Skill page layout so that Category appears above Type.Then perform the following steps
to assign Category as the controlling field of skill Type:

1. Navigate to the Custom Field Definition Detail page for the Skill Type field.

2. In the Picklist Options subsection, click the New link next to Controlling Field.

3. Type is already selected as the Dependent Field. For the Controlling Field, select
Category and click the Continue button.

4. Picklist values of the Controlling Field are shown as columns.Values of the Depen-
dent Field appear as rows. For each skill category, identify which skill types belong
to it and double-click them. For example, in Figure 4-16, the skill types “Apex” and
“C#” have been added to the skill category,“Languages.”

5. Optionally, click the Preview button to test your new dependent picklist. If it
doesn’t behave as expected, make modifications and preview again.When you’re
satisfied, click the Save button.

113Sample Application: Applying the Features

Figure 4-17 Skill record with dependent picklist

Table 4-1 Roll-Up Summary Fields on Project Object

Object
Roll-Up Summary Field
Name Roll-Up Type, Field Filter Criteria

Assignment Total Assigned Hours SUM, Total Hours

Assignment Total Planned Revenue from
Assignments

SUM, Planned
Revenue

Timecard Total Billable Hours Invoiced SUM, Total Hours Billable = True and

Invoiced = True

Timecard Total Billable Hours Logged SUM, Total Hours Billable = True

6. To test, create or edit a Skill record. It should look as shown in Figure 4-17. Now
your users can select the skill category to get a relevant list of skill types.

Roll-Up Summary Fields for Project Reporting
Executive management spends a lot of time in the native user interface, searching and
browsing projects. But the project detail page lacks the metrics to help them run the busi-
ness.These metrics are simple calculations performed on the assignments and timecards in
the project.Table 4-1 lists the metrics that management would like to see, expressed as
roll-up summary fields.

114 Chapter 4 Additional Database Features

Table 4-1 Roll-Up Summary Fields on Project Object

Object
Roll-Up Summary Field
Name Roll-Up Type, Field Filter Criteria

Timecard Total Billable Hours
Uninvoiced

SUM, Total Hours Billable = True and

Invoiced = False

Timecard Total Nonbillable Hours
Logged

SUM, Total Hours Billable = False

By adding the metrics as roll-up summary fields on the project object, you ensure that
they are always accurate as project, timecard, and assignment records are added, removed,
and updated. Follow this next procedure to add each roll-up summary field:

1. Navigate to the definition page of the object. In the Custom Fields & Relationships
section, click the New button. Select the Roll-Up Summary radio button and click
the Next button.

2. Enter a label for the field and click the Next button.

3. Select an object to summarize.The drop-down list contains Detail objects related to
the Master object.

4. Select a roll-up type and a field to aggregate.

5. Specify filter criteria, if any. For each filter criteria, select its field, operator, and value.

6. Click the Next button twice to make the new field available to all profiles and add
it to the page layout, and then click the Save button.

Repeat this process for each of the roll-up summary fields listed in Table 4-1.When
you’re done, your Project object should resemble what’s shown in Figure 4-18.To finish,
add some assignment and timecard records to watch the roll-up summary fields in action.

Management would also like revenue information at the project level. However,Time-
cards lack the billable rate of the consultant.This data is available on the Resource object
and could be copied into the Timecard using a Formula field.

Before you go down this road, recall that roll-up summary fields cannot be created on
fields containing cross-object formulas.That reference to the Resource object from Time-
card to get its hourly rate qualifies it as a cross-object formula.Workarounds exist, but
they involve custom user interfaces or Apex code to copy the resource’s hourly rate into
an ordinary Number field.

Force.com Connect Offline for Staffing
Staffing coordinators and project managers have requested offline access to the data in
Services Manager.They are Windows users and have already installed the Force.com
Connect Offline application.They have asked to see all noninvoiced, noncanceled
projects and their associated data, including Account,Timecard,Assignment, Resource,
Skill, and Contact.

115Sample Application: Applying the Features

Figure 4-18 Roll-up summary fields on Project object

Use the following steps to build the new offline configuration:

1. In the Administration Setup area, click Desktop Administration ➝ Offline Briefcase
Configurations.

2. Click the New Offline Briefcase Configuration button.

3. Enter a name, select the Active check box, and provide a description.

4. Select the Staffing Coordinator and Project Manager profiles from the Available
Members list and click the Add button to move them to the Assigned Members list.
Click the Save button.

5. Your offline configuration is now created. Click the Edit button in the Data Sets
section to add data sets to it.

6. Click the Add button to add a data set. In the dialog that appears, select the object
to make available offline.

7. Set the record ownership, field filters, and record limit. For example, add two filters
to the Project object, one on the Invoiced field and another on the Stage field.

116 Chapter 4 Additional Database Features

Figure 4-19 Defining an offline data set

8. Repeat steps 6 and 7 for each of the data sets.Your offline configuration should
resemble that shown in Figure 4-19.

9. Click the Done button to complete the process.Your offline configuration is now
ready for use.

Test your offline configuration by logging in to the Offline Client application. It should
contain the records you defined in the data set and adhere to the same security rules gov-
erning the online version of the application. Click the Synchronize Briefcase link when
you’re done editing data. Log in to Force.com using the Web browser and verify that the
data created, modified, and deleted offline has been reflected in the online environment.

Summary
This chapter introduced seven features that extend the functionality already provided by
the Force.com database. Here are a few points to consider before moving on:

n Record types offer the ability to create variations of a single object. Records are
assigned a record type, used by Force.com to deliver the correct picklist values and
page layout for the variation.

117Summary

n Roll-up summary fields provide a simple way to summarize the data contained in a
group of records but require the use of Master-Detail relationships to work.

n Offline access to Force.com data is an exercise in configuration rather than coding.
Assuming your users can run Windows, they can easily work with data offline and
synchronize it upon reconnection without learning a new user interface.

This page intentionally left blank

5
Business Logic

Business logic in Force.com is developed in Apex, a programming language designed
for the Force.com platform.Through Apex code, many platform features, such as the
database and user interface, can be customized to meet the needs of individual users and
companies.

This chapter introduces Apex as a language for writing business logic, specifically
where it interacts with the Force.com database. It uses a combination of explanatory text
and code snippets to introduce concepts and encourage experimentation.This approach
assumes you’re already experienced in some other high-level, object-oriented program-
ming language and would like to see for yourself how Apex is different.

The chapter consists of the following sections:

n Introduction to Apex: Learn basic facts about Apex and how it differs from other
programming languages.

n Introducing the Force.com IDE: Take a brief tour of the Force.com IDE, a user
interface for developing, debugging, and testing Apex code.

n Apex Language Basics: Learn the building blocks of the Apex language, such as
data types and loops.

n Database Integration in Apex: Incorporate the Force.com database into your
Apex programs through queries, statements that modify data, and code executed
automatically when data is changed.

n Object-Oriented Apex: Learn how to use object-oriented principles in your
Apex code.

n Debugging and Testing: Get familiar with the tools and techniques for debug-
ging Apex code and how unit tests are written.

n Sample Application: Walk through the implementation of a data validation rule
for the Services Manager sample application.

120 Chapter 5 Business Logic

Introduction to Apex
Apex is a stored procedure-like language that runs entirely on the Force.com platform. It
provides object-oriented features and tight integration with the Force.com database. It’s
mainly used in custom user interfaces and in triggers, code that is executed when data is
changed in the database.

Apex is not a general-purpose programming language like Java or C. Its scope is lim-
ited to business and consumer applications that operate on relational data and can benefit
from the feature set of the surrounding Force.com platform.

Apex programs exist in a multitenant environment.The computing infrastructure used
to execute Apex is operated by Salesforce and shared among many developers or tenants
of the system.As a result, unlike general-purpose programming languages you are familiar
with, the execution of Apex programs is closely controlled to maintain a consistently high
quality of service for all tenants.

This control is accomplished through governor limits, rules that Force.com places on
programs to keep them operating within their allotted share of system resources. Gover-
nor limits are placed on database operations, memory and bandwidth usage, and lines of
code executed. Some governor limits vary based on the type of licensing agreement you
have in place with Salesforce or the context that the code is running in, and others are
fixed for all users and use cases.

Note
The most prevalent governor limits are discussed throughout this book, but it is not a com-
plete treatment of the subject. The authoritative guide to governor limits is the Force.com
Apex Code Developer’s Guide, available at http://developer.force.com. Educate yourself on
governor limits early in the development process. This education will alter the way you archi-
tect your Apex code and prevent costly surprises. Additionally, test all of your Apex code with
production-like data volumes. This helps to expose governor-related issues prior to a produc-
tion deployment.

Here are a few important facts about Apex:

n It includes integrated testing features. Code coverage is monitored and must
reach 75% or greater to be deployed into a production environment.

n It is automatically upgraded. Salesforce executes all of its customers’ unit tests to
verify that they pass before deploying a major release of the Force.com platform.
Your code is always running on the latest version of Force.com and can take advan-
tage of any and all new functionality without the hassle and risks of a traditional
software upgrade process.

n There is no offline runtime environment for Force.com.You can edit your
code on your desktop computer, but it must be sent to Force.com for execution.

n Apex is the only language that runs on the Force.com platform.You can
integrate Apex with programs running outside of Force.com using HTTP-based
techniques such as Web services.

http://developer.force.com

121Introducing the Force.com IDE

n The Force.com database is the only database integrated into the Apex
language. Other databases can be integrated through Web services or other tech-
nology using HTTP.

The two primary choices for developing Apex code are the Web-based App Builder Tools
and the Force.com IDE, provided as a standalone application as well as a plugin to the
standard Eclipse IDE.The Force.com IDE is the more powerful and developer-friendly of
the two, so it is used throughout this book.

Introducing the Force.com IDE
The Force.com IDE is an extension to the standard Eclipse development tool for build-
ing, managing, and deploying projects on the Force.com platform.This section covers
installation and gives a brief walkthrough of the Force.com IDE components used
throughout this book.

Installation
Force.com IDE is distributed in two forms: a standalone application, and a plugin to the
Eclipse IDE. If Force.com is your primary development language or you are not an exist-
ing Eclipse IDE user, the standalone version is a good choice.The plugin version of the
Force.com IDE requires Eclipse, which you can find at www.eclipse.org. Only specific
versions of Eclipse are supported by the Force.com IDE. If you are already using Eclipse
but it’s an unsupported version, keep your existing Eclipse version and install the sup-
ported version just for use with the Force.com IDE. Multiple versions of Eclipse can
coexist peacefully on a single computer.

Visit http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse to learn
how to install the standalone and plugin versions of the Force.com IDE.

Force.com Perspective
A perspective is a concept used by Eclipse to describe a collection of user interface com-
ponents. For example, Eclipse has built-in perspectives called Java and Java Debug. By
installing the Force.com IDE, you’ve added a perspective called Force.com. Figure 5-1
shows the Force.com perspective, indicated in the upper-right corner.

If you do not see the Force.com perspective, click the menu option Window ➝ Open
Perspective ➝ Other, select Force.com from the Open Perspective dialog, and click the
OK button.The Open Perspective dialog is shown in Figure 5-2.

The Force.com perspective includes several user interface panels, called views.You can
see two of them at the bottom of Figure 5-1: Execute Anonymous and Apex Test Runner.
It also adds a new type of project called the Force.com Project, which is shown in the left-
side Navigator tab.The first step to using the Force.com IDE is to create a Force.com
Project.

www.eclipse.org
http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

122 Chapter 5 Business Logic

Figure 5-1 Force.com perspective

Figure 5-2 Open Perspective dialog

Force.com Projects
A Force.com Project allows you to read and write code, user interfaces, and other meta-
data objects within a Force.com organization from your local computer.Although this

123Introducing the Force.com IDE

Figure 5-3 Force.com IDE Schema Explorer

metadata is edited locally, it must be deployed to the Force.com service to run. Deploy-
ment to Force.com occurs automatically every time you make a modification to an object
in a Force.com Project and save the changes.

Note
Force.com does not provide its own integrated source control system, but Force.com Pro-
jects can be integrated into your company’s source control system through the built-in Team
features of Eclipse. Refer to the Eclipse documentation for more information.

Problems View
The Force.com IDE leverages the standard Eclipse view called Problems to display compi-
lation errors.When you save changes to an object in a Force.com Project, it is sent over
the network to the Force.com service for compilation. If compilation fails, Force.com-
specific errors are added to the Problems view. In most cases, you can double-click a prob-
lem row to navigate to the offending line of code.

Schema Explorer
The Schema Explorer allows direct interaction with the Force.com database. Use it to
inspect objects and fields and to execute database queries and preview their results.To
open the Schema Explorer, double-click the object named salesforce.schema in any
Force.com Project. In Figure 5-3, the Schema Explorer is open and displaying the fields in
the Resource object in its right panel. In its left panel, a query has been executed and has
returned five records.

124 Chapter 5 Business Logic

Apex Test Runner View
All business logic written in Force.com must be accompanied by unit tests to deploy it to
a production environment.Apex Test Runner view is a user interface to run unit tests and
view test results, including statistics on code performance and test coverage. If the Apex
Test Runner is not already visible on the bottom of your screen, go to the Window menu
and select Show View ➝ Apex Test Runner.

Execute Anonymous View
The Execute Anonymous view provides an interactive, immediate way to execute arbi-
trary blocks of Apex code. Unless noted otherwise, you can execute all the code snippets
in this chapter directly from the Force.com IDE using the Execute Anonymous view.

To try the Execute Anonymous view, first create a new Force.com Project. Go to the
File menu and select File ➝ New Force.com Project. Enter a project name; enter your
Force.com username, password, and security token; and click the Next button. If you
receive an error on this step, double-check your username, password, and security token.
Also make sure you’re providing the credentials for a Developer Edition organization,
given that other types of organizations might not have access to the Force.com API. Click
the Finish button to create the project.

After you’ve created a project for your Development Edition organization, the Execute
Anonymous view should be visible in the lower-right half of the screen. If not, go to the
Window menu and select Show View ➝ Execute Anonymous. In the Source to Execute
text box, enter the code given in Listing 5-1. If the text box is not visible, resize your Exe-
cute Anonymous view until it’s tall enough to see it.After you’ve entered the code, click
the Execute Anonymous button to run it.

Listing 5-1 Hello World

String helloWorld(String name) {

return 'Hello, ' + name;

}

System.debug(helloWorld('Apex'));

This sample code defines a function called helloWorld that accepts a single String
parameter. It then invokes it with the name Apex and displays the results, Hello Apex, to
the debug log.

Apex Language Basics
This section describes the building blocks of the Apex language.The building blocks are
variables, operators, arrays and collections, and control logic. Basic knowledge of the syn-
tax and operation of Apex is valuable for almost any custom development task in
Force.com, including triggers, custom user interfaces, and integration with external

125Apex Language Basics

systems.The section concludes with an introduction to Apex governor limits. Knowledge
of governor limits is a critical part of writing business logic that scales from Developer
Edition organizations to production organizations with real-world data volumes.

Variables
This subsection covers variable declaration, data types, constants and enums, and type con-
versions. It also provides detail on rounding numbers and converting dates to and from
strings, common tasks in business applications.

Variable Declaration
Apex is a strongly typed language.All variables must be declared before they’re referenced.
At minimum, a variable declaration consists of the data type followed by the variable
name. For example, Listing 5-2 is a valid statement.

Listing 5-2 Variable Declaration

Integer i;

The variable i is declared to be an Integer.Apex does not require variables to be initial-
ized before use, but doing so is good practice.The variable i initially contains a null value.

Variable names cannot start with numbers or symbols and must not conflict with Apex
reserved words.These are special keywords used by the Apex language itself.The list of
reserved words is available in the Force.com Apex Code Developer’s Guide.

Variable names are not case-sensitive.Try defining two variables with the same name,
one in uppercase and one in lowercase to prove this, as in Listing 5-3. If you try to exe-
cute this code, you will receive a compilation error citing a duplicate variable.

Listing 5-3 Case Insensitivity of Variable Names

Integer i;

String I;

Data Types
In Apex, all data types are objects.There is no concept of a primitive type such as an int
in Java.Table 5-1 lists Apex’s standard atomic data types.These types contain a single value
at a time or a null value.

126 Chapter 5 Business Logic

Constants and Enums
A constant is a variable that cannot be modified after it has been initialized. It is declared
using the final keyword and can be initialized only in constructors, in initializers, or in
the declaration itself.

An enum is a set of identifiers. Listing 5-4 provides an example of a constant as well as
an enum.The constant is an Integer type; the enum is named MyConstants and contains
three members.The variable x is initialized to the first member, and its data type is the
enum itself, which can be thought of as a user-defined data type.

Listing 5-4 Defining an Integer Constant and an Enum

final Integer MAGIC_NUMBER = 42;

Enum MyConstants { One, Two, Three }

MyConstants x = MyConstants.One;

After it has been declared, an enum can be referenced in Apex code like any built-in
data type. It can also be converted into an Integer from its zero-indexed position using its
ordinal method or into a String using its name method.

Table 5-1 Standard Atomic Data Types

Data Type Valid Values

String Zero or more Unicode characters.

Boolean True or false.

Date Date only; no time information is included.

Datetime Date and time value.

Time Time only; no date information is included.

Integer 32-bit signed whole number (–2,147,483,648 to 2,147,483,647).

Long 64-bit signed whole number (–263 to 263–1).

Decimal Signed number with whole (m, Integer) and fractional components (n),
expressed as m.n. Total length of number, including sign and decimal
point, cannot exceed 19 characters.

Double 64-bit signed number with a decimal point (–263 to 263–1).

Blob Binary data.

ID ID is a variation of the String type to store the unique identifiers for
Force.com database records. ID values are restricted to 18 characters.
Values are checked at compile and runtime, and a StringException is
thrown if they do not conform.

Object Object is the generic type. Variables defined as Object are essentially
typeless and can receive any value. Typeless code is vulnerable to run-
time errors because it is invisible to the compiler’s type checking
functionality.

127Apex Language Basics

Converting Data Types
The two ways to convert one data type to another are implicit, and through conversion
methods. Implicit conversion means that no method calls or special notation is required to
convert one type into another. Conversion methods are functions that explicitly convert a
value from one type to another type.

Implicit conversion is supported for numeric types and String types. For numbers, the
rule is this: Integer ➝ Long ➝ Double ➝ Decimal. Conversions can move from left to
right without casting, as Listing 5-5 demonstrates.

Listing 5-5 Implicit Conversion of Numeric Types

Integer i = 123;

Long l = i;

Double d = l;

Decimal dec = d;

For Strings, ID and String are interchangeable, as shown in Listing 5-6. If conversion is
attempted from String to ID but the String is not a valid ID, a System.StringException
is thrown.

Listing 5-6 Converting Between ID and String

String s = 'a0I80000003hazV';

ID id = s;

String s2 = id;

When implicit conversion is not available for a pair of types, you must use a conversion
method. Data type objects contain a static conversion method called valueOf. Most con-
versions can be handled through this method. Listing 5-7 is a series of statements that
convert a string into the various numeric types.

Listing 5-7 Type Conversion Methods

String s = '1234';

Integer i = Integer.valueOf(s);

Double d = Double.valueOf(s);

Long l = Long.valueOf(s);

Decimal dec = Decimal.valueOf(s);

When a type conversion method fails, it throws a TypeException. For example, when
the code in Listing 5-8 executes, it results in an error: System.TypeException: Invalid
integer: 1234.56.

128 Chapter 5 Business Logic

Listing 5-8 Type Conversion Error

String s = '1234.56';

Integer i = Integer.valueOf(s);

Rounding Numbers
Rounding occurs when the fractional component of a Decimal or Double is dropped
(round), or when a Decimal is divided (divide) or its scale (number of decimal places)
reduced (setScale).Apex has a set of rounding behaviors called rounding modes that apply
in all three of these situations. By default, the rounding mode is HALF_EVEN, which rounds
to the nearest neighbor, or to the even neighbor if equidistant. For example, .5 rounds to 0,
and .6 to 1. For the complete list of rounding modes, refer to the Force.com Apex Code
Developer’s Guide at www.salesforce.com/us/developer/docs/apexcode/index.htm.

Listing 5-9 demonstrates the three operations that can cause rounding.

Listing 5-9 Three Rounding Operations

Decimal d = 123.456;

Long rounded = d.round(RoundingMode.HALF_EVEN);

Decimal divided = d.divide(3, 3, RoundingMode.HALF_EVEN);

Decimal reducedScale = d.setScale(2, RoundingMode.HALF_EVEN);

Converting Strings to Dates
Strings can be converted to Date and Datetime types using the valueOf conversion meth-
ods, but the string values you’re converting from must be in a specific format. For Date,
the format is YYYY-MM-DD; for Datetime, YYYY-MM-DD HH:MM:SS, regardless of the locale
setting of the user.Time does not have a valueOf method, but you can create one with its
newInstance method, providing hours, minutes, seconds, and milliseconds. Listing 5-10
shows the creation of all three types.

Listing 5-10 Creating Date, Datetime, and Time

Date d = Date.valueOf('2009-12-31');

Datetime dt = Datetime.valueOf('2009-12-31 02:30:00');

Time t = Time.newInstance(2,30,0,0);

Converting Dates to Strings
Dates can be converted to strings through the String.valueOf method.This applies a
default format to the date values. If you want control over the format, Datetime has a
format method that accepts a Date pattern.This pattern follows the SimpleDateFormat

www.salesforce.com/us/developer/docs/apexcode/index.htm

129Apex Language Basics

Table 5-2 Operators, Their Data Types, and Precedence

Operators Operands Precedence Description

= Any compatible types 9 Assignment

+, - Date, Datetime, Time 4 Add or subtract days on Date,
Datetime, milliseconds on Time, argu-
ment must be Integer or Long

+ String N/A String concatenation

+, -, *, / Integer, Long, Double,
Decimal

4 Numeric add, subtract, multiply, divide

! Boolean 2 Logical negation

- Integer, Long, Double,
Decimal

2 Arithmetic negation

++, — Integer, Long, Double,
Decimal

1 Unary increment, decrement

&, |, ^ Integer, Long, Boolean 10 Bitwise AND, OR, XOR

<<, >>,

>>>

Integer, Long 10 Signed shift left, signed shift right,
unsigned shift right

==, <, >,

<=, >=, !=

Any compatible types 5 (<, >,
<=, >=), 6
(==, !=)

Not case-sensitive, locale-sensitive
comparisons: equality, less than,
greater than, less than or equal to,
greater than or equal to, not equal to

pattern found in the Java API, which is documented at the following URL: http://down-
load.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html. For example,
the code in Listing 5-11 outputs Thu Dec 31, 2009.

Listing 5-11 Formatting a Datetime

Datetime dt = Datetime.valueOf('2009-12-31 00:00:00');

System.debug(dt.format('E MMM dd, yyyy'));

Operators
Apex supports the standard set of operators found in most languages. Each operator is
listed in Table 5-2 along with its valid data types, precedence if mathematical, and a brief
description. In an expression with two operators, the operator with lower precedence is
evaluated first.

http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html

130 Chapter 5 Business Logic

Table 5-2 Operators, Their Data Types, and Precedence

Operators Operands Precedence Description

&&, || Boolean 7 (&&), 8 (||) AND, OR, with short-circuiting behavior
(second argument is not evaluated if
first argument is sufficient to determine
result)

===, !== Map, List, Set, Enum,
SObject

N/A Exact equality, exact inequality

() Any 1 Group an expression and increase its
precedence

? : Boolean N/A Shortcut for if/then/else expression

Operators not included in Table 5-2 are the assignment variations of date, string, and
numeric (+=, -=, *=, /=) and bitwise (|=, &=, ^=, <<=, >>=, >>>=) arithmetic. For example, x
= x + 3 assigns x to itself plus 3, but so does x += 3.

Arrays and Collections
Arrays and collections are a family of data types that contain a sequence of values. It
includes Lists and Arrays, Sets, and Maps.This subsection covers each of the three types
and describes how to create them and perform some basic operations. Each collection
type is different, but there are four methods you can invoke on all of them:

1. clear: Removes all elements from the collection.

2. clone: Returns a copy of the collection.

3. isEmpty: Returns false if the collection has elements, true if empty.

4. size: Returns the number of elements in the collection as an Integer.

Lists and Arrays
Lists and Arrays contain an ordered sequence of values, all the same type. Duplicate values
are allowed. Unlike Lists, the length of an Array is fixed when you initialize it. Lists have a
dynamic length that is adjusted as you add and remove elements.

To declare a List variable, use the List keyword followed by the data type of its values
in angle brackets. Because Lists and Arrays are containers for other values, they must be
initialized before values can be added to them.The new keyword creates an instance of the
List. Listing 5-12 declares a variable called stringList that contains Strings, initializes it,
and adds a value.

Listing 5-12 Creating a List

List<String> stringList = new List<String>();

stringList.add('Hello');

131Apex Language Basics

To create an Array, specify a variable name, data type, and length. Listing 5-13 creates
an Array of Strings named stringArray, initializes it to accommodate five elements, and
then assigns a value to its first element.

Listing 5-13 Creating an Array

String[] stringArray = new String[5];

stringArray[0] = 'Hello';

Multidimensional Arrays are not supported. But you can create a two-dimensional List
object by nesting a List within another List. In Listing 5-14, list2 is defined as a List con-
taining Lists of Strings.A String List called childList is initialized, populated with a
value, and added to list2.

Listing 5-14 Nested List Usage

List<List<String>> list2 = new List<List<String>>();

List<String> childList = new List<String>();

childList.add('value');

list2.add(childList);

Arrays and Lists have interchangeable behavior and syntax in Apex, as demonstrated in
Listing 5-15. Lists can be initialized using an Array initializer, and its elements accessed
using the square-bracket notation.Arrays can be initialized using the List constructor, and
accessed using the List getters and setters. But for the sake of code clarity, picking one
usage style and sticking with it is a good idea. In this book, List is the standard because it
better reflects the object-oriented nature of these collection types.

Listing 5-15 Mixed Array and List Syntax

List<Integer> intList = new Integer[3];

intList[0] = 123;

intList.add(456);

Integer[] intArray = new List<Integer>();

intArray.add(456);

intArray.set(0, 123);

Arrays and Lists preserve the order in which elements are inserted.They can also be
sorted in ascending order using the sort method of the List object. It takes no arguments,
sorts in ascending order, and is valid only on Lists of primitive data types.

Sets
The Set is another collection type. Like a List, a Set can store only one type of element at
a time. But Sets do not allow duplicate values and do not preserve insertion order. Sets

132 Chapter 5 Business Logic

are initialized like Lists. In Listing 5-16, a set named stringSet is created, and two values
are added.

Listing 5-16 Basic Set Usage

Set<String> stringSet = new Set<String>();

stringSet.add('abc');

stringSet.add('def');

System.debug(stringSet.contains('abc'));

The final statement in Listing 5-16 outputs true, illustrating one of the most valuable
features of the Set collection type: its contains method.To test whether a particular
String exists in an Array or a List, every element of the List must be retrieved and checked.
With a Set, this test can be done more efficiently thanks to the contains method.

Maps
The Map type stores pairs of keys and values and does not preserve their insertion order. It
maintains the relationship between key and value, functioning as a lookup table. Given a
key stored in a Map, you can retrieve its corresponding value.

Maps are initialized with a key data type and value data type. Keys are limited to primi-
tive data types, but values can be any data type. Listing 5-17 initializes a new Map called
myMap to store Integer keys and String values. It inserts a single value using the put
method and then retrieves it using the get method.The last line of code prints abc
because that is the value associated with the key 123.

Listing 5-17 Basic Map Usage

Map<Integer, String> myMap = new Map<Integer, String>();

myMap.put(123, 'abc');

System.debug(myMap.get(123));

Other useful methods of Maps include containsKey (returns true if the given key
exists in the Map), remove (returns and removes an element by key), keySet (returns a Set
of all keys), and values (returns an Array of all values).

Control Logic
This subsection describes how to control the flow of Apex code execution. It covers con-
ditional statements, loops, exception handlers, recursion, and asynchronous execution.

Conditional Statements
Conditional statements evaluate a Boolean condition and execute one code block if true,
another if false. Listing 5-18 provides an example, defining a function that prints true if
an Integer argument is greater than 100, false otherwise.

133Apex Language Basics

Table 5-3 Types of Loops

Name Syntax Description

Do-While Loop do { code_block }

while (condition);

Executes code block as long as Boolean condi-
tion is true. Evaluates condition after run-
ning code block, executing the code block at
least once.

While Loop while (condition)

{ code_block; }

Executes code block as long as Boolean condi-
tion is true. Evaluates condition before run-
ning code block, so code block might not be
executed at all.

Traditional For
Loop

for (init; exit

condition; increment)

{ code_block; }

Executes init statement once. Loops on the
following steps: exit loop if Boolean exit
condition evaluates to false, executes code
block, executes increment statement.

List/Set
Iteration For
Loop

for (var : list/set)

{ code_block }

For every element of the list or set, assigns
var to the current element and executes the
code block. Cannot modify the collection while
iterating.

Listing 5-18 Conditional Statement Usage

void testValue(Integer value) {

if (value > 100) {

System.debug('true');

} else {

System.debug('false');

}

}

testValue(99);

testValue(101);

In addition to this simple if, else structure, you can chain multiple conditional state-
ments together using else if.

Note
In conditional code blocks that contain a single statement, the curly braces around them can
be omitted. This is true of all the control logic types in Apex. For example, if (a > 0)
return 1 / a; else return a; is a valid statement.

Loops
Loops in Apex behave consistently with other high-level languages.Table 5-3 lists the loop
statements available in Apex.

134 Chapter 5 Business Logic

The keywords break and continue can be used to further control the loops.To imme-
diately exit a loop at any point in its execution, use break in the code block.To abort a
cycle of loop execution in the middle of a code block and move to the next cycle, use
continue.

Exception Statements
Exceptions are classes used to signal a problem at runtime.They abort the normal flow of
code execution, bubbling upward until explicitly handled by some other code, carrying
with them information about the cause of the problem.

Apex allows custom exception classes to be defined that are meaningful to your pro-
grams. It also provides system exception classes corresponding to areas of the Force.com
platform. Some common system exceptions are DmlException (issues with changes to the
database), NullPointerException (attempt to dereference a null value), QueryException
(issues with database queries), and TypeException (issues converting data types).

The two ways to use exceptions in your code are to raise an exception with the throw
keyword, and handle an exception with the try, catch, and finally keywords:

1. Raise an Exception: When your code cannot proceed due to a problem with its
input or other issue, you can raise an exception.An exception stops execution of the
code and provides information about the problem to its callers. Only custom excep-
tions, classes that are subclasses of Force.com’s Exception class, can be raised.The
names of all custom exception classes must end with the word Exception. Construct
an instance of your exception class using an optional message or another exception
as the preceding cause and provide it as an argument to the throw keyword.

2. Handle an Exception: An exception handler in Apex is a code block defined to
expect and take action on one or more named exception classes. It consists of a try
code block, zero or more catch code blocks, and optionally a finally code block.
The try code block is executed first. If an exception is raised,Apex looks for a
catch code block that matches the exception class. If it’s found, execution skips to
the relevant catch. If not, the exception is bubbled upward to the caller.After the
code in the try completes, successfully or not, the finally code block is executed.

Listing 5-19 demonstrates both forms of exception statements. It inserts a Timecard record
within a try block, using a catch block to handle a database exception (DmlException).
The code to handle the database exception itself raises an exception, a custom exception
class called MyException. It ends by printing a final message in the finally block.

Listing 5-19 Sample Exception Statements

class MyException extends Exception {}

Timecard__c timecard = new Timecard__c();

try {

insert timecard;

} catch (DMLException e) {

135Apex Language Basics

throw new MyException('Could not create Timecard record: ' + e);

} finally {

System.debug('Exiting timecard creation code');

}

Recursion
Apex supports the use of recursion in code.The maximum stack depth is not docu-
mented, so experiment with your own code before committing to a recursive algorithm.
For example, the code in Listing 5-20 fails with System.Exception: Maximum stack
depth reached: 90.

Listing 5-20 Recursion with Unsupported Depth

Integer counter = 0;

void recursive() {

if (counter < 100) {

counter++;

recursive();

}

}

recursive();

Asynchronous Execution
Code in Apex normally is executed synchronously. From the user’s point of view, there is a
single thread of execution that must complete before another can begin. But Apex also
supports an asynchronous mode of execution called future methods. Code entering a
future method completes immediately, but the body of the method isn’t executed until
later, at a time determined by the Force.com platform.

The code in Listing 5-21 declares a future method called asyncMethod with a single
parameter: a list of strings. It might use these strings to query records via SOQL and per-
form DML operations on them.

Listing 5-21 Future Method Declaration

@future

public static void asyncMethod(List<String> idsToProcess) {

// code block

}

Future methods typically are used to perform expensive tasks that are not time-critical.
A regular synchronous method can begin some work and invoke a future method to finish
it.The future method starts fresh with respect to governor limits, described in Table 5-4.

136 Chapter 5 Business Logic

Future methods have many limitations, as follows:

n You cannot invoke more than ten future methods in a single scope of execution.
There is no guarantee of when these methods will be executed by Force.com or in
what order.

n Future methods cannot call other future methods.
n Future method signatures are always static and return void.They cannot use custom

classes or database objects as parameters—only primitive types such as String and
Integer and collections of primitive types.

n You cannot test future methods like ordinary methods.To write testable code that
includes future methods, keep your future methods limited to a single line of code
that invokes a normal method to perform the actual work.Then in your test case,
call the normal method so that you can verify its behavior.

n Force.com limits your usage of future methods to 200 per licensed user within a
24-hour period.

Note
Batch Apex is an additional feature for asynchronous execution. It provides much greater
control than future methods and supports processing of millions of records. Batch Apex is
covered in Chapter 9, “Batch Processing.”

Understanding Governor Limits
Governor limits are imposed on your running Apex code based on the type of resource
consumed.When a governor limit is encountered, your code is immediately terminated
with an exception indicating the type of limit reached. Examples of resource types are
heap (memory used during execution) and SOQL (Salesforce Object Query Language)
queries.

Table 5-4 lists a few of the most important governor limits.Additional governor limits
are introduced later in the book.

Note
Namespaces are used to separate and isolate Apex code and database objects developed
by different vendors so that they can coexist and interoperate in a single Force.com organi-
zation. Governor limits are applied independently to each namespace. For example, if you
install a package from Force.com AppExchange, the resources consumed by code running
inside that package do not count against the limits applied to your code.

Table 5-4 Subset of Governor Limits

Resource Type Governor Limit

Heap 3MB

Apex code 200,000 lines of code executed

Database 50,000 records retrieved via SOQL

137Database Integration in Apex

Database Integration in Apex
In Apex, the Force.com database is already integrated into the language and runtime envi-
ronment.There are no object-relational mapping tools or database connection pools to
configure.Your Apex code is automatically aware of your database, including all of its
objects and fields and the security rules protecting them.

This section examines the five ways the database is exposed in Apex code, which are
summarized here:

1. Database Records as Objects: Database objects are directly represented in Apex
as classes.These classes are implicitly imported into your code, so you’re always
developing from the latest database schema.

2. Database Queries: SOQL is a concise expression of the records to be queried and
returned to your programs.

3. Persisting Database Records: Apex has a built-in Data Manipulation Language
(DML), providing verbs that create, update, or delete one or more records in the
database.

4. Database Triggers: Triggers are code that register interest in a specific action or
actions on a database object, such as an insert or delete on the Account object.
When this action occurs, the trigger code is executed and can inhibit or enhance
the behavior of the database action.

5. Database Security in Apex: Normally,Apex code runs in a privileged mode,
granting it full access to all the data in the system.Alternatively, you can configure it
to run under the same restrictions imposed on the current user, including object
and record-level sharing rules.

Database Records as Objects
All database objects, standard and custom, are available as first-class members of the Apex
language, automatically and transparently.This eliminates the mind-numbing, error-prone
work of importing, mapping, and translating between relational and program data struc-
tures, chores commonly required in general-purpose programming languages. In Apex,
references to database objects are verified at compile time.This reduces the possibility of
runtime surprises caused by field or object mismatches. Listing 5-22 shows an example of
creating a record in the Resource custom database object and setting its name field.

Listing 5-22 Creating a Record

Resource__c resource = new Resource__c();

resource.Name = 'Larry';

Database relationships are also exposed in Apex.The __r syntax refers to a relationship
field, a field that contains a reference to another object or list of objects. Listing 5-23

138 Chapter 5 Business Logic

Figure 5-4 Viewing relationships in Schema Explorer

builds on the previous listing, creating a standard Contact record and associating it with
the Resource record.

Listing 5-23 Creating a Record with Relationship

Contact c = new Contact();

c.FirstName = 'Larry';

resource.Contact__r = c;

The Force.com IDE’s Schema Explorer can take the mystery out of relationship fields
like Contact__r. It displays the correct syntax for referring to fields and relationships,
based on the actual schema of the database object. Its Schema list on the right side displays
all objects, custom and standard. Drilling into an object, the Fields folder lists all fields in
the object and their types.A reference type indicates that a field is the child object in a
Lookup relationship. Expand these fields to reveal their parent object’s type and name. For
example, Contact__r is the foreign key to the Contact object.This is demonstrated in
Figure 5-4.

Data integrity is protected in Apex at compile and runtime using object metadata. For
example, Name is defined as a read-only field in Contact, so the code in Listing 5-24
cannot be compiled.

139Database Integration in Apex

Listing 5-24 Attempted Assignment to Read-Only Field

Contact c = new Contact();

c.Name = 'Larry';

After a database object is referenced in Apex code, that object cannot be deleted or
edited in a way that invalidates the code.This protects your code from changes to the
database schema. Impacted code must be commented out before the database objects are
modified.

Database Queries
You’ve seen how data structures in Apex are implicitly defined by the objects in your
database. Force.com provides two query languages to populate these objects with data:
Salesforce Object Query Language (SOQL) and Salesforce Object Search Language
(SOSL). SOSL, addressed in Chapter 6,“Advanced Business Logic,” provides unstructured,
full-text search across many objects from a single query.

The focus of this section is SOQL because it is the workhorse of typical business appli-
cations.This section includes subsections on the basics of SOQL, filtering and sorting,
how to query related objects, and how to use SOQL from Apex code.

As you read this section, you can experiment with the sample SOQL queries using the
Force.com IDE’s Schema Explorer. Enter a query in the text box in the upper-left corner
and click the Run Me button.The results appear in the table below the query. In Figure
5-5, a query has been executed against the Project object, returning five records. Note that
many of the queries rely on objects from the Services Manager sample application rather
than standard Force.com objects.

Note
This book does not cover every feature and nuance of SOQL. For the complete specifica-
tion, visit http://developer.force.com and download the latest Force.com Web Services API
documentation.

SOQL Basics
Despite being one letter away from SQL and borrowing some of its syntax, SOQL is
completely different and much easier to understand on its own terms. Just as Apex is not a
general-purpose programming language like Java, SOQL is not a general-purpose database
query language like SQL. SOQL is specifically designed and optimized for the Force.com
database.

A SOQL statement is centered on a single database object, specifying one or more
fields to retrieve from it.The fields to select are separated by commas. Listing 5-25 is a
simple SOQL statement that returns a list of Account records with Id and Name fields
populated. SOQL is not case-sensitive. SOQL keywords are shown throughout the book
in uppercase and metadata objects in title case for readability only.

http://developer.force.com

140 Chapter 5 Business Logic

Listing 5-25 Simple SOQL Statement

SELECT Id, Name

FROM Account

Figure 5-5 Running SOQL queries in Schema Explorer

Filtering Records
SOQL supports filter conditions to reduce the number of records returned.A filter con-
dition consists of a field name to filter, an operator, and a literal value.

Valid operators are > (greater than), < (less than), >= (greater than or equal to), <= (less
than or equal to), = (equal to), != (not equal to), IN and NOT IN (matches a list of literal
values, and supports semi-joins and anti-joins), and INCLUDES and EXCLUDES (match
against multi-select picklist values). On String fields the LIKE operator is also available,
which applies a pattern to filter records.The pattern uses the % wildcard to match zero or
more characters, _ to match one character, and the \ character to escape the % and _
wildcards, treating them as regular characters.

Multiple filters are combined in a single SOQL statement using the Boolean operators
AND and OR and grouped with parentheses. Listing 5-26 returns the names of accounts
with a type of direct customer, a modification date sometime during the current year, and
more than $100 million in annual revenue.

141Database Integration in Apex

Listing 5-26 SOQL Statement with Filter Conditions

SELECT Name

FROM Account

WHERE AnnualRevenue > 100000000

AND Type = 'Customer - Direct'

AND LastModifiedDate = THIS_YEAR

Notice the way literal values are specified.Apostrophes must be used around String lit-
erals but never with other data types. THIS_YEAR is a built-in relative time function.The
values of relative time functions vary based on when the query is executed. Other relative
time functions are YESTERDAY, TODAY, TOMORROW, LAST_WEEK, THIS_WEEK, NEXT_WEEK, and
so forth.

Absolute dates and times can also be specified without apostrophes. Dates must use the
YYYY-MM-DD format. Datetimes can be YYYY-MM-DDThh:mm:ssZ, YYYY-MM-
DDThh:mm:ss+hh:mm, or YYYY-MM-DDThh:mm:ss-hh:mm, indicating the positive or negative
offset from Coordinated Universal Time (UTC).

In addition to filter conditions, SOQL supports the LIMIT keyword. It sets an absolute
upper bound on the number of records that can be returned from the query. It can be
used in conjunction with all the other SOQL features. For example, the SOQL statement
in Listing 5-27 returns up to ten Account records modified today.

Listing 5-27 SOQL Statement with Record Limit

SELECT Name, Type

FROM Account

WHERE LastModifiedDate = TODAY

LIMIT 10

Sorting Query Results
Results of a query can be sorted by up to 32 fields in ascending (ASC, the default) or
descending (DESC) order. Sorting is not case-sensitive, and nulls appear first unless other-
wise specified (NULLS LAST). Multi-select picklists, long text areas, and reference type
fields cannot be used as sort fields.The SOQL query in Listing 5-28 returns records first
in ascending order by Type, and then in descending order by LastModifiedDate.

Listing 5-28 SOQL Statement with Sort Fields

SELECT Name, Type, AnnualRevenue

FROM Account

ORDER BY Type, LastModifiedDate DESC

142 Chapter 5 Business Logic

Querying Multiple Objects
The result of a SOQL query can be a simple list of records containing rows and columns
or hierarchies of records containing data from multiple, related objects. Relationships
between objects are navigated implicitly from the database structure.This eliminates the
work of writing accurate, efficient join conditions common to development on traditional
SQL databases.

The two ways to navigate object relationships in SOQL are child-to-parent and par-
ent-to-child. Listing 5-29 is an example of a child-to-parent query, returning the name,
city, and Force.com username creating its contact of all resources with a mailing address in
the state of Illinois. It selects and filters fields of the Contact object, the parent object of
Resource. It also selects the Name field from the User object, a parent two levels removed
from Resource via the Contact’s CreatedBy field.

Listing 5-29 SOQL with Child-to-Parent Relationship

SELECT Name, Contact__r.MailingCity, Contact__r.CreatedBy.Name

FROM Resource__c

WHERE Contact__r.MailingState = 'IL'

Note
The results of child-to-parent relationship queries are not completely rendered in the
Force.com IDE. You can double-click a row and column to view fields from a parent record,
but this is limited to direct parents only. Fields from parent-of-parent objects, such as the
Contact__r.CreatedBy relationship in Listing 5-29, are omitted from the results. This is a
limitation not of SOQL, but of the Force.com IDE.

At most, five levels of parent objects can be referenced in a single child-to-parent
query, and the query cannot reference more than 25 relationships in total.

The second form of relationship query is the parent-to-child query. Listing 5-30 pro-
vides an example.The parent object is Resource, and the child is Timecard.The query
selects from every Resource its Id, Name, and a list of hours from its Timecards in the cur-
rent month.

Listing 5-30 SOQL with Parent-to-Child Relationship

SELECT Id, Name,

(SELECT Total_Hours__c

FROM Timecards__r

WHERE Week_Ending__c = THIS_MONTH)

FROM Resource__c

A parent-to-child query cannot reference more than twenty child objects. Double-
clicking the parent record in the results table brings up the child records for viewing in
the Force.com IDE.

143Database Integration in Apex

Using SOQL in Apex
Like database objects, SOQL queries are an integrated part of the Apex language.They are
developed in-line with your code and verified at compile time against your database schema.

Listing 5-31 is an example of a SOQL query used in Apex. It retrieves a list of Project
records for this year and loops over them, summing their billable hours invoiced in the
variable totalHours. Note the usage of the variable named statuses directly in the
SOQL query, preceded by a colon.This is known as a bind variable. Bind variables can
appear on the right side of a WHERE clause, as the value of an IN or NOT IN clause, and in
the LIMIT clause.

Listing 5-31 SOQL Query in Apex

Decimal totalHours = 0;

List<String> statuses = new String[] { 'Green', 'Yellow' };

List<Proj__c> projects = [SELECT Total_Billable_Hours_Invoiced__c

FROM Proj__c

WHERE Start_Date__c = THIS_YEAR and Status__c IN :statuses];

for (Proj__c project : projects) {

totalHours += project.Total_Billable_Hours_Invoiced__c;

}

This code relies on a List to store the results of the SOQL query.This means the entire
SOQL query result must fit within the heap size available to the program.A better syntax
for looping over SOQL records is a variation of the List/Set Iteration For Loop called a
SOQL For Loop.The code in Listing 5-32 is a rewrite of Listing 5-31 using the SOQL
For Loop.This allows it to run when the Project object contains up to 50,000 records for
this year without consuming 50,000 records worth of heap space at one time.

Listing 5-32 SOQL Query in Apex Using SOQL For Loop

Decimal totalHours = 0;

for (Proj__c project : [SELECT Total_Billable_Hours_Invoiced__c

FROM Proj__c

WHERE Start_Date__c = THIS_YEAR]) {

totalHours += project.Total_Billable_Hours_Invoiced__c;

}

An additional form of the SOQL For Loop is designed for use with Data Manipulation
Language (DML). Consider how the code in Listing 5-32 could be adapted to modify
Project records returned from the SOQL query rather than simply summing them.With
the existing code, one Project record would be modified for each loop iteration, an ineffi-
cient approach and a quick way to run afoul of the governor limits. But if you change the
type of variable in the For loop to a list of Project records, Force.com provides up to 200
records per loop iteration.This allows you to modify a whole list of records in a single
operation.

144 Chapter 5 Business Logic

Note
Looping through a list of records to calculate the sum of a field is provided as an example of
using SOQL with Apex. It is not an optimal way to perform calculations on groups of records
in the database. Chapter 6 introduces aggregate queries, which enable calculations to be
returned directly from a SOQL query, without Apex.

Any valid SOQL statement can be executed in Apex code, including relationship
queries.The result of a child-to-parent query is returned in a List of objects whose types
match the child object.Where fields from a parent object are included in the query, they
are available as nested variables in Apex code. For example, running the query in Listing
5-29 within a block of Apex code returns a List<Resource__c>. If this List is assigned to
a variable named resources, the first Resource record’s mailing city is accessible by
resources[0].Contact__r.MailingCity.

Parent-to-child queries are returned in a List of objects, their type matching the parent
object. Each record of the parent object includes a nested List of child objects. Using
Listing 5-30 as an example, if results contains the List<Resource__c> returned by the
query, results[0].Timecards__r[0].Total_Hours__c accesses a field in the first
Resource’s first Timecard child record.

Note
Usage of SOQL in Apex is subject to governor limits. For example, you are limited to a total
of 100 SOQL queries, or 300 including parent-to-child queries. The cumulative maximum
number of records returned by all SOQL queries, including parent-to-child, is 50,000.

Persisting Database Records
Changes to database records in Force.com are saved using Data Manipulation Language
(DML) operations. DML operations allow you to modify records one at a time, or more
efficiently in batches of multiple records.The five major DML operation types are listed
next. Each is discussed in more detail later in this subsection.

n Insert: Creates new records.
n Update: Updates the values in existing records, identified by Force.com unique

identifier (Id) field or a custom field designated as an external identifier.
n Upsert: If records with the same unique identifier or external identifier exist, this

updates their values. Otherwise, it inserts them.
n Delete: Moves records into the Recycle Bin.
n Undelete: Restores records from the Recycle Bin.

DML operations can be included in Apex code in one of two ways: DML statements and
database methods. Beyond the syntax, they differ in how errors are handled. If any one
record in a DML statement fails, all records fail and are rolled back. Database methods
allow for partial success.This chapter uses DML statements exclusively. Chapter 6 provides
information on database methods.

145Database Integration in Apex

Note
Usage of DML in Apex is subject to governor limits. For example, you are limited to a total of
150 DML operations. The cumulative maximum number of records modified by all DML oper-
ations is 10,000.

Insert
The Insert statement adds up to 200 records of a single object type to the database.
When all records succeed, they contain their new unique identifiers. If any record fails, a
DmlException is raised and the database is returned to its state prior to the Insert state-
ment. For example, the code in Listing 5-33 inserts a Contact record and uses it as the
parent of a new Resource record.

Listing 5-33 Inserting a Record

try {

Contact c = new Contact(FirstName = 'Justin', LastName = 'Case');

insert c;

Resource__c r = new Resource__c(

Contact__c = c.Id, Hourly_Cost_Rate__c = 75, Region__c = 'West');

insert r;

} catch (DmlException e) {

System.debug(LoggingLevel.ERROR, e.getMessage());

}

Update
Update saves up to 200 existing records of a single object type. Existing records are identi-
fied by unique identifier (Id). Listing 5-34 illustrates the usage of the Update statement by
creating a Resource record for Doug and updating it. Refresh the Resources tab in the
native user interface to see the new record.

Listing 5-34 Updating Records

Resource__c doug = new Resource__c(Name = 'Doug Hole');

insert doug;

doug.Hourly_Cost_Rate__c = 100;

doug.Home_Office__c = 'London';

update doug;

Upsert
Upsert combines the behavior of the Insert and Update operations on up to 200 records
of the same object type. First, it attempts to locate a matching record using its unique
identifier or external identifier. If one is found, the statement acts as an Update. If not, it
behaves as an Insert.

146 Chapter 5 Business Logic

The syntax of the Upsert statement is identical to Update and Insert, but adds a sec-
ond, optional argument for specifying an external identifier. If an external identifier is not
provided, the record’s unique identifier is used.The code in Listing 5-35 upserts a record
in the Resource object using the field Resource_ID__c as an external identifier. If a
Resource record with a Resource_ID__c value of 1001 exists, it is updated. If not, it is
created.

Listing 5-35 Upserting a Record

Resource__c r = new Resource__c(Resource_ID__c = 1001, Name = 'Terry Bull');

upsert r Resource_ID__c;

Delete and Undelete
Delete and Undelete statements move up to 200 records of the same object type to and
from the Recycle Bin, respectively. Listing 5-36 shows an example of the Delete state-
ment.A new Resource record named Terry is added and then deleted.

Listing 5-36 Deleting Records

Resource__c terry = new Resource__c(Name = 'Terry Bull');

insert terry;

delete terry;

Listing 5-37 builds on Listing 5-36 to undelete the Terry record. Concatenate the list-
ings in the Execute Anonymous view to test.The database is queried to prove the exis-
tence of the undeleted record.Try running the code a second time with the undelete
statement commented out to see that it is working as intended.

Listing 5-37 Undeleting Records

undelete terry;

Resource__c terry2 = [SELECT Id, Name

FROM Resource__c WHERE Name LIKE 'Terry%' LIMIT 1];

System.debug(terry2.Name + ' exists');

delete terry;

Database Triggers
Triggers are Apex code working in concert with the Force.com database engine, auto-
matically invoked by Force.com when database records are modified.Trigger code can
perform any necessary processing on the modified data before or after Force.com

147Database Integration in Apex

completes its own work.The following list describes scenarios commonly implemented
with triggers:

n A validation rule is required that is too complex to define on the database object
using formula expressions.

n Two objects must be kept synchronized.When a record in one object is updated, a
trigger updates the corresponding record in the other.

n Records of an object must be augmented with values from another object, a com-
plex calculation, or external data via a Web service call.

This subsection covers the essentials of trigger development, including definition, batch
processing, and error handling.

Definition
A trigger definition consists of four parts:

1. A unique trigger name to differentiate it from other triggers. Multiple triggers can
be defined on the same database object.

2. The name of the database object on which to create the trigger.You can create trig-
gers on standard and custom objects.

3. A comma-separated list of one or more trigger events that cause the trigger code to
be executed.An event is specified using two keywords.The first keyword is either
before or after, indicating that the trigger is to be executed before or after the
database operation is saved.The second keyword is the DML operation: insert,
update, delete, or undelete. For example, the trigger event before update means
that the trigger is fired before a record is updated. Note that before undelete is an
invalid trigger event.

4. The block of Apex code to execute when the trigger event occurs.The code typi-
cally loops over the list of records in the transaction and performs some action based
on their contents. For insert and update triggers, the list of records in the transac-
tion is provided in the variable Trigger.new. In a before trigger, these records can
be modified. In update, delete, and undelete triggers, Trigger.old contains a
read-only list of the original versions of the records.Also available to your trigger
code is a set of Boolean variables indicating the event type that fired the trigger.
They are useful when your trigger is defined on multiple events yet requires sepa-
rate behavior for each.These variables are Trigger.isBefore, Trigger.isAfter,
Trigger.isInsert, Trigger.isUpdate, Trigger.isDelete, and
Trigger.isUndelete.

Listing 5-38 is an example of a trigger named validateTimecard. It is triggered before
inserts and updates to the Timecard custom object. It doesn’t do anything yet because its
code block is empty.

148 Chapter 5 Business Logic

Listing 5-38 Trigger Definition

trigger validateTimecard on Timecard__c(before insert, before update) {

// code block

}

Triggers cannot be created in the Execute Anonymous view. Create them in the
Force.com IDE by selecting File ➝ New ➝ Apex Trigger.To test triggers, use the native
user interface to manually modify a relevant record, or write a unit test and invoke it from
the Apex Test Runner or Execute Anonymous view.

Batch Processing in Triggers
Manual testing in the native user interface and simplistic unit tests can lull you into the
false belief that triggers operate on a single record at a time. Not to be confused with
Batch Apex, triggers can always be invoked with a list of records and should be optimized
accordingly. Many ways exist to get a batch of records into the Force.com database,
including the Data Loader and custom user interfaces.The surest way to a production
issue with governor limits is to write a trigger that operates inefficiently when given a
batch of records.The process of hardening a trigger to accept a batch of records is com-
monly called bulkifying the trigger.

Batches can be up to 200 records.When writing your trigger code, look at the
resources consumed as you loop over Trigger.new or Trigger.old. Study the governor
limits and make sure your code splits its work into batches, doing as little work as possible
in the loop. For example, if you have some additional data to query, build a set of IDs from
the trigger’s records and query them once. Do not execute a SOQL statement for each
loop iteration. If you need to run a DML statement, don’t put that in the loop either. Cre-
ate a List of objects and execute a single DML statement on the entire List. Listing 5-39
shows an example of looping over a batch of Contact records (in the variable contacts)
to produce a list of Resource records to insert.

Listing 5-39 Batching DML Operations

List<Resource__c> toInsert = new List<Resource__c>();

for (Contact contact : contacts) {

toInsert.add(new Resource__c(

Name = contact.FirstName + ' ' + contact.LastName));

}

insert toInsert;

Error Handling
Errors are handled in triggers with try, catch blocks, consistent with other Apex code.
But uncaught errors within a trigger differ from other Apex code in how they can impact
execution of the larger database transaction the trigger participates in.

149Object-Oriented Apex

A common use of errors in triggers is for validation. Strings describing validation
errors can be added to individual records or fields using the addError method. Force.com
continues to process the batch, collecting any additional errors, and then rolls back the
transaction and returns the errors to the initiator of the transaction.

Note
Additional error-handling behavior is available for transactions initiated outside of Force.com;
for example, through the Web services API. Records can fail individually without rolling back
the entire transaction. This is discussed in Chapter 11, “Advanced Integration.”

If an uncaught exception is encountered in a trigger, whether thrown by the system or
the trigger code itself, the batch of records is immediately aborted, and all changes are
rolled back.

Database Security in Apex
Outside of Anonymous blocks,Apex always runs in a privileged, system context.This gives
it access to read and write all data. It does not honor object, field, and record-level privi-
leges of the user invoking the code.This works well for triggers, which operate at a low
level and need full access to data.

Where full access is not appropriate,Apex provides the with sharing keyword. For
example, custom user interfaces often require that access to data is limited by the privi-
leges of the current user. Using with sharing, the sharing rules applying to the current
user are evaluated against the data requested by queries and updated in DML operations.
This option is discussed in detail in Chapter 7,“User Interfaces.”

Object-Oriented Apex
Apex is an object-oriented language.This section describes Apex in terms of five standard
characteristics of object-oriented languages, summarized here:

n Encapsulation: Encapsulation combines the behavior and internal state of a pro-
gram into a single logical unit.

n Information Hiding: To minimize tight coupling between units of a program,
information hiding limits external visibility into the behavior and state of a unit.

n Modularity: The goal of modularity is to establish clear boundaries between com-
ponents of a program.

n Inheritance: Inheritance allows one unit of code to define its behavior in terms of
another.

n Polymorphism: Polymorphism is the capability to interact with multiple units of
code interchangeably without special cases for each.

These principles of object-oriented programming can help you understand Apex syntax
and behaviors from a language-neutral point of reference.

150 Chapter 5 Business Logic

Note
Some of the code examples in this chapter cannot be tested in the Execute Anonymous view
of the Force.com IDE. Examples using inner classes or static methods or variables can be
run by creating a standalone test class and then invoking it from the Execute Anonymous
view. To create a standalone class in the Force.com IDE, select your Force.com Project and
then select File ➝ New ➝ Apex Class.

Encapsulation
Encapsulation describes the bundling of a program’s behavior and state into a single defi-
nition, usually aligned with a real-world concept. In Apex, that definition is a class.

When a class is defined, it becomes a new data type in Apex. It can be used every-
where primitive data type classes are used, except in Sets and as the keys of a Map. In
Listing 5-40, a class named MyClass is defined.The variable c is initialized with an
instance of MyClass and then placed into the List myList.

Listing 5-40 List of User-Defined Classes

public class MyClass {}

MyClass c = new MyClass();

List<MyClass> myList = new List<MyClass>();

myList.add(c);

Classes can contain variables, methods, properties, constructors, initializers, and inner
classes.These components are described in the following subsections.

Variables and Their Scope
Variables hold the state of an object instance or class. By default, variables declared inside
a class are scoped to individual object instances and are called member variables. Every
instance of an object gets its own member variables and can read and write their values
independently without interfering with the values stored in other object instances.

Class variables are declared using the static keyword and are also known as static
variables. Static variables are shared across all instances of the object. If one object instance
updates the value of a static variable, this updated value is visible to all other object
instances.The contents of static variables live for the duration of an Apex execution con-
text, which is a user action such as a button click or a trigger action on a batch of records.
When working with the Force.com database, static variables are useful for sharing state
among multiple triggers.

Variables can also be declared with the final keyword.This means they must be
assigned a value once, in initialization code, a declaration, or a constructor.The value can-
not be updated after it is set or a runtime exception is thrown.

Typically, final is used in conjunction with static to produce a constant.A constant
is a variable whose value is set once, for all object instances, and never changes.

Listing 5-41 shows examples of member, static, and constant variable declarations.
Constant names are typically in uppercase for code clarity, but this is not required.

151Object-Oriented Apex

Listing 5-41 Variable Declarations

Integer memberVar;

static Integer classVar;

static final Integer CONSTANT = 1;

Methods
Methods define the verbs in a class, the actions to be taken. By default, they operate
within the context of individual object instances, able to access all member variables.
Methods can also be static, operating on the class itself. Static methods have access to
static variables but never member variables.

At a minimum, a method declaration consists of a return type and a method name.
Typically it also has an implementation, a block of code to execute, and one or more
named, typed arguments.There are several other ways to define methods, covered later in
this chapter.

Listing 5-42 shows four basic method declarations.

Listing 5-42 Method Declarations

void doNothing() {}

void doNothingWithArgs(String a, Integer b, Date c) {}

void returnsNothing() { Integer i = 1; }

Integer returnsInteger() { return 2009; }

Properties
A property is a shortened form of a method that provides access to a static or instance
variable.Without the use of a property, exposing a variable for read and write access
requires code like that in Listing 5-43.

Listing 5-43 Variable with Accessor Methods

private Integer cost;

public Integer getCost() { return cost; }

public void setCost(Integer cost) { this.cost = cost; }

This code defines a private variable named cost, with a getCost method to return the
current value of the variable and a setCost method to update its value. Listing 5-44 is a
version of this code that uses properties to accomplish the same thing.

Listing 5-44 Variable as Property

public Integer cost { get { return cost; } set { this.cost = value; } }

152 Chapter 5 Business Logic

The cost variable can now be accessed directly, as if it were a public member variable.
But access to the variable is mediated by the getter and setter code blocks within the
property declaration.

A more concise form of properties is called automatic properties.They are properties
with no code body.When no code body is present, the getter and setter logic is implied.
Getters return their value; setters set their value. Listing 5-45 rewrites the property in
Listing 5-44 as an automatic property.

Listing 5-45 Variable as Automatic Property

public Integer cost { get; set; }

Access modifiers of accessors can be more restrictive than their containing property.
Listing 5-46 contains an example of read-only and write-only properties.

Listing 5-46 Read-Only and Write-Only Properties

public Integer readOnly { get; private set; }

public Integer writeOnly { private get; set; }

Constructors
A constructor is a special method executed when a class is instantiated. Constructors are
declared much like methods, but share their name with the class name, and have no
return type declaration. Listing 5-47 shows a sample constructor that accepts two argu-
ments and initializes instance variables from them.The this keyword specifies that x and
y refer to member variables.Although unnecessary in this case because these variables are
not ambiguous, using this is a good practice.The final line of code creates an instance of
the object using its two-argument constructor.

Listing 5-47 Constructor Declaration and Usage

public class MyClass {

String x;

Integer y;

MyClass(String a, Integer b) {

this.x = a;

this.y = b;

}

}

MyClass c = new MyClass('string', 123);

Constructors can be chained together using the this method.This provides con-
sumers of the object with multiple options for instantiation, without duplication of con-
structor code. Listing 5-48 provides an example of this usage.The last line validates that

153Object-Oriented Apex

the constructor chain is working as expected by outputting the values (value, a, and b) of
the three member variables.

Listing 5-48 Constructor Chaining

public class MyClass {

String x, y, z;

MyClass() { x = 'value'; }

MyClass(String y) { this(); this.y = y; }

MyClass(String y, String z) { this(y); this.z = z; }

}

MyClass c = new MyClass('a', 'b');

System.debug(c.x + ', ' + c.y + ', ' + c.z);

Constructors are optional. If no constructor is defined, an implicit public constructor
with no arguments exists.

Initializers
An initializer contains code that runs before any other code in the class.The two types of
initializers are static and instance. Static initializers are run only once, when a class is refer-
enced for the first time. Instance initializers are run every time a new instance of the class
is created, before the constructor.

Listing 5-49 demonstrates the usage of an instance initializer. If you run it, you’ll see in
the debug log that the initializer runs before the constructor.

Listing 5-49 Instance Initializer

public class MyClass {

{

System.debug('Instance initializer');

}

MyClass() {

System.debug('Constructor');

}

}

new MyClass();

Static initializers have the same syntax but add the static keyword before the open-
ing curly brace.A class can contain any number of initializers.They are executed in the
order in which they appear in the code. In general, you should avoid the use of initializ-
ers.Variables should be initialized in constructors or in variable declarations instead.

154 Chapter 5 Business Logic

Inner Classes
An inner class is a class defined within another class. Other than a few restrictions, men-
tioned in the text that follows, they are declared like regular classes. Listing 5-50 shows an
example of an inner class declaration.

Listing 5-50 Inner Class Declaration

public class MyClass {

String x;

class MyInnerClass {

String y;

void doSomething() {

// cannot access x from here!

}

}

}

Inner classes are always static, so the static keyword is not permitted.They can’t ref-
erence variables in their containing class.Additionally, inner classes cannot contain other
inner classes and cannot contain static variables.

Information Hiding
Class definitions include notation to limit the visibility of their constituent parts to other
code.This notation protects a class from being used in unanticipated and invalid ways and
simplifies maintenance by making dependencies explicit. In Apex, information hiding is
accomplished with access modifiers.The two places to use access modifiers are on classes,
and on methods and variables.

Access Modifiers on Classes
Classes have two access modifiers:

1. public: The class is visible to the entire application namespace, but not outside it.

2. global: The class is visible to Apex code running in every application namespace.
If an inner class is global, its outer class is required to be global. Several Force.com
features described later in this book, such as Web services and Batch Apex, require
your code to live within global methods.

Access modifiers on outer classes are required. Inner classes are private by default, accessi-
ble only by their containing classes.

Access Modifiers on Methods and Variables
Methods and variables have four access modifiers:

1. private:The method or variable is visible only within its defining class.

2. protected: It is visible to the defining class and subclasses.

155Object-Oriented Apex

3. public: It is visible to any Apex code in the same application namespace but not
accessible to other namespaces.

4. global: It can be used by any Apex code running anywhere in the organization,
in any namespace. If a method is global, its class must be global as well.

If no access modifier is provided, the method or variable is private.

Modularity
Apex supports interfaces, which are skeletal class definitions containing a list of methods
with no implementation.A class built from an interface is said to implement that inter-
face, which requires that its method names and the data types of its argument lists be
identical to those specified in the interface.

The proper use of interfaces can result in modular programs with clear logical bound-
aries between components, making them easier to understand and maintain. Listing 5-51
shows an interface declaration and a class that implements it.

Listing 5-51 Interface Declaration and Usage

public interface MyInterface {

void doSomething(String thing);

}

public class MyClass implements MyInterface {

public void doSomething(String x) {}

}

If you change the access modifier, return data type, name of the method in MyClass,
the data type of its argument, or add or remove an argument, compilation fails.Apex is
enforcing the contract, specified in MyInterface and agreed to by MyClass.

The access modifiers of interfaces are identical to those of classes. Interfaces can be
declared public or global and default to public.Access modifiers are not allowed on
methods of an interface.They are governed by the access modifier specified on the inter-
face declaration.

Inheritance
Apex supports single inheritance. It allows a class to extend one other class and imple-
ment many interfaces. Interfaces can also extend one other interface.A class extending
another class is referred to as its subclass.

For a class to be extended, it must explicitly allow it by using the virtual or
abstract keyword in its declaration.Without one of these keywords, a class is final and
cannot be subclassed.This is not true of interfaces because they are implicitly virtual.

156 Chapter 5 Business Logic

By default, a subclass inherits all the functionality of its parent class.All the methods
defined in the parent class are also valid on the subclass without any additional code.This
behavior can be selectively overridden if the parent class permits. Overriding a method is
a two-step process:

1. The parent class must specify the virtual or abstract keywords on the methods
to be overridden.

2. In the subclass, the override keyword is used on the virtual or abstract methods to
declare that they’re replacing implementations in the parent class.

After it’s overridden, a subclass can do more than replace the parent implementation.
Using the super keyword, the subclass can invoke a method in its parent class, incorpo-
rating its functionality and potentially contributing its own. Listing 5-52 is an example of
subclassing and overriding a method. MyClass is a subclass of MyParentClass and over-
rides its method doSomething.The result is that both debug lines are printed.

Listing 5-52 Subclass with Method Override

public virtual class MyParentClass {

public virtual void doSomething() {

System.debug('something');

}

}

public class MyClass extends MyParentClass {

public override void doSomething() {

super.doSomething();

System.debug('something else');

}

}

new MyClass().doSomething();

You’ve seen how classes declared as virtual can be inherited from by a subclass.The
other way to accomplish inheritance is to declare a class abstract using the abstract key-
word.An abstract class is allowed to contain abstract methods. Unlike virtual methods,
abstract methods cannot have an implementation and are required to be overridden in
subclasses. Overridden abstract methods can specify an identical or more restrictive access
modifier than a parent, but never more permissive. Listing 5-53 shows an example of the
subclass MyClass overriding an abstract method of its parent class.

Listing 5-53 Abstract Method Declaration and Override

public abstract class MyBaseClass {

public abstract void doSomething();

}

public class MyClass extends MyBaseClass {

157Object-Oriented Apex

public override void doSomething() {

System.debug('something');

}

}

new MyClass().doSomething();

Polymorphism
An object that inherits a class or implements an interface can always be referred to in
Apex by its parent class or interface. References in variable, property, and method declara-
tions treat the derived objects identically to objects they are derived from, even though
they are different types.

This polymorphic characteristic of object types can help you write concise code. It
works with the hierarchy of object types to enable broad, general statements of program
behavior, behavior applying to many object types at once, while preserving the option to
specify behavior per object type.

One example of using polymorphic behavior is method overloading, in which a single
method name is declared with multiple argument lists. Consumers of the method simply
invoke it by name, and Apex finds the correct implementation at runtime based on the
object types. Listing 5-54 provides an example of method overloading.

Listing 5-54 Method Overloading

public class ClassA {}

public class ClassB extends ClassA {}

public class ClassC extends ClassB {}

public class Overloaded {

public void doSomething(ClassA a) {

System.debug('something with A');

}

public void doSomething(ClassB b) {

System.debug('something with B');

}

}

new Overloaded().doSomething(new ClassA());

new Overloaded().doSomething(new ClassB());

// new Overloaded().doSomething(new ClassC());

The last line of code is commented because it will not compile. Because ClassC
inherits from both ClassB and ClassA, two forms of the doSomething method could
apply to it, and Apex cannot determine which is correct.

You don’t need to rely on Apex to find the right behavior for your object at a method
level.You can also determine an object’s type at runtime using the instanceof keyword.

158 Chapter 5 Business Logic

This is useful for working with collections of a base type. Listing 5-55 provides an exam-
ple, building on the classes defined in Listing 5-54.

Listing 5-55 Using the instanceof Keyword

List<ClassA> newList = new List<ClassA>();

newList.add(new ClassA());

newList.add(new ClassB());

newList.add(new ClassC());

System.debug(newList.get(2) instanceof ClassB);

The list newList is declared to contain instances of ClassA, but this implicitly allows
its subclasses as well.The last line outputs true because the last list element, an instance of
ClassC, inherits from ClassB.

Debugging and Testing
Because Apex code cannot be executed on your local machine, debugging and testing
Apex requires some different tools and techniques than traditional software development.
This section describes how to debug your code and monitor its performance using
Force.com’s built-in profiling information. It also describes how to develop and execute
unit tests to keep your code free of defects.

Debugging
Force.com does not yet allow you to set breakpoints and step through the code executing
on its remote infrastructure. But the Force.com IDE and the native user interface expose
extensive diagnostic information about your running Apex code in the debug log.

Each entry written to the log is assigned a debug log category and level. Debug log
categories correspond to the type of code executed.The full list of debug log categories is
provided in Force.com’s online help. Categories relevant to this chapter are Database,
Apex Code, and Apex Profiling. Debug log levels are Error,Warn, Info, Debug, Fine,
Finer, and Finest.

This subsection discusses how to view the debug log from the native user interface and
the Force.com IDE. It also describes how to write custom entries to the debug log from
within your Apex code.

Viewing Logs
In the Force.com IDE, a user interface is provided for the debug log on the right side of
the Execute Anonymous and Test Runner views. It displays debug log entries resulting
from code executed by these views. Each has a text area for the log entries, a drop-down
list of debug log categories, and a slider for adjusting the log level. Each category receives
its own independent log level, although only one can be shown at a time in the user
interface. In Figure 5-6, the log level for Apex code has been set to Finest.

159Debugging and Testing

Figure 5-6 Debug log in the Execute Anonymous view

Testing or debugging code from a user’s point of view, directly from the native user
interface, is often necessary.To reach the debug log in the native user interface, click the
System Log link at the top of the screen.This allows you to examine debug log entries
caused by the current user.

To capture debug logs for any user, go to the Administration Setup and click Monitor-
ing ➝ Debug Logs. Click the New button, select one or more users to monitor, and then
click the Save button. Figure 5-7 shows debug logging active for one user.

Debug logs can be verbose and hard to read. Filters are a way to control the verbosity
of the logs.After debug logging is enabled for a user, click the Filters link for that user.
Figure 5-8 shows the default state of the filters page. Each category of Force.com logging
can be controlled independently by selecting a level for it. Level NONE disables the cate-
gory entirely.

As a user with debug logging enabled interacts with Force.com, that user’s log entries
are recorded and become visible at the bottom of the Debug Logs page.This is the same
page you used to configure the logs, as illustrated in Figure 5-9. Click the View link
beside a log to view it.

Logging
If you have a relatively modest amount of code and you’re not sure where it’s failing, try
setting the Apex code category to the Finest log level. It outputs an entry to the debug
log for every Apex code statement executed.

160 Chapter 5 Business Logic

Figure 5-8 Filtering the debug log for a user

Figure 5-7 Monitoring the debug log for a user

161Debugging and Testing

Figure 5-9 Viewing the debug logs in the native user interface

If you need to inspect the value of a variable and the Finest log level is too verbose to
be useful, use the System.debug method.This method adds a log entry with a category
of Apex Code and a level of Debug.To control the log level, specify it before the value.
For example, System.debug(LoggingLevel.INFO, 'Hello'); adds a log entry at the
Info log level.

Testing
Testing Apex code consists of writing and executing unit tests. Unit tests are special meth-
ods written to exercise the functionality of your code.The goal of testing is to write unit
tests that execute as many lines as possible of the target code.The number of lines of code
executed during a test is called test coverage and is expressed as a percentage of the total
lines of code. Unit tests also typically perform some pre-test preparation, such as creating
sample data, and post-test verification of results.

Writing Test Methods
Test methods are static Apex code methods in an outer class with the testMethod key-
word added.Alternatively, you can designate an entire class with the @isTest annotation
to treat all methods as tests.Tests are subject to the same governor limits as all Apex code,
but every test method is completely independent for the purposes of limit tracking, not
cumulative.

162 Chapter 5 Business Logic

A test is considered successful if its method is executed without encountering an
uncaught exception.A common testing pattern is to make a series of assertions about the
target code’s state using the built-in method System.assert.The argument of assert is
a Boolean expression. If it evaluates to true, the program continues; otherwise, a
System.Exception is thrown and causes the test to fail.

Tests can rely on records already in the database or create their own temporary test
data.All database modifications occurring during execution of a test method are rolled
back after the method is completed.A best practice is to create your own test data in a
setup phase before your tests are executed, and limit your assertions to that test data. If test
data is not tightly controlled, spurious test failures can result due to the interaction of tests
with unrelated data present at test execution time.

Listing 5-56 shows a simple test method. It asserts two statements.The second is false,
so the test always fails.

Listing 5-56 Test Method

static testMethod void negativeTest() {

Integer i = 2 + 2;

System.assert(i == 4);

System.assert(i / 2 == 1);

}

Running Tests
All tests are automatically executed when migrating code to a production environment,
even unchanged and existing tests not included in the migration.Tests can and should be
executed manually throughout the development process.The Force.com native user inter-
face includes a test runner. In the App Setup area, click Develop ➝ Apex Classes, and
then click the Run All Tests button.The same functionality is available in the Force.com
IDE; to access it, right-click an Apex class containing test methods and select Force.com
➝ Run Tests.

Sample Application: Validating Timecards
This section applies Apex, SOQL, DML, and triggers to ensure that timecards entered
into the Services Manager sample application have a valid assignment.An assignment is a
record indicating that a resource is staffed on a project for a certain time period.A con-
sultant can enter a timecard only for a project and time period he or she is authorized to
work.Triggers are one way to enforce this rule.

The following subsections cover the process of configuring the Force.com IDE for
Apex development, creating the trigger code to implement the timecard validation rule,
and writing and running unit tests.

163Sample Application: Validating Timecards

Force.com IDE Setup
Begin by creating the Force.com IDE Project for the Services Manager sample applica-
tion, if you have not already done so. Select the menu option File ➝ New ➝ Force.com
Project. Enter a project name, username, password, and security token of your Develop-
ment Edition organization and click the Next button and then the Finish button.The
Force.com IDE connects to Force.com, downloads the metadata in your organization to
your local machine, and displays a new project node in your Navigator view.

Creating the Trigger
Listing 5-57 defines the trigger to validate timecards. It illustrates a best practice for trig-
ger development: Keep the trigger’s code block as small as possible. Place code in a sepa-
rate class for easier maintenance and to encourage code reuse. Use naming conventions to
indicate that the code is invoked from a trigger, such as the Manager suffix on the class
name and the handle prefix on the method name.

Listing 5-57 Trigger validateTimecard

trigger validateTimecard on Timecard__c(before insert, before update) {

TimecardManager.handleTimecardChange(Trigger.old, Trigger.new);

}

To create this trigger, select File ➝ New ➝ Apex Trigger. Enter the trigger name,
select the object (Timecard__c), enable the two trigger operations (before insert,
before update), and click the Finish button.This creates the trigger declaration and adds
it to your project. It is now ready to be filled with the Apex code in Listing 5-57. If you
save the trigger now, it will fail with a compilation error.This is because the dependent
class, TimecardManager, has not yet been defined.

Continue on to creating the class. Select File ➝ New ➝ Apex Class to reveal the
New Apex Class Wizard. Enter the class name (TimecardManager), leave the other fields
(Version and Template) set to their defaults, and click the Finish button.

Listing 5-58 is the TimecardManager class. It performs the work of validating the
timecard on behalf of the trigger. First it builds a Set of resource Ids referenced in the
incoming set of timecards. It uses this Set to query the Assignment object. For each time-
card, the assignment List is looped over to look for a match on the time period specified
in the timecard. If none is found, an error is added to the offending timecard.This error is
ultimately reported to the user or program initiating the timecard transaction.

Listing 5-58 TimecardManager Class

public class TimecardManager {

public class TimecardException extends Exception {}

public static void handleTimecardChange(List<Timecard__c> oldTimecards,

List<Timecard__c> newTimecards) {

Set<ID> resourceIds = new Set<ID>();

164 Chapter 5 Business Logic

for (Timecard__c timecard : newTimecards) {

resourceIds.add(timecard.Resource__c);

}

List<Assignment__c> assignments = [SELECT Id, Start_Date__c,

End_Date__c, Resource__c FROM Assignment__c

WHERE Resource__c IN :resourceIds];

if (assignments.size() == 0) {

throw new TimecardException('No assignments');

}

Boolean hasAssignment;

for (Timecard__c timecard : newTimecards) {

hasAssignment = false;

for (Assignment__c assignment : assignments) {

if (assignment.Resource__c == timecard.Resource__c &&

timecard.Week_Ending__c - 6 >= assignment.Start_Date__c &&

timecard.Week_Ending__c <= assignment.End_Date__c) {

hasAssignment = true;

break;

}

}

if (!hasAssignment) {

timecard.addError('No assignment for resource ' +

timecard.Resource__c + ', week ending ' +

timecard.Week_Ending__c);

}

}

}

}

Unit Testing
Now that the trigger is developed, you must test it. During development, taking note of
the code paths and thinking about how they are best covered by unit tests is a good idea.
An even better idea is to write the unit tests as you develop.

To create unit tests for the timecard validation code using the Force.com IDE, follow
the same procedure as that for creating an ordinary Apex class.An optional variation on
this process is to select the Test Class template from the Create New Apex Class Wizard.
This generates skeleton code for a class containing only test methods.

Listing 5-59 contains unit tests for the TimecardManager class. Before each unit test,
test data is inserted in a static initializer.The tests cover a simple positive case, a negative
case in which no assignments exist for the timecard, a second negative case in which no
valid assignments exist for the time period in a timecard, and a batch insert of timecards.
The code demonstrates a best practice of placing all unit tests for a class in a separate test
class with an intuitive, consistent naming convention.

165Sample Application: Validating Timecards

Listing 5-59 Unit Tests for TimecardManager Class

@isTest

private class TestTimecardManager {

private static ID resourceId, projectId;

static {

Resource__c resource = new Resource__c(Name = 'Bob');

insert resource;

resourceId = resource.Id;

Proj__c project = new Proj__c(Name = 'Proj1');

insert project;

projectId = project.Id;

}

static testMethod void positiveTest() {

Date weekEnding = Date.valueOf('2009-04-11');

insert new Assignment__c(Project__c = projectId,

Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,

Resource__c = resourceId);

insert new Timecard__c(Project__c = projectId,

Week_Ending__c = weekEnding, Resource__c = resourceId);

}

static testMethod void testNoAssignments() {

Timecard__c timecard = new Timecard__c(Project__c = projectId,

Week_Ending__c = Date.valueOf('2009-04-11'),

Resource__c = resourceId);

try {

insert timecard;

} catch (DmlException e) {

System.assert(e.getMessage().indexOf('No assignments') > 0);

return;

}

System.assert(false);

}

static testMethod void testNoValidAssignments() {

Date weekEnding = Date.valueOf('2009-04-04');

insert new Assignment__c(Project__c = projectId,

Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,

Resource__c = resourceId);

try {

insert new Timecard__c(Project__c = projectId,

Week_Ending__c = Date.today(), Resource__c = resourceId);

} catch (DmlException e) {

System.assert(e.getMessage().indexOf('No assignment for resource') > 0);

166 Chapter 5 Business Logic

return;

}

System.assert(false);

}

static testMethod void testBatch() {

Date weekEnding = Date.valueOf('2009-04-11');

insert new Assignment__c(Project__c = projectId,

Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,

Resource__c = resourceId);

List<Timecard__c> timecards = new List<Timecard__c>();

for (Integer i=0; i<200; i++) {

timecards.add(new Timecard__c(Project__c = projectId,

Week_Ending__c = weekEnding, Resource__c = resourceId));

}

insert timecards;

}

}

After saving the code in the unit test class, run it by right-clicking in the editor and
selecting Force.com ➝ Run Tests.After a few seconds, you should see the Apex Test
Runner view with a green check box indicating that all tests passed, as shown in Figure
5-10. Expand the results node to see 100% test coverage of the TimecardManager, and
scroll through the debug log to examine performance information and resource con-
sumption for each of the tests.

Summary
This chapter is arguably the most important chapter in the book. It describes core Apex
concepts and syntax that form the basis of all subsequent chapters.Absorb this chapter,
augmenting it with the information available through the developer.force.com Web site
and community, and you will be well prepared to write your own Force.com applications.

Before moving on, take a few minutes to review these major areas:

n Apex is the only language that runs inside the Force.com platform and is tightly
integrated with the Force.com database.Apex is strongly typed and includes object-
oriented features.

n The Force.com database is queried using SOQL and SOSL, and its records are mod-
ified using DML.All three languages can be embedded directly inside Apex code.

n Resources consumed by Apex programs are tightly controlled by the Force.com
platform through governor limits. Limits vary based on the type of resource con-
sumed. Learn the relevant governor limits as early as possible in your development
process.This ensures that you write efficient code that scales up to production data
volumes.

167Summary

Figure 5-10 Viewing code coverage results

This page intentionally left blank

6
Advanced Business Logic

In the preceding chapter, you learned the basics of the Apex language for developing
business logic.This chapter extends your knowledge of Apex to reach more features of
the Force.com platform.The following topics are covered:

n Aggregate SOQL Queries: Aggregate queries operate on groups of records,
summarizing data declaratively at the database level rather than in Apex.

n Additional SOQL Features: SOQL includes features for querying related objects
and multi-select picklists.

n Salesforce Object Search Language (SOSL): SOSL is a full-text search lan-
guage, a complement to SOQL, that allows a single query to search the textual
content of many database objects and fields.

n Transaction Processing: Apex includes database methods to enable the partial
success of transactions, saving and restoring of database state, and locking of records
returned from a query.

n Apex Managed Sharing: Managed sharing allows programmatic control over
record-level sharing.

n Sending and Receiving Email: Apex programs can send and receive email with
support for text and binary attachments and templates for standardizing outbound
messages.

n Dynamic Apex: Execute database queries that aren’t hard-coded into your pro-
grams, query Force.com for your database’s metadata, and write generic code to
manipulate database records regardless of their type.

n Custom Settings in Apex: Data from custom settings can be retrieved, created,
updated, and deleted from Apex.

n Sample Application: The Services Manager sample application is enhanced to
send email notifications to users when a business event occurs.

170 Chapter 6 Advanced Business Logic

Aggregate SOQL Queries
SOQL statements that summarize or group records are called aggregate queries. Rather
than selecting a set of records and performing calculations on them in Apex, SOQL
allows you to do this within the database.This results in much better performance and
simpler code.This section covers three aspects of aggregate SOQL queries:

n Aggregate Functions: Rather than simply returning the discrete values of a data-
base field in a SELECT statement, aggregate functions such as SUM apply a simple
calculation on each record and return the accumulated result.

n Grouping Records: The GROUP BY syntax works with aggregate functions to
return a set of summarized results based on common values.

n Grouping Records with Subtotals: SOQL provides two special forms of the
GROUP BY syntax to calculate subtotals and return them in the query results.

Aggregate Functions
Aggregate functions in SOQL work much like their SQL counterparts.They are applied
to fields in the SELECT list.After you include an aggregate function in a query, non-
aggregate fields in the same query are not allowed.The six aggregate functions available in
SOQL are:

n AVG:Calculates an average of the values in a numeric field.
n COUNT: Counts the values in a numeric, date, or string field, including duplicate

values but not nulls. Unlike all other aggregate functions, the argument to COUNT is
optional.

n COUNT_DISTINCT: Counts the unique values in a numeric, date, or string field,
excluding nulls.

n MIN: Returns the minimum value in a numeric, date, or string field.The minimum
of a string field is the first value when values are sorted alphabetically. If the string is
a picklist type, the minimum is the first value in the picklist.

n MAX: Returns the maximum value in a numeric, date, or string field.The maxi-
mum of a string field is the last value when values are sorted alphabetically. If the
string is a picklist type, the maximum is the last value in the picklist.

n SUM: Computes the sum of values in a numeric field.

All queries containing aggregate functions return a special Apex object called
AggregateResult, except the no-argument form of COUNT, which returns an integer.The
AggregateResult object contains the aggregate values calculated by running the query.
They have default field names expr0 for the first field, expr1, and so forth.Alternatively,
you can provide an alias immediately following the aggregate function column to provide
a friendlier label for the value in your code.Aggregate result fields are accessed using the
get method.

171Aggregate SOQL Queries

To get started with aggregate functions in Apex, open Force.com IDE’s Execute
Anonymous view and type in and run the code given in Listing 6-1.

Listing 6-1 Returning the Record Count

Integer i = [SELECT COUNT() FROM Timecard__c];

System.debug(i);

This code prints the number of records contained in the Timecard__c object to the
debug log.The SOQL query returns an integer because it uses the no-argument form of
the COUNT aggregate function. In contrast, the example in Listing 6-2 uses the SUM aggre-
gate function and returns an AggregateResult object, with an alias Total specified on
the aggregate column. Note that if an alias were not specified, the aggregate column
would be named expr0.

Listing 6-2 Calculating a Sum

AggregateResult r = [SELECT SUM(Total_Hours__c) Total

FROM Timecard__c];

System.debug(r.get('Total'));

Note
Normal SOQL governor limits apply to aggregate functions. The number of records used to
compute an aggregate result are applied toward the limit on records returned. So although
your COUNT query returns a single result record, if it counted more than 50,000 records,
your query will fail with an exception. If such a failure is disruptive to your application, make
sure you use a WHERE clause to reduce the number of records that are processed in the
query. The LIMIT keyword is not allowed in queries with aggregate functions, except for the
special form of the COUNT function that has no field argument.

Grouping Records
SOQL provides the GROUP BY syntax for grouping records by one or more fields.When a
query contains a grouping, its results are collapsed into a single record for each unique
value in the grouped field. Because you can no longer return individual field values, all
fields not specified as grouped must be placed within aggregate functions.

Listing 6-3 shows a simple example of grouping records without aggregate functions. It
examines all the records in the Resource custom object and returns only the unique val-
ues of the field Region__c.

Listing 6-3 Returning Unique Records by Grouping Them

for (AggregateResult r : [SELECT Region__c FROM Resource__c

GROUP BY Region__c]) {

System.debug(r.get('Region__c'));

}

172 Chapter 6 Advanced Business Logic

Although aggregate functions can be used alone in a simple query, they are much more
powerful when used in conjunction with record groupings. Listing 6-4 demonstrates
aggregate functions with record groupings. It groups all Timecard records by the geo-
graphic region of the consultant (Resource) who performed the work, and sums their
reported hours.This results in one record per geographic region with the region’s name
and a sum of their timecard hours.

Listing 6-4 Using Aggregate Functions with Record Groupings

for (AggregateResult r : [SELECT Resource__r.Region__c,

SUM(Total_Hours__c) FROM Timecard__c

GROUP BY Resource__r.Region__c]) {

System.debug(r.get('Region__c') + ' ' + r.get('expr0'));

}

You’re already familiar with the WHERE keyword in SOQL for filtering query results
using Boolean expressions. Filtering on the results of aggregate functions requires the
HAVING keyword. It works just like WHERE but the field being filtered must be wrapped
with an aggregate function and included in the GROUP BY list.

The code in Listing 6-5 outputs the average hourly cost rates for resources by educa-
tion level, but excludes records at or below an average cost rate of $100.The filtering of
the average cost rates is specified by the HAVING keyword.

Listing 6-5 Filtering Grouped Records by Aggregate Function Values

for (AggregateResult r : [SELECT Highest_Education_Level__c ed,

AVG(Hourly_Cost_Rate__c) FROM Resource__c

GROUP BY Highest_Education_Level__c

HAVING AVG(Hourly_Cost_Rate__c) > 100]) {

System.debug(r.get('ed') + ' ' + r.get('expr0'));

}

Grouping Records with Subtotals
Two special forms of grouping in SOQL produce subtotals and grand totals for the record
groupings specified in the query.They are GROUP BY ROLLUP and GROUP BY CUBE, and
they replace GROUP BY syntax and support up to three grouped fields.These functions
make it easier for developers to produce cross-tabular, or pivot-style outputs common to
reporting tools, where groups become the axes and aggregate values are the cells.The
Force.com database calculates the totals and provides them in-line, in the results, eliminat-
ing the need to write Apex to post-process the data.

Listing 6-6 demonstrates GROUP BY ROLLUP to add subtotals to combinations of two
fields: Status__c and Region__c. Because Status__c appears first in the GROUP BY
ROLLUP function, the subtotals are calculated for each of its unique values.The function

173Aggregate SOQL Queries

GROUPING is used to identify subtotal records, and also to order the results so that the
subtotals appear last.

Listing 6-6 Subtotals on Two Field Groupings

for (AggregateResult r : [SELECT Project__r.Status__c, Resource__r.Region__c,

SUM(Total_Hours__c) hours, COUNT(Id) recs,

GROUPING(Project__r.Status__c) status, GROUPING(Resource__r.Region__c) region

FROM Timecard__c

GROUP BY ROLLUP(Project__r.Status__c, Resource__r.Region__c)

ORDER BY GROUPING(Project__r.Status__c), GROUPING(Resource__r.Region__c)]) {

System.debug(LoggingLevel.INFO,

r.get('Status__c') + ' ' + r.get('Region__c') + ' ' +

r.get('region') + ' ' + r.get('status') + ' ' +

r.get('hours') + ' ' + r.get('recs'));

}

Listing 6-7 shows the result of running the code in Listing 6-6 on a database contain-
ing 13 Timecard records spread across West and Central regions in Yellow and Green sta-
tus. Note the third and fourth columns contain the value of the GROUPING function. Here
a 1 indicates that the record is a subtotal, and 0 indicates a normal record. For example,
the fifth record from the top is a subtotal on status because the 1 appears in the status col-
umn.The other values in that record indicate the sum of all Timecard hours for projects in
Yellow status is 109, and that this constitutes three records’ worth of data.The final record
contains the grand totals, which you can verify by adding the record count of the Green
subtotal (10) to the Yellow subtotal (3).

Listing 6-7 Excerpt of Debug Log After Running Code in Listing 6-6

16:04:43.207|USER_DEBUG|[7]|INFO|Green West 0 0 230.0 6

16:04:43.207|USER_DEBUG|[7]|INFO|Green Central 0 0 152.0 4

16:04:43.207|USER_DEBUG|[7]|INFO|Yellow Central 0 0 109.0 3

16:04:43.207|USER_DEBUG|[7]|INFO|Green null 1 0 382.0 10

16:04:43.207|USER_DEBUG|[7]|INFO|Yellow null 1 0 109.0 3

16:04:43.207|USER_DEBUG|[7]|INFO|null null 1 1 491.0 13

To experiment with GROUP BY CUBE, replace the word ROLLUP with CUBE in Listing 6-
6 and run the code.The GROUP BY CUBE syntax causes all possible combinations of
grouped fields to receive subtotals.The results are shown in Listing 6-8. Note the addition
of two records, subtotals on the Region__c field indicated by a 1 in the region column.

Listing 6-8 Excerpt of Debug Log After Changing Listing 6-6 to Group By Cube

16:06:56.003|USER_DEBUG|[7]|INFO|Green Central 0 0 152.0 4

16:06:56.003|USER_DEBUG|[7]|INFO|Green West 0 0 230.0 6

16:06:56.004|USER_DEBUG|[7]|INFO|Yellow Central 0 0 109.0 3

174 Chapter 6 Advanced Business Logic

16:06:56.004|USER_DEBUG|[7]|INFO|Green null 1 0 382.0 10

16:06:56.004|USER_DEBUG|[7]|INFO|Yellow null 1 0 109.0 3

16:06:56.004|USER_DEBUG|[7]|INFO|null West 0 1 230.0 6

16:06:56.004|USER_DEBUG|[7]|INFO|null Central 0 1 261.0 7

16:06:56.005|USER_DEBUG|[7]|INFO|null null 1 1 491.0 13

Additional SOQL Features
Although SOQL doesn’t allow arbitrary joins, it provides some control over how related
objects are navigated.This section discusses inner and outer joins, as well as semi-joins and
anti-joins:

n Inner Join and Outer Join: SOQL statements that include related objects nor-
mally do so by outer join, but can perform an inner join instead using a WHERE
clause.

n Semi-Join and Anti-Join: Semi-join and anti-join are types of relationship queries
that use the results of a subquery to filter the records returned from the parent object.

n Multi-Select Picklists: A multi-select picklist is a form of picklist field that allows
multiple values to be stored for a single record.The standard conditional filters of
the SOQL WHERE clause do not suffice for handling multiple values within a single
record and column, so SOQL provides special syntax to handle this case.

Inner Join and Outer Join
A SOQL statement consists of a single base object, specified using the FROM keyword.All
fields in the base object can be retrieved in the query, as well as fields from parent and
child objects depending on their distance away from the base object. Force.com takes care
of joining related objects together to retrieve the requested fields.

These implicit joins are always outer joins.An outer join returns all records from the
base object, including records that do not refer to a related object.To get a feel for this
behavior, create a new Project record in the native user interface and leave all of its fields
blank, but enter Test Project for the Name. Open Force.com IDE’s Schema Explorer
and enter and run the query given in Listing 6-9.

Listing 6-9 SOQL Outer Join

SELECT Name, Account__r.Name

FROM Proj__c

This query returns the name and account name of the Projects.Account is the parent
object of Project through a Lookup relationship. Because it is a Lookup relationship and
not Master-Detail, it can contain a null value in Account__c, the Account foreign key field.
With no foreign key to Account, Account__r, the foreign object reference, is also null.

You should see the five records imported from Listing 2-16 in Chapter 2,“Database
Essentials,” plus the newly added record, named Test Project. Figure 6-1 shows the result of

175Additional SOQL Features

running the query.The Test Project record contains no value for Account__r yet was
included in the results anyway.This is due to the outer join behavior.

In a relational database, this same query translated to SQL would result in five rows.
The Test Project row would not be returned because it does not match a row in the
Account table. Joins in SQL are inner by default, returning only rows that match both
tables of the join.

To duplicate this inner join behavior in SOQL, simply add a filter condition to elimi-
nate records without a matching record in the related object. For example, Listing 6-10
adds a filter condition to Listing 6-9 to exclude Project records without a corresponding
Account.

Listing 6-10 SOQL Inner Join

SELECT Name, Account__r.Name

FROM Proj__c

WHERE Account__c != null

The results of this query are shown in Figure 6-2. It has returned five records, each one
with a corresponding parent Account record.The newly added Project record without the
Account is correctly omitted.

Figure 6-1 Outer join results in Schema Explorer

176 Chapter 6 Advanced Business Logic

Semi-Join and Anti-Join
In Chapter 5,“Business Logic,” you learned the two ways related objects can be included
in SOQL: parent-to-child and child-to-parent queries. Semi-join and anti-join queries
enhance the functionality of both queries, and add the ability to make child-to-child
queries. In general, they allow records from one object to be filtered by a subquery against
another object.

For example, suppose you need a list of all Account records that have at least one Pro-
ject record in a yellow status.To make sure you have a valid test case, edit one of the Pro-
ject records in the native user interface to set it to a yellow status.Try to write a query to
return its Account, with Account as the base object.

You can’t do this without using a semi-join. Listing 6-11 shows one attempt. But it
returns the unique identifiers and names of all Accounts and the unique identifiers of any
Projects in yellow status.You would still have to write Apex code to filter through the
Account records to ignore those without Project child records.

Listing 6-11 Parent-to-Child Query, Filter on Child

SELECT Id, Name,

(SELECT Id FROM Projects__r WHERE Status__c = 'Yellow')

FROM Account

Figure 6-2 Inner join results in Schema Explorer

177Additional SOQL Features

Figure 6-3 shows the result of executing this query. Grand Hotels & Resorts Ltd is the
Project in yellow status, and you can see that its Project record has been returned in the
relationship field Projects__r.

Listing 6-12 rewrites this query using a semi-join. Read it from the bottom up.A sub-
query identifies Projects in yellow status, returning their Account unique identifiers.This
set of Account unique identifiers is used to filter the Account records returned by the
query.The result is a single Account, as shown in Figure 6-4.

Listing 6-12 SOQL with Semi-Join

SELECT Id, Name

FROM Account

WHERE Id IN

(SELECT Account__c FROM Proj__c WHERE Status__c = 'Yellow')

An anti-join is the negative version of a semi-join. It uses the NOT IN keyword to allow
the subquery to exclude records from the parent object. For example, Listing 6-13 returns
all Accounts except those containing Projects in a green status. Note that the results
include the Project in yellow status, as well as all Account records not associated with a
Project.

Figure 6-3 Parent-to-child query, filter on child

178 Chapter 6 Advanced Business Logic

Figure 6-4 SOQL with parent-to-child semi-join

Listing 6-13 SOQL with Anti-Join

SELECT Id, Name

FROM Account

WHERE Id NOT IN

(SELECT Account__c FROM Proj__c WHERE Status__c = 'Green')

Returning to semi-joins, Listing 6-14 provides an example of another type, called
child-to-child. It joins two child objects that aren’t directly related by relationship fields.
The records in the Timecard object are filtered by resources that have at least one assign-
ment as a consultant.This means Timecards logged by resources who are not assigned to a
project as a consultant are excluded from the results. Child-to-child refers to the Timecard
and Assignment objects, which are related to each other only in so much as they are chil-
dren to other objects.

Listing 6-14 SOQL with Child-to-Child Semi-Join

SELECT Project__r.Name, Week_Ending__c, Total_Hours__c

FROM Timecard__c

WHERE Resource__c IN

(SELECT Resource__c FROM Assignment__c WHERE Role__c = 'Consultant')

Listing 6-15 demonstrates a third type of semi-join, the child-to-parent.Timecards are
filtered again, this time to include resources with an hourly cost rate of more than $100.

179Additional SOQL Features

Child-to-parent refers to the relationship between the Timecard and Resource objects.
Resource is the parent object, and it is being used to restrict the output of the query on
Timecard, the child object.

Listing 6-15 SOQL with Child-to-Parent Semi-Join

SELECT Project__r.Name, Week_Ending__c, Total_Hours__c

FROM Timecard__c

WHERE Resource__c IN

(SELECT Id FROM Resource__c WHERE Hourly_Cost_Rate__c > 100)

Several restrictions are placed on semi-join and anti-join queries:

n The selected column in the subquery must be a primary or foreign key and cannot
traverse relationships. It must be a direct field on the child object. For example, it
would be invalid to rewrite the subquery in Listing 6-12 to return Account__r.Id
in place of Account__c.

n A single query can include at most two semi-joins or anti-joins.
n Semi-joins and anti-joins cannot be nested within other semi-join and anti-join

statements, and are not allowed in subqueries.
n The parent object cannot be the same type as the child.This type of query can

always be rewritten as a single query without a semi-join or an anti-join. For exam-
ple, the invalid query SELECT Name FROM Proj__c WHERE Id IN (SELECT Id
FROM Proj__c WHERE Status__c = 'Green') can be expressed without a sub-
query: SELECT Name FROM Proj__c WHERE Status__c = 'Green'.

n Subqueries cannot be nested and cannot contain the OR, count(), ORDER BY, or
LIMIT keywords.

Multi-Select Picklists
Multi-select picklists are interchangeable with ordinary picklists in queries, except for
being prohibited in the ORDER BY clause. SOQL includes two additional features for filter-
ing multi-select picklists, described in the following list:

n Semicolon AND Operator: The semicolon is used to express multiple string liter-
als. For example, 'Java;Apex' means that the multi-select picklist has both Java and
Apex items selected in any order.The semicolon notation can be used with the =
and != SOQL operators to make assertions about the selected items of multi-select
picklists.

n INCLUDES and EXCLUDES Keywords:The INCLUDES and EXCLUDES keywords are
followed by comma-separated lists of literal values.The INCLUDES keyword returns
records in which the selected values of a multi-select picklist are included in the list
of values.The EXCLUDES keyword returns records that match none of the values.

180 Chapter 6 Advanced Business Logic

The semicolon notation can be combined with the INCLUDES and EXCLUDES keywords
to express any combination of multi-select picklist values.

To try this out, create a multi-select picklist named Requested Skills on the Project
object. Run the SOQL statement given in Listing 6-16 using the Force.com IDE’s
Schema Explorer. It returns Project records with the multiple selection of Apex, Java, and
C# in the Requested Skills field and also records with only Python selected. Populate
Project records with matching values to see them returned by the query.

Listing 6-16 SOQL with Multi-Select Picklist

SELECT Id, Name

FROM Proj__c

WHERE Requested_Skills__c INCLUDES ('Apex;Java;C#', 'Python')

Salesforce Object Search Language (SOSL)
Data stored in the Force.com database is automatically indexed to support both structured
and unstructured queries. SOQL is the language for structured queries, allowing records
from a single object and its related objects to be retrieved with precise, per-field filter con-
ditions. SOSL is a full-text search language for unstructured queries. It begins by looking
across multiple fields and multiple objects for one or more search keywords, and then
applies an optional SOQL-like filter on each object to refine the results.

To decide which query language to use, consider the scope of the query. If the query
spans multiple unrelated objects, SOSL is the only practical choice. If the query searches
for words within many string fields, it can probably be expressed more concisely in SOSL
than SOQL. Use SOQL for queries on a single object with filters on various data types.

SOSL Basics
At the highest level, a SOSL query specifies search terms and scope.The search terms are a
list of string literals and can include wildcards.The search scope is fields containing string
data from one or more objects.This excludes Number, Date, and Checkbox fields from
being searched with SOSL.

SOSL query syntax consists of four parts, described in the list that follows:

n Query: The query is one or more words or phrases to search on.The query can
include the wildcards * (matches any number of characters) and ? (matches any sin-
gle character) at the middle or end of search terms. Enclose a search term in quota-
tion marks to perform an exact match on multiple words. Use the logical operators
AND, OR, and AND NOT to combine search terms and parentheses to control the order
in which they’re evaluated. Note that searches are not case-sensitive.

n Search Group:The search group is an optional part of the SOSL query indicating
the types of fields to search in each object.Valid values are ALL FIELDS (all string

181Salesforce Object Search Language (SOSL)

fields), NAME FIELDS (the standard Name field only), EMAIL FIELDS (all fields of type
Email), and PHONE FIELDS (all fields of type Phone).The default value is ALL FIELDS.

n Field Specification: The field specification is a comma-separated list of objects to
include in the result. By default, the Id field of each object is included. Optionally,
you can specify additional fields to return by enclosing them in parentheses.You can
also specify conditional filters using the same syntax as the SOQL WHERE clause, set
the sort order with the ORDER BY keyword, and use the LIMIT keyword to limit the
number of records returned per object.

n Record Limit: This optional value specifies the maximum number of records
returned by the entire query, from all the objects queried. If a record limit is not
provided, it defaults to the maximum of 200.

These four parts are combined in the following syntax: FIND ’query’ IN search group

RETURNING field specification LIMIT record limit.The apostrophes around query
are required.

SOSL in Apex
SOSL in Apex works much like SOQL in Apex. Queries are enclosed in square brackets
and compiled directly into the code, ensuring that the query syntax is correct and refer-
ences valid fields and objects in the database.

As with SOQL, bind variables can be used to inject variable values from the running
program into select parts of the query.This injection of values is performed in a secure
manner because Apex automatically escapes special characters. Bind variables are allowed
in the search string (following FIND), filter literals (in the WHERE block), and the LIMIT
keyword.

SOSL is not allowed in triggers. It will compile, but will fail at runtime. It is allowed in
unit tests and custom user interfaces, as covered in Chapter 7,“User Interfaces.” In this
chapter, you can experiment with SOSL using the Execute Anonymous view.

Note
You are limited to 20 SOSL queries returning a maximum of 200 rows per query.

Listing 6-17 is a sample SOSL query in Apex. It returns the names of records in the
Project and Resource objects that contain the word Chicago in any of their fields.

Listing 6-17 SOSL in Apex

List<List<SObject>> result = [

FIND 'Chicago'

RETURNING Proj__c(Name), Resource__c(Name)

];

List<Proj__c> projects = (List<Proj__c>)result[0];

for (Proj__c project : projects) {

System.debug('Project: ' + project.Name);

}

182 Chapter 6 Advanced Business Logic

List<Resource__c> resources = (List<Resource__c>)result[1];

for (Resource__c resource : resources) {

System.debug('Resource: ' + resource.Name);

}

Figure 6-5 shows the results of running this code in the Execute Anonymous view. If
your debug log is cluttered with too many other entries to see the output of the query, set
Apex code to the Debug level and all other Log categories to None.

Transaction Processing
This section covers three features of Apex that control how transactions are processed by
the database:

n Data Manipulation Language (DML) Database Methods: DML database
methods are much like DML statements from Chapter 5, but add support for partial
success.This allows some records from a batch to succeed while others fail.

n Savepoints: Savepoints designate a point in time that your code can return to.
Returning to a savepoint rolls back all DML statements executed since the estab-
lishment of the savepoint.

n Record Locking: Apex provides a SOQL keyword to protect records from inter-
ference by other users or programs for the duration of a transaction.

Figure 6-5 Results of SOSL in Apex

183Transaction Processing

Data Manipulation Language (DML) Database Methods
All database operations in Apex are transactional. For example, an implicit transaction is cre-
ated when a trigger fires. If the code in a trigger completes without error, DML operations
performed within it are automatically committed. If the trigger terminates prematurely
with an uncaught exception, all DML operations are automatically rolled back. If multiple
triggers fire for a single database operation, all trigger code succeeds or fails as a group.

In Chapter 5, you were exposed to DML statements.These statements accept a single
record or batch of records.When operating on a batch, they succeed or fail on the entire
group of records. For example, if 200 records are inserted and the last record fails with a
validation error, none of the 200 records are inserted.

Apex offers a second way of making DML statements called DML database methods.
DML database methods allow batch DML operations to fail on individual records without
impacting the entire batch.To do this, they do not throw exceptions to indicate error.
Instead they return an array of result objects, one per input record.These result objects
contain a flag indicating success or failure, and error details in the event of failure.

A DML database method exists for each of the DML statements. Each method takes an
optional Boolean parameter called opt_allOrNone to specify batch behavior.The default
value is true, indicating that the behavior is “all or none.”This makes the method identi-
cal to a DML statement, with one failed record causing the failure of all records and a
DmlException. But if the opt_allOrNone parameter is false, partial success is allowed.

Note
DML database methods are subject to the same governor limits and general restrictions as
DML statements. Refer to Chapter 5 for more information.

Listing 6-18 inserts a batch of two Skill records using the insert database method. It
passes false as an argument to allow partial success of the DML operation.The insert
method returns an array of SaveResult objects.They correspond one-to-one with the
array passed as an argument to the insert method. Each SaveResult object is examined
to check for failure, and the results are displayed in the debug log.

Listing 6-18 DML Database Method Usage

Resource__c tim = [SELECT Id

FROM Resource__c

WHERE Name = 'Tim Barr' LIMIT 1];

Skill__c skill1 = new Skill__c(Resource__c = tim.Id,

Type__c = 'Java', Rating__c = '3 - Average');

Skill__c skill2 = new Skill__c(Resource__c = tim.Id,

Rating__c = '4 - Above Average');

Skill__c[] skills = new Skill__c[] { skill1, skill2 };

Database.SaveResult[] saveResults =

Database.insert(skills, false);

for (Integer i=0; i<saveResults.size(); i++) {

Database.SaveResult saveResult = saveResults[i];

184 Chapter 6 Advanced Business Logic

if (!saveResult.isSuccess()) {

Database.Error err = saveResult.getErrors()[0];

System.debug('Skill ' + i + ' insert failed: '

+ err.getMessage());

} else {

System.debug('Skill ' + i + ' insert succeeded: new Id = '

+ saveResult.getId());

}

}

The result of executing this code is shown in Figure 6-6. Examining the debug log, the
first record is inserted, but the second failed because it doesn’t contain a value for the
Type__c field.This is enforced by a validation rule created in Chapter 2. If you edit this
code and remove the second argument to Database.insert, which enables partial suc-
cess, the failure of the second record raises an exception and rolls back the successful
insertion of the first record.

Savepoints
Savepoints are markers indicating the state of the database at a specific point in the execu-
tion of your Apex program.They allow the database to be restored to a known state in
case of error or any scenario requiring a reversal of all DML operations performed since
the savepoint.

Figure 6-6 Results of insert DML database method

185Transaction Processing

Set a new savepoint using the Database.setSavepoint method, which returns a Save-
point object.To restore the database to a savepoint, call the Database.rollback method,
which takes a Savepoint object as its only argument.

Several limitations exist on the use of savepoints.The number of savepoints and roll-
backs contributes toward the overall limit on DML statements, which is 150. If you create
multiple savepoints and roll back, all savepoints created after the savepoint you roll back to
are invalidated. Finally, you cannot share a savepoint across triggers using a static variable.

Listing 6-19 is an example of using the setSavepoint and rollback methods. First, a
savepoint is set.Then, all the Resource records in your database are deleted, assuming your
database doesn’t contain more than the governor limit of 10,000 records for DML. Finally,
the database is rolled back to the savepoint.The number of records in the Resource object
is counted before each operation in the program to illustrate its behavior.

Listing 6-19 Savepoint and Rollback Usage

void printRecordCount() {

System.debug([SELECT COUNT() FROM Resource__c] + ' records');

}

printRecordCount();

Savepoint sp = Database.setSavepoint();

delete [SELECT Id FROM Resource__c];

printRecordCount();

Database.rollback(sp);

printRecordCount();

The results of running the code snippet in the Execute Anonymous view are shown in
Figure 6-7.The debug log indicates that the Resource object initially contains five
records.They are all deleted, leaving zero records.Then the database is rolled back to the
savepoint established before the deletion, resulting in a count of five records again.

Record Locking
Apex code has many entry points. Code can be invoked from outside of Force.com via a
Web service call, by modifying a record with a trigger on it in the native user interface,
inside Force.com IDE in an Execute Anonymous view, or in a unit test.Additionally, mul-
tiple users or programs can be running the same code simultaneously or code that uses the
same database resources.

DML operations using values returned by SOQL or SOSL queries are at risk for dirty
writes.This means values updated by one program have been modified by a second pro-
gram running at the same time.The changes of the second program are lost because the
first program is operating with stale data.

186 Chapter 6 Advanced Business Logic

Figure 6-7 Results of savepoint and rollback sample code

For example, if your code retrieves a record and then modifies its value later in the
program, it requires a write lock on the record.A write lock prevents the record from
being concurrently updated by another program.Write locks are provided in Apex via the
SOQL FOR UPDATE keyword.This keyword indicates to Apex that you intend to modify
the records returned by the SOQL query.This locks the records, preventing them from
being updated by another program until your transaction is complete. No explicit commit
is necessary.The records are unlocked, and changes are automatically committed when the
program exits successfully or is rolled back otherwise.

Note
You cannot use the ORDER BY keyword with FOR UPDATE. Query results are automatically
ordered by Id field.

Listing 6-20 is an example of record locking in Apex.Tim Barr is given a raise of $20.
His Resource record is retrieved and locked, the hourly cost is incremented, and the data-
base is updated.The use of FOR UPDATE ensures that this code running simultaneously in
two contexts still results in the correct outcome: a $40 increase in hourly cost rate, $20
from each of the two independent execution contexts, serialized with FOR UPDATE.With-
out the locking, a dirty write could cause one of the updates to be lost.

187Apex Managed Sharing

Listing 6-20 Record Locking Example

Resource__c tim = [SELECT Id, Hourly_Cost_Rate__c

FROM Resource__c

WHERE Name = 'Tim Barr' LIMIT 1

FOR UPDATE];

tim.Hourly_Cost_Rate__c += 20;

update tim;

Apex Managed Sharing
Apex managed sharing allows Apex code to add, edit, and delete record sharing rules.This
is the third and most advanced type of record sharing provided by Force.com. It provides
the Apex developer with full control of record sharing.Apex managed sharing uses the
same infrastructure as the other two types of record sharing, discussed in Chapter 3,
“Database Security,” and briefly reviewed here:

n Force.com Managed Sharing: These are record sharing rules maintained by
Force.com.A native user interface enables administrators to add, edit, and delete
these rules. Rules are based on user, group, or role membership and defined individ-
ually on each object.They are configured in the Administration Setup area, Security
Controls ➝ Sharing Settings.

n User Managed Sharing: Users who own records can grant permission to addi-
tional users from the native user interface.This is a manual process.The owner visits a
record to share and clicks the Sharing button to add, edit, or remove its sharing rules.

This section is divided into two parts, described next:

n Sharing objects: Sharing objects are where Force.com stores record sharing rules.
The fields of sharing objects are described, as well as restrictions on their use.

n Creating sharing rules in Apex: This walks you through the infrastructure
behind sharing rules, finishing with a code sample to add a sharing rule in the Ser-
vices Manager sample application schema.

Sharing Objects
Every custom object, except Detail objects in a Master-Detail relationship, has a corre-
sponding sharing object to store its record-level sharing rules.The sharing object is cre-
ated automatically by Force.com and is invisible to the native user interface. It can be seen
in the Force.com IDE’s Schema Explorer. Its name is the name of your object with
__Share appended. For example, the sharing object for the Proj__c object is
Proj__Share.

The sharing object contains explicit sharing rules.These are created by Force.com
managed sharing, user managed sharing, and Apex managed sharing. It does not contain
implicit shares such as organization-wide defaults.

188 Chapter 6 Advanced Business Logic

Four fields of the sharing object control how records are shared between users and
groups, as follows:

n ParentID: ParentId is the unique identifier of the record being shared.
n UserOrGroupId: This is the unique identifier of the user or group that the sharing

rule is granting access to. Groups are public groups or roles.
n AccessLevel: This field stores the level of access granted to the user or group for

this record.The three valid values are Read (Read Only), Edit (Read and Edit), and
All (Full Control).Apex managed sharing cannot set a record to All.The value of
AccessLevel must be more permissive than the organization-wide default or a run-
time exception is thrown.

n RowCause: The purpose of the RowCause field is to track the origin of the sharing
rule.Valid values are Manual (the default) or a custom sharing reason, defined on
the object in the Apex Sharing Reasons related list. Manual sharing rules can be
edited and removed by the record owner and are reset when record ownership
changes. Sharing records with a custom reason are not reset when ownership
changes and cannot be edited or removed without the administrative permission
Modify All Data.

Restrictions
Two important restrictions exist on Apex managed sharing:

n Objects with an organization-wide default sharing level of Public Read/Write, the
most permissive setting, cannot use Apex managed sharing. Set the level to Private
or Public Read Only instead.

n After a sharing record is created, the only field that can be updated is the access
level. If you need to change other fields, delete the sharing record entirely and re-
create it.

Caution
When the organization-wide sharing default is changed for an object, all sharing rules are
recalculated. This causes your Apex managed sharing rules to be deleted. To re-create them,
you must implement an Apex class to participate in the recalculation event. This code uses
the Apex batch processing feature to allow processing of millions of records in smaller
groups of records, to stay within governor limits. The Apex batch processing functionality is
covered in Chapter 9, “Batch Processing.”

Creating Sharing Rules in Apex
Figure 6-8 shows the Force.com managed sharing settings for the Project object, config-
ured in Chapter 3.The sharing rules specify that projects owned by members of one role
are shared by all users in that role.This is defined three times because three separate roles
exist, one for each region in the sample company.

189Apex Managed Sharing

Figure 6-8 Sharing rules for Project object

Navigate to an individual Project record and click the Sharing button. Figure 6-9 is an
example of the resulting screen. It lists the sharing rules in effect for this record.The first
sharing rule is the default one, specifying that the owner has full control over the record.
The second is the sharing rule maintained by Force.com managed sharing, configured
using the screen shown in Figure 6-8, which allows users in the same role (Central) to
edit the record.

You’ve visited screens in the native user interface where record sharing is taking place.
Next, look a level deeper at the data driving the sharing behavior. Open the Force.com
IDE’s Schema Explorer and run the query shown in Listing 6-21. It illustrates how
Force.com stores the information for the sharing rules in Figure 6-9 and what you will be
manipulating with Apex managed sharing.

Listing 6-21 SOQL Query on Project Share Object

SELECT ParentId, UserOrGroupId, AccessLevel

FROM Proj__Share

WHERE Parent.Name = 'GenePoint'

Figure 6-10 is the result of running the query. Note that the identifiers in your
Force.com organization will be different from those in the figure.

190 Chapter 6 Advanced Business Logic

Figure 6-9 Sharing detail for Project record

Figure 6-10 Results of SOQL query on Project Share object

191Apex Managed Sharing

Figure 6-11 Results of SOQL query on Group object

Try to decode the meaning of each record.The ParentId field contains the unique
identifier of the record being shared.The query has filtered by the name GenePoint,
which is a Project record.The UserOrGroupId field contains the unique identifier of a
User or Group record.The AccessLevel field is one of the four access levels (All, None,
Edit,View), although only Edit and View can be set using Apex managed sharing.

The first record has All access, so it’s the default sharing rule granting the owner of the
record full access.The second record might be a mystery at first.The UserOrGroupId does
not match up with the unique identifier of the Central region’s role record. Run the
query shown in Listing 6-22 to track down the meaning of this value.

Listing 6-22 SOQL Query on Group Object

SELECT Id, Type, RelatedId

FROM Group

The Group object stores information about Roles and other groups in Force.com.
Figure 6-11 displays the results of the query.The RelatedId field contains the same value
as the UserOrGroupId value of the second sharing record.This is where Force.com

192 Chapter 6 Advanced Business Logic

managed sharing has stored the fact that the Project record named GenePoint is shared
with other members of the Central role.

Apex managed sharing allows you to insert new rows into the Proj__Share object,
and other sharing objects, and specify custom sharing reasons that are meaningful to your
application. Custom sharing reasons are maintained for each object individually.To try
adding one, go to the App Setup area and click Create ➝ Objects and select the Project
object. Scroll to the bottom of the page. In the Apex Sharing Reasons list, add a new rea-
son with a label of My Sharing Reason. Force.com automatically suggests a Name, con-
verting spaces to underscores. Refer to the custom sharing reason in your Apex code by
adding __c to the end of the name.

Listing 6-23 contains sample code you can run in the Execute Anonymous view. It
shares the GenePoint record with an additional user, specifying the custom sharing reason,
with read-only access.

Listing 6-23 Inserting Sharing Rule on Project Object

User tim = [SELECT Id FROM User

WHERE Name = 'Tim Barr' LIMIT 1];

Proj__c genePoint = [SELECT Id FROM Proj__c

WHERE Name = 'GenePoint' LIMIT 1];

Proj__Share share = new Proj__Share(

ParentId = genePoint.Id,

UserOrGroupId = tim.Id,

rowCause = Proj__Share.rowCause.My_Sharing_Reason__c,

AccessLevel = 'Read');

insert share;

After executing this code, refresh the Sharing Details for GenePoint and you should see
the screen shown in Figure 6-12. It shows that the new custom sharing rule has been
added. Because the sharing rule was created by Apex code and uses a custom sharing rea-
son, it’s preserved across changes of record ownership and cannot be edited or deleted by
users unless they have the Modify All Data administrative permission in their profile.

Sending and Receiving Email
Force.com allows emails to be sent and received in Apex code.This functionality can be
helpful in many scenarios. For example, you could send an email from within a trigger to
notify users of events occurring in the application, such as work that requires their atten-
tion.You could write code to automate the classification of incoming emails to customer
support, searching for keywords and routing them to the proper support employees.This
section describes how to use the objects and methods built in to Apex to process inbound
and outbound email and introduces the administration screens of the native user interface
that support them.

193Sending and Receiving Email

Figure 6-12 Sharing detail for Project record with Apex managed sharing
rule

Sending Email
The three ways to send email in Apex are the following:

n SingleEmailMessage: Sends an email to up to ten receivers.The email addresses
of receivers are provided as strings.A string containing HTML or plain text is used
as the message body.

n SingleEmailMessage with Template: Sends to up to ten receivers, but the
unique identifiers of Contact, Lead, or User objects must be used instead of strings
to provide the receivers’ email addresses.The message body is constructed from a
template.Templates are globally available to an organization as defined by an admin-
istrator or private to an individual user.Templates can include merge fields to
dynamically substitute field values from the receiver’s record and, optionally, field
values from an additional, related object.

n MassEmailMessage: Behaves like a SingleEmailMessage with template but can
send email to up to 250 receivers in a single call.

Each of these three ways of sending email contributes toward the maximum of 10 email
calls within a single context, an instance of running Apex code.To translate that to the
number of email messages, if you use the SingleEmailMessage object with 10 recipients,
you can reach a maximum of 100 recipients (10 recipients times the 10 invocation maxi-
mum) within a single execution of your program.You can reach 2,500 recipients using the

194 Chapter 6 Advanced Business Logic

MassEmailMessage. Force.com imposes a daily limit on mass emails, which varies based
on the edition of Force.com being used. If this limit is exceeded, an exception is thrown
with the exception code MASS_MAIL_LIMIT_EXCEEDED.

Using SingleEmailMessage

You can run the code in Listing 6-24 directly in the Execute Anonymous view. It looks
up the User record for the current user and sends a test message to its email address.

Listing 6-24 Sending Email

User you = [SELECT Email

FROM User

WHERE Id = :UserInfo.getUserId()

LIMIT 1];

Messaging.SingleEmailMessage mail =

new Messaging.SingleEmailMessage();

mail.setToAddresses(new String[] { you.Email });

mail.setSubject('Test message');

mail.setPlainTextBody('This is a test');

Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

Check the email account associated with your Force.com user for the new message. If
you do not see the message, it might be in your junk mail folder. If it’s not in your inbox
or junk mail folder, your email server might have refused its delivery. In this case,
Force.com will send you the returned message with any delivery error information, given
that you are both the sender and the receiver.

Note
Force.com provides online tools to help you authorize its mail servers to ensure that its
messages are delivered. Go to the Administration Setup area and click Email Administration
➝ Deliverability and Test Deliverability for more information.

Notice that the sender and receiver of the email are identical.You have sent a message
to yourself via Force.com. By default,Apex email methods run using the identity of the
current user.The current user’s email address becomes the “from” address in outbound
emails.Alternatively, you can define an organization-wide email address and use it to set
the “from” address.This enables all of your outbound emails to be sent from a single set of
authorized, public email addresses.To define an organization-wide email address, go to the
Administration Setup area and click Email Administration ➝ Organization-Wide
Addresses.

Using SingleEmailMessage with Template
Templates standardize the appearance and content of emails.They also make including
dynamic content in messages without cumbersome, hard-to-maintain code full of string

195Sending and Receiving Email

concatenations simple.To add a new email template, go to the Personal Setup area and
click Email ➝ My Templates.

When a template is used to send a message, you must provide a targetObjectId value.
This is the unique identifier of a Lead, Contact, or User record.The email address associ-
ated with this record becomes the recipient of the email.

Optionally, a whatId can be provided.This is the unique record identifier of an
Account,Asset, Campaign, Case, Contract, Opportunity, Order, Product, Solution, or any
custom object.The fields from this record can be referenced in your template using merge
fields.When the message is sent, the record is retrieved and its data substituted into the
message body in the locations specified by the merge fields.

Listing 6-25 sends an email using a template. Before trying it, create a template with
the unique name of Test_Template. Set its text or HTML content to Hello
{!User.FirstName}! or the equivalent to demonstrate the use of merge fields. Mark the
template as available for use. In Listing 6-25, a SOQL query is used to retrieve the tem-
plate’s unique identifier so that it isn’t hard-coded into the program.

Listing 6-25 Sending Email Using Template

User you = [SELECT Email

FROM User

WHERE Id = :UserInfo.getUserId()

LIMIT 1];

EmailTemplate template = [SELECT Id

FROM EmailTemplate

WHERE DeveloperName = 'Test_Template'

LIMIT 1];

Messaging.SingleEmailMessage mail =

new Messaging.SingleEmailMessage();

mail.templateId = template.Id;

mail.targetObjectId = you.Id;

mail.setSaveAsActivity(false);

Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

Note
The setSaveAsActivity method was called in Listing 6-25 to disable the HTML email
tracking feature, which is not compatible with the User object (targetObjectId). The
setSaveAsActivity method is described in the subsection titled, “Additional Email
Methods.”

Using MassEmailMessage

Mass emails can be sent to 250 recipients in a single method call.The code for sending a
mass email is similar to that for sending a single email with a template.The difference is
that a MassEmailMessage object is created instead of a SingleEmailMessage.At mini-
mum, you must provide a value for targetObjectIds (an array of Lead, Contact, or User
record unique identifiers) and a templateId.

196 Chapter 6 Advanced Business Logic

Optionally, you can provide whatIds, an array of record unique identifiers correspon-
ding to the array of targetObjectIds. Field values from these records add dynamic con-
tent to the message body.The records are limited to Contract, Case, Opportunity, and
Product types. Note that none of these object types are available in a Force.com platform-
only license.

Listing 6-26 demonstrates the use of the MassEmailMessage. It selects one Contact in
the system and sends an email using the same template created for Listing 6-25.

Listing 6-26 Sending a Mass Email

User you = [SELECT Email

FROM User

WHERE Id = :UserInfo.getUserId()

LIMIT 1];

EmailTemplate template = [SELECT Id

FROM EmailTemplate

WHERE DeveloperName = 'Test_Template'

LIMIT 1];

Messaging.MassEmailMessage mail = new Messaging.MassEmailMessage();

mail.templateId = template.Id;

mail.targetObjectIds = new Id[] { you.Id };

mail.setSaveAsActivity(false);

Messaging.sendEmail(new Messaging.MassEmailMessage[] { mail });

Transactional Email
The transactional behavior of the sendEmail method is consistent with that of Force.com
database DML methods.When an invocation of Apex code is completed without error,
email is sent. If an uncaught error causes the program to be terminated prematurely, email
is not sent. If multiple emails are sent, by default they all fail if one fails. Setting the
optional opt_allOrNone parameter of the sendEmail method to false enables partial
success of a group of outbound messages. In this case, the sendEmail method returns an
array of SendEmailResult objects.These objects can be used to determine the success or
failure of each message and include error details in case of failure.

Additional Email Methods
The following list describes useful methods that apply to both SingleEmailMessage and
MassEmailMessage objects:

n setCcAddresses: This method accepts a string array of email addresses to carbon
copy on the email.

n setSenderDisplayName: The sender display name is shown in email reading pro-
grams as a label for the sender email address.

n setReplyTo: The reply-to address is the email address designated to receive replies
to this message. If not specified, it’s always the sender’s email address.

197Sending and Receiving Email

n setBccSender: If this is set to true, Force.com blind-carbon-copies the sender’s
email address. In a mass email, the sender is copied only on the first message.
Force.com prevents use of this feature if an administrator has enabled Compliance
BCC Email.You can do this in the Administration Setup area by clicking Email
Administration ➝ Compliance BCC Email.

n setUseSignature: By default, Force.com appends the sending user’s signature to the
end of outbound emails.You can edit this signature in the Personal Setup area by click-
ing Email ➝ My Email Settings.To turn off this feature, pass false to this method.

n setFileAttachments: The argument to this method is an array of
EmailFileAttachment objects.These objects contain the names and data of attach-
ments to be sent with the message.They provide a method to set the attachment
body (setBody) and filename (setFileName).The total size of the attachments for a
single message cannot exceed 10MB.

n setDocumentAttachments: Force.com has a native object type for storing content
called Document.You can find it in the native user interface by clicking the Docu-
ments tab. Here you can create, edit, and delete Documents and group them into
folders. Each Document record has a unique identifier, and this method accepts an
array of them. Each Document specified is sent as an attachment to the message.All
attachments in a single message, including file attachments, cannot exceed 10MB.

n setOrgWideEmailAddressId: Use this method to specify the unique identifier of
an organization-wide email address.This email address is used as the “from” address
rather than the address of the current user.To define organization-wide email
addresses and obtain their unique identifiers, go to the Administration Setup area
and click Email Administration ➝ Organization-Wide Addresses.

n setSaveAsActivity: Force.com’s outbound email can be configured to track the
behavior of email recipients who are Leads or Contacts in the system.This is
accomplished with an invisible image embedded in messages sent using templates.
When receivers who haven’t blocked multimedia content in their email readers
open the message, the Force.com service is contacted and tracks this information.
By visiting the receiver’s Lead or Contact record, you can see the date the email was
first opened, the number of times it was opened, and the date it was most recently
opened. By default, this setting is enabled.To disable or enable it for the organiza-
tion, go to the App Setup area and click Customize ➝ Activities ➝ Activity Set-
tings and select Enable Email Tracking.To disable it for a specific message, pass
false to this method.

Receiving Email
The two steps for configuring Force.com to process inbound emails are:

1. Write an Apex class that implements a specific interface
(Messaging.InboundEmailHandler) and method (handleInboundEmail).This pro-
vides your code access to the envelope (Messaging.InboundEnvelope) and content

198 Chapter 6 Advanced Business Logic

(Messaging.InboundEmail) of inbound emails, including mail headers and attach-
ments. It is otherwise standard Apex code with no special restrictions.The return
value of this method is a Messaging.InboundEmailResult.To indicate processing
failure, set the success field of this object to false.Any explanatory message set in
the message field is returned to the sender as an email response.

2. Create an Email Service using the native user interface.An Email Service is associ-
ated with one or more Force.com-issued email addresses that serve as the gateways
to your Apex class.When email arrives at the email address, your Apex class is
invoked to process it.

If your Apex code fails with an uncaught exception while processing an incoming email,
Force.com treats the email as undeliverable.This is much like a mail gateway behaves
when presented with an unknown recipient email address.An email is returned to the
sender with diagnostic information about the problem, including the error message from
your Apex code.

To personalize email processing based on the identity of the sender, use one of these
strategies:

n Have all users share a single inbound email address.Your Apex code reads the
sender’s “from” address and customizes behavior based on that, perhaps by querying
Contact or Lead for more information about them.

n Issue each user or group of users a unique email address.Your Apex code can adjust
its behavior based on the “to” address of the incoming message.

Caution
There are governor limits on inbound email. The maximum size of each inbound message,
attachments included, is 10MB. The maximum size of each message body, text and HTML
combined, is 100KB. The maximum size of each binary attachment is 5MB and 100KB for
text attachments. The maximum heap size for Apex email handlers is 18MB. If any of these
limits are reached, your Apex code will not be invoked, and the offending message will be
returned to its sender.

Getting Started with Inbound Email Processing
Follow these next steps to create a new Apex class to process inbound email in the
Force.com IDE.This is a simple example that sends a reply to the inbound message with
the original message quoted in the body.

1. Make sure your Force.com project is selected and click New ➝ Apex Class in the
File menu.

2. Enter MyEmailService for the name and select the Inbound Email Service template.

199Sending and Receiving Email

3. Click the Finish button. Enter the code given in Listing 6-27, skipping the class and
method declarations because they are provided by the template.

Listing 6-27 Receiving Email

global class MyEmailService implements

Messaging.InboundEmailHandler {

global Messaging.InboundEmailResult

handleInboundEmail(Messaging.InboundEmail email,

Messaging.InboundEnvelope envelope) {

Messaging.InboundEmailResult result = new

Messaging.InboundEmailresult();

Messaging.SingleEmailMessage outbound = new

Messaging.SingleEmailMessage();

outbound.toAddresses = new String[] { email.replyTo };

outbound.setSubject('Re: ' + email.subject);

outbound.setHtmlBody('<p>This reply was generated by Apex.'

+ 'You wrote:</p><i>' + email.plainTextBody + '</i>');

Messaging.sendEmail(new Messaging.SingleEmailMessage[]

{ outbound });

return result;

}

}

4. In the native user interface, go to the App Setup area and click Develop ➝ Email
Services.

5. Click the New Email Service button.

6. Enter a service name. Enter MyEmailService as the Apex Class. Leave the other
options set to their defaults and click the Save button.

7. Click the Activate button.Then click the New Email Address button to create a
Force.com-generated email address.

8. This screen allows you to whitelist email addresses and domains that are allowed to
use this email service. By default, it’s configured to allow emails only from the cur-
rent user’s email address.Accept this setting by clicking the Save button.

9. You should now see an email address listed at the bottom of the page, as shown in
Figure 6-13. Copy the address to your Clipboard, open your favorite email applica-
tion, and send a test message to this address.Within a minute, you should receive an
email in response, generated by your Apex class.

200 Chapter 6 Advanced Business Logic

Figure 6-13 Email service configuration

Dynamic Apex
Dynamic Apex describes features of Apex that bypass its typically strongly typed nature.
For example, database queries, objects, and fields are part of the language, and references to
them are strongly typed, validated at compile time. Dynamic Apex allows you to work
with these objects as ordinary strings rather than compiled parts of your program.This has
its advantages in that your program can be more dynamic and generic. It also has disad-
vantages, the primary one being that your code can suffer a greater variety of errors at
runtime.

This section describes two dynamic Apex features. Dynamic database queries are
SOQL and SOSL queries executed at runtime from strings rather than from compiled
code. Schema metadata allows Apex code to introspect the structure of the Force.com
database, including its objects, fields, and relationships.

Dynamic Database Queries
In Chapter 5, you learned about bind variables.They are variables whose values are
injected into SOQL and SOSL statements in predefined locations, notated with colons.
But bind variables are not powerful enough to support an entirely dynamic WHERE clause,
one that includes conditional filters added and subtracted based on the behavior of the
program.You could write every combination of WHERE clause and use long strings of con-
ditional statements to pick the right one.An alternative is a completely dynamic query,
executed using the Database.query method.

201Dynamic Apex

Listing 6-28 provides an example of two dynamic queries.The first is on the Resource
object.The results of the query are returned in list of Resource__c objects. Other than
the dynamic query itself, this code should be familiar.The second query selects Project
records but treats them as a list of SObject objects.

Listing 6-28 Dynamic SOQL Queries

List<Resource__c> resources = Database.query(

'SELECT Id, Name FROM Resource__c');

for (Resource__c resource : resources) {

System.debug(resource.Id + ' ' + resource.Name);

}

List<SObject> projects = Database.query('SELECT Id, Name FROM Proj__c');

for (SObject project : projects) {

System.debug(project.get('Id') + ' ' + project.get('Name'));

}

The SObject is a typeless database object. It allows you to interact with database
records without declaring them as a specific type.The get method of the SObject allows
the retrieval of a field value by name.The getSObject method returns the value of a
related object.These values also have setter methods: set and setSObject. Used in con-
junction with DML statements or database DML methods, you can write generic code
that operates on a series of database objects.This is particularly useful when you have sev-
eral objects with the same field names because it can reduce the amount of code.

Tip
Use the escapeSingleQuotes of the String object to prevent SOQL injection attacks. This
method adds escape characters (\) to all single quotation marks in a string.

SOSL queries can also be constructed and executed dynamically.The Search.query

method returns a list of lists containing SObjects. Listing 6-29 provides an example of
its use.

Listing 6-29 Dynamic SOSL Query

List<List<SObject>> result = Search.query(

'FIND \'Chicago\' '

+ 'RETURNING Resource__c(Name), Proj__c(Name)');

for (List<SObject> records : result) {

for (SObject record : records) {

System.debug(record.get('Name'));

}

}

The SOSL query returns the names of Project and Resource records containing the
word Chicago. The outer loop is executed for each type of object specified in the

202 Chapter 6 Advanced Business Logic

RETURNING clause.The inner loop runs over the matching records of that object type. For
example, the first iteration of the loop assigns records to a list of Resource records that
matched the search term.The second iteration assigns it to the matching Project records.

Note
Dynamic queries have all the same governor limits as their static counterparts.

Schema Metadata
Schema metadata is information about the Force.com database, available to your Apex
code dynamically, at runtime. It has many potential uses, such as customizing the behavior
of Apex code installed in multiple organizations, driving the construction of dynamic
queries, or verifying that the database is configured in a certain way.This section describes
the five types of schema metadata (object, field, child relationship, picklist, and record type)
and includes code that can be run in the Execute Anonymous view to demonstrate
accessing them.

Note
You are limited to a maximum of 100 calls to schema metadata methods. All five types of
schema metadata methods contribute equally to the limit.

Object Metadata
Object metadata is information about the database objects in the Force.com organization.
It includes custom as well as standard objects. Listing 6-30 provides an example of retriev-
ing object metadata.The metadata of all objects in the database is retrieved, and their
names and labels are printed to the debug log.

Listing 6-30 Retrieving Object Metadata

Map<String, Schema.SObjectType> objects = Schema.getGlobalDescribe();

Schema.DescribeSObjectResult objInfo = null;

for (Schema.SObjectType obj : objects.values()) {

objInfo = obj.getDescribe();

System.debug(objInfo.getName() + ' [' + objInfo.getLabel() + ']');

}

Field Metadata
Field metadata provides access to all the attributes of fields you configure on a database
object. Listing 6-31 demonstrates how to access field metadata.The fields of the Proj__c
object are retrieved, including standard and custom fields.The getDescribe method is
invoked on each to return its metadata, a Schema.DescribeFieldResult object.The
name, label, data type, precision, and scale of each field is displayed in the debug log.

203Dynamic Apex

Listing 6-31 Retrieving Field Metadata

Map<String, Schema.SObjectField> fields =

Schema.SObjectType.Proj__c.fields.getMap();

Schema.DescribeFieldResult fieldInfo = null;

for (Schema.SObjectField field : fields.values()) {

fieldInfo = field.getDescribe();

System.debug(fieldInfo.getName()

+ ' [' + fieldInfo.getLabel() + '] '

+ fieldInfo.getType().name()

+ '(' + fieldInfo.getPrecision()

+ ', ' + fieldInfo.getScale() + ')');

}

Child Relationship Metadata
Child relationship metadata contains the child’s object type, the relationship name, and an
object identifying the field in the child object that relates it to the parent. Listing 6-32
demonstrates the retrieval of child relationship metadata from the Resource object. Com-
pare the results to what you see in the Force.com IDE’s Schema Explorer for the
Resource object.

Listing 6-32 Retrieving Child Relationship Metadata

Schema.DescribeSObjectResult res = Resource__c.SObjectType.getDescribe();

List<Schema.ChildRelationship> relationships = res.getChildRelationships();

for (Schema.ChildRelationship relationship : relationships) {

System.debug(relationship.getField() + ', ' + relationship.getChildSObject());

}

Picklist Metadata
Picklist metadata provides access to the master list of available picklist values for a picklist
or multi-select picklist field. It does not include the assignments of picklist values to
record types, nor does it provide any information about the relationship between picklist
values in dependent picklists. Listing 6-33 is an example of its use, printing the picklist
values of the Skill object’s Type field to the debug log.

Listing 6-33 Retrieving Picklist Metadata

Schema.DescribeFieldResult fieldInfo =

Schema.SObjectType.Skill__c.fields.Type__c;

List<Schema.PicklistEntry> picklistValues = fieldInfo.getPicklistValues();

for (Schema.PicklistEntry picklistValue : picklistValues) {

System.debug(picklistValue.getLabel());

}

204 Chapter 6 Advanced Business Logic

Record Type Metadata
Record type metadata contains the names and unique identifiers of record types defined
on an object. It also indicates the availability of the record type to the current user
(isAvailable) and whether the record type is the default record type for the object
(isDefaultRecordTypeMapping).

Listing 6-34 provides an example of using record type metadata. It retrieves the record
types in the Resource object and prints their names to the debug log.

Listing 6-34 Retrieving Record Type Metadata

Schema.DescribeSObjectResult sobj = Resource__c.SObjectType.getDescribe();

List<Schema.RecordTypeInfo> recordTypes = sobj.getRecordTypeInfos();

for (Schema.RecordTypeInfo recordType : recordTypes) {

System.debug(recordType.getName());

}

Custom Settings in Apex
You are not limited to using the native user interface for managing data in custom set-
tings, as demonstrated in Chapter 4,“Additional Database Features.” Custom settings can
also be created, updated, and deleted using standard DML methods.This means you can
build your own user interfaces for managing them, or use them to store frequently
accessed, simple configuration values needed by your programs. Force.com provides
increased performance for custom settings access versus ordinary database access, and cus-
tom settings are exempt from the governor limits placed on database access. For example,
you might use a custom setting named Debug as a global switch to enable verbose log-
ging within your Apex code.

To get started with custom settings in Apex, run the code in Listing 6-35. It inserts a
custom setting record, setting its name and its field value. It assumes you already have
defined a List type custom setting object named ConfigSetting containing a single
Boolean field named Debug.

Listing 6-35 Creating a Custom Setting Record

insert new ConfigSetting__c(Name = 'Default', Debug__c = false);

Now that your custom setting has a value, try retrieving it. Run the code in Listing
6-36 in the Force.com IDE’s Execute Anonymous view.

Listing 6-36 Retrieving a Custom Setting Value

ConfigSetting__c cfg = ConfigSetting__c.getValues('Default');

System.debug(cfg.Debug__c);

205Custom Settings in Apex

The first line retrieves the named record, Default, which you created in Listing 6-35.
The second line prints the value of the custom field to the debug log.You can also
retrieve a Map of all fields and values using the getAll method.

To update a custom setting value, retrieve it by name, and then update it as you would
a database record. Listing 6-37 provides an example.

Listing 6-37 Updating a Custom Setting Record

ConfigSetting__c cfg = ConfigSetting__c.getValues('Default');

cfg.Debug__c = false;

update cfg;

You can also delete custom setting records using the delete DML method, as shown in
Listing 6-38.

Listing 6-38 Deleting a Custom Setting Record

ConfigSetting__c cfg = ConfigSetting__c.getValues('Default');

delete cfg;

Hierarchy type custom settings allow a user or profile to be related to them. If no user
or profile is specified, they become organization-wide defaults.The code in Listing 6-39
assumes you have created a Hierarchy type custom setting named Hierarchy with a sin-
gle text field named Field. It creates a new record and relates it to the current user by
setting the system field SetupOwnerId to the current user’s unique identifier.This same
field also accepts a profile unique identifier to make the custom setting apply to a profile
instead of a user.And if SetupOwnerId is set to null, it becomes an organization-wide
default.

Listing 6-39 Creating a Hierarchy Type Custom Setting Record

insert new HierarchySetting__c(

SetupOwnerId = UserInfo.getUserId(),

Field__c = 'My user preference value');

To retrieve a Hierarchy type custom setting value, use the getInstance method of the
custom setting object. By default, it returns the “lowest” level of setting value, meaning
the value most specific to the current user. If a user-level setting is available, it is returned.
Otherwise, the return value is the setting associated with the user’s profile. If no user or
profile-level settings are present, the organization-wide default is returned.This behavior
can be overridden by passing a user or profile unique identifier as an argument to the
getInstance method.

206 Chapter 6 Advanced Business Logic

Sample Application: Adding Email Notifications
This section applies your knowledge of Apex’s outbound email features to enhance the
Services Manager sample application. Many scenarios in Services Manager could benefit
from email notifications. For example, consultants have requested that they get an email
when a timecard is approved or rejected by their project managers.

To implement this change, add a trigger on the after update event of the Timecard
object. If the new value of the Timecard’s Status field is Approved or Rejected, query
the Resource record that created the Timecard. Send an email notification of the change
to the Resource.

Listing 6-40 is a sample implementation. It begins by checking to make sure that the
updated Timecard contains a new value for the Status field and that the new status is
either Approved or Rejected. If so, it makes three queries to retrieve data to send the
notification email: the email address of the Resource logging the Timecard, the name of
the Project, and the name of the user modifying the Timecard record. It constructs the
email message and sends it.

Listing 6-40 Email Notification Trigger on Timecard

trigger handleTimecardNotifications

on Timecard__c (after update) {

for (Timecard__c timecard : trigger.new) {

if (timecard.Status__c !=

trigger.oldMap.get(timecard.Id).Status__c &&

(timecard.Status__c == 'Approved' ||

timecard.Status__c == 'Rejected')) {

Resource__c resource =

[SELECT Contact__r.Email FROM Resource__c

WHERE Id = :timecard.Resource__c LIMIT 1];

Proj__c project =

[SELECT Name FROM Proj__c

WHERE Id = :timecard.Project__c LIMIT 1];

User user = [SELECT Name FROM User

WHERE Id = :timecard.LastModifiedById LIMIT 1];

Messaging.SingleEmailMessage mail = new

Messaging.SingleEmailMessage();

mail.toAddresses = new String[]

{ resource.Contact__r.Email };

mail.setSubject('Timecard for '

+ timecard.Week_Ending__c + ' on '

+ project.Name);

mail.setHtmlBody('Your timecard was changed to '

+ timecard.Status__c + ' status by '

+ user.Name);

207Summary

Messaging.sendEmail(new Messaging.SingleEmailMessage[]

{ mail });

}

}

}

This implementation is not batch-safe. It makes four SOQL queries per Timecard.
Even if this were addressed, the code could easily reach the limit of ten email invocations.

To fix this problem, you could change the code to use the MassEmailMessage, build-
ing a list of recipient Contact objects from the batch. Unfortunately, the
MassEmailMessage’s whatIds field cannot be used with custom objects, so you’ll have to
forgo the customized message detailing the changes to the Timecard.

An alternative is to anticipate the governor limit. If a batch of Timecards requires more
than ten email notifications, send the ten and suppress subsequent notifications.

Summary
This chapter has introduced some of the advanced features of Apex, features that you
might not need in every application but that contribute to your knowledge of what is
possible with Apex. Before moving on to the next chapter, consider these final points:

n Aggregate queries provide a standard, declarative way to perform calculations on
groups of records in the database.

n Rules governing record sharing can be controlled in Apex code using Apex man-
aged sharing.

n You can send and receive emails in Apex code.This provides your applications an
additional way to interact with users.

n Although Apex features strongly typed database objects and queries, you can also
write code that uses database resources dynamically.This carries with it the risk of
runtime errors but opens up new possibilities of dynamic behavior to your applica-
tions. It is particularly powerful when writing custom user interfaces.

n You can read and write custom settings from Apex like any database object, but
without the governor limits.

This page intentionally left blank

7
User Interfaces

Force.com’s native user interface provides a consistent and simple way to search, create,
update, and delete database records. It combines the definition of database objects with
user interface metadata such as page layouts to produce user interfaces through configura-
tion rather than code. For developers and administrators, this makes customization
straightforward. For users, the uniformity means that learning to use one screen in
Force.com provides the experience to learn all screens with minimal incremental effort.

For applications that require a greater level of control over the appearance and behav-
ior of the user interface,Visualforce offers a solution.Visualforce is a technology in the
Force.com platform for building custom user interfaces.Visualforce user interfaces can be
built to look nothing like Force.com, exactly like Force.com, or your own unique blend
of the two.

This chapter covers the basics of Visualforce in the following sections:

n Introduction to Visualforce: Learn the concepts and terminology of Visualforce.
n Visualforce Controllers: See how controllers contain the business logic that

drives the user interface.
n View Components: Learn how view components define the appearance of

Visualforce pages.
n Visualforce and the Native User Interface: Understand where and how

Visualforce pages coexist with the native user interface of Force.com.
n Visualforce in Production: Look at how security, governor limits, error han-

dling, and testing are handled with Visualforce.
n Sample Application: Implement a feature of the Services Manager sample appli-

cation called the Skills Matrix. It is a Visualforce page for viewing and editing the
skill sets of consultants.

210 Chapter 7 User Interfaces

Introduction to Visualforce
This section presents an introduction to Visualforce. It covers the following topics:

n Overview of Visualforce: Examine the pieces of Visualforce and how they’re put
together to aid in understanding this chapter and online reference materials.

n Getting Started with Visualforce: Take a brief look at how Visualforce develop-
ment projects work, learn the tools for Visualforce development, and build a “hello
world” example.

Overview of Visualforce
Visualforce is a combination of a page containing the presentation and Apex classes con-
taining the business logic.The presentation is usually HTML rendered in the Web
browser, but Visualforce also supports content types such as XML and PDF. HTML out-
put is typically interactive, building up state by collecting user input across a series of
related pages.

Force.com processes Visualforce pages on its servers. Only the final rendered page and
partial page updates are returned to the Web browser—never the raw data or business
logic. Contrast this with S-Controls, an older Force.com user interface technology, which
consists of JavaScript programs generating HTML by querying Force.com entirely from
within your Web browser.

Caution
Although S-Controls are still visible in the Force.com user interface, they should never be
used for new development. Visualforce is the replacement technology for S-Controls and pro-
vides a superset of their functionality.

Visualforce is driven by metadata. It can use the definition of fields in the database to
provide the appropriate user interface, without custom code. For example, a Visualforce
page with an input field mapped to a Date field in the database is rendered with a calen-
dar picker component, consistent with the Force.com native user interface.

The architecture of Visualforce follows the Model-View-Controller (MVC) pattern.
This pattern dictates the separation of presentation (View), business logic (Controller), and
data (Model). In Visualforce, business logic and data are combined in the controller, named
after its MVC counterpart.The presentation lives in the page.

Figure 7-1 shows the relationship between the page and the controller in Visualforce, as
well as some of Visualforce’s internals.

Controller
The controller is Apex code that reads and writes data in the model, typically the
Force.com database.The interaction of the controller with the user interface is accom-
plished through variables and action methods.Variables are exposed to the presentation
layer through getter and setter methods. Getter methods allow the page to retrieve the

211Introduction to Visualforce

Page
View Components

Actions

Controller

Setters

Variables

Action MethodsGetters

View State

Figure 7-1 Visualforce architecture

value of a variable and display it for the user. Setter methods allow the user to modify the
value of a variable through a user interface component such as a text input box.

Action methods perform the processing work on behalf of the user.They are wired up
to buttons, links, and even asynchronous events on the user interface.

Force.com provides default controller implementations, called standard controllers. Stan-
dard controllers replicate the behavior of the native user interface, such as editing and cre-
ating records, but allow customization of its user interface without code. Custom behavior
can be added to standard controllers using controller extensions, which are classes written
in Apex.You can also implement a controller from scratch in Apex.This is called a custom
controller.

Page
The Visualforce page defines the appearance of your user interface using a mixture of
standard HTML and Visualforce-specific XML markup.The XML markup is used to add
view components to the page.View components bind the controller to the page, defining
how data and user actions are to be rendered in the user interface. Force.com provides a
standard set of view components to support common HTML user interface patterns and
supports user-defined components.

In Figure 7-1, the arrows between the page and the controller represent expressions.
Expressions are embedded in view components to allow the page to reference methods in
the controller or in system classes such as UserInfo. Expressions in Visualforce use the
same language as formula fields in the database, with a special prefix and suffix added. For
example, {!save} is an expression that invokes the save method of the controller.

212 Chapter 7 User Interfaces

Note
Visualforce maintains a strict separation of business logic and presentation. No business
logic is allowed in a Visualforce page, not even for trivial formatting tasks.

Getting Started with Visualforce
This subsection offers a path to getting your hands on Visualforce, divided into three parts,
as follows:

1. Development Process: Begin your development contrasting Visualforce with
standard Web application development.

2. Development Tools: Take a look at Visualforce development in the Force.com
IDE and the native user interface.

3. “Hello World” Example: Build your firstVisualforce page with a custom
controller.

Development Process
Visualforce development projects are much like standard Web application development
projects.They have server-side logic to be coded, and user interfaces to be designed, wired
up, and tested. User interface developers must collaborate closely with their server-side
counterparts to make sure that the necessary data and logic is available to them.The user
interfaces themselves are changing rapidly to satisfy the aesthetic and usability demands of
project stakeholders.

Unlike with other Web application projects, Force.com eliminates much of the work of
choosing and integrating Web frameworks. In terms of simply serving data-driven Web
content, Force.com is the only framework you need.The important task then becomes
strategizing on how best to use the platform to minimize custom development effort and
maintenance cost while maximizing reuse and flexibility.

Walk through the native user interface and think carefully about what features you can
reuse, extend, and override. Force.com offers a lot of user interface functionality by default
and exposes a variety of hooks into it.Work with the native user interface where possible,
rather than circumventing it.The further your project goes toward a fully custom user
interface, the more work you spend to implement things that are potentially already pro-
vided, maintained, and constantly improved by Force.com.

Development Tools
The two tools for working with Visualforce are the native user interface and the
Force.com IDE.The examples in this book can be built in either tool, but all screenshots
are shown from the Force.com IDE.

In the native user interface, developers can enable a footer on the bottom of all Visual-
force pages that includes syntax highlighting and an integrated help system. Called devel-
opment mode, it’s enabled on a per-user basis; you can enable it by visiting the Personal
Setup area and clicking My Personal Information ➝ Personal Information and checking

213Introduction to Visualforce

Figure 7-2 Visualforce page in development mode

both the Development Mode and Show View State in Development Mode boxes.You
must have Customize Application permission enabled on your profile to select these
options.With development mode enabled, you can create new Visualforce pages on the fly
by visiting them (for example, /apex/myPage) as well as edit existing pages. Figure 7-2
shows an example of editing a Visualforce page in development mode.

Force.com IDE integrates Visualforce pages and controllers into the familiar Eclipse
user interface. In Figure 7-3, the Visualforce page editor is active.You’ve already worked
with the Force.com IDE to create triggers.Visualforce controllers are displayed in the
folder named classes.Visualforce pages are in a separate folder named pages.

“Hello World” Example
To get a sense for Visualforce controllers and pages, follow these steps to create a simple
working example.

1. Open Force.com IDE, select a Force.com project, and select File ➝ New ➝
Visualforce Page.Alternatively, you can right-click any object within a Force.com
project to reach the New menu.

2. Enter MyPage for the label, press Tab, and click the Finish button.

3. In the page editor, enter the code shown in Listing 7-1. Do not save it yet. If you
do, it will fail to compile because it references a controller class that doesn’t exist.

214 Chapter 7 User Interfaces

Figure 7-3 Force.com IDE’s Visualforce Page Editor

Listing 7-1 MyPage Code

<apex:page controller="MyPageController">

<apex:form>

Your name: <apex:inputText value="{!name}" />

<apex:outputText value="{!message}" />

<apex:commandButton action="{!hello}" value="Say Hi" />

</apex:form>

</apex:page>

4. Select File ➝ New ➝ Apex Class. Enter MyPageController for the name and click
the Finish button.

5. In the Apex code editor, enter the code shown in Listing 7-2. Select File ➝ Save All
to save both the controller and the page code. Check the Problems view to make
sure that there are no compilation errors.

Listing 7-2 MyPageController Code

public class MyPageController {

public String name { get; set; }

public String message { get; private set; }

public PageReference hello() {

message = 'Hello, ' + name;

215Visualforce Controllers

return null;

}

}

6. In your Web browser, log in to Force.com and edit the URL to remove everything
after the hostname, replacing it with /apex/MyPage.Your URL should look some-
thing like this: https://na6.salesforce.com/apex/MyPage.You should see your cus-
tom Visualforce page. Enter your name and click the Say Hi button to see the hello
message.

Visualforce Controllers
Controllers provide the business logic behind Visualforce pages.They supply data to the
page, accept input from users through the page, perform actions on behalf of the user, and
redirect the browser to new pages. Controllers come in three flavors:

n Standard Controllers: Force.com provides default controller implementations
called standard controllers.They contain the same functionality as found in the
native user interface. No custom Apex code is involved in a standard controller.

n Custom Controllers: Custom controllers are the opposite of standard controllers,
providing no default functionality and consisting entirely of custom Apex code.

n Controller Extensions: Controller extensions are the middle ground between
standard and custom controllers.They begin with a standard controller and extend
or override its functionality with custom Apex code.

Standard Controllers
Every database object, both standard and custom, has a standard controller. Its name is sim-
ply the name of the object. No Apex code exists for a standard controller.The controller
implementation is already provided by Force.com.

Working with a Single Record
By default, the standard controller operates on a single record at a time. It receives this
record from the id parameter in the URL.Try this for yourself by editing MyPage, the
“hello world” example, to look like Listing 7-3.

Listing 7-3 MyPage with Standard Controller

<apex:page standardController="Proj__c">

The current project is: {!Proj__c.Name}

<apex:form >

<apex:commandButton action="{!edit}" value="Edit {!Proj__c.Name}" />

https://na6.salesforce.com/apex/MyPage

216 Chapter 7 User Interfaces

<apex:commandButton action="{!list}" value="Go To List" />

</apex:form>

<apex:page>

If you visit the page in your browser (/apex/mypage) without providing an id, you’ll
see no current project named in the page. If you append an id value for a Project record
(for example, /apex/MyPage?id=a008000000CTwEw), you can get the name of the project
and working edit and list buttons.

Listing 7-3 demonstrates a few actions provided by the standard controller, leveraged
using expression language in view components. For example, access to the current project
record is provided through {!Proj__c}, and access to the navigation actions through
{!edit} and {!list}. In general, the following expressions are available in a page that
uses a standard controller:

n Data: {!id} is the unique identifier of the current record, and {!object} is the
current record itself, where object is the lowercase name of your object.All fields
of the object are automatically available, including related child objects but not par-
ent objects.

n Navigation: {!cancel} navigates to the cancel page, {!edit} to the standard edit
page, and {!view} to the standard view page.

n Action and Navigation: {!delete} deletes the current record and navigates to
the standard delete page, and {!save} saves the current record and refreshes the
page.

n Action Only: {!quicksave} saves the current record without navigation.

Working with Multiple Records
A variation of the standard controller exists called the standard set controller. It operates
on a list of records rather than a single record.The list is produced by executing a view, a
user-defined set of column names, filter criteria, and sort criteria for an object.To try it,
replace your “hello world” example with the code given in Listing 7-4.

Listing 7-4 MyPage with Standard Set Controller

<apex:page standardController="Proj__c" recordSetVar="projects">

<apex:repeat value="{!projects}" var="p">

{!p.Name}

</apex:repeat>

</apex:page>

Visit /apex/myPage with your browser, and you’ll see a list of all projects. Force.com
has used the user’s most recently executed view to obtain a list of project records, sorted
by the first column in the view, even if that column is not displayed in the Visualforce
page.The records are available to your page in the variable projects, specified by the

217Visualforce Controllers

page attribute recordSetVar.The recordSetVar indicates to Force.com that the standard
set controller should be used.

The standard set controller allows you to work with up to 10,000 records at once and
supports pagination with a variable page size. It also supports multiple selection and
actions on a selected set of records.

The following expressions are valid in any page that uses a standard set controller:

n Data:The variable name you set in recordSetVar is bound to the current list of
records, {!selected} is an array of SObjects that are selected, {!resultsSize} sets
or gets the number of records currently displayed, and {!completeResult} is a
Boolean containing false if more than 10,000 records exist.

n Pagination: Navigate across multiple pages of data using the {!first}, {!last},
{!next}, and {!previous} actions. {!pageNumber} sets or gets the current page
number, and {!pageSize} sets or gets the number of records in a page.
{!hasPrevious} returns true if a previous page exists, {!hasNext} returns true if
a subsequent page exists.

n Filters: {!filterId} is the unique identifier of the currently selected filter (list
view), and {!listViewOptions} is an array of SelectOption objects containing the
names and identifiers of the available list views.

n Navigation: {!cancel} navigates to the cancel page, and {!edit} to the standard
edit page.

n Action and Navigation: {!delete} deletes the current record and navigates to
the standard delete page, and {!save} saves the current record and refreshes the
page.

n Action Only: {!quicksave} saves the current record without navigation.

Custom Controllers
Custom controllers provide complete control over the behavior of a page with no default
implementation.A custom controller is simply an Apex class designed to be bound to a
Visualforce page.There is no new syntax to learn.At a high level, building a custom con-
troller consists of defining the data to make available to the page and the actions that the
page can invoke.

Exposing Data
The purpose of exposing data in a controller is to make it available to the page.Within a
page, page components can use expressions to bind to it and render HTML or some other
representation of the data.This binding is by reference, so data modified in the page can
also be modified in the controller.

Simply making a variable public does not provide a Visualforce page access to it.The
variable must have a getter method, a setter method, or both, depending on whether you
intend to provide read-only or read and write access to the data.

218 Chapter 7 User Interfaces

For example, the page component inputText is an input and output component. It
renders any existing or default value by invoking the getter and then invokes the setter to
update the value after it is changed by the user and the page is submitted.

Expression language allows traversal of an object through dot notation, so providing
separate getters and setters for every field in a database record, for example, is not neces-
sary. Expose the object itself and use dot notation to access its fields. For example, the
code in Listing 7-5 exposes a Project record for read-only access using the automatic
properties feature of the Apex language.The read-only access is accomplished using the
private access modifier keyword for the set accessor.Thanks to the Project getter, the
page can contain expressions like {!proj.Name} and even
{!proj.Account__r.BillingCity} because you’ve made the parent object’s field avail-
able through a SOQL statement in the constructor.

Listing 7-5 Custom Controller, Read-Only Access to Project Record

public class MyPageController {

public Proj__c proj { get; private set; }

public MyPageController() {

proj = [SELECT Name, Account__r.BillingCity FROM Proj__c

WHERE Name = 'Tim Barr' LIMIT 1];

}

}

Caution
Placing business logic in the getter and setter methods is bad practice and, in many cases,
prohibited at runtime. Make a habit of exposing data through Apex automatic properties
rather than full getter or setter methods. Automatic properties do not allow a code body to
be added.

Expressions are the closest you can get to business logic on the page without resorting
to JavaScript. For example, you can combine expressions to form more complex expres-
sions.The expression {!isVisible && isEditable} invokes both the getIsVisible and
getIsEditable methods on the controller and evaluates to true if they are both true.
Conditionals are also supported. For example, the condition expression
{!IF(tabSelected, 'currentTab', 'secondaryPalette')} uses the value of the
tabSelected method to determine whether to return one string (currentTab if true)
versus another (secondaryPalette if false).

Writing Action Methods
Actions on a page are wired up to action methods in the controller, again by expression
language.Action methods are public, nonstatic controller methods that return a
PageReference object or null. If null, the current page is refreshed. If not, the
PageReference is used to determine the location of the new page.

219Visualforce Controllers

Actions have three purposes:

1. Preserve View State: The view state is maintained by Force.com within your page
at runtime and posted back to its servers for the invocation of an action. It consists
of the values of all of your controllers’ accessible, nontransient variables. It allows
you to build stateful interactions consisting of multiple pages without writing boil-
erplate code to copy values around in hidden fields, in the URL, or by using stateful
patterns in the controller such as session objects, which are not supported by
Force.com.You can opt out of actions entirely, redirecting the user at a browser level
using standard HTML anchors and forms. But by doing so, you’re circumventing
some of the value provided by Visualforce and giving yourself extra work.

2. Invoke Custom Logic: Actions can perform some custom logic, such as using
DML methods to upsert a record to the database. Other than the constructor, action
methods are the only place you should write new business logic or call existing
Apex code in a Visualforce controller.

3. Trigger Page Navigation: The PageReference object returned by an action
determines the page to be refreshed in the browser. Construct a PageReference
from a page name, such as new PageReference('MyPage').The URL of the
browser remains the same, but the body is refreshed with the contents of MyPage.
This is not always desirable behavior, because a user can click the Reload button in
the browser and potentially trigger the same action with the same input data. For
example, this would result in duplicate records if the action code performs an insert
DML operation.You can tell Force.com to redirect the user to the new page by
calling the setRedirect method on the PageReference and passing true.A redi-
rect updates the browser’s URL and resets the view state, giving the user a fresh start
and preventing any problems with the browser’s Reload button.

Listing 7-6 is a sample controller to illustrate a common pattern in Visualforce: wrapping a
database object with an Apex class.The wrapper object allows you to enhance a class for
participation in user interface tasks, such as formatting data. In Listing 7-6, the wrapper
exists to add a selected attribute.This attribute is bound to a checkbox view component,
shown in Listing 7-7, allowing the user to select multiple items.The action can then per-
form a mass update based on the selection. In the sample code, it simply outputs the
unique identifier of each selected Project record to the debug log.

Listing 7-6 Controller with Wrapper Pattern

public class MyPageController {

public List<ResourceWrapper> resources { get; set; }

public MyPageController() {

resources = new List<ResourceWrapper>();

List<Resource__c> records = [SELECT Name FROM Resource__c];

for (Resource__c record : records) {

resources.add(new ResourceWrapper(record));

220 Chapter 7 User Interfaces

}

}

public PageReference doSomething() {

for (ResourceWrapper wrapper : resources) {

if (wrapper.selected) {

System.debug(wrapper.data.Id);

}

}

return null;

}

class ResourceWrapper {

public Resource__c data { get; private set; }

public Boolean selected { get; set; }

public ResourceWrapper(Resource__c data) {

this.data = data;

this.selected = false;

}

}

}

Listing 7-7 Page with Wrapper Pattern

<apex:page controller="MyPageController">

<apex:form>

<apex:pageBlock title="Sample Code">

<apex:pageBlockButtons >

<apex:commandButton action="{!doSomething}"

value="Do Something" />

</apex:pageBlockButtons>

<apex:pageBlockTable

value="{!resources}" var="resource">

<apex:column headerValue="Selected">

<apex:inputCheckbox value="{!resource.selected}" />

</apex:column>

<apex:column headerValue="Resource Name">

{!resource.data.Name}

</apex:column>

</apex:pageBlockTable>

</apex:pageBlock>

</apex:form>

</apex:page>

221Visualforce Controllers

Tip
To clearly differentiate your controller code from triggers and other Apex code, adopt a nam-
ing convention and stick to it. A good one is to suffix your classname with the word
Controller, so a controller class for MyPage becomes MyPageController.

Controller Extensions
The final type of controller is the controller extension.A controller extension is a custom
controller that extends the behavior of a standard controller. Controller extensions are pri-
marily used to integrate Visualforce more tightly with the native user interface. Many fea-
tures of Visualforce integration such as overriding standard buttons are not supported for
pages that use custom controllers.

Custom controllers can be easily retrofitted to become controller extensions. Multiple
extensions can be used in a single page, enabling a large monolithic controller to be
divided into smaller controllers by behavior, where some pages might use only a subset of
the behaviors.

Listing 7-8 illustrates a trivial controller extension class, and Listing 7-9 shows a page
that uses it.The only difference between it and a custom controller is that a constructor is
required, allowing the standard controller (StandardController for a single record or
StandardSetController for multiple records) to be passed to the class. In a page that uses
the controller extension, all the built-in actions from the standard controller are available
implicitly, without any code.

Listing 7-8 Sample Controller Extension with Single Action Method

public class MyPageController {

private ApexPages.StandardController controller;

public MyPageController(ApexPages.StandardController controller) {

this.controller = controller;

}

public PageReference doSomething() { return null; }

}

Listing 7-9 Page Using Sample Controller Extension

<apex:page standardController="Resource__c"

extensions="MyPageController">

<apex:form>

<apex:commandButton action="{!doSomething}"

value="Do Something" />

</apex:form>

</apex:page>

222 Chapter 7 User Interfaces

View Components
View components work with the controller to define the appearance and behavior of a
Visualforce user interface.They connect variables in the controller to input and output
elements such as text boxes and labels, and methods in the controller to action-oriented
elements such as buttons and links. Force.com provides a library of standard view compo-
nents to support common Web user interface design patterns.

This section contains the following subsections:

n View Component Basics: Here you’ll learn how to add any view component
to a page and some of their common characteristics.This material is preparation
for the five subsections to follow, which cover specific types of standard view
components.

n Data Components: Data components enable Visualforce pages to move data in
and out of the controller using standard HTML elements.

n Action Components: Action components invoke methods on the controller,
updating the view state and refreshing the page or navigating to a new page.

n Primitive Components: Several components exist with similar syntax to HTML
tags, bridging the gap between Visualforce functionality and standard HTML.

n Force.com-Styled Components: These components allow Visualforce pages to
inherit the appearance of the Force.com native user interface.

n Force.com User Interface Components: The Force.com UI components
inherit the appearance of the native user interface as well as its behavior.They are
large-scale building blocks for incorporating native Force.com user interface func-
tionality wholesale into your custom pages.

View Component Basics
The three important areas to understand about view components are the following:

n View Component Syntax:View components are embedded in a Visualforce page
using XML markup.

n Page Definition: Every user interface page must begin with the page component.
All Visualforce components must be declared within the page component.

n Component Visibility:The rendered attribute, present on most components,
allows conditional rendering of its HTML.

View Component Syntax
Adding view components to aVisualforce page involves constructing XML markup.The
markup consists of three parts: the component name, an optional set of attributes, and an
optional component body. Listing 7-10 is a sample usage of the view component
dataList. It demonstrates all three parts of referencing a view component in aVisual-
force page.

223View Components

Listing 7-10 Sample View Component Usage

<apex:dataList value="{!resources}" var="resource">

{!resource.Name}

</apex:dataList>

Component Name
The component name is specified in the name of the tag.The component is dataList,
prefaced with the apex namespace to instruct Force.com that this is a standard view com-
ponent.The dataList component renders an HTML list, which is a series of LI tags
within a UL tag.

Attributes
Each view component has its own shape.The shape is the set of attributes accepted by
the view component and their data types.Attribute values are either static names or
expressions.

The dataList component iterates over the values in the controller, creating LI HTML
tags for each.The value attribute specifies the source of these values.The value
{!resources} is expression language syntax that retrieves the reference of the resources
variable from the controller using its getter method, getResources. If this method is not
available, its access modifier is not public, or it returns an incompatible data type, then the
Visualforce page cannot be compiled.The var attribute specifies a variable name that can
be referenced in the component body to access each element of the collection.

Note
Almost every Visualforce component accepts an id attribute. This attribute is used to pro-
vide a unique identifier to the component. The unique identifier can be used to obtain a ref-
erence to the component at runtime, from JavaScript or other Visualforce components.
Chapter 8, “Advanced User Interfaces,” includes more information on using the id attribute.

Component Body
The component body is the text between the start and the end of the XML tag. If no
component body is specified, the tag is said to be self-closing. Each component can define
its own treatment of the component body.

For example, dataList uses the component body to format its list elements. In the
sample code, the name of each resource in the list is displayed in bold.The behavior of a
self-closing instance of dataList depends on the collection type. If you pass a list of
primitive types, Force.com can simply return their string representation in the page. But if
you pass a list of complex types such as Resource records as in this example, how to deref-
erence the records to produce text for the list items is not clear. If this example had no
component body, a list of empty LI tags would be produced.

224 Chapter 7 User Interfaces

Page Definition
Every Visualforce user interface page must begin with the page component. Its main pur-
pose is to connect the page to a controller and optionally override the global appearance
of the page.

The page component requires either a standard or a custom controller to be specified.
The standardController attribute is used to reference a standard controller, and its value
is the name of a standard or custom object. Optionally, an extensions attribute can be
provided with a comma-separated list of custom Apex classes that extend the standard
controller.To specify a custom controller instead, set the controller attribute to the
name of a custom controller class.

By default, pages are styled consistently with the Force.com native user interface.They
include its stylesheet, sidebar, and header region containing application tabs, banner, and
drop-down list of applications.You can override this behavior by setting the
standardStylesheets, sidebar, and showHeader Boolean attributes.

Controlling Component Visibility
The rendered attribute is available on most standard Visualforce components. It is a
Boolean value that indicates whether the component is included in the page. Setting
rendered to false does not hide the component using CSS. It omits it entirely from the
rendered page.

For some applications, this server-side approach to visibility is a strong alternative to
CSS or JavaScript techniques such as using the display: none style directive to hide page
elements.The rendered attribute is especially powerful when used in conjunction with
the partial page refresh feature of Visualforce, discussed in Chapter 8.

Data Components
Data components allow fields and records from the Force.com database to be manipulated
within a Visualforce page.They are divided into three categories:

n Metadata-Aware Components:The HTML rendered by these smart compo-
nents varies based on the definition of the field.These components are valid only
when bound to database objects.

n Primitive Data Components: If your field data is contained in a variable in Apex
code rather than a database object, use primitive data components to render input
and output HTML elements bound to their values.

n Repeating Components: If you have a list of any type of object, you can iterate
over it with a repeating component to render its contents.

Metadata-Aware Components
Metadata-aware components use the definition of database objects to determine the
appearance of the component on the page.There are two components: one for input
(inputField) and one for output (outputField).

225View Components

Table 7-1 Primitive Data Components

Component Sample Usage
Value Data
Type Sample HTML Output

outputLabel <apex:outputLabel

value="outputLabel" />
String <label>outputLabel

</label>

inputCheckbox <apex:inputCheckbox

value=

"{!booleanValue}" />

Boolean <input type=

"checkbox"

checked="checked"/>

The inputField component displays the appropriate input element in HTML for the
database field it’s bound to. Its value attribute defines the binding. For example, an
inputField bound to a picklist renders HTML including the valid picklist values and
selected value.The inputField also provides a visual indicator when the database field is
required, consistent with the native user interface.The inputField component must be
contained within a form component. Listing 7-11 shows an example of its usage.

Listing 7-11 Sample Usage of inputField Component

<apex:form>

<apex:inputField value="{!project.Stage__c}" />

</apex:form>

The outputField formats the value of a field using the correct pattern for that field’s
data type. For example, an outputField bound to a currency field displays the currency
type and decimal point.The value attribute binds the component to data in the con-
troller. In Listing 7-12, the page expression {!project.Billable_Hours__c} provides the
source of data for the outputField.

Listing 7-12 Sample Usage of outputField Component

<apex:outputField value="{!project.Billable_Hours__c}" />

Primitive Data Components
Primitive data components add Visualforce functionality to standard HTML tags. Use
these components when you are working with data that is not contained in a database
object or when the standard Visualforce rendering or behavior is not desirable.

Table 7-1 describes the primitive data components.With the exception of
outputLabel, all components listed in the table must be contained in a form component
or a compilation error results.

226 Chapter 7 User Interfaces

Table 7-1 Primitive Data Components

Component Sample Usage
Value Data
Type Sample HTML Output

inputFile <apex:inputFile

value="{!blobValue}" />
Blob

<input type="file"/>

inputHidden <apex:inputHidden value=

"{!hiddenValue}" />
String <input type="hidden"

value=

"hiddenValue"/>

inputSecret <apex:inputSecret value=

"{!secretValue}" />
String <input type="pass-

word"

value=""/>

inputText <apex:inputText

value="{!textValue}" />
String <input type="text"

value=

"textValue"/>

inputTextArea <apex:inputTextArea

value=

"{!textAreaValue}" />

String <textarea>textArea

Value

</textarea>

selectList <apex:selectList

value=

"{!selectedItem}">

<apex:selectOptions

value="{!option

Values}" />

</apex:selectList>

String or String[]
if multiselect
(selectList),
SelectOption[]
(select
Options)

<select size="1">

<option value="">

optionValue

</option>

</select>

selectRadio <apex:selectRadio

value=

"{!selectedItem}">

<apex:selectOptions

value=

"{!optionValues}" />

</apex:selectRadio>

String (select
Radio), Select
Option[] (select
Options)

<input type="radio"/>

<label>optionValue</

label>

selectCheck

boxes

<apex:selectCheckboxes

value=

"{!selectedItem}">

<apex:selectOptions

value="

{!optionValues}" />

</apex:select

Checkboxes>

String or String[]
if multiselect
(selectCheck
boxes),
SelectOption[]
(select
Options) []

<input type=

"checkbox" />

<label>optionValue

</label>

227View Components

Repeating Components
Repeating components are bound to a list or set of values.They iterate over them, render-
ing the component body for each child in the collection.

The three types of repeating components are dataList, dataTable, and repeat.They
all require two attributes: value, a binding to the collection, and var, the name of the
variable that contains a reference to the current child.

The difference between the three components is in how the HTML is rendered.The
dataList component is rendered as an HTML list, with each element of the collection
rendered as a list item (LI tag).The dataTable component is rendered as an HTML table,
with each element in a table row (TR tag).The repeat component provides no HTML
formatting, leaving that entirely up to the Visualforce developer.

Listing 7-13 demonstrates usage of the repeat component to loop over the elements
of the collection Skills__r. Each element of the collection is assigned to the variable
skill.This variable is valid within the body of the repeat so that you can render its
data—in this case, using an outputField component to display each child’s Type__c field.
A common use of the repeat component is in conjunction with a custom controller
method that returns a list of records.You can iterate over the list with repeat, outputting
HTML elements as you go.

Listing 7-13 Sample Usage of repeat Component

<apex:repeat value="{!Skills__r}" var="skill">

<apex:outputField value="{!skill.Type__c}" />

</apex:repeat>

Action Components
Action components allow the page to invoke a method on the controller.The controller
method typically performs some operation on the contents of the page, such as updating
the database, and then either refreshes the page or navigates to a new page.

Before any refreshing or navigation takes place, the state of the user interface input ele-
ments on the page is injected into the variables of the controller using setters.This way,
they are accessible from within your action code.

The two basic action components are commandButton and commandLink.The
commandButton is rendered as an HTML button, whereas the commandLink is rendered as
an anchor. Both are valid only inside a form component.They are typically used with an
action attribute that specifies the name of the controller method to invoke or the URL
of a new page to navigate to and a value attribute that displays a label to the user. Listing
7-14 is an example of using the commandButton, which invokes the doSomething method
of the controller when clicked.

228 Chapter 7 User Interfaces

Table 7-2 Primitive Components

Component Sample Usage Sample HTML Output

outputPanel <apex:outputPanel>

outputPanel

</apex:outputPanel>

outputPanel

outputText <apex:outputText>

outputText

</apex:outputText>

outputText

outputLink <apex:outputLink

value="http://developer.

force.com">

Click here

</apex:outputLink>

<a href="http://developer.

force.com">Click here

image <apex:image

value="myimage.png" />

Listing 7-14 Sample Usage of commandButton Component

<apex:form>

<apex:commandButton action="{!doSomething}"

value="Do Something" />

</apex:form>

The page component also has an action, specified in the init attribute.This action is
called automatically upon page load but should not be used for initialization code. Its pur-
pose is to immediately redirect the user to a new page.

Before invoking a controller method, all action components perform validation on data
components, accepting user input that is contained within their parent form. For example,
if an input component is required but no value is provided, an error results. Errors can be
displayed using the pageMessages or messages component (described in the “Error Han-
dling” subsection of this chapter) and beside any inputField components if their database
field is defined to do so.You can disable this validation behavior by setting the action
component’s immediate attribute to true.

Note
Visualforce includes actions that operate asynchronously, allowing modifications to the page
without a full page refresh. These actions are discussed in Chapter 8.

Primitive Components
Many standard components mirror standard HTML tags, summarized in Table 7-2.These
primitive components might seem unnecessary, because you can always write the equiva-
lent HTML without using a Visualforce component. But one thing plain HTML cannot
do is server-side conditional rendering.

229View Components

With regular HTML, your markup always appears in the page, increasing its size and
load time, and hiding it requires JavaScript or CSS.Visualforce provides the rendered
attribute, allowing you to improve the performance of your pages by conditionally render-
ing markup based on the state of the controller.

There are two additional primitive components, includeScript and stylesheet.
They both accept a value attribute to specify the URL of a script or stylesheet resource
to load.These components do not have a rendered attribute, but using them instead of
their HTML counterparts can improve page performance and maintainability.The script
and stylesheets are included directly in the HTML HEAD tag for the page, which is not
possible to do from a Visualforce page using HTML.Additionally, these components
ensure that scripts and stylesheets are not duplicated on the page.

Force.com-Styled Components
Force.com’s native user interface makes heavy use of CSS and JavaScript within its Web
pages to provide a consistent look-and-feel across the platform. Many Visualforce compo-
nents deliver this same styling to developers, without requiring any knowledge of
Force.com’s CSS or other implementation details.The following list groups these compo-
nents into five categories based on their function:

n Page Structure: sectionHeader, pageBlock, pageBlockSection, and
pageBlockSectionItem are the native structural elements used by Force.com to
organize a page into a hierarchy of clearly identifiable sections, subsections, and sets
of label/field pairs.

n Action Containers: pageBlockButtons and toolbar/toolbarGroup organize a
series of buttons or links for performing actions on the page.

n Table: pageBlockTable is used like a dataTable but renders rows and columns in
the Force.com native style.

n Paging Components: panelBar/panelBarItem and tab/tabPanel group com-
ponents into pages that can be dynamically shown and hidden.

n Notifications: pageMessages displays errors and information.

Figure 7-4 illustrates all the components in use on a single Visualforce page.
Listings 7-15 and 7-16 implement the controller and page shown in Figure 7-4.

Table 7-2 Primitive Components

Component Sample Usage Sample HTML Output

iframe <apex:iframe

src="http://developer.

force.com" />

<iframe width="100%" scroll-

ing="no" height="600" frame-

border="0" title="Content"

src="http://developer.force.

com"></iframe>

230 Chapter 7 User Interfaces

Figure 7-4 Force.com-styled components

Listing 7-15 Sample Controller with Force.com-Styled Components

public class ForceStyledComponentsControllerExtension {

private final List<Resource__c> resources;

public ForceStyledComponentsControllerExtension(

ApexPages.StandardSetController stdController) {

this.resources = (List<Resource__c>)stdController.getRecords();

}

public PageReference initPage() {

ApexPages.addMessage(new ApexPages.Message(

ApexPages.Severity.INFO, 'pageMessages'));

return null;

}

}

Listing 7-16 Sample Page with Force.com-Styled Components

<apex:page standardController="Resource__c"

recordSetVar="resources"

tabStyle="ForceStyledComponents__tab"

extensions="ForceStyledComponentsControllerExtension"

action="{!initPage}">

<apex:form>

231View Components

<apex:sectionHeader title="sectionHeader.title"

subtitle="subtitle"

description="sectionHeader.description"

help="http://developer.force.com" />

<apex:pageMessages />

<apex:pageBlock title="pageBlock.title"

helpUrl="http://developer.force.com"

helpTitle="pageBlock.helpTitle">

<apex:pageBlockButtons>

<apex:commandButton action="{!save}"

value="pageBlockButtons 1"/>

<apex:commandButton action="{!save}"

value="pageBlockButtons 2" disabled="true" />

</apex:pageBlockButtons>

<apex:pageBlockTable var="r" value="{!resources}"

title="pageBlockTable.title" rows="1">

<apex:column>column 1</apex:column>

<apex:column>column 2</apex:column>

<apex:column>column 3</apex:column>

</apex:pageBlockTable>

<p />

<apex:pageBlockSection title="pageBlockSection.title"

columns="2">

<apex:pageBlockSectionItem>

<apex:outputPanel>Label1</apex:outputPanel>

<apex:outputPanel>Field1</apex:outputPanel>

</apex:pageBlockSectionItem>

<apex:pageBlockSectionItem>

<apex:outputPanel>Label2</apex:outputPanel>

<apex:outputPanel>Field2</apex:outputPanel>

</apex:pageBlockSectionItem>

</apex:pageBlockSection>

</apex:pageBlock>

<p />

<apex:tabPanel switchType="client" selectedTab="name2">

<apex:tab label="tab 1"

name="name1">tabPanel tab 1</apex:tab>

<apex:tab label="tab 2"

name="name2">tabPanel tab 2</apex:tab>

</apex:tabPanel>

<p />

<apex:toolbar>

<apex:outputText>toolbar</apex:outputText>

<apex:outputLink value="http://developer.force.com">

outputLink 1</apex:outputLink>

<apex:toolbarGroup itemSeparator="line" location="right">

<apex:outputLink value="http://">outputLink 2</apex:outputLink>

232 Chapter 7 User Interfaces

<apex:outputLink value="http://">outputLink 3</apex:outputLink>

</apex:toolbarGroup>

</apex:toolbar>

<p />

<apex:panelBar>

<apex:panelBarItem label="panelBarItem.label 1">panelBarItem 1

</apex:panelBarItem>

<apex:panelBarItem label="panelBarItem.label 2">panelBarItem 3

</apex:panelBarItem>

<apex:panelBarItem label="panelBarItem.label 3">panelBarItem 3

</apex:panelBarItem>

</apex:panelBar>

</apex:form>

</apex:page>

Force.com User Interface Components
Four view components are available that each replicate coarse-grained areas of
Force.com’s native user interface functionality.These components are a single reference on
your Visualforce page, but they expand to produce many subordinate user interface ele-
ments when rendered to users.They are summarized in the following list:

1. listViews:The listViews component is rendered by Force.com on the list page
of an object tab when the Enable Enhanced Lists option is disabled for the organi-
zation.

2. enhancedList:The enhancedList component consists of a drop-down list of
view names and a table of records returned by executing the view.

3. relatedList: The relatedList component renders the records of any one of an
object’s child objects.

4. detail:The detail component provides a subset of the native user interface’s
detail page for an object.

The end of this subsection contains the code for the controller and page used to demon-
strate these four components.

listViews Component
The listViews component includes the capability to create and edit list views, as well as
execute them and render their records.The only required attribute of listViews is type,
which binds a database object type to the component. Figure 7-5 shows a listViews
component bound to the Resource custom object.

233View Components

Figure 7-5 listViews component

enhancedList Component
The enhancedList component is a more modern version of the listViews component.
It has the same functionality but also includes drag-and-drop reorderable columns, sortable
columns, and results pagination with dynamic page sizes. It appears in the native user
interface only when Enable Enhanced Lists is enabled for the organization.

The required attributes of enhancedList are height (the height of the component in
pixels) and either type (the database object type displayed by the component) or listId
(the unique identifier of the list view). Figure 7-6 demonstrates an enhancedList compo-
nent with its type set to the Resource custom object.

relatedList Component
The relatedList component renders a list of child records. It is the same component
that appears in the native interface below the detail for a record. It is paginated and allows
related records to be edited, deleted, and created, depending on the object permissions of
the current user.

The required attributes of relatedList are list, the name of the child relationship to
be rendered in the list, and subject, an expression language reference to the parent record
on the controller (defaults to the id parameter of the page if not provided). Both Master-
Detail and Lookup relationships are supported by relatedList.

Figure 7-7 shows the relatedList component, with subject set to a record in the
Resource object, and list set to Skills.

234 Chapter 7 User Interfaces

Figure 7-7 relatedList component

Figure 7-6 enhancedList component

235View Components

Figure 7-8 detail component

detail Component
The detail component replicates the functionality of the native user interface on the
detail page of a record. It respects the page layout of the record, including page layouts
defined per record type. It also supports inline editing for the edit mode of an object.

Like the relatedList component, detail requires a subject or it attempts to read a
record identifier from the page’s id URL parameter. By default, all related lists are ren-
dered below the detail section unless the relatedList parameter is set to false. In
Figure 7-8, detail is bound to a Resource record and configured not to render the
related lists.

Demonstration Code
Listings 7-17 and 7-18 implement the controller and page featured in the figures in this
subsection.

Listing 7-17 Sample Controller with Force.com UI Components

public class ForceUIComponentsController {

public Resource__c subject { get; private set; }

public ForceUIComponentsController() {

subject = [SELECT Id, Name

FROM Resource__c LIMIT 1];

}

}

236 Chapter 7 User Interfaces

Listing 7-18 Sample Page with Force.com UI Components

<apex:page tabStyle="Force_com_UI_Components__tab"

controller="ForceUIComponentsController">

<style>

.panel {

background-image: none;

background-color: #666666;

}

.panelActive {

background-color: #38197A;

}

</style>

<apex:panelBar headerClass="panel" headerClassActive="panelActive">

<apex:panelBarItem label="listViews">

<apex:listViews type="Resource__c" />

</apex:panelBarItem>

<apex:panelBarItem label="enhancedList">

<apex:enhancedList type="Resource__c" height="300" />

</apex:panelBarItem>

<apex:panelBarItem label="relatedList">

<apex:relatedList subject="{!subject}" list="Skills__r" />

</apex:panelBarItem>

<apex:panelBarItem label="detail">

<apex:detail subject="{!subject}" relatedList="false"

title="false" />

</apex:panelBarItem>

</apex:panelBar>

</apex:page>

Visualforce and the Native User Interface
Force.com provides many places for Visualforce pages to be integrated into its native user
interface.You can embed Visualforce pages inside standard user interface pages, override
the buttons that navigate between pages, override the standard pages entirely, and add but-
tons and tabs to navigate to an entirely custom user interface.Areas of the native user
interface extensible through Visualforce are summarized here:

n Standard Pages: Standard pages provide the default user interface for maintaining
records in the Force.com database.These pages can be overridden with your custom
Visualforce pages.

n Standard Buttons: Standard buttons normally navigate the user to standard pages,
such as the New button, which moves the user to the edit page for a new record.
But these buttons can be remapped to your custom Visualforce pages, to inject an
additional visual step before the standard page or to hide it altogether.

237Visualforce and the Native User Interface

Figure 7-9 Standard tab page

n Page Layouts: Page layouts define the position of fields, buttons, and related lists in
the native user interface.Visualforce pages can be embedded within page layouts.

n Custom Button and Links: Custom buttons appear at the top and bottom of
standard pages and links within a detail page.They can navigate the user to aVisu-
alforce page.

n Custom Tabs: Custom tabs are added to an application and appear at the top of
the Web browser under the application banner.A Visualforce page can be configured
as a custom tab.

Standard Pages
The native user interface consists of four standard pages for working with database
records.These can all be overridden, as described here:

1. Tab: The tab page appears when a custom object tab is clicked. Figure 7-9 provides
an example of this page.

2. List: The list page displays a series of records in a tabular view, as shown in
Figure 7-10.You reach it by clicking the Go button from the tab page.

238 Chapter 7 User Interfaces

Figure 7-10 Standard list page

3. View: The view page is a read-only view of a single record and its related records.
Figure 7-11 is the view page for the Resource object.A page layout, determined
by profile and optionally record type, is used to determine the appearance of the
view page.

4. Edit: The edit page uses the same layout as the view page but allows the values
of a record to be modified and saved.This is shown in Figure 7-12 for the
Resource object.

Caution
Override the standard edit page with caution. The standard edit page provides deep function-
ality, such as page layouts and record types, that cannot be replicated in a Visualforce page
without a significant amount of custom code.

To override a standard page, go to the App Setup area and click Create ➝ Objects and
select the object. Scroll to the Standard Buttons and Links section.Tab, view, and edit
pages can be overridden only with Visualforce pages that use a standard, single record con-
troller.The list page must use a standard set controller. Controller extensions are supported
in all pages.

239Visualforce and the Native User Interface

Figure 7-11 Standard view page

Figure 7-12 Standard edit page

240 Chapter 7 User Interfaces

Standard Buttons
Visualforce pages can be shown as the result of clicking a native user interface button, over-
riding the button’s standard behavior.The following standard buttons can be overridden:

n New:The New button normally navigates the user to the edit page on a new
record.

n Delete:This is the page navigated to after a record is deleted.The default behavior
is to navigate to the tab page.

n Clone: The Clone button copies the values from the current record into a new
record and places the user in edit mode on that record.This behavior can be cus-
tomized by overriding the Clone button.

n Accept:The Accept button applies to records owned by a queue rather than a sin-
gle user. It enables a user to remove a record from the queue, assigning ownership of
the record to himself.This button appears on the list page only when it is displaying
records owned by a queue.

To override a standard button, go to the App Setup area and click Create ➝ Objects and
select the object. Scroll to the Standard Buttons and Links section.Your Visualforce page
must use a standard, single record controller, with or without extensions.

Page Layouts
A Visualforce page can be embedded in an object’s page layout alongside its fields. Figure
7-13 shows a new section called My Section, defined using the page layout editor. My
Page is the name of a Visualforce page that has been dragged into My Section and is now
visible whenever a record of that object is viewed or edited.

The result of adding the Visualforce page called My Page to the layout for the
Resource object is shown in Figure 7-14.The text “Your page is here” is being rendered
by the Visualforce page embedded within the record’s detail page.

To add a Visualforce page to a page layout, go to the App Setup area and click Create
➝ Objects and select the object. Scroll to the Page Layouts section and click the Edit link
for the page layout. For your Visualforce pages to appear in the page layout editor, they
cannot already be in use by a tab and must use a standard single record controller, with or
without extensions.

Custom Buttons and Links
You can configure buttons and links that navigate to any Visualforce page.These buttons
and links are then added to page layouts. Buttons and links are defined on the database
object. In the App Setup area, click Create ➝ Objects, and then click the object. Scroll to
the Custom Buttons and Links area and click the New button.

241Visualforce and the Native User Interface

Figure 7-13 Adding a Visualforce page to page layout

Figure 7-14 Embedded Visualforce page

242 Chapter 7 User Interfaces

Figure 7-15 Defining Visualforce tabs

Custom buttons and links tied to Visualforce pages can be added to the object’s detail
page layout or a related list page layout.The detail page layout requires a standard con-
troller.The related list layout requires a standard set controller. Controller extensions can
be used with either.

Custom Tabs
You can configure any Visualforce page as a new tab in the Force.com native user inter-
face.To add a new Visualforce tab, go to the App Setup area and click Create ➝ Tabs. In
Figure 7-15, three custom Visualforce tabs have already been defined. Click the New
button in the Visualforce Tabs section to create a tab. Select a Visualforce page, select a tab
label and style, set tab visibility on profiles and applications, and click Save.

Visualforce in Production
This section describes areas of focus for real-world user interfaces written in Visualforce. It
includes the following subsections:

n Debugging and Tuning: Force.com provides web-based tools for debugging and
tuning Visualforce pages.

n Security: Securing Visualforce pages is an important task.Visualforce pages can
expose users to records they should not see under record sharing rules and cause
runtime errors due to lack of object or field visibility.

243Visualforce in Production

Figure 7-16 System Log

n Error Handling: Error handling in Visualforce is a process of catching all excep-
tions and handling them thoughtfully, with both the integrity of the database and
the user experience in mind.

n Governor Limits: The code running in Visualforce controllers is subject to gover-
nor limits, applied within the scope of each user-initiated action.

n Unit Tests: Force.com requires test coverage on the code in Visualforce controllers
and provides system methods to assist.

Debugging and Tuning
The System Log is the first place to look to troubleshoot unexpected behavior from a
Visualforce user interface.While the System Log is open, every interaction with
Force.com is logged and can be examined in depth. In Figure 7-16, the System Log is
active and contains a single log entry, which captured the system activity for the page
/apex/SkillsMatrix.

The log entry has been clicked, and the other panels of the System Log are refreshed
with detailed information.This information is centered around the Apex code executed in
the controller associated with the page, as well as any Apex code executed as a result of
controller code. Click the buttons at the bottom of the screen to filter out areas of Apex

244 Chapter 7 User Interfaces

Figure 7-17 View state

code such as Workflow that are superfluous to your investigation. If a bug exists in your
controller code, it should be obvious in the Stack, Execution Log, and Executed Units
panels as you trace the flow of instructions. Remember that like any Apex class, you can
sprinkle System.debug statements into your controller to help troubleshoot.

Problems in theVisualforce page itself are typically more difficult to debug. If Force.com
encounters something invalid in the course of rendering aVisualforce page, such as a null
reference in your controller, it might show an unhelpful error message.Trial and error can
be helpful in these situations. Comment out portions of yourVisualforce page using
HTML comment tags (<!-- sample comment -->) until the page functions again and
you’ve isolated the troublesome portion.An in-browser development tool such as Firebug
is also helpful if the page renders successfully but has a client-side presentation or logic
issue. Firebug enables close inspection of the JavaScript, HTML, and CSS in the page.

When you’re ready to improve the performance of your Visualforce page, examine the
view state.The view state contains the values of local variables in your controller.They are
encoded and embedded in the page itself in a hidden field and sent back to Force.com
upon every user action. Sending the view state back and forth to the browser and process-
ing it in Force.com can reduce the responsiveness of your user interface.View state is lim-
ited to 128K, but performance can be impacted well before the limit is reached.

The Visualforce development mode footer contains a tab called View State, shown in
Figure 7-17.With it, you can examine the contents of the view state: the variables saved
there, along with their sizes and contents. Double-clicking one of the folders opens a dia-
log with charts showing the contribution of various types of view state toward the limit.

245Visualforce in Production

Your goal is to minimize the view state. Look for controller variables that do not need
to persist across page views, and add the transient keyword to them.The transient
keyword tells Force.com not to save the state of the variable in the web page, removing
the round-trip cost of transporting that data to and from the web browser.Avoid querying
extraneous information from the database in your SOQL calls.Also, simplify and stream-
line any nested data structures that are required in the view state.

Security
Securing a Visualforce user interface involves controlling access to the objects, the records,
and the page itself.Visualforce obeys the object and field-level security rules configured in
profiles. Record security is handled by the controller through special keywords in Apex in
conjunction with custom code that can be written to enforce application-specific security
rules.Access to the page is granted by the user’s profile.

Object-Level Security
Access to database objects and fields is determined by the profile and is consistent with the
native user interface.This protects the database and maintains the centralized control of
data security, but also exposes the user interface to various runtime errors if improperly
configured. For example, if the user’s profile denies all access to an object, this object is
essentially invisible.When a Visualforce controller attempts to select from it, the page fails
with an exception. Other configuration problems are handled more transparently to the
user. If the user’s profile lacks edit access on an object and a Visualforce page binds an
inputField to that object, it is automatically rendered as an outputField, appropriately
blocking user input.

When developing a controller, check that the SOQL, SOSL, and DML operations are
fully compatible with the set of profiles expected to use the page.As a developer, you have
full visibility to every object and field, but do not assume that your users have the same
level of access.Test the Visualforce pages by logging in as a test user or cycling through
profiles on a single test user.You can also write unit tests that run under the privileges of a
specific user using the System.runAs method, covered in more detail in the “Unit Tests”
subsection.

Record-Level Security
Standard controllers always honor the record-level security of the current user. But by
default, record sharing rules are ignored by code in custom controllers.These controllers
run in a system context, like a trigger.

Note
Record sharing rules are still honored by the methods of standard controllers that have
extensions defined, but the code in an extension class itself still runs in system mode.

246 Chapter 7 User Interfaces

For example, if a user’s profile grants the user access to a particular object, your custom
controller queries it, and your Visualforce page displays the results, the user can read every
record in the object, regardless of the sharing settings.

You can change this behavior in the controller code by specifying a security mode in
the class definition.Two security modes are available: with sharing and without shar-

ing.The controller definition in Listing 7-19 uses with sharing to configure the con-
troller to honor record sharing rules.

Listing 7-19 Custom Controller Using Record Sharing Rules

public with sharing class MyController {

// the code in this controller honors record sharing rules

}

The without sharing security mode indicates that a class should not obey record
sharing rules, which is the default state.You do not need to change this unless your code
accesses objects that have record sharing rules defined that you would like to enforce in
your user interface. Subclasses inherit the security mode from their parent class, but inner
classes do not. In nested calls, where one class calls another class, the current security
mode is applied unless explicitly specified.

After a security mode is chosen, no additional work is required. SOSL and SOQL state-
ments automatically return the correct subset of records based on the sharing rules for each
object. But if a record is referenced directly that is not shared with the user, such as through
a DML method updating a foreign key, a runtime error is thrown. Use a try/catch block
around DML methods to make sure that this situation is properly handled.

Page-Level Security
Profiles determine which users are able to use a Visualforce page. Pages must be explicitly
enabled for each profile that requires access. If this is not done, users will receive an error
page titled Insufficient Privileges when attempting to view the page.

To grant a profile access to a page, go to the Administration Setup and click Manage
Users ➝ Profiles. Scroll to the Enabled Visualforce Page Access section, shown in Figure
7-18, and click the Edit button. Select pages from the Available Visualforce Pages list and
click the Add button to add them to the Enabled Visualforce Pages list. Click Save when
you’re done.

Note
Users with the Customize Application permission can access all Visualforce pages in the
organization.

247Visualforce in Production

Figure 7-18 Configuring Visualforce page security

Error Handling
The two main concerns when handling errors in Visualforce are how uncaught exceptions
impact the user interface and how to communicate caught exceptions to users.

Uncaught Exceptions
Allowing an uncaught exception in a trigger is often an appropriate way to notify the user
of a problem because Force.com displays a nicely formatted error message to the user in
the native user interface. But in a Visualforce page, uncaught exceptions result in an alarm-
ing, generic Force.com error page whose appearance cannot be controlled or customized
in any way. Figure 7-19 shows an example of this error page.

As this is typically not consistent with the usability and look-and-feel of a custom user
interface, one of the goals of error handling in Visualforce is to avoid these uncaught
exceptions. Place a try/catch block around every action method, or at least those that
perform SOSL, SOQL, or DML operations.

A benefit of uncaught exceptions in triggers is that they roll back the current transac-
tion. Catching all exceptions in your Visualforce controller forces your code to roll back
explicitly if required by your application. For example, if your controller has two DML
statements in an action method and fails on the second with a caught exception, the first
statement is still committed to the database at the conclusion of the method. If this leaves
the database in an undesirable state for your application, set a savepoint at the beginning of
the method and roll back to it in the catch block. For an example of using savepoints,
refer to Listing 6-19 in Chapter 6,“Advanced Business Logic.”

248 Chapter 7 User Interfaces

Figure 7-19 Uncaught exception in Visualforce

Error Communication
Visualforce provides page components and corresponding data objects for communicating
errors to the user in a consistent way.The page components are messages and
pageMessages, which display the page-level errors returned by a controller.These compo-
nents are placed on pages, typically at the top, and render the ApexPages.Message objects
added to the page. Message objects contain a message and optional severity. Severity is
used to style the message when displayed in the pageMessages component and can also
be filtered on in test methods.

Listing 7-20 is an example of code to add an error-severity message to the page.To be
visible, it must be rendered by a messages or pageMessages component.

Listing 7-20 Sample Usage of Page Messages

ApexPages.addMessage(new ApexPages.Message(

ApexPages.Severity.ERROR, 'Something went wrong'));

Governor Limits
Visualforce controllers have the same set of governor limits as all Apex code.Table 7-3
reviews these limits.

249Visualforce in Production

Table 7-3 Subset of Governor Limits

Resource Type Governor Limit

Heap 3MB

Apex code 200,000 lines of code executed

SOQL 100 queries

Records from SOQL 50,000 records cumulatively for all SOQL queries

DML 150 DML statements

Records in DML 10,000 records cumulatively for all DML statements

Governor limits apply during execution of user-initiated actions and are not cumula-
tive.When an action is complete, the governor limits reset. For example, if your controller
contains a save method bound to a commandButton, the governor limits apply during the
execution of the save method.When the user clicks the button again or takes another
action that invokes a method, the governor limits begin counting your resource consump-
tion again from zero.

Unit Tests
Unit tests are mandatory for all Apex code, including Visualforce controllers.Your applica-
tion code must have at least 75% test coverage before it can be deployed to a production
environment.

The mechanics of writing unit tests for controllers is similar to that of triggers, with
some additional system methods for test setup. But the strategy for testing controllers is
unique, because controller code normally relies on the Web browser to drive it.

Listing 7-21 provides an example of the test setup code. It starts by creating an instance
of the controller class and getting a reference to the Visualforce page to test.This is a
PageReference instance, created by passing the page name as an argument.The
Test.setCurrentPage method sets the context of the test method to the page you want
to test.

Listing 7-21 Sample Controller Test Method

static testMethod void sampleTestMethod() {

MyPageController controller = new MyPageController();

PageReference page = new PageReference('MyPage');

Test.setCurrentPage(page);

}

The body of your tests can employ one or more of the following test strategies to exer-
cise code in the controller:

250 Chapter 7 User Interfaces

n Directly invoke controller methods and getters/setters.
n Add a test harness to constructor code to read URL arguments to establish con-

troller state or perform actions.
n Verify data in the database using SOQL and SOSL queries.
n Use System.runAs blocks to simulate different users; System.runAs(user)

{block; }.

Caution
Even 100% test coverage on the controller class does not guarantee a bug-free user inter-
face. Testing Visualforce pages is like testing any Web application. Test it manually with your
Web browser or with an automated Web testing tool.

Sample Application: Skills Matrix
One of the features of the Services Manager sample application is skill set management.
The skills of consultants are tracked using the Skill object, a child of the Resource object.
Entering skills in the native user interface involves navigating to the Resource’s record and
clicking the New button in the Skills related list and then selecting a skill type and a rating.

Users of the application have requested a more streamlined way to enter and view
skills, called the Skills Matrix.The requirements of Skills Matrix follow:

n Reduce Navigation Clicks: Provide a single screen for entering and viewing all
skill-related information.The screen shows the skills and ratings of a single resource
at a time in tabular format: skill types as rows and a single column to view and edit
ratings.

n Encourage Data Completeness: All skill types are shown at all times.This is in
contrast with the native user interface, which shows only the skills containing rat-
ings. Showing all skill types, including those lacking a rating, encourages users to
treat the user interface like a survey and should increase data completeness.

n Allow All to View, Restrict Editing: Whether a rating is editable or read-only
depends on the current user. If the user is editing her own resource record, all rat-
ings are editable. If the user is a manager, vice president, or system administrator (by
profile), the user is allowed to edit the skills of any resource. If the user does not
meet any of the previous criteria, the skill ratings are read-only.

This section describes building the feature in three parts.The first part is a basic imple-
mentation, to allow the selection of a resource and editing of its skills.The second part
adds the finishing touches to implement the full set of requirements.The final section pro-
vides a sample, full implementation of the feature, shown in Figure 7-20, and comments
on portions of the code.

251Sample Application: Skills Matrix

Figure 7-20 Skills Matrix sample implementation

Basic Implementation
In the basic implementation, build a Visualforce page with a drop-down list at the top
containing resource names and a table below it with the skills and ratings.The only skills
shown are those that already contain ratings for the resource.The ratings can be edited
and saved by any user.

Start by creating the page and controller in the Force.com IDE.Add a selectList
component, and a corresponding getter in the controller to return a list of SelectOption
objects, constructed from the names and unique identifiers of records of the Resource__c
object.Add a refresh commandButton to fetch the skills for the currently selected resource.

Build and test the drop-down list of resources before moving on to the list of skills.
Then flesh out the controller, querying the Type__c and Rating__c fields of the Skill__c

records belonging to the selected resource. Iterate over that list in the page, displaying the
ratings as drop-down lists.Add an action method to the controller to save changes to the
skills list. Use the upsert database method, as later your skills list will contain both new and
edited records.Add a commandButton on the page to invoke the action method.

Test your user interface frequently during development.Add your page to the native
user interface with a Visualforce tab or override the Skills custom object tab.To override
the tab, in the App Setup area, click Create ➝ Objects and select Skill. Scroll to the Stan-
dard Buttons and Links section. Click the Override link for the tab. For the Content Type,
select the Visualforce Page radio button. Select your Skills Matrix page from the Content
Names drop-down list and click the Save button.

252 Chapter 7 User Interfaces

Full Implementation
After you get the basic implementation into a working state, move on to the more chal-
lenging requirements: the complete list of skill types and data security.

To get the complete list of types, use the metadata methods to query the values of the
Skill__c.Type__c picklist. Iterate over the values, checking for the presence of corre-
sponding Skill records for the resource. Create Skill records where they are missing.

For data security, you cannot rely on built-in Force.com record-level security alone. It
operates on the OwnerId field, the unique identifier of the user who has ownership rights
to a record. In the Skills Matrix, ownership of a resource record does not determine who
is allowed to edit or view its skills.An administrator might import resource data from a
legacy system, or a user in human resources might be the owner of the resource.

The assumption is that every consultant and other user of the Services Manager appli-
cation has a license to log in to Force.com as an independent user with his own creden-
tials. Each full user license carries with it a unique record in the standard User object.This
user identity can be correlated to the resource record to determine at runtime the behav-
ior of the Skills Matrix.To create this correlation, add a lookup field to the Resource
object called User, setting its parent to the standard User object. For each resource record,
provide a value of the new User field.This lookup of the User from Resource can drive
the decision of the controller to make a set of skills editable or not.

When you’re done with the implementation, test it against the three user scenarios:
privileged user, consultant editing his or her own skills, and consultant viewing the skills
of another consultant.

Tip
Only users with the System Administrator profile will have access to your new Skills Matrix
page. To open the page to non-administrative users, in the Administration Setup area, click
Manage Users ➝ Profiles and select the profile of the users. Scroll to the Enabled Visual-
force Page Access section and click the Edit button. Select your page from the Available
Visualforce Pages list and click the Add button to move it to the Enabled Visualforce Pages
list. Click the Save button when you’re done.

Implementation Walkthrough
This subsection provides the code for a sample implementation of the Skills Matrix. It
includes the controller, the page, and controller test cases.

Skills Matrix Controller
Listing 7-22 contains a sample implementation of the Skills Matrix controller class.The
controller has four variables, each with a getter method for access by the Visualforce page.
The selectedResourceId variable contains the unique identifier of the resource selected
for editing or viewing. isEditable is a flag used by the page to enable or disable the Save
button and to determine whether to render skills as plain-text fields or editable drop-
down lists.The selectedResource variable contains several fields from the Resource

253Sample Application: Skills Matrix

object needed throughout the controller, queried using the selectedResourceId.The
selectedSkills list contains the skill types and ratings to be displayed and edited in the
user interface, and this same list is used to update the database upon a save action.

The controller has two actions: save and refresh.The save action applies the
changes from the drop-down lists of skill ratings by upserting them into the database.The
refresh action uses the unique identifier of the currently selected resource
(selectedResourceId) to query the database for Skill records. It compares them against
the complete list of skill types via the database metadata call getPicklistValues. Finally,
it updates the isEditable variable based on whether the current user is privileged or is
associated with the currently viewed resource.

Several helper methods are in the controller. addError and addInfo are shortcuts for
adding notifications to the page, displayed using the pageMessages component.The
getCurrentUserResource method queries the Resource record corresponding to the
current user.The isManager method returns true if the user is privileged, enabling the
user to edit the skills of any resource.

Listing 7-22 Skills Matrix Controller

public class SkillsMatrixController {

public String selectedResourceId { get; set; }

public Boolean isEditable { get; private set; }

public Resource__c selectedResource { get; private set; }

public List<Skill__c> selectedSkills { get; private set; }

public List<SelectOption> getResourceOptions() {

List<SelectOption> options = new List<SelectOption>();

options.add(new SelectOption(

'', '-- Select Resource --'));

List<Resource__c> resources = [SELECT Id, Name

FROM Resource__c ORDER BY Contact__r.LastName];

for (Resource__c resource : resources) {

options.add(new SelectOption(resource.Id,

resource.Name));

}

return options;

}

public PageReference refresh() {

if (selectedResourceId == null) {

addError('Select a resource');

return null;

}

selectedResource = [SELECT Id, Name,

User__r.UserRoleId,

User__r.ProfileId,

(SELECT Type__c, Rating__c, LastModifiedDate

FROM Skills__r ORDER BY Rating__c DESC)

FROM Resource__c

254 Chapter 7 User Interfaces

WHERE Id = :selectedResourceId

LIMIT 1];

Set<String> skillTypes = new Set<String>();

selectedSkills = new List<Skill__c>();

for (Skill__c skill : selectedResource.Skills__r) {

skillTypes.add(skill.Type__c);

selectedSkills.add(skill);

}

Schema.DescribeFieldResult field = Skill__c.Type__c.getDescribe();

String picklistValue = null;

for (Schema.PicklistEntry entry : field.getPicklistValues()) {

picklistValue = entry.getLabel();

if (!skillTypes.contains(picklistValue)) {

selectedSkills.add(

new Skill__c(Resource__c = selectedResource.Id,

Type__c = picklistValue));

}

}

if (isManager()) {

isEditable = true;

} else {

Resource__c userResource = getCurrentUserResource();

isEditable =

selectedResource != null && userResource != null

&& selectedResource.Id == userResource.Id;

}

return null;

}

private void addError(String msg) {

ApexPages.addMessage(new ApexPages.Message(

ApexPages.Severity.ERROR, msg));

}

private void addInfo(String msg) {

ApexPages.addMessage(new ApexPages.Message(

ApexPages.Severity.INFO, msg));

}

public Resource__c getCurrentUserResource() {

List<Resource__c> userResource = [SELECT Id, Name,

User__r.UserRoleId, User__r.ProfileId

FROM Resource__c

WHERE User__c = :UserInfo.getUserId()

LIMIT 1];

if (userResource.size() == 0) {

addError('No resource associated with user');

return null;

} else {

255Sample Application: Skills Matrix

return userResource.get(0);

}

}

private Boolean isManager() {

List<Profile> profiles = [SELECT Id

FROM Profile WHERE Name IN (

'Project Manager', 'Vice President', 'System Administrator')

AND Id = :UserInfo.getProfileId() LIMIT 1];

return profiles.size() == 1;

}

public PageReference save() {

try {

upsert selectedSkills;

addInfo('Changes saved');

} catch(DmlException e) {

addError('Could not save changes: ' + e.getMessage());

}

return null;

}

}

Skills Matrix Visualforce Page
Listing 7-23 contains sample code for the Skills Matrix Visualforce page. It uses
Force.com-styled view components to achieve an appearance that resembles the native
user interface.The pageBlock and pageBlockButtons components visually separate the
selection of the resource from the skills data and Save button, and the sectionHeader
component mimics the appearance of a native object tab.

The pageBlockTable component iterates over the list of skills, displaying them as a
table using standard Force.com styling. Each row of the table includes two columns.The
first column contains the skill type.The second contains two components: one for editing
the skill rating and another strictly for viewing it. Only one of these components is
shown at a time.They are rendered conditionally based on whether the controller has
determined the data to be editable. If the skills data is editable, only the inputField com-
ponent is rendered. If the current user does not have the rights to edit the ratings, only
the outputField is rendered.

Listing 7-23 Skills Matrix Visualforce Page

<apex:page controller="SkillsMatrixController"

tabStyle="Skill__c">

<style>

.resourceLabel { padding-right: 15px; }

.goButton { margin-left: 10px; }

</style>

256 Chapter 7 User Interfaces

<apex:sectionHeader title="Services Manager"

subtitle="Skills Matrix" />

<apex:pageMessages />

<apex:form id="form">

<apex:outputLabel value="Resource:" for="selectedResourceId"

styleClass="resourceLabel" />

<apex:selectList id="selectedResourceId" title="Resource"

value="{!selectedResourceId}" size="1">

<apex:selectOptions value="{!resourceOptions}" />

</apex:selectList>

<apex:commandButton action="{!refresh}" value="Go!"

styleClass="goButton" />

<p />

<apex:pageBlock title="Skills">

<apex:pageBlockButtons>

<apex:commandButton action="{!save}" value="Save"

disabled="{!NOT isEditable}" />

</apex:pageBlockButtons>

<apex:pageBlockTable value="{!selectedSkills}" var="skill"

rendered="{!selectedResourceId != ''}">

<apex:column value="{!skill.Type__c}" />

<apex:column headerValue="Rating">

<apex:outputField value="{!skill.Rating__c}"

rendered="{!NOT isEditable}" />

<apex:inputField value="{!skill.Rating__c}"

rendered="{!isEditable}" />

</apex:column>

<apex:column value="{!skill.LastModifiedDate}" />

</apex:pageBlockTable>

</apex:pageBlock>

</apex:form>

</apex:page>

Controller Tests
The test cases in Listing 7-24 achieve 96% coverage of the Skills Matrix controller.They
begin with a static initializer and init method to prepare the database for the tests.This
preparation includes deleting all existing Resource records so that they do not interfere
with the tests and adding test data.These actions are not permanent.All database actions
during testing are rolled back automatically upon test completion.

The test cases rely on two Resource records:Tim and Barry.To test the behavior of
the Skills Matrix on existing data,Tim is given a single Skill record, whereas Barry is left
without skills. For testing security,Tim’s Resource record is associated with a User record
named Tim, whereas Barry’s Resource record is not mapped to a User record. Update

257Sample Application: Skills Matrix

the query for the users in the static initializer to match two usernames in your own
organization.

Listing 7-24 Skills Matrix Unit Test Class

@isTest

private class TestSkillsMatrixController {

static PageReference page;

static SkillsMatrixController controller;

static Resource__c barry, tim;

static User barryUser, timUser;

static {

delete [SELECT Id FROM Resource__c];

timUser = [SELECT Id FROM User WHERE Name = 'Tim Barr' LIMIT 1];

barryUser = [SELECT Id FROM User WHERE Name = 'Barry Cade' LIMIT 1];

init();

}

private static void init() {

barry = new Resource__c(Name = 'Barry');

tim = new Resource__c(Name = 'Tim', User__c = timUser.Id);

insert new Resource__c[] { barry, tim };

Skill__c[] skills = new Skill__c[] {

new Skill__c(Type__c = 'Java', Rating__c = '3',

Resource__c = tim.Id) };

insert skills;

page = new PageReference('SkillsMatrix');

Test.setCurrentPage(page);

controller = new SkillsMatrixController();

}

static testMethod void testAsUser() {

System.runAs(timUser) {

init();

controller.selectedResourceId = barry.Id;

controller.refresh();

System.assert(!controller.isEditable);

controller.selectedResourceId = tim.Id;

controller.refresh();

System.assert(controller.isEditable);

}

}

static testMethod void testNoResourceForUser() {

System.runAs(barryUser) {

init();

controller.selectedResourceId = barry.Id;

controller.refresh();

System.assert(ApexPages.hasMessages(ApexPages.Severity.ERROR));

}

}

258 Chapter 7 User Interfaces

static testMethod void testNoSkills() {

controller.getResourceOptions();

controller.selectedResourceId = barry.Id;

controller.refresh();

System.assert(controller.selectedSkills.size() > 0);

System.assert(controller.isEditable);

}

static testMethod void testWithSkills() {

controller.getResourceOptions();

controller.selectedResourceId = tim.Id;

controller.refresh();

System.assert(controller.selectedSkills.size() > 0);

System.assert(controller.selectedSkills.get(0).Type__c == 'Java');

}

static testMethod void testNoResourceSelected() {

controller.selectedResourceId = null;

PageReference ref = controller.refresh();

System.assert(ApexPages.hasMessages());

}

static testMethod void testSave() {

final String skillRating = '5 - Expert';

controller.getResourceOptions();

controller.selectedResourceId = barry.Id;

controller.refresh();

List<Skill__c> selectedSkills = controller.selectedSkills;

Skill__c skill = selectedSkills.get(0);

skill.Rating__c = skillRating;

String skillType = skill.Type__c;

controller.save();

System.assert(ApexPages.hasMessages(ApexPages.Severity.INFO));

Skill__c savedSkill = [SELECT Rating__c FROM Skill__c

WHERE Resource__c = :barry.Id AND

Type__c = :skillType LIMIT 1];

System.assert(savedSkill != null &&

savedSkill.Rating__c == skillRating);

}

}

The test methods are described here in the order in which they appear in the code:

n testAsUser:This test uses the System.runAs method to assume the identity of
Tim.Tim is assigned to a User, so when his corresponding Resource record is
selected and the list of skills is refreshed, the isEditable flag should be set to true.
If Barry is selected, the flag should be false.

259Summary

n testNoResourceForUser: System.runAs is used again, this time to test for an
error condition. Barry’s user does not have a child Resource record, so he should
receive an error when visiting the Skills Matrix.Without a mapping to the User
object, the application cannot determine whether the current user has access to
edit skills.

n testNoSkills:This test method runs as a System Administrator. It selects Barry
from the resource list and refreshes, asserting that there are Skills records.These
records are created from the Skill object’s Type__c field’s picklist values.Another
assertion is made that the skill ratings are editable because an administrator can edit
the skills of all resources.

n testWithSkills:This test retrieves the skills for Tim and asserts that the Java skill
is first in the list.This is because Tim already has a Skill record for Java, and existing
records should be placed at the top of the user interface.

n testNoResourceSelected:The selected resource is set to null to verify that an
information message is added to the page.This message instructs the user to select a
resource.

n testSave:This test uses the controller to rate Barry as an expert in the first skill
on the skills list. It then queries the database independently to verify that the con-
troller saved the data correctly.

Summary
This chapter has covered the basics of Visualforce.Visualforce is a challenging but reward-
ing area of the Force.com platform, enabling the development of custom, data-intensive
Web user interfaces using high-level languages for both logic and presentation. Mastering
Visualforce requires the application of all of your Force.com skills and knowledge: the
database, security model, and Apex code.

Use this chapter as a jumping-off point to the online documentation and Visualforce
Developer’s Guide.The Visualforce Developer’s Guide contains the most current and
complete information on the standard Visualforce view components.

Before moving on to the next chapter, consider what you’ve learned about Visualforce:

n A strong distinction exists between the controller and the page. No business logic is
allowed on the page.

n The state of your pages at runtime is maintained automatically by Force.com.This
enables you to design stateful interactions across one or many pages without writ-
ing custom state transfer code, assuming you always use Visualforce action compo-
nents rather than raw HTML tags such as anchors.

n Custom controller code runs as the system user by default, meaning record-level
security is not honored.

This page intentionally left blank

8
Advanced User Interfaces

Now that you are familiar with the basics of Visualforce, this chapter introduces features
that enable you to build richer, more interactive user interfaces.The features are divided
into the following sections:

n Asynchronous Actions: Visualforce has built-in, cross-browser support for Ajax
behavior, without requiring you to write JavaScript code or integrate with
JavaScript libraries.

n Modular Visualforce: Visualforce has a number of features to enable you to
write modular pages.You can embed static content, build pages that include other
pages, define page templates, and create your own library of customVisualforce
components.

n Extending Visualforce: Because Visualforce pages are standard HTML, CSS, and
JavaScript when rendered in the Web browser, they can include technology not
provided by Force.com, such as JavaScript libraries and Adobe Flex. Pages can also
be accessed by users who do not have accounts in your Force.com organization
using a feature called Force.com Sites.

n Sample Application: The Services Manager sample application’s Skills Matrix is
enhanced to demonstrate Ajax behavior and the use of JavaScript libraries and cus-
tom Visualforce components.

Asynchronous Actions
So far, you’ve built Visualforce pages that have a simple interaction with their controller.
They display data from the controller, potentially allowing the user to change it, and then
submit it using an action component such as a commandButton.The action component
invokes a method on the controller that returns a PageReference, navigating the user to
a new page or refreshing the current page.

262 Chapter 8 Advanced User Interfaces

Visualforce actions also support more complex, asynchronous interactions with the
page, commonly referred to as Ajax.Visualforce supports Ajax in two ways:

1. It allows actions to run in the background.The user is free to continue working
with the page while Force.com processes the result. For example, a duplicate check-
ing algorithm could examine the page while the user is inputting data, flagging
duplicate records as they are discovered.

2. Actions can refresh a subset of the Visualforce page, such as a table of data, rather
than the entire page.This can create a richer, more interactive experience for users
and often better-performing pages.

This section explains how to add Ajax behavior to Visualforce pages. It includes the fol-
lowing subsections:

n Partial Page Refresh: Refresh selected elements on the page rather than the
whole page.

n Action as JavaScript Function: Define a JavaScript function that calls an action
method on the controller.

n Action as Timed Event: Configure an action method to fire at a predefined time
interval.

n Action as JavaScript Event: Bind a JavaScript event (such as onclick) to a con-
troller action method.

n Indicating Action Status: Reflect the status of an asynchronous action on the
page.

Partial Page Refresh
Any action component can refresh part of a page using the reRender attribute.This
attribute contains a comma-separated list of identifiers (the id values) of Visualforce view
components to be refreshed when the action is completed.The identifiers must be of
Visualforce components, not raw HTML elements. If no reRender value is provided or
the identifiers are invalid, the entire page is refreshed.This is the default behavior of an
action component.

Listings 8-1 and 8-2 are a Visualforce page and controller that demonstrate partial page
refresh.A commandButton is defined to increment an integer value in the controller when
clicked, via the increment method.The amount to be incremented is passed from the
page to controller during the click, using the param component.The increment method
returns a null PageReference to remain on the current Visualforce page rather than navi-
gating to a new page.This is a requirement for partial page refreshes.

An outputPanel displays the current value of the integer.The reRender attribute is
set on the commandButton to refresh only the outputPanel rather than the entire page.

263Asynchronous Actions

Listing 8-1 Visualforce Page Using Partial Page Refresh

<apex:page controller="MyPageController">

<apex:form>

<apex:commandButton action="{!increment}" value="Increment"

reRender="result">

<apex:param assignTo="{!amount}" value="2" />

</apex:commandButton>

<apex:outputPanel id="result">The value is: {!value}

</apex:outputPanel>

</apex:form>

</apex:page>

Listing 8-2 Visualforce Controller Using Partial Page Refresh

public class MyPageController {

public Integer value { get; private set; }

public Integer amount { get; set; }

public MyPageController() {

value = 0;

}

public PageReference increment() {

value += amount;

return null;

}

}

Note
Not every Visualforce component supports being the target of a reRender attribute. If you
discover a component that is not refreshing properly, enclose it in an outputPanel compo-
nent, give the outputPanel a unique id value, and specify that id value in the reRender
attribute.

Action as JavaScript Function
The action component actionFunction allows you to call an Apex method in the con-
troller as a JavaScript function.This decouples the user interface representation of the
action from the action itself.You’ve already experienced action components that require a
user to click a link or button to trigger a controller action.With actionFunction, you
can call an action from anywhere in your page, including custom JavaScript code.

To use the actionFunction component, minimally specify an action to invoke in the
action attribute, a JavaScript function name in the name attribute, and enclose it in a form
component. Optionally, you can define arguments on the function by nesting param com-
ponents inside the actionFunction tag.You can also define a JavaScript function to be
invoked when the action is complete by using the oncomplete attribute.

264 Chapter 8 Advanced User Interfaces

Listings 8-3 and 8-4 contain page and controller code demonstrating the use of
actionFunction and partial page refresh. It multiplies a number by two using a controller
method exposed as a JavaScript function.The resulting value is displayed on the page
using a pageMessages component and also refreshed in the call to the JavaScript function.
This causes a stateful interaction in which the number is multiplied in a series.

Listing 8-3 Visualforce Page Using actionFunction

<apex:page controller="MyPageController">

<apex:outputPanel id="result">

<apex:pageMessages />

Run

</apex:outputPanel>

<apex:form>

<apex:actionFunction name="timesTwoFunction"

action="{!timesTwo}" reRender="result">

<apex:param name="arg1" value="" assignTo="{!value}" />

</apex:actionFunction>

</apex:form>

</apex:page>

Listing 8-4 Visualforce Controller Using actionFunction

public class MyPageController {

public Integer value { get; set; }

public MyPageController() {

value = 1;

}

public PageReference timesTwo() {

value *= 2;

addInfo('The result is: ' + value);

return null;

}

private void addInfo(String msg) {

ApexPages.addMessage(new ApexPages.Message(

ApexPages.Severity.INFO, msg));

}

}

Action as Timed Event
The actionPoller component invokes a method on the controller at a constant time
interval. It can be used to perform a long-running operation incrementally, using a series
of smaller steps.Another common usage is to perform a repetitive background task such as

265Asynchronous Actions

querying the database for some interesting business event. For example, a user interface
designed for project staffers might use an actionPoller to automatically refresh a list of
available resources once per minute.

To use actionPoller, provide a value for the action attribute, the controller method
to invoke, and enclose it in a form component.This usage fires the action method every
60 seconds. Optionally, provide a value for the interval attribute, the time in seconds to
wait between invocations of the action.This value must be 5 or greater.You can also set
the onsubmit and oncomplete attributes, JavaScript functions to call before the action is
invoked and after the action is completed.

Listing 8-5 is a sample page that uses the actionPoller along with the controller from
Listing 8-4. But now instead of clicking a link to multiply the number by two, it happens
automatically every five seconds.

Listing 8-5 Visualforce Page Using actionPoller

<apex:page controller="MyPageController">

<apex:outputPanel id="result">

<apex:pageMessages />

</apex:outputPanel>

<apex:form>

<apex:actionPoller interval="5" action="{!timesTwo}"

reRender="result" />

</apex:form>

</apex:page>

Action as JavaScript Event
To invoke an action on the controller as a result of a JavaScript event, use the
actionSupport component.This component fires an action whenever the event is
detected on the enclosing Visualforce component.

The actionSupport component is placed within the body of a Visualforce component
that fires the JavaScript event of interest. For example, an inputField component renders
an HTML input element, so it fires standard JavaScript events such as onfocus, onblur,
onclick, and so forth. Placing an actionSupport component within the inputField
component allows it to listen for one of these events and invoke a controller method in
response.

To use actionSupport, specify the name of the controller method to invoke in its
action attribute, and a single JavaScript event to listen for in the event attribute. By
default, actionSupport overrides the default browser-level handlers for the selected
event.To disable this behavior, include a disableDefault attribute with the value of
false.The onsubmit and oncomplete attributes are also supported to allow pre- or post-
processing of the request using your own JavaScript function.

Reusing the controller code from Listing 8-4, the Visualforce page in Listing 8-6 fires
the timesTwo action when the text field receives focus.Try it by clicking somewhere else
on the page, and then into the text field.

266 Chapter 8 Advanced User Interfaces

Listing 8-6 Visualforce Page Using actionSupport

<apex:page controller="MyPageController">

<apex:outputPanel id="result">

<apex:pageMessages />

</apex:outputPanel>

<apex:form>

<apex:inputText>

<apex:actionSupport action="{!timesTwo}"

event="onfocus" reRender="result" />

</apex:inputText>

</apex:form>

</apex:page>

Indicating Action Status
You’ve learned how to invoke actions asynchronously.To notify users when asynchronous
actions are being performed, use the actionStatus component in conjunction with any
action component.

The actionStatus component can notify users of two states: when an asynchronous
action is started and when it is stopped.To use it, place it in the location on your page
where you want to show the status message. Use the startText and stopText attributes
to specify the messages to be shown to the user. If you need to pass arguments to the
action, use a nested param component.

Listing 8-7 provides an example of using the actionStatus component, building on
the page from Listing 8-6 and the controller from Listing 8-4.When the text field receives
focus, the action is fired, and the status message changes to Started.When the action is
complete, the status message is set to Stopped.

Listing 8-7 Visualforce Page Using actionStatus

<apex:page controller="MyPageController">

<apex:outputPanel id="result">

<apex:pageMessages />

</apex:outputPanel>

<apex:actionStatus id="status"

startText="Started" stopText="Stopped" />

<apex:form>

<apex:inputText>

<apex:actionSupport action="{!timesTwo}"

event="onfocus" reRender="result" status="status" />

</apex:inputText>

</apex:form>

</apex:page>

267Asynchronous Actions

To display an image or a stylized message, you can use the start and stop facets. Facets
are modifiers accepted by some Visualforce components to specify rich values that cannot
be contained in XML attributes, such as nested HTML elements. Listing 8-8 is an exam-
ple of using the facets to mark up the status message with H2 HTML heading elements.

Listing 8-8 Code Snippet Using actionStatus with Facets

<apex:actionStatus id="status">

<apex:facet name="stop">

<h2>Stopped</h2>

</apex:facet>

<apex:facet name="start">

<h2>Started</h2>

</apex:facet>

</apex:actionStatus>

To display a dynamic status message, you can write a JavaScript function to modify
HTML elements on the page and call it from the actionStatus component.The
actionStatus component supports the onStart and onStop attributes, which specify
JavaScript functions to be invoked when the associated action is started and stopped.
Listing 8-9 provides an example of this usage, using JavaScript to update the HTML con-
tent of a div tag in response to the actionStatus changing state.

Listing 8-9 Code Snippet Using actionStatus with JavaScript

<apex:page controller="MyPageController">

<script type="text/javascript">

function start() {

document.getElementById(“myStatus").innerHTML = 'Started';

}

function stop() {

document.getElementById(“myStatus").innerHTML = 'Stopped';

}

</script>

<apex:outputPanel id="result">

<apex:pageMessages />

</apex:outputPanel>

<apex:actionStatus id="status"

onStart="start();" onStop="stop();" />

<div id="myStatus"></div>

<apex:form>

<apex:inputText>

<apex:actionSupport action="{!timesTwo}"

event="onfocus" reRender="result" status="status" />

</apex:inputText>

</apex:form>

</apex:page>

268 Chapter 8 Advanced User Interfaces

Modular Visualforce
Visualforce pages that are modular, composed of a number of smaller reusable building
blocks, improve usability by providing consistent appearance and behavior.They are also
easier to develop and maintain. Common functionality is defined once in a single place
rather than repeated in multiple pages.

Visualforce provides several features you can use to create modular, highly maintain-
able pages:

n Static Resources: Reusable images, scripts, stylesheets, and other static content can
be stored in static resources, available for embedding in all Visualforce pages in the
Force.com organization.

n Inclusion: The contents of one Visualforce page can be included in another page.A
common use for this is page headers and footers.

n Composition: Composition allows one Visualforce page to serve as a template for
another.The template specifies the static and dynamic portions of a page. Use the
template to inject dynamic content while maintaining a consistent page layout and
structure.

n Custom Visualforce Components:Visualforce provides a library of standard
components such as pageBlock and dataTable, but also allows you to define your
own custom components, reusable in any page.

Static Resources
Static resources are containers for content used in Visualforce pages that does not change.
Examples of unchanging content include images, stylesheets, and JavaScript files.Although
many alternatives to static resources exist, such as Force.com Documents and Amazon S3,
static resources have the benefit of being tightly integrated with the Visualforce page.Their
names are validated when the page is compiled, preventing the creation of a page that
refers to an invalid static resource.

A static resource can be a single file or a zip archive consisting of many files.The maxi-
mum size of a single static resource is 5MB, and no more than 250MB of static resources
can be defined in any single Force.com organization.

To create a new static resource, follow these steps:

1. In the App Setup area, click Develop ➝ Static Resources.

2. Click the New button to add a new static resource.

3. Enter a name for the static resource.The name cannot contain spaces or other non-
alphanumeric characters, must begin with a letter, and must be unique.The name is
used to refer to the static resource in Visualforce pages.

4. Specify an optional description to explain the purpose of this static resource to
other users.

269Modular Visualforce

5. Click the Browse button to find a file in your file system to provide the content for
the static resource.

6. Leave the Cache Control setting at its default value, Private.This setting is discussed
later in the “Force.com Sites” subsection.

7. Click the Save button to complete the static resource definition.

If your static resource contains a single file, refer to it in your Visualforce page using the
syntax {!$Resource.name}, where name is the name of the static resource to include.

The syntax is different for referring to a single file within a static resource that is a zip
archive. Use {!URLFOR($Resource.name, 'path/tofile')}, where name is the name of
the static resource, and path/tofile is the full path to the desired file.

Inclusion
A simple way to create modular Visualforce pages is to use the include component. It
embeds the content of the included page in the current page.The pageName attribute
specifies the name of the Visualforce page to include.The included page must be a Visual-
force page.You cannot include arbitrary URLs.

Listing 8-10 provides an example of using the include component. It embeds the page
named SkillsMatrix between two horizontal rules.

Listing 8-10 Visualforce Page Using include

<apex:page>

<hr />

<apex:include pageName="SkillsMatrix" />

<hr />

</apex:page>

When a single Visualforce page ends up containing multiple controllers due to the
include component, controllers are isolated from each other and operate independently.
The controller of the included page does not have access to the state of the controller on
the parent page, and vice versa. But pages are included inline, so JavaScript functions and
DOM references can be made across included pages without security restrictions.

Caution
Be careful when using messages and pageMessages components in pages that are to be
included in other pages. If the included page and parent page both supply one of these com-
ponents, the same page messages will be rendered in multiple locations.

Composition
Composition is a powerful way to create modular Visualforce pages. It allows a Visualforce
page to be defined as a template.The template can contain static content and placeholders
for content that can be overridden by an implementing page.This enforces a standard

270 Chapter 8 Advanced User Interfaces

structure for the pages without requiring Visualforce developers to remember a sequence
of include components. It also places more control over the appearance of many pages
within the scope of a single page (the template) for easier maintenance.

In the template page, the insert component is used to define a named area that can be
overridden by a page implementing the template.The implementing page uses the
composition component to set the name of the page to serve as its template. It then pro-
vides content for the named areas of the template using the define component.

For example, a template might consist of a header, body, and footer, with horizontal
rules between each. Listing 8-11 defines this template page, named MyPageTemplate.
Note that the header area includes its own default content.This optional content is ren-
dered in the event that content is not provided by an implementing page.

Listing 8-11 Visualforce Page as Template

<apex:page>

<apex:insert name="header">

<h1>Header</h1>

</apex:insert>

<hr /><apex:insert name="body" />

<hr /><apex:insert name="footer">

Inheriting the footer content

</apex:insert>

</apex:page>

The template is not interesting to render by itself, but in Listing 8-12 it’s implemented
using the composition component.The template attribute specifies the template defined
in Listing 8-11, which should be named MyPageTemplate for this example to work prop-
erly.The three dynamic areas are merged into the template to result in the final rendered
output.The header area is provided, so it overrides the content defined by the template.
The footer is inherited from the template.

Listing 8-12 Visualforce Page Using Template

<apex:page>

<apex:composition template="MyPageTemplate">

<apex:define name="header">

Overriding the header content

</apex:define>

<apex:define name="body">

This is the body content

</apex:define>

</apex:composition>

</apex:page>

271Modular Visualforce

Composition works with multiple controllers identically to the include component.
They run independently of each other, but all content is rendered in the same page.

Custom Visualforce Components
Custom components allow you to build a library of reusable user interface elements,
encapsulating behavior and appearance while integrating with the data on the page and in
the controller using the standard expression language.With custom components, all the
functionality of standard components such as pageBlock and inputField are available to
you to define from scratch using Visualforce and Apex code.

Custom components can be used to hide the implementation details of client-side
technology like JavaScript. For example, a component can wrap a JavaScript user interface
library such as Sencha’s Ext JS, freeing Visualforce page developers from the nitty-gritty of
integrating Ext JS code into their pages. Custom components can also serve as full-blown
pages themselves, reading and writing in the Force.com database through standard or
custom controllers.

Defining a Custom Component
To create a new component, select File ➝ New ➝ Apex Component in the Force.com
IDE. Or, using the Web browser, navigate to App Setup and click Develop ➝
Components.

Custom components are defined with component as the root-level element rather than
the familiar page. Following the component tag is an optional set of attribute compo-
nents specifying the names and types of variables that can be shared between the page and
the component. Supported types are primitives, standard and custom database objects,
one-dimensional arrays, and custom Apex classes.Attributes can be declared as required,
meaning that a page using the component must provide a value or it fails to compile.
Attributes can also be assigned to member variables in a controller using the assignTo
attribute.

The remainder of the component definition is identical to a standard Visualforce page,
containing a combination of JavaScript, CSS, HTML elements, and standard components,
as well as other custom components.

Listing 8-13 provides an example of a component for showing an address on a Google
Map.To try the example in Listing 8-13, apply for your own Google Maps API key and
replace the “...” in the value of the includeScript component.API keys are bound to a
domain, so provide the correct URL of your Visualforce pages (for example, https://c.na6.
visual.force.com) when you sign up at http://code.google.com/apis/maps/signup.html.

Listing 8-13 Custom Visualforce Component to Render Google Map

<apex:component>

<apex:attribute name="address" type="string" required="true"

description="Address to show on the Google map" />

<apex:includeScript

value="http://maps.google.com/maps?file=api&v=2.x&key=..." />

https://c.na6.visual.force.com
https://c.na6.visual.force.com
http://code.google.com/apis/maps/signup.html

272 Chapter 8 Advanced User Interfaces

<script>

var map = null;

var geocoder = null;

function showAddress(address) {

initGMap();

if (geocoder) {

geocoder.getLatLng(

address,

function(point) {

if (point) {

map.setCenter(point, 15);

var marker = new GMarker(point);

map.addOverlay(marker);

}

});

}

}

function initGMap() {

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById(“map_canvas"));

if (geocoder == null) {

geocoder = new GClientGeocoder();

}

}

}

function init() {

showAddress('{!address}');

}

var previousOnload = window.onload;

window.onload = function() {

if (previousOnload) {

previousOnload();

}

init();

}

</script>

<div id="map_canvas" style="width: 300px; height: 250px"></div>

</apex:component>

Using a Custom Component
Using a custom component in a page is much like using a standard component.The dif-
ference is that instead of prefacing the component with the apex namespace, you use c.
Listing 8-14 shows an example of using the custom component defined in Listing 8-13 to
render a Google Map for an address. It references the GoogleMap component, followed by

273Extending Visualforce

a value for its required address attribute containing the street address to render on the
map. In this example, the attribute value is hard-coded into the page, but this is not the
only way to provide an attribute value. Like standard components, attribute values can
include expression language, enabling them to share data with the controller.

Listing 8-14 Visualforce Page Using Custom Component

<apex:page>

<c:GoogleMap address="1 market st. san francisco, ca" />

</apex:page>

Extending Visualforce
You can extend the appearance and behavior of Visualforce pages dramatically using stan-
dard JavaScript libraries provided by the open-source community or independent software
vendors.Adobe Flex is another path for extending Visualforce, allowing part or all of a
page to be covered with a rich, animated canvas that offers developers pixel-level control.
You can also extend Visualforce to a new population of users, anonymous users who do
not have accounts in your Force.com organization.

This section covers these scenarios in more detail in the following subsections:

n Using JavaScript Libraries: For the most part, including open-source and com-
mercial JavaScript libraries in Visualforce is a straightforward process after you learn
how to reference Visualforce components dynamically.

n Adobe Flex and Visualforce: Achieve rich, pixel-perfect user interfaces across
browsers using Adobe Flex, while using Force.com as your data source.

n Force.com Sites: Extend Force.com to anonymous users using Sites, opening
Visualforce to general-purpose Web development.

Using JavaScript Libraries
You can use a wide variety of open-source and commercial JavaScript libraries in Visual-
force pages.These libraries can include user interface widgets, utility functions, and entire
frameworks for more productive JavaScript development.

The effort involved in integrating each library with Visualforce varies with the library.
In general, the more dynamic your Visualforce page is and the more it deviates from the
interaction patterns assumed by the JavaScript library, the more difficult the task becomes.

A common scenario in JavaScript integration is referencing aVisualforce component
dynamically in a JavaScript function. EachVisualforce component is assigned a unique
identifier, set in its id attribute. If you override this id attribute and provide your own

274 Chapter 8 Advanced User Interfaces

value,Visualforce does not simply accept your value. It fully qualifies it by affixing the iden-
tifiers of any containers included between your component and the root page component.

So, if your JavaScript calls document.getElementById() and provides a plain identifier
as an argument, it will fail to retrieve the element. Instead, use {!$Component.id} as the
argument, where id is the identifier you set on yourVisualforce component.When the
page is rendered,Visualforce reads this token and replaces it with the fully qualified value of
the identifier. If the identifier cannot be found, the token is replaced with an empty string.

If your component is contained within a form component, you must provide the form
with an id value as well and include the form identifier in the component reference. For
example, if the form identifier is myForm and the component you want to obtain a refer-
ence to is myText, the usage is {!$Component.myForm:myText}.

Listing 8-15 shows an example of a Visualforce page that obtains a component in
JavaScript and displays an alert with its value. Click the Run link to try it.

Listing 8-15 Referencing a Visualforce Component in JavaScript

<apex:page>

<script type="text/javascript">

function demo() {

var component = document.getElementById(

“{!$Component.myForm:myText}");

alert('The value is ' + component.value);

}

</script>

<apex:form id="myForm">

<apex:inputText id="myText" />

Run

</apex:form>

</apex:page>

Tip
Use the View Source feature of your Web browser or a plug-in such as Firebug to debug com-
ponent identifier problems.

Adobe Flex and Visualforce
Adobe Flex is a rich client technology that renders user interfaces using the Adobe Flash
player. Flash player is a plug-in installed in most browsers and used by YouTube and other
popular Web sites. Flex user interfaces often feature animation and complex data visualiza-
tions that might be harder to achieve with standard HTML, CSS, and JavaScript. Flex has
the added benefit of being highly consistent in appearance and behavior across different
browsers and platforms, without requiring extra effort from developers.

You can add Flex components to Visualforce pages to provide animation and other
graphics-intensive user interfaces that are not practical to implement purely using

275Extending Visualforce

Visualforce components.These Flex components can interact directly with Force.com
using an integration technology called the Force.com Flex framework.They can also inte-
grate with Visualforce components using standard JavaScript.

Caution
Deciding when and when not to use Flex can be a challenge. Although it provides the capa-
bility to create exciting user interfaces with little code, it’s not a native part of Force.com or
the Web browser. Consider the requirements of your user interface carefully to justify its use.
Beyond the concerns of load-time performance (the overhead of loading the Flash player and
the component itself), performance penalties can occur in moving rendering away from the
Force.com service and into the user’s Web browser. Additionally, many of the development
efficiencies of Visualforce, such as tight, compile-time integration with the database, are lost
when you develop in Flex.

Flex is a deep and feature-rich technology unto itself, providing the XML markup lan-
guage MXML to describe the appearance of the user interface and ActionScript as its
JavaScript-like scripting language.This subsection provides a brief introduction to using
Adobe Flash Builder for Force.com to integrate with Force.com data. It assumes you are
familiar with ActionScript and MXML because these subjects fall well outside the scope
of this book.

Introduction to the Adobe Flash Builder for Force.com
Visit http://developer.force.com/flashbuilder to download the latest version of the Adobe
Flash Builder for Force.com. It combines the functionality of Adobe Flash Builder and the
Force.com IDE into a single development environment. It also provides new functionality
to help create Flex applications that interact with Force.com. For example, it includes a
new type of project, called a Force.com Flex Project, pre-configured with a library of
ActionScript classes to make SOQL calls and perform DML operations. It also provides
three new user interface components: FieldContainer, FieldElement, and LabelAndField.
They allow quick construction of Visualforce-like, form-based user interfaces that are
bound to Force.com data. Figure 8-1 shows Flash Builder for Force.com in action.

Creating a Flex Project
To get started with Flash Builder, follow the steps given next to create a sample project:

1. Create a new Force.com Flex project called FlexDemo.

2. In the project’s properties, on the Flex Build Path tab, change the Framework link-
age menu setting to Merged into code.

3. Enter the MXML code shown in Listing 8-16 and save it. If Project ➝ Build Auto-
matically is checked, bin-debug/FlexDemo.swf is generated. If not, select Project ➝
Build Project to explicitly compile the project.

http://developer.force.com/flashbuilder

276 Chapter 8 Advanced User Interfaces

Figure 8-1 Adobe Flash Builder for Force.com

Listing 8-16 Flex Demo MXML

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx" width="1000" height="800"

xmlns:flexforforce="http://flexforforce.salesforce.com"

creationComplete="login(event)">

<fx:Declarations>

<flexforforce:F3WebApplication id="app"

serverUrl="https://www.salesforce.com/services/Soap/u/17.0"

loginComplete="loginCompleteHandler(event)"

loginFailed="loginFailedHandler(event)" />

</fx:Declarations>

<fx:Script>

<![CDATA[

import mx.collections.ArrayCollection;

import com.salesforce.results.QueryResult;

import mx.utils.ObjectUtil;

import mx.controls.Alert;

import mx.rpc.Responder;

import com.salesforce.events.LoginFaultEvent;

import com.salesforce.events.LoginResultEvent;

[Bindable]

277Extending Visualforce

private var resourceList: ArrayCollection =

new ArrayCollection();

private function login(event: Event): void {

app.serverUrl = parameters.server_url;

app.loginBySessionId(parameters.session_id);

}

protected function loginFailedHandler(event: LoginFaultEvent): void {

Alert.show('Login failed: ' + event);

}

protected function loginCompleteHandler(event: LoginResultEvent): void {

loadData();

}

private function handleFault(fault: Object): void {

Alert.show(ObjectUtil.toString(fault));

}

private function loadData(): void {

app.connection.query(“SELECT Id, Name, Home_Office__c, Region__c, “ +

“Hourly_Cost_Rate__c, Start_Date__c FROM Resource__c",

new mx.rpc.Responder(

function(qr: QueryResult): void {

if (qr.size > 0) {

resourceList = qr.records;

}

}, handleFault)

);

}

private function save(): void {

app.connection.update(resourceList.toArray(),

new mx.rpc.Responder(handleUpdate, handleFault));

}

private function handleUpdate(result: Object): void {

Alert.show(ObjectUtil.toString(result));

}

private function numericSortCompareFunction(

obj1: Object, obj2: Object): int {

return ObjectUtil.numericCompare(obj1 as Number,

obj2 as Number);

}

]]>

</mx:Script>

<mx:VBox height="100%" width="100%">

<mx:HBox>

<mx:Button label="Refresh" click="loadData();" />

<mx:Button label="Save" click="save();" />

</mx:HBox>

<mx:DataGrid dataProvider="{resourceList}"

editable="true" selectable="false"

278 Chapter 8 Advanced User Interfaces

Figure 8-2 FlexDemo SWF as static resource

height="100%" width="100%">

<mx:columns>

<mx:DataGridColumn dataField="Name"/>

<mx:DataGridColumn dataField="Home_Office__c"/>

<mx:DataGridColumn dataField="Region__c"/>

<mx:DataGridColumn dataField="Hourly_Cost_Rate__c"

sortCompareFunction="numericSortCompareFunction" />

<mx:DataGridColumn dataField="Start_Date__c"/>

</mx:columns>

</mx:DataGrid>

</mx:VBox>

</mx:Application>

4. Upload bin-debug/FlexDemo.swf as a static resource in Force.com called
FlexDemo.The result is shown in Figure 8-2.

5. Create a Visualforce page called FlexDemo using the code in Listing 8-17.

Listing 8-17 Visualforce Page for FlexDemo

<apex:page sidebar="false">

<apex:flash src="{!$Resource.FlexDemo}"

height="800" width="100%"

279Extending Visualforce

Figure 8-3 Using the FlexDemo page

flashvars="session_id={!$Api.Session_ID}

&server_url={!$Api.Partner_Server_URL_200}" />

</apex:page>

6. Visit the page /apex/FlexDemo to try it out. It should look as shown in Figure 8-3.
Click cells to edit them and then click the Save button to apply all changes to the
Force.com database or Refresh to revert them.

The following list contains some comments on the code:

n Sorting of numeric column: Sorting of the numeric column
Hourly_Cost_Rate__c required the definition of a sortCompareFunction.Without
this function, the numeric field would be sorted as a string field, resulting in an
incorrect order.

n Brute-force update strategy: All rows are updated regardless of whether they’ve
been modified.This could be improved by detecting changes in the DataGrid and
maintaining state to indicate the list of modified rows, passing only these rows to the
update method.

n No pagination: The DataGrid displays all records returned by the SOQL query.
This is not efficient or usable for large data sets.To improve this example, you could

280 Chapter 8 Advanced User Interfaces

modify the SOQL query to restrict the number of records returned or buffer the
results in a data structure in Flex and display subsets of the buffer in the DataGrid.

n Id column in SOQL: The Id column is included in the SOQL but not displayed
in the DataGrid component. It is required for the update method.

Supporting Microsoft Internet Explorer
If you’re using the Microsoft Internet Explorer browser, the FlexDemo example might
not work properly. Identify the issue from the following list and apply the suggested fix:

n Invalid session: Setting the session ID from a merge field can sometimes result in
invalid session errors. In this example, the resulting behavior is that the data from
Force.com is not shown in the DataGrid.A workaround is to add a controller
extension to add the method given in Listing 8-18.Then use this method instead of
{!$Api.Session_ID} in your flashvars.

Listing 8-18 Controller Extension Method

public String getSessionId() {

return UserInfo.getSessionId();

}

n Nonsecure items warning: When loading the Visualforce page, Internet Explorer
pops up a dialog that reads,“This page contains both secure and nonsecure items.
Do you want to display the nonsecure items?”The flashVisualforce component
seems to cause this problem.To make your page work better in Internet Explorer,
consider replacing the flash component with HTML markup to embed the Flex
object manually. Listing 8-19 provides an example of this.

Listing 8-19 HTML for Embedding Flex Object

<object

width="100%" height="800"

codebase="https://fpdownload.macromedia.com/get

/flashplayer/current/swflash.cab">

<param name="movie" value="{!$Resource.FlexDemo}" />

<param name="FlashVars"

value="session_id={!$Api.Session_ID}&

server_url={!$Api.Partner_Server_URL_200}" />

<embed src="{!$Resource.FlexDemo}"

width="100%" height="800"

FlashVars="session_id={!$Api.Session_ID}&

server_url={!$Api.Partner_Server_URL_200}"

281Extending Visualforce

type="application/x-shockwave-flash">

</embed>

</object>

Force.com Sites
Sites is a feature of Force.com that enables public access to your Visualforce pages.A site is
a collection of ordinary Visualforce pages and access control settings assigned to a unique
base URL.You can define one or many sites within a Force.com organization. Sites can be
individually brought up or down by your organization’s system administrator.

This subsection divides the discussion of Force.com Sites into four parts, summa-
rized next:

1. Enabling and Creating a Site: Turn on the Sites feature and create your first site.

2. Security Configuration: Configure the privileges granted to the anonymous user
of your site.

3. Adding Pages to a Site: Select Visualforce pages that are accessible within a site.

4. Authenticating Users: Blend public and private pages by integrating a site with
Customer Portal.

Enabling and Creating a Site
To enable Sites for the first time in your organization, go to the App Setup area and click
Develop ➝ Sites.You should see the screen shown in Figure 8-4.

Note
If you do not see a link to Sites listed in the Develop options, your organization does not
have access to the Sites feature. Visit http://developer.force.com/iwantsites to get access.

You must pick a Force.com domain name to continue.A domain name provides a
unique, root address for all of your sites.You can remap this address to your own brand-
name address (not Force.com) by configuring a CNAME alias on your domain hosting
provider.

Enter your domain name, select the box to indicate that you’ve read the terms of use,
and click the Check Availability button.After your domain name has been accepted, you
can define your first site.Adding a site also creates a number of sample components, pages,
and controllers in your organization.

After your first site is defined, the main Sites page should look as shown in Figure 8-5.

Security Configuration
When a new site is created, a corresponding profile is also created to manage the privi-
leges of the guest user.The guest user is a special type of Salesforce.com license that repre-
sents the anonymous user of your site.

http://developer.force.com/iwantsites

282 Chapter 8 Advanced User Interfaces

Figure 8-5 Sites main page

Figure 8-4 Enabling Sites feature

283Extending Visualforce

The guest profile for each site is configured using the native user interface.To view the
profile, navigate to the Site Details page for the site and click the Public Access Settings
button. Configure the privileges of the guest profile with extreme caution because mis-
takes can expose sensitive data in your Force.com organization to the entire world.

Note
The guest profile does not appear with other profiles in the Administration Setup area (Man-
age Users ➝ Profiles). You must use the Public Access Settings button on the Sites Detail
page to reach it.

If a page in a Force.com site uses static resources, make sure that they can be accessed
from the guest profile. Go to each static resource and set its Cache Control to Public.

Adding Pages to a Site
A site starts off with a series of system-defined pages such as Exception and FileNot-
Found.These pages are shown to users in the event of errors in the site.You can redefine
them by simply editing them.

You can also add your own custom pages to the site.To add pages, click the Edit button
in the Site Visualforce Pages section. Select one or more pages from the list on the left and
click the Add button to move them to the list of Enabled Visualforce Pages. Click Save
when you’re done.

The URL of your pages is the default Web address of the site followed by the name of
the page. For example, in Figure 8-6, the default Web address is http://force-book-devel-
oper-edition.na6.force.com. If a page named MyPage is added to the site, users can access
it at http://force-book-developer-edition.na6.force.com/MyPage.

Note
A site must be activated before any pages in it are accessible. To activate a site, select its
Active check box in the Site Detail or click the Activate link on the main Sites page.

Authenticating Users
Anonymous users can be converted to named, authenticated users through the Customer
Portal, or portal for short.A portal allows you to extend Force.com to your partners and
customers without requiring full user accounts for each of them. It is tightly integrated
with Force.com Sites.

Enable portal integration by clicking the Login Settings button on the Site Details
page. In the Login Settings section, click the Edit button and select an existing portal from
the drop-down list, and then click the Save button. Figure 8-7 shows a site enabled to log
in to the portal named Sample Customer Portal.

Note
If no portals are listed, you must configure one that is Login Enabled. Go to the App Setup
area and click Customize ➝ Customer Portal ➝ Settings. Setting up a portal is not within
the scope of this book, so refer to the online documentation for more information.

http://force-book-developer-edition.na6.force.com
http://force-book-developer-edition.na6.force.com
http://force-book-developer-edition.na6.force.com/MyPage

284 Chapter 8 Advanced User Interfaces

Figure 8-7 Login Settings page

Figure 8-6 Site Details page

285Sample Application: Enhanced Skills Matrix

Figure 8-8 Skills Matrix with comparison overlay

Sample Application: Enhanced Skills Matrix
This section builds on the Services Manager’s Skills Matrix feature developed in Chapter
7,“User Interfaces.” Users of the Skills Matrix feature have requested the ability to com-
pare a consultant’s skills with those of other consultants without navigating to a new page.
They would like to see the ratings of other consultants in the same skill visually layered
atop the existing Skills Matrix user interface, as shown in Figure 8-8.

The following technologies from this chapter are used in the development of the
feature:

n JavaScript integration: The Yahoo! User Interface library (YUI) is integrated to
provide an easing effect, fading in and out the list of other resources and their skill
ratings.YUI is available at http://developer.yahoo.com/yui.

n Custom Visualforce components: The overlay containing the other consultants’
skills is encapsulated in its own custom Visualforce component and controller.

n actionSupport component: This component is used to show and hide the skills
comparison overlay when the user hovers over an informational icon.

Begin by developing a custom component for retrieving and rendering a list of skill rat-
ings and consultants.The input to this component is a skill type and a resource identifier
of the currently selected consultant.The skill type is the name of a proficiency that

http://developer.yahoo.com/yui

286 Chapter 8 Advanced User Interfaces

consultants are measured on, a picklist value from Skill__c.Type__c such as Java or
Apex.The resource identifier is used to exclude the current consultant from the list,
because their skill ratings are already shown on the Skills Matrix user interface.

Listing 8-20 provides a sample implementation of the controller to support the
requirements, and Listing 8-21 shows the custom component that uses it.

Listing 8-20 CompareSkillsController

public class CompareSkillsController {

public String resourceId { get; set; }

public String skill { get; set; }

public List<Skill__c> getData() {

return [SELECT Resource__r.Name, Type__c, Rating__c

FROM Skill__c

WHERE Type__c = :skill

AND Rating__c NOT IN ('', '0 - None') AND

Resource__c != :resourceId

ORDER BY Rating__c DESC];

}

}

Listing 8-21 CompareSkillsComponent

<apex:component controller="CompareSkillsController">

<apex:attribute name="skillType" description="Type of skill"

type="String" required="true" assignTo="{!skill}" />

<apex:attribute name="resourceId"

description="Id of resource to compare with"

type="String" required="true" assignTo="{!resourceId}" />

<apex:pageBlock>

<apex:pageBlockSection collapsible="false" columns="1">

<apex:facet name="header">

Other Resources with {!skillType}

<a onclick="hideOverlay(); return false;"

href="" style="text-decoration: underline;">Hide

</apex:facet>

<apex:pageBlockTable value="{!data}" var="item">

<apex:column value="{!item.Resource__r.Name}" />

<apex:column value="{!item.Rating__c}" />

</apex:pageBlockTable>

</apex:pageBlockSection>

</apex:pageBlock>

</apex:component>

287Sample Application: Enhanced Skills Matrix

To integrate this component with the Skills Matrix, perform the following steps:

1. Add sidebar="false" to the page component.This frees up extra horizontal
screen real estate that is used to display the skills comparison overlay.

2. Insert the code given in Listing 8-22 to the top of the Skills Matrix page, following
the style HTML tag.

Listing 8-22 Adding YUI Overlay Support to Skills Matrix Page

<apex:stylesheet

value="http://yui.yahooapis.com/combo?2.7.0/build/

container/assets/skins/sam/container.css" />

<apex:includeScript

value="http://yui.yahooapis.com/combo?2.7.0/build/

yahoo-dom-event/yahoo-dom-event.js&2.7.0/build/animation/

animation-min.js&2.7.0/build/container/container-min.js" />

<script>

var overlay;

function showOverlay(e) {

overlay = new YAHOO.widget.Overlay(

“{!$Component.compareSkills}", {

xy:[525, e.pageY],

visible:false, width:"450px", zIndex:1000,

effect:{effect:YAHOO.widget.ContainerEffect.FADE,duration:0.25}

}

);

overlay.render(“{!$Component.form}");

overlay.show();

}

function hideOverlay() {

if (overlay != null) {

overlay.hide();

overlay = null;

}

}

</script>

3. Add the code shown in Listing 8-23 to the bottom of the
SkillsMatrixController class.The new method is called to refresh the skills
comparison component.

288 Chapter 8 Advanced User Interfaces

Listing 8-23 Adding Action Method to Skills Matrix Controller

public PageReference refreshCompareSkills() {

return null;

}

4. Insert the code given in Listing 8-24 to the Skills Matrix page, immediately follow-
ing the opening tag of the column component containing the skill rating
(headerValue="Rating"). It adds an informational icon beside each skill. Hovering
over this icon displays the overlay containing the skills comparison.

Listing 8-24 Adding actionSupport to Skills Matrix Page

<apex:image value="/img/msg_icons/info16.png"

style="margin-top: 2px; margin-right: 10px;">

<apex:actionSupport event="onmouseover"

action="{!refreshCompareSkills}" rerender="compareSkills"

oncomplete="showOverlay(event);" onsubmit="hideOverlay();">

<apex:param name="p1" value="{!skill.Type__c}"

assignTo="{!selectedSkillType}" />

</apex:actionSupport>

</apex:image>

5. For the last step, insert the code in Listing 8-25 after the closing tag of the form
component on the Skills Matrix page. It adds an outputPanel containing the
CompareSkillsComponent, which is rendered as an overlay using YUI in the
showOverlay JavaScript function.

Listing 8-25 Adding CompareSkillsComponent to the Skills Matrix Page

<apex:outputPanel id="compareSkills" style="visibility: hidden;">

<c:CompareSkillsComponent skillType="{!selectedSkillType}"

resourceId="{!selectedResourceId}" />

</apex:outputPanel>

Summary
In this chapter, you’ve seen some of the ways Visualforce can produce effective user inter-
faces, from action components that provide Ajax behavior to the integration of non-
Force.com technologies such as Adobe Flex. Before switching gears in the next chapter,
take a moment to review these key points:

289Summary

n Stick with standard and custom Visualforce components wherever possible to keep
your user interface running smoothly with the rest of the Force.com today and in
future releases.

n Strive to adopt the many features of Visualforce that foster modularity, such as com-
position and custom components, rather than copying and pasting code from page
to page.

n You can use Visualforce to create public-facing Web pages through Force.com Sites.
Sites are simply a series of configuration settings that enable a guest profile to access
a set of pages, extending your existing investment in Visualforce.

This page intentionally left blank

9
Batch Processing

You’ve learned two ways you can process database records within the Force.com plat-
form: triggers and Visualforce controllers. Each has its own set of platform-imposed limi-
tations, such as how many records can be created at one time.As you accumulate tens of
thousands of records or more in your database, you might need to process more of records
than permitted by the governor limits applying to triggers and controllers.

Although Salesforce has simplified and incrementally relaxed governor limits in recent
Force.com releases, triggers and Visualforce controllers are fundamentally not suited to
processing large amounts of data in a multitenant environment.They are driven by user
interaction, and must be limited to provide good performance to all users.The Force.com
platform carefully controls its resources to maintain high performance for all, so resource-
intensive tasks such as processing millions of records must be planned and executed over
time, balanced with the demands of other customers.

Batch processing makes this possible, and Batch Apex is the Force.com feature that
enables batch processing on the platform.With Batch Apex, data-intensive tasks are taken
offline, detached from user interactions, the exact timing of their execution determined
by Salesforce itself. In return for relinquishing some control, you the developer receive
the ability to process orders of magnitude more records than you can in triggers and
controllers.

In this chapter, you learn how to use Batch Apex to create, update, and delete millions
of records at a time. It is divided into five sections:

n Introduction to Batch Apex: Learn the concepts and terminology of Batch
Apex, what it can do, and when you should and should not use it.

n Getting Started with Batch Apex:Walk through a simple example of Batch
Apex. Develop the code, run it, and monitor its execution.

n Testing Batch Apex: Like any other Apex code, proper test coverage is required.
Learn how to kick off Batch Apex jobs within test code.

292 Chapter 9 Batch Processing

n Scheduling Batch Apex: Although Salesforce has the final say on when Batch
Apex is run, you can schedule jobs to run using a built-in scheduler. Learn how to
use the scheduling user interface and achieve finer-grained control in Apex code.

n Sample Application: Enhance the Services Manager application by creating a
scheduled batch process to identify missing timecards.

Introduction to Batch Apex
Prior to the availability of Batch Apex, the only options for processing data exceeding the
governor limits of triggers and controllers were tricky workarounds to shift work off of
the platform. For example, you might have hundreds of thousands of records spanning
multiple Lookup relationships to be summarized, de-duplicated, cleansed, or otherwise
modified en masse algorithmically.You could use the Web Services API to interact with
the Force.com data from outside of Force.com itself, or JavaScript to process batches of
data inside the web browser.These approaches are usually slow and brittle, requiring
lots of code and exposing you to data quality problems over time due to gaps in error
handling and recovery. Batch Apex allows you to keep the large, data-intensive processing
tasks within the platform, taking advantage of its close proximity to the data and transac-
tional integrity to create secure, reliable processes without the limits of normal, interactive
Apex code.This section introduces you to concepts and guidelines for using Batch Apex
to prepare you for hands-on work in the following section.

Batch Apex Concepts
Batch Apex is an execution framework that splits a large dataset into subsets and provides
them to ordinary Apex programs that you develop, which continue to operate within
their usual governor limits.This means with some minor rework to make your code
operate as Batch Apex, you can process data volumes that would otherwise be prohibited
within the platform. By helping Salesforce break up your processing task, you are permit-
ted to run it within its platform.

A few key concepts in Batch Apex are used throughout this chapter:

n Scope: The scope is the set of records that a Batch Apex process operates on. It can
consist of 1 record or up to 50 million records. Scope is usually expressed as a
SOQL statement, which is contained in a Query Locator, a system object that is
blessedly exempt from the normal governor limits on SOQL. If your scope is too
complex to be specified in a single SOQL statement, then writing Apex code to
generate the scope programmatically is also possible. Unfortunately, using Apex
code dramatically reduces the number of records that can be processed, because it is
subject to the standard governor limit on records returned by a SOQL statement.

n Batch job: A batch job is a Batch Apex program that has been submitted for exe-
cution. It is the runtime manifestation of your code, running asynchronously within

293Introduction to Batch Apex

the Force.com platform. Because batch jobs run in the background and can take
many hours to complete their work, Salesforce provides a user interface for listing
batch jobs and their statuses, and to allow individual jobs to be canceled.This job
information is also available as a standard object in the database.Although the batch
job is not the atomic unit of work within Batch Apex, it is the only platform-pro-
vided level at which you have control over a batch process.

n Transaction: Each batch job consists of transactions, which are the governor limit-
friendly units of work you’re familiar with from triggers and Visualforce controllers.
By default, a transaction is up to 200 records, but you can adjust this downward in
code.When a batch job starts, the scope is split into a series of transactions. Each
transaction is then processed by your Apex code and committed to the database
independently.Although the same block of your code is being called upon to
process potentially thousands of transactions, the transactions themselves are nor-
mally stateless. None of the variables within it are saved between invocations unless
you explicitly designate your Batch Apex code as stateful when it is developed.
Salesforce doesn’t provide information on whether your transactions are run in par-
allel or serially, nor how they are ordered. Observationally, transactions seem to run
serially, in order based on scope.

In the following subsection, these concepts are applied to take you one step closer to
writing your own Batch Apex.

Understanding the Batchable Interface
To make your Apex code run as a batch you must sign a contract with the platform.This
contract takes the form of an interface called Batchable that must be implemented by
your code. It requires that you structure your processing logic into the following three
methods:

n start:The start method is concerned with the scope of work, the raw set of
records to be processed in the batch.When a batch is submitted to Salesforce for
processing, the first thing it does is invoke your start method.Your job here is to
return a QueryLocator or an Iterable that describes the scope of the batch job.

n execute: After calling the start method, Force.com has the means to access all
the records you’ve requested that it operate on. It then splits these records into sets
of up to 200 records and invokes your execute method repeatedly, once for each
set of records.At this point, your code can perform the substance of the batch oper-
ation, typically inserting, updating, or deleting records. Each invocation of execute
is a separate transaction. If an uncaught exception is in a transaction, no further
transactions are processed and the entire batch job is stopped.

294 Chapter 9 Batch Processing

Caution
Transactions that complete successfully are never rolled back. So, an error in a transaction
stops the batch, but transactions executed up to that point remain in the database. Think-
ing of an overall Batch Apex job as transactional is dangerous, because this is not its
default behavior. Additionally, you cannot use savepoints to achieve a single pseudo-transac-
tion across the entire batch job. If you must achieve job-wide rollback, this can be imple-
mented in the form of a compensating batch job that reverses the actions of the failed job.

n finish:The finish method is invoked once at the end of a batch job.The job
ends when all transactions in the scope have been processed successfully, or if pro-
cessing has failed. Regardless of success or failure, finish is called.There is no
requirement to do anything special in the method.You can leave the method body
empty if no post-processing is needed. It simply provides an opportunity for you to
receive a notification that processing is complete.You could use this information to
clean up any working state or notify the user via e-mail that his batch job is com-
plete and its outcome.

With this initial walkthrough of the Batchable interface, you can begin to apply it to
your own trigger or Visualforce controller code. If you find a process that is a candidate to
run as a batch, think about how it can be restructured to conform to this interface and
thus take advantage of Batch Apex.

Applications of Batch Apex
Like any feature of Force.com, Batch Apex works best when you apply it to an appropri-
ate use case that meshes well with its unique capabilities.The following list provides some
guidelines when evaluating Batch Apex for your project:

n Single database object: Batch Apex is optimized to source its data from a single,
“tall” (containing many records) database object. It cannot read data from other
sources, such as callouts to Web Services. If the records you need to process span
many database objects that cannot be reached via parent-child or child-parent rela-
tionships from a single database object, you should proceed carefully.You will need
to develop separate Batch Apex code for every database object.Although this is
doable and you can share code between them, it creates maintenance headaches and
quickly exposes you to the limitation of five active batch jobs per organization.

n Simple scope of work: Although Batch Apex allows the use of custom code to
provide it with the records to process, it is most powerful when the scope of work is
expressed in a single SOQL statement. Do some work upfront to ensure that the
source of data for your batch can be summed up in that single SOQL statement.

n Minimal shared state:The best design for a Batch Apex process is one where
every unit of work is independent, meaning it does not require information to be
shared with other units of work.Although creating stateful Batch Apex is possible, it
is a less mature feature and more difficult to debug than its stateless counterpart. If

295Getting Started with Batch Apex

you need shared state to be maintained across units of work, try to use the database
itself rather than variables in your Apex class.

n Limited transactionality: If your batch process is a single, all-or-nothing transac-
tion, Batch Apex is only going to get you halfway there.You will need to write extra
code to compensate for failures and roll back the database to its original state.

n Not time-critical: Salesforce provides no hard guarantees about when Batch Apex
is executed or its performance. If you have an application that has time-based
requirements such that users will be prevented from doing their jobs if a batch does
not run or complete by a specific time, Batch Apex might not be a good fit.A better
fit is a process that must run within a time window on the order of hours rather
than minutes.

These guidelines might seem stifling at first glance, but Batch Apex actually enables an
impressive breadth of interesting applications to be developed that were previously impos-
sible with other forms of Apex.

Getting Started with Batch Apex
You don’t need an elaborate use case or huge data volumes to get started with Batch
Apex.This section walks you through the development of a simple Batch Apex class that
writes debug log entries as it runs.The class is submitted for execution using the
Force.com IDE and monitored in the administrative web user interface.Two more ver-
sions of the Batch Apex class are developed: one to demonstrate stateful processing and
the other an iterable scope.The section concludes with a description of important Batch
Apex limits.

Developing a Batch Apex Class
Although the class in Listing 9-1 performs no useful work, it leaves a trail of its activity in
the debug log.This is helpful in understanding how Force.com handles your batch-
enabled code. It also illustrates the basic elements of a Batch Apex class, listed next:

n The class must implement the Database.Batchable interface.This is a parameter-
ized interface, so you also need to provide a type name. Use SObject for batches
with a QueryLocator scope, or any database object type for an Iterable scope.

n The class must be global.This is a requirement of Batch Apex classes.

Listing 9-1 Sample Batch Apex Code

global class HelloBatchApex implements Database.Batchable<SObject> {

global Database.QueryLocator start(Database.BatchableContext context) {

System.debug('start');

return Database.getQueryLocator(

[SELECT Name FROM Proj__c ORDER BY Name]);

296 Chapter 9 Batch Processing

}

global void execute(Database.BatchableContext context,

List<SObject> scope) {

System.debug('execute');

for(SObject rec : scope) {

Proj__c p = (Proj__c)rec;

System.debug('Project: ' + p.Name);

}

}

global void finish(Database.BatchableContext context) {

System.debug('finish');

}

}

Before actually running the code in the next subsection, review these implementation
details:

n The start method defines the scope by returning a QueryLocator object con-
structed from an inline SOQL statement.The SOQL statement returns all Proj__c
records in ascending order by the Name field.The SOQL statement can use param-
eters (prefaced with a colon) like any inline SOQL in Apex code. Relationship
queries are acceptable, but aggregate queries are not allowed.You can also pass a
SOQL string into the getQueryLocator method, allowing dynamic SOQL to
define the scope the batch.

n The execute method is called once per transaction with a unique group of up to
200 records from the scope.The records are provided in the scope argument.

n The finish method is called when all transactions have completed processing, or
the batch job has been interrupted for any reason.

n The BatchableContext object argument in all three methods contains a method
for obtaining the unique identifier of the current batch job, getJobID.This identi-
fier can be used to look up additional information about the batch job in the stan-
dard database object AsyncApexJob.You can also pass this identifier to the
System.abortJob method to stop processing of the batch job.

Working with Batch Apex Jobs
Batch Apex can be executed from a Visualforce page, scheduled to run automatically at
specific times, or kicked off from within a trigger. But the easiest way to experiment with
it is in the Execute Anonymous view in the Force.com IDE.

First, enable debug logging for your user in the Administration Setup area; select Moni-
toring ➝ Debug Logs.This is no different than debugging any Apex class. Using the Exe-
cute Anonymous view, enter the code in Listing 9-2 and execute it.The batch is
submitted and its unique job identifier displayed in the results box.

297Getting Started with Batch Apex

Figure 9-1 Apex Jobs user interface

Listing 9-2 Running Sample Batch Apex Code

HelloBatchApex batch = new HelloBatchApex();

Id jobId = Database.executeBatch(batch);

System.debug('Started Batch Apex job: ' + jobId);

The executeBatch method of the Database class does the work here. It queues the
batch job for processing when Force.com is ready to do so.This could be in seconds or
minutes; it is not specified.The HelloBatchApex sample class is very simple, but in many
cases you would need to pass arguments, either in the constructor or via setter methods, to
adjust the behavior of a batch process.This is no different from any Apex class.

To start a batch in response to a button click or other user interface action, apply the
code shown in Listing 9-2 within a Visualforce custom controller or controller extension
class. Now that you have submitted your batch job, it’s time to monitor its progress. In
your web browser, go to the Administration Setup area and select Monitoring ➝ Apex
Jobs.This page, shown in Figure 9-1, allows you to manage all the batch jobs in your
Force.com organization.

The single HelloBatchApex job you executed should be visible. By this time, it is most
likely in the Completed status, having few records to process. If Force.com is very busy,
you might see a status of Queued.This means the job has not been started yet.A status
value of Processing indicates the job is currently being executed by the platform. If a user

298 Chapter 9 Batch Processing

Figure 9-2 Debug logs from Sample Batch Apex Code

interrupts the job by clicking the Abort link on this page, the job status becomes Aborted.
A job with a Failed status means an uncaught exception was thrown during its execution.
If you scroll to the right, you can also see the Apex Job Id, which should match the one
returned by the Database.executeBatch method.

Take a closer look at the values in the Total Batches and Batches Processed columns.To
avoid confusion, disregard the word “Batches” here.Total Batches is the number of trans-
actions needed to complete the batch job. It is equal to the scope (which defaults to 200)
divided into the number of records returned by the start method.The Batches Processed
column contains the number of times the execute method of your Batch Apex class was
invoked so far.As the processing proceeds, you should see it increment until it is equal to
the Total Batches value. For example, if you have fewer than 200 Proj__c records in your
database, you should see a 1 in both columns when the batch is complete. If you have
between 201 and 400 records, you should see 2 instead. If you have 1,500 records and the
system is processing the 300th record, you should see a value of 8 in Total Batches and 1
in Processed Batches.All the information on the page is also accessible programmatically,
contained in the standard object named AsyncApexJob.

You have seen the batch job run its course. Proceed back to the debug log page. Here
you can review the job’s execution in detail, thanks to the System.debug statements
throughout the code. Figure 9-2 is an example of what you might see there.

299Getting Started with Batch Apex

Four separate logs each cover a different aspect of the batch execution. Each is
described next in the order they are executed, although this might not be the order shown
on the Debug Logs page:

1. Results of evaluating the code in the Execute Anonymous view.

2. Invocation of the start method to prepare the dataset for the batch.

3. Results of running the execute method, where the batch job performs its work on
the subsets of the data.

4. All the transactions have been processed, so the finish method is called to allow
post-processing to occur.

These results are somewhat interesting, but appreciating what the batch is doing is hard
without more data.You could add 200 more Proj__c records, or you can simply adjust
the scope to process fewer records per transaction. Listing 9-3 is an example of doing
just that, passing the number 2 in as the scope, the second argument of the Database.
executeBatch method.This indicates to Force.com that you want a maximum of two
records per transaction in the batch job.

Listing 9-3 Running Sample Batch Apex Code with Scope Argument

HelloBatchApex batch = new HelloBatchApex();

Id jobId = Database.executeBatch(batch, 2);

System.debug('Started Batch Apex job: ' + jobId);

After running this code in the Execute Anonymous view, return to the debug logs.You
should now see two additional logs in the execute phase, for a total of three transactions
of two records each.The three transactions are needed to process the six Proj__c records.

Using Stateful Batch Apex
Batch Apex is stateless by default.That means for each execution of your execute
method, you receive a fresh copy of your object.All fields of the class are initialized, static
and instance. If your batch process needs information that is shared across transactions, one
approach is to make the Batch Apex class itself stateful by implementing the Stateful
interface.This instructs Force.com to preserve the values of your static and instance vari-
ables between transactions.

To try a simple example of stateful Batch Apex, create a new Apex class with the code
in Listing 9-4.

Listing 9-4 Stateful Batch Apex Sample

global class HelloStatefulBatchApex

implements Database.Batchable<SObject>, Database.Stateful {

Integer count = 0;

global Database.QueryLocator start(Database.BatchableContext context) {

300 Chapter 9 Batch Processing

System.debug('start: ' + count);

return Database.getQueryLocator(

[SELECT Name FROM Proj__c ORDER BY Name]);

}

global void execute(Database.BatchableContext context,

List<SObject> scope) {

System.debug('execute: ' + count);

for(SObject rec : scope) {

Proj__c p = (Proj__c)rec;

System.debug('Project ' + count + ': ' + p.Name);

count++;

}

}

global void finish(Database.BatchableContext context) {

System.debug('finish: ' + count);

}

}

Take a moment to examine the differences between this class and the original, stateless
version. Implementing the interface Database.Stateful is the primary change.The other
changes are simply to provide proof in the debug log that the value of the count variable
is indeed preserved between transactions.

Run the modified class with a scope of two records and examine the debug log.
Although the log entries might not be ordered in any discernable way, you can see all the
Proj__c records have been visited by the batch process.Assuming you have six Proj__c
records in your database, you should see a total of six new debug log entries: one to begin
the batch, one for the start method, three entries’ worth of transactions (of two records
each), and one for the finish method.

Notice the value of the count variable throughout the debug output. It begins at 0 in
the first transaction, increments by two as Proj__c records are processed, and begins at 2
in the second transaction.Without implementing Database.Stateful, the count variable
would remain between 0 and 2 for every transaction.The value of the count variable is 6
when the finish method is reached.

Using an Iterable Batch Scope
All of the sample code so far has used a QueryLocator object to define the scope of its
batch.This enables up to 50 million records to be processed by the batch job, but requires
that the scope be defined entirely using a single SOQL statement.This can be too limiting
for some batch processing tasks, so the iterable batch scope is offered as an alternative.

The iterable scope allows custom Apex code to determine which records are processed
in the batch. For example, you could use an iterable scope to filter the records using crite-
ria that are too complex to be expressed in SOQL.The downside of the iterable approach
is that standard SOQL limits apply.This means you can process a maximum of 50,000

301Getting Started with Batch Apex

records in your batch job, a dramatic reduction from the 50 million record limit of a
QueryLocator object.

To develop a batch with iterable scope, you must first write code to provide data to the
batch.There are two parts to this task:

n Implement the Iterator interface: The Iterator is a class for navigating a col-
lection of elements. It navigates in a single direction, from beginning to end. It
requires that you implement two methods: hasNext and next.The hasNext method
returns true if additional elements are left to navigate to, false when the end of
the collection has been reached.The next method returns the next element in the
collection. Iterator classes must be global.

n Implement the Iterable interface: Think of this class as a wrapper or locator
object that directs the caller to an Iterator. It requires a single global method to be
implemented, called Iterator, which returns an Iterable object. Like Iterator,
classes implementing Iterable must be global.

You could write two separate classes, one to implement each interface. Or you can imple-
ment both interfaces in a single class, the approach taken in the code in Listing 9-5.

Listing 9-5 Project Iterator

global class ProjectIterable implements Iterator<Proj__c>, Iterable<Proj__c> {

List<Proj__c> projects { get; set; }

Integer i;

public ProjectIterable() {

projects = [SELECT Name FROM Proj__c ORDER BY Name];

i = 0;

}

global Boolean hasNext() {

if (i >= projects.size()) {

return false;

} else {

return true;

}

}

global Proj__c next() {

i++;

return projects[i-1];

}

global Iterator<Proj__c> Iterator() {

return this;

}

}

With the implementation of the Iterable class ready for use, examine the code in
Listing 9-6. It is very similar to the first Batch Apex example.The only notable differences

302 Chapter 9 Batch Processing

are that the parameterized type has been changed from SObject to Proj__c, and the
start method now returns the Iterable class developed in Listing 9-5.

Listing 9-6 Iterable Batch Apex Sample

global class HelloIterableBatchApex implements Database.Batchable<Proj__c> {

global Iterable<Proj__c> start(Database.BatchableContext context) {

System.debug('start');

return new ProjectIterable();

}

global void execute(Database.BatchableContext context,

List<Proj__c> scope) {

System.debug('execute');

for(Proj__c rec : scope) {

System.debug('Project: ' + rec.Name);

}

}

global void finish(Database.BatchableContext context) {

System.debug('finish');

}

}

Turn on the debug log for your user and run the HelloIterableBatchApex job.
Examine the logs and see for yourself that you’ve accomplished the same work as the
HelloBatchApex code using an iterable scope instead of a QueryLocator object.

Limits of Batch Apex
You must keep in mind several important limits of Batch Apex:

n Future methods are not allowed anywhere in Batch Apex.
n Batch jobs are always run as the system user, so they have permission to read and

write all data in the organization.
n The maximum heap size in Batch Apex is 6MB.
n Calling out to external systems using the HTTP object or webservice methods are

limited to one for each invocation of start, execute, and finish.To enable your
batch process to call out, make sure the code implements
Database.AllowsCallouts interface in addition to the standard
Database.Batchable interface.

n Transactions (the execute method) run under the same governor limits as any Apex
code. If you have intensive work to do in your execute method and worry about
exceeding the governor limits when presented with the default 200 records per
transaction, reduce the number of records using the optional scope parameter of the
Database.executeBatch method.

303Scheduling Batch Apex

n The maximum number of queued or active batch jobs within an entire Salesforce
organization is five.Attempting to run another job beyond the five raises a runtime
error. For this reason, you should tightly control the number of batch jobs that are
submitted. For example, submitting a batch from a trigger is generally a bad idea if
you can avoid it. In a trigger, you can quickly exceed the maximum number of
batch jobs.

Testing Batch Apex
Batch Apex can be tested like any Apex code, although you are limited to a single trans-
action’s worth of data (one invocation of the execute method).A batch job started
within a test runs synchronously, and does not count against the organization’s limit of
five batch jobs.

Add the method in Listing 9-7 to the Batch Apex example from Listing 9-1 to achieve
100% test coverage.

Listing 9-7 Batch Apex Test

public static testmethod void testBatch() {

Test.startTest();

HelloBatchApex batch = new HelloBatchApex();

ID jobId = Database.executeBatch(batch);

Test.stopTest();

}

The new test method simply executes the batch with the same syntax as you have used
in the Execute Anonymous view.The batch execution is bookended with the startTest
and stopTest methods.This ensures that the batch job is run synchronously and is fin-
ished at the stopTest method.This enables you to make assertions (System.assert) to
verify that the batch performed the correct operations on your data.

Scheduling Batch Apex
Along with Batch Apex, Salesforce added a scheduler to the Force.com platform.This
enables any Apex code, not just Batch Apex, to be scheduled to run asynchronously at
regular time intervals. Prior to the introduction of this feature, developers had to resort to
off-platform workarounds, such as invoking a Force.com Web service from an external
system capable of scheduling jobs.

This section describes how to prepare your code for scheduling, and how to schedule
code to run using the administrative user interface and programmatically.

304 Chapter 9 Batch Processing

Developing Schedulable Code
An Apex class that can be scheduled by Force.com must implement the Schedulable
interface.The interface requires no methods to be implemented; it simply indicates to the
platform that your class can be scheduled. Code that is executed by the scheduler runs as
the system user, so sharing rules or other access controls are not enforced.At most ten
classes can be scheduled at one time.

The class in Listing 9-8 enables the Batch Apex example from Listing 9-1 to be schedu-
lable. It does this by implementing the Schedulable interface, which has a single method:
execute.Although you could implement this interface directly on your batch class, the
best practice recommended by Salesforce is to create a separate Schedulable class.

Listing 9-8 Schedulable Batch Apex

global class HelloSchedulable implements Schedulable {

global void execute(SchedulableContext sc) {

HelloBatchApex batch = new HelloBatchApex();

Database.executeBatch(batch);

}

}

Scheduling Batch Apex Jobs
To schedule a job using the user interface, go to the App Setup area and click Develop ➝
Apex Classes. Click the Schedule Apex button. In Figure 9-3, the HelloSchedulable class
has been configured to run Saturday mornings at 11 a.m. between 10/9/2010 and
11/9/2010.

To view and cancel scheduled jobs, go to the Administration Setup area and click
Monitoring ➝ Scheduled Jobs.This is shown in Figure 9-4 with the previously scheduled
job.At this point, you can click Manage to edit the schedule, or Del to cancel it.

The same management of scheduled jobs available in the user interface can be auto-
mated using Apex code, as described next:

n Create a scheduled job: Use the System.schedule method to schedule a new
job.This method requires three arguments: the name of the job, the schedule
expression, and an instance of class to schedule.The schedule expression is a string
in crontab-like format.This format is a space-delimited list of the following argu-
ments: seconds, minutes, hours, day of month, month, day of week, and year
(optional). Each argument is a value specifying when the job is to run in the rele-
vant units.All arguments except seconds and minutes permit multiple values, ranges,
wildcards, and increments. For example, the schedule expression 0 0 8 ? * MON-
FRI schedules the job for weekdays at 8 a.m.The 8 indicates the eighth hour, the
question mark leaves day of month unspecified, the asterisk indicates all months, and
the day of week is Monday through Friday.The time zone of the user scheduling
the job is used to calculate the schedule.

305Scheduling Batch Apex

Figure 9-3 Schedule Apex user interface

Figure 9-4 Scheduled Jobs user interface

306 Chapter 9 Batch Processing

Note
For a full reference to schedule expressions, refer to the Force.com Apex Code Developer’s
Guide at www.salesforce.com/us/developer/docs/apexcode/index.htm.

n View a scheduled job:To get attributes about a scheduled job, such as when it
will be executed next, query the standard object CronTrigger. It includes useful
fields such as NextFireTime, PreviousFireTime, as well as StartTime and
EndTime, calculated from the time the scheduled job was created to the last occur-
rence as specified by the schedule expression.

n Delete a scheduled job:The System.abortJob method deletes scheduled jobs. It
requires a single argument, the identifier returned by the SchedulableContext get-

TriggerID method.This can also be obtained from Id field of a CronTrigger record.
n Modify a scheduled job: The standard object CronTrigger is read-only, so to

modify a job, you must delete it first and then recreate it.

The code in Listing 9-9 can be executed in the Execute Anonymous view to schedule the
HelloSchedulable class to run monthly on the first day of every month at 1 a.m. in the
user’s time zone.You can verify this by examining the scheduled job in the user interface,
or querying the CronTrigger object.

Listing 9-9 Sample Code to Schedule Batch Apex

System.schedule('Scheduled Test', '0 0 1 * * ?', new HelloSchedulable());

Caution
After an Apex class is scheduled, its code cannot be modified until all of its scheduled jobs
are deleted.

Sample Application: Missing Timecard Report
A common application of Batch Apex is to distill a large number of records down to a
smaller, more digestible set of records that contain actionable information. In the Service
Manager sample application, consultants enter timecards against assignments, specifying
their daily hours for a weekly period.When consultants fail to enter their timecards in a
timely manner, this can impact the business in many ways: Customers cannot be invoiced,
and the budget of billable hours can be overrun without warning.With a large number of
timecards, consultants, and projects, manually searching the database to identify missing
timecards isn’t feasible.This information needs to be extracted from the raw data.

The management users of the Services Manager have requested a tool that enables
them to proactively identify missing timecards.They would like to see a list of the time
periods and the assignments that have no timecard so that they can work with the con-
sultants to get their time reported.This information could later be used as the basis of
custom user interface, report or dashboard component, or automated email notifications
to the consultants.

www.salesforce.com/us/developer/docs/apexcode/index.htm

307Sample Application: Missing Timecard Report

Figure 9-5 Missing Timecard Custom Object Definition

This section walks through the implementation of the missing timecard report. It con-
sists of the following steps:

1. Create a custom object to store the list of missing timecards.

2. Develop a Batch Apex class to calculate the missing timecard information.

3. Run through a simple test case to make sure the code works as expected.

Creating the Custom Object
Your Services Manager users have asked to see missing timecards. Of course, they cannot
see the timecards themselves because they’re missing, but you can safely assume that they
want the dates of missing timecards and the offending consultants and their assigned proj-
ects.There are two fields necessary to provide the requested information: the assignment,
which automatically includes the resource and project as references, and the week ending
date that lacks a timecard for the assignment.

Create a new custom object to store this information, naming it Missing Timecard.
Add a lookup field to Assignment and a Date field named Week_Ending__c to mirror the
field of the same name in the Timecard object. Create a custom tab for this object as well.
When you’re done, the Missing Timecard object definition should resemble Figure 9-5.

308 Chapter 9 Batch Processing

Developing the Batch Apex Class
A good design approach for Batch Apex is to consider the input schema, output schema,
and the most direct algorithm to transform input to output.You’ve already designed the
output schema based on what the users want to see: the Missing Timecard object.That
leaves the input and the algorithm to be designed.

Consider the algorithm first, which drives the input.The algorithm loops through
assignments that are not in Tentative or Closed status. It builds a list of Week Ending dates
of valid timecards (in Submitted or Approved status) in the same project as the assign-
ment. It then cycles through the weeks between the start and end dates of the assignment,
up to the current day. If a week ending date is not found in the list of timecard Week
Ending dates, it is considered missing and its assignment and date is added to the Missing
Timecards object.

With the algorithm nailed down, move on to the input.The key to a concise, main-
tainable Batch Apex class is formulating the right SOQL query to provide the input
records. Most of the effort is in finding the optimal SObject to base the query on. If you
pick the wrong SObject, you could be forced to augment the input in your execute
method, resulting in more queries, this time subject to SOQL governor limits.

It is clear from the algorithm that the batch input must include Assignment records
and corresponding Timecard records. But Assignment and Timecard are two separate
many-to-many relationships with no direct relationship to each other.

Although basing the query on the Assignment or Timecard objects might be tempting,
this leads to a weak design. For example, if you query the assignments in the start
method, and then augment this with Timecard records in the execute method, you need
to build dynamic SOQL to optimize the second query given the input Assignment
records.This is a sure sign that you should continue to iterate on the design.

When you switch tracks and design the batch around the Project object, life becomes
easier. From Proj__c, you have access to Timecard and Assignment records at the same
time.The code in Listing 9-10 implements the missing timecard feature with a query on
Proj__c as the input.

Listing 9-10 MissingTimecardBatch

global class MissingTimecardBatch implements Database.Batchable<SObject> {

global Database.QueryLocator start(Database.BatchableContext context) {

return Database.getQueryLocator([SELECT Name, Type__c,

(SELECT Name, Start_Date__c, End_Date__c

FROM Assignments__r WHERE Status__c NOT IN ('Tentative', 'Closed')),

(SELECT Status__c, Week_Ending__c

FROM Timecards__r

WHERE Status__c IN ('Submitted', 'Approved'))

FROM Proj__c

]);

309Sample Application: Missing Timecard Report

}

global void execute(Database.BatchableContext context,

List<SObject> scope) {

List<Missing_Timecard__c> missing = new List<Missing_Timecard__c>();

for (SObject rec : scope) {

Proj__c proj = (Proj__c)rec;

Set<Date> timecards = new Set<Date>();

if (proj.Assignments__r != null) {

for (Assignment__c assign : proj.Assignments__r) {

if (proj.Timecards__r != null) {

for (Timecard__c timecard : proj.Timecards__r) {

timecards.add(timecard.Week_Ending__c);

}

}

/** Timecards are logged weekly, so the Week_Ending__c field is always

* a Saturday. We need to convert an assignment, which can contain an

* arbitrary start and end date, into a start and end period expressed

* only in terms of Saturdays. To do this, we use the toStartOfWeek

* method on the Date object, and then add 6 days to reach a Saturday.

*/

Date startWeekEnding =

assign.Start_Date__c.toStartOfWeek().addDays(6);

Date endWeekEnding =

assign.End_Date__c.toStartOfWeek().addDays(6);

Integer weeks = 0;

while (startWeekEnding.addDays(weeks * 7) < endWeekEnding) {

Date d = startWeekEnding.addDays(weeks * 7);

if (d >= Date.today()) {

break;

}

if (!timecards.contains(d)) {

missing.add(new Missing_Timecard__c(

Assignment__c = assign.Id,

Week_Ending__c = d));

}

weeks++;

}

}

}

}

insert missing;

}

global void finish(Database.BatchableContext context) {

}

}

310 Chapter 9 Batch Processing

Testing the Missing Timecard Feature
To achieve adequate test coverage, add unit tests to the Batch Apex class that create
assignments and timecards in various combinations, kick off the batch, then query the
Missing Timecard object and verify the presence of the correct data.

You can also test informally from the user interface and the Execute Anonymous view
in the Force.com IDE. For example, create an Assignment record for the GenePoint proj-
ect, starting 4/1/2009 and ending 4/30/2009 for Rose Gonzalez. Enter a timecard for
her for week ending 4/11/2009 on the GenePoint project, and set its status to Approved.
Now run the MissingTimecardBatch from Force.com using the code in Listing 9-11.

Listing 9-11 Running MissingTimecardBatch

Database.executeBatch(new MissingTimecardBatch());

Check the Apex Jobs to monitor the progress of your batch job.When it’s done, visit
the Missing Timecard tab.You should see three Missing Timecard records for the Gene-
Point assignment, with the dates 4/4/2009, 4/18/2009, and 4/25/2009.The 4/11/2009
date is not included because a valid Timecard record exists for it.

To try some more test scenarios, first clear the Missing Timecard records so you don’t
have to sift through duplicates.The code in Listing 9-12 is an easy way to do so, and you
can run it from the Execute Anonymous view.

Listing 9-12 Reset Results of MissingTimecardBatch

delete [SELECT Id FROM Missing_Timecard__c];

Summary
Batch processing in Force.com enables you to query and modify data in volumes that
would otherwise be prohibited by governor limits. In this chapter, you’ve learned how to
develop, test, and schedule batch jobs, and applied batch processing to the real-world
problem of identifying missing database records.

When using Batch Apex in your own applications, consider these key points:

n Batch Apex is optimized for tasks with inputs that can be expressed in a single
SOQL statement, and that do not require all-or-nothing transactional behavior.

n With its limit of five active batch jobs per organization, one input dataset per job,
and a lack of precise control over actual execution time, Batch Apex is the nuclear
option of Force.com data processing: powerful, but challenging to build and subject

311Summary

to proliferation problems. Use it sparingly, when all other options are exhausted. If
triggers or Visualforce controllers can do the same job given expected data volumes,
consider them first.

n You can use Schedulable Apex to run any Apex code at regular time intervals, not
just Batch Apex. Schedules can be managed via the administrative user interface and
in Apex code.

This page intentionally left blank

10
Integration

The Force.com platform offers various features to integrate its data and processes with
those of other applications.These features are leveraged by independent software vendors
as part of standalone integration products and also exposed to developers and system
administrators of Force.com.This chapter describes the integration features that can
bridge Force.com with other applications, with a focus on integration initiated from
within Force.com.

Force.com can be configured to send messages to other systems accessible through the
Internet.These messages are not email, but messages generated by programs, designed to
be consumed by other programs rather than humans.When traveling outside the bounds
of the Force.com platform, the messages are sent and received using the standard Web
protocols of HTTP and HTTPS.

This chapter is divided into the following sections:

n Force.com Integration Solutions: Learn the basics of outbound messaging and
Salesforce-to-Salesforce (S2S), Force.com’s configuration-based integration features.

n Developing Custom Integrations: Use Apex code to communicate with sys-
tems outside of Force.com.

n Sample Application: Walk through an integration scenario with the Services
Manager sample application, extending it to calculate and transmit corporate per-
formance metrics to a fictional industry benchmarking organization.

Force.com Integration Solutions
This section covers integration solutions in Force.com that are configured, not coded.
They are outbound messaging and Salesforce-to-Salesforce (S2S).When you have a high
degree of control over the design of both sides of an integration, these features provide
the most cost-effective options for sending data out from Force.com from a development
and operational perspective.

314 Chapter 10 Integration

Outbound Messaging
Outbound messaging is a feature of Force.com that sends a Web service request to an
endpoint URL that you designate, using HTTP or HTTPS.The outbound message itself
is best described as a notification. It is a simple SOAP message that contains one or more
fields from a single object.

The configuration of outbound messaging is entirely point-and-click.Workflow rules,
another Force.com feature, define the conditions that cause messages to be sent. Messages
are sent reliably, queued, and retried upon failure. Retries continue for up to 24 hours
until a message is sent.

Although Apex code can also be used to make Web service requests, outbound mes-
saging is the recommended solution. It is reliable, doesn’t require code, and is easy to con-
figure and maintain. But it isn’t suitable for every integration scenario.The following list
describes the two major limitations of outbound messaging:

n Static Service Definition: Other than the selection of objects and fields that pro-
vide the body of the notification, you have no control over the structure or content
of the Web service.There is no field mapping, transformation, or other configurabil-
ity you might be accustomed to with traditional integration solutions. If the system
to receive the Force.com outbound message cannot be modified to adapt to the
Force.com outbound message WSDL, you must develop a Web service to mediate
between the outbound message and the API of the target system.

n No Junction Objects: The object used to define the data in an outbound mes-
sage can be any type: standard or custom. However, junction objects, the intersec-
tion objects in many-to-many relationships, are not supported.A workaround to
this is to define an “interface” object, an object that exists only to provide a tem-
plate for the outbound message. Use a trigger to move data from the junction
object to the interface object.

Getting Started with Outbound Messaging
The easiest way to get started with outbound messaging is to build an example.The
example described in this subsection uses the Project custom object from the Services
Manager sample application.

Suppose your company’s financial system requires notification when a consulting proj-
ect is completed. First, build a workflow rule and outbound message definition to send a
message when a project’s stage is set to completed.Then implement the Web service for
receiving notifications on behalf of the financial system.

Configuring Outbound Messaging
There are two parts to configuring outbound messaging.The first part is to create a
workflow rule to specify when to send a message.The second part is to define the out-
bound message itself, which dictates the contents of the message. Both the workflow rule

315Force.com Integration Solutions

Figure 10-1 Workflow rule definition

and the outbound message must be created from the same object. In this example, the
custom object Project is used.

To create the workflow rule, follow these steps:

1. Go to the App Setup area and click Create ➝ Workflow & Approvals ➝ Workflow
Rules.

2. Click the New Rule button. Select the object to serve as the trigger of this rule.
For this exercise, select the Project object. Click the Next button to continue.

3. Enter a rule name and (optionally) a description. Select when the rule should be
evaluated and add at least one criteria to determine when the rule is run. Figure
10-1 depicts a rule that runs when the Project Stage field equals Completed. Click
the Save & Next button to continue.

4. In the Immediate Workflow Actions section, click Add Workflow Action and select
New Outbound Message from the drop-down menu.

5. This is the outbound message definition. Give the message a name and (optionally)
a description. Enter the URL of the Web service to receive the outbound message.
If you haven’t developed one yet, enter http://localhost as a placeholder, and

316 Chapter 10 Integration

Figure 10-2 Outbound message definition

you can update it later. Select fields from the Project object to include in the out-
bound message. Figure 10-2 shows a sample outbound message definition. Click
the Save button to finish the rule and message definition.

6. Activate the workflow rule by clicking the Activate button.Your completed rule
should resemble what’s shown in Figure 10-3.

If you make a change to a record that causes the workflow rule to run, Force.com con-
structs the outbound message and attempts to send it to the endpoint URL. If you do not
have a Web service available to process the message, the sending attempts will fail.To try
running the sample rule you just created, modify a Project record and set its stage to
Complete.

The progress of outbound messages toward their destinations is visible in an adminis-
tration page. Go to the Administration Setup area and click Monitoring ➝ Outbound
Messages. In Figure 10-4, two messages have been queued for delivery, which has failed
due to a 404 error, meaning the endpoint URL is invalid. From this page, you can manu-
ally resend a message using the Retry link or remove the message using the Del link.
Successfully delivered messages are not shown.

317Force.com Integration Solutions

Figure 10-3 Completed workflow rule

Figure 10-4 Outbound messaging delivery status

318 Chapter 10 Integration

Creating an External Web Service for Outbound Messaging
Web Services Description Language (WSDL) is a W3C standard XML language for
describing Web services.WSDL is used to define the contract between Force.com and the
system that is to receive the outbound message. In addition to the methods and types
defined in the WSDL, your Web service should take a few additional behaviors into
account:

n Multiple Notifications: Force.com can send 1 to 100 notifications in a singleWeb
service call. Make sure yourWeb service can handle single and multiple notifications.

n Acknowledgements:Your Web service must synchronously return a Boolean
indicating positive or negative acknowledgment for each notification.

n Duplicate Checking: To implement its reliable delivery, Force.com might send
the same notification multiple times. If once-and-only-once processing is required,
your Web service is responsible for implementing it using the unique identifier sent
with each notification.

n Data Age: The data received in a notification is current as of the time the noti-
fication was initially sent.The data might have changed since then in the event of
multiple retries and also might have changed from the time the workflow rule
was fired.To get the most current data relevant to the notification, enable the
Send Session ID option in the Workflow Outbound Message Detail page.This will
populate the session ID in the outbound message, enabling your Web service to call
back into Force.com using an authenticated session to retrieve the most current
information using Apex Web Services.The general scenario of calling into
Force.com is covered in Chapter 11,“Advanced Integration.”

To continue the example from the preceding subsection, follow these steps to build a test
endpoint to receive the outbound message:

1. Download the WSDL for the outbound message endpoint. In the App Setup area,
click Create ➝ Workflow & Approvals ➝ Outbound Messages, select the outbound
message, and click the Endpoint WSDL link.

2. Save the WSDL on your local machine and copy it to the machine that is to pro-
vide the Web service to Force.com.

3. Using the tools and languages of your choice, create a Web service implementation
from the WSDL. Listing 10-1 shows a sample implementation in PHP. It simply
dumps the fields of the incoming notifications to the error log and returns a posi-
tive acknowledgment to Force.com. It assumes you’ve named the WSDL down-
loaded from Force.com workflowOutboundMessage.wsdl.

Note
You can use Java, C#.NET, or any language that has libraries for working with SOAP and
WSDL to build the Web service.

319Force.com Integration Solutions

Listing 10-1 Sample Notification SOAP Service in PHP

<?php

function dumpNote($note) {

error_log(print_r($note, 1));

}

function ack($value) {

return array('Ack' => value);

}

function notifications($data) {

error_log('Notification from orgId: ' . $data->OrganizationId);

if (is_array($data->Notification)) {

$result = array();

for ($i = 0; $i < count($data->Notification); $i++) {

dumpNote($data->Notification[$i]->sObject);

array_push($result, ack(true));

}

return $result;

} else {

dumpNote($data->Notification->sObject);

return ack(true);

}

}

ini_set("soap.wsdl_cache_enabled", "0");

$server = new SoapServer("workflowOutboundMessage.wsdl");

$server->addFunction("notifications");

$server->handle();

4. Make sure that the server hosting your Web service is available to the Internet via
port 80 (HTTP), port 443 (HTTPS), or ports 1024–65535 (HTTP or HTTPS).
The most secure configuration is to use HTTPS and configure your Web service to
require an SSL client certificate from Force.com. Go to the App Setup area and
click Develop ➝ API, and click the Download Client Certificate link.

Caution
If your outbound message endpoint uses HTTPS, the endpoint server’s certificate must be
issued by a Certificate Authority (CA) that is accepted by Force.com. The latest list of accepted
CAs is available at http://wiki.developerforce.com/index.php/
Outbound_Messaging_SSL_CA_Certificates.

Salesforce-to-Salesforce (S2S)
S2S allows you to share data between Force.com organizations, the tenants of the multi-
tenant platform.The data exchange takes place entirely within the servers that run the
Force.com platform, eliminating all the overhead associated with traditional integration
over the Internet, such as encryption, message formats, and transport protocols. It can be
valuable for business-to-business scenarios such as partner relationship management and

http://wiki.developerforce.com/index.php/Outbound_Messaging_SSL_CA_Certificates
http://wiki.developerforce.com/index.php/Outbound_Messaging_SSL_CA_Certificates

320 Chapter 10 Integration

customer support, providing a point-and-click solution for information sharing that can
be set up and managed without additional technology products and their associated costs
and complexity.

This subsection walks you through the process of configuring S2S to share records of
the Services Manager sample application’s Project object between two Force.com organi-
zations.The process is divided into three major steps, listed here:

1. Establishing a Connection: Connection is the S2S terminology for an integra-
tion point between two Force.com organizations. Connections require manual initi-
ation and acceptance by the administrators of each Force.com organization.

2. Configured Shared Objects: To share objects, one organization publishes an
object, and the other organization subscribes to it.The subscriber maps the object,
fields, and values to counterparts in their organization.

3. Sharing Records: After the connection is established and objects are shared,
records can begin flowing between the two organizations. Records are forwarded
from one organization and accepted by the receiver.

Establishing a Connection
To start, you need at least two separate Force.com organizations.You already have one, so
sign up for a second Developer Edition account.Then, enable the S2S feature in both
organizations by going to the App Setup area and clicking Customize ➝ Salesforce to
Salesforce ➝ Settings. Click the Enable check box and then the Save button, shown in
Figure 10-5.

S2S establishes connections between organizations using ordinary email.The process
begins with one organization initiating the connection. Initiation requires a Contact
record containing the email address of the person who is authorized to accept the con-
nection on behalf of his organization. Users without Modify All Data permission cannot
initiate and accept S2S connections unless an administrator has enabled the Manage Con-
nections permission on their profiles.

To prepare to connect, create a new Contact record in your first Force.com organiza-
tion with the email address of the administrator of your second Force.com organization.
Go to the Connections tab and click the New button. Note that the Connections tab is
only visible if you have enabled S2S in your organization. Select the Contact and click the
Save & Send Invite button to send the invitation email. In Figure 10-6, the user Doug
Hole will receive the invitation to connect to this organization.

The invitee receives an automated email from Force.com with a link to log in to his
Force.com organization and accept or decline the connection. Clicking the link reveals
the screen shown in Figure 10-7. Click the Accept button to complete the connection
process.

If the invitation is accepted, the connection moves to an active status as shown in
Figure 10-8. Connections can be deactivated by either organization at any time, immedi-
ately blocking the exchange of data between the organizations.

321Force.com Integration Solutions

Figure 10-5 Enable S2S

Figure 10-6 Creating new S2S connection

322 Chapter 10 Integration

Figure 10-7 Accepting invitation to connect via S2S

Figure 10-8 Active S2S connection

323Force.com Integration Solutions

Figure 10-9 Selecting objects to publish via S2S

With an active S2S connection, the next step is publishing objects from one organiza-
tion and subscribing to them in the other.

Configuring Shared Objects
An object is shared between two organizations when one has published it and another has
subscribed to it. Publishing and subscribing are configured per object.All custom objects
are supported, but not all standard objects.To get the latest list of standard objects sup-
ported by S2S, check the online help by logging into your Force.com organization and
clicking the Help & Training link.

On the connection detail page, click the Publish/Unpublish button to edit the list of
the objects that are published to the connection. In Figure 10-9, the Project object has
been published.

Publishing is also configured at the field level. Initially only the standard Name field is
published.To add more fields, click the Edit link beside the published object. Figure 10-10
shows the publishing of additional fields of the Project object.

You’ve finished publishing the object and its fields, but records cannot be forwarded
until the other organization closes the loop by subscribing to the objects. Subscribing
involves mapping the published object, fields, and values so that the published records have
a place to call home in the subscribing organization.To keep things simple for this exam-
ple, use the Force.com IDE to copy and paste the Project custom object and tab from
your first organization to the second.

324 Chapter 10 Integration

Figure 10-10 Selecting Project fields to publish via S2S

Log in to the second organization and visit the Connections tab. Click the active con-
nection and then the Subscribe/Unsubscribe button, revealing the screen shown in Figure
10-11. Each object published by the first organization (Sample Company in Figure 10-11)
is listed on the leftmost column, with a drop-down list of objects in the second organiza-
tion that can be mapped to the published data.The auto-accept option streamlines the
data sharing process, instructing Force.com to accept every record of the selected object
forwarded by the first organization. By default, acceptance is a manual process of logging
in and clicking a button.You cannot auto-accept records in child objects in Master-Detail
relationships, because they cannot be accepted or rejected independently of their parent
records.

Like publishing, subscribing takes place at the field level. Click the Edit link beside the
subscribed object to edit the field mappings. Figure 10-12 shows an example.The left col-
umn contains the fields from the published object; the right, column drop-down lists of
fields from the subscribed object. Select a field from the subscribed object to map it or
click the Automatically map fields check box to map identical field names from the pub-
lished object to the subscribed object.

The Account field is a lookup to a parent object, so mapping it means that the destina-
tion field receives the name of the parent record. Stage, Status, and Type are picklists, so
they have an additional Edit Values link to maintain the mappings of picklist values.

With the connection active and an object shared between the organizations, you’re
ready to share records.

325Force.com Integration Solutions

Figure 10-11 Subscribing to objects via S2S

Figure 10-12 Mapping fields in S2S-subscribed object

326 Chapter 10 Integration

Figure 10-13 Adding External Sharing related list

Sharing Records
To share records between the organizations, the organization publishing the object for-
wards one or more records of that object.The subscribing organization accepts the
records, which creates them in the subscribed object, mapping their fields and picklist
values as configured in the Connections tab.

Records are forwarded using the External Sharing related list.This special S2S related
list is not visible on page layouts until manually added by an administrator. Figure 10-13
demonstrates editing the page layout of the Project object to drag the External Sharing
related list from the Related Lists palette at the top of the screen to the region at the bot-
tom of the screen.

Visit a record in the Project object and scroll to the External Sharing related list. Click
the Forward This Project button to see what’s shown in Figure 10-14. Here you can pick
one or more S2S connections to share this record with.

After forwarding the record, examine the External Sharing related list for the current
status. If the subscribing organization has enabled auto-acceptance of records for this
object, the status immediately indicates that the record is active. If not, the record is not
active until the subscribing organization manually accepts it. In Figure 10-15, the sub-
scribing organization has accepted the record, as indicated by its Active status in the Exter-
nal Sharing related list.

327Force.com Integration Solutions

Figure 10-14 Forwarding a record using S2S

Figure 10-15 Viewing an S2S-forwarded record

328 Chapter 10 Integration

Figure 10-16 Viewing S2S-shared record

Figure 10-16 shows what the shared record looks like from the perspective of the sec-
ond organization. Notice the message at the top about the record being externally shared
from Sample Company, and at the bottom you can see the Created By and Last Modified
By value of Connection User.This indicates that the record was created by Force.com
itself, not a user in your organization, after being received via the S2S connection.

You have successfully caused a record to travel between two Force.com organizations.
If the second organization modifies the shared record, the changes do not propagate back
to the first organization. Furthermore, if the first organization modifies the record, the
corresponding record in the second organization is updated to match, overwriting any
updates made by the second organization. Deleting the record in either organization sim-
ply breaks the connection rather than cascading the deletion to the other organization.
Sharing of the record can be stopped at any time by a click of the Stop Sharing link in the
External Sharing related list.

Although S2S maps records in a lookup relationship as strings rather than full related
objects, it does provide some special functionality for Master-Detail relationships.All child
records are automatically forwarded initially, when the parent record is forwarded. Updates
of those original child records are also forwarded, but not additions and deletions.

329Developing Custom Integrations

Developing Custom Integrations
With outbound messaging and S2S, Force.com completely handles the low-level details of
how data is shared between two systems.These features are not appropriate for every inte-
gration scenario because they require a high degree of conformance on the part of the
target system.This can be difficult or impossible to achieve with the political and techno-
logical barriers commonly present between companies and their applications.

Fortunately, the platform provides two additional features for added control and flexi-
bility over outbound integration:

1. Calling Web Services from Apex Code: Apex code can be generated directly
from WSDL, producing methods for invoking an external Web service and repre-
senting the input and output data in native Apex data structures rather than SOAP.

2. Using HTTP Integration: For integration projects that require even more con-
trol or that use non-SOAP message formats, Force.com includes classes for issuing
HTTP and HTTPS requests, encoding and decoding URLs and Base64 content,
and performing cryptographic signing and hashing often needed to comply with
the security requirements of external services.

Caution
Force.com tightly controls outbound requests from its platform. Understanding the limits
before jumping into development of integrations is important. These limitations apply to both
Web service callouts and HTTP requests.

Request and response messages cannot exceed the maximum Apex heap size, normally
3MB. Apex code can make a maximum of ten HTTP requests in a single transaction. By
default, a single request cannot run longer than 10 seconds. If a transaction contains more
than one request, the total time of all requests cannot exceed 120 seconds.

Calling Web Services from Apex Code
Force.com provides a code generation tool in its native user interface for creating Apex-
friendly classes and methods from Web service definitions found in WSDL files. Like most
code generation tools, using it is a hit-or-miss experience.When it works on your WSDL,
it can save considerable effort over the alternative of manually constructing and parsing
SOAP messages. But be prepared for cryptic error messages when code cannot be gener-
ated due to the impedance mismatch between WSDL, SOAP, and Apex.

If you’re able to use your WSDL wholesale or slim it down to successfully generate
Apex code, most of your work is done. Invoking the remote Web service becomes a rela-
tively simple matter of preparing the right input via Apex classes, invoking a method, and
using the resulting Apex classes in your program. No interaction with HTTP or XML is
necessary because these details are hidden by the generated Apex code.

330 Chapter 10 Integration

Caution
For integrations that require a series of Web service calls strung together with cookies to
maintain state between them, you cannot use the Apex code generated from WSDL. Addi-
tionally, generated code does not support HTTP-level authentication.

In general, no developer-modifiable options exist in the generated code, which uses an inter-
nal, undocumented API to perform the actual Web service callout. If your Web service call
requires control over the SOAP message content or HTTP headers, you must write code to
make the request from scratch using HTTPRequest, as described in the next subsection.

Here are the steps needed to generate Apex from WSDL:

1. Save the WSDL file on your local machine.

2. Go to the App Setup area and click Develop ➝ Apex Classes.

3. Click the Generate from WSDL button.

4. Click the Browse button and locate the WSDL in your file system and then click
the Parse WSDL button.The WSDL must describe a document-style service
because RPC is not supported.

5. Each WSDL namespace can be mapped to an Apex classname to be generated.You
can map multiple namespaces to the same class. Force.com suggests an Apex class-
name based on the WSDL, but you can override this suggestion.When you’re done
naming the classes, click the Generate Apex code button.

6. If you refresh your Force.com IDE by right-clicking the project and selecting
Force.com ➝ Refresh from Server, you should see the new Apex class. If not, make
sure that it was generated successfully and that you’ve subscribed to new Apex
classes by right-clicking the Force.com project and selecting Force.com ➝
Add/Remove Metadata Components.

Caution
Due to the complexity of WSDL, mismatches between its naming conventions and Apex, and
governor limits on the size of Apex classes, many edge cases exist that you should be aware
of when using the WSDL to Apex feature. Investigate these further in the Force.com online
help. As a best practice, keep your WSDL as simple as possible. Manually edit it to strip out
extraneous services and ports.

Before you can run this code, you must authorize Force.com to make an outbound call to
the endpoint of the Web service. Go to the Administration Setup area and click Security
Controls ➝ Remote Site Settings and add the host.

331Developing Custom Integrations

Using HTTP Integration
Many integration scenarios require full control over the preparation of requests and pro-
cessing of responses. Force.com addresses this situation with support in Apex for making
direct HTTP requests from the Force.com service to external servers on the Internet.The
core Apex classes that allow you to work with HTTP are described here:

n HttpRequest:This class contains the parameters for making an HTTP request. It
includes methods for working with the request body, HTTP headers, the HTTP
method type, client certificates, HTTP compression, and timeouts.

n HttpResponse:When an HTTP request is sent, an instance of the HttpResponse
class is returned. Methods are available for getting the raw response body, HTTP
status code, and HTTP headers.

n Http:This class is used to perform the HTTP operation. It contains a single
method called send to initiate the operation, which accepts an instance of
HttpRequest and returns an HttpResponse.

In addition to these three classes, here are two other useful classes for working with
HTTP in Apex:

1. EncodingUtil: This class contains methods for URL and Base64 encoding and
decoding.

2. Crypto: Use the Crypto class to compute cryptographic hashes and signatures
commonly required to authenticate to HTTP services. It includes the methods
generateDigest to generate a one-way hash digest for a message, generateMac to
generate a message authentication code given a private key, and sign to produce a
digital signature for a message using a private key.

To get started with HTTP in Apex, try writing a method to invoke a REST service.The
REST service used in the following example is provided by Yahoo!. It’s a geocoding serv-
ice, returning latitude and longitude given a street, city, and state.The service is docu-
mented at http://developer.yahoo.com/maps/rest/V1/geocode.html. Listing 10-2 is a
sample of the result of invoking the service.

Listing 10-2 Sample XML Response from Yahoo! Geocoding REST Service

<ResultSet xsi:schemaLocation="urn:yahoo:maps

http://api.local.yahoo.com/MapsService/V1/

GeocodeResponse.xsd">

<Result precision="address">

<Latitude>37.555113</Latitude>

<Longitude>-122.300100</Longitude>

<Address>900 Concar Dr</Address>

http://developer.yahoo.com/maps/rest/V1/geocode.html

332 Chapter 10 Integration

<City>San Mateo</City>

<State>CA</State>

<Zip>94402-2600</Zip>

<Country>US</Country>

</Result>

</ResultSet>

Inputs to REST services are provided as URL parameters, and the outputs vary but are
usually JSON- or XML-encoded.Although you can always manipulate raw strings and
JSON in Apex, check the open-source community for existing code to help you con-
struct and parse messages in these and other formats. Check the Force.com Code Share
site (http://developer.force.com/codeshare) for the latest list of open-source projects.

In the code sample in Listing 10-3, the geocoding service is called and its response
parsed using the XML API provided by Force.com, specifically the DOM.Document and
DOM.XmlNode classes.Although the Force.com also includes the XmlStreamReader class
for parsing XML, it works at a lower level than DOM.XmlNode and tends to be more diffi-
cult to use.

Listing 10-3 Calling the Yahoo! Geocoding REST Service

public class YahooGeocode {

public static List<Result> geocode(

String street, String city, String state) {

List<Result> result = new List<Result>();

HttpRequest req = new HttpRequest();

String url = 'http://local.yahooapis.com/MapsService/'

+ 'V1/geocode?appid=YD-9G7bey8_JXxQP6rxl.fBFGgCdNjoDMACQA-'

+ '&street=' + EncodingUtil.urlEncode(street, 'UTF-8')

+ '&city=' + EncodingUtil.urlEncode(city, 'UTF-8')

+ '&state=' + EncodingUtil.urlEncode(state, 'UTF-8');

req.setEndpoint(url);

req.setMethod('GET');

Http http = new Http();

HTTPResponse res = http.send(req);

DOM.Document doc = res.getBodyDocument();

List<DOM.XmlNode> nodes = doc.getRootElement().getChildElements();

if (nodes != null) {

for (DOM.XmlNode node : nodes) {

result.add(nodeToResult(node));

}

}

return result;

}

public static Result nodeToResult(DOM.XmlNode node) {

Result r = new Result();

r.latitude = getText(node, 'Latitude');

http://developer.force.com/codeshare

333Developing Custom Integrations

r.longitude = getText(node, 'Longitude');

r.address = getText(node, 'Address');

r.city = getText(node, 'City');

r.state = getText(node, 'State');

r.zip = getText(node, 'Zip');

r.country = getText(node, 'Country');

return r;

}

private static String getText(DOM.XmlNode node, String element) {

if (node != null) {

DOM.XmlNode child = node.getChildElement(element, 'urn:yahoo:maps');

if (child != null) {

return child.getText();

}

}

return null;

}

public class Result {

public String latitude;

public String longitude;

public String address;

public String city;

public String state;

public String zip;

public String country;

public String asString() {

return address + ', ' + city + ', ' + state

+ ', ' + zip + ', ' + country + ' ('

+ latitude + ', ' + longitude + ')';

}

}

}

Tip
The YahooGeocode class will not work without a Remote Site Setting authorizing Force.com
to call out to the Yahoo! service. To add this setting, go to the Administration Setup area
and click Security Controls ➝ Remote Site Settings. Click the New Remote Site button
and enter a name to remember the site (no spaces allowed) and the root of the URL
(http://local.yahooapis.com).

To test the code, open the Execute Anonymous view in the Force.com IDE and exe-
cute the statements given in Listing 10-4.The result should be a single line containing the
latitude and longitude of the input address.

http://local.yahooapis.com

334 Chapter 10 Integration

Listing 10-4 Testing the YahooGeocode Class

for (YahooGeocode.Result result : YahooGeocode.geocode(

'900 Concar Dr', 'San Mateo', 'CA')) {

System.debug(result.asString());

}

Sample Application: Anonymous Benchmarking
In a services organization, utilization is a valuable metric for managing the business.A sim-
ple definition of utilization is the number of hours worked, typically hours billable to the
client, divided by the total number of hours in a time period, expressed as a percentage.

In this section, the Services Manager sample application is extended with a Visualforce
page that performs a basic utilization calculation between two dates.To calculate billable
hours worked, it queries the Timecard custom object. For available hours, it uses a built-in
Apex function for date arithmetic to compute the number of working hours between the
two dates.

Integration comes into the picture with the addition of anonymous benchmarking.
Imagine an independent organization that collects and analyzes the performance data of
services companies. Companies submit their anonymized metrics and compare their per-
formance to that of other companies in their industry. For the Services Manager sample
application, you have access to a fictional benchmarking organization reachable through a
Web service call.

The remainder of the section describes the design and implementation of the utiliza-
tion page, controller, and integration to the anonymous benchmarking Web service. It is
divided into the following subsections:

n Visualforce Page Design: Build a simple Visualforce page to capture the start and
end dates of the utilization calculation, and display the results.

n Visualforce Controller Design: Develop a controller to retrieve the billable
hours worked and the available hours and perform the utilization calculation.

n Integrating the Web Service: Add code to the controller to call out to the
anonymous benchmarking Web service to share the results of the utilization
calculation.

n Sample Implementation: Examine sample code for the utilization page and
controller.Try this code in its entirety, copy portions of it, or contrast it with your
own implementation.

Visualforce Page Design
The goal of this section is a Visualforce page resembling what’s shown in Figure 10-17.
A user has entered start and end dates to compute utilization, selected the Share Anony-
mously check box to indicate that she would like the results sent out over the Web to the

335Sample Application: Anonymous Benchmarking

Figure 10-17 Utilization Visualforce page

benchmarking service, and clicked the Calculate button.This populated the lower three
rows with the utilization results.The results include the total hours worked in the time
period (from the Timecard object), the total number of consulting resources in the system
(from the Resource object), and the utilization as a percentage.

The page is styled to look like part of the native Force.com native user interface.The
sectionHeader component is used to render the heading bar.This is followed by the
pageMessages component to show errors and information to the user.The Calculate
button is a commandButton, enclosed in a pageBlockButtons component.The Start and
End date fields are both inputField components with their value attributes set to SOb-
ject Date fields in the controller, providing a calendar picker user interface when focus is
received.The styling of each row is accomplished by pageBlockSectionItem compo-
nents, each with two child components. For example, the pageBlockSectionItem to ren-
der the row for Start Date contains an outputLabel and an inputField.

Begin by prototyping this page, focusing on the appearance, layout, and user interac-
tion. Create a custom controller class, adding a placeholder action method to calculate the
utilization. Create member variables for the start and end dates, binding them to any Date
field in a standard or custom object.This binding means you can use the inputField
component to render the start and end date fields, making them calendar input controls
rather than plain text fields.Add a Boolean member variable for the Share Anonymously
option, bound to an inputCheckbox component.

336 Chapter 10 Integration

Figure 10-18 Configuring business hours

You’re ready to move on to build out the controller to compute utilization and inte-
grate the benchmarking Web service.

Visualforce Controller Design
The job of the controller is to take the user input and calculate utilization, optionally
sending the results to the Web service. Real-world calculations of utilization can be com-
plex. For example, some organizations subtract paid time off from the total hours avail-
able. Or with a large or diverse pool of resources, utilization might be calculated
separately per business unit or geographic region.

In the Services Manager sample application, the utilization calculation is intentionally
kept simple. One minor complication is in defining the available working hours, the
denominator in the utilization formula. Rather than assuming that all consultants are bill-
able 24 hours a day, use Force.com to store the company’s business hours.

To manage business hours, go to the Administration Setup area and click Company
Profile ➝ Business Hours. Force.com comes preconfigured with business hours that run
for 24 hours per day, 7 days a week. Because you don’t expect your consultants to work
168-hour weeks, click the Edit link and update the default business hours to something
more reasonable.To designate a day off, leave the start and end time blank. Figure 10-18
shows the business hours configuration for a 45-hour workweek, working 8 a.m. to 5
p.m. weekdays with Saturdays and Sundays off.

337Sample Application: Anonymous Benchmarking

With business hours configured, you’re ready to compute utilization.The following list
outlines the steps:

1. Write a SOQL query to select the Total_Hours__c field from all timecards that
are billable and between the start and end dates entered by the user.

2. Add up all the values of the Total_Hours__c field.This is the numerator in the uti-
lization calculation.

3. Assume that the Week_Ending__c field of timecards is always a Saturday. If the start
or end date entered by the user is not a Saturday, adjust it accordingly. If you do not
take this simplifying step, you’ll have to compensate for non-Saturday time ranges
by subtracting the hours of individual days from the total.

4. The number of hours available must account for the business hours of the organiza-
tion.The business hours you configured in the Force.com native user interface are
stored in a standard object named BusinessHours, queryable from SOQL.Write
SOQL to obtain the unique identifier of the default BusinessHours record. Call
the static diff method on the BusinessHours class, passing the unique identifier
and the adjusted start and end dates.This returns a long value with the number of
milliseconds elapsed between the two dates during which the organization was
open for business.

Integrating the Web Service
The fictional anonymous benchmarking service provides a URL to the WSDL for its
Web service.The Web service allows companies to submit their utilization calculations
anonymously for contribution in a database. Companies are differentiated by industry
only, using a standard industry classification system called the North American Industry
Classification System (NAICS), developed by the United States Census Bureau. NAICS
codes are six-digit numbers.The list of NAICS codes is available at www.census.gov/eos/
www/naics/reference_files_tools/2007/naics07_6.txt. For example, 541511 is the code
for companies providing Custom Computer Programming Services.

To integrate the Web service, begin by generating an Apex class from the WSDL.The
WSDL is available at http://force-book-developer-edition.na6.force.com/Anonymous-
BenchmarkWsdl. Download it to your local machine and then follow these steps:

1. In the App Setup area, click Develop ➝ Apex Classes and click the Generate from
WSDL button.

2. Click the Browse button, locate the WSDL file in your file system, and click the
Parse WSDL button.

3. You should see the screen shown in Figure 10-19, which is prompting for an Apex
classname to receive the generated code.You can name your class anything you
want, but this example uses the name BenchmarkWS.

www.census.gov/eos/www/naics/reference_files_tools/2007/naics07_6.txt
www.census.gov/eos/www/naics/reference_files_tools/2007/naics07_6.txt
http://force-book-developer-edition.na6.force.com/Anonymous-BenchmarkWsdl
http://force-book-developer-edition.na6.force.com/Anonymous-BenchmarkWsdl

338 Chapter 10 Integration

Figure 10-19 Generating Apex from anonymous benchmarking WSDL

You should now have a new Apex class called BenchmarkWS. Before you can test it out,
enable the endpoint URL in Remote Site Settings. In the Administration Setup area,
click Security Controls ➝ Remote Site Settings. Click the New Remote Site button and
enter a name for the site and its URL (https://force-book-developer-edition.na6.force.
com). Figure 10-20 shows the result of adding the remote site.

Finally, test the generated Apex class using the code given in Listing 10-5.You can exe-
cute this code directly from the Execute Anonymous view.

Listing 10-5 Testing the Web Service Call from Apex

BenchmarkWS.AnonymousBenchmark service =

new BenchmarkWS.AnonymousBenchmark();

BenchmarkWS.UtilizationEntry ue =

new BenchmarkWS.UtilizationEntry();

ue.naicsCode = '541511';

ue.startDate = Date.parse('4/5/2009');

ue.endDate = Date.parse('4/11/2009');

ue.totalHours = 35;

ue.totalResources = 1;

ue.utilization = 88;

BenchmarkWS.SubmissionStatus[] results =

service.submitUtilizationData(

new BenchmarkWS.UtilizationEntry[] { ue });

https://force-book-developer-edition.na6.force.com
https://force-book-developer-edition.na6.force.com

339Sample Application: Anonymous Benchmarking

Figure 10-20 Remote site settings

Sample Implementation
Listing 10-6 contains the controller code for the utilization Visualforce page, and Listing
10-7 contains the page itself.This implementation brings together the three elements dis-
cussed in this section: the user interface to calculate utilization, the utilization computa-
tion itself, and the Web service callout.

Listing 10-6 Sample Code for Utilization Controller

public class UtilizationController {

public Timecard__c card1 { get; private set; }

public Timecard__c card2 { get; private set; }

public Boolean shared { get; set; }

public Decimal utilization { get; private set; }

public Decimal totalHours { get; private set; }

if (results != null) {

for (BenchmarkWS.SubmissionStatus result : results) {

if (!result.success) {

System.debug(result.errorMessage);

}

}

}

340 Chapter 10 Integration

public Integer totalResources { get; private set; }

public UtilizationController() {

card1 = new Timecard__c();

card2 = new Timecard__c();

}

public PageReference calculate() {

Date startDate = card1.Week_Ending__c;

Date endDate = card2.Week_Ending__c;

// assumes all resources are billable

List<Resource__c> resources = [SELECT Id FROM Resource__c

WHERE Start_Date__c < :startDate];

List<Timecard__c> timecards = [SELECT Week_Ending__c,

Total_Hours__c FROM Timecard__c

WHERE Billable__c = true AND

Week_Ending__c >= :startDate AND

Week_Ending__c <= :endDate

ORDER BY Week_Ending__c];

totalHours = 0;

if (timecards.size() == 0) {

return null;

}

for (Timecard__c timecard : timecards) {

totalHours += timecard.Total_Hours__c;

}

// adjust start and end dates to match timecard week endings

Timecard__c firstTimecard = timecards.get(0);

Timecard__c lastTimecard = timecards.get(timecards.size() - 1);

if (startDate < firstTimecard.Week_Ending__c) {

startDate = firstTimecard.Week_Ending__c.addDays(-6);

card1.Week_Ending__c = startDate;

}

if (endDate > lastTimecard.Week_Ending__c) {

endDate = lastTimecard.Week_Ending__c;

card2.Week_Ending__c = endDate;

}

totalResources = resources.size();

Long availableHours = totalResources *

calculateAvailableHours(startDate, endDate);

utilization = 100 * totalHours.divide(availableHours, 2);

if (shared) {

shareUtilization();

}

return null;

}

public static Long calculateAvailableHours(

Date startDate, Date endDate) {

BusinessHours bh = [SELECT id FROM BusinessHours

341Sample Application: Anonymous Benchmarking

WHERE IsDefault = true];

DateTime startTime = DateTime.newInstance(

startDate.year(), startDate.month(), startDate.day(),

0, 0, 0);

DateTime endTime = DateTime.newInstance(

endDate.year(), endDate.month(), endDate.day(),

0, 0, 0);

Decimal diff = Decimal.valueOf(

BusinessHours.diff(bh.id, startTime, endTime));

return diff.divide(3600000, 0).round();

}

private void shareUtilization() {

BenchmarkWS.AnonymousBenchmark service =

new BenchmarkWS.AnonymousBenchmark();

BenchmarkWS.UtilizationEntry ue =

new BenchmarkWS.UtilizationEntry();

ue.naicsCode = '541511';

ue.startDate = card1.Week_Ending__c;

ue.endDate = card2.Week_Ending__c;

ue.totalHours = totalHours;

ue.totalResources = totalResources;

ue.utilization = utilization;

BenchmarkWS.SubmissionStatus[] results =

service.submitUtilizationData(

new BenchmarkWS.UtilizationEntry[] { ue });

if (results != null) {

for (BenchmarkWS.SubmissionStatus result : results) {

if (!result.success) {

ApexPages.addMessage(new ApexPages.Message(

ApexPages.Severity.ERROR, result.errorMessage));

} else {

ApexPages.addMessage(new ApexPages.Message(

ApexPages.Severity.INFO,

'Shared anonymous benchmark data'));

}

}

}

}

}

Listing 10-7 Sample Code for Utilization Visualforce Page

<apex:page controller="UtilizationController"

tabStyle="Utilization__tab">

<apex:sectionHeader title="Services Manager"

subtitle="Utilization" />

342 Chapter 10 Integration

<apex:form>

<apex:pageMessages id="msgs" />

<apex:pageBlock id="util">

<apex:pageBlockButtons>

<apex:commandButton action="{!calculate}"

value="Calculate" rerender="msgs, util" />

</apex:pageBlockButtons>

<apex:pageBlockSection columns="1">

<apex:pageBlockSectionItem>

<apex:outputLabel value="Start Date" />

<apex:inputField value="{!card1.Week_Ending__c}" />

</apex:pageBlockSectionItem>

<apex:pageBlockSectionItem>

<apex:outputLabel value="End Date" />

<apex:inputField value="{!card2.Week_Ending__c}" />

</apex:pageBlockSectionItem>

<apex:pageBlockSectionItem>

<apex:outputLabel value="Share Anonymously" />

<apex:inputCheckbox value="{!shared}" />

</apex:pageBlockSectionItem>

<apex:pageBlockSectionItem>

<apex:outputLabel value="Total Hours" />

<apex:outputText value="{!totalHours}" />

</apex:pageBlockSectionItem>

<apex:pageBlockSectionItem>

<apex:outputLabel value="Total Resources" />

<apex:outputText value="{!totalResources}" />

</apex:pageBlockSectionItem>

<apex:pageBlockSectionItem>

<apex:outputLabel value="Utilization (%)" />

<apex:outputText value="{!utilization}" />

</apex:pageBlockSectionItem>

</apex:pageBlockSection>

</apex:pageBlock>

</apex:form>

</apex:page>

Summary
With its outbound integration features, the Force.com platform is open for interoperabil-
ity with other applications and systems running on Force.com, elsewhere on the Internet,
and behind your corporate firewall.The capability to call externally from within the plat-
form using Web standards helps to break down the functional silos of Force.com and
other applications.

343Summary

Chapter 11 reverses the integration equation, demonstrating the capability of
Force.com to service inbound requests from other systems for its business logic and data.
Before jumping in, take a minute to review the following points from this chapter:

n Outbound messaging uses workflow rules to trigger a Web service request to an
endpoint, an Internet-accessible HTTP or HTTPS port.The signature of the Web
service is dictated entirely by Force.com. If you control the implementation of the
endpoint, outbound messaging is the fastest and most robust method of outbound
integration.

n Salesforce-to-Salesforce (S2S) enables sharing of records between multiple
Force.com organizations.This natural outgrowth of multitenancy provides near-
real-time data integration without code.

n WSDL to Apex is a tool in the Force.com native user interface for reading a WSDL
and creating Apex code from it.With the generated code, your Apex code has
access to the remote methods of the Web service without dealing with the imple-
mentation details of XML and HTTP.Apex code also provides access to raw HTTP
requests and responses, allowing you to develop your own integration callouts.

This page intentionally left blank

11
Advanced Integration

This chapter focuses on integrating with Force.com from outside of the platform, using
servers behind your corporate firewall or those of other cloud providers.This approach
requires significantly more configuration and development effort than the integrations
described in Chapter 10,“Integration,” but this extra work is rewarded with increased
flexibility.

By integrating from outside of Force.com, you have complete control of the platforms,
programming languages, and tools used in building the integration.The only requirement
is that the technology supports SOAP or REST (XML or JSON) communication over
HTTP. By running the integration code on your own servers rather than Force.com, you
are less likely to run into governor limits of Force.com, and those limits you do
encounter are readily addressed by following recommended API usage patterns.

This chapter is divided into sections that each address a different aspect of integration
with Force.com:

n Understanding Force.com Web Services: This section describes high-level
concepts common to all the subsequent sections, including how to invoke Web
services from Java and C#.NET and the handling of data types and errors.

n Using the Enterprise API: The Enterprise API is a set of Web services that allow
fine-grained, strongly typed access to the data in your Force.com database, includ-
ing execution of SOQL and SOSL queries and full read and write capabilities on
the records of all objects.

n Building Custom Web Services in Apex: Although Force.com provides built-in
Web services, you can also define your own using Apex code. Custom Web services
are typically written to optimize for application-specific usage patterns; for exam-
ple, combining what would be many Enterprise API calls into a single, robust
method executed entirely on the Force.com platform.

n Introduction to the Metadata API: The Metadata API enables you to write
code to perform development and configuration management tasks such as database
object maintenance and application migration. It is the same API used by the
Force.com IDE.

346 Chapter 11 Advanced Integration

n Using the Force.com REST API: The REST API provides much of the same
functionality as Force.com Web services, but without the overhead and complexity
of SOAP.

n Sample Application: In an integration scenario for the Services Manager sample
application, a Java program is developed to update Force.com with information
from a human resources database.

Understanding Force.com Web Services
Force.com Web services allow data, logic, and metadata to be accessed from outside the
Force.com platform by any program that can communicate using SOAP messages over
HTTP.

Although the details of the Web services vary, the general procedure for writing a pro-
gram to invoke them remains constant.With a strongly typed language like Java or
C#.NET, stub code is generated from the Force.com WSDL.The program must log in to
Force.com to establish a session and can then invoke the Web service methods.

This section describes concepts that can be applied to using any Force.com Web serv-
ice. It consists of the following parts:

n Basics of Force.com Web Services: Learn about the five Web services provided
by Force.com, how they are secured, and limits placed on their use.

n Generating Stub Code: Walk through the process for generating Java or
C#.NET code from Force.com WSDL.

n Logging In: The first Web service call typically establishes a session with
Force.com by logging in.This session is used to make subsequent Web service calls
until it is invalidated explicitly or it expires.

n Force.com Data Types in SOAP: Understand how data types in Force.com
objects are expressed in Web services.

n Error Handling: Force.com Web services signal errors in a few ways, depending
on where the errors originate.

Basics of Force.com Web Services
Force.com provides five types of Web service APIs: Enterprise, Partner, Metadata,Apex,
and Delegated Authentication. Each has its own WSDL describing the methods and data
structures available.The WSDL can be used to generate stub code in strongly typed lan-
guages, allowing the Web services to be incorporated in programs without manual con-
struction and parsing of complex SOAP messages.

When accessing data in Force.com using Web services, the choice is between Enter-
prise and Partner APIs. Both APIs have the same core set of calls, such as query to exe-
cute a SOQL query.The difference between the APIs is how database objects are
represented in your code.

347Understanding Force.com Web Services

The Enterprise API provides a strongly typed representation of the objects in your
Force.com database.This allows your code to operate naturally with Force.com data,
using the field names and data types as you would in Apex code.When you redefine an
object or add a new object, the Enterprise WSDL is automatically updated to reflect the
changes.You need to manually regenerate the client code from the latest WSDL, but this
is a small price to pay for concise, maintainable code.

The Partner API is designed for independent software vendors who write applications
that must interoperate with many different Force.com organizations.They cannot rely on
a single, static representation of standard and custom objects, because all customers of
Force.com are free to create their own database schemas.With the Partner API, you can
write generic code to access any object in any Force.com organization. It’s more verbose
to work with than the Enterprise API, but more flexible as well.

Note
This chapter is intended to familiarize you with the basic Force.com Web service APIs and
their usage. It does not cover the Partner API. The full reference for all Force.com Web serv-
ices is the Force.com Web Services API Developer’s Guide, available at www.salesforce.
com/us/developer/docs/api/index.htm.

There are also three APIs that do not work with Force.com data.The Metadata API
allows manipulation of objects, fields, and other elements of your Force.com configura-
tion. It is described later in this chapter.The Apex API is not covered in this book. It pro-
vides access to low-level development-related features such as the generation of Apex
from WSDL, test execution, and anonymous Apex execution.The Delegated Authentica-
tion API enables a program running outside of Force.com to be invoked whenever a user
attempts to log in to Salesforce, allowing it to decide whether the user is valid. It is
described in Chapter 12,“Additional Platform Features.”

Versions
With each major release of the Force.com platform, new versions of its WSDL are also
released.To take advantage of new features, your code must be updated to use the latest
WSDL.

If the new features are not needed, no action is required.Your code will continue to
work without modification.This is because each WSDL has an endpoint URL in it that
includes its version.

Note
In its documentation, Salesforce commits to maintaining Web service versions for a mini-
mum of three years. It also states that one year of notice will be provided for discontinued
Web service versions.

www.salesforce.com/us/developer/docs/api/index.htm
www.salesforce.com/us/developer/docs/api/index.htm

348 Chapter 11 Advanced Integration

Figure 11-1 Viewing API call usage

Security
Force.com uses Secure Sockets Layer (SSL) v3 and Transport Layer Security (TLS) to pro-
tect the communications between your client application and the Force.com platform.

After your client program has logged in, all the API calls respect the full set of data
security features in Force.com at the object, field, and record level. For this reason, config-
uring a Force.com profile and user account dedicated solely to integration is a good prac-
tice. It might have elevated privileges compared with other,Web-based users.You can
configure this profile to accept logins only from the API address of your corporate inte-
gration server using the Login IP Ranges on the profile or logins at specific times that
your integration is scheduled to run using the Login Hours section.

API Limits
Salesforce limits the number of API calls that can be executed during a 24-hour period.
Every call into Force.com is counted against this limit, including calls made by the
Force.com IDE.The exact limit depends on the edition of Force.com you have licensed.

To view your API limit and current consumption, go to the Administration Setup area
and click Company Profile ➝ Company Information. For example, the organization in
Figure 11-1 has a maximum of 5,000 API calls and has used 97 of them in the current 24-
hour period.

You can configure Force.com to email you when your organization is close to its
API call limit. Go to the Administration Setup area and click Monitoring ➝ API Usage

349Understanding Force.com Web Services

Figure 11-2 Configuring API usage notification

Notifications. Click the New button to define a new notification, specifying the user to
receive the notification, the usage threshold that triggers notifications, and how often they
are sent. Figure 11-2 shows a configured API usage notification.

Generating Stub Code
If you’re using a strongly typed language like C#.NET or Java to integrate with
Force.com, your first step is to generate stub code from a Force.com WSDL.All standard
Force.com WSDLs are available in the App Setup area; to access them, click Develop ➝
API. Click each WSDL link and save the resulting document on your local file system.

Each language and development tool typically provides a facility for parsing WSDL and
generating stub code that can be incorporated into your program.The steps for generating
Java and C#.NET stub code from WSDL are described next.

Java Web Service Client

Note
Salesforce advises that you use the Force.com Web Service Connector (WSC) with its Web
services. Download it from http://code.google.com/p/sfdc-wsc.

Follow these steps to create Java stub code using WSC and the Eclipse IDE:

1. Create a new Java project. In this example, the project is named WebServicesDemo.

2. Copy theWSC jar and enterprise.wsdl files into the top level of your Java project.

http://code.google.com/p/sfdc-wsc

350 Chapter 11 Advanced Integration

Figure 11-3 Eclipse Run Configuration to generate stub code using WSC

3. Create a new Run Configuration to execute the stub generator. Figure 11-3 shows
the Run Configuration.

4. Click the Arguments tab and enter enterprise.wsdl enterprise.jar in the Pro-
gram arguments text box.These arguments tell the program to generate the stub
code for the enterprise.wsdl file into a jar named enterprise.jar.

5. Click the Run button on the Run Configuration and refresh your project. It should
contain the stub code for the Force.com Enterprise API, as depicted in Figure 11-4.

C#.NET Web Service Client

Note
Salesforce recommends using Visual Studio 2003 or higher with its Web services.

The following steps generate a C#.NET Web service client using Visual Studio 2005:

1. Create a new Visual Studio project.The example here is a C# Windows Console
Application.

2. Add a Web Reference and provide the path to the WSDL you saved on your
machine and then click the Go button.Visual Studio parses the WSDL and displays
the methods.

351Understanding Force.com Web Services

Figure 11-4 Java project with stub code generated

3. Enter a name for the Web reference and click the Add Reference button.This name
is the namespace where the generated client classes are placed. Figure 11-5 shows an
example with EnterpriseWS as the name.

4. Your project is ready.To use the client in your code, import the namespace gener-
ated from the Force.com WSDL.The example in Figure 11-6 shows the project,
with sample code importing the namespace WSDemo.EnterpriseWS.WSDemo is the
name of the Visual Studio project, and EnterpriseWS is the name of the generated
class specified in step 3.

Logging In
Logging in to Force.com from a program begins with the user credentials of username
and password, the same as logging in to the native user interface using a Web browser. In
addition to a valid username and password, two additional points of configuration are
needed to log in, described here:

1. API Enabled Permission: The user logging in must have the API Enabled per-
mission on his or her profile.

2. Security Token or Whitelisted IP Address: Force.com requires either a security
token appended to the password or API calls to be issued from a whitelisted IP
address.

352 Chapter 11 Advanced Integration

Figure 11-5 Adding a Web reference to the Visual Studio project

Figure 11-6 Visual Studio project with stub code generated

353Understanding Force.com Web Services

Figure 11-7 Profile with API Enabled permission

API Enabled Permission
The user logging in via API must have the API Enabled permission set on his or her pro-
file.This permission is found in the Administrative Permissions section.A profile with API
Enabled permission is shown in Figure 11-7.

Caution
A few editions of Force.com don’t allow API access. If you don’t see the API Enabled permis-
sion on the profile page or cannot enable it, contact Salesforce support.

Security Token or Whitelisted IP Address
The security token is a string of characters appended to the end of a user’s password. It
allows a user to log in to Force.com from any IP address, assuming that IP address restric-
tions are not configured on his or her profile.To obtain a security token, visit the Personal
Setup area and click My Personal Information ➝ Reset My Security Token.A new secu-
rity token is generated and emailed to the address associated with the user.

An alternative to security tokens is IP whitelisting.Whitelisting instructs Force.com to
accept requests from a specific IP address.To whitelist an IP address, go to the Administra-
tion Setup area and click Security Controls ➝ Network Access. Click the New button,
enter the IP address in the Start IP Address and End IP Address fields, and then click the
Save button.

354 Chapter 11 Advanced Integration

The Login Web Service
To log in, invoke the loginWeb service with a username and password. If the login is
successful, a LoginResult object is returned; otherwise, an exception is raised.The
LoginResult object contains the URL of the server to send Web services requests to and
the session identifier that uniquely identifies your authenticated session with Force.com.
Both of these attributes must be sent in the HTTP headers of subsequent requests for
them to succeed.

Listing 11-1 contains sample Java code to log in. Note that WSC takes care of the
details described earlier for logging in, but this is not the case if you use a different Web
service stack, such as Apache Axis. Listing 11-2 is the same example in C#.NET.

Note
Code in Listings 11-1 and 11-2 doesn’t include exception handling or importing the gener-
ated stub code. It also doesn’t factor in the use of corporate proxies, which might block out-
bound HTTPS traffic. Both Java and .NET can be configured to pass connections through a
proxy. If your connections to Force.com are failing, check with your network administrator to
see whether a proxy could be the cause.

Listing 11-1 Java Fragment to Log In

ConnectorConfig config = new ConnectorConfig();

config.setUsername(user);

config.setPassword(pass);

EnterpriseConnection connection = Connector.newConnection(config);

Listing 11-2 C#.NET Fragment to Log In

SforceService binding = new SforceService();

LoginResult result = binding.login(user, pass + securityToken);

binding.SessionHeaderValue = new SessionHeader();

binding.SessionHeaderValue.sessionId = result.sessionId;

binding.Url = result.serverUrl;

When you’re done with a session, you can invoke the logout Web service. It causes
the session to become invalid, ensuring that it is not used accidentally elsewhere by your
program.

By default, sessions expire after two hours, but you can change this in the Administra-
tion Setup area by clicking Security Controls ➝ Session Settings.Web service calls that
use an expired or invalid session throw an exception with an INVALID_SESSION_ID

exception code.

Troubleshooting Login Problems
All logins to Force.com create an entry in the login history, shown in Figure 11-8.To
view it, go to the Administration Setup area and click Manage Users ➝ Login History.

355Understanding Force.com Web Services

Figure 11-8 Login History Page

Table 11-1 Mapping of Force.com Data Types to SOAP Types

Force.com Data Type SOAP Type

Auto Number String.

Formula Depends on the data type of the formula. Can be
Double, String, Date.

Roll-Up Summary Double.

Lookup Relationship, Master-Detail
Relationship

ID.

Checkbox Boolean.

Currency Double.

Date, Datetime Date. Always UTC, convert to local time zone. If
time portion isn’t present, midnight is returned.

The login history can be helpful for troubleshooting login problems. If you see your
program’s login attempt listed but failed, the login request has successfully reached
Force.com’s servers but is being rejected. If the request is not listed at all, you need to
investigate the connection between your server and Force.com.

Force.com Data Types in SOAP
Table 11-1 lists the Force.com data types and their mapping to SOAP data types.

356 Chapter 11 Advanced Integration

Table 11-1 Mapping of Force.com Data Types to SOAP Types

Force.com Data Type SOAP Type

Number Integer (numbers with no fractional component),
otherwise Double.

Percent Double.

Email, Phone, Picklist, Picklist (Multi-
Select), Text, Text Area, Text (Long), URL

String.

Binary (Attachment, Document) Base64-encoded string.

Note
Refer to the documentation for your programming language or Web services library to map
SOAP types to language-specific data types.

Error Handling
Three categories of errors are raised by Force.com Web services, described here from low-
est to highest level of abstraction:

1. System Exceptions: System exceptions are language-specific and indicate lower-
level problems occurring in the Web services stack. For example, using Java with the
WSC, the ConnectionException contains nested exceptions to indicate specific
problems, such as a java.net.SocketException.The C#.NET equivalent is a
System.Net.WebException.

2. API Faults: API faults are caused by malformed SOAP messages, authentication
failures, or query-related problems.They are SOAP-level errors that contain an
exception code and a message. For example, in Java, a LoginFault class extends
ApiFault and indicates that the login to Force.com failed.A general API fault with
an exception code of INSUFFICIENT_ACCESS indicates that the user does not have
sufficient access to perform the operation. In C#.NET, these exceptions are
instances of System.Web.Services.Protocols.SoapException.

3. Application Errors: These are language-neutral, Force.com-specific errors that
vary based on the Web services involved. For example, services that modify one or
more records return an Error object upon failure.The Error object contains a sta-
tus code, a message, and an array of fields impacted by the error.As a concrete
example, if your record modification violates the referential integrity of the
Force.com database, an Error object containing FIELD_INTEGRITY_EXCEPTION as its
status code is returned.

357Using the Enterprise API

Using the Enterprise API
At the highest level, the Enterprise API consists of core services that allow query and
modification of Force.com data, plus a set of types reflecting the standard and custom
objects defined in your Force.com organization. Using these core services and types is a
fairly straightforward exercise after your code has established a session with Force.com.

This section divides the Enterprise API into two functional groups, described here:

1. Retrieving Records: Retrieve records using SOQL or SOSL queries, by unique
identifier, or based on their modification or deletion timestamp.

2. Writing Records: Learn how to create, update, and delete records using the
Enterprise API.

Retrieving Records
The most common way to retrieve records is via SOQL.This is accomplished with the
query service.A SOQL statement is passed as input, and a QueryResult object is
returned.This object contains an array of records returned by the query.

The number of records returned by the query service is a function of the batch size.
The default batch size in Java using WSC is 2,000 records; 500 for Axis and other Web
service clients. If a query result contains more records than the batch size, use the
queryMore service to retrieve additional batches of records.

The code in Listing 11-3 demonstrates the query and queryMore services in Java to
build a list of Project records. Listing 11-4 is the same code in C#.NET. Note that the
connection object in Java and binding object in C#.NET refer to objects created in
Listings 11-1 and 11-2, respectively.

Listing 11-3 Java Fragment to Execute SOQL Query

List<Proj__c> projects = new ArrayList<Proj__c>();

QueryResult qr = connection.query("SELECT Id, Name FROM Proj__c");

boolean done = false;

if (qr.getSize() > 0) {

while (!done) {

SObject[] records = qr.getRecords();

if (records != null) {

for (SObject record : records) {

projects.add((Proj__c)record);

}

if (qr.isDone()) {

done = true;

} else {

358 Chapter 11 Advanced Integration

qr = connection.queryMore(qr.getQueryLocator());

}

}

}

}

Listing 11-4 C#.NET Fragment to Execute SOQL Query

List<Proj__c> projects = new List<Proj__c>();

QueryResult qr = binding.query("SELECT Id, Name FROM Proj__c");

Boolean done = false;

if (qr.size > 0) {

while (!done) {

sObject[] records = qr.records;

if (records != null) {

foreach (sObject record in records) {

projects.Add((Proj__c)record);

}

if (qr.done) {

done = true;

} else {

qr = binding.queryMore(qr.queryLocator);

}

}

}

}

You can set a custom batch size (up to 2,000 records) by providing a QueryOptions
header.This is demonstrated in Java in Listing 11-5 and in C#.NET in Listing 11-6.

Listing 11-5 Java Fragment for Setting Query Batch Size

connection.setQueryOptions(2000);

Listing 11-6 C#.NET Fragment for Setting Query Batch Size

binding.QueryOptionsValue = new QueryOptions();

binding.QueryOptionsValue.batchSize = 2000;

binding.QueryOptionsValue.batchSizeSpecified = true;

There’s no guarantee Force.com will return the requested number of records in a
batch. For example, if a SOQL statement selects two or more custom fields of type long
text, the batch size will never be more than 200 records. Queries on binary data always
return a single record at a time.

359Using the Enterprise API

Other Ways to Retrieve Records
A few other approaches are available for retrieving records, described next:

n Using SOSL: The search service executes a SOSL statement and returns a Search
Result object, which contains an array of SearchRecord objects. Each
SearchRecord contains an SObject instance representing a matching record.
Because SOSL can return many object types, each SearchRecord object can con-
tain a different type of SObject.

n By Unique Identifier: If you know the unique identifier of an object you can
retrieve it by using the retrieve service. Its inputs are a string containing a
comma-separated list of field names to retrieve, the type of object as a string, and an
array of up to 2,000 record unique identifiers. It returns an array of SObject
instances.

n By Timestamp:The getUpdated and getDeleted services return the unique
identifiers of records updated or deleted between a range of dates.

Writing Records
The basic services for writing records closely resemble their counterparts in Apex code.
Services exist for creating, updating, upserting, deleting, and undeleting records.These
services can accept one record at a time or up to 200 records in a single invocation.

Creating Records
To create one or more records, invoke the create service, passing in an array of SObjects.
Each SObject must contain at a minimum the values for the required fields defined on the
object.The service returns an array of SaveResult objects. Each SaveResult indicates
success or failure of an individual record. In the case of failure, the SaveResult also con-
tains an array of Error objects indicating the error reason.

The code in Listing 11-7 demonstrates the create service in Java. It creates a Resource
record from the values of firstName and lastName. First, it creates a Contact record, and
then it uses its unique identifier as a foreign key when creating the Resource record.
Listing 11-8 is the same example written in C#.NET.

Listing 11-7 Java Fragment to Create Record

String newResourceId = null;

Contact contact = new Contact();

contact.setFirstName(firstName);

contact.setLastName(lastName);

SaveResult[] result = connection.create(

new SObject[] { contact });

if (result != null && result.length == 1) {

if (result[0].isSuccess()) {

Resource__c resource = new Resource__c();

resource.setActive__c(true);

360 Chapter 11 Advanced Integration

resource.setName(firstName + " " + lastName);

resource.setContact__c(result[0].getId());

SaveResult[] result2 = connection.create(

new SObject[] { resource });

if (result2 != null && result2.length == 1) {

if (result2[0].isSuccess()) {

newResourceId = result2[0].getId();

} else {

System.out.println("Failed to create resource: " +

result2[0].getErrors()[0].getMessage());

}

}

} else {

System.out.println("Failed to create contact: " +

result[0].getErrors()[0].getMessage());

}

}

Listing 11-8 C#.NET Fragment to Create Record

String newResourceId = null;

Contact contact = new Contact();

contact.FirstName = firstName;

contact.LastName = lastName;

SaveResult[] result = binding.create(

new sObject[] { contact });

if (result != null && result.Length == 1) {

if (result[0].success) {

Resource__c resource = new Resource__c();

resource.Active__c = true;

resource.Name = firstName + " " + lastName;

resource.Contact__c = result[0].id;

SaveResult[] result2 = binding.create(

new sObject[] { resource });

if (result2 != null && result2.Length == 1) {

if (result2[0].success) {

newResourceId = result2[0].id;

} else {

Console.WriteLine("Failed to create resource: " +

result2[0].errors[0].message);

}

}

} else {

Console.WriteLine("Failed to create contact: " +

result[0].errors[0].message);

}

}

361Using the Enterprise API

Updating Records
To modify existing records, use the update service. Its arguments and return value are
identical to those of the create method.The major difference is that the SObjects must
contain a value for the Id field.This value is the unique identifier of the record to be
updated.

Use the upsert service when you want to create records that don’t exist and update
them if they do exist.To determine whether a record exists, a match is attempted on a
field containing unique identifiers.This field can be the internal Id field or a custom field
designated as an external identifier.The first argument to the upsert service is the name
of the unique identifier field, and the second is an array of SObjects.The service returns
an array of UpsertResult objects. Like the SaveResult object, it contains a success or
failure indicator and an array of errors upon failure.

Note
When updating or upserting, setting fields to null requires an additional step. Each object
instance has a special array field called fieldsToNull. To set a field to null, add the name
of the field to this list.

Deleting and Undeleting Records
To delete records, call the delete service and pass in an array of record unique identifiers
to delete. Unlike the other DML operations, delete accepts different types of objects in a
single call.The service returns an array of DeleteResult objects indicating the success or
failure of each deletion, as well as any error messages.

The undelete service restores deleted records from the Recycle Bin. Like the delete
service, its input is a list of record unique identifiers. It returns an array of
UndeleteResult objects for use in tracking the outcome of each undeletion.

Modifications in Bulk
Bulk modifications involve more than one record.You can create, update, upsert, delete, or
undelete a maximum of 200 records in a single call. By default Force.com allows partial
failure, meaning some records can fail while others succeed.To override this behavior, add
the AllOrNoneHeader to the call and set it to true.This causes Force.com to roll back all
modifications made by the call unless all records are successfully processed.

The ability to process multiple object types in a single call is a powerful feature of bulk
modifications.This is supported on create, update, delete, and undelete operations, but not
upsert. For example, you can create a Resource and Skill in one round-trip to Force.com.
This requires that the Skill record references its parent Resource using an external identi-
fier rather than an Id because an Id for the record doesn’t exist yet.

There are several important limitations of bulk create and update calls that involve
multiple object types:

362 Chapter 11 Advanced Integration

n Up to ten unique object types are allowed per call.
n You can’t reference a new record of the same type in a single call. For example, if

two Contact records were related to each other, you would need to create the par-
ent first, then create the child and relate it to the parent in a separate call.

n If there are related records in the call, parent records must be located ahead of child
records in the request.

n You cannot modify records of multiple object types if they participate in the Sales-
force Setup menu.This limitation includes custom settings objects, GroupMember,
Group, and User.

Building Custom Web Services in Apex
In the preceding section, you called into Force.com from your own programs using the
Enterprise API. Custom Web services complement the Enterprise API by enabling you to
write your own Web services. Like services in the Enterprise API, custom Web services are
callable from any program outside of Force.com using SOAP over HTTPS.

This introduction to custom Web services in Apex consists of the following subsections:

n Understanding Custom Web Services: Understand how custom Web services
can address some of the limitations of the Enterprise API.

n Service Definition: Learn how to create a custom Web service in Apex.
n Calling a Custom Web Service: Following much of the same procedure as that

for the Enterprise API, develop a client program in Java or C#.NET that can invoke
a custom Web service in Force.com.

Understanding Custom Web Services
One way to understand the value of custom Web services is to first examine limitations in
the Enterprise API.The Enterprise API is a direct representation of the objects in your
database as SOAP message types, with methods to query and modify them per record or
in batches.This low-level access to the Force.com database through standard protocols and
messages opens your Force.com applications to the outside world but isn’t perfect for
every integration scenario.The following list points out some areas in which the Enter-
prise API can fall short:

n Transactions:There is limited support in the Enterprise API for transactions that
span multiple objects. If an external program must modify many objects in an
atomic operation, it needs to detect failure for each call and apply a compensating
action to reverse prior successes.

n Integrated Security: The Enterprise API always applies object, field, and record-
level sharing rules of the currently logged-in user.This cannot be disabled by an
external program calling into Force.com. If greater rights are needed, an administra-
tor must alter the user’s profile or the program must log in with the credentials of a

363Building Custom Web Services in Apex

more privileged user.This can complicate integration programs by requiring many
logins of varying privileges or put the organization at risk by running integration
programs with administrative rights.

n Performance: As your integration programs get more complex, they can become
chatty, making many calls to Force.com to fetch different types of records and post-
process them off-platform.This consumes more of the API calls toward the organi-
zation’s daily limit and reduces performance by putting more data on the wire.

You can address these limitations by developing custom Web services in Apex.With cus-
tom Web services, you can create higher-level APIs of your own directly in the Force.com
platform and invoke them from your own programs outside of Force.com using SOAP
over HTTP, just like the Enterprise API.Your custom Web services can bundle a series of
related queries or updates into a single call, providing an atomic unit of work and reduc-
ing network traffic and API call consumption.

Caution
Custom Web services run with administrative rights by default, granting your Apex code
access to all data in the organization.

Service Definition
The definition of a custom Web service is slightly different from that of a regular Apex
class.The differences are listed here:

n Global Class Access Modifier: A class that contains any Web services must use
the global access modifier.This means the class is visible to all programs running in
the Force.com organization.

n Web Service Methods: Each method accessible via Web service call must be
defined with the webservice keyword.These methods must also be static.

n Security: Web service methods run as a system administrator, without regard for
object, field, or record-level sharing rules.To enforce normal security and sharing
rules, define the class with the with sharing keyword.

n Supporting Classes: User-defined Apex classes, inner or outer, that are arguments
or return values for a Web service method must be defined as global. Member
variables of these classes must be defined using the webservice keyword.

n No Overloading: Web service methods cannot be overloaded. Overloaded meth-
ods result in a compile error.

n Prohibited Types: The Map, Set, Pattern, Matcher, Exception, and Enum types are
not allowed in the arguments or return types of Apex Web services.

Additionally,Web services written in Apex must abide by its governor limits.A subset of
these governor limits is listed in Table 11-2.

364 Chapter 11 Advanced Integration

Listing 11-9 defines a simple Web service that creates a record in the Project custom
object given a name. Its method body could just as easily create records in three objects,
perform some other database operation, or call to an external Web service.

Listing 11-9 Sample Apex Code for Custom Web Service

global class Custom {

webservice static ID createProject(String name) {

Proj__c proj = new Proj__c(Name = name);

insert proj;

return proj.Id;

}

}

Calling a Custom Web Service
To call a custom Web service from client code, follow these steps:

1. In the App Setup area, click Develop ➝ Apex Classes.

2. Locate the class containing the Web service and click the WSDL link.

3. Save the WSDL on your local filesystem.You’ll need this plus the Enterprise WSDL
in order to call the custom Web service.

4. Generate stub code from the custom WSDL and add it to your project.

5. Use the login method of the Enterprise WSDL to get a session identifier. Provide
the session identifier when calling the custom Web service.

Listing 11-10 demonstrates the invocation of the custom createProject service in Java
using the WSC, with the stub code generated to a .jar file named Custom. Listing 11-11
is the equivalent code in C#.NET, where the WSDL has been generated into a class
named CustomWS.

Table 11-2 Subset of Apex Web Service Governor Limits

Resource Type Web Service Governor Limit

SOQL 100 queries

Records from SOQL 50,000 records

DML 150 DML statements

Records in DML 10,000 records

Stack Depth 16

Heap 3,000,000 bytes

Apex Code 200,000 lines of code executed

365Introduction to the Metadata API

Listing 11-10 Java Fragment for Invoking Custom Web Service

ConnectorConfig config = new ConnectorConfig();

config.setUsername(user);

config.setPassword(pass);

Connector.newConnection(config);

config.setServiceEndpoint(com.sforce.soap.Custom.Connector.END_POINT);

SoapConnection sconn = new SoapConnection(config);

String projectId = sconn.createProject("Test Project");

Listing 11-11 C#.NET Fragment for Invoking Custom Web Service

public String CreateProject(String sessionId, String name) {

CustomService service = new CustomService();

service.SessionHeaderValue = new CustomWS.SessionHeader();

service.SessionHeaderValue.sessionId = sessionId;

return service.createProject(name);

}

Introduction to the Metadata API
The Metadata API allows the direct manipulation of objects, page layouts, tabs, and most
of the other configurable features in Force.com. By using the Metadata API, you can auto-
mate many of the click-intensive tasks commonly performed in the Force.com IDE or in
the native Web user interface, such as the creation of database objects and fields.

This section provides an introduction to the Metadata API into two parts, described here:

1. Overview: The Metadata API is different from the Enterprise API in two major
ways. First, it can operate on objects in memory or using zip files containing many
objects represented as XML files. Second, its operations are asynchronous, returning
immediately with a result identifier to use for follow-up calls to check the status.

2. Getting Started with the Metadata API: Walk through a sample of calling the
Metadata API to create a new object, using Java and C#.NET.

Note
The details of how the Metadata API operates on each type of metadata in Force.com is out-
side the scope of this book. Consult the Force.com Metadata API Developer’s Guide, found
at www.salesforce.com/us/developer/docs/api_meta/index.htm, for the latest information
and detailed descriptions of all the available methods of the Metadata API. Salesforce con-
tinues to expand the reach of the Metadata API in every release.

www.salesforce.com/us/developer/docs/api_meta/index.htm

366 Chapter 11 Advanced Integration

Overview
The Metadata API consists of two types of services: file-based and object-based.These
service types are summarized next:

1. File-Based Services: The file-based services are deploy and retrieve.The
deploy service takes a Base64-encoded zip file containing the components to
deploy into the Force.com organization.The zip file must contain a manifest file
named package.xml at its root to describe the contents of the zip.The retrieve
service downloads metadata from Force.com and returns it as a zip file complete
with package.xml as manifest. Its input is a RetrieveRequest object to specify the
types of metadata to download. Both services can operate on up to 1,500 metadata
objects per call.

2. Object-Based Services: The object-based services are create, update, and
delete.To invoke create or delete, pass an array of Metadata objects.The
Metadata object is the superclass of a wide array of objects that contain metadata
for specific features of Force.com. For example, the CustomObject class represents a
custom database object, and Layout represents a page layout. Unlike data records in
which a unique identifier (Id) field is the key, metadata uniqueness comes from a
combination of its type and fullName field.The update service takes an array of
UpdateMetadata objects, which each contain a Metadata object and the current
name of the object to replace.

Note
Force.com’s documentation uses the term declarative to describe its file-based services,
and CRUD (for Create, Update, and Delete) to describe its object-based services.

All Metadata API services are asynchronous, returning immediately with an AsyncResult
object.This object contains a unique identifier for tracking the status of the asynchronous
operation. For object-based services, the service to check status is called checkStatus. For
the file-based service deploy, the status service is checkDeployStatus, and for retrieve,
it’s checkRetrieveStatus.

Getting Started with the Metadata API
To get started with the Metadata API, follow these steps:

1. In the App Setup area, click Develop ➝ API.

2. Right-click the Download Metadata WSDL link and save it on your local filesys-
tem.You’ll need this plus the Enterprise WSDL in order to call the Metadata API.

3. Generate stub code from the WSDL and add it to your project.

Listing 11-12 demonstrates usage of the Metadata API in Java by creating a new database
object given a name and its plural name.The code assumes the existence of a member

367Introduction to the Metadata API

variable called sessionId, previously populated from the login call’s LoginResult. It
prepares the minimum set of metadata required to call the create service, which is a cus-
tom object name, full name, label, deployment status, sharing model, and name field.After
invoking the asynchronous create service, it loops to check the status using the
checkStatus service until the invocation is complete.

Listing 11-12 Java Fragment for Creating Object

public void createObject(String name, String pluralName) {

try {

ConnectorConfig config = new ConnectorConfig();

config.setUsername(user);

config.setPassword(pass);

com.sforce.soap.enterprise.Connector.newConnection(config);

config.setServiceEndpoint(Connector.END_POINT);

MetadataConnection connection = new MetadataConnection(config);

CustomObject obj = new CustomObject();

obj.setFullName(name + "__c");

obj.setLabel(name);

obj.setPluralLabel(pluralName);

obj.setDeploymentStatus(DeploymentStatus.Deployed);

obj.setSharingModel(SharingModel.ReadWrite);

CustomField nameField = new CustomField();

nameField.setType(FieldType.AutoNumber);

nameField.setLabel("Name");

obj.setNameField(nameField);

AsyncResult[] result = connection.create(

new Metadata[] { obj });

if (result == null) {

System.out.println("create failed");

return;

}

boolean done = false;

AsyncResult[] status = null;

long waitTime = 1000;

while (!done) {

status = connection.checkStatus(

new String[] { result[0].getId() });

if (status != null) {

done = status[0].isDone();

if (status[0].getStatusCode() != null) {

System.out.println("Error: " +

status[0].getStatusCode() + ": " +

status[0].getMessage());

}

Thread.sleep(waitTime);

waitTime *= 2;

368 Chapter 11 Advanced Integration

System.out.println("Current state: " +

status[0].getState());

}

}

System.out.println("Created object: " +

status[0].getId());

} catch (Throwable t) {

t.printStackTrace();

}

}

Using the Force.com REST API
REST stands for Representational State Transfer, a common form of Web-accessible API.
Twitter, Facebook,Yahoo!, Google, and countless others provide REST APIs for their
services. REST is designed for lightweight clients, those running inside web browsers or
other scripting environments. Rather than generating static language bindings from a
metadata description, as found with WSDL in the Web services world, the REST
approach is dynamic. Its emphasis is on a concise syntax for URLs that represent
resources, and the use of HTTP methods to describe actions on those resources.

The Force.com REST API is a subset of the integration features in the Force.com Web
services API.This section provides a brief introduction to the REST API into three parts:

n Overview of Force.com REST API: Learn how Force.com functionality is
exposed in the REST style.

n Authentication:The first step in using the REST API is to authenticate, and the
process is significantly different from Web services.

n API Walkthrough: Using only your computer’s command line, you can take an
interactive tour of the Force.com REST API.

Note
This section is not a complete reference to the REST API. Consult the Force.com REST API
Developer’s Guide, found at www.salesforce.com/us/developer/docs/api_rest/index.htm,
for the latest and most detailed information on the REST API, which Salesforce continuously
improves in each major release of the platform.

Overview of Force.com REST API
If you’re already familiar with the Web services API, you might wonder why another API
is available to access identical services.A practical reason is that REST is better aligned
with interpreted languages, such as PHP, Ruby, and JavaScript, than SOAP Web services.
These languages are standard in the consumer-focused Web world, and are increasingly
used by businesses as well.The Force.com platform is simply keeping pace with trends in
application development.

www.salesforce.com/us/developer/docs/api_rest/index.htm

369Using the Force.com REST API

The patterns of data access in Force.com translate naturally into the REST style of
API. SObjects and rows within them become URLs, and HTTP actions express DML
operations: GET for read-only requests for basic information, POST to create records, PATCH
to update records, and DELETE to delete them. Because not all HTTP clients support the
full range of methods, Force.com also allows a special URL parameter (_HttpMethod) to
specify the action. By default, REST API calls return JSON-encoded responses, but you
can override this by appending .xml to the end of URLs, or by sending the standard
HTTP Accept header with the desired content type.

Note
JSON stands for JavaScript Object Notation, a standard format for representing JavaScript
objects as strings. Like XML, it’s widely used for communication between programs.

Authentication
Almost every REST API call requires authentication to Force.com. But unlike the Web
services API, the REST API does not provide a way to authenticate using a username and
password. It requires that you’ve previously authenticated using OAuth or the Web service
API’s login method.The token returned by the authentication process is then added to
every REST request in the HTTP Authentication header.

OAuth is an industry-standard way of negotiating access to a system without requiring
users to share their login credentials. OAuth operates using tokens instead.Tokens have
advantages over the typical username/password credentials.They can be audited and
revoked by the user.They also typically provide limited access to the system. In the case of
Force.com, OAuth access tokens grant bearers the ability to make API calls only.They
cannot login to the Salesforce web user interface.

Note
OAuth is a complex subject well beyond the scope of this book. The Force.com REST API
Developer’s Guide, found at www.salesforce.com/us/developer/docs/api_rest/index.htm,
provides some introductory information on using OAuth to authenticate to Force.com.

If you are calling the REST API on behalf of another user, OAuth is the recommended
approach for authentication because you do not need to store others’ usernames and pass-
words. But when you’re learning and experimenting with simple REST API examples,
OAuth can present a significant hurdle.To avoid it, adapt the code in Listing 11-1, which
logs into Force.com using the Enterprise Web services API, to output a session identifier.
The session identifier is available by calling getSessionHeader().getSessionId() on
the EnterpriseConnection object, and can be used in place of the OAuth access token.

API Walkthrough
Because Force.com REST API requests and responses are relatively concise, you can prac-
tice using it directly from your computer’s command line using standard OS-level tools.
The following examples rely on the tool named cURL, available free for every platform at

www.salesforce.com/us/developer/docs/api_rest/index.htm

370 Chapter 11 Advanced Integration

http://curl.haxx.se. Make sure you have already obtained an authentication token (the ses-
sion identifier) and set it as an environment variable $TOKEN.Also, be sure to replace na6
in the following examples with your own instance of Force.com.To identify your
instance, look at the URL in your web browser when you log in. Note that the use of the
X-PrettyPrint header throughout the examples is optional and serves only to format
responses in a readable way.

Listing 11-13 is an example of one of the simplest REST API calls. It returns the serv-
ices available via REST in the specified version and instance of the Force.com platform.
Here the result indicates four services. In subsequent examples, you’ll try all the services,
except recent.The recent service returns the same data as you see in the Recent Items
box in the web user interface.

Listing 11-13 Services Available Request and Response

curl https://na6.salesforce.com/services/data/v20.0\

-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

{

"sobjects" : "/services/data/v20.0/sobjects",

"search" : "/services/data/v20.0/search",

"query" : "/services/data/v20.0/query",

"recent" : "/services/data/v20.0/recent"

}

To retrieve basic information on an SObject, use the sobjects service as demon-
strated in Listing 11-14.You can also omit the object name (/Proj__c) to get a list of all
SObjects, or append /describe to the end of the URL to obtain the full, detailed list of
fields on the SObject. If an error occurs in processing this request or any REST request,
the response contains message and errorCode keys to communicate the error message
and code.

Listing 11-14 Basic Information Request for an SObject

curl https://na6.salesforce.com/services/data/v20.0/sobjects/Proj__c

-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

Another usage of the sobjects service is shown in Listing 11-15. Here an individual
record is returned, identified by its unique identifier.The fields parameter specifies a
subset of fields to return.You can omit this parameter to retrieve all fields. If your record is
a binary object such as a Document, append /body to the URL to retrieve the binary
content.

Listing 11-15 Record Retrieval by Unique Identifier Request and Response

curl https://na6.salesforce.com/services/data/v20.0\

/sobjects/Proj__c/a008000000CTwEw?fields=Name,Status__c\

-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

http://curl.haxx.se

371Using the Force.com REST API

{

"attributes" : {

"type" : "Proj__c",

"url" : "/services/data/v20.0/sobjects/Proj__c/a008000000CTwEwAAL"

},

"Name" : "GenePoint",

"Status__c" : "In Progress",

"Id" : "a008000000CTwEwAAL"

}

Listing 11-16 demonstrates record retrieval by external identifier.The record with a
Resource_ID__c value of 100000 on the Resource__c SObject is returned.

Listing 11-16 Request for Retrieval of Record by External Identifier

curl https://na6.salesforce.com/services/data/v20.0\

/sobjects/Resource__c/Resource_ID__c/100000\

-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

A simple SOQL query is shown in Listing 11-17.To run a SOSL query, use search
instead of query in the URL.

Listing 11-17 SOQL Query Request

curl https://na6.salesforce.com/services/data/v20.0\

/query?q=SELECT+Name+FROM+Proj__c\

-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

To create a record, make a POST request with the SObject type in the URL and a
JSON or XML request body containing the record’s field values. Listing 11-18 creates a
new Proj__c record named Test Project.A successful response provides the new record’s
unique identifier.

Listing 11-18 Create Record Request and Response

echo '{ "Name": "Test Project" }' |\

curl -X POST -H 'Content-type: application/json'\

-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1" -d @-\

https://na6.salesforce.com/services/data/v20.0/sobjects/Proj__c

{

"id" : "a008000000Fy8oyAAB",

"errors" : [],

"success" : true

}

372 Chapter 11 Advanced Integration

Updating a record follows a similar process to creating a record. Make a PATCH request
with the URL containing the SObject type and unique identifier, and a request body
with the field values to update. In Listing 11-19, the record created in Listing 11-18 gets
its name updated.

Listing 11-19 Update Record Request

echo '{ "Name": "Updated Test Project" }' |\

curl -X PATCH -H 'Content-type: application/json'\

-H 'Authorization: OAuth '$TOKEN -H "X-PrettyPrint:1" -d @-\

https://na6.salesforce.com/services/data/v20.0\

/sobjects/Proj__c/a008000000Fy8oyAAB

The only difference between an upsert and update request is that upsert uses an exter-
nal identifier rather than the unique identifier. If the external identifier value is not found,
the request creates the record and its unique identifier is returned. Otherwise, the record is
updated, and nothing is returned upon success. Listing 11-20 demonstrates an upsert of a
Resource__c record.

Listing 11-20 Upsert Record Request and Response

echo '{ "Name": "Izzy Impatient" }' |\

curl -X PATCH -H 'Content-type: application/json'\

-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1" -d @-\

https://na6.salesforce.com/services/data/v20.0\

/sobjects/Resource__c/Resource_ID__c/100050

{

"id" : "a018000000OjBKLAA3",

"errors" : [],

"success" : true

}

Deleting a record by its unique identifier is shown in Listing 11-21.You can also delete
a record by its external identifier. In both cases, nothing is returned by a successful request.

Listing 11-21 Delete Record Request

curl -X DELETE\

-H 'Authorization: OAuth '$TOKEN -H "X-PrettyPrint:1"\

https://na6.salesforce.com/services/data/v20.0\

/sobjects/Proj__c/a008000000Fy8oyAAB

373Sample Application: Database Integration

Sample Application: Database Integration
This section explores a common integration scenario using the Services Manager sample
application. It describes the scenario and the implementation strategy and ends with sam-
ple code.

Integration Scenario
Force.com applications often require the use of data that is stored in other enterprise sys-
tems.This information can initially be pushed to Force.com through Data Loader or
another data migration tool. But when Force.com is not the system of record for this
information and updates occur, Force.com is left with stale data.

Updated data could be reloaded into Force.com through data migration tools, sched-
uled to run at regular time intervals, but this approach can quickly become impractical.
This is especially true where there are requirements for real-time updates, integration to
multiple systems, intricate data mappings, or complex business rules governing the
updates.

Imagine that the company using your Services Manager application has a human
resources system containing the names, addresses, and other core information about
employees.This employee information is duplicated in Force.com in the Resource custom
object and the Contact standard object.To prevent the data from being changed directly
in Force.com, fields where Force.com is not the system of record can be set to read-only
on their page layout. But when the human resources system is updated, Force.com must
also be updated.This is the goal of the integration.

Implementation Strategy
To retrieve changes from the human resources system, you could call out from Force.com
using HTTP or a Web service call, as described in Chapter 10. But when you would do
this is not clear, because Force.com does not receive notifications when the human
resource system is updated. Polling the system for changes would be inefficient and
quickly hit governor limits on Web service callouts.

Instead, use the Enterprise API to connect to Force.com and upsert the modified
records.To simplify the implementation, the target is a single field called Active__c, indi-
cating whether the employee is active.After you get this field working, move on to sup-
port additional fields such as the address and phone fields of the Resource’s associated
Contact record.

The first problem is finding a common key to employees in both systems.Assume that
the human resources system cannot be changed and focus on adapting Force.com to main-
tain the mapping between the two systems. Create a new field named Resource ID (API
name of Resource_ID__c) on the Resource object to store employee identifiers used by
the human resources system. For this example, make it a Number type, six digits in length,
required, unique, and an external ID.This field configuration is shown in Figure 11-9.

374 Chapter 11 Advanced Integration

Figure 11-9 Creating the Resource ID field

Caution
Remember that you need to regenerate the client code from Enterprise WSDL after you add
this new field; otherwise, it will not be available to your program.

Sample Implementation
The code in Listing 11-22 is a sample Java implementation of the integration. It assumes
that you’ve already generated the Java stub code from Enterprise WSDL using the WSC. It
expects a file named import.json to be located in the working directory.This is a JSON-
encoded file containing an array of Resource records to update. Listing 11-23 is an exam-
ple of the file format expected by the program.

Note
The sample implementation uses a JSON library available at www.json.org/java/json.org.

Listing 11-22 Sample Java Implementation of Integration Scenario

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

www.json.org/java/json.org

375Sample Application: Database Integration

import org.json.JSONArray;

import org.json.JSONException;

import org.json.JSONObject;

import com.sforce.soap.enterprise.Connector;

import com.sforce.soap.enterprise.EnterpriseConnection;

import com.sforce.soap.enterprise.UpsertResult;

import com.sforce.soap.enterprise.sobject.Resource__c;

import com.sforce.soap.enterprise.sobject.SObject;

import com.sforce.ws.ConnectionException;

import com.sforce.ws.ConnectorConfig;

public class IntegrationDemo {

EnterpriseConnection connection;

public void login(String user, String pass, String securityToken) {

ConnectorConfig config = new ConnectorConfig();

config.setUsername(user);

config.setPassword(pass + securityToken);

try {

connection = Connector.newConnection(config);

} catch (ConnectionException e) {

e.printStackTrace();

}

}

public void processImportFile(String jsonFile) {

List<SObject> changes = new ArrayList<SObject>();

try {

String json = readFileAsString(jsonFile);

JSONArray array = new JSONArray(json);

for (int i=0; i<array.length(); i++) {

changes.add(importResource(array.getJSONObject(i)));

}

if (changes.size() > 0) {

UpsertResult[] results = connection.upsert("Resource_ID__c",

changes.toArray(new SObject[changes.size()]));

int line = 0;

for (UpsertResult result : results) {

System.out.print(line + ": ");

if (!result.isSuccess()) {

for (com.sforce.soap.enterprise.Error e

: result.getErrors()) {

System.out.println(e.getStatusCode() + ": " +

e.getMessage());

}

} else {

System.out.println("success");

}

line++;

376 Chapter 11 Advanced Integration

}

}

} catch (Throwable t) {

t.printStackTrace();

}

}

private Resource__c importResource(JSONObject rec)

throws JSONException {

Resource__c result = new Resource__c();

result.setResource_ID__c(Double.valueOf(

rec.getInt("ResourceID")));

result.setActive__c(rec.getBoolean("Active"));

return result;

}

private static String readFileAsString(String filePath)

throws IOException {

StringBuffer fileData = new StringBuffer(1000);

BufferedReader reader = new BufferedReader(

new FileReader(filePath));

char[] buf = new char[2048];

int numRead = 0;

while((numRead = reader.read(buf)) != -1) {

fileData.append(buf, 0, numRead);

}

reader.close();

return fileData.toString();

}

public static void main(String[] args) {

IntegrationDemo demo = new IntegrationDemo();

demo.login("USERNAME", "PASSWORD", "SECURITYTOKEN");

demo.processImportFile("import.json");

}

}

Listing 11-23 Sample JSON Input File

[

{

"ResourceID": 100000,

"Active": false

},

{

"ResourceID": 100001,

"Active": false

}

]

377Summary

Figure 11-10 Resource records after integration program execution

Before running the program, change the Resource ID values in the file to match
your resources, and the arguments of the login method to your user credentials. Figure
11-10 shows the Resource records after the program has been executed given the sam-
ple input file.

Note that the only field updated by the sample implementation is Active__c.As a
challenge, enhance the program to support updates to fields of the Contact object.To do
this, you need to first perform a SOQL query on the Resource object to retrieve corre-
sponding Contact Id values from the Resource ID values.Then update contact fields
using a separate upsert call.

Summary
This chapter has provided the basics of Force.com’s Enterprise, Metadata, and REST
APIs, with code examples in Java and C#.NET. Consider the following points for review
as you move on to the next chapter:

n The core Web services for data integration are found in the Enterprise or Partner
APIs.These APIs allow the query, creation, and modification of records in the
Force.com database and automatically enforce all Force.com data security features.

378 Chapter 11 Advanced Integration

n The Enterprise API is intended for corporate use, in which a single Force.com
organization is the target.The Partner API is designed for ISVs, in which integra-
tion logic must adapt itself to the database schema of any organization.

n Custom Web services can be developed in Apex and called via SOAP and HTTP to
wrap a series of calls into a single, atomic unit of functionality for a client program.

n With the Metadata API, you can build tools that automate development tasks, such
as creating and modifying database objects and fields.You can also use it to back up
your entire organization’s configuration or replicate it to a new Force.com account.

n The REST API provides much of the same functionality as the Web services API,
but requires less effort to use when developing in scripting languages.

n Integrating with Force.com Web services and REST API is a broad, complex sub-
ject that could fill an entire book.To reach the next level of detail, refer to the
online documentation and code samples available at http://developer.force.com.

http://developer.force.com

12
Additional Platform Features

Throughout this book, you’ve been exposed to the nuts and bolts of creating an applica-
tion on Force.com.This has been discussed in terms of the data model, business logic, user
interface, and integrations to other systems.This chapter describes additional features you
can leverage when your application runs on the platform. In most cases, the features are
inexpensive to use because they are configured with mouse clicks rather than code.They
are summarized here:

n Workflow and Approvals: Impose business process on the creation and modifica-
tion of data in your organization using workflow rules and approval processes.
These processes can be fully automated or can involve humans in the mix to exam-
ine records and take structured actions on them.

n Introduction to Analytics: Force.com enables you to create reports that summa-
rize data in several different, highly configurable formats.The reports can also be
displayed as dashboards, visual components that can expose users to a wide spec-
trum of information from across your organization in a single Web page.

n Force.com for International Organizations: Using Force.com platform fea-
tures, your applications can be translated into many languages and support multi-
ple currencies.

n Using Single Sign-On: Allow your users to access Force.com applications using
your existing corporate identity provider rather than a separate username and
password.

n Sample Application: A custom dashboard component is developed in Visualforce
for the Services Manager sample application to visualize the geographic distribution
of consultants on projects.

Workflow and Approvals
Workflow and approvals are extremely configurable features that enable you to describe
your own corporate business process in terms that the Force.com platform can under-
stand and act on. Externalizing your business process in this way can reduce the amount

380 Chapter 12 Additional Platform Features

of code you write and open the administration and definition of business processes to
nonprogrammers. For example, workflow and approvals can help ensure that the right
people at your company sign off on a particular document or deal, and that the approval
of each person is recorded for auditing purposes.

This section provides an overview of workflow and approvals. It consists of the follow-
ing subsections:

n Introduction to Workflow: Learn how Force.com represents workflows and how
to debug them.

n Getting Started with Approval Processes: Approval processes are like workflow
but incorporate steps that must be performed by humans.

Introduction to Workflow
Workflows are implemented in Force.com by defining workflow rules.A workflow rule
consists of five parts:

1. Object: Workflow rules are created on objects.A workflow rule can apply to only
a single object at a time. For example, a rule that notifies consultants when they
have unsubmitted timecards would be created on the Timecard object.

2. Evaluation Criteria: The evaluation criteria determines what types of actions on
your object cause Force.com to check the rule criteria.An example of this setting is
“Every time a record is created or edited.”

3. Rule Criteria: The rule criteria setting is a list of field expressions or a formula
expression that, when true, causes your workflow actions to be triggered.A work-
flow rule must contain at least one criterion or a formula expression.

4. Immediate Actions: When a workflow rule is triggered, its immediate actions are
executed.An action can create a task, send an email alert, update a field on the object,
or send a SOAP message to a system outside of Force.com.You used the outbound
message action to integrate with external systems in Chapter 10,“Integration.”

5. Time-Dependent Actions: Time-dependent actions are not executed immedi-
ately when the workflow is triggered.They are deferred until a user-definable
amount of time has passed.After this time, if the rule criteria are still true for the
record, the time-dependent actions are executed.A workflow rule is said to be
time-based if it includes a time-dependent action.

Additionally, rules exist in one of two states: active and inactive.Active workflow rules are
evaluated when data in your organization is created or modified and triggered when the
rule criteria are met. Inactive workflow rules are completely dormant. Until they are acti-
vated again, they are never evaluated.

381Workflow and Approvals

To create and manage workflow rules, go to the App Setup area and click Create ➝
Workflow & Approvals ➝ Workflow Rules. In Figure 12-1, a time-based workflow rule
has been defined that emails a consultant when one of the consultant’s timecards is found
to be in an uncommitted state for seven days.

Note
Workflow rules can become complex quickly, and this book describes only a small subset of
their capabilities. The context-sensitive online help in Force.com is an excellent resource for
getting into more depth on the subject.

Because workflow rules run in the background and are largely invisible to users,
debugging them requires some additional work. Force.com offers a tool for capturing logs
of system activity per user, which includes workflow rule evaluation and execution.To
activate the tool, go to the Administration Setup area and click Monitoring ➝ Debug
Logs. Click the New button. Select one or more users to enable debugging on and click
the Save button.As the selected users perform actions in the system, their log entries
become available at the bottom of the page, as shown in Figure 12-2.

The log entries contain information about workflow rules triggered, as well as database
operations, validation rules, resource consumption, and Apex code errors.

Figure 12-1 Definition of a time-based workflow rule

382 Chapter 12 Additional Platform Features

Figure 12-2 Viewing debug log configuration, logs of selected users

Force.com provides an additional tool for debugging time-dependent workflow
actions.When a workflow rule is triggered, its time-dependent actions are placed in a
queue.The actions remain in the queue until they reach their scheduled date.

You can monitor this queue in the Administration Setup area by clicking Monitoring
➝ Time-Based Workflow. In Figure 12-3, the Search button has been clicked, revealing a
single record in the queue.The workflow action was triggered on March 1. On March 7,
the rule criteria will be evaluated and, if satisfied, the action performed.

Getting Started with Approval Processes
An approval process can be thought of as a specialized workflow template. Like workflow
rules, approval processes are defined on a specific object.They define four states that a
record can exist in, workflow actions to execute when a record transitions to a new state,
and rules used to route the record to users relevant to each state.The four states are
described here:

1. Submitted: When a record is submitted to an approval process, it is in the sub-
mitted state.

2. Approved: When a record is approved by a user, it enters an approved state.This
state can be further qualified as final if all relevant parties have approved it.

3. Rejected: If a record is rejected, it enters the rejected state.Typically, the submitter
is notified, fixes the problems with the record, and resubmits the record.

383Workflow and Approvals

Figure 12-3 Monitoring the time-based workflow queue

4. Recalled: If permitted, a submitter can elect to remove a record from an approval
process. For example, the submitter might realize that his expense report is missing a
receipt and seek to fix it before the report is examined by his manager.

Using Approval Processes
Unlike workflow rules, which are triggered when conditions are met on a record, approval
processes are typically driven by explicit user actions. For example, a consultant submits a
timecard for approval.The approval process notifies his manager via email.The manager
logs in to Force.com, notices the timecard record waiting for her approval, and approves it.
In each of these steps, Force.com can also be executing a set of workflow actions in lock
step with the user actions.This keeps the business process moving along, synchronized
between users and the database.

To get a sense for how an approval process appears to users, examine the three figures
that follow. Figure 12-4 is a timecard that has been submitted for approval.

The Approval History related list contains information about the record’s progression
through the approval process, ordered so that the most recent activities appear first.Tim is
the consultant who submitted the timecard record. Paige is his manager who must review
the timecard and either accept or reject it.When Tim submits the timecard record, it
enters a locked state, as indicated by the lock icon beside the Edit button.This prevents
him from changing it while his manager is reviewing it.

384 Chapter 12 Additional Platform Features

Figure 12-4 Viewing a record submitted for approval

Figure 12-5 shows the reviewer’s view of the approval request.Again, the Approval His-
tory related list is displayed.The reviewer can supply a comment and then approve or
reject the record using the Approve or Reject buttons.These buttons change the state of
the record in the approval process.

After approving the record, the reviewer sees the screen shown in Figure 12-6.The
Approval History indicates that the record has been approved. It remains locked, but this
behavior is configurable in the approval process.

Defining and Managing Approval Processes
Figure 12-7 shows an example of the approval process configuration driving the timecard
approval scenario described previously.This is the view a developer or system administra-
tor would have after defining the approval process.

The two wizards for building an approval process are the Standard Setup Wizard and
the Jump Start Wizard. If you’re just getting started with approval processes, the Jump Start
Wizard is the best choice. It makes some simplifying assumptions, enabling you to create a
process with very few clicks.

385Workflow and Approvals

Figure 12-5 Working with an approval request

Figure 12-6 Viewing approved record

386 Chapter 12 Additional Platform Features

Figure 12-7 Defining an approval process

Like workflow rules, approval processes can become complex very quickly. Here are a
few of the key elements of the approval process configuration:

n Active:Like workflow rules, approval processes must be in an active state before
records can be submitted to them.

n Entry Criteria:The entry criteria define what records can be submitted to this
approval process.When a user attempts to submit a record that does not meet the
entry criteria, an error message is displayed.

n Initial Submitters:This field indicates who is allowed to submit a record for
approval. Submitters can be dynamic based on the record itself; for example, the cre-
ator or owner.They can also be static lists of groups, roles, and users.

In addition to the definition of the process, the process has a set of actions to perform
when it changes states. Figure 12-8 is an example of a field update action definition.This
action is configured to run when the timecard is approved and updates the picklist field
Status__c to Approved.

To get a high-level, read-only view of an entire approval process definition, click the
View Diagram button from an approval process detail page. Figure 12-9 shows the dia-
gram for the timecard submission process.

387Workflow and Approvals

Figure 12-8 Creating a field update action

Figure 12-9 Approval process diagram

388 Chapter 12 Additional Platform Features

To incorporate approval processes in the native user interface, add the Approval History
related list to your object’s page layout.You can also add the Items to Approve component
on your Home tab by going to the App Setup area and clicking Customize ➝ Home ➝
Home Page Layouts.

Approval processes leave their mark on your records in two system objects, related as
children to your objects. ProcessInstance stores information about approval processes
active on your records. ProcessInstanceHistory captures an audit trail of approval activ-
ities on your records.These relationships are named ProcessInstances and
ProcessSteps, respectively. Listing 12-1 provides a sample query to retrieve approval
process-related information for the Timecard object.

Listing 12-1 Sample SOQL for Retrieving Approval Process Information

SELECT Week_Ending__c, Total_Hours__c,

(SELECT Status FROM ProcessInstances),

(SELECT IsPending, StepStatus FROM ProcessSteps)

FROM Timecard__c

You can also submit records for approval processing and accept, reject, and recall
records from Apex code and the Web Services API. Listing 12-2 provides an example of
submitting a record with object ID a048000000BO4W3 from Apex.

Listing 12-2 Apex Code to Submit Record for Approval

Approval.ProcessSubmitRequest req =

new Approval.ProcessSubmitRequest();

req.setObjectId('a048000000BO4W3');

Approval.ProcessResult result = Approval.process(req);

System.debug(result.success);

Note
Using record identifiers as constants in Apex code is a bad practice, as they can change
between environments such as staging and production. This is done in the book only to keep
code samples simple and focused.

Introduction to Analytics
So far, you’ve focused on the transactional aspects of Force.com.You’ve designed objects,
imported records into them, written Apex code to validate and modify records, configured
native user interfaces and custom Visualforce pages to enable users to work with data, and
exchanged records with systems outside of Force.com using HTTP and Web services.

Force.com also includes built-in reporting and analytic features that you can leverage
to get a broader view of your application’s data, using a larger number of records than is

389Introduction to Analytics

permitted in Apex code by Force.com governor limits. Getting acquainted with these fea-
tures can feed valuable insight into the design and development process. Determine as
soon as possible which reports your business users need because this can help you design
the right object model to support both the transactional and the analytical requirements
of the application.

This section is divided into three parts, described next:

1. Working with Reports: Reports can provide detail or aggregate-level views on
the Force.com database.

2. Configuring Dashboards: Dashboards are pages consisting of components that
consume data from reports and display it graphically in a uniformly small visual
footprint.They can provide a window into various types of data across a business.

3. Using Analytic Snapshots: Analytic snapshots copy the output of a report into a
custom object on a fixed time schedule.They allow you to leverage the unique,
high-volume data aggregation capabilities of the reporting feature in other areas of
Force.com.

Working with Reports
This subsection introduces you to the reporting feature of Force.com. It is divided into
three parts:

1. Report Creation: Force.com provides a drag-and-drop user interface for con-
structing reports. Reports can query and aggregate data from any object and related
objects, displaying results in tabular, summary, or matrix form.

2. Running Reports: Reports can be viewed directly by users in the native user
interface or scheduled with results emailed to a list of recipients.

3. Defining Custom Report Types: Custom report types allow you to group
related objects together, reducing the effort required to build complex reports.

Report Creation
Reports are created against a primary object and a set of related objects. Force.com auto-
matically generates combinations of primary and related objects.You can also create these
yourself using custom report types.

To create a report, click the Reports tab and click the Create New Custom Report
button.The first page of the Report Builder is shown in Figure 12-10 and is used to select
the source of the report data. In this case, the selected report data source is a custom
report type.

390 Chapter 12 Additional Platform Features

Figure 12-10 Creating a report

After selecting a report type, the Report Builder provides a set of graphical tools for
creating the report, including an interactive preview of the report.The tools are
described here:

n Report Format: Reports can be in one of three formats.The tabular format is the
simplest, displaying rows and columns as they appear in the database.The summary
report allows you to mix aggregated data and detail data in the same report, with
subtotals. Matrix reports contain only aggregated data.To specify the report format,
select one of the options from the Report Format drop-down in the preview panel.

n Fields:The panel on the left side of the screen displays the fields to be included in
the report, divided into folders by their parent object type. Drag and drop fields into
the preview panel to add them to the report.

n Summary Fields: After you add a field to the report, you can summarize its values
to produce an aggregate value. For each column with a compatible data type, you
can calculate its sum, average, largest value, and smallest value.To summarize a field,
go to the preview panel, click the drop-down menu beside the field name, and
select Summarize This Field.

n Grouping:You can group records by up to three fields.To group by a field, activate
the field’s drop-down menu in the preview panel and select Group by this field.This
option is valid for summary and matrix report formats only.

391Introduction to Analytics

Figure 12-11 Output of a custom report named Timecards

n Order Columns: Define how columns are ordered visually in the report.You can
sort each field in ascending or descending order using the field’s drop-down menu
in the preview panel.

n Filters: Add criteria to limit the amount of data incorporated into the report.You
can also set a hard limit on the maximum number of records that are selected. Cri-
teria are specified in the top panel.

n Chart & Highlights:You can display your report data graphically by clicking the
Add Chart button in the preview panel and selecting a chart type.Valid chart types
are bar, column, line, pie, donut, and funnel.You can also configure conditional
highlighting of data, defining colors and bounds for low, medium, and high values.
The Add Chart button is shown for summary and matrix report formats only.

Running Reports
Reports can be run immediately or scheduled and can be displayed in the native user
interface or exported to a comma-delimited (.csv) or Excel (.xls) format.

Scheduled reports run daily, weekly, or monthly, on every day or weekday.The schedule
is in effect for a range of dates you select.You can also select a preferred start time from a
list of available start times provided by Force.com.When your report is complete, it is
emailed to a user or a group of users. Figure 12-11 shows the result of running a custom
report named Timecards in the native user interface.

392 Chapter 12 Additional Platform Features

Figure 12-12 Editing object relationships in a custom report type

Defining Custom Report Types
Custom report types help simplify object models for reporting by flattening relationships
between a primary object and up to two related child objects.To create a custom report
type, go to the App Setup area and click Create ➝ Report Types. Click the New Custom
Report Type button.

In Figure 12-12, two object relationships have been defined: Resources and Timecards.
You can qualify the join relationship using the radio buttons within each related object’s
colored box. By default, the selected relationship is an inner join, requiring values in the
parent object and related object for a record to appear in the report.You can also select a
left outer join, in which records from the parent object are displayed even when they do
not contain matching records in the child.

Configuring Dashboards
Dashboards are configurable pages for displaying many reports at once and rendering
report data in a graphical form. Dashboards can be configured to appear on the Home tab
of the Force.com user interface and are also displayed on their own standard tab, called
Dashboards.

Dashboards are composed of dashboard components. Components are organized into
two or three columns on the page and can be individually positioned. Components can be
configured to display data from reports orVisualforce pages. Components from reports can
be rendered as charts, tables, metrics, or gauges. In Figure 12-13, a dashboard named Com-

393Introduction to Analytics

Figure 12-13 Editing a dashboard

pany Performance Dashboard is being edited. It organizes components into three columns.
Key Metrics, Support, and Pipeline Analysis are the names of dashboard components.

To work with dashboards, click the Dashboards tab.To define a new dashboard, click
the Go to Dashboards List link at the top of the page and then the New Dashboard but-
ton. Force.com comes with many sample dashboards that you can add using the Add Sam-
ple Dashboard button.To edit an existing dashboard, locate it in the drop-down list titled
View Dashboard and then click the Edit button.

When in edit mode on a dashboard, you can add, edit, or remove components from it.
You can move components from one column to another or up and down within a column.
You can also change the width of a column using the Narrow, Medium, andWide links.

Using Analytic Snapshots
Analytic snapshots move data resulting from running a report into a custom object. Ordi-
narily reports are run interactively by users in the native user interface, scheduled for exe-
cution with results emailed to users, or exposed as dashboard components. Force.com does
not maintain the report output anywhere within the platform. But when report data is
captured in analytic snapshots, it becomes broadly available to the platform, accessible any-
where custom objects are used, without executing the report again.

To manage analytic snapshots, go to the Administration Setup area and click Data
Management ➝ Analytic Snapshots.To create a new snapshot, click the New Analytic

394 Chapter 12 Additional Platform Features

Figure 12-14 Creating a new analytic snapshot

Snapshot button. Enter a snapshot name and specify a user whose sharing rules determine
which records are included in the snapshot.Then select the report that serves as the infor-
mation source, select the target custom object to store the report data into and click the
Save button. Figure 12-14 shows the creation of an analytic snapshot called Monthly
Timecard Summary.

After the snapshot is created, configure its field mappings and schedule it to be exe-
cuted.To configure field mappings, click the Edit button in the Field Mappings related list.
The fields of your custom target object are enumerated on the right side of the screen. On
the left are drop-down lists of compatible fields in the source report.To perform the map-
ping, change the drop-down lists from the default value of Load No Data to the selected
field from the source report.When the mapping is complete, click the Save button.

A snapshot can be run only by Force.com itself in accordance with a preset schedule.
To set the schedule, click the Edit button in the Schedule Analytic Snapshot related list.
The schedule specifies a start and end date, a frequency (daily, weekly, or monthly), and
whether the snapshot runs every weekday or every day of the week. Force.com deter-
mines the exact time of day to execute the snapshot, but you can get a list of available start
times and select one you prefer. Force.com makes no guarantee about executing your
snapshot at this precise time.When the snapshot is complete, you or a group of users can
be notified via email.

395Force.com for International Organizations

Force.com for International Organizations
One of the advantages of the Force.com platform and other cloud platforms is elasticity.
They can scale up and down with less friction than platforms that reside on-premise, in
corporate data centers.Additionally, Force.com helps you architect applications that scale
geographically and culturally, to operate naturally in multiple countries, languages, and
currencies.This is provided by the following platform features, covered in this section:

n Multilingual Support: The native Force.com user interface and all of your cus-
tomizations to it can be translated into any number of 16 supported languages. Cus-
tom Apex code and Visualforce pages are also fully supported by the multilingual
infrastructure. For details on the supported languages, refer to www.salesforce.com/
us/developer/docs/api_meta/Content/meta_translations.htm.

n Using Multiple Currencies: Although it defaults to a single global currency per
organization, Force.com also supports multiple currencies at the record level.

n Advanced Currency Management (ACM): ACM is an optional feature for
managing historical currency exchange rates.

Multilingual Support
Force.com provides two major features to support multilingual organizations:

1. Translation Workbench: This feature allows the vast majority of the native user
interface elements of Force.com to be translated into any number of Force.com’s
supported languages.

2. Custom Labels: Custom labels enable your Apex code and Visualforce pages to be
translated into multiple languages by externalizing their strings.

Translation Workbench
Translation workbench is a feature that allows you to translate Force.com’s user interface
into multiple languages.Tabs, help text, picklist values, field labels, validation rules, and
many other elements can be translated. Force.com manages the set of languages supported
by your organization, the list of elements to be translated, and users you appoint as transla-
tors, and it indicates when translations might be outdated due to configuration changes.

Users of your Force.com organization normally would not use Translation Workbench
directly.They simply see the correct user interface based on their preferred language,
which they configure in the Personal Setup area by clicking My Personal Information ➝
Personal Information.

By default,Translation Workbench is not enabled in your Force.com organization.To
enable it, contact Salesforce support by logging a case.To log a case, log in to your
Force.com organization and click the Help link at the top of the page. Click the My
Cases tab, and then click the Log a Case link.

When Translation Workbench is enabled, it’s visible as an option in the Administration
Setup area. Click Translation Workbench ➝ Translation Workbench Setup to get started.

www.salesforce.com/us/developer/docs/api_meta/Content/meta_translations.htm
www.salesforce.com/us/developer/docs/api_meta/Content/meta_translations.htm

396 Chapter 12 Additional Platform Features

Figure 12-15 Custom field labels in Translation Workbench

Click the Add button to add supported languages to your organization. Here you can also
identify users who are enabled to provide translations in the language. Users who are
appointed to translate must also have the View Setup and Configuration permission
enabled on their profile.

After you’ve added languages, click Translation Workbench ➝ Translate Custom Field
Labels to get a sense for how translations are performed. Select a language and an object
and click the Edit button to begin translating.The Master Field Label is the label set when
the field was created. Beside each, you can enter a translation.The Out of Date column
indicates that the definition of the field label has changed since it was translated, notifying
a translator to double-check that the translation is still valid.When you’re done translating
the fields, click the Save button. Figure 12-15 shows the result of translating the Resource
object to Spanish.

Most other features of Force.com that can be translated are shown in the list of Transla-
tion Workbench options. One notable exception is custom object tabs.You can have these
translated in the App Setup area by clicking Customize ➝ Tab Names and Labels ➝
Rename Tabs and Labels. Select a language from the drop-down list and then click the
Edit link for the tab to provide a translation, shown in the Display Label column.The tab
is shown as Renamed when a translated value is set.

397Force.com for International Organizations

Figure 12-16 Configuring a custom label

Custom Labels
Custom labels make your Apex code and Visualforce pages easily localizable.You define
custom labels, reference them by name in Apex code and Visualforce pages, and translate
the custom labels into all the languages configured for the organization in the Translation
Workbench. Users of the Visualforce pages and Apex code automatically receive the trans-
lated versions of the custom labels based on their language setting.

Caution
Custom labels can be created and used without enabling Translation Workbench, but labels
cannot be translated into different languages.

To get started with custom labels, go to the App Setup area and click Create ➝
Custom Labels. Click the New Custom Label button and provide a unique name for the
label.This is the name used by Visualforce pages and Apex code to refer to the custom
label.Also provide the text of the label, in the default language, and optionally a comma-
separated list of categories, helpful for organizing large numbers of labels.

Figure 12-16 shows a custom label named Label_Test. It contains the string This is
a test, and it has been translated into Spanish and French.

A reference to the label in a Visualforce page is {!$Label.Label_Test}.The same
label included in Apex code is System.Label.Label_Test.

398 Chapter 12 Additional Platform Features

Figure 12-17 Configuring currency exchange rates

Using custom labels during your application development is certainly extra work.The
benefit is that your application can support any number of languages with minimal incre-
mental effort and no additional code.

Using Multiple Currencies
By default, Force.com supports a single currency per organization. Every currency field of
every object in the system is stored using the same currency.You can set that currency in
the Administration Setup area by clicking Company Profile ➝ Company Information.
Click Edit and set the Currency Locale of the company. For example, setting the Cur-
rency Locale to French (France, Euro) causes all currency fields to be displayed as euros
(€).

Alternatively, you can also configure Force.com to use any number of currencies, vary-
ing from record to record.You must enable support for multiple currencies by logging a
support case with Salesforce.To log a case, log in to your Force.com organization and click
the Help link at the top of the page. Click the My Cases tab and then click the Log a
Case link.

When you enable multiple currencies, a new configuration option is added in Com-
pany Profile called Manage Currencies, shown in Figure 12-17. Here you can set the cor-
porate currency and add the other currencies supported by your organization and their
conversion rates to the corporate currency.

399Force.com for International Organizations

Figure 12-18 Setting currency on a record

With multiple currency support, a new standard field is added to every object called
CurrencyIsoCode.This field stores the currency code that applies to every currency field
on the record.You can see this field in action when you edit an object that contains cur-
rency fields. Figure 12-18 is an example of editing a Resource record. Notice that the
Currency is set to Japanese Yen (JPY), making the Hourly Cost Rate field 10,000 JPY.

When a user with a different Currency Locale views this record, the user sees the orig-
inal value and beside it the value converted to the preferred currency. For example, in
Figure 12-19, a user with a Currency Locale of United States Dollars (USD) is viewing
the record entered in Japanese Yen (JPY).

Leveraging support for multiple currencies in Apex code and Visualforce user interfaces
is fairly simple. In Visualforce, the outputField page component formats currency field
values correctly. Currency fields retrieved using SOQL or SOSL queries are returned in
the currency specified by the record’s CurrencyIsoCode value.They are not automatically
converted to the current user’s preferred currency.To convert them explicitly, use the
convertCurrency function. Listing 12-3 provides an example that you can execute in the
Execute Anonymous view.

400 Chapter 12 Additional Platform Features

Figure 12-19 Viewing a record with a currency set

Listing 12-3 Converting Currencies Using SOQL

Resource__c r = [SELECT Hourly_Cost_Rate__c, CurrencyIsoCode

FROM Resource__c WHERE Name = 'Priti Manek' LIMIT 1];

System.debug(r.Hourly_Cost_Rate__c + ' ' + r.CurrencyIsoCode);

r = [SELECT convertCurrency(Hourly_Cost_Rate__c)

FROM Resource__c WHERE Name = 'Priti Manek' LIMIT 1];

System.debug(r.Hourly_Cost_Rate__c);

The first query selects the value without conversion, and the second uses
convertCurrency. For example, running it on the record shown in Figures 11-17 and 11-
18 outputs 10,000 JPY and 101.67 USD.This assumes a corporate currency of USD, a
current user’s currency locale of USD, and an exchange rate from JPY of 98.357431.

Advanced Currency Management (ACM)
ACM is an optional feature of multiple currency support that provides dated exchange
rates.With ACM disabled, currency conversion rates are not sensitive to time.The rates are
applied uniformly to all records. For currency values that must be converted using rates
that vary based on time, enable ACM by going to the Administration Setup area and click-
ing Company Profile ➝ Manage Currencies.

401Force.com for International Organizations

Figure 12-20 Setting dated currency exchange rates

Note
You must file a support request with Salesforce before you can enable ACM in your
organization.

After ACM is enabled, click the Manage Dated Exchange Rates button. Rates are set
for ranges of time.Any number of time ranges can be created, with a single day as the
lowest level of granularity. In Figure 12-20, the exchange rates for Euro and Japanese Yen
that apply beginning on February 28, 2011, are configured.

ACM has several limitations.The most notable limitation is that it can be used only for
standard fields on the Opportunity object.These fields are automatically converted using
the time-based rates you configure. However, fields in other objects continue to use the
undated exchange rates.

To use dated currency rates with your own objects, you must develop Apex code and
Visualforce pages that perform the conversions manually.The dated conversion rates con-
figured in the native user interface are available to your custom code in the
DatedConversionRate standard object.You can query this object using SOQL, and mod-
ify it using DML, but you cannot create triggers on it.

Listing 12-4 is an example of using SOQL to retrieve dated currency rates.The dated
rates can then be used to manually convert currency values.

402 Chapter 12 Additional Platform Features

Listing 12-4 Sample SOQL to Retrieve Dated Currency Rates

SELECT StartDate, NextStartDate, IsoCode, ConversionRate

FROM DatedConversionRate

Caution
When updating the present-day currency conversion rates in your organization, always update
both the dated and the undated rates. If you do not, you run the risk of showing conflicting
data to users. For example, Opportunity records that use dated conversion rates will contain
values that disagree with objects tied to the undated rates.

Using Single Sign-On
Single sign-on (SSO) is a common requirement for enterprise deployments of Force.com.
The objective is to allow users to log in to Force.com using a trusted session they’ve
established elsewhere, typically in a corporate intranet application or identity provider.
With a trusted session, Force.com doesn’t need to explicitly authenticate the user with its
own independent username and password. Users appreciate fewer passwords to enter and
remember, and system administrators benefit from fewer authentication-related support
cases from users.

Force.com provides two approaches for implementing SSO:

1. Federated Single Sign-On: In the federated approach, a digitally signed assertion
message is posted from a Web page into Force.com’s login servers. If the assertion is
valid, the user is logged in to Force.com.

2. Delegated Single Sign-On: Delegated SSO uses a custom Web service you
implement to decide whether a user should be permitted access to Force.com,
allowing you to integrate Force.com with any back-end identity provider.

Federated Single Sign-On
Federated SSO operates using assertions, which are messages encoded in XML, digitally
signed, and posted to Force.com from the Web browser.These messages, when verified,
instruct Force.com to create an authenticated session for a user on behalf of your corpo-
rate systems. In making the assertion, your corporate system is effectively bypassing
Force.com’s own authentication mechanism and substituting its own.

Force.com supports Security Assertion Markup Language (SAML) 1.1 and 2.0, which
are open standards for implementing federated security models.A system administrator
configures Force.com to receive SAML assertions by specifying a digital certificate to ver-
ify the signed messages and the location and format of the user’s identity in the assertions.

Caution
Federated SSO is not supported for authenticating users to the Web Services API, but it is
available for Customer Portal (SAML 2.0 only).

403Using Single Sign-On

Figure 12-21 Configuring federated single sign-on

To configure SSO, go to the Administration Setup area and click Security Controls ➝
Single Sign-On Settings. Click the Edit button and select the SAML Enabled check box.
A sample configuration of federated SSO is shown in Figure 12-21.

The following list describes the fields of the federated SSO configuration:

n Issuer: The issuer value must map to the issuer element in the SAML assertion.
n SAML User ID Type:This value specifies how Force.com is to interpret the user

value provided in the assertion. It is either a Force.com username or a federation
identifier, which is an optional field on the user object.

n SAML User ID Location: This setting instructs Force.com on where to find the
user in the assertion. It is in either a NameIdentifier element or an Attribute

element.
n Salesforce Login URL: This is a value generated by Force.com. Post your SAML

assertions to this URL.
n Identity Provider Certificate:Your system, the one generating the assertion, is

the identity provider.The assertion must be digitally signed.This certificate is the
public half of the credential’s key pair, used by Force.com to verify that your system
indeed signed the assertion.This field displays information about the certificate
you’ve uploaded.

404 Chapter 12 Additional Platform Features

Figure 12-22 Using the SAML Assertion Validation tool

After federated SSO is configured, you can generate SAML assertions and test them using
the SAML Assertion Validator. On the Single Sign-On Settings page, click the SAML
Assertion Validator button. Paste a plain XML or Base64-encoded assertion into the text
area labeled SAML Response and click the Validate button.A sample result is shown in
Figure 12-22.When your assertion is validated with no errors, you know it can be used to
actually log a user in to Force.com when Base64-encoded and posted to the Salesforce
Login URL.

The missing piece in using federated SSO with Force.com is actually generating the
signed SAML assertions.This is the most challenging part of the puzzle. Many identity
providers support SAML assertions, and configuring them is outside the scope of this
book. But you can write your own assertion generator using open-source tools.The fol-
lowing steps describe a SAML 2.0 assertion generator written in Java, using the Open-
SAML toolkit:

1. Create a new Java project in Eclipse. Download the OpenSAML 2.0 library from
www.opensaml.org.Also download the Simple Logging Facade for Java (www.
slf4j.org), Logback (http://logback.qos.ch), and XMLUnit (http://xmlunit.
sourceforge.net).

2. Import the endorsed directory from OpenSAML into your Eclipse project. Do the
same with the lib directory.

www.opensaml.org
www.slf4j.org
www.slf4j.org
http://logback.qos.ch
http://xmlunit.sourceforge.net
http://xmlunit.sourceforge.net

405Using Single Sign-On

3. Import the xmlunit jar, the slf4j-api and slf4j-log4j12 jars, and the logback-
classic and logback-core jars into the lib directory of your project.

4. Create a new Java class for your assertion generator.This class must initialize the
OpenSAML library, load your private key and certificate, construct the necessary
elements of the SAML assertion, sign it, serialize it as XML, and encode it as a
Base64 string. Full sample code is provided on the book’s Web site (www.informit.
com/title/9780321767356) and is far too verbose to include here, but fragments are
provided in Listings 12-5, 12-6, and 12-7.

Listing 12-5 Initializing OpenSAML

public SAMLDemo() throws ConfigurationException {

DefaultBootstrap.bootstrap();

parser = new BasicParserPool();

parser.setNamespaceAware(true);

marshallerFactory = Configuration.getMarshallerFactory();

unmarshallerFactory = Configuration.getUnmarshallerFactory();

builderFactory = Configuration.getBuilderFactory();

}

Listing 12-6 Creating the SAML Assertion and Subject

private XMLObject buildXMLObject(QName objectQName)

throws RuntimeException {

XMLObjectBuilder builder = Configuration.getBuilderFactory().

getBuilder(objectQName);

if (builder == null) {

throw new RuntimeException("Unable to retrieve builder for

object QName " + objectQName);

}

return builder.buildObject(objectQName.getNamespaceURI(),

objectQName.getLocalPart(), objectQName.getPrefix());

}

DateTime now = new DateTime();

IdentifierGenerator idGenerator =

new SecureRandomIdentifierGenerator();

Subject subject = (Subject) buildXMLObject(

Subject.DEFAULT_ELEMENT_NAME);

NameID nameID = (NameID) buildXMLObject(

NameID.DEFAULT_ELEMENT_NAME);

nameID.setFormat(NameID.EMAIL);

nameID.setValue("paigeturner.dl@gmail.com");

subject.setNameID(nameID);

SubjectConfirmation conf = (SubjectConfirmation)

buildXMLObject(SubjectConfirmation.DEFAULT_ELEMENT_NAME);

conf.setMethod("urn:oasis:names:tc:SAML:2.0:cm:bearer");

www.informit.com/title/9780321767356
www.informit.com/title/9780321767356

406 Chapter 12 Additional Platform Features

SubjectConfirmationData data = (SubjectConfirmationData)

buildXMLObject(SubjectConfirmationData.DEFAULT_ELEMENT_NAME);

data.setRecipient("https://login.salesforce.com");

data.setNotOnOrAfter(now);

conf.setSubjectConfirmationData(data);

subject.getSubjectConfirmations().add(conf);

Assertion assertion = (Assertion)

buildXMLObject(Assertion.DEFAULT_ELEMENT_NAME);

assertion.setVersion(SAMLVersion.VERSION_20);

assertion.setID(idGenerator.generateIdentifier());

assertion.setIssueInstant(now);

assertion.setSubject(subject);

Listing 12-7 Signing and Encoding the SAML Assertion

Signature signature = (Signature) buildXMLObject(

Signature.DEFAULT_ELEMENT_NAME);

signature.setSigningCredential(credential);

signature.setCanonicalizationAlgorithm(

SignatureConstants.ALGO_ID_C14N_EXCL_OMIT_COMMENTS);

signature.setSignatureAlgorithm(

SignatureConstants.ALGO_ID_SIGNATURE_RSA);

response.setSignature(signature);

Marshaller marshaller = marshallerFactory.getMarshaller(response);

marshaller.marshall(response);

Signer.signObject(signature);

Response signedResponse = (Response) unmarshallerFactory.getUnmarshaller(

response.getDOM()).unmarshall(response.getDOM());

Marshaller m = marshallerFactory.getMarshaller(signedResponse);

Element generatedDOM = m.marshall(response, parser.newDocument());

BASE64Encoder be = new BASE64Encoder();

String xml = XMLHelper.nodeToString(generatedDOM);

return be.encode(xml.getBytes());

5. Tell the JavaVirtual Machine (JVM) about your endorsed jars. Create a Run
Configuration for your assertion generator class that includes these JVM argu-
ments: -Djava.endorsed.dirs=endorsed.

6. You will need your Identity Provider certificate in X.509 format and your private
key in Distinguished Encoding Rules (DER) format. Use OpenSSL to convert your
files from other formats. For example, to convert from Privacy Enhanced Mail
(PEM), use the commands given in Listing 12-8. In this example, the PEM files are
the private key pk.pem and certificate cert.pem.

407Using Single Sign-On

Listing 12-8 Converting from PEM Using OpenSSL

openssl pkcs8 -topk8 -nocrypt -in pk.pem -outform DER -out pk.der

openssl x509 -in cert.pem -inform PEM -out cert.crt -outform DER

7. Build a test Web page for submitting the SAML assertion to Force.com. It can be as
simple as the page in Listing 12-9. Open the page in your Web browser, paste the
generated Base64-encoded SAML assertion into the text area, and click the Submit
button. If your assertion is valid, you will be logged in to Force.com immediately,
without entering a username or password.

Listing 12-9 Sample Code for SAML Assertion Test Page

<html>

<body>

<form name="form" action="https://login.salesforce.com"

method="post">

<textarea name="SAMLResponse" rows="20" cols="80">

</textarea>

<input type="submit" value="Submit" />

</form>

</body>

</html>

8. After testing your SAML assertion with Force.com, you can integrate the assertion
generation code with your internal Web applications.This closes the loop, mapping
internal application users to the correct Force.com users and extending the trust
established with internal applications into Force.com.

Delegated Single Sign-On
With delegated single sign-on, Force.com calls out to a simple Web service you imple-
ment for authenticating users. Force.com provides the username, password, and source IP
address of the user attempting to log in.Your Web service returns true or false, indicat-
ing whether the user should be authenticated to Force.com.

By default, delegated SSO is not enabled in your Force.com organization.To enable it,
contact Salesforce support by logging a case.To log a case, log in to your Force.com
organization and click the Help link at the top of the page. Click the My Cases tab and
then the Log a Case link.

Caution
Delegated SSO is supported for Customer Portal users, but not for users of the Web Ser-
vices API.

408 Chapter 12 Additional Platform Features

Figure 12-23 Downloading delegated authentication WSDL

To get started with delegated SSO, follow these steps:

1. Download the delegated authentication WSDL. Go to the App Setup area and click
Develop ➝ API, and click the Download Delegated Authentication WSDL link,
shown in Figure 12-23.

2. Using the WSDL, implement a Web service to respond to Force.com delegated
authentication requests. Listing 12-10 provides a sample implementation in PHP.

Listing 12-10 Sample Code for Delegated SSO Authentication Service

<?php

function authenticated($value) {

if ($value) {

return array('Authenticated' => $value);

} else {

return null;

}

}

function Authenticate($data) {

error_log('Delegated authentication request for username ' .

$data->username . ' from IP ' . $data->sourceIp);

return authenticated(false);

409Using Single Sign-On

Figure 12-24 Configuring delegated SSO

}

ini_set("soap.wsdl_cache_enabled", "0");

$server = new SoapServer("AuthenticationService.wsdl");

$server->addFunction("Authenticate");

$server->handle();

3. Make sure the server hosting your Web service is available to the Internet via port
80 (HTTP), port 443 (HTTPS), or ports 1024–65535 (HTTP or HTTPS).The
most secure configuration is to use HTTPS and configure your Web service to
require an SSL client certificate from Force.com. Go to the App Setup area and
click Develop ➝ API and click the Download Client Certificate link.

4. Configure delegated SSO in Force.com to point to your Web service. Go to the
Administration Setup area and click Security Controls ➝ Single Sign-On Settings.
Enter the URL to your authentication Web service in the Delegated Gateway URL
field and click the Save button. Figure 12-24 depicts this configuration page.

5. Enable SSO on the profiles of the users. Enable the Is Single Sign-On Enabled
check box in the General User Permissions section of the profile, as shown in
Figure 12-25.

410 Chapter 12 Additional Platform Features

Figure 12-25 Configuring a profile for SSO

Caution
Always maintain at least one profile with system administrator privileges that has single
sign-on disabled. Without this, you will be unable to log in to Force.com if your SSO Web
service goes down.

6. Users with SSO enabled on their profile should now be able to log in if your Web
service allows them.You can monitor delegated authentication problems in the
Administration Setup area by clicking Manage Users ➝ Delegated Authentication
Error History, as shown in Figure 12-26.

Sample Application: Project Map Dashboard
In this chapter, you’ve seen how dashboards provide a highly configurable surface for dis-
playing data to users on their home tab, visible when they start their day with Force.com.
This section walks through the construction of a custom Visualforce dashboard compo-
nent for the Services Manager sample application. Called Project Map and shown in
Figure 12-27, it renders the locations of the company’s active consulting projects on a
Google Map.

Project Map demonstrates that what you can show to users on their dashboards is lim-
ited only by your imagination in developing with the Force.com platform and freely
available JavaScript libraries.

411Sample Application: Project Map Dashboard

Figure 12-26 Monitoring delegated authentication errors

Figure 12-27 Project Map dashboard component

412 Chapter 12 Additional Platform Features

To create the Project Map component, follow these steps:

1. Create a Visualforce component called GoogleMultiMap to hide the implementation
details of visualizing multiple geographic locations using the Google Maps API.
GoogleMultiMap has a single input named mapData, which is a JSON-encoded
string with two keys: names, containing an array of project names to plot on the
map, and addresses, an array of addresses.The component is responsible for taking
the addresses and geocoding them to retrieve the latitude and longitude for Google
map markers. Each marker is annotated with the project name occurring at that
location, displayed when the user hovers over the marker. Listing 12-11 is a sample
implementation of theVisualforce component. Be sure to provide your own Google
Maps API key in place of the APIKEY value.

Note
If you do not have a Google Maps API key, visit http://code.google.com/apis/maps/
signup.html.

Listing 12-11 GoogleMultiMap Component

<apex:component>

<apex:attribute name="mapData" type="String"

required="true"

description="JSON-encoded names and addresses

to show on the Google map" />

<apex:includeScript value="http://maps.google.com/maps?

file=api&v=2.x&key=APIKEY" />

<script>

var map = null;

var geocoder = null;

var markerList;

var addressList;

var nameList;

var currentIndex;

function finishShowMultipleAddresses() {

var bounds = new GLatLngBounds();

map.setCenter(new GLatLng(0,0), 0);

for (var i=0; i<markerList.length; i++) {

var marker = markerList[i];

map.addOverlay(marker);

bounds.extend(marker.getPoint());

}

map.setZoom(map.getBoundsZoomLevel(bounds));

map.setCenter(bounds.getCenter());

}

http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/signup.html

413Sample Application: Project Map Dashboard

function finishGeocode(point) {

if (point) {

var marker = new GMarker(point, {

'title' : nameList[currentIndex].replace('&', '&')

});

markerList.push(marker);

currentIndex++;

if (currentIndex == addressList.length) {

finishShowMultipleAddresses();

} else {

geocoder.getLatLng(addressList[currentIndex], finishGeocode);

}

}

}

function initGMap() {

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map_canvas"));

if (geocoder == null) {

geocoder = new GClientGeocoder();

}

}

}

function showMultipleAddresses(names, addresses) {

initGMap();

nameList = names;

addressList = addresses;

markerList = new Array();

currentIndex = 0;

if (geocoder) {

geocoder.getLatLng(addresses[currentIndex], finishGeocode);

}

}

function init() {

var mapData = eval("(" +

document.getElementById("map_data").innerHTML + ")");

showMultipleAddresses(mapData.names, mapData.addresses);

}

var previousOnload = window.onload;

window.onload = function() {

if (previousOnload) {

previousOnload();

}

init();

}

414 Chapter 12 Additional Platform Features

</script>

<div id="map_data" style="display: none">{!mapData}</div>

<div id="map_canvas" style="width: 300px; height: 300px"></div>

</apex:component>

2. Create the ProjectMap Visualforce page. Listing 12-12 is a sample implementation
of this page. It simply embeds the GoogleMultiMap component you created in the
preceding step and binds its mapData input to an output from your controller.You
won’t be able to save this page until you’ve completed step 3 because the controller
class does not yet exist.

Listing 12-12 ProjectMap Visualforce Page

<apex:page controller="ProjectMapController">

<c:GoogleMultiMap mapData="{!projectLocationsJson}" />

</apex:page>

3. Create the controller class for the ProjectMap Visualforce page.The controller is
responsible for returning the project names and addresses to be rendered on the
Google map. Listing 12-13 provides a sample implementation. It selects the name
and address fields from the Account record associated with each Project in progress
and then returns them as a JSON-encoded string.This is a simplistic implementa-
tion because companies can have multiple locations where a consultant might be
working.The on-site location for a project could be stored as a set of address fields
added to the project or a separate address object related to both the Account and
the Project objects.

Listing 12-13 ProjectMapController

public class ProjectMapController {

public String getProjectLocationsJson() {

List<Proj__c> projects = [SELECT Name,

Account__r.BillingStreet, Account__r.BillingCity,

Account__r.BillingState, Account__r.BillingPostalCode

FROM Proj__c

WHERE Stage__c = 'In Progress'];

String result = '{ names: [';

Boolean first = true;

for (Proj__c project : projects) {

if (!first) {

result += ', ';

} else {

415Sample Application: Project Map Dashboard

first = false;

}

result += '\'' + project.Name.replace('\'', '\"') + '\'';

}

result += '], addresses: [';

first = true;

for (Proj__c project : projects) {

if (!first) {

result += ', ';

} else {

first = false;

}

result += '\'' +

project.Account__r.BillingStreet + ' ' +

project.Account__r.BillingCity + ' ' +

project.Account__r.BillingState + ' ' +

project.Account__r.BillingPostalCode + '\'';

}

result += '] }';

return result;

}

}

4. Add the ProjectMap Visualforce page as a dashboard component. If the Dashboards
tab is not visible on your screen, click the rightmost tab (small arrow pointing to
the right) to reach it. Select an existing dashboard or create a new one, and then
click the Edit button. In the Components tab panel, select the Visualforce compo-
nent (vf icon) and drag it into a column of the dashboard. Next, you need to con-
nect the component to a data source. Click the Data Sources tab panel, expand the
Visualforce Pages group, and drag the Visualforce page you created in step 2 into
the newly created Visualforce dashboard component.When you’re done, your dash-
board should resemble Figure 12-28.

5. Make sure that users are configured to see the dashboard on their Home tabs. Go
to the App Setup area and click Customize ➝ Home ➝ Home Page Layouts. Click
the Edit link for the home page layout. In the Select Wide Components to Show
list, select the Dashboard Snapshot check box.

416 Chapter 12 Additional Platform Features

Figure 12-28 Visualforce dashboard component

Summary
In this chapter, you’ve been exposed to features of the Force.com platform that can
enhance the functionality of your applications.Whether or not you’ve created your first
object or line of Apex code, it’s worth taking the time to survey the full scope of the
Force.com platform’s functionality.This investigation will help you assess which applica-
tions fit the strengths of the platform and how best to use its features to capture the maxi-
mum value from your efforts.

Before finishing the chapter, reflect on a few points:

n Workflow and approval processing impose your own custom business processes on
the data in Force.com.

n Although you can always extract Force.com data into on-premise databases and use
traditional reporting solutions against them, Force.com provides its own built-in
reporting and analytics tools that are worth getting acquainted with.

n Force.com supports single sign-on (SSO) through its federated and delegated
authentication options. Federated SSO involves issuing a digitally signed SAML
message to Force.com’s servers. Delegated authentication is accomplished through a
Web service you host that Force.com invokes whenever a user attempts to log in.

13
Social Applications

This chapter introduces Chatter, a layer of functionality that spans all Salesforce applica-
tions and the Force.com platform, also referred to collectively as the Collaboration
Cloud. Chatter provides the means for users to communicate with each other in the con-
text of the applications and data central to their work, privately and entirely internal to
their company. It is delivered securely to their web browsers and most mobile devices. In
adopting Chatter, Salesforce customers, partners, and application developers gain the best
features of consumer services such as Facebook that form a social glue that makes inter-
acting at work a compelling, relevant, and professional experience.

Chatter includes features for end users and developers alike. Much of the functionality
in Chatter is readily accessible to anyone with basic knowledge of the Force.com data-
base,Apex, and Visualforce. Most of the effort as a developer is to first understand the
nuances of configuring Chatter as a user and system administrator, discussed in the first
section of this chapter. Brief descriptions of all three sections follow:

n Overview of Chatter: Chatter brings with it an entire vocabulary necessary for
users and developers to understand its features. Learn the new lingo, plus how to
configure Chatter as an administrator and user.

n Understanding the Chatter Data Model: The heart of Chatter is the data
model, standard objects in the Force.com database that allow any application to par-
ticipate in the conversation and automate Chatter interactions.With a grasp of the
data model, incorporating Chatter into your Apex programs is straightforward.

n Chatter in Visualforce: Learn how to add Chatter functionality to your custom
user interfaces with minimal effort using standard Visualforce components.

In the final section of the chapter, you modify the Services Manager sample application
to make staying in touch with resources on a project team using Chatter easy.

418 Chapter 13 Social Applications

Overview of Chatter
Chatter is integrated everywhere into Salesforce, and it wants to be in your custom
Force.com applications if you let it.This section covers basic Chatter concepts used
throughout the chapter, as well as how to configure Chatter from an administrator and
user point of view.

Chatter Concepts
Chatter brings users together socially, inline with the records in the Force.com database
relevant to them professionally.You could imagine it as the cloud equivalent of convening
a meeting at your desk with an armful of documents to review and annotate with your
team. In Chatter, this task is much easier, and less disruptive due to its asynchronous nature.

The following list of Chatter-related terms reflects its focus on marrying social inter-
action with business data:

n Posts and comments: These two terms encompass all communication in Chatter.
A post is a public message associated with a record in the database.A comment is
also a public message, but related to an individual post rather than a database record,
like a footnote to the post. Posts and comments are viewable by anyone in the
organization who has access to the parent record.The body of posts and comments
can contain text, searchable topics (words prefaced with #), references to users in
your organization (using the @ character), and links to web pages. Posts and com-
ments are full-text searchable from the standard Force.com search interface. Posts
and comments can also contain any type of file, like attachments in email messages.
Individual posts can be “liked” by users, helping to measure and track the popular-
ity of content.

Caution
Unlike other Salesforce data, Chatter posts and comments can be deleted but not undeleted
from the Recycle Bin. After a post or comment is deleted, it is gone for good.

n Follow and unfollow: The verbs follow and unfollow refer to the social relation-
ship between a user and a database record.A user who seeks to regularly review or
participate in the social activity (posts and comments) associated with a record
would follow that record. Similarly, when the user is no longer interested in a
record’s social activity, he would unfollow it.This set of records followed by a user
represents his interests, and the Force.com platform summarizes them into a single
web page and optionally, periodic email digests.

n Feed: The feed is a history of social activity associated with a database record.When
users create posts and comments, they are gathered together and displayed as a feed,
with the most recent entries appearing first, and subsequent entries in descending
order of date posted.

419Overview of Chatter

n Group: Not to be confused with Public Groups (the grouping of users for authori-
zation purposes), the Chatter Group is a gathering place for users to collaborate on
any subject. It’s useful when no sensible database object type exists to serve as the
locus of Chatter conversation. For example, you could create a group named “Hot
Customers” for support employees to work together to fight the fires of unhappy
customers.

n Chatter profile: The Chatter profile is an additional page associated with each
User record. It allows users to share information about themselves, their role in the
organization, their interests, and a photo.The profile also contains all Chatter-related
information about a user, including group affiliations, records followed, and users
following them.

n Digest: A digest is a daily or weekly emailed summary of the Chatter feeds fol-
lowed by a user.The daily digest contains up to 25 of the most recent posts, and the
weekly digest has 50. Both include the latest three comments for each post. Digests
can be a convenient way to keep current on social activity without logging into
Salesforce.

n Feed-tracked change:The feed-tracked change is the Chatter version of the stan-
dard history tracking feature available on most database fields.After an administrator
configures an object and field as feed-tracked, a system-generated Chatter post is
created to notify users when the field’s value changes.The feed-tracked change
Chatter posts serve as a public audit trail, and cannot be deleted.Another unique
property of feed-tracked change posts is that they are never included in Chatter
search results.

Configuring Chatter
Configuring Chatter involves three main aspects:

n Administrators: Users with administrative permissions can enable and disable
Chatter for the entire organization.They can also decide which database objects can
contain Chatter, and which fields on those objects have feed-tracked changes.

n Groups: Data is spread throughout an organization across many standard and cus-
tom objects.What objects and records users should follow is not always clear.
Groups can provide a meaningful set of Chatter topics for your company.

n Users: Individual users can control email digests and notifications of Chatter-related
events, such as new posts or new users following them.

Chatter Configuration for Administrators
The first step in adopting Chatter is to enable it for your organization. Unless your organ-
ization has explicitly opted out of Chatter, it should be enabled by default. In the App
Setup area, click Customize ➝ Chatter ➝ Settings. Figure 13-1 shows this screen with
Chatter enabled.

420 Chapter 13 Social Applications

Note
If you decide to disable Chatter, all of your existing Chatter-related data, such as posts and
comments, remains in Salesforce. You can turn it back on again at any time.

After enabling Chatter for the organization, the next step is to Chatter-enable some
database objects. Objects that are Chatter-enabled receive a Chatter toolbar at the top of
their detail pages.This toolbar is the primary way users interact with Chatter. Figure 13-2
shows it in its expanded state. Clicking the Hide Chatter button collapses it. From the tool-
bar, users can post, comment, view a list of the followers, and follow or unfollow the record.

To Chatter-enable objects, go the App Setup area and click Customize ➝ Chatter ➝
Feed Tracking.This page also allows configuration of feed-tracked changes, although this is
optional. In Figure 13-3, the standard objects Account, Case, Contact, Lead, and Opportu-
nity are Chatter-enabled and have multiple fields with tracked changes.The Chatter
Group is a system object that is always enabled.The custom object Project is also Chatter-
enabled, but has no fields with feed-tracked changes.

Note
By default, Chatter is enabled on the following standard objects: Account, Case, Contact,
Chatter Group, Contact, Lead, Opportunity, and User. Feed-tracked changes are enabled on a
few fields of each object: Account (Name, Owner), Case (Owner, Priority, Status), Chatter
Group (Description, Group Access, Name, Owner), Contact (Account, Name, Owner), Lead
(Name, Owner, Status), Opportunity (Amount, Close Date, Name, Owner, Stage), and User
(About Me, Address, E-mail, Manager, Phone, Title).

Figure 13-1 Chatter settings for an organization

421Overview of Chatter

Figure 13-2 Chatter toolbar in the expanded state

Figure 13-3 Chatter feed tracking settings

422 Chapter 13 Social Applications

Creating Groups
Chatter groups provide a forum for conversation that might not otherwise belong on an
ordinary database object.A group has a title, description, photo, and can contain files.
Groups also have members who follow the group, see group activity in their Chatter
feeds, and can post new messages in the group.

As a group owner, you can add and remove members, and appoint members to serve as
managers, change the group owner, and delete the group. Managers have the same rights
as the owner to modify the group, minus the ability to change group ownership and
delete the group. Groups can be public or private.Anyone can join a public group. But
you must be invited to join a private group by its owner or a manager.

Note
Administrators with Modify All Data permissions have special privileges in working with
Chatter groups. They can do everything a group owner can do, but cannot post in a group as
a non-member. This isn’t much of a limitation because administrators can add themselves
as a member of any group, including private groups.

Groups are created, edited, and deleted using the Groups tab. If the Groups tab is not
visible, click the plus icon (All Tabs) in the toolbar and select it from the list. If you don’t
see Groups in the list of all tabs, it is hidden in your profile or Chatter is disabled for your
organization.

Figure 13-4 shows a sample group called Hot Projects. It has five members, no files,
and no photo.

Figure 13-4 Sample group page

423Overview of Chatter

Chatter Configuration for Users
When Chatter is enabled for an organization, a new item is added to the Personal Setup
area called My Chatter Settings.Within this item are two children, My Feeds and Chatter
Email Settings, described here:

n My Feeds: By default, Force.com configures your user to follow all Chatter-
enabled records that you own.You can disable this behavior on the My Feeds page.

n Chatter Email Settings: This page allows the user to control the flow of Chatter-
related email. In Figure 13-5, the user is signed up to receive email notification on
all Chatter events, daily email digests of Chatter in the Hot Projects group, but no
email digests of personal Chatter.To quickly disable all Chatter email, deselect the
Receive Chatter emails option.

To get the most out of Chatter, taking a moment to update your Chatter profile with
information about yourself is a good idea.This enables other users to find and learn more
about you and your role in the organization.

To reach your Chatter profile, click your name on the Home tab, or select your name
from the menu bar at the top of the screen and click My Profile. Figure 13-6 shows a
sample Chatter profile.

Figure 13-5 Chatter email settings for a user

424 Chapter 13 Social Applications

Understanding the Chatter Data Model
Chatter posts, comments, and the list of records followed in Chatter are stored in standard
database objects, accessible in SOQL, SOSL,Apex code, the Web Services API, and gener-
ally anywhere you need them.With this developer-friendly approach, you can build any
number of interesting Chatter-aware programs.You can automatically follow a set of
records based on user actions, batch process posts and comments to identify patterns, build
an alternative user interface for Chatter, and even extend Chatter outside of your organi-
zation by integrating it with external applications.

After you have a good grasp of the data model, all of these scenarios are trivial to
implement on the platform. But compared with the standard platform objects such as
Contacts and Accounts, Chatter has a slightly more complex data model, including objects
with some distinctive qualities, summarized here:

n Dynamic: The objects in the Chatter schema can appear and disappear based on
the Chatter configuration. For example, when Chatter is disabled in an organiza-
tion, the Chatter objects are completely hidden, as if they never existed.Also,
objects containing Chatter posts are dynamically created when Chatter is enabled
for a custom object.

n Relationship-Rich:The whole purpose of Chatter is to link social and business
data, so Chatter objects consist primarily of foreign keys to other objects.

Figure 13-6 Chatter profile

425Understanding the Chatter Data Model

n Designed for High Volume: Chatter objects usually do not allow records to be
updated. Some objects can’t even be queried directly and must be referenced indi-
rectly from a parent object.

This section introduces you to the Chatter data model by exploring these four areas:

n Chatter Posts: Learn how to query, create, and delete the three main types of
Chatter posts, based on the parent record’s object type.

n Chatter Comments:You can query, create, and delete Chatter comments, given a
parent post.

n Feed-Tracked Changes: Feed-tracked change records are created automatically by
Force.com to provide an audit trail of database activity.They can be queried but
never directly created, updated, or deleted.

n Followed Records: Get a list of followers for a record, and follow and unfollow
records by creating and deleting simple Chatter configuration records.

Chatter Posts
Chatter posts are stored using a series of relationships that follow a common pattern, illus-
trated in Figure 13-7. Starting from the right of the diagram, a Feed object, suffixed with
the word Feed, contains Chatter posts. Feed objects exist for each Chatter-enabled parent
object type.The parent object is on the left, and the line between them indicates that a
single parent record can have zero to many posts.

Note
Feed objects are unusual for Force.com in that they are read-only. To insert or delete Chatter
posts, you must use the generic FeedItem object, discussed later in this chapter.

The Feed objects appear and disappear based on the Chatter configuration. For exam-
ple, if Chatter is enabled on the Proj__c custom object, then an object named
Proj__Feed exists, the object used to store posts related to Projects. If Chatter is later dis-
abled for Proj__c, the Proj__Feed object is removed from the Force.com database.

The five types of post content, indicated by the Type field of the Feed objects, are
described here:

n Text (TextPost): This is the default type of Chatter post. It contains plain text,
with no HTML markup or rich formatting allowed.The text is contained in the
Body field.The sample code in this chapter focuses on the text post type, because

<Object> <Object>Feed

Figure 13-7 Chatter post schema pattern

426 Chapter 13 Social Applications

the other post types behave almost identically, differing only on the fields used to
store data.

n URL (LinkPost): The Chatter user interface allows you to attach a single URL to
a post, which appears immediately below the post text.The URL value is stored in
the LinkUrl field, with the URL label in Title.

n File (ContentPost): From the Chatter user interface, you can select a file to attach
to a post.The file can be a reference to another Chatter-attached file, or uploaded
from your local computer.The file content is base-64 encoded and placed in the
ContentData field. Several additional file-related metadata fields are also stored with
the file: ContentFileName and ContentDescription (input by the user during
upload), ContentType (file MIME type), and ContentSize (file size in bytes).

n Field Change (TrackedChange): This post type is relevant only to feed-tracked
changes. It is generated by Force.com itself and cannot be created by users or
programs.

n Status Update (UserStatus): Chatter users can change their status from their pro-
file page or any Chatter user interface.This action triggers Force.com to insert a
status update Chatter post, with the Body field set to the new status.

The remainder of this subsection contains SOQL queries and Apex code snippets to
demonstrate how to work with posts and their parent feed objects.They are organized
into the following four scenarios:

n Standard Object Feeds: When Chatter is enabled for an organization, most stan-
dard objects have corresponding Chatter feeds.

n Custom Object Feeds: Every custom object that is Chatter-enabled by the
administrator has its own feed.

n User Feeds: Separate feeds exist for the Chatter user profile as well as the standard
User object.

n Home Tab Feed: The Home tab has its own feed, called NewsFeed.This contains
a collection of all the activity in followed records.

Caution
Understanding posts and feeds is critical because the rest of the section builds upon this
knowledge.

Standard Object Feeds
When Chatter is enabled for an organization, feed objects exist for every standard object
that supports Chatter. Listing 13-1 is an example of retrieving the ten most recent Chatter
posts on the Contact object using the ContactFeed object.

427Understanding the Chatter Data Model

Listing 13-1 Chatter Query on Standard Object

SELECT ParentId, Body, Type, CreatedBy.Name, CreatedDate

FROM ContactFeed

ORDER BY CreatedDate DESC LIMIT 10

To create a post on the Contact object, you need the Id of a Contact record to serve as
the parent of the post.This Id becomes the ParentId column in FeedItem. Force.com
takes care of determining which feeds the post belongs to based on the type of object ref-
erenced by the ParentId.This means you can use the same code to create posts regardless
of the type of object you’re posting about.

The example code in Listing 13-2 contains a method for creating a Chatter post. Pass it
the Id of a Contact record in the recordId argument, and the text of the post body in the
text argument. Make a note of the return value because it is used later to remove the post.

Listing 13-2 Creating a Chatter Post

public Id post(Id recordId, String text) {

FeedItem post = new FeedItem(ParentId = recordId, Body = text);

insert post;

return post.Id;

}

Unlike creating posts, the code to delete posts is object-specific, not generic. It requires
the specific feed object containing the post to be known. For example, if you created a
post with a Contact record as the ParentId, delete the post from the ContactFeed, as
shown in Listing 13-3.

Listing 13-3 Deleting a Chatter Post

public void deleteContactPost(Id postId) {

ContactFeed post = [SELECT Id FROM ContactFeed

WHERE FeedPostId = :postId];

delete post;

}

Custom Object Feeds
Chatter posts on custom objects behave identically to standard objects, with two excep-
tions.The naming scheme for the feed objects is slightly different, and a feed object does
not exist until Chatter is enabled on the custom object. For example, if you enable
Chatter on the Proj__c object, the Proj__Feed Chatter object becomes available.

Listing 13-4 demonstrates a query for posts on the Proj__c object.As you can see, the
columns are identical to that of the standard feed, but the FROM clause refers to the
Proj__c-specific feed object.To get any feed object’s name, strip the __c from the end of

428 Chapter 13 Social Applications

your custom object’s API name, and then add the __Feed suffix.You can follow this pat-
tern to access the posts of any custom object.

Listing 13-4 Chatter Query on Custom Object

SELECT ParentId, Body, Type, CreatedBy.Name, CreatedDate

FROM Proj__Feed

Note
The procedure for creating and deleting Chatter posts in custom objects is identical to that
of standard objects.

User Feeds
Two feeds contain user-related Chatter posts:

n UserFeed: UserFeed contains feed-tracked changes for fields on your User object,
as well as posts by other users on your profile.You cannot query another user’s User
feed unless you log in to Force.com as that user.

n UserProfileFeed: The UserProfileFeed is a superset of the User feed. It includes
Chatter from other objects followed by the user, such as groups. It requires the use
of the WITH SOQL syntax to query it.This sets the user context, so you can view
the UserProfileFeed from the perspective of any user by specifying his UserId.

The SOQL in Listing 13-5 returns the Chatter posts for the current user, the user logged
in to Force.com and executing the query.

Listing 13-5 Chatter Query on UserFeed

SELECT ParentId, FeedPostId, Type, CreatedById, CreatedDate

FROM UserFeed

Listing 13-6 demonstrates the UserProfileFeed. It selects all Chatter posts for the user
with the given Id, which is not required to be the same user executing the query.

Listing 13-6 Chatter Query on UserProfileFeed

SELECT ParentId, FeedPostId, Type, CreatedById, CreatedDate

FROM UserProfileFeed

WITH UserId = '00580000001opOPAAY'

Note
The procedure for creating and deleting Chatter posts in UserFeed and UserProfileFeed is
identical to that of standard objects.

429Understanding the Chatter Data Model

<Object> <Object>Feed FeedComment

Figure 13-8 Chatter comment schema pattern

News Feed
If you’ve experimented with Chatter in the Force.com user interface, you might have
noticed that the Home tab aggregates all the posts and comments you follow in one
place.The Chatter appearing on the Home tab is also accessible via API using the News-
Feed object.

Listing 13-7 is a sample query on the NewsFeed object, returning all the posts in the
current user’s Home tab. Queries on NewsFeed are limited in scope to the user running
the query.You cannot see another user’s NewsFeed records unless you log in to Force.com
as that user.

Listing 13-7 Chatter Query on NewsFeed

SELECT ParentId, Body, Type, CreatedBy.Name, CreatedDate

FROM NewsFeed

Chatter Comments
The handling of Chatter comments is slightly different from that of other Chatter data.
Comment data is stored in a single, large object called FeedComment that cannot be
queried directly.The Feed object becomes a junction object, associating Chatter posts to
the subject of the post and zero or more comments.This three-way relationship is shown
in Figure 13-8, with the left side the parent of the post and the right side the list of
comments.

The relationship between the Feed junction object and the FeedComment object is
called FeedComments. Listing 13-8 provides an example of querying it.The result is all
the posts in the Proj__c custom object feed, and for each post all of its comments.

Listing 13-8 Chatter Query for Comments

SELECT ParentId, Type, CreatedById, CreatedDate, Body,

(SELECT CommentBody, CreatedById, CreatedDate FROM FeedComments)

FROM Proj__Feed

To create a comment, insert a record into the FeedComment object. Listing 13-9 pro-
vides a sample method for doing this.To test it, you need the Id value of a record in a
Feed object. For example, if you want to add a comment to an Account post, get the Id of

430 Chapter 13 Social Applications

the post to comment on from the AccountFeed object.This Id value is then passed into
the method as the first argument, postId.The second argument is the text of the com-
ment to create. Save the postId and the value returned by this method, as these are
needed to delete the comment.

Listing 13-9 Creating a Chatter Comment

public Id comment(Id postId, String text) {

FeedComment comment = new FeedComment(

FeedItemId = postId, CommentBody = text);

insert comment;

return comment.Id;

}

You cannot update a FeedComment record, but you can delete it. Like with deleting
posts, deleting comments is tricky because you cannot directly query the FeedComment
object to retrieve the record to delete. If your program creates or queries FeedComment
records and can keep them around in a cache, that is ideal. If this is not possible, you must
query the FeedComment in order to delete it.

Listing 13-10 shows a sample method for deleting a comment by querying it first via
its parent post.To use it, you must pass the FeedItemId of the parent post in the
Proj__Feed object as the postId, and the Id of the FeedComment record as commentId,
returned by the comment sample method.Although this example operates on comments
in Proj__Feed only, the same pattern can be applied to comments in all feeds.

Listing 13-10 Deleting a Chatter Comment

public void deleteComment(Id postId, Id commentId) {

Proj__Feed post = [SELECT Id,

(SELECT Id from FeedComments WHERE Id = :commentId)

FROM Proj__Feed WHERE FeedPostId = :postId];

delete post.FeedComments[0];

}

Feed-Tracked Changes
Feed-tracked changes provide an audit trail of modifications to a set of fields. For each
record in an object that has feed-tracked changes enabled, there can be many correspon-
ding feed-tracked change records. Each change record captures the original field value, the
new field value, the field name, and the new and old currencies if multicurrency is enabled
in the organization and the field is a currency type.

The change records for all objects in an organization with feed-tracked changes
enabled are stored in a single object called FeedTrackedChange.The schema pattern for
this object is illustrated in Figure 13-9.

431Understanding the Chatter Data Model

<Object> <Object>Feed FeedTrackedChange

Figure 13-9 Chatter feed-tracked changes schema pattern

FeedTrackedChange cannot be queried or modified in any way by any user, even an
administrator. Like Chatter comments, it must be queried indirectly via its junction
object. Listing 13-11 shows an example of querying all posts on Contact records and their
corresponding FeedTrackedChanges.

Listing 13-11 Querying Chatter Feed-Tracked Changes

SELECT ParentId, Type, CreatedById, CreatedDate,

(SELECT FeedItemId, FieldName, OldValue, NewValue

FROM FeedTrackedChanges)

FROM ContactFeed

To see the query in action, enable feed-tracked changes on the Contact Phone field;
then change the Phone value on a record and run the query.You should see a new record
with a Type value of TrackedChange containing a nested FeedTrackedChange record.The
nested record has the old and new Phone values along with the full field name,
Contact.Phone. Had you changed two feed-tracked change fields within the same trans-
action, you would see two nested FeedTrackedChange records instead of one.

Followed Records
Users register interest in the Chatter activity of a record by clicking Follow icons in the
Force.com user interface, or by automatically following owned records. Users can follow
other users as well as records in standard and custom objects.The information about fol-
lowers is prominently displayed throughout the standard user interface, and used to email
digests and notifications to users if Chatter is configured to do so.

All of this functionality hinges upon a single, simple object, called EntitySubscription.
Its two important fields are ParentId, the record being followed, and SubscriberId, the
Id of the user doing the following. For every record-to-user relationship in the organiza-
tion, a unique record in EntitySubscription exists to express it.

With simple queries on the EntitySubscription object, you can retrieve a list of records
followed by a user, or the users following a specific record. Less useful might be a query for
the full set of following relationships in the entire organization, as shown in Listing 13-12.

Listing 13-12 Querying Chatter Following Relationships

SELECT ParentId, SubscriberId, CreatedById, CreatedDate

FROM EntitySubscription

432 Chapter 13 Social Applications

To follow a record programmatically, insert a new ParentId and SubscriberId pair
into the EntitySubscription object. Listing 13-13 provides a sample method to do this.Test
it by passing in the Id of a record to follow and the Id of a User record to follow it.

Listing 13-13 Method for Following a Record

public Id follow(Id recordId, Id userId) {

EntitySubscription e = new EntitySubscription(

ParentId = recordId, SubscriberId = userId);

insert e;

return e.Id;

}

For example, call it with the Id of an Account record and your user’s Id value; then
refresh the Account’s view page to see yourself instantly listed as a follower. Make a note
of the Id value returned by the method.This is used later to unfollow the record.

Note
Each EntitySubscription uniquely identifies a relationship between parent record and User
record, so a runtime error is thrown if a new record matches an existing record’s ParentId
and SubscriberId.

Unfollowing a record involves deleting the appropriate row in EntitySubscription that
relates the record to the user. Listing 13-14 provides a sample method for doing just that.
To use the method, pass the EntitySubscription record identifier returned by the follow
sample method in Listing 13-13.

Listing 13-14 Method for Unfollowing a Record

public void unfollow(Id subscriptionId) {

delete [SELECT Id FROM EntitySubscription

WHERE Id = :subscriptionId];

}

Although this simple example can work, it’s unlikely that your program would possess
the unique identifier of the EntitySubscription record.You could just as easily delete
records on more readily available information, such as the EntitySubscription’s ParentId
or SubscriberId.

Chatter in Visualforce
When Chatter is enabled on an object, users viewing a record of that object see a rich
user interface to manage posts and comments, followers, and their interest in following the
record.This same native user interface functionality is also available to Visualforce develop-
ers. Using Chatter components, you can embed the same Chatter toolbar, in its entirety or
in pieces, within your custom user interfaces.

433Chatter in Visualforce

Chatter is supported in Visualforce through four dedicated components in the chatter
namespace, and an additional Chatter-specific attribute on the generic detail compo-
nent, as described here:

n feed: This component renders a list of Chatter posts and comments for the selected
record. It also provides a text box at the top for creating new posts.The selected
record is specified using the entityId attribute.

n feedWithFollowers: This component embeds the full Chatter toolbar. It includes
the functionality of the feed component, and adds the list of followers to the right
side, the Show/Hide Chatter buttons, and the Follow/Unfollow buttons.

n follow: Including this component on a page renders a Follow button if the user is
not following the record, and Unfollow button otherwise.

n followers: The followers component simply displays a list of users following the
current record. Users are represented as thumbnail photos, which can be clicked to
drill into their profiles.

n showChatter: This attribute of the detail component, if set to true, includes the
full Chatter toolbar at the top of the detail page.

To try one of the Chatter components, create a new Visualforce page that uses a standard
controller. Pick an object that you know has Chatter enabled. Listing 13-15 shows a cus-
tom Proj__c page that includes the feedWithFollowers component, and Figure 13-10 is
the result of visiting the custom page.There are no posts, comments, or followers of the
Proj__c record, but the feedWithFollowers component has made creating and viewing
all of these items using the standard Force.com-styled user interface possible.

Listing 13-15 Visualforce Page with Chatter Component

<apex:page standardController="Proj__c">

<apex:sectionHeader title="Project"

subtitle="{!record.Id}" />

<apex:pageBlock title="Chatter Components">

<chatter:feedWithFollowers entityId="{!record.Id}" />

</apex:pageBlock>

</apex:page>

You should be aware of a few gotchas with Visualforce Chatter components as you
begin using them:

n A Visualforce page cannot contain more than one of the five Chatter components at
one time. If you attempt to use more than one, the page cannot be saved.

n Chatter components cannot be added to a Visualforce page unless the API version
of the page is at least 20.0. If the API version is set incorrectly, an Unknown Compo-
nent error will prevent the page from being saved.

434 Chapter 13 Social Applications

Figure 13-10 Output of Visualforce page with Chatter component

Sample Application: Follow Project Team
One of the initial challenges with using Chatter is building up a relevant set of records to
follow. Salesforce’s automatic following of owned records is a good start. But users of your
Services Manager sample application would like a quick and easy way to follow all the
resources assigned to a consulting project.

This section walks through a sample implementation of a custom button called Follow
Team, added to the Project object’s layout.The button launches a Visualforce page that
uses the standard Proj__c controller and a controller extension. Because the page is
shown when the user clicks the button, the action attribute of the page invokes the cus-
tom controller code to perform the following logic immediately, without additional user
action.The results of the following logic are displayed in a page message.

Following records in Chatter using Apex code involves adding records to the Entity-
Subscription object.The sample code in Listing 13-16 is the full controller extension
implementation.

n You cannot use Chatter components with Visualforce Sites.The Chatter compo-
nents will be invisible to Sites users.

435Sample Application: Follow Project Team

Listing 13-16 Controller Extension Code

public with sharing class FollowProjectControllerExtension {

private ApexPages.StandardController controller;

public FollowProjectControllerExtension(

ApexPages.StandardController stdController) {

this.controller = stdController;

}

public PageReference followProject() {

Id currentUserId = UserInfo.getUserId();

Set<Id> userIds = new Set<Id>();

for (List<Assignment__c> assignments :

[SELECT Resource__r.User__c FROM Assignment__c WHERE

Project__c = :controller.getRecord().Id]) {

for (Assignment__c assignment : assignments) {

Id uid = assignment.Resource__r.User__c;

if (currentUserId != uid && uid != null) {

userIds.add(uid);

}

}

}

if (userIds.size() == 0) {

error('Project has no assignments.');

return null;

}

Set<String> subs = new Set<String>();

for (List<EntitySubscription> recs :

[SELECT ParentId FROM EntitySubscription

WHERE SubscriberId = :currentUserId

AND ParentId IN :userIds]) {

for (EntitySubscription rec : recs) {

subs.add(rec.ParentId);

}

}

Integer followCount = 0;

List<EntitySubscription> adds = new List<EntitySubscription>();

for (Id userId : userIds) {

if (!subs.contains(userId)) {

adds.add(new EntitySubscription(

ParentId = userId, SubscriberId = currentUserId));

followCount++;

}

}

insert adds;

info(followCount + ' users followed');

return null;

}

436 Chapter 13 Social Applications

private static void info(String text) {

ApexPages.Message msg = new ApexPages.Message(

ApexPages.Severity.INFO, text);

ApexPages.addMessage(msg);

}

private static void error(String text) {

ApexPages.Message msg = new ApexPages.Message(

ApexPages.Severity.ERROR, text);

ApexPages.addMessage(msg);

}

}

Two tricky areas of the implementation are as follows:

n Duplicate records cannot be added, so existing EntitySubscription records on the
assigned users must be checked first.This is done by building a set of record identi-
fiers that are already followed, storing them in the subs variable, and consulting
them before creating a new EntitySubscription.

n Retrieving the users to follow from a project is somewhat indirect. Start with the
list of Assignment__c records for the Proj__c record. Each Assignment__c record
contains a Resource__c that is assigned to the project. Each Resource__c includes a
User__c field, which optionally contains a reference to a Salesforce User record.
The User record identifier becomes the ParentId, the record to follow.

The Visualforce page behind the custom Follow Team button is provided in Listing 13-17.
Key points in the page are the action attribute to invoke the following logic when the
page is shown, and the pageMessages component to provide feedback to the user about
the newly followed records, if any.

Listing 13-17 Visualforce Page for Custom Button

<apex:page standardController="Proj__c"

extensions="FollowProjectControllerExtension"

action="{!followProject}">

<apex:pageMessages />

</apex:page>

Caution
Invoking a controller method upon Visualforce page load is bad practice for security reasons,
as it can be exploited in a Cross Site Request Forgery (CSRF) attack. Visualforce pages are
normally protected from CSRF using hidden variables that prevent a hijacker from redirecting
the browser to a simple URL. To protect a page like the one in Listing 13-17, you could add a
token that is checked in the controller before executing the logic. For more information,
examine the security-related documents available at wiki.developerforce.com/index.php/
Security.

437Summary

Figure 13-11 Custom button configuration

After you have created the controller extension class and the page, add a custom button
on the Project object called Follow Team. Figure 13-11 shows the button configuration.

To manually test the new feature, visit a Project record that has at least one Assign-
ment and where the Assignment has a Resource with a non-null User__c field. Click the
Follow Team button. Refresh the current user’s profile to verify that the assigned user is
followed.

Summary
Chatter offers a unique combination of end-user functionality and building blocks for
developers to create socially aware applications.As you review the key features of Chat-
ter, consider the potential it brings to drive new applications and interactions in your
organization:

n Chatter provides user profiles, which are customizable pages for every user in your
organization. User profiles deliver a stronger sense of user identity than the standard
User record.

n As users follow Chatter-enabled records, a corporate-wide social graph of interests
in people and data emerges.This graph can be mined in any number of creative
applications, inside and outside of the platform.

438 Chapter 13 Social Applications

n Chatter is itself a platform, consisting of a public data model, user interface compo-
nents, and tight integration with the greater Force.com platform.This provides
flexibility for any application to exercise and extend Chatter functionality.

Index

Symbols
; (semicolon), 179

4GL developers, 13

A
abortJob method, 306

Accept button (Visualforce), 240

access modifiers, 154-155

AccessLevel field, 188

accounts receivable, 19

ACM (Advanced Currency Management),
400-402

action components, 227-228

action methods, 218-221

actionFunction component, 263-264

actionPoller component, 264-265

actions, asynchronous, 261-262. See also
specific actions

actionSupport component,
265-266, 288

addError method, 253

addInfo method, 253

administration of Connect Offline, 104-106

administrative permissions, 68

administrators, configuring Chatter for,
419-420

Adobe Flash Builder, 275-276

Adobe Flex, 274-281

creating Flex projects, 275-280
supporting Microsoft Internet

Explorer, 280-281
Advanced Currency Management (ACM),

400-402

aggregate functions, 170-171

aggregate SOQL queries, 170-171

Amazon Web Services, 2-3

analytic snapshots, 393-394

analytics, 388-389

analytic snapshots, 393-394
Dashboards, 392-393
reports, 389

creating, 389-391
custom reports, 392
running, 391

anonymous benchmarking Web service, 334

sample implementation, 339-342
Visualforce page design, 334-336
Web service integration, 337-339

anti-joins, 176-179

Apex, 7, 120-121

Apex API, 347
arrays, 130-131
asynchronous execution, 135-136
constants, 126
constructors, 152-153
control logic, 132

conditional statements, 132-133
exception statements, 134-135
loops, 133-134

custom settings, 203-205
data types

converting, 127-129
table of, 125-126

database integration, 137
database queries, 139-144
database records, 137-139
database triggers, 146-149
persisting records, 144-146
security, 149

debugging, 158-161
dynamic Apex, 200

dynamic database queries, 200-202
schema metadata, 202-204

email
inbound email processing, 198-200
receiving, 197-198
sending, 193-196
transactional email, 196-197

encapsulation, 150
enums, 126
governor limits, 120, 136
information hiding, 154-155
inheritance, 155-157
initializers, 153
inner classes, 154
lists, 130-131
managed sharing, 187

Force.com managed sharing, 187
restrictions, 188
sharing objects, 187-188
sharing rules, 188-193
user managed sharing, 187

maps, 132
methods, 151
modularity, 155
operators, 129-130
polymorphism, 157-158
properties, 151-152
recursion, 135

440 Adobe Flex

rounding operations, 128
sets, 131-132
testing, 161-162
transaction processing, 182

DML (Data Manipulation
Language), 183-184

record locking, 185-187
savepoints, 184-185

variables, 125, 150-151
Apex Code Developer’s Guide, 120

Apex Test Runner view, 124

Apex Web Services, 9

API Enabled permission, 353

API faults, 356

API limits, 348-349

APIs. See specific APIs

App Builder Tools, 35

AppExchange, 17

application errors, 356

application services, 6

applications, Services Manager. See Services
Manager application

approval processes

defining and managing, 384-388
explained, 383-385
states, 382-383

Approved state (approvals), 382

arrays, 130-131

assigning record types, 99-100

Assignment object, 55-56

assignments

assignment columns, 48
Assignment object, 55-56

asynchronous actions, 261-262

actionFunction component, 263-264
actionPoller component, 264-265

actionSupport component, 265-266
partial page refresh, 262-263

asynchronous execution, 135-136

asyncMethod method, 135

AsyncResult object, 366

attributes of view components, 223

authentication

Force.com REST API, 369
Force.com sites, 283

Auto Number field, 41

AVG function, 170

Azure, 3

B
Batch Apex, 291-293

batch jobs, 292-293, 296-299
Batchable interface, 293-294
classes, creating, 295-296
in database triggers, 148
iterable Batch Apex, 300-302
limitations of, 302-303
scheduling, 303-306
scope, 292
stateful Batch Apex, 299-300
testing, 303
transactions, 293
when to use, 294-295

batch jobs, 292-293, 296-299

batch processing. See Batch Apex

Batchable interface, 293-294

BenchmarkWS class, 337-339

binding, 8

Blob data type, 126

Boolean data type, 126

441Boolean data type

break keyword, 134

browsing data, 43-44

bulk modifications, 361-362

business analysts, 11-12

business logic, 8, 119. See also Apex; SOQL
(Salesforce Object Query Language); SOSL
(Salesforce Object Search Language)

business units, security by, 79-81

buttons, 38

custom buttons and links, 240-242
standard buttons, 240

C
C#.NET Web service clients, 350-352

calculating sums, 171

{!cancel}, 216-217

CAs (Certificate Authorities), 319

case insensitivity of variable names, 125

catch keyword, 134

Certificate Authorities (CAs), 319

Chatter

comments, 418, 429-430
configuring, 419

for administrators, 419-420
for groups, 422
for users, 423-424

data model, 424-425
digests (Chatter), 419
explained, 417-418
feeds

custom object feeds, 427-428
definition of, 418
news feeds, 429
standard object feeds, 426-427
user feeds, 428

feed-tracked changes, 419, 430-431

Follow Project Team button, 434-437
following/unfollowing users, 418,

431-432
groups

creating, 422
definition of, 419

posts, 418, 425-426
profiles, 419
in Visualforce, 432-434

checkStatus service, 366

child relationship metadata, 203

child-to-parent relationship queries, 142

classes. See specific classes

clear method, 130

clients

C#.NET Web service clients, 350-352
client columns, 46
Java Web service clients, 349-351

Clone button (Visualforce), 240

clone method, 130

Code Share, 17

Collaboration Cloud. See Chatter

.com Enterprise Edition (EE), 33

commandButton component, 227-228

commandLink component, 227-228

comments (Chatter), 418, 429-430

CompareSkillsComponent, 286, 288

CompareSkillsController, 286

components (view). See view components

composition, 269-271

conditional statements, 132-134

configuration management, 15

Connect Offline, 93, 104-108, 114-116

ConnectionException, 356

connections, establishing with S2S
(Salesforce-to-Salesforce), 320-323

442 break keyword

constants, 126

constructors, 152-153

consultants, 19

ContactFeed object, 426

containsKey method, 132

ContentPost, 426

continue keyword, 134

control logic, 132

conditional statements, 132-133
exception statements, 134-135
loops, 133-134

Controlled by Parent records, 74

controller extensions, 221

controllers, 215

controller design (Visualforce),
336-337

controller extensions, 221
custom controllers, 217-221

exposing data, 217-218
writing action methods, 218-221

explained, 210-211
Skills Matrix controller

controller tests, 256-259
implementation, 252-257

standard controllers, 215-217
working with multiple records,

216-217
working with single records,

215-216
converting

data types, 127-129
dates to strings, 128-129
strings to dates, 128

PEM (Privacy Enhanced Mail), 407
COUNT function, 170

COUNT_DISTINCT function, 170

Create permissions, 68

create service, 366

createObject method, 367-368

createProject service, 364-365

CRM (Customer Relationship
Management), 4

CronTrigger object, 306

Crypto class, 331

cURL, 370

currencies

ACM (Advanced Currency
Management), 400-402

multiple currencies, 398-400
custom Apex settings, 203-205

custom controllers, 217-221

exposing data, 217-218
working with multiple records,

216-217
writing action methods, 218-221

custom fields

creating, 39-40
explained, 25

custom integrations, 329

calling Web services from Apex code,
329-330

HTTP integration, 331-334
custom labels, 397-398

custom object feeds, 427-428

custom objects

Assignment, 55-56
buttons and links, 38
creating, 33-39, 53-55
defining, 36-37
explained, 24
fields, 38
Page Layouts, 38-39
Resource, 55
Skill, 56

443custom objects

Timecard, 57
tools, 35
triggers, 38
validation rules, 38

custom reports, 392

custom settings, 94, 107-108

hierarchy custom settings, 109-110
list custom settings, 108-109

custom Visualforce components, 271

adding to pages, 272-273
creating, 271-272

custom Web services, 362

calling, 364-365
limitations of, 362-363
service definition, 363-364

customer columns, 45-46

Customer Relationship Management
(CRM), 4

CustomWS class, 364-365

D
Dashboards, 392-393

dashboards, Project Map, 410-415

data binding, 8

data components, 224-227

metadata-aware components, 224-225
primitive data components, 225-226
repeating components, 227

data entry, 42

data integration, 31

Data Loader, 35

importing data, 61-62
preparing data for import, 58-61
verifying data, 62-64

Data Manipulation Language (DML),
183-184

data model (Services Manager
application), 45

assignments, 48, 55-56
clients, 46
custom application, creating, 53
custom objects, creating, 53-55
customers, 45-46
projects, 46-47
relationships, 50-52, 57-58
resources, 47-48, 55
skills, 49, 56
standard objects, 50
timecard, 49-50, 57

data modelers, 12

data tools, 35

data types, 355-356

converting, 127-129
dates to strings, 128-129
strings to dates, 128

rich data types, 26
table of, 125-126

database administrators, 12

database methods (DML), 183-184

databases

browsing data, 43-44
Connect Offline, 93, 104-108,

114-116
custom settings, 94, 107-108

hierarchy custom settings, 109-110
list custom settings, 108-109

data entry, 42
data integration, 31
explained, 6
fields

dependent fields, 93-94, 111-113
Field Accessibility, 71

444 custom objects

Field History Tracking, 93, 102-103
roll-up summary fields, 93,

100-102, 113-114
security, 70-71

governor limits, 30
history tracking, 27
importing data

data import steps, 61-62
preparing data for import, 58-61
verifying data, 62-64

integrated logical database, 13-14
integration. See integration
metadata XML, 32-33
objects. See objects
ORM (Object Relational Mapping),

31-32
queries, 139

filtering records, 140-141
querying multiple objects, 142
SOQL (Salesforce Object Query

Language), 139-140, 143-144
sorting query results, 141

records
Apex database integration, 137-139
batch processing. See Batch Apex
bulk modifications, 361-362
creating, 42, 137-138, 359-360, 371
deleting, 146, 372
deleting/undeleting, 361
filtering, 140-141
grouping, 171-174
inserting, 145
persisting, 144-146
record types, 93, 95-100
retrieving, 357-359, 370-371
undeleting, 146
updating, 145, 361, 372
upserting, 145-146, 372

relationships
explained, 27
explicit definition, 27
integrity, 27
Lookup relationships, 41
Master-Detail relationships, 41
relationship fields, 40-41

rich data types, 26
security, 149

administrative permissions, 68
explained, 65-67
field-level security, 70-71
licensing, 69-70
object permissions, 68-69
profiles, 68
record ownership, 72
sharing model, 73-77
user groups, 72-73

SOQL (Salesforce Object Query
Language). See SOQL (Salesforce
Object Query Language)

SOSL (Salesforce Object Search
Language). See SOSL (Salesforce
Object Search Language)

tags, 93, 104
triggers, 146-149

batch processing in, 148
definition of, 147-148
error handling, 148-149

tuning and operations, 24
undelete support, 24-25
validation rules, 25-26
Views, 43-44
Web Services API, 31

dataList component, 223-224, 227

dataTable component, 227

Date data type, 126

445Date data type

dates

converting strings to, 128
converting to strings, 128-129

Datetime data type, 126

DE (Developer Edition)

explained, 33-34
logging in, 34
registration, 34

debugging, 158-161, 243-245

Decimal data type, 126

declarative metadata, 6-7

declaring. See defining

define component, 270

defining

approval processes, 384-388
constants, 126
custom objects, 36-37
custom reports, 392
enums, 126
record types, 95-97
roll-up summary fields, 100-102
variables, 125

Delegated Authentication API, 347

delegated SSO (single sign-on), 407-411

Delete button (Visualforce), 240

Delete permissions, 68

delete service, 361, 366

{!delete}, 216-217

deleting

Chatter comments, 430
Chatter posts, 427
records, 146, 361, 372

dependent fields, 93-94, 111-113

deploy service, 366

detail component, 232, 235

developer discussion boards, 16-17

Developer Edition (DE)

explained, 33-34
logging in, 34
registration, 34

Developer Force, 16

development plan for Services Manager
application, 19-20

development process (Visualforce), 212

development tools (Visualforce), 212-214

digests (Chatter), 419

discussion boards, 16-17

DML (Data Manipulation Language),
183-184

DmlException, 134

documentation, 17

doSomething method, 227

Double data type, 126

Do-While loops, 133

dynamic Apex, 200

dynamic database queries, 200-202
picklist metadata, 203
schema metadata, 202-204

child relationship metadata, 203
field metadata, 202-203
object metadata, 202
record type metadata, 204

E
Edit permissions, 68

{!edit}, 216-217

Editable accessibility, 71

EE (Enterprise Edition), 33

email

email notifications, 206-207
inbound email processing, 198-200
receiving, 197-198

446 dates

sending, 193-196
MassEmailMessage method,

195-196
setBccSender method, 196
setCcAddresses method, 196
setDocumentAttachments

method, 197
setFileAttachments method, 197
setOrgWideEmailAddressId

method, 197
setReplyTo method, 196
setSaveAsActivity method, 197
setSenderDisplayName

method, 196
setUseSignature method, 197
SingleEmailMessage method, 194
SingleEmailMessage with template,

194-195
transactional email, 196-197

Email Services, 198

enabling

Force.com sites, 281-282
S2S (Salesforce-to-Salesforce), 320
tags, 104

encapsulation, 150

EncodingUtil class, 331

end of life, 16

enhancedList component, 232-233

entering data, 42

Enterprise API, 347, 357

bulk modifications, 361-362
creating records, 359-360
deleting/undeleting records, 361
retrieving records, 357-359
updating records, 361

Enterprise Edition (EE), 33

EntitySubscription object, 431-432

enums, 126

error handling

Force.com Web services, 356
in triggers, 148-149
Visualforce, 247

error communication, 248
uncaught exceptions, 247

Excel Connector, 36

exception statements, 134-135

exceptions

exception statements, 134-135
handling, 134
raising, 134
system exceptions, 356
TypeException, 127
Visualforce, 247

EXCLUDES keyword, 179

Execute Anonymous view, 124

execute method, 293, 296

executeBatch method, 297

exposing data, 217-218

Ext JS, 271

extending Visualforce, 273

Adobe Flex, 274-281
Force.com sites, 281-283
JavaScript libraries, 273-274

extensions (controller), 220-221

F
Facebook, 4

FE (Free Edition), 33

federated SSO (single sign-on), 402-407

feed method, 433

Feed objects, 425

FeedComments object, 429

447FeedComments object

feeds (Chatter)

custom object feeds, 427-428
definition of, 418
news feeds, 429
standard object feeds, 426-427
user feeds, 428

feed-tracked changes (Chatter),
419, 430-431

FeedTrackedChange object, 430-431

feedWithFollowers: method, 433

Field Accessibility, 71, 83-84

Field Change posts (Chatter), 426

Field History Tracking, 93, 102-103

field metadata, 202-203

field-level security, 70-71

fields

Auto Number, 41
custom fields

creating, 39-40
explained, 25

for custom objects, 38
dependent fields, 93-94, 111-113
explained, 25
for federated SSO, 403
Field Accessibility, 71
Field History Tracking, 93, 102-103
formula fields, 26
metadata, 202-203
relationship fields, 40-41, 57-58
Roll-up summary, 42
roll-up summary fields, 93, 100-102,

113-114
security, 70-71
unique identifiers, 25

File posts (Chatter), 426

file-based services, 366

{!filterId}, 217

filtering records, 140-141

finally keyword, 134

finish method, 294, 296

Flex, 274-281

creating Flex projects, 275-280
supporting Microsoft Internet

Explorer, 280-281
Flex Demo project, 276-280

follow method, 433

Follow Project Team button, 434-437

followers method, 433

following users (Chatter), 418, 431-432

For loops, 133

FOR UPDATE keyword, 186

Force.com Developer Edition

explained, 33-34
logging in, 34
registration, 34

Force.com Free Edition, 33

Force.com IDE, 35, 121

installing, 121
perspectives, 121
projects, 122-123
Schema Explorer, 123
views

Apex Test Runner view, 124
Execute Anonymous view, 124
Problems view, 123

Force.com sites, 281-283

adding pages to, 283
creating, 281-282
enabling, 281-282
security, 281-283
user authentication, 283

Force.com-styled components, 229-232

ForceUIComponentsController class, 235

Formula field, 42

448 feeds (Chatter)

formula fields, 26

Free Edition (FE), 33

FROM keyword, 174

functions. See also specific functions

aggregate functions, 170-171
in queries, 30

future methods, 135-136

G
generated user interfaces, 33

geocoding REST service, 331-333

getCurrentUserResource method, 253

getDeleted service, 359

getElementById method, 274

getResources method, 223

getUpdated service, 359

global access modifiers, 154-155, 363

Google App Engine, 3

GoogleMultiMap component, 412-414

governor limits, 30, 120, 136, 248-249, 364

GROUP BY CUBE syntax, 172-174

GROUP BY ROLLUP syntax, 172-174

GROUP BY syntax, 171-172

grouping records, 171-174

groups (Chatter), 419, 422

H
handleInboundEmail method, 198

handleTimecardNotifications, 206

handling exceptions, 134

{!hasNext}, 217

{!hasPrevious}, 217

HAVING keyword, 172

Hello World example (Visualforce), 213-215

HelloBatchApex class, 295-296

HelloIterableBatchApex class, 302

HelloSchedulable class, 304

HelloStatefulBatchApex class, 299-300

Hidden accessibility, 71

hierarchy custom settings, 109-110

history tracking, 27, 93, 102-103

Http class, 331

HTTP integration, 331-334

HttpRequest class, 331

HttpResponse class, 331

I
id attribute (Visualforce components), 223

ID data type, 126

{!id}, 216

IDE. See Force.com IDE

Ideas website, 17

Identify Provider Certificate field (SSO), 403

iframe component, 229

image component, 228

implicit conversion, 127

implicit joins, 28-29

Import Wizard, 35

importing data

data import steps, 61-62
data preparation, 58-61
verifying data, 62-64

inbound email processing, 198-200

include component, 269

INCLUDES keyword, 179

inclusion, 269

increment method, 262

information hiding, 154-155

inheritance, 155-157

initializers, 153

inner classes, 154

449inner classes

inner joins, 174-176

inputCheckbox component, 225

inputField component, 224-225, 335

inputFile component, 226

inputHidden component, 226

inputSecret component, 226

inputText component, 226

inputTextArea component, 226

insert component, 270

insert method, 184

Insert statement, 145

inserting records, 145

installing Force.com IDE, 121

instanceOf keyword, 158

Integer data type, 126

integrated logical database, 13-14

integration, 8-9, 313, 345-346

anonymous benchmarking Web
service, 334

sample implementation, 339-342
Visualforce controller design,

336-337
Visualforce page design, 334-336
Web service integration, 337-339

custom integrations, 329
calling Web services from Apex

code, 329-330
HTTP integration, 331-334

custom Web services, 362
calling, 364-365
limitations of, 362-363
service definition, 363-364

Enterprise API, 357
bulk modifications, 361-362
creating records, 359-360
deleting/undeleting records, 361
retrieving records, 357-359
updating records, 361

Force.com REST API, 368-369
API walkthrough, 369-372
authentication, 369

Force.com Web services
API limits, 348-349
data types, 355-356
error handling, 356
explained, 346-347
logging in, 351-355
security, 348
stub code, generating, 349-352
versions, 347

Metadata API, 365-368
outbound messaging

configuring, 314-317
definition of, 314
external Web service, 318-319
limitations of, 314

S2S (Salesforce-to-Salesforce),
319-320

connections, establishing, 320-323
record sharing, 326-328
shared objects, 323-324

Services Manager database
integration, 373

implementation strategy, 373-374
integration scenario, 373
sample Java implementation,

374-377
integration specialists, 13

integrity, 27

interfaces, 155

Batchable, 293-294
Iterator, 301
Schedulable, 304

international organizations, 395

ACM (Advanced Currency
Management), 400-402

450 inner joins

multilingual support, 395
custom labels, 397-398
Translation Workbench, 395-396

multiple currencies, 398-400
Internet Explorer, supporting, 280-281

interoperability, 16

IP whitelisting, 353

isEmpty method, 130

Issuer field (SSO), 403

iterable Batch Apex, 300-302

Iterator interface, 301

J
Java Web service clients, 349-352

JavaScript events, actions as, 265-266

JavaScript functions, calling Apex methods
as, 263-264

JavaScript libraries, 273-274

JavaScript Object Notation (JSON), 369, 376

job function, security by, 78-79

joins

anti-joins, 176-179
implicit joins, 28-29
inner joins, 174-176
outer joins, 174-176
semi-joins, 176-179

JSON (JavaScript Object Notation), 369, 376

Jump Start Wizard, 384

K
keySet method, 132

keywords. See specific keywords

L
labels, custom, 397-398

libraries, JavaScript, 273-274

licensing, 69-70

lifecycle of projects, 13

LIMIT keyword, 181

LinkPost, 426

list custom settings, 108-109

List keyword, 130

{!list}, 216

lists, 130-131

{!listViewOptions}, 217

listViews component, 232

locking records, 185-187

logging in

Force.com Developer Edition, 34
Force.com Web services, 351-355

logic, 8, 119. See also Apex; SOQL
(Salesforce Object Query Language); SOSL
(Salesforce Object Search Language)

login Web service, 354

LoginResult object, 354

logs

creating, 159-161
viewing, 158-161

Long data type, 126

Lookup relationships, 41

loops, 133-134

M
managed sharing, 187

Force.com managed sharing, 187
restrictions, 188
sharing objects, 187-188
sharing rules, 188-193
user managed sharing, 187

mapping Force.com data types to SOAP
data types, 355-356

maps, 132

mass emails, sending, 195-196

451mass emails, sending

MassEmailMessage method, 193, 195-196

MassEmailMessage object, 195-196

Master-Detail relationships, 41

MAX function, 170

messaging, outbound

configuring, 314-317
definition of, 314
external Web service, 318-319
limitations of, 314

metadata, 202-204

child relationship metadata, 203
declarative metadata, 6-7
field metadata, 202-203
Metadata API, 347, 365-368
Metadata object, 366
metadata XML, 32-33
object metadata, 202
picklist metadata, 203
record type metadata, 204
tools, 35

metadata-aware components, 224-225

metadata-derived user interfaces, 14-15

method overloading, 157

methods, 151 See specific methods

Microsoft Azure, 3

Microsoft Internet Explorer, supporting,
280-281

MIN function, 170

Missing Timecard object, 307

missing timecard report, 306-307

Missing Timecard object, 307
MissingTimecardBatch class, 308-309
testing, 310

MissingTimecardBatch class, 308-309

Model-View-Controller (MVC) pattern,
15-16, 210

Modify All permissions, 69

modular Visualforce pages, creating, 268

composition, 269-271
custom components, 271-273
inclusion, 269
static resources, 268-269

multilingual support, 395

custom labels, 397-398
Translation Workbench, 395-396

multiple currencies, 398-400

multiple objects, querying, 142

multi-select picklists, 179-180

multitenancy, 5-6

MVC (Model-View-Controller) pattern,
15-16, 210

MyEmailService class, 199

MyPageController, 214-215

N
NAICS (North American Industry

Classification System), 337

names of view components, 223

nested lists, 131

nested resultsets, 29-30

New button (Visualforce), 240

New Custom Field Wizard, 39-40

news feeds, 429

NewsFeed object, 429

North American Industry Classification
System (NAICS), 337

notification SOAP service, 319

NullPointerException, 134

numbers, rounding, 128

O
OAuth, 369

Object data type, 126

object permissions, 68-69

452 MassEmailMessage method

Object Relational Mapping (ORM), 31-32

{!object}, 216

object-based services, 366

object-level security

administrative permissions, 68
licensing, 69-70
object permissions, 68-69
profiles, 68
Visualforce, 226-245

object-oriented analysis and design
specialists, 12

object-oriented programming, 149-150

encapsulation, 150
information hiding, 154-155
inheritance, 155-157
modularity, 155
polymorphism, 157-158

objects

Contact, 50
ContactFeed, 426
custom objects

Assignment, 55-56
buttons and links, 38
creating, 33-39, 53-55
defining, 36-37
explained, 24
fields, 38
Page Layouts, 38-39
Resource, 55
Skill, 56
Timecard, 57
tools, 35
triggers, 38
validation rules, 38

definition of, 14

EntitySubscription, 431-432
explained, 23-24
Feed objects, 425
FeedTrackedChange, 430-431
metadata, 202
NewsFeed, 429
ORM (Object Relational Mapping),

31-32
Project, 32-33
shared objects, configuring for S2S

(Salesforce-to-Salesforce), 323-324
sharing, 187-188
UserFeed, 428
UserProfileFeed, 428

OOP. See object-oriented programming

Open Perspective dialog, 121-122

OpenSAML toolkit, 402-407

operations, 24

operations specialists, 13

operators, 129-130, 179

organization-wide defaults, configuring for
Services Manager application, 83-84

ORM (Object Relational Mapping), 31-32

outbound messaging

configuring, 314-317
definition of, 314
external Web service, 318-319
limitations of, 314

outer joins, 174-176

outputField component, 224-225

outputLabel component, 225

outputLink component, 228

outputPanel component, 228

outputText component, 228

ownership of records, 72

453ownership of records

P
PaaS (Platform as a Service)

Amazon Web Services, 2-3
explained, 2
Facebook, 4
Force.com, 3-4
Google App Engine, 3
Microsoft Azure, 3

page component, 224

Page Layouts, 8, 38-39

pageBlockSectionItem components, 335

pageBlockTable component, 255

page-level security (Visualforce), 246

pageMessages component, 335

{!pageNumber}, 217

pages (Visualforce), 211-212

design, 334-336
modular Visualforce pages,

creating, 268
composition, 269-271
custom components, 271-273
inclusion, 269
static resources, 268-269

page layouts, 240
partial page refresh, 262-263
standard pages, 237-238

ParentID field, 188

partial page refresh, 262-263

Partner API, 347

PEM (Privacy Enhanced Mail), converting
from, 407

permissions

administrative permissions, 68
API Enabled permission, 353
object permissions, 68-69

persisting records, 144-146

perspectives, 121

picklists, 39, 179-180

Platform as a Service. See PaaS
(Platform as a Service)

platforms, Force.com as, 4

polymorphism, 157-158

posts (Chatter), 418, 425-426

preparing data for import, 58-61

primitive components, 228-229

primitive data components, 225-226

printRecordCount method, 185

Privacy Enhanced Mail (PEM), converting
from, 407

private access modifier, 154

Private records, 73

Problems view, 123

ProcessInstance, 388

ProcessInstanceHistory, 388

ProcessInstances, 388

ProcessSteps, 388

profiles, 68

Chatter profiles, 419
configuring for Services Manager

application, 82
testing, 88-90

programming language. See Apex

project managers, 19

Project Map dashboard, 410-415

Project object, 32-33

ProjectIterable class, 301

ProjectMapController, 414-415

projects, 13

Force.com IDE, 122-123
lifecycle, 13
project columns, 46-47
selecting, 9-11
team selection, 11-13

454 PaaS (Platform as a Service)

properties, 151-152

protected access modifier, 154

public access modifier, 154, 155

public groups, 72

Public Read-Only records, 73

Public Read/Write records, 74

Q
quality assurance engineers, 13

queries

aggregate SOQL queries, 170-171
dynamic database queries, 200-202
executing, 354
filtering records, 140-141
querying multiple objects, 142
sample query, 28
SOQL (Salesforce Object Query

Language), 139-140, 143-144
sorting query results, 141
SOSL (Salesforce Object Search

Language), 180
query languages. See SOQL (Salesforce

Object Query Language); SOSL
(Salesforcee Object Search Language)

QueryException, 134

{!quicksave}, 216-217

R
raising exceptions, 134

Read permissions, 68

Read-Only accessibility, 71

Recalled state (approvals), 383

receiving email, 197-198

recent service, 370

record types, 95

assigning, 99-100
defining, 95-97
securing, 97-99

record-level security

record ownership, 72
sharing model, 73-77

organization-wide defaults, 73-74
sharing reasons, 75-77

user groups, 72-73
record-level security (Visualforce), 245-246

records

Apex database integration,
137-144

batch processing. See Batch Apex
bulk modifications, 361-362
creating, 42, 137-138, 359-360, 371
deleting, 146, 361, 372
filtering, 140-141
grouping, 171-174
inserting, 145
locking, 185-187
ownership of, 72
persisting, 144-146
record types, 93, 95

assigning, 99-100
defining, 95-97
record type metadata, 202-203
securing, 97-99

retrieving, 357-359, 370-371
sharing, 326-328
undeleting, 146, 361
updating, 145, 361, 372
upserting, 145-146, 372

recursion, 135

refresh action, 253

partial page refresh, 262-263
refreshCompareSkills() method, 288

registration for Force.com Developer
Edition, 34

Rejected state (approvals), 382

relatedList component, 232-234

455relatedList component

relational databases. See databases

relationship fields, 40-41, 57-58

relationships

explained, 27
explicit definition, 27
integrity, 27
Lookup relationships, 41
Master-Detail relationships, 41
relationship fields, 40-41, 57-58
for Services Manager application,

50-52
remove method, 132

rendered attribute (Visualforce
components), 224

repeat component, 227

repeating components, 227

reports, 389

creating, 389-391
custom reports, 392
missing timecard report, 306-307

Missing Timecard object, 307
MissingTimecardBatch class,

308-309
testing, 310

running, 391
Representational State Transfer, 9, 331-333.

See also REST API

Required accessibility, 71

Resource object, creating, 55

resources, 16-18

resource columns, 47-48
Resource object, 55

{!resources}, 223

ResourceWrapper class, 220

REST (Representational State Transfer), 9,
331-333. See also REST API

REST API, 368-369

API walkthrough, 369-372
authentication, 369

REST API Developer’s Guide, 368

resultsets, nested, 29-30

retrieve service, 359, 366

retrieving records, 357-359, 370-371

rich data types, 26

roles, 72-73, 84-85

roll-up summary fields, 42, 93, 100-102,
113-114

rounding numbers, 128

RowCause field, 188

rules

sharing rules, 85-86, 188-193
validation rules, 25-26, 38
workflow rules, 315-317, 379-383

running reports, 391

S
S2S (Salesforce-to-Salesforce), 9, 319-320

connections, establishing, 320-323
record sharing, 326-328
shared objects, 323-324

sales representatives, 19

Salesforce Login URL field (SSO), 403

Salesforce Object Query Language. See
SOQL (Salesforce Object Query Language)

Salesforce Object Search Language. See
SOSL (Salesforce Object Search Language)

Salesforce.com, 4

Salesforce-to-Salesforce. See S2S
(Salesforce-to-Salesforce)

SAML User ID Location field (SSO), 403

SAML User ID Type field (SSO), 403

456 relational databases

sampleTestMethod method, 249

save action, 253

{!save}, 216-217

savepoints, 184-185

SaveResult object, 359

Schedulable interface, 304

schedule method, 304

scheduling Batch Apex, 303-306

Schema Explorer, 123

schema metadata, 202-204

child relationship metadata, 203
field metadata, 202-203
object metadata, 202
picklist metadata, 203
record type metadata, 204

S-Controls, 210

scope, 157-158

definition of, 292
iterable scope, 300-302

search groups (SOSL), 180-181

search service, 359

sectionHeader component, 335

Secure Sockets Layer (SSL), 348

security

administrative permissions, 68
database security, 149
explained, 65-67
field-level security, 70-71
Force.com sites, 281-283
Force.com Web services, 348
IP whitelisting, 353
licensing, 69-70
object permissions, 68-69, 353
profiles, 68, 88-90
record ownership, 72
record types, 97-99

security tokens, 353
for Services Manager application,

77-78, 81
Field Accessibility, 83-84
organization-wide defaults, 83-84
profiles, 82
roles, 84-85
security by business unit, 79-81
security by job function, 78-79
sharing rules, 85-86
testing, 86-90

sharing model, 73-77
organization-wide defaults, 73-74
sharing reasons, 75-77

user groups, 72-73
Visualforce, 245-246

object-level security, 226-245
page-level security, 246
record-level security, 245-246

security tokens, 353

selectCheckboxes component, 226

{!selected}, 217

selectedResourceId variable, 253

selecting

projects, 9-11
teams, 11-13

selectList component, 226

selectRadio component, 226

semicolon (;), 179

semi-joins, 176-179

Sencha’s Ext JS, 271

sendEmail method, 196

sending email, 193-196

email notifications, 206-207
MassEmailMessage method, 195-196
setBccSender method, 196

457sending email

setCcAddresses method, 196
setDocumentAttachments

method, 197
setFileAttachments method, 197
setOrgWideEmailAddressId

method, 197
setReplyTo method, 196
setSaveAsActivity method, 197
setSenderDisplayName method, 196
setUseSignature method, 197
SingleEmailMessage method, 194
SingleEmailMessage with template,

194-195
Services Manager application, 18

anonymous benchmarking Web
service, 334

sample implementation, 339-342
Visualforce controller design,

336-337
Visualforce page design, 334-336
Web service integration, 337-339

background, 18
Connect Offline, 114-116
data model, 45

assignments, 48
clients, 46
custom application, creating, 53
customers, 45-46
projects, 46-47
relationships, 50-52, 57-58
resources, 47-48
skills, 49
standard objects, 50
timecard, 49-50, 57

data model (Services Manager
application)

assignments, 55-56
custom objects, creating, 53-55

resources, 55
skills, 56

database implementation, 374-377
database integration, 373

implementation strategy, 373-374
integration scenario, 373

dependent fields, 111-113
development plan, 19-20
email notifications, 206-207
Follow Project Team button, 434-437
missing timecard report, 306-307

Missing Timecard object, 307
MissingTimecardBatch class,

308-309
testing, 310

Project Map dashboard, 410-415
roll-up summary fields, 114-116
security model, 77-78, 81

Field Accessibility, 83-84
organization-wide defaults, 83-84
profiles, 82
roles, 84-85
security by business unit, 79-81
security by job function, 78-79
sharing rules, 85-86
testing, 86-90

Skills Matrix, 250
basic implementation, 251
comparison overlay, 285-288
controller, 252-257
controller tests, 256-259
full implementation, 252
Visualforce page, 255-256

timecard validation, 162
Force.com IDE setup, 163
TimecardManager class, 163-164

458 sending email

triggers, 163-164
unit testing, 164-167

user roles, 19
services sales representatives, 19

services vice president, 19

setBccSender method, 196

setCcAddresses method, 196

setDocumentAttachments method, 197

setFileAttachments method, 197

setOrgWideEmailAddressId method, 197

setQueryOptions method, 358

setReplyTo method, 196

sets, 130-131

setSaveAsActivity method, 195, 197

setSavepoint method, 185

setSenderDisplayName method, 196

setUseSignature method, 197

sharing

managed sharing, 187
Force.com managed sharing, 187
restrictions, 188
sharing objects, 187-188
sharing rules, 188-193
user managed sharing, 187

shared objects
configuring for S2S (Salesforce-

to-Salesforce), 323-324
records, 326-328

sharing model, 73-77
configuring for Services Manager

application, 85-86
organization-wide defaults, 73-74
sharing reasons, 75-77

showChatter method, 433

single sign-on. See SSO (single sign-on)

SingleEmailMessage method, 193-194

SingleEmailMessage with template, 194-195

sites. See Force.com sites

size method, 130

skill columns, 49

Skill object, 56

Skills Matrix (Services Manager
application), 250

basic implementation, 251
CompareSkillsComponent, 288
comparison overlay, 285-288

actionSupport component, 288
CompareSkillsComponent, 286
CompareSkillsController, 286
refreshCompareSkills(), 288
YUI overlay support, 287

controller implementation, 252-257
controller tests, 256-259
Visualforce page, 255-256

SkillsMatrixController, 253-255

snapshots, 393-394

SOAP

data types, 355-356
sample notification SOAP service, 319

SObjects service, 370-371

social applications. See Chatter

SOQL (Salesforce Object Query Language),
7, 30-31, 139-140, 143-144

aggregate functions, 170-171
anti-joins, 176-179
functions, 30
GROUP BY CUBE syntax, 172-174
GROUP BY ROLLUP syntax,

172-174
GROUP BY syntax, 171-172
implicit joins, 28-29
inner joins, 174-176

459SOQL (Salesforce Object Query Language)

multi-select picklists, 179-180
nested resultsets, 29-30
outer joins, 174-176
queries. See queries
semi-joins, 176-179

sortCompareFunction method, 279

sorting query results, 141

SOSL (Salesforce Object Search Language),
28, 180-182

in Apex, 181-182
field specifications, 181
record limits, 181
search groups, 180-181

SSL (Secure Sockets Layer), 348

SSO (single sign-on), 402

delegated SSO, 407-411
federated SSO, 402-407

staffing coordinators, 19

standard controllers, 215-217

standard fields. See fields

standard object feeds, 426-427

standard objects. See objects

Standard Setup Wizard, 384

start method, 293, 296

startTest method, 303

stateful Batch Apex, 299-300

statements. See also specific statements

conditional statements, 132-133
exception statements, 134-135
loops, 133-134

static resources, 268-269

Status Update posts (Chatter), 426

stopTest method, 303

string data type, 126

converting dates to, 128-129
converting to dates, 128

stub code, generating

C#.NET Web service clients, 350-352
Java Web service clients, 349-351

Submitted state (approvals), 382

SUM function, 170

sums, calculating, 171

supporting Microsoft Internet Explorer,
280-281

system exceptions, 356

systems integrators, 18

T
tags, 93, 104

team selection, 11-13

technical support, 18

templates, SingleEmailMessage with
template, 194-195

testAsUser method, 258

testBatch method, 303

testing, 161-162

Batch Apex, 303
missing timecard report, 310
profiles, 88-90
security, 86-90
unit testing, 15, 164-167
Visualforce, 249-250
Web service calls, 337-339

testMethod method, 162

testNoResourceForUser method, 259

testNoResourceSelected method, 259

testNoSkills method, 259

testSave method, 259

TestSkillsMatrixController class, 257-258

TestTimecardManager class, 165-166

testWithSkills method, 259

text posts (Chatter), 425-426

TextPost, 425-426

460 SOQL (Salesforce Object Query Language)

throw keyword, 134

Time data type, 126

timecard

missing timecard report, 306-307
Missing Timecard object, 307
MissingTimecardBatch class,

308-309
testing, 310

timecard columns, 49-50
Timecard object, 57
timecard validation, 162

Force.com IDE setup, 163
TimecardManager class, 163-164
triggers, 163-164
unit testing, 164-167

Timecard object, 57

TimecardManager class, 163-164

timed events, actions as, 264-265

timestamps, retrieving records with, 359

TLS (Transport Layer Security), 348

tools. See specific tools

TrackedChange, 426

transaction processing, 182

DML (Data Manipulation Language),
183-184

record locking, 185-187
savepoints, 184-185

transactional email, 196-197

transactions (Batch Apex), 293

Translation Workbench, 395-396

Transport Layer Security (TLS), 348

triggers, 146-149

batch processing in, 148
for custom objects, 38
definition of, 147-148
error handling, 148-149
for timecard validation, 163-164

troubleshooting

login problems, 354-355
Visualforce, 243-245

try keyword, 134

tuning, 24

TypeException, 127, 134

U
undelete support, 24-25

undeleting records, 146, 361

unfollowing users (Chatter), 418, 432

unique identifiers, 25, 359, 370-371

unit testing, 15, 164-167, 249-250

update service, 366

Update statement, 145

updating records, 145, 361, 372

upsert service, 361

Upsert statement, 145-146

upserting records, 145-146, 372

URL posts (Chatter), 426

user authentication, Force.com sites, 283

user feeds, 428

user groups, 72-73

user interface, 8. See also Visualforce

generated user interfaces, 33
metadata-derived user interfaces,

14-15
user interface components, 232-235

user interface designers, 12

user roles for Services Manager
application, 19

UserFeed object, 428

UserOrGroupId field, 188

UserProfileFeed object, 428

users

configuring Chatter for, 423-424
creating, 87-88

461users

following, 431-432
unfollowing, 432

UserStatus object, 426

UtilizationController class, 339-341

V
validateTimecard trigger, 163-164

validating timecards, 162

Force.com IDE setup, 163
TimecardManager class, 163-164
triggers, 163-164
unit testing, 164-167

validation rules, 25-26, 38

valueOf method, 128-129

values method, 132

variables, 125, 150-151

verifying data, 62-64

versions, Force.com Web services, 347

vice president (VP), 19

View All permissions, 69

view components, 222. See also specific
components

action components, 227-228
attributes, 223
component body, 223
data components, 224-227

metadata-aware components,
224-225

primitive data components,
225-226

repeating components, 227
demonstration code, 235-236
Force.com user interface components,

232-235
Force.com-styled components,

229-232
names, 223

page definition, 224
primitive components, 228-229
view component syntax, 222-223
visibility, 224

{!view}, 216

views, 43-44

Apex Test Runner view, 124
Execute Anonymous view, 124
Problems view, 123
view state, 219

visibility of view components, 224

Visualforce, 8, 209-211, 261. See also Skills
Matrix (Services Manager application)

Adobe Flex, 274-281
architecture, 211
asynchronous actions, 261-262

actionFunction component,
263-264

actionPoller component, 264-265
actionSupport component,

265-266
partial page refresh, 262-263

Chatter in, 432-434
composition, 269-271
controller design, 336-337
controllers, 215

controller extensions, 221
custom controllers, 217-221
explained, 210-211
standard controllers, 215-217

custom components, 271
adding to pages, 272-273
creating, 271-272

debugging, 243-245
development process, 212
development tools, 212-214

462 users

error handling, 247
error communication, 248
uncaught exceptions, 247

extending, 273
Force.com sites, 281-283
JavaScript libraries, 273-274

governor limits, 248-249
Hello World example, 213-215
inclusion, 269
native user interface, 236-237

custom buttons and links, 240-242
custom tabs, 242
page layouts, 240
standard buttons, 240
standard pages, 237-238

pages
design, 334-336
explained, 211-212
page layouts, 240
partial page refresh, 262-263
standard pages, 237-238

security, 245-246
object-level security, 226-245
page-level security, 246
record-level security, 245-246

static resources, 268-269
unit testing, 249-250
view components, 222

action components, 227-228
attributes, 223
component body, 223
data components, 224-227
demonstration code, 235-236
Force.com user interface

components, 232-235
Force.com-styled components,

229-232

names, 223
page definition, 224
primitive components, 228-229
view component syntax, 222-223
visibility, 224

VMforce, 3-4

VP (vice president), 19

W
web developers, 12

Web services

anonymous benchmarking Web
service, 334

sample implementation, 339-342
Visualforce controller design,

336-337
Visualforce page design, 334-336

calling from Apex code, 329-330
custom Web services, 362

calling, 364-365
definition of, 363-364
limitations of, 362-363

Force.com Web services
API limits, 348-349
data types, 355-356
error handling, 356
explained, 346-347
logging in, 351-355
security, 348
stub code, generating, 349-352
versions, 347

integrating, 337-339
login, 354
for outbound messaging, 318-319

Web Services API, 31

Web Services Description Language
(WSDL), 318

463Web Services Description Language (WSDL)

While loops, 133

wizards

Import Wizard, 35
Jump Start Wizard, 384
New Custom Field Wizard, 39-40
Standard Setup Wizard, 384

workflow rules, creating, 315-317

workflows, 379-383

writing records

bulk modifications, 361-362
creating records, 359-360
deleting/undeleting records, 361
updating records, 361

WSDL (Web Services Description
Language), 318

WSDL-to-Apex tool, 16

X-Y-Z
XML, metadata XML, 32-33

YahooGeocode class, 332-334

YUI overlay support, 287

464 While loops

ESSENTIAL REFERENCES FOR
PROGRAMMING PROFESSIONALS

Developer’s Library

Developer’s Library books are available at most retail and online

bookstores. For more information or to order direct, visit our

online bookstore at informit.com/devlibrary.

Online editions of all Developer’s Library titles are available by

subscription from Safari Books Online at safari.informit.com.

informit.com/devlibrary

Developer’s
Library

A Developer’s Guide to

Amazon SimpleDB

Mocky Habeeb

ISBN-13: 9780321623638

Test-Driven JavaScript

Development

Christian Johansen

ISBN-13: 9780321683915

Android™ Wireless

Application Development

Shane Conder

Lauren Darcey

ISBN-13: 9780321743015

Other Developer’s Library Titles

TITLE AUTHOR ISBN-13

Drupal’s Building Blocks Earl Miles

Lynette Miles 9780321591319

The Python Standard Library by Example Doug Hellmann 9780321767349

Programming in Objective-C 2.0 Stephen Kochan 9780321711397

Multicore Application Programming Darryl Gove 9780321711373

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Your purchase of Development with the Force.com Platform includes access to a free
online edition for 45 days through the Safari Books Online subscription service. Nearly
every Addison-Wesley Professional book is available online through Safari Books
Online, along with more than 5,000 other technical books and videos from publishers
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: PUORIWH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Table of Contents
	Preface
	Foreword
	1 Introducing Force.com
	Force.com in the Cloud Computing Landscape
	Platform as a Service (PaaS)
	Force.com as a Platform
	Force.com Services

	Inside a Force.com Project
	Project Selection
	Team Selection
	Lifecycle
	Tools and Resources

	Sample Application: Services Manager
	Background
	User Roles
	Development Plan

	Summary

	2 Database Essentials
	Overview of Force.com’s Database
	Objects
	Fields
	Relationships
	Query Language
	Data Integration

	Working with Custom Objects
	Force.com Developer Edition
	Tools for Custom Objects
	Object Creation
	Field Creation
	Entering and Browsing Data

	Sample Application: Data Model
	Logical Data Model
	Force.com Data Model
	Implementing the Data Model
	Importing Data

	Summary

	3 Database Security
	Overview of Database Security
	Object-Level Security
	Profiles
	Field-Level Security

	Record-Level Security
	Record Ownership
	User Groups
	Sharing Model

	Sample Application: Securing Data
	Designing the Security Model
	Implementing the Security Model
	Testing the Security Model

	Summary

	4 Additional Database Features
	Dependent Fields
	Record Types
	Defining Record Types
	Securing Record Types
	Using Record Types

	Roll-Up Summary Fields
	Field History Tracking
	Tags
	Enabling Tags
	Using Tags

	Force.com Connect Offline
	Administration of Force.com Connect Offline
	Using Force.com Connect Offline

	Custom Settings
	Using List Custom Settings
	Using Hierarchy Custom Settings

	Sample Application: Applying the Features
	Dependent Fields for Skill Types
	Roll-Up Summary Fields for Project Reporting
	Force.com Connect Offline for Staffing

	Summary

	5 Business Logic
	Introduction to Apex
	Introducing the Force.com IDE
	Installation
	Force.com Perspective
	Force.com Projects
	Problems View
	Schema Explorer
	Apex Test Runner View
	Execute Anonymous View

	Apex Language Basics
	Variables
	Operators
	Arrays and Collections
	Control Logic
	Understanding Governor Limits

	Database Integration in Apex
	Database Records as Objects
	Database Queries
	Persisting Database Records
	Database Triggers
	Database Security in Apex

	Object-Oriented Apex
	Encapsulation
	Information Hiding
	Modularity
	Inheritance
	Polymorphism

	Debugging and Testing
	Debugging
	Testing

	Sample Application: Validating Timecards
	Force.com IDE Setup
	Creating the Trigger
	Unit Testing

	Summary

	6 Advanced Business Logic
	Aggregate SOQL Queries
	Aggregate Functions
	Grouping Records
	Grouping Records with Subtotals

	Additional SOQL Features
	Inner Join and Outer Join
	Semi-Join and Anti-Join
	Multi-Select Picklists

	Salesforce Object Search Language (SOSL)
	SOSL Basics
	SOSL in Apex

	Transaction Processing
	Data Manipulation Language (DML) Database Methods
	Savepoints
	Record Locking

	Apex Managed Sharing
	Sharing Objects
	Creating Sharing Rules in Apex

	Sending and Receiving Email
	Sending Email
	Receiving Email

	Dynamic Apex
	Dynamic Database Queries
	Schema Metadata

	Custom Settings in Apex
	Sample Application: Adding Email Notifications
	Summary

	7 User Interfaces
	Introduction to Visualforce
	Overview of Visualforce
	Getting Started with Visualforce

	Visualforce Controllers
	Standard Controllers
	Custom Controllers
	Controller Extensions

	View Components
	View Component Basics
	Data Components
	Action Components
	Primitive Components
	Force.com-Styled Components
	Force.com User Interface Components

	Visualforce and the Native User Interface
	Standard Pages
	Standard Buttons
	Page Layouts
	Custom Buttons and Links
	Custom Tabs

	Visualforce in Production
	Debugging and Tuning
	Security
	Error Handling
	Governor Limits
	Unit Tests

	Sample Application: Skills Matrix
	Basic Implementation
	Full Implementation
	Implementation Walkthrough

	Summary

	8 Advanced User Interfaces
	Asynchronous Actions
	Partial Page Refresh
	Action as JavaScript Function
	Action as Timed Event
	Action as JavaScript Event
	Indicating Action Status

	Modular Visualforce
	Static Resources
	Inclusion
	Composition
	Custom Visualforce Components

	Extending Visualforce
	Using JavaScript Libraries
	Adobe Flex and Visualforce
	Force.com Sites

	Sample Application: Enhanced Skills Matrix
	Summary

	9 Batch Processing
	Introduction to Batch Apex
	Batch Apex Concepts
	Understanding the Batchable Interface
	Applications of Batch Apex

	Getting Started with Batch Apex
	Developing a Batch Apex Class
	Working with Batch Apex Jobs
	Using Stateful Batch Apex
	Using an Iterable Batch Scope
	Limits of Batch Apex

	Testing Batch Apex
	Scheduling Batch Apex
	Developing Schedulable Code
	Scheduling Batch Apex Jobs

	Sample Application: Missing Timecard Report
	Creating the Custom Object
	Developing the Batch Apex Class
	Testing the Missing Timecard Feature

	Summary

	10 Integration
	Force.com Integration Solutions
	Outbound Messaging
	Salesforce-to-Salesforce (S2S)

	Developing Custom Integrations
	Calling Web Services from Apex Code
	Using HTTP Integration

	Sample Application: Anonymous Benchmarking
	Visualforce Page Design
	Visualforce Controller Design
	Integrating the Web Service
	Sample Implementation

	Summary

	11 Advanced Integration
	Understanding Force.com Web Services
	Basics of Force.com Web Services
	Generating Stub Code
	Logging In
	Force.com Data Types in SOAP
	Error Handling

	Using the Enterprise API
	Retrieving Records
	Writing Records

	Building Custom Web Services in Apex
	Understanding Custom Web Services
	Service Definition
	Calling a Custom Web Service

	Introduction to the Metadata API
	Overview
	Getting Started with the Metadata API

	Using the Force.com REST API
	Overview of Force.com REST API
	Authentication
	API Walkthrough

	Sample Application: Database Integration
	Integration Scenario
	Implementation Strategy
	Sample Implementation

	Summary

	12 Additional Platform Features
	Workflow and Approvals
	Introduction to Workflow
	Getting Started with Approval Processes

	Introduction to Analytics
	Working with Reports
	Configuring Dashboards
	Using Analytic Snapshots

	Force.com for International Organizations
	Multilingual Support
	Using Multiple Currencies
	Advanced Currency Management (ACM)

	Using Single Sign-On
	Federated Single Sign-On
	Delegated Single Sign-On

	Sample Application: Project Map Dashboard
	Summary

	13 Social Applications
	Overview of Chatter
	Chatter Concepts
	Configuring Chatter

	Understanding the Chatter Data Model
	Chatter Posts
	Chatter Comments
	Feed-Tracked Changes
	Followed Records

	Chatter in Visualforce
	Sample Application: Follow Project Team
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

