
ptg11524036

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

 Praise for Development with the Force.com Platform ,

Third Edition

 “The third edition of Development with the Force.com Platform is a must-read for anyone building
enterprise applications in the cloud. Whether you’re a CEO or a code ninja, Jason’s insight into the
Force.com platform is priceless. Why waste time learning from your own mistakes when you can
learn from a master.”

— Howard Brown , CEO and Founder, RingDNA

 “I absolutely love this book. Jason has organized and written it in a simplified manner which
makes the concepts easy to grasp for all audiences. I recommend it for any developer, consultant, or
manager new to or currently working with the Force.com platform.”

— Stephanie Buchenberger , Salesforce.com Delivery Manager, Appirio

 “Solid evolution of an already well-written book! The layout, format and content make it a great
tutorial for developers new to Apex as well as an informative and thorough reference for the most
experienced architect. Very up to date to the platform with practical examples that will undoubtedly
be used again and again.”

 —Tom Hedgecoth , Vice President, Global Consulting – sakonent

 “This is still the best, most comprehensive book on the Force.com platform written. If you are new
to Force.com, then this is the place to start. If you’re an experienced developer, then this is the book
you’ll return to, over and over again. It’s an essential companion for all Force.com developers.”

 —Kevin Ott , Senior Director, Engineering, Cisco Systems

 “Jason touches on all the core elements of Force.com with a balanced blend of configuration and
code. If you’re new to the platform, this book will save you countless hours as you come up to
speed—and if you’re a seasoned expert you probably already own it. In either case, consider it
required reading.”

 —Adam Purkiss , Principal Architect, MondayCall Solutions, and Organizer of the Bay Area Salesforce
Developer User Group

 “As a Salesforce system administrator and business analyst making the transition to Force.com
developer, this book helps me daily. It’s at the perfect level to cut through the vast amount of
information available for developing on Force.com on the one hand, and get to the details needed to
make my programs work on the other. I keep this book open perpetually, and it’s the first place I go
when I get stuck. The sample coding is strong and very reusable; it’s the #1 tool in my box. I’d highly
recommend Development with the Force.com Platform to anyone making the transition from Salesforce
system administrator or business analyst to developer.”

 —Gene Teglovic , PSA Consultant, Financialforce.com

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Development with
the Force.com

Platform
Building Business

Applications in the Cloud
Third Edition

 Jason Ouellette

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

 Editor-in-Chief

Mark Taub

 Executive Editor

Laura Lewin

 Development Editor

Songlin Qiu

 Managing Editor

Kristy Hart

 Project Editor

Andy Beaster

 Copy Editor

Karen Annett

 Indexer

Heather McNeill

 Proofreader

Chuck Hutchinson

 Technical Reviewers

Adam Purkiss
 Gene Teglovic

 Publishing Coordinator

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

(800) 382-3419

 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales

 international@pearsoned.com

 Library of Congress Control Number: 2013950238

 Visit us on the Web: informit.com/aw

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

 Screenshots © 2014 Salesforce.com, Inc. All rights reserved.

 ISBN-13: 978-0-321-94916-5
 ISBN-10: 0-321-94916-1

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

 First printing: December 2013

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

❖

 For Landon

❖

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

 Contents at a Glance

 1 Introducing Force.com 1

 2 Database Essentials 21

 3 Database Security 71

 4 Business Logic 99

 5 Advanced Business Logic 143

 6 User Interfaces 185

 7 Advanced User Interfaces 233

 8 Mobile User Interfaces 263

 9 Batch Processing 281

 10 Integration with Force.com 301

 11 Advanced Integration 339

 12 Social Applications 369

 Index 387

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

 Table of Contents

 1 Introducing Force.com 1

Force.com in the Cloud Computing Landscape 1

Platform as a Service (PaaS) 2

Force.com as a Platform 4

Force.com Services 7

Inside a Force.com Project 9

Project Selection 9

Team Selection 11

Lifecycle 12

Tools and Resources 15

Sample Application: Services Manager 17

Background 17

User Roles 18

Development Plan 19

Summary 19

 2 Database Essentials 21

Overview of Force.com’s Database 21

Objects 22

Fields 23

Relationships 25

Query Language 26

Data Integration 29

Working with Custom Objects 32

Force.com Developer Edition 32

Tools for Custom Objects 33

Object Creation 35

Field Creation 38

Entering and Browsing Data 41

Additional Database Features 43

Sample Application: Data Model 49

Data Model Design Goals 49

Data Model Specification 50

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

viii Contentsviii Contents

Implementing the Data Model 58

Importing Data 64

Summary 69

 3 Database Security 71

Overview of Database Security 71

Object-Level Security 74

Profiles 74

Permission Sets 76

Field-Level Security 77

Record-Level Security 79

Record Ownership 79

User Groups 80

Sharing Model 80

Sample Application: Securing Data 84

Designing the Security Model 85

Implementing the Security Model 88

Testing the Security Model 94

Summary 98

 4 Business Logic 99

Introduction to Apex 100

Introducing the Force.com IDE 101

Installation 101

Force.com Perspective 101

Force.com Projects 103

Problems View 103

Schema Explorer 103

Apex Test Runner View 103

Execute Anonymous View 104

Apex Language Basics 105

Variables 105

Operators 109

Arrays and Collections 110

Control Logic 113

Object-Oriented Apex 117

Understanding Governor Limits 120

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

ixContents ixContents

Database Integration in Apex 120

Database Records as Objects 121

Database Queries 122

Persisting Database Records 128

Database Triggers 130

Database Security in Apex 133

Debugging Apex Using Developer Console 133

Checkpoints 133

Execution Logs 134

Unit Tests in Apex 136

Test Methods 136

Test Data 136

Running Tests 137

Sample Application: Validating Timecards 138

Force.com IDE Setup 138

Creating the Trigger 138

Unit Testing 140

Summary 142

 5 Advanced Business Logic 143

Aggregate SOQL Queries 144

Aggregate Functions 144

Grouping Records 145

Grouping Records with Subtotals 146

Additional SOQL Features 148

Inner Join and Outer Join 148

Semi-Join and Anti-Join 150

Multi-Select Picklists 154

Salesforce Object Search Language (SOSL) 154

SOSL Basics 155

SOSL in Apex 155

Transaction Processing 156

Data Manipulation Language (DML) Database
Methods 157

Savepoints 159

Record Locking 161

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

x Contentsx Contents

Apex Managed Sharing 162

Sharing Objects 162

Creating Sharing Rules in Apex 163

Sending and Receiving Email 168

Sending Email 168

Receiving Email 172

Dynamic Apex 174

Dynamic Database Queries 175

Schema Metadata 177

Dynamic Instance Creation 179

Custom Settings in Apex 180

Sample Application: Adding Email Notifications 181

Summary 183

 6 User Interfaces 185

Introduction to Visualforce 186

Overview of Visualforce 186

Getting Started with Visualforce 188

Visualforce Controllers 191

Standard Controllers 191

Custom Controllers 193

Controller Extensions 197

View Components 198

View Component Basics 198

Data Components 200

Action Components 203

Primitive Components 204

Force.com-Styled Components 205

Force.com User Interface Components 208

Visualforce and the Native User Interface 209

Standard Pages 210

Standard Buttons 213

Page Layouts 213

Custom Buttons and Links 215

Custom Tabs 215

ptg11524036

xiContents xiContents

Visualforce in Production 215

Debugging and Tuning 215

Security 218

Error Handling 220

Governor Limits 221

Unit Tests 222

Sample Application: Skills Matrix 222

Basic Implementation 224

Full Implementation 224

Implementation Walk-Through 225

Summary 232

 7 Advanced User Interfaces 233

Asynchronous Actions 233

Partial Page Refresh 234

Action as JavaScript Function 235

Action as Timed Event 237

Action as JavaScript Event 237

Indicating Action Status 238

Modular Visualforce 240

Static Resources 241

Inclusion 242

Composition 242

Custom Visualforce Components 244

Dynamic Visualforce 246

Dynamic Field References 246

Component Generation 248

Single-Page Applications in Force.com 250

JavaScript Remoting 250

Force.com with AngularJS 251

Introduction to Force.com Sites 254

Enabling and Creating a Site 254

Security Configuration 255

Adding Pages to a Site 256

Authenticating Users 257

Sample Application: Enhanced Skills Matrix 258

Summary 262

ptg11524036

xii Contentsxii Contents

 8 Mobile User Interfaces 263

Overview of Salesforce Mobile Technology 263

Salesforce Applications 264

Custom Applications 265

Getting Started with Mobile Web Applications 267

Frameworks 268

Data Access 269

Deployment 270

Sample Application: Mobile Timecard Entry 272

Summary 279

 9 Batch Processing 281

Introduction to Batch Apex 282

Batch Apex Concepts 282

Understanding the Batchable Interface 283

Applications of Batch Apex 284

Getting Started with Batch Apex 285

Developing a Batch Apex Class 285

Working with Batch Apex Jobs 286

Using Stateful Batch Apex 289

Using an Iterable Batch Scope 290

Limits of Batch Apex 292

Testing Batch Apex 293

Scheduling Batch Apex 293

Developing Schedulable Code 293

Scheduling Batch Apex Jobs 294

Sample Application: Missing Timecard Report 296

Creating the Custom Object 297

Developing the Batch Apex Class 298

Testing the Missing Timecard Feature 299

Summary 300

 10 Integration with Force.com 301

Apex Callouts 301

Calling RESTful Services from Apex 302

Calling SOAP Services from Apex 304

Calling into Force.com Using REST 306

ptg11524036

xiiiContents xiiiContents

Getting Started with Force.com REST API 306

Force.com REST API Walk-Through 308

Creating Custom Apex REST Web Services 312

Calling into Force.com Using SOAP 314

Understanding Force.com SOAP API 314

Using the Enterprise API 322

Creating Custom Apex SOAP Web Services 326

Sample Application: Anonymous Benchmarking 329

Visualforce Page Design 330

Visualforce Controller Design 331

Integrating the SOAP Web Service 333

Sample Implementation 335

Summary 338

 11 Advanced Integration 339

Introduction to the Force.com Streaming API 340

Overview 340

Getting Started with Force.com Streaming API 341

Working with the Force.com Bulk API 344

Overview 345

Importing Records 346

Exporting Records 347

Getting Started with Force.com Canvas 349

Overview 349

Getting Started with Force.com Canvas 350

Introduction to the Force.com Tooling API 354

Overview 355

Getting Started with Force.com Tooling API 355

Understanding the Force.com Metadata API 360

Overview 360

Getting Started with the Metadata API 361

Sample Application: Database Integration 363

Integration Scenario 363

Implementation Strategy 363

Sample Implementation 364

Summary 366

ptg11524036

xiv Contentsxiv Contents

 12 Social Applications 369

Overview of the Chatter Data Model 370

Chatter Posts 370

Chatter Comments 374

Feed-Tracked Changes 376

Followed Records 376

Using Chatter in Apex 378

Introduction to the Chatter REST API 379

Working with Chatter Visualforce Components 380

Sample Application: Follow Project Team 382

Summary 386

 Index 387

ptg11524036

 Acknowledgments

 There are many people to thank for this book.

 ■ Laura Lewin: Laura is an Executive Editor at Pearson. She’s the person I email when
I’m late on a chapter to apologize and offer unique excuses. No matter how friendly her
response, which is always extremely friendly, the exchange helps pressure and shame me
into working harder to meet the deadlines.

 ■ Adam Purkiss, Gene Teglovic: The technical reviewers for this edition have really
impressed me with what they caught in the draft. They verified all of the code listings
and made countless suggestions for improvement throughout.

 ■ Songlin Qiu: Songlin is a Development Editor at Pearson. There are no figure/listing
numbering, styling, grammatical, or consistency problems that go unnoticed when she’s
on the job.

 ■ Olivia Basegio: Olivia is an Editorial Assistant at Pearson. She’s a big part of making the
publishing process fairly painless.

 ■ Kavindra Patel, Nick Tran: These two work at Salesforce.com and have been longtime
supporters of the book, especially this third edition. I can’t thank them enough.

 ■ Jay Gauthier: Jay is the VP of R&D at Software AG. His detailed feedback on the second
edition of this book drove some of the improvements found in this edition.

 ■ Gretchen, Mark, Tom, and Nate: Writing this book made me true to my panda name,
so +1,000 for your associated pain and suffering. Now that it’s done, I need a new name,
like Well-Tempered Panda.

 ■ Tracey: Thank you for supporting me as always, checking on me to see if I’m still alive in
my writing chair, and making “rocket fuel” (iced coffee), which lost its kick somewhere
around Chapter 6 .

 About the Author

 Jason Ouellette is a SaaS entrepreneur and independent technology consultant with 17 years
of experience in the enterprise software industry, including 9 years of hands-on work with
Salesforce.com. He is currently CTO and Co-Founder of SocialPandas, a SaaS product company
focused on converting social data into actionable intelligence for salespeople. In his prior role
as Chief Architect of Appirio, a leading Salesforce.com consultancy, he led the development
of popular Salesforce AppExchange applications such as Cloud Sync, Cloud Factor, and
Professional Services Enterprise. He was recognized by Salesforce as a Force.com MVP in
2011–2013, and Force.com Developer Hero in 2009. He has a B.S. in Information and Decision
Systems from Carnegie Mellon University.

ptg11524036

 Preface

 I wrote this book to help developers discover Force.com as a viable, even superior tool for
building business applications.

 I’m always surprised at how many developers I meet who aren’t aware of Force.com as a
platform. They know of Salesforce, but only that it’s a CRM. Even those who have heard of
Force.com are amazed when I describe what Appirio and other companies are building with it.
“I didn’t know you could do that with Force.com” is a common reaction, even to the simplest
of things such as creating custom database tables.

 Since the second edition of this book, Salesforce has delivered more than six major releases.
This third edition refocuses the book on custom application development and away from
“clicks not code”-style, configuration-driven features. It contains updates throughout to cover
new capabilities such as Developer Console, JSON support, Streaming and Tooling APIs, REST
integration, and support for MVC frameworks like AngularJS in Visualforce. It also features a
new chapter: Chapter 8 , “Mobile User Interfaces.”

 Although there are more cloud-based application development platforms than ever before,
Force.com continues to offer unique and outstanding value for business applications. With its
core strength in customer data management, deep set of thoughtfully integrated features, and
support for open standards, Force.com can save you significant time and effort throughout the
software development lifecycle.

 Key Features of This Book

 This book covers areas of Force.com relevant to developing applications in a corporate
environment. It takes a hands-on approach, providing code examples and encouraging
experimentation. It includes sections on the Force.com database, Apex programming language,
Visualforce user interface technology, integration to other systems, and supporting features
such as workflow and analytics. SFA, CRM, customer support, and other prebuilt applications
from Salesforce are not discussed, but general Force.com platform skills are helpful for working
in these areas as well. The book does not cover cloud computing in general terms. It also avoids
comparing Force.com with other technologies, platforms, or languages. Emphasis is placed on
understanding Force.com on its own unique terms rather than as a database, application server,
or cloud computing platform.

ptg11524036

 Although Force.com is a commercial service sold by Salesforce, all the material in this book
was developed using a free Force.com Developer Edition account. Additionally, every feature
described in this book is available in the free edition.

 Throughout the text, you will see sidebar boxes labeled Note, Tip, or Caution. Notes explain
interesting or important points that can help you understand key concepts and techniques.
Tips are little pieces of information that will help you in real-world situations, and often offer
shortcuts to make a task easier or faster. Cautions provide information about detrimental
performance issues or dangerous errors. Pay careful attention to Cautions.

 Target Audience for This Book

 This book is intended for application developers who use Java, Ruby, or other high-level
languages to build Web and rich client applications for end users. It assumes knowledge
of relational database design and queries, Web application development using HTML and
JavaScript, and exposure to Web services.

 Code Examples for This Book

 The code listings in this book are available on Github: http://goo.gl/fjRqMX . They are also
available as a Force.com IDE project, also freely available on Github: https://github.com/
jmouel/dev-with-force-3e .

http://goo.gl/fjRqMX
https://github.com/jmouel/dev-with-force-3e
https://github.com/jmouel/dev-with-force-3e

ptg11524036

 Editor’s Note: We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and author as well as your name and
phone number or email address. I will carefully review your comments and share them with
the author and editors who worked on the book.

 Email: laura.lewin@pearson.com

 Mail: Laura Lewin
Executive Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

ptg11524036

 1
 Introducing Force.com

 This chapter introduces the concepts, terminology, and technology components of the Force.com plat-
form and its context in the broader Platform as a Service (PaaS) landscape. The goal is to provide
context for exploring Force.com within a corporate software development organization. If any of the
following sentences describe you, this chapter is intended to help:

 ■ You have read about cloud computing or PaaS and want to learn how Force.com compares with
other technologies.

 ■ You want to get started with Force.com but need to select a suitable first project.

 ■ You have a project in mind to build on Force.com and want to learn how you can leverage
existing development skills and processes.

 This chapter consists of three sections:

 ■ Force.com in the cloud computing landscape— Learn about PaaS and Force.com’s unique
features as a PaaS solution.

 ■ Inside a Force.com project— Examine how application development with Force.com differs
from other technologies in terms of project selection, technical roles, and tools.

 ■ Sample application— A sample business application is referenced throughout this book to
provide a concrete basis for discussing technical problems and their solutions. In this chapter,
the sample application’s requirements and use cases are outlined, as well as a development plan,
mapped to chapters of the book.

 Force.com in the Cloud Computing Landscape

 Phrases like cloud computing and Platform as a Service have many meanings put forth by many
vendors. This section provides definitions of the terms to serve as a basis for understanding
Force.com and comparing it with other products on the market. With this background, you
can make the best choice for your projects, whether that is Force.com, another PaaS product, or
your own in-house infrastructure.

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

2 Chapter 1 Introducing Force.com

 Platform as a Service (PaaS)

 The platform is infrastructure for the development and deployment of software applications.
The functionality of a platform’s infrastructure differs widely across platform vendors, so this
section focuses on a handful of the most well-known vendors, those who have helped to
pioneer the concept of PaaS itself. The suffix “as a Service” (aaS) means that the platform exists
“in the cloud,” accessible to customers via the Internet. Many variations exist on this acronym,
most notably SaaS (Software as a Service) and IaaS (Infrastructure as a Service). PaaS sits in the
middle of these two, a multiplying force for developers to leverage the cloud itself to build and
run the next generation of cloud-enabled services.

 PaaS is a category within the umbrella of cloud computing. Cloud computing is a phrase to
describe the movement of computing resources away from physical data centers or servers in
a closet in your company and into the network, where they can be provisioned, accessed, and
deprovisioned instantly. You plug a lamp into an electrical socket to use the electrons in your
region’s power grid. Running a diesel generator in your basement is usually not necessary. You
trust that the power company is going to provide that service, and you pay the company as you
use the service. Likewise with the wide availability of high-speed Internet connectivity, cloud
computing has become as practical as centralized power generation.

 Cloud computing as a general concept spans every conceivable configuration of infrastructure,
well outside the scope of this book. The potential benefits are reduced complexity and cost
versus a traditional approach. The traditional approach is to invest in infrastructure by acquir-
ing new infrastructure assets and staff or redeploying or optimizing existing investments. Cloud
computing provides an alternative, and PaaS in particular strives to lower the cost of develop-
ing and deploying applications through the simplification and centralization of commodity
hardware and software infrastructure. The following subsections introduce the mainstream
PaaS products, those focused on application developers rather than bloggers or other users,
and include brief descriptions of their functionality. Consult the Web sites of each product for
further information.

 Amazon Web Services

 Amazon Web Services refers to a family of cloud computing products. The most relevant to
PaaS is Elastic Beanstalk, a platform for running Java applications that provides load balancing,
auto-scaling, and health monitoring. The platform is actually built on several other Amazon
Web Services products that can be independently configured by advanced users, with the most
significant being Elastic Compute Cloud (EC2). EC2 is a general-purpose computing platform,
not limited to running Java programs. You can provision virtual instances of Windows or Linux
machines at will, loading them with your own custom operating-system image or one prebuilt
by Amazon or the community. These instances run until you shut them down, and you are
billed for usage of resources such as the central processing unit (CPU), disk, and network.

 A raw machine with an operating system (OS) on it is a great start, but to build a business
application requires you to install, manage access to, maintain, monitor, patch and upgrade,
back up, plan to scale, and generally care and feed in perpetuity an application platform on the
EC2 instance. Many of these tasks are still required of Amazon’s higher-level Elastic Beanstalk

ptg11524036

3Force.com in the Cloud Computing Landscape

offering. If your organization has the skills to build on .NET, Java 2 Platform Enterprise Edition
(J2EE), a LAMP stack (for example, Linux, Apache, MySQL, and PHP), or other application
stacks, plus the OS, database administration, and information technology (IT) operations expe-
rience, Amazon’s virtual servers in the cloud could be a strong alternative to running your own
servers in-house.

 Amazon provides various other products that complement Elastic Beanstalk and EC2. These
include Simple Queue Service for publish-and-subscribe-style integration between applications,
Simple DB for managing schemaless data, and Simple Storage Service, a content repository.

 Google Cloud Platform

 Google Cloud Platform is the name for a family of cloud services from Google. Of all of them,
App Engine is the closest to a PaaS. It’s designed to host Web applications. App Engine is like
having an unlimited number of servers in the cloud working for you, preconfigured with a
distributed data store and Python, Java, Go, or PHP-based application server. It’s much like
Amazon’s Elastic Beanstalk but focused on providing a higher-level application platform.
App Engine includes tools for managing the data store, monitoring your site and its resource
consumption, and debugging and logging. Like Amazon, Google also offers access to raw
computing resources via Google Compute Engine, their answer to EC2.

 App Engine is free for a set amount of storage and page views per month. Developers requiring
more storage or bandwidth for their applications can purchase it by setting a maximum daily
dollar amount they’re willing to spend, divided into five buckets: CPU time, bandwidth in,
bandwidth out, storage, and outbound email.

 Windows Azure

 Windows Azure is Microsoft’s cloud computing initiative. It provides a wide variety of IaaS
products such as virtual machines, storage, SQL database, identity, cache, service bus, and a
content delivery network. Windows Azure is much lower level than Google App Engine or
Amazon Elastic Beanstalk. It includes services that would be useful in building an application,
but hosting the application itself is a manual process. For example, you would need to provi-
sion a virtual machine to run Windows, place your .NET-based application there, and leverage
a Windows Azure SQL Database for structured storage.

 Force.com

 Force.com is targeted toward corporate application developers and independent software
vendors. Unlike the other PaaS offerings, it does not expose developers directly to its own
infrastructure. Developers do not provision CPU time, disk, or instances of running operating
systems. Instead, Force.com provides a custom application platform centered around the rela-
tional database, one resembling an application server stack you might be familiar with from
working with .NET, J2EE, or LAMP.

 Although it integrates with other technologies using open standards such as Simple Object
Access Protocol (SOAP) and Representational State Transfer (REST), the programming languages

ptg11524036

4 Chapter 1 Introducing Force.com

and metadata representations used to build applications are proprietary to Force.com. This is
unique among the PaaS products and comes with a learning curve. The payoff for learning
Force.com is a significantly higher level of abstraction than other PaaS products, ideally result-
ing in higher productivity for developers.

 To extend the reach of Force.com to a larger developer community, Salesforce provides a subset
of Force.com called Database.com. Database.com includes much of Force.com but without the
user interface (UI) technologies and CRM-oriented data model. It’s priced per user, record, and
transaction. Along the same lines, Salesforce offers Heroku to developers who want to work
directly with standard databases and development languages but still benefit from the time-
saving abstractions of PaaS.

 Force.com is free for developers. Production applications are priced primarily by storage used
and number of unique users.

 Force.com as a Platform

 Force.com is different from other PaaS solutions in its focus on business applications. Force.
com is a part of Salesforce.com, which started as a SaaS customer relationship management
(CRM) vendor. But Force.com is not CRM. It provides the infrastructure commonly needed for
any business application, customizable for the unique requirements of each business through
a combination of code and configuration. This infrastructure is delivered to you as a service on
the Internet.

 Because you are reading this book, you have probably developed a few business applications
in your time. Consider the features you implemented and reimplemented in multiple applica-
tions, the unglamorous plumbing, wiring, and foundation work. Some examples are security,
user identity, logging, profiling, integration, data storage, transactions, workflow, collaboration,
and reporting. This infrastructure is essential to your applications but expensive to develop and
maintain. Business application developers do not code their own relational database kernels,
windowing systems, or operating systems. This is basic infrastructure, acquired from software
vendors or the open source community and then configured to meet user requirements. What
if you could do the same for your application infrastructure? This is the premise of Force.com.

 The following subsections list differentiating architectural features of Force.com with brief
descriptions.

 Multitenancy

 Multitenancy is an abstract concept, an implementation detail of Force.com, but one
with tangible benefits for developers. Figure 1.1 shows a conceptual view of multitenancy.
Customers access shared infrastructure, with metadata and data stored in the same logical
database.

ptg11524036

5Force.com in the Cloud Computing Landscape

 The multitenant architecture of Force.com consists of the following features:

 ■ Shared infrastructure— All customers (or tenants) of Force.com share the same
infrastructure. They are assigned an independent logical environment within the Force.
com platform.

 At first, some might be uncomfortable with the thought of handing their data to a third
party where it is comingled with that of competitors. Salesforce’s whitepaper on its
multitenant technology includes the technical details of how it works and why your data
is safe from loss or spontaneous appearance to unauthorized parties.

 Note

 The whitepaper is available at http://wiki.developerforce.com/page/Multi_Tenant_Architecture .

 ■ Single version— Only one version of the Force.com platform is in production. The same
platform is used to deliver applications of all sizes and shapes, used by 1 to 100,000 users,
running everything from dog-grooming businesses to the Japanese national post office.

 ■ Continuous, zero-cost improvements— When Force.com is upgraded to include new
features or bug fixes, the upgrade is enabled in every customer’s logical environment
with zero to minimal effort required.

 Salesforce can roll out new releases with confidence because it maintains a single version of its
infrastructure and can achieve broad test coverage by leveraging tests, code, and configurations
from its production environment. Salesforce’s internal process for regression testing the plat-
form using its customers has a name fitting its aggressive role: The Hammer. You, the customer,

Meta-
data Data

P
la

tfo
rm

 S
er

vi
ce

s

Customer 1

Customer 2

…

Customer n

 Figure 1.1 Multitenant architecture

http://wiki.developerforce.com/page/Multi_Tenant_Architecture

ptg11524036

6 Chapter 1 Introducing Force.com

are helping maintain and improve Force.com in a systematic, measurable way as a side effect of
simply using it. This deep feedback loop between Force.com and its users is something imprac-
tical to achieve with on-premises software. Additionally, detailed communication of release
schedules and contents, opt-in features, and the critical update system for backward-
incompatible changes help keep customers and developers well informed and applications
stable.

 Note

 Find more details on “The Hammer” at http://blogs.developerforce.com/engineering/2013/05/
here-comes-the-hammer.html .

 Relational Database

 The heart of Force.com is the relational database provided as a service. The relational database
is the most well understood and widely used way to store and manage business data. Business
applications typically require reporting, transactional integrity, summarization, and struc-
tured search, and implementing those on nonrelational data stores requires significant effort.
Force.com provides a relational database to each tenant, one that is tightly integrated with
every other feature of the platform. There are no Oracle licenses to purchase, no tablespaces
to configure, no Java Database Connectivity (JDBC) drivers to install, no Object-Relational
Mapping (ORM) to wrangle, no Data Definition Language (DDL) to write, no queries to opti-
mize, and no replication and backup strategies to implement. Force.com takes care of all
these tasks.

 Application Services

 Force.com provides many of the common services needed for modern business application
development. These are the services you might have built or integrated repeatedly in your
past development projects. They include logging, transaction processing, validation, workflow,
email, integration, testing, reporting, and user interface.

 These services are highly customizable with and without writing code. Although each service
can be valued as an individual unit of functionality, their unification offers tremendous value.
All the features of Force.com are designed, built, and maintained by a single responsible party,
Salesforce. Salesforce provides documentation for these features as well as support staff on
call, training and certification classes, and accountability to its customers for keeping things
running smoothly. This is in contrast to many software projects that end up as a patchwork of
open source, best-of-breed tools and libraries glued together by you, the developer, asked to do
more with fewer people, shorter timelines, and cheaper, often unsupported tools.

 Declarative Metadata

 Almost every customization configured or coded within Force.com is readily available as simple
Extensible Markup Language (XML) with a documented schema. At any point in time, you
can ask Force.com for this metadata via a set of Web services. The metadata can be used to

http://blogs.developerforce.com/engineering/2013/05/here-comes-the-hammer.html
http://blogs.developerforce.com/engineering/2013/05/here-comes-the-hammer.html

ptg11524036

7Force.com in the Cloud Computing Landscape

configure an identical environment or managed with your corporate standard source control
system. It is also helpful for troubleshooting, allowing you to visually compare the state of two
environments. Although a few features of Force.com are not available in this declarative meta-
data form, Salesforce’s stated product direction is to provide full coverage.

 Programming Language

 Force.com has its own programming language, called Apex. It allows developers to script inter-
actions with other platform features, including the user interface. Its syntax is a blend of Java
and database-stored procedure languages like Transact-SQL (T-SQL) and can be written using a
Web browser or a plug-in to the Eclipse Integrated Development Environment (IDE).

 Other platforms take a different approach. Google’s App Engine simultaneously restricts and
extends existing languages such as Python so that they play nicely in Google’s PaaS environ-
ment. This offers obvious benefits, such as leveraging the development community, ease
of migration, and skills preservation. One way to understand Apex is as a domain-specific
language. Force.com is not a general-purpose computing platform to run any Java or C#
program you want to run. Apex is kept intentionally minimalistic, designed with only the
needs of Force.com developers in mind, built within the controlled environment of Salesforce
Research and Development. Although it won’t solve every programming problem, Apex’s
specialized nature leads to some advantages in learning curve, code conciseness, ease of refac-
toring, and ongoing maintenance costs.

 Force.com Services

 Force.com can be divided into four major services: database, business logic, user interface, and
integration. Technically, many more services are provided by Force.com, but these are the high-
level categories that are most relevant to new Force.com developers.

 Database

 Force.com is built around a relational database. It allows the definition of custom tables
containing up to 800 fields each. Fields contain strongly typed data using any of the standard
relational database data types, plus rich types such as currency values, picklists, formatted text,
and phone numbers. Fields can contain validation rules to ensure data is clean before being
committed and formulas to derive values, like cells in a spreadsheet. Field history tracking
provides an audit log of changes to chosen fields.

 Custom tables can be related to each other, allowing the definition of complex data schemas.
Tables, rows, and columns can be configured with security constraints. Data and metadata are
protected against accidental deletion through a “recycling bin” metaphor. The database schema
is often modifiable instantly, without manual migration. Data is imported from files or other
sources with free tools, and application programming interfaces (APIs) are provided for custom
data-loading solutions.

 Data is queried via a SQL-like language called Salesforce Object Query Language (SOQL). Full-
text search is available through Salesforce Object Search Language (SOSL).

ptg11524036

8 Chapter 1 Introducing Force.com

 Business Logic

 Apex is the language used to implement business logic on Force.com. It allows code to be struc-
tured into classes and interfaces, and it supports object-oriented behaviors. It has strongly typed
collection objects and arrays modeled after Java.

 Data binding is a first-class concept in Apex, with the database schema automatically imported
as language constructs. Data manipulation statements, trigger semantics, batch processing, and
transaction boundaries are also part of the language.

 The philosophy of test-driven development is hardwired into the Force.com platform. Methods
are annotated as tests and run from a provided test harness or test API calls. Test methods are
automatically instrumented by Force.com and output timing information for performance
tuning. Force.com prevents code from being deployed into production that does not have
adequate unit test coverage.

 User Interface

 Force.com provides two approaches for the development of user interfaces: page layouts and
Visualforce. Page layouts are inferred from the data model, including validation rules, and then
customized using a What You See Is What You Get (WYSIWYG) editor. Page layouts feature the
standard Salesforce look and feel. For many applications, Page layouts can deliver some or all of
the user interface with no development effort.

 Visualforce allows developers to build custom user interfaces. It consists of a series of XML
markup tags called components with their own namespace. As with Java Server Pages (JSP), ASP.
NET, Velocity, and other template-processing technologies, the components serve as containers
to structure data returned by the Controller, a class written in Apex. To the user, the resulting
Web pages might look nothing like Salesforce, or adopt its standard look and feel. Visualforce
components can express the many types and styles of UIs, including basic entry forms, lists,
multistep wizards, Ajax, mobile applications, and content management systems. Developers can
create their own components to reuse across applications.

 User interfaces in Visualforce are public, private, or some blend of the two. Private user inter-
faces require a user to log in before gaining access. Public user interfaces, called Force.com Sites,
can be made available to anonymous users on the Internet.

 Integration

 In the world of integration, more options are usually better, and standards support is essential.
Force.com supports a wide array of integration technologies, almost all of them based on indus-
try-standard protocols and message formats. You can integrate other technologies with Force.
com using an approach of configuration plus code. Here are some examples:

 ■ Web services— Apex Web Services allows control of data, metadata, and process from any
platform supporting SOAP over Hypertext Transfer Protocol (HTTP), including JavaScript.
This makes writing composite applications that combine Force.com with technology
from other vendors in many interesting and powerful ways possible. Force.com’s Web

ptg11524036

9Inside a Force.com Project

services API has evolved over many years, spanning more than 20 versions with full
backward compatibility.

 ■ REST— The Force.com database is accessible via REST calls. This integration method is
much lighter weight than Web services, allowing Web applications to query and modify
data in Force.com with simple calls accessible to any development language.

 ■ Business logic— Business logic developed in Apex can be exposed as a SOAP or REST
service, accessible with or without a Force.com user identity. For SOAP services, Force.
com generates the Web Service Definition Language (WSDL) from your Apex code.
Additionally, Force.com converts WSDL to Apex bindings to allow access to external Web
services from within the platform.

 ■ Inbound and outbound email— You can create virtual email inboxes on Force.com
and write code to process the incoming email. Sending email from Force.com is also
supported.

 ■ Mashups— Force.com provides an API for making HTTP requests, including support for
client-side certificates, Secure Sockets Layer (SSL), proxies, and HTTP authentication.
With this, you can integrate with Web-based resources, everything from static Web pages
to REST services returning JavaScript Object Notation (JSON).

 ■ Across Salesforce customers— Salesforce-to-Salesforce (S2S) is a publish-and-subscribe
model of data sharing between multiple Force.com environments. If the company
you need to integrate with already uses Force.com and the data is supported by S2S,
integration becomes a relatively simple configuration exercise. There is no code or
message formats to maintain. Your data is transported within the Force.com environment
from one tenant to another.

 If your requirements dictate a higher-level approach to integration, software vendors like IBM’s
Cast Iron Systems, Informatica, MuleSoft, SnapLogic, and Jitterbit offer adapters to Force.com
to read and write data and orchestrate complex transactions spanning disparate systems.

 Inside a Force.com Project

 This section discusses what makes a Force.com project different from a typical corporate
in-house software development effort, starting with project selection. Learn some tips for select-
ing a project in Force.com’s sweet spot. Then examine how traditional technical roles trans-
late to development activities in a Force.com project and how technologies within Force.com
impact your product development lifecycle. Lastly, get acquainted with the tools and resources
available to make your project a success.

 Project Selection

 Some projects are better suited to implementation on Force.com than others. Running into
natural limits of the PaaS approach or battling against the abstraction provided by the platform
is possible. Always strive to pursue projects that play into Force.com strengths. No absolute

ptg11524036

10 Chapter 1 Introducing Force.com

rules exist for determining this, but projects with the following characteristics tend to work
well with Force.com:

 ■ The project is data centered, requiring the storage and retrieval of structured data.

 Structured data is the most important point. Implementing a YouTube-like application
on Force.com is not the best idea because it primarily works with unstructured data in
the form of video streams. Force.com supports binary data, so a video-sharing Web site
is certainly possible to build. But handling large amounts of binary data is not a focus
or core competency of Force.com. A hotel reservation system is an example of a more
natural fit.

 ■ The user interface is composed primarily of wizards, grids, forms, and reports.

 Force.com does not restrict you to these user interface patterns. You can implement any
type of user interface, including “rich” clients that run using Flash in the browser, and
even full desktop applications that integrate with Force.com via its Apex Web Services
API. But to capture the most benefit from the platform, stick with structured, data-driven
user interfaces that use standard Web technologies such as Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS), and JavaScript.

 ■ The underlying business processes involve email, spreadsheets, threaded discussions,
and hierarchies of people who participate in a distributed, asynchronous workflow.

 Standard Force.com features such as Chatter, workflow, approvals, and email services
add a lot of value to these applications. They can be configured by business analysts or
controlled in depth by developers.

 ■ The rules around data sharing and security are fine-grained and based on
organizational roles and user identity.

 User identity management and security are deep subjects and typically require high
effort to implement in a custom system. With Force.com, they are standard, highly
configurable components that you can leverage without coding. You can then spend
more time thinking through the “who can see what” scenarios rather than coding the
infrastructure to make them possible.

 ■ The project requires integration with other systems.

 Force.com is built from the ground up to interoperate with other systems at all its layers:
data, business logic, and user interface. The infrastructure is taken care of, so you can
focus on the integration design. Exchange a million rows of data between your SQL
Server database and Force.com. Call your Apex services from a legacy J2EE application or
vice versa. Add an event to a Google calendar from within your Visualforce user interface.
These scenarios and more are fully supported by the platform.

 ■ The project manipulates data incrementally, driven by user actions rather than a
calendar.

 Force.com is a shared resource. Simultaneously, other customers of varying sizes are using
the same infrastructure. This requires Force.com to carefully monitor and fairly distribute
the computing resources so that all customers can accomplish their goals with a high
quality of service. If one customer’s application on Force.com was allowed to consume a

ptg11524036

11Inside a Force.com Project

disproportionate share of resources, other customers’ applications would suffer resource
starvation. The limitations in place, called governors, prevent too much memory, CPU,
disk, or network bandwidth from being concentrated in the hands of any one customer.
The platform strongly enforces these governor limits, so the best Force.com applications
involve computing tasks that can be split into small units of work.

 ■ The data volume is limited, below a few million records per table.

 Data volume is important to think about with any system: How large is my data going to
grow and at what rate? Force.com consists of a logical single transactional database. No
analytical data store exists. Applications that require access to large volumes of data, such
as data warehousing and analytics, cannot be built on Force.com. Other software vendors
such as GoodData provide solutions in this area, but all involve copying data from Force.
com to their own products.

 Force.com is not an all-or-nothing proposition. If your project does not fit within these guide-
lines, you might still want to explore Force.com but in conjunction with other PaaS solutions
such as Heroku. Thanks to Force.com’s integration capabilities, Heroku and Force.com can
be used together as a composite solution, with Heroku augmenting Force.com where general-
purpose computing is needed.

 Team Selection

 The best people to staff on Force.com projects might already work at your company. Projects do
not require brand-new teams staffed with Force.com experts. With the majority of the platform
based in mature technology, such as relational databases and Web development, adapting exist-
ing teams can be a straightforward task.

 Here are some examples of traditional software development roles and how they can contribute
to a Force.com project:

 ■ Business analyst— Substantial Force.com applications can be built entirely by
configuration, no computer science background or coding skills required. Salesforce refers
to this as “clicks, not code.” Business analysts who are proficient with Microsoft Excel
and its macro language, or small-scale databases like Microsoft Access and FileMaker Pro,
can get hands-on with the Force.com data model, validation rules, workflows, approval
rules, security models, and page layouts.

 ■ Data modeler— A data model forms the core of a Force.com application. Data modelers
can use their existing entity-relationship tools and techniques to design the data
layer, with some deltas to account for Force.com-specific idiosyncrasies. Rather than
scripts of DDL statements, their work output is Force.com’s metadata XML or manual
configuration of the data objects. Data modelers can also design reports and report types,
which define data domains available to business users to build their own reports.

 ■ Database administrator— Many traditional DBA tasks are obsolete in Force.com because
there is no physical database to build, monitor, and tune. But a DBA still has plenty of
work to do in planning and implementing the Force.com object model. There are objects

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

12 Chapter 1 Introducing Force.com

to define or permissions to configure, and the challenges of data transformation and
migration are still as relevant in Force.com as in any database-backed system.

 ■ Database developer— The design of Force.com’s programming language, Apex, has
clearly been inspired by stored procedure languages like T-SQL. Existing database
developers can adapt their skills to writing Apex code, particularly when it requires
detailed work on the datalike triggers.

 ■ Object-oriented analysis and design specialist— Force.com includes an object-oriented
language, and persistent data is represented as objects. With all of these objects floating
around, people with skills in traditional techniques like Unified Modeling Language
(UML) are valuable to have on your project team. Larger applications benefit from a well-
designed object model, and as in any language, designing before writing Apex code can
be a real time-saver.

 ■ User interface designer— Force.com supports modern Web standards for creating usable,
flexible, and maintainable UIs. UI designers can help by building screen mock-ups, page
layouts, and the static portions of Visualforce pages to serve as templates and assets for
developers.

 ■ Web developer— Developers who have built Web applications can quickly learn enough
Apex and Visualforce and build similar applications on Force.com, typically with much
less effort. Skills in HTML, CSS, JavaScript, or Adobe Flex are needed to build custom
Force.com user interfaces.

 ■ 4GL developer— Developers proficient in fourth-generation languages such as Java,
C#.NET, and PHP usually have no problem picking up Apex code. It has the same core
syntax as Java, without the Java-specific libraries and frameworks.

 ■ Integration specialist— Force.com is a producer and consumer of Web services and
supports REST as well as any integration strategy based on HTTP. An integration
expert can design the interaction between systems, define the remote operations, and
implement them using Force.com or a specialized integration product.

 ■ Quality assurance (QA) engineer— Testing is a critical part of any software project, and
on Force.com testing is mandatory before code is deployed to production. A QA engineer
can write automated unit tests in Apex and test plans for security and integration testing.
Standard tools like Selenium can be used to automate UI testing.

 ■ Operations specialist— Although there are no servers or operating systems to manage,
larger deployments of Force.com can involve integration with on-premises systems.
Single Sign-On (SSO) integration and data migration are two common examples.
Operations experts can help in this area, as well as with application deployment and
Force.com administration tasks such as user maintenance.

 Lifecycle

 The software development lifecycle of a Force.com project is much like an on-premises Web
application development project, but with less toil. Many moving parts exist in J2EE, .NET, or
LAMP projects. Most require a jumble of frameworks to be integrated and configured properly
before one line of code relevant to your project is written.

ptg11524036

13Inside a Force.com Project

 This section describes areas of Force.com functionality designed to streamline the development
lifecycle and focus your time on the value-added activities related to your application. Each of
these areas has implicit costs and benefits. On the cost side, there is usually a loss of control
and flexibility versus technologies with less abstraction. Evaluating these features and judging
whether they constitute costs or benefits for your project is up to you.

 Integrated Logical Database

 Relational databases are still the default choice for business applications, despite the availability
of alternatives like NoSQL, XML, and object-oriented databases. The relational model maps well
onto business entities, data integrity is easily enforceable, and implementations scale to hold
large data sets while providing efficient retrieval, composition, and transactional modification.

 For business applications coded in an object-oriented language, accessing relational databases
introduces an impedance mismatch. Databases organize data in terms of schemas, tables, and
columns. Programs organize data and logic into objects, methods, and fields. Many ways exist
to juggle data between the two, none of them ideal. To make matters more complicated, many
layers of protocol are needed to transport queries, resultsets, and transactions between the
program and the database.

 In Force.com, the database tables are called objects. They are somewhat confusingly named
because they do not exhibit object-oriented behavior. The name comes from the fact that they
are logical entities that act as tables when being defined, loaded with data, queried, updated,
and reported on, but are surfaced to programs as typed data structures. No mismatch exists
between the way data is represented in code and the way it’s represented in the database. Your
code remains consistent and concise whether you are working with in-memory instances of
your custom-defined Apex classes or objects from the database. This enables compile-time vali-
dation of programs, including queries and data manipulation statements, to ensure that they
adhere to the database schema. This one seemingly simple feature eliminates a whole category
of defects that were previously discovered only through unit tests or in production by unfortu-
nate users.

 The logical aspect of the database is also significant. Developers have no direct access to the
physical databases running in Salesforce’s data centers. The physical data model is a metamodel
designed for multitenant applications, with layers of caches and fault tolerance, spanning
servers in multiple data centers. When you create an object in Force.com, no corresponding
Oracle database table is created. The metadata describing your new table is stored and indexed
by a series of physical tables, becoming a unified, tenant-specific vocabulary baked into the
platform’s higher-level features. The synergy of integrated, metadata-aware functionality makes
Force.com more than the sum of its individual features.

 Metadata-Derived User Interface

 As described previously, the definition of your objects becomes the vocabulary for other
features. Nowhere is this more evident than in the standard Force.com user interface,
commonly referred to as the “native” UI. This is the style pioneered by the Salesforce Sales and

ptg11524036

14 Chapter 1 Introducing Force.com

Service Cloud products: lots of tabular displays of data, topped with fat bars of color with icons
of dollar signs and telescopes, and a row of tabs for navigation.

 It is worth getting to know the capabilities of the native UI even if you have reservations about
its appearance or usability. To some, it is an artifact of an earlier era of Web applications. To
others, it is a clean-cut business application, consistent and safe. Either way, as a developer,
you cannot afford to ignore it. The native UI is where many configuration tasks are performed,
often for features not yet visible to Eclipse and other tools.

 If your project’s user interface design is amenable to the native UI, you can build screens almost
as fast as users can describe their requirements. Rapid application prototyping is an excellent
addition or alternative to static screen mock-ups. Page layouts are descriptions of which fields
appear on a page in the native UI. They are automatically created when you define an object
and configured with a simple drag-and-drop layout tool.

 Simplified Configuration Management

 Configuration management is very different from what you might be accustomed to from
on-premises development. Setting up a development environment is trivial with Force.com.
You can provision a new development environment in a few clicks and deploy your code to it
using the familiar Eclipse IDE.

 When added to your Eclipse IDE or file system, Force.com code and metadata are ready to be
committed to an existing source control system. Custom Apache Ant build tasks are available
to automate your deployments. Sandboxes can be provisioned for testing against real-world
volumes of data and users. They are automatically refreshed from snapshots of production data
per your request. Force.com’s packaging feature allows you to partition your code into logical
units of functionality, making it easier to manage and share with others at your company or in
the larger community.

 Integrated Unit Testing

 The ability to write and execute unit tests is a native part of the Apex language and Force.com
development environment. Typically, a test framework is an optional component that you
need to integrate into your development and build process. With the facility to test aligned
closely with code, writing and executing tests becomes a natural part of the development life-
cycle rather than an afterthought.

 In fact, unit tests are required by Force.com to deploy code into production. This applies to all
Apex code in the system: user interface logic, triggers, and general business logic. To achieve
the necessary 75% test coverage often requires as much if not more code than the actual Apex
classes.

 To make sure you don’t code yourself into a corner without test coverage, a great time to write
tests is while you code. Many development methodologies advocate test-driven development,
and writing tests as you code has benefits well beyond simply meeting the minimum require-
ments for production deployment in Force.com. For example, a comprehensive library of tests

ptg11524036

15Inside a Force.com Project

adds guardrails to refactoring and maintenance tasks, steering you away from destabilizing
changes.

 Integrated Model-View-Controller (MVC) Pattern

 The goal of the MVC pattern is maintainable user interface code. It dictates the separation
of data, visual elements that represent data and actions to the user, and logic that medi-
ates between the two. If these three areas are allowed to collide and the codebase grows large
enough, the cost to fix bugs and add features becomes prohibitive.

 Visualforce adopts MVC by design. For example, its view components do not allow the expres-
sion of business logic and vice versa. Like other best practices made mandatory by the platform,
this can be inconvenient when you just want to do something quick and dirty. But it is there
to help. After all, quick-and-dirty demos have an uncanny tendency to morph into production
applications.

 Integrated Interoperability

 Force.com provides Web services support to your applications without code. You can desig-
nate an Apex method as a Web service. WSDL is automatically generated to reflect the method
signature. Your logic is now accessible to any program that is capable of calling a Web service,
given valid credentials for an authorized user in your organization. You can also restrict access
by Internet Protocol (IP) address or open up your service to guests.

 As in other languages, Apex provides you with a WSDL-to-Apex tool. This tool generates Apex
stubs from WSDL, enabling you to integrate with SOAP-enabled business processes existing
outside of Force.com. Lower-level Apex libraries are also available for raw HTTP and XML
processing.

 End of Life

 Retiring a production application requires a few clicks from the system administrator. Users
can also be quickly removed or repurposed for other applications. Applications can be readily
consolidated because they share the same infrastructure. For example, you might keep an old
user interface online while a new one is being run in parallel, both writing to the same set
of objects. Although these things are possible with other technologies, Force.com removes a
sizable chunk of infrastructure complexity, preserving more intellectual bandwidth to devote to
tackling the hard problems specific to your business.

 Tools and Resources

 Force.com has a rich developer ecosystem, including discussion groups for reaching out to the
development community on specific subjects, a source-code repository for open source projects,
a Web site called AppExchange where you can browse for free and paid extensions to the plat-
form, services companies to help you plan and implement your larger projects, and Ideas, a site
for posting your ideas for enhancing the platform.

ptg11524036

16 Chapter 1 Introducing Force.com

 The following subsections list some tools and resources that exist to make your Force.com proj-
ects successful.

 Developer Force (http://developer.force.com)

 Developer Force is a rich source of information on Force.com. It contains documentation, tuto-
rials, e-books written by Salesforce, a blog, and a wiki with links to many more resources inside
and outside of Salesforce.

 Developer Discussion Boards (http://community.salesforce.com)

 The developer discussion boards are a public discussion forum for the Force.com development
community, divided into a dozen separate boards by technology area. Users post their ques-
tions and problems, gripes, and kudos. Other users in the community contribute answers and
solutions, including Salesforce employees. The boards are a great way to build a reputation as a
Force.com expert and keep current on the latest activity around the platform.

 Ideas (http://ideas.salesforce.com)

 If you have a suggestion for improving Force.com or any Salesforce product, visit the Ideas site
and post it. Other users in the community can vote for it. If your idea is popular enough, it
might be added to the next release of Force.com. Incidentally, Ideas is a reusable component of
Force.com, so you can build your own customized idea-sharing sites for your company.

 Code Share (http://developer.force.com/codeshare)

 Code Share is a directory of open source code contributions from the Force.com community,
with links to the source code hosted on Google Code. Salesforce employees have contributed
many projects here. Code Share projects include the Facebook Toolkit, a library for integrating
with Facebook, and the Toolkit for PayPal X Payments platform, to leverage PayPal’s Adaptive
Payments API in Force.com applications.

 Platform Documentation

 Salesforce provides documentation through online, context-sensitive help within the Web
user interface, as well as HTML and Portable Document Format (PDF) versions of its reference
manuals. You can find all documentation at Developer Force.

 AppExchange (http://www.appexchange.com)

 AppExchange is a directory of ready-to-install applications developed on Force.com. The appli-
cations consist of metadata, such as Visualforce pages and Apex code, deployable into your
Force.com environment. Users can rate applications from one to five stars and write reviews.
Many free applications are written by Salesforce employees to illustrate new platform features.
Commercial applications are also available for trial and purchase. AppExchange is how inde-
pendent software vendors distribute their Force.com applications to Salesforce customers.

http://www.appexchange.com
http://developer.force.com
http://community.salesforce.com
http://ideas.salesforce.com
http://developer.force.com/codeshare

ptg11524036

17Sample Application: Services Manager

 Dreamforce and Cloudforce

 Salesforce has a series of user conferences every year called Dreamforce and Cloudforce. San
Francisco hosts the largest Dreamforce venue, with thousands attending to participate in train-
ing sessions, booths, product demos, keynote speeches, breakout sessions, executive briefings,
and, of course, the parties. Dreamforce and Cloudforce are fun ways to stay up to date with the
technology. Refer to http://www.salesforce.com/events for more information.

 Systems Integrators

 For deployments including significant numbers of users, integration with other enterprise
systems, or complex data migrations, consider contracting the services of a systems integrator.
You can find systems integrators who have competency with Force.com, Sales Cloud, Service
Cloud, and other Salesforce products. For more information, view the Salesforce consulting
partners page at https://appexchange.salesforce.com/consulting .

 Technical Support

 When you encounter undocumented or incorrect behavior in the system, submit a defect
report. If the issue can be described simply, like a cryptic error message, search for it in the
discussion groups. In many cases, someone else has already run into the same problem before
you, posted about it, and attracted the attention of Salesforce employees. If not, the ability to
log and track Force.com platform support cases is available in Force.com’s Web user interface.

 Sample Application: Services Manager

 Every following chapter in this book contributes to the construction of a sample application
called Services Manager. Services Manager is designed for businesses that bill for their employ-
ees’ time. These businesses need accurate accounting of when and where employees are staffed,
numbers of hours worked, skills of the employees, project expenses, amounts billed to custom-
ers, and so forth. This section describes these features in preparation for later discussions of
their design and implementation.

 The goal is not to build a fully functional application for operating a professional services busi-
ness, but to provide a logically related set of working code samples to accompany the technical
concepts covered in this book.

 Background

 Imagine you own a professional services business. The services your company provides could be
architecture, graphic design, software, law, or anything with the following characteristics:

 ■ High cost, highly skilled employees

 ■ Complex projects lasting a week or more

 ■ Resources billed out at an hourly rate

 ■ High cost of acquiring new customers

http://www.salesforce.com/events
https://appexchange.salesforce.com/consulting

ptg11524036

18 Chapter 1 Introducing Force.com

 Your profit comes from the difference between the billing rate and the internal cost of
resources. This is typically small, so your process must be streamlined, repeatable, and scalable.
To increase profit, you must hire more resources and win more customer projects.

 User Roles

 The users of the Services Manager application span many roles in the organization. The roles
are covered in the following subsections, with a summary of their responsibilities and how they
use Services Manager.

 Services Sales Representative

 Sales reps work with customers to identify project needs and manage the relationship with
the customer. Reps use the Sales Cloud product from Salesforce to manage their sales process.
In general, they do not use Services Manager directly, but start the process by winning the
contract.

 Staffing Coordinator

 Staffing coordinators manage and schedule resources for projects. When the opportunity is
closed, they are notified via email. They then create a project using Services Manager and staff
it by matching the availability and skills of resources against the scheduling and skill require-
ments of the project.

 Project Manager

 Project managers are responsible for success of projects on a daily basis. They direct and priori-
tize project activities for resources and customers. They use Services Manager to manage the
detailed weekly schedules of their consultants and monitor the health and progress of their
projects.

 Consultant

 The consultant is engaged directly with the customer and is responsible for the project deliver-
ables. In Service Manager, he or she logs time spent on the project, indicates the completion of
project milestones, and submits expenses.

 Accounts Receivable

 Accounts receivable is responsible for invoicing and collecting customers based on work that
has been delivered. At the end of each billing cycle, they use Services Manager to generate
invoices for customers.

 Services Vice President

 The VP is responsible for the services profit and loss and success of the team. Services Manager
provides the VP with reports on utilization and other metrics for assessing the team’s overall
performance.

ptg11524036

19Summary

 Development Plan

 The Services Manager sample application is developed incrementally throughout this book,
each chapter building on the previous. Every chapter covers a set of technical concepts
followed by the relevant Services Manager requirements, design, and implementation. The goal
is to expose you to the abstract technology and then make it practical by getting your hands
dirty on the sample application.

 The following list names the remaining chapters in this book, with brief descriptions of the
features of Services Manager to be covered:

 ■ Chapter 2 , “Database Essentials”— Design and create the database and import data.

 ■ Chapter 3 , “Database Security”— Define users, roles, and profiles. Configure sharing
rules.

 ■ Chapter 4 , “Business Logic”— Build triggers to validate data and unit test them.

 ■ Chapter 5 , “Advanced Business Logic”— Write services to generate email notifications
based on user activity.

 ■ Chapter 6 , “User Interfaces”— Construct a custom user interface for tracking the skills of
consultants.

 ■ Chapter 7 , “Advanced User Interfaces”— Enhance the skills-tracking user interface with
Ajax.

 ■ Chapter 8 , “Mobile User Interfaces”— Create a mobile user interface for entering
timecards.

 ■ Chapter 9 , “Batch Processing”— Locate missing timecards using a batch process.

 ■ Chapter 10 , “Integration with Force.com”— Calculate and transmit corporate
performance metrics to a fictional industry-benchmarking organization.

 ■ Chapter 11 , “Advanced Integration”— Develop a Java program to update Force.com
with information from a human resources database.

 ■ Chapter 12 , “Social Applications”— Automate built-in platform collaboration features to
help project teams communicate.

 Summary

 This chapter has introduced you to Force.com, explained how it differs from other PaaS tech-
nologies and what infrastructure it’s designed to replace, and given guidelines for its use on
your projects. Here are a few thoughts to take away from this chapter:

 ■ Force.com is a PaaS uniquely designed to make business applications easy to build,
maintain, and deliver. It consists of database, business logic, user interface, and
integration services, all of them interoperable and interdependent, accessible through
configuration or code.

ptg11524036

20 Chapter 1 Introducing Force.com

 ■ The most suitable applications for implementation on Force.com operate primarily on
structured data. Traditional software development roles are still relevant in the Force.
com world, particularly Web and client/server developers. Data modeling takes on a new
importance with the platform, as data objects are tightly integrated with the rest of the
technology stack, and unit testing is mandatory.

 ■ Services Manager is the sample application built on throughout this book. It’s designed
to serve companies in the professional services space, those selling projects to customers
and billing them for the time of its skilled employees.

ptg11524036

 2
 Database Essentials

 In Force.com, the database provides the framework for the rest of your application. Decisions you
make on how to represent data have significant consequences for flexibility and maintainability.
Understanding the unique behaviors of the Force.com database is critical for successful applications.
Force.com operates at a higher level of abstraction than a relational database, so although existing rela-
tional database skills are helpful, the Force.com database is a completely different animal.

 This chapter covers topics in Force.com database design and development:

 ■ Overview of Force.com’s database— Get an overview of the Force.com database and how it’s
different from standard relational databases.

 ■ Working with custom objects— Custom objects are components within the Force.com database
that store your data. Learn how they are created and then test them by entering and browsing
their data.

 ■ Additional database features— The Force.com database has a few features that are less
frequently used but powerful. They include fields defined as aggregates of other fields, fields
that limit the valid values of another field, the ability to display the same object differently
in multiple user interfaces, and objects that store frequently accessed settings for optimal
performance.

 ■ Sample application— Design a Force.com data model for the Services Manager, implement the
objects using Schema Builder, and import sample data.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/DOy91g .

 Overview of Force.com’s Database

 This section provides background on the database functionality within Force.com. It covers
objects, fields, relationships, queries, and how data is integrated with your application logic.

www.allitebooks.com

http://goo.gl/DOy91g
http://www.allitebooks.org

ptg11524036

22 Chapter 2 Database Essentials

Each Force.com-specific database feature is described and contrasted with its equivalent in a
standard relational database.

 Objects

 Strictly speaking, Force.com does not store objects in its database. Force.com’s objects are more
closely related to database tables than they are to anything in object-oriented programming.
Objects contain fields, which are equivalent to the columns of a database table. Data is stored
in objects in the form of records, like rows in a database table.

 Objects belong to one of two categories: standard and custom. Standard objects provide data
for Salesforce applications like Sales Cloud or core platform functionality such as user identity.
They are built in to Force.com and cannot be removed, although you can extend them by
adding your own fields. Custom objects are defined by you, the developer, and you’ll be spend-
ing most of your time with them as you build your own applications. Custom objects include
custom settings, a close relative of the custom object intended for small amounts of frequently
accessed data, like user preferences.

 Beyond the name, custom objects differ from their relational table counterparts in some signifi-
cant ways.

 Logical, Not Physical Objects

 Unlike relational database tables, custom objects have no physical representation accessible to
the Force.com developer. There are no physical storage parameters to tune, no tablespace files
to create and manage. The Force.com platform decides how best to represent, index, back up,
migrate, scale, and tune your database.

 Delegated Operations

 For the most part, operational concerns such as performance and reliability are managed
entirely by the platform. This means you can design and build an application without worrying
how to support it in production.

 When you run your own database software and hardware, you inevitably face operational tasks
such as backup, recovery, and replication for scalability. Although nothing prevents you from
exporting the data from your Force.com instance and backing it up to your own servers, there
is normally no reason to do so.

 Note

 Force.com applications that involve tens of thousands of users, tens of millions of records,
or hundreds of gigabytes of total record storage belong to a category called Large Data
Volume (LDV) deployments. Such deployments require special architectural considerations
to maintain favorable performance. For more information, refer to the whitepaper titled “Best
Practices for Deployments with Large Data Volumes” at http://wiki.developerforce.com/page/
Best_Practices_for_Deployments_with_Large_Data_Volumes .

http://wiki.developerforce.com/page/Best_Practices_for_Deployments_with_Large_Data_Volumes
http://wiki.developerforce.com/page/Best_Practices_for_Deployments_with_Large_Data_Volumes

ptg11524036

23Overview of Force.com’s Database

 Undelete Support

 Normally, when a row is deleted in a standard relational database and you need to recover it
after a commit, you’re out of luck unless you have backups of the database or are using a data-
base that provides some proprietary technology like Oracle’s Flashback. To avoid this situation,
you could implement your own support for undeleting rows, like triggers to copy data to an
audit table or a “deleted” column to accomplish a “soft” delete.

 In contrast, Force.com provides undelete functionality on every object. When records are
deleted, they go into the Recycle Bin, where they stay until they expire (15 days after deletion)
and are gone for good or an administrator undeletes them. Deleted records can be queried and
programmatically undeleted as well.

 Accidentally dropping a table or another database object can also lead to a lot of unpleasant
work for a system administrator. If your database vendor doesn’t offer specialized recovery
features, you are stuck recovering data from backups. In Force.com, deleting objects sends them
to the Recycle Bin. They stay there until they expire or are explicitly erased or undeleted by an
administrator. If an object is undeleted, its definition and all its data are restored.

 Fields

 Fields are like columns in a database. They belong to an object and have a name, label for
display purposes, and constraints such as data type and uniqueness.

 In Force.com, there are two categories of fields: standard and custom. Standard fields are fields
that are created by Force.com for its own internal use, but are also available to users. They can
be hidden from view and unused, but not completely removed or redefined. They are a part of
the Force.com data model that is static, relied on to exist by other layers of Force.com technol-
ogy. Examples of standard fields are Id (unique identifier) and Created By (the user who created
the record). Custom fields are created by you, the developer, to store data specific to your
applications.

 Some important differences between Force.com database fields and relational database columns
are described in the subsections that follow.

 Logical, Not Physical Fields

 When you define a new field for your custom object, Force.com does not create a correspond-
ing field in its physical database. Instead, it associates your new field with an existing “Flex”
field, a VARCHAR column of its generic data table. This provides Force.com with the flexibility
to redefine data types, add richer data types, and perform other processing on the data outside
of a database’s typically rigid rules. Although this implementation detail of Force.com is not
relevant to learning how to use Force.com’s database, it does help explain some of its underly-
ing behavior.

ptg11524036

24 Chapter 2 Database Essentials

 Unique Identifiers

 Typical database tables include one or more columns to contain the primary key, the unique
identifier for each row. In Force.com, every object has a standard field called Id. This field is
automatically populated with an 18-character, case-insensitive, alphanumeric string to uniquely
identify your records. Unique identifiers can also be expressed as 15-character, case-sensitive
strings, and this is how they appear in the Salesforce user interface. In most cases, the two
styles of unique identifiers can be used interchangeably. So when you are designing your Force.
com database, there is no need to add a field to contain a unique identifier.

 Validation Rules

 Validation rules place restrictions on the values of a new or updated record. They prevent users
and programs from inserting data that your application defines as invalid. Rules are defined in
an expression language similar to the function language found in the cells of a Microsoft Excel
worksheet. The validation rule in Listing 2.1 prevents a record from containing a Start Date
greater than its End Date.

 Listing 2.1 Sample Validation Rule

 AND(
 NOT(
 ISNULL(Start_Date__c)
),
 NOT(
 ISNULL(End_Date__c)
),
 (Start_Date__c > End_Date__c)
)

 When the expression evaluates to true, it is treated as a validation failure. For the rule to evalu-
ate as true, the value in the fields Start_Date__c and End_Date__c must be non-null, and the
value of Start_Date__c must be greater than End_Date__c .

 Formula Fields

 Formula fields contain values that are automatically calculated by Force.com, derived from
other fields in the same object or in different objects. They use the same expression language as
validation rules.

 For example, Listing 2.2 shows a formula for a field called Billable_Revenue__c .

 Listing 2.2 Sample Formula Field

 Billable_Revenue__c = Week_Total_Hrs__c * Rate_Per_Hour__c

ptg11524036

25Overview of Force.com’s Database

 Week_Total_Hrs__c and Rate_Per_Hour__c are custom fields. When a new record is inserted
or one of the two fields is updated, the two fields are multiplied, and the result is stored in the
 Billable_Revenue__c field.

 Rich Data Types

 Force.com supports a few flavors of the typical string, number, date/time, and Boolean data
types. It also supports richer data types that lend themselves to direct usage in user interfaces
with prebuilt validation, input masks, and output formatting. The rich types are phone, pick-
list, multi-select picklist, email, URL, geolocation, and rich text area.

 Picklists are particularly valuable, as they address the clutter of “lookup tables” dangling off
most relational data models. These lookup tables often contain only a key and description and
can be readily replaced with picklist fields. Internally, picklists maintain their own identifiers
for values, allowing their labels to be modified without updating the records that reference
them.

 History Tracking

 Most databases do not provide developers a way to track every change made to records in a
table. Typically, this is something that is implemented using another table and some code.
In Force.com, any object can have History Tracking enabled on it. Every field with History
Tracking enabled that is changed gets a new record inserted in a corresponding History object
containing the old and new values.

 Note

 Field history data can be subject to automatic deletion. Organizations created on or after June
2, 2011, retain their history data for 18 months. You can log a case with Salesforce to request
a longer retention period. Organizations created before this date retain field history data
indefinitely.

 Relationships

 The capability to define and manage relationships between data entities is the basis for much
of the value of relational databases. Relationships allow data from one entity to be logically
separated from others. With this separation, data can be modified without integrity loss and
combined with other entities for analysis.

 Data relationships in Force.com resemble those found in standard relational databases. You can
express one-to-one, one-to-many, and many-to-many relationships. But relationships in Force.
com are closely controlled and managed by the platform and also integrated with many plat-
form features. Some important points are listed in the subsections that follow.

ptg11524036

26 Chapter 2 Database Essentials

 Integrity Enforced

 When you define a relationship in Force.com, a relationship field is created to contain the
foreign key. Force.com prevents you from using a foreign key to a different object. It enforces
that the foreign key points to an object of the correct type.

 This is basic foreign key constraint checking, like in a relational database. The difference
in Force.com is that you can never elect to turn it off. It is a mandatory, always-on feature,
protecting your data from inconsistency.

 There is one minor exception to this rule. Many standard objects contain special fields that can
be related to multiple object types. For example, a support case can be assigned to an individual
user or a group representing a collection of users. In the Case object, the OwnerId field can
contain the ID of a record in the User object or the Group object. Both types of foreign keys are
valid. Note that polymorphic foreign key fields are defined by Salesforce and cannot be created
by developers.

 Explicitly Defined

 In Force.com, all relationships are predefined, established when objects and fields are created.
With the exception of semi- and anti-joins, you do not specify join conditions when you write
queries. Instead, you specify the fields you want, and Force.com takes care of traversing the
necessary relationships to retrieve the data.

 Query Language

 Force.com has two query languages. One is called Salesforce Object Query Language (SOQL)
and is used for structured queries. The other language, Salesforce Object Search Language
(SOSL), is used for searching the full text of one or more objects.

 SOQL

 Don’t let the name confuse you. Despite some similarities in syntax, SOQL is very different
from SQL. It has more in common with a reporting or object-traversal language than its more
mathematically grounded ancestor.

 Listing 2.3 shows a sample SOQL query on a custom object. It returns the names, statuses, and
expected revenue amounts for the top-ten largest uninvoiced projects started in the last quarter,
in descending order by pending revenue.

 Listing 2.3 Sample SOQL Query

 SELECT Name, Total_Billable_Revenue_Pending_Invoice__c, Project_Status__c
 FROM Proj__c
 WHERE Invoiced__c = FALSE and Start_Date__c = LAST_QUARTER
 ORDER BY Total_Billable_Revenue_Pending_Invoice__c DESC LIMIT 10

ptg11524036

27Overview of Force.com’s Database

 The query specifies a list of columns to be returned (SELECT), the object to query (FROM), filter
conditions (WHERE), sorting results (ORDER BY) in descending (DESC) order, and a hard limit
on the maximum number of rows to return (LIMIT).

 Selecting a single object is the simplest type of SOQL query. More advanced queries select
fields from multiple related objects, nested resultsets from child objects using subqueries, and
perform semi-joins and anti-joins using IN and NOT IN.

 The following subsections describe the four most significant differences between SQL
and SOQL.

 Implicit Join
 In SQL, you can join any table with any other table, typically with one or more Boolean expres-
sions involving pairs of columns. Assuming that the data types of the columns in the join
expression are comparable, the join query returns the corresponding rows of both tables as
specified in your join expression.

 In Force.com, data from multiple standard and custom objects can be combined, but only in
ways predetermined by you when you designed your database. SOQL itself does not support
any concept of joins, other than semi-join and anti-join. Using SOQL, you tell the Force.com
platform which fields of which objects to retrieve, and the platform does the work of traversing
the data, maintaining the integrity between objects in accordance with the relationships you
defined.

 This behavior has its pros and cons. You cannot perform truly ad hoc queries, in which data
from multiple objects is combined in ways possibly unanticipated by the database designer. But
it results in much simpler, more concise queries that can be optimized entirely by the platform.

 Nested Resultsets
 In SQL, querying two tables in a one-to-many relationship without aggregate functions and
GROUP BY results in a cross product of the rows. For example, assume you have a table
containing orders and another table with their line items, and issue the query in Listing 2.4 .

 Listing 2.4 Relationship Query in SQL

 SELECT Orders.OrderId, OrderLineItems.LineItemId
 FROM Orders, OrderLineItems
 WHERE Orders.OrderId = OrderLineItems.OrderId

 Assume that there are two orders (1 and 2), each with three line items (1–3 and 4–6). Table 2.1
shows the results of executing the query.

ptg11524036

28 Chapter 2 Database Essentials

 Table 2.1 Results of SQL Join Query

 Orders.OrderId OrderLineItems.LineItemId

 1 1

 1 2

 1 3

 2 4

 2 5

 2 6

 To begin comparing this with Force.com, Listing 2.5 shows an equivalent query in SOQL.

 Listing 2.5 Relationship Query in SOQL

 SELECT OrderId, (SELECT LineItemId FROM OrderLineItems)
 FROM Orders

 Note the lack of a WHERE clause to perform the join and the use of a subquery to nest the line
items. Force.com is aware of the parent-child relationship between Orders and OrderLineItems,
so it performs the join automatically. The result can be visualized as arrays of nested records,
as shown in Figure 2.1 . The outer record is the order, and each order contains an array of line
items.

 No Functions in Column List
 You might have included functions like LEFT, RIGHT, MID, LEN, and IFF along with your
columns in a SQL SELECT statement. SOQL does not permit functions in the SELECT list. The
only exceptions are built-in aggregate functions such as COUNT, which returns the number
of records in the query. But aggregate functions can’t be used in a query containing any other
fields in the SELECT list.

 Governor Limits
 Force.com prevents a single user from consuming more than its fair share of system resources.
This ensures a consistent level of system performance for all tenants. Limitations placed on
resource consumption are called governor limits. A few examples of governor limits are the
number of records that can be queried at one time, the amount of memory used by your code,
and the size of messages sent between Force.com and external hosts. Some governor limits vary
based on the type of licensing agreement you have in place with Salesforce.

ptg11524036

29Overview of Force.com’s Database

 SOSL

 SOSL provides full-text search capabilities across many objects and fields simultaneously. This is
an always inefficient and often impossible task in SOQL. SOSL statements can perform a search
over all records, or incorporate SOQL to narrow the search scope and achieve the best of both
worlds: structured and unstructured search. The SOSL expression in Listing 2.6 returns the IDs
of records in four custom objects that begin with the word java in any of their fields.

 Listing 2.6 Query in SOSL

 FIND 'java*' IN ALL FIELDS
 RETURNING Project__c, Resource__c, Assignment__c, Skill__c

 Data Integration

 Integration refers to the incorporation of the database into the rest of your application, the
business logic, and the user interface. If your application consists solely of stored procedures,
there is no integration; your code runs inside the database process and hits database objects
directly. More commonly, there are application servers that need to communicate with the
database.

 With Force.com, either you are coding “on the platform,” which is akin to writing stored proce-
dures, or you are developing a “composite application,” which executes somewhere else but

Orders

Id: 1

Id: 2

Id: 3

Id: 1
Line Items:

Id: 4

Id: 5

Id: 6

Id: 2
Line Items:

 Figure 2.1 Nested results of SOQL query

ptg11524036

30 Chapter 2 Database Essentials

integrates with Force.com data and logic. The following subsections describe how integrating
data in Force.com differs from traditional Web application development.

 Object-Relational Mapping

 In traditional Web application development, one of the most important integration technolo-
gies is Object-Relational Mapping (ORM). This layer of infrastructure maps data objects from
the database to and from the data structures in your program. Any ORM technology must be
well integrated into your development process, efficient at runtime, and flexible in order to
accommodate all data access patterns required by your application and allow for future schema
changes. Java developers might use Hibernate, Ruby has ActiveRecord, and so forth.

 With Force.com, the ORM layer is built in to the platform. Data objects, metadata objects, and
queries have direct representation in Apex code. When you create a new custom object, it’s
immediately accessible by name in Apex code. If you accidentally mistype the name of a field
in your new object, your code will not compile.

 For example, the snippet of Apex code in Listing 2.7 selects a single record from the Resource
object, updates the value of its Hourly Cost Rate field, and commits the updated record to the
database.

 Listing 2.7 Apex Code Snippet

 public void grantRaise(String resourceName, Decimal newRate) {
 Resource__c r = [select Id, Hourly_Cost_Rate__c
 from Resource__c
 where Name = :resourceName limit 1];
 if (r != null) {
 r.Hourly_Cost_Rate__c = newRate;
 update r;
 }
 }

 Note the use of an in-line SOQL query (in square brackets), the custom object as a first-class
object in code (Resource__c), and in-line data manipulation (update statement).

 Metadata in XML

 Metadata in Force.com is created using one of the platform’s Web-based user interfaces, the
Force.com IDE, or the Metadata API. Unlike SQL databases, Force.com does not use Data
Definition Language (DDL) but has its own XML schema for metadata. Listing 2.8 shows a
simple example of Force.com’s XML metadata.

ptg11524036

31Overview of Force.com’s Database

 Listing 2.8 Metadata XML for a Custom Object

 <?xml version="1.0" encoding="UTF-8"?>
 <CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
 <deploymentStatus>Deployed</deploymentStatus>
 <fields>
 <fullName>Start_Date__c</fullName>
 <label>Start Date</label>
 <type>Date</type>
 </fields>
 <label>Project</label>
 <nameField>
 <label>Project Name</label>
 <type>Text</type>
 </nameField>
 <pluralLabel>Projects</pluralLabel>
 <searchLayouts/>
 <sharingModel>ReadWrite</sharingModel>
 </CustomObject>

 This XML describes an object with a human-readable name of Project. It contains a single
custom field called Start Date, of type Date. The Sharing Model of ReadWrite means that
all users in the organization can edit the records in the Project object. Force.com provides a
Metadata API for importing metadata XML into the platform. This is how development tools
such as the Force.com IDE operate.

 Generated User Interfaces

 In the process of defining a custom object, described in the next section, you will see a number
of settings related to the visual appearance of your object. These settings help Force.com gener-
ate a user interface for manipulating the data in your object. From here on, this is referred to as
the “native” user interface, native meaning that it is built in to Force.com.

 Force.com’s native user interface is tightly integrated with your data model. The definitions of
your objects, fields, and relationships are combined with additional configuration settings to
create full-featured user interfaces that can perform create, read, update, delete (CRUD) opera-
tions on your data. Note that the concept of CRUD is also referred to as read, create, edit, delete
(RCED) in the Salesforce world.

 SOAP and REST APIs

 Force.com provides SOAP and REST APIs for accessing data from outside of its platform. Using
these APIs, you can run SOQL and SOSL queries, import millions of records at a time, modify
records individually or in batches, and query metadata.

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

32 Chapter 2 Database Essentials

 Working with Custom Objects

 This section describes how to create and manage custom objects in Force.com. This is an intro-
duction to the process, so you can experiment with your own objects and data. It starts with
instructions for getting your own Force.com Developer Edition account and gives a brief intro-
duction to the tools available for working with custom objects. The rest of the section covers
object creation and customization, field creation, entering and viewing data using the native
user interface, and additional database features.

 Force.com Developer Edition

 To get hands-on with Force.com development, you need a development environment.
Environments are known as organizations, or “orgs” for short. Orgs come in different shapes
and sizes based on the licensing agreement with Salesforce. Salesforce gives its Developer
Edition (DE) away free. DE orgs are full featured but have hard limits on the amount of storage
(5MB of data, 20MB of files) and number of users (two full users and three platform-only users).
When you are ready to test your application with production data and user volumes, license a
Force.com Sandbox or Force.com Enterprise Edition (EE).

 Tip

 Contact a Salesforce sales representative for more information about the different licensing
options for Force.com.

 Registration

 Visit http://developer.force.com with your Web browser. From this page, there is a link or
button to create a free DE account. Complete the sign-up form. Within a few minutes, two
emails are sent to the address you provide. The first email is a login confirmation containing a
temporary password and a link to log in. The second email is a welcome message to Force.com,
with links to resources for developers.

 Logging In

 Click the login link in the first email. Your browser is directed to a page that forces you to
change your password. If there is maintenance scheduled for your organization, you may need
to acknowledge it prior to the password change page. Passwords must be at least eight charac-
ters long and alphanumeric. Here, you also choose a security question and answer, as shown in
 Figure 2.2 . The security challenge is used in the event that you forget your password.

 At this point, you are logged in to your own Force.com organization.

http://developer.force.com

ptg11524036

33Working with Custom Objects

 Tools for Custom Objects

 Many tools are available that work with Force.com, created by Salesforce and independent
software vendors. But if you’re new to Force.com, it’s best to start with the free tools supported
by Salesforce. Unless noted otherwise, all tools are available from the DeveloperForce Web site
(http://developer.force.com). After you’re comfortable with the standard tools, explore the
range of solutions offered by the Force.com independent software vendor (ISV) community.

 Tools for Metadata

 Metadata is the description of a Force.com application, from the data model to the user inter-
face and everything in between. In this chapter, the focus is on the data model, and there are
three tools available from Salesforce for building it.

 Force.com App Builder Tools
 App Builder Tools are built in to the native Web user interface of Force.com. They are the
easiest and most full-featured tools for working with objects and many other features. When
new features are added to Force.com’s database, you’ll find them in the App Builder Tools first.
To use App Builder Tools, log in to Force.com and click Setup. In the App Setup area, click
Create, Objects.

 Figure 2.2 Force.com password change page

http://developer.force.com

ptg11524036

34 Chapter 2 Database Essentials

 Force.com Schema Builder
 The Schema Builder is a drag-and-drop interface for building and maintaining database
schemas. It renders objects and relationships in a standard entity-relationship diagram style.
The database for the Services Manager sample application, found later in this chapter, is built
with Schema Builder. To use Schema Builder, log in to Force.com and click Setup. In the App
Setup area, click Schema Builder.

 Force.com IDE
 The Force.com IDE is a plug-in to the Eclipse development environment. Its strength is devel-
oping Apex code and Visualforce pages and managing the metadata for larger deployments
involving multiple Force.com organizations. It provides some functionality for working with
custom objects, but the objects are presented in raw metadata XML, not in a friendly user
interface. For more information about the Force.com IDE and installation instructions, visit
 http://wiki.developerforce.com/page/Force.com_IDE .

 Tools for Data

 Data tools enable you to import and export data in bulk. They are usually used in a migration,
in which data from an existing system is loaded into Force.com.

 Force.com Data Loader
 Data Loader has the richest data import features of any Salesforce-provided data tool. To get
the Windows version login to Force.com, visit the Administration Setup area, and click Data
Management, Data Loader. There is also a community-supported Mac OS X version at
 http://www.pocketsoap.com/osx/lexiloader .

 Import Wizard
 The Import Wizard is a tool built in to the native user interface. It allows bulk data to be
imported as new or updated records of custom objects. To use it, log in to Force.com and click
Setup. In the Administration Setup area, click Data Management, Import Custom Objects. The
Import Wizard walks you through a seven-step process for getting the data from a comma sepa-
rated values (CSV) file into Force.com.

 Force.com Excel Connector
 Excel Connector is an add-in to Microsoft Excel that allows bidirectional data movement
between a worksheet and a Force.com object. You can fill an Excel worksheet with records from
a Force.com object. In the worksheet, you can change values by simply editing the correspond-
ing cells. The modified values can then be written back to the Force.com object. If you’re
an Excel power user, you will appreciate this tool. You can download it at http://wiki.
developerforce.com/page/Force.com_Excel_Connector .

http://www.pocketsoap.com/osx/lexiloader
http://wiki.developerforce.com/page/Force.com_IDE
http://wiki.developerforce.com/page/Force.com_Excel_Connector
http://wiki.developerforce.com/page/Force.com_Excel_Connector

ptg11524036

35Working with Custom Objects

 Object Creation

 The easiest way to understand the object creation process is to try it. Log in to Force.com using
your DE account and click Setup. In the App Setup area, click Create, Objects. Figure 2.3 shows
the screen as it appears in a new Force.com organization, with no objects yet defined.

 Figure 2.3 Custom objects in Force.com App Builder Tools

 To begin, click the New Custom Object button.

 Object Definition

 The first step of building the custom object is its definition screen. The inputs to this screen are
as follows:

 ■ Label— This label is a human-readable name of your custom object.

 ■ Object Name— This is a very important name. It’s how you refer to your custom object
when you write Apex code, formula fields, and validation rules. It’s automatically
populated from the label, but it can be set manually. Although not shown on this screen,
internally Force.com appends the Object Name with “__c” to designate it as a custom
object rather than a standard object.

ptg11524036

36 Chapter 2 Database Essentials

 Tip

 Avoid naming your custom object something overly terse or common, and avoid the names of
standard objects. It can be difficult to differentiate multiple objects with the same name.

 ■ Description— It’s good practice to set a description for your object if you’re working with
other developers.

 ■ Context-Sensitive Help Setting— This setting dictates how the Help for This Page link
in the corner of every page behaves on your custom object. By default, it shows the
standard Force.com help. You can configure it to display a custom Visualforce page
instead. Visualforce pages are discussed in Chapter 6 , “User Interfaces.”

 ■ Record Name Label and Format— Every object has a standard field called Name. It’s
used in the native user interface as a label for your record. Name can have an Auto
Number data type, which causes names to be automatically generated from a pattern, or
a Text data type with a maximum length of 80 characters. Name values are not required
to be unique.

 ■ Allow Reports— If checked, this custom object can participate in the reporting feature of
Force.com.

 ■ Allow Activities— If this is checked, users can associate calendar events and tasks to
records of your custom object. You can find the calendar and tasks features on the
Home tab.

 ■ Track Field History— If this option is checked, Force.com creates an additional object to
store changes to selected fields.

 ■ Deployment Status (in development, deployed)— If an object is in development status,
it’s hidden from the users in your org, except those with the Customize Application
permission. Deployed objects become visible to any user, as dictated by the security
configuration of the object and org.

 ■ Object Creation Options— Unlike the other options, which can be changed later,
these options are available only when a custom object is first created. Add Notes and
Attachments Related List to Default Page Layout allows external documents to be
attached to records of your custom object, like attachments on an email. Launch New
Custom Tab Wizard is a shortcut for building a custom tab at the same time as you
define your object.

 After you’ve clicked the Save button on the definition page and clicked through pages concern-
ing the object’s behavior in the user interface, the detail page of your new custom object
is shown. It contains a series of bordered boxes with titles. Each box contains configura-
tion options for a different aspect of the object. Most aspects are described in the following
subsections.

 Standard Fields

 Standard fields are automatically part of every object. They are used for platform-wide func-
tions. The Created By, Last Modified By, Name, and Owner fields help provide record-level
access control of your data. Data security is discussed further in Chapter 3 , “Database Security.”

ptg11524036

37Working with Custom Objects

 Custom Fields and Relationships

 Custom fields are created by you, the developer, to store data specific to your applications.
Custom relationships express associations between the records in a pair of objects, such as a
purchase order and its line items. Initially, your object does not contain any custom fields or
relationships. After you’ve added some, they are listed here and can be edited and deleted.

 Validation Rules

 Validation rules define what constitutes a valid record, preventing records that do not conform
from being stored in the database. When a validation rule is added, it applies to data coming
from anywhere: a bulk import process, a user interface, a Web service call from another appli-
cation. When validation rules are defined, they are shown in this list and can be edited and
deleted.

 Triggers

 Triggers are much like triggers in relational databases, except written in Apex code. They fire
before or after a data manipulation action such as insert, update, delete, and undelete. They
can inhibit the action or extend it by acting on other database objects, modifying data, or even
calling out to external Web services.

 Page Layouts

 A page layout brings together all the native user interface elements for a custom object. This
includes the buttons along the top and bottom of the screen, the fields displayed, and related
lists, which are records of child objects.

 Page layouts are assigned to profiles. This allows different user interfaces to be shown to differ-
ent types of users. For example, you need one user interface for entering a contact for a support
case, but a different one for entering job applicant information. Both end up as records in the
Contact object, but the user interfaces can appear very different.

 Search Layouts

 In this section, you can customize the display of your object in the native search user inter-
faces. Make a point of editing the Tab layout. It’s the most frequently used and worth customiz-
ing to save yourself time. The Tab layout displays recently viewed, created, or modified objects
on your custom tab. By default, it contains only the Name field.

 Standard Buttons and Links

 When a custom object is created, a native user interface is also created for that object to enable
CRUD operations without coding. The native user interface contains a collection of stan-
dard buttons, and this list allows you to override their behavior. With overrides, you can use
Visualforce to develop a custom user interface to be shown for actions that require special treat-
ment, such as the creation of a new record in your object.

ptg11524036

38 Chapter 2 Database Essentials

 Custom Buttons and Links

 This section allows the definition of one or more custom buttons to appear in the native user
interface for your object. For example, you might want to add a Verify button, which would
pop up a new window and allow the user to view the results of some analysis performed on the
record.

 Field Creation

 As in object creation, the easiest way to understand field creation is to try it. Return to your
custom object detail page and click the New button in the Custom Fields & Relationships
section. The first page of the New Custom Field Wizard prompts for field type. The data types
can be thought of in terms of seven categories:

 1. Text, Text Area, Text Area (Long), Text Area (Rich), Text (Encrypted)— Text fields are
varying lengths of Unicode text. Force.com does not allow fields with other encodings.
Text stores 1 to 255 characters, Text Area stores the same number of characters but allows
line breaks, and Text Area (Long) and Text Area (Rich) store up to 32,000 characters. The
Rich Text Area field allows images, links, and basic formatting information to be stored
in-line with the text. One limitation of both the Long and Rich Text Areas is that Force.
com’s full-text search feature looks at only the first 2,048 characters. The encrypted text
field stores up to 175 characters using the Advanced Encryption Standard (AES) algorithm
with a 128-bit master key.

 2. Picklist, Picklist (Multi-Select)— A picklist is a list of suggested values that is presented
to the user. Multi-select enables a user to select multiple values. Record Types can be used
to create multiple lists of suggested values for the same field, to be shown to different
types of users. Picklist values are not enforced at the database level without the addition
of a trigger or validation rule.

 3. Number, Percent, Currency, Geolocation— Number can store signed values from 1 to
18 digits long, decimal places included. Currency and Percent are also Numbers but add
type-specific formatting, such as a dollar sign. Geolocation stores a latitude and longitude
pair formatted as a decimal or in degrees, minutes, and seconds.

 4. Checkbox— Checkbox is a Boolean field. It stores a true or false value, and is represented
in the native user interface as a check box.

 5. Date, Date/Time— In the native user interface, dates are rendered with a calendar picker
component and times with a separate, time-masked field with AM/PM selector.

 6. Email, Phone, URL— These types are provided to enhance the experience in the native
user interface. For example, uniform resource locators (URLs) are clickable and open in a
new Web browser window.

 7. Relationship (Lookup, Master-Detail)— These define relationships between two objects.
They are covered in more detail in the subsection, “Relationship Fields.”

ptg11524036

39Working with Custom Objects

 After you’ve established the field type, the detail page is shown. The settings on this page are
described here. Note that not all settings are relevant to every data type.

 ■ Label— The label is the human-readable name of your field.

 ■ Field Name— Like Object Name, this is an important name. It’s the name used to refer to
your field in Apex code, formula fields, and validation rules. It’s automatically populated
from the label, but it can be set manually. Field names cannot contain spaces. Although
it’s not shown on this screen, internally Force.com appends the Field Name with “__c”
to differentiate it from standard fields.

 ■ Description— Use this text area to document the purpose of your field to other
developers.

 ■ Help Text— If you provide help text for your field, a small blue circle icon containing the
letter i is shown beside it in the native user interface. If a user hovers the mouse over this
icon, your help text is displayed.

 ■ Required— If this is checked, a record cannot be saved unless this field contains a value.
This applies to records created anywhere, in the native user interface, imported from
other systems, and programmatically.

 ■ Unique— Text and Number fields allow a uniqueness constraint to be applied. If this is
checked, new records must contain a unique value for this field, one that does not occur
in other records, or it cannot be saved. Like the Required attribute, this is enforced at the
database level.

 ■ External ID— Text and Number fields can be designated as External IDs. By default,
the only unique identifier on an object is the standard Id field. But if External ID is
checked, your custom field can be used to uniquely identify records. External IDs are also
searchable from the Search sidebar. Note that each object can have at most three External
ID fields.

 ■ Default Value— If no value is provided for this field in a new record, this optional
expression is evaluated and shown as a default value, but can be overwritten by the user.
The expression is written in the same language as formula fields and validation rules. It
can be as simple as a static value or a series of calculations performed on other fields.

 Relationship Fields

 Relationship fields can express one-to-one, one-to-many, and many-to-many relationships
between objects. Creating relationships keeps data normalized, but also adds to the complexity
of the data model, causing greater complexity in code and user interfaces that rely on it.

 There are two types of relationship fields: Lookup and Master-Detail. Lookup relationships
are the default choice. They are the most flexible and transparent in their operation. You can
create up to 20 of them on a single object, they maintain their own record of ownership, and
child records can be reassigned to a new parent. By default, deleting a related record clears the
value of the field referencing it. Optionally, the Lookup relationship can be defined to prevent
a related record from being deleted.

ptg11524036

40 Chapter 2 Database Essentials

 Master-Detail relationships are useful for enforcing mandatory relationships, in which a child
record cannot exist without its parent record. All child records in a Master-Detail relationship
must have a parent record specified. When the master record in a Master-Detail relationship is
deleted, all associated detail records are also deleted. Up to four nested levels of Master-Detail
relationships can be created, counting from the master object to the most deeply nested child
object. Master-Detail relationships have some other special behaviors, such as allowing aggrega-
tion of child records through roll-up summary fields, discussed later in this chapter.

 Tip

 When moving to Force.com from a relational database, resist the urge to create an object for
every table and expect to join them all together with relationships. Force.com has hard limits on
the distance between objects that can be joined together for purposes of user interface, report-
ing, formulas, and triggers. Queries on a child object can reference a maximum of five levels
of parent objects. In the reverse scenario, queries against a parent object can reference only a
single level of child objects. There are workarounds, such as using formula fields to consolidate
fields from distant objects, but keeping your object and relationship count low pays dividends
later in the development process.

 Table 2.2 summarizes the differences between Lookup and Master-Detail relationships.

 Table 2.2 Comparing Lookup and Master-Detail Relationships

 Lookup Relationship Master-Detail Relationship

 Child records exist independent of parent Child records cannot exist without parent

 Child records can always be reparented Child records can be reparented if the option
to do so is enabled when the relationship is
created

 Independent ownership Always owned by parent record

 One of three user-defined options: Deletion of par-
ent clears Lookup value (default), deletion of par-
ent is prohibited, or deletion of parent cascades to
delete children (custom objects only)

 Deletion of parent cascades to delete children

 No roll-up fields Roll-up summary fields supported

 Unlimited nesting, although limited by SOQL Up to four nested levels

 Additional Field Types

 Some field types have special behavior, different than simply storing a value. These are listed
here:

 ■ Auto Number— Most databases have an identity or sequence field, a field that
automatically increments itself when a new record is added. In Force.com, Auto Number

ptg11524036

41Working with Custom Objects

fields are read-only text fields with a maximum length of 30 characters. You define the
length, a display format used to generate values, and the starting number. For example,
if you define an Auto Number field with a display format of Project-{0000} and a starting
number of 100, the Auto Number field in your first record will contain a value of
Project-0100.

 ■ Formula— Formula fields are read-only fields that are calculated by Force.com based on
an expression you provide when defining the field. The output of a formula can be a
currency, date, date/time, number, percent, or text value.

 ■ Roll-Up Summary— Roll-up summary fields allow child records in a Master-Detail
relationship to be summarized and the result stored in the parent record.

 Entering and Browsing Data

 One of the happy consequences of building a database in Force.com is that you receive a full-
featured data maintenance user interface with near-zero development cost. It is the “native”
Force.com user interface. It allows users immediate access to your data with a consistent look
and feel, and helps developers visualize and test decisions related to database design.

 It’s good practice to use the native user interface to test your data model by creating records
with dummy values. This helps identify missing fields, nonintuitive page layouts, and addi-
tional validation rules needed. After your object contains some records, browse them using
Views and Search. Customize Views to show the optimal set of columns. Usable Views are
helpful later in the development process for troubleshooting data problems.

 Getting Started

 Salesforce often adds new features that users must opt in to use. For example, users must opt
in to features that involve significant changes to the user interface. Salesforce recently released
a faster, more powerful user interface for working with lists of records and for editing records
with fewer clicks. Before starting this section, check to make sure your org has these features
enabled. Go to the Setup, App Setup area, click Customize, User Interface, and then check the
Enable Enhanced Lists and Enable Inline Editing options; click the Save button.

 Entering Data

 Custom tabs are containers for developer-defined user interfaces. These tabs, such as the Home
tab, are displayed at the top of the page. Tabs are the gateway to the native list view and
CRUD user interfaces for an object and can also present entirely custom user interfaces built in
Visualforce.

 If you have not created a custom tab for your object, do so now by going to Setup and, in the
App Setup area, clicking Create, Tabs. Click the New button in the Custom Object Tabs section.
In the details page, select your custom object from the drop-down list, pick a tab style, and
optionally enter a description. Skip through the remaining pages, accepting the default values.

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

42 Chapter 2 Database Essentials

 To create a new record in your custom object, click the Create New drop-down on the left side
of the screen and select your object from the list. An edit screen is shown, as in Figure 2.4 ,
which shows editing a new record in the standard object named Contact. This screen is defined
by the page layout. Make note of things you don’t like as you enter test data and return to the
page layout to fix them. This process is identical for standard and custom objects.

 Figure 2.4 Creating a new record in the Contact object

 When your new record is saved, the page changes to a view mode. This is also controlled by
the page layout. If you’ve enabled Inline Editing, you can double-click the editable fields to
change their values.

 Browsing Data

 Your first encounter with a list of records is usually on the home page of your custom object.
Click your custom object’s tab, and you’ll see a section listing recently viewed records. It shows
only the Name of your records. To customize this list of recently viewed records to show more
fields, go to the custom object definition, Search Layouts section, and edit the tab layout to add
more fields. Figure 2.5 shows an example of the Contacts Home tab layout with Name, Account
Name, Title, Phone, and Email fields visible.

ptg11524036

43Working with Custom Objects

 Figure 2.5 Contacts Home tab

 Another way to browse data is a View. A View is a native user interface that displays the records
of a single object as a list. It includes such features as sorting, pagination, columns that can
be dragged to reorder, and the capability to delete and edit data in-line without switching
to another user interface. To define a View, you specify the list of fields to be displayed and,
optionally, filter criteria to restrict the list to a manageable size.

 To show a View on your own object’s data, click its tab and then click the Go button. This
displays the selected View, which is All by default. Unless you’ve already customized your All
View, it contains only the Name field. Customizing Views is another task, like building tabs
and page layouts, that can increase developer productivity, even if you don’t plan to use the
native user interface outside of administration. Figure 2.6 shows a custom object’s View.

 Additional Database Features

 This section introduces a set of features of the Force.com database that are unique to the way
the Force.com platform works. Their configuration and behavior build on the definition of
objects and fields, extending them to support more complex native user interfaces, calculations
performed on groups of records, and the storage of configuration data.

ptg11524036

44 Chapter 2 Database Essentials

 The following features are discussed in this section:

 ■ Roll-up summary fields— Roll-up summary fields are like formula fields that operate on
a group of records, calculating their sum, minimum, maximum, or a record count.

 ■ Dependent fields— Dependent fields enable the standard “cascading picklist” user
interface pattern, in which user selection in one picklist filters the available values in a
second.

 ■ Record types— Record types allow records in a single object to take on multiple
personalities in the native user interface. For example, the standard object Account is
designed to store information on businesses, but with minor adjustments can support
data on individuals as well. This can be accomplished with record types.

 ■ Custom settings— Custom settings store and manage user preferences, aspects of an
application that can be configured by users rather than hard-coded by developers.

 Roll-Up Summary Fields

 Summarizing data in SQL databases is a routine matter of invoking GROUP BY and an aggre-
gate function like SUM. Force.com’s ad hoc query functionality in SOQL provides data group-
ing and aggregation, but it is subject to limits regarding the number of records aggregated. For
the flexibility to obtain aggregate data regardless of data volume, Force.com requires that it be

 Figure 2.6 View of custom object

ptg11524036

45Working with Custom Objects

calculated incrementally, either by the database itself or in Apex code. As a result, it’s best to
plan for summary-level data as the database is designed.

 Roll-up summary fields are the mechanism for instructing the database that you’d like
summary data to be calculated without custom code. You specify the child object to summa-
rize, the function to apply to the child records, and filter criteria on the child records. The
database then takes care of keeping the roll-up summary values up to date as child records are
created, modified, and deleted. For example, given an Invoice Header object and Invoice Line
Item child object, you could use a roll-up summary field on the Invoice Header to maintain a
running count of invoice line items.

 Roll-up summary fields are added to objects using the same process as adding other types of
custom fields. There are additional options to define the summary calculation, which consists
of three parts:

 ■ Summarized object— A drop-down list contains the objects you are permitted to
summarize. This is restricted to child objects in a Master-Detail relationship with the
object you’re creating the roll-up summary field on. Lookup relationships are not
supported.

 ■ Roll-up type— Select the calculation to be performed on the child records and the
field of the child object to perform it on. The fields available in this list depend on the
calculation. If your calculation is Sum, the list contains fields of type Number, Currency,
and Percent. With Min or Max, you can also summarize Date and Date/Time fields.
Note that you cannot roll up other roll-up summary fields or formula fields that contain
references to other objects, merge fields, or functions returning dynamic values such as
TODAY and NOW.

 ■ Filter criteria— By default, all records are included in the summary calculation.
Alternatively, you can also specify one or more filter criteria to restrict the records
involved in the calculation. Build filter criteria by selecting a field to filter, the operator
to apply, and the value. If you add more than one criterion, the effect is additive. All
filter criteria must be satisfied for the record to be included in the summary calculation.

 After you have specified the summary calculation and saved the new field, Force.com begins
calculating the summary values on existing records. This can take up to 30 minutes. An icon is
displayed beside the field to indicate that the calculation is running.

 You can define at most ten roll-up summary fields per object. Make a point of creating them
toward the end of your database design process because they make it more difficult to change
your objects. For example, you can’t convert a Master-Detail relationship to a Lookup relation-
ship without first removing the roll-up summary fields.

 Dependent Fields

 Dependent fields are primarily used to define cascading picklists. Cascading picklists are a user
interface pattern in which the values in one picklist depend on the selection in another pick-
list. For example, a picklist for state/province might depend on another picklist for country.

ptg11524036

46 Chapter 2 Database Essentials

When a user selects a country, the state/province picklist is populated with a set of values that
make sense given the selected country. In Force.com, the first picklist is called the dependent
field, and the second is the controlling field. The controlling field can be a standard or custom
picklist (with at least 1 and fewer than 300 values) or a check box field, but cannot be a multi-
select picklist. The dependent field can be a custom picklist or multi-select picklist.

 A dependent field is an ordinary picklist field with an additional attribute to relate it to a
controlling field. To visualize the relationship between the fields, modify your object’s page
layout so that the controlling field appears above the dependent field. Then perform the
following steps to define the relationship between their values:

 1. Navigate to the Custom Field Definition Detail page for the dependent field.

 2. In the Picklist Options subsection, click the New link next to the label for Controlling
Field.

 3. Select the controlling field and click the Continue button.

 4. Use the grid to specify which values of the controlling field should be included in the
dependent field. Picklist values of the controlling field are shown as columns. Values of
the dependent field appear as rows. Double-click individual values to include or exclude
them or hold down the Shift key while clicking multiple values and click the Include
Values and Exclude Values buttons to make changes in bulk.

 Record Types

 Record types overload the native user interface behavior of a single object. This allows you to
get more mileage out of your existing objects or limit the complexity of a new data model.

 For example, Salesforce uses this feature in its CRM product. Person Accounts are a record type
of the Account object. Accounts ordinarily store information about businesses, but the Person
Account record type adapts Account to store information about individuals. Salesforce opted to
overload Account with a record type rather than creating an entirely new object.

 Before creating a separate object to represent every business entity, ask yourself if the entity
is truly new or merely a slight variation of another entity. Where you find slight variations,
consider using a single object to do the work of many. The single object contains a superset of
the objects’ fields. The record type of each record determines which variation of the business
entity is stored. Force.com consults the record type and the user’s profile to display the correct
page layout.

 Even if you don’t plan to use the native user interface, record types can expand the flexibil-
ity of your data model. By using record types, you gain an additional standard field called
 RecordTypeId . In custom user interfaces, you can use this to drive different functionality. Of
course, you can always add your own custom field to accomplish the same thing, but record
types force you to make your design explicit at the native Force.com level and provide tight
integration with native Force.com security.

ptg11524036

47Working with Custom Objects

 Creating a Record Type
 Record types are defined at the object level after an object is created. To manage Record types
for custom objects, go to the App Setup area and click Create, Objects; then find the section
called Record Types. For standard objects, find the standard object in the App Setup, Customize
menu, and within it, click Record Types.

 Every object has a default record type called Master. It contains the master list of values for
all picklist fields in the object. New record types are cloned from the Master record type if no
other record types exist, and given a name, label, and description. Normally, record types are
in an active state, which makes them available to users who are creating and editing records.
Deactivating a record type is required before it can be deleted.

 After a record type is saved, it enters an edit mode. Edit mode permits the maintenance of pick-
list values for the record type. The list of picklist type fields in the object is shown, with Edit
links beside each. These Edit links take you to a screen that allows picklist values to be custom-
ized. Here, you can select all, or a subset of the picklist values, and provide a custom default
value.

 This is just one way to manipulate the picklist values of a record type. When adding new pick-
list values in an object with more than one record type defined, you are asked which record
types they apply to. By default, new picklist values are added only to the Master record type,
leaving other record types unchanged.

 Custom Settings

 Custom settings are a special data storage feature designed for relatively simple, frequently
accessed data. The type of data stored in custom settings is ancillary, used to configure or
control your application rather than the operational data itself, which belongs in standard and
custom objects. For example, user preferences in a Java application might be stored in an XML
or properties file. In Force.com, they would be stored in custom settings. Once data is stored in
a custom setting, it’s readily accessible throughout the Force.com platform in Apex, Visualforce,
formula fields, validation rules, and Web Services API. As an example, a custom setting named
Expert might indicate whether a given user receives the default or advanced version of a user
interface.

 A custom setting is an object definition, much like a standard or custom database object. It
consists of a name, a type, and one or more fields. There are two types of custom settings: List
and Hierarchy:

 ■ List— The List is the simpler form, behaving like a database object except for the fact
that records are accessed one at a time, by unique name. For example, you might define
a custom setting with fields representing configurable options in your application,
and each named record representing a collection of those options, such as Test and
Production.

ptg11524036

48 Chapter 2 Database Essentials

 ■ Hierarchy— The Hierarchy type expands upon the List type, adding the ability to relate
data to organization, profile, and user. If a value is not provided for a given level, it
defaults to the levels above it. With Hierarchy types, you can create applications that
manage settings for individual users, but defer to a profile or organization-wide default
when necessary without storing and maintaining redundant, overlapping information.

 Using List Custom Settings
 The following steps describe how to build a simple custom settings object and manage the
values stored in it:

 1. Go to the App Setup area and click Develop, Custom Settings. This is where custom
settings are defined and their values maintained.

 2. Click the New button to define a new custom settings object. Label is the display name
for your object, Object Name is the name by which you’ll refer to it in programs. Enter
Config Setting as the Label and ConfigSetting as the Object Name. For Setting Type,
select List. Visibility controls how this setting behaves when packaged. Leave it as
Protected. Use the Description field to explain the purpose of your custom setting to
other developers in your organization.

 Tip

 It’s a good practice to follow a naming convention for your custom settings so that they can be
easily differentiated from custom objects. For example, append the word Setting to the end of
any custom setting name. The value of naming conventions will become more apparent when
you write Apex code that interacts with the database.

 3. Click the Save button. Your custom setting is now created and needs some fields and
data. Each custom setting can have up to 300 fields.

 4. In the Custom Fields section, click the New button to create a new field. Custom settings
fields use a subset of the data types available to custom object fields. They are Checkbox,
Currency, Date, Date/Time, Email, Number, Percent, Phone, Text, Text Area, and URL.
Select Checkbox for your field and click the Next button. For the field label, enter Debug.
The Field Name, used to refer to the field in code, is automatically populated. Click the
Next button.

 5. Click the Save button to finish your field definition.

 You’re ready to store values in your custom settings object. Force.com provides a standard user
interface for this purpose. Click the Manage button and then the New button. There is a field
for the Name of the setting record, which serves as a human-readable identifier for the record.
Following the name are the custom fields you’ve defined on the custom setting. In this case,
you have a single check box field named Debug. Enter Default for the name, check the Debug
box, and click the Save button.

ptg11524036

49Sample Application: Data Model

 Using Hierarchy Custom Settings
 Hierarchy type custom settings provide additional options when storing values. To see them
in action, create a new custom settings object called Hierarchy Setting with an object name
of HierarchySetting. Again, add a check box field named Debug. The default value of Debug
selected here is the organization-level setting, which applies if there are no values defined for a
user or profile.

 When you’ve finished creating the custom setting, add a new value to it. You are prompted
to set the value of the Debug field as with the List custom setting example. But there is an
additional system field called Location. Location determines at which level in the hierarchy
the setting applies. There are two options: Profile and User. Try to create two custom setting
records, one with Debug checked for the System Administrator profile and the other a user in
that profile with Debug unchecked.

 Caution

 There are storage limits on custom settings data. For example, in a Developer Edition organiza-
tion, you cannot store more than 2MB total in all of your custom settings. To view your current
storage usage and the storage limit for your organization, go to the App Setup area and select
Develop, Custom Settings.

 Sample Application: Data Model

 In this section, you’ll build the Force.com database for the Services Manager sample application
and import records into it. It begins with a discussion of design goals and a specification of the
Services Manager data model. The remainder of the section describes how to implement the
data model specification on Force.com and load sample data.

 Data Model Design Goals

 At a high level, the purpose of the Services Manager sample application is to staff consultants
on customer projects based on their skills, and bill the customers for the consultants’ time. This
means the Force.com data model must store and manage information about the consultants,
customers, projects, staffing assignments of consultants to projects, time spent on projects, and
the skills of the consultants. This data model forms the foundation of the Services Manager
sample application, implemented piecewise throughout this book, designed to illustrate features
of the Force.com platform.

 Two other, more tactical goals are described in the subsections to follow.

ptg11524036

50 Chapter 2 Database Essentials

 Optimized for Force.com Developer Edition

 A guiding principle of this book is to focus on features available in the free, Developer Edition
of the Force.com platform. Although it is possible to build a more realistic version of the
Services Manager, one that could form the basis of a production application, it is likely to
introduce dependencies on a premium version of the platform. The most notable example of a
design decision that impacts licensing cost is user authentication, and it is worth discussing in
depth.

 In a real-world implementation, each consultant in the Services Manager would be its own user
(a record in the standard object named User). This would enable that consultant to log in and
view only the information he or she has access to. This granular user identity, authentication,
and data access control (covered in Chapter 3) is one of the most valuable features of the Force.
com platform, so naturally it is not free for unlimited use. Salesforce charges per user for its
product.

 Rather than using the standard User object and being subject to license restrictions, the Services
Manager implementation is designed around the Contact object. There is no relevant limit on
the number of free Contact records, and they are easy to create, with no passwords or activa-
tion codes required.

 If you have a premium Force.com organization and would like to experiment with the User
object, it is a simple migration path from the Contact object. Create a Lookup field on the User
object, referring to the Contact object. That way, you can always restrict the Contact to the
corresponding User who is currently logged in to Salesforce.

 Leverage Standard Objects

 There are many advantages to using standard objects wherever possible. They are shared by
Salesforce’s CRM applications such as Service Cloud and Sales Cloud, so there are many special
features built in to the platform that you can benefit from. Also, if you plan to build or install
other applications in your Force.com environment, they likely also leverage these objects. It’s
much simpler for applications to interoperate and coexist when they share the same core data
objects.

 The Services Manager tracks data about consultants and the companies that hire them. This is
an excellent fit for the standard objects Contact and Account, respectively. They contain many
standard fields for such things as name, addresses, phone numbers, and email address, which
can be customized to meet the needs of any application. If the standard fields are not sufficient,
you can also add custom fields, the same types of fields you add to custom objects.

 Data Model Specification

 This section provides the blueprint for building out the data model. As you learn to use the
Schema Builder (described in the subsequent section) or an equivalent tool, refer back to this
section for the details of the objects, fields, and relationships needed for Services Manager.

ptg11524036

51Sample Application: Data Model

 The first five subsections cover the objects and their fields. Although relationships are displayed
alongside fields in Force.com’s user interface, they are kept intentionally separate from the
fields here. Instead, they are covered in the final subsection. It is easier to create relationships
when all of the objects being related to each other already exist.

 Contact

 In the Services Manager application, a Contact record represents a consultant, an employee of
the fictional professional services company. Contacts can also store information about a client
of the services company. Contacts contain basic information, such as first and last name, email
address, phone number, and mailing address. This is already captured by the standard Contact
object. Contacts also have information specific to services delivery, such as primary skill,
number of years of experience, education, and the hourly cost rate. The full list of custom fields
to add to the Contact object is shown in Table 2.3 .

 Table 2.3 Contact Custom Fields

 Field Name Type Type Options Description

 Active Checkbox Default Value: Checked If false, this consultant has
left the company or is other-
wise unavailable

 Education Text Length: 255 College(s) attended

 Highest Education
Level

 Picklist Values: High School, AA, BS, MS,
MA, PhD

 Most advanced degree
attained

 Home Office Text Length: 255 Office that this consultant
typically works out of and/or
lives nearest to

 Hourly Cost
Rate

 Currency Length: 16, Decimal Places: 2 Internal cost of resource, per
hour

 Industry Start Date Date Date started in the field

 Region Picklist Values: Unspecified, East, West,
Central

 Area in the country this con-
sultant works in

 Start Date Date Date started with consulting
company

 Years of
Experience

 Formula Return Type: Number,
Decimal Places: 0, Formula:
 FLOOR((TODAY() - Industry_
Start_Date__c) / 365)

 Calculated from Industry Start
Date

www.allitebooks.com

http://www.allitebooks.org

ptg11524036

52 Chapter 2 Database Essentials

 Project

 A project is a unit of work that the customer has contracted. It has financial attributes, such
as the number of hours allocated for its completion, the expected revenue, and how billing is
to be handled. It also has attributes for tracking its lifecycle, such as start and end date, status,
stage, and notes. Table 2.4 contains the list of fields in the Project custom object.

 Table 2.4 Project Fields

 Field Name Type Type Options Description

 Name Text Length: 80 Project name

 Type Picklist Values: Billable,
Non-Billable

 Type of project

 Start Date Date Date project begins

 End Date Date Date project ends

 Billable Hours Number Length: 7, Decimal
Places: 0

 Number of billable hours allo-
cated for this project, usually
specified in the SOW

 Consulting Budget Currency Length: 16, Decimal
Places: 2

 Amount budgeted for consulting
portion of this project

 Expense Budget Currency Length: 16, Decimal
Places: 2

 Amount budgeted for expenses

 Invoiced Checkbox Default Value:
Unchecked

 Has the customer been invoiced?

 Location Text Length: 255 Geographic location of this
project

 Project ID Auto Number External ID,
Display Format:
 Project-{00000} ,
Starting Number: 1

 Human-readable unique ID for
this project

 Notes Long Text Area Length: 32,000 General notes on the project

 Stage Picklist Values: Planned, In
Progress, Completed,
Canceled

 Stage of the project

 Status Picklist Values: Green,
Yellow, Red

 Status of the project

 Status Notes Text Area Explanation of the project status

ptg11524036

53Sample Application: Data Model

 Assignment

 Projects are staffed with resources by the creation of assignments. Assignments associate
a resource with a project for a specified period. Assignments contain a status, the role the
resource is performing on the project, information about the hours billed and remaining, and
expected and actual revenue. All Assignment fields are listed in Table 2.5 .

 Table 2.5 Assignment Fields

 Field Name Type Type Options Description

 Name Auto

Number

 Display Format:
 {MMDDYYYY}-{000} , Starting
Number: 1

 Assignment

 Start Date Date Date that the assigned resource
begins work on the project

 End Date Date Date that the assigned resource
finishes work on the project

 Currently
Assigned

 Formula Return Type: Text, Formula:
 IF(AND(Start_Date__c <=
TODAY(), End_Date__c >=

TODAY()), "Yes", "No")

 If true, today is between Start
Date and End Date

 Description Text Length: 255 Description of this assignment
(e.g., Design, Development)

 Hourly Cost Currency Length: 4, Decimal Places: 2 Internal cost of the assigned
resource

 Hourly Rate Currency Length: 4, Decimal Places: 2 Rate at which the assigned
resource is billed out

 Total Hours Number Length: 5, Decimal Places: 2 Number of hours to be worked
during this assignment

 Planned Cost Formula Return Type: Currency,
Decimal Places: 2, Formula:
 Total_Hours__c *
Hourly_Cost__c

 Expected cost of this assign-
ment, equal to Total Hours multi-
plied by Hourly Cost

 Planned
Revenue

 Formula Return Type: Currency,
Decimal Places: 2, Formula:
 Total_Hours__c *
Hourly_Rate__c

 Expected revenue from this
assignment, equal to Total
Hours multiplied by Hourly Rate

 Planned Margin Formula Return Type: Currency,
Decimal Places: 2, Formula:
 Planned_Revenue__c
- Planned_Cost__c

 Expected margin from this
assignment, equal to Planned
Cost minus Planned Revenue

ptg11524036

54 Chapter 2 Database Essentials

 Field Name Type Type Options Description

 Role Text Length: 255 Role of the resource on this proj-
ect (e.g., Developer, Instructor)

 Status Picklist Values: Tentative, Scheduled,
Closed

 Status of the assignment

 Skill

 To ensure that projects are staffed with qualified resources, the application must store informa-
tion about the skills of each resource. A skill contains a name, type, and numeric rating of the
competency level of the associated resource. Table 2.6 provides the list of fields in the Skill
entity.

 Table 2.6 Skill Fields

 Field Name Type Type Options Description

 Name Auto Number Display Format: Skill-{00000},
Starting Number: 1

 Skill name

 Notes Text Length: 255 Additional detail to back
up the rating

 Rating Picklist Values: 0 - None, 1 - Minimal,
2 - Below Average, 3 - Average,
4 - Above Average, 5 - Expert

 Proficiency of associated
Contact in this skill

 Type Picklist Validation Rule:
 ISPICKVAL(Type__c, '') ,
Values: Amazon Web Services, Apex,
Application Design, C#, Data Modeling,
Documentation, Facebook, Google
Data, GUI Design, Java, Perl, PHP,
Project Management, Ruby, Training

 Type of skill (e.g., Java),
nonempty value required

 Timecard

 As resources work on projects, they keep track of their time. The hours spent each day are
logged to a timecard. Each timecard represents a week of work on the project. Multiplying the
number of hours worked by the internal cost of the consultant produces a cost. You can find
the full list of fields in the Timecard custom object in Table 2.7 .

ptg11524036

55Sample Application: Data Model

 Table 2.7 Timecard Fields

 Field Name Type Type Options Description

 Name Auto
Number

 Display Format:
 {MMDDYYYY}-{00000} ,
Starting Number: 1

 Timecard name

 Billable Checkbox If true, hours in this timecard are
billable

 Sunday Hours Number Length: 2, Decimal
Places: 2

 Hours worked on Sunday

 Monday Hours Number Length: 2, Decimal
Places: 2

 Hours worked on Monday

 Tuesday Hours Number Length: 2, Decimal
Places: 2

 Hours worked on Tuesday

 Wednesday Hours Number Length: 2, Decimal
Places: 2

 Hours worked on Wednesday

 Thursday Hours Number Length: 2, Decimal
Places: 2

 Hours worked on Thursday

 Friday Hours Number Length: 2, Decimal
Places: 2

 Hours worked on Friday

 Saturday Hours Number Length: 2, Decimal
Places: 2

 Hours worked on Saturday

 Invoiced Checkbox If true, this timecard has been
invoiced

 Invoice Number Text Length: 255 Invoice number associated with
this timecard

 Invoice Date Date Date timecard was invoiced

 Status Picklist Values: Saved,
Submitted, Approved,
Rejected

 Status of this timecard

 Notes Long Text
Area

 Length: 32,000 Any comments on the timecard,
entered by the consultant

 Week Ending Date Last day in the week recorded by
this timecard (a Saturday)

ptg11524036

56 Chapter 2 Database Essentials

 Field Name Type Type Options Description

 Total Hours Formula Return Type:
Number, Decimal
Places: 2, Formula:
 Sunday_Hours__c +
Monday_Hours__c +

Tuesday_Hours__c +

Wednesday_Hours__c

+ Thursday_Hours__c

+ Friday_Hours__c +

Saturday_Hours__c

 Total number of hours worked this
week, equal to the sum of the
individual hours columns (Sunday
to Saturday)

 Summary of Data Relationships

 Table 2.8 lists the data relationships in the Services Manager and the Force.com relationship
types corresponding to them.

 Table 2.8 Relationships in Services Manager

 Parent Child

 Child Requires

Parent? Force.com Relationship Type

 Account Project No Lookup

 Timecard Assignment No Lookup

 Contact Skill Yes Master-Detail

 Project Timecard Yes Master-Detail

 Contact Timecard Yes Master-Detail

 Project Assignment Yes Master-Detail

 Contact Assignment Yes Master-Detail

 Figure 2.7 shows the same relationships in a diagram format.

 The two Lookup relationships in the Services Manager are between Account and Project,
and Timecard and Assignment. They are Lookup relationships because they are optional. An
Account does not require a Project, and a Project does not require an Account. An Assignment
does not require a Timecard.

 The remainder of the relationships are Master-Detail. In all of them, the child record requires
a parent record. For example, Timecard records cannot exist without a corresponding Contact
and Project. For mandatory relationships like this, Master-Detail is a good starting point
because referential integrity is enforced. If a Project record is deleted, all child Timecard records
are also deleted.

ptg11524036

57Sample Application: Data Model

 You might wonder why Contact and Skill are not a many-to-many relationship. It would be the
more normalized way to go. But with the simpler, single Master-Detail relationship, the only
repeated field is Skill Type. You can use a picklist field to keep users working from the same
list of valid skills and a validation rule to increase data integrity. If Skill had a larger set of its
own attributes and they could not be expressed as picklists, it would be a good candidate for a
many-to-many relationship.

 You should be aware of the following limitations of Master-Detail relationships:

 ■ Force.com supports a maximum of four levels of cascading Master-Detail relationships. So
a child object in a Master-Detail relationship can be the parent of another Master-Detail
relationship, and so on. The four-level limit in genealogical terms means that a child
can have a great-grandparent object but not a great-great-grandparent. The canonical
example of cascading Master-Detail is the purchase order: A purchase order contains one
or more line items, and each line item contains one or more line item details.

 ■ A single object cannot be the child in more than two Master-Detail relationships. When
an object is the child of two Master-Detail relationships, that object is referred to as
a junction object. It joins two parent objects in a many-to-many relationship. In the
Services Manager data model, Assignment and Timecard are junction objects.

 In Force.com as in any technology, there are many ways to do the same things, some better
than others. Given this first cut of the Services Manager data model, these restrictions on
Master-Detail do not seem to be a problem. Incidentally, all the reasons that Master-Detail

Account

Skill

Assignment

Project

Contact

Timecard

Standard object

Custom object

Master-Detail relationship

Lookup relationship

 Figure 2.7 Relationship diagram

ptg11524036

58 Chapter 2 Database Essentials

relationships were chosen can be also satisfied using Lookup fields in conjunction with other
Force.com features, to be discussed in later chapters.

 Implementing the Data Model

 This section walks through the creation of the Services Manager data model in Force.com
using Force.com App Builder Tools and Schema Builder. This includes a custom application to
contain the user interface components, four custom objects, and the fields and relationships on
both the custom and standard objects.

 To begin, log in to your DE account and click Setup.

 Creating a Custom Application

 It’s a good practice to define your custom application first so that you can add tabs to it as you
build them. The following steps describe how to create a custom application, assign its tabs,
and determine which users can see it:

 1. In the App Setup section, click Create, Apps. A list of applications is displayed. Ignore the
built-in applications. Most come with the DE account and cannot be removed. Click the
New button.

 2. Enter a label for the application, a name, and a description, and then click the Next
button. The label is the human-readable label for the application, displayed to users.
Name is an internal name, used by Force.com at the API level.

 3. Optionally, select an image to be displayed as the logo for your application. This image is
shown in the upper-left corner when your application is active. When you’re done, click
the Next button.

 Tip

 To prepare an image for use as an application logo, first go to the Documents tab and click
the New button. Check the Externally Available Image check box, enter a name to identify the
image, and click the Browse button to locate a file on your computer. Click the Save button to
upload the image.

 4. This screen is for selecting the tabs to be included in the custom application. Home tab
is a system-provided tab included in every application and cannot be removed. There are
no tabs defined for the application yet, so do nothing here. Click the Next button.

 5. You can restrict access to your application by profile, a grouping of user permissions
discussed in Chapter 3 . For now, grant access to System Administrator by clicking the last
check box in the Visible column. Then click the Save button.

 You are returned to the list of applications, but it now contains your new application. If you
activate your application by selecting it from the list in the upper-right corner drop-down,
you’ll see that it contains a single tab, the Home tab.

ptg11524036

59Sample Application: Data Model

 Creating a Custom Object

 The following steps define the custom object for Project:

 1. In the App Setup section, click Schema Builder. Initially, all objects, standard and custom,
are shown on the canvas. System objects, a subset of standard objects, are not shown.

 2. Click the Clear All link to hide all objects from the canvas. This makes it easier to focus
on the task.

 3. Click the Elements tab. Drag the Object item from the palette on the left onto the
canvas. The dialog in Figure 2.8 is shown to capture the details of the new object.

 Figure 2.8 Create New Object dialog

 4. Enter Project for the Label and Projects for the Plural Label. The Object Name defaults to
Project. Enter a one-line description of the object in the Description field. Enter Project
Name for the Record Name Label, and leave the data type Text. Check Allow Reports,
Allow Activities, and Track Field History; then click the Save button.

 5. Now that the object has been created, it’s time to create the fields. Start with the Type
field. It is a picklist field, so drag a picklist from the palette on the left to the canvas,
dropping it directly onto the Project object.

 6. In the resulting dialog, enter Type for the label. When your cursor exits the label, the
Field Name is automatically populated. For the list of values, enter Billable. Press Enter

ptg11524036

60 Chapter 2 Database Essentials

to start a new line, and then enter Non-Billable. Click to enable the Use First Value as
Default Value option. Click the Save button. You should see the Type field added to the
top of the Project object.

 Repeat steps 5 and 6 until all the fields of Project, listed in Table 2.4 , are created. There will be
different options in step 6 depending on the type of the field.

 At this point, you have finished defining the first custom object of the Services Manager sample
application. To create the remainder of the objects, follow the same steps.

 Note

 A few of the objects require that the standard field Name be changed from its default type (Text
of length 80) to an Auto Number type. This cannot be done within the Schema Builder. Instead,
visit the App Builder Tools (Setup, Create, Objects), click the object, click the Edit link beside
the standard Name field, and proceed to set the type to Auto Number.

 Creating Relationship Fields

 The following steps create the Lookup relationship between Project and Account:

 1. In the Elements tab in Schema Builder, drag the Lookup relationship type from the
palette. Drop it onto the child object. In this case, the child object is Project.

 2. In the dialog, enter the Field Label and Field Name. This is typically the name of the
parent object. For the Project-Account relationship, the name is Account.

 3. In the Related To drop-down list, select the parent object and then click the Next button.
The parent object is Account. The Child Relationship Name and Related List Label are
automatically set. The dialog should look like Figure 2.9 .

 4. Click the Save button to create the relationship field. A line will indicate the new
relationship between the two objects. The fork symbol at one end of the line indicates
the child object. In this case, the fork appears on the Project side.

 Repeat these steps until all the Lookup relationships listed in Table 2.8 are created. The steps to
create Master-Detail relationships are slightly different. The following steps create the Master-
Detail relationship between Project and Timecard:

 1. In the Elements tab in Schema Builder, drag the Master-Detail relationship type from the
palette. Drop it onto the child object. In this case, the child object is Timecard.

 2. In the dialog, enter the Field Label and Field Name. This usually refers to the parent
object. In the Project-Timecard relationship, the name is Project.

 3. In the Related To drop-down list, select the parent object and then click the Next button.
The parent object is Project. The Child Relationship Name and Related List Label fields
are automatically set, in this case to Timecards. The dialog should look like Figure 2.10 .

ptg11524036

61Sample Application: Data Model

 Figure 2.10 Create Master-Detail Field dialog

 Figure 2.9 Create Lookup Field dialog

ptg11524036

62 Chapter 2 Database Essentials

 4. Click the Save button to create the relationship field. A line will indicate the new
relationship between the two objects. The fork symbol at one end of the line indicates
the child object. In this case, the fork appears on the Timecard side.

 As you build the relationships, the visual representation in Schema Builder should resemble the
diagram in Figure 2.7 .

 Tip

 One of the most important parts of creating relationships is making sure that they are created
on the correct object. In the one-to-many relationship, the “one” side is the parent, and the
“many” side is the child. Always create the relationship field on the child, relating it to the par-
ent. You can always delete the field and start over if you make a mistake.

 Repeat these steps for each relationship in Table 2.8 . When you’re done, visit the list of custom
objects (Setup, Create, Objects). Figure 2.11 shows the list. Compare it with yours, paying
particular attention to the values in the Master Object column. This column is showing the
Master-Detail relationships. There should be a total of five master objects listed across all of the
relationships.

 Figure 2.11 Services Manager custom objects list

ptg11524036

63Sample Application: Data Model

 Creating a Validation Rule

 The Skill object requires a new validation rule to enforce that Skill Type field contains a
nonempty value. Although this requirement could be configured at the user interface level via
a page layout, placing it on the object itself ensures that it is applied consistently across all user
interfaces and other channels for data input, such as importing tools. It doesn’t make sense to
have a Skill record without a Skill Type. Follow these steps to create the validation rule:

 1. Go to the Objects list in App Builder Tools (Setup, Create, Objects) and click the Skill
object.

 2. Find the Validation Rules heading and click the New button.

 3. Set the name to Type.

 4. The code in Listing 2.9 checks for an empty picklist value. Enter it in the Error Condition
Formula text area.

 Listing 2.9 Error Condition Formula for Skill Type Field

 ISPICKVAL(Type__c, '')

 5. In the Error Message text area, enter “Type must contain a value.”

 6. Click the Save button to create the validation rule.

 Creating a Custom Object Tab

 Custom object tabs are the gateway to all the native user interface functionality for manag-
ing data in your custom object. The following steps create a custom object tab for the Project
object:

 1. Go to the Objects list in App Builder Tools (Setup, Create, Tabs) and click the New button
in the Custom Object Tabs heading.

 2. The New Custom Object Tab Wizard is now displayed. Select the Project object from the
Object field. Click the Lookup icon (magnifying glass) to select a style for the tab and
then click the Next button.

 3. Visibility of this tab by profile is easy to change later, so leave this screen unchanged and
click the Next button. This means the new tab is visible for all profiles.

 4. In the Add to Custom Apps screen, click the Include Tab check box at the top to uncheck
it for all applications, and then check it for Services Manager only. Click the Save button
to complete the creation of the custom tab.

 Repeat these steps to create custom object tabs for all four custom objects in the Services
Manager.

ptg11524036

64 Chapter 2 Database Essentials

 Setting Field Visibility

 New custom fields are hidden by default. They are not visible in user interfaces in Force.com,
and they are also invisible to external tools such as Data Loader. To start using these fields, you
must first make them visible.

 Perform the following steps to make the custom fields in Contact visible:

 1. In the Administration Setup area, click Manage Users, Profiles.

 2. Click the System Administrator profile.

 3. Scroll down to the heading Field-Level Security, and click the View link beside the
Contact object.

 4. Click the Edit button, and enable all of the check boxes in the Visible column.

 5. Click the Save button to commit your changes to the object’s field visibility.

 Repeat these steps for the other four objects.

 Importing Data

 In this section, you will import sample project and resource data into the Force.com database
using the Data Loader tool. This process is divided into three stages: preparing the data, import-
ing it, and then verifying it visually using the native user interface. This is certainly not the
only way to import data into Force.com, and probably not the easiest. But it employs a free,
widely used, fully supported tool from Salesforce that can scale up to support large numbers of
records and complex objects.

 Data Preparation

 Data Loader operates on CSV files. The first line of the file contains a header listing the
columns present in the data. The following lines are the body of the data, with each line a
record, values separated by commas. You should have access to Microsoft Excel or an equiva-
lent tool for working with CSV files.

 To begin, export CSV files for the Project and Contact objects. Because there is no data yet in
the database, these files will be empty except for the header line. This serves as a template for
the import file, providing an example of the data layout expected by the Data Loader.

 To export, perform the following steps:

 1. Launch Data Loader. Click the Export button.

 2. Enter your username and password and click the Log In button. Make sure your password
includes a Security Token appended to it. If you have not yet obtained a Security Token,
log in to Force.com using your Web browser; navigate to Setup, My Personal Information,
Reset My Security Token; click the Reset Security Token button; and get the Security
Token from the email sent to you by Force.com. Click the Next button when your login
is completed.

ptg11524036

65Sample Application: Data Model

 3. Select the Project object to export. Click the Browse button to name the export file and
specify its directory. Name the file the same as the object name, and save it where you’ll
readily find it, such as the desktop. Then click the Next button.

 4. Click the Select All Fields button. Then remove the system fields, which are Id, OwnerId,
IsDeleted, CreatedDate, CreatedById, LastModifiedDate, LastModifiedById, and
SystemModstamp. Click the Finish button.

 5. Answer Yes to the confirmation dialog. The export is performed, and a summary dialog
is shown. Click the OK button to dismiss it. You now have a CSV file on your desktop
containing a single line with the names of the exported fields.

 Repeat this process for the Contact object, but this time remove all the standard fields in step 4
except for Id.

 You should have two files on your desktop. Create a new worksheet and import contact.csv
into it. Repeat this for project.csv .

 Listing 2.10 is a sample import file containing five Contact records. In the first column, use
the actual Id values from your contact.csv instead of the values shown here. Listing 2.11
contains five sample Project records. Make sure you save the Project and Contact Excel work-
sheets as two separate CSV files when you’re done. (Note: Only a certain number of code char-
acters will fit on one line on the page. The arrow symbol indicates where code that should be
entered as one line is wrapped to the next line.)

 Listing 2.10 CSV Import File for Contact

 ID,ACTIVE__C,EDUCATION__C,HIGHEST_EDUCATION_LEVEL__C,
 ➥HOURLY_COST_RATE__C,HOME_OFFICE__C,REGION__C,START_DATE__C,
 ➥INDUSTRY_START_DATE__C,YEARS_OF_EXPERIENCE__C
 003i0000008TTBqAAO,TRUE,
 ➥University of Chicago,MS,100,Chicago,Central,2/3/2003,6/1/1983,
 003i0000008TTBrAAO,TRUE,St. Edwards
 ➥University,BS,50,Austin,Central,5/15/2006,5/15/2006,
 003i0000008TTBsAAO,TRUE,Cascade College,BS,40,Portland,West,
 ➥7/1/2008,1/1/2005,
 003i0000008TTBtAAO,TRUE,University of
 ➥Arizona,PhD,120,Tucson,West,10/15/2004,3/1/1992,
 003i0000008TTBuAAO,TRUE,Fordham University,MS,125,New
 ➥York,East,6/28/2007,5/1/1979,

 Listing 2.11 CSV Import File for Project

 NAME,TYPE__C,START_DATE__C,END_DATE__C,BILLABLE_HOURS__C,
 ➥CONSULTING_BUDGET__C,EXPENSE_BUDGET__C,INVOICED__C,LOCATION__C,
 ➥PROJECT_ID__C,NOTES__C,STAGE__C,STATUS__C,STATUS_NOTES__C
 GenePoint,Billable,1/12/2015,,800,

ptg11524036

66 Chapter 2 Database Essentials

 ➥200000,20000,FALSE,"Mountain View, CA",
 ➥,Phase 2,In Progress,Green,
 Grand Hotels & Resorts Ltd,Billable,2/16/2015,,100,
 ➥30000,0,FALSE,"Chicago, IL",
 ➥,,In Progress,Green,
 United Oil & Gas Corp.,Billable,2/9/2015,,500,
 ➥75000,10000,FALSE,"New York, NY",
 ➥,,In Progress,Green,
 Burlington Textiles Corp of America,Billable,2/2/2015,,200,
 ➥40000,5000,FALSE,"Burlington, NC",
 ➥,,In Progress,Green,
 Express Logistics and Transport,Non-Billable,3/1/2015,,0,
 ➥0,0,FALSE,"Portland, OR",
 ➥,Presales,In Progress,Green,

 Data Import

 Now that the data is prepared, you’re ready to import it. Launch Data Loader again, log in, and
then follow these steps:

 1. From the File menu, select Update.

 2. Select Contact from the list of Salesforce objects.

 3. Click the Browse button and locate your contact.csv file, and then click the Next button.

 4. The file structure is verified, and a small dialog is displayed showing the number of records
contained in the file. Check to make sure that this matches the number of records you
expected. Click the OK button to continue.

 5. The mapping dialog takes columns from your file and matches them with fields in the
Force.com object. Click the Create or Edit a Map button.

 6. The easiest way to create the mapping is to click the Auto-Match Fields to Columns
button. Because the import files were actually once export files, the columns should
match perfectly. Figure 2.12 shows the result of this mapping. All the available Force.
com fields except for OwnerId were mapped to columns of the CSV file. The YEARS_OF_
EXPERIENCE__C column has no mapping because it is a Formula field and cannot be
modified. Click the OK button to continue.

 7. The new mapping is copied to the current mapping screen. Click the Next button.

 8. Click the Browse button to locate a directory to save the results of the import. Data Loader
creates two files, one containing errors and another containing success messages. Click the
Finish button to begin the import and click Yes to confirm.

 9. A dialog is shown with the results of the import. If you received errors, click the View
Errors button to examine them, fix your import file accordingly, and try the import again.

 Repeat this process for project.csv .

ptg11524036

67Sample Application: Data Model

 Data Verification

 Data Loader outputs a CSV file containing the records successfully imported. But a more
friendly way to look at the successfully imported data is to log in to Force.com and browse the
records using the native user interface.

 After you log in, select the Services Manager application from the application drop-down list
in the upper-right corner of the screen. It contains six tabs, one for each of the custom objects
defined in this chapter plus the standard Accounts and Contacts tabs. Click the Contacts tab
and then click the Go button to display the view named All Contacts, which contains all the
records of the Contact object.

 You should see a list of the contact records you just imported. By default, only the names are
shown. You can modify this view to show more fields by clicking the Edit link to the left of the
Create New View link and then adding fields in the Select Fields to Display section. Figure 2.13
shows a modified All Contacts View.

 Figure 2.14 shows the detail of an individual Contact record. Verify that the currency and dates
imported correctly. Notice that the number of years of experience was calculated from the
Industry Start Date field.

 Figure 2.12 Column-to-field mapping for contact.csv

ptg11524036

68 Chapter 2 Database Essentials

 Figure 2.14 Contact record detail

 Figure 2.13 Modified All Contacts View

ptg11524036

69Summary

 To complete your rounds, browse to the Projects tab. Manually associate each Project with a
parent Account of your choice, and verify that all the field types were imported correctly.

 Summary

 This chapter engaged you with the Force.com database in areas essential for application devel-
opment. The skills covered in this chapter should enable you to build various data-driven
applications, all through configuration rather than coding. Here are some key points to take
forward:

 ■ The Force.com database is not a standard relational database. It’s a logical database based
on Objects and Fields, like Tables and Columns but tuned for business applications and
integrated into every feature of the platform.

 ■ Custom objects are the backbone of development in Force.com. By defining them and
their fields, you are also defining a user interface that is programmatically generated by
Force.com. This interface allows data to be entered and browsed without coding, while
preserving the data integrity called for in your object definition.

 ■ Services Manager consists of four custom objects and leverages two standard objects:
Account and Contact.

ptg11524036

This page intentionally left blank

ptg11524036

 3
 Database Security

 For many developers, securing an application is the drudge work left after the fun and challenging
development work is done. The good news is that Force.com makes security relatively painless, whether
you think about it before, during, or after an application is built. The concepts of user identity, data
ownership, and fine-grained access control are baked into the platform, requiring configuration rather
than coding in most cases.

 You might wonder why this chapter is about only database security rather than being a general discus-
sion of security. After all, Force.com is more than a database. The reason is that the database is the
center of Force.com development. Just as object definitions are leveraged throughout the platform to
construct native user interfaces and strongly typed procedural code expressions, data security measures
are equally pervasive.

 This chapter contains the following sections:

 ■ Overview of database security— Take a high-level view of the database security features
available in Force.com and how they interact to protect your data.

 ■ Object-level security— Get in depth on the methods for protecting individual data objects and
their fields.

 ■ Record-level security— Learn how to control access to individual records within your Force.com
database.

 ■ Sample application— Walk through the design and implementation of the security model for
the Services Manager.

 Overview of Database Security

 Force.com provides a multilayered approach to data security. Each layer secures data using a
different approach, and the layers build on each other to provide a deep, configurable defense.
 Figure 3.1 identifies the layers of security and their relationship to data and other layers.

ptg11524036

72 Chapter 3 Database Security

Object-Level Security
(Profiles, Permission Sets)

Record-Level Security
(Organization-Wide Defaults)

(Sharing Reason)

Object

Field-Level
Security

 Figure 3.1 Security architecture

 The box enclosing the Object represents object-level security, which is provided by profiles and
permission sets. A profile is a unit of Force.com metadata used to group users with common
data access requirements. It contains a set of permissions for every object defined in the Force.
com organization. These permissions determine whether users belonging to the profile are
authorized to read, create, edit, and delete records of each object. Also within the profile are
rules determining access to individual fields of an object. Fields can be hidden entirely or
defined as read-only directly in the profile or in page layouts.

 Permission sets contain the same permission-related metadata as profiles, but a user can be
assigned to many of them at once. In contrast, a user is assigned to a single profile at a time.
Permission sets are generally used to override profiles on an individual user basis.

 Record-level security is layered on top of object-level security. It further restricts access to data
based on the concept of record ownership. But it can never override object-level security.
Organization-wide defaults define the default, most restrictive sharing behavior of each object,
and sharing reasons create exceptions to this default behavior, granting access to specific
groups of users.

 Another way to think about Force.com security features is to imagine them as a funnel, as
shown in Figure 3.2 . Requests for data enter the top of the funnel and descend, filtered through
successive layers of security technology. If the requests survive until the bottom of the funnel,
they have passed security clearance and are granted.

ptg11524036

73Overview of Database Security

Object Permissions

Field Accessibility

Sharing Model

Sharing Reasons

?Data Request

(User, Action, Object, Field, Record)

 Figure 3.2 Security architecture as a funnel

 The four filters in the funnel are described here:

 1. Object permissions— At the top of the funnel, the data request is evaluated against
the object permissions. They ensure that the requesting user is authorized by its profile
to take the desired action on this object. The solid line under this level indicates that
requests denied at this point stop moving through the funnel.

 2. Field accessibility— The requesting user’s profile is consulted again to determine whether
fields are included in the request that are read-only or hidden.

 3. Sharing model— If the user is not the owner of this record or otherwise privileged with
an administrative profile, organization-wide defaults are applied. These defaults designate
records of each object as private, public with Read and Write access, or public with read-
only access. In a slight break of the funnel concept indicated by the dashed line, if the
sharing model prohibits access, the request has one more chance to be granted through
exceptions called sharing reasons.

ptg11524036

74 Chapter 3 Database Security

 4. Sharing reasons— Sharing reasons override the organization-wide defaults. The owner
of the requested record is matched against a list of sharing reasons relevant to its group
affiliation. If a sharing reason is found, access is granted. Groups are defined as simple
lists of users and other groups or as a hierarchy, allowing permissions of subordinates to
be inherited by their superiors.

 Object-Level Security

 Object-level security is governed by the profile and permission sets assigned to the user. Profiles
control data access for a group of users on the level of objects and fields. Permission sets also
control data access at the object and field level, but are designed to maximize reuse and flexibil-
ity. This section describes profiles and permission sets and how they are configured.

 Profiles

 Profiles are the primary way to customize the Force.com user experience. They contain a large
number of settings to control the user interface and data security of your organization. Users
are assigned to profiles based on the tasks they need to perform in your system.

 The two types of profiles are standard and custom. Standard profiles are provided with Force.
com and cannot be renamed or deleted, although they can be reconfigured. Custom profiles
have the same functionality as standard profiles but can be named. They can also be deleted if
no users are assigned to them.

 To manage profiles, click Setup, and in the Administration Setup area, click Manage Users,
Profiles. In the realm of data security, the two primary sections to focus on are Administrative
Permissions and Object Permissions.

 Tip

 Make sure Enhanced Profile List Views and Enhanced Profile User Interface options are enabled
for your organization. The Enhanced Profile List Views feature allows up to 200 profiles at a
time to be compared and modified easily, with far fewer clicks than the default user interface.
The Enhanced Profile User Interface organizes profile settings by common administrative tasks
and makes them searchable. To enable these features, click Setup, and in the App Setup area,
click Customize, User Interface.

 Administrative Permissions

 Two administrative privileges in a profile trump all other security features in Force.com: Modify
All Data and View All Data. Users of a profile with these permissions can modify and view all
records of all objects, overriding all Force.com security measures. These permissions are power-
ful, so grant them with extreme care in a production environment. Developers need these

ptg11524036

75Object-Level Security

permissions to work with tools such as the Force.com IDE, but this applies only in a sandbox or
development environment.

 Object Settings

 Object permissions are divided into two sections: one for standard objects and another for
custom objects. They have identical functionality. Note that object permissions cannot be
edited on standard profiles. Figure 3.3 shows the section of a custom profile that defines object
permissions.

 Figure 3.3 Configuring object permissions on a custom profile

 Each object name is followed by a list of its permissions. The permissions are described in the
following list:

 ■ Read— The Read permission allows users to view records of this object.

 ■ Create— The Create permission permits Read access and the addition of new records to
the object.

 ■ Edit— The Edit permission allows records in this object to be read and modified, unless
overridden by field-level permissions.

ptg11524036

76 Chapter 3 Database Security

 ■ Delete— The Delete permission enables users to read, edit, and remove records from this
object. Deleted records are moved to the Recycle Bin, where they can be undeleted or
permanently erased.

 ■ View All— The View All permission is like the systemwide View All administrative
permission but scoped to a single object. It’s designed for use in exporting data because
it circumvents other security features of the platform, ensuring that all records are
accessible.

 ■ Modify All— Like View All, the Modify All permission is intended for bulk data
operations such as migration and cleansing. It allows users to modify all fields of all
records in this object, overriding every other security measure.

 New custom objects initially have all permissions disabled for all profiles, except those with
View All Data or Modify All Data administrative permissions. This platform behavior of default-
ing to the most secure configuration ensures that your data is not unintentionally exposed.

 Licensing

 Profiles are associated with a user license. Licenses are how Salesforce charges for the Force.com
platform when you’re ready to go into production with an application. Salesforce has many
license types to provide flexibility in pricing, including low-priced options for external custom-
ers and partners known as “portal licenses,” but the most basic licenses are Salesforce and
Salesforce Platform. The Salesforce Platform license allows full use of Force.com but disables
the business domain-specific functionality, such as CRM or Sales Force Automation (SFA). For
example, a Salesforce license grants you the use of the Opportunity and Case objects, but a
Salesforce Platform license does not. Sometimes even infrastructure features are downgraded.
For example, profiles for a full Salesforce license can delegate administration on standard and
custom objects. The Salesforce Platform license limits this feature to custom objects only.

 Planning ahead pays in regard to licensing Force.com. If you are sure you do not need the extra
features of the Salesforce license, select the Salesforce Platform license for your profiles. This
cuts down on the number of objects and features you see during development and prevents
you from accidentally referencing one of them. Also, in order to assign a user to a profile, that
user must have a user license that matches the profile. Your custom profile cannot be associ-
ated with a different license after it has been created.

 Permission Sets

 Permission sets are a powerful complement to profiles. They contain the same user inter-
face and data security settings as profiles, but are designed to address situations in which the
settings do not apply to a large enough population of users to justify the use of a profile, or
there are too many valid combinations of settings to create a profile for each one.

 For example, if one special sales rep was allowed to tentatively staff consultants to projects,
he or she would require the permissions resulting from a partial combination of the Sales Rep
profile and the Staffing Coordinator profile. It is not possible to combine profiles or partially

ptg11524036

77Object-Level Security

apply them, so without permission sets you would need to create a whole new one-off profile
for this situation. Permission sets provide an elegant, maintainable solution. You would create
a permission set to grant access to the Assignment object only. The special sales rep would get
assigned to this permission set, leaving his or her profile unchanged.

 To manage permission sets, click Setup, and in the Administration Setup area, click Manage
Users, Permission Sets. The overview page of a permission set is shown in Figure 3.4 . It provides
links to all of the configurable areas of a permission set. They are divided into settings specific
to applications and settings that apply to all applications. After a permission set is created,
it can be assigned to users using the related list on the user page labeled Permission Set
Assignments.

 Figure 3.4 Permissions set overview

 Field-Level Security

 Security of fields is determined by a combination of the profile and the page layout. The more
restrictive of the two always takes precedence. The two ways to edit field-level security are
through the profile directly using the Field-Level Security section or through a feature called
Field Accessibility. Field Accessibility is a bit more sophisticated because it provides a consoli-
dated view of fields across page layouts and profiles.

ptg11524036

78 Chapter 3 Database Security

 Field-Level Security in Profiles

 To reach the Field-Level Security section, click Setup, and in the Administration Setup area,
click Manage Users, Profiles. Select a profile by clicking its name and scroll down to the Field-
Level Security section. Click the View link next to the object name, such as Project, shown in
 Figure 3.5 .

 Figure 3.5 Configuring field-level security for the Project object

 The two possible states for a field are visible and read-only. Fields marked as visible are avail-
able for display and modification on page layouts belonging to this profile. Read-only fields
might also be visible on a page layout, but values in these fields cannot be modified.

 Field Accessibility

 Field Accessibility addresses the finer control of fields provided through the combination of
page layout and profile. The more restrictive of two settings always wins. So, if a page layout
defines a field as read-only that is defined in the profile as being invisible, the profile takes
precedence, and the field is hidden. Field Accessibility provides an easy way to see this behavior
in action.

 To use Field Accessibility, click Setup, and in the Administration Setup area, click Security
Controls, Field Accessibility. Select an object and then drill in by Field or Profile to see the
corresponding field accessibility table. Each field has one of four accessibility values:

ptg11524036

79Record-Level Security

 ■ Required— If a field is defined as required in its page layout and visible in its profile, it is
a required field. This means for a record to be saved, it must contain a value for this field.

 ■ Editable— A field defined as visible in both the page layout and the profile is designated
as editable. This field appears to the user and can be modified.

 ■ Read-only— If a field is declared read-only on its profile or visible in its profile and read-
only in its page layout, then it is a read-only field. It appears in the page layout, but its
value cannot be modified.

 ■ Hidden— Fields that are set to invisible on their profile or page layout are hidden.
Hidden fields are never shown to the users of this profile.

 Try marking a field as read-only in its page layout but invisible in its profile. Then hover the
cursor over the word Hidden in the field accessibility table. You’ll see the message that the field
is hidden because of field security. If you edit the field again and make it visible via the profile,
the field becomes read-only per the page layout.

 Record-Level Security

 In Force.com, individual data records within an object are secured through a combination of
three concepts:

 1. Record ownership— All records except those on the child side of a Master-Detail
relationship have a single named owner. Record owners are individual users or groups of
users. Ownership of a record can be transferred manually to another user or group.

 2. User groups— Users can be organized into flat lists and placed in a hierarchy. Groups can
contain individual users as well as other groups.

 3. Sharing model— The sharing model consists of two parts: organization-wide defaults
and sharing reasons. The organization-wide defaults can be configured to lock down
all records by object, regardless of their owner. Sharing reasons selectively override the
defaults to allow access based on record ownership or arbitrary criteria.

 This section discusses each concept in more depth.

 Record Ownership

 When a new record is created, it’s owned by the user who created it. The owner has full control
over the record. The owner can read, edit, and delete the record; share with other users; and
transfer ownership to a different user.

 You can experiment with record ownership by creating a record in the native user interface and
examining its detail. Notice that its owner field is set to your user, the user creating the record.
To share the record with others, click the Sharing button. To transfer ownership, click the
Change link beside the owner name.

ptg11524036

80 Chapter 3 Database Security

 Owners are typically individual users, but a queue can also be an owner. A queue is a holding
area for records to which users are assigned. When a user takes ownership of a record in
queue, it leaves the queue and is assigned directly to that user. To configure queues, go to the
Administration Setup area and click Manage Users, Queues.

 Most objects support record ownership. The notable exception is child objects in a Master-
Detail relationship. Records in these child objects have no owners. They inherit ownership
from their parent records, and changes in ownership must be made on the parent record.

 User Groups

 Record-level sharing operates on groups of users, not individual users. Force.com provides two
mechanisms for grouping users relevant to sharing: public groups and roles.

 Public Groups

 At its simplest level, a public group is a named list of users included in the group. This list can
also contain other public groups. To define a public group, click Setup. In the Administration
Setup area, click Manage Users, Public Groups.

 A best practice for public groups is to keep the membership list as short as possible. This
improves performance and simplifies maintenance. Build larger groups up from smaller
subgroups rather than working with individual users.

 Roles

 Roles are also groups of users but are organized in a hierarchy. Users in roles can inherit the
privileges of the roles below them in the hierarchy. This includes record ownership.

 A user belongs to one role at a time, and all applications in your Force.com organization use a
single role hierarchy.

 To define roles, click Setup. In the Administration Setup area, click Manage Users, Roles. The
first time you use this feature, Force.com asks you to select a sample set of roles to get started.

 Sharing Model

 The sharing model defines how record-level privileges are granted to users who do not own
the record. Configuring the sharing model is a two-part process. Organization-wide defaults are
used to establish the most restrictive level of access for each object. Sharing reasons override
the defaults to grant access to individual records.

 Organization-Wide Defaults

 Every object that allows record ownership has an organization-wide default setting dictating
how records are shared between the owner and other users. Custom objects have several default
settings:

ptg11524036

81Record-Level Security

 ■ Private— Records belong to the owner and only the owner. With the exception of the
data administration-level privileges View All and Modify All, records are accessible only
to their owners.

 ■ Public Read-Only— Any user can view records in this object but cannot edit or delete
them. Only the owner and users with administrative privileges have rights to edit and
delete.

 ■ Public Read/Write— Any user can view, edit, and delete records in this object. All newly
created custom objects default to this setting.

 ■ Controlled by Parent— This option is available only to child objects in Lookup
relationships. It delegates record-sharing decisions to the parent record. The child records
behave as if they lack an owner. Objects with this default setting have the same record-
sharing behavior as children in a Master-Detail relationship.

 When setting organization-wide defaults, begin with the user to receive the minimum access to
data. Set the organization-wide default settings with this user in mind. All users then have at
least this level of access to records. To configure organization-wide defaults, click Setup. In the
Administration Setup area, click Security Controls, Sharing Settings. Figure 3.6 shows the screen
with organization-wide defaults.

 Figure 3.6 Configuring organization-wide defaults

ptg11524036

82 Chapter 3 Database Security

 The rightmost column of check boxes called Grant Access Using Hierarchies determines
whether the role hierarchy is used on this object to propagate permissions upward to supe-
rior roles. By default, this behavior is enabled. Disabling it causes roles to function like public
groups. Record permissions are shared only between a pair of roles, never aggregated up the
role hierarchy.

 Sharing Reasons

 Sharing reasons override the organization-wide defaults to allow individual records to be shared
between groups of users. The groups can be roles or public groups. The behavior of the sharing
reason depends on the groups involved and the type of sharing reason.

 Sharing between roles results in asymmetric privileges. Users in subordinate roles do not receive
any privileges of their superiors, but superiors receive all the privileges of their subordinates.
Sharing with public groups is symmetric, granting equal rights to both parties. In other words,
a user has access to all records that are accessible to its descendants in the role hierarchy.

 Note

 Objects with the most permissive organization-wide default (public read/write) cannot use shar-
ing reasons.

 Objects with the most permissive organization-wide default (public read/write) cannot use
sharing reasons. The four types of sharing reasons are as follows:

 1. Manual— The owner of a record can elect to manually share it with another user or
group of users. The owner specifies the level of access (Read Only or Read/Write) to be
granted. To configure manual sharing, click the Sharing button on a detail record in the
Force.com native user interface. Figure 3.7 shows the user interface for sharing a record
named GenePoint in the Project object.

 2. Sharing rules— Sharing rules allow records to be shared automatically by Force.com
based on group membership or arbitrary criteria. In Figure 3.8 , a sharing rule is being
created for the Project object. It specifies that members of the West business unit can
automatically read and write all Project records owned by their colleagues in the same
business unit. In Figure 3.9 , a criteria-based sharing rule is being defined to provide users
in the Executive role with Read and Write access to billable projects.

 3. Procedural— Records can be shared programmatically using Apex code. This allows a
developer to define the conditions that govern the sharing of a record. This is discussed
in Chapter 5 , “Advanced Business Logic.”

 4. Delegated administration— Profiles contain two special systems permissions called
View All Data and Modify All Data. If these are granted, they exempt users in that
profile from all sharing rules, giving them access to all records regardless of owner. This
privilege is intended for data import, export, and cleansing programs that need to run
unencumbered by sharing rules.

ptg11524036

83Record-Level Security

 Figure 3.7 Manually sharing a Project record

 Figure 3.8 Creating a sharing rule for projects

ptg11524036

84 Chapter 3 Database Security

 Figure 3.9 Creating a criteria-based sharing rule for projects

 Sample Application: Securing Data

 The fictional organization driving the development of your Services Manager sample applica-
tion is organized into independent business units by geography. Business units generally do
not share resources or projects, but might do so in special circumstances. All business units
roll up to an executive team, which has access to all data. The employees of each business unit
perform essentially the same tasks: booking deals, staffing projects, billing time on projects, and
invoicing their clients.

 From this description of the organization’s structure, consider how to make the best use of the
data security features of Force.com. The goal is to allow users access to precisely the right data
they need in order to perform their jobs, no more and no less. The configuration of Force.com
security features necessary to achieve the goal will be referred to as the security model.

 In this section, you will walk through the design, implementation, and testing of the security
model for the Services Manager application.

ptg11524036

85Sample Application: Securing Data

 Designing the Security Model

 To begin the design process, review the fundamentals of Force.com security and the sample
application’s security requirements:

 ■ Force.com data security has two facets: profiles and the sharing model. Profiles protect
objects and their fields, and the sharing model controls access to individual records.

 ■ Data security in the sample application is determined by an employee’s job function and
business unit. Job functions are identical across business units, and business units do not
normally share data.

 The design strategy followed in the remainder of this section examines each of the sample
application’s security requirements and discusses the configuration of the Force.com security
features necessary to satisfy them.

 Security by Job Function

 Job functions dictate what type of data a user is allowed to view and modify. For example,
consultants should not create projects or assignments. A staffing coordinator creates projects
and assigns resources to them. But a consultant is allowed to create and edit timecards.

 As you’re thinking about job functions, you’re naturally discussing the objects that make up
the application. In Force.com, profiles control access to objects and fields. To design profiles for
the Services Manager application, start by listing all job functions and objects in a grid. At the
intersection of each job function and object, determine the level of access needed. The level of
access is expressed as a series of permissions. The permissions are read, create, edit, and delete.
 Table 3.1 shows the output of this exercise.

 Table 3.1 Services Manager Profiles

 Profile Project Contact Timecard Assignment Skill Account

 Sales Rep Read Read Read Read

 Create Create

 Edit Edit

 Delete Delete

 Staffing
Coordinator

 Read Read Read Read Read

 Create Create Create Create

 Edit Edit Edit Edit

 Delete Delete Delete

ptg11524036

86 Chapter 3 Database Security

 Profile Project Contact Timecard Assignment Skill Account

 Project
Manager

 Read Read Read Read Read Read

 Edit Create Create

 Edit Edit

 Delete Delete

 Consultant Read Read Read Read Read Read

 Create Create

 Edit Edit

 Delete

 Accounts
Receivable

 Read Read Read Read Read Read

 Create Create Edit Create

 Edit Edit Edit

 Delete

 Vice President Read Read Read Read Read Read

 Create Create Create Create Create Create

 Edit Edit Edit Edit Edit Edit

 Delete Delete Delete Delete Delete Delete

 Security by Business Unit

 Business units are autonomous minicompanies that have a somewhat competitive relationship
with each other. All business units report to an executive team. The sample organization is
shown in Figure 3.10 .

Executive

West Central East

 Figure 3.10 Services Manager business units

ptg11524036

87Sample Application: Securing Data

 The Force.com security model must account for the following facts about the organization:

 ■ In normal day-to-day operations, business units do not share data. This includes projects,
resources, customers, and contacts. All data is private, belonging to the business unit that
created it.

 ■ In some cases, business units might need to share records. For example, a consultant with
specialized skills is needed on projects in all three business units.

 ■ Members of the executive team are able to read and write all data.

 In the preceding section, you designed profiles to provide each job function in the organization
with access to objects and fields. Now you must look at the requirements to protect each record
of data. This is where Force.com’s record-level security features come into play. To design for
record-level security, use the following three steps:

 1. Establish the sharing model— For each object, determine the most restrictive mode
of sharing that is called for on its records. For the custom objects found in Services
Manager, the options are Private, Public Read Only, and Public Read/Write. Private
means that records remain under the control of their owners. Do not consider objects
on the Detail side of Master-Detail relationships because records in these objects inherit
ownership from their parent record. The output of this step is a list of objects, each with
a default access setting (Private, Public Read Only, or Public Read/Write).

 2. Build groups of users— Identify scenarios in which users need to share data outside of
the restrictive defaults defined in the sharing model. Look for groups of users involved in
these exceptions to the sharing model. Examine the flow of information between the two
groups. It can be symmetric, with both groups getting equal access to the data. Or it can
be one-sided, with one group receiving elevated rights to another group’s data without
reciprocation. The output of this step is a list of roles and public groups. Use roles where
the sharing relationship is one-sided, and public groups where the relationship is equal.

 3. Set sharing rules— Using the list of roles and public groups from the preceding step,
build a list of sharing rules. To build each rule, follow three steps, as shown here:

 a. Determine which group owns the record to be shared.

 b. Identify the other group requiring access to the records owned by the first group.

 c. Decide whether the other group requires Read Only or Read/Write access to the
shared record.

 Following the first step creates the results given in Table 3.2 , which shows the sharing model
chosen for each object.

ptg11524036

88 Chapter 3 Database Security

 Table 3.2 Sharing Model for Services Manager

 Object Sharing Model

 Project Private

 Contact Private

 Account Private

 In the second step, the groups of users are defined. In Services Manager, the only groups
relevant to sharing are the business units. Each business unit will become a role, including the
executive team.

 For the final step of defining sharing rules between the groups, the requirement is to allow
users in the same business unit to collaborate on records. To accomplish this task, grant each
business unit Read/Write access to records owned by users in its business unit.

 Implementing the Security Model

 In the preceding section, you designed the sharing model for the Services Manager sample
application. In this section, you will implement it in your Force.com DE organization. The
implementation involves five separate tasks:

 1. Create profiles— Profiles control access to objects and fields. The profiles in Services
Manager are modeled after job functions such as Consultant and Project Manager.

 2. Configure field accessibility— Profiles also provide fine-grained control over the fields
within an object. In Services Manager, several cases exist in which a particular type of
user needs Read access to an object, but not the whole object. Some fields are sensitive
and should be hidden. Supporting these cases using field-level accessibility settings
is easy.

 3. Set organization-wide defaults— This is the first step in defining record-level control
over data. All records have an owner, initially the user who created the record.
Organization-wide defaults are defined on each object and dictate which users besides the
owner, if any, also receive access to the records.

 4. Establish role hierarchy— Roles provide a way to group users into a hierarchy. Users at
higher levels in the hierarchy receive access to all records owned by their subordinates.
In the Services Manager example, roles are used to model geographically distinct business
units. By default, business units do not share data with each other. An executive team at
the top of the hierarchy receives access to all data.

 5. Add sharing rules— Sharing rules are one way to override the organization-wide defaults.
They automatically share records between two groups of users based on record ownership
and group membership. In Services Manager, sharing rules are used to allow record
owners in the same business unit to collaborate on the same data. For example, if two

ptg11524036

89Sample Application: Securing Data

Project Managers are in the West, they should be able to see each other’s Project records
because they work on the same team.

 Create Profiles

 On the Setup screen in the Administration Setup area, click Manage Users, Profiles. For each
profile identified in Table 3.1 , follow these steps:

 1. Click the New Profile button.

 2. Select an existing profile to use as the starting point for the new custom profile. Standard
Platform User is a good choice because the Services Manager sample application can work
with a Salesforce Platform user license.

 3. Enter the profile name and click the Save button.

 4. The new profile is created—a copy of the existing one. Click the Edit button to
customize it.

 5. In Custom App Settings, select Services Manager as the default.

 6. Scroll down to the Standard Object Permissions section. Check off the boxes as
appropriate to grant access to Accounts and Contacts. Repeat the same process in the
Custom Object Permissions section for the four custom objects in the Services Manager
application.

 7. Click the Save button. As a shortcut to create more profiles, click the Clone button and
start building the next profile from step 3.

 When you’re done, your Profiles page should resemble Figure 3.11 .

 Configure Field Accessibility

 In addition to object-level security, you also need to protect sensitive fields. Newly created
custom fields are always invisible. They must be explicitly made visible using a profile or
permission set. You need to consider the sensitivity of each field to each type of user, an excel-
lent security best practice enforced by Force.com. For example, a Consultant can see all of the
fields on a Project object except the finance-related fields Consulting Budget, Expense Budget,
and Invoiced.

 Follow this procedure to set the visibility of fields in an object:

 1. Click Setup, and in the Administration Setup area, click Security Controls, Field
Accessibility.

 2. Click the object to configure—for example, Project.

 3. Click View by Profiles.

 4. Select the profile—for example, Consultant. At a glance, you can see the access level of
every field in the profile.

ptg11524036

90 Chapter 3 Database Security

 5. For each field to change, click its corresponding field access value.

 6. Click the first Visible check box to make the field visible to this profile.

 7. Click the Save button.

 8. Repeat from step 4 until every profile is assigned the correct access levels for this object.

 Figure 3.11 Services Manager profiles

 Make all fields on the object visible for the remaining profiles. When you’re done with these
steps for the Project object, your Field Accessibility screen for the Consultant profile should
resemble that shown in Figure 3.12 .

 Repeat this process on the following objects:

 ■ Timecard— All fields visible, but invoice-related fields (Invoiced, Invoice Number, Invoice
Date) are hidden from the Consultant profile.

 ■ Assignment— All fields visible, but finance-related fields (Hourly Cost, Hourly Rate,
Planned Cost, Planned Margin, Planned Revenue) are hidden from the Consultant
profile.

 ■ Contact— All fields visible, but the Hourly Cost Rate field is hidden from the Consultant
profile.

ptg11524036

91Sample Application: Securing Data

 Figure 3.12 Accessibility of Project fields to Consultant profile

 Set Organization-Wide Defaults

 Follow these steps to configure the organization-wide defaults:

 1. Click Setup. In the Administration Setup area, click Security Controls, Sharing Settings.

 2. Click the Edit button.

 3. In the Project row, select Private. Repeat this for Contact.

 4. Click the Save button.

 All Projects and Contacts are now private. This means that only the owner of a Project or
Contact is able to see it. Although this is not the desired behavior, it is the most restrictive
setting. From there, you will use sharing rules to open access to members of the same business
unit.

 Establish Role Hierarchy

 In the Services Manager sample application, business units are represented using roles. Roles are
chosen over public groups because they provide the one-way sharing needed between business
units and the executive team.

ptg11524036

92 Chapter 3 Database Security

 To configure the roles, follow these steps:

 1. Click Setup. In the Administration Setup area, click Manage Users, Roles. If you’ve never
used this feature before, click the Set Up Roles button to continue past the display of
sample role hierarchies.

 2. Rename CEO to Executive.

 3. Rename three of the roles reporting to Executive to West, Central, and East.

 4. Delete the unneeded roles, starting with those at the lowest level of the hierarchy.

 When you’re done, your role hierarchy should appear as shown in Figure 3.13 .

 Figure 3.13 Services Manager roles

 Add Sharing Rules

 The goal in using sharing rules is to allow users in the same business unit to collaborate and
share data. A record created by one user should be available to all users in the same business
unit and their superiors, the executive team.

ptg11524036

93Sample Application: Securing Data

 To configure sharing rules, follow these steps:

 1. Click Setup. In the Administration Setup area, click Security Controls, Sharing Settings.

 2. Scroll to the bottom of the screen. Click the New button in the Project Sharing Rules
section.

 3. Enter a rule label, and its name will be automatically set based on the label—for example,
West.

 4. The first pair of drop-down lists identifies the record owners who will be sharing. Select
Roles from the first drop-down list and a role from the second—for example, West.

 5. Select the group of users to share with. To share records within the same business
unit, set this pair of drop-downs to the same values as those in the preceding step—for
example, Roles and West.

 6. The final drop-down list, Access Level, specifies the level of access that the second group
of users receives to the shared records. Select Read/Write.

 Repeat this process to share Project records within the other two business units, Central and
East. Records are automatically shared with executives because they lie above the business units
on the role hierarchy. Figure 3.14 shows the completed list of sharing rules.

 Figure 3.14 Services Manager sharing rules

ptg11524036

94 Chapter 3 Database Security

 Testing the Security Model

 Although Services Manager is a sample application, it’s a good idea to get into the habit of
testing the security of all Force.com applications before you go into production with them.
If you do not take the time to test methodically, a user or group of users could be unable to
perform their jobs or become exposed to confidential data intended for other users.

 Security testing requires the same level of patience and attention to detail as the actual configu-
ration. If you’ve kept a spreadsheet or another document with the details of your configuration,
you can use it to construct a test plan. Where feasible, make sure you test from the perspective
of every group of uniquely privileged users. The native user interface is a great tool for security
testing because it exposes the underlying security model accurately, without the distortion of
potentially buggy custom code found in custom user interfaces.

 Test object and field visibility by visiting tabs. Test access levels by looking for buttons that
modify the state of the record on the pages in these tabs. Test sharing rules by creating records
with different owners and checking their visibility to other users.

 In the following subsections, you will create three additional users for testing, prepare some
test data, verify object and field visibility for three profiles, and test manual sharing between
two roles.

 Create Additional Users

 Force.com Developer Edition provides you with up to seven free users for your testing. Two of
the users are licensed to use the full Salesforce functionality, which includes all the standard
objects. Three of the users are Salesforce Platform Users, meaning they have access to a subset
of the standard objects. Two of the users are Force.com - App Subscription users, which are
roughly equivalent to Salesforce Platform Users. Services Manager can be tested using Salesforce
Platform Users.

 Although you could use one user and cycle him through the various roles and profiles, creat-
ing as many users as you can makes testing more efficient and intuitive. Start with a Staffing
Coordinator in the West, a Consultant in the West, and a Vice President in the Executive team.

 Follow these steps to create each new Salesforce Platform user:

 1. Click Setup. In the Administration Setup area, click Manage Users, Users.

 2. Click the New User button.

 3. Enter First and Last name and then Email. Set Profile to one of the custom Services
Manager profiles and select a role. Make sure that the check box Generate New Password
and Notify User Immediately is selected. Then click the Save button.

 4. You will receive an email with a link to log in as your new user. Visit this login link.

 5. Set your new password.

 6. Click Setup. In the Personal Setup area, click My Personal Information, Grant Login
Access.

ptg11524036

95Sample Application: Securing Data

 7. Grant login access to your administrator by entering a date in the second input field and
clicking the Save button. This is a time-saving step that allows you, the administrator, to
log in temporarily as the user without going through the full login process of entering a
username and password.

 Repeat this process for each new user. When you’re done, you should have a list of users resem-
bling the one shown in Figure 3.15 .

 Figure 3.15 Services Manager users

 Prepare Data

 If you log in as a nonadministrator, you’ll notice that no Project records are visible. But you
imported some in the preceding chapter, so where are they? Because your sharing model is set
to Private, they are accessible only to the owner, which is the administrator user you used to
import them.

 To get started with testing profiles, you need to transfer ownership of some records. Log in as
the administrator. Grant your Consultant user ownership of a Contact record by visiting the
record and clicking the Change link beside the owner name. Figure 3.16 shows the record with
a new owner. Note that the owner is different from the user who created the record.

ptg11524036

96 Chapter 3 Database Security

 Figure 3.16 Contact record with new owner

 Repeat the same process to transfer ownership of a Project to your user in the Staffing
Coordinator profile.

 Test the Consultant Profile

 Now log in as a user in the Consultant profile. Click the Contacts tab and click the Go button.
You should see the Contact record. Using the Timecard tab, verify that you can create a new
record. Do the same for the Skills tab. Note that the Assignment tab does not contain a New
button. That’s because the Consultant profile prohibits this user from creating an Assignment
record. Also notice that the Hourly Cost field is hidden.

 Before you leave this record, click the New Skill button and add a few skills to the consultant.
Then click around in the other tabs to verify that the consultant cannot create a Project or
Contact and cannot see the hidden fields in these objects.

 Test the Staffing Coordinator Profile

 When you’re satisfied with the Consultant, log out and log in as a Staffing Coordinator. Verify
the following behaviors of this profile:

 ■ Can create, edit, and delete Projects and view all their fields

 ■ Can create, edit, and delete Assignments

ptg11524036

97Sample Application: Securing Data

 ■ Can create, edit, and delete Contacts

 ■ Cannot create, edit, or delete Skills

 ■ Cannot create, read, edit, or delete Timecards

 Test the Executive Role, Vice President Profile

 Log in as your Executive VP user and verify that this user has full access to any of the records
owned by the other users. This includes the ability to edit, delete, and change ownership and
share the records.

 Recall that the privileged access of this user stems from a combination of two Force.com secu-
rity features:

 1. Executive role— The Executive role is at the top of the role hierarchy. All Project and
Resource records owned by users below this level are automatically shared with users
belonging to the Executive role.

 2. Vice President profile— The Vice President profile has full access to all the objects and
fields used in the Services Manager.

 Test Business Unit Collaboration

 Say that the Central business unit’s Staffing Coordinator requests a specialized consultant for
a high-profile project, but this consultant works in the West. Verify that the security model
supports this scenario using the following steps:

 1. Log in as the System Administrator or an Executive VP user.

 2. Locate the record of a Contact working in the West. Verify this by clicking the Contact
record’s Owner field and examining the value of that user’s role.

 3. Click the Sharing button.

 4. Click the Add button.

 5. In the Search drop-down list, select Roles.

 6. Select Role: Central and click the Add button. The Share With list now contains Role:
Central. Keep the Access Level at Read Only because you do not want the Central users
to be modifying this West-owned Contact.

 7. Click the Save button.

 The sharing detail screen for this Contact should look like Figure 3.17 . Note the presence of
both the sharing rule and the newly added manual share.

ptg11524036

98 Chapter 3 Database Security

 Figure 3.17 Sharing detail for a Contact record

 Now that the record is shared with Central, it’s time to test it. Make sure you’re logged in as the
System Administrator. Modify the Staffing Coordinator user so that it belongs to the Central
role, and log in as that user. Staff the West consultant to a project by creating an Assignment,
setting this consultant as the Contact. If you are able to do this, the manual share is working
as intended.

 Summary

 This chapter introduced the data security features provided by the Force.com platform. These
features can eliminate much of the effort required in traditional application development to
build basic security infrastructure. Here are a few points to consider before moving on:

 ■ Data can be protected at the object, field, and record level.

 ■ Profiles control access to objects and fields. A combination of object and field
permissions plus page layouts determines the degree to which a field is accessible to
users.

 ■ Most records have a built-in concept of ownership. The record’s owner, plus
organization-wide defaults and sharing reasons that override these defaults, determines
nonowners’ rights to view and modify records.

ptg11524036

 4
 Business Logic

 Business logic in Force.com is developed in Apex, a programming language designed for the Force.com
platform. Through Apex code, many platform features, such as the database and user interface, can be
customized to meet the needs of individual users and companies.

 This chapter introduces Apex as a language for writing business logic, specifically where it interacts
with the Force.com database. It uses a combination of explanatory text and code snippets to introduce
concepts and encourage experimentation. This approach assumes you’re already experienced in some
other high-level, object-oriented programming language and would like to see for yourself how Apex is
different.

 The chapter consists of the following sections:

 ■ Introduction to Apex— Learn basic facts about Apex and how it differs from other
programming languages.

 ■ Introducing the Force.com IDE— Take a brief tour of the Force.com IDE, a user interface for
developing, debugging, and testing Apex code.

 ■ Apex language basics— Learn the building blocks of the Apex language, such as data types and
loops.

 ■ Database integration in Apex— Incorporate the Force.com database into your Apex programs
through queries, statements that modify data, and code executed automatically when data is
changed.

 ■ Debugging Apex using Developer Console— With Developer Console, you can directly inspect
the state of your Apex code as it runs.

 ■ Unit tests in Apex— Write tests for your code and run them in Developer Console.

 ■ Sample application— Walk through the implementation of a data validation rule for the
Services Manager sample application.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/evtet .

http://goo.gl/evtet

ptg11524036

100 Chapter 4 Business Logic

 Introduction to Apex

 Apex is a stored procedure-like language that runs entirely on the Force.com platform. It
provides object-oriented features and tight integration with the Force.com database. It’s mainly
used in custom user interfaces and in triggers, code that is executed when data is changed in
the database.

 Apex is not a general-purpose programming language like Java or C. Its scope is limited to
business and consumer applications that operate on relational data and can benefit from the
feature set of the surrounding Force.com platform.

 Apex programs exist in a multitenant environment. The computing infrastructure used to
execute Apex is operated by Salesforce and shared among many developers or tenants of the
system. As a result, unlike general-purpose programming languages you are familiar with, the
execution of Apex programs is closely controlled to maintain a consistently high quality of
service for all tenants.

 This control is accomplished through governor limits, rules that Force.com places on programs
to keep them operating within their allotted share of system resources. Governor limits are
placed on database operations, memory and bandwidth usage, and lines of code executed.
Some governor limits vary based on the type of licensing agreement you have in place with
Salesforce or the context that the code is running in, and others are fixed for all users and use
cases.

 Note

 The most prevalent governor limits are discussed throughout this book, but it is not a complete
treatment of the subject. The authoritative guide to governor limits is the Force.com Apex Code
Developer’s Guide, available at http://developer.force.com . Educate yourself on governor limits
early in the development process. This education will alter the way you architect your Apex code
and prevent costly surprises. Additionally, test all of your Apex code with production-like data
volumes. This helps to expose governor-related issues prior to a production deployment.

 Here are a few important facts about Apex:

 ■ It includes integrated testing features. Code coverage is monitored and must reach 75%
or greater to be deployed into a production environment.

 ■ It is automatically upgraded. Salesforce executes all of its customers’ unit tests to verify
that they pass before deploying a major release of the Force.com platform. Your code is
always running on the latest version of Force.com and can take advantage of any and all
new functionality without the hassle and risks of a traditional software upgrade process.

 ■ There is no offline runtime environment for Force.com. You can edit your code on
your desktop computer, but it must be sent to Force.com for execution.

 ■ Apex is the only language that runs on the Force.com platform. You can integrate
Apex with programs running outside of Force.com using HTTP-based techniques such
as REST.

http://developer.force.com

ptg11524036

101Introducing the Force.com IDE

 ■ The Force.com database is the only database integrated into the Apex language.
Other databases can be integrated through Web services or other technology using HTTP.

 The two primary choices for developing Apex code are the Web-based App Builder Tools and
the Force.com IDE, provided as a stand-alone application as well as a plug-in to the standard
Eclipse IDE. The Force.com IDE is the more powerful and developer-friendly of the two, so it is
used throughout this book.

 Introducing the Force.com IDE

 The Force.com IDE is an extension to the standard Eclipse development tool for building,
managing, and deploying projects on the Force.com platform. This section covers installation
and gives a brief walk-through of the Force.com IDE components used throughout this book.

 Installation

 The Force.com IDE is distributed in two forms: a stand-alone application and a plug-in to the
Eclipse IDE. If Force.com is your primary development language or you are not an existing
Eclipse IDE user, the stand-alone version is a good choice. The plug-in version of the Force.com
IDE requires Eclipse, which you can find at www.eclipse.org. Only specific versions of Eclipse
are supported by the Force.com IDE. If you are already using Eclipse but it’s an unsupported
version, keep your existing Eclipse version and install the supported version just for use with
the Force.com IDE. Multiple versions of Eclipse can coexist peacefully on a single computer.

 Visit http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse to learn how to install
the stand-alone and plug-in versions of the Force.com IDE.

 Force.com Perspective

 A perspective is a concept used by Eclipse to describe a collection of user interface components.
For example, Eclipse has built-in perspectives called Java and Java Debug. By installing the
Force.com IDE, you’ve added a perspective called Force.com. Figure 4.1 shows the Force.com
perspective, indicated in the upper-right corner.

 If you do not see the Force.com perspective, click the menu option Window, Open Perspective,
Other; select Force.com from the Open Perspective dialog; and click the OK button. The Open
Perspective dialog is shown in Figure 4.2 .

 The Force.com perspective includes several user interface panels, called Views. You can see two
of them at the bottom of Figure 4.1 : Execute Anonymous and Apex Test Runner. It also adds a
new type of project called the Force.com Project, which is shown in the left-side Navigator tab.
The first step to using the Force.com IDE is to create a Force.com Project.

http://www.eclipse.org
http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

ptg11524036

102 Chapter 4 Business Logic

 Figure 4.1 Force.com perspective

 Figure 4.2 Open Perspective dialog

ptg11524036

103Introducing the Force.com IDE

 Force.com Projects

 A Force.com Project allows you to read and write code, user interfaces, and other metadata
objects within a Force.com organization from your local computer. Although this metadata is
edited locally, it must be deployed to the Force.com service to run. Deployment to Force.com
occurs automatically every time you make a modification to an object in a Force.com Project
and save the changes. The contents of a Force.com Project are visible in the Navigator or
Package Explorer Views.

 Note

 Force.com does not provide its own integrated source control system, but Force.com Projects
can be integrated into your company’s source control system through the built-in Team features
of Eclipse. Refer to the Eclipse documentation for more information.

 Problems View

 The Force.com IDE leverages the standard Eclipse View called Problems to display compilation
errors. When you save changes to an object in a Force.com Project, it is sent over the network
to the Force.com service for compilation. If compilation fails, Force.com-specific errors are
added to the Problems View. In most cases, you can double-click a problem row to navigate to
the offending line of code.

 Schema Explorer

 The Schema Explorer allows direct interaction with the Force.com database. Use it to inspect
objects and fields and to execute database queries and preview their results. To open the
Schema Explorer, double-click the object named salesforce.schema in any Force.com Project.
In Figure 4.3 , the Schema Explorer is open and displaying the fields in the Project object in
its right panel. In its left panel, a query has been executed and has returned a list of Contact
records.

 Apex Test Runner View

 All business logic written in Force.com must be accompanied by unit tests to deploy it to a
production environment. Apex Test Runner View is a user interface to run unit tests and view
test results, including statistics on code performance and test coverage. If the Apex Test Runner
is not already visible on the bottom of your screen, go to the Window menu and select Show
View, Apex Test Runner.

ptg11524036

104 Chapter 4 Business Logic

 Execute Anonymous View

 The Execute Anonymous View provides an interactive, immediate way to execute arbitrary
blocks of Apex code. Unless noted otherwise, you can execute all the code snippets in this
chapter directly from the Force.com IDE using the Execute Anonymous View.

 To try the Execute Anonymous View, first create a new Force.com Project. Go to the File menu
and select File, New Force.com Project. Enter a project name; enter your Force.com username,
password, and security token; and click the Next button. If you receive an error on this step,
double-check your username, password, and security token. Also make sure you’re provid-
ing the credentials for a Developer Edition organization, given that other types of organiza-
tions might not have access to the Force.com API. Select the metadata components Apex and
Visualforce; then click the Finish button to create the project.

 After you’ve created a project for your Development Edition organization, the Execute
Anonymous View should be visible in the lower-right half of the screen. If not, go to the
Window menu and select Show View, Execute Anonymous. In the Source to Execute text
box, enter the code given in Listing 4.1 . If the text box is not visible, resize your Execute
Anonymous View until it’s tall enough to see it. If the text box is disabled, double-click the
Execute Anonymous tab to maximize and enable it. After you’ve entered the code, click the
Execute Anonymous button to run it.

 Figure 4.3 Force.com IDE Schema Explorer

ptg11524036

105Apex Language Basics

 Listing 4.1 Hello World

 String helloWorld(String name) {
 return 'Hello, ' + name;
 }
 System.debug(helloWorld('Apex'));

 This sample code defines a function called helloWorld that accepts a single String parameter.
It then invokes it with the name Apex and displays the results, Hello Apex , to the debug log.

 Apex Language Basics

 This section describes the building blocks of the Apex language. The building blocks are vari-
ables, operators, arrays and collections, and control logic. Basic knowledge of the syntax and
operation of Apex is valuable for almost any custom development task in Force.com, including
triggers, custom user interfaces, and integration with external systems. The section concludes
with an introduction to Apex governor limits. Knowledge of governor limits is a critical part of
writing business logic that scales from Developer Edition organizations to production organiza-
tions with real-world data volumes.

 Variables

 This subsection covers variable declaration, data types, constants and enums, and type conver-
sions. It also provides detail on rounding numbers and converting dates to and from strings,
common tasks in business applications.

 Variable Declaration

 Apex is a strongly typed language. All variables must be declared before they’re referenced. At
minimum, a variable declaration consists of the data type followed by the variable name. For
example, Listing 4.2 is a valid statement.

 Listing 4.2 Variable Declaration

 Integer i;

 The variable i is declared to be an Integer. Apex does not require variables to be initialized
before use, but doing so is good practice. The variable i initially contains a null value.

 Variable names cannot start with numbers or symbols, cannot contain two or more consecu-
tive underscore characters, and must not conflict with Apex reserved words. These are special
keywords used by the Apex language itself. The list of reserved words is available in the
Force.com Apex Code Developer’s Guide .

ptg11524036

106 Chapter 4 Business Logic

 Variable names are not case sensitive. Try defining two variables with the same name, one in
uppercase and one in lowercase, to prove this, as in Listing 4.3 . If you try to execute this code,
you will receive a compilation error citing a duplicate variable.

 Listing 4.3 Case Insensitivity of Variable Names

 Integer i;
 String I;

 Data Types

 In Apex, all data types are objects. There is no concept of a primitive type such as an int in
Java. Table 4.1 lists Apex’s standard atomic data types. These types contain a single value at a
time or a null value.

 Table 4.1 Standard Atomic Data Types

 Data Type Valid Values

 String Zero or more Unicode characters.

 Boolean True or false.

 Date Date only; no time information is included.

 Datetime Date and time value.

 Time Time only; no date information is included.

 Integer 32-bit signed whole number (–2,147,483,648 to 2,147,483,647).

 Long 64-bit signed whole number (–2 63 to 2 63 –1).

 Decimal Signed number with whole (m, Integer) and fractional components (n),
expressed as m . n . Total length of number, including sign and decimal point,
cannot exceed 19 characters.

 Double 64-bit signed number with a decimal point (–2 63 to 2 63 –1).

 Blob Binary data.

 ID ID is a variation of the String type to store the unique identifiers for Force.com
database records. ID values are restricted to 18 characters. Values are checked
at compile and runtime, and a StringException is thrown if they do not
conform.

 Object Object is the generic type. Variables defined as Object are essentially type-
less and can receive any value. Typeless code is vulnerable to runtime errors
because it is invisible to the compiler’s type checking functionality.

ptg11524036

107Apex Language Basics

 Constants and Enums

 A constant is a variable that cannot be modified after it has been initialized. It is declared using
the final keyword and can be initialized only in constructors, in initializers, or in the declara-
tion itself.

 An enum is a set of identifiers. Listing 4.4 provides an example of a constant as well as an
enum. The constant is an Integer type; the enum is named MyConstants and contains three
members. The variable x is initialized to the first member, and its data type is the enum itself,
which can be thought of as a user-defined data type.

 Listing 4.4 Defining an Integer Constant and an Enum

 final Integer MAGIC_NUMBER = 42;
 Enum MyConstants { One, Two, Three }
 MyConstants x = MyConstants.One;

 After it has been declared, an enum can be referenced in Apex code like any built-in data
type. It can also be converted into an Integer from its zero-indexed position using its ordinal
method or into a String using its name method.

 Converting Data Types

 The two ways to convert one data type to another are implicit and through conversion
methods. Implicit conversion means that no method calls or special notation is required to
convert one type into another. Conversion methods are functions that explicitly convert a
value from one type to another type.

 Implicit conversion is supported for numeric types and String types. For numbers, the rule is
this: Integer � Long � Double � Decimal. Conversions can move from left to right without
casting, as Listing 4.5 demonstrates.

 Listing 4.5 Implicit Conversion of Numeric Types

 Integer i = 123;
 Long l = i;
 Double d = l;
 Decimal dec = d;

 For Strings, ID and String are interchangeable, as shown in Listing 4.6 . If conversion is
attempted from String to ID but the String is not a valid ID, a System.StringException is
thrown.

ptg11524036

108 Chapter 4 Business Logic

 Listing 4.6 Converting between ID and String

 String s = 'a0I80000003hazV';
 ID id = s;
 String s2 = id;

 When implicit conversion is not available for a pair of types, you must use a conversion
method. Data type objects contain a static conversion method called valueOf . Most conver-
sions can be handled through this method. Listing 4.7 is a series of statements that convert a
string into the various numeric types.

 Listing 4.7 Type Conversion Methods

 String s = '1234';
 Integer i = Integer.valueOf(s);
 Double d = Double.valueOf(s);
 Long l = Long.valueOf(s);
 Decimal dec = Decimal.valueOf(s);

 When a type conversion method fails, it throws a TypeException . For example, when the code
in Listing 4.8 executes, it results in an error: System.TypeException: Invalid integer:
1234.56 .

 Listing 4.8 Type Conversion Error

 String s = '1234.56';
 Integer i = Integer.valueOf(s);

 Rounding Numbers

 Rounding occurs when the fractional component of a Decimal or Double is dropped (round),
or when a Decimal is divided (divide) or its scale (number of decimal places) reduced
(setScale). Apex has a set of rounding behaviors called rounding modes that apply in all three
of these situations. By default, the rounding mode is HALF_EVEN , which rounds to the nearest
neighbor, or to the even neighbor if equidistant. For example, 0.5 rounds to 0, and 0.6 to 1. For
the complete list of rounding modes, refer to the Force.com Apex Code Developer’s Guide at www.
salesforce.com/us/developer/docs/apexcode/index.htm .

 Listing 4.9 demonstrates the three operations that can cause rounding.

 Listing 4.9 Three Rounding Operations

 Decimal d = 123.456;
 Long rounded = d.round(RoundingMode.HALF_EVEN);
 Decimal divided = d.divide(3, 3, RoundingMode.HALF_EVEN);
 Decimal reducedScale = d.setScale(2, RoundingMode.HALF_EVEN);

http://www.salesforce.com/us/developer/docs/apexcode/index.htm
http://www.salesforce.com/us/developer/docs/apexcode/index.htm

ptg11524036

109Apex Language Basics

 Converting Strings to Dates

 Strings can be converted to Date and Datetime types using the valueOf conversion methods,
but the string values you’re converting from must be in a specific format. For Date, the format
is YYYY-MM-DD ; for Datetime, YYYY-MM-DD HH:MM:SS , regardless of the locale setting of the
user. Time does not have a valueOf method, but you can create one with its newInstance
method, providing hours, minutes, seconds, and milliseconds. Listing 4.10 shows the creation
of all three types.

 Listing 4.10 Creating Date, Datetime, and Time

 Date d = Date.valueOf('2015-12-31');
 Datetime dt = Datetime.valueOf('2015-12-31 02:30:00');
 Time t = Time.newInstance(2,30,0,0);

 Converting Dates to Strings

 Dates can be converted to strings through the String.valueOf method. This applies a default
format to the date values. If you want control over the format, Datetime has a format method
that accepts a Date pattern. This pattern follows the SimpleDateFormat pattern found in the
Java API, which is documented at the following URL: http://download.oracle.com/javase/1.4.2/
docs/api/java/text/SimpleDateFormat.html . For example, the code in Listing 4.11 outputs Thu
Dec 31, 2020 .

 Listing 4.11 Formatting a Datetime

 Datetime dt = Datetime.valueOf('2020-12-31 00:00:00');
 System.debug(dt.format('E MMM dd, yyyy'));

 Operators

 Apex supports the standard set of operators found in most languages. Each operator is listed in
 Table 4.2 along with its valid data types, precedence if mathematical, and a brief description. In
an expression with two operators, the operator with lower precedence is evaluated first.

 Table 4.2 Operators, Their Data Types, and Precedence

 Operators Operands Precedence Description

 = Any compatible types 9 Assignment

 +, - Date, Datetime, Time 4 Add or subtract days on Date, Datetime,
milliseconds on Time, argument must be
Integer or Long

 + String N/A String concatenation

http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html

ptg11524036

110 Chapter 4 Business Logic

 Operators Operands Precedence Description

 +, -, *, / Integer, Long, Double,
Decimal

 4 Numeric add, subtract, multiply, divide

 ! Boolean 2 Logical negation

 - Integer, Long, Double,
Decimal

 2 Arithmetic negation

 ++, -- Integer, Long, Double,
Decimal

 1 Unary increment, decrement

 &, |, ^ Integer, Long, Boolean 10 Bitwise AND , OR , XOR

 <<, >>, >>> Integer, Long 10 Signed shift left, signed shift right,
unsigned shift right

 ==, <, >,
<=, >=, !=

 Any compatible types 5 (<, >, <=,
>=), 6 (==, !=)

 Not case sensitive, locale-sensitive com-
parisons: equality, less than, greater than,
less than or equal to, greater than or
equal to, not equal to

 &&, || Boolean 7 (&&), 8 (||) AND , OR , with short-circuiting behavior
(second argument is not evaluated if first
argument is sufficient to determine result)

 ===, !== Map, List, Set, Enum,
SObject

 N/A Exact equality, exact inequality

 () Any 1 Group an expression and increase its pre-
cedence

 ? : Boolean N/A Shortcut for if/then/else expression

 Operators not included in Table 4.2 are the assignment variations of date, string, and numeric
(+= , -= , *= , /=) and bitwise (|= , &= , ̂ = , <<= , >>= , >>>=) arithmetic. For example, x = x + 3
assigns x to itself plus 3, but so does x += 3 .

 Arrays and Collections

 Arrays and collections are a family of data types that contain a sequence of values. It includes
Lists and Arrays, Sets, and Maps. This subsection covers each of the three types and describes
how to create them and perform some basic operations. Each collection type is different, but
there are four methods you can invoke on all of them:

 1. clear — Removes all elements from the collection

 2. clone — Returns a copy of the collection

 3. isEmpty — Returns false if the collection has elements, true if empty

 4. size — Returns the number of elements in the collection as an Integer

ptg11524036

111Apex Language Basics

 Lists and Arrays

 Lists and Arrays contain an ordered sequence of values, all the same type. Duplicate values
are allowed. Unlike Lists, the length of an Array is fixed when you initialize it. Lists have a
dynamic length that is adjusted as you add and remove elements.

 To declare a List variable, use the List keyword followed by the data type of its values in angle
brackets. Because Lists and Arrays are containers for other values, they must be initialized
before values can be added to them. The new keyword creates an instance of the List. Listing
 4.12 declares a variable called stringList that contains Strings, initializes it, and adds a value.

 Listing 4.12 Creating a List

 List<String> stringList = new List<String>();
 stringList.add('Hello');

 To create an Array, specify a variable name, data type, and length. Listing 4.13 creates an Array
of Strings named stringArray , initializes it to accommodate five elements, and then assigns a
value to its first element.

 Listing 4.13 Creating an Array

 String[] stringArray = new String[5];
 stringArray[0] = 'Hello';

 Multidimensional Arrays are not supported. But you can create a two-dimensional List object
by nesting a List within another List. In Listing 4.14 , list2 is defined as a List containing Lists
of Strings. A String List called childList is initialized, populated with a value, and added to
 list2 .

 Listing 4.14 Nested List Usage

 List<List<String>> list2 = new List<List<String>>();
 List<String> childList = new List<String>();
 childList.add('value');
 list2.add(childList);

 Arrays and Lists have interchangeable behavior and syntax in Apex, as demonstrated in Listing
 4.15 . Lists can be initialized using an Array initializer, and its elements accessed using the
square-bracket notation. Arrays can be initialized using the List constructor, and accessed using
the List getters and setters. But for the sake of code clarity, picking one usage style and stick-
ing with it is a good idea. In this book, List is the standard because it better reflects the object-
oriented nature of these collection types.

ptg11524036

112 Chapter 4 Business Logic

 Listing 4.15 Mixed Array and List Syntax

 List<Integer> intList = new Integer[3];
 intList[0] = 123;
 intList.add(456);
 Integer[] intArray = new List<Integer>();
 intArray.add(456);
 intArray.set(0, 123);

 Arrays and Lists preserve the order in which elements are inserted. They can also be sorted in
ascending order using the sort method of the List object. For custom sorting behavior, you
can implement the Comparable interface on the classes in your list. This interface allows you
to examine two objects and let Force.com know if the objects are equal or if one occurs before
the other.

 Sets

 The Set is another collection type. Like a List, a Set can store only one type of element at a
time. But Sets do not allow duplicate values and do not preserve insertion order. Sets are initial-
ized like Lists. In Listing 4.16 , a set named stringSet is created, and two values are added.

 Listing 4.16 Basic Set Usage

 Set<String> stringSet = new Set<String>();
 stringSet.add('abc');
 stringSet.add('def');
 System.debug(stringSet.contains('abc'));

 The final statement in Listing 4.16 outputs true , illustrating one of the most valuable features
of the Set collection type: its contains method. To test whether a particular String exists in an
Array or a List, every element of the List must be retrieved and checked. With a Set, this test
can be done more efficiently thanks to the contains method.

 Maps

 The Map type stores pairs of keys and values and does not preserve their insertion order. It
maintains the relationship between key and value, functioning as a lookup table. Given a key
stored in a Map, you can retrieve its corresponding value.

 Maps are initialized with a key data type and value data type. Listing 4.17 initializes a new
Map called myMap to store Integer keys and String values. It inserts a single value using the put
method and then retrieves it using the get method. The last line of code prints abc because
that is the value associated with the key 123 .

ptg11524036

113Apex Language Basics

 Listing 4.17 Basic Map Usage

 Map<Integer, String> myMap = new Map<Integer, String>();
 myMap.put(123, 'abc');
 System.debug(myMap.get(123));

 Other useful methods of Maps include containsKey (returns true if the given key exists in the
Map), remove (returns and removes an element by key), keySet (returns a Set of all keys), and
 values (returns an Array of all values).

 Control Logic

 This subsection describes how to control the flow of Apex code execution. It covers conditional
statements, loops, exception statements, recursion, and asynchronous execution.

 Conditional Statements

 Conditional statements evaluate a Boolean condition and execute one code block if true,
another if false. Listing 4.18 provides an example, defining a function that prints true if an
Integer argument is greater than 100, false otherwise.

 Listing 4.18 Conditional Statement Usage

 void testValue(Integer value) {
 if (value > 100) {
 System.debug('true');
 } else {
 System.debug('false');
 }
 }
 testValue(99);
 testValue(101);

 In addition to this simple if , else structure, you can chain multiple conditional statements
together using else if .

 Note

 In conditional code blocks that contain a single statement, the curly braces around them
can be omitted. This is true of all the control logic types in Apex. For example, if (a > 0)
return 1 / a; else return a; is a valid statement.

ptg11524036

114 Chapter 4 Business Logic

 Loops

 Loops in Apex behave consistently with other high-level languages. Table 4.3 lists the loop
statements available in Apex.

 Table 4.3 Types of Loops

 Name Syntax Description

 Do-While Loop do { code_block }
while (condition);

 Executes code block as long as Boolean condition
is true . Evaluates condition after running code
block, executing the code block at least once.

 While Loop while (condition) {
code_block; }

 Executes code block as long as Boolean condi-
tion is true . Evaluates condition before running
code block, so code block might not be executed
at all.

 Traditional For
Loop

 for (init; exit
condition; increment)

{ code_block; }

 Executes init statement once. Loops on the fol-
lowing steps: exit loop if Boolean exit condi-
tion evaluates to false , executes code block,
executes increment statement.

 List/Set Iteration
For Loop

 for (var : list/set)
{ code_block }

 For every element of the list or set, assigns var to
the current element and executes the code block.
Cannot modify the collection while iterating.

 The keywords break and continue can be used to further control the loops. To immediately
exit a loop at any point in its execution, use break in the code block. To abort a cycle of loop
execution in the middle of a code block and move to the next cycle, use continue .

 Exception Statements

 Exceptions are classes used to signal a problem at runtime. They abort the normal flow of code
execution, bubbling upward until explicitly handled by some other code, carrying with them
information about the cause of the problem.

 Apex allows custom exception classes to be defined that are meaningful to your programs.
It also provides system exception classes corresponding to areas of the Force.com platform.
Some common system exceptions are DmlException (issues with changes to the database),
 NullPointerException (attempt to dereference a null value), QueryException (issues with
database queries), and TypeException (issues converting data types).

 The two ways to use exceptions in your code are to raise an exception with the throw keyword
and handle an exception with the try , catch , and finally keywords:

 1. Raise an exception— When your code cannot proceed due to a problem with its input
or other issue, you can raise an exception. An exception stops execution of the code
and provides information about the problem to its callers. Only custom exceptions,

ptg11524036

115Apex Language Basics

classes that are subclasses of Force.com’s Exception class, can be raised. The names of
all custom exception classes must end with the word Exception . Construct an instance of
your exception class using an optional message or another exception as the preceding
cause and provide it as an argument to the throw keyword.

 2. Handle an exception— An exception handler in Apex is a code block defined to expect
and take action on one or more named exception classes. It consists of a try code block,
zero or more catch code blocks, and optionally a finally code block. The try code
block is executed first. If an exception is raised, Apex looks for a catch code block that
matches the exception class. If it’s found, execution skips to the relevant catch . If not,
the exception is bubbled upward to the caller. After the code in the try completes,
successfully or not, the finally code block is executed.

 Listing 4.19 demonstrates both forms of exception statements. It inserts a Timecard record
within a try block, using a catch block to handle a database exception (DmlException). The
code to handle the database exception itself raises an exception, a custom exception class called
 MyException . It ends by printing a final message in the finally block.

 Listing 4.19 Sample Exception Statements

 class MyException extends Exception {}
 Timecard__c timecard = new Timecard__c();
 try {
 insert timecard;
 } catch (DMLException e) {
 throw new MyException('Could not create Timecard record: ' + e);
 } finally {
 System.debug('Exiting timecard creation code');
 }

 Recursion

 Apex supports the use of recursion in code. The maximum stack depth is not documented, so
experiment with your own code before committing to a recursive algorithm. For example, the
code in Listing 4.20 fails with System.Exception: Maximum stack depth reached: 1001 .

 Listing 4.20 Recursion with Unsupported Depth

 Integer counter = 0;
 void recursive() {
 if (counter < 500) {
 counter++;
 recursive();
 }
 }
 recursive();

ptg11524036

116 Chapter 4 Business Logic

 Asynchronous Execution

 Code in Apex normally is executed synchronously. From the user’s point of view, there is a
single thread of execution that must complete before another can begin. But Apex also supports
an asynchronous mode of execution called future methods. Code entering a future method
completes immediately, but the body of the method isn’t executed until later, at a time deter-
mined by the Force.com platform.

 The code in Listing 4.21 declares a future method called asyncMethod with a single parameter:
a list of strings. It might use these strings to query records via SOQL and perform DML opera-
tions on them.

 Listing 4.21 Future Method Declaration

 @future
 public static void asyncMethod(List<String> idsToProcess) {
 // code block
 }

 Future methods typically are used to perform expensive tasks that are not time-critical. A
regular synchronous method can begin some work and invoke a future method to finish it. The
future method starts fresh with respect to governor limits.

 Future methods have many limitations, as follows:

 ■ You cannot invoke more than ten future methods in a single scope of execution. There is
no guarantee of when these methods will be executed by Force.com or in what order.

 ■ Future methods cannot call other future methods.

 ■ Future method signatures are always static and return void. They cannot use custom
classes or database objects as parameters—only primitive types such as String and Integer
and collections of primitive types.

 ■ You cannot test future methods like ordinary methods. To write testable code that
includes future methods, keep your future methods limited to a single line of code that
invokes a normal method to perform the actual work. Then in your test case, call the
normal method so that you can verify its behavior.

 ■ Force.com limits your usage of future methods in a 24-hour period to 250,000 or 200 per
licensed user, whichever is greater. This limit is shared with Batch and Scheduled Apex.

 Note

 Batch Apex is an additional feature for asynchronous execution. It provides much greater con-
trol than future methods and supports processing of millions of records. Batch Apex is covered
in Chapter 9 , “Batch Processing.”

ptg11524036

117Apex Language Basics

 Object-Oriented Apex

 Apex is an object-oriented language. This subsection describes Apex in terms of five standard
characteristics of object-oriented languages, summarized here:

 ■ Encapsulation— Encapsulation combines the behavior and internal state of a program
into a single logical unit.

 ■ Information hiding— To minimize tight coupling between units of a program,
information hiding limits external visibility into the behavior and state of a unit.

 ■ Modularity— The goal of modularity is to establish clear boundaries between
components of a program.

 ■ Inheritance— Inheritance allows one unit of code to define its behavior in terms of
another.

 ■ Polymorphism— Polymorphism is the capability to interact with multiple units of code
interchangeably without special cases for each.

 These principles of object-oriented programming help you learn the Apex syntax and behaviors
from a language-neutral point of reference.

 Encapsulation

 Encapsulation describes the bundling of a program’s behavior and state into a single definition,
usually aligned with some real-world concept. In Apex that definition is a class.

 When a class is defined, it becomes a new data type in Apex. Classes contain variables,
methods, properties, constructors, initializers, and inner classes. These components are summa-
rized in the following list, and their usage is demonstrated in Listing 4.22 :

 ■ Variables— Variables hold the state of an object instance or class. By default, variables
declared inside a class are scoped to individual object instances and are called member
variables. Every instance of an object gets its own member variables and can read and
write their values independently without interfering with the values stored in other
object instances. There are also class variables, also known as static variables. They are
declared using the static keyword. Static variables are shared across all instances of the
object.

 ■ Methods— Methods define the verbs in a class, the actions to be taken. By default,
they operate within the context of individual object instances, able to access all visible
member variables. Methods can also be static, operating on the class itself. Static methods
have access to static variables but never member variables.

 ■ Properties— A property is a shortened form of a method that provides access to a static
or instance variable. An even shorter form is called an automatic property. These are
properties with no code body. When no code is present, the logic is implied. Getters
return their value; setters set their value.

ptg11524036

118 Chapter 4 Business Logic

 ■ Constructors— A constructor is a special method executed when a class is instantiated.
Constructors are declared much like methods, but share their name with the class name,
and have no return type declaration.

 ■ Initializers— An initializer contains code that runs before any other code in the class.

 ■ Inner classes— An inner class is a class defined within another class.

 Listing 4.22 Class Definition

 class MyClass {
 static Integer count; /* Class variable */
 Integer cost; /* Member variable */
 MyClass(String c) { /* Constructor */ }
 void doSomething() { /* Method */ }
 Integer unitCost { get { return cost; } set { this.cost = value; } }
 Integer q { get; set; }
 { /* Initializer */ }
 class MyInnerClass { /* Inner class */ }
 }

 Tip

 Code listings containing static variables or inner class declarations cannot be tested in the
Execute Anonymous View of the Force.com IDE. Create a stand-alone class and then invoke it
from the Execute Anonymous view. To create a stand-alone class in the Force.com IDE, select
your Force.com Project and then select New, Apex Class from the File menu.

 Information Hiding

 Class definitions include notation to limit the visibility of their constituent parts to other code.
This information-hiding notation protects a class from being used in unanticipated and invalid
ways and simplifies maintenance by making dependencies explicit. In Apex, information
hiding is accomplished with access modifiers. There are two places to use access modifiers: on
classes, and on methods and variables:

 ■ Classes— An access modifier of public makes a class visible to the entire application
namespace, but not outside it. A global class is visible to Apex code running in every
application namespace.

 ■ Methods and variables— If designated private , a method or variable is visible only
within its defining class. This is the default behavior. An access modifier of protected
is visible to the defining class and subclasses, public is visible to any Apex code in the
same application namespace but not accessible to other namespaces, and global can be
used by any Apex code running anywhere in the organization, in any namespace.

ptg11524036

119Apex Language Basics

 Modularity

 Apex supports interfaces, which are skeletal class definitions containing a list of methods with
no implementation. A class built from an interface is said to implement that interface, which
requires that its method names and the data types of its argument lists be identical to those
specified in the interface.

 The proper use of interfaces can result in modular programs with clear logical boundaries
between components, making them easier to understand and maintain.

 Inheritance

 Apex supports single inheritance. It allows a class to extend one other class and implement
many interfaces. Interfaces can also extend one other interface. A class extending from another
class is referred to as its subclass.

 For a class to be extended, it must explicitly allow it by using the virtual or abstract
keyword in its declaration. Without one of these keywords, a class is final and cannot be
subclassed. This is not true of interfaces because they are implicitly virtual.

 By default, a subclass inherits all the functionality of its parent class. All the methods defined
in the parent class are also valid on the subclass without any additional code. This behavior can
be selectively overridden if the parent class permits. Overriding a method is a two-step process:

 1. The parent class must specify the virtual or abstract keywords on the methods to be
overridden.

 2. In the subclass, the override keyword is used on the virtual or abstract methods to
declare that it’s replacing the implementation of its parent.

 After it’s overridden, a subclass can do more than replace the parent implementation. Using the
 super keyword, the subclass can invoke a method in its parent class, incorporating its func-
tionality and potentially contributing its own.

 Polymorphism

 An object that inherits a class or implements an interface can always be referred to in Apex
by its parent class or interface. References in variable, property, and method declarations treat
the derived objects identically to objects they are derived from, even though they are different
types.

 This polymorphic characteristic of object types can help you write concise code. It works with
the hierarchy of object types to enable broad, general statements of program behavior, behav-
ior applying to many object types at once, while preserving the option to specify behavior per
object type.

 One example of using polymorphic behavior is method overloading, in which a single method
name is declared with multiple argument lists. Consumers of the method simply invoke it by
name, and Apex finds the correct implementation at runtime based on the object types.

ptg11524036

120 Chapter 4 Business Logic

 Understanding Governor Limits

 Governor limits are imposed on your running Apex code based on the type of resource
consumed. When a governor limit is encountered, your code is immediately terminated
with an exception indicating the type of limit reached. Examples of resource types are heap
(memory used during execution) and SOQL queries.

 Table 4.4 lists a few of the most important governor limits. Additional governor limits are
introduced later in the book.

 Table 4.4 Subset of Governor Limits

 Resource Type Governor Limit

 Heap 6MB

 Apex code 1,000,000 lines of code executed, 3MB code size

 Database 50,000 records retrieved via SOQL

 Note

 Namespaces are used to separate and isolate Apex code and database objects developed by
different vendors so that they can coexist and interoperate in a single Force.com organization.
Governor limits are applied independently to each namespace. For example, if you install a
package from Force.com AppExchange, the resources consumed by code running inside that
package do not count against the limits applied to your code.

 Database Integration in Apex

 In Apex, the Force.com database is already integrated into the language and runtime environ-
ment. There are no object-relational mapping tools or database connection pools to configure.
Your Apex code is automatically aware of your database, including all of its objects and fields
and the security rules protecting them.

 This section examines the five ways the database is exposed in Apex code, which are summa-
rized here:

 1. Database records as objects— Database objects are directly represented in Apex as classes.
These classes are implicitly imported into your code, so you’re always developing from
the latest database schema.

 2. Database queries— SOQL is a concise expression of the records to be queried and
returned to your programs.

 3. Persisting database records— Apex has a built-in Data Manipulation Language (DML),
providing verbs that create, update, or delete one or more records in the database.

ptg11524036

121Database Integration in Apex

 4. Database triggers— Triggers are code that register interest in a specific action or actions
on a database object, such as an insert or delete on the Account object. When this action
occurs, the trigger code is executed and can inhibit or enhance the behavior of the
database action.

 5. Database security in Apex— Normally, Apex code runs in a privileged mode, granting it
full access to all the data in the system. Alternatively, you can configure it to run under
the same restrictions imposed on the current user, including object and record-level
sharing rules.

 Database Records as Objects

 All database objects, standard and custom, are available as first-class members of the Apex
language, automatically and transparently. This eliminates the mind-numbing, error-prone
work of importing, mapping, and translating between relational and program data structures,
chores commonly required in general-purpose programming languages. In Apex, references to
database objects are verified at compile time. This reduces the possibility of runtime surprises
caused by field or object mismatches. Listing 4.23 shows an example of creating a record in the
Contact object and setting its first name field.

 Listing 4.23 Creating a Record

 Contact contact = new Contact();
 contact.FirstName = 'Larry';

 Database relationships are also exposed in Apex. The __r syntax refers to a relationship field,
a field that contains a reference to another object or list of objects. Listing 4.24 builds on the
previous listing, creating an Assignment record and associating it with the Contact record.

 Listing 4.24 Creating a Record with Relationship

 Assignment__c assignment = new Assignment__c();
 assignment.Contact__r = contact;

 The Force.com IDE’s Schema Explorer can take the mystery out of relationship fields like
 Contact__r . It displays the correct syntax for referring to fields and relationships, based on
the actual schema of the database object. Its Schema list on the right side displays all objects,
custom and standard. Drilling into an object, the Fields folder lists all fields in the object and
their types. A reference type indicates that a field is the child object in a Lookup relationship.
Expand these fields to reveal their parent object’s type and name. For example, in the Project
custom object, Account__r is the foreign key to the Account object. This is demonstrated in
 Figure 4.4 .

ptg11524036

122 Chapter 4 Business Logic

 Figure 4.4 Viewing relationships in Schema Explorer

 Data integrity is protected in Apex at compile and runtime using object metadata. For example,
 Name is defined as a read-only field in Contact, so the code in Listing 4.25 cannot be compiled.

 Listing 4.25 Attempted Assignment to Read-Only Field

 Contact c = new Contact();
 c.Name = 'Larry';

 After a database object is referenced in Apex code, that object cannot be deleted or edited in a
way that invalidates the code. This protects your code from changes to the database schema.
Impacted code must be commented out before the database objects are modified.

 Database Queries

 You’ve seen how data structures in Apex are implicitly defined by the objects in your data-
base. Force.com provides two query languages to populate these objects with data: Salesforce
Object Query Language (SOQL) and Salesforce Object Search Language (SOSL). SOSL, addressed
in Chapter 5 , “Advanced Business Logic,” provides unstructured, full-text search across many
objects from a single query.

ptg11524036

123Database Integration in Apex

 The focus of this section is SOQL because it is the workhorse of typical business applications.
This section includes subsections on the basics of SOQL, filtering and sorting, how to query
related objects, and how to use SOQL from Apex code.

 As you read this section, you can experiment with the sample SOQL queries using the Force.
com IDE’s Schema Explorer. In the Navigator or Package Explorer View, expand the node for
your Force.com Project and double-click salesforce.schema. Enter a query in the text box in the
upper-left corner and click the Run Me button. The results appear in the table below the query.
In Figure 4.5 , a query has been executed against the Project object, returning four records. Note
that many of the queries rely on objects from the Services Manager sample application rather
than standard Force.com objects.

 Figure 4.5 Running SOQL queries in Schema Explorer

 Note

 This book does not cover every feature and nuance of SOQL. For the complete specification,
visit http://developer.force.com and download the latest Force.com SOQL and SOSL Reference.

 SOQL Basics

 Despite being one letter away from SQL and borrowing some of its syntax, SOQL is completely
different and much easier to understand on its own terms. Just as Apex is not a general-purpose

http://developer.force.com

ptg11524036

124 Chapter 4 Business Logic

programming language like Java, SOQL is not a general-purpose database query language like
SQL. SOQL is specifically designed and optimized for the Force.com database.

 A SOQL statement is centered on a single database object, specifying one or more fields to
retrieve from it. The fields to select are separated by commas. Listing 4.26 is a simple SOQL
statement that returns a list of Account records with Id and Name fields populated. SOQL is
not case sensitive. SOQL keywords are shown throughout the book in uppercase and metadata
objects in title case for readability only.

 Listing 4.26 Simple SOQL Statement

 SELECT Id, Name
 FROM Account

 Filtering Records

 SOQL supports filter conditions to reduce the number of records returned. A filter condition
consists of a field name to filter, an operator, and a literal value.

 Valid operators are > (greater than), < (less than), >= (greater than or equal to), <= (less than or
equal to), = (equal to), != (not equal to), IN and NOT IN (matches a list of literal values, and
supports semi-joins and anti-joins), and INCLUDES and EXCLUDES (match against multi-select
picklist values). On String fields, the LIKE operator is also available, which applies a pattern
to filter records. The pattern uses the % wildcard to match zero or more characters, _ to match
one character, and the \ character to escape the % and _ wildcards, treating them as regular
characters.

 Multiple filters are combined in a single SOQL statement using the Boolean operators AND and
 OR and grouped with parentheses. Listing 4.27 returns the names of accounts with a type of
direct customer, a modification date sometime during the current year, and more than $100
million in annual revenue.

 Listing 4.27 SOQL Statement with Filter Conditions

 SELECT Name
 FROM Account
 WHERE AnnualRevenue > 100000000
 AND Type = 'Customer - Direct'
 AND LastModifiedDate = THIS_YEAR

 Notice the way literal values are specified. Single quotation marks must be used around String
literals but never with other data types. THIS_YEAR is a built-in relative time function. The
values of relative time functions vary based on when the query is executed. Other relative time
functions are YESTERDAY , TODAY , TOMORROW , LAST_WEEK , THIS_WEEK , NEXT_WEEK , and so forth.

 Absolute dates and times can also be specified without single quotation marks.
Dates must use the YYYY-MM-DD format. Datetimes can be YYYY-MM-DDThh:mm:ssZ ,

ptg11524036

125Database Integration in Apex

 YYYY-MM-DDThh:mm:ss+hh:mm , or YYYY-MM-DDThh:mm:ss-hh:mm , indicating the positive or
negative offset from Coordinated Universal Time (UTC).

 In addition to filter conditions, SOQL supports the LIMIT keyword. It sets an absolute upper
bound on the number of records that can be returned from the query. It can be used in
conjunction with all the other SOQL features. For example, the SOQL statement in Listing 4.28
returns up to ten Account records modified today.

 Listing 4.28 SOQL Statement with Record Limit

 SELECT Name, Type
 FROM Account
 WHERE LastModifiedDate = TODAY
 LIMIT 10

 Sorting Query Results

 Results of a query can be sorted by up to 32 fields in ascending (ASC , the default) or descend-
ing (DESC) order. Sorting is not case sensitive, and nulls appear first unless otherwise specified
(NULLS LAST). Multi-select picklists, long text areas, and reference type fields cannot be used as
sort fields. The SOQL query in Listing 4.29 returns records first in ascending order by Type and
then in descending order by LastModifiedDate .

 Listing 4.29 SOQL Statement with Sort Fields

 SELECT Name, Type, AnnualRevenue
 FROM Account
 ORDER BY Type, LastModifiedDate DESC

 Querying Multiple Objects

 The result of a SOQL query can be a simple list of records containing rows and columns or hier-
archies of records containing data from multiple, related objects. Relationships between objects
are navigated implicitly from the database structure. This eliminates the work of writing accu-
rate, efficient join conditions common to development on traditional SQL databases.

 The two ways to navigate object relationships in SOQL are child-to-parent and parent-to-child.
 Listing 4.30 is an example of a child-to-parent query, returning the name, city, and Force.com
username creating its contact of all resources with a mailing address in the state of California.
It selects and filters fields of the Project object, the parent object of Account. It also selects the
 Name field from the User object, a parent two levels removed from Project via the Account’s
 CreatedBy field.

ptg11524036

126 Chapter 4 Business Logic

 Listing 4.30 SOQL with Child-to-Parent Relationship

 SELECT Name, Account__r.Name, Account__r.CreatedBy.Name
 FROM Project__c
 WHERE Account__r.BillingState = 'CA'

 Caution

 The results of child-to-parent relationship queries are not completely rendered in the Force.
com IDE. You can double-click a row and column to view fields from a parent record, but this is
limited to direct parents only. Fields from parent-of-parent objects, such as the Contact__r.
CreatedBy relationship in Listing 4.29 , are omitted from the results. This is a limitation not of
SOQL, but of the Force.com IDE.

 At most, five levels of parent objects can be referenced in a single child-to-parent query, and
the query cannot reference more than 25 relationships in total.

 The second form of relationship query is the parent-to-child query. Listing 4.31 provides an
example. The parent object is Resource, and the child is Timecard. The query selects from every
Contact its Id, Name, and a list of hours from its Timecards in the current month.

 Listing 4.31 SOQL with Parent-to-Child Relationship

 SELECT Id, Name,
 (SELECT Total_Hours__c
 FROM Timecards__r
 WHERE Week_Ending__c = THIS_MONTH)
 FROM Contact

 A parent-to-child query cannot reference more than 20 child objects. Double-clicking the
parent record in the results table brings up the child records for viewing in the Force.com IDE.

 Using SOQL in Apex

 Like database objects, SOQL queries are an integrated part of the Apex language. They are
developed in-line with your code and verified at compile time against your database schema.

 Listing 4.32 is an example of a SOQL query used in Apex. It retrieves a list of Project records for
this year and loops over them, summing their billable hours in the variable totalHours . Note
the usage of the variable named statuses directly in the SOQL query, preceded by a colon.
This is known as a bind variable . Bind variables can appear on the right side of a WHERE clause,
as the value of an IN or NOT IN clause, and in the LIMIT clause.

ptg11524036

127Database Integration in Apex

 Listing 4.32 SOQL Query in Apex

 Decimal totalHours = 0;
 List<String> statuses = new String[] { 'Green', 'Yellow' };
 List<Project__c> projects = [SELECT Billable_Hours__c
 FROM Project__c
 WHERE Start_Date__c = THIS_YEAR and Status__c IN :statuses];
 for (Project__c project : projects) {
 totalHours += project.Billable_Hours__c;
 }
 System.debug(totalHours);

 This code relies on a List to store the results of the SOQL query. This means the entire SOQL
query result must fit within the heap size available to the program. A better syntax for looping
over SOQL records is a variation of the List/Set Iteration For Loop called a SOQL For Loop. The
code in Listing 4.33 is a rewrite of Listing 4.32 using the SOQL For Loop. This allows it to run
when the Project object contains up to 50,000 records for this year without consuming 50,000
records’ worth of heap space at one time.

 Listing 4.33 SOQL Query in Apex Using SOQL For Loop

 Decimal totalHours = 0;
 for (Project__c project : [SELECT Billable_Hours__c
 FROM Project__c
 WHERE Start_Date__c = THIS_YEAR]) {
 totalHours += project.Billable_Hours__c;
 }
 System.debug(totalHours);

 An additional form of the SOQL For Loop is designed for use with Data Manipulation Language
(DML). Consider how the code in Listing 4.32 could be adapted to modify Project records
returned from the SOQL query rather than simply summing them. With the existing code, one
Project record would be modified for each loop iteration, an inefficient approach and a quick
way to run afoul of the governor limits. But if you change the type of variable in the For Loop
to a list of Project records, Force.com provides up to 200 records per loop iteration. This allows
you to modify a whole list of records in a single operation.

 Note

 Looping through a list of records to calculate the sum of a field is provided as an example of
using SOQL with Apex. It is not an optimal way to perform calculations on groups of records
in the database. Chapter 5 introduces aggregate queries, which enable calculations to be
returned directly from a SOQL query, without Apex.

ptg11524036

128 Chapter 4 Business Logic

 Any valid SOQL statement can be executed in Apex code, including relationship queries. The
result of a child-to-parent query is returned in a List of objects whose types match the child
object. Where fields from a parent object are included in the query, they are available as nested
variables in Apex code. For example, running the query in Listing 4.30 within a block of Apex
code returns a List<Project__c> . If this List is assigned to a variable named projects , the
first Account record’s billing state is accessible by projects[0].Account__r.BillingState .

 Parent-to-child queries are returned in a List of objects, their type matching the parent object.
Each record of the parent object includes a nested List of child objects. Using Listing 4.31 as
an example, if results contains the List<Contact> returned by the query, results[0].
Timecards__r[0].Total_Hours__c accesses a field in the first Contact’s first Timecard child
record.

 Note

 Usage of SOQL in Apex is subject to governor limits. For example, you are limited to a total of
100 SOQL queries, or 300 including parent-to-child queries. The cumulative maximum number
of records returned by all SOQL queries, including parent-to-child, is 50,000.

 Persisting Database Records

 Changes to database records in Force.com are saved using Data Manipulation Language (DML)
operations. DML operations allow you to modify records one at a time, or more efficiently
in batches of multiple records. The five major DML operation types are listed next. Each is
discussed in more detail later in this subsection.

 ■ Insert — Creates new records.

 ■ Update — Updates the values in existing records, identified by Force.com unique identifier
(Id) field or a custom field designated as an external identifier.

 ■ Upsert — If records with the same unique identifier or external identifier exist, this
updates their values. Otherwise, it inserts them.

 ■ Delete — Moves records into the Recycle Bin.

 ■ Undelete — Restores records from the Recycle Bin.

 DML operations can be included in Apex code in one of two ways: DML statements and data-
base methods. Beyond the syntax, they differ in how errors are handled. If any one record in
a DML statement fails, all records fail and are rolled back. Database methods allow for partial
success. This chapter uses DML statements exclusively. Chapter 5 provides information on data-
base methods.

ptg11524036

129Database Integration in Apex

 Note

 Usage of DML in Apex is subject to governor limits. For example, you are limited to a total of
150 DML operations. The cumulative maximum number of records modified by all DML opera-
tions is 10,000.

 Insert

 The Insert statement adds up to 200 records of a single object type to the database. When all
records succeed, they contain their new unique identifiers. If any record fails, a DmlException
is raised and the database is returned to its state prior to the Insert statement. For example,
the code in Listing 4.34 inserts a Contact record and uses it as the parent of a new Resource
record.

 Listing 4.34 Inserting a Record

 try {
 Contact c = new Contact(FirstName = 'Justin', LastName = 'Case',
 Hourly_Cost_Rate__c = 75, Region__c = 'West');
 insert c;
 } catch (DmlException e) {
 System.debug(LoggingLevel.ERROR, e.getMessage());
 }

 Update

 Update saves up to 200 existing records of a single object type. Existing records are identified
by unique identifier (Id). Listing 4.35 illustrates the usage of the Update statement by creating
a Resource record for Doug and updating it. Refresh the Resources tab in the native user inter-
face to see the new record.

 Listing 4.35 Updating Records

 Contact doug = new Contact(FirstName = 'Doug', LastName = 'Hole');
 insert doug;
 doug.Hourly_Cost_Rate__c = 100;
 doug.Home_Office__c = 'London';
 update doug;

 Upsert

 Upsert combines the behavior of the Insert and Update operations on up to 200 records of
the same object type. First, it attempts to locate a matching record using its unique identifier
or external identifier. If one is found, the statement acts as an Update . If not, it behaves as an
 Insert .

ptg11524036

130 Chapter 4 Business Logic

 The syntax of the Upsert statement is identical to Update and Insert , but adds a second,
optional argument for specifying an external identifier. If an external identifier is not provided,
the record’s unique identifier is used. The code in Listing 4.36 upserts a record in the Contact
object using the field Resource_ID__c (created in Chapter 11 , “Advanced Integration”) as
an external identifier. If a Contact record with a Resource_ID__c value of 1001 exists, it is
updated. If not, it is created.

 Listing 4.36 Upserting a Record

 Contact c = new Contact(Resource_ID__c = 1001,
 FirstName = 'Terry', LastName = 'Bull');
 upsert c Resource_ID__c;

 Delete and Undelete

 Delete and Undelete statements move up to 200 records of the same object type to and from
the Recycle Bin, respectively. Listing 4.37 shows an example of the Delete statement. A new
Resource record named Terry is added and then deleted.

 Listing 4.37 Deleting Records

 Contact terry = new Contact(FirstName = 'Terry', LastName = 'Bull');
 insert terry;
 delete terry;

 Listing 4.38 builds on Listing 4.37 to undelete the Terry record. Concatenate the listings in the
Execute Anonymous view to test. The database is queried to prove the existence of the unde-
leted record. Try running the code a second time with the undelete statement commented out
to see that it is working as intended.

 Listing 4.38 Undeleting Records

 undelete terry;
 Contact terry2 = [SELECT Id, Name
 FROM Contact WHERE Name LIKE 'Terry%' LIMIT 1];
 System.debug(terry2.Name + ' exists');
 delete terry;

 Database Triggers

 Triggers are Apex code working in concert with the Force.com database engine, automatically
invoked by Force.com when database records are modified. Trigger code can perform any neces-
sary processing on the modified data before or after Force.com completes its own work. The
following list describes scenarios commonly implemented with triggers:

ptg11524036

131Database Integration in Apex

 ■ A validation rule is required that is too complex to define on the database object using
formula expressions.

 ■ Two objects must be kept synchronized. When a record in one object is updated, a trigger
updates the corresponding record in the other.

 ■ Records of an object must be augmented with values from another object, a complex
calculation, or external data via a Web service call.

 This subsection covers the essentials of trigger development, including definition, batch
processing, and error handling.

 Definition

 A trigger definition consists of four parts:

 1. A unique trigger name to differentiate it from other triggers. Multiple triggers can be
defined on the same database object.

 2. The name of the database object on which to create the trigger. You can create triggers
on standard and custom objects.

 3. A comma-separated list of one or more trigger events that cause the trigger code to be
executed. An event is specified using two keywords. The first keyword is either before or
 after , indicating that the trigger is to be executed before or after the database operation
is saved. The second keyword is the DML operation: insert , update , delete , or
 undelete . For example, the trigger event before update means that the trigger is fired
before a record is updated. Note that before undelete is an invalid trigger event.

 4. The block of Apex code to execute when the trigger event occurs. The code typically
loops over the list of records in the transaction and performs some action based on
their contents. For insert and update triggers, the list of records in the transaction
is provided in the variable Trigger.new . In a before trigger, these records can be
modified. In update , delete , and undelete triggers, Trigger.old contains a read-only
list of the original versions of the records. Also available to your trigger code is a set of
Boolean variables indicating the event type that fired the trigger. They are useful when
your trigger is defined on multiple events yet requires separate behavior for each. These
variables are Trigger.isBefore , Trigger.isAfter , Trigger.isInsert , Trigger.
isUpdate , Trigger.isDelete , and Trigger.isUndelete .

 Listing 4.39 is an example of a trigger named validateTimecard . It is triggered before inserts
and updates to the Timecard custom object. It doesn’t do anything yet because its code block is
empty.

 Listing 4.39 Trigger Definition

 trigger validateTimecard on Timecard__c(before insert, before update) {
 // code block
 }

ptg11524036

132 Chapter 4 Business Logic

 Triggers cannot be created in the Execute Anonymous view. Create them in the Force.com IDE
by selecting File, New, Apex Trigger. To test triggers, use the native user interface to manu-
ally modify a relevant record, or write a unit test and invoke it from the Apex Test Runner or
Execute Anonymous view.

 Tip

 A best practice for organizing trigger logic is to place it in an Apex class rather than the body of
the trigger itself. This does not change anything about the behavior of the trigger or its governor
limits, but encourages code reuse and makes the trigger easier to test.

 Batch Processing in Triggers

 Manual testing in the native user interface and simplistic unit tests can lull you into the false
belief that triggers operate on a single record at a time. Not to be confused with Batch Apex,
triggers can always be invoked with a list of records and should be optimized accordingly.
Many ways exist to get a batch of records into the Force.com database, including the Data
Loader and custom user interfaces. The surest way to a production issue with governor limits is
to write a trigger that operates inefficiently when given a batch of records. The process of hard-
ening a trigger to accept a batch of records is commonly called bulkifying the trigger.

 Batches can be up to 200 records. When writing your trigger code, look at the resources
consumed as you loop over Trigger.new or Trigger.old . Study the governor limits and make
sure your code splits its work into batches, doing as little work as possible in the loop. For
example, if you have some additional data to query, build a set of IDs from the trigger’s records
and query them once. Do not execute a SOQL statement for each loop iteration. If you need to
run a DML statement, don’t put that in the loop either. Create a List of objects and execute a
single DML statement on the entire List. Listing 4.40 shows an example of looping over a batch
of Contact records (in the variable contacts) to produce a list of Assignment records to insert.

 Listing 4.40 Batching DML Operations

 List<Assignment__c> toInsert = new List<Assignment__c>();
 for (Contact contact : contacts) {
 toInsert.add(new Assignment__c(
 Contact__r = contact));
 }
 insert toInsert;

 Error Handling

 Errors are handled in triggers with try , catch blocks, consistent with other Apex code. But
uncaught errors within a trigger differ from other Apex code in how they can impact execution
of the larger database transaction the trigger participates in.

ptg11524036

133Debugging Apex Using Developer Console

 A common use of errors in triggers is for validation. Strings describing validation errors can
be added to individual records or fields using the addError method. Force.com continues to
process the batch, collecting any additional errors, and then rolls back the transaction and
returns the errors to the initiator of the transaction.

 Note

 Additional error-handling behavior is available for transactions initiated outside of Force.com;
for example, through the SOAP API. Records can fail individually without rolling back the entire
transaction. This is discussed in Chapter 10 , “Integration with Force.com.”

 If an uncaught exception is encountered in a trigger, whether thrown by the system or the
trigger code itself, the batch of records is immediately aborted, and all changes are rolled back.

 Database Security in Apex

 Outside of Anonymous blocks, Apex always runs in a privileged, system context. This gives it
access to read and write all data. It does not honor object-, field-, and record-level privileges of
the user invoking the code. This works well for triggers, which operate at a low level and need
full access to data.

 Where full access is not appropriate, Apex provides the with sharing keyword. For example,
custom user interfaces often require that access to data is limited by the privileges of the
current user. Using with sharing , the sharing rules applying to the current user are evaluated
against the data requested by queries and updated in DML operations. This option is discussed
in detail in Chapter 6 , “User Interfaces.”

 Debugging Apex Using Developer Console

 Because Apex code cannot be executed on your local machine, debugging Apex requires some
different tools and techniques than traditional software development. This section describes
how to debug your code using two features of the Force.com’s Developer Console. Developer
Console allows you to set checkpoints to capture a snapshot of the state of your program. It
also records execution logs when users perform actions in your application, allowing you to
step through the logic and resources consumed.

 Checkpoints

 Checkpoints allow you to freeze variables at a specific point of execution in your program
and examine them later. The point in the code at which the checkpoint is captured is called a
checkpoint location. It is similar to a breakpoint in a standard development environment.

 To work with checkpoints, open Developer Console and click the Checkpoints tab. To set a
checkpoint location, locate the code using the Tests or Repository tab and click to the left of

ptg11524036

134 Chapter 4 Business Logic

the desired line. In Figure 4.6 , a checkpoint location has been set at line 10, indicated by the
dot to the left of the line number.

 Figure 4.6 Setting a heap dump location

 When code is executed at a checkpoint location, a checkpoint is generated. It can be viewed
by double-clicking on a row in the Checkpoints tab, as shown in Figure 4.7 . A checkpoint has
been selected in the Checkpoints tab at the bottom, and its details shown in the top panel.
The Symbols tab lists the program’s variables and their values at the point in time of the
checkpoint.

 Execution Logs

 Testing or debugging code from a user’s point of view, directly from the native user interface,
is often necessary. With the Developer Console pop-up window open, you can continue using
Force.com in the main browser window. Actions you perform in the application result in
execution log entries. Click the Logs tab in Developer Console to examine them.

 In Figure 4.8 , the user’s action has resulted in a log entry, shown in the top table, which is
selected and opened by double-clicking it. The top and middle of the screen display the raw
execution log on the right panel, and an analysis in the left panels. The Stack Tree, Execution
Overview, and Execution Stack provide different views of the Force.com resources consumed
and their impact on response time.

ptg11524036

135Debugging Apex Using Developer Console

 Figure 4.8 Examining the execution log

 Figure 4.7 Examining a heap dump

ptg11524036

136 Chapter 4 Business Logic

 Unit Tests in Apex

 Testing Apex code consists of writing and executing unit tests. Unit tests are special methods
written to exercise the functionality of your code. The goal of testing is to write unit tests that
execute as many lines as possible of the target code. The number of lines of code executed
during a test is called test coverage and is expressed as a percentage of the total lines of code.
Unit tests also typically perform some pretest preparation, such as creating sample data, and
posttest verification of results.

 Test Methods

 Test methods are static Apex code methods, annotated with @isTest . They are written within
an outer class, also annotated with @isTest . Tests are subject to the same governor limits as all
Apex code, but every test method is completely independent for the purposes of limit tracking,
not cumulative. Also, test classes are not counted against the code size limit for a Force.com
organization.

 A test is considered successful if its method is executed without encountering an uncaught
exception. A common testing pattern is to make a series of assertions about the target code’s
state using the built-in method System.assert . The argument of assert is a Boolean expres-
sion. If it evaluates to true , the program continues; otherwise, a System.Exception is thrown
and causes the test to fail.

 Listing 4.41 shows a simple test method. It asserts two statements. The second is false, so the
test always fails.

 Listing 4.41 Test Method

 @isTest static void negativeTest() {
 Integer i = 2 + 2;
 System.assert(i == 4);
 System.assert(i / 2 == 1);
 }

 Rather than adding two numbers together, most unit tests perform substantial operations in
one or more other classes. Sometimes it’s necessary to examine the contents of a private vari-
able or invoke a protected method from a test. Rather than relaxing the access modifiers of the
code to make them visible to tests, annotate the code you are testing with @TestVisible . This
annotation provides your test code with privileged access but otherwise preserves the access
modifiers in your code.

 Test Data

 With the exception of users and profiles, tests do not have access to the data in the Force.com
database. You can annotate a class or method with @isTest(SeeAllData=true) to make the
organization’s data visible to tests, but this is not a best practice. The recommended approach

ptg11524036

137Unit Tests in Apex

is for tests to create their own temporary test data. All database modifications occurring during
execution of a test method are automatically rolled back after the method is completed. Create
your own test data in a setup phase before your tests are executed, and limit your assertions to
that test data.

 Running Tests

 All tests are automatically executed when migrating code to a production environment, even
unchanged and existing tests not included in the migration. Tests can and should be executed
manually throughout the development process. Three ways to run tests are described in the
following list:

 1. The Force.com native user interface includes a test runner. In the App Setup area, click
Develop, Apex Classes, and then click the Run All Tests button.

 2. In the Force.com IDE, right-click an Apex class containing test methods and select Force.
com, Run Tests.

 3. From Developer Console, click the Tests tab and the New Run button. Select the tests to
include, and click the Run button. Alternatively, right-click on the Classes folder
in Eclipse and select Force.com, Run Tests to execute all tests in your organization.
Figure 4.9 shows Developer Console after running a test.

 Figure 4.9 Viewing test results in Developer Console

ptg11524036

138 Chapter 4 Business Logic

 Sample Application: Validating Timecards

 This section applies Apex, SOQL, DML, and triggers to ensure that timecards entered into the
Services Manager sample application have a valid assignment. An assignment is a record indi-
cating that a resource is staffed on a project for a certain time period. A consultant can enter
a timecard only for a project and time period he or she is authorized to work. Triggers are one
way to enforce this rule.

 The following subsections cover the process of configuring the Force.com IDE for Apex devel-
opment, creating the trigger code to implement the timecard validation rule, and writing and
running unit tests.

 Force.com IDE Setup

 Begin by creating the Force.com IDE Project for the Services Manager sample application, if you
have not already done so. Select the menu option File, New, Force.com Project. Enter a project
name, username, password, and security token of your Development Edition organization
and click the Next button and then the Finish button. The Force.com IDE connects to Force.
com, downloads the metadata in your organization to your local machine, and displays a new
project node in your Navigator view.

 Creating the Trigger

 Listing 4.42 defines the trigger to validate timecards. It illustrates a best practice for trigger
development: Keep the trigger’s code block as small as possible. Place code in a separate class
for easier maintenance and to encourage code reuse. Use naming conventions to indicate
that the code is invoked from a trigger, such as the Manager suffix on the class name and the
 handle prefix on the method name.

 Listing 4.42 Trigger validateTimecard

 trigger validateTimecard on Timecard__c(before insert, before update) {
 TimecardManager.handleTimecardChange(Trigger.old, Trigger.new);
 }

 To create this trigger, select File, New, Apex Trigger. Enter the trigger name, select the object
(Timecard__c), enable the two trigger operations (before insert , before update), and click
the Finish button. This creates the trigger declaration and adds it to your project. It is now
ready to be filled with the Apex code in Listing 4.42 . If you save the trigger now, it will fail
with a compilation error. This is because the dependent class, TimecardManager , has not yet
been defined.

 Continue on to creating the class. Select File, New, Apex Class to reveal the New Apex Class
Wizard. Enter the class name (TimecardManager), leave the other fields (Version and Template)
set to their defaults, and click the Finish button.

ptg11524036

139Sample Application: Validating Timecards

 Listing 4.43 is the TimecardManager class. It performs the work of validating the timecard on
behalf of the trigger. First, it builds a Set of resource Ids referenced in the incoming set of time-
cards. It uses this Set to query the Assignment object. For each timecard, the assignment List is
looped over to look for a match on the time period specified in the timecard. If none is found,
an error is added to the offending timecard. This error is ultimately reported to the user or
program initiating the timecard transaction.

 Listing 4.43 TimecardManager Class

 public with sharing class TimecardManager {
 public class TimecardException extends Exception {}
 public static void handleTimecardChange(List<Timecard__c> oldTimecards,
 List<Timecard__c> newTimecards) {
 Set<ID> contactIds = new Set<ID>();
 for (Timecard__c timecard : newTimecards) {
 contactIds.add(timecard.Contact__c);
 }
 List<Assignment__c> assignments = [select Id, Start_Date__c,
 End_Date__c, Contact__c from Assignment__c
 where Contact__c in :contactIds];
 if (assignments.size() == 0) {
 throw new TimecardException('No assignments');
 }
 Boolean hasAssignment;
 for (Timecard__c timecard : newTimecards) {
 hasAssignment = false;
 for (Assignment__c assignment : assignments) {
 if (assignment.Contact__c == timecard.Contact__c &&
 timecard.Week_Ending__c - 6 >= assignment.Start_Date__c &&
 timecard.Week_Ending__c <= assignment.End_Date__c) {
 hasAssignment = true;
 break;
 }
 }
 if (!hasAssignment) {
 timecard.addError('No assignment for contact ' +
 timecard.Contact__c + ', week ending ' +
 timecard.Week_Ending__c);
 }
 }
 }
 }

ptg11524036

140 Chapter 4 Business Logic

 Unit Testing

 Now that the trigger is developed, you must test it. During development, taking note of the
code paths and thinking about how they are best covered by unit tests is a good idea. An even
better idea is to write the unit tests as you develop.

 To create unit tests for the timecard validation code using the Force.com IDE, follow the same
procedure as that for creating an ordinary Apex class. An optional variation on this process is to
select the Test Class template from the Create New Apex Class Wizard. This generates skeleton
code for a class containing only test methods.

 Listing 4.44 contains unit tests for the TimecardManager class. Before each unit test, test data
is inserted in a static initializer. The tests cover a simple positive case, a negative case in which
no assignments exist for the timecard, a second negative case in which no valid assignments
exist for the time period in a timecard, and a batch insert of timecards. The code demonstrates
a best practice of placing all unit tests for a class in a separate test class with an intuitive,
consistent naming convention. In our example, the TimecardManager class has a test class
named TestTimecardManager , the class name prefaced by the word Test.

 Listing 4.44 Unit Tests for TimecardManager Class

 @isTest
 private class TestTimecardManager {
 private static ID contactId, projectId;

 static {
 Contact contact = new Contact(FirstName = 'Nobody', LastName = 'Special');
 insert contact;
 contactId = contact.Id;
 Project__c project = new Project__c(Name = 'Proj1');
 insert project;
 projectId = project.Id;
 }

 @isTest static void positiveTest() {
 Date weekEnding = Date.valueOf('2015-04-11');
 insert new Assignment__c(Project__c = projectId,
 Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,
 Contact__c = contactId);
 insert new Timecard__c(Project__c = projectId,
 Week_Ending__c = weekEnding, Contact__c = contactId);
 }

 @isTest static void testNoAssignments() {
 Timecard__c timecard = new Timecard__c(Project__c = projectId,
 Week_Ending__c = Date.valueOf('2015-04-11'),
 Contact__c = contactId);

ptg11524036

141Sample Application: Validating Timecards

 try {
 insert timecard;
 } catch (DmlException e) {
 System.assert(e.getMessage().indexOf('No assignments') > 0);
 return;
 }
 System.assert(false);
 }

 @isTest static void testNoValidAssignments() {
 Date weekEnding = Date.valueOf('2015-04-04');
 insert new Assignment__c(Project__c = projectId,
 Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,
 Contact__c = contactId);
 try {
 insert new Timecard__c(Project__c = projectId,
 Week_Ending__c = Date.today(), Contact__c = contactId);
 } catch (DmlException e) {
 System.assert(e.getMessage().indexOf('No assignment for contact') > 0);
 return;
 }
 System.assert(false);
 }

 @isTest static void testBatch() {
 Date weekEnding = Date.valueOf('2015-04-11');
 insert new Assignment__c(Project__c = projectId,
 Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,
 Contact__c = contactId);
 List<Timecard__c> timecards = new List<Timecard__c>();
 for (Integer i=0; i<200; i++) {
 timecards.add(new Timecard__c(Project__c = projectId,
 Week_Ending__c = weekEnding, Contact__c = contactId));
 }
 insert timecards;
 }
 }

 After saving the code in the unit test class, run it by right-clicking in the editor and selecting
Force.com, Run Tests. After a few seconds, you should see the Apex Test Runner view with a
green check box indicating that all tests passed, as shown in Figure 4.10 . Expand the results
node to see 100% test coverage of the TimecardManager , and scroll through the debug log to
examine performance information and resource consumption for each of the tests.

ptg11524036

142 Chapter 4 Business Logic

 Figure 4.10 Viewing test results

 Summary

 This chapter is arguably the most important chapter in the book. It describes core Apex
concepts and syntax that form the basis of all subsequent chapters. Absorb this chapter,
augmenting it with the information available through the developer.force.com Web site and
community, and you will be well prepared to write your own Force.com applications.

 Before moving on, take a few minutes to review these major areas:

 ■ Apex is the only language that runs inside the Force.com platform and is tightly
integrated with the Force.com database. Apex is strongly typed and includes object-
oriented features.

 ■ The Force.com database is queried using SOQL and SOSL, and its records are modified
using DML. All three languages can be embedded directly inside Apex code.

 ■ Resources consumed by Apex programs are tightly controlled by the Force.com platform
through governor limits. Limits vary based on the type of resource consumed. Learn the
relevant governor limits as early as possible in your development process. This ensures
that you write efficient code that scales up to production data volumes.

ptg11524036

 5
 Advanced Business Logic

 In the preceding chapter, you learned the basics of the Apex language for developing business logic. This
chapter extends your knowledge of Apex to reach more features of the Force.com platform. The follow-
ing topics are covered:

 ■ Aggregate SOQL queries— Aggregate queries operate on groups of records, summarizing data
declaratively at the database level rather than in Apex.

 ■ Additional SOQL features— SOQL includes features for querying related objects and multi-
select picklists.

 ■ Salesforce Object Search Language (SOSL)— SOSL is a full-text search language, a
complement to SOQL, that allows a single query to search the textual content of many database
objects and fields.

 ■ Transaction processing— Apex includes database methods to enable the partial success of
transactions, saving and restoring of database state, and locking of records returned from a
query.

 ■ Apex managed sharing— Managed sharing allows programmatic control over record-level
sharing.

 ■ Sending and receiving email— Apex programs can send and receive email with support for text
and binary attachments and templates for standardizing outbound messages.

 ■ Dynamic Apex— Execute database queries that aren’t hard-coded into your programs, query
Force.com for your database’s metadata, and write generic code to manipulate database records
regardless of their type.

 ■ Custom settings in Apex— Data from custom settings can be retrieved, created, updated, and
deleted from Apex.

 ■ Sample application— The Services Manager sample application is enhanced to send email
notifications to users when a business event occurs.

ptg11524036

144 Chapter 5 Advanced Business Logic

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/q65M4 .

 Aggregate SOQL Queries

 SOQL statements that summarize or group records are called aggregate queries . Aggregate queries
in SOQL run at the database level rather than in Apex. This results in much better performance
and simpler code. This section covers three aspects of aggregate SOQL queries:

 ■ Aggregate functions— Rather than simply returning the discrete values of a database
field in a SELECT statement, aggregate functions such as SUM apply a simple calculation
on each record and return the accumulated result.

 ■ Grouping records— The GROUP BY syntax works with aggregate functions to return a set
of summarized results based on common values.

 ■ Grouping records with subtotals— SOQL provides two special forms of the GROUP BY
syntax to calculate subtotals and return them in the query results.

 Aggregate Functions

 Aggregate functions in SOQL work much like their SQL counterparts. They are applied to fields
in the SELECT list. After you include an aggregate function in a query, nonaggregate fields in
the same query are not allowed. The six aggregate functions available in SOQL are

 ■ AVG — Calculates an average of the values in a numeric field.

 ■ COUNT — Counts the values in a numeric, date, or string field, including duplicate values
but not nulls. Unlike all other aggregate functions, the argument to COUNT is optional.

 ■ COUNT_DISTINCT — Counts the unique values in a numeric, date, or string field, excluding
nulls.

 ■ MIN — Returns the minimum value in a numeric, date, or string field. The minimum of
a string field is the first value when values are sorted alphabetically. If the string is a
picklist type, the minimum is the first value in the picklist.

 ■ MAX — Returns the maximum value in a numeric, date, or string field. The maximum of a
string field is the last value when values are sorted alphabetically. If the string is a picklist
type, the maximum is the last value in the picklist.

 ■ SUM — Computes the sum of values in a numeric field.

 All queries containing aggregate functions return a special Apex object called
 AggregateResult , except the no-argument form of COUNT , which returns an integer. The
 AggregateResult object contains the aggregate values calculated by running the query. They
have default field names expr0 for the first field, expr1 , and so forth. Alternatively, you can

http://goo.gl/q65M4

ptg11524036

145Aggregate SOQL Queries

provide an alias immediately following the aggregate function column to provide a friendlier
label for the value in your code. Aggregate result fields are accessed using the get method.

 To get started with aggregate functions in Apex, open Force.com IDE’s Execute Anonymous
view and type in and run the code given in Listing 5.1 .

 Listing 5.1 Returning the Record Count

 Integer i = [SELECT COUNT() FROM Timecard__c];
 System.debug(i);

 This code prints the number of records contained in the Timecard__c object to the debug
log. The SOQL query returns an integer because it uses the no-argument form of the COUNT
aggregate function. In contrast, the example in Listing 5.2 uses the SUM aggregate function and
returns an AggregateResult object, with an alias Total specified on the aggregate column.
Note that if an alias were not specified, the aggregate column would be named expr0 .

 Listing 5.2 Calculating a Sum

 AggregateResult r = [SELECT SUM(Total_Hours__c) Total
 FROM Timecard__c];
 System.debug(r.get('Total'));

 Note

 Normal SOQL governor limits apply to aggregate functions. The number of records used to
compute an aggregate result are applied toward the limit on records returned. So although your
 COUNT query returns a single result record, if it counted more than 50,000 records, your query
will fail with an exception. If such a failure is disruptive to your application, make sure you use
a WHERE clause to reduce the number of records that are processed in the query. The LIMIT
keyword is not allowed in queries with aggregate functions, except for the special form of the
 COUNT function that has no field argument.

 Grouping Records

 SOQL provides the GROUP BY syntax for grouping records by one or more fields. When a query
contains a grouping, its results are collapsed into a single record for each unique value in the
grouped field. Because you can no longer return individual field values, all fields not specified
as grouped must be placed within aggregate functions.

 Listing 5.3 shows a simple example of grouping records without aggregate functions. It exam-
ines all the records in the Contact object and returns only the unique values of the field
 Region__c .

ptg11524036

146 Chapter 5 Advanced Business Logic

 Listing 5.3 Returning Unique Records by Grouping Them

 for (AggregateResult r : [SELECT Region__c FROM Contact
 GROUP BY Region__c]) {
 System.debug(r.get('Region__c'));
 }

 Although aggregate functions can be used alone in a simple query, they are much more power-
ful when used in conjunction with record groupings. Listing 5.4 demonstrates aggregate func-
tions with record groupings. It groups all Timecard records by the geographic region of the
consultant (Contact) who performed the work, and sums their reported hours. This results in
one record per geographic region with the region’s name and a sum of their timecard hours.

 Listing 5.4 Using Aggregate Functions with Record Groupings

 for (AggregateResult r : [SELECT Contact__r.Region__c,
 SUM(Total_Hours__c) FROM Timecard__c
 GROUP BY Contact__r.Region__c]) {
 System.debug(r.get('Region__c') + ' ' + r.get('expr0'));
 }

 You’re already familiar with the WHERE keyword in SOQL for filtering query results using
Boolean expressions. Filtering on the results of aggregate functions requires the HAVING
keyword. It works just like WHERE , but the field being filtered must be wrapped with an aggre-
gate function and included in the GROUP BY list.

 The code in Listing 5.5 outputs the average hourly cost rates for consultants by education level,
but excludes records at or below an average cost rate of $100. The filtering of the average cost
rates is specified by the HAVING keyword.

 Listing 5.5 Filtering Grouped Records by Aggregate Function Values

 for (AggregateResult r : [SELECT Highest_Education_Level__c ed,
 AVG(Hourly_Cost_Rate__c) FROM Contact
 GROUP BY Highest_Education_Level__c
 HAVING AVG(Hourly_Cost_Rate__c) > 100]) {
 System.debug(r.get('ed') + ' ' + r.get('expr0'));
 }

 Grouping Records with Subtotals

 Two special forms of grouping in SOQL produce subtotals and grand totals for the record
groupings specified in the query. They are GROUP BY ROLLUP and GROUP BY CUBE , and they
replace GROUP BY syntax and support up to three grouped fields. These functions make it easier
for developers to produce cross-tabular or pivot-style outputs common to reporting tools, where
groups become the axes and aggregate values are the cells. The Force.com database calculates

ptg11524036

147Aggregate SOQL Queries

the totals and provides them in-line, in the results, eliminating the need to write Apex to post-
process the data.

 Listing 5.6 demonstrates GROUP BY ROLLUP to add subtotals to combinations of two fields:
 Status__c and Region__c . Because Status__c appears first in the GROUP BY ROLLUP func-
tion, the subtotals are calculated for each of its unique values. The function GROUPING is used
to identify subtotal records, and also to order the results so that the subtotals appear last.

 Listing 5.6 Subtotals on Two Field Groupings

 for (AggregateResult r : [SELECT Project__r.Status__c, Contact__r.Region__c,
 SUM(Total_Hours__c) hours, COUNT(Id) recs,
 GROUPING(Project__r.Status__c) status, GROUPING(Contact__r.Region__c) region
 FROM Timecard__c
 GROUP BY ROLLUP(Project__r.Status__c, Contact__r.Region__c)
 ORDER BY GROUPING(Project__r.Status__c), GROUPING(Contact__r.Region__c)]) {
 System.debug(LoggingLevel.INFO,
 r.get('Status__c') + ' ' + r.get('Region__c') + ' ' +
 r.get('region') + ' ' + r.get('status') + ' ' +
 r.get('hours') + ' ' + r.get('recs'));
 }

 Listing 5.7 shows the result of running the code in Listing 5.6 on a database containing 13
Timecard records spread across West and Central regions’ projects in Yellow and Green status.
Note the third and fourth columns contain the value of the GROUPING function. Here, a 1
indicates that the record is a subtotal, and 0 indicates a normal record. For example, the fifth
record from the top is a subtotal on status because the 1 appears in the status column. The
other values in that record indicate the sum of all Timecard hours for projects in Yellow status
is 109, and that this constitutes three records’ worth of data. The final record contains the
grand totals, which you can verify by adding the record count of the Green subtotal (10) to the
Yellow subtotal (3).

 Listing 5.7 Excerpt of Debug Log after Running Code in Listing 5.6

 16:04:43.207|USER_DEBUG|[7]|INFO|Green West 0 0 230.0 6
 16:04:43.207|USER_DEBUG|[7]|INFO|Green Central 0 0 152.0 4
 16:04:43.207|USER_DEBUG|[7]|INFO|Yellow Central 0 0 109.0 3
 16:04:43.207|USER_DEBUG|[7]|INFO|Green null 1 0 382.0 10
 16:04:43.207|USER_DEBUG|[7]|INFO|Yellow null 1 0 109.0 3
 16:04:43.207|USER_DEBUG|[7]|INFO|null null 1 1 491.0 13

 To experiment with GROUP BY CUBE , replace the word ROLLUP with CUBE in Listing 5.6 and
run the code. The GROUP BY CUBE syntax causes all possible combinations of grouped fields
to receive subtotals. The results are shown in Listing 5.8 . Note the addition of two records,
sub totals on the Region__c field indicated by a 1 in the region column.

ptg11524036

148 Chapter 5 Advanced Business Logic

 Listing 5.8 Excerpt of Debug Log after Changing Listing 5.6 to Group By Cube

 16:06:56.003|USER_DEBUG|[7]|INFO|Green Central 0 0 152.0 4
 16:06:56.003|USER_DEBUG|[7]|INFO|Green West 0 0 230.0 6
 16:06:56.004|USER_DEBUG|[7]|INFO|Yellow Central 0 0 109.0 3
 16:06:56.004|USER_DEBUG|[7]|INFO|Green null 1 0 382.0 10
 16:06:56.004|USER_DEBUG|[7]|INFO|Yellow null 1 0 109.0 3
 16:06:56.004|USER_DEBUG|[7]|INFO|null West 0 1 230.0 6
 16:06:56.004|USER_DEBUG|[7]|INFO|null Central 0 1 261.0 7
 16:06:56.005|USER_DEBUG|[7]|INFO|null null 1 1 491.0 13

 Additional SOQL Features

 Although SOQL doesn’t allow arbitrary joins, it provides some control over how related objects
are navigated. This section discusses inner and outer joins, as well as semi-joins and anti-joins:

 ■ Inner join and outer join— SOQL statements that include related objects normally do so
by outer join, but can perform an inner join instead using a WHERE clause.

 ■ Semi-join and anti-join— Semi-join and anti-join are types of relationship queries that
use the results of a subquery to filter the records returned from the parent object.

 ■ Multi-select picklists— A multi-select picklist is a form of picklist field that allows
multiple values to be stored for a single record. The standard conditional filters of the
SOQL WHERE clause do not suffice for handling multiple values within a single record and
column, so SOQL provides special syntax to handle this case.

 Inner Join and Outer Join

 A SOQL statement consists of a single base object, specified using the FROM keyword. All fields
in the base object can be retrieved in the query, as well as fields from parent and child objects
depending on their distance away from the base object. Force.com takes care of joining related
objects together to retrieve the requested fields.

 These implicit joins are always outer joins. An outer join returns all records from the base
object, including records that do not refer to a related object. To get a feel for this behavior,
create a new Project record in the native user interface and leave all of its fields blank, but enter
 Test Project for the Name. Open Force.com IDE’s Schema Explorer and enter and run the
query given in Listing 5.9 .

 Listing 5.9 SOQL Outer Join

 SELECT Name, Account__r.Name
 FROM Project__c

ptg11524036

149Additional SOQL Features

 This query returns the name and account name of the Projects. Account is the parent object
of Project through a Lookup relationship. Because it is a Lookup relationship and not Master-
Detail, it can contain a null value in Account__c , the Account foreign key field. With no
foreign key to Account, Account__r , the foreign object reference, is also null.

 You should see the five records imported from Listing 2.11 in Chapter 2 , “Database Essentials,”
plus the newly added record, named Test Project. Figure 5.1 shows the result of running the
query. The Test Project record contains no value for Account__r yet was included in the results
anyway. This is due to the outer join behavior.

 Figure 5.1 Outer join results in Schema Explorer

 In a relational database, this same query translated to SQL would result in five rows. The Test
Project row would not be returned because it does not match a row in the Account table. Joins
in SQL are inner by default, returning only rows that match both tables of the join.

 To duplicate this inner join behavior in SOQL, simply add a filter condition to eliminate
records without a matching record in the related object. For example, Listing 5.10 adds a filter
condition to Listing 5.9 to exclude Project records without a corresponding Account.

ptg11524036

150 Chapter 5 Advanced Business Logic

 Listing 5.10 SOQL Inner Join

 SELECT Name, Account__r.Name
 FROM Project__c
 WHERE Account__c != null

 The results of this query are shown in Figure 5.2 . It has returned five records, each one with a
corresponding parent Account record. The newly added Project record without the Account is
correctly omitted.

 Figure 5.2 Inner join results in Schema Explorer

 Semi-Join and Anti-Join

 In Chapter 4 , “Business Logic,” you learned the two ways related objects can be included in
SOQL: parent-to-child and child-to-parent queries. Semi-join and anti-join queries enhance the
functionality of both queries, and add the ability to make child-to-child queries. In general,
they allow records from one object to be filtered by a subquery against another object.

 For example, suppose you need a list of all Account records that have at least one Project record
in a yellow status. To make sure you have a valid test case, edit one of the Project records in the
native user interface to set it to a yellow status. Try to write a query to return its Account, with
Account as the base object.

ptg11524036

151Additional SOQL Features

 You can’t do this without using a semi-join. Listing 5.11 shows one attempt. But it returns
the unique identifiers and names of all Accounts and the unique identifiers of any Projects in
yellow status. You would still have to write Apex code to filter through the Account records to
ignore those without Project child records.

 Listing 5.11 Parent-to-Child Query, Filter on Child

 SELECT Id, Name,
 (SELECT Id FROM Projects__r WHERE Status__c = 'Yellow')
 FROM Account

 Figure 5.3 shows the result of executing this query. Grand Hotels & Resorts Ltd is the Project in
yellow status, and you can see that its Project record has been returned in the relationship field
 Projects__r .

 Figure 5.3 Parent-to-child query, filter on child

 Listing 5.12 rewrites this query using a semi-join. Read it from the bottom up. A subquery iden-
tifies Projects in yellow status, returning their Account unique identifiers. This set of Account
unique identifiers is used to filter the Account records returned by the query. The result is a
single Account, as shown in Figure 5.4 .

ptg11524036

152 Chapter 5 Advanced Business Logic

 Listing 5.12 SOQL with Semi-Join

 SELECT Id, Name
 FROM Account
 WHERE Id IN
 (SELECT Account__c FROM Project__c WHERE Status__c = 'Yellow')

 Figure 5.4 SOQL with parent-to-child semi-join

 An anti-join is the negative version of a semi-join. It uses the NOT IN keyword to allow the
subquery to exclude records from the parent object. For example, Listing 5.13 returns all
Accounts except those containing Projects in a green status. Note that the results include the
Project in yellow status, as well as all Account records not associated with a Project.

 Listing 5.13 SOQL with Anti-Join

 SELECT Id, Name
 FROM Account
 WHERE Id NOT IN
 (SELECT Account__c FROM Project__c WHERE Status__c = 'Green')

 Returning to semi-joins, Listing 5.14 provides an example of another type, called child-to-
child. It joins two child objects that aren’t directly related by relationship fields. The records in

ptg11524036

153Additional SOQL Features

the Timecard object are filtered by contacts that have at least one assignment as a consultant.
This means Timecards logged by contacts who are not assigned to a project as a consultant are
excluded from the results. Child-to-child refers to the Timecard and Assignment objects, which
are related to each other only in so much as they are children to other objects.

 Listing 5.14 SOQL with Child-to-Child Semi-Join

 SELECT Project__r.Name, Week_Ending__c, Total_Hours__c
 FROM Timecard__c
 WHERE Contact__c IN
 (SELECT Contact__c FROM Assignment__c WHERE Role__c = 'Consultant')

 Listing 5.15 demonstrates a third type of semi-join, the child-to-parent. Timecards are filtered
again, this time to include consultants with an hourly cost rate of more than $100. Child-to-
parent refers to the relationship between the Timecard and Contact objects. Contact is the
parent object, and it is being used to restrict the output of the query on Timecard, the child
object.

 Listing 5.15 SOQL with Child-to-Parent Semi-Join

 SELECT Project__r.Name, Week_Ending__c, Total_Hours__c
 FROM Timecard__c
 WHERE Contact__c IN
 (SELECT Id FROM Contact WHERE Hourly_Cost_Rate__c > 100)

 Several restrictions are placed on semi-join and anti-join queries:

 ■ The selected column in the subquery must be a primary or foreign key and cannot
traverse relationships. It must be a direct field on the child object. For example, it would
be invalid to rewrite the subquery in Listing 5.12 to return Account__r.Id in place of
 Account__c .

 ■ A single query can include at most two semi-joins or anti-joins.

 ■ Semi-joins and anti-joins cannot be nested within other semi-join and anti-join
statements, and are not allowed in subqueries.

 ■ The parent object cannot be the same type as the child. This type of query can always be
rewritten as a single query without a semi-join or an anti-join. For example, the invalid
query SELECT Name FROM Project__c WHERE Id IN (SELECT Id FROM Project__c
WHERE Status__c = 'Green') can be expressed without a subquery: SELECT Name
FROM Project__c WHERE Status__c = 'Green' .

 ■ Subqueries cannot be nested and cannot contain the OR , count() , ORDER BY , or LIMIT
keywords.

ptg11524036

154 Chapter 5 Advanced Business Logic

 Multi-Select Picklists

 Multi-select picklists are interchangeable with ordinary picklists in queries, except for being
prohibited in the ORDER BY clause. SOQL includes two additional features for filtering multi-
select picklists, described in the following list:

 ■ Semicolon AND operator— The semicolon is used to express multiple string literals. For
example, 'Java;Apex' means that the multi-select picklist has both Java and Apex items
selected in any order. The semicolon notation can be used with the = and != SOQL
operators to make assertions about the selected items of multi-select picklists.

 ■ INCLUDES and EXCLUDES keywords— The INCLUDES and EXCLUDES keywords are
followed by comma-separated lists of literal values. The INCLUDES keyword returns
records in which the selected values of a multi-select picklist are included in the list of
values. The EXCLUDES keyword returns records that match none of the values.

 The semicolon notation can be combined with the INCLUDES and EXCLUDES keywords to
express any combination of multi-select picklist values.

 To try this out, create a multi-select picklist named Requested Skills on the Project object. Run
the SOQL statement given in Listing 5.16 using the Force.com IDE’s Schema Explorer. It returns
Project records with the multiple selection of Apex, Java, and C# in the Requested Skills field
and also records with only Python selected. Populate Project records with matching values to
see them returned by the query.

 Listing 5.16 SOQL with Multi-Select Picklist

 SELECT Id, Name
 FROM Project__c
 WHERE Requested_Skills__c INCLUDES ('Apex;Java;C#', 'Python')

 Salesforce Object Search Language (SOSL)

 Data stored in the Force.com database is automatically indexed to support both structured
and unstructured queries. SOQL is the language for structured queries, allowing records from a
single object and its related objects to be retrieved with precise, per-field filter conditions. SOSL
is a full-text search language for unstructured queries. It begins by looking across multiple fields
and multiple objects for one or more search keywords, and then applies an optional SOQL-like
filter on each object to refine the results.

 To decide which query language to use, consider the scope of the query. If the query spans
multiple unrelated objects, SOSL is the only practical choice. If the query searches for words
within many string fields, it can probably be expressed more concisely in SOSL than SOQL. Use
SOQL for queries on a single object with filters on various data types.

ptg11524036

155Salesforce Object Search Language (SOSL)

 SOSL Basics

 At the highest level, a SOSL query specifies search terms and scope. The search terms are a
list of string literals and can include wildcards. The search scope is fields containing string
data from one or more objects. This excludes Number, Date, and Checkbox fields from being
searched with SOSL.

 SOSL query syntax consists of four parts:

 ■ Query— The query is one or more words or phrases to search on. The query can include
the wildcards * (matches any number of characters) and ? (matches any single character)
at the middle or end of search terms. Enclose a search term in quotation marks to
perform an exact match on multiple words. Use the logical operators AND , OR , and AND
NOT to combine search terms and parentheses to control the order in which they’re
evaluated. Note that searches are not case sensitive.

 ■ Search group— The search group is an optional part of the SOSL query indicating the
types of fields to search in each object. Valid values are ALL FIELDS (all string fields),
 NAME FIELDS (the standard Name field only), EMAIL FIELDS (all fields of type Email),
and PHONE FIELDS (all fields of type Phone). The default value is ALL FIELDS .

 ■ Field specification— The field specification is a comma-separated list of objects to
include in the result. By default, the Id field of each object is included. Optionally, you
can specify additional fields to return by enclosing them in parentheses. You can also
specify conditional filters using the same syntax as the SOQL WHERE clause, set the sort
order with the ORDER BY keyword, and use the LIMIT keyword to limit the number of
records returned per object.

 ■ Record limit— This optional value specifies the maximum number of records returned by
the entire query, from all the objects queried. If a record limit is not provided, it defaults
to the maximum of 200.

 These four parts are combined in the following syntax: FIND 'query' IN search group
 RETURNING field specification LIMIT record limit . The single quotation marks around
 query are required.

 SOSL in Apex

 SOSL in Apex works much like SOQL in Apex. Queries are enclosed in square brackets and
compiled directly into the code, ensuring that the query syntax is correct and references valid
fields and objects in the database.

 As with SOQL, bind variables can be used to inject variable values from the running program
into select parts of the query. This injection of values is performed in a secure manner because
Apex automatically escapes special characters. Bind variables are allowed in the search string
(following FIND), filter literals (in the WHERE block), and the LIMIT keyword.

ptg11524036

156 Chapter 5 Advanced Business Logic

 SOSL is not allowed in triggers. It will compile, but will fail at runtime. It is allowed in unit
tests and custom user interfaces, as covered in Chapter 6 , “User Interfaces.” In this chapter, you
can experiment with SOSL using the Execute Anonymous view.

 Note

 You are limited to 20 SOSL queries returning a maximum of 2,000 rows per query.

 Listing 5.17 is a sample SOSL query in Apex. It returns the names of records in the Project and
Contact objects that contain the word Chicago in any of their fields.

 Listing 5.17 SOSL in Apex

 List<List<SObject>> result = [
 FIND 'Chicago'
 RETURNING Project__c(Name), Contact(Name)
];
 List<Project__c> projects = (List<Project__c>)result[0];
 for (Project__c project : projects) {
 System.debug('Project: ' + project.Name);
 }
 List<Contact> resources = (List<Contact>)result[1];
 for (Contact resource : resources) {
 System.debug('Contact: ' + resource.Name);
 }

 Figure 5.5 shows the results of running this code in the Execute Anonymous view. If your
debug log is cluttered with too many other entries to see the output of the query, set Apex code
to the Debug level and all other Log categories to None.

 Transaction Processing

 This section covers three features of Apex that control how transactions are processed by the
database:

 ■ Data Manipulation Language (DML) database methods— DML database methods are
much like DML statements from Chapter 4 , but add support for partial success. This
allows some records from a batch to succeed while others fail.

 ■ Savepoints— Savepoints designate a point in time that your code can return to.
Returning to a savepoint rolls back all DML statements executed since the establishment
of the savepoint.

 ■ Record locking— Apex provides a SOQL keyword to protect records from interference by
other users or programs for the duration of a transaction.

ptg11524036

157Transaction Processing

 Data Manipulation Language (DML) Database Methods

 All database operations in Apex are transactional. For example, an implicit transaction is
created when a trigger fires. If the code in a trigger completes without error, DML operations
performed within it are automatically committed. If the trigger terminates prematurely with an
uncaught exception, all DML operations are automatically rolled back. If multiple triggers fire
for a single database operation, all trigger code succeeds or fails as a group.

 In Chapter 4 , you were exposed to DML statements. These statements accept a single record
or batch of records. When operating on a batch, they succeed or fail on the entire group of
records. For example, if 200 records are inserted and the last record fails with a validation error,
none of the 200 records are inserted.

 Apex offers a second way of making DML statements called DML database methods. DML data-
base methods allow batch DML operations to fail on individual records without impacting the
entire batch. To do this, they do not throw exceptions to indicate error. Instead they return
an array of result objects, one per input record. These result objects contain a flag indicating
success or failure, and error details in the event of failure.

 A DML database method exists for each of the DML statements. Each method takes an optional
Boolean parameter called opt_allOrNone to specify batch behavior. The default value is
 true , indicating that the behavior is “all or none.” This makes the method identical to a DML

 Figure 5.5 Results of SOSL in Apex

ptg11524036

158 Chapter 5 Advanced Business Logic

statement, with one failed record causing the failure of all records and a DmlException . But if
the opt_allOrNone parameter is false , partial success is allowed.

 Note

 DML database methods are subject to the same governor limits and general restrictions as
DML statements. Refer to Chapter 4 for more information.

 Listing 5.18 inserts a batch of two Skill records using the insert database method. It passes
 false as an argument to allow partial success of the DML operation. The insert method
returns an array of SaveResult objects. They correspond one-to-one with the array passed as
an argument to the insert method. Each SaveResult object is examined to check for failure,
and the results are displayed in the debug log.

 Listing 5.18 DML Database Method Usage

 Contact tim = [SELECT Id
 FROM Contact
 WHERE Name = 'Tim Barr' LIMIT 1];
 Skill__c skill1 = new Skill__c(Contact__c = tim.Id,
 Type__c = 'Java', Rating__c = '3 - Average');
 Skill__c skill2 = new Skill__c(Contact__c = tim.Id,
 Rating__c = '4 - Above Average');
 Skill__c[] skills = new Skill__c[] { skill1, skill2 };
 Database.SaveResult[] saveResults =
 Database.insert(skills, false);
 for (Integer i=0; i<saveResults.size(); i++) {
 Database.SaveResult saveResult = saveResults[i];
 if (!saveResult.isSuccess()) {
 Database.Error err = saveResult.getErrors()[0];
 System.debug('Skill ' + i + ' insert failed: '
 + err.getMessage());
 } else {
 System.debug('Skill ' + i + ' insert succeeded: new Id = '
 + saveResult.getId());
 }
 }

 The result of executing this code is shown in Figure 5.6 . The debug log indicates the first record
is inserted, but the second failed because it doesn’t contain a value for the Type__c field. This
is enforced by a validation rule created in Chapter 2 . If you edit this code and remove the
second argument to Database.insert , which enables partial success, the failure of the second
record raises an exception and rolls back the successful insertion of the first record.

ptg11524036

159Transaction Processing

 Figure 5.6 Results of insert DML database method

 Savepoints

 Savepoints are markers indicating the state of the database at a specific point in the execution
of your Apex program. They allow the database to be restored to a known state in case of error
or any scenario requiring a reversal of all DML operations performed since the savepoint.

 Set a new savepoint using the Database.setSavepoint method, which returns a Savepoint
object. To restore the database to a savepoint, call the Database.rollback method, which
takes a Savepoint object as its only argument.

 Several limitations exist on the use of savepoints. The number of savepoints and rollbacks
contributes toward the overall limit on DML statements, which is 150. If you create multiple
savepoints and roll back, all savepoints created after the savepoint you roll back to are invali-
dated. Finally, you cannot share a savepoint across triggers using a static variable.

 Listing 5.19 is an example of using the setSavepoint and rollback methods. First, a save-
point is set. Then, all the Project records in your database are deleted, assuming your database
doesn’t contain more than the governor limit of 10,000 records for DML. Finally, the database
is rolled back to the savepoint. The number of records in the Project object is counted before
each operation in the program to illustrate its behavior.

ptg11524036

160 Chapter 5 Advanced Business Logic

 Listing 5.19 Savepoint and Rollback Usage

 void printRecordCount() {
 System.debug([SELECT COUNT() FROM Project__c] + ' records');
 }
 printRecordCount();
 Savepoint sp = Database.setSavepoint();

 delete [SELECT Id FROM Project__c];
 printRecordCount();

 Database.rollback(sp);
 printRecordCount();

 The results of running the code snippet in the Execute Anonymous view are shown in
 Figure 5.7 . The debug log indicates that the Project object initially contains five records. They
are all deleted, leaving zero records. Then the database is rolled back to the savepoint estab-
lished before the deletion, resulting in a count of five records again.

 Figure 5.7 Results of savepoint and rollback sample code

ptg11524036

161Transaction Processing

 Record Locking

 Apex code has many entry points. Code can be invoked from outside of Force.com via a Web
service call, by modifying a record with a trigger on it in the native user interface, inside Force.
com IDE in an Execute Anonymous view, or in a unit test. Additionally, multiple users or
programs can be running the same code simultaneously or code that uses the same database
resources.

 DML operations using values returned by SOQL or SOSL queries are at risk for dirty writes. This
means values updated by one program have been modified by a second program running at the
same time. The changes of the second program are lost because the first program is operating
with stale data.

 For example, if your code retrieves a record and then modifies its value later in the program, it
requires a write lock on the record. A write lock prevents the record from being concurrently
updated by another program. Write locks are provided in Apex via the SOQL FOR UPDATE
keyword. This keyword indicates to Apex that you intend to modify the records returned by the
SOQL query. This locks the records, preventing them from being updated by another program
until your transaction is complete. No explicit commit is necessary. The records are unlocked,
and changes are automatically committed when the program exits successfully or is rolled back
otherwise.

 Note

 You cannot use the ORDER BY keyword with FOR UPDATE . Query results are automatically
ordered by Id field.

 Listing 5.20 is an example of record locking in Apex. Tim Barr is given a raise of $20. His
Resource record is retrieved and locked, the hourly cost is incremented, and the database
is updated. The use of FOR UPDATE ensures that this code running simultaneously in two
contexts still results in the correct outcome: a $40 increase in hourly cost rate, $20 from each
of the two independent execution contexts, serialized with FOR UPDATE . Without the locking,
a dirty write could cause one of the updates to be lost. For this example to execute without
errors, make sure you have a Contact record named Tim Barr with a non-null value for the
 Hourly_Cost_Rate__c field.

 Listing 5.20 Record Locking Example

 Contact tim = [SELECT Id, Hourly_Cost_Rate__c
 FROM Contact
 WHERE Name = 'Tim Barr' LIMIT 1
 FOR UPDATE];
 tim.Hourly_Cost_Rate__c += 20;
 update tim;

ptg11524036

162 Chapter 5 Advanced Business Logic

 Apex Managed Sharing

 Apex managed sharing allows Apex code to add, edit, and delete record sharing rules. This is
the third and most advanced type of record sharing provided by Force.com. It provides the
Apex developer with full control of record sharing. Apex managed sharing uses the same infra-
structure as the other two types of record sharing, discussed in Chapter 3 , “Database Security,”
and briefly reviewed here:

 ■ Force.com managed sharing— These are record sharing rules maintained by Force.com.
A native user interface enables administrators to add, edit, and delete these rules. Rules
are based on user, group, or role membership and defined individually on each object.
They are configured in the Administration Setup area, Security Controls, Sharing Settings.

 ■ User managed sharing— Users who own records can grant permission to additional users
from the native user interface. This is a manual process. The owner visits a record to
share and clicks the Sharing button to add, edit, or remove its sharing rules.

 This section is divided into two parts, described next:

 ■ Sharing objects— Sharing objects are where Force.com stores record sharing rules. The
fields of sharing objects are described, as well as restrictions on their use.

 ■ Creating sharing rules in Apex— This walks you through the infrastructure behind
sharing rules, finishing with a code sample to add a sharing rule in the Services Manager
sample application schema.

 Sharing Objects

 Every custom object, except Detail objects in a Master-Detail relationship, has a corresponding
sharing object to store its record-level sharing rules. The sharing object is created automatically
by Force.com and is invisible to the native user interface. It can be seen in the Force.com IDE’s
Schema Explorer. Its name is the name of your object with __Share appended. For example,
the sharing object for the Project__c object is Project__Share .

 The sharing object contains explicit sharing rules. These are created by Force.com managed
sharing, user managed sharing, and Apex managed sharing. It does not contain implicit shares
such as organization-wide defaults.

 Four fields of the sharing object control how records are shared between users and groups, as
follows:

 ■ ParentID — ParentId is the unique identifier of the record being shared.

 ■ UserOrGroupId — This is the unique identifier of the user or group that the sharing rule
is granting access to. Groups are public groups or roles.

 ■ AccessLevel — This field stores the level of access granted to the user or group for this
record. The three valid values are Read (Read Only), Edit (Read and Edit), and All (Full
Control). Apex managed sharing cannot set a record to All . The value of AccessLevel

ptg11524036

163Apex Managed Sharing

must be more permissive than the organization-wide default or a runtime exception is
thrown.

 ■ RowCause — The purpose of the RowCause field is to track the origin of the sharing rule.
Valid values are Manual (the default) or a custom sharing reason, defined on the object
in the Apex Sharing Reasons related list. Manual sharing rules can be edited and removed
by the record owner and are reset when record ownership changes. Sharing records with
a custom reason are not reset when ownership changes and cannot be edited or removed
without the administrative permission Modify All Data.

 Restrictions

 Two important restrictions exist on Apex managed sharing:

 ■ Objects with an organization-wide default sharing level of Public Read/Write, the most
permissive setting, cannot use Apex managed sharing. Set the level to Private or Public
Read Only instead.

 ■ After a sharing record is created, the only field that can be updated is the access level. If
you need to change other fields, delete the sharing record entirely and re-create it.

 Caution

 When the organization-wide sharing default is changed for an object, all sharing rules are recal-
culated. This causes your Apex managed sharing rules to be deleted. To re-create them, you
must implement an Apex class to participate in the recalculation event. This code uses the
Apex batch processing feature to allow processing of millions of records in smaller groups of
records, to stay within governor limits. The Apex batch processing functionality is covered in
 Chapter 9 , “Batch Processing.”

 Creating Sharing Rules in Apex

 Figure 5.8 shows the Force.com managed sharing settings for the Project object, configured in
 Chapter 3 . The sharing rules specify that projects owned by members of one role are shared by
all users in that role. This is defined three times because three separate roles exist, one for each
region in the sample company.

 Navigate to an individual Project record and click the Sharing button. Figure 5.9 is an example
of the resulting screen. It lists the sharing rules in effect for this record. The first sharing rule
is the default one, specifying that the owner has full control over the record. The second is the
sharing rule maintained by Force.com managed sharing, configured using the screen shown in
 Figure 5.8 , which allows users in the same role as the owner (West) to edit the record.

ptg11524036

164 Chapter 5 Advanced Business Logic

 Figure 5.9 Sharing detail for Project record

 Figure 5.8 Sharing rules for Project object

ptg11524036

165Apex Managed Sharing

 You’ve visited screens in the native user interface where record sharing is taking place. Next,
look a level deeper at the data driving the sharing behavior. Open the Force.com IDE’s Schema
Explorer and run the query shown in Listing 5.21 . It illustrates how Force.com stores the
information for the sharing rules in Figure 5.9 and what you will be manipulating with Apex
managed sharing.

 Listing 5.21 SOQL Query on Project Share Object

 SELECT ParentId, UserOrGroupId, AccessLevel
 FROM Project__Share
 WHERE Parent.Name = 'GenePoint'

 Figure 5.10 is the result of running the query. Note that the identifiers in your Force.com orga-
nization will be different from those in the figure.

 Figure 5.10 Results of SOQL query on Project Share object

 Try to decode the meaning of each record. The ParentId field contains the unique identifier
of the record being shared. The query has filtered by the name GenePoint, which is a Project
record. The UserOrGroupId field contains the unique identifier of a User or Group record. The
 AccessLevel field is one of the four access levels (All, None, Edit, View), although only Edit
and View can be set using Apex managed sharing.

ptg11524036

166 Chapter 5 Advanced Business Logic

 The first record has All access, so it’s the default sharing rule granting the owner of the record
full access. The second record might be a mystery at first. The UserOrGroupId does not match
up with the unique identifier of the West region’s role record. Run the query shown in Listing
 5.22 to track down the meaning of this value.

 Listing 5.22 SOQL Query on Group Object

 SELECT Id, Type, RelatedId
 FROM Group

 The Group object stores information about roles and other groups in Force.com. Figure
 5.11 displays the results of the query. The RelatedId field contains the same value as the
 UserOrGroupId value of the second sharing record. This is where Force.com managed sharing
has stored the fact that the Project record named GenePoint is shared with other members of
the West role.

 Figure 5.11 Results of SOQL query on Group object

 Apex managed sharing allows you to insert new rows into the Project__Share object, and
other sharing objects, and specify custom sharing reasons that are meaningful to your applica-
tion. Custom sharing reasons are maintained for each object individually. To try adding one,
go to the App Setup area and click Create, Objects and select the Project object. Scroll to the
bottom of the page. In the Apex Sharing Reasons list, add a new reason with a label of My

ptg11524036

167Apex Managed Sharing

Sharing Reason. Force.com automatically suggests a Name, converting spaces to underscores.
Refer to the custom sharing reason in your Apex code by adding __c to the end of the name.

 Listing 5.23 contains sample code you can run in the Execute Anonymous view. It shares the
GenePoint record with an additional user, specifying the custom sharing reason, with Read-
only access.

 Listing 5.23 Inserting Sharing Rule on Project Object

 User carrie = [SELECT Id FROM User
 WHERE Name = 'Carrie Oakey' LIMIT 1];
 Project__c genePoint = [SELECT Id FROM Project__c
 WHERE Name = 'GenePoint' LIMIT 1];
 Project__Share share = new Project__Share(
 ParentId = genePoint.Id,
 UserOrGroupId = carrie.Id,
 rowCause = Project__Share.rowCause.My_Sharing_Reason__c,
 AccessLevel = 'Read');
 insert share;

 After executing this code, refresh the Sharing Details for GenePoint and you should see the
screen shown in Figure 5.12 . It shows that the new custom sharing rule has been added.
Because the sharing rule was created by Apex code and uses a custom sharing reason, it’s
preserved across changes of record ownership and cannot be edited or deleted by users unless
they have the Modify All Data administrative permission in their profile.

 Figure 5.12 Sharing detail for Project record with Apex managed sharing rule

ptg11524036

168 Chapter 5 Advanced Business Logic

 Sending and Receiving Email

 Force.com allows emails to be sent and received in Apex code. This functionality can be helpful
in many scenarios. For example, you could send an email from within a trigger to notify users
of events occurring in the application, such as work that requires their attention. You could
write code to automate the classification of incoming emails to customer support, searching for
keywords and routing them to the proper support employees. This section describes how to use
the objects and methods built in to Apex to process inbound and outbound email and intro-
duces the administration screens of the native user interface that support them.

 Sending Email

 The three ways to send email in Apex are the following:

 ■ SingleEmailMessage — Sends an email to up to ten receivers. The email addresses of
receivers are provided as strings. A string containing HTML or plain text is used as the
message body.

 ■ SingleEmailMessage with template— Sends to up to ten receivers, but the unique
identifiers of Contact, Lead, or User objects must be used instead of strings to provide the
receivers’ email addresses. The message body is constructed from a template. Templates
are globally available to an organization as defined by an administrator or private to an
individual user. Templates can include merge fields to dynamically substitute field values
from the receiver’s record and, optionally, field values from an additional, related object.

 ■ MassEmailMessage — Behaves like a SingleEmailMessage with template but can send
email to up to 250 receivers in a single call.

 Each of these three ways of sending email contributes toward the maximum of 10 email calls
within a single context, an instance of running Apex code. To translate that to the number of
email messages, if you use the SingleEmailMessage object with 10 recipients, you can reach
a maximum of 100 recipients (10 recipients times the 10 invocation maximum) within a single
execution of your program. You can reach 2,500 recipients using the MassEmailMessage .
Force.com imposes a daily limit on mass emails, which varies based on the edition of Force.
com being used. If this limit is exceeded, an exception is thrown with the exception code
 MASS_MAIL_LIMIT_EXCEEDED .

 Using SingleEmailMessage

 You can run the code in Listing 5.24 directly in the Execute Anonymous view. It looks up the
User record for the current user and sends a test message to its email address.

 Listing 5.24 Sending Email

 User you = [SELECT Email
 FROM User
 WHERE Id = :UserInfo.getUserId()

ptg11524036

169Sending and Receiving Email

 LIMIT 1];
 Messaging.SingleEmailMessage mail =
 new Messaging.SingleEmailMessage();
 mail.setToAddresses(new String[] { you.Email });
 mail.setSubject('Test message');
 mail.setPlainTextBody('This is a test');
 Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

 Check the email account associated with your Force.com user for the new message. If you do
not see the message, it might be in your junk mail folder. If it’s not in your inbox or junk mail
folder, your email server might have refused its delivery. In this case, Force.com will send you
the returned message with any delivery error information, given that you are both the sender
and the receiver.

 Note

 Force.com provides online tools to help you authorize its mail servers to ensure that its mes-
sages are delivered. Go to the Administration Setup area and click Email Administration,
Deliverability and Test Deliverability for more information.

 Notice that the sender and receiver of the email are identical. You have sent a message to your-
self via Force.com. By default, Apex email methods run using the identity of the current user.
The current user’s email address becomes the “from” address in outbound emails. Alternatively,
you can define an organization-wide email address and use it to set the “from” address. This
enables all of your outbound emails to be sent from a single set of authorized, public email
addresses. To define an organization-wide email address, go to the Administration Setup area
and click Email Administration, Organization-Wide Addresses.

 Using SingleEmailMessage with Template

 Templates standardize the appearance and content of emails. They also make including
dynamic content in messages without cumbersome, hard-to-maintain code full of string
concatenations simple. To add a new email template, go to the Personal Setup area and click
Email, My Templates.

 When a template is used to send a message, you must provide a targetObjectId value. This is
the unique identifier of a Lead, Contact, or User record. The email address associated with this
record becomes the recipient of the email.

 Optionally, a whatId can be provided. This is the unique record identifier of an Account,
Asset, Campaign, Case, Contract, Opportunity, Order, Product, Solution, or any custom object.
The fields from this record can be referenced in your template using merge fields. When the
message is sent, the record is retrieved and its data substituted into the message body in the
locations specified by the merge fields.

ptg11524036

170 Chapter 5 Advanced Business Logic

 Listing 5.25 sends an email using a template. Before trying it, create a template with the unique
name of Test_Template . Set its text or HTML content to Hello {!User.FirstName}! or the
equivalent to demonstrate the use of merge fields. Mark the template as available for use. In
 Listing 5.25 , a SOQL query is used to retrieve the template’s unique identifier so that it isn’t
hard-coded into the program.

 Listing 5.25 Sending Email Using a Template

 User you = [SELECT Email
 FROM User
 WHERE Id = :UserInfo.getUserId()
 LIMIT 1];
 EmailTemplate template = [SELECT Id
 FROM EmailTemplate
 WHERE DeveloperName = 'Test_Template'
 LIMIT 1];
 Messaging.SingleEmailMessage mail =
 new Messaging.SingleEmailMessage();
 mail.templateId = template.Id;
 mail.targetObjectId = you.Id;
 mail.setSaveAsActivity(false);
 Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

 Note

 The setSaveAsActivity method was called in Listing 5.25 to disable the HTML email track-
ing feature, which is not compatible with the User object (targetObjectId). The setSaveAs-
Activity method is described in the upcoming subsection, “Additional Email Methods.”

 Using MassEmailMessage

 Mass emails can be sent to 250 recipients in a single method call. The code for sending a mass
email is similar to that for sending a single email with a template. The difference is that a
 MassEmailMessage object is created instead of a SingleEmailMessage . At minimum, you
must provide a value for targetObjectIds (an array of Lead, Contact, or User record unique
identifiers) and a templateId .

 Optionally, you can provide whatIds , an array of record unique identifiers corresponding to
the array of targetObjectIds . Field values from these records add dynamic content to the
message body. The records are limited to Contract, Case, Opportunity, and Product types. Note
that none of these object types are available in a Force.com platform-only license.

 Listing 5.26 demonstrates the use of the MassEmailMessage . It selects one Contact in the
system and sends an email using the same template created for Listing 5.25 .

ptg11524036

171Sending and Receiving Email

 Listing 5.26 Sending a Mass Email

 User you = [SELECT Email
 FROM User
 WHERE Id = :UserInfo.getUserId()
 LIMIT 1];
 EmailTemplate template = [SELECT Id
 FROM EmailTemplate
 WHERE DeveloperName = 'Test_Template'
 LIMIT 1];
 Messaging.MassEmailMessage mail = new Messaging.MassEmailMessage();
 mail.templateId = template.Id;
 mail.targetObjectIds = new Id[] { you.Id };
 mail.setSaveAsActivity(false);
 Messaging.sendEmail(new Messaging.MassEmailMessage[] { mail });

 Transactional Email

 The transactional behavior of the sendEmail method is consistent with that of Force.com data-
base DML methods. When an invocation of Apex code is completed without error, email
is sent. If an uncaught error causes the program to be terminated prematurely, email is not
sent. If multiple emails are sent, by default they all fail if one fails. Setting the optional
 opt_allOrNone parameter of the sendEmail method to false enables partial success of
a group of outbound messages. In this case, the sendEmail method returns an array of
 SendEmailResult objects. These objects can be used to determine the success or failure of
each message and include error details in case of failure.

 Additional Email Methods

 The following list describes useful methods that apply to both SingleEmailMessage and
 MassEmailMessage objects:

 ■ setCcAddresses — This method accepts a string array of email addresses to carbon copy
on the email.

 ■ setSenderDisplayName — The sender display name is shown in email reading programs
as a label for the sender email address.

 ■ setReplyTo — The reply-to address is the email address designated to receive replies to
this message. If not specified, it’s always the sender’s email address.

 ■ setBccSender — If this is set to true , Force.com blind-carbon-copies the sender’s email
address. In a mass email, the sender is copied only on the first message. Force.com
prevents use of this feature if an administrator has enabled Compliance BCC Email.
You can do this in the Administration Setup area by clicking Email Administration,
Compliance BCC Email.

ptg11524036

172 Chapter 5 Advanced Business Logic

 ■ setUseSignature — By default, Force.com appends the sending user’s signature to
the end of outbound emails. You can edit this signature in the Personal Setup area by
clicking Email, My Email Settings. To turn off this feature, pass false to this method.

 ■ setFileAttachments — The argument to this method is an array of
 EmailFileAttachment objects. These objects contain the names and data of
attachments to be sent with the message. They provide a method to set the attachment
body (setBody) and filename (setFileName). The total size of the attachments for a
single message cannot exceed 10MB.

 ■ setDocumentAttachments — Force.com has a native object type for storing content
called Document. You can find it in the native user interface by clicking the Documents
tab. Here you can create, edit, and delete Documents and group them into folders. Each
Document record has a unique identifier, and this method accepts an array of them.
Each Document specified is sent as an attachment to the message. All attachments in a
single message, including file attachments, cannot exceed 10MB.

 ■ setOrgWideEmailAddressId — Use this method to specify the unique identifier of an
organization-wide email address. This email address is used as the “from” address rather
than the address of the current user. To define organization-wide email addresses and
obtain their unique identifiers, go to the Administration Setup area and click Email
Administration, Organization-Wide Addresses.

 ■ setSaveAsActivity — Force.com’s outbound email can be configured to track
the behavior of email recipients who are Leads or Contacts in the system. This is
accomplished with an invisible image embedded in messages sent using templates.
When receivers who haven’t blocked multimedia content in their email readers open the
message, the Force.com service is contacted and tracks this information. By visiting the
receiver’s Lead or Contact record, you can see the date the email was first opened, the
number of times it was opened, and the date it was most recently opened. By default,
this setting is enabled. To disable or enable it for the organization, go to the App Setup
area and click Customize, Activities, Activity Settings and select Enable Email Tracking.
To disable it for a specific message, pass false to this method.

 Receiving Email

 The two steps for configuring Force.com to process inbound emails are as follows:

 1. Write an Apex class that implements a specific interface (Messaging.
InboundEmailHandler) and method (handleInboundEmail). This provides your code
access to the envelope (Messaging.InboundEnvelope) and content (Messaging.
InboundEmail) of inbound emails, including mail headers and attachments. It is
otherwise standard Apex code with no special restrictions. The return value of this
method is a Messaging.InboundEmailResult . To indicate processing failure, set the
 success field of this object to false . Any explanatory message set in the message field
is returned to the sender as an email response.

ptg11524036

173Sending and Receiving Email

 2. Create an Email Service using the native user interface. An Email Service is associated
with one or more Force.com-issued email addresses that serve as the gateways to your
Apex class. When email arrives at the email address, your Apex class is invoked to
process it.

 If your Apex code fails with an uncaught exception while processing an incoming email,
Force.com treats the email as undeliverable. This is much like a mail gateway behaves when
presented with an unknown recipient email address. An email is returned to the sender with
diagnostic information about the problem, including the error message from your Apex code.

 To personalize email processing based on the identity of the sender, use one of these strategies:

 ■ Have all users share a single inbound email address. Your Apex code reads the sender’s
“from” address and customizes behavior based on that, perhaps by querying Contact or
Lead for more information about them.

 ■ Issue each user or group of users a unique email address. Your Apex code can adjust its
behavior based on the “to” address of the incoming message.

 Caution

 There are governor limits on inbound email. The maximum size of each inbound message,
attachments included, is 10MB. The maximum size of each message body, text and HTML
combined, is 100KB. The maximum size of each binary attachment is 5MB and 100KB for text
attachments. The maximum heap size for Apex email handlers is 18MB. If any of these limits
are reached, your Apex code will not be invoked, and the offending message will be returned to
its sender.

 Getting Started with Inbound Email Processing

 Follow these next steps to create a new Apex class to process inbound email in the Force.com
IDE. This is a simple example that sends a reply to the inbound message with the original
message quoted in the body.

 1. Make sure your Force.com project is selected and click New, Apex Class in the File menu.

 2. Enter MyEmailService for the name and select the Inbound Email Service template.

 3. Click the Finish button. Enter the code given in Listing 5.27 , skipping the class, method,
and result declarations because they are provided by the template. Save your changes.

 Listing 5.27 Receiving Email

 global class MyEmailService implements
 Messaging.InboundEmailHandler {
 global Messaging.InboundEmailResult
 handleInboundEmail(Messaging.InboundEmail email,
 Messaging.InboundEnvelope envelope) {

ptg11524036

174 Chapter 5 Advanced Business Logic

 Messaging.InboundEmailResult result = new
 Messaging.InboundEmailresult();
 Messaging.SingleEmailMessage outbound = new
 Messaging.SingleEmailMessage();
 outbound.toAddresses = new String[] { email.replyTo };
 outbound.setSubject('Re: ' + email.subject);
 outbound.setHtmlBody('<p>This reply was generated by Apex.'
 + 'You wrote:</p><i>' + email.plainTextBody + '</i>');
 Messaging.sendEmail(new Messaging.SingleEmailMessage[]
 { outbound });
 return result;
 }
 }

 4. In the native user interface, go to the App Setup area and click Develop, Email Services.

 5. Click the New Email Service button.

 6. Enter a service name. Enter MyEmailService as the Apex class. Leave the other options set
to their defaults and click the Save button.

 7. Click the Activate button. Then click the New Email Address button to create a Force.
com-generated email address.

 8. This screen allows you to whitelist email addresses and domains that are allowed to use
this email service. By default, it’s configured to allow emails only from the current user’s
email address. Accept this setting by clicking the Save button.

 9. You should now see an email address listed at the bottom of the page, as shown in Figure
 5.13 . Copy the address to your Clipboard, open your favorite email application, and send
a test message to this address. Within a minute, you should receive an email in response,
generated by your Apex class.

 Dynamic Apex

 Dynamic Apex describes features of Apex that bypass its typically strongly typed nature. For
example, database queries, objects, and fields are part of the language, and references to them
are strongly typed, validated at compile time. Dynamic Apex allows you to work with these
objects as ordinary strings rather than compiled parts of your program. This has its advantages
in that your program can be more dynamic and generic. It also has disadvantages, the primary
one being that your code can suffer a greater variety of errors at runtime.

 This section describes three dynamic Apex features. Dynamic database queries are SOQL and
SOSL queries executed at runtime from strings rather than from compiled code. Schema meta-
data allows Apex code to introspect the structure of the Force.com database, including its
objects, fields, and relationships. Type methods allow introspection of an object’s type, includ-
ing creation of a new instance.

ptg11524036

175Dynamic Apex

 Dynamic Database Queries

 In Chapter 4 , you learned about bind variables. They are variables whose values are injected
into SOQL and SOSL statements in predefined locations, notated with colons. But bind vari-
ables are not powerful enough to support an entirely dynamic WHERE clause, one that includes
conditional filters added and subtracted based on the behavior of the program. You could write
every combination of WHERE clause and use long strings of conditional statements to pick the
right one. An alternative is a completely dynamic query, executed using the Database.query
method.

 Listing 5.28 provides an example of two dynamic queries. The first is on the Contact object.
The results of the query are returned in a list of Contact records. Other than the dynamic query
itself, this code should be familiar. The second query selects Project records but treats them as a
list of SObject objects.

 Listing 5.28 Dynamic SOQL Queries

 List<Contact> resources = Database.query(
 'SELECT Id, Name FROM Contact');
 for (Contact resource : resources) {
 System.debug(resource.Id + ' ' + resource.Name);
 }

 Figure 5.13 Email service configuration

ptg11524036

176 Chapter 5 Advanced Business Logic

 List<SObject> projects = Database.query('SELECT Id, Name FROM Project__c');
 for (SObject project : projects) {
 System.debug(project.get('Id') + ' ' + project.get('Name'));
 }

 The SObject is a typeless database object. It allows you to interact with database records
without declaring them as a specific type. The get method of the SObject allows the retrieval
of a field value by name. The getSObject method returns the value of a related object. These
values also have setter methods: set and setSObject . Used in conjunction with DML state-
ments or database DML methods, you can write generic code that operates on a series of
database objects. This is particularly useful when you have several objects with the same field
names because it can reduce the amount of code.

 Tip

 Use the escapeSingleQuotes of the String object to prevent SOQL injection attacks. This
method adds escape characters (\) to all single quotation marks in a string.

 SOSL queries can also be constructed and executed dynamically. The Search.query method
returns a list of lists containing SObjects. Listing 5.29 provides an example of its use.

 Listing 5.29 Dynamic SOSL Query

 List<List<SObject>> result = Search.query(
 'FIND \'Chicago\' '
 + 'RETURNING Contact(Name), Project__c(Name)');
 for (List<SObject> records : result) {
 for (SObject record : records) {
 System.debug(record.get('Name'));
 }
 }

 The SOSL query returns the names of Project and Contact records containing the word Chicago.
The outer loop is executed for each type of object specified in the RETURNING clause. The inner
loop runs over the matching records of that object type. For example, the first iteration of the
loop assigns records to a list of Contact records that matched the search term. The second itera-
tion assigns it to the matching Project records.

 Note

 Dynamic queries have all the same governor limits as their static counterparts.

ptg11524036

177Dynamic Apex

 Schema Metadata

 Schema metadata is information about the Force.com database, available to your Apex code
dynamically, at runtime. It has many potential uses, such as customizing the behavior of Apex
code installed in multiple organizations, driving the construction of dynamic queries, or veri-
fying that the database is configured in a certain way. This section describes the five types of
schema metadata (object, field, child relationship, picklist, and record type) and includes code
that can be run in the Execute Anonymous view to demonstrate accessing them.

 Note

 You are limited to a maximum of 100 calls to schema metadata methods. All five types of
schema metadata methods contribute equally to the limit.

 Object Metadata

 Object metadata is information about the database objects in the Force.com organization. It
includes custom as well as standard objects. Listing 5.30 provides an example of retrieving
object metadata. The metadata of all objects in the database is retrieved, and their names and
labels are printed to the debug log.

 Listing 5.30 Retrieving Object Metadata

 Map<String, Schema.SObjectType> objects = Schema.getGlobalDescribe();
 Schema.DescribeSObjectResult objInfo = null;
 for (Schema.SObjectType obj : objects.values()) {
 objInfo = obj.getDescribe();
 System.debug(objInfo.getName() + ' [' + objInfo.getLabel() + ']');
 }

 Field Metadata

 Field metadata provides access to all the attributes of fields you configure on a database object.
 Listing 5.31 demonstrates how to access field metadata. The fields of the Project__c object are
retrieved, including standard and custom fields. The getDescribe method is invoked on each
to return its metadata, a Schema.DescribeFieldResult object. The name, label, data type,
precision, and scale of each field are displayed in the debug log.

 Listing 5.31 Retrieving Field Metadata

 Map<String, Schema.SObjectField> fields =
 Schema.SObjectType.Project__c.fields.getMap();
 Schema.DescribeFieldResult fieldInfo = null;
 for (Schema.SObjectField field : fields.values()) {
 fieldInfo = field.getDescribe();
 System.debug(fieldInfo.getName()

ptg11524036

178 Chapter 5 Advanced Business Logic

 + ' [' + fieldInfo.getLabel() + '] '
 + fieldInfo.getType().name()
 + '(' + fieldInfo.getPrecision()
 + ', ' + fieldInfo.getScale() + ')');
 }

 Tip

 If you do not know the type of an object, you can still retrieve its metadata using
getSObjectType . For example, if a01i0000000rMq1 is the unique identifier of a Project
record, the result of Id.valueOf('a01i0000000rMq1').getSObjectType() can replace
 Schema.SObjectType.Project__c in the second line of Listing 5.31 .

 Child Relationship Metadata

 Child relationship metadata contains the child’s object type, the relationship name, and an
object identifying the field in the child object that relates it to the parent. Listing 5.32 demon-
strates the retrieval of child relationship metadata from the Contact object. Compare the results
with what you see in the Force.com IDE’s Schema Explorer for the Contact object.

 Listing 5.32 Retrieving Child Relationship Metadata

 Schema.DescribeSObjectResult res = Contact.SObjectType.getDescribe();
 List<Schema.ChildRelationship> relationships = res.getChildRelationships();
 for (Schema.ChildRelationship relationship : relationships) {
 System.debug(relationship.getField() + ', ' + relationship.getChildSObject());
 }

 Picklist Metadata

 Picklist metadata provides access to the master list of available picklist values for a picklist
or multi-select picklist field. It does not include the assignments of picklist values to record
types, nor does it provide any information about the relationship between picklist values in
dependent picklists. Listing 5.33 is an example of its use, printing the picklist values of the Skill
object’s Type field to the debug log.

 Listing 5.33 Retrieving Picklist Metadata

 Schema.DescribeFieldResult fieldInfo =
 Schema.SObjectType.Skill__c.fields.Type__c;
 List<Schema.PicklistEntry> picklistValues = fieldInfo.getPicklistValues();
 for (Schema.PicklistEntry picklistValue : picklistValues) {
 System.debug(picklistValue.getLabel());
 }

ptg11524036

179Dynamic Apex

 Record Type Metadata

 Record type metadata contains the names and unique identifiers of record types defined
on an object. It also indicates the availability of the record type to the current user
(isAvailable) and whether the record type is the default record type for the object
(isDefaultRecordTypeMapping).

 Listing 5.34 provides an example of using record type metadata. It retrieves the record types in
the Contact object and prints their names to the debug log.

 Listing 5.34 Retrieving Record Type Metadata

 Schema.DescribeSObjectResult sobj = Contact.SObjectType.getDescribe();
 List<Schema.RecordTypeInfo> recordTypes = sobj.getRecordTypeInfos();
 for (Schema.RecordTypeInfo recordType : recordTypes) {
 System.debug(recordType.getName());
 }

 Dynamic Instance Creation

 Sometimes it can be useful to create an object instance without hard-coding its type in a
program. For example, your program might include an extensibility mechanism for other
developers to add or customize its behavior. One way to do this is to expose an Apex interface,
document it, and allow users to provide the name of a custom Apex class that implements
the interface. Listing 5.35 is a simplified version of this scenario that can run in the Execute
Anonymous window.

 Listing 5.35 Creating Instance from Type Name

 interface MyType { void doIt(); }
 class MyTypeImpl implements MyType {
 public void doIt() { System.debug('hi'); }
 }
 Type t = MyTypeImpl.class;
 if (t != null) {
 MyType mt = (MyType)t.newInstance();
 mt.doIt();
 }

 Notice that MyTypeImpl is defined as the type to be created in the program on line 5, so it isn’t
dynamic. The dynamic form is Type.forName('MyTypeImpl') , which is invalid in the Execute
Anonymous window because MyTypeImpl is transient, defined in the scope of the Execute
Anonymous code block only. To try the dynamic type lookup, create the interface and class
using the Force.com IDE.

ptg11524036

180 Chapter 5 Advanced Business Logic

 Custom Settings in Apex

 You are not limited to using the native user interface for managing data in custom settings, as
demonstrated in Chapter 2 . Custom settings can also be created, updated, and deleted using
standard DML methods. This means you can build your own user interfaces for managing
them, or use them to store frequently accessed, simple configuration values needed by your
programs. Force.com provides increased performance for custom settings access versus ordinary
database access, and custom settings are exempt from the governor limits placed on database
access. For example, you might use a custom setting named Debug as a global switch to enable
verbose logging within your Apex code.

 To get started with custom settings in Apex, run the code in Listing 5.36 . It inserts a custom
setting record, setting its name and its field value. It assumes you already have defined a List
type custom setting object named ConfigSetting containing a single Checkbox field named
 Debug .

 Listing 5.36 Creating a Custom Setting Record

 insert new ConfigSetting__c(Name = 'Default', Debug__c = false);

 Now that your custom setting has a value, try retrieving it. Run the code in Listing 5.37 in the
Force.com IDE’s Execute Anonymous view.

 Listing 5.37 Retrieving a Custom Setting Value

 ConfigSetting__c cfg = ConfigSetting__c.getValues('Default');
 System.debug(cfg.Debug__c);

 The first line retrieves the named record, Default, which you created in Listing 5.36 . The second
line prints the value of the custom field to the debug log. You can also retrieve a Map of all
fields and values using the getAll method.

 To update a custom setting value, retrieve it by name, and then update it as you would a data-
base record. Listing 5.38 provides an example.

 Listing 5.38 Updating a Custom Setting Record

 ConfigSetting__c cfg = ConfigSetting__c.getValues('Default');
 cfg.Debug__c = true;
 update cfg;

 You can also delete custom setting records using the delete DML method, as shown in
Listing 5.39 .

ptg11524036

181Sample Application: Adding Email Notifications

 Listing 5.39 Deleting a Custom Setting Record

 ConfigSetting__c cfg = ConfigSetting__c.getValues('Default');
 delete cfg;

 Hierarchy type custom settings allow a user or profile to be related to them. If no user or
profile is specified, they become organization-wide defaults. The code in Listing 5.40 assumes
you have created a Hierarchy type custom setting named HierarchySetting with a single
text field named Field . It creates a new record and relates it to the current user by setting the
system field SetupOwnerId to the current user’s unique identifier. This same field also accepts
a profile unique identifier to make the custom setting apply to a profile instead of a user. And if
 SetupOwnerId is set to null, it becomes an organization-wide default.

 Listing 5.40 Creating a Hierarchy Type Custom Setting Record

 insert new HierarchySetting__c(
 SetupOwnerId = UserInfo.getUserId(),
 Field__c = 'My user preference value');

 To retrieve a Hierarchy type custom setting value, use the getInstance method of the custom
setting object. By default, it returns the “lowest” level of setting value, meaning the value most
specific to the current user. If a user-level setting is available, it is returned. Otherwise, the
return value is the setting associated with the user’s profile. If no user or profile-level settings
are present, the organization-wide default is returned. This behavior can be overridden by
passing a user or profile unique identifier as an argument to the getInstance method.

 Sample Application: Adding Email Notifications

 This section applies your knowledge of Apex’s outbound email features to enhance the Services
Manager sample application. Many scenarios in Services Manager could benefit from email
notifications. For example, consultants have requested that they get an email when a timecard
is approved or rejected by their project managers.

 To implement this change, add a trigger on the after update event of the Timecard object.
If the new value of the Timecard’s Status field is Approved or Rejected , query the Contact
record that created the Timecard. Send an email notification of the change to the Contact.

 Listing 5.41 is a sample implementation. It begins by checking to make sure that the updated
Timecard contains a new value for the Status field and that the new status is either Approved
or Rejected . If so, it makes three queries to retrieve data to send the notification email: the
email address of the Contact logging the Timecard, the name of the Project, and the name of
the user modifying the Timecard record. It constructs the email message and sends it.

ptg11524036

182 Chapter 5 Advanced Business Logic

 Listing 5.41 Email Notification Trigger on Timecard

 trigger handleTimecardNotifications
 on Timecard__c (after update) {
 for (Timecard__c timecard : trigger.new) {
 if (timecard.Status__c !=
 trigger.oldMap.get(timecard.Id).Status__c &&
 (timecard.Status__c == 'Approved' ||
 timecard.Status__c == 'Rejected')) {
 Contact resource =
 [SELECT Email FROM Contact
 WHERE Id = :timecard.Contact__c LIMIT 1];
 Project__c project =
 [SELECT Name FROM Project__c
 WHERE Id = :timecard.Project__c LIMIT 1];
 User user = [SELECT Name FROM User
 WHERE Id = :timecard.LastModifiedById LIMIT 1];
 Messaging.SingleEmailMessage mail = new
 Messaging.SingleEmailMessage();
 mail.toAddresses = new String[]
 { resource.Email };
 mail.setSubject('Timecard for '
 + timecard.Week_Ending__c + ' on '
 + project.Name);
 mail.setHtmlBody('Your timecard was changed to '
 + timecard.Status__c + ' status by '
 + user.Name);
 Messaging.sendEmail(new Messaging.SingleEmailMessage[]
 { mail });
 }
 }
 }

 This implementation is not batch-safe. It makes four SOQL queries per Timecard. Even if this
were addressed, the code could easily reach the limit of ten email invocations.

 To fix this problem, you could change the code to use the MassEmailMessage , building a list
of recipient Contact objects from the batch. Unfortunately, the MassEmailMessage ’s whatIds
field cannot be used with custom objects, so you’ll have to forgo the customized message
detailing the changes to the Timecard.

 An alternative is to anticipate the governor limit. If a batch of Timecards requires more than
ten email notifications, send the ten and suppress subsequent notifications.

ptg11524036

183Summary

 Summary

 This chapter has introduced some of the advanced features of Apex, features that you might
not need in every application but that contribute to your knowledge of what is possible with
Apex. Before moving on to the next chapter, consider these final points:

 ■ Aggregate queries provide a standard, declarative way to perform calculations on groups
of records in the database.

 ■ Rules governing record sharing can be controlled in Apex code using Apex managed
sharing.

 ■ You can send and receive emails in Apex code. This provides your applications an
additional way to interact with users.

 ■ Although Apex features strongly typed database objects and queries, you can also write
code that uses database resources dynamically. This carries with it the risk of runtime
errors but opens up new possibilities of dynamic behavior to your applications. It is
particularly powerful when writing custom user interfaces.

 ■ You can read and write custom settings from Apex like any database object, but without
the governor limits.

ptg11524036

This page intentionally left blank

ptg11524036

 6
 User Interfaces

 Force.com’s native user interface provides a consistent and simple way to search, create, update, and
delete database records. It combines the definition of database objects with user interface metadata
such as page layouts to produce user interfaces through configuration rather than code. For developers
and administrators, this makes customization straightforward. For users, the uniformity means that
learning to use one screen in Force.com provides the experience to learn all screens with minimal incre-
mental effort.

 For applications that require a greater level of control over the appearance and behavior of the user
interface, Visualforce offers a solution. Visualforce is a technology in the Force.com platform for build-
ing custom user interfaces. Visualforce user interfaces can be built to look nothing like Force.com,
exactly like Force.com, or your own unique blend of the two.

 This chapter covers the basics of Visualforce in the following sections:

 ■ Introduction to Visualforce— Learn the concepts and terminology of Visualforce.

 ■ Visualforce controllers— See how controllers contain the business logic that drives the user
interface.

 ■ View components— Learn how view components define the appearance of Visualforce pages.

 ■ Visualforce and the native user interface— Understand where and how Visualforce pages
coexist with the native user interface of Force.com.

 ■ Visualforce in production— Look at how security, governor limits, error handling, and testing
are handled with Visualforce.

 ■ Sample application— Implement a feature of the Services Manager sample application called
the Skills Matrix. It is a Visualforce page for viewing and editing the skill sets of consultants.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/SQAI0 .

http://goo.gl/SQAI0

ptg11524036

186 Chapter 6 User Interfaces

 Introduction to Visualforce

 This section presents an introduction to Visualforce. It covers the following topics:

 ■ Overview of Visualforce— Examine the pieces of Visualforce and how they’re put
together to aid in understanding this chapter and online reference materials.

 ■ Getting started with Visualforce— Take a brief look at how Visualforce development
projects work, learn the tools for Visualforce development, and build a “hello world”
example.

 Overview of Visualforce

 Visualforce is a combination of a page containing the presentation and Apex classes contain-
ing the business logic. The presentation is usually HTML rendered in the Web browser, but
Visualforce also supports content types such as XML and PDF. HTML output is typically inter-
active, building up state by collecting user input across a series of related pages.

 Force.com processes Visualforce pages on its servers. Only the final rendered page and
partial page updates are returned to the Web browser—never the raw data or business logic.
Visualforce is driven by metadata. It can use the definition of fields in the database to provide
the appropriate user interface, without custom code. For example, a Visualforce page with an
input field mapped to a Date field in the database is rendered with a calendar picker compo-
nent, consistent with the Force.com native user interface.

 The architecture of Visualforce follows the Model-View-Controller (MVC) pattern. This pattern
dictates the separation of presentation (View), business logic (Controller), and data (Model). In
Visualforce, business logic and data are combined in the controller, named after its MVC coun-
terpart. The presentation lives in the page.

 Figure 6.1 shows the relationship between the page and the controller in Visualforce, as well as
some of Visualforce’s internals.

 Controller

 The controller is Apex code that reads and writes data in the model, typically the Force.com
database. The interaction of the controller with the user interface is accomplished through vari-
ables and action methods. Variables are exposed to the presentation layer through getter and
setter methods. Getter methods allow the page to retrieve the value of a variable and display
it for the user. Setter methods allow the user to modify the value of a variable through a user
interface component such as a text input box.

 Action methods perform the processing work on behalf of the user. They are wired up to
buttons, links, and even asynchronous events on the user interface.

ptg11524036

187Introduction to Visualforce

 Force.com provides default controller implementations, called standard controllers . Standard
controllers replicate the behavior of the native user interface, such as editing and creating
records, but allow customization of its user interface without code. Custom behavior can be
added to standard controllers using controller extensions, which are classes written in Apex.
You can also implement a controller from scratch in Apex. This is called a custom controller .

 Page

 The Visualforce page defines the appearance of your user interface using a mixture of standard
HTML and Visualforce-specific XML markup. The XML markup is used to add view compo-
nents to the page. View components bind the controller to the page, defining how data and
user actions are to be rendered in the user interface. Force.com provides a standard set of view
components to support common HTML user interface patterns and supports user-defined
components.

 In Figure 6.1 , the arrows between the page and the controller represent expressions. Expressions
are embedded in view components to allow the page to reference methods in the controller
or in system classes such as UserInfo . Expressions in Visualforce use the same language as
formula fields in the database, with a special prefix and suffix added. For example, {!save} is
an expression that invokes the save method of the controller.

 Note

 Visualforce maintains a strict separation of business logic and presentation. No business logic
is allowed in a Visualforce page, not even for trivial formatting tasks.

Page
View Components

Actions

Controller

MethodsSetters

Variables (Model)

Getters

View State

 Figure 6.1 Visualforce architecture

ptg11524036

188 Chapter 6 User Interfaces

 Getting Started with Visualforce

 This subsection offers a path to getting your hands on Visualforce, divided into three parts, as
follows:

 1. Development process— Begin your development contrasting Visualforce with standard
Web application development.

 2. Development tools— Take a look at Visualforce development in the Force.com IDE and
the native user interface.

 3. “Hello World” example— Build your first Visualforce page with a custom controller.

 Development Process

 Visualforce development projects are much like standard Web application development proj-
ects. They have server-side logic to be coded, and user interfaces to be designed, wired up,
and tested. User interface developers must collaborate closely with their server-side counter-
parts to make sure that the necessary data and logic are available to them. The user interfaces
themselves are changing rapidly to satisfy the aesthetic and usability demands of project
stakeholders.

 Unlike with other Web application projects, Force.com eliminates much of the work of choos-
ing and integrating Web frameworks. In terms of simply serving data-driven Web content,
Force.com is the only framework you need. The important task then becomes strategizing on
how best to use the platform to minimize custom development effort and maintenance cost
while maximizing reuse and flexibility.

 Walk through the native user interface and think carefully about what features you can reuse,
extend, and override. Force.com offers a lot of user interface functionality by default and
exposes a variety of hooks into it. Work with the native user interface where possible, rather
than circumventing it. The further your project goes toward a fully custom user interface, the
more work you spend to implement things that are potentially already provided, maintained,
and constantly improved by Force.com.

 Development Tools

 The two tools for working with Visualforce are the native user interface and the Force.com IDE.
The examples in this book can be built in either tool, but all screenshots are shown from the
Force.com IDE.

 In the native user interface, developers can enable a footer on the bottom of all Visualforce
pages that includes syntax highlighting and an integrated help system. Called develop-
ment mode, it’s enabled on a per-user basis; you can enable it by visiting the Personal Setup
area and clicking My Personal Information, Personal Information and checking both the
Development Mode and Show View State in Development Mode boxes. You must have
Customize Application permission enabled on your profile to select these options. With devel-
opment mode enabled, you can create new Visualforce pages on the fly by visiting them (for

ptg11524036

189Introduction to Visualforce

example, /apex/myPage) as well as edit existing pages. Figure 6.2 shows an example of editing
a Visualforce page in development mode.

 Figure 6.2 Visualforce page in development mode

 Force.com IDE integrates Visualforce pages and controllers into the familiar Eclipse user inter-
face. In Figure 6.3 , the Visualforce page editor is active. You’ve already worked with the Force.
com IDE to create triggers. Visualforce controllers are displayed in the folder named classes .
Visualforce pages are in a separate folder named pages .

 “Hello World” Example

 To get a sense for Visualforce controllers and pages, follow these steps to create a simple
working example:

 1. Open the Force.com IDE, select a Force.com Project, and select File, New, Visualforce
Page. Alternatively, you can right-click any object within a Force.com Project to reach the
New menu.

 2. Enter MyPage6_1 for the label, press Tab, and click the Finish button.

 3. In the page editor, enter the code shown in Listing 6.1 . Do not save it yet. If you do, it
will fail to compile because it references a controller class that doesn’t exist.

ptg11524036

190 Chapter 6 User Interfaces

 Listing 6.1 MyPage6_1 Code

 <apex:page controller="MyPageController6_1">
 <apex:form>
 Your name: <apex:inputText value="{!name}" />
 <apex:outputText value="{!message}" />
 <apex:commandButton action="{!hello}" value="Say Hi" />
 </apex:form>
 </apex:page>

 4. Select File, New, Apex Class. Enter MyPageController6_1 for the name and click the
Finish button.

 5. In the Apex code editor, enter the code shown in Listing 6.2 . Select File, Save All to save
both the controller and the page code. Check the Problems view to make sure that there
are no compilation errors.

 Listing 6.2 MyPageController6_1 Code

 public class MyPageController6_1 {
 public String name { get; set; }
 public String message { get; private set; }

 Figure 6.3 Force.com IDE’s Visualforce page editor

ptg11524036

191Visualforce Controllers

 public PageReference hello() {
 message = 'Hello, ' + name;
 return null;
 }
 }

 6. In your Web browser, log in to Force.com and edit the URL to remove everything after
the hostname, replacing it with /apex/MyPage6_1. Your URL should look something like
this: https://na6.salesforce.com/apex/MyPage6_1 . You should see your custom Visualforce
page. Enter your name and click the Say Hi button to see the hello message.

 Visualforce Controllers

 Controllers provide the business logic behind Visualforce pages. They supply data to the page,
accept input from users through the page, perform actions on behalf of the user, and redirect
the browser to new pages. Controllers come in three flavors:

 ■ Standard controllers— Force.com provides default controller implementations called
standard controllers. They contain the same functionality as found in the native user
interface. No custom Apex code is involved in a standard controller.

 ■ Custom controllers— Custom controllers are the opposite of standard controllers,
providing no default functionality and consisting entirely of custom Apex code.

 ■ Controller extensions— Controller extensions are the middle ground between standard
and custom controllers. They begin with a standard controller and extend or override its
functionality with custom Apex code.

 Standard Controllers

 Every database object, both standard and custom, has a standard controller. Its name is simply
the name of the object. No Apex code exists for a standard controller. The controller imple-
mentation is already provided by Force.com.

 Working with a Single Record

 By default, the standard controller operates on a single record at a time. It receives this record
from the id parameter in the URL. Try this for yourself by creating a new Visualforce page
named MyPage6_3 with the code in Listing 6.3 .

 Listing 6.3 Visualforce Page Using Standard Controller

 <apex:page standardController="Project__c">
 The current project is: {!Project__c.Name}
 <apex:form >

https://na6.salesforce.com/apex/MyPage6_1

ptg11524036

192 Chapter 6 User Interfaces

 <apex:commandButton action="{!edit}" value="Edit {!Project__c.Name}" />
 <apex:commandButton action="{!list}" value="Go To List" />
 </apex:form>
 </apex:page>

 If you visit the page in your browser (/apex/mypage6_3) without providing an id , you’ll
see no current project named in the page. If you append an id value for a Project record (for
example, /apex/MyPage6_3?id=a008000000CTwEw), you can get the name of the project and
working edit and list buttons.

 Listing 6.3 demonstrates a few actions provided by the standard controller, leveraged using
expression language in view components. For example, access to the current project record
is provided through {!Project__c} , and access to the navigation actions through {!edit}
and {!list} . In general, the following expressions are available in a page that uses a standard
controller:

 ■ Data— {!id} is the unique identifier of the current record, and {! object } is the current
record itself, where object is the lowercase name of your object. All fields of the object
are automatically available, including related child objects but not parent objects.

 ■ Navigation— {!cancel} navigates to the cancel page, {!edit} to the standard edit page,
and {!view} to the standard view page.

 ■ Action and navigation— {!delete} deletes the current record and navigates to the
standard delete page, and {!save} saves the current record and refreshes the page.

 ■ Action only— {!quicksave} saves the current record without navigation.

 Working with Multiple Records

 A variation of the standard controller exists called the standard set controller. It operates on
a list of records rather than a single record. The list is produced by executing a view, a user-
defined set of column names, filter criteria, and sort criteria for an object. To try it, create
another Visualforce page named MyPage6_4 with the code given in Listing 6.4 .

 Listing 6.4 Visualforce Page with Standard Set Controller

 <apex:page standardController="Project__c" recordSetVar="projects">
 <apex:repeat value="{!projects}" var="p">
 {!p.Name}

 </apex:repeat>
 </apex:page>

 Visit /apex/myPage6_4 with your browser, and you’ll see a list of all projects. Force.com has
used the user’s most recently executed view to obtain a list of project records, sorted by the
first column in the view, even if that column is not displayed in the Visualforce page. The
records are available to your page in the variable projects , specified by the page attribute

ptg11524036

193Visualforce Controllers

 recordSetVar . The recordSetVar indicates to Force.com that the standard set controller
should be used.

 The standard set controller allows you to work with up to 10,000 records at once and supports
pagination with a variable page size. It also supports multiple selection and actions on a
selected set of records.

 The following expressions are valid in any page that uses a standard set controller:

 ■ Data— The variable name you set in recordSetVar is bound to the current list of
records, {!selected} is an array of SObjects that are selected, {!resultsSize} sets or
gets the number of records currently displayed, and {!completeResult} is a Boolean
containing false if more than 10,000 records exist.

 ■ Pagination— Navigate across multiple pages of data using the {!first} , {!last} ,
 {!next} , and {!previous} actions. {!pageNumber} sets or gets the current
page number, and {!pageSize} sets or gets the number of records in a page.
 {!hasPrevious} returns true if a previous page exists, and {!hasNext} returns true if
a subsequent page exists.

 ■ Filters— {!filterId} is the unique identifier of the currently selected filter (list view),
and {!listViewOptions} is an array of SelectOption objects containing the names and
identifiers of the available list views.

 ■ Navigation— {!cancel} navigates to the cancel page, and {!edit} to the standard
edit page.

 ■ Action and navigation— {!delete} deletes the current record and navigates to the
standard delete page, and {!save} saves the current record and refreshes the page.

 ■ Action only— {!quicksave} saves the current record without navigation.

 Custom Controllers

 Custom controllers provide complete control over the behavior of a page with no default
implementation. A custom controller is simply an Apex class designed to be bound to a
Visualforce page. There is no new syntax to learn. At a high level, building a custom controller
consists of defining the data to make available to the page and the actions that the page can
invoke.

 Exposing Data

 The purpose of exposing data in a controller is to make it available to the page. Within a page,
page components can use expressions to bind to it and render HTML or some other representa-
tion of the data. This binding is by reference, so data modified in the page can also be modified
in the controller.

ptg11524036

194 Chapter 6 User Interfaces

 Simply making a variable public does not provide a Visualforce page access to it. The variable
must have a getter method, a setter method, or both, depending on whether you intend to
provide read-only or read and write access to the data.

 For example, the page component inputText is an input and output component. It renders
any existing or default value by invoking the getter and then invokes the setter to update the
value after it is changed by the user and the page is submitted.

 Expression language allows traversal of an object through dot notation, so providing separate
getters and setters for every field in a database record, for example, is not necessary. Expose
the object itself and use dot notation to access its fields. For example, the code in Listing 6.5
exposes a Project record for read-only access using the automatic properties feature of the Apex
language. The read-only access is accomplished using the private access modifier keyword
for the set accessor. Thanks to the Project getter, the page can contain expressions like
 {!project.Name} and even {!project.Account__r.BillingCity} because you’ve made
the parent object’s field available through a SOQL statement in the constructor.

 Listing 6.5 Custom Controller, Read-Only Access to Project Record

 public class MyPageController6_5 {
 public Project__c project { get; private set; }
 public MyPageController() {
 project = [SELECT Name, Account__r.BillingCity FROM Project__c
 WHERE Name = 'GenePoint' LIMIT 1];
 }
 }

 Caution

 Placing business logic in the getter and setter methods is bad practice and, in many cases,
prohibited at runtime. Make a habit of exposing data through Apex automatic properties rather
than full getter or setter methods. Automatic properties do not allow a code body to be added.

 Expressions are the closest you can get to business logic on the page without resorting to
JavaScript. For example, you can combine expressions to form more complex expressions. The
expression {!isVisible && isEditable} invokes both the getIsVisible and getIsEdit-
able methods on the controller and evaluates to true if they are both true . Conditionals are
also supported. For example, the condition expression {!IF(tabSelected, 'currentTab',
'secondaryPalette')} uses the value of the tabSelected method to determine whether to
return one string (currentTab if true) versus another (secondaryPalette if false).

 Writing Action Methods

 Actions on a page are wired up to action methods in the controller, again by expres-
sion language. Action methods are public, nonstatic controller methods that return a

ptg11524036

195Visualforce Controllers

 PageReference object or null. If null, the current page is refreshed. If not, the PageReference
is used to determine the location of the new page.

 Actions have three purposes:

 1. Preserve view state— The view state is maintained by Force.com within your page at
runtime and posted back to its servers for the invocation of an action. It consists of the
values of all of your controllers’ accessible, nontransient variables. It allows you to build
stateful interactions consisting of multiple pages without writing boilerplate code to copy
values around in hidden fields, in the URL, or by using stateful patterns in the controller
such as session objects, which are not supported by Force.com. You can opt out of
actions entirely, redirecting the user at a browser level using standard HTML anchors and
forms. But by doing so, you’re circumventing some of the value provided by Visualforce
and giving yourself extra work.

 2. Invoke custom logic— Actions can perform some custom logic, such as using DML
methods to upsert a record to the database. Other than the constructor, action methods
are the only place you should write new business logic or call existing Apex code in a
Visualforce controller.

 3. Trigger page navigation— The PageReference object returned by an action determines
the page to be refreshed in the browser. Construct a PageReference from a page name,
such as new PageReference('MyPage') . The URL of the browser remains the same, but
the body is refreshed with the contents of MyPage . This is not always desirable behavior,
because a user can click the Reload button in the browser and potentially trigger the
same action with the same input data. For example, this would result in duplicate records
if the action code performs an insert DML operation. You can tell Force.com to redirect
the user to the new page by calling the setRedirect method on the PageReference
and passing true . A redirect updates the browser’s URL and resets the view state, giving
the user a fresh start and preventing any problems with the browser’s Reload button.

 Listing 6.6 is a sample controller to illustrate a common pattern in Visualforce: wrapping a
database object with an Apex class. The wrapper object allows you to enhance a class for partic-
ipation in user interface tasks, such as formatting data. In Listing 6.6 , the wrapper exists to add
a selected attribute. This attribute is bound to an inputCheckbox view component, shown
in Listing 6.7 , allowing the user to select multiple items. The action can then perform a mass
update based on the selection. In the sample code, it simply outputs the unique identifier of
each selected Project record to the debug log.

 Listing 6.6 Controller with Wrapper Pattern

 public class MyPageController6_6 {
 public List<ContactWrapper> contacts { get; set; }
 public MyPageController6_6() {
 contacts = new List<ContactWrapper>();
 List<Contact> records = [SELECT Name FROM Contact];
 for (Contact record : records) {

ptg11524036

196 Chapter 6 User Interfaces

 contacts.add(new ContactWrapper(record));
 }
 }
 public PageReference doSomething() {
 for (ContactWrapper wrapper : contacts) {
 if (wrapper.selected) {
 System.debug(wrapper.data.Id);
 }
 }
 return null;
 }
 class ContactWrapper {
 public Contact data { get; private set; }
 public Boolean selected { get; set; }
 public ContactWrapper(Contact data) {
 this.data = data;
 this.selected = false;
 }
 }
 }

 Listing 6.7 Page with Wrapper Pattern

 <apex:page controller="MyPageController6_6">
 <apex:form>
 <apex:pageBlock title="Sample Code">
 <apex:pageBlockButtons >
 <apex:commandButton action="{!doSomething}"
 value="Do Something" />
 </apex:pageBlockButtons>
 <apex:pageBlockTable
 value="{!contacts}" var="contact">
 <apex:column headerValue="Selected">
 <apex:inputCheckbox value="{!contact.selected}" />
 </apex:column>
 <apex:column headerValue="Contact Name">
 {!contact.data.Name}
 </apex:column>
 </apex:pageBlockTable>
 </apex:pageBlock>
 </apex:form>
 </apex:page>

ptg11524036

197Visualforce Controllers

 Tip

 To clearly differentiate your controller code from triggers and other Apex code, adopt a naming
convention and stick to it. A good one is to suffix your class name with the word Controller .

 Controller Extensions

 The final type of controller is the controller extension. A controller extension is a custom
controller that extends the behavior of a standard controller. Controller extensions are primar-
ily used to integrate Visualforce more tightly with the native user interface. Many features of
Visualforce integration such as overriding standard buttons are not supported for pages that use
custom controllers.

 Custom controllers can be easily retrofitted to become controller extensions. Multiple exten-
sions can be used in a single page, enabling a large monolithic controller to be divided into
smaller controllers by behavior, where some pages might use only a subset of the behaviors.

 Listing 6.8 illustrates a trivial controller extension class, and Listing 6.9 shows a page that
uses it. The only difference between it and a custom controller is that a constructor is
required, allowing the standard controller (StandardController for a single record or
 StandardSetController for multiple records) to be passed to the class. In a page that uses the
controller extension, all the built-in actions from the standard controller are available implic-
itly, without any code.

 Listing 6.8 Sample Controller Extension with Single Action Method

 public class MyPageController6_8 {
 private ApexPages.StandardController controller;
 public MyPageController6_8(ApexPages.StandardController controller) {
 this.controller = controller;
 }
 public PageReference doSomething() { return null; }
 }

 Listing 6.9 Page Using Sample Controller Extension

 <apex:page standardController="Project__c"
 extensions="MyPageController6_8">
 <apex:form>
 <apex:commandButton action="{!doSomething}"
 value="Do Something" />
 </apex:form>
 </apex:page>

ptg11524036

198 Chapter 6 User Interfaces

 View Components

 View components work with the controller to define the appearance and behavior of a
Visualforce user interface. They connect variables in the controller to input and output
elements, such as text boxes and labels, and methods in the controller to action-oriented
elements, such as buttons and links. Force.com provides a library of standard view components
to support common Web user interface design patterns.

 This section contains the following subsections:

 ■ View component basics— Here, you’ll learn how to add any view component to a
page and some of the common characteristics. This material is preparation for the five
subsections to follow, which cover specific types of standard view components.

 ■ Data components— Data components enable Visualforce pages to move data in and out
of the controller using standard HTML elements.

 ■ Action components— Action components invoke methods on the controller, updating
the view state and refreshing the page or navigating to a new page.

 ■ Primitive components— Several components exist with similar syntax to HTML tags,
bridging the gap between Visualforce functionality and standard HTML.

 ■ Force.com-styled components— These components allow Visualforce pages to inherit
the appearance of the Force.com native user interface.

 ■ Force.com user interface components— The Force.com UI components inherit the
appearance of the native user interface as well as its behavior. They are large-scale
building blocks for incorporating native Force.com user interface functionality wholesale
into your custom pages.

 View Component Basics

 The three important areas to understand about view components are the following:

 ■ View component syntax— View components are embedded in a Visualforce page using
XML markup.

 ■ Page definition— Every user interface page must begin with the page component. All
Visualforce components must be declared within the page component.

 ■ Component visibility— The rendered attribute, present on most components, allows
conditional rendering of its HTML.

 View Component Syntax

 Adding view components to a Visualforce page involves constructing XML markup. The
markup consists of three parts: the component name, an optional set of attributes, and an
optional component body. Listing 6.10 is a sample usage of the view component dataList .
It demonstrates all three parts of referencing a view component in a Visualforce page.

ptg11524036

199View Components

 Listing 6.10 Sample View Component Usage

 <apex:dataList value="{!contacts}" var="contact">
 {!contact.Name}
 </apex:dataList>

 Component Name
 The component name is specified in the name of the tag. The component is dataList , pref-
aced with the apex namespace to instruct Force.com that this is a standard view component.
The dataList component renders an HTML list, which is a series of LI tags within a UL tag.

 Attributes
 Each view component has its own shape. The shape is the set of attributes accepted by the view
component and their data types. Attribute values are either static names or expressions.

 The dataList component iterates over the values in the controller, creating LI HTML tags for
each. The value attribute specifies the source of these values. The value {!contacts} is expres-
sion language syntax that retrieves the reference of the contacts variable from the controller
using its getter method, getContacts . If this method is not available, its access modifier is not
public, or it returns an incompatible data type, then the Visualforce page cannot be compiled.
The var attribute specifies a variable name that can be referenced in the component body to
access each element of the collection.

 Note

 Almost every Visualforce component accepts an id attribute. This attribute is used to provide
a unique identifier to the component. The unique identifier can be used to obtain a reference
to the component at runtime, from JavaScript or other Visualforce components. Chapter 7 ,
“Advanced User Interfaces,” includes more information on using the id attribute.

 Component Body
 The component body is the text between the start and the end of the XML tag. If no compo-
nent body is specified, the tag is said to be self-closing. Each component can define its own
treatment of the component body.

 For example, dataList uses the component body to format its list elements. In the sample
code, the name of each resource in the list is displayed in bold. The behavior of a self-closing
instance of dataList depends on the collection type. If you pass a list of primitive types, Force.
com can simply return their string representation in the page. But if you pass a list of complex
types such as Contact records as in this example, how to dereference the records to produce
text for the list items is not clear. If this example had no component body, a list of empty LI
tags would be produced.

ptg11524036

200 Chapter 6 User Interfaces

 Page Definition

 Every Visualforce user interface page must begin with the page component. Its main purpose is
to connect the page to a controller and optionally override the global appearance of the page.

 The page component requires either a standard or a custom controller to be specified. The
 standardController attribute is used to reference a standard controller, and its value is the
name of a standard or custom object. Optionally, an extensions attribute can be provided
with a comma-separated list of custom Apex classes that extend the standard controller. To
specify a custom controller instead, set the controller attribute to the name of a custom
controller class.

 By default, pages are styled consistently with the Force.com native user interface. They include
its stylesheet, sidebar, and header region containing application tabs, banner, and drop-down
list of applications. You can override this behavior by setting the standardStylesheets ,
 sidebar , and showHeader Boolean attributes.

 Controlling Component Visibility

 The rendered attribute is available on most standard Visualforce components. It is a Boolean
value that indicates whether the component is included in the page. Setting rendered to
 false does not hide the component using CSS. It omits it entirely from the rendered page.

 For some applications, this server-side approach to visibility is a strong alternative to CSS or
JavaScript techniques such as using the display: none style directive to hide page elements.
The rendered attribute is especially powerful when used in conjunction with the partial page
refresh feature of Visualforce, discussed in Chapter 7 .

 Data Components

 Data components allow fields and records from the Force.com database to be manipulated
within a Visualforce page. They are divided into three categories:

 ■ Metadata-aware components— The HTML rendered by these smart components varies
based on the definition of the field. These components are valid only when bound to
database objects.

 ■ Primitive data components— If your field data is contained in a variable in Apex code
rather than a database object, use primitive data components to render input and output
HTML elements bound to their values.

 ■ Repeating components— If you have a list of any type of object, you can iterate over it
with a repeating component to render its contents.

 Metadata-Aware Components

 Metadata-aware components use the definition of database objects to determine the appearance
of the component on the page. There are two components: one for input (inputField) and
one for output (outputField).

ptg11524036

201View Components

 The inputField component displays the appropriate input element in HTML for the database
field it’s bound to. Its value attribute defines the binding. For example, an inputField bound
to a picklist renders HTML including the valid picklist values and selected value. The
inputField also provides a visual indicator when the database field is required, consistent
with the native user interface. The inputField component must be contained within a form
component. Listing 6.11 shows an example of its usage.

 Listing 6.11 Sample Usage of inputField Component

 <apex:form>
 <apex:inputField value="{!project.Stage__c}" />
 </apex:form>

 The outputField formats the value of a field using the correct pattern for that field’s data
type. For example, an outputField bound to a currency field displays the currency type and
decimal point. The value attribute binds the component to data in the controller. In Listing
 6.12 , the page expression {!project.Billable_Hours__c} provides the source of data for the
 outputField .

 Listing 6.12 Sample Usage of outputField Component

 <apex:outputField value="{!project.Billable_Hours__c}" />

 Primitive Data Components

 Primitive data components add Visualforce functionality to standard HTML tags. Use these
components when you are working with data that is not contained in a database object or
when the standard Visualforce rendering or behavior is not desirable.

 Table 6.1 describes the primitive data components. With the exception of outputLabel , all
components listed in the table must be contained in a form component or a compilation error
results.

 Table 6.1 Primitive Data Components

 Component Sample Usage Value Data

Type

 Sample HTML Output

 outputLabel <apex:outputLabel
value="outputLabel" />

 String <label>outputLabel</
label>

 inputCheckbox <apex:inputCheckbox
value="{!booleanValue}" />

 Boolean <input type="checkbox"
 checked="checked"/>

 inputFile <apex:inputFile
value="{!blobValue}" />

 Blob
 <input type="file"/>

ptg11524036

202 Chapter 6 User Interfaces

 Component Sample Usage Value Data

Type

 Sample HTML Output

 inputHidden <apex:inputHidden
value="{!hiddenValue}" />

 String <input type="hidden"
 value="hiddenValue"/>

 inputSecret <apex:inputSecret
value="{!secretValue}" />

 String <input type="password"
 value=""/>

 inputText <apex:inputText
value="{!textValue}" />

 String <input type="text"
 value="textValue"/>

 inputTextArea <apex:inputTextArea
value="{!textAreaValue}"

/>

 String <textarea>textArea

Value
 </textarea>

 selectList <apex:selectList
 value="{!selectedItem}">
 <apex:selectOptions
value="{!optionValues}" />
 </apex:selectList>

 String or
String[] if
multiselect
(selectList),
SelectOption[]
(selectOptions)

 <select size="1">
 <option value="">
 optionValue
 </option>
 </select>

 selectRadio <apex:selectRadio
 value="{!selectedItem}">
 <apex:selectOptions
value="{!optionValues}" />
 </apex:selectRadio>

 String (selec-
tRadio),
SelectOption[]
(selectOptions)

 <input type="radio"/>
 <label>optionValue
</label>

 selectCheckboxes <apex:selectCheckboxes
 value="{!selectedItem}">
 <apex:selectOptions
value="{!optionValues}" />
 </apex:selectCheckboxes>

 String or
String[] if mul-
tiselect (select-
Checkboxes),
SelectOption[]
(selectOptions)
[]

 <input type="checkbox"

/>
 <label>optionValue</
label>

 Repeating Components

 Repeating components are bound to a list or set of values. They iterate over them, rendering
the component body for each child in the collection.

 The three types of repeating components are dataList , dataTable , and repeat . They all
require two attributes: value , a binding to the collection, and var , the name of the variable
that contains a reference to the current child.

ptg11524036

203View Components

 The difference between the three components is in how the HTML is rendered. The dataList
component is rendered as an HTML list, with each element of the collection rendered as a list
item (LI tag). The dataTable component is rendered as an HTML table, with each element in a
table row (TR tag). The repeat component provides no HTML formatting, leaving that entirely
up to the Visualforce developer.

 Listing 6.13 demonstrates usage of the repeat component to loop over the elements of the
collection Skills__r . Each element of the collection is assigned to the variable skill . This
variable is valid within the body of the repeat so that you can render its data—in this case,
using an outputField component to display each child’s Type__c field. A common use of the
 repeat component is in conjunction with a custom controller method that returns a list of
records. You can iterate over the list with repeat , outputting HTML elements as you go.

 Listing 6.13 Sample Usage of repeat Component

 <apex:repeat value="{!Skills__r}" var="skill">
 <apex:outputField value="{!skill.Type__c}" />
 </apex:repeat>

 Action Components

 Action components allow the page to invoke a method on the controller. The controller
method typically performs some operation on the contents of the page, such as updating the
database, and then either refreshes the page or navigates to a new page.

 Before any refreshing or navigation takes place, the state of the user interface input elements
on the page is injected into the variables of the controller using setters. This way, they are
accessible from within your action code.

 The two basic action components are commandButton and commandLink . The commandBut-
ton is rendered as an HTML button, whereas the commandLink is rendered as an anchor. Both
are valid only inside a form component. They are typically used with an action attribute that
specifies the name of the controller method to invoke or the URL of a new page to navigate to
and a value attribute that displays a label to the user. Listing 6.14 is an example of using the
 commandButton , which invokes the doSomething method of the controller when clicked.

 Listing 6.14 Sample Usage of commandButton Component

 <apex:form>
 <apex:commandButton action="{!doSomething}"
 value="Do Something" />
 </apex:form>

ptg11524036

204 Chapter 6 User Interfaces

 The page component also has an action, specified in the init attribute. This action is called
automatically upon page load but should not be used for initialization code. Its purpose is to
immediately redirect the user to a new page.

 Before invoking a controller method, all action components perform validation on data compo-
nents, accepting user input that is contained within their parent form . For example, if an input
component is required but no value is provided, an error results. Errors can be displayed using
the pageMessages or messages component (described in the “Error Handling” subsection of
this chapter) and beside any inputField components if their database field is defined to do so.
You can disable this validation behavior by setting the action component’s immediate attri-
bute to true .

 Note

 Visualforce includes actions that operate asynchronously, allowing modifications to the page
without a full page refresh. These actions are discussed in Chapter 7 .

 Primitive Components

 Many standard components mirror standard HTML tags, summarized in Table 6.2 . These primi-
tive components might seem unnecessary because you can always write the equivalent HTML
without using a Visualforce component. But one thing plain HTML cannot do is server-side
conditional rendering.

 Table 6.2 Primitive Components

 Component Sample Usage Sample HTML Output

 outputPanel <apex:outputPanel>
 outputPanel
 </apex:outputPanel>

 outputPanel

 outputText <apex:outputText>
 outputText
 </apex:outputText>

 outputText

 outputLink <apex:outputLink value=

"http://developer.force.com">
 Click here
 </apex:outputLink>

 <a href="http://developer.
force.com">Click here

 image <apex:image
 value="myimage.png" />

 iframe <apex:iframe src="http://
developer.force.com" />

 <iframe width="100%"
scrolling="no" height="600"

frameborder="0"

title="Content" src="http://

developer.force.com"></iframe>

ptg11524036

205View Components

 With regular HTML, your markup always appears in the page, increasing its size and load time,
and hiding it requires JavaScript or CSS. Visualforce provides the rendered attribute, allowing
you to improve the performance of your pages by conditionally rendering markup based on the
state of the controller.

 There are two additional primitive components: includeScript and stylesheet . They
both accept a value attribute to specify the URL of a script or stylesheet resource to load.
These components do not have a rendered attribute, but using them instead of their HTML
counterparts can improve page performance and maintainability. The script and stylesheets
are included directly in the HTML HEAD tag for the page, which is not possible to do from
a Visualforce page using HTML. Additionally, these components ensure that scripts and
stylesheets are not duplicated on the page.

 Force.com-Styled Components

 Force.com’s native user interface makes heavy use of CSS and JavaScript within its Web pages
to provide a consistent look and feel across the platform. Many Visualforce components deliver
this same styling to developers, without requiring any knowledge of Force.com’s CSS or other
implementation details. The following list groups these components into five categories based
on their function:

 ■ Page structure— sectionHeader , pageBlock , pageBlockSection , and
 pageBlockSectionItem are the native structural elements used by Force.com to organize
a page into a hierarchy of clearly identifiable sections, subsections, and sets of label/field
pairs.

 ■ Action containers— pageBlockButtons and toolbar / toolbarGroup organize a series of
buttons or links for performing actions on the page.

 ■ Table— pageBlockTable is used like a dataTable but renders rows and columns in the
Force.com native style.

 ■ Paging components— panelBar / panelBarItem and tab / tabPanel group components
into pages that can be dynamically shown and hidden.

 ■ Notifications— pageMessages displays errors and information.

 Figure 6.4 illustrates all the components in use on a single Visualforce page.

ptg11524036

206 Chapter 6 User Interfaces

 Figure 6.4 Force.com-styled components

 Listings 6.15 and 6.16 implement the controller and page shown in Figure 6.4 .

 Listing 6.15 Sample Controller with Force.com-Styled Components

 public class ForceStyledComponentsControllerExtension {
 private final List<Contact> contacts;
 public ForceStyledComponentsControllerExtension(
 ApexPages.StandardSetController stdController) {
 this.contacts = (List<Contact>)stdController.getRecords();
 }
 public PageReference initPage() {
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.INFO, 'pageMessages'));
 return null;
 }
 }

ptg11524036

207View Components

 Listing 6.16 Sample Page with Force.com-Styled Components

 <apex:page standardController="Contact"
 recordSetVar="contacts"
 extensions="ForceStyledComponentsControllerExtension"
 action="{!initPage}">
 <apex:form>
 <apex:sectionHeader title="sectionHeader.title"
 subtitle="subtitle"
 description="sectionHeader.description"
 help="http://developer.force.com" />
 <apex:pageMessages />
 <apex:pageBlock title="pageBlock.title"
 helpUrl="http://developer.force.com"
 helpTitle="pageBlock.helpTitle">
 <apex:pageBlockButtons>
 <apex:commandButton action="{!save}"
 value="pageBlockButtons 1"/>
 <apex:commandButton action="{!save}"
 value="pageBlockButtons 2" disabled="true" />
 </apex:pageBlockButtons>
 <apex:pageBlockTable var="r" value="{!contacts}"
 title="pageBlockTable.title" rows="1">
 <apex:column>column 1</apex:column>
 <apex:column>column 2</apex:column>
 <apex:column>column 3</apex:column>
 </apex:pageBlockTable>
 <p />
 <apex:pageBlockSection title="pageBlockSection.title"
 columns="2">
 <apex:pageBlockSectionItem>
 <apex:outputPanel>Label1</apex:outputPanel>
 <apex:outputPanel>Field1</apex:outputPanel>
 </apex:pageBlockSectionItem>
 <apex:pageBlockSectionItem>
 <apex:outputPanel>Label2</apex:outputPanel>
 <apex:outputPanel>Field2</apex:outputPanel>
 </apex:pageBlockSectionItem>
 </apex:pageBlockSection>
 </apex:pageBlock>
 <p />
 <apex:tabPanel switchType="client" selectedTab="name2">
 <apex:tab label="tab 1"
 name="name1">tabPanel tab 1</apex:tab>
 <apex:tab label="tab 2"
 name="name2">tabPanel tab 2</apex:tab>
 </apex:tabPanel>

ptg11524036

208 Chapter 6 User Interfaces

 <p />
 <apex:toolbar>
 <apex:outputText>toolbar</apex:outputText>
 <apex:outputLink value="http://developer.force.com">
 outputLink 1</apex:outputLink>
 <apex:toolbarGroup itemSeparator="line" location="right">
 <apex:outputLink value="http://">outputLink 2</apex:outputLink>
 <apex:outputLink value="http://">outputLink 3</apex:outputLink>
 </apex:toolbarGroup>
 </apex:toolbar>
 <p />
 <apex:panelBar>
 <apex:panelBarItem label="panelBarItem.label 1">panelBarItem 1
 </apex:panelBarItem>
 <apex:panelBarItem label="panelBarItem.label 2">panelBarItem 2
 </apex:panelBarItem>
 <apex:panelBarItem label="panelBarItem.label 3">panelBarItem 3
 </apex:panelBarItem>
 </apex:panelBar>
 </apex:form>
 </apex:page>

 Force.com User Interface Components

 Four view components are available that each replicate coarse-grained areas of Force.com’s
native user interface functionality. These components are a single reference on your Visualforce
page, but they expand to produce many subordinate user interface elements when rendered to
users. They are summarized in the following list:

 1. listViews — The listViews component is rendered by Force.com on the list page of an
object tab when the Enable Enhanced Lists option is disabled for the organization.

 2. enhancedList — The enhancedList component consists of a drop-down list of view
names and a table of records returned by executing the view.

 3. relatedList — The relatedList component renders the records of any one of an
object’s child objects.

 4. detail — The detail component provides a subset of the native user interface’s detail
page for an object.

 listViews Component

 The listViews component includes the capability to create and edit list views, as well as
execute them and render their records. The only required attribute of listViews is type ,
which binds a database object type to the component.

ptg11524036

209Visualforce and the Native User Interface

 enhancedList Component

 The enhancedList component is a more modern version of the listViews component. It has
the same functionality but also includes drag-and-drop reorderable columns, sortable columns,
and results pagination with dynamic page sizes. It appears in the native user interface only
when Enable Enhanced Lists is enabled for the organization.

 The required attributes of enhancedList are height (the height of the component in pixels)
and either type (the database object type displayed by the component) or listId (the unique
identifier of the list view).

 relatedList Component

 The relatedList component renders a list of child records. It is the same component that
appears in the native interface below the detail for a record. It is paginated and allows related
records to be edited, deleted, and created, depending on the object permissions of the current
user.

 The required attributes of relatedList are list , the name of the child relationship to be
rendered in the list, and subject , an expression language reference to the parent record on the
controller (defaults to the id parameter of the page if not provided). Both Master-Detail and
Lookup relationships are supported by relatedList .

 detail Component

 The detail component replicates the functionality of the native user interface on the detail
page of a record. It respects the page layout of the record, including page layouts defined per
record type. It also supports in-line editing for the edit mode of an object.

 Like the relatedList component, detail requires a subject or it attempts to read a record
identifier from the page’s id URL parameter. By default, all related lists are rendered below the
detail section unless the relatedList parameter is set to false .

 Visualforce and the Native User Interface

 Force.com provides many places for Visualforce pages to be integrated into its native user
interface. You can embed Visualforce pages inside standard user interface pages, override the
buttons that navigate between pages, override the standard pages entirely, and add buttons and
tabs to navigate to an entirely custom user interface. Areas of the native user interface exten-
sible through Visualforce are summarized here:

 ■ Standard pages— Standard pages provide the default user interface for maintaining
records in the Force.com database. These pages can be overridden with your custom
Visualforce pages.

 ■ Standard buttons— Standard buttons normally navigate the user to standard pages, such
as the New button, which moves the user to the edit page for a new record. But these

ptg11524036

210 Chapter 6 User Interfaces

buttons can be remapped to your custom Visualforce pages, to inject an additional visual
step before the standard page or to hide it altogether.

 ■ Page layouts— Page layouts define the position of fields, buttons, and related lists in the
native user interface. Visualforce pages can be embedded within page layouts.

 ■ Custom buttons and links— Custom buttons appear at the top and bottom of standard
pages and links within a detail page. They can navigate the user to a Visualforce page.

 ■ Custom tabs— Custom tabs are added to an application and appear at the top of the Web
browser under the application banner. A Visualforce page can be configured as a custom
tab.

 Standard Pages

 The native user interface consists of four standard pages for working with database records.
These can all be overridden, as described here:

 1. Tab— The tab page appears when a custom object tab is clicked. Figure 6.5 provides an
example of this page.

 Figure 6.5 Standard tab page

ptg11524036

211Visualforce and the Native User Interface

 2. List— The list page displays a series of records in a tabular view, as shown in Figure 6.6 .
You reach it by clicking the Go button from the tab page.

 Figure 6.6 Standard list page

 3. View— The view page is a read-only view of a single record and its related records. Figure
 6.7 is the view page for the Contact object. A page layout, determined by profile and
optionally record type, is used to determine the appearance of the view page.

 4. Edit— The edit page uses the same layout as the view page but allows the values of a
record to be modified and saved. This is shown in Figure 6.8 for the Contact object.

 Caution

 Override the standard edit page with caution. The standard edit page provides deep functional-
ity, such as page layouts and record types, that cannot be replicated in a Visualforce page with-
out a significant amount of custom code.

 To override a standard page, go to the App Setup area and click Create, Objects and select the
object. Scroll to the Buttons, Links, and Actions section. Tab, view, and edit pages can be over-
ridden only with Visualforce pages that use a standard, single record controller. The list page
must use a standard set controller. Controller extensions are supported in all pages.

ptg11524036

212 Chapter 6 User Interfaces

 Figure 6.7 Standard view page

 Figure 6.8 Standard edit page

ptg11524036

213Visualforce and the Native User Interface

 Standard Buttons

 Visualforce pages can be shown as the result of clicking a native user interface button, overrid-
ing the button’s standard behavior. The following standard buttons can be overridden:

 ■ New— The New button normally navigates the user to the edit page on a new record.

 ■ Delete— This is the page navigated to after a record is deleted. The default behavior is to
navigate to the tab page.

 ■ Clone— The Clone button copies the values from the current record into a new record
and places the user in edit mode on that record. This behavior can be customized by
overriding the Clone button.

 ■ Accept— The Accept button applies to records owned by a queue rather than a single
user. It enables a user to remove a record from the queue, assigning ownership of the
record to himself. This button appears on the list page only when it is displaying records
owned by a queue.

 To override a standard button, go to the App Setup area and click Create, Objects and select the
object. Scroll to the Buttons, Links, and Actions section. Your Visualforce page must use a stan-
dard, single record controller, with or without extensions.

 Page Layouts

 A Visualforce page can be embedded in an object’s page layout alongside its fields. Figure 6.9
shows a new section called My Section, defined using the page layout editor. My Page is the
name of a Visualforce page that has been dragged into My Section and is now visible whenever
a record of that object is viewed or edited.

 The result of adding the Visualforce page called My Page to the layout for the Contact object
is shown in Figure 6.10 . The text “Hello Visualforce” is being rendered by the Visualforce page
embedded within the record’s detail page.

 To add a Visualforce page to a page layout, go to the App Setup area and click Create, Objects
and select the object. Scroll to the Page Layouts section and click the Edit link for the page
layout. For your Visualforce pages to appear in the page layout editor, they must conform to
the following guidelines:

 ■ They cannot already be in use by a tab.

 ■ They use a standard, single record controller, with or without extensions.

 ■ Their controller’s object type matches that used by the page layout. For example, for a
Visualforce page to appear on the Contact page layout, it must use a standard Contact
controller.

ptg11524036

214 Chapter 6 User Interfaces

 Figure 6.9 Adding a Visualforce page to page layout

 Figure 6.10 Embedded Visualforce page

ptg11524036

215Visualforce in Production

 Custom Buttons and Links

 You can configure buttons and links that navigate to any Visualforce page. These buttons and
links are then added to page layouts. Buttons and links are defined on the database object. In
the App Setup area, click Create, Objects, and then click the object. Scroll to the Buttons, Links,
and Actions area and click the New button.

 Custom buttons and links tied to Visualforce pages can be added to the object’s detail page
layout or a related list page layout. The detail page layout requires a standard controller. The
related list layout requires a standard set controller. Controller extensions can be used with
either.

 Custom Tabs

 You can configure any Visualforce page as a new tab in the Force.com native user interface.
To add a new Visualforce tab, go to the App Setup area and click Create, Tabs. Click the New
button in the Visualforce Tabs section to create a tab. Select a Visualforce page, give the new
tab a unique label and name, select a tab label and style, set tab visibility on profiles and appli-
cations, and click Save.

 Visualforce in Production

 This section describes areas of focus for real-world user interfaces written in Visualforce. It
includes the following subsections:

 ■ Debugging and tuning— Force.com provides Web-based tools for debugging and tuning
Visualforce pages.

 ■ Security— Securing Visualforce pages is an important task. Visualforce pages can expose
users to records they should not see under record sharing rules and cause runtime errors
due to lack of object or field visibility.

 ■ Error handling— Error handling in Visualforce is a process of catching all exceptions
and handling them thoughtfully, with both the integrity of the database and the user
experience in mind.

 ■ Governor limits— The code running in Visualforce controllers is subject to governor
limits, applied within the scope of each user-initiated action.

 ■ Unit tests— Force.com requires test coverage on the code in Visualforce controllers and
provides system methods to assist.

 Debugging and Tuning

 Developer Console is the first place to look to troubleshoot unexpected behavior from a
Visualforce user interface. While Developer Console is open, every interaction with

ptg11524036

216 Chapter 6 User Interfaces

Force.com is logged and can be examined in depth. In Figure 6.11 , Developer Console is active
and contains six entries, shown in the bottommost table.

 Figure 6.11 Developer Console

 The last log entry has been clicked, and the other panels of Developer Console are refreshed
with detailed information. This information is centered around the Apex code executed in the
controller associated with the page, as well as any Apex code executed as a result of control-
ler code. If a bug exists in your controller code, it should be obvious in the Execution Tree,
Execution Log, and Stack Tree panels as you trace the flow of instructions.

 The next place to look for bugs is the Visualforce page markup. If Force.com encounters some-
thing invalid in the course of rendering a Visualforce page, such as a null reference in your
controller, it can interrupt the processing of your page entirely and display an error message.
Trial and error can be helpful in these situations. Comment out portions of your Visualforce
page using HTML comment tags (<!-- sample comment -->) until the page functions again
and you’ve isolated the troublesome portion. An in-browser development tool such as Firebug
or Chrome Developer Tools is also helpful if the page renders successfully but has a client-side
presentation or logic issue. These tools enable close inspection of the JavaScript, HTML, and
CSS in the page.

ptg11524036

217Visualforce in Production

 When you’re ready to improve the performance of your Visualforce page, examine the view
state. The view state contains the values of local variables in your controller. They are encoded
and embedded in the page itself in a hidden field and sent back to Force.com upon every user
action. Sending the view state back and forth to the browser and processing it in Force.com can
reduce the responsiveness of your user interface. View state is limited to 128K, but performance
can be impacted well before the limit is reached.

 The Visualforce development mode footer contains a tab called View State, shown in Figure
 6.12 . With it, you can examine the contents of the view state: the variables saved there, along
with their sizes and contents. Double-clicking one of the folders opens a dialog with charts
showing the contribution of various types of view state toward the limit.

 Figure 6.12 View state

 Your goal is to minimize the view state. Look for controller variables that do not need to persist
across page views, and add the transient keyword to them. The transient keyword tells
Force.com not to save the state of the variable in the Web page, removing the round-trip cost
of transporting that data to and from the Web browser. Avoid querying extraneous information
from the database in your SOQL calls. Also, simplify and streamline any nested data structures
that are required in the view state.

ptg11524036

218 Chapter 6 User Interfaces

 Note

 Performance tuning Visualforce pages is a complex subject beyond the scope of this book. An
excellent resource is a best-practices document from Salesforce itself, available at http://www.
salesforce.com/docs/en/cce/salesforce_visualforce_best_practices/salesforce_visualforce_
best_practices.pdf . Learning these best practices early in the development process can prevent
costly rework. Additionally, test all of your Visualforce pages with realistic data volumes. This
helps to expose performance issues prior to a production deployment.

 Security

 Securing a Visualforce user interface involves controlling access to the objects, the records, and
the page itself. Visualforce obeys the object and field-level security rules configured in profiles.
Record security is handled by the controller through special keywords in Apex in conjunction
with custom code that can be written to enforce application-specific security rules. Access to
the page is granted by the user’s profile.

 Note

 As Visualforce is a Web technology, it’s also critical to guard your Visualforce pages against
vulnerabilities native to the Web. This includes Cross-Site Scripting (XSS), SOQL Injection,
and Cross-Site Request Forgery (CSRF). There are many built-in features of Visualforce and
Apex that address these vulnerabilities transparently to the developer, but it’s a good idea
to be aware of them. Depending on the nature of your Visualforce pages, additional effort
may be needed to protect against them. For more information, consult the Secure Coding
Guideline document published by Salesforce, available at http://wiki.developerforce.com/page/
Secure_Coding_Guideline .

 Object-Level Security

 Access to database objects and fields is determined by the profile and is consistent with the
native user interface. This protects the database and maintains the centralized control of data
security, but also exposes the user interface to various runtime errors if improperly configured.
For example, if the user’s profile denies all access to an object, this object is essentially invis-
ible. When a Visualforce controller attempts to select from it, the page fails with an exception.
Other configuration problems are handled more transparently to the user. If the user’s profile
lacks edit access on an object and a Visualforce page binds an inputField to that object, it is
automatically rendered as an outputField , appropriately blocking user input.

 When developing a controller, check that the SOQL, SOSL, and DML operations are fully
compatible with the set of profiles expected to use the page. As a developer, you have full visi-
bility to every object and field, but do not assume that your users have the same level of access.
Test the Visualforce pages by logging in as a test user or cycling through profiles on a single
test user. You can also write unit tests that run under the privileges of a specific user using the
 System.runAs method, covered in more detail in the “Unit Tests” subsection.

http://www.salesforce.com/docs/en/cce/salesforce_visualforce_best_practices/salesforce_visualforce_best_practices.pdf
http://www.salesforce.com/docs/en/cce/salesforce_visualforce_best_practices/salesforce_visualforce_best_practices.pdf
http://www.salesforce.com/docs/en/cce/salesforce_visualforce_best_practices/salesforce_visualforce_best_practices.pdf
http://wiki.developerforce.com/page/Secure_Coding_Guideline
http://wiki.developerforce.com/page/Secure_Coding_Guideline

ptg11524036

219Visualforce in Production

 Record-Level Security

 Standard controllers always honor the record-level security of the current user. But by default,
record sharing rules are ignored by code in custom controllers. These controllers run in a
system context, like a trigger.

 Note

 Record sharing rules are still honored by the methods of standard controllers that have exten-
sions defined, but the code in an extension class itself still runs in system mode.

 For example, if a user’s profile grants the user access to a particular object, your custom control-
ler queries it, and your Visualforce page displays the results, the user can read every record in
the object, regardless of the sharing settings.

 You can change this behavior in the controller code by specifying a security mode in the class
definition. Two security modes are available: with sharing and without sharing . The
controller definition in Listing 6.17 uses with sharing to configure the controller to honor
record sharing rules.

 Listing 6.17 Custom Controller Using Record Sharing Rules

 public with sharing class MyController {
 // the code in this controller honors record sharing rules
 }

 The without sharing security mode indicates that a class should not obey record sharing
rules, which is the default state. You do not need to change this unless your code accesses
objects that have record sharing rules defined that you would like to enforce in your user inter-
face. Subclasses inherit the security mode from their parent class, but inner classes do not. In
nested calls, where one class calls another class, the current security mode is applied unless
explicitly specified.

 After a security mode is chosen, no additional work is required. SOSL and SOQL statements
automatically return the correct subset of records based on the sharing rules for each object.
But if a record is referenced directly that is not shared with the user, such as through a DML
method updating a foreign key, a runtime error is thrown. Use a try , catch block around DML
methods to make sure that this situation is properly handled.

 Page-Level Security

 Profiles determine which users are able to use a Visualforce page. Pages must be explicitly
enabled for each profile that requires access. If this is not done, users will receive an error page
titled Insufficient Privileges when attempting to view the page.

 To grant a profile access to a page, go to the Administration Setup and click Manage Users,
Profiles. Select the desired profile, scroll to the Enabled Visualforce Page Access section and

ptg11524036

220 Chapter 6 User Interfaces

click the Edit button. Select pages from the Available Visualforce Pages list and click the Add
button to add them to the Enabled Visualforce Pages list. Click Save when you’re done.

 Note

 Users with the Customize Application permission can access all Visualforce pages in the
organization.

 Error Handling

 The two main concerns when handling errors in Visualforce are how uncaught exceptions
impact the user interface and how to communicate caught exceptions to users.

 Uncaught Exceptions

 Allowing an uncaught exception in a trigger is often an appropriate way to notify the user of a
problem because Force.com displays a nicely formatted error message to the user in the native
user interface. But in a Visualforce page, uncaught exceptions result in an alarming, generic
Force.com error page whose appearance cannot be controlled or customized in any way.

 As this is typically not consistent with the usability and look and feel of a custom user inter-
face, one of the goals of error handling in Visualforce is to avoid these uncaught exceptions.
Place a try , catch block around every action method, or at least those that perform SOSL,
SOQL, or DML operations.

 A benefit of uncaught exceptions in triggers is that they roll back the current transaction.
Catching all exceptions in your Visualforce controller forces your code to roll back explicitly
if required by your application. For example, if your controller has two DML statements in
an action method and fails on the second with a caught exception, the first statement is still
committed to the database at the conclusion of the method. If this leaves the database in an
undesirable state for your application, set a savepoint at the beginning of the method and
roll back to it in the catch block. For an example of using savepoints, refer to Listing 5.19 in
 Chapter 5 , “Advanced Business Logic.”

 Error Communication

 Visualforce provides page components and corresponding data objects for communicating
errors to the user in a consistent way. The page components are messages and pageMessages ,
which display the page-level errors returned by a controller. These components are placed on
pages, typically at the top, and render the ApexPages.Message objects added to the page.
 Message objects contain a message and optional severity. Severity is used to style the message
when displayed in the pageMessages component and can also be filtered on in test methods.

 Listing 6.18 is an example of code to add an error-severity message to the page. To be visible, it
must be rendered by a messages or pageMessages component.

ptg11524036

221Visualforce in Production

 Listing 6.18 Sample Usage of Page Messages

 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.ERROR, 'Something went wrong'));

 Governor Limits

 Visualforce controllers have the same set of governor limits as all Apex code. Table 6.3 reviews
these limits.

 Table 6.3 Subset of Governor Limits

 Resource Type Governor Limit

 Visualforce Iteration Components
(e.g., apex:repeat)

 1,000 items per collection

 Heap 6MB

 Apex code 200,000 lines of code executed, 3MB code size

 SOQL 100 queries

 Records from SOQL 50,000 records cumulatively for all SOQL queries

 DML 150 DML statements

 Records in DML 10,000 records cumulatively for all DML statements

 Governor limits apply during execution of user-initiated actions and are not cumulative. When
an action is complete, the governor limits reset. For example, if your controller contains a save
method bound to a commandButton , the governor limits apply during the execution of the
 save method. When the user clicks the button again or takes another action that invokes a
method, the governor limits begin counting your resource consumption again from zero.

 If you need to work with larger data sets in your Visualforce pages and are bumping into gover-
nor limits, consider whether you can partition the user interface into a series of read-only and
read-write subpages. If so, you can take advantage of higher governor limits on the read-only
pages by adding the readOnly="true" attribute to the apex:page element. The governor limit
increases are shown in Table 6.4 .

 Table 6.4 Relaxed Governor Limits for Read-Only Visualforce Pages

 Resource Type Governor Limit

 Visualforce Iteration Components (e.g.,
 apex:repeat)

 10,000 items per collection

 Records from SOQL 1,000,000 records cumulatively for all SOQL queries

ptg11524036

222 Chapter 6 User Interfaces

 Unit Tests

 Unit tests are mandatory for all Apex code, including Visualforce controllers but not the
pages themselves. Your application code must have at least 75% test coverage before it can be
deployed to a production environment.

 The mechanics of writing unit tests for controllers is similar to that of triggers, with some addi-
tional system methods for test setup. But the strategy for testing controllers is unique, because
controller code normally relies on the Web browser to drive it.

 Listing 6.19 provides an example of the test setup code. It starts by creating an instance of the
controller class and getting a reference to the Visualforce page to test. This is a PageReference
instance, created by passing the page name as an argument. The Test.setCurrentPage
method sets the context of the test method to the page you want to test.

 Listing 6.19 Sample Controller Test Method

 static testMethod void sampleTestMethod() {
 MyPageController controller = new MyPageController();
 PageReference page = new PageReference('MyPage');
 Test.setCurrentPage(page);
 }

 The body of your tests can employ one or more of the following test strategies to exercise code
in the controller:

 ■ Directly invoke controller methods and getters/setters.

 ■ Add a test harness to constructor code to read URL arguments to establish controller state
or perform actions.

 ■ Verify data in the database using SOQL and SOSL queries.

 ■ Use System.runAs blocks to simulate different users, such as System.runAs(user) {
 block ; } .

 Caution

 Even 100% test coverage on the controller class does not guarantee a bug-free user interface.
Testing Visualforce pages is like testing any Web application. Test it manually with your Web
browser or with an automated Web testing tool.

 Sample Application: Skills Matrix

 One of the features of the Services Manager sample application is skill set management. The
skills of consultants are tracked using the Skill object, a child of the Contact object. Entering
skills in the native user interface involves navigating to the Contact’s record and clicking the
New button in the Skills related list and then selecting a skill type and a rating.

ptg11524036

223Sample Application: Skills Matrix

 Users of the application have requested a more streamlined way to enter and view skills, called
the Skills Matrix. The requirements of the Skills Matrix follow:

 ■ Reduce navigation clicks— Provide a single screen for entering and viewing all skill-
related information. The screen shows the skills and ratings of a single contact at a time
in tabular format: skill types as rows and a single column to view and edit ratings.

 ■ Encourage data completeness— All skill types are shown at all times. This is in contrast
with the native user interface, which shows only the skills containing ratings. Showing
all skill types, including those lacking a rating, encourages users to treat the user interface
like a survey and should increase data completeness.

 ■ Allow all to view, restrict editing— Whether a rating is editable or read-only depends
on the current user. If the user is editing her own contact record, all ratings are editable.
If the user is a manager, vice president, or system administrator (by profile), the user is
allowed to edit the skills of any contact. If the user does not meet any of the previous
criteria, the skill ratings are read-only.

 This section describes building the feature in three parts. The first part is a basic implemen-
tation, to allow the selection of a contact and editing of its skills. The second part adds the
finishing touches to implement the full set of requirements. The final section provides a
sample, full implementation of the feature, shown in Figure 6.13 , and comments on portions
of the code.

 Figure 6.13 Skills Matrix sample implementation

ptg11524036

224 Chapter 6 User Interfaces

 Basic Implementation

 In the basic implementation, build a Visualforce page with a drop-down list at the top contain-
ing contact names and a table below it with the skills and ratings. The only skills shown are
those that already contain ratings for the contact. The ratings can be edited and saved by any
user.

 Start by creating the page and controller in the Force.com IDE. Add a selectList compo-
nent and a corresponding getter in the controller to return a list of SelectOption objects,
constructed from the names and unique identifiers of records of the Contact object. Add a
refresh commandButton to fetch the skills for the currently selected contact.

 Build and test the drop-down list of contacts before moving on to the list of skills. Then flesh
out the controller, querying the Type__c and Rating__c fields of the Skill__c records
belonging to the selected contact. Iterate over that list in the page, displaying the ratings as
drop-down lists. Add an action method to the controller to save changes to the skills list. Use
the upsert database method, as later your skills list will contain both new and edited records.
Add a commandButton on the page to invoke the action method.

 Test your user interface frequently during development. Add your page to the native user
interface with a Visualforce tab or override the Skills custom object tab. To override the tab,
in the App Setup area, click Create, Objects and select Skill. Scroll to the Buttons, Links, and
Actions section. Click the Edit link for the action Skills Tab. For the Override With, select the
Visualforce Page radio button. Select your Skills Matrix page from the drop-down list and click
the Save button.

 Full Implementation

 After you get the basic implementation into a working state, move on to the more challenging
requirements: the complete list of skill types and data security.

 To get the complete list of types, use the metadata methods to query the values of the
 Skill__c.Type__c picklist. Iterate over the values, checking for the presence of corresponding
Skill records for the contact. Create Skill records where they are missing.

 For data security, you cannot rely on built-in Force.com record-level security alone. It operates
on the OwnerId field, the unique identifier of the user who has ownership rights to a record.
In the Skills Matrix, ownership of a contact record does not determine who is allowed to edit
or view its skills. An administrator might import contact data from a legacy system, or a user in
human resources might be the owner of the contact.

 The assumption is that every consultant and other user of the Services Manager application
has a license to log in to Force.com as an independent user with his own credentials. Each full
user license carries with it a unique record in the standard User object. This user identity can be
correlated to the contact record to determine at runtime the behavior of the Skills Matrix. To
create this correlation, add a lookup field to the Contact object called User, setting its parent
to the standard User object. For each contact record, provide a value of the new User field. This

ptg11524036

225Sample Application: Skills Matrix

lookup of the User from Contact can drive the decision of the controller to make a set of skills
editable or not.

 When you’re done with the implementation, test it against the three user scenarios: privileged
user, consultant editing his or her own skills, and consultant viewing the skills of another
consultant.

 Tip

 Only users with the System Administrator profile will have access to your new Skills Matrix
page. To open the page to nonadministrative users, in the Administration Setup area, click
Manage Users, Profiles and select the profile of the users. Scroll to the Enabled Visualforce
Page Access section and click the Edit button. Select your page from the Available Visualforce
Pages list and click the Add button to move it to the Enabled Visualforce Pages list. Click the
Save button when you’re done.

 Implementation Walk-Through

 This subsection provides the code for a sample implementation of the Skills Matrix. It includes
the controller, the page, and controller test cases.

 Skills Matrix Controller

 Listing 6.20 contains a sample implementation of the Skills Matrix controller class. The
controller has four variables, each with a getter method for access by the Visualforce page. The
 selectedContactId variable contains the unique identifier of the contact selected for editing
or viewing. isEditable is a flag used by the page to enable or disable the Save button and to
determine whether to render skills as text fields or editable drop-down lists. The selected
Contact variable contains several fields from the Contact object needed throughout the
controller, queried using the selectedContactId . The selectedSkills list contains the skill
types and ratings to be displayed and edited in the user interface, and this same list is used to
update the database upon a save action.

 The controller has two actions: save and refresh . The save action applies the changes from
the drop-down lists of skill ratings by upserting them into the database. The refresh action
uses the unique identifier of the currently selected contact (selectedContactId) to query the
database for Skill records. It compares them against the complete list of skill types via the data-
base metadata call getPicklistValues . Finally, it updates the isEditable variable based on
whether the current user is privileged or is associated with the currently viewed contact.

 Several helper methods are in the controller. addError and addInfo are shortcuts for adding
notifications to the page, displayed using the pageMessages component. The get
CurrentUserContact method queries the Contact record corresponding to the current user.
The isManager method returns true if the user is privileged, enabling the user to edit the skills
of any contact.

ptg11524036

226 Chapter 6 User Interfaces

 Listing 6.20 Skills Matrix Controller

 public class SkillsMatrixController {
 public String selectedContactId { get; set; }
 public Boolean isEditable { get; private set; }
 public Contact selectedContact { get; private set; }
 public List<Skill__c> selectedSkills { get; private set; }
 public List<SelectOption> getContactOptions() {
 List<SelectOption> options = new List<SelectOption>();
 options.add(new SelectOption(
 '', '-- Select Contact --'));
 List<Contact> contacts = [SELECT Id, Name
 FROM Contact ORDER BY LastName];
 for (Contact contact : contacts) {
 options.add(new SelectOption(contact.Id,
 contact.Name));
 }
 return options;
 }
 public PageReference refresh() {
 if (selectedContactId == null) {
 addError('Select a contact');
 return null;
 }
 selectedContact = [SELECT Id, Name,
 User__r.UserRoleId,
 User__r.ProfileId,
 (SELECT Type__c, Rating__c, LastModifiedDate
 FROM Skills__r ORDER BY Rating__c DESC)
 FROM Contact
 WHERE Id = :selectedContactId
 LIMIT 1];
 Set<String> skillTypes = new Set<String>();
 selectedSkills = new List<Skill__c>();
 for (Skill__c skill : selectedContact.Skills__r) {
 skillTypes.add(skill.Type__c);
 selectedSkills.add(skill);
 }
 Schema.DescribeFieldResult field = Skill__c.Type__c.getDescribe();
 String picklistValue = null;
 for (Schema.PicklistEntry entry : field.getPicklistValues()) {
 picklistValue = entry.getLabel();
 if (!skillTypes.contains(picklistValue)) {
 selectedSkills.add(
 new Skill__c(Contact__c = selectedContact.Id,
 Type__c = picklistValue));
 }
 }
 if (isManager()) {

ptg11524036

227Sample Application: Skills Matrix

 isEditable = true;
 } else {
 Contact userContact = getCurrentUserContact();
 isEditable =
 selectedContact != null && userContact != null
 && selectedContact.Id == userContact.Id;
 }
 return null;
 }
 private void addError(String msg) {
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.ERROR, msg));
 }
 private void addInfo(String msg) {
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.INFO, msg));
 }
 public Contact getCurrentUserContact() {
 List<Contact> userContact = [SELECT Id, Name,
 User__r.UserRoleId, User__r.ProfileId
 FROM Contact
 WHERE User__c = :UserInfo.getUserId()
 LIMIT 1];
 if (userContact.size() == 0) {
 addError('No contact associated with user');
 return null;
 } else {
 return userContact.get(0);
 }
 }
 private Boolean isManager() {
 List<Profile> profiles = [SELECT Id
 FROM Profile WHERE Name IN (
 'Project Manager', 'Vice President', 'System Administrator')
 AND Id = :UserInfo.getProfileId() LIMIT 1];
 return profiles.size() == 1;
 }
 public PageReference save() {
 try {
 upsert selectedSkills;
 addInfo('Changes saved');
 } catch(DmlException e) {
 addError('Could not save changes: ' + e.getMessage());
 }
 return null;
 }
 }

ptg11524036

228 Chapter 6 User Interfaces

 Skills Matrix Visualforce Page

 Listing 6.21 contains sample code for the Skills Matrix Visualforce page. It uses Force.com-
styled view components to achieve an appearance that resembles the native user interface. The
 pageBlock and pageBlockButtons components visually separate the selection of the resource
from the skills data and Save button, and the sectionHeader component mimics the appear-
ance of a native object tab.

 The pageBlockTable component iterates over the list of skills, displaying them as a table using
standard Force.com styling. Each row of the table includes two columns. The first column
contains the skill type. The second contains two components: one for editing the skill rating
and another strictly for viewing it. Only one of these components is shown at a time. They are
rendered conditionally based on whether the controller has determined the data to be editable.
If the skills data is editable, only the inputField component is rendered. If the current user
does not have the rights to edit the ratings, only the outputField is rendered.

 Listing 6.21 Skills Matrix Visualforce Page

 <apex:page controller="SkillsMatrixController"
 tabStyle="Skill__c">
 <style>
 .contactLabel { padding-right: 15px; }
 .goButton { margin-left: 10px; }
 </style>
 <apex:sectionHeader title="Services Manager"
 subtitle="Skills Matrix" />
 <apex:pageMessages />
 <apex:form id="form">
 <apex:outputLabel value="Contact:" for="selectedContactId"
 styleClass="contactLabel" />
 <apex:selectList id="selectedContactId" title="Contact"
 value="{!selectedContactId}" size="1">
 <apex:selectOptions value="{!contactOptions}" />
 </apex:selectList>
 <apex:commandButton action="{!refresh}" value="Go!"
 styleClass="goButton" />
 <p />
 <apex:pageBlock title="Skills">
 <apex:pageBlockButtons>
 <apex:commandButton action="{!save}" value="Save"
 disabled="{!NOT isEditable}" />
 </apex:pageBlockButtons>
 <apex:pageBlockTable value="{!selectedSkills}" var="skill"
 rendered="{!selectedContactId != ''}">
 <apex:column value="{!skill.Type__c}" />
 <apex:column headerValue="Rating">
 <apex:outputField value="{!skill.Rating__c}"

ptg11524036

229Sample Application: Skills Matrix

 rendered="{!NOT isEditable}" />
 <apex:inputField value="{!skill.Rating__c}"
 rendered="{!isEditable}" />
 </apex:column>
 <apex:column value="{!skill.LastModifiedDate}" />
 </apex:pageBlockTable>
 </apex:pageBlock>
 </apex:form>
 </apex:page>

 Controller Tests

 The test cases in Listing 6.22 achieve 96% coverage of the Skills Matrix controller. They begin
with a static initializer and init method to prepare the database for the tests by adding test
data. This data is not permanent. All database actions during testing are rolled back automati-
cally upon test completion.

 The test cases rely on two Contact records: Tim and Barry. To test the behavior of the Skills
Matrix on existing data, Tim is given a single Skill record, whereas Barry is left without skills.
For testing security, Tim’s Contact record is associated with a User record named Tim, whereas
Barry’s Contact record is not mapped to a User record. Update the query for the users in the
static initializer to match two usernames in your own organization.

 Listing 6.22 Skills Matrix Unit Test Class

 @isTest
 private class TestSkillsMatrixController {
 static PageReference page;
 static SkillsMatrixController controller;
 static Contact barry, tim;
 static User barryUser, timUser;
 static {
 timUser = [SELECT Id FROM User WHERE Name = 'Tim Barr' LIMIT 1];
 barryUser = [SELECT Id FROM User WHERE Name = 'Barry Cade' LIMIT 1];
 init();
 }
 private static void init() {
 barry = new Contact(FirstName = 'Barry', LastName = 'Cade');
 tim = new Contact(FirstName = 'Tim', LastName = 'Barr',
 User__c = timUser.Id);
 insert new Contact[] { barry, tim };
 Skill__c[] skills = new Skill__c[] {
 new Skill__c(Type__c = 'Java', Rating__c = '3',
 Contact__c = tim.Id) };
 insert skills;
 page = new PageReference('SkillsMatrix');

ptg11524036

230 Chapter 6 User Interfaces

 Test.setCurrentPage(page);
 controller = new SkillsMatrixController();
 }
 static testMethod void testAsUser() {
 System.runAs(timUser) {
 init();
 controller.selectedContactId = barry.Id;
 controller.refresh();
 System.assert(!controller.isEditable);
 controller.selectedContactId = tim.Id;
 controller.refresh();
 System.assert(controller.isEditable);
 }
 }
 static testMethod void testNoContactForUser() {
 System.runAs(barryUser) {
 init();
 controller.selectedContactId = barry.Id;
 controller.refresh();
 System.assert(ApexPages.hasMessages(ApexPages.Severity.ERROR));
 }
 }
 static testMethod void testNoSkills() {
 controller.getContactOptions();
 controller.selectedContactId = barry.Id;
 controller.refresh();
 System.assert(controller.selectedSkills.size() > 0);
 System.assert(controller.isEditable);
 }
 static testMethod void testWithSkills() {
 controller.getContactOptions();
 controller.selectedContactId = tim.Id;
 controller.refresh();
 System.assert(controller.selectedSkills.size() > 0);
 System.assert(controller.selectedSkills.get(0).Type__c == 'Java');
 }
 static testMethod void testNoContactSelected() {
 controller.selectedContactId = null;
 PageReference ref = controller.refresh();
 System.assert(ApexPages.hasMessages());
 }
 static testMethod void testSave() {
 final String skillRating = '5 - Expert';
 controller.getContactOptions();

ptg11524036

231Sample Application: Skills Matrix

 controller.selectedContactId = barry.Id;
 controller.refresh();
 List<Skill__c> selectedSkills = controller.selectedSkills;
 Skill__c skill = selectedSkills.get(0);
 skill.Rating__c = skillRating;
 String skillType = skill.Type__c;
 controller.save();
 System.assert(ApexPages.hasMessages(ApexPages.Severity.INFO));
 Skill__c savedSkill = [SELECT Rating__c FROM Skill__c
 WHERE Contact__c = :barry.Id AND
 Type__c = :skillType LIMIT 1];
 System.assert(savedSkill != null &&
 savedSkill.Rating__c == skillRating);
 }
 }

 The test methods are described here in the order in which they appear in the code:

 ■ testAsUser — This test uses the System.runAs method to assume the identity of Tim.
Tim is assigned to a User, so when his corresponding Contact record is selected and the
list of skills is refreshed, the isEditable flag should be set to true . If Barry is selected,
the flag should be false .

 ■ testNoContactForUser — System.runAs is used again, this time to test for an error
condition. Barry’s user does not have a child Contact record, so he should receive
an error when visiting the Skills Matrix. Without a mapping to the User object, the
application cannot determine whether the current user has access to edit skills.

 ■ testNoSkills — This test method runs as a System Administrator. It selects Barry from
the contact list and refreshes, asserting that there are Skills records. These records are
created from the Skill object’s Type__c field’s picklist values. Another assertion is made
that the skill ratings are editable because an administrator can edit the skills of all
contacts.

 ■ testWithSkills — This test retrieves the skills for Tim and asserts that the Java skill
is first in the list. This is because Tim already has a Skill record for Java, and existing
records should be placed at the top of the user interface.

 ■ testNoContactSelected — The selected contact is set to null to verify that an
information message is added to the page. This message instructs the user to select a
contact.

 ■ testSave — This test uses the controller to rate Barry as an expert in the first skill on the
skills list. It then queries the database independently to verify that the controller saved
the data correctly.

ptg11524036

232 Chapter 6 User Interfaces

 Summary

 This chapter has covered the basics of Visualforce. Visualforce is a challenging but rewarding
area of the Force.com platform, enabling the development of custom, data-intensive Web user
interfaces using high-level languages for both logic and presentation. Mastering Visualforce
requires the application of all of your Force.com skills and knowledge: the database, security
model, and Apex code.

 Use this chapter as a jumping-off point to the online documentation and Visualforce
Developer’s Guide. The Visualforce Developer’s Guide contains the most current and complete
information on the standard Visualforce view components.

 Before moving on to the next chapter, consider what you’ve learned about Visualforce:

 ■ A strong distinction exists between the controller and the page. No business logic is
allowed on the page.

 ■ The state of your pages at runtime is maintained automatically by Force.com. This
enables you to design stateful interactions across one or many pages without writing
custom state transfer code, assuming you always use Visualforce action components
rather than raw HTML tags such as anchors.

 ■ Custom controller code runs as the system user by default, meaning record-level security
is not honored.

ptg11524036

 7
 Advanced User Interfaces

 Now that you are familiar with the basics of Visualforce, this chapter introduces features that enable
you to build richer, more interactive user interfaces. The features are divided into the following sections:

 ■ Asynchronous actions— Visualforce has built-in, cross-browser support for Ajax behavior,
without requiring you to write JavaScript code or integrate with JavaScript libraries.

 ■ Modular Visualforce— Visualforce has a number of features to enable you to write modular
pages. You can embed static content, build pages that include other pages, define page templates,
and create your own library of custom Visualforce components.

 ■ Dynamic Visualforce— Learn how to create Visualforce pages that can change their structure
on the fly, based on administrator-maintainable declarative metadata or the results of executing
Apex code.

 ■ Single-page applications in Force.com— Take a slight detour away from Visualforce to
develop high-performance Web applications that use the latest client-side frameworks and Force.
com as the data layer.

 ■ Introduction to Force.com Sites— Visualforce pages can be accessed by users who do not have
accounts in your Force.com organization using a feature called Force.com Sites.

 ■ Sample application— The Services Manager sample application’s Skills Matrix is enhanced
to demonstrate Ajax behavior and the use of JavaScript libraries and custom Visualforce
components.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/lMfqc .

 Asynchronous Actions

 So far, you’ve built Visualforce pages that have a simple interaction with their controller. They
display data from the controller, potentially allowing the user to change it, and then submit
it using an action component such as a commandButton . The action component invokes a

http://goo.gl/lMfqc

ptg11524036

234 Chapter 7 Advanced User Interfaces

method on the controller that returns a PageReference , navigating the user to a new page or
refreshing the current page.

 Visualforce actions also support more complex, asynchronous interactions with the page,
commonly referred to as Ajax. Ajax is short for Asynchronous JavaScript and XML. Visualforce
supports Ajax in two ways:

 1. It allows actions to run in the background. The user is free to continue working with the
page while Force.com processes the result. For example, a duplicate checking algorithm
could examine the page while the user is inputting data, flagging duplicate records as
they are discovered.

 2. Actions can refresh a subset of the Visualforce page, such as a table of data, rather than
the entire page. This can create a richer, more interactive experience for users and often
better-performing pages.

 This section explains how to add Ajax behavior to Visualforce pages. It includes the following
subsections:

 ■ Partial page refresh— Refresh selected elements on the page rather than the whole page.

 ■ Action as JavaScript function— Define a JavaScript function that calls an action method
on the controller.

 ■ Action as timed event— Configure an action method to fire at a predefined time
interval.

 ■ Action as JavaScript event— Bind a JavaScript event (such as onclick) to a controller
action method.

 ■ Indicating action status— Reflect the status of an asynchronous action on the page.

 Partial Page Refresh

 Any action component can refresh part of a page using the reRender attribute. This attribute
contains a comma-separated list of identifiers (the id values) of Visualforce view components
to be refreshed when the action is completed. The identifiers must be of Visualforce compo-
nents, not raw HTML elements. If no reRender value is provided or the identifiers are invalid,
the entire page is refreshed. This is the default behavior of an action component.

 Listings 7.1 and 7.2 are a Visualforce page and controller that demonstrate partial page refresh.
A commandButton is defined to increment an integer value in the controller when clicked, via
the increment method. The amount to be incremented is passed from the page to control-
ler during the click, using the param component. The increment method returns a null
 PageReference to remain on the current Visualforce page rather than navigating to a new
page. This is a requirement for partial page refreshes.

 An outputPanel displays the current value of the integer. The reRender attribute is set on the
 commandButton to refresh only the outputPanel rather than the entire page.

ptg11524036

235Asynchronous Actions

 Listing 7.1 Visualforce Page Using Partial Page Refresh

 <apex:page controller="MyPageController7_1">
 <apex:form>
 <apex:commandButton action="{!increment}" value="Increment"
 reRender="result">
 <apex:param assignTo="{!amount}" value="2" />
 </apex:commandButton>
 <apex:outputPanel id="result">The value is: {!value}
 </apex:outputPanel>
 </apex:form>
 </apex:page>

 Listing 7.2 Visualforce Controller Using Partial Page Refresh

 public class MyPageController7_1 {
 public Integer value { get; private set; }
 public Integer amount { get; set; }
 public MyPageController7_1() {
 value = 0;
 }
 public PageReference increment() {
 value += amount;
 return null;
 }
 }

 Note

 Not every Visualforce component supports being the target of a reRender attribute. If you dis-
cover a component that is not refreshing properly, enclose it in an outputPanel component,
give the outputPanel a unique id value, and specify that id value in the reRender attribute.

 Action as JavaScript Function

 The action component actionFunction allows you to call an Apex method in the controller
as a JavaScript function. This decouples the user interface representation of the action from the
action itself. You’ve already experienced action components that require a user to click a link
or button to trigger a controller action. With actionFunction , you can call an action from
anywhere in your page, including custom JavaScript code.

 To use the actionFunction component, minimally specify an action to invoke in the action
attribute, a JavaScript function name in the name attribute, and enclose it in a form compo-
nent. Optionally, you can define arguments on the function by nesting param components

ptg11524036

236 Chapter 7 Advanced User Interfaces

inside the actionFunction tag. You can also define a JavaScript function to be invoked when
the action is complete by using the oncomplete attribute.

 Listings 7.3 and 7.4 contain page and controller code demonstrating the use of
 actionFunction and partial page refresh. It multiplies a number by two using a controller
method exposed as a JavaScript function. The resulting value is displayed on the page using a
 pageMessages component and also refreshed in the call to the JavaScript function. This causes
a stateful interaction in which the number is multiplied in a series.

 Listing 7.3 Visualforce Page Using actionFunction

 <apex:page controller="MyPageController7_3">
 <apex:outputPanel id="result">
 <apex:pageMessages />

 Run

 </apex:outputPanel>
 <apex:form>
 <apex:actionFunction name="timesTwoFunction"
 action="{!timesTwo}" reRender="result">
 <apex:param name="arg1" value="" assignTo="{!value}" />
 </apex:actionFunction>
 </apex:form>
 </apex:page>

 Listing 7.4 Visualforce Controller Using actionFunction

 public class MyPageController7_3 {
 public Integer value { get; set; }
 public MyPageController7_3() {
 value = 1;
 }
 public PageReference timesTwo() {
 value *= 2;
 addInfo('The result is: ' + value);
 return null;
 }
 private void addInfo(String msg) {
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.INFO, msg));
 }
 }

ptg11524036

237Asynchronous Actions

 Action as Timed Event

 The actionPoller component invokes a method on the controller at a constant time interval.
It can be used to perform a long-running operation incrementally, using a series of smaller
steps. Another common usage is to perform a repetitive background task such as querying the
database for some interesting business event. For example, a user interface designed for project
staffers might use an actionPoller to automatically refresh a list of available resources once
per minute.

 To use actionPoller , provide a value for the action attribute, the controller method to
invoke, and enclose it in a form component. This usage fires the action method every 60
seconds. Optionally, provide a value for the interval attribute, the time in seconds to wait
between invocations of the action. This value must be 5 or greater. You can also set the
 onsubmit and oncomplete attributes, JavaScript functions to call before the action is invoked
and after the action is completed.

 Listing 7.5 is a sample page that uses the actionPoller along with the controller from
Listing 7.4 . Rather than requiring the user to click a link to multiply the number by two, the
action happens automatically every 5 seconds.

 Listing 7.5 Visualforce Page Using actionPoller

 <apex:page controller="MyPageController7_3">
 <apex:outputPanel id="result">
 <apex:pageMessages />
 </apex:outputPanel>
 <apex:form>
 <apex:actionPoller interval="5" action="{!timesTwo}"
 reRender="result" />
 </apex:form>
 </apex:page>

 Action as JavaScript Event

 To invoke an action on the controller as a result of a JavaScript event, use the actionSupport
component. This component fires an action whenever the event is detected on the enclosing
Visualforce component.

 The actionSupport component is placed within the body of a Visualforce component that
fires the JavaScript event of interest. For example, an inputField component renders an HTML
input element, so it fires standard JavaScript events such as onfocus , onblur , onclick , and so
forth. Placing an actionSupport component within the inputField component allows it to
listen for one of these events and invoke a controller method in response.

ptg11524036

238 Chapter 7 Advanced User Interfaces

 To use actionSupport , specify the name of the controller method to invoke in its action
attribute, and a single JavaScript event to listen for in the event attribute. By default, action-
Support overrides the default browser-level handlers for the selected event. To disable this
behavior, include a disableDefault attribute with the value of false . The onsubmit and
 oncomplete attributes are also supported to allow pre- or postprocessing of the request using
your own JavaScript function.

 Reusing the controller code from Listing 7.4 , the Visualforce page in Listing 7.6 fires the
 timesTwo action when the text field receives focus. Try it by clicking somewhere else on the
page, and then into the text field.

 Listing 7.6 Visualforce Page Using actionSupport

 <apex:page controller="MyPageController7_3">
 <apex:outputPanel id="result">
 <apex:pageMessages />
 </apex:outputPanel>
 <apex:form>
 <apex:inputText>
 <apex:actionSupport action="{!timesTwo}"
 event="onfocus" reRender="result" />
 </apex:inputText>
 </apex:form>
 </apex:page>

 Indicating Action Status

 You’ve learned how to invoke actions asynchronously. To notify users when asynchronous
actions are being performed, use the actionStatus component in conjunction with any
action component.

 The actionStatus component can notify users of two states: when an asynchronous action
is started and when it is stopped. To use it, place it in the location on your page where you
want to show the status message. Use the startText and stopText attributes to specify the
messages to be shown to the user. If you need to pass arguments to the action, use a nested
 param component.

 Listing 7.7 provides an example of using the actionStatus component, building on the page
from Listing 7.6 and the controller from Listing 7.4 . When the text field receives focus, the
action is fired, and the status message changes to Started. When the action is complete, the
status message is set to Stopped.

 Listing 7.7 Visualforce Page Using actionStatus

 <apex:page controller="MyPageController7_3">
 <apex:outputPanel id="result">
 <apex:pageMessages />

ptg11524036

239Asynchronous Actions

 </apex:outputPanel>
 <apex:actionStatus id="status"
 startText="Started" stopText="Stopped" />
 <apex:form>
 <apex:inputText>
 <apex:actionSupport action="{!timesTwo}"
 event="onfocus" reRender="result" status="status" />
 </apex:inputText>
 </apex:form>
 </apex:page>

 To display an image or a stylized message, you can use the start and stop facets. Facets are
modifiers accepted by some Visualforce components to specify rich values that cannot be
contained in XML attributes, such as nested HTML elements. Listing 7.8 is an example of using
the facets to mark up the status message with H2 HTML heading elements.

 Listing 7.8 Code Snippet Using actionStatus with Facets

 <apex:actionStatus id="status">
 <apex:facet name="stop">
 <h2>Stopped</h2>
 </apex:facet>
 <apex:facet name="start">
 <h2>Started</h2>
 </apex:facet>
 </apex:actionStatus>

 To display a dynamic status message, you can write a JavaScript function to modify HTML
elements on the page and call it from the actionStatus component. The actionStatus
component supports the onStart and onStop attributes, which specify JavaScript functions to
be invoked when the associated action is started and stopped. Listing 7.9 provides an example
of this usage, using JavaScript to update the HTML content of an outputPanel in response to
the actionStatus changing state.

 Listing 7.9 Code Snippet Using actionStatus with JavaScript

 <apex:page controller="MyPageController7_3">
 <script type="text/javascript">
 function start() {
 document.getElementById("{!$Component.myStatus}").innerHTML = 'Started';
 }
 function stop() {
 document.getElementById("{!$Component.myStatus}").innerHTML = 'Stopped';
 }
 </script>
 <apex:outputPanel id="result">

ptg11524036

240 Chapter 7 Advanced User Interfaces

 <apex:pageMessages />
 </apex:outputPanel>
 <apex:actionStatus id="status"
 onStart="start();" onStop="stop();" />
 <apex:outputPanel id="myStatus"></apex:outputPanel>
 <apex:form>
 <apex:inputText>
 <apex:actionSupport action="{!timesTwo}"
 event="onfocus" reRender="result" status="status" />
 </apex:inputText>
 </apex:form>
 </apex:page>

 Referencing Visualforce Components from JavaScript

 In Listing 7.9 , the status of the action invocation is displayed in the element myStatus using
JavaScript. For the purposes of the example, the element is an outputPanel Visualforce compo-
nent rather than a simple div tag. This illustrates an important aspect of using JavaScript in
Visualforce pages.

 Each Visualforce component is assigned a unique identifier, set in its id attribute. When you
override this id attribute and provide your own value, Visualforce fully qualifies it by affix-
ing the identifiers of any containers included between your component and the root page
component.

 If your JavaScript code attempts to reference a Visualforce component using the raw identifier
as it appears in the HTML, it will fail to locate it. Instead, use {!$Component.id} , where id is
the identifier you set on your Visualforce component. When the page is rendered, Visualforce
reads this token and replaces it with the fully qualified value of the identifier. If the identifier
cannot be found, the token is replaced with an empty string.

 If your component is contained within a form component, you must provide the form with an
 id value as well and include the form identifier in the component reference. For example, if
the form identifier is myForm and the component you want to obtain a reference to is myText ,
the usage is {!$Component.myForm:myText} .

 Tip

 Use the View Source feature of your Web browser or a plug-in such as Firebug to debug compo-
nent identifier problems.

 Modular Visualforce

 Visualforce pages that are modular, composed of a number of smaller, reusable building blocks,
improve usability by providing consistent appearance and behavior. They are also easier to

ptg11524036

241Modular Visualforce

develop and maintain. Common functionality is defined once in a single place rather than
repeated in multiple pages.

 Visualforce provides several features you can use to create modular, highly maintainable pages:

 ■ Static resources— Reusable images, scripts, stylesheets, and other static content can be
stored in static resources, available for embedding in all Visualforce pages in the Force.
com organization.

 ■ Inclusion— The contents of one Visualforce page can be included in another page. A
common use for this is page headers and footers.

 ■ Composition— Composition allows one Visualforce page to serve as a template for
another. The template specifies the static and dynamic portions of a page. Use the
template to inject dynamic content while maintaining a consistent page layout and
structure.

 ■ Custom Visualforce components— Visualforce provides a library of standard
components such as pageBlock and dataTable , but also allows you to define your own
custom components, reusable in any page.

 Static Resources

 Static resources are containers for content used in Visualforce pages that does not change.
Examples of unchanging content include images, stylesheets, and JavaScript files. Although
any service that allows storage of URL-accessible data can perform a similar role, static
resources have the benefit of being tightly integrated with the Visualforce page. Their names
are validated when the page is compiled, preventing the creation of a page that refers to an
invalid static resource. They are also inaccessible to anonymous public Internet users. Users
not authenticated to your Salesforce organization cannot load your static resources unless you
explicitly allow it using Force.com Sites.

 A static resource can be a single file or a zip archive consisting of many files. The maximum
size of a single static resource is 5MB, and no more than 250MB of static resources can be
defined in any single Force.com organization.

 To create a new static resource, follow these steps:

 1. In the App Setup area, click Develop, Static Resources.

 2. Click the New button to add a new static resource.

 3. Enter a name for the static resource. The name cannot contain spaces or other
nonalphanumeric characters, must begin with a letter, and must be unique. The name is
used to refer to the static resource in Visualforce pages.

 4. Specify an optional description to explain the purpose of this static resource to
other users.

 5. Click the Browse button to find a file in your file system to provide the content for the
static resource.

ptg11524036

242 Chapter 7 Advanced User Interfaces

 6. Leave the Cache Control setting at its default value, Private. This setting is discussed later
in the “Introduction to Force.com Sites” subsection.

 7. Click the Save button to complete the static resource definition.

 If your static resource contains a single file, refer to it in your Visualforce page using the syntax
 {!$Resource. name } , where name is the name of the static resource to include.

 The syntax is different for referring to a single file within a static resource that is a zip archive.
Use {!URLFOR($Resource. name , 'path/tofile')} , where name is the name of the static
resource, and path/tofile is the full path to the desired file.

 Inclusion

 A simple way to create modular Visualforce pages is to use the include component. It embeds
the content of the included page in the current page. The pageName attribute specifies the
name of the Visualforce page to include. The included page must be a Visualforce page. You
cannot include arbitrary URLs.

 Listing 7.10 provides an example of using the include component. It embeds the page named
SkillsMatrix between two horizontal rules.

 Listing 7.10 Visualforce Page Using include

 <apex:page>
 <hr />
 <apex:include pageName="SkillsMatrix" />
 <hr />
 </apex:page>

 When a single Visualforce page ends up containing multiple controllers due to the include
component, controllers are isolated from each other and operate independently. The controller
of the included page does not have access to the state of the controller on the parent page, and
vice versa. But pages are included inline, so JavaScript functions and DOM references can be
made across included pages without security restrictions.

 Caution

 Be careful when using messages and pageMessages components in pages that are to be
included in other pages. If the included page and parent page both supply one of these compo-
nents, the same page messages will be rendered in multiple locations.

 Composition

 Composition is a powerful way to create modular Visualforce pages. It allows a Visualforce
page to be defined as a template. The template can contain static content and placeholders for

ptg11524036

243Modular Visualforce

content that can be overridden by an implementing page. This enforces a standard structure for
the pages without requiring Visualforce developers to remember a sequence of include compo-
nents. It also places more control over the appearance of many pages within the scope of a
single page (the template) for easier maintenance.

 In the template page, the insert component is used to define a named area that can be over-
ridden by a page implementing the template. The implementing page uses the composition
component to set the name of the page to serve as its template. It then provides content for the
named areas of the template using the define component.

 For example, a template might consist of a header, body, and footer, with horizontal rules
between each. Listing 7.11 defines this template page, named MyPage7_11 . Note that the
header area includes its own default content. This optional content is rendered in the event
that content is not provided by an implementing page.

 Listing 7.11 Visualforce Page as Template

 <apex:page>
 <apex:insert name="header">
 <h1>Header</h1>
 </apex:insert>
 <hr /><apex:insert name="body" />
 <hr /><apex:insert name="footer">
 Inheriting the footer content
 </apex:insert>
 </apex:page>

 The template is not interesting to render by itself, but in Listing 7.12 it’s implemented using
the composition component. The template attribute specifies the template defined in Listing
 7.11 , which should be named MyPage7_11 for this example to work properly. The three
dynamic areas are merged into the template to result in the final rendered output. The header
area is provided, so it overrides the content defined by the template. The footer is inherited
from the template.

 Listing 7.12 Visualforce Page Using Template

 <apex:page>
 <apex:composition template="MyPage7_11">
 <apex:define name="header">
 Overriding the header content
 </apex:define>
 <apex:define name="body">
 This is the body content
 </apex:define>
 </apex:composition>
 </apex:page>

ptg11524036

244 Chapter 7 Advanced User Interfaces

 Composition works with multiple controllers identically to the include component. They run
independently of each other, but all content is rendered in the same page.

 Custom Visualforce Components

 Custom components allow you to build a library of reusable user interface elements, encapsu-
lating behavior and appearance while integrating with the data on the page and in the control-
ler using the standard expression language. With custom components, all the functionality of
standard components such as pageBlock and inputField is available to you to define from
scratch using Visualforce and Apex code.

 Custom components can be used to hide the implementation details of client-side technology
like JavaScript. For example, a component can wrap a JavaScript user interface library such as
Sencha’s Ext JS, freeing Visualforce page developers from the details of integrating Ext JS code
into their pages. Custom components can also serve as full-blown pages themselves, reading
and writing in the Force.com database through standard or custom controllers.

 Defining a Custom Component

 To create a new component, select File, New, Visualforce Component in the Force.com IDE. Or,
using the Web browser, navigate to App Setup and click Develop, Components.

 Custom components are defined with component as the root-level element rather than the
familiar page . Following the component tag is an optional set of attribute components speci-
fying the names and types of variables that can be shared between the page and the compo-
nent. Supported types are primitives, standard and custom database objects, one-dimensional
arrays, and custom Apex classes. Attributes can be declared as required , meaning that a page
using the component must provide a value or it fails to compile. Attributes can also be assigned
to member variables in a controller using the assignTo attribute.

 The remainder of the component definition is identical to a standard Visualforce page, contain-
ing a combination of JavaScript, CSS, HTML elements, and standard components, as well as
other custom components.

 Listing 7.13 provides an example of a component for showing an address on a Google Map.

 Listing 7.13 Custom Visualforce Component to Render Google Map

 <apex:component >
 <apex:attribute name="address" type="string" required="true"
 description="Address to show on the Google map" />
 <apex:includeScript
 value="https://maps.googleapis.com/maps/api/js?sensor=false" />
 <script>
 var geocoder;
 var map;
 function init() {

ptg11524036

245Modular Visualforce

 geocoder = new google.maps.Geocoder();
 var latlng = new google.maps.LatLng(-34.397, 150.644);
 var mapOptions = {
 zoom: 17,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 }
 map = new google.maps.Map(document.getElementById("map-canvas"),
 mapOptions);
 }

 function renderAddress(address) {
 geocoder.geocode({ 'address': address },
 function(results, status) {
 if (status == google.maps.GeocoderStatus.OK) {
 map.setCenter(results[0].geometry.location);
 var marker = new google.maps.Marker({
 map: map,
 position: results[0].geometry.location
 });
 } else {
 alert("Geocode failed: " + status);
 }
 });
 }
 var previousOnload = window.onload;
 window.onload = function() {
 if (previousOnload) {
 previousOnload();
 }
 init();
 renderAddress('{!address}');
 }
 </script>
 <div id="map-canvas" style="width: 320px; height: 480px;"></div>
 </apex:component>

 Using a Custom Component

 Using a custom component in a page is much like using a standard component. The differ-
ence is that instead of prefacing the component with the apex namespace, you use c . Listing
 7.14 shows an example of using the custom component defined in Listing 7.13 to render a
Google Map for an address. It references the GoogleMap component, followed by a value for its
required address attribute containing the street address to render on the map. In this example,
the attribute value is hard-coded into the page, but this is not the only way to provide an

ptg11524036

246 Chapter 7 Advanced User Interfaces

attribute value. Like standard components, attribute values can include expression language,
enabling them to share data with the controller.

 Listing 7.14 Visualforce Page Using Custom Component

 <apex:page>
 <c:GoogleMap address="1 market st. san francisco, ca" />
 </apex:page>

 Dynamic Visualforce

 Normally when a user visits a Visualforce page, Force.com constructs HTML or other content
from the Visualforce components and their bindings to the controller. In contrast, dynamic
Visualforce features allow the definition of the page itself, both its components and their
bindings to the controller, to be determined at runtime, outside of the page. These features
are most often used by software vendors who deliver Force.com applications on the Salesforce
AppExchange, where the same application code must run within multiple, distinct customer
organizations and adapt itself accordingly.

 This section covers dynamic Visualforce features in more detail in the following subsections:

 ■ Dynamic field references— Dynamic field references allow the fields displayed in
a Visualforce page to be injected into the page when viewed by a user. They can be
provided by Apex code in the page controller or by Field Sets, a type of declarative
metadata configurable without code.

 ■ Component generation— Visualforce pages can be constructed dynamically in Apex
code. This can be essential for certain specialized user interfaces, but come with trade-offs
not present with static pages.

 Dynamic Field References

 Dynamic field references are designed for situations in which you need to be flexible about
which field to render. Ordinary field references are found in Visualforce components and
determine their relationship to the controller. For example, an outputText component with
content {!project.Name} renders the Name field of the object named project in the control-
ler. The equivalent dynamic field reference is {!project[field]} , where field is a String value
containing the name of the field to display.

 The data referenced by a dynamic field reference must be available at runtime or an error will
occur. If you’re using a standard controller, call the method addFields to notify the controller
about new fields if possible, and it will take care of retrieving the data. For custom controllers,
controller extensions, or queries involving related objects, build a dynamic SOQL query string
and execute it with Database.query .

ptg11524036

247Dynamic Visualforce

 Listings 7.15 and 7.16 provide the Visualforce controller and page code for a simple example
of dynamic field references. The Visualforce page renders a simple XML-encoded collection of
Project records, embedded in HTML. The determination of which fields to display from each
Project record is determined dynamically inside the controller. The fields are rendered in the
page using two nested repeat components. The outer repeat iterates over an array of Project
records returned by the controller. The inner repeat cycles through each field name from
the controller, combining it with the record reference to obtain the value of that field for the
current record.

 Listing 7.15 Visualforce Controller Using Dynamic Field References

 public class MyPageController7_16 {
 public List<String> fields { get; set; }
 public List<Project__c> records { get; set; }
 public MyPageController7_16() {
 fields = new String[] { 'Id', 'Name', 'CreatedDate' };
 records = [SELECT Name, CreatedDate FROM Project__c];
 }
 }

 Listing 7.16 Visualforce Page Using Dynamic Field References

 <apex:page controller="MyPageController7_16">
 <pre>
 <projects>
 <apex:repeat value="{!records}" var="record">
 <project>
 <apex:repeat value="{!fields}" var="field">
 <{!field}>{!record[field]}</{!field}>
 </apex:repeat>
 </project>
 </apex:repeat>
 </projects>
 </pre>
 </apex:page>

 Using Field Sets

 Imagine the fields variable in Listing 7.15 , which contains the list of field names to display
on the Visualforce page, must be maintained by a nondeveloper. You could create a custom
object to store the fields in the database and build a Visualforce user interface to manage them.
Or you could use field sets and avoid all of that work.

 A field set is a user-defined ordered list of fields on an object that can be referenced from
Visualforce or Apex. A field set is editable using an administrative user interface built in to
Force.com, leaving the code that uses it unchanged. For custom objects, go to the App Setup

ptg11524036

248 Chapter 7 Advanced User Interfaces

area; click Create, Objects; select the object; and find its Field Sets section. Standard objects are
also in the App Setup area under Customize.

 Once a field set is created, it can be referenced in a Visualforce component with the syntax
 {!$ObjectType.ObjectName.FieldSets.FieldSetName} , where ObjectName is the name of
the standard or custom object that the field set is defined on, and FieldSetName is the name
of the field set.

 The fields of a field set are automatically loaded by the standard controller. For custom control-
lers, add accessors for the fields and dynamically construct SOQL from the field set to ensure
the data is available to the page.

 Component Generation

 Dynamic field references are useful when you do not know what fields to display. Component
generation comes into play when you do not know what object to render. It allows the
construction of a Visualforce page from Apex code.

 To start using component generation, add one or more dynamicComponent elements to your
Visualforce page. This serves as the container into which the generated components
are injected. The dynamicComponent is bound to a controller method, specified in the
componentValue attribute, that must return an instance of Component.Apex.* to be rendered.

 Listings 7.17 and 7.18 show a controller and page that leverage component generation to
display a detail component bound to the user’s selection of one of three object types. A
dynamic SOQL statement is generated using the list of accessible fields from the selected object
type to retrieve the most recently modified record. The generated detail component is bound
to its result.

 Listing 7.17 Visualforce Controller Using Dynamic Components

 public class MyPageController7_18 {
 public SObject record { get; set; }
 public String selectedObject { get; set; }
 public List<SelectOption> getAvailableObjects() {
 List<SelectOption> options = new List<SelectOption>();
 options.add(new SelectOption('Project__c', 'Project'));
 options.add(new SelectOption('Timecard__c', 'Timecard'));
 options.add(new SelectOption('Contact', 'Contact'));
 return options;
 }
 public PageReference refresh() {
 Schema.SObjectType targetType =
 Schema.getGlobalDescribe().get(selectedObject);
 Map<String, Schema.SobjectField> fields =
 targetType.getDescribe().fields.getMap();
 List<String> queryFields = new List<String>();

ptg11524036

249Dynamic Visualforce

 for (String s : fields.keySet()) {
 if (fields.get(s).getDescribe().isAccessible()) {
 queryFields.add(s);
 }
 }
 String soql = 'SELECT ';
 for (String s : queryFields) {
 soql += s + ', ';
 }
 soql = soql.substring(0, soql.length() - 2);
 soql += ' FROM ' + selectedObject;
 soql += ' ORDER BY LastModifiedDate DESC LIMIT 1';
 try {
 record = Database.query(soql);
 } catch (QueryException e) {}
 return null;
 }
 public Component.Apex.Detail getComponent() {
 Component.Apex.Detail result =
 new Component.Apex.Detail();
 result.expressions.subject = '{!record.Id}';
 result.title = false;
 result.relatedList = false;
 return result;
 }
 }

 Listing 7.18 Visualforce Page Using Dynamic Components

 <apex:page controller="MyPageController7_18">
 <apex:form >
 <apex:selectList value="{!selectedObject}" size="1">
 <apex:selectOptions value="{!availableObjects}"/>
 </apex:selectList>
 <apex:commandButton value="Refresh" action="{!refresh}" />
 </apex:form>
 <apex:dynamicComponent componentValue="{!component}"/>
 </apex:page>

 Note

 Component generation is not a viable substitute for standard static Visualforce pages. Its use
should be strictly limited to user interfaces that adapt to user actions in ways that can’t be
coded in static markup.

ptg11524036

250 Chapter 7 Advanced User Interfaces

 Single-Page Applications in Force.com

 A single-page application is an application that runs almost entirely within the Web browser.
In contrast, older Web application architectures generate the appearance and behavior of Web
pages primarily on the server. Single-page applications tend to be more interactive and respon-
sive than Web applications that rely on full or even partial page refreshes from the server.

 Single-page applications can be challenging to build as they are heavily reliant on client-side
JavaScript code. Many JavaScript frameworks have sprouted up to assist developers. They
address the difficulties in implementing complex user interfaces by separating the concerns of
Web user interfaces using Model-View-View Model (MVVM) or Model-View-Controller (MVC)
patterns. Some examples of frameworks to support single-page application development are
Backbone.js, Knockout.js, AngularJS, and Ember.js.

 At first glance, this seems to replace much of Visualforce. Although it does replace the
Web-rendering portions of Visualforce with its own data binding and templating technologies,
Visualforce continues to provide the glue that makes everything work smoothly. For example,
it loads the single-page application code, making communication between the user’s Web
browser and Force.com secure and authenticated without additional development effort. The
resulting blend of Force.com and JavaScript performs better than Visualforce for many types
of user interfaces, minimizes proprietary code, and keeps back-end dependencies clear and
modular to maximize testability.

 JavaScript Remoting

 JavaScript remoting allows a controller method to be invoked directly from JavaScript with
no Visualforce components necessary. Instead, you annotate the controller method with
 @RemoteAction and write a small amount of JavaScript to call it.

 Although similar in function to JavaScript remoting, the actionFunction Visualforce compo-
nent differs in some significant ways. The actionFunction component is designed for use in a
Visualforce page with other native Visualforce components. Like most Visualforce components,
it uses a form to create a stateful interaction between the controller and the page. This is not
the case with remoting, which makes it a bit more responsive as a result. Remoting is also asyn-
chronous, while the actionFunction component is synchronous.

 JavaScript remoting is particularly helpful in the development of single-page applications on
Force.com. With JavaScript remoting, the focus of the Force.com platform shifts to the back
end. It serves the raw resources to power the user interface, both static files and dynamic data
via controller method invocations. Once loaded, the user interface is rendered entirely in
JavaScript within the browser, with callouts made to the Apex controller as needed for its data
services.

ptg11524036

251Single-Page Applications in Force.com

 Force.com with AngularJS

 AngularJS is a popular open source Web development framework located at http://angularjs.org .
It is a powerful tool for using the MVVM pattern, or Model-View-Whatever (MVW) as Google
prefers it, in your Web application. For example, you can take advantage of its bidirectional
data binding to tie the application’s model to its view, making Angular responsible for keeping
them in lockstep at all times. This type of tight data binding provides users an experience free
of Refresh and Save buttons and confusing mismatches between the model and view.

 The demonstration page shown in Figure 7.1 is adapted from steps 0 through 5 of the Angular
tutorial available at http://docs.angularjs.org/tutorial . It retrieves a list of projects from the
Force.com database and allows the user to order them by name or date created, and search the
list by name.

 Figure 7.1 Project list using Angular and JavaScript remoting

 An implementation of the Visualforce controller and page code for the Angular-powered project
list can be found in Listings 7.19 and 7.20 . The subsections that follow provide a code walk-
through of the Angular-specific aspects of Listing 7.20 .

http://angularjs.org
http://docs.angularjs.org/tutorial

ptg11524036

252 Chapter 7 Advanced User Interfaces

 Listing 7.19 Visualforce Controller Using RemoteAction

 public with sharing class MyPageController7_20 {
 @RemoteAction
 public static List<Project__c> load() {
 return [SELECT Name, Location__c, CreatedDate
 FROM Project__c];
 }
 }

 Listing 7.20 Visualforce Page Using Angular

 <apex:page controller="MyPageController7_20">
 <style>
 .toolbar { margin-bottom: 20px; }
 td { padding: 5px; }
 </style>
 <script>
 function ProjectListCtrl($scope, $rootScope) {
 MyPageController7_20.load(function(result, event) {
 if (event.status) {
 $scope.projects = result;
 $rootScope.$apply();
 }
 }, { escape: false });
 $scope.orderProp = 'CreatedDate';
 }
 </script>
 <apex:pageBlock tabStyle="Project__c" title="Projects">
 <apex:outputPanel html-ng-app=""
 html-ng-controller="ProjectListCtrl">
 <div class="toolbar">
 Search: <input ng-model="query" />
 Sort by:
 <select ng-model="orderProp">
 <option value="Name">Alphabetical</option>
 <option value="CreatedDate">Newest</option>
 </select>
 </div>
 <table>
 <tr ng-repeat="project in projects
 | filter:query | orderBy:orderProp">
 <td>
 <apex:outputText value="{{project.Name}}" />
 </td>
 <td>
 <apex:outputText value="{{project.Location__c}}" />

ptg11524036

253Single-Page Applications in Force.com

 </td>
 <td>
 <apex:outputText value="{{project.CreatedDate
 | date}}" />
 </td>
 </tr>
 </table>
 </apex:outputPanel>
 </apex:pageBlock>
 <script src="//ajax.googleapis.com/ajax/
➥libs/angularjs/1.0.7/angular.min.js">
 </script>
 </apex:page>

 Angular Controller

 The Angular controller is responsible for the business logic of a single view. In Listing 7.20 ,
the Angular controller is named ProjectListCtrl and specified in an in-line script tag. It
invokes the remote action load on the Visualforce controller with the option escape: false .
This instructs it to forgo HTML entity encoding of the remote action’s response. When the
remote action is completed, the resulting array of projects is provided to Angular, and all its
bound user interface elements are notified using the $apply() method.

 Angular Template

 Much like a Visualforce page, an Angular template brings the Angular controller and model
together into a rendered Web page. It contains HTML, CSS, and Angular-specific markup.

 Listing 7.20 contains a single Angular template within a Visualforce outputPanel component.
Important aspects of the template are described in the following list:

 ■ The outputPanel contains custom HTML attributes (prefaced with html- to make them
acceptable to Visualforce) to specify the Angular controller and ng-app to register the
DOM with Angular. In Visualforce, this sort of control over the HTML output is only
possible in an outputPanel .

 ■ The two HTML input fields are bound to the controller using the ng-model attribute.

 ■ The table row is repeated for each element in the projects model, filtered by the input
query and ordered by the drop-down selection.

 ■ Markup (in double curly brace notation) is used to output elements of the model within
 outputText components.

 ■ A standard HTML script tag includes version 1.0.7 of Angular from Google. This could
just as well be loaded from a Force.com static resource or a Visualforce component with
the script in-line.

ptg11524036

254 Chapter 7 Advanced User Interfaces

 Introduction to Force.com Sites

 Sites is a feature of Force.com that enables public access to your Visualforce pages. A site is a
collection of ordinary Visualforce pages and access control settings assigned to a unique base
URL. You can define one or many sites within a Force.com organization. Sites can be individu-
ally brought up or down by your organization’s system administrator.

 This section divides the discussion of Force.com Sites into four parts, summarized next:

 1. Enabling and creating a site— Turn on the Force.com Sites feature and create your
first site.

 2. Security configuration— Configure the privileges granted to the anonymous user of
your site.

 3. Adding pages to a site— Select Visualforce pages that are accessible within a site.

 4. Authenticating users— Blend public and private pages by integrating a site with
Customer Portal.

 Enabling and Creating a Site

 To enable Force.com Sites for the first time in your organization, go to the App Setup area and
click Develop, Sites. You should see the screen shown in Figure 7.2 .

 Figure 7.2 Enabling the Force.com Sites feature

ptg11524036

255Introduction to Force.com Sites

 You must pick a Force.com domain name to continue. A domain name provides a unique, root
address for all of your sites. You can remap this address to your own brand-name address (not
Force.com) by configuring a CNAME alias on your domain hosting provider.

 Enter your domain name, select the box to indicate that you’ve read the terms of use, and click
the Check Availability button. After your domain name has been accepted, you can define your
first site. Adding a site also creates a number of sample components, pages, and controllers in
your organization.

 To create a site, go to the App Setup area; click Develop, Sites; then click the New button.
You should see a page like Figure 7.3 . Provide a label and name for the site, such as www. The
label is shown in the list of sites and clicking on it allows you to edit the site’s properties. Set
the Active Site Home Page setting to UnderConstruction. This is a standard placeholder page
provided with Force.com to let visitors know that the site is not available yet.

 Figure 7.3 Creating a new site

 After your first site is defined, the main Sites page should look as shown in Figure 7.4 .

 Security Configuration

 When a new site is created, a corresponding profile is also created to manage the privileges
of the guest user. The guest user is a special type of Salesforce.com license that represents the
anonymous user of your site.

ptg11524036

256 Chapter 7 Advanced User Interfaces

 The guest profile for each site is configured using the native user interface. To view the profile,
navigate to the Site Details page for the site and click the Public Access Settings button.
Configure the privileges of the guest profile with extreme caution because mistakes can expose
sensitive data in your Force.com organization to the entire world.

 Note

 The guest profile does not appear with other profiles in the Administration Setup area (Manage
Users, Profiles). You must use the Public Access Settings button on the Sites Detail page to
reach it.

 If a page in a site uses static resources, make sure that they can be accessed from the guest
profile. Go to each static resource and set its Cache Control to Public.

 Adding Pages to a Site

 A site starts off with a series of system-defined pages such as Exception and FileNotFound.
These pages are shown to users in the event of errors in the site. You can redefine them by
simply editing them.

 Figure 7.4 Sites main page

ptg11524036

257Introduction to Force.com Sites

 You can also add your own custom pages to the site. To add pages, click the Edit button in the
Site Visualforce Pages section. Select one or more pages from the list on the left and click
the Add button to move them to the list of Enabled Visualforce Pages. Click Save when
you’re done.

 The URL of your pages is the default Web address of the site followed by the name of the page.
For example, in Figure 7.5 , the default Web address is https://force-book-3e-developer-edition.
na15.force.com . If a page named MyPage is added to the site, users can access it at https://
force-book-3e-developer-edition.na15.force.com/MyPage .

 Figure 7.5 Site Details page

 Note

 A site must be activated before any pages in it are accessible. To activate a site, select its
Active check box in the Site Details page or click the Activate link on the main Sites page.

 Authenticating Users

 Anonymous users can be converted to named, authenticated users through the Customer
Portal, or portal for short. A portal allows you to extend Force.com to your partners and
customers without requiring full user accounts for each of them. It is tightly integrated with
Force.com Sites.

https://force-book-3e-developer-edition.na15.force.com
https://force-book-3e-developer-edition.na15.force.com
https://force-book-3e-developer-edition.na15.force.com/MyPage
https://force-book-3e-developer-edition.na15.force.com/MyPage

ptg11524036

258 Chapter 7 Advanced User Interfaces

 Enable portal integration by clicking the Login Settings button on the Site Details page. In the
Login Settings section, click the Edit button and select an existing portal from the drop-down
list, and then click the Save button. Figure 7.6 shows a site enabled to log in to the portal
named Customer Portal.

 Figure 7.6 Login Settings page

 Note

 If no portals are listed, you must configure one that is login enabled. Go to the App Setup area
and click Customize, Customer Portal, Settings. Setting up a portal is not within the scope of
this book, so refer to the online documentation for more information.

 Sample Application: Enhanced Skills Matrix

 This section builds on the Services Manager’s Skills Matrix feature developed in Chapter 6 ,
“User Interfaces.” Users of the Skills Matrix feature have requested the ability to compare a
consultant’s skills with those of other consultants without navigating to a new page. They
would like to see the ratings of other consultants in the same skill visually layered atop the
existing Skills Matrix user interface, as shown in Figure 7.7 .

ptg11524036

259Sample Application: Enhanced Skills Matrix

 Figure 7.7 Skills Matrix with comparison overlay

 The following technologies from this chapter are used in the development of the feature:

 ■ JavaScript integration— jQuery UI (a free, open source JavaScript and CSS library for
Web applications) is integrated to provide an easing effect, fading in and out the list of
other resources and their skill ratings. jQuery UI is available at http://jqueryui.com .

 ■ Custom Visualforce components— The overlay containing the other consultants’ skills
is encapsulated in its own custom Visualforce component and controller.

 ■ actionSupport component— This component is used to show and hide the skills
comparison overlay when the user hovers over an informational icon.

 Begin by developing a custom component for retrieving and rendering a list of skill ratings
and consultants. The input to this component is a skill type and a resource identifier of the
currently selected consultant. The skill type is the name of a proficiency that consultants are
measured on, a picklist value from Skill__c.Type__c , such as Java or Apex. The resource
identifier is used to exclude the current consultant from the list because his or her skill ratings
are already shown on the Skills Matrix user interface.

 Listing 7.21 provides a sample implementation of the controller to support the requirements,
and Listing 7.22 shows the custom component that uses it.

http://jqueryui.com

ptg11524036

260 Chapter 7 Advanced User Interfaces

 Listing 7.21 CompareSkillsController

 public class CompareSkillsController {
 public String contact { get; set; }
 public String skill { get; set; }
 public List<Skill__c> getData() {
 return [SELECT Contact__r.Name, Type__c, Rating__c
 FROM Skill__c
 WHERE Type__c = :skill
 AND Rating__c NOT IN ('', '0 - None') AND
 Contact__c != :contact
 ORDER BY Rating__c DESC];
 }
 }

 Listing 7.22 CompareSkillsComponent

 <apex:component controller="CompareSkillsController">
 <apex:attribute name="skillType" description="Type of skill"
 type="String" required="true" assignTo="{!skill}" />
 <apex:attribute name="contactId"
 description="Id of contact to compare with"
 type="String" required="true" assignTo="{!contact}" />
 <apex:pageBlock >
 <apex:pageBlockSection collapsible="false" columns="1">
 <apex:facet name="header">
 Other Resources with {!skillType}

 <a onclick="hideOverlay(); return false;"
 href="" style="text-decoration: underline;">Hide

 </apex:facet>
 <apex:pageBlockTable value="{!data}" var="item">
 <apex:column value="{!item.Contact__r.Name}" />
 <apex:column value="{!item.Rating__c}" />
 </apex:pageBlockTable>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:component>

 To incorporate this component into the Skills Matrix page, perform the following steps:

 1. Add the code shown in Listing 7.23 to the bottom of the SkillsMatrixController
class. The new method and property are used to refresh the skills comparison
component.

ptg11524036

261Sample Application: Enhanced Skills Matrix

 Listing 7.23 Adding Component Support to the Skills Matrix Controller

 public PageReference refreshCompareSkills() {
 return null;
 }
 public String selectedSkillType { get; set; }

 2. Edit the Skills Matrix page to add sidebar="false" to the apex:page component. This
frees up extra horizontal screen real estate that is used to display the skills comparison
overlay. Also add the CSS in Listing 7.24 to the style tag.

 Listing 7.24 Adding Component CSS to the Skills Matrix Page

 .compare-skills {
 position: absolute;
 width: 400px; height: 250px;
 display: none;
 }

 3. Also on the Skills Matrix page, insert the code in Listing 7.25 after the closing tag of the
form component. It adds an outputPanel containing the CompareSkillsComponent ,
rendered as an overlay with a fading effect from jQuery UI in the showOverlay JavaScript
function.

 Listing 7.25 Adding CompareSkillsComponent to the Skills Matrix Page

 <apex:outputPanel id="compareSkills" styleClass="compare-skills">
 <c:CompareSkillsComponent skillType="{!selectedSkillType}"
 contactId="{!selectedContactId}" />
 </apex:outputPanel>
 <script src="//ajax.googleapis.com/ajax/libs
➥/jquery/1.10.1/jquery.min.js"></script>
 <script src="//ajax.googleapis.com/ajax/libs
➥/jqueryui/1.10.3/jquery-ui.min.js"></script>
 <script>
 function showOverlay(e) {
 $('.compare-skills').css('top', e.layerY)
 .css('left', e.layerX).fadeIn();
 }
 function hideOverlay() {
 $('.compare-skills').fadeOut();
 }
 </script>

 4. For the final step, insert the code given in Listing 7.26 to the Skills Matrix page,
immediately following the opening tag of the column component containing the

ptg11524036

262 Chapter 7 Advanced User Interfaces

skill rating (headerValue="Rating"). It adds an informational icon beside each skill.
Hovering over this icon displays the overlay containing the skills comparison.

 Listing 7.26 Adding actionSupport to the Skills Matrix Page

 <apex:image value="/img/msg_icons/info16.png"
 style="margin-top: 2px; margin-right: 10px;">
 <apex:actionSupport event="onmouseover"
 action="{!refreshCompareSkills}" rerender="compareSkills"
 oncomplete="showOverlay(event);" onsubmit="hideOverlay();">
 <apex:param name="p1" value="{!skill.Type__c}"
 assignTo="{!selectedSkillType}" />
 </apex:actionSupport>
 </apex:image>

 Summary

 In this chapter, you’ve seen some of the ways Visualforce can produce effective user interfaces,
from action components that provide Ajax behavior to the integration of open source Web
application technologies such as JQuery. Before switching gears in the next chapter, take a
moment to review these key points:

 ■ Stick with standard and custom Visualforce components wherever possible to keep your
user interface running smoothly with the rest of Force.com today and in future releases.

 ■ Strive to adopt the many features of Visualforce that foster modularity, such as
composition and custom components, rather than copying and pasting code from page
to page.

 ■ You can use Visualforce to create public-facing Web pages through Force.com Sites. Sites
are simply a series of configuration settings that enable a guest profile to access a set of
pages, extending your existing investment in Visualforce.

ptg11524036

 8
 Mobile User Interfaces

 Mobile applications are subject to design constraints including processing power, reduced screen size,
and limited or unreliable network connectivity. Addressing these constraints while still delivering func-
tional applications is the goal of numerous technology platforms, development techniques, and dedi-
cated technical books. There are endless methods for building mobile applications, all of them equally
valid depending on the details of the device, application, and needs of the user.

 Salesforce and the Force.com platform support the latest best practices and technology platforms used to
develop mobile applications, extending them with dedicated toolkits and hooks in the Force.com plat-
form. This chapter provides exposure to the common approaches to building mobile applications and
dives deeper on one specific approach, the mobile Web (also referred to as HTML5) application. It is
organized into the following sections:

 ■ Overview of Salesforce mobile technology— Get familiar with how Salesforce supports mobile
devices in terms of its own applications and custom applications.

 ■ Getting started with mobile Web applications— Walk through the technology components
and choices for building mobile Web applications using Force.com.

 ■ Sample application— Create a phone and tablet-friendly timecard entry feature for the Services
Manager sample application.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/SVU7RT .

 Overview of Salesforce Mobile Technology

 Mobile devices are by definition always on the go, exposed to vagaries of battery life and
network connectivity as well as the physical size constraints of displays and input devices. The
formidable technical challenge of these problems and the huge demand for mobile devices
have driven rapid innovation. From this innovation comes a proliferation of operating systems,

http://goo.gl/SVU7RT

ptg11524036

264 Chapter 8 Mobile User Interfaces

user interface styles, development frameworks, and architectural techniques, all vying for devel-
oper attention.

 Every significant technology vendor has framed mobile technology in its own terms. Salesforce
is no exception. Salesforce offers its own mobile philosophy and supporting technologies, both
in the application and platform space. These are discussed in this section, divided into two
parts:

 ■ Salesforce applications— There are three actively supported mobile applications from
Salesforce, each with its own unique feature set.

 ■ Custom applications— Salesforce advocates three distinct approaches to mobile
application development, providing tools and frameworks to support them.

 Salesforce Applications

 Although it is possible to use Salesforce’s standard Web user interface from a browser-equipped
mobile device, it has significant drawbacks. The desktop-centric user interface is cumbersome
on a smaller screen, requiring lots of zooming and panning to find and click anything. The
performance is sluggish due to the large amount of information, media, and code on each
page. And if network connectivity is lost, it can also mean the loss of functionality and work in
progress.

 To improve the experience for mobile users, Salesforce offers three applications specifically
designed for mobile phones and tablets:

 ■ Salesforce Classic— This is the original Salesforce mobile application. It is geared toward
users who need offline access to data. Administrators can select data to synchronize
with the mobile device by user or profile, and remotely delete the data at any point. By
default, the standard Sales and Service Cloud application data is synchronized with the
device, including contacts, accounts, and opportunities.

 ■ Salesforce Touch— Salesforce Touch can be thought of as a reskinned subset of the
Salesforce Web application, designed for devices that rely on touch input rather than
a keyboard and mouse. All data remains on the Salesforce servers, not on the mobile
device. Standard and custom object tabs are available, with limited record creation and
editing functionality.

 ■ Chatter Mobile— Chatter Mobile is focused on collaboration. You can post and comment
on feeds, create and edit records, view and add files, participate in groups, and view
dashboards and user profiles.

 Many independent software vendors have released applications that address the Salesforce
market. Some are tailored for a particular workflow, such as sales or service. Others are neutral,
adopting the tabs and layouts from your Salesforce organization and providing generic data
management in a mobile form factor. Run a search on your mobile device’s application market-
place to learn more.

ptg11524036

265Overview of Salesforce Mobile Technology

 Custom Applications

 There are many ways to develop custom mobile applications that leverage the Force.com plat-
form. Salesforce has assembled tools and techniques for each of the three distinct approaches to
mobile development, listed here:

 ■ Native applications— Native applications have unrestricted access to all of the features
of the mobile device. This power can be used to deliver the best possible user experience,
but typically comes with a high development cost, especially if an application must be
supported on multiple mobile vendors’ devices.

 ■ Mobile Web applications— On the opposite end of the spectrum, mobile Web
applications run inside the mobile device’s Web browser based on HTML5. They do
not have access to the full set of device capabilities, but with this compromise comes
advantages in terms of ease of development and distribution.

 ■ Hybrid applications— Hybrid applications are mobile Web applications deployed inside
a native application that serves as a “container.” The most notable benefits are access
to native device features and the ability to promote and distribute the application on
device-specific marketplaces.

 The Salesforce Mobile Software Development Kit (SDK) provides open source technology to
aid in the development of all three types of custom mobile applications. Download it from the
following location:

 ■ iOS— https://github.com/forcedotcom/SalesforceMobileSDK-iOS

 ■ Android— https://github.com/forcedotcom/SalesforceMobileSDK-Android

 Note

 The Salesforce Mobile SDK page at http://wiki.developerforce.com/page/Mobile_SDK is an
excellent starting point for diving deeper into Salesforce’s mobile development technology.

 Native Applications

 Native applications are purpose-built for each device platform. For example, a native mobile
developer targets one or more mobile platforms such as iOS, Android, Windows Phone, and
BlackBerry 10. Although there are vendors that promise shortcuts, strictly speaking each plat-
form adds its own jargon, development tools and frameworks, and unique approach to mobile
challenges such as user interface paradigm, hardware abstraction, and software deployment.

 The advantages of native applications include usability, integration with hardware and native
applications (such as those managing calendars and contacts), access to secure offline storage,
and built-in application distribution. Disadvantages vary but typically involve the cost and
complexity of supporting multiple devices and operating systems.

https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android
http://wiki.developerforce.com/page/Mobile_SDK

ptg11524036

266 Chapter 8 Mobile User Interfaces

 Salesforce Mobile SDK provides libraries and sample projects for developing native applications
for iOS and Android. Specifically, it helps developers in four main areas:

 ■ Login— The Mobile SDK simplifies the OAuth login process.

 ■ Offline data caching— SmartStore is a component of the Mobile SDK that enables the
secure storage of data for offline access.

 ■ REST— The Force.com REST API is provided as a set of friendly infrastructure classes.

 ■ Application creation— The Mobile SDK includes a tool called forceios that generates a
sample native application to connect to a Salesforce organization and run a simple query.
This can be a good starting point for your development.

 Mobile Web Applications

 Mobile Web applications rely on the mobile device’s browser to function. Often they are ordi-
nary Web pages designed to adapt their user interfaces from full-size monitors to tiny mobile
screens. This usage of standard Web technology to deliver the same application to desktop and
mobile users can be a huge time savings over native application development.

 Another significant advantage to mobile Web applications is that they are served up from
servers, not stored on the mobile device. This means developers can continually improve the
application remotely, and users always see the latest version. Native and hybrid applications
have a binary component that is downloaded and installed on the device. Although the binary
can be updated after it is installed, that is an additional manual step for the user.

 Unfortunately, mobile Web applications are rarely able to deliver the same level of user experi-
ence as a native application. Due to size and battery constraints, tablets and phones have a
subset of the processing power of laptop and desktop computers. Their Web browser cannot
render complex pages or execute code as quickly. Additionally, the standard user interface
components that the user is familiar with from the mobile device are either Web-based approxi-
mations or entirely different, requiring the user to adapt to the new way of representing data
and controls.

 Salesforce Mobile SDK includes two libraries that are extremely helpful in building mobile Web
applications integrated with Force.com, described next:

 ■ SmartSync— SmartSync exposes Salesforce records as JavaScript objects, with query and
CRUD access seamlessly supported. It extends a popular open source framework called
Backbone.js to accomplish this.

 ■ forcetk.js — This JavaScript library is a wrapper of the Salesforce REST API.

 Hybrid Applications

 Hybrid applications promise the best of both worlds, combining the flexibility of native with
the ease of development of Web. In a hybrid application, some content is shipped in the binary
like a normal native application, while some is left out and delivered through Web pages

ptg11524036

267Getting Started with Mobile Web Applications

instead. Their distinguishing feature is a “container” that hosts the Web content and grants it
access to native resources.

 Being a mixture of native and Web, hybrid applications share the pros and cons of both. For
example, if your hybrid application relies extensively on Web content, it will suffer the user
experience limitations of mobile Web applications. In general, hybrid applications rely on the
judgment of the developer to select the best way (native or Web) to implement functionality
on a feature-by-feature basis.

 This introduces a larger issue of complexity. Although developers have greater flexibility with
hybrid applications, building them requires knowledge of both mobile Web and native technol-
ogy, plus the “container” layer between them. The container in the Salesforce Mobile SDK is
called Cordova (formerly PhoneGap).

 Note

 Due to their significant dependence of technology unrelated to Force.com, hybrid and native
applications are outside the scope of this book. Refer to the Salesforce Mobile SDK home page
at http://wiki.developerforce.com/page/Mobile_SDK for more information.

 Getting Started with Mobile Web Applications

 Out of all three types of custom mobile applications, Web applications are arguably those
closest to and benefiting most from the Force.com platform, particularly if they are mobile
versions of Visualforce pages. Mobile aside, Web applications can be challenging to build due
to rapidly moving trends in usability, browser standards, and security practices. Mobile Force.
com applications add a number of additional challenges that are addressed in this section.

 At a high level, there are three major areas to examine when building mobile Web applications
with Force.com:

 ■ Frameworks— Web development frameworks typically adopt some design pattern such
as MVC (Model-View-Controller) or MVVM (Model-View-View Model). These patterns
separate logic from presentation and allow the construction of scalable, interactive Web
applications. They usually bundle or recommend a templating and data access layer.
Some frameworks are specifically tailored for mobile applications.

 ■ Data access— Assuming that Force.com is the data layer for the mobile application, there
are a few options for integrating it.

 ■ Deployment— Deployment concerns how mobile users will find and start using your
mobile application. This is more complex with mobile Web applications than native
applications.

http://wiki.developerforce.com/page/Mobile_SDK

ptg11524036

268 Chapter 8 Mobile User Interfaces

 Frameworks

 Web development frameworks can reduce and manage the complexity of building Web applica-
tions, particularly the Single Page Applications (SPAs) that are becoming commonplace. SPAs
rely on the Web browser to execute the majority of the user interface code, such as fetching
the model and using it to render views. This is in contrast to the original breed of Web applica-
tions, which performed these duties on the Web or application server.

 Any Web framework could be relevant to mobile Web development, but this subsection divides
them into two camps:

 ■ Mobile Components for Visualforce— This Salesforce-provided open source library
blends jQuery Mobile with Visualforce components to make mobile-ready Visualforce
pages easier to create.

 ■ Web MVC frameworks— Web frameworks such as Knockout, Backbone, Ember, and
Angular are behind many popular, modern Web applications, including those from
Salesforce. Any of these can be used to build mobile Force.com-enabled applications, and
Salesforce provides sample applications to get you started.

 Mobile Components for Visualforce

 Mobile Components for Visualforce is a series of simple Visualforce components that generate
HTML for mobile devices. They leverage jQuery Mobile framework, but wrap it to make it easier
to use in Visualforce.

 There are three types of components in Mobile Components for Visualforce, described here:

 1. Structural components— These components help determine the layout of the page.
The App component is the container for all other components. SplitView renders the
traditional left-side navigation, right-side detail layout, and is typically used with the
 SplitViewTemplate in an apex:composition component. Page defines a dynamic
content page as found in a Single Page Application. The Header and Footer components
are children of Page and contain content to be placed at the top and bottom of the page.
The Content component, also a child of Page , is the generic container for content.

 2. Data components— The List component renders a list of records resulting from a SOQL
query. The Detail component uses the page layout definition of an SObject to render its
fields in proper position. Both of these components are read-only, meaning they do not
allow the users to edit their data.

 3. Navigation component— This component generates a navigation bar containing links to
show content within the page or URLs outside of the page.

 To install Mobile Components for Visualforce in your Salesforce organization, complete the
following steps:

 1. Download the source code by running git clone https://github.com/
forcedotcom/MobileComponents.git or equivalent in a Git client application.

https://github.com/forcedotcom/MobileComponents.git
https://github.com/forcedotcom/MobileComponents.git

ptg11524036

269Getting Started with Mobile Web Applications

 2. Zip the source code so that it can be deployed. For example: cd MobileComponents/
Visualforce; zip -r mobile_components.zip src/*

 3. Visit the Workbench home page at http://wiki.developerforce.com/page/Workbench .
Click the Login to Workbench Now on Developerforce link or https://workbench.
developerforce.com directly, authenticate to your organization by clicking the Login with
Salesforce button, and select Deploy from the Migration menu. Check Rollback on Error
and click the Choose File button in Google Chrome (the Browse button in Firefox) to
locate your locally stored zip file. Proceed through the wizard to upload the file.

 4. Test the deployment by visiting /apex/MobilePage in your Web browser.

 Notes

 The full documentation and source code for Mobile Components for Visualforce are available at
 http://wiki.developerforce.com/page/MobileComponents .

 Web MVC Frameworks

 Web MVC frameworks include jQuery Mobile, AngularJS, and Backbone.js. Although these
frameworks can be used directly to build mobile Web applications with Force.com, Salesforce
has put together open source projects called Salesforce Mobile Packs to make this process easier.
There is one Mobile Pack for each of the supported frameworks. The Mobile Packs contain fully
functional sample applications leveraging each of the frameworks with Force.com data.

 Salesforce also provides Mobile Design Templates, which provide attractive and functional CSS
and HTML for common Force.com data-rendering scenarios.

 Note

 Salesforce Mobile Packs can be found at http://www2.developerforce.com/mobile/services/
mobile-packs . Mobile Design Templates are located at http://www2.developerforce.com/
mobile/services/mobile-templates .

 Data Access

 Data access is one of the major design decisions involved in building a Force.com mobile
Web application. There are a few different ways to use the Force.com REST API. This includes
authenticating to Force.com and reading and writing its data.

 There are two choices for authentication, described next:

 ■ OAuth— In OAuth, the developer creates a Connected Application in Force.com and uses
it when creating the application. For the user who has not yet authenticated, he or she is
directed to a special Salesforce login page. After login, the user is prompted to share his
or her information with the application. If granted access, the user is redirected back to

http://www2.developerforce.com/mobile/services/mobile-packs
http://www2.developerforce.com/mobile/services/mobile-packs
http://www2.developerforce.com/mobile/services/mobile-templates
http://www2.developerforce.com/mobile/services/mobile-templates
http://wiki.developerforce.com/page/Workbench
https://workbench.developerforce.com
https://workbench.developerforce.com
http://wiki.developerforce.com/page/MobileComponents

ptg11524036

270 Chapter 8 Mobile User Interfaces

the mobile Web application, which now has an access token that grants it permission to
access Force.com on the user’s behalf. Like a session with the Salesforce Web interface,
the token eventually expires and must be refreshed by the application to obtain a
valid one.

 ■ Session sharing— If the mobile Web application is hosted inside Force.com or an
application already authenticated to Force.com, a session identifier can be embedded in
the page. This can be used to make requests to Force.com without asking the user to log
in again.

 These two authentication methods can also be combined in a single application, granting more
flexibility in how the application is hosted.

 When it comes to accessing Force.com data, the decisions depend on how you build your
application. For example, some data access methods are available only for a specific Web
MVC framework. Others only work when hosted within Visualforce pages. A few of the most
common methods follow:

 ■ SmartSync— SmartSync keeps your Web page’s data model in sync with the Force.com
data. As you retrieve or make changes to a collection or model in your Web application,
SmartSync makes the necessary calls to Force.com to mirror them persistently in the
Force.com database. SmartSync is an extension of the Backbone framework, so your
application must be using Backbone to leverage it.

 ■ JavaScript remoting— Available only to Visualforce pages, JavaScript remoting involves
adding a RemoteAction annotation to a static controller method. This makes the
method accessible to JavaScript without any of the overhead of the Visualforce view
state. Keeping data access as lightweight as possible is critical for mobile applications, so
JavaScript remoting is a best practice when building mobile applications in Visualforce.

 ■ actionFunction component— This method of data access is only available to
Visualforce pages. Like JavaScript remoting, it makes a call from the browser’s JavaScript
to the Visualforce controller. It requires less code than JavaScript remoting to call it, but
performance is not as good due to its reliance on view state.

 ■ Force.com REST API— The forcetk.js library wraps the Force.com REST API so that
it is easier to use from JavaScript. Because your Web page will be served from a server
other than the REST API endpoint, accessing the endpoint violates same-origin security
policy in modern Web browsers. This policy states that a script on a page cannot
access a host other than the one serving the page itself. To address this, a proxy is
provided by Salesforce, called the AJAX Proxy. For more information, refer to the online
documentation at http://www.salesforce.com/us/developer/docs/ajax/Content/
sforce_api_ajax_queryresultiterator.htm#ajax_proxy .

 Deployment

 Because mobile Web applications are just Web pages, deployment ultimately requires that
the user simply visit your application’s URL. If you’ve built your application to use OAuth for

http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy
http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy

ptg11524036

271Getting Started with Mobile Web Applications

authentication, you can host its Web pages anywhere. If you’re using session sharing, you need
to host it in an application, referred to here as a container that the user has already used to
authenticate to Salesforce.

 The advantage of a container is that users don’t need to authenticate to Salesforce again just to
use your application. Additionally, they have all of the other features included in the container
application. But don’t be fooled. At the end of the day, the container is purely a Visualforce
page viewer and bookmarker. To be successful, your Visualforce page has to be mobile ready.

 The mobile applications that can serve as containers for Visualforce pages are Salesforce Classic
and Salesforce Touch. To enable a Visualforce page to be shown in Salesforce Classic, follow
these steps:

 1. In the App Setup area, click Create, Tabs. Click the Visualforce tab you’d like to make
available in Salesforce Classic, and check the Mobile Ready check box.

 2. Create a configuration to make the Visualforce page visible. In the Administration Setup
area, click Mobile Administration, Salesforce Classic, Configurations. Click the New
Mobile Configuration button. Enter a name for the configuration, make it active, and
select the users and profiles who will use this mobile configuration.

 3. With your new configuration, you make tabs visible to the mobile device. Click the
Customize Tabs button in the Mobile Tabs section of the configuration. Select a tab from
the list of available tabs, click the Add button, and click the Save button.

 Note

 Refer to the Salesforce Classic Implementation Guide for more information, which can be found
at http://www.salesforce.com/us/developer/docs/mobileImplGuide/index.htm .

 The steps to add your Visualforce pages to Salesforce Touch are next:

 1. In the Administration Setup area, click Mobile Administration, Salesforce Touch, Settings.
Check the Enable Visualforce in Salesforce Touch check box. This step needs to be
performed only once for an entire organization.

 2. For each Visualforce page to be displayed in Touch, go to the App Setup area, click
Develop, Pages. Click the Visualforce page, and check the Available in Touch check
box. You also need a Visualforce tab for each page. To create one, go to the App Setup
area; click Create, Tabs; and click the New button in the Visualforce Tabs section. Select
the Visualforce page to be displayed in Touch, give your tab a label and name, pick a
style, and click the Next button. On the following two pages, select the profiles that can
access the tab and which custom applications include it. Then click Save to finish the
Visualforce Tab Creation Wizard.

http://www.salesforce.com/us/developer/docs/mobileImplGuide/index.htm

ptg11524036

272 Chapter 8 Mobile User Interfaces

 Note

 Unless you plan to use your new Visualforce tabs with Salesforce Classic, there is no need to
enable the Mobile Ready option. It has no effect on Salesforce Touch.

 Sample Application: Mobile Timecard Entry

 The goal of this section is to build a mobile-ready timecard entry interface for consultants. The
requirements for this interface are as follows:

 1. Users are already using Salesforce Touch. They do not want to install a new mobile
application on their phones and tablets. They also don’t want to authenticate to an
additional application or page.

 2. Allow hours to be entered on a project as quickly as possible, with minimal clicking
around.

 3. Timecards are precreated based on the current week and available assignments, so they
are always valid. There is no need to know the assignment or look up any additional
information.

 4. Hours can be entered and saved, but do not need to be submitted right away. This allows
the consultant to keep track of his or her hours on a daily basis rather than waiting until
the end of a week.

 5. Five of the most recent timecards can be displayed. Timecards in an Approved or
Submitted status are locked and cannot be edited. Other timecards can be edited and
saved or submitted.

 The finished page is shown in Figure 8.1 on an iPhone and in Figure 8.2 on the Web. Upon
viewing the page, the consultant is immediately able to see the timecards he or she is respon-
sible for entering based on his or her assignments. The page is responsive, so in the mobile
browser the list of timecards is shown at the top. With a wider screen, this navigation list is
pulled to the left. Clicking on a timecard displays its hours, which are totaled dynamically as
they are entered.

 The mobile timecard entry page can be constructed in three steps, described next:

 1. List timecards— Write a controller method that returns the five most recent timecards.
If no timecards exist yet for the current week and projects that the consultant is assigned
to, create and return them in the list of recent timecards. Render each timecard in a list
that includes the week ending date, project name, and timecard status.

 2. Navigate to timecard— Allow the user to navigate to a timecard by clicking it. This
causes the panel described in the next step to be refreshed.

 3. View and edit timecard— Display the hours (Monday through Friday only) and total
hours for the currently selected timecard. If the timecard is not in an Approved or
Submitted status, allow the hours to be edited. Provide a button to save changes made to
the hours and another button to save changes and submit the timecard.

ptg11524036

273Sample Application: Mobile Timecard Entry

 Listing 8.1 is the controller to implement the first step. It uses JavaScript remoting rather than
ActionFunction to provide the best performance for the Visualforce page. The load method
looks up the current user’s Contact record and looks for Assignment records within the current
week. For every Assignment record without a Timecard record, a Timecard record is created.
Finally, the most recent five Timecard records by Week_Ending__c are returned.

 Figure 8.1 Mobile timecard entry page in iPhone

 Figure 8.2 Mobile timecard entry page in Web browser

ptg11524036

274 Chapter 8 Mobile User Interfaces

 Listing 8.1 Visualforce Controller for Mobile Timecard

 public with sharing class MobileTimecardController {
 @RemoteAction
 public static List<Timecard__c> load() {
 Contact c = currentResource();
 if (c == null) {
 return null;
 }
 Date currentWeekEnding =
 Date.today().toStartOfWeek().addDays(6);
 // Create a current week's timecard for each assignment
 for (Assignment__c a : [SELECT Project__c
 FROM Assignment__c WHERE Contact__c = :c.Id
 AND Status__c = 'Scheduled'
 AND Start_Date__c < :currentWeekEnding
 AND End_Date__c >= :currentWeekEnding
]) {
 if ([SELECT Id FROM Timecard__c
 WHERE Contact__c = :c.Id
 AND Week_Ending__c = :currentWeekEnding
 AND Project__c = :a.Project__c
 LIMIT 1].size() == 0) {
 insert new Timecard__c(Project__c = a.Project__c,
 Week_Ending__c = currentWeekEnding,
 Contact__c = c.Id);
 }
 }
 List<Timecard__c> timecards = [SELECT Project__r.Name,
 Week_Ending__c, Status__c,
 Monday_Hours__c, Tuesday_Hours__c, Wednesday_Hours__c,
 Thursday_Hours__c, Friday_Hours__c
 FROM Timecard__c
 WHERE Contact__c = :c.Id
 ORDER BY Week_Ending__c DESC
 LIMIT 5];
 return timecards;
 }
 private static Contact currentResource() {
 List<Contact> contacts =
 [SELECT Id, Name FROM Contact
 WHERE User__c = :UserInfo.getUserId()];
 if (contacts != null && contacts.size() == 1) {
 return contacts.get(0);
 }
 return null;
 }
 }

ptg11524036

275Sample Application: Mobile Timecard Entry

 Listing 8.2 is a Visualforce page that provides the timecard list functionality for the first step. It
does not include the Visualforce header, sidebar, or standard stylesheets to improve load perfor-
mance. It uses Twitter Bootstrap for simple styling and responsive grid system, and AngularJS
to dynamically bind data from the Visualforce controller to and from the HTML elements. The
AngularJS aspects of the page are important to examine closely:

 ■ MobileTimecardCtrl is the name of the AngularJS controller.
 MobileTimecardController is the Visualforce controller, which is referenced when
 RemoteAction methods are called. Note the usage of its load method. This sets a scope
variable called timecards , which is bound to the HTML list items using the ng-repeat
attribute.

 ■ Ignore the use of the ng-click attribute and the navClass callout in the list items for
now. Those are part of the second step, for navigation.

 ■ Bootstrap is an open source project consisting of CSS and JavaScript to help produce
clean, consistent, responsive Web applications for desktop and mobile browsers. For
more information, see https://github.com/twbs/bootstrap . In this page, the important
parts of Bootstrap are the grid. The row-fluid CSS class sets up a row in the visual grid
system that positions the elements in your page. The span family of CSS classes (span1
through span12) makes up the columns of your page. A single row can consist of a single
 span12 , or 12 span1 elements, and everything in between. In the mobile timecard page,
the navigation bar on the left is a span3 , and the detail area, shown when a timecard is
clicked, is span9 .

 Listing 8.2 Visualforce Page for Mobile Timecard

 <apex:page showHeader="false" standardStylesheets="false"
 sidebar="false"
 controller="MobileTimecardController">
 <head>
 <meta name="viewport"
 content="width=device-width,initial-scale=1.0,
 maximum-scale=1.0,user-scalable=0"/>
 <link
 href="https://netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/css/
➥bootstrap.css"
 rel="stylesheet" />
 <style>
 input[type="number"] { width: 30px; }
 </style>
 </head>
 <body>
 <script>
 function MobileTimecardCtrl($scope, $rootScope, $location) {
 MobileTimecardController.load(function(result, event) {
 if (event.status) {

https://github.com/twbs/bootstrap

ptg11524036

276 Chapter 8 Mobile User Interfaces

 $scope.timecards = result;
 $rootScope.$apply();
 }
 }, { escape: false });
 }
 </script>
 <apex:outputPanel html-ng-app=""
 html-ng-controller="MobileTimecardCtrl" styleClass="container-fluid">
 <div class="row-fluid">
 <div class="span3">
 <div class="well sidebar-nav">
 <ul class="nav nav-list">
 <li ng-class="navClass('{{timecard.Id}}')"
 ng-repeat="timecard in timecards">
 <a ng-click="nav('{{timecard.Id}}')">
 {{timecard.Project__r.Name}}:
 {{timecard.Week_Ending__c | date:'M/d/yyyy'}}

{{timecard.Status__c}}

 </div>
 </div>
 <div class="span9">
 </div>
 </div>
 </apex:outputPanel>
 <script
 src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.0rc1/
➥angular.min.js">
 </script>
 </body>
 </apex:page>

 Listing 8.3 implements the second step, in-page navigation, with the addition of two functions
for the MobileTimecardCtrl AngularJS controller. Insert it after the load function in the first
 script tag.

 For a simple page like this, creating many Visualforce pages, one for each view, adds unnec-
essary overhead. An alternative is to allow the user to navigate but stay within the page,
providing the page with the logic and visual templates necessary to encompass all of the user
interactions. Clicks on anchors change the “route” understood by the Web framework, but it
is handled entirely by the Web framework. The browser does not load a new Web page. This
type of dynamic navigation within a page is typical of a Single Page Application, described in
 Chapter 7 , “Advanced User Interfaces.”

 The navClass method returns the HTML class needed to display highlighting around the
“active” (selected) timecard by comparing the list element’s route to the current path reported

ptg11524036

277Sample Application: Mobile Timecard Entry

by the browser. With every timecard displayed in the list, this method is called to determine its
style class.

 The nav method is called when the user clicks a timecard. Rather than using the standard href
attribute, the ng-click attribute allows the navigation to stay within AngularJS. The method
first finds the selected timecard in the model, the list of timecards previously retrieved using
the Visualforce controller’s load method. It then sets that timecard to the edit variable so that
it can be bound to the detail region of the page, to be added in the third step. It also checks to
see if the timecard is in an editable state, setting a readOnly variable accordingly.

 Listing 8.3 Angular Controller Addition for Navigation

 $scope.navClass = function(page) {
 var currentRoute = $location.path().substring(1) || '';
 return page === currentRoute ? 'active' : '';
 }
 $scope.nav = function(timecardId) {
 $location.path(timecardId);
 for (var idx in $scope.timecards) {
 if ($scope.timecards[idx].Id == timecardId) {
 $scope.edit = $scope.timecards[idx];
 $scope.readOnly = $scope.edit.Status__c == 'Submitted' ||
 $scope.edit.Status__c == 'Approved';
 return;
 }
 }
 $scope.edit = null;
 }

 Listings 8.4 , 8.5 , and 8.6 implement the changes needed to allow timecards to be viewed and
edited. Listing 8.4 adds a new method to simply save the timecard. The AngularJS code in the
browser maintains edits made to the timecard data and passes it into the Visualforce controller
where it is updated in the Force.com database.

 Listing 8.4 Visualforce Controller Addition to Edit Timecard

 @RemoteAction
 public static void save(Timecard__c timecard) {
 update timecard;
 }

 Insert the code in Listing 8.5 into the div element with class span9 . This is the right side of the
page and will contain the detail of the selected timecard. There are two portions of HTML, but
only one is visible at any given moment. They are displayed conditionally using the ng-show
attribute. If there is a currently selected timecard, the edit variable will contain it; otherwise,
it is null. The timecard fields are rendered using input elements, and they are disabled if the

ptg11524036

278 Chapter 8 Mobile User Interfaces

timecard is not editable. The bidirectional data binding of AngularJS is demonstrated with the
dynamic calculation of total hours in the timecard from the user input fields.

 Listing 8.5 Visualforce Page Addition to Edit Timecard

 <div class="row-fluid">
 <div class="span12" ng-show="edit != null">
 <form><fieldset>
 <legend>Timecard for {{edit.Project__r.Name}},
 Week Ending {{edit.Week_Ending__c | date:'M/d/yyyy'}}
 </legend>
 <div class="control-group">
 <div class="controls">
 <input type="number" ng-model="edit.Monday_Hours__c"
 placeholder="M" ng-readonly="readOnly"></input>
 <input type="number" ng-model="edit.Tuesday_Hours__c"
 placeholder="T" ng-readonly="readOnly"></input>
 <input type="number" ng-model="edit.Wednesday_Hours__c"
 placeholder="W" ng-readonly="readOnly"></input>
 <input type="number" ng-model="edit.Thursday_Hours__c"
 placeholder="Th" ng-readonly="readOnly"></input>
 <input type="number" ng-model="edit.Friday_Hours__c"
 placeholder="F" ng-readonly="readOnly"></input>
 <label>Total Hours: {{edit.Monday_Hours__c + edit.Tuesday_Hours__c +
 edit.Wednesday_Hours__c + edit.Thursday_Hours__c +
 edit.Friday_Hours__c}}</label>
 <div ng-hide="readOnly">
 <button ng-click="save('Saved')" type="submit"
 class="btn">Save</button>
 <button ng-click="save('Submitted')" type="submit"
 class="btn">Submit</button>
 </div>
 </div>
 </div>
 </fieldset>
 </form>
 </div>
 <div class="span12" ng-show="edit == null">
 Please select a timecard to edit it.
 </div>
 </div>

 Listing 8.6 is the final piece to the timecard entry page. Insert it into the AngularJS controller.
It adds a save method, which is wired up to the Save and Submit buttons in Listing 8.5 . It sets
the status of the timecard and calls the Visualforce controller’s save action to save it. It then
resets the page so that no timecard is selected.

ptg11524036

279Summary

 Listing 8.6 Angular Controller Addition to Edit Timecard

 $scope.save = function(status) {
 $scope.edit.Status__c = status;
 MobileTimecardController.save($scope.edit,
 function(result, event) {
 if (event.status) {
 $location.path('/');
 $scope.edit = null;
 $rootScope.$apply();
 }
 }, { escape: false });
 }

 To test this feature, install Salesforce Touch on your mobile device and perform the following
steps:

 1. Enable the page for Touch access. Go to the App Setup area and click Develop, Pages.
Click the Visualforce page, click the Edit button, check the Available in Touch check box,
and click the Save button.

 2. Add a Visualforce tab for your new page. In the App Setup area, click Create, Tabs. Click
the New button in the Visualforce Tabs section. Select the MobileTimecard Visualforce
page, give the tab a label and name that you’d like to see on your mobile device. Select a
tab style, profiles, and application visibility, and save the tab.

 3. Launch Salesforce Touch on your mobile device and log in.

 4. Click the List icon in the upper-left corner to overlay the list of accessible pages. You
should see your Mobile Timecard page as an option. Select it to start using the mobile
timecard entry feature.

 Summary

 Mobile development with Force.com is a rapidly changing subject, with an active open source
community around it. There are a wealth of options for building mobile applications, some
directly baked into Salesforce products, some born within Salesforce but supported by the
community, and many other general-purpose technologies that can be helpful.

 Before moving on to the next chapter, take a moment to review a few highlights related to
mobile development:

 ■ Salesforce provides three mobile applications that are ready to download and use for
Android and iOS devices: Salesforce Classic, Salesforce Touch, and Chatter Mobile. Of
the three, the first two are the most interesting to mobile developers because they can be
extended with custom Visualforce pages.

ptg11524036

280 Chapter 8 Mobile User Interfaces

 ■ There are three major types of custom mobile applications: native, Web, and hybrid.
Native is the closest to the mobile device’s hardware and therefore offers the best
performance and depth of features. Web runs within the mobile device’s Web browser,
and offers the least control to the developer but can be easier to develop and deploy.
Hybrid strives to be the best of both approaches, a mix and match of native and Web.
Pick the option that makes the most sense for your application, users, and development
skill set.

 ■ Although Visualforce is a good starting point for mobile Web applications, your
Visualforce controllers and pages need to be optimized for this purpose. Visually they
should be responsive, adapting to the screen resolution of the device. In terms of data,
they should be frugal, requesting data only as needed and avoiding page navigation.
Using Visualforce as the container for a Single Page Application is a helpful pattern. A
number of open source projects are available to help with Web applications, from data
management to responsive design.

ptg11524036

 9
 Batch Processing

 You’ve learned two ways you can process database records within the Force.com platform: triggers
and Visualforce controllers. Each has its own set of platform-imposed limitations, such as how many
records can be created at one time. As you accumulate tens of thousands of records or more in your
database, you might need to process more records than permitted by the governor limits applying to trig-
gers and controllers.

 Although Salesforce has simplified and incrementally relaxed governor limits in recent Force.com
releases, triggers and Visualforce controllers are fundamentally not suited to processing large amounts
of data in a multitenant environment. They are driven by user interaction, and must be limited to
provide good performance to all users. The Force.com platform carefully controls its resources to main-
tain high performance for all, so resource-intensive tasks such as processing millions of records must be
planned and executed over time, balanced with the demands of other customers.

 Batch processing makes this possible, and Batch Apex is the Force.com feature that enables batch
processing on the platform. With Batch Apex, data-intensive tasks are taken offline, detached from user
interactions, the exact timing of their execution determined by Salesforce itself. In return for relinquish-
ing some control, you, the developer, receive the ability to process orders of magnitude more records
than you can in triggers and controllers.

 In this chapter, you will learn how to use Batch Apex to create, update, and delete millions of records at
a time. It is divided into five sections:

 ■ Introduction to Batch Apex— Learn the concepts and terminology of Batch Apex, what it can
do, and when you should and should not use it.

 ■ Getting started with Batch Apex— Walk through a simple example of Batch Apex. Develop
the code, run it, and monitor its execution.

 ■ Testing Batch Apex— Like any other Apex code, proper test coverage is required. Learn how to
kick off Batch Apex jobs within test code.

 ■ Scheduling Batch Apex— Although Salesforce has the final say on when Batch Apex is run,
you can schedule jobs to run using a built-in scheduler. Learn how to use the scheduling user
interface and achieve finer-grained control in Apex code.

 ■ Sample application— Enhance the Services Manager application by creating a scheduled batch
process to identify missing timecards.

ptg11524036

282 Chapter 9 Batch Processing

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/Iw8XT .

 Introduction to Batch Apex

 Prior to the availability of Batch Apex, the only options for processing data exceeding the
governor limits of triggers and controllers were tricky workarounds to shift work off the plat-
form. For example, you might have hundreds of thousands of records spanning multiple
Lookup relationships to be summarized, deduplicated, cleansed, or otherwise modified en
masse algorithmically. You could use the Web Services API to interact with the Force.com data
from outside of Force.com itself, or you could use JavaScript to process batches of data inside
the Web browser. These approaches are usually slow and brittle, requiring lots of code and
exposing you to data quality problems over time due to gaps in error handling and recovery.
Batch Apex allows you to keep the large, data-intensive processing tasks within the platform,
taking advantage of its close proximity to the data and transactional integrity to create secure,
reliable processes without the limits of normal, interactive Apex code. This section introduces
you to concepts and guidelines for using Batch Apex to prepare you for hands-on work.

 Batch Apex Concepts

 Batch Apex is an execution framework that splits a large data set into subsets and provides
them to ordinary Apex programs that you develop, which continue to operate within their
usual governor limits. This means with some minor rework to make your code operate as Batch
Apex, you can process data volumes that would otherwise be prohibited within the platform.
By helping Salesforce break up your processing task, you are permitted to run it within its
platform.

 A few key concepts in Batch Apex are used throughout this chapter:

 ■ Scope— The scope is the set of records that a Batch Apex process operates on. It can
consist of 1 record or up to 50 million records. Scope is usually expressed as a SOQL
statement, which is contained in a Query Locator, a system object that is blessedly
exempt from the normal governor limits on SOQL. If your scope is too complex to be
specified in a single SOQL statement, then writing Apex code to generate the scope
(called an iterable scope) programmatically is also possible. Unfortunately, using Apex
code dramatically reduces the number of records that can be processed because it is
subject to the standard governor limit on records returned by a SOQL statement.

 ■ Batch job— A batch job is a Batch Apex program that has been submitted for execution.
It is the runtime manifestation of your code, running asynchronously within the Force.
com platform. Because batch jobs run in the background and can take many hours
to complete their work, Salesforce provides a user interface for listing batch jobs and
their statuses, and to allow individual jobs to be canceled. This job information is also
available as a standard object in the database. Although the batch job is not the atomic
unit of work within Batch Apex, it is the only platform-provided level at which you have
control over a batch process.

http://goo.gl/Iw8XT

ptg11524036

283Introduction to Batch Apex

 ■ Transaction— Each batch job consists of transactions, which are the governor limit-
friendly units of work you’re familiar with from triggers and Visualforce controllers. By
default, a transaction is up to 2,000 records (with no limit for an iterable scope), but you
can adjust this downward in code. When a batch job starts, the scope is split into a series
of transactions. Each transaction is then processed by your Apex code and committed
to the database independently. Although the same block of your code is being called
upon to process potentially thousands of transactions, the transactions themselves are
normally stateless. None of the variables within it are saved between invocations unless
you explicitly designate your Batch Apex code as stateful when it is developed. Salesforce
doesn’t provide information on whether your transactions are run in parallel or serially,
nor how they are ordered. Observationally, transactions seem to run serially, in order
based on scope.

 In the remainder of this section, these concepts are applied to take you one step closer to
writing your own Batch Apex.

 Understanding the Batchable Interface

 To make your Apex code run as a batch, you must sign a contract with the platform. This
contract takes the form of an interface called Batchable that must be implemented by your
code. It requires that you structure your processing logic into the following three methods:

 ■ start — The start method is concerned with the scope of work, the raw set of records
to be processed in the batch. When a batch is submitted to Salesforce for processing,
the first thing it does is invoke your start method. Your job here is to return a
 QueryLocator or an Iterable that describes the scope of the batch job.

 ■ execute — After calling the start method, Force.com has the means to access all the
records you’ve requested that it operate on. It then splits these records into sets of up to
200 records and invokes your execute method repeatedly, once for each set of records.
At this point, your code can perform the substance of the batch operation, typically
inserting, updating, or deleting records. Each invocation of execute is a separate
transaction. If an uncaught exception is in a transaction, no further transactions are
processed and the entire batch job is stopped.

 Caution

 Transactions that complete successfully are never rolled back. So, an error in a transaction
stops the batch, but transactions executed up to that point remain in the database. Thinking of
an overall Batch Apex job as transactional is dangerous, because this is not its default behav-
ior. Additionally, you cannot use savepoints to achieve a single pseudotransaction across the
entire batch job. If you must achieve jobwide rollback, this can be implemented in the form of a
compensating batch job that reverses the actions of the failed job.

 ■ finish — The finish method is invoked once at the end of a batch job. The job ends
when all transactions in the scope have been processed successfully, or if processing
has failed. Regardless of success or failure, finish is called. There is no requirement

ptg11524036

284 Chapter 9 Batch Processing

to do anything special in the method. You can leave the method body empty if
no postprocessing is needed. It simply provides an opportunity for you to receive a
notification that processing is complete. You could use this information to clean up any
working state or notify the user via email that the batch job is complete.

 With this initial walk-through of the Batchable interface, you can begin to apply it to your
own trigger or Visualforce controller code. If you find a process that is a candidate to run as a
batch, think about how it can be restructured to conform to this interface and thus take advan-
tage of Batch Apex.

 Applications of Batch Apex

 Like any feature of Force.com, Batch Apex works best when you apply it to an appropriate use
case that meshes well with its unique capabilities. The following list provides some guidelines
when evaluating Batch Apex for your project:

 ■ Single database object— Batch Apex is optimized to source its data from a single, “tall”
(containing many records) database object. It cannot read data from other sources,
such as callouts to Web services. If the records you need to process span many database
objects that cannot be reached via parent-child or child-parent relationships from a
single database object, you should proceed carefully. You will need to develop separate
Batch Apex code for every database object. Although this is doable and you can share
code between them, it creates maintenance headaches and quickly exposes you to the
limitation of five active batch jobs per organization.

 ■ Simple scope of work— Although Batch Apex allows the use of custom code to provide it
with the records to process, it is most powerful when the scope of work is expressed in a
single SOQL statement. Do some work up front to ensure that the source of data for your
batch can be summed up in that single SOQL statement.

 ■ Minimal shared state— The best design for a Batch Apex process is one where every unit
of work is independent, meaning it does not require information to be shared with other
units of work. Although creating stateful Batch Apex is possible, it is a less mature feature
and more difficult to debug than its stateless counterpart. If you need shared state to be
maintained across units of work, try to use the database itself rather than variables in
your Apex class.

 ■ Limited transactionality— If your batch process is a single, all-or-nothing transaction,
Batch Apex is only going to get you halfway there. You will need to write extra code to
compensate for failures and roll back the database to its original state.

 ■ Not time-critical— Salesforce provides no hard guarantees about when Batch Apex is
executed or its performance. If you have an application that has time-based requirements
such that users will be prevented from doing their jobs if a batch does not run or
complete by a specific time, Batch Apex might not be a good fit. A better fit is a process
that must run within a time window on the order of hours rather than minutes.

ptg11524036

285Getting Started with Batch Apex

 These guidelines might seem stifling at first glance, but Batch Apex actually enables an impres-
sive breadth of interesting applications to be developed that were previously impossible with
other forms of Apex.

 Getting Started with Batch Apex

 You don’t need an elaborate use case or huge data volumes to get started with Batch Apex. This
section walks you through the development of a simple Batch Apex class that writes debug
log entries as it runs. The class is submitted for execution using the Force.com IDE and moni-
tored in the administrative Web user interface. Two more versions of the Batch Apex class are
developed: one to demonstrate stateful processing and the other an iterable scope. The section
concludes with a description of important Batch Apex limits.

 Developing a Batch Apex Class

 Although the class in Listing 9.1 performs no useful work, it leaves a trail of its activity in the
debug log. This is helpful in understanding how Force.com handles your batch-enabled code. It
also illustrates the basic elements of a Batch Apex class, listed next:

 ■ The class must implement the Database.Batchable interface. This is a parameterized
interface, so you also need to provide a type name. Use SObject for batches with a
 QueryLocator scope, or any database object type for an Iterable scope.

 ■ The class must be global. This is a requirement of Batch Apex classes.

 Listing 9.1 Sample Batch Apex Code

 global class Listing9_1 implements Database.Batchable<SObject> {
 global Database.QueryLocator start(Database.BatchableContext context) {
 System.debug('start');
 return Database.getQueryLocator(
 [SELECT Name FROM Project__c ORDER BY Name]);
 }
 global void execute(Database.BatchableContext context,
 List<SObject> scope) {
 System.debug('execute');
 for(SObject rec : scope) {
 Project__c p = (Project__c)rec;
 System.debug('Project: ' + p.Name);
 }
 }
 global void finish(Database.BatchableContext context) {
 System.debug('finish');
 }
 }

ptg11524036

286 Chapter 9 Batch Processing

 Before actually running the code in the next subsection, review these implementation details:

 ■ The start method defines the scope by returning a QueryLocator object constructed
from an in-line SOQL statement. The SOQL statement returns all Project records in
ascending order by the Name field. The SOQL statement can use parameters (prefaced
with a colon) like any in-line SOQL in Apex code. Relationship queries are acceptable,
but aggregate queries are not allowed. You can also pass a SOQL string into the
 getQueryLocator method, which allows the scope of the batch to be specified with
dynamic SOQL.

 ■ The execute method is called once per transaction with a unique group of up to 2,000
records from the scope. The records are provided in the scope argument.

 ■ The finish method is called when all transactions have completed processing, or the
batch job has been interrupted for any reason.

 ■ The BatchableContext object argument in all three methods contains a method for
obtaining the unique identifier of the current batch job, getJobID . This identifier can
be used to look up additional information about the batch job in the standard database
object AsyncApexJob. You can also pass this identifier to the System.abortJob method
to stop processing of the batch job.

 Working with Batch Apex Jobs

 Batch Apex can be executed from a Visualforce page, scheduled to run automatically at specific
times, or kicked off from within a trigger. But the easiest way to experiment with it is in the
Execute Anonymous view in the Force.com IDE.

 First, enable debug logging for your user in the Administration Setup area; select Monitoring,
Debug Logs; and add your user to the list of monitored users by clicking the New button. This
is no different than debugging any Apex class. Using the Execute Anonymous view, enter
the code in Listing 9.2 and execute it. The batch is submitted and its unique job identifier
displayed in the results box.

 Listing 9.2 Running Sample Batch Apex Code

 Listing9_1 batch = new Listing9_1();
 Id jobId = Database.executeBatch(batch);
 System.debug('Started Batch Apex job: ' + jobId);

 The executeBatch method of the Database class does the work here. It queues the batch job
for processing when Force.com is ready to do so. This could be in seconds or minutes; it is
not specified. The Listing9_1 sample class is very simple, but in many cases you would need
to pass arguments, either in the constructor or via setter methods, to adjust the behavior of a
batch process. This is no different from any Apex class.

ptg11524036

287Getting Started with Batch Apex

 To start a batch in response to a button click or other user interface action, apply the code
shown in Listing 9.2 within a Visualforce custom controller or controller extension class. Now
that you have submitted your batch job, it’s time to monitor its progress. In your Web browser,
go to the Administration Setup area and select Monitoring, Apex Jobs. This page, shown in
 Figure 9.1 , allows you to manage all the batch jobs in your Force.com organization.

 Figure 9.1 Apex Jobs user interface

 The single Listing9_1 job you executed should be visible. By this time, it is most likely in the
Completed status, having few records to process. If Force.com is very busy, you might see a
status of Queued. This means the job has not been started yet. A status value of Processing indi-
cates the job is currently being executed by the platform. If a user interrupts the job by clicking
the Abort link on this page, the job status becomes Aborted. A job with a Failed status means
an uncaught exception was thrown during its execution. If you scroll to the right, you can also
see the Apex Job Id, which should match the one returned by the Database.executeBatch
method.

 Take a closer look at the values in the Total Batches and Batches Processed columns. To avoid
confusion, disregard the word Batches here. Total Batches is the number of transactions needed
to complete the batch job. It is equal to the scope (which defaults to 200) divided into the
number of records returned by the start method. The Batches Processed column contains
the number of times the execute method of your Batch Apex class was invoked so far. As the
processing proceeds, you should see it increment until it is equal to the Total Batches value.

ptg11524036

288 Chapter 9 Batch Processing

For example, if you have fewer than 200 Project records in your database, you should see a 1
in both columns when the batch is complete. If you have between 201 and 400 records, you
should see 2 instead. If you have 1,500 records and the system is processing the 300th record,
you should see a value of 8 in Total Batches and 1 in Processed Batches. All the informa-
tion on the page is also accessible programmatically, contained in the standard object named
AsyncApexJob.

 You have seen the batch job run its course. Proceed back to the Debug Logs page. Here you can
review the job’s execution in detail, thanks to the System.debug statements throughout the
code. Figure 9.2 is an example of what you might see there.

 Figure 9.2 Debug logs from sample Batch Apex code

 Four separate logs each cover a different aspect of the batch execution. Each is described next
in the order they are executed, although this might not be the order shown on the Debug Logs
page:

 1. Results of evaluating the code in the Execute Anonymous view.

 2. Invocation of the start method to prepare the data set for the batch.

 3. Results of running the execute method, where the batch job performs its work on the
subsets of the data.

 4. All the transactions have been processed, so the finish method is called to allow
postprocessing to occur.

ptg11524036

289Getting Started with Batch Apex

 These results are somewhat interesting, but appreciating what the batch is doing is hard
without more data. You could add 200 more Project records, or you can simply adjust the scope
to process fewer records per transaction. Listing 9.3 is an example of doing just that, passing
the number 2 in as the scope, the second argument of the Database.executeBatch method.
This indicates to Force.com that you want a maximum of two records per transaction in the
batch job.

 Listing 9.3 Running Sample Batch Apex Code with Scope Argument

 Listing9_1 batch = new Listing9_1();
 Id jobId = Database.executeBatch(batch, 2);
 System.debug('Started Batch Apex job: ' + jobId);

 After running this code in the Execute Anonymous view, return to the debug logs. You should
now see two additional logs in the execute phase, for a total of three transactions of two
records each. The three transactions are needed to process the six Project records.

 Using Stateful Batch Apex

 Batch Apex is stateless by default. That means for each execution of your execute method,
you receive a fresh copy of your object. All fields of the class are initialized, static and instance.
If your batch process needs information that is shared across transactions, one approach is
to make the Batch Apex class itself stateful by implementing the Stateful interface. This
instructs Force.com to preserve the values of your static and instance variables between
transactions.

 To try a simple example of stateful Batch Apex, create a new Apex class with the code in
Listing 9.4 .

 Listing 9.4 Stateful Batch Apex Sample

 global class Listing9_4
 implements Database.Batchable<SObject>, Database.Stateful {
 Integer count = 0;
 global Database.QueryLocator start(Database.BatchableContext context) {
 System.debug('start: ' + count);
 return Database.getQueryLocator(
 [SELECT Name FROM Project__c ORDER BY Name]);
 }
 global void execute(Database.BatchableContext context,
 List<SObject> scope) {
 System.debug('execute: ' + count);
 for(SObject rec : scope) {
 Project__c p = (Project__c)rec;
 System.debug('Project ' + count + ': ' + p.Name);
 count++;

ptg11524036

290 Chapter 9 Batch Processing

 }
 }
 global void finish(Database.BatchableContext context) {
 System.debug('finish: ' + count);
 }
 }

 Take a moment to examine the differences between this class and the original, stateless version.
Implementing the interface Database.Stateful is the primary change. The other changes
are simply to provide proof in the debug log that the value of the count variable is indeed
preserved between transactions.

 Run the modified class with a scope of two records and examine the debug log. Although the
log entries might not be ordered in any discernible way, you can see all the Project records
have been visited by the batch process. Assuming you have six Project records in your database,
you should see a total of six new debug log entries: one to begin the batch, one for the start
method, three entries’ worth of transactions (of two records each), and one for the finish
method.

 Notice the value of the count variable throughout the debug output. It begins at 0 in the first
transaction, increments by two as Project records are processed, and begins at 2 in the second
transaction. Without implementing Database.Stateful , the count variable would remain
between 0 and 2 for every transaction. The value of the count variable is 6 when the finish
method is reached.

 Using an Iterable Batch Scope

 All of the sample code so far has used a QueryLocator object to define the scope of its batch.
This enables up to 50 million records to be processed by the batch job, but requires that the
scope be defined entirely using a single SOQL statement. This can be too limiting for some
batch processing tasks, so the iterable batch scope is offered as an alternative.

 The iterable scope allows custom Apex code to determine which records are processed in the
batch. For example, you could use an iterable scope to filter the records using criteria that are
too complex to be expressed in SOQL. The downside of the iterable approach is that standard
SOQL limits apply. This means you can process a maximum of 50,000 records in your batch
job, a dramatic reduction from the 50 million record limit of a QueryLocator object.

 To develop a batch with iterable scope, you must first write code to provide data to the batch.
There are two parts to this task:

 ■ Implement the Iterator interface— The Iterator is a class for navigating a collection
of elements. It navigates in a single direction, from beginning to end. It requires that
you implement two methods: hasNext and next . The hasNext method returns true
if additional elements are left to navigate to, false when the end of the collection has
been reached. The next method returns the next element in the collection. Iterator
classes must be global.

ptg11524036

291Getting Started with Batch Apex

 ■ Implement the Iterable interface— Think of this class as a wrapper or locator
object that directs the caller to an Iterator . It requires a single global method to be
implemented, called Iterator , which returns an Iterable object. Like Iterator ,
classes implementing Iterable must be global.

 You could write two separate classes, one to implement each interface. Or you can implement
both interfaces in a single class, the approach taken in the code in Listing 9.5 .

 Listing 9.5 Project Iterator

 global class ProjectIterable
 implements Iterator<Project__c>, Iterable<Project__c> {
 List<Project__c> projects { get; set; }
 Integer i;
 public ProjectIterable() {
 projects = [SELECT Name FROM Project__c ORDER BY Name];
 i = 0;
 }
 global Boolean hasNext() {
 if (i >= projects.size()) {
 return false;
 } else {
 return true;
 }
 }
 global Project__c next() {
 i++;
 return projects[i-1];
 }
 global Iterator<Project__c> Iterator() {
 return this;
 }
 }

 With the implementation of the Iterable class ready for use, examine the code in Listing
 9.6 . It is very similar to the first Batch Apex example. The only notable differences are that the
parameterized type has been changed from SObject to Project__c , and the start method
now returns the Iterable class developed in Listing 9.5 .

 Listing 9.6 Iterable Batch Apex Sample

 global class Listing9_6
 implements Database.Batchable<Project__c> {
 global Iterable<Project__c> start(Database.BatchableContext context) {
 System.debug('start');
 return new ProjectIterable();

ptg11524036

292 Chapter 9 Batch Processing

 }
 global void execute(Database.BatchableContext context,
 List<Project__c> scope) {
 System.debug('execute');
 for(Project__c rec : scope) {
 System.debug('Project: ' + rec.Name);
 }
 }
 global void finish(Database.BatchableContext context) {
 System.debug('finish');
 }
 }

 Turn on the debug log for your user and run the Listing9_6 job. Examine the logs and see
for yourself that you’ve accomplished the same work as the Listing9_1 code using an iterable
scope instead of a QueryLocator object.

 Limits of Batch Apex

 You must keep in mind several important limits of Batch Apex:

 ■ Future methods are not allowed anywhere in Batch Apex.

 ■ Batch jobs are always run as the system user, so they have permission to read and write
all data in the organization.

 ■ The maximum heap size in Batch Apex is 12MB.

 ■ Calling out to external systems using the HTTP object or webservice methods is limited
to one for each invocation of start , execute , and finish . To enable your batch process
to call out, make sure the code implements the Database.AllowsCallouts interface in
addition to the standard Database.Batchable interface.

 ■ Transactions (the execute method) run under the same governor limits as any Apex
code. If you have intensive work to do in your execute method and worry about
exceeding the governor limits when presented with the default 200 records per
transaction, reduce the number of records using the optional scope parameter of the
 Database.executeBatch method.

 ■ The maximum number of queued or active batch jobs within an entire Salesforce
organization is five. Attempting to run another job beyond the five raises a runtime error.
For this reason, you should tightly control the number of batch jobs that are submitted.
For example, submitting a batch from a trigger is generally a bad idea if you can avoid it.
In a trigger, you can quickly exceed the maximum number of batch jobs.

ptg11524036

293Scheduling Batch Apex

 Testing Batch Apex

 Batch Apex can be tested like any Apex code, although you are limited to a single transaction’s
worth of data (one invocation of the execute method). A batch job started within a test runs
synchronously, and does not count against the organization’s limit of five batch jobs.

 The class in Listing 9.7 tests the Batch Apex example from Listing 9.1 and achieves 100% test
coverage. The annotation IsTest(SeeAllData=true) allows the test to access the data in the
organization rather than requiring it to create its own test data. Alternatively, you could modify
the code to omit the annotation and insert a few Project records to serve as test data.

 Listing 9.7 Batch Apex Test

 @IsTest(SeeAllData=true)
 public with sharing class Listing9_7 {
 public static testmethod void testBatch() {
 Test.startTest();
 Listing9_1 batch = new Listing9_1();
 ID jobId = Database.executeBatch(batch);
 Test.stopTest();
 }
 }

 The test method simply executes the batch with the same syntax as you have used in the
Execute Anonymous view. The batch execution is bookended with the startTest and
 stopTest methods. This ensures that the batch job is run synchronously and is finished at
the stopTest method. This enables you to make assertions (System.assert) to verify that the
batch performed the correct operations on your data.

 Scheduling Batch Apex

 Along with Batch Apex, Salesforce added a scheduler to the Force.com platform. This enables
any Apex code, not just Batch Apex, to be scheduled to run asynchronously at regular time
intervals. Prior to the introduction of this feature, developers had to resort to off-platform
workarounds, such as invoking a Force.com Web service from an external system capable of
scheduling jobs.

 This section describes how to prepare your code for scheduling and how to schedule it from
Apex and the administrative user interface.

 Developing Schedulable Code

 An Apex class that can be scheduled by Force.com must implement the Schedulable interface.
The interface requires no methods to be implemented; it simply indicates to the platform that
your class can be scheduled. Code that is executed by the scheduler runs as the system user, so

ptg11524036

294 Chapter 9 Batch Processing

sharing rules or other access controls are not enforced. At most, ten classes can be scheduled at
one time.

 The class in Listing 9.8 enables the Batch Apex example from Listing 9.1 to be schedulable. It
does this by implementing the Schedulable interface, which has a single method: execute .
Although you could implement this interface directly on your batch class, the best practice
recommended by Salesforce is to create a separate Schedulable class.

 Listing 9.8 Schedulable Batch Apex

 global class Listing9_8 implements Schedulable {
 global void execute(SchedulableContext sc) {
 Listing9_1 batch = new Listing9_1();
 Database.executeBatch(batch);
 }
 }

 Scheduling Batch Apex Jobs

 To schedule a job using the user interface, go to the App Setup area and click Develop, Apex
Classes. Click the Schedule Apex button. In Figure 9.3 , the Listing9_8 class has been config-
ured to run Saturday mornings at 11:00 a.m. between 7/10/2013 and 8/10/2013.

 Figure 9.3 Schedule Apex user interface

ptg11524036

295Scheduling Batch Apex

 To view and cancel scheduled jobs, go to the Administration Setup area and click Monitoring,
Scheduled Jobs. This is shown in Figure 9.4 with the previously scheduled job. At this point,
you can click Manage to edit the schedule, or Del to cancel it.

 Figure 9.4 All Scheduled Jobs user interface

 The same management of scheduled jobs available in the user interface can be automated using
Apex code, as described next:

 ■ Create a scheduled job— Use the System.schedule method to schedule a new job. This
method requires three arguments: the name of the job, the schedule expression, and an
instance of class to schedule. The schedule expression is a string in crontab-like format.
This format is a space-delimited list of the following arguments: seconds, minutes,
hours, day of month, month, day of week, and year (optional). Each argument is a value
specifying when the job is to run in the relevant units. All arguments except seconds
and minutes permit multiple values, ranges, wildcards, and increments. For example, the
schedule expression 0 0 8 ? * MON-FRI schedules the job for weekdays at 8:00 a.m.
The 8 indicates the eighth hour, the question mark leaves day of month unspecified, the
asterisk indicates all months, and the day of week is Monday through Friday. The time
zone of the user scheduling the job is used to calculate the schedule.

 Note

 For a full reference to schedule expressions, refer to the Force.com Apex Code Developer’s
Guide section on the subject, available at http://www.salesforce.com/us/developer/docs/
apexcode/index_Left.htm#StartTopic=Content/apex_scheduler.htm .

http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content/apex_scheduler.htm
http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content/apex_scheduler.htm

ptg11524036

296 Chapter 9 Batch Processing

 ■ View a scheduled job— To get attributes about a scheduled job, such as when it will be
executed next, query the standard object CronTrigger . It includes useful fields such as
 NextFireTime , PreviousFireTime , as well as StartTime and EndTime , calculated from
the time the scheduled job was created to the last occurrence as specified by the schedule
expression.

 ■ Delete a scheduled job— The System.abortJob method deletes scheduled jobs.
It requires a single argument, the identifier returned by the SchedulableContext
getTriggerID method. This can also be obtained from the Id field of a CronTrigger
record.

 ■ Modify a scheduled job— The standard object CronTrigger is read-only, so to modify a
job, you must delete it first and then re-create it.

 The code in Listing 9.9 can be executed in the Execute Anonymous view to schedule the
 Listing9_8 class to run monthly on the first day of every month at 1:00 a.m. in the user’s
time zone. You can verify this by examining the scheduled job in the user interface or querying
the CronTrigger object.

 Listing 9.9 Sample Code to Schedule Batch Apex

 System.schedule('Scheduled Test', '0 0 1 * * ?', new Listing9_8());

 Caution

 After an Apex class is scheduled, its code cannot be modified until all of its scheduled jobs are
deleted.

 Sample Application: Missing Timecard Report

 A common application of Batch Apex is to distill a large number of records down to a smaller,
more digestible set of records that contain actionable information. In the Services Manager
sample application, consultants enter timecards against assignments, specifying their daily
hours for a weekly period. When consultants fail to enter their timecards in a timely manner,
this can impact the business in many ways: Customers cannot be invoiced, and the budget of
billable hours can be overrun without warning. With a large number of timecards, consultants,
and projects, manually searching the database to identify missing timecards isn’t feasible. This
information needs to be extracted from the raw data.

 The management users of the Services Manager have requested a tool that enables them to
proactively identify missing timecards. They would like to see a list of the time periods and the
assignments that have no timecard so that they can work with the consultants to get their time
reported. This information could later be used as the basis of a custom user interface, report or
dashboard component, or automated email notifications to the consultants.

ptg11524036

297Sample Application: Missing Timecard Report

 This section walks through the implementation of the missing timecard report. It consists of
the following steps:

 1. Create a custom object to store the list of missing timecards.

 2. Develop a Batch Apex class to calculate the missing timecard information.

 3. Run through a simple test case to make sure the code works as expected.

 Creating the Custom Object

 Your Services Manager users in supervisory positions have asked to see missing timecards of
their consultants. Specifically they want the dates of missing timecards, the offending consul-
tants, and their assigned projects. There are two fields necessary to provide the requested infor-
mation: the assignment, which automatically includes the resource and project as references,
and the week ending date that lacks a timecard for the assignment.

 Create a new custom object to store this information, naming it Missing Timecard. Add a
lookup field to Assignment and a Date field named Week_Ending__c to mirror the field of the
same name in the Timecard object. Create a custom tab for this object as well. When you’re
done, the Missing Timecard object definition should resemble Figure 9.5 .

 Figure 9.5 Missing timecard custom object definition

ptg11524036

298 Chapter 9 Batch Processing

 Developing the Batch Apex Class

 A good design approach for Batch Apex is to consider the input schema, output schema, and
the most direct algorithm to transform input to output. You’ve already designed the output
schema based on what the users want to see: the Missing Timecard object. That leaves the
input and the algorithm to be designed.

 Consider the algorithm first, which drives the input. The algorithm loops through assignments
that are not in Tentative or Closed status. It builds a list of Week Ending dates of valid time-
cards (in Submitted or Approved status) in the same project as the assignment. It then cycles
through the weeks between the start and end dates of the assignment, up to the current day.
If a week ending date is not found in the list of timecard Week Ending dates, it is considered
missing and its assignment and date are added to the Missing Timecards object.

 With the algorithm nailed down, move on to the input. The key to a concise, maintainable
Batch Apex class is formulating the right SOQL query to provide the input records. Most of the
effort is in finding the optimal SObject to base the query on. If you pick the wrong SObject,
you could be forced to augment the input in your execute method, resulting in more queries,
this time subject to SOQL governor limits.

 It is clear from the algorithm that the batch input must include Assignment records and corre-
sponding Timecard records. But Assignment and Timecard are two separate many-to-many rela-
tionships with no direct relationship with each other.

 Although basing the query on the Assignment or Timecard objects might be tempting, this
leads to a weak design. For example, if you query the assignments in the start method and
then augment this with Timecard records in the execute method, you need to build dynamic
SOQL to optimize the second query given the input Assignment records. This is a sure sign that
you should continue to iterate on the design.

 When you switch tracks and design the batch around the Project object, life becomes easier.
From Project, you have access to Timecard and Assignment records at the same time. The code
in Listing 9.10 implements the missing timecard feature with a query on Project as the input.

 Listing 9.10 MissingTimecardBatch

 global class MissingTimecardBatch
 implements Database.Batchable<SObject> {
 global Database.QueryLocator start(Database.BatchableContext context) {
 return Database.getQueryLocator([SELECT Name, Type__c,
 (SELECT Name, Start_Date__c, End_Date__c
 FROM Assignments__r WHERE Status__c NOT IN ('Tentative', 'Closed')),
 (SELECT Status__c, Week_Ending__c
 FROM Timecards__r
 WHERE Status__c IN ('Submitted', 'Approved'))
 FROM Project__c
]);
 }
 global void execute(Database.BatchableContext context,
 List<SObject> scope) {

ptg11524036

299Sample Application: Missing Timecard Report

 List<Missing_Timecard__c> missing = new List<Missing_Timecard__c>();
 for (SObject rec : scope) {
 Project__c proj = (Project__c)rec;
 Set<Date> timecards = new Set<Date>();
 if (proj.Assignments__r != null) {
 for (Assignment__c assign : proj.Assignments__r) {
 if (proj.Timecards__r != null) {
 for (Timecard__c timecard : proj.Timecards__r) {
 timecards.add(timecard.Week_Ending__c);
 }
 }
 /** Timecards are logged weekly, so the Week_Ending__c field is always
 * a Saturday. We need to convert an assignment, which can contain an
 * arbitrary start and end date, into a start and end period expressed
 * only in terms of Saturdays. To do this, we use the toStartOfWeek
 * method on the Date object, and then add 6 days to reach a Saturday.
 */
 Date startWeekEnding =
 assign.Start_Date__c.toStartOfWeek().addDays(6);
 Date endWeekEnding =
 assign.End_Date__c.toStartOfWeek().addDays(6);
 Integer weeks = 0;
 while (startWeekEnding.addDays(weeks * 7) < endWeekEnding) {
 Date d = startWeekEnding.addDays(weeks * 7);
 if (d >= Date.today()) {
 break;
 }
 if (!timecards.contains(d)) {
 missing.add(new Missing_Timecard__c(
 Assignment__c = assign.Id,
 Week_Ending__c = d));
 }
 weeks++;
 }
 }
 }
 }
 insert missing;
 }
 global void finish(Database.BatchableContext context) {
 }
 }

 Testing the Missing Timecard Feature

 To achieve adequate test coverage, add unit tests to the Batch Apex class that create assign-
ments and timecards in various combinations, kick off the batch, and then query the Missing
Timecard object and verify the presence of the correct data.

ptg11524036

300 Chapter 9 Batch Processing

 You can also test informally from the user interface and the Execute Anonymous view in the
Force.com IDE. For example, create an Assignment record for the GenePoint project, starting
4/1/2015 and ending 4/30/2015 for Rose Gonzalez, and set its status to Scheduled. Enter a
timecard for her for week ending 4/11/2015 on the GenePoint project, and set its status
to Approved. Now run the MissingTimecardBatch from Force.com using the code in
Listing 9.11 .

 Listing 9.11 Running MissingTimecardBatch

 Database.executeBatch(new MissingTimecardBatch());

 Check the Apex Jobs to monitor the progress of your batch job. When it’s done, visit the
Missing Timecard tab. You should see three Missing Timecard records for the GenePoint assign-
ment, with the dates 4/4/2015, 4/18/2015, and 4/25/2015. The 4/11/2015 date is not included
because a valid Timecard record exists for it.

 To try some more test scenarios, first clear the Missing Timecard records so you don’t have to
sift through duplicates. The code in Listing 9.12 is an easy way to do so, and you can run it
from the Execute Anonymous view.

 Listing 9.12 Reset Results of MissingTimecardBatch

 delete [SELECT Id FROM Missing_Timecard__c];

 Summary

 Batch processing in Force.com enables you to query and modify data in volumes that would
otherwise be prohibited by governor limits. In this chapter, you’ve learned how to develop,
test, and schedule batch jobs, and applied batch processing to the real-world problem of identi-
fying missing database records.

 When using Batch Apex in your own applications, consider these key points:

 ■ Batch Apex is optimized for tasks with inputs that can be expressed in a single SOQL
statement and that do not require all-or-nothing transactional behavior.

 ■ With its limit of five active batch jobs per organization, one input data set per job, and
a lack of precise control over actual execution time, Batch Apex is the nuclear option of
Force.com data processing: powerful, but challenging to build and subject to proliferation
problems. Use it sparingly, when all other options are exhausted. If triggers or Visualforce
controllers can do the same job given expected data volumes, consider them first.

 ■ You can implement the Schedulable interface to run any Apex code at regular time
intervals, not just Batch Apex. Schedules can be managed via the administrative user
interface and in Apex code.

ptg11524036

 10
 Integration with Force.com

 The Force.com platform offers various features to integrate its data and processes with those of other
applications. These features are leveraged by independent software vendors as part of stand-alone inte-
gration products and also exposed to developers and system administrators of Force.com. This chapter
describes the integration features that can bridge Force.com with other applications.

 Force.com integration features leverage the Web standards of REST and SOAP to send and receive data
over HTTP. REST stands for Representational State Transfer, a common form of Web-accessible API.
 SOAP is an acronym for Simple Object Access Protocol. These standards can be used to communicate
with Force.com bidirectionally, meaning you can call into and out of Force.com with them.

 This chapter is divided into the following sections:

 ■ Apex callouts— Initiate requests to systems on the Web via REST and SOAP directly from inside
your Apex code.

 ■ Calling into Force.com using REST— With the Force.com REST API, you can access Force.com
data and logic using a REST-style interface.

 ■ Calling into Force.com using SOAP— Learn how to use the Enterprise API to make the data
objects and Apex code in your organization available outside of Force.com.

 ■ Sample application— Walk through an integration scenario with the Services Manager sample
application, extending it to calculate and transmit corporate performance metrics to a fictional
industry-benchmarking organization.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/GBXT6 .

 Apex Callouts

 A callout is a request made to a system outside of Force.com from within the platform. There
are many Web APIs, free and premium, that can be quickly integrated into your Apex code
using Apex callouts. This section describes how to work with the two different styles of callouts
in Force.com:

http://goo.gl/GBXT6

ptg11524036

302 Chapter 10 Integration with Force.com

 1. Calling RESTful services from Apex— Force.com includes classes for issuing HTTP and
HTTPS requests, encoding and decoding URLs and Base64 content, and performing
cryptographic signing and hashing often needed to comply with the security
requirements of external services.

 2. Calling SOAP services from Apex— Apex code can be generated directly from WSDL,
producing methods for invoking an external Web service and representing the input and
output data in native Apex data structures rather than SOAP.

 Caution

 Force.com tightly controls outbound requests from its platform. Understanding the limits before
jumping into development of integrations is important. These limitations apply to both Web ser-
vice callouts and HTTP requests.

 Request and response messages cannot exceed the maximum Apex heap size, normally 6MB.
Apex code can make a maximum of ten HTTP requests in a single transaction. By default, a
single request cannot run longer than 10 seconds. If a transaction contains more than one
request, the total time of all requests cannot exceed 120 seconds.

 Calling RESTful Services from Apex

 Twitter, Facebook, Yahoo!, Google, and countless others provide REST APIs for their services.
REST is designed for lightweight clients, those running inside Web browsers or other scripting
environments. Rather than generating static language bindings from a metadata description,
as found with WSDL in the Web services world, the REST approach is dynamic. Its emphasis is
on a concise syntax for URLs that represent resources and the use of HTTP methods to describe
actions on those resources.

 REST services usually return data in XML or JSON format, with the format specified by the
caller of the service. JSON stands for JavaScript Object Notation, a standard format for repre-
senting JavaScript objects as strings. Like XML, it’s widely used for communication between
programs.

 To invoke REST-style services, Apex can make HTTP requests from the Force.com platform to
external servers on the Internet, as well as parse their JSON and XML responses. The core Apex
classes that allow you to work with HTTP are described here:

 ■ HttpRequest — This class contains the parameters for making an HTTP request. It
includes methods for working with the request body, HTTP headers, the HTTP method
type, client certificates, HTTP compression, and timeouts.

 ■ HttpResponse — When an HTTP request is sent, an instance of the HttpResponse class is
returned. Methods are available for getting the raw response body, HTTP status code, and
HTTP headers.

 ■ Http — This class is used to perform the HTTP operation. It contains a single method
called send to initiate the operation, which accepts an instance of HttpRequest and
returns an HttpResponse .

ptg11524036

303Apex Callouts

 In addition to these three classes, here are two other useful classes for working with HTTP in
Apex:

 1. EncodingUtil — This class contains methods for URL and Base64 encoding and
decoding.

 2. Crypto — Use the Crypto class to compute cryptographic hashes and signatures
commonly required to authenticate to HTTP services. It includes the methods
 generateDigest to generate a one-way hash digest for a message, generateMac to
generate a message authentication code given a private key, and sign to produce a
digital signature for a message using a private key.

 To get started with HTTP in Apex, try writing a method to invoke a RESTful service. The service
used in the following example is provided by Yahoo!. It’s a geocoding service, returning lati-
tude and longitude given a street, city, and state. The service is documented at http://developer.
yahoo.com/boss/geo . Listing 10.1 is a sample of the result of invoking the service.

 Listing 10.1 Sample JSON Response from Yahoo! Geocoding REST Service

 cbfunc({
 "query": {
 "count": 1,
 "created": "2013-07-21T05:03:20Z",
 "lang": "en-US",
 "results": {
 "place": {
 "centroid": {
 "latitude": "37.547031",
 "longitude": "-122.314827"
 }
 }
 }
 }
 });

 In the code sample in Listing 10.2 , the geocoding service is called and its response parsed using
the JSON API provided by Force.com.

 Listing 10.2 Integrating the Yahoo! Geocoding Service

 public class Listing10_2 {
 private static String APP_ID = 'B1tiUc7k';
 public static Result geocode(String location) {
 HttpRequest req = new HttpRequest();
 String query = 'select centroid from geo.places where text="'
 + location + '"';
 String url = 'http://query.yahooapis.com/v1/public/yql?appid='
 + APP_ID + '&q=' + EncodingUtil.urlEncode(query, 'UTF-8')

http://developer.yahoo.com/boss/geo
http://developer.yahoo.com/boss/geo

ptg11524036

304 Chapter 10 Integration with Force.com

 + '&format=json';
 req.setEndpoint(url);
 req.setMethod('GET');
 Http http = new Http();
 HTTPResponse res = http.send(req);
 JSONParser parser = JSON.createParser(res.getBody());
 while (parser.nextToken() != null) {
 if ((parser.getCurrentToken() == JSONToken.FIELD_NAME) &&
 (parser.getText() == 'centroid')) {
 parser.nextToken();
 return (Result)parser.readValueAs(Result.class);
 }
 }
 return null;
 }
 public class Result {
 public String latitude;
 public String longitude;
 public String asString() {
 return latitude + ', ' + longitude;
 }
 }
 }

 Tip

 The Listing10_2 class will not work without a Remote Site Setting authorizing Force.com to
call out to the Yahoo! service. To add this setting, go to the Administration Setup area and click
Security Controls, Remote Site Settings. Click the New Remote Site button and enter a name to
remember the site (no spaces allowed) and the root of the URL (http://query.yahooapis.com).

 To test the code, open the Execute Anonymous view in the Force.com IDE and execute the
statements given in Listing 10.3 . The result (contained in the debug log) should be a single line
containing the latitude and longitude of the input address.

 Listing 10.3 Testing the Yahoo! Geocoding Integration

 Listing10_2.Result r = Listing10_2.geocode
 ('1 market st san francisco ca');
 System.debug(r.toString());

 Calling SOAP Services from Apex

 Force.com provides a code generation tool in its native user interface for creating Apex-friendly
classes and methods from SOAP Web service definitions found in WSDL files. Like most code

http://query.yahooapis.com

ptg11524036

305Apex Callouts

generation tools, using it is a hit-or-miss experience. When it works on your WSDL, it can save
considerable effort over the alternative of manually constructing and parsing SOAP messages.
But be prepared for cryptic error messages when code cannot be generated due to the imped-
ance mismatch between WSDL, SOAP, and Apex.

 If you’re able to use your WSDL wholesale or slim it down to successfully generate Apex code,
most of your work is done. Invoking the remote SOAP Web service becomes a relatively simple
matter of preparing the right input via Apex classes, invoking a method, and using the result-
ing Apex classes in your program. No interaction with HTTP or XML is necessary because these
details are hidden by the generated Apex code.

 Caution

 For integrations that require a series of Web service calls strung together with cookies to main-
tain state between them, you cannot use the Apex code generated from WSDL. Additionally,
generated code does not support HTTP-level authentication.

 In general, no developer-modifiable options exist in the generated code, which uses an internal,
undocumented API to perform the actual Web service callout. If your Web service call requires
control over the SOAP message content or HTTP headers, you must write code to make the
request from scratch using HTTPRequest , as described in the next subsection.

 Here are the steps needed to generate Apex from WSDL:

 1. Save the WSDL file on your local machine.

 2. Go to the App Setup area and click Develop, Apex Classes.

 3. Click the Generate from WSDL button.

 4. Click the Browse button and locate the WSDL in your file system and then click the
Parse WSDL button. The WSDL must describe a document-style service because Remote
Procedure Call (RPC) is not supported.

 5. Each WSDL namespace can be mapped to an Apex class name to be generated. You can
map multiple namespaces to the same class. Force.com suggests an Apex class name
based on the WSDL, but you can override this suggestion. When you’re done naming the
classes, click the Generate Apex Code button.

 6. If you refresh your Force.com IDE by right-clicking the project and selecting Force.com,
Refresh from Server, you should see the new Apex class. If not, make sure that it was
generated successfully and that you’ve subscribed to new Apex classes by right-clicking
the Force.com project and selecting Force.com, Add/Remove Metadata Components.

 Caution

 Due to the complexity of WSDL, conflicts between its naming conventions and Apex syntax
rules, and the limit on Apex class size, the WSDL to Apex feature might not work as expected
in all cases. Investigate these issues further in the Force.com online help. As a best practice,
keep your WSDL as simple as possible. Manually edit it to strip out extraneous services and
ports.

ptg11524036

306 Chapter 10 Integration with Force.com

 Before you can run this code, you must authorize Force.com to make an outbound call to the
endpoint of the Web service. Go to the Administration Setup area, click Security Controls,
Remote Site Settings, and then add the host.

 Calling into Force.com Using REST

 Force.com provides a REST form of its core data access API to query and modify standard and
custom objects. It also allows Apex developers to turn custom classes into REST Web services.
This section provides an introduction to using REST to call into Force.com in three parts:

 ■ Getting started with Force.com REST API— Learn how Force.com functionality is
exposed in the REST style and how to authenticate to it.

 ■ Force.com REST API walk-through— Using your computer’s command line, you can
take an interactive tour of the Force.com REST API.

 ■ Creating custom Apex REST Web services— With a few simple modifications, an Apex
class can be serving REST-style requests from the Web.

 Note

 Because REST requests and responses are typically so concise, you can practice using them
directly from your computer’s command line using standard OS-level tools to make Web
requests. The examples in this section rely on the tool named cURL, available free for every
platform at http://curl.haxx.se .

 Getting Started with Force.com REST API

 Data access concepts in Force.com translate naturally into the REST style of API. SObjects and
rows within them become URLs, and HTTP actions express DML operations: GET for read-only
requests for basic information, POST to create records, PATCH to update records, and DELETE to
delete them. Because not all HTTP clients support the full range of methods, Force.com also
allows a special URL parameter (_HttpMethod) to specify the action. By default, REST API calls
return JSON-encoded responses, but you can override this by appending .xml to the end of
URLs, or by sending the standard HTTP Accept header with the desired content type.

 Almost every REST API call requires authentication to Force.com. This is done using OAuth.
OAuth is an industry-standard way of negotiating access to a system without requiring users
to share their login credentials. OAuth operates using tokens instead. Tokens have advantages
over the typical username/password credentials. They can be audited and revoked by the user.
They also typically provide limited access to the system. In the case of Force.com, OAuth access
tokens grant bearers the ability to make API calls only. They cannot log in to the Salesforce
Web user interface.

http://curl.haxx.se

ptg11524036

307Calling into Force.com Using REST

 Note

 OAuth is a complex subject well beyond the scope of this book. The Force.com REST API
Developer’s Guide, found at www.salesforce.com/us/developer/docs/api_rest/index.htm , pro-
vides some introductory information on using OAuth to authenticate to Force.com.

 If you are calling the REST API on behalf of another user, OAuth is the recommended approach
for authentication because you do not need to store others’ usernames and passwords. But
when you’re learning and experimenting with simple REST API examples, OAuth can present a
significant hurdle.

 A shortcut is to use the username-password OAuth flow, which still accepts username and pass-
word directly. Listing 10.4 provides a sample request and response.

 Listing 10.4 Sample Password Authentication Request and Response

 curl https://login.salesforce.com/services/oauth2/token
 -d "grant_type=password" -d "client_id=$CLIENT_ID"
 -d "client_secret=$CLIENT_SECRET"
 -d "username=$USERNAME" -d "password=$PASSWORD"
 {
 "id": "https://login.salesforce.com/id/...",
 "issued_at": "1374386510993",
 "instance_url": "https://na15.salesforce.com",
 "signature": "...",
 "access_token": "..."
 }

 The value in the response’s access_token field is needed to run all of the examples in this
section. To get one yourself, set the $USERNAME environment variable to your Salesforce user-
name, $PASSWORD to your Salesforce password with security token appended. The variables
 $CLIENT_ID and $CLIENT_SECRET are your OAuth Consumer Key and Consumer Secret. These
come from a Connected App, which you can create using the following steps:

 1. In the App Setup area, click Create, Apps.

 2. Click the New button in the Connected Apps section.

 3. Fill out Connected App Name, API Name, and Contact Email.

 4. Check Enable OAuth Settings.

 5. Set the Callback URL to http://localhost.

 6. In Available OAuth Scopes, select Access and Manage Your Data (api).

 The resulting Connected App is shown in Figure 10.1 .

http://www.salesforce.com/us/developer/docs/api_rest/index.htm
http://localhost

ptg11524036

308 Chapter 10 Integration with Force.com

 Figure 10.1 Connected App configuration

 Force.com REST API Walk-Through

 Now that you have obtained an OAuth access token, you are ready to try the Force.com REST
API. Set the access token as the environment variable $TOKEN . Also, be sure to replace na15 in
the following examples with your own instance of Force.com. To identify your instance, look
at the instance_url field of the OAuth username-password flow, or the URL in your Web
browser when you log in to Force.com.

 Note

 This section is not a complete reference to the REST API. Consult the Force.com REST API
Developer’s Guide, found at www.salesforce.com/us/developer/docs/api_rest/index.htm ,
for the latest and most detailed information on the REST API, which Salesforce continuously
improves in each major release of the platform.

 Listing 10.5 is an example of one of the simplest REST API calls. It returns the services avail-
able via REST in the specified version and instance of the Force.com platform. Here, the result
indicates four services. In subsequent examples, you’ll try all the services, except recent .
The recent service returns the same data as you see in the Recent Items box in the Web user
interface.

http://www.salesforce.com/us/developer/docs/api_rest/index.htm

ptg11524036

309Calling into Force.com Using REST

 Listing 10.5 Services Available Request and Response

 curl https://na15.salesforce.com/services/data/v28.0\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"
 {
 "sobjects" : "/services/data/v28.0/sobjects",
 "identity" : "https://login.salesforce.com/id/... ",
 "connect" : "/services/data/v28.0/connect",
 "search" : "/services/data/v28.0/search",
 "quickActions" : "/services/data/v28.0/quickActions",
 "query" : "/services/data/v28.0/query",
 "tooling" : "/services/data/v28.0/tooling",
 "chatter" : "/services/data/v28.0/chatter",
 "recent" : "/services/data/v28.0/recent"
 }

 Tip

 The backslash (\) character found at the end of the first line in Listing 10.5 and other listings
in this chapter is a line-continuation character for UNIX shells. Translate it as appropriate to
your own command-line environment.

 To retrieve basic information on an SObject, use the sobjects service, as demonstrated in
 Listing 10.6 . You can also omit the object name (/Project__c) to get a list of all SObjects,
or append /describe to the end of the URL to obtain the full, detailed list of fields on the
SObject. If an error occurs in processing this request or any REST request, the response contains
 message and errorCode keys to communicate the error message and code.

 Listing 10.6 Basic Information Request for an SObject

 curl https://na15.salesforce.com/services/data/v28.0/sobjects/Project__c\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

 Another usage of the sobjects service is shown in Listing 10.7 . Here an individual record is
returned, identified by its unique identifier. The fields parameter specifies a subset of fields to
return. You can omit this parameter to retrieve all fields. If your record is a binary object such
as a Document, append /body to the URL to retrieve the binary content.

 Listing 10.7 Record Retrieval by Unique Identifier Request and Response

 curl https://na15.salesforce.com/services/data/v28.0\
 /sobjects/Project__c/a01i0000000rMq1?fields=Name,Status__c\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"
 {
 "attributes" : {
 "type" : "Project__c",
 "url" : "/services/data/v20.0/sobjects/Proj__c/a01i0000000rMq1AAE"

ptg11524036

310 Chapter 10 Integration with Force.com

 },
 "Name" : "GenePoint",
 "Status__c" : "Green",
 "Id" : "a01i0000000rMq1AAE"
 }

 Listing 10.8 demonstrates record retrieval by external identifier. The record with a Project_
ID__c value of Project-00001 on the Project__c SObject is returned.

 Listing 10.8 Request for Retrieval of Record by External Identifier

 curl https://na15.salesforce.com/services/data/v28.0\
 /sobjects/Project__c/Project_ID__c/Project-00001\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

 A simple SOQL query is shown in Listing 10.9 . To run a SOSL query, use search instead of
 query in the URL.

 Listing 10.9 SOQL Query Request

 curl https://na15.salesforce.com/services/data/v28.0\
 /query?q=SELECT+Name+FROM+Project__c\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

 To create a record, make a POST request with the SObject type in the URL and a JSON or XML
request body containing the record’s field values. Listing 10.10 creates a new Project__c
record named Test Project. A successful response provides the new record’s unique identifier.

 Listing 10.10 Create Record Request and Response

 echo '{ "Name": "Test Project" }' |\
 curl -X POST -H 'Content-type: application/json'\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1" -d @-\
 https://na15.salesforce.com/services/data/v28.0/sobjects/Project__c
 {
 "id" : "a01i0000003aFzrAAE",
 "success" : true,
 "errors" : []
 }

 Tip

 To adapt the command in Listing 10.10 to run in Windows Command Prompt, remove the
single quotation mark characters (') in the echo statement, replace the single quotation mark
characters around the Content-type header with double quotation mark characters ("),
remove the backslash (\) line-continuation characters and concatenate the lines into a single
line, and replace $TOKEN with %TOKEN% .

ptg11524036

311Calling into Force.com Using REST

 Updating a record follows a similar process to creating a record. Make a PATCH request with
the URL containing the SObject type and unique identifier, and a request body with the field
values to update. In Listing 10.11 , the record created in Listing 10.10 gets its name updated.

 Listing 10.11 Update Record Request

 echo '{ "Name": "Updated Test Project" }' |\
 curl -X PATCH -H 'Content-type: application/json'\
 -H 'Authorization: OAuth '$TOKEN -H "X-PrettyPrint:1" -d @-\
 https://na15.salesforce.com/services/data/v28.0\
 /sobjects/Project__c/a01i0000003aFzrAAE

 The only difference between an upsert and update request is that upsert uses an external identi-
fier rather than the unique identifier. If the external identifier value is not found, the request
creates the record and its unique identifier is returned. Otherwise, the record is updated, and
nothing is returned upon success. Listing 10.12 demonstrates an upsert of a Project__c
record.

 Note

 Listing 10.12 will return an INVALID_FIELD_FOR_INSERT_UPDATE error unless you change
the Project_ID__c field type from Auto Number to Text first because Auto Number fields are
read-only.

 Listing 10.12 Upsert Record Request and Response

 echo '{ "Name": "Upserted Project" }' |\
 curl -X PATCH -H 'Content-type: application/json'\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1" -d @-\
 https://na15.salesforce.com/services/data/v28.0\
 /sobjects/Project__c/Project_ID__c/Project-11111

 Deleting a record by its unique identifier is shown in Listing 10.13 . You can also delete a record
by its external identifier. In both cases, nothing is returned by a successful request.

 Listing 10.13 Delete Record Request

 curl -X DELETE\
 -H 'Authorization: OAuth '$TOKEN -H "X-PrettyPrint:1"\
 https://na15.salesforce.com/services/data/v28.0\
 /sobjects/Project__c/a01i0000003aFzrAAE

ptg11524036

312 Chapter 10 Integration with Force.com

 Creating Custom Apex REST Web Services

 Force.com REST API is a powerful but generic way to access data. For some application-specific
data access scenarios, such as those involving transactions that span multiple database objects,
a custom API is helpful. You can expose your Apex classes as REST services, making simple
atomic units of work accessible to callers outside of Force.com, and hiding the implementation
details from them. Requests to custom Apex REST services are made via HTTP in JSON or XML
format, dictated by the Content-Type header, with JSON the default.

 For an Apex class to become a REST Web service, it must follow different rules than ordinary
Apex classes. The most significant rules are listed here:

 ■ Global class access modifier— A class that contains any REST services must use the
 global access modifier. This means the class is visible to all programs running in the
Force.com organization.

 ■ URL mapping annotation— A class containing REST services must be mapped to a
URL so that it can be invoked. Define the URL mapping using the @RestResource
annotation.

 ■ HTTP verb annotation— Each method accessible via REST must be annotated with
a corresponding HTTP verb. The verbs are @HttpDelete , @HttpGet , @HttpPatch ,
 @HttpPost , and @HttpPut , and the same verb can’t be assigned to more than one
method. These methods must also be global and static .

 ■ Method parameters— The REST request body is automatically mapped into the
parameters of the method. Method parameters are not supported for the @HttpDelete
and @HttpGet verbs. The REST request URL is never automatically mapped to method
parameters and requires code to extract its values.

 ■ Data types— Data types supported in REST methods are primitive types (except Blob and
sObject), sObjects, List and Map (String keys only) containing primitives or sObjects, and
user-defined classes.

 ■ Security— REST methods run as a system administrator, without regard for object-,
field-, or record-level sharing rules. To enforce record sharing rules, define the class
with the with sharing keyword. To enforce object- and field-level security, use the
results of the getDescribe method (Schema.DescribeSObjectResult and Schema.
DescribeFieldResult) to check the user’s permission to the data.

 ■ Supporting classes— User-defined Apex classes, inner or outer, that are arguments or
return values for a REST service method must be defined as global .

 Additionally, custom Apex REST Web services are subject to standard Apex governor limits. A
subset of these governor limits is listed in Table 10.1 .

ptg11524036

313Calling into Force.com Using REST

 Table 10.1 Subset of Apex REST Service Governor Limits

 Resource Type Governor Limit

 SOQL 100 queries

 Records from SOQL 50,000 records

 DML 150 DML statements

 Records in DML 10,000 records

 Stack depth 16

 Heap 6,000,000 bytes

 Apex code 200,000 lines of code executed

 Listing 10.14 defines a simple Apex REST service that returns a record in the Project custom
object given its unique identifier.

 Listing 10.14 Custom Apex REST Web Service

 @RestResource(urlMapping='/Listing10_14/*')
 global with sharing class Listing10_14 {
 @HttpGet
 global static Project__c doGet() {
 RestRequest req = RestContext.request;
 String projectId = req.requestURI.substring(
 req.requestURI.lastIndexOf('/')+1);
 Project__c result = [SELECT Id, Name, Status__c, Owner.Name
 FROM Project__c WHERE Id = :projectId];
 return result;
 }
 }

 In Listing 10.15 , the custom REST Web service is invoked and returns fields from the Project
record with unique identifier a01i0000000rMq1 .

 Listing 10.15 Custom Apex REST Web Service Request and Response

 curl -H 'Authorization: OAuth '$TOKEN -H "X-PrettyPrint:1"\
 "https://na15.salesforce.com/services/apexrest/Listing10_14/a01i0000000rMq1"
 {
 "attributes" : {
 "type" : "Project__c",
 "url" : "/services/data/v27.0/sobjects/Project__c/a01i0000000rMq1AAE"
 },
 "Name" : "GenePoint",

ptg11524036

314 Chapter 10 Integration with Force.com

 "Owner" : {
 "attributes" : {
 "type" : "Name",
 "url" : "/services/data/v27.0/sobjects/User/005i0000000LUJsAAO"
 },
 "Name" : "Tim Barr",
 "Id" : "005i0000000LUJsAAO"
 },
 "OwnerId" : "005i0000000LUJsAAO",
 "Id" : "a01i0000000rMq1AAE",
 "Status__c" : "Green"
 }

 Calling into Force.com Using SOAP

 Force.com provides many SOAP APIs, each focused on a different area of platform functional-
ity. For example, you can query and modify standard and custom objects using SOAP. You can
also make custom classes into SOAP Web services. This section provides an introduction to
using SOAP to call into Force.com in three parts:

 1. Understanding Force.com SOAP API— This section describes high-level concepts
common to all the subsequent sections, including how to invoke SOAP Web services
from Java and the handling of data types and errors.

 2. Using the Enterprise API— The Enterprise API is a set of SOAP Web services that allow
fine-grained, strongly typed access to the data in your Force.com database, including
execution of SOQL and SOSL queries and full read and write capabilities on the records of
all objects.

 3. Creating custom Apex SOAP Web services— Although Force.com provides a built-in
SOAP API to access your data, you can also define your own custom SOAP API using Apex
code. Custom Apex SOAP Web services are typically written to optimize for application-
specific usage patterns; for example, combining what would be many SOAP API calls into
a single, robust method executed entirely on the Force.com platform.

 Understanding Force.com SOAP API

 Force.com SOAP API allows data, logic, and metadata to be accessed from outside the Force.
com platform by any program that can communicate using SOAP messages over HTTP. With a
strongly typed language like Java or C#.NET, stub code is generated from the Force.com SOAP
API’s WSDL. The program must log in to Force.com to establish a session and can then invoke
the SOAP API methods.

 This section describes concepts that can be applied to using any Force.com SOAP API method.
It consists of the following parts:

ptg11524036

315Calling into Force.com Using SOAP

 ■ Basics of Force.com SOAP API— Learn about the two different styles of Force.com SOAP
API methods, how they are secured, and limits placed on their use.

 ■ Generating stub code— Walk through the process for generating Java code from Force.
com SOAP API WSDL.

 ■ Logging in— The first SOAP API call typically establishes a session with Force.com by
logging in. This session is used to make subsequent SOAP API calls until it is invalidated
explicitly or it expires.

 ■ Force.com data types in SOAP— Understand how data types in Force.com objects are
expressed in the SOAP API.

 ■ Error handling— Force.com SOAP API signals errors in a few ways, depending on where
the errors originate.

 Basics of Force.com SOAP API

 The Force.com SOAP API comes in two forms, Enterprise and Partner. Both APIs have the same
core set of calls, such as query to execute a SOQL query. The difference between the APIs is
how database objects are represented in your code.

 The Enterprise API provides a strongly typed representation of the objects in your Force.com
database. This allows your code to operate naturally with Force.com data, using the field names
and data types as you would in Apex code. When you redefine an object or add a new object,
the Enterprise WSDL is automatically updated to reflect the changes. You need to manually
regenerate the client code from the latest WSDL, but this is a small price to pay for concise,
maintainable code.

 The Partner API is designed for independent software vendors who write applications that must
interoperate with many different Force.com organizations. They cannot rely on a single, static
representation of standard and custom objects because all customers of Force.com are free to
create their own database schemas. With the Partner API, you can write generic code to access
any object in any Force.com organization. It’s more verbose to work with than the Enterprise
API, but more flexible as well.

 Note

 This book does not cover the Partner API. For more information about it, consult the
Force.com SOAP API Developer’s Guide, available at www.salesforce.com/us/developer/
docs/api/index.htm .

 Versions
 With each major release of the Force.com platform, new versions of its WSDL are also released.
To take advantage of new features, your code must be updated to use the latest WSDL.

 If the new features are not needed, no action is required. Your code will continue to work
without modification. This is because each WSDL has an endpoint URL in it that includes its
version.

http://www.salesforce.com/us/developer/docs/api/index.htm
http://www.salesforce.com/us/developer/docs/api/index.htm

ptg11524036

316 Chapter 10 Integration with Force.com

 Note

 In its documentation, Salesforce commits to maintaining Web service versions for a minimum
of three years. It also states that one year of notice will be provided for discontinued Web
service versions.

 Security
 Force.com uses Secure Sockets Layer (SSL) v3 and Transport Layer Security (TLS) to protect the
communications between your client application and the Force.com platform.

 After your client program has logged in, all the API calls respect the full set of data security
features in Force.com at the object, field, and record level. For this reason, configuring a Force.
com profile and user account dedicated solely to integration is a good practice. It might have
elevated privileges compared with other, Web-based users. You can configure this profile to
accept logins only from the API address of your corporate integration server using the Login IP
Ranges on the profile or logins at specific times that your integration is scheduled to run using
the Login Hours section.

 API Limits
 Salesforce limits the number of API calls that can be executed during a 24-hour period. Every
call into Force.com is counted against this limit, including calls made by the Force.com IDE.
The exact limit depends on the edition of Force.com you have licensed.

 To view your API limit and current consumption, go to the Administration Setup area and click
Company Profile, Company Information. You can configure Force.com to email you when
your organization is close to its API call limit. Go to the Administration Setup area and click
Monitoring, API Usage Notifications. Click the New button to define a new notification, speci-
fying the user to receive the notification, the usage threshold that triggers notifications, and
how often they are sent.

 Generating Stub Code

 If you’re using a strongly typed language like C#.NET or Java to integrate with Force.com, your
first step is to generate stub code from a Force.com WSDL. All standard Force.com WSDLs are
available in the App Setup area; to access them, click Develop, API. Click each WSDL link and
save the resulting document on your local file system.

 Each language and development tool typically provides a facility for parsing WSDL and gener-
ating stub code that can be incorporated into your program. The steps for generating Java stub
code from WSDL are described next.

 Note

 Salesforce advises that you use the Force.com Web Service Connector (WSC) with its SOAP
API. Download it from https://github.com/forcedotcom/wsc . Download the source code from
 https://github.com/forcedotcom/wsc . Follow the instructions there to compile the source
code into a WSC JAR file, which requires Maven (http://maven.apache.org/). If you would
rather download a WSC JAR file than build it, find one at http://code.google.com/p/sfdc-wsc/
downloads/list .

https://github.com/forcedotcom/wsc
https://github.com/forcedotcom/wsc
http://maven.apache.org/
http://code.google.com/p/sfdc-wsc/downloads/list
http://code.google.com/p/sfdc-wsc/downloads/list

ptg11524036

317Calling into Force.com Using SOAP

 Follow these steps to create Java stub code using WSC and the Eclipse IDE:

 1. Create a new Java project. In this example, the project is named Chapter10 .

 2. Copy the WSC jar and enterprise.wsdl files into the top level of your Java project.

 3. Create a new Run Configuration to execute the stub generator. Figure 10.2 shows the
Run Configuration.

 Figure 10.2 Eclipse Run Configuration to generate stub code using WSC

 4. Click the Arguments tab and enter enterprise.wsdl.xml ./enterprise.jar in the
Program Arguments text box. These arguments tell the program to generate the stub code
for the enterprise.xml.wsdl file into a jar named enterprise.jar .

 5. Click the Run button on the Run Configuration and refresh your project. It should
contain the stub code for the Force.com Enterprise API, as depicted in Figure 10.3 .

ptg11524036

318 Chapter 10 Integration with Force.com

 Figure 10.3 Java project with stub code generated

 Logging In

 Logging in to Force.com from a program begins with the user credentials of username and pass-
word, the same as logging in to the native user interface using a Web browser. This subsection
describes four additional details to be aware of to successfully log in, summarized here:

 ■ API Enabled permission— The user logging in must have the API Enabled permission on
his or her profile.

 ■ Security token or white-listed IP address— Force.com requires either a security token
appended to the password or API calls to be issued from a white-listed IP address.

 ■ Login call— When successful, the login method returns two items of information needed
in subsequent calls: a URL to the Salesforce server and the user’s session identifier.

 ■ Troubleshooting login problems— Force.com includes a Login History report that can
be helpful in identifying problems.

 API Enabled Permission
 The user logging in via API must have the API Enabled permission set on his or her profile. This
permission is found in the Administrative Permissions section. A profile with the API Enabled
permission is shown in Figure 10.4 .

ptg11524036

319Calling into Force.com Using SOAP

 Figure 10.4 Profile with the API Enabled permission

 Caution

 A few editions of Force.com don’t allow API access. If you don’t see the API Enabled permis-
sion on the profile page or cannot enable it, contact Salesforce support.

 Security Token or White-Listed IP Address
 The security token is a string of characters appended to the end of a user’s password. It allows
a user to log in to Force.com from any IP address, assuming that IP address restrictions are not
configured on his or her profile. To obtain a security token, visit the Personal Setup area and
click My Personal Information, Reset My Security Token. A new security token is generated and
emailed to the address associated with the user.

 An alternative to security tokens is IP white-listing. White-listing instructs Force.com to accept
requests from a specific IP address. To white-list an IP address, go to the Administration Setup
area and click Security Controls, Network Access. Click the New button, enter the IP address in
the Start IP Address and End IP Address fields, and then click the Save button.

 The Login Call
 To log in, invoke the login method with a username and password. If the login is successful,
a LoginResult object is returned; otherwise, an exception is raised. The LoginResult object

ptg11524036

320 Chapter 10 Integration with Force.com

contains the URL of the server to send SOAP API requests to and the session identifier that
uniquely identifies your authenticated session with Force.com. Both of these attributes must be
sent in the HTTP headers of subsequent requests for them to succeed.

 Listing 10.16 contains sample Java code to log in. Note that WSC takes care of the details
described earlier for logging in, but this is not the case if you use a different Web service stack,
such as Apache Axis.

 Note

 The code in Listing 10.16 doesn’t include exception handling or importing the generated stub
code. It also doesn’t factor in the use of corporate proxies, which might block outbound HTTPS
traffic. Java can be configured to pass connections through a proxy. If your connections to
Force.com are failing, check with your network administrator to see whether a proxy could be
the cause.

 Listing 10.16 Java Fragment to Log In

 ConnectorConfig config = new ConnectorConfig();
 config.setUsername(user);
 config.setPassword(pass);
 EnterpriseConnection connection = Connector.newConnection(config);

 When you’re done with a session, you can invoke the logout API call. It causes the session to
become invalid, ensuring that it is not used accidentally elsewhere by your program.

 By default, sessions expire after two hours, but you can change this in the Administration Setup
area by clicking Security Controls, Session Settings. Web service calls that use an expired or
invalid session throw an exception with an INVALID_SESSION_ID exception code.

 Troubleshooting Login Problems
 All logins to Force.com create an entry in the login history, shown in Figure 10.5 . To view it, go
to the Administration Setup area and click Manage Users, Login History.

 The login history can be helpful for troubleshooting login problems. If you see your program’s
login attempt listed but failed, the login request has successfully reached Force.com’s servers
but is being rejected. If the request is not listed at all, you need to investigate the connection
between your server and Force.com.

ptg11524036

321Calling into Force.com Using SOAP

 Force.com Data Types in SOAP

 Table 10.2 lists the Force.com data types and their mapping to SOAP data types.

 Table 10.2 Mapping of Force.com Data Types to SOAP Types

 Force.com Data Type SOAP Type

 Auto Number String.

 Formula Depends on the data type of the formula. Can be
Double, String, Date.

 Roll-Up Summary Double.

 Lookup Relationship, Master-Detail Relationship ID.

 Checkbox Boolean.

 Currency Double.

 Date, Datetime Date. Always UTC, convert to local time zone. If
time portion isn’t present, midnight is returned.

 Number Integer (numbers with no fractional component);
otherwise Double.

 Figure 10.5 Login history page

ptg11524036

322 Chapter 10 Integration with Force.com

 Force.com Data Type SOAP Type

 Percent Double.

 Email, Phone, Picklist, Picklist (Multi-Select),
Text, Text Area, Text (Long), URL

 String.

 Binary (Attachment, Document) Base64-encoded string.

 Note

 Refer to the documentation for your programming language or SOAP utility library to map SOAP
types to language-specific data types.

 Error Handling

 Three categories of errors are raised by Force.com SOAP API, described here from lowest to
highest level of abstraction:

 1. System exceptions— System exceptions are language-specific and indicate lower-level
problems occurring in the Web services stack. For example, using Java with the WSC, the
 ConnectionException contains nested exceptions to indicate specific problems, such as
a java.net.SocketException .

 2. API faults— API faults are caused by malformed SOAP messages, authentication failures,
or query-related problems. They are SOAP-level errors that contain an exception code
and a message. For example, in Java, a LoginFault class extends ApiFault and indicates
that the login to Force.com failed. A general API fault with an exception code of
 INSUFFICIENT_ACCESS indicates that the user does not have sufficient access to perform
the operation.

 3. Application errors— These are language-neutral, Force.com-specific errors that vary based
on the Web services involved. For example, services that modify one or more records
return an Error object upon failure. The Error object contains a status code, a message,
and an array of fields impacted by the error. As a concrete example, if your record
modification violates the referential integrity of the Force.com database, an Error object
containing FIELD_INTEGRITY_EXCEPTION as its status code is returned.

 Using the Enterprise API

 At the highest level, the Enterprise API consists of core services that allow query and modifica-
tion of Force.com data, plus a set of types reflecting the standard and custom objects defined
in your Force.com organization. Using these core services and types is a fairly straightforward
exercise after your code has established a session with Force.com.

ptg11524036

323Calling into Force.com Using SOAP

 This section divides the Enterprise API into four functional groups, described here:

 1. Retrieving records— Retrieve records using SOQL or SOSL queries, by unique identifier,
or based on their modification or deletion time stamp.

 2. Writing records— Learn how to create and update records using the Enterprise API.

 3. Deleting and undeleting records— By deleting records, you send them to the recycling
bin, where they can later be undeleted if necessary.

 4. Modifications in bulk— Modifications can be performed on up to 200 records at a time
to conserve API calls and improve performance.

 Retrieving Records

 The most common way to retrieve records is via SOQL. This is accomplished with the query
service. A SOQL statement is passed as input, and a QueryResult object is returned. This object
contains an array of records returned by the query.

 The number of records returned by the query service is a function of the batch size. The default
batch size in Java using WSC is 2,000 records, 500 for Axis and other Web service clients. If a
query result contains more records than the batch size, use the queryMore service to retrieve
additional batches of records.

 The code in Listing 10.17 demonstrates the query and queryMore services in Java to build a
list of Project records.

 Listing 10.17 Java Fragment to Execute SOQL Query

 List<Project__c> projects = new ArrayList<Project__c>();
 QueryResult qr = connection.query("SELECT Id, Name FROM Project__c");
 boolean done = false;
 if (qr.getSize() > 0) {
 while (!done) {
 SObject[] records = qr.getRecords();
 if (records != null) {
 for (SObject record : records) {
 projects.add((Project__c)record);
 }
 if (qr.isDone()) {
 done = true;
 } else {
 qr = connection.queryMore(qr.getQueryLocator());
 }
 }
 }
 }

ptg11524036

324 Chapter 10 Integration with Force.com

 You can set a custom batch size (up to 2,000 records) by providing a QueryOptions header.
This is demonstrated in Java in Listing 10.18 .

 Listing 10.18 Java Fragment for Setting Query Batch Size

 connection.setQueryOptions(2000);

 There’s no guarantee Force.com will return the requested number of records in a batch. For
example, if a SOQL statement selects two or more custom fields of type long text, the batch size
will never be more than 200 records. Queries on binary data always return a single record at a
time.

 Other Ways to Retrieve Records
 A few other approaches are available for retrieving records, described next:

 ■ Using SOSL— The search service executes a SOSL statement and returns a Search
Result object, which contains an array of SearchRecord objects. Each SearchRecord
contains an SObject instance representing a matching record. Because SOSL can return
many object types, each SearchRecord object can contain a different type of SObject.

 ■ By unique identifier— If you know the unique identifier of an object, you can retrieve
it by using the retrieve service. Its inputs are a string containing a comma-separated
list of field names to retrieve, the type of object as a string, and an array of up to 2,000
record unique identifiers. It returns an array of SObject instances.

 ■ By time stamp— The getUpdated and getDeleted services return the unique identifiers
of records updated or deleted between a range of dates.

 Writing Records

 The basic services for writing records closely resemble their counterparts in Apex code. Services
exist for creating, updating, upserting, deleting, and undeleting records. These services can
accept one record at a time or up to 200 records in a single invocation.

 Creating Records
 To create one or more records, invoke the create service, passing in an array of SObjects. Each
SObject must contain at a minimum the values for the required fields defined on the object.
The service returns an array of SaveResult objects. Each SaveResult indicates success or
failure of an individual record. In the case of failure, the SaveResult also contains an array of
 Error objects indicating the error reason.

 The code in Listing 10.19 demonstrates the create service in Java. It creates a Contact record
from the values of firstName and lastName .

ptg11524036

325Calling into Force.com Using SOAP

 Listing 10.19 Java Fragment to Create Record

 Contact contact = new Contact();
 contact.setFirstName(firstName);
 contact.setLastName(lastName);
 SaveResult[] result = connection.create(
 new SObject[] { contact });
 if (result != null && result.length == 1) {
 if (result[0].isSuccess()) {
 System.out.println("Created contact with Id: "
 + result[0].getId());
 } else {
 System.out.println("Failed to create contact: " +
 result[0].getErrors()[0].getMessage());
 }
 }

 Updating Records
 To modify existing records, use the update service. Its arguments and return value are identical
to those of the create method. The major difference is that the SObjects must contain a value
for the Id field. This value is the unique identifier of the record to be updated.

 Use the upsert service when you want to create records that don’t exist and update them
if they do exist. To determine whether a record exists, the upsert service examines a field
containing unique identifiers. This field can be the internal Id field or a custom field desig-
nated as an external identifier. The first argument to the upsert service is the name of the
unique identifier field, and the second is an array of SObjects. The service returns an array of
 UpsertResult objects. Like the SaveResult object, it contains a success or failure indicator
and an array of errors upon failure.

 Note

 You must perform an additional step to set fields to null during an update or upsert. Each
object instance has a special array field called fieldsToNull . To set a field to null, add the
name of the field to this list.

 Deleting and Undeleting Records

 To delete records, call the delete service and pass in an array of record unique identifiers to
delete. Unlike the other DML operations, delete accepts different types of objects in a single
call. The service returns an array of DeleteResult objects indicating the success or failure of
each deletion, as well as any error messages.

 The undelete service restores deleted records from the Recycle Bin. Its input is a list of record
unique identifiers, and it returns an array of UndeleteResult objects for use in tracking the
outcome of each undeletion.

ptg11524036

326 Chapter 10 Integration with Force.com

 Modifications in Bulk

 Bulk modifications involve more than one record. You can create, update, upsert, delete,
or undelete a maximum of 200 records in a single call. By default, Force.com allows partial
failure, meaning some records can fail while others succeed. To override this behavior, add the
 AllOrNoneHeader to the call and set it to true . This causes Force.com to roll back all modifi-
cations made by the call unless all records are successfully processed.

 The ability to process multiple object types in a single call is a powerful feature of bulk modi-
fications. This is supported on create, update, delete, and undelete operations, but not upsert.
For example, you can create a Resource and Skill in one round-trip to Force.com. This requires
that the Skill record references its parent Resource using an external identifier rather than an Id
because an Id for the record doesn’t exist yet.

 There are several important limitations of bulk create and update calls that involve multiple
object types:

 ■ Up to ten unique object types are allowed per call.

 ■ You can’t reference a new record of the same type in a single call. For example, if two
Contact records were related to each other, you would need to create the parent first and
then create the child and relate it to the parent in a separate call.

 ■ If there are related records in the call, parent records must be located ahead of child
records in the request.

 ■ You cannot modify records of multiple object types if they participate in the Salesforce
Setup menu. This limitation includes custom settings objects, GroupMember, Group, and
User.

 Creating Custom Apex SOAP Web Services

 With SOAP Web services, you can create higher-level APIs of your own directly in the Force.
com platform and invoke them from your own programs outside of Force. Your custom SOAP
services can bundle a series of related queries or updates into a single call, providing an atomic
unit of work and reducing network traffic and API call consumption.

 Caution

 Custom SOAP services run with administrative rights by default, granting your Apex code access
to all data in the organization.

 One way to understand the value of Apex SOAP Web services is to first examine limitations in
the Enterprise API. The Enterprise API is a direct representation of the objects in your database
as SOAP message types, with methods to query and modify them per record or in batches. This
low-level access to the Force.com database through standard protocols and messages opens your
Force.com applications to the outside world but isn’t perfect for every integration scenario. The
following list points out some areas in which the Enterprise API can fall short:

ptg11524036

327Calling into Force.com Using SOAP

 ■ Transactions— There is limited support in the Enterprise API for transactions that
span multiple objects. If an external program must modify many objects in an atomic
operation, it needs to detect failure for each call and apply a compensating action to
reverse prior successes.

 ■ Integrated security— The Enterprise API always applies object-, field-, and record-level
sharing rules of the currently logged-in user. This cannot be disabled by an external
program calling into Force.com. If greater rights are needed, an administrator must
alter the user’s profile or the program must log in with the credentials of a more
privileged user. This can complicate integration programs by requiring many logins of
varying privileges or put the organization at risk by running integration programs with
administrative rights.

 ■ Performance— As your integration programs get more complex, they can become chatty,
making many calls to Force.com to fetch different types of records and postprocess them
off-platform. This consumes more of the API calls toward the organization’s daily limit
and reduces performance by putting more data on the wire.

 The definition of a custom SOAP service is slightly different from that of a regular Apex class.
The differences are listed here:

 ■ Global class access modifier— A class that contains any SOAP services must use the
 global access modifier. This means the class is visible to all programs running in the
Force.com organization.

 ■ SOAP methods— Each method accessible via SOAP must be defined with the webservice
keyword. These methods must also be static.

 ■ Security— SOAP methods run as a system administrator, without regard for object-,
field-, or record-level sharing rules. To enforce record sharing rules, define the class
with the with sharing keyword. To enforce object- and field-level security, use the
results of the getDescribe method (Schema.DescribeSObjectResult and Schema.
DescribeFieldResult) to check the user’s permission to the data.

 ■ Supporting classes— User-defined Apex classes, inner or outer, that are arguments or
return values for a SOAP service method must be defined as global . Member variables of
these classes must be defined using the webservice keyword.

 ■ No overloading— SOAP service methods cannot be overloaded. Overloaded methods
result in a compile error.

 ■ Prohibited types— The Map, Set, Pattern, Matcher, Exception, and Enum types are not
allowed in the arguments or return types of Apex SOAP services.

 Additionally, SOAP services written in Apex must abide by its governor limits. A subset of these
governor limits is listed in Table 10.3 .

ptg11524036

328 Chapter 10 Integration with Force.com

 Table 10.3 Subset of Apex SOAP Service Governor Limits

 Resource Type Governor Limit

 SOQL 100 queries

 Records from SOQL 50,000 records

 DML 150 DML statements

 Records in DML 10,000 records

 Stack depth 16

 Heap 6,000,000 bytes

 Apex code 200,000 lines of code executed

 Listing 10.20 defines a simple Apex SOAP service that creates a record in the Project custom
object given a name.

 Listing 10.20 Sample Apex Code for Custom SOAP Service

 global class Listing10_20 {
 webservice static ID createProject(String name) {
 Project__c proj = new Project__c(Name = name);
 insert proj;
 return proj.Id;
 }
 }

 Calling an Apex SOAP Service

 To call an Apex SOAP service from client code, follow these steps:

 1. In the App Setup area, click Develop, Apex Classes.

 2. Locate the class containing the Apex SOAP service and click the WSDL link.

 3. Save the WSDL on your local file system. You’ll need this plus the Enterprise WSDL in
order to call the custom Apex SOAP service.

 4. Generate stub code from the custom WSDL and add it to your project.

 5. Authenticate using the Enterprise WSDL by passing a ConnectorConfig to Connector.
newConnection method; then change the service endpoint to the one from the custom
WSDL.

 6. Create a new SoapConnection from the ConnectorConfig , and invoke the custom Apex
SOAP service method.

ptg11524036

329Sample Application: Anonymous Benchmarking

 Listing 10.21 demonstrates the invocation of the custom createProject service in Java using
the WSC, with the stub code generated to a .jar file named Listing10_20 .

 Listing 10.21 Java Fragment for Invoking Custom Apex SOAP Service

 ConnectorConfig config = new ConnectorConfig();
 config.setUsername(user);
 config.setPassword(pass);
 Connector.newConnection(config);
 config.setServiceEndpoint(com.sforce.soap.Listing10_20.Connector.END_POINT);
 SoapConnection sconn = new SoapConnection(config);
 String projectId = sconn.createProject("Test Project");

 Sample Application: Anonymous Benchmarking

 In a services organization, utilization is a valuable metric for managing the business. A simple
definition of utilization is the number of hours worked, typically hours billable to the client,
divided by the total number of hours in a time period, expressed as a percentage.

 In this section, the Services Manager sample application is extended with a Visualforce page
that performs a basic utilization calculation between two dates. To calculate billable hours
worked, it queries the Timecard custom object. For available hours, it uses a built-in Apex func-
tion for date arithmetic to compute the number of working hours between the two dates.

 Integration comes into the picture with the addition of anonymous benchmarking. Imagine an
independent organization that collects and analyzes the performance data of services compa-
nies. Companies submit their anonymized metrics and compare their performance with that
of other companies in their industry. For the Services Manager sample application, you have
access to a fictional benchmarking organization reachable through a SOAP Web service call.

 The remainder of the section describes the design and implementation of the utilization page,
controller, and integration to the anonymous benchmarking SOAP Web service. It is divided
into the following subsections:

 ■ Visualforce page design— Build a simple Visualforce page to capture the start and end
dates of the utilization calculation, and display the results.

 ■ Visualforce controller design— Develop a controller to retrieve the billable hours worked
and the available hours, and perform the utilization calculation.

 ■ Integrating the SOAP Web service— Add code to the controller to call out to the
anonymous benchmarking SOAP Web service to share the results of the utilization
calculation.

 ■ Sample implementation— Examine sample code for the utilization page and
controller. Try this code in its entirety, copy portions of it, or contrast it with your own
implementation.

ptg11524036

330 Chapter 10 Integration with Force.com

 Visualforce Page Design

 The goal of this section is a Visualforce page resembling what’s shown in Figure 10.6 . A user
has entered start and end dates to compute utilization, selected the Share Anonymously check
box to indicate that she would like the results sent out over the Web to the benchmarking
service, and clicked the Calculate button. This populated the lower three rows with the utiliza-
tion results. The results include the total hours worked in the time period (from the Timecard
object), the total number of consulting resources in the system (from the Contact object), and
the utilization as a percentage.

 Figure 10.6 Utilization Visualforce page

 The page is styled to look like part of the native Force.com native user interface. The
sectionHeader component is used to render the heading bar. This is followed by the
 pageMessages component to show errors and information to the user. The Calculate button is
a commandButton , enclosed in a pageBlockButtons component. The Start and End date fields
are both inputField components with their value attributes set to SObject Date fields in the
controller, providing a calendar picker user interface when focus is received. The styling of each
row is accomplished by pageBlockSectionItem components, each with two child compo-
nents. For example, the pageBlockSectionItem to render the row for Start Date contains an
 outputLabel and an inputField .

ptg11524036

331Sample Application: Anonymous Benchmarking

 Begin by prototyping this page, focusing on the appearance, layout, and user interaction.
Create a custom controller class, adding a placeholder action method to calculate the utiliza-
tion. Create member variables for the start and end dates, binding them to any Date field in
a standard or custom object. This binding means you can use the inputField component to
render the start and end date fields, making them calendar input controls rather than plain text
fields. Add a Boolean member variable for the Share Anonymously option, bound to an input-
Checkbox component.

 You’re ready to move on to build out the controller to compute utilization and integrate the
benchmarking SOAP Web service.

 Visualforce Controller Design

 The job of the controller is to take the user input and calculate utilization, optionally sending
the results to the Web service. Real-world calculations of utilization can be complex. For
example, some organizations subtract paid time off from the total hours available. Or with a
large or diverse pool of resources, utilization might be calculated separately per business unit or
geographic region.

 In the Services Manager sample application, the utilization calculation is intentionally kept
simple. One minor complication is in defining the available working hours, the denominator in
the utilization formula. Rather than assuming that all consultants are billable 24 hours a day,
use Force.com to store the company’s business hours.

 To manage business hours, go to the Administration Setup area and click Company Profile,
Business Hours. Force.com comes preconfigured with business hours that run for 24 hours per
day, 7 days a week. Because you don’t expect your consultants to work 168-hour weeks, click
the Edit link and update the default business hours to something more reasonable. To designate
a day off, leave the start and end time blank. Figure 10.7 shows the business hours configura-
tion for a 45-hour workweek, working 8:00 a.m. to 5:00 p.m. weekdays with Saturdays and
Sundays off.

ptg11524036

332 Chapter 10 Integration with Force.com

 Figure 10.7 Configuring business hours

 With business hours configured, you’re ready to compute utilization. The following list outlines
the steps:

 1. Write a SOQL query to select the Total_Hours__c field from all timecards that are
billable and between the start and end dates entered by the user.

 2. Add up all the values of the Total_Hours__c field. This is the numerator in the
utilization calculation.

 3. Assume that the Week_Ending__c field of timecards is always a Saturday. If the start
or end date entered by the user is not a Saturday, adjust it accordingly. If you do not
take this simplifying step, you’ll have to compensate for non-Saturday time ranges by
subtracting the hours of individual days from the total.

 4. The number of hours available must account for the business hours of the organization.
The business hours you configured in the Force.com native user interface are stored in a
standard object named BusinessHours , queryable from SOQL. Write SOQL to obtain the
unique identifier of the default BusinessHours record. Call the static diff method on
the BusinessHours class, passing the unique identifier and the adjusted start and end
dates. This returns a long value with the number of milliseconds elapsed between the two
dates during which the organization was open for business.

ptg11524036

333Sample Application: Anonymous Benchmarking

 Integrating the SOAP Web Service

 The fictional anonymous benchmarking service provides a URL to the WSDL for its Web
service. The Web service allows companies to submit their utilization calculations anonymously
for contribution in a database. Companies are differentiated by industry only, using a stan-
dard industry classification system called the North American Industry Classification System
(NAICS), developed by the United States Census Bureau. NAICS codes are six-digit numbers.
The list of NAICS codes is available at www.census.gov/eos/www/naics/reference_files_
tools/2007/naics07_6.txt . For example, 541511 is the code for companies providing Custom
Computer Programming Services.

 To integrate the Web service, begin by generating an Apex class from the WSDL. The WSDL is
available at http://force-book-developer-edition.na6.force.com/AnonymousBenchmarkWsdl .
Download it to your local machine and then follow these steps:

 1. In the App Setup area, click Develop, Apex Classes and click the Generate from WSDL
button.

 2. Click the Browse button, locate the WSDL file in your file system, and click the Parse
WSDL button.

 3. You should see the screen shown in Figure 10.8 , which is prompting for an Apex class
name to receive the generated code. You can name your class anything you want, but
this example uses the name BenchmarkWS. Then click the Generate Apex Code button.

 Figure 10.8 Generating Apex from anonymous benchmarking WSDL

http://www.census.gov/eos/www/naics/reference_files_tools/2007/naics07_6.txt
http://www.census.gov/eos/www/naics/reference_files_tools/2007/naics07_6.txt
http://force-book-developer-edition.na6.force.com/AnonymousBenchmarkWsdl

ptg11524036

334 Chapter 10 Integration with Force.com

 You should now have a new Apex class called BenchmarkWS . Before you can test it out, enable
the endpoint URL in Remote Site Settings. In the Administration Setup area, click Security
Controls, Remote Site Settings. Click the New Remote Site button and enter a name for the site
and its URL (https://force-book-developer-edition.na6.force.com). Figure 10.9 shows the result
of adding the remote site.

 Figure 10.9 Remote site settings

 Finally, test the generated Apex class using the code given in Listing 10.22 . You can execute
this code directly from the Execute Anonymous view.

 Listing 10.22 Testing the Web Service Call from Apex

 BenchmarkWS.AnonymousBenchmark service =
 new BenchmarkWS.AnonymousBenchmark();
 BenchmarkWS.UtilizationEntry ue =
 new BenchmarkWS.UtilizationEntry();
 ue.naicsCode = '541511';
 ue.startDate = Date.parse('7/1/2013');
 ue.endDate = Date.parse('7/31/2013');
 ue.totalHours = 35;
 ue.totalResources = 1;
 ue.utilization = 88;

https://force-book-developer-edition.na6.force.com

ptg11524036

335Sample Application: Anonymous Benchmarking

 BenchmarkWS.SubmissionStatus[] results =
 service.submitUtilizationData(
 new BenchmarkWS.UtilizationEntry[] { ue });
 if (results != null) {
 for (BenchmarkWS.SubmissionStatus result : results) {
 if (!result.success) {
 System.debug(result.errorMessage);
 }
 }
 }

 Sample Implementation

 Listing 10.23 contains the controller code for the utilization Visualforce page, and Listing 10.24
contains the page itself. This implementation brings together the three elements discussed in
this section: the user interface to calculate utilization, the utilization computation itself, and
the Web service callout.

 Listing 10.23 Sample Code for Utilization Controller

 public class UtilizationController {
 public Timecard__c card1 { get; private set; }
 public Timecard__c card2 { get; private set; }
 public Boolean shared { get; set; }
 public Decimal utilization { get; private set; }
 public Decimal totalHours { get; private set; }
 public Integer totalResources { get; private set; }
 public UtilizationController() {
 card1 = new Timecard__c();
 card2 = new Timecard__c();
 }
 public PageReference calculate() {
 Date startDate = card1.Week_Ending__c;
 Date endDate = card2.Week_Ending__c;
 // assumes all active resources are billable
 List<Contact> contacts = [SELECT Id FROM Contact
 WHERE Active__c = TRUE AND Start_Date__c < :startDate];
 List<Timecard__c> timecards = [SELECT Week_Ending__c,
 Total_Hours__c FROM Timecard__c
 WHERE Billable__c = true AND
 Week_Ending__c >= :startDate AND
 Week_Ending__c <= :endDate
 ORDER BY Week_Ending__c];
 totalHours = 0;
 if (timecards.size() == 0) {

ptg11524036

336 Chapter 10 Integration with Force.com

 return null;
 }
 for (Timecard__c timecard : timecards) {
 totalHours += timecard.Total_Hours__c;
 }
 // adjust start and end dates to match timecard week endings
 Timecard__c firstTimecard = timecards.get(0);
 Timecard__c lastTimecard = timecards.get(timecards.size() - 1);
 if (startDate < firstTimecard.Week_Ending__c) {
 startDate = firstTimecard.Week_Ending__c.addDays(-6);
 card1.Week_Ending__c = startDate;
 }
 if (endDate > lastTimecard.Week_Ending__c) {
 endDate = lastTimecard.Week_Ending__c;
 card2.Week_Ending__c = endDate;
 }
 totalResources = contacts.size();
 Long availableHours = totalResources *
 calculateAvailableHours(startDate, endDate);
 utilization = 100 * totalHours.divide(availableHours, 2);
 if (shared) {
 shareUtilization();
 }
 return null;
 }
 public static Long calculateAvailableHours(
 Date startDate, Date endDate) {
 BusinessHours bh = [SELECT id FROM BusinessHours
 WHERE IsDefault = true];
 DateTime startTime = DateTime.newInstance(
 startDate.year(), startDate.month(), startDate.day(),
 0, 0, 0);
 DateTime endTime = DateTime.newInstance(
 endDate.year(), endDate.month(), endDate.day(),
 0, 0, 0);
 Decimal diff = Decimal.valueOf(
 BusinessHours.diff(bh.id, startTime, endTime));
 return diff.divide(3600000, 0).round();
 }
 private void shareUtilization() {
 BenchmarkWS.AnonymousBenchmark service =
 new BenchmarkWS.AnonymousBenchmark();
 BenchmarkWS.UtilizationEntry ue =
 new BenchmarkWS.UtilizationEntry();
 ue.naicsCode = '541511';
 ue.startDate = card1.Week_Ending__c;
 ue.endDate = card2.Week_Ending__c;

ptg11524036

337Sample Application: Anonymous Benchmarking

 ue.totalHours = totalHours;
 ue.totalResources = totalResources;
 ue.utilization = utilization;
 BenchmarkWS.SubmissionStatus[] results =
 service.submitUtilizationData(
 new BenchmarkWS.UtilizationEntry[] { ue });
 if (results != null) {
 for (BenchmarkWS.SubmissionStatus result : results) {
 if (!result.success) {
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.ERROR, result.errorMessage));
 } else {
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.INFO,
 'Shared anonymous benchmark data'));
 }
 }
 }
 }
 }

 Listing 10.24 Sample Code for Utilization Visualforce Page

 <apex:page controller="UtilizationController">
 <apex:sectionHeader title="Services Manager"
 subtitle="Utilization" />
 <apex:form>
 <apex:pageMessages id="msgs" />
 <apex:pageBlock id="util">
 <apex:pageBlockButtons>
 <apex:commandButton action="{!calculate}"
 value="Calculate" rerender="msgs, util" />
 </apex:pageBlockButtons>
 <apex:pageBlockSection columns="1">
 <apex:pageBlockSectionItem>
 <apex:outputLabel value="Start Date" />
 <apex:inputField value="{!card1.Week_Ending__c}" />
 </apex:pageBlockSectionItem>
 <apex:pageBlockSectionItem>
 <apex:outputLabel value="End Date" />
 <apex:inputField value="{!card2.Week_Ending__c}" />
 </apex:pageBlockSectionItem>
 <apex:pageBlockSectionItem>
 <apex:outputLabel value="Share Anonymously" />
 <apex:inputCheckbox value="{!shared}" />
 </apex:pageBlockSectionItem>

ptg11524036

338 Chapter 10 Integration with Force.com

 <apex:pageBlockSectionItem>
 <apex:outputLabel value="Total Hours" />
 <apex:outputText value="{!totalHours}" />
 </apex:pageBlockSectionItem>
 <apex:pageBlockSectionItem>
 <apex:outputLabel value="Total Resources" />
 <apex:outputText value="{!totalResources}" />
 </apex:pageBlockSectionItem>
 <apex:pageBlockSectionItem>
 <apex:outputLabel value="Utilization (%)" />
 <apex:outputText value="{!utilization}" />
 </apex:pageBlockSectionItem>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:form>
 </apex:page>

 Summary

 With its integration features, the Force.com platform is open for interoperability with other
applications and systems running on Force.com, elsewhere on the Internet, and behind your
corporate firewall. The capability to call the platform bidirectionally using Web standards helps
to break down the functional silos of Force.com and other applications.

 Chapter 11 , “Advanced Integration,” covers additional integration features, such as the ability
to securely embed other applications within the user interface, build custom developer tools,
and provide external applications with a real-time stream of updated data. Before jumping in,
take a minute to review the following points from this chapter:

 ■ You can call out to SOAP and REST Web services from Apex using its built-in support for
HTTP, XML, and JSON, as well as the WSDL to Apex tool.

 ■ OAuth is a Web standard for authentication, configured in Force.com using Connected
Apps.

 ■ With code annotations and tools to map Apex to SOAP and REST, your Apex code
can become Web services, ready for incorporation into programs running outside of
Force.com.

ptg11524036

 11
 Advanced Integration

 This chapter focuses on Force.com integration features that are highly specialized and not typically
essential for everyday application development. They are features often used by independent software
vendors to extend the Force.com platform at a low level to add new capabilities.

 Due to their specialized nature and complexity, the APIs covered here each have their own dedicated
reference guides at http://developer.force.com . The intent of this chapter is to provide a brief introduc-
tion to the APIs and sample code that can serve as a way to get started with them.

 This chapter is divided into sections that each address a different integration feature:

 ■ Introduction to the Force.com Streaming API— The Streaming API provides near-real-time
notifications about the creation and modification of database records.

 ■ Working with the Force.com Bulk API— The Bulk API is a way to get mass quantities of
database records in and out of Force.com.

 ■ Getting started with Force.com Canvas— Canvas provides a secure mechanism to embed user
interfaces, hosted outside Force.com, into Chatter and Visualforce pages.

 ■ Introduction to the Force.com Tooling API— The Tooling API is used by the Force.com IDE
and other tools to maintain code artifacts and access debugging functionality.

 ■ Understanding the Force.com Metadata API— The Metadata API enables you to write
code to perform development and configuration management tasks such as database object
maintenance and application migration. It is the same API used by the Force.com IDE.

 ■ Sample application— In an integration scenario for the Services Manager sample application,
a Java program is developed to update Force.com with information from a human resources
database.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/7kuTFT .

http://developer.force.com
http://goo.gl/7kuTFT

ptg11524036

340 Chapter 11 Advanced Integration

 Introduction to the Force.com Streaming API

 The Force.com Streaming API delivers notifications to your program when records in the Force.
com database are created or modified. This can be useful for user interfaces that have a real-
time data requirement or to keep an external database in sync with Force.com. Streaming API is
a scalable alternative to polling Force.com for changes or writing triggers with callouts.

 This section provides an introduction to Force.com Streaming API in two parts, described here:

 1. Overview— Learn the key concepts involved in the Streaming API.

 2. Getting started with Force.com Streaming API— Construct a working example that uses
the Streaming API within a Visualforce page.

 Note

 For more information about the Streaming API, consult the Force.com Streaming API
Developer’s Guide, found at http://www.salesforce.com/us/developer/docs/api_streaming/
index.htm .

 Overview

 Streaming notifications in Force.com are best understood in terms of publishers and subscrib-
ers. Force.com can be configured to publish notifications when something interesting happens
with a database object. This publishing configuration is expressed through a PushTopic. The
PushTopic defines the database object to monitor, a public name that subscribers can reference
called a Channel, and guidance on what conditions in the database object must be satisfied to
create a notification. The subscriber is a program inside or outside of Force.com that uses the
Bayeux protocol (CometD implementation) to register interest in and receive the streaming
notifications.

 PushTopics are ordinary Force.com database records, but contain four components that are
critical to properly configuring your streaming notifications, described in the following list:

 1. Channel name— This is the name that client applications will use to subscribe to the
streaming notifications on this PushTopic. It must be 25 characters or fewer and be
unique in your organization.

 2. SOQL query— The SOQL query defines the database object and fields that you are
monitoring for changes, plus optionally the criteria used to determine whether a change
is worthy of a notification. To receive notifications, the subscriber must have at least read
access to the object, field-level security to the fields in the WHERE clause, and visibility to
the records causing the notifications via sharing rules.

http://www.salesforce.com/us/developer/docs/api_streaming/index.htm
http://www.salesforce.com/us/developer/docs/api_streaming/index.htm

ptg11524036

341Introduction to the Force.com Streaming API

 3. NotifyForOperations — By default, notifications are sent on the Channel when
matching records are created or updated (All). Use this field to limit notifications to only
creation (Create) or only modification (Update) of records.

 4. NotifyForFields — This setting instructs the Channel on what fields in the SOQL query
are considered changes and trigger a notification. Any filters in a WHERE clause are always
evaluated first. By default, it is set to Referenced , which means all fields in the query are
factored into the decision. Other valid values are All (all fields in the object, even those
not in SELECT or WHERE), Select (fields in a SELECT clause only), and Where (fields in a
 WHERE clause only).

 As soon as a PushTopic is created, it is instantly available to subscribers. Likewise, when it is
modified, the new definition takes effect immediately. You can delete a PushTopic record to
stop its notifications, or set IsActive to false to disable it temporarily.

 Each Force.com organization has a limit of 20 PushTopics. There are also per-edition limits on
subscribers per topic and notifications per day. There are also a number of limitations on the
SOQL query used in PushTopics, described next:

 ■ Subset of objects— All custom objects are supported, but only a handful of standard
objects: Account, Campaign, Case, Contact, Lead, Opportunity, and Task.

 ■ Subset of query features— Aggregate queries, semi-join and anti-joins, count, limit,
relationship fields, order by, group by, and formula fields are not supported.

 ■ Required fields— The query must include the Id field.

 ■ Maximum length— The query cannot exceed 1,300 characters.

 Getting Started with Force.com Streaming API

 A simple way to experiment with the Streaming API is to create a Visualforce page to serve
as the subscriber. You can then visually see notifications as they arrive. Figure 11.1 shows a
sample Visualforce page to do this. The button on the top starts and stops notifications by
creating and deleting a PushTopic record. The table below it displays notifications as they arrive
from Force.com, in response to the creation and modification of Timecard records.

ptg11524036

342 Chapter 11 Advanced Integration

 Figure 11.1 Streaming API example

 To try this example in your own Salesforce organization, create the controller class in Listing
 11.1 . Then download the CometD library at http://download.cometd.org/cometd-2.2.0-
distribution.tar.gz . Uncompress it and extract the following files:

 ■ cometd-2.2.0/cometd-javascript/common/target/org/Cometd.js

 ■ cometd-2.2.0/cometd-javascript/jquery/src/main/webapp/jquery/
jquery-1.5.1.js

 ■ cometd-2.2.0/cometd-javascript/jquery/src/main/webapp/jquery/json2.js

 ■ cometd-2.2.0/cometd-javascript/jquery/src/main/webapp/jquery/
jquery.cometd.js

 Place them into a zip file and upload it as a static resource named cometd . Now you can create
the Visualforce page given in Listing 11.2 .

 Listing 11.1 Visualforce Controller for Streaming API Example

 public with sharing class MyPageController11_1 {
 public Boolean started { get; set; }
 private static final String TOPIC_NAME = 'TimecardUpdates';
 public MyPageController11_1() {

http://download.cometd.org/cometd-2.2.0-distribution.tar.gz
http://download.cometd.org/cometd-2.2.0-distribution.tar.gz

ptg11524036

343Introduction to the Force.com Streaming API

 started = 1 == [SELECT count() FROM PushTopic
 WHERE Name = :TOPIC_NAME];
 }
 public PageReference stop() {
 PushTopic p = [SELECT Id from PushTopic
 WHERE Name = :TOPIC_NAME LIMIT 1];
 if (p != null) {
 delete p;
 }
 started = false;
 return null;
 }
 public PageReference start() {
 PushTopic p = new PushTopic();
 p.Name = TOPIC_NAME;
 p.Query = 'SELECT Id, Name, Status__c FROM Timecard__c';
 p.ApiVersion = 28.0;
 p.NotifyForOperations = 'All';
 p.NotifyForFields = 'Referenced';
 insert p;
 started = true;
 return null;
 }
 }

 Listing 11.2 Visualforce Page for Streaming API Example

 <apex:page controller="MyPageController11_1">
 <apex:form id="form">
 <apex:includeScript value="{!URLFOR($Resource.cometd,
 'Cometd.js')}"/>
 <apex:includeScript value="{!URLFOR($Resource.cometd,
 'jquery-1.5.1.js')}"/>
 <apex:includeScript value="{!URLFOR($Resource.cometd,
 'jquery.cometd.js')}"/>
 <apex:includeScript value="{!URLFOR($Resource.cometd,
 'json2.js')}"/>
 <apex:sectionHeader title="Force.com Streaming API Example" />

 <apex:commandButton action="{!start}" value="Start"
 rerender="form" rendered="{!NOT started}" />
 <apex:commandButton action="{!stop}" value="Stop"
 rendered="{!started}" />
 <apex:outputPanel id="comet" rendered="{!started}">
 <script type="text/javascript">
 (function($) {

ptg11524036

344 Chapter 11 Advanced Integration

 $(document).ready(function() {
 $.cometd.init({
 url: window.location.protocol + '//' + window.location.hostname +
 '/cometd/28.0/',
 requestHeaders: { Authorization: 'OAuth {!$Api.Session_ID}'}
 });
 $.cometd.subscribe('/topic/TimecardUpdates', function(message) {
 $('#content').append(
 '<tr><td>' + JSON.stringify(message.channel) + '</td>' +
 '<td>' + JSON.stringify(message.data.sobject.Name) + '</td>' +
 '<td>' + JSON.stringify(message.data.sobject.Id) + '</td>' +
 '<td>' + JSON.stringify(message.data.event.type) + '</td>' +
 '<td>' + JSON.stringify(message.data.event.createdDate) + '</td>' +
 '</tr>');
 });
 });
 })(jQuery)
 </script>
 </apex:outputPanel>
 <p />
 <table id="content" width="80%"><tr><th>Channel</th><th>Name</th>
 <th>Id</th><th>Type</th><th>Created</th></tr>
 </table>
 </apex:form>
 </apex:page>

 Working with the Force.com Bulk API

 The Force.com Bulk API allows the import or export of large quantities of records, split into
units of work called batches. Up to 20 million records per 24-hour period can be imported into
Force.com. Both REST and SOAP versions of the API are provided.

 This section focuses on hands-on examples with the REST flavor of the Bulk API. The examples
require a tool named cURL, available free for every platform at http://curl.haxx.se .

 This section provides an introduction to Force.com Bulk API in three parts, described here:

 1. Overview— Get to know the terminology and workflow of the Bulk API, and prepare to
use it by authenticating using OAuth.

 2. Importing records— Walk through API usage examples of creating a job to import
records and verify its successful completion.

 3. Exporting records— In a series of API calls, submit a SOQL query for a bulk export and
retrieve the results.

http://curl.haxx.se

ptg11524036

345Working with the Force.com Bulk API

 Note

 For a comprehensive look at the Bulk API, refer to the Force.com Bulk API Developer’s Guide,
found at http://www.salesforce.com/us/developer/docs/api_asynch/index.htm .

 Overview

 Bulk API operates in terms of a two-tier system of containers to track units of data movement
work. Each tier is described here:

 ■ Batch— A batch is a set of records to be imported. The records are represented in CSV
or XML format. For import jobs, a batch cannot exceed 10,000 records. Batches are not
applicable to export jobs, which use result files that cannot exceed 1GB.

 ■ Job— A job is a list of batches. The job specifies the type of operation that will be
performed in the batches, such as insert or query.

 Authentication

 Bulk REST API calls require authentication to Force.com. Use the username-password OAuth
flow, which accepts username and password, to establish an authenticated session. Listing 11.3
provides a sample request and response.

 Listing 11.3 Sample Password Authentication Request and Response

 curl https://login.salesforce.com/services/oauth2/token
 -d "grant_type=password" -d "client_id=$CLIENT_ID"
 -d "client_secret=$CLIENT_SECRET"
 -d "username=$USERNAME" -d "password=$PASSWORD"
 {
 "id": "https://login.salesforce.com/id/...",
 "issued_at": "1374386510993",
 "instance_url": "https://na15.salesforce.com",
 "signature": "...",
 "access_token": "..."
 }

 The value in the response’s access_token field is needed to run all of the examples in this
section. To get one yourself, set the $USERNAME environment variable to your Salesforce user-
name, $PASSWORD to your Salesforce password with security token appended. The variables
 $CLIENT_ID and $CLIENT_SECRET are your OAuth Consumer Key and Consumer Secret. These
come from a Connected App, which you can reuse from Chapter 10 , “Integration with Force.
com.”

 Now that you have obtained an OAuth access token, you are ready to try the Bulk API exam-
ples. Set the access token as the environment variable $TOKEN . Also, be sure to replace na15 in

http://www.salesforce.com/us/developer/docs/api_asynch/index.htm

ptg11524036

346 Chapter 11 Advanced Integration

the following examples with your own instance of Force.com. To identify your instance, look
at the instance_url field of the OAuth username-password flow, or the URL in your Web
browser when you log in to Force.com.

 Importing Records

 To import records, an authenticated user creates an import job, adds batches of data to it, closes
the job, checks for completion, and then retrieves the results. The results are provided per
batch and indicate the status of each imported record. Examples of each step in this process are
provided in the remainder of this subsection.

 Listing 11.4 creates a bulk import job. It specifies that the records in the job are to be inserted
into the Project custom object from a CSV file.

 Listing 11.4 Creating a Bulk Import Job

 echo '<?xml version="1.0" encoding="UTF-8"?>
 <jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
 <operation>insert</operation>
 <object>Project__c</object>
 <contentType>CSV</contentType></jobInfo>' |\
 curl -X POST -H 'Content-type: application/xml' \
 -H "X-SFDC-Session: "$TOKEN -d @-\
 https://na15.salesforce.com/services/async/28.0/job

 Tip

 To adapt the command in Listing 11.4 and other listings in this chapter to run in Windows
Command Prompt, remove the single quotation mark characters (') in the echo statement,
replace the single quotation mark characters around the Content-type header with double
quotation mark characters ("), remove the backslash (\) line-continuation characters and con-
catenate the lines into a single line, and replace $TOKEN with %TOKEN% .

 Make a note of the job identifier, in the id field of the XML response. It is used in all of the
requests that follow. In Listing 11.5 , JOB_ID is a placeholder for the job identifier returned
from the import creation request. Replace it with your own. The records in the batch are sent
in the body of the request, composed of three Project records with unique names.

 Listing 11.5 Adding Records to Bulk Import Job

 echo 'Name
 Project1
 Project2
 Project3' |\
 curl -X POST -H 'Content-type: text/csv' \
 -H "X-SFDC-Session: "$TOKEN --data-binary @-\
 https://na15.salesforce.com/services/async/28.0/job/JOB_ID/batch

ptg11524036

347Working with the Force.com Bulk API

 Save the batch identifier that is returned. You will need it to check for the results of the batch.

 You can add more batches to the job by repeating the request. When you’re done adding
batches, send the request in Listing 11.6 to close the job, again setting the job identifier to your
own. Closing the job signals to Force.com that it can begin processing the job.

 Listing 11.6 Closing the Bulk Import Job

 echo '<?xml version="1.0" encoding="UTF-8"?>
 <jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
 <state>Closed</state></jobInfo>' |\
 curl -X POST -H 'Content-type: application/xml' \
 -H "X-SFDC-Session: "$TOKEN -d @-\
 https://na15.salesforce.com/services/async/28.0/job/JOB_ID

 Job processing is asynchronous, so requests complete immediately but processing continues in
the background. To check for the status of the job, send the request in Listing 11.7 with your
job identifier.

 Listing 11.7 Checking the Status of the Bulk Import Job

 curl https://na15.salesforce.com/services/async/28.0/job/JOB_ID \
 -H "X-SFDC-Session: "$TOKEN

 When the job is complete, you can retrieve the results of its batches. Each batch result indicates
the success or failure of every record within the batch. Listing 11.8 shows a sample request to
retrieve the batch status. Replace the job identifier and batch identifier (BATCH_ID) with your
own.

 Listing 11.8 Retrieving Results of the Bulk Import Job

 curl https://na15.salesforce.com/services/async/28.0/\
 job/JOB_ID/batch/BATCH_ID/result \
 -H "X-SFDC-Session: "$TOKEN

 Exporting Records

 The Bulk API can also be used to query Force.com to export large numbers of records in a CSV
or XML file format. First a bulk export job is created; then a batch is added to the job contain-
ing a SOQL statement. The SOQL cannot contain relationship fields; nested queries; or the
aggregate functions COUNT , ROLLUP , SUM , or GROUP BY CUBE . Next, the status of the job is
checked, and, finally, the results retrieved in files, each up to 1GB in size.

 To begin, create a bulk export job using the request in Listing 11.9 .

ptg11524036

348 Chapter 11 Advanced Integration

 Listing 11.9 Creating the Bulk Export Job

 echo '<?xml version="1.0" encoding="UTF-8"?>
 <jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
 <operation>query</operation>
 <object>Project__c</object>
 <contentType>CSV</contentType></jobInfo>' |\
 curl -X POST -H 'Content-type: application/xml' \
 -H "X-SFDC-Session: "$TOKEN -d @-\
 https://na15.salesforce.com/services/async/28.0/job

 Keep track of the job identifier returned in the response. Create a batch within the job, specify-
ing the SOQL statement. In Listing 11.10 , the names and identifiers of the Project records will
be exported. Replace JOB_ID with your job identifier.

 Listing 11.10 Creating the Bulk Export Batch

 echo 'SELECT Id, Name FROM Project__c' |\
 curl -X POST -H 'Content-type: text/csv' \
 -H "X-SFDC-Session: "$TOKEN --data-binary @-\
 https://na15.salesforce.com/services/async/28.0/job/JOB_ID/batch

 Make a note of the batch identifier. Use the request in Listing 11.11 to check the status of your
export job.

 Listing 11.11 Checking the Status of the Bulk Export Job

 curl https://na15.salesforce.com/services/async/28.0/job/JOB_ID\
 -H "X-SFDC-Session: "$TOKEN

 When the job is complete, the results are ready to retrieve. This is a two-step process. First,
retrieve the list of result identifiers. Then, for each result identifier, make a request to retrieve
the actual results. Listing 11.12 is an example of the first step. Be sure to replace the JOB_ID
and BATCH_ID placeholders with your own values.

 Listing 11.12 Retrieving Result Identifiers of the Bulk Export Job

 curl https://na15.salesforce.com/services/async/28.0/\
 job/JOB_ID/batch/BATCH_ID/result \
 -H "X-SFDC-Session: "$TOKEN

 The last step in the process is shown in Listing 11.13 . In addition to job and batch identifiers,
replace RESULT_ID with one of the result identifiers from the prior request.

ptg11524036

349Getting Started with Force.com Canvas

 Listing 11.13 Retrieving Results of the Bulk Export Job

 curl https://na15.salesforce.com/services/async/28.0/\
 job/JOB_ID/batch/BATCH_ID/result/RESULT_ID \
 -H "X-SFDC-Session: "$TOKEN

 Getting Started with Force.com Canvas

 The Force.com Canvas allows you to integrate Force.com with custom applications, located
outside of Force.com, at the user interface level. It consists of a flexible content “container”
located in Force.com and code libraries (JavaScript and Java) to augment your custom applica-
tion to take advantage of the Force.com Canvas. The libraries provide functionality around
security, sizing of the content container, and communication between Canvas applications and
the container.

 This section provides an introduction to Force.com Canvas in two parts, described here:

 1. Overview— Learn the basic components of the Canvas and how they work.

 2. Getting started with the Force.com Canvas— Walk through an example of a Canvas
application hosted on your local computer.

 Note

 The Force.com Canvas is a complex and relatively new area of Force.com with many ways
to implement it. Consult the Force.com Canvas Developer’s Guide, found at http://www.
salesforce.com/us/developer/docs/platform_connect/index.htm , for the most current and
complete information on this feature.

 Overview

 Canvas integrates applications at the user interface level, through the Web browser. The typical
scenario for an integrated user interface is mashing up Force.com data with data from an exter-
nal system. In this scenario, the external system can maintain its own database and processes,
but leverage Force.com data opportunistically from the currently logged-in user. The alternative
is typically heavier-weight integration whereby the servers of the external application attempt
to stay synchronized with data from Force.com.

 The two most important features of the Canvas are authentication and cross-domain
XMLHttpRequest (XHR). These are described in the following list:

 ■ Authentication— Authentication enables your external Web application to verify that it
is truly hosted inside a Force.com organization, with an authenticated Force.com user at
the helm. It does this in one of two ways: by allowing the Web user to OAuth to Force.
com or via Signed Request. OAuth is no different from OAuth in other contexts. Signed

http://www.salesforce.com/us/developer/docs/platform_connect/index.htm
http://www.salesforce.com/us/developer/docs/platform_connect/index.htm

ptg11524036

350 Chapter 11 Advanced Integration

Request is a method whereby the Force.com platform digitally signs a request to your
application’s Web server. The request includes the identity and session information
of the authenticated Force.com user. If the request is decrypted and the signature
verified, you can trust that it originated from Force.com and can use the session to make
subsequent requests to Force.com. Canvas Java SDK provides code for verifying data sent
by the Signed Request authentication method.

 ■ Cross-domain XHR— Because your Web application is being served inside an IFRAME, it
is subject to cross-domain scripting limitations enforced by the standard security policies
of Web browsers. This means JavaScript in your Web pages cannot call out to servers
other than the one serving the parent Web page. Because a common scenario with
mashups is to include data from Force.com, Canvas JavaScript SDK provides API calls to
proxy your requests back to Salesforce.

 Getting Started with Force.com Canvas

 Because so much of a Canvas application resides outside of Force.com by definition, it is a chal-
lenge to provide a generic, widely accessible example without pulling in many other technolo-
gies. This section walks through an example that leverages a local Web server and two static
HTML pages to demonstrate OAuth authentication and cross-domain XHR requests.

 The purpose of the example is to highlight the most common features of Canvas, and to
do so without requiring an application server. In a more realistic application of Canvas, the
OAuth process would originate on the Web server so the authorizations can be stored and
managed securely rather than forcing the user to authenticate every time the page is rendered.
Alternatively, Signed Request could be used to provide a transparent single sign-on process for
the user, whereby the Force.com session is shared securely with the external Web application.

 Figure 11.2 shows the sample application running within the Canvas App Previewer. The Login
link has been clicked, prompting the user with an OAuth authorization pop-up. When autho-
rization is complete, a callback Web page closes the pop-up and refreshes the parent window.
The access token obtained during this process is displayed. The user can then click the My
Chatter Profile link, which makes a cross-domain XHR request using the Canvas JavaScript SDK
to the Chatter REST endpoint to get the current user’s Chatter profile and display the raw JSON
response.

ptg11524036

351Getting Started with Force.com Canvas

 Figure 11.2 Canvas App in Canvas App Previewer

 The following steps describe the process for getting the example up and running:

 1. Create Connected App— In the App Setup area, go to Create, Apps and create a new
Connected App. Set the Name, API Name, and Contact Email fields. Check Enable OAuth
Settings. Provide a Callback URL, and add “Access and Manage Your Data (api)” to the
Selected OAuth Scopes list. In the Supported App Types section, check Force.com Canvas.
For the Canvas App URL, provide the URL to your local Web server and the path you are
using to host the Canvas App pages. For Access Method, select OAuth Webflow (GET).
For Locations, select Chatter Tab and Visualforce Page, and then click the Save button.
 Figure 11.3 shows an example of this configuration.

ptg11524036

352 Chapter 11 Advanced Integration

 Figure 11.3 Connected App configuration

 2. Set up local Web server with SSL— Get a Web server running on your machine to
host the Canvas App. Make sure you have enabled SSL, using a self-signed certificate if
necessary. Test the SSL configuration with your browser before proceeding. If there are
any untrusted or invalid certificate errors, the Canvas App will fail to load or function
properly.

 3. Add Canvas App pages— Create the two pages in Listing 11.14 and Listing 11.15
within a directory on your Web server, naming them index.html and callback.html ,
respectively. In the examples here, they are located in a directory called chapter11 , but
you can put them anywhere as long as they match the settings in your Connected App.

 4. Configure Canvas App pages— In your version of Listing 11.14 , replace REDIRECT_URI
and CLIENT_ID with the Callback URL and Consumer Key, respectively, from your
Connected App configuration. Also update the instance URL in the SCRIPT tag used to
load the Canvas Javascript API to match your organization.

 5. Preview the Canvas App— You should now be able to see the Canvas App in the App
Setup area, Canvas App Previewer. You can also see it in the Chatter tab. If there are
issues, use your Web browser’s debugging facility to troubleshoot.

ptg11524036

353Getting Started with Force.com Canvas

 Listing 11.14 Main HTML Page for Canvas Example

 <html>
 <head>
 <script type="text/javascript"
 src="https://na15.salesforce.com/canvas/sdk/js/28.0/canvas-all.js">
 </script>
 </head>
 <body>
 <script>
 function profileHandler(e) {
 var profileUrl = Sfdc.canvas.oauth.instance() +
 "/services/data/v28.0/chatter/users/me";
 Sfdc.canvas.client.ajax(profileUrl, {
 client: Sfdc.canvas.oauth.client(),
 failure: function(data) {
 alert(data);
 },
 success: function(data) {
 if (data.status === 200) {
 Sfdc.canvas.byId("chatter_profile").innerHTML =
 JSON.stringify(data.payload);
 }
 }
 });
 }
 function loginHandler(e) {
 var uri;
 if (!Sfdc.canvas.oauth.loggedin()) {
 uri = Sfdc.canvas.oauth.loginUrl();
 Sfdc.canvas.oauth.login({
 uri: uri,
 params: {
 response_type : "token",
 client_id : "CLIENT_ID",
 redirect_uri : encodeURIComponent("REDIRECT_URI")
 }
 });
 }
 return false;
 }
 Sfdc.canvas(function() {
 var login = Sfdc.canvas.byId("login");
 var loggedIn = Sfdc.canvas.oauth.loggedin();
 if (loggedIn) {
 Sfdc.canvas.byId("oauth").innerHTML = Sfdc.canvas.oauth.token();
 var profile = Sfdc.canvas.byId("profile");
 profile.onclick = profileHandler;

ptg11524036

354 Chapter 11 Advanced Integration

 }
 login.onclick = loginHandler;
 });
 </script>
 <h1>Force.com Canvas Example</h1>
 <div>access_token</div>
 <textarea id="oauth" rows="2" cols="80" disabled="true"></textarea>
 <div>
 Login

 My Chatter Profile

 </div>
 <textarea id="chatter_profile" rows="20" cols="80"></textarea>
 </body>
 </html>

 Listing 11.15 Callback HTML Page for Canvas Example

 <html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <script type="text/javascript">
 try {
 window.opener.Sfdc.canvas.oauth.childWindowUnloadNotification(
 self.location.hash);
 } catch (ignore) {}
 self.close();
 </script>
 </head>
 <body>
 </body>
 </html>

 Introduction to the Force.com Tooling API

 The Force.com Tooling API enables the creation of developer productivity tools for the Force.
com platform. With the Tooling API, features of tools such as the Force.com IDE are accessible
to your own programs. This includes the ability to compile code, perform code completion in
an editor, set breakpoints for debugging, and retrieve trace log results.

 This section provides an introduction to Force.com Tooling API in two parts, described here:

 1. Overview— Examine the high-level features of the Tooling API.

 2. Getting started with the Force.com Tooling API— Build a working example of the
Tooling API that allows you to edit and compile an Apex class within a Visualforce page.

ptg11524036

355Introduction to the Force.com Tooling API

 Note

 Consult the Force.com Tooling API Developer’s Guide, found at http://www.salesforce.com/us/
developer/docs/api_tooling/index.htm .

 Overview

 The Tooling API is available in both REST and SOAP forms. This section focuses on Apex class
deployment; however, the Tooling API also provides the following services:

 ■ Code— Check the syntax of Apex classes, triggers, Visualforce pages, and Visualforce
components.

 ■ Deployment— Commit code changes to your organization.

 ■ Debugging— Set heap dump markers and overlay Apex code or SOQL statements on an
Apex execution. Set checkpoints to generate log files. Access debug log and heap dump
files.

 ■ Custom fields— Manage custom fields on custom objects.

 Getting Started with Force.com Tooling API

 The power of the Tooling API can be demonstrated using a basic Visualforce page that calls to
the Tooling API’s REST endpoint from the Apex controller. Figure 11.4 shows the sample user
interface. On the left side are the Apex classes available in the organization, accessible with an
ordinary SOQL query on ApexClass . On the upper-right side is the body of the selected Apex
class. Below it is a Save button, which deploys changes to the class body.

 The process for deploying Apex code or other types of Force.com logic is to create a
 MetadataContainer , add to it the wrapper object corresponding to the type of artifact to be
deployed (in this case, ApexClassMember), create a ContainerAsyncRequest , and track the
progress of the request using a specialized Tooling API query service.

 Below the Save button are two fields that illustrate the internal state of the deployment: the
ContainerId and RequestId. These are maintained both to check the status of the deployment
(via the Refresh Status button), and to properly clean up (by deleting the MetadataContainer)
when the user clicks the Start Over button.

 To use the example, click Edit beside the class you’d like to edit. Make a change to the class
body and click Save. You should see two successful JSON responses concatenated in the log
output box, and the other buttons in the user interface should become enabled.

 Figure 11.5 shows the results of clicking the Refresh Status button. According to the JSON
response, the deployment is complete and without compiler errors. Click the Start Over button.
You should see your changes to the selected Apex class reflected in the user interface and
anywhere that Apex code is visible.

http://www.salesforce.com/us/developer/docs/api_tooling/index.htm
http://www.salesforce.com/us/developer/docs/api_tooling/index.htm

ptg11524036

356 Chapter 11 Advanced Integration

 Figure 11.5 Result of Refresh Status button click

 Figure 11.4 Result of Save button click

ptg11524036

357Introduction to the Force.com Tooling API

 The code in Listing 11.16 and Listing 11.17 provides an implementation of the controller and
page for the Tooling API example. The controller makes extensive use of HTTP callouts and the
built-in JSON parsing support.

 Note

 For the sample code to work, you must add a Remote Site setting to allow requests to the
Tooling API endpoint. The endpoint is the root of your instance URL, for example, https://na15.
salesforce.com .

 Listing 11.16 Visualforce Controller for Tooling API Example

 public class MyPageController11_16 {
 public String editBody { get; set; }
 public String editClassId { get; set; }
 public String containerId { get; set; }
 public String requestId { get; set; }
 public String log { get; set; }
 public List<ApexClass> getClasses() {
 return [SELECT Id, Name, IsValid FROM ApexClass
 ORDER BY Name];
 }
 public PageReference edit() {
 editBody = [SELECT Body FROM ApexClass
 WHERE Id = :editClassId LIMIT 1][0].Body;
 return null;
 }
 public PageReference save() {
 log = '';
 // Create MetadataContainer
 HttpRequest req = newRequest('/sobjects/MetadataContainer',
 'POST');
 Map<String, Object> args = new Map<String, Object>();
 args.put('Name', 'ClassContainer');
 String result = sendRequest(req, args);
 containerId = null;
 try {
 containerId = getResultId(result);
 } catch (Exception e) {
 log += result;
 return null;
 }
 // Create ApexClassMember
 req = newRequest('/sobjects/ApexClassMember',
 'POST');
 args = new Map<String, Object>();
 args.put('ContentEntityId', editClassId);

https://na15.salesforce.com
https://na15.salesforce.com

ptg11524036

358 Chapter 11 Advanced Integration

 args.put('Body', editBody);
 args.put('MetadataContainerId', containerId);
 log += sendRequest(req, args);
 // Create ContainerAsyncRequest
 req = newRequest('/sobjects/ContainerAsyncRequest', 'POST');
 args = new Map<String, Object>();
 args.put('IsCheckOnly', 'false');
 args.put('MetadataContainerId', containerId);
 result = sendRequest(req, args);
 log += result;
 requestId = getResultId(result);
 return null;
 }
 public PageReference reset() {
 cleanup(containerId);
 editClassId = '';
 requestId = '';
 containerId = '';
 log = '';
 editBody = '';
 return null;
 }
 public PageReference refresh() {
 String soql = 'SELECT Id, State, CompilerErrors, ErrorMsg FROM ' +
 'ContainerAsyncRequest where id = \'' + requestId + '\'';
 HttpRequest req = newRequest('/query/?q=' +
 EncodingUtil.urlEncode(soql, 'UTF-8'),
 'GET');
 log = sendRequest(req, null);
 return null;
 }
 public static void cleanup(String containerId) {
 sendRequest(newRequest('/sobjects/MetadataContainer/' + containerId,
 'DELETE'), null);
 }
 private static HttpRequest newRequest(String toolingPath,
 String method) {
 HttpRequest req = new HttpRequest();
 req.setHeader('Authorization',
 'Bearer ' + UserInfo.getSessionID());
 req.setHeader('Content-Type', 'application/json');
 req.setHeader('X-PrettyPrint' , '1');
 req.setEndpoint(getInstanceUrl() +
 '/services/data/v28.0/tooling' + toolingPath);
 req.setMethod(method);
 return req;
 }

ptg11524036

359Introduction to the Force.com Tooling API

 private static String sendRequest(HttpRequest req,
 Map<String, Object> args) {
 Http h = new Http();
 if (args != null) {
 req.setBody(Json.serialize(args));
 }
 HttpResponse res = h.send(req);
 return res.getBody();
 }
 private static String getInstanceUrl() {
 String url = System.URL.getSalesforceBaseUrl()
 .toExternalForm();
 url = url.replace('visual.force', 'salesforce');
 url = url.replace('c.', '');
 return url;
 }
 private static Id getResultId(String body) {
 Map<String, Object> result = (Map<String, Object>)
 JSON.deserializeUntyped(body);
 return (Id)result.get('id');
 }
 }

 Listing 11.17 Visualforce Page for Tooling API Example

 <apex:page controller="MyPageController11_16">
 <apex:form id="form">
 <apex:pageBlock title="Force.com Tooling API Example">
 <apex:pageBlockSection columns="2">
 <apex:pageBlockTable value="{!classes}" var="c">
 <apex:column >
 <apex:commandLink value="Edit" action="{!edit}"
 rerender="editor">
 <apex:param name="editClassId"
 assignTo="{!editClassId}" value="{!c.Id}" />
 </apex:commandLink>
 </apex:column>
 <apex:column value="{!c.Name}" />
 <apex:column value="{!c.IsValid}" />
 </apex:pageBlockTable>
 <apex:outputPanel id="editor">
 <apex:inputTextArea id="editBody" rows="15" cols="90"
 value="{!editBody}" disabled="{!editClassId == NULL}" />
 <p/><apex:commandButton value="Save" action="{!save}"
 disabled="{!editClassId == NULL}" rerender="editor" />
 <p/>
 ContainerId: {!containerId},

ptg11524036

360 Chapter 11 Advanced Integration

 RequestId: {!requestId}

 <apex:commandButton value="Refresh Status" action="{!refresh}"
 disabled="{!requestId == NULL}" rerender="editor" />
 <apex:commandButton value="Start Over" action="{!reset}"
 disabled="{!containerId == NULL}" />
 <p/>
 <textarea disabled="true" rows="10" cols="90">
 {!log}
 </textarea>
 </apex:outputPanel>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:form>
 </apex:page>

 Understanding the Force.com Metadata API

 The Metadata API allows the direct manipulation of objects, page layouts, tabs, and most of the
other configurable features in Force.com. By using the Metadata API, you can automate many
of the click-intensive tasks commonly performed in the Force.com IDE or in the native Web
user interface, such as the creation of database objects and fields.

 This section provides an introduction to the Metadata API in two parts, described here:

 1. Overview— The Metadata API is different from the Enterprise API in two major ways.
First, it can operate on objects in memory or using zip files containing many objects
represented as XML files. Second, its operations are asynchronous, returning immediately
with a result identifier to use for follow-up calls to check the status.

 2. Getting started with the Metadata API— Walk through a sample of calling the Metadata
API to create a new object using Java.

 Note

 The details of how the Metadata API operates on each type of metadata in Force.com are out-
side the scope of this book. Consult the Force.com Metadata API Developer’s Guide, found at
 www.salesforce.com/us/developer/docs/api_meta/index.htm , for the latest information and
detailed descriptions of all the available methods of the Metadata API. Salesforce continues to
expand the reach of the Metadata API in every release.

 Overview

 The Metadata API consists of two types of services: file-based and object-based. These service
types are summarized next:

http://www.salesforce.com/us/developer/docs/api_meta/index.htm

ptg11524036

361Understanding the Force.com Metadata API

 ■ File-based services— The file-based services are deploy and retrieve . The deploy
service takes a Base64-encoded zip file containing the components to deploy into the
Force.com organization. The zip file must contain a manifest file named package.xml
at its root to describe the contents of the zip. The retrieve service downloads metadata
from Force.com and returns it as a zip file complete with package.xml as manifest. Its
input is a RetrieveRequest object to specify the types of metadata to download. Both
services can operate on up to 1,500 metadata objects per call.

 ■ Object-based services— The object-based services are create , update , and delete . To
invoke create or delete , pass an array of Metadata objects. The Metadata object is
the superclass of a wide array of objects that contain metadata for specific features of
Force.com. For example, the CustomObject class represents a custom database object,
and Layout represents a page layout. Unlike data records in which a unique identifier
(Id) field is the key, metadata uniqueness comes from a combination of its type and
 fullName field. The update service takes an array of UpdateMetadata objects, which
each contain a Metadata object and the current name of the object to replace.

 Note

 Force.com’s documentation uses the term declarative to describe its file-based services, and
 CRUD (for create, read, update, and delete) to describe its object-based services.

 All Metadata API services are asynchronous, returning immediately with an AsyncResult
object. This object contains a unique identifier for tracking the status of the asynchronous
operation. For object-based services, the service to check status is called checkStatus . For the
file-based service deploy , the status service is checkDeployStatus , and for retrieve , it’s
 checkRetrieveStatus .

 Getting Started with the Metadata API

 To get started with the Metadata API, follow these steps:

 1. In the App Setup area, click Develop, API.

 2. Right-click the Download Metadata WSDL link and save it on your local file system.
You’ll need this plus the Enterprise WSDL in order to call the Metadata API.

 3. Generate stub code from the WSDL (for example, by using WSC as described in Chapter
 10) and add it to your project.

 Listing 11.18 demonstrates usage of the Metadata API in Java by creating a new database object
given a name and its plural name. The code assumes the existence of a member variable called
 sessionId , previously populated from the login call’s LoginResult . It prepares the minimum
set of metadata required to call the create service, which is a custom object name, full name,
label, deployment status, sharing model, and name field. After invoking the asynchronous
 create service, it loops to check the status using the checkStatus service until the invocation
is complete.

ptg11524036

362 Chapter 11 Advanced Integration

 Listing 11.18 Java Fragment for Creating Object

 public void createObject(String name, String pluralName) {
 try {
 ConnectorConfig config = new ConnectorConfig();
 config.setUsername(user);
 config.setPassword(pass);
 com.sforce.soap.enterprise.Connector.newConnection(config);
 config.setServiceEndpoint(Connector.END_POINT);
 MetadataConnection connection = new MetadataConnection(config);
 CustomObject obj = new CustomObject();
 obj.setFullName(name + "__c");
 obj.setLabel(name);
 obj.setPluralLabel(pluralName);
 obj.setDeploymentStatus(DeploymentStatus.Deployed);
 obj.setSharingModel(SharingModel.ReadWrite);
 CustomField nameField = new CustomField();
 nameField.setType(FieldType.AutoNumber);
 nameField.setLabel("Name");
 obj.setNameField(nameField);
 AsyncResult[] result = connection.create(
 new Metadata[] { obj });
 if (result == null) {
 System.out.println("create failed");
 return;
 }
 boolean done = false;
 AsyncResult[] status = null;
 long waitTime = 1000;
 while (!done) {
 status = connection.checkStatus(
 new String[] { result[0].getId() });
 if (status != null) {
 done = status[0].isDone();
 if (status[0].getStatusCode() != null) {
 System.out.println("Error: " +
 status[0].getStatusCode() + ": " +
 status[0].getMessage());
 }
 Thread.sleep(waitTime);
 waitTime *= 2;
 System.out.println("Current state: " +
 status[0].getState());
 }
 }
 System.out.println("Created object: " +

ptg11524036

363Sample Application: Database Integration

 status[0].getId());
 } catch (Throwable t) {
 t.printStackTrace();
 }
 }

 Sample Application: Database Integration

 This section explores a common integration scenario using the Services Manager sample appli-
cation. It describes the scenario and the implementation strategy and ends with sample code.

 Integration Scenario

 Force.com applications often require the use of data that is stored in other enterprise systems.
This information can initially be pushed to Force.com through Data Loader or another data
migration tool. But when Force.com is not the system of record for this information and
updates occur, Force.com is left with stale data.

 Updated data could be reloaded into Force.com through data migration tools, scheduled to run
at regular time intervals, but this approach can quickly become impractical. This is especially
true where there are requirements for real-time updates, integration to multiple systems, intri-
cate data mappings, or complex business rules governing the updates.

 Imagine that the company using your Services Manager application has a human resources
system containing the names, addresses, and other core information about employees. This
employee information is duplicated in Force.com in the Contact standard object. Because Force.
com is not the system of record for these fields, they should be set to read-only on their page
layouts to maintain data integrity between Force.com and the human resources system. But
when the human resources system is updated, Force.com must also be updated. This is the goal
of the integration.

 Implementation Strategy

 To retrieve changes from the human resources system, you could call out from Force.com using
HTTP or a REST Web service call, as described in Chapter 10 . But when you would do this is
not clear because Force.com does not receive notifications when the human resource system is
updated. Polling the system for changes would be inefficient and quickly hit governor limits on
Web service callouts.

 Instead, use the Enterprise API to connect to Force.com and upsert the modified records. Begin
by updating a single field called Active__c , indicating whether the employee is active. After
you get this field working, move on to support additional fields such as the address and phone
fields of the Contact record.

ptg11524036

364 Chapter 11 Advanced Integration

 The first problem is finding a common key to employees in both systems. Assume that the
human resources system cannot be changed and focus on adapting Force.com to maintain
the mapping between the two systems. Create a new field named Resource ID (API name of
 Resource_ID__c) on the Contact object to store employee identifiers used by the human
resources system. For this example, make it a Number type, six digits in length, required,
unique, and an external ID.

 Caution

 Remember that you need to regenerate the client code from Enterprise WSDL after you add this
new field; otherwise, it will not be available to your program.

 Sample Implementation

 The code in Listing 11.19 is a sample Java implementation of the integration. It assumes that
you’ve already generated the Java stub code from Enterprise WSDL using the WSC. It expects
a file named import.json to be located in the working directory. This is a JSON-encoded file
containing an array of Contact records to update. Listing 11.20 is an example of the file format
expected by the program.

 Note

 The sample implementation uses a JSON library available at www.json.org/java .

 Listing 11.19 Sample Java Implementation of Integration Scenario

 import java.io.BufferedReader;
 import java.io.FileReader;
 import java.io.IOException;
 import java.util.ArrayList;
 import java.util.List;
 import org.json.JSONArray;
 import org.json.JSONException;
 import org.json.JSONObject;
 import com.sforce.soap.enterprise.Connector;
 import com.sforce.soap.enterprise.EnterpriseConnection;
 import com.sforce.soap.enterprise.UpsertResult;
 import com.sforce.soap.enterprise.sobject.Contact;
 import com.sforce.soap.enterprise.sobject.SObject;
 import com.sforce.ws.ConnectionException;
 import com.sforce.ws.ConnectorConfig;
 public class Listing11_19 {
 EnterpriseConnection connection;
 public void login(String user, String pass, String securityToken) {
 ConnectorConfig config = new ConnectorConfig();

http://www.json.org/java

ptg11524036

365Sample Application: Database Integration

 config.setUsername(user);
 config.setPassword(pass + securityToken);
 try {
 connection = Connector.newConnection(config);
 } catch (ConnectionException e) {
 e.printStackTrace();
 }
 }
 public void processImportFile(String jsonFile) {
 List<SObject> changes = new ArrayList<SObject>();
 try {
 String json = readFileAsString(jsonFile);
 JSONArray array = new JSONArray(json);
 for (int i=0; i<array.length(); i++) {
 changes.add(importResource(array.getJSONObject(i)));
 }
 if (changes.size() > 0) {
 UpsertResult[] results = connection.upsert("Resource_ID__c",
 changes.toArray(new SObject[changes.size()]));
 int line = 0;
 for (UpsertResult result : results) {
 System.out.print(line + ": ");
 if (!result.isSuccess()) {
 for (com.sforce.soap.enterprise.Error e
 : result.getErrors()) {
 System.out.println(e.getStatusCode() + ": " +
 e.getMessage());
 }
 } else {
 System.out.println("success");
 }
 line++;
 }
 }
 } catch (Throwable t) {
 t.printStackTrace();
 }
 }
 private Contact importResource(JSONObject rec)
 throws JSONException {
 Contact result = new Contact();
 result.setResource_ID__c(Double.valueOf(
 rec.getInt("ResourceID")));
 result.setActive__c(rec.getBoolean("Active"));
 return result;
 }
 private static String readFileAsString(String filePath)

ptg11524036

366 Chapter 11 Advanced Integration

 throws IOException {
 StringBuffer fileData = new StringBuffer(1000);
 BufferedReader reader = new BufferedReader(
 new FileReader(filePath));
 char[] buf = new char[2048];
 int numRead = 0;
 while((numRead = reader.read(buf)) != -1) {
 fileData.append(buf, 0, numRead);
 }
 reader.close();
 return fileData.toString();
 }
 public static void main(String[] args) {
 Listing11_19 demo = new Listing11_19();
 demo.login("USERNAME", "PASSWORD", "SECURITYTOKEN");
 demo.processImportFile("import.json");
 }
 }

 Listing 11.20 Sample JSON Input File

 [
 {
 "ResourceID": 100000,
 "Active": false
 },
 {
 "ResourceID": 100001,
 "Active": false
 }
]

 Before running the program, change the Resource ID values in the file to match your contacts,
and the arguments of the login method to your user credentials.

 Note that the only field updated by the sample implementation is Active__c . As a challenge,
enhance the program to support updates to additional fields of the Contact object, or related
objects like User.

 Summary

 This chapter has provided the basics of Force.com’s Streaming, Bulk, Canvas, Tooling, and
Metadata APIs. Consider the following points for review as you move on to the next chapter:

ptg11524036

367Summary

 ■ The Streaming API allows you to get extremely granular and timely notifications about
your data, at the level of changes to individual fields. On the other end of the spectrum,
the Bulk API is optimized to move millions of records at a time in and out of the
platform.

 ■ Canvas is a container technology for displaying your Web user interface within Force.
com and providing integration of security context and other services that go well beyond
what is possible with a raw IFRAME.

 ■ With the Metadata and Tooling APIs, you can build tools that automate development
tasks, such as creating and modifying database objects and code. You can also use it
to back up your entire organization’s configuration or replicate it to a new Force.com
account.

ptg11524036

This page intentionally left blank

ptg11524036

 12
 Social Applications

 This chapter introduces Chatter, a layer of functionality that spans all Salesforce applications and
the Force.com platform. Chatter provides the means for users to communicate with each other in
the context of the applications and data central to their work, privately and entirely internal to their
company. It is delivered securely to their Web browsers and most mobile devices. In adopting Chatter,
Salesforce customers, partners, and application developers gain the best features of consumer services
such as Facebook that form a social glue that makes interacting at work a compelling, relevant, and
professional experience.

 Chatter is a collection of collaboration features, including user profiles, forums, polls, questions and
answers, file sharing, and private messaging. This chapter focuses on the integration of the most basic
Chatter features into custom applications. Brief descriptions of its sections follow:

 ■ Overview of the Chatter data model— The heart of Chatter is the data model, standard
objects in the Force.com database that allow any application to participate in the conversation
and automate Chatter interactions. Once you have an understanding of its data model,
incorporating Chatter into your Apex programs is straightforward.

 ■ Using Chatter in Apex— Although the Chatter data model is available, it’s the lowest-level
way to access Chatter features. Chatter in Apex is a built-in library that provides Chatter
features as first-class Apex classes.

 ■ Introduction to the Chatter REST API— The Chatter REST API is valuable for integrating
Chatter into applications residing outside of the Force.com platform. Like Chatter in Apex, it
hides implementation details of Chatter that would otherwise be exposed by direct access to the
data model.

 ■ Working with Chatter Visualforce components— Learn how to add Chatter functionality to
your custom user interfaces with minimal effort using standard Visualforce components.

 ■ Sample application— Modify the Services Manager sample application to make staying in
touch with resources on a project team using Chatter easy.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/FfsbSo .

http://goo.gl/FfsbSo

ptg11524036

370 Chapter 12 Social Applications

 Overview of the Chatter Data Model

 Chatter posts, comments, and the list of records followed in Chatter are stored in standard
database objects, accessible in SOQL, SOSL, Apex code, the Web Services API, and generally
anywhere you need them. With this developer-friendly approach, you can build any number of
interesting Chatter-aware programs. You can automatically follow a set of records based on user
actions, batch process posts and comments to identify patterns, build an alternative user inter-
face for Chatter, and even extend Chatter outside of your organization by integrating it with
external applications.

 After you have a good grasp of the data model, all of these scenarios are trivial to implement on
the platform. But compared with the standard platform objects such as Contacts and Accounts,
Chatter has a slightly more complex data model, including objects with some distinctive quali-
ties, summarized here:

 ■ Dynamic— The objects in the Chatter schema can appear and disappear based on the
Chatter configuration. For example, when Chatter is disabled in an organization, the
Chatter objects are completely hidden, as if they never existed. Also, objects containing
Chatter posts are dynamically created when Chatter is enabled for a custom object.

 ■ Relationship-rich— The whole purpose of Chatter is to link social and business data, so
Chatter objects consist primarily of foreign keys to other objects.

 ■ Designed for high volume— Chatter objects usually do not allow records to be updated.
Some objects can’t even be queried directly and must be referenced indirectly from a
parent object.

 This section introduces you to the Chatter data model by exploring these four areas:

 ■ Chatter posts— Learn how to query, create, and delete the three main types of Chatter
posts, based on the parent record’s object type.

 ■ Feed-tracked changes— Feed-tracked change records are created automatically by Force.
com to provide an audit trail of database activity. They can be queried but never directly
created, updated, or deleted.

 ■ Chatter comments— You can query, create, and delete Chatter comments, given a parent
post.

 ■ Followed records— Get a list of followers for a record, and follow and unfollow records
by creating and deleting simple Chatter configuration records.

 Chatter Posts

 Chatter posts are stored using a series of relationships that follow a common pattern, illustrated
in Figure 12.1 . Starting from the right of the diagram, a Feed object, suffixed with the word
 Feed , contains Chatter posts. Feed objects exist for each Chatter-enabled parent object type. The
parent object is on the left, and the line between them indicates that a single parent record can
have zero to many posts.

ptg11524036

371Overview of the Chatter Data Model

 Figure 12.1 Chatter post schema pattern

 Note

 Feed objects are unusual for Force.com in that they are read-only. To insert or delete Chatter
posts, you must use the generic FeedItem object, discussed later in this chapter.

 The Feed objects appear and disappear based on the Chatter configuration. For example,
if Chatter is enabled on the Project__c custom object, then an object named Project__
Feed exists, the object used to store posts related to Projects. If Chatter is later disabled for
 Project__c , the Project__Feed object is removed from the Force.com database.

 The five types of post content, indicated by the Type field of the Feed objects, are described
here:

 ■ Text (TextPost)— This is the default type of Chatter post. It contains plaintext, with no
HTML markup or rich formatting allowed. The text is contained in the Body field. The
sample code in this chapter focuses on the text post type because the other post types
behave almost identically, differing only on the fields used to store data.

 ■ URL (LinkPost)— The Chatter user interface allows you to attach a single URL to a post,
which appears immediately below the post text. The URL value is stored in the LinkUrl
field, with the URL label in Title .

 ■ File (ContentPost)— From the Chatter user interface, you can select a file to attach
to a post. The file can be a reference to another Chatter-attached file or uploaded
from your local computer. The file content is base-64 encoded and placed in the
 ContentData field. Several additional file-related metadata fields are also stored with the
file: ContentFileName and ContentDescription (input by the user during upload),
 ContentType (file MIME type), and ContentSize (file size in bytes).

 ■ Field change (TrackedChange)— This post type is relevant only to feed-tracked changes.
It is generated by Force.com itself and cannot be created by users or programs.

 ■ Status update (UserStatus)— Chatter users can change their status from their profile
page or any Chatter user interface. This action triggers Force.com to insert a status update
Chatter post, with the Body field set to the new status.

 The remainder of this subsection contains SOQL queries and Apex code snippets to demon-
strate how to work with posts and their parent feed objects. They are organized into the follow-
ing four scenarios:

ptg11524036

372 Chapter 12 Social Applications

 ■ Standard object feeds— When Chatter is enabled for an organization, most standard
objects have corresponding Chatter feeds.

 ■ Custom object feeds— Every custom object that is Chatter-enabled by the administrator
has its own feed.

 ■ User feeds— Separate feeds exist for the Chatter user profile as well as the standard User
object.

 ■ Home tab feed— The Home tab has its own feed, called NewsFeed. This contains a
collection of all the activity in followed records.

 Caution

 Understanding posts and feeds is critical because the rest of the section builds upon this
knowledge.

 Standard Object Feeds

 When Chatter is enabled for an organization, feed objects exist for every standard object that
supports Chatter. Listing 12.1 is an example of retrieving the ten most recent Chatter posts on
the Contact object using the ContactFeed object.

 Listing 12.1 Chatter Query on Standard Object

 SELECT ParentId, Body, Type, CreatedBy.Name, CreatedDate
 FROM ContactFeed
 ORDER BY CreatedDate DESC LIMIT 10

 To create a post on the Contact object, you need the Id of a Contact record to serve as the
parent of the post. This Id becomes the ParentId column in FeedItem . Force.com takes care
of determining which feeds the post belongs to based on the type of object referenced by the
 ParentId . This means you can use the same code to create posts regardless of the type of
object you’re posting about.

 The sample code in Listing 12.2 contains a method for creating a Chatter post. Pass it the Id of
a Contact record in the recordId argument, and the text of the post body in the text argu-
ment. Make a note of the return value because it is used later to remove the post.

 Listing 12.2 Creating a Chatter Post

 public Id post(Id recordId, String text) {
 FeedItem post = new FeedItem(ParentId = recordId, Body = text);
 insert post;
 return post.Id;
 }

ptg11524036

373Overview of the Chatter Data Model

 Tip

 You can quickly test the method in Listing 12.2 using the Execute Anonymous feature in the
Developer Console or the Force.com IDE. For example: Id i = post([SELECT Id FROM
Contact LIMIT 1].Id, 'test');

 Unlike creating posts, the code to delete posts is object-specific, not generic. It requires the
specific feed object containing the post to be known. For example, if you created a post with
a Contact record as the ParentId , delete the post from the ContactFeed object, as shown in
 Listing 12.3 .

 Listing 12.3 Deleting a Chatter Post

 public void deleteContactPost(Id postId) {
 ContactFeed post = [SELECT Id FROM ContactFeed
 WHERE Id = :postId];
 delete post;
 }

 Custom Object Feeds

 Chatter posts on custom objects behave identically to standard objects, with two exceptions.
The naming scheme for the feed objects is slightly different, and a feed object does not exist
until Chatter is enabled on the custom object. For example, if you enable Chatter on the
 Project__c object, the Project__Feed Chatter object becomes available.

 Listing 12.4 demonstrates a query for posts on the Project__c object. As you can see,
the columns are identical to that of the standard feed, but the FROM clause refers to the
 Project__c -specific feed object. To get any feed object’s name, strip the __c from the end of
your custom object’s API name and then add the __Feed suffix. You can follow this pattern to
access the posts of any custom object.

 Listing 12.4 Chatter Query on Custom Object

 SELECT ParentId, Body, Type, CreatedBy.Name, CreatedDate
 FROM Project__Feed

 Note

 The procedure for creating and deleting Chatter posts in custom objects is identical to that of
standard objects.

ptg11524036

374 Chapter 12 Social Applications

 User Feeds

 Two feeds contain user-related Chatter posts:

 ■ UserFeed— UserFeed contains feed-tracked changes for fields on your User object, as well
as posts by other users on your profile. You cannot query another user’s UserFeed unless
you log in to Force.com as that user.

 ■ UserProfileFeed— The UserProfileFeed is a superset of the UserFeed. It includes Chatter
from other objects followed by the user, such as groups. It requires the use of the Chatter
REST API to query it, described later in this chapter.

 The SOQL in Listing 12.5 returns the Chatter posts for the current user, the user logged in to
Force.com and executing the query.

 Listing 12.5 Chatter Query on UserFeed

 SELECT ParentId, Id, Type, CreatedById, CreatedDate
 FROM UserFeed

 Note

 The procedure for creating and deleting Chatter posts in UserFeed is identical to that of stan-
dard objects.

 News Feed

 If you’ve experimented with Chatter in the Force.com user interface, you might have noticed
that the Home tab aggregates all the posts and comments you follow in one place. The Chatter
appearing on the Home tab is accessible only via the Chatter REST API.

 Chatter Comments

 The handling of Chatter comments is slightly different from that of other Chatter data.
Comment data is stored in a single, large object called FeedComment that cannot be queried
directly. The Feed object becomes a junction object, associating Chatter posts to the subject of
the post and zero or more comments. This three-way relationship is shown in Figure 12.2 , with
the left side the parent of the post and the right side the list of comments.

 Figure 12.2 Chatter comment schema pattern

ptg11524036

375Overview of the Chatter Data Model

 The relationship between the Feed junction object and the FeedComment object is called
 FeedComments . Listing 12.6 provides an example of querying it. The result is all the posts in
the Project__c custom object feed and all of the comments for each post.

 Listing 12.6 Chatter Query for Comments

 SELECT ParentId, Type, CreatedById, CreatedDate, Body,
 (SELECT CommentBody, CreatedById, CreatedDate FROM FeedComments)
 FROM Project__Feed

 To create a comment, insert a record into the FeedComment object. Listing 12.7 provides a
sample method for doing this. To test it, you need the Id value of a record in a Feed object. For
example, if you want to add a comment to an Account post, get the Id of the post to comment
on from the AccountFeed object. This Id value is then passed into the method as the first argu-
ment, postId . The second argument is the text of the comment to create. Save the postId and
the value returned by this method, as these are needed to delete the comment.

 Listing 12.7 Creating a Chatter Comment

 public Id comment(Id postId, String text) {
 FeedComment comment = new FeedComment(
 FeedItemId = postId, CommentBody = text);
 insert comment;
 return comment.Id;
 }

 You cannot update a FeedComment record, but you can delete it. Like with deleting posts,
deleting comments is tricky because you cannot directly query the FeedComment object to
retrieve the record to delete. If your program creates or queries FeedComment records and
can keep them around in a cache, that is ideal. If this is not possible, you must query the
 FeedComment object in order to delete it.

 Listing 12.8 shows a sample method for deleting a comment by querying it first via its parent
post. To use it, you must pass the FeedItemId of the parent post in the Project__Feed object
as the postId , and the Id of the FeedComment record as commentId , returned by the comment
sample method. Although this example operates on comments in Project__Feed only, the
same pattern can be applied to comments in all feeds.

 Listing 12.8 Deleting a Chatter Comment

 public void deleteComment(Id postId, Id commentId) {
 Project__Feed post = [SELECT Id,
 (SELECT Id from FeedComments WHERE Id = :commentId)
 FROM Project__Feed WHERE Id = :postId];
 delete post.FeedComments[0];
 }

ptg11524036

376 Chapter 12 Social Applications

 Feed-Tracked Changes

 Feed-tracked changes provide an audit trail of modifications to a set of fields. For each record in
an object that has feed-tracked changes enabled, there can be many corresponding feed-tracked
change records. Each change record captures the original field value, the new field value, the
field name, and the new and old currencies if multicurrency is enabled in the organization and
the field is a currency type.

 The change records for all objects in an organization with feed-tracked changes enabled are
stored in a single object called FeedTrackedChange . The schema pattern for this object is illus-
trated in Figure 12.3 .

 Figure 12.3 Chatter feed-tracked changes schema pattern

 FeedTrackedChange cannot be queried or modified in any way by any user, even an admin-
istrator. Like Chatter comments, it must be queried indirectly via its junction object. Listing
 12.9 shows an example of querying all posts on Contact records and their corresponding
FeedTrackedChange records.

 Listing 12.9 Querying Chatter Feed-Tracked Changes

 SELECT ParentId, Type, CreatedById, CreatedDate,
 (SELECT FeedItemId, FieldName, OldValue, NewValue
 FROM FeedTrackedChanges)
 FROM ContactFeed

 To see the query in action, enable feed-tracked changes on the Contact Phone field; then
change the Phone value on a record and run the query. You should see a new record with a
Type value of TrackedChange containing a nested FeedTrackedChange record. The nested
record has the old and new Phone values along with the full field name, Contact.Phone . Had
you changed two feed-tracked change fields within the same transaction, you would see two
nested FeedTrackedChange records instead of one.

 Followed Records

 Users register interest in the Chatter activity of a record by clicking Follow icons in the Force.
com user interface or by automatically following owned records. Users can follow other users as
well as records in standard and custom objects. The information about followers is prominently
displayed throughout the standard user interface, and used to email digests and notifications to
users if Chatter is configured to do so.

ptg11524036

377Overview of the Chatter Data Model

 All of this functionality hinges upon a single, simple object, called EntitySubscription . Its
two important fields are ParentId , the record being followed, and SubscriberId , the Id of
the user doing the following. For every record-to-user relationship in the organization, a unique
record in EntitySubscription exists to express it.

 With simple queries on the EntitySubscription object, you can retrieve a list of records
followed by a user, or the users following a specific record. Less useful might be a query for the
full set of following relationships in the entire organization, as shown in Listing 12.10 .

 Listing 12.10 Querying Chatter Following Relationships

 SELECT ParentId, SubscriberId, CreatedById, CreatedDate
 FROM EntitySubscription

 To follow a record programmatically, insert a new ParentId and SubscriberId pair into the
 EntitySubscription object. Listing 12.11 provides a sample method to do this. Test it by
passing in the Id of a record to follow and the Id of a User record to follow it.

 Listing 12.11 Method for Following a Record

 public Id follow(Id recordId, Id userId) {
 EntitySubscription e = new EntitySubscription(
 ParentId = recordId, SubscriberId = userId);
 insert e;
 return e.Id;
 }

 For example, call it with the Id of an Account record and your user’s Id value; then refresh the
Account’s view page to see yourself instantly listed as a follower. Make a note of the Id value
returned by the method. This is used later to unfollow the record.

 Note

 Each EntitySubscription record uniquely identifies a relationship between parent record
and User record, so a runtime error is thrown if a new record matches an existing record’s
 ParentId and SubscriberId .

 Unfollowing a record involves deleting the appropriate row in the EntitySubscription object
that relates the record to the user. Listing 12.12 provides a sample method for doing just that.
To use the method, pass the EntitySubscription record identifier returned by the follow sample
method in Listing 12.11 .

ptg11524036

378 Chapter 12 Social Applications

 Listing 12.12 Method for Unfollowing a Record

 public void unfollow(Id subscriptionId) {
 delete [SELECT Id FROM EntitySubscription
 WHERE Id = :subscriptionId];
 }

 Although this simple example can work, it’s unlikely that your program would possess the
unique identifier of the EntitySubscription record. You could just as easily delete records
on more readily available information, such as the EntitySubscription’s ParentId or
 SubscriberId .

 Using Chatter in Apex

 Although Chatter data is accessible in Apex using SOQL queries, Chatter in Apex provides a
simpler solution. It consists of a series of Apex classes called ConnectApi that expose Chatter
features in a simpler way, as an API rather than a data model. With Chatter in Apex, Chatter
data is preformatted for display, and many features can be accessed with a single method call.
Using the data model is typically not as easy or concise.

 Note

 For more information about Chatter in Apex, visit the online documentation at http://www.
salesforce.com/us/developer/docs/apexcode/Content/apex_classes_connect_api.htm .

 Listing 12.13 and Listing 12.14 are the Visualforce controller and page to display the current
user’s feed items and comments. The Chatter in Apex getFeedItemsFromFeed method returns
the posts and comments for the current user (the 'me' argument), and these are iterated over
in the Visualforce page using nested repeat components.

 Listing 12.13 Visualforce Controller for Chatter Example

 public with sharing class MyPageController12_13 {
 public List<ConnectApi.FeedItem> getFeedItems() {
 return ConnectApi.ChatterFeeds.getFeedItemsFromFeed(null,
 ConnectApi.FeedType.Record, 'me').items;
 }
 }

 Listing 12.14 Visualforce Page for Chatter Example

 <apex:page controller="MyPageController12_14">
 <style>
 img { margin: 4px; width: 25px; }
 .actor { font-weight: bold; }

http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_connect_api.htm
http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_connect_api.htm

ptg11524036

379Introduction to the Chatter REST API

 .comments { margin-left: 40px; }
 </style>
 <apex:repeat value="{!feedItems}" var="feedItem">
 <div>
 <apex:image url="{!feedItem.photoUrl}"/>
 {!feedItem.actor.name}:
 {!feedItem.body.text}
 <apex:outputPanel >
 <apex:repeat value="{!feedItem.comments.comments}"
 var="comment">
 <div class="comments">
 <apex:image url="{!comment.user.photo.smallPhotoUrl}"/>
 {!comment.user.name}:
 {!comment.body.text}
 </div>
 </apex:repeat>
 </apex:outputPanel>
 </div>
 </apex:repeat>
 </apex:page>

 Introduction to the Chatter REST API

 The Chatter REST API provides access to Chatter functionality, including feeds, users, groups,
followers, and files. Being a REST API, it can be integrated in Web, mobile, and desktop
applications built in any technology that is capable of making HTTP requests. It is a valuable
alternative to using the Chatter data model directly, hiding the details of how Chatter data is
represented and offering a high-level API instead.

 Note

 For more information about the Chatter REST API, consult the Chatter REST API Developer’s
Guide, found at http://www.salesforce.com/us/developer/docs/chatterapi/index.htm .

 To get started with Chatter REST API, examine some examples of REST requests for common
Chatter functionality. Like other REST examples in the book, the following three listings can
be run from the command line. They assume you have an authorization token set in the
 TOKEN environment variable, and that you replace the instance na15 with your own Salesforce
instance.

 Listing 12.15 requests the News Feed of the current user, which is the Chatter feed found on
the Home tab. To request a different user’s News Feed, replace me with the user record’s unique
identifier.

http://www.salesforce.com/us/developer/docs/chatterapi/index.htm

ptg11524036

380 Chapter 12 Social Applications

 Listing 12.15 Sample Request for News Feed

 curl https://na15.salesforce.com/services/data/v28.0\
 /chatter/feeds/news/me/feed-items\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

 Listing 12.16 returns a list of all of the records followed by the current user.

 Listing 12.16 Sample Request for Followed Records

 curl https://na15.salesforce.com/services/data/v28.0\
 /chatter/users/ me /following\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1"

 To create a simple text-type feed post, follow the sample found in Listing 12.17 .

 Listing 12.17 Sample Request for Posting a Feed Item

 echo '{ "body" : { "messageSegments" :\
 [{ "type": "Text", "text" : "Hello world" }] } }' |\
 curl -X POST -H 'Content-type: application/json'\
 -H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1" -d @-\
 https://na15.salesforce.com/services/data/v28.0\
 /chatter/feeds/news/ me /feed-items

 Tip

 To adapt the command in Listing 12.17 and other listings in this chapter to run in Windows
Command Prompt, remove the single quotation mark characters (') in the echo statement,
replace the single quotation mark characters around the Content-type header with double
quotation mark characters ("), remove the backslash (\) line-continuation characters and con-
catenate the lines into a single line, and replace $TOKEN with %TOKEN% .

 Working with Chatter Visualforce Components

 When Chatter is enabled on an object, users viewing a record of that object see a rich user
interface to manage posts and comments, followers, and their interest in following the record.
This same native user interface functionality is also available to Visualforce developers. Using
Chatter components, you can embed the same Chatter toolbar, in its entirety or in pieces,
within your custom user interfaces.

ptg11524036

381Working with Chatter Visualforce Components

 Chatter is supported in Visualforce through eight dedicated components in the chatter
namespace, and an additional Chatter-specific attribute on the generic detail component, as
described here:

 ■ feed — This component renders a list of Chatter posts and comments for the selected
record. It also provides a text box at the top for creating new posts. The selected record is
specified using the entityId attribute.

 ■ feedWithFollowers — This component embeds the full Chatter toolbar. It includes the
functionality of the feed component, and adds the list of followers to the right side, the
Show/Hide Chatter buttons, and the Follow/Unfollow buttons.

 ■ feedWithFollowers — This component embeds the full Chatter toolbar. It includes the
functionality of the feed component, and adds the list of followers to the right side, the
Show/Hide Chatter buttons, and the Follow/Unfollow buttons.

 ■ newsFeed — Use this component to render the News Feed for the current user, the same
feed data shown on the Home tab.

 ■ follow — Including this component on a page renders a Follow button if the user is not
following the record and an Unfollow button otherwise.

 ■ followers — The followers component simply displays a list of users following the
current record. Users are represented as thumbnail photos, which can be clicked to drill
into their profiles.

 ■ showChatter — This attribute of the detail component, if set to true , includes the full
Chatter toolbar at the top of the detail page.

 ■ userPhotoUpload — This component allows you to upload a photo for the current user’s
Chatter profile.

 To try one of the Chatter components, create a new Visualforce page that uses a standard
controller. Pick an object that you know has Chatter enabled. Listing 12.18 shows a custom
 Project__c page that includes the feedWithFollowers component, and Figure 12.4 is
the result of visiting the custom page. There are no posts, comments, or followers of the
 Project__c record, but the feedWithFollowers component has made creating and viewing
all of these items using the standard Force.com-styled user interface possible.

 Listing 12.18 Visualforce Page with Chatter Component

 <apex:page standardController="Project__c">
 <apex:sectionHeader title="Project"
 subtitle="{!record.Id}" />
 <apex:pageBlock title="Chatter Components">
 <chatter:feedWithFollowers entityId="{!record.Id}" />
 </apex:pageBlock>
 </apex:page>

ptg11524036

382 Chapter 12 Social Applications

 Figure 12.4 Output of Visualforce page with Chatter component

 You should be aware of a few gotchas with Visualforce Chatter components as you begin using
them:

 ■ A Visualforce page cannot contain more than one of the five Chatter components at one
time. If you attempt to use more than one, the page cannot be saved.

 ■ Chatter components cannot be added to a Visualforce page unless the API version of the
page is at least 20.0. If the API version is set incorrectly, an Unknown Component error
will prevent the page from being saved.

 ■ You cannot use Chatter components with Visualforce Sites. The Chatter components will
be invisible to Sites users.

 Sample Application: Follow Project Team

 One of the initial challenges with using Chatter is building up a relevant set of records to
follow. Salesforce’s automatic following of owned records is a good start. But users of your
Services Manager sample application would like a quick-and-easy way to follow all the resources
assigned to a consulting project.

 This section walks through a sample implementation of a custom button called Follow Team,
added to the Project object’s layout. The button launches a Visualforce page that uses the

ptg11524036

383Sample Application: Follow Project Team

standard Project__c controller and a controller extension. Because the page is shown when
the user clicks the button, the action attribute of the page invokes the custom controller code
to perform the following logic immediately, without additional user action. The results of the
following logic are displayed in a page message.

 Following records in Chatter using Apex code involves adding records to the
EntitySubscription object. The sample code in Listing 12.19 is the full controller extension
implementation.

 Listing 12.19 Controller Extension Code

 public with sharing class FollowProjectControllerExtension {
 private ApexPages.StandardController controller;
 public FollowProjectControllerExtension(
 ApexPages.StandardController stdController) {
 this.controller = stdController;
 }
 public PageReference followProject() {
 Id currentUserId = UserInfo.getUserId();
 Set<Id> userIds = new Set<Id>();
 for (List<Assignment__c> assignments :
 [SELECT Contact__r.User__c FROM Assignment__c WHERE
 Project__c = :controller.getRecord().Id]) {
 for (Assignment__c assignment : assignments) {
 Id uid = assignment.Contact__r.User__c;
 if (currentUserId != uid && uid != null) {
 userIds.add(uid);
 }
 }
 }
 if (userIds.size() == 0) {
 error('Project has no assignments.');
 return null;
 }
 Set<String> subs = new Set<String>();
 for (List<EntitySubscription> recs :
 [SELECT ParentId FROM EntitySubscription
 WHERE SubscriberId = :currentUserId
 AND ParentId IN :userIds]) {
 for (EntitySubscription rec : recs) {
 subs.add(rec.ParentId);
 }
 }
 Integer followCount = 0;
 List<EntitySubscription> adds = new List<EntitySubscription>();
 for (Id userId : userIds) {
 if (!subs.contains(userId)) {

ptg11524036

384 Chapter 12 Social Applications

 adds.add(new EntitySubscription(
 ParentId = userId, SubscriberId = currentUserId));
 followCount++;
 }
 }
 insert adds;
 info(followCount + ' users followed');
 return null;
 }
 private static void info(String text) {
 ApexPages.Message msg = new ApexPages.Message(
 ApexPages.Severity.INFO, text);
 ApexPages.addMessage(msg);
 }
 private static void error(String text) {
 ApexPages.Message msg = new ApexPages.Message(
 ApexPages.Severity.ERROR, text);
 ApexPages.addMessage(msg);
 }
 }

 Two tricky areas of the implementation are as follows:

 ■ Duplicate records cannot be added, so existing EntitySubscription records on the assigned
users must be checked first. This is done by building a set of record identifiers that are
already followed, storing them in the subs variable, and consulting them before creating
a new EntitySubscription.

 ■ Retrieving the users to follow from a project is somewhat indirect. Start with the list of
Assignment records for the Project record. Each Assignment record contains a Contact
that is assigned to the project. Each Contact includes a User__c field, which optionally
contains a reference to a Salesforce User record. The User record identifier becomes the
 ParentId , the record to follow.

 The Visualforce page behind the custom Follow Team button is provided in Listing 12.20 . Key
points in the page are the action attribute to invoke the following logic when the page is
shown, and the pageMessages component to provide feedback to the user about the newly
followed records, if any.

 Listing 12.20 Visualforce Page for Custom Button

 <apex:page standardController="Project__c"
 extensions="FollowProjectControllerExtension"
 action="{!followProject}">
 <apex:pageMessages />
 </apex:page>

ptg11524036

385Sample Application: Follow Project Team

 Caution

 Invoking a controller method upon Visualforce page load is bad practice for security reasons,
as it can be exploited in a Cross Site Request Forgery (CSRF) attack. Visualforce pages are
normally protected from CSRF using hidden variables that prevent a hijacker from redirecting
the browser to a simple URL. To protect a page like the one in Listing 12.20 , you could add a
token that is checked in the controller before executing the logic. For more information, exam-
ine the security-related documents available at wiki.developerforce.com/index.php/Security .

 After you have created the controller extension class and the page, add a custom button on the
 Project custom object called Follow Team. Figure 12.5 shows the button configuration.

 Figure 12.5 Custom button configuration

 To test the new feature, add the button to the Project’s page layout. Then visit a Project record
that has at least one Assignment and where the Assignment has a Contact with a non-null
 User__c field. Note that if a project has assignments but none of the contacts assigned have an
associated user record, you will receive the “Project has no assignments” error message. Click
the Follow Team button. Refresh the current user’s profile to verify that the assigned user is
followed.

ptg11524036

386 Chapter 12 Social Applications

 Summary

 Chatter provides the building blocks for developers to create socially aware applications inside
and outside the Force.com platform. As you review the key integration features of Chatter,
consider the potential it brings to drive new applications and interactions in your organization:

 ■ Chatter is itself a platform, consisting of a public data model, user interface components,
and tight integration with the greater Force.com platform. This provides flexibility for
any application to exercise and extend Chatter functionality.

 ■ With Chatter in Apex, you can access Chatter data and metadata from your Apex code
without the overhead and complexity of dealing with the raw database records. The
Chatter REST API offers the same advantages but can be used with any technology.

ptg11524036

 Symbols
 + (addition) operator, 110

 & (AND) operator, 110

 && (AND) operator, 110

 - (arithmetic negation) operator, 110

 = (assignment) operator, 110

 \ (backslash), UNIX line-continuation

character, 309

 / (division) operator, 110

 == (equality) operator, 110

 === (exact equality) operator, 110

 !== (exact inequality) operator, 110

 > (greater than) operator, 110

 >= (greater than or equal to) operator, 110

 () (grouping operators), 110

 ? : (if/then/else expression shortcut), 110

 < (less than) operator, 110

 <= (less than or equal to) operator, 110

 ! (logical negation) operator, 110

 * (multiplication) operator, 110

 != (not equal to) operator, 110

 | (OR) operator, 110

 || (OR) operator, 110

 << (signed shift left) operator, 110

 >> (signed shift right) operator, 110

 + (string concatenation) operator, 110

 - (subtraction) operator, 110

 -- (unary decrement) operator, 110

 ++ (unary increment) operator, 110

 >>> (unsigned shift right) operator, 110

 ̂ (XOR) operator, 110

 4GL developer contributions, 12

 A
 abortJob method, 296

 Accept button, 213

 accessibility (fields), 78 - 79 , 89 - 90

 accessing data

 mobile Web applications
 actionFunction component, 270
 authentication, 269 - 270
 JavaScript remoting, 270
 REST API, 270
 SmartSync, 270

 REST API, 306
 AccessLevel field, 163

 access modifiers, 118

 accounts receivable profile, 18 , 86

 actionFunction component, 235 - 236

 mobile Web application data access, 270
 Visualforce

 controller, 236
 page code, 236

 actionPoller component, 237

 actions, 203 - 204

 asynchronous
 as JavaScript events, 237 - 238
 as JavaScript functions, 235 - 236
 partial page refreshes, 234 - 235
 status messages, 238 - 240
 as timed events, 237

 container components, 205
 custom controllers, 195 - 197

 custom logic, invoking, 195
 trigger page navigation, 195
 view state preservation, 195
 wrapper pattern, 195 - 196

 expressions
 standard controllers, 192
 standard set controllers, 193

 actionStatus component, 238 - 240

 actionSupport component, 237 - 238 , 262

 addError method, 225

 addFields method, 246

 addInfo method, 225

 addition (+) operator, 110

Index

ptg11524036

388 administrative permissions

 administrative permissions, 75

 aggregate functions, 144 - 145

 AVG, 144
 COUNT, 144 - 145
 COUNT_DISTINCT, 144
 governor limits, 145
 MAX, 144
 MIN, 144
 records, grouping, 146
 SUM, 144 - 145

 AggregateResult object, 145

 aggregate SOQL queries, 144

 aggregate functions, 144 - 145
 AVG, 144
 COUNT, 144- 145
 COUNT_DISTINCT, 144
 governor limits, 145
 MAX, 144
 MIN, 144
 records, grouping, 146
 SUM, 144- 145

 grouping records, 145 - 146
 with aggregate functions, 146
 filtering grouped, 146
 without aggregate functions, 145 - 146

 grouping records with subtotals, 147 - 148
 debug log excerpt, 147
 GROUP BY CUBE clause, 147 - 148
 GROUP BY ROLLUP clause, 147

 Ajax (Asynchronous JavaScript and XML)

 actions, 234
 as JavaScript events, 237 - 238
 as JavaScript functions, 235 - 236
 partial page refreshes, 234 - 235
 status messages, 238 - 240
 as timed events, 237
 Visualforce support, 234

 Proxy, 270
 Amazon Web Services, 2 - 3

 AND (&) operator, 110

 AND (&&) operator, 110

 AngularJS, 251 - 253

 controllers
 ProjectListCtrl, 253
 timecard editing, 279
 Visualforce, implementing, 252

 demonstration page, 251
 templates, 253
 timecard entry in-page navigation

controller, 277
 tutorial Web site, 251
 Visualforce page code, 252 - 253
 Web site, 251

 anonymous benchmarking SOAP Web

service, 333 - 335

 anti-joins

 overview, 152
 restrictions, 153

 Apex, 7

 AggregateResult object, 145
 aggregate SOQL queries, 144

 aggregate functions, 144 - 145
 grouping records, 145 - 146
 grouping records with subtotals,

 147 - 148
 arrays

 creating, 111
 initializing, 111 - 112
 sorting, 112

 Batch
 Batchable interface, 283 - 284
 batch jobs, 282 , 286 - 289
 classes, creating, 285 - 286
 iterable scope, 290 - 292
 limitations, 292
 missing timecard class,

developing, 298 - 299
 project evaluation guidelines,

 284 - 285
 scheduling, 293 - 296
 scope, 282
 stateful, 289 - 290
 testing, 293
 transactions, 283

 callouts, 301 - 302
 REST services, 302 - 304
 SOAP services, 305 - 306

 Chatter, 378 - 379
 Visualforce controller, 378
 Visualforce page, 378
 Web site, 378

ptg11524036

389Apex

 classes
 ConnectApi, 378
 custom Apex REST services, creating,

 312 - 314
 custom Apex SOAP Web services

rules, 327
 HTTP, 302 - 303

 code deployment in Tooling API, 355
 Code Developer’s Guide Web site, 108
 code execution

 asynchronous, 116
 conditional statements, 113
 Execute Anonymous View, 104 - 105
 exception statements, 114 - 115
 governor limits, 120
 loops, 114
 recursion, 115

 collections
 clearing, 109
 cloning, 109
 emptiness, 109
 size, 109

 custom Apex REST Web services,
 312 - 314

 Apex class rules, 312
 creating, 313
 governor limits, 312
 invoking, 313 - 314

 custom settings, 180 - 181
 creating, 180
 deleting, 180
 governor limits, 180
 hierarchy type, 181
 updating, 180
 values, retrieving, 180

 custom SOAP Web services, 326
 Apex class rules, compared, 327
 calling, 328
 creating records example, 328
 governor limits, 327
 invoking, 329
 limitations, 326 - 327
 Services Manager anonymous

benchmarking, 333 - 335
 database integration

 data integrity, 122
 DML statements. See DML,

statements

 objects, referencing, 121 - 122
 overview, 120 - 121
 queries. See queries
 security, 133

 data types, 106
 Blob, 106
 Boolean, 106
 converting, 107 - 108
 Date, 106
 date to string conversions, 109
 Datetime, 106
 Decimal, 106
 Double, 106
 ID, 106
 Integer, 106
 Long, 106
 Object, 106
 String, 106
 string to date conversions, 109
 Time, 106

 debugging, 133
 checkpoints, 133 - 135
 execution logs, 134

 dynamic, 174
 instances, creating, 179
 schema metadata, 177 - 179
 SOQL queries, 175 - 176
 SOSL queries, 176

 governor limits, 100 , 120
 Apex code, 120
 databases, 120
 heaps, 120
 namespaces, 120

 lists
 creating, 111
 initializing, 111 - 112
 nesting, 111
 overview, 111
 sorting, 112

 managed sharing, 162
 organization-wide sharing defaults,

changing, 163
 rules, creating, 163 - 167
 sharing objects, 162 - 163

 maps, 112 - 113
 object-oriented principles, 117

 encapsulation, 117 - 118
 information-hiding notation, 118

ptg11524036

390 Apex

 inheritance, 119
 modularity, 119
 polymorphism, 119

 operators, 109
 AND (&&), 110
 addition (+), 110
 arithmetic negation (-), 110
 assignment (=), 110
 bitwise, 110
 division (/), 110
 equality (==), 110
 exact equality (===), 110
 exact inequality (!==), 110
 greater than (>), 110
 greater than or equal to (>=), 110
 grouping, 110
 if/then/else expression (? :), 110
 less than (<), 110
 less than or equal to (<=), 110
 logical negation (!), 110
 multiplication (*), 110
 not equal to (!=), 110
 OR (||), 110
 signed shift left (<<), 110
 signed shift right (>>), 110
 string concatenation (+), 110
 subtraction (-), 110
 unary decrement (--), 110
 unary increment (++), 110
 unsigned shift right (>>>), 110

 ORM code snippet, 30
 overview, 100 - 101
 receiving email, 172 - 173

 class, creating, 173 - 174
 governor limits, 173
 personalizing based on sender

identity, 173
 services, configuring, 174 - 175
 uncaught exceptions, 173

 sending email, 168
 attachments, 172
 blind-carbon-copies, 171
 carbon copies, 171
 mass emails, 170 - 171
 notifications, 181 - 182
 organization-wide email address

unique identifiers, 172
 reply-to addresses, 171

 sendEmail method, 171
 sender display names, 171
 signatures, 172
 SingleEmailMessage object, 168 - 169
 templates, 169 - 170
 tracking, 172

 sets, 112
 SOQL queries, 126 - 128
 SOSL, 155 - 157
 Test Runner View (IDE), 103
 transaction processing

 DML database methods, 157 - 158
 record locking, 161
 savepoints, 159 - 160

 triggers, 130 - 131
 batching, 132
 bulkifying, 132
 definitions, 131 - 132
 error handling, 132 - 133
 names, 131
 timecard validation, creating,

 138 - 139
 unit tests, 136

 results, viewing, 137
 running, 137
 test data, 137
 test methods, 136
 Test Runner View, 103
 TimecardManager class, 140 - 141

 variables, 105
 access modifiers, 118
 checkpoints, 133 - 135
 classes, 117
 constants, 107
 declaring, 105 - 106
 enums, 107
 names, 105 - 106
 rounding, 108

 APIs

 Bulk, 344
 authentication, 345 - 346
 exporting records, 347 - 349
 importing records, 346 - 347
 two-tier system, 345
 Web site, 345

 Canvas, 349
 authentication, 349 - 350
 cross-domain XHR, 350

ptg11524036

391architectures

 Tooling, 354
 Apex code, deploying, 355
 internal state of deployment, 355
 overview, 355
 query service, 355
 status, refreshing, 355
 user interface, 356
 Visualforce controller example,

 357 - 359
 Visualforce page example, 359 - 360
 Web site, 355

 App Builder Tools, 33

 App Engine, 3

 AppExchange, 16

 applications

 AppExchange, 16
 Connected Apps, creating, 351
 custom, creating, 58
 LDV deployments, 22
 mobile

 Chatter Mobile, 264
 containers, 271
 hybrid, 265 , 267
 native, 265 - 266
 Salesforce Classic, 264
 Salesforce Mobile SDK, 265
 Salesforce Touch, 264
 timecard entry page. See mobile

timecard entry page
 Web. See mobile applications, Web

 services, 6
 Services Manager. See Services Manager

application
 single-page, 250

 AngularJS, 251 - 253
 JavaScript remoting, 250

 social. See Chatter
 architectures

 application services, 6
 declarative metadata, 7
 multilenancy, 4 - 6
 programming languages, 7
 relational databases, 6
 security, 71
 Visualforce, 186 - 187

 example application, 350 - 354
 Web site, 349

 Metadata, 360
 object creation example, 361 - 363
 services, 360 - 361
 Web site, 360

 REST
 authentication, 306 - 307
 Chatter, 379 - 380
 Connected Apps, creating, 307
 creating record requests, 310
 data access, 306
 data integration, 31
 deleting record requests, 311
 Force.com REST API Developer’s

Guide Web site, 308
 mobile Web application data

access, 270
 record retrieval by external

identifiers, 310
 record retrieval by unique

identifiers, 309
 services available call, 308 - 309
 SObject basic information

request, 309
 SOQL query request, 310
 updating record requests, 311
 upserting record requests, 311

 SOAP
 data integration, 31
 enabled permissions, 318 - 319
 Enterprise. See Enterprise API
 error handling, 321
 Force.com data types, 321
 IP white-listing, 319
 limits, 316
 logging in/out, 318 - 320
 login call, 320
 login problems, troubleshooting, 320
 Partner, 315
 security, 316
 security tokens, 319
 stub code, generating, 316 - 317
 Web Service Connector (WSC), 316
 WSDL versions, 315 - 316

 Streaming
 example, 341 - 344
 PushTopcis, 340 - 341
 Web site, 340

ptg11524036

392 arithmetic negation (-) operator

 classes, creating, 285 - 286
 iterable scope, 290 - 292
 limitations, 292
 missing timecard class, developing,

 298 - 299
 project evaluation guidelines, 284 - 285
 scheduled jobs

 creating, 295
 editing, 296
 viewing, 296

 scheduling, 293 - 296
 Apex user interface, 294 - 295
 sample code, 296
 schedulable code development, 294

 scope, 282
 stateful, 289 - 290
 testing, 293
 transactions, 283

 batch jobs, 282

 bulk export
 batches, creating, 348
 creating, 347 - 348
 results, retrieving, 348 - 349
 status, checking, 348

 bulk import
 closing, 347
 creating, 346
 records, adding, 346 - 347
 results, retrieving, 347
 status, checking, 347

 executing, 286
 execution detail, viewing, 288
 limitations, 292
 progress, monitoring, 287 - 288
 scheduled

 creating, 295
 deleting, 296
 editing, 296

 scheduling, 293 - 296
 Apex user interface, 294 - 295
 schedulable code development, 294

 scope, 289
 triggers, 132

 BenchmarkWS class, 334

 binary data types, 322

 bitwise operators, 110

 blind-carbon-copies (email), 171

 blobs, 106

 arithmetic negation (-) operator, 110

 arrays

 creating, 111
 initializing, 111 - 112
 sorting, 112

 Assignment object

 fields, 54
 overview, 53

 assignment (=) operator, 110

 asynchronous actions

 as JavaScript events, 237 - 238
 as JavaScript functions, 235 - 236
 partial page refreshes, 234 - 235
 status messages, 238 - 240

 actionStatus component, 238 - 240
 dynamic, 239
 images/stylized messages, 239

 as timed events, 237
 asynchronous code execution, 116

 Asynchronous JavaScript and XML. See Ajax

 asyncMethod, 116

 attachments (email), 172

 attributes

 page components, 200
 reRender, 234
 showChatter, 381
 view components, 199

 authentication

 Bulk API, 345 - 346
 Canvas, 349 - 350
 mobile Web applications, 269 - 270
 REST APIs, 306 - 307
 sites users, 258

 auto numbers, 40-41 , 322

 availability (PushTopics), 341

 AVG aggregate function, 144

 B
 backslash (\), UNIX line-continuation

character, 309

 Batchable interface, 283 - 284

 Batch Apex, 116

 Batchable interface, 283 - 284
 batch jobs, 282

 executing, 286
 execution detail, viewing, 288
 progress, monitoring, 287 - 288
 scope, 289

ptg11524036

393Chatter

 example application
 adding pages, 352
 callback HTML page, 354
 configuring pages, 352
 Connected App, creating, 351
 local Web servers, configuring, 352
 main HTML page, 353 - 354
 previewing, 352
 running in App Previewer, 350

 Web site, 349
 carbon copies (email), 171

 catch keyword (exceptions), 115

 channel names, 340

 Chatter

 Apex, 378 - 379
 Visualforce controller example, 378
 Visualforce page, 378
 Web site, 378

 comments, 374 - 375
 creating, 375
 deleting, 375
 query, 375
 schema pattern, 374

 feed-tracked changes, 376
 following records, 376 - 378

 following relationships, 377
 method, 377
 unfollowing, 377 - 378

 Mobile, 264
 objects

 dynamic, 370
 high-volume design, 370
 relationship-rich, 370

 posts, 370 - 372
 content, 371
 creating, 372 - 373
 custom object feeds, 373
 deleting, 373
 Feed objects, 370 - 371
 news feeds, 374
 schema pattern, 370
 standard object feeds, 372 - 373
 user feeds, 374

 REST API, 379 - 380
 followed records request, 380
 news feed request, 379 - 380
 post request, 380
 Web site, 379

 Boolean data type, 106

 break keyword (loops), 114

 browsing data, 42 - 44

 Bulk API, 344

 authentication, 345 - 346
 records

 exporting, 347 - 349
 importing, 346 - 347

 two-tier system, 345
 Web site, 345

 bulk jobs

 export
 batches, creating, 348
 creating, 347 - 348
 results, retrieving, 348 - 349
 status, checking, 348

 import
 closing, 347
 creating, 346
 records, adding, 346 - 347
 results, retrieving, 347
 status, checking, 347

 bulk modifications (records), 326

 business analyst contributions, 11

 business units

 collaboration, testing, 97 - 98
 security, 85 - 88

 buttons

 custom
 custom objects, creating, 38
 Visualforce pages, 215

 native user interface, 213
 standard, 37

 C
 callouts (Apex), 301 - 302

 REST services, 302 - 304
 formats, 302
 HTTP classes, 302 - 303
 integrating, 303 - 304
 invoking, 303
 testing, 304

 SOAP services, 305 - 306
 Canvas, 349

 authentication, 349 - 350
 cross-domain XHR, 350

ptg11524036

394 Chatter

 MissingTimecardBatch
 creating, 298 - 299
 reset results, 300
 running, 300

 MyEmailService, 173 - 174
 properties, 117
 TimecardManager

 creating, 138 - 139
 unit tests, 140 - 141

 variables, 117
 clear method (collections), 109

 Clone button, 213

 clone method (collections), 109

 closing bulk import jobs, 347

 cloud computing

 benefits, 2
 overview, 2
 PaaS, 2

 Amazon Web Services, 2 - 3
 Force.com, 3 - 4
 Google Cloud Platform, 3
 Windows Azure, 3

 Cloudforce conference, 17

 code execution (Apex)

 asynchronous, 116
 conditional statements, 113
 exception statements, 114 - 115

 examples, 115
 handling, 115
 raising, 115

 governor limits, 120
 loops, 114
 recursion, 115

 Code Share, 16

 collections

 arrays
 creating, 111
 initializing, 111
 sorting, 112

 clearing, 109
 cloning, 109
 emptiness, 109
 lists

 creating, 111
 initializing, 111
 nesting, 111
 sorting, 112

 Services Manager Follow Team button,
 382 - 385

 configuring, 385
 controller extension code, 383 - 384
 testing, 385
 Visualforce page, 384 - 385

 Visualforce components, 380 - 382
 feed, 381
 feedWithFollowers, 381
 follow, 381
 followers, 381
 limitations, 382
 newsFeed, 381
 showChatter attribute, 381
 userPhotoUpload, 381
 Visualforce page, creating, 381

 checkboxes

 defined, 38
 SOAP type, mapping, 322

 checkpoints, 133 - 135

 child relationships

 child-to-parent, 125 - 126
 metadata, 178
 semi-joins

 child-to-child, 153
 child-to-parent, 153

 classes

 access modifiers, 118
 Apex

 ConnectApi, 378
 custom Apex REST services, creating,

 312 - 314
 custom Apex SOAP Web services

rules, 327
 HTTP, 302 - 303

 Batch Apex, creating, 285 - 286
 BenchmarkWS, 334
 constructors, 118
 defining, 118
 information-hiding notation, 118
 inheritance, 119
 initializers, 118
 inner, 118
 Iterable, 291
 Iterator, 290
 methods, 117

ptg11524036

395converting data types

 containers

 dynamicComponent elements, 248
 mobile applications, 271
 static resources, 241 - 242

 continue keyword (loops), 114

 controlled by parent records, 81

 controller attribute (pages), 200

 controllers, 186 - 187

 actionFunction component, 236
 actions

 as JavaScript events, 237 - 238
 timed events, 237

 AngularJS, 253
 mobile timecards, editing, 279
 project list example, 252
 timecard entry in-page

navigation, 277
 Chatter example, 378
 custom, 193 - 197

 actions, 195 - 197
 exposing data, 193 - 194

 dynamic field reference, 247
 extensions, 197
 governor limits, 221
 mobile timecards

 editing, 277
 list functionality, 274

 partial page refresh, 235
 Services Manager

 business hours, configuring, 331
 Follow Team button extension code,

 383 - 384
 Skills Matrix, 225 - 227 , 229 - 231
 utilization calculation, 332
 utilization code, 335 - 337

 standard, 191 - 193
 multiple records, 192 - 193
 single records, 191 - 192

 Streaming API example, 342
 Tooling API example, 357 - 359
 unit tests, 222

 conversion methods, 108

 converting data types, 107 - 108

 conversion methods, 108
 dates to strings, 109
 exceptions, 114
 implicit conversion, 107 - 108
 strings to dates, 109

 maps, 112 - 113
 sets, 112
 size, 109

 ComeD library, 342

 commandButton component, 203

 commandLink component, 203

 comments (Chatter), 374 - 375

 creating, 375
 deleting, 375
 query, 375
 schema pattern, 374

 communication errors, 220 - 221

 CompareSkillsComponent

 creating, 259 - 260
 support, adding, 261

 CompareSkillsController, 260

 composition (modular Visualforce

pages), 243 - 244

 conditional statements, 113

 condition expressions, 194

 configuration management, 14

 configuring

 Canvas App pages, 352
 email services, 174 - 175
 field accessibility, 89 - 90
 Follow Team button, 385
 IDE, 138
 local Web servers, 352
 sharing rules, 92 - 93

 ConnectApi classes, 378

 Connected Apps, creating

 Canvas, 351
 REST API, 307

 constants, 107

 constructors, 118

 Consultant profile

 permissions, 86
 Services Manager application, 18
 testing, 96

 ContactFeed object, 372

 Contact object

 CSV import file, 69
 fields, 51
 overview, 51

 ContainerId field, 355

ptg11524036

396 COUNT aggregate function

 Google Map example, 245 - 246
 support, adding, 259 - 260

 custom controllers, 193 - 197

 actions, 195 - 197
 custom logic, invoking, 195
 trigger page navigation, 195
 view state preservation, 195
 wrapper pattern, 195 - 196

 exposing data, 193 - 194
 custom fields. See fields, creating

 custom links

 custom objects, creating, 38
 Visualforce pages, 215

 custom objects, 22

 creating, 35 , 59 - 60
 activities, allowing, 36
 custom buttons/links, 38
 custom fields, 37
 definition, 35 - 36
 deployment status, 36
 descriptions, 36
 field history tracking, 36
 help settings, 36
 labels, 35
 names, 35
 page layouts, 37
 record name label, 36
 reports, allowing, 36
 search layouts, 37
 standard buttons/links, 37
 standard fields, 36
 triggers, 37
 validation rules, 37

 missing timecards, creating, 297
 tabs, creating, 63
 tools, 33 - 34

 App Builder Tools, 33
 data, 34
 Force.com IDE, 34
 metadata, 33
 Schema Builder, 34

 custom settings, 180 - 181

 defined, 47
 governor limits, 180
 hierarchy, 49 , 181
 list, 48

 COUNT aggregate function, 144 - 145

 COUNT_DISTINCT aggregate function, 144

 Create Lookup Field dialog box, 61

 Create New Object dialog box, 59

 create permission, 75

 createProject service, 329

 create service, 324

 cross-domain XHR, 350

 CRUD (create, read, update, delete)

operations, 31

 Crypto class, 303

 CSRF (Cross Site Request Forgery)

attacks, 385

 CSS (components), adding, 261

 CSV files

 Contact import, 69
 exporting, 64 - 65
 Project import, 65

 cURL, 306

 currency

 fields, 38
 SOAP data type, mapping, 322

 custom Apex Web services

 REST, 312 - 314
 Apex class rules, 312
 creating, 313
 governor limits, 312
 invoking, 313 - 314

 SOAP, 326
 Apex class rules, compared, 327
 calling, 328
 creating records example, 328
 governor limits, 327
 invoking, 329
 limitations, 326 - 327
 Services Manager anonymous

benchmarking, 333 - 335
 custom applications, creating, 58

 custom buttons

 custom objects, creating, 38
 Visualforce pages, 215

 custom components

 creating, 259 - 260
 CSS, adding, 261
 defining, 244 - 245

ptg11524036

397databases

 security
 architecture, 71
 field accessibility, 73
 object-level. See object-level security
 overview, 71 - 74
 permission sets, 72
 profiles, 72
 record-level, 72
 sharing model, 73
 sharing reasons, 74

 Services Manager application integration
 implementation strategy, 363 - 364
 sample implementation, 364 - 366
 scenario, 363

 storage custom settings
 defined, 47
 governor limits, 180
 hierarchy, 49 , 181
 list, 48
 records, 180
 storage limits, 49
 types, 47 - 48
 values, retrieving, 180

 tools, 34
 Data Loader, 34
 Excel Connector, 34
 Import Wizard, 34

 Database.com, 4

 databases

 administrator contributions, 12
 Apex integration

 DML statements. See DML,
statements

 integrity, 122
 objects, referencing, 121 - 122
 overview, 120 - 121
 queries. See queries
 security, 133

 change exceptions, 114
 custom settings, 47 - 48

 defined, 47
 hierarchy, 49
 list, 48
 storage limits, 49
 types, 47 - 48

 data. See data
 developer contributions, 12
 fields. See fields

 records
 creating, 180
 deleting, 180
 updating, 180

 storage limits, 49
 types, 47 - 48
 values, retrieving, 180

 custom tabs, 215

 D
 data

 batch processing. See Batch Apex
 browsing, 42 - 44
 entering, 41 - 42
 exposing (custom controllers), 193 - 194
 expressions

 standard controllers, 192
 standard set controllers, 193

 importing, 64
 import process, 66
 preparations, 64 - 66
 verification, 67 - 69

 integration, 29
 metadata XML, 30 - 31
 native user interface, 31
 object-relational mapping, 30
 REST APIs, 31
 SOAP APIs, 31

 integrity, 122
 mobile Web applications access, 269 - 270

 actionFunction component, 270
 authentication, 269 - 270
 JavaScript remoting, 270
 REST API, 270
 SmartSync, 270

 modeler contributions, 11
 relationships

 explicitly defined, 26
 integrity enforced, 26
 records, creating, 121
 Services Manager application, 55 - 58
 SOQL, 26 - 27
 SOQL versus SQL, 27 - 28
 SOSL, 29
 viewing, 121

 REST API access, 306

ptg11524036

398 databases

 inputText, 202
 inputTextArea, 202
 outputLabel, 202
 selectCheckboxes, 202
 selectList, 202
 selectRadio, 202

 repeating, 201 - 203
 dataList component, 203

 Data Loader tool, 34

 data preparation, 64 - 66
 Contact CSV import file, 69
 exporting CSV files, 64 - 65
 Project CSV import file, 65

 data verification, 67 - 69
 importing data, 66

 Data Manipulation Records. See DML

 data model (Services Manager)

 design goals
 Developer Edition, optimization, 50
 standard objects, leveraging, 50

 implementing
 custom application, creating, 58
 custom objects, creating, 59 - 60
 custom object tabs, creating, 63
 field visibility, 64
 Lookup relationship, creating, 60
 Master-Detail relationships,

creating, 60 - 62
 validation rules, creating, 63

 specification, 50
 assignments, 53 - 54
 contacts, 51
 data relationships, 55 - 58
 projects, 52
 skills, 53
 timecards, 53 - 56

 dataTable component, 203

 data types

 Apex, 106
 blob, 106
 Boolean, 106
 converting, 107 - 108
 converting dates to strings, 109
 converting strings to dates, 109
 date, 106
 datetime, 106
 decimal, 106
 double, 106

 governor limits, 120
 integration, 29

 logical, 13
 metadata XML, 30 - 31
 native user interface, 31
 object-relational mapping, 30
 REST APIs, 31
 SOAP APIs, 31

 objects. See objects
 queries. See queries
 records. See records
 relational, 6
 relationships. See relationships
 security

 Apex, 133
 architecture, 71
 field accessibility, 73
 object-level. See object-level security
 object permissions, 73
 overview, 71 - 74
 permission sets, 72
 profiles, 72
 record-level, 72
 sharing model, 73
 sharing reasons, 74

 services, 7
 tables. See objects
 triggers, 130 - 131

 batching, 132
 bulkifying, 132
 custom objects, creating, 37
 definitions, 131 - 132
 email notifications, 181 - 182
 error handling, 132 - 133
 names, 131
 page navigation, 195
 timecard validation, creating,

 138 - 139
 data components, 200 - 203

 metadata-aware, 200 - 201
 inputField, 201
 outputField, 201

 Mobile Components for Visualforce, 268
 primitive, 201 - 202

 inputCheckbox, 202
 inputFile, 202
 inputHidden, 202
 inputSecret, 202

ptg11524036

399development

 Visualforce
 component identifier problems, 240
 user interfaces, 216

 decimals

 defined, 106
 rounding, 108

 declarative metadata, 7

 declaring

 future methods, 116
 variables, 105 - 106

 delegated administration sharing reason, 82

 Delete button, 213

 delete permission, 76

 delete service, 325

 Delete statement, 130

 deleting

 Chatter comments, 375
 custom setting records, 180
 PushTopics, 341
 record requests, 311
 records, 130 , 325
 scheduled batch jobs, 296

 dependent fields, 46

 deploying mobile Web applications, 271 - 272

 deployment status, 36

 detail component, 209

 Developer Console

 Apex, debugging, 133 - 134
 unit test results, viewing, 137
 Visualforce user interfaces, debugging,

 216 - 218
 Developer Force Web site, 16

 development

 Batch Apex schedulable code, 294
 discussion boards, 16
 environments, 32
 lifecycle, 12

 configuration management, 14
 end of life, 15
 integrated logical databases, 13
 integrated unit testing, 14 - 15
 interoperability, 15
 MVC pattern, 15
 native user interfaces, 14

 mobile applications
 hybrid, 265 , 267
 native, 265 - 266
 Salesforce Mobile SDK, 265
 Web. See mobile applications, Web

 ID, 106
 Integer, 106
 long, 106
 object, 106
 string, 106
 time, 106

 arrays
 creating, 111
 initializing, 111 - 112
 sorting, 112

 collections
 clearing, 109
 cloning, 109
 emptiness, 109
 size, 109

 converting, 114
 fields, selecting, 38
 lists

 creating, 111
 initializing, 111 - 112
 nesting, 111
 overview, 111
 sorting, 112

 maps, 112 - 113
 rich, 25
 sets, 112
 SOAP types, mapping, 321

 dates, 38

 converting to strings, 109
 defined, 106
 SOAP type, mapping, 322
 String conversions, 109

 datetime data type

 converting to strings, 109
 defined, 106
 SimpleDateFormat pattern, 109
 SOAP type, mapping, 322
 string conversions, 109

 DE accounts

 logging in, 32
 orgs, 32
 registration, 32

 debugging

 Apex, 133
 checkpoints, 133 - 135
 execution logs, 134

 batch jobs execution details,
viewing, 288

ptg11524036

400 development

 E
 EC2 (Elastic Compute Cloud), 2 - 3

 editing

 mobile timecards, 277 - 279
 scheduled batch jobs, 296

 edit page, 211

 edit permission, 75

 Elastic Beanstalk, 2

 email

 fields, 38
 integration, 9
 receiving, 172 - 173

 class, creating, 173 - 174
 governor limits, 173
 personalizing based on sender

identity, 173
 services, configuring, 174 - 175
 uncaught exceptions, 173

 sending, 168
 attachments, 172
 blind-carbon-copies, 171
 carbon copies, 171
 mass emails, 170 - 171
 notifications (Services Manager

application), 181 - 182
 organization-wide email address

unique identifiers, 172
 reply-to addresses, 171
 sendEmail method, 171
 sender display names, 171
 signatures, 172
 SingleEmailMessage object, 168 - 169
 templates, 169 - 170
 tracking, 172

 SOAP data type, mapping, 322
 enabled permissions (SOAP API), 318 - 319

 encapsulation, 117 - 118

 EncodingUtil class, 303

 end of life, 15

 enhancedList component, 209

 Enhanced Profile List Views, 74

 Enhanced Profile User Interface, 74

 Enterprise API

 overview, 315
 records

 bulk modifications, 326
 creating, 324 - 325

 Visualforce
 process, 188
 tools, 188 - 190

 dialog boxes

 Create Lookup Field, 61
 Create New Object, 59
 Open Perspective, 101

 dirty writes, 161

 division (/) operator, 110

 DML (Data Manipulation Language), 128

 database methods, 157 - 158
 insert example, 158
 opt_allOrNone parameter, 158

 statements
 Delete, 130
 Insert, 129
 Undelete, 130
 Update, 129
 Upsert, 129 - 130

 DmlException exception, 114

 domain names (sites), 255

 double data type

 defined, 106
 rounding, 108

 Do-While loops, 114

 Dreamforce conference, 17

 dynamic Apex, 174

 instances, creating, 179
 queries

 governor limits, 176
 SOQL, 175 - 176
 SOSL, 176

 schema metadata, 177
 child relationship, 178
 field, 177 - 178
 limits, 177
 object, 177
 picklist, 178
 record type, 179

 dynamic Chatter objects, 370

 dynamicComponent elements, 248

 dynamic field references, 246 - 248

 dynamic status messages, 239

 dynamic Visualforce, 246

 component generation, 248 - 249
 dynamic field references, 246 - 248

ptg11524036

401fields

 expressions

 combining, 194
 condition, 194
 if/then/else, 110
 scheduling, 295
 standard controllers

 actions, 192
 data, 192
 navigation, 192

 standard set controllers
 action, 193
 data, 193
 filters, 193
 navigation, 193
 pagination, 193

 extensions (controller), 197

 extensions attribute (pages), 200

 external IDs, 39

 F
 facets, 239

 FeedComments relationship, 375

 feed component, 381

 Feed objects, 370 - 371

 custom objects, 373
 news, 374
 standard objects, 372 - 373
 users, 374

 FeedTrackedChange object, 376

 feed-tracked changes (Chatter), 376

 feedWithFollowers component, 381

 Field change Chatter posts, 371

 fields, 23

 accessibility, 73 , 78 - 79 , 89 - 90
 Assignment object, 54
 auto number, 41
 categories, 23
 checkboxes, 38
 Contact object, 51
 ContainerId, 355
 creating, 37

 default values, 39
 descriptions, 39
 external IDs, 39
 help text, 39
 labels, 39
 names, 39

 deleting/undeleting, 325
 retrieving, 323 - 324
 updating, 325
 upserting, 325
 writing, 324

 EntitySubscription object, 377

 enums, 107

 environments, 32

 equality (==) operator, 110

 error handling

 SOAP API, 321
 triggers, 132 - 133
 Visualforce, 220 - 221

 communication, 220 - 221
 uncaught exceptions, 220

 errors

 communication, 220 - 221
 data type conversions, 108

 events

 JavaScript, 237 - 238
 timed, 237

 exact equality (===) operator, 110

 exact inequality (!==) operator, 110

 Excel Connector, 34

 exceptions

 incoming email, 173
 statements, 114 - 115

 examples, 115
 handling, 115
 raising, 115

 uncaught, 220
 EXCLUDES keyword (multi-select

picklists), 154

 Execute Anonymous view (IDE)

 batch jobs, running, 286
 missing timecard report, testing, 300
 REST services integration, testing, 304

 executeBatch method, 286

 execute method (Batchable interface), 283

 execution logs, 134

 exporting

 CSV files, 64 - 65
 records, 347 - 349

 batches, creating, 348
 creating bulk export jobs, 347 - 348
 results, retrieving, 348 - 349
 status, checking, 348

ptg11524036

402 fields

 filtering

 multi-select picklists, 154
 records

 grouped, 146
 SOQL, 124 - 125

 standard set controllers, 193
 finally keyword (exceptions), 115

 finish method (Batchable interface), 284

 follow component, 381

 followers component, 381

 following records (Chatter), 376 - 378

 following relationships, 377
 method, 377
 relationships, 377
 request, 380
 unfollowing, 377 - 378

 Follow Team button, 382 - 385

 configuring, 385
 controller extension code, 383 - 384
 testing, 385
 Visualforce page, 384 - 385

 Force.com

 architecture
 application services, 6
 declarative metadata, 7
 multilenancy, 4 - 6
 programming languages, 7
 relational databases, 6

 Database.com, 4
 developers, 3
 perspective, 101
 Project, 103
 services, 7

 business logic, 8
 database, 7
 integration, 8 - 9
 user interface, 8

 technology integrations, 4
 Force.com-styled components, 204 - 205

 action containers, 205
 notifications, 205
 page structure, 205
 paging, 205
 samples

 controller, 206
 page, 207

 table, 205

 required, 39
 types, selecting, 38
 unique, 39

 date/time, 38
 dependent, 46
 dynamic references, 246 - 248
 email/phone/URL, 38
 field sets, 247 - 248
 fieldsToNull, 325
 formula, 24 - 25 , 41
 history tracking, 25 , 36
 logical, 23
 metadata, 177 - 178
 multi-select picklists, 154
 NotifyForFields, 341
 NotifyForOperations, 341
 numbers/percent/currency/

geolocation, 38
 picklists, 38

 metadata, 178
 multi-select, 154
 SOAP type, mapping, 322

 Project object, 52
 query results, sorting, 125
 relationships. See relationships
 RequestId, 355
 rich data types, 25
 roll-up summary, 41 , 45
 security, 77

 field accessibility, 78 - 79 , 89 - 90
 profiles, 78

 sharing objects, 162 - 163
 Skill object, 54
 standard, 36
 text, 38
 Timecard object, 56
 unique identifiers, 24
 validation rules, 24
 visibility, 64

 fieldsToNull field, 325

 fields variable, 247

 file-based services, 361

 File Chatter posts, 371

 files (CSV)

 Contact import, 69
 exporting, 64 - 65
 Project import, 65

ptg11524036

403hybrid applications

 overview, 100
 Visualforce, 221

 greater than (>) operator, 110

 greater than or equal to (>=) operator, 110

 GROUP BY clause (record groupings), 145

 GROUP BY CUBE clause, 147 - 148

 GROUP BY ROLLUP clause, 147

 groups

 operators, 110
 records, 145 - 146

 with aggregate functions, 146
 filtering, 146
 subtotals, 147 - 148
 without aggregate functions, 145 - 146

 users, 80
 public, 80
 roles, 80

 H
 The Hammer, 6

 handleInboundEmail method, 172

 handling

 errors
 SOAP API, 321
 triggers, 132 - 133
 Visualforce, 220 - 221

 exceptions, 115
 HAVING keyword (grouped records,

filtering), 146

 heap governor limits, 120

 Hello World

 code example, 105
 Visualforce example, 189 - 191

 help

 settings (custom objects), 36
 text, 39

 hierarchy custom settings, 49 , 181

 high volume objects, 370

 history tracking

 custom objects, 36
 fields, 25

 HTTP Apex classes, 302 - 303

 Http class, 302

 HttpRequest class, 302

 HttpResponse class, 302

 hybrid applications, 265 , 267

 forcetk.js library, 266

 For loops, 114 , 127

 formatting

 datetime data types, 109
 REST services, 302
 SimpleDateFormat pattern, 109
 strings for dates, 109

 formulas, 24 - 25 , 41 , 322

 frameworks (mobile Web applications),

 268 - 269

 Mobile Components for Visualforce,
 268 - 269

 Web MVC, 269
 functions (aggregate), 144 - 145

 AVG, 144
 COUNT, 144- 145
 COUNT_DISTINCT, 144
 governor limits, 145
 MAX, 144
 MIN, 144
 records, grouping, 146
 SUM, 144 - 145

 future methods, 116

 declaring, 116
 limitations, 116

 G
 geolocation fields, 38

 getCurrentUserContact method, 225

 getDescribe method, 177

 getInstance method, 181

 getSObject method, 176

 Google Cloud Platform, 3

 governor limits, 120

 aggregate functions, 145
 Apex code, 120
 custom Apex Web services

 REST, 312
 SOAP, 327

 custom settings, 180
 databases, 120
 dynamic queries, 176
 Force.com Apex Code Developer’s Guide

Web site, 100
 heaps, 120
 inbound email, 173
 namespaces, 120

ptg11524036

404 IaaS

 includeScript component, 205

 INCLUDES keyword (multi-select

picklists), 154

 inclusion (modular Visualforce), 242

 information-hiding notation, 118

 Infrastructure as a Service. See PaaS

 inheritance (Apex), 119

 initializers, 118

 inner classes, 118

 inner joins, 149 - 150

 inputCheckbox component, 202

 inputField component, 201

 inputFile component, 202

 inputHidden component, 202

 inputSecret component, 202

 inputTextArea component, 202

 inputText component, 202

 insert database method, 158

 Insert statement, 129

 installing

 IDE, 101
 Mobile Components for Visualforce,

 268 - 269
 instances, creating, 179

 Integers, 106

 integration, 29

 Apex callouts, 301 - 304
 databases in Apex, 120 - 121

 DML statements. See DML,
statements

 integrity, 122
 objects, referencing, 121 - 122
 queries. See queries
 security, 133

 logical databases, 13
 metadata XML, 30 - 31
 native user interface, 31
 object-relational mapping, 30
 REST APIs, 31
 services, 8 - 9
 Services Manager application

 implementation strategy, 363 - 364
 sample implementation, 364 - 366
 scenario, 363

 SOAP APIs, 31
 specialist contributions, 12

 I
 IaaS. See PaaS

 id attribute (view components), 199

 IDE

 Execute Anonymous view
 batch jobs, running, 286
 missing timecard report, testing, 300
 REST services integration, testing, 304

 installation, 101
 perspective, 101
 Project, 103
 Schema Explorer, 103
 Services Manager application

configuration, 138
 Views

 Apex Test Runner, 103
 Execute Anonymous, 104 - 105
 Problems, 103

 Visualforce page editor, 189
 Ideas Web site, 16

 IDs

 defined, 106
 external, 39
 string conversion, 108

 iframe component, 204

 if/then/else expression shortcut (? :), 110

 image component, 204

 implicit conversions (data types), 107 - 108

 importing

 data, 64
 import process, 66
 preparations, 64 - 66
 Contact CSV import file, 69
 exporting CSV files, 64 - 65
 Project CSV import file, 65
 verification, 67 - 69

 records, 346 - 347
 adding records to bulk import jobs,

 346 - 347
 closing bulk import jobs, 347
 creating bulk import jobs, 346
 results, retrieving, 347
 status, checking, 347

 Import Wizard, 34

 InboundEmailHandler interface, 172

 inbound email. See receiving email

 include component, 242

ptg11524036

405licensing

 bulk import
 closing, 347
 creating, 346
 records, adding, 346 - 347
 results, retrieving, 347
 status, checking, 347

 joins

 anti-joins
 overview, 152
 restrictions, 153

 inner, 149 - 150
 outer, 148 - 149
 semi-joins

 child-to-child, 153
 child-to-parent, 153
 parent-to-child, 151
 restrictions, 153

 jQuery UI, 259

 JSON (JavaScript Object Notation), 302 ,

 364 - 366

 K
 keywords

 break, 114
 catch, 115
 continue, 114
 EXCLUDES, 154
 finally, 115
 HAVING, 146
 INCLUDES, 154
 LIMIT, 125
 throw, 115
 try, 115

 L
 labels

 custom objects, 35
 fields, 39

 layouts

 page, 37
 search, 37

 LDV (Large Data Volume) deployments, 22

 less than (<) operator, 110

 less than or equal to (<=) operator, 110

 licensing

 orgs, 32
 profiles, 76

 Visualforce and native user interface,
 209 - 210

 custom buttons/links, 215
 custom tabs, 215
 page layouts, 213
 standard buttons, 213
 standard pages, 210 - 211

 interfaces

 Batchable, 283 - 284
 InboundEmailHandler, 172
 Schedulable, 294
 Stateful, 290

 interoperability, 15

 IP white-listing, 319

 isEmpty method, 109

 @isTest, 136

 iterable batch scope, 290 - 292

 Iterable class, 291

 Iterator class, 290

 J
 Java

 createProject service, 329
 create service, 324
 Metadata API object creation example,

 361 - 363
 query batch sizes, setting, 324
 SOQL queries, executing, 323
 stub code, generating, 317

 JavaScript

 dynamic action status messages, 239
 events, 237 - 238
 forcetk.js library, 266
 JQuery UI, 259
 Object Notation (JSON), 302 , 364 - 366
 remoting, 250 , 270
 Skills Matrix comparison overlay, 261
 Visualforce components,

referencing, 240
 job function security, 85 - 86

 jobs

 bulk export
 batches, creating, 348
 creating, 347 - 348
 results, retrieving, 348 - 349
 status, checking, 348

ptg11524036

406 lifecycles (development)

 bulk import jobs
 closing, 347
 creating, 346
 records, adding, 346
 results, retrieving, 347
 status, checking, 347

 Canvas App
 callback HTML page, 354
 main HTML page, 353 - 354

 Chatter
 feed-tracked changes, 376
 following records, 377
 following relationships, 377
 unfollowing records, 378
 Visualforce component page, 381
 Visualforce controller example, 378
 Visualforce page example, 378

 Chatter comments
 creating, 375
 deleting, 375
 query, 375

 Chatter posts
 creating, 372
 custom object query, 373
 deleting, 373
 standard object query, 372
 user feed query, 374

 Chatter REST API requests
 followed records, 380
 news feed, 380
 posts, 380

 class definitions, 118
 commandButton component, 203
 conditional statements, 113
 constants, defining, 107
 Contact CSV import file, 69
 custom Apex REST Web services

 creating, 313
 invoking, 313

 custom Apex SOAP Web services
 creating record example, 328
 invoking, 329

 custom controllers
 extensions, 197
 read-only access to Project

record, 194
 wrapper patterns, 195 - 196

 lifecycles (development), 12

 configuration management, 14
 end of life, 15
 integrated logical databases, 13
 integrated unit testing, 14 - 15
 interoperability, 15
 MVC pattern, 15
 native user interfaces, 14

 LIMIT keyword (records), 125

 links

 custom
 custom objects, creating, 38
 Visualforce pages, 215

 standard, 37
 listings

 actionFunction component (Visualforce)
 controllers, 236
 pages, 236

 actionPoller component, 237
 actionStatus component, 238

 with facets, 239
 JavaScript functions, 239

 actionSupport component, 237 - 238
 aggregate functions

 COUNT, 145
 SUM, 145

 AngularJS project list example
(Visualforce)

 controller, 252
 page code, 252 - 253

 Apex ORM code snippet, 30
 arrays

 creating, 111
 initializing, 112

 Batch Apex
 class, 285
 execution scope, 289
 iterable batch example, 291
 project iterator, 291
 running batch jobs, 286
 schedulable code, 294
 scheduling example, 296
 stateful example, 289
 test, 293

 Bulk API password authentication, 345
 bulk export jobs

 creating, 348
 results, retrieving, 348 - 349
 status, checking, 348

ptg11524036

407listings

 listing timecards Visualforce
page, 275

 navigation, AngularJS controller, 277
 outputField component, 201
 Project CSV import file, 65
 receiving email, 173
 records

 creating, 121
 deleting, 130
 inserting, 129
 locking, 161
 relationships, creating, 121
 undeleting, 130
 updating, 129
 upserting, 130

 records, grouping
 with aggregate functions, 146
 debug log excerpt, 147
 filtering grouped, 146
 GROUP BY CUBE clause, 147 - 148
 GROUP BY ROLLUP clause, 147
 without aggregate functions, 146

 recursion, 115
 repeat component, 203
 REST API

 authentication, 307
 creating record requests, 310
 deleting record requests, 311
 record retrieval by external

identifiers, 310
 record retrieval by unique

identifiers, 309
 services available call, 309
 SObject basic information

request, 309
 SOQL query request, 310
 updating record requests, 311
 upserting record requests, 311

 rounding operations, 108
 savepoints, 160
 schema metadata

 child relationship, 178
 field, 177
 object, 177
 picklist, 178
 record type, 179

 custom settings
 creating custom setting records, 180
 deleting, 181
 updating, 180
 values, retrieving, 180

 data integrity, 122
 data type conversions

 conversion methods, 108
 errors, 108
 ID and string, 108
 implicit conversion, 107
 strings to dates, 109

 datetime data types, formatting, 109
 dynamic queries

 SOQL, 175
 SOSL, 176

 Enterprise API
 creating records, 325
 query batch sizes, 324
 record retrieval SOQL query, 323

 enums, defining, 107
 error-severity message, 221
 exception statements, 115
 Force.com-styled components

 controller, 206
 page, 207

 formula field example, 24 - 25
 future method declaration, 116
 Hello World, 105
 include component, 242
 inputField component, 201
 insert DML database method, 158
 instances, creating, 179
 lists

 creating, 111
 initializing, 112
 nesting, 111

 maps, 113
 Metadata API object creation, 362 - 363
 metadata XML example, 31
 MissingTimecardBatch class

 creating, 298 - 299
 reset results, 300
 running, 300

 mobile timecard entry page
 editing timecards, 277 - 279
 listing timecards controller, 274

ptg11524036

408 listings

 semi-join, 152
 sort fields, 125
 statement, 124

 SOSL
 Apex, 156
 query, 29

 SQL relationship query, 27
 standard controllers

 multiple records, 192
 single records, 191

 Streaming API Visualforce
controller, 342

 test methods, 136
 TimecardManager class

 creating, 139
 unit tests, 140 - 141

 Tooling API example (Visualforce)
 controller, 357 - 359
 page, 359 - 360

 triggers
 batching, 132
 definition, 131

 validateTimecard trigger, 138
 validation rule example, 24
 variables

 declaring, 105
 name case insensitivity, 106

 view components syntax, 199
 Visualforce

 controller partial page refresh, 235
 controller unit test, 222
 dynamic components, 248 - 249
 dynamic field references, 247
 Hello World example, 190
 pages as templates, 243
 partial page refresh, 235
 record-level security, 219
 view components, 244 , 246

 Yahoo! geocoding REST service
 integrating, 303
 invoking, 303
 testing, 304

 lists

 creating, 111
 custom settings, 48
 initializing, 111 - 112
 nesting, 111

 sending email
 mass email, 171
 SingleEmailMessage object, 168
 template, 170

 Services Manager application
 anonymous benchmark Web service,

testing, 334
 email notifications, 182
 integration implementation example,

 364 - 366
 utilization controller, 335 - 337
 Utilization page code, 337 - 338

 Services Manager Follow Team button
 controller extension code, 383
 Visualforce page, 384

 Services Manager Skills Matrix
 controller, 226 - 227
 unit test, 229 - 231
 Visualforce page, 228

 Services Manager Skills Matrix
comparison overlay

 actionSupport, adding, 262
 CompareSkillsComponent, 260
 CompareSkillsController, 260
 component CSS, adding, 261
 component support, adding, 261
 JavaScript integration, 261

 sets, 112
 sharing rules, inserting, 167
 Skill type field error condition

formula, 63
 SOAP API, logging in, 320
 SOQL

 child-to-child semi-join, 153
 child-to-parent relationships, 126
 child-to-parent semi-join, 153
 filter conditions, 124
 Group Object query, 166
 inner join, 150
 multi-select picklists, 154
 outer join, 148
 parent-to-child query, 151
 parent-to-child relationships, 126
 Project Share Object query, 165
 query in Apex, 127
 query in Apex with For loop, 127
 record limits, 125
 relationship query, 28

ptg11524036

409methods

 MassEmailMessage object, 170 - 171

 mass emails, sending, 170 - 171

 Master-Detail relationships

 creating, 60 - 62
 defined, 40
 Lookup relationships, compared, 40
 Services Manager application, 55 - 57
 SOAP type, mapping, 322

 MAX aggregate function, 144

 messages component, 220 - 221

 metadata

 declarative, 7
 schema, 177

 child relationship, 178
 field, 177 - 178
 limits, 177
 object, 177
 picklist, 178
 record type, 179

 tools, 33
 XML, 30 - 31

 Metadata API, 360

 object creation example, 361 - 363
 services, 360 - 361
 Web site, 360

 metadata-aware components, 200 - 201

 inputField, 201
 outputField, 201

 methods

 abortJob, 296
 access modifiers, 118
 action, 195 - 197
 addError, 225
 addFields, 246
 addInfo, 225
 Apex test, 136
 clear, 109
 clone, 109
 defined, 117
 DML database, 157 - 158

 insert example, 158
 opt_allOrNone parameter, 158

 execute, 283
 executeBatch, 286
 finish, 284
 future, 116

 declaring, 116
 limitations, 116

 overview, 111
 pages, 211
 sorting, 112

 List/Set Iteration For loops, 114

 listViews component, 208

 local Web servers, configuring, 352

 locking records, 161

 logging in

 DE accounts, 32
 SOAP API, 318 - 320

 enabled permissions, 318 - 319
 IP white-listing, 327
 logging out, 320
 login call, 320
 problems, troubleshooting, 320
 security tokens, 319

 logical databases integration, 13

 logical negation (!) operator, 110

 login method, 320

 LoginResult object, 320

 logs

 debug, 288
 execution, 134

 long data type, 106

 Lookup relationships

 creating, 60
 defined, 39
 Master-Detail relationships,

compared, 40
 Services Manager application, 55
 SOAP type, mapping, 322

 loops, 114 , 127

 M
 managed sharing (Apex), 162

 organization-wide sharing defaults,
changing, 163

 restrictions, 163
 sharing objects, 162 - 163
 sharing rules, creating, 163 - 167

 inserting, 167
 Project object, 164
 SOQL queries, 165 - 166
 viewing, 163 , 167

 manual sharing reason, 82

 maps, 112 - 113

 mashups, 9

ptg11524036

410 methods

 mobile applications

 Chatter Mobile, 264
 containers, 271
 hybrid, 265 , 267
 native, 265 - 266
 Salesforce

 Classic, 264
 Mobile SDK, 265
 Touch, 264

 timecard entry page
 editing timecards, 277 - 279
 in-page navigation, 276 - 277
 listing timecards, 273 - 276
 requirements, 272
 testing, 279
 viewing in Web browsers, 273
 viewing on iPhones, 273

 Web, 265
 data access, 269 - 270
 deployment, 271 - 272
 frameworks, 268 - 269
 overview, 266
 Salesforce SDK libraries, 266

 Mobile Components for Visualforce, 268 - 269

 documentation/source code Web
site, 269

 installing, 268 - 269
 types, 268

 Mobile Design templates, 269

 Mobile Packs, 269

 mobile timecard entry pages

 in-page navigation, 276 - 277
 requirements, 272
 testing, 279
 timecards

 editing, 277 - 279
 listing, 273 - 276

 viewing
 iPhones, 273
 Web browsers, 273

 Model-View-Controller (MVC) pattern, 15

 Modify All permission, 76

 modularity (Apex), 119

 modular Visualforce pages, 241

 composition, 243 - 244
 custom components, 244 - 246

 defining, 244 - 245
 Google Map example, 245 - 246

 inclusion, 242
 static resources, 241 - 242

 getCurrentUserContact, 225
 getDescribe, 177
 getInstance, 181
 getSObject, 176
 handleInboundEmail, 172
 isEmpty, 109
 login, 320
 nav, 277
 navClass, 277
 overloading, 119
 query

 SOQL, 175
 SOSL, 176

 rollback, 159
 schedule, 295
 sendEmail, 171
 setBccSender, 171
 setCcAddresses, 171
 setDocumentAttachments, 172
 setFileAttachments, 172
 setOrgWideEmailAddressId, 172
 setReplyTo, 171
 setSaveAsActivity, 172
 setSavePoint, 159
 setSenderDisplayName, 171
 setUseSignature, 172
 size, 109
 start, 283
 testAsUser, 231
 testNoContactForUser, 231
 testNoContactSelected, 231
 testNoSkills, 231
 testSave, 231
 testWithSkills, 231
 valueOf

 date to string conversions, 109
 string to date conversions, 109

 MIN aggregate function, 144

 MissingTimecardBatch class

 creating, 298 - 299
 reset results, 300
 running, 300

 missing timecard reports, 296 - 297

 missing timecards information,
calculating, 298 - 299

 missing timecards list custom object,
creating, 297

 testing, 299 - 300

ptg11524036

411object-level security

 New button, 213

 New Custom Field Wizard

 default values, 39
 descriptions, 39
 external IDs, 39
 help text, 39
 labels, 39
 names, 39
 required fields, 39
 types, selecting, 38
 unique fields, 39

 New Custom Object Tab Wizard, 63

 news feeds

 defined, 381
 requests, 379 - 380

 North American Industry Classification System

(NAICS) codes, 333

 not equal to (!=) operator, 110

 notifications, 205

 action status
 actionStatus component, 238 - 240
 dynamic, 239
 images/stylized messages, 239

 Streaming API
 PushTopics, 340 - 341
 Web site, 340

 NotifyForFields field, 341

 NotifyForOperations field, 341

 NullPointerException exception, 114

 number data type, 38 , 322

 O
 OAuth, 270 , 306 - 307

 object-level security, 72 , 74

 field-level security, 77
 field accessibility, 78 - 79
 profiles, 78

 permission sets, 76 - 77
 profiles, 74

 administrative permissions, 75
 Enhanced Profile List Views, 74
 Enhanced Profile User Interface, 74
 field-level security, 78
 licenses, 76
 object permissions, 75 - 76
 Services Manager, creating, 89 - 90
 Services Manager, listing, 85 - 86
 types, 74

 monitoring batch jobs, 287 - 288

 multilenancy, 4 - 6

 multiplication (*) operator, 110

 multi-select picklists, 154

 MVC (Model-View-Controller) pattern, 15

 MyEmailService class, 173 - 174

 N
 NAICS (North American Industry Classification

System) codes, 333

 names

 channel, 340
 custom objects, 35
 fields, 39
 sender display (email), 171
 sites domain names, 255
 triggers, 131
 variables, 105 - 106
 view components, 199

 namespaces, 120

 native applications, 265 - 266

 native user interfaces

 CRUD (create, read, update, delete)
operations, 31

 data integration, 31
 development lifecycle, 14
 new features, enabling, 41
 view components, 208 - 209

 detail, 209
 enhancedList, 209
 listViews, 208
 relatedList, 209

 Visualforce development tool, 189
 Visualforce integration, 209 - 210

 custom buttons/links, 215
 custom tabs, 215
 page layouts, 213
 standard buttons, 213
 standard pages, 210 - 211

 navClass method, 277

 navigation

 expressions
 standard controllers, 192
 standard set controllers, 193

 Mobile Components for Visualforce, 268
 mobile timecard entry page, 276 - 277

 nav method, 277

 nesting lists, 111

ptg11524036

412 object-oriented programming

 FeedTrackedChange, 376
 logical, 22
 LoginResult, 320
 MassEmailMessage, 170 - 171
 metadata, 177
 operational tasks, 22
 permissions, 73 , 75 - 76
 Project

 CSV import file, 65
 custom object tab, creating, 63
 fields, 52
 overview, 52
 sharing rules, 164

 records
 creating, 42 , 121
 relationships, creating, 121
 types, 47

 referencing in Apex, 121 - 122
 SaveResult, 324
 security, 218
 services, 361
 sharing, 162 - 163

 fields, 162 - 163
 restrictions, 163

 SingleEmailMessage, 168 - 169
 Skill

 fields, 54
 overview, 54
 validation rule, creating, 63

 SOQL relationships, 125 - 126
 child-to-parent, 125 - 126
 parent-to-child, 126

 standard, 22
 tabs, creating, 41
 Timecard

 fields, 56
 overview, 53

 undelete support, 23
 Views, 43 - 44

 Open Perspective dialog box, 101

 operations specialist contributions, 12

 operators, 109

 & (AND) operator, 110
 AND (&&), 110
 addition (+), 110
 arithmetic negation (-), 110
 assignment (=), 110
 bitwise, 110

 object-oriented programming, 117

 analysis and design specialist
contributions, 12

 encapsulation, 117 - 118
 information-hiding notation, 118
 inheritance, 119
 modularity, 119
 polymorphism, 119

 Object-Relational Mapping (ORM), 30

 objects, 22 , 106

 AggregateResult, 145
 Assignment

 fields, 53
 overview, 53

 Chatter
 dynamic, 370
 high-volume design, 370
 relationship-rich, 370

 Contact
 CSV import file, 69
 fields, 51
 overview, 51

 ContactFeed, 372
 creating, 35 , 59 - 60

 activities, allowing, 36
 custom buttons/links, 38
 custom fields, 37
 definition, 35 - 36
 deployment status, 36
 descriptions, 36
 field history tracking, 36
 help settings, 36
 labels, 35
 with Metadata API, 361 - 363
 names, 35
 page layouts, 37
 record name label, 36
 reports, allowing, 36
 search layouts, 37
 standard buttons/links, 37
 standard fields, 36
 triggers, 37
 validation rules, 37

 EntitySubscription, 377
 Feed, 370 - 371

 custom objects, 373
 news, 374
 standard objects, 372 - 373
 users, 374

ptg11524036

413pages

 P
 PaaS (Platform as a Service), 2

 Amazon Web Services, 2 - 3
 Force.com, 3 - 4
 Google Cloud Platform, 3
 Windows Azure, 3

 pageBlockButtons component, 228

 pageBlock component, 228

 pageBlockTable component, 228

 pageMessages component, 220 - 221

 pages

 adding to sites, 256 - 257
 Canvas App

 adding, 352
 configuring, 352

 components, 200
 layouts

 custom objects, creating, 37
 Visualforce pages, adding, 213

 security, 219
 standard native user interface

 edit, 211
 list, 211
 overriding, 211
 tab, 210
 view, 211

 structure components, 205
 view state, preserving, 195
 Visualforce, 187

 actionFunction component, 236
 adding to page layouts, 213
 adding to Salesforce Touch, 271
 AngularJS example code, 252 - 253
 asynchronous actions. See

asynchronous actions
 Chatter components, 381
 Chatter example, 378
 dynamic, 246 - 249
 JavaScript events, 237 - 238
 mobile timecards, 275 - 276 , 278
 modular, 241 - 246
 native user interface buttons/links

navigation, 215
 as native user interface tabs, 215
 partial refreshes, 234 - 235

 division (/), 110
 equality (==), 110
 exact equality (===), 110
 exact inequality (!==), 110
 greater than (>), 110
 greater than or equal to (>=), 110
 grouping, 110
 if/then/else expression (? :), 110
 less than (<), 110
 less than or equal to (<=), 110
 logical negation (!), 110
 multiplication (*), 110
 not equal to (!=), 110
 OR (||), 110
 signed shift left (<<), 110
 signed shift right (>>), 110
 string concatenation (+), 110
 subtraction (-), 110
 unary decrement (--), 110
 unary increment (++), 110
 unsigned shift right (>>>), 110

 opt_allOrNone parameter (DML database

methods), 158

 organization-wide

 email address unique identifiers, 172
 security defaults

 overview, 80 - 82
 Services Manager application, 91

 orgs, 32

 ORM (Object-Relational Mapping), 30

 OR (|) operator, 110

 OR (||) operator, 110

 outbound email. See sending email

 outer joins, 148 - 149

 outputField component, 201

 outputLabel component, 202

 outputLink component, 204

 outputPanel component, 204

 outputText component, 204

 overloading methods, 119

 overriding

 standard buttons, 213
 standard pages, 210 - 211

 ownership (records), 79 - 80

ptg11524036

414 pages

 Feed objects, 370 - 371
 custom object, 373
 news, 374
 standard objects, 372 - 373
 user, 374

 schema pattern, 370
 primitive components, 204 - 205

 primitive data components, 201 - 202

 inputCheckbox, 202
 inputFile, 202
 inputHidden, 202
 inputSecret, 202
 inputText, 202
 inputTextArea, 202
 outputLabel, 202
 selectCheckboxes, 202
 selectList, 202
 selectRadio, 202

 private records, 81

 Problems View (IDE), 103

 procedural sharing reasons, 82

 profiles, 74

 administrative permissions, 75
 defined, 72
 Enhanced Profile List Views, 74
 Enhanced Profile User Interface, 74
 field-level security, 78
 licenses, 76
 object permissions, 75 - 76
 Services Manager application, 18 , 91 - 92

 accounts receivable, 18
 consultants, 18
 creating, 89 - 90
 listing, 85 - 86
 project managers, 18
 sales representatives, 18
 staffing coordinators, 18
 Vice President, 18

 types, 74
 user groups, 80

 programming languages, 7

 ProjectListCtrl controller, 253

 project manager profile

 permissions, 86
 Services Manager application, 18

 projects, 103

 CSV import file, 65
 custom object tab, creating, 63

 performance tuning, 217 - 218
 public access. See sites
 security, 218 - 220
 Services Manager Follow Team

button, 384 - 385
 Services Manager Skills Matrix,

 228 - 229
 Services Manager Utilization, 337 - 338
 Services Manager Utilization page,

creating, 330 - 331
 standard pages, overriding, 210 - 211
 Streaming API example, 343
 timed events, 237
 Tooling API example, 359 - 360
 viewing from native user interface

buttons, 213
 viewing in Salesforce Classic, 271

 pagination expressions, 193

 paging components, 205

 ParentId field, 162

 parent-to-child relationships, 126

 queries, 151
 semi-join, 151

 partial page refreshes, 234 - 235

 Partner SOAP API, 315

 percent data type, 38 , 322

 performance

 custom Apex SOAP Web services, 327
 Visualforce pages, tuning, 217 - 218

 permissions

 administrative, 75
 enabled (SOAP API), 318 - 319
 object, 73 , 75 - 76
 Services Manager profiles, 85 - 86
 sets, 72 , 76 - 77

 perspectives, 101

 phone data type, 322

 phone fields, 38

 picklists, 38

 metadata, 178
 multi-select, 154
 SOAP type, mapping, 322

 Platform as a Service. See PaaS

 platform documentation, 16

 polymorphism, 119

 posts (Chatter), 370 - 372

 content, 371
 creating, 372 - 373
 deleting, 373

ptg11524036

415records

 SOSL, 29
 Apex, 155 - 157
 dynamic, 176
 record retrieval, 324
 syntax, 155

 QueryException exception, 114

 query method

 SOQL, 175
 SOSL, 176

 queryMore service, 323

 query service, 323

 R
 raising exceptions, 115

 RCED (read, create, edit, delete)

operations, 31

 Read permission, 75

 receiving email, 172 - 173

 class, creating, 173 - 174
 governor limits, 173
 personalizing based on sender

identity, 173
 services, configuring, 174 - 175
 uncaught exceptions, 173

 records

 adding to bulk import jobs, 346 - 347
 batch processing. See Batch Apex
 controlled by parent option, 81
 counts, returning, 145
 creating, 42 , 121
 custom setting

 creating, 180
 deleting, 180
 updating, 180

 deleting, 130
 Enterprise API

 bulk modifications, 326
 creating, 324 - 325
 deleting/undeleting, 325
 retrieving, 323 - 324
 updating, 325
 upserting, 325
 writing, 324

 exporting, 347 - 349
 batches, creating, 348
 creating bulk export jobs, 347 - 348
 results retrieving, 348 - 349
 status, checking, 348

 development lifecycle, 12
 configuration management, 14
 end of life, 15
 integrated logical databases, 13
 integrated unit testing, 14 - 15
 interoperability, 15
 MVC pattern, 15
 native user interfaces, 14

 fields, 52
 overview, 52
 selecting, 10 - 11
 sharing rules, 164
 team selection, 11 - 12
 tools/resources

 AppExchange, 16
 Code Share, 16
 developer discussion boards, 16
 Developer Force Web site, 16
 Dreamforce/Cloudforce

conferences, 17
 Ideas site, 16
 platform documentation, 16
 systems integrators, 17
 technical support, 17

 Visualforce, 188
 properties, 117

 public groups, 80

 public read-only records, 81

 public read/write records, 81

 PushTopics, 340 - 341

 availability, 341
 components, 340 - 341
 deleting, 341
 limitations, 341

 Q
 quality assurance engineer contributions, 12

 queries

 batch sizes, setting, 324
 dirty writes, 161
 exceptions, 114
 joins

 anti-joins, 152 - 153
 inner, 149 - 150
 outer, 148 - 149
 semi-joins. See semi-joins

 parent-to-child, 151
 SOQL. See SOQL queries

ptg11524036

416 records

 Services Manager application, 87 - 88
 restrictions, 163
 sharing objects, 162 - 163
 sharing reasons, 82

 sharing rules
 inserting, 167
 Project object, 164
 SOQL queries, 165 - 166
 viewing, 163 , 167

 type metadata, 179
 types, 46 - 47
 undeleting, 130
 unfollowing, 377 - 378
 updating, 129
 upserting, 129 - 130
 viewing, 42

 recursion, 115

 registration, 32

 relatedList component, 209

 relational databases, 6

 relationship-rich Chatter objects, 370

 relationships

 child metadata, 178
 comparison, 40
 creating, 39 - 40
 data, 25

 explicitly defined, 26
 integrity enforced, 26
 SOQL, 26 - 27
 SOQL versus SQL, 27 - 28
 SOSL, 29
 viewing, 121

 FeedComments, 375
 fields, 38

 comparison, 40
 creating, 39 - 40
 Lookup, 39
 Master-Detail, 40

 following, 377
 Lookup, 39

 creating, 60
 Services Manager application, 55
 SOAP type, mapping, 322

 Master-Detail, 40
 creating, 60 - 62
 Services Manager application, 55 - 57
 SOAP type, mapping, 322

 parent-to-child queries, 151
 records, creating, 121

 feed-tracked changes (Chatter), 376
 filtering, 124 - 125
 following

 method, 377
 relationships, querying, 377
 request, 380

 grouping, 145 - 146
 with aggregate functions, 146
 filtering grouped, 146
 without aggregate functions, 145 - 146

 grouping with subtotals, 147 - 148
 debug log excerpt, 147
 GROUP BY CUBE clause, 147 - 148
 GROUP BY ROLLUP clause, 147

 importing, 346 - 347
 adding records to bulk import jobs,

 346 - 347
 closing bulk import jobs, 347
 creating bulk import jobs, 346
 results, retrieving, 347
 status, checking, 347

 inserting, 129
 limits, 125
 locking, 161
 ownership, 79 - 80
 private, 81
 public read-only, 81
 public read/write, 81
 PushTopics, 340 - 341

 availability, 341
 components, 340 - 341
 deleting, 341
 limitations, 341

 relationships, creating, 121
 requests

 creating, 310
 deleting, 311
 updating, 311
 upserting, 311

 retrieving
 external identifiers, 310
 unique identifiers, 309

 security, 72 , 79
 record ownership, 79 - 80
 user groups, 80
 Visualforce user interfaces, 219

 sharing, 80 - 82
 organization-wide defaults,

 80 - 82 , 163

ptg11524036

417rules

 API
 authentication, 306 - 307
 Chatter, 379 - 380
 Connected Apps, creating, 307
 creating record requests, 310
 data access, 306
 deleting record requests, 311
 Developer’s Guide Web site, 308
 mobile Web application data

access, 270
 record retrieval by external

identifiers, 310
 record retrieval by unique

identifiers, 309
 services available call, 308 - 309
 SObject basic information

request, 309
 SOQL query request, 310
 updating record requests, 311
 upserting record requests, 311

 custom Apex REST Web services,
 312 - 314

 Apex class rules, 312
 creating, 313
 governor limits, 312
 invoking, 313 - 314

 integration, 9
 services, calling from Apex, 302 - 304

 formats, 302
 HTTP classes, 302 - 303
 integrating, 303 - 304
 invoking, 303
 testing, 304

 rich data types, 25

 roles. See profiles

 rollback method, 159

 roll-up summaries

 fields, 41 , 45
 SOAP type, mapping, 322

 rounding, 108

 RowCause field, 163

 rules

 Apex Web services classes
 REST, 312
 SOAP, 327

 governor limits, 120
 aggregate functions, 145
 Apex code, 120

 Services Manager application, 55 - 58
 SOQL, 125 - 126

 child-to-parent, 125 - 126
 parent-to-child, 126

 viewing, 121
 repeat component, 203

 repeating components, 201 - 203

 reply-to addresses (email), 171

 reports

 custom objects, allowing, 36
 missing timecard, 296 - 297

 missing timecards information,
calculating, 298 - 299

 missing timecards list custom object,
creating, 297

 testing, 299 - 300
 Representational State Transfer. See REST

 RequestId field, 355

 requests

 Chatter posts, 380
 followed records, 380
 news feed, 379 - 380
 password authentication, 307
 records

 creating, 310
 deleting, 311
 retrieving, 309 - 310
 updating, 311
 upserting, 311

 services available, 308
 SObject basic information, 309
 SOQL query, 310

 reRender attribute, 234

 resources

 Apex Code Developer’s Guide Web
site, 108

 AppExchange, 16
 Code share, 16
 developer discussion boards, 16
 Developer Force Web site, 16
 Dreamforce/Cloudforce conferences, 17
 Ideas Web site, 16
 platform documentation, 16
 REST API, 308
 security Web site, 385
 systems integrators, 17
 technical support, 17

 REST (Representational State Transfer), 301

ptg11524036

418 rules

 sample application. See Services Manager

application

 savepoints, 159 - 160

 example, 159 - 160
 limitations, 159
 restoring to, 159
 setting, 159

 SaveResult objects, 324

 Schedulable interface, 294

 schedule method, 295

 scheduling Batch Apex, 293 - 296

 Apex user interface, 294 - 295
 sample code, 296
 schedulable code development, 294
 scheduled jobs

 creating, 295
 deleting, 296
 editing, 296

 Schema Builder, 34

 custom objects, creating, 59 - 60
 Lookup relationships, creating, 60
 Master-Detail relationships,

creating, 60 - 62
 Schema Explorer, 103

 relationships, viewing, 121
 SOQL queries, running, 123

 scope

 Batch Apex, 282
 batch jobs

 adjusting, 289
 iterable batch, 290 - 292

 search layouts, 37

 sectionHeader component, 228

 Secure Coding Guideline document Web

site, 218

 security

 Apex, 133
 architecture, 71
 authentication

 Bulk API, 345 - 346
 Canvas, 349 - 350
 mobile Web applications, 269 - 270
 REST APIs, 306 - 307
 sites users, 258

 Cross Site Request Forgery attacks, 385
 custom Apex SOAP Web services, 327
 fields, 77

 accessibility, 73 , 78 - 79 , 89 - 90
 profiles, 78

 custom Apex REST Web services, 312
 custom Apex SOAP Web services, 327
 custom settings, 180
 databases, 120
 dynamic queries, 176
 Force.com Apex Code Developer’s

Guide Web site, 100
 heaps, 120
 inbound email, 173
 namespaces, 120
 overview, 100
 Visualforce, 221

 managed sharing, 153
 creating, 163 - 167
 organization-wide sharing defaults,

changing, 163
 restrictions, 163
 sharing objects, 162 - 163

 sharing, 82
 inserting, 167
 Services Manager application, 92 - 93
 viewing, 163 , 167

 validation
 fields, 24
 Skill object creating, 63

 S
 S2S (Salesforce-to-Salesforce), 9

 SaaS. See PaaS

 Salesforce

 Classic, 264
 implementation guide, 271
 Visualforce pages, viewing, 271

 Mobile Packs, 269
 Mobile SDK

 download Web sites, 265
 home page, 267
 libraries, 266

 Object Query Language. See SOQL
 Object Search Language. See SOSL
 Touch, 264

 mobile timecard entry page,
testing, 279

 Visualforce pages, viewing, 271
 Salesforce-to-Salesforce (S2S), 9

 sales representatives profile

 permissions, 86
 Services Manager application, 18

ptg11524036

419services

 selecting

 field types, 38
 projects, 10 - 11
 teams, 11 - 12

 selectList component, 202

 selectRadio component, 202

 semi-joins

 child-to-child, 153
 child-to-parent, 153
 parent-to-child, 151
 restrictions, 153

 sendEmail method, 171

 sender display names (email), 171

 sending email, 168

 attachments, 172
 blind-carbon-copies, 171
 carbon copies, 171
 mass emails, 170 - 171
 notifications (Services Manager

application), 181 - 182
 organization-wide email address unique

identifiers, 172
 reply-to addresses, 171
 sendEmail method, 171
 sender display names, 171
 signatures, 172
 SingleEmailMessage object, 168 - 169
 templates, 169 - 170
 tracking, 172

 services, 7

 application, 6
 business logic, 8
 create, 324
 createProject, 329
 custom Apex REST Web, 312 - 314

 Apex class rules, 312
 creating, 313
 governor limits, 312
 invoking, 313 - 314

 custom Apex SOAP Web, 326
 Apex class rules, compared, 327
 calling, 328
 creating records example, 328
 governor limits, 327
 invoking, 329
 limitations, 326 - 327
 Services Manager anonymous

benchmarking, 333 - 335

 object-level. See object-level security
 objects, 218
 overview, 71 - 74
 permission sets, 72 , 76 - 77
 profiles, 72 , 74

 administrative permissions, 75
 Enhanced Profile List Views, 74
 Enhanced Profile User Interface, 74
 field-level security, 78
 licenses, 76
 object permissions, 75 - 76
 Services Manager, creating, 89 - 90
 Services Manager, listing, 85 - 86
 types, 74

 records, 72 , 79
 record ownership, 79 - 80
 sharing model, 80 - 82
 user groups, 80
 Visualforce user interfaces, 219

 resources Web site, 385
 Secure Coding Guideline document Web

site, 218
 Services Manager application

 business units, 85 - 88
 designing, 85
 field accessibility, 89 - 90
 implementing, 88 - 89
 job functions, 85 - 86
 organization-wide defaults, 91
 profiles, 89 - 92
 sharing rules, 92 - 93
 Skills Matrix, 224 - 225
 testing, 94 - 98

 sharing model, 73
 sharing reasons, 74
 sites, 255 - 256
 SOAP API

 IP white-listing, 319
 overview, 316
 tokens, 319

 Visualforce user interfaces, 218
 object-level, 218
 page-level, 219
 record-level, 219

 selectCheckboxes component, 202

 selectedContactId variable, 225

ptg11524036

420 services

 contacts, 51
 data relationships, 55 - 58
 projects, 52
 skills, 53
 timecards, 53 - 56

 email notifications, 181 - 182
 Follow Team button, 382 - 385

 configuring, 385
 controller extension code, 383 - 384
 testing, 385
 Visualforce page, 384 - 385

 hours utilization calculation, 332
 IDE configuration, 138
 importing data, 64

 data preparation, 64 - 66
 import process, 66
 verification, 67 - 69

 missing timecard report, 296 - 297
 missing information, calculating,

 298 - 299
 missing timecards list custom object,

creating, 297
 testing, 299 - 300

 mobile timecard entry page
 editing timecards, 277 - 279
 in-page navigation, 276 - 277
 listing timecards, 273 - 276
 requirements, 272
 testing, 279
 viewing in Web browsers, 273
 viewing on iPhones, 273

 security
 business units, 85 - 88
 designing, 85
 field accessibility, 89 - 90
 implementing, 88 - 89
 job functions, 85 - 86
 organization-wide defaults, 91
 profiles, creating, 89 - 90
 roles, 91 - 92
 sharing rules, 92 - 93
 testing, 94 - 98

 Skills Matrix
 complete list of skill types,

creating, 224
 contacts drop-down list, creating, 224
 controller, creating, 225 - 227
 controller tests, 229 - 231
 data security, 224 - 225

 database, 7
 delete, 325
 email, configuring, 174 - 175
 integration, 8 - 9
 Metadata API, 360 - 361
 query, 323
 queryMore, 323
 REST, calling from Apex, 302 - 304

 formats, 302
 HTTP classes, 302 - 303
 integrating, 303 - 304
 invoking, 303
 testing, 304

 SOAP, calling from Apex, 305 - 306
 sobjects

 record retrieval by external
identifiers, 310

 record retrieval by unique
identifiers, 309

 SObject basic information
request, 309

 update, 325
 upsert, 325
 user interface, 8
 Web, integration, 9

 Services Manager application

 anonymous benchmarking service,
 333 - 335

 background, 17 - 18
 business hours, configuring, 331
 database integration

 implementation strategy, 363 - 364
 sample implementation, 364 - 366
 scenario, 363

 data model design goals, 49 - 50
 Developer Edition optimization, 50
 standard objects, leveraging, 50

 data model implementation
 custom application, creating, 58
 custom objects, creating, 59 - 60
 custom object tabs, creating, 63
 field visibility, 64
 Lookup relationship, creating, 60
 Master-Detail relationships,

creating, 60 - 62
 validation rules, creating, 63

 data model specification, 50
 assignments, 53 - 54

ptg11524036

421Skill object

 records, 73 , 80 - 82
 organization-wide defaults, 80 - 82 ,

 163
 procedural, 82
 restrictions, 163
 Services Manager application, 87 - 88
 sharing reasons, 82

 rules, 82 , 92 - 93
 inserting, 167
 Services Manager application, 92 - 93
 viewing, 163 , 167

 sharing objects, 162 - 163

 fields, 162 - 163
 restrictions, 163

 showChatter attribute, 381

 signatures (email), 172

 signed shift left (<<) operator, 110

 signed shift right (>>) operator, 110

 SimpleDateFormat pattern, 109

 Simple Object Access Protocol. See SOAP

 SingleEmailMessage object, 168 - 169

 single-page applications, 250

 AngularJS, 251 - 253
 controllers, 253
 demonstration page, 251
 templates, 253
 tutorial Web site, 251
 Visualforce controller,

implementing, 252
 Visualforce page code, 252 - 253
 Web site, 251

 JavaScript remoting, 250
 sites

 creating, 255
 domain name, 255
 enabling, 254
 main page, 255
 pages, adding, 256 - 257
 security, 255 - 256
 user authentication, 258

 size

 collections, 109
 query batches, 324
 static resources, 241

 size method (collections), 109

 Skill object

 fields, 54
 overview, 54
 validation rule, creating, 63

 page, creating, 224
 requirements, 223
 sample implementation, 223
 skills list, creating, 224
 Visualforce page, 228 - 229

 Skills Matrix comparison overlay,
 259 - 262

 actionSupport, adding, 262
 component CSS, adding, 261
 component support, adding, 261
 custom components, creating,

 259 - 260
 JavaScript integration, 261

 TimecardManager class, creating,
 138 - 139

 timecard validation
 trigger, creating, 138 - 139
 unit testing, 140 - 141

 user roles, 18
 accounts receivable, 18
 consultants, 18
 project managers, 18
 sales representatives, 18
 staffing coordinators, 18
 Vice President, 18

 utilization
 controller code, 335 - 337

 page code, 337 - 338
 Visualforce page, creating, 330 - 331

 session sharing, 270

 setBccSender method, 171

 setCcAddresses method, 171

 setDocumentAttachments method, 172

 setFileAttachments method, 172

 setOrgWideEmailAddressId method, 172

 setReplyTo method, 171

 sets, 112

 setSaveAsActivity method, 172

 setSavepoint method, 159

 setSenderDisplayName method, 171

 setUseSignature method, 172

 sharing

 reasons, 74
 delegated administration, 82
 manual, 82
 procedural, 82
 records, 82
 sharing rules, 82

ptg11524036

422 Skills Matrix

 Services Manager anonymous
benchmarking, 333 - 335

 services, calling from Apex, 305 - 306
 sobjects service

 record retrieval
 external identifiers, 310
 unique identifiers, 309

 SObject basic information request, 309
 social applications. See Chatter

 Software as Service. See PaaS

 SOQL (Salesforce Object Query

Language), 26 - 27

 aggregate queries, 144
 aggregate functions, 144 - 145
 grouping records, 145 - 146
 grouping records with subtotals,

 147 - 148
 Chatter queries

 comments, 375
 custom object, 373
 feed-tracked changes, 376
 following relationships, 377
 standard object, 372
 user feed, 374

 dirty writes, 161
 joins

 anti-joins, 152- 153
 inner, 149 - 150
 outer, 148 - 149
 semi-joins. See semi-joins

 multi-select picklists, 154
 queries

 Apex, 126 - 128
 child-to-parent, 125 - 126
 dynamic, 175 - 176
 example, 26 - 27
 parent-to-child, 126 , 151
 PushTopics, 340
 record retrieval, 323
 record sharing, 165 - 166
 relationships, 125 - 126
 REST API request, 310
 results, sorting, 125
 Schema Explorer, 123

 records
 filter conditions, 124 - 125
 limits, 125

 Skills Matrix

 comparison overlay, 259 - 262
 actionSupport, adding, 262
 component CSS, adding, 261
 component support, adding, 261
 custom component, creating,

 259 - 260
 JavaScript integration, 261

 complete list of skill types, creating, 224
 contacts drop-down list, creating, 224
 controllers

 creating, 225 - 227
 tests, 229 - 231

 data security, 224 - 225
 page, creating, 224
 requirements, 223
 sample implementation, 223
 skills list, creating, 224
 Visualforce page, 228 - 229

 SmartSync

 library, 266
 mobile Web applications data

access, 270
 SOAP (Simple Object Access Protocol), 301

 API, 31
 enabled permissions, 318 - 319
 Enterprise. See Enterprise API
 error handling, 322
 Force.com data types, 321
 IP white-listing, 319
 limits, 316
 logging in/out, 318 - 320
 login call, 320
 login problems, troubleshooting, 320
 Partner, 315
 security, 316
 security tokens, 319
 stub code, generating, 316 - 317
 Web Service Connector (WSC), 316
 WSDL versions, 315 - 316

 custom Apex SOAP Web services, 326
 Apex class rules, compared, 327
 calling, 328
 creating records example, 328
 governor limits, 327
 invoking, 329
 limitations, 326 - 327

ptg11524036

423strings

 standard set controllers, 192 - 193

 start method (Batchable interface), 283

 stateful Batch Apex, 289 - 290

 Stateful interface, 290

 statements

 conditional, 113
 Delete, 130
 DML. See DML, statements
 exception, 114 - 115

 examples, 115
 handling, 115
 raising, 115

 Insert, 129
 loops, 114
 SOQL, 124

 filter conditions, 124
 record limits, 125
 sort fields, 125

 Undelete, 130
 Update, 129
 Upsert, 129 - 130

 static resources, 241 - 242

 status

 bulk export jobs, 348
 bulk import jobs, 347
 messages, displaying, 238

 dynamic, 239
 images/stylized, 239

 Status update Chatter posts, 371

 storage custom settings, 47 - 48

 defined, 47
 hierarchy, 49
 limits, 49
 list, 48
 types, 47 - 48

 Streaming API

 example, 341 - 344
 CometD library, 342
 Visualforce controller, 342
 Visualforce page, 343

 PushTopics, 340 - 341
 availability, 341
 components, 340 - 341
 deleting, 341
 limitations, 341

 Web site, 340
 strings

 concatenation (+) operator, 110
 converting to dates, 109

 SQL, compared, 27 - 28
 column list functions, 28
 governor limits, 28
 implicit joins, 27
 nested resultsets, 27 - 29

 statements, 124
 filter conditions, 124
 record limits, 125
 sort fields, 125

 sorting

 lists/arrays, 112
 query results, 125

 SOSL (Salesforce Object Search

Language), 29

 Apex, 155 - 157
 dirty writes, 161
 queries

 dynamic, 176
 example, 29

 record retrieval, 324
 syntax, 155

 column list functions, 28
 governor limits, 28
 implicit joins, 27
 nested resultsets, 27 - 29

 SQL versus SOQL, 27 - 28

 Staffing Coordinator profile

 permissions, 86
 Services Manager application, 18
 testing, 96 - 97

 standard buttons

 custom objects, creating, 37
 listing of, 213
 overriding, 213

 standardController attribute, 200

 standard controllers, 191 - 193

 multiple records, 192 - 193
 single records, 191 - 192

 standard fields

 custom objects, creating, 36
 defined, 23

 standard links, 37

 standard objects, 22

 standard pages

 edit, 211
 list, 211
 overriding, 210 - 211
 tab, 210
 view, 211

ptg11524036

424 strings

 Skills Matrix controllers, 229 - 231
 TimecardManager class, 140 - 141
 Visualforce controllers, 222

 test methods (Apex), 136

 testNoContactForUser method, 231

 testNoContactSelected method, 231

 testNoSkills method, 231

 testSave method, 231

 testWithSkills method, 231

 text

 Chatter posts, 371
 fields, 38
 SOAP data type, mapping, 322

 Text Area data type, 322

 throw keyword (exceptions), 115

 time data type, 38 , 106

 TimecardManager class

 creating, 138 - 139
 unit tests, 140 - 141

 Timecard object

 fields, 56
 overview, 53

 timed events, 237

 Tooling API, 354

 Apex code, deploying, 355
 internal state of deployment, 355
 overview, 355
 query service, 355
 status, refreshing, 355
 user interface, 356
 Visualforce examples

 controller, 357 - 359
 page, 359 - 360

 Web site, 355
 tools

 cURL, 306
 custom objects, 33 - 34

 App Builder Tools, 33
 data, 34
 Force.com IDE, 34
 metadata, 33
 Schema Builder, 34

 data, 34
 Data Loader, 34
 Excel Connector, 34
 Import Wizard, 34

 Data Loader
 data preparation, 64 - 66
 data verification, 67 - 69
 importing data, 66

 date conversions, 109
 defined, 106
 ID conversion, 108

 structural components (Mobile Components

for Visualforce), 268

 stub code, generating, 316 - 317

 stylesheet component, 205

 subtraction (-) operator, 110

 SUM aggregate function, 144 - 145

 systems integrators, 17

 T
 table components, 205

 tables. See objects

 tabs

 creating, 41 , 63 , 215
 page, 210

 targetObjectIds unique identifiers

 email templates, 169
 MassEmailMessage object, 170

 teams, selecting, 11 - 12

 technical support, 17

 technology integrations, 4

 templateIds unique identifiers, 170

 templates

 AngularJS, 253
 Mobile Design, 269
 sending email, 169 - 170
 Visualforce pages as, 243 - 244

 testAsUser method, 231

 testing

 anonymous benchmarking Web
service, 334

 Batch Apex, 293
 REST services integration, 304
 Services Manager application, 97 - 98

 Follow Team button, 385
 mobile timecard entry page, 279

 Services Manager security, 94 - 98
 additional users, creating, 94 - 95
 Consultant profile, 96
 data preparation, 95 - 96
 Staffing Coordinator profile, 96 - 97
 Vice President profile, 97

 unit tests
 Apex. See Apex, unit tests
 integrated, 14 - 15
 missing timecard report, 299 - 300

ptg11524036

425users

 mass emails, 170
 organization-wide email addresses, 172
 record retrieval, 309 , 324

 unit tests

 Apex, 136
 results, viewing, 137
 running, 137
 test data, 137
 test methods, 136
 Test Runner View, 103

 integrated, 14 - 15
 missing timecard report, 299 - 300
 Skills Matrix controllers, 229 - 231
 TimecardManager class, 140 - 141
 Visualforce controllers, 222

 UNIX line-continuation character (\), 309

 unsigned shift right (>>>) operator, 110

 update service, 325

 Update statement, 129

 updating

 custom setting records, 180
 records, 129

 Enterprise API, 325
 requests, 311

 upserting records

 Enterprise API, 325
 requests, 311

 upsert service, 325

 Upsert statement, 129 - 130

 URLs

 Chatter posts, 371
 fields, 38
 SOAP data type, mapping, 322

 user feeds (Chatter posts), 374

 user interfaces

 Apex Test Runner View, 103
 custom, creating. See Visualforce
 designer contributions, 12
 Enhanced Profile, 74
 jQuery, 259
 modularity, 119
 native. See native user interface
 services, 8
 Tooling API example, 356

 UserOrGroupId field, 162

 userPhotoUpload component, 381

 users

 authentication
 Bulk API, 345 - 346

 Schema Builder
 custom objects, creating, 59 - 60
 Lookup relationships, creating, 60
 Master-Detail relationships, creating,

 60 - 62
 Visualforce development, 188 - 190
 Web Service Connector, 316

 tracking email, 172

 transaction processing

 DML database methods, 157 - 158
 insert example, 158
 opt_allOrNone parameter, 158

 record locking, 161
 savepoints, 159 - 160

 example, 159 - 160
 limitations, 159
 restoring to, 159
 setting, 159

 transactions

 Batch Apex, 283
 custom Apex SOAP Web services, 327

 triggers, 130 - 131

 batching, 132
 bulkifying, 132
 custom objects, creating, 37
 definitions, 131 - 132
 email notifications, 181 - 182
 error handling, 132 - 133
 names, 131
 page navigation, 195
 timecard validation, creating, 138 - 139

 troubleshooting SOAP API login

problems, 320

 try keyword (exceptions), 115

 tuning Visualforce user interfaces, 217 - 218

 TypeException exception, 114

 U
 unary decrement (--) operator, 110

 unary increment (++) operator, 110

 uncaught exceptions, 220

 undelete service, 325

 Undelete statement, 130

 undeleting records, 130 , 325

 unfollowing records, 377 - 378

 unique identifiers

 email templates, 169
 fields, 24

ptg11524036

426 users

 converting strings to dates, 109
 date, 106
 datetime, 106
 decimal, 106
 double, 106
 ID, 106
 Integer, 106
 long, 106
 object, 106
 string, 106
 time, 106

 declaring, 105 - 106
 enums, 107
 fields, 247
 names, 105 - 106
 rounding, 108
 selectedContactId, 225

 verifying data imports, 67 - 69

 Vice President profile

 permissions, 86
 Services Manager application, 18
 testing, 97

 View All permission, 76

 view components (Visualforce), 198

 action, 203 - 204
 attributes, 199
 Chatter support, 380 - 382

 feed, 381
 feedWithFollowers, 381
 follow, 381
 followers, 381
 limitations, 382
 newsFeed, 381
 userPhotoUpload, 381

 component body, 199
 custom, 244 - 246

 CompareSkillsComponent, creating,
 259 - 260

 CSS, adding, 261
 defining, 244 - 245
 Google Map example, 245 - 246
 support, adding, 261

 data, 200 - 203
 metadata-aware, 200 - 201
 primitive, 201 - 202
 repeating, 201 - 203

 facets, 239

 Canvas, 349 - 350
 mobile Web applications, 269 - 270
 REST APIs, 306 - 307
 sites, 258

 creating, 94 - 95
 groups, 80

 public, 80
 roles, 80

 permission sets, 72
 profiles, 74

 administrative permissions, 75
 defined, 72
 Enhanced Profile List Views, 74
 Enhanced Profile User Interface, 74
 field-level security, 78
 licenses, 76
 object permissions, 75 - 76
 Services Manager, 85 - 86 , 89 - 90
 types, 74

 roles (Services Manager application),
 18 , 91 - 92

 accounts receivable, 18
 consultants, 18
 project managers, 18
 sales representatives, 18
 staffing coordinators, 18
 Vice President, 18

 V
 validateTimecard trigger, 131

 validation rules

 custom objects, 37
 fields, 24
 Skill object, creating, 63

 valueOf method

 date to string conversions, 109
 string to date conversions, 109

 variables, 105

 access modifiers, 118
 checkpoints, 133 - 135
 classes, 117
 constants, 107
 data types, 106

 blob, 106
 Boolean, 106
 converting, 107 - 108
 converting dates to strings, 109

ptg11524036

427Visualforce

 asynchronous actions
 Ajax support, 234
 as JavaScript events, 237 - 238
 as JavaScript functions, 235 - 236
 partial page refreshes, 234 - 235
 status messages, 238 - 240
 as timed events, 237

 Chatter components, 380 - 382
 feed, 381
 feedWithFollowers, 381
 follow, 381
 followers, 381
 limitations, 382
 newsFeed, 381
 userPhotoUpload, 381

 controllers, 186 - 187
 actionFunction component, 236
 AngularJS project list example, 252
 Chatter example, 378
 custom, 193 - 197
 dynamic field reference, 247
 editing mobile timecards, 277
 extensions, 197
 governor limits, 221
 mobile timecard list

functionality, 274
 partial page refresh, 235
 Services Manager Follow Team

button extension code, 383 - 384
 Services Manager Skills Matrix,

 225 - 227 , 229 - 231
 standard, 191 - 193
 Streaming API example, 342
 unit tests, 222

 debugging, 216
 development

 process, 188
 tools, 188 - 190

 dynamic, 246
 component generation, 248 - 249
 dynamic field references, 246 - 248

 error handling, 220 - 221
 communication, 220 - 221
 uncaught exceptions, 220

 Hello World example, 189 - 191
 Mobile Components, 268 - 269

 documentation/source code Web
site, 269

 Force.com-styled, 204 - 205
 action containers, 205
 notifications, 205
 page structure, 205
 paging, 205
 sample controller, 206
 sample page, 207
 table, 205

 identifier problems, debugging, 240
 Mobile Components for Visualforce,

 268 - 269
 documentation/source code Web site,

 269
 installing, 268 - 269
 types, 268

 names, 199
 native user interface, 208 - 209

 detail, 209
 enhancedList, 209
 listViews, 208
 relatedList, 209

 page, 200
 primitive, 204 - 205
 referencing from JavaScript, 240
 syntax, 198 - 199
 visibility, 200

 viewing

 batch jobs execution detail, 288
 fields, 64
 mobile timecard entry pages

 iPhones, 273
 Web browsers, 273

 relationships, 121
 scheduled batch jobs, 296
 sharing rules, 163 , 167
 unit test results, 137
 Visualforce pages

 native user interface buttons, 213
 Salesforce Classic, 271
 Salesforce Touch, 271

 view page, 211

 Views, browsing data, 43 - 44

 Apex Test Runner, 103
 Execute Anonymous, 104 - 105
 Problems, 103

 view state, preserving, 195

 Visualforce

 architecture, 186 - 187

ptg11524036

428 Visualforce

 security, 218
 object-level, 218
 page-level, 219
 record-level, 219

 Services Manager application
 business hours, configuring, 331
 hours utilization calculation, 332
 utilization controller code, 335 - 337
 Utilization page, 330 - 331 , 337 - 338

 Streaming API page, 343
 Tooling API example

 controller, 357 - 359
 page, 359 - 360

 view components, 198
 action, 203 - 204
 attributes, 199
 component body, 199
 custom. See custom components
 data, 200 - 203
 facets, 239
 Force.com-styled, 205 - 208
 identifier problems, debugging, 240
 names, 199
 native user interface, 208 - 209
 page, 200
 primitive, 204 - 205
 referencing from JavaScript, 240
 syntax, 198 - 199
 visibility, 200

 W
 web developer contributions, 12

 Web development frameworks, 268 - 269

 Mobile Components for Visualforce,
 268 - 269

 documentation/source code Web
site, 269

 installing, 268 - 269
 types, 268

 Web MVC, 269
 Web servers, configuring, 352

 Web services

 Connector (WSC), 316
 Description Language. See WSDL
 integration, 9

 installing, 268 - 269
 types, 268

 modular, 241
 composition, 243 - 244
 custom components, 244 - 246
 inclusion, 242
 static resources, 241 - 242

 native user interface integration,
 209 - 210

 custom buttons/links, 215
 custom tabs, 215
 page layouts, 213
 standard buttons, 213
 standard pages, 210 - 211

 overview, 186
 pages, 187

 actionFunction component, 236
 adding to page layouts, 213
 adding to Salesforce Touch, 271
 AngularJS example code, 252 - 253
 Chatter components, 381
 Chatter example, 378
 dynamic, 246 - 249
 JavaScript events, 237 - 238
 mobile timecards, 275 - 276 , 278
 native user interface buttons/links

navigation, 215
 as native user interface tabs, 215
 performance tuning, 217 - 218
 security, 218 - 220
 Services Manager Follow Team

button, 384 - 385
 Services Manager Skills Matrix,

 228 - 229
 Services Manager Utilization, 337 - 338
 Services Manager Utilization page,

creating, 330 - 331
 standard pages, overriding, 210 - 211
 Streaming API example, 343
 timed events, 237
 Tooling API example, 359 - 360
 viewing from native user interface

buttons, 213
 viewing in Salesforce Classic, 271

 performance, tuning, 217 - 218
 public access. See sites

ptg11524036

429Yahoo! geocoding REST service

 whatIds unique identifiers

 email templates, 169
 MassEmailMessage object, 170

 While loops, 114

 Windows Azure, 3

 wizards

 Import, 34
 New Custom Field

 default values, 39
 descriptions, 39
 external IDs, 39
 help text, 39
 labels, 39
 names, 39
 required fields, 39
 types, selecting, 38
 unique fields, 39

 New Custom Object Tab, 63
 wrapper patterns, 195 - 196

 write locks, 161

 WSC (Web Service Connector), 316

 WSDL (Web Services Description Language)

 Services Manager anonymous
benchmark, 333

 stub code, generating, 316 - 317
 versions, 315 - 316

 X
 XML metadata, 30 - 31

 XOR (^) operator, 110

 Y
 Yahoo! geocoding REST service

 integrating, 303
 invoking, 303
 testing, 304

 Web sites

 AJAX Proxy, 270
 AngularJS, 251
 anonymous benchmark WSDL, 333
 Apex Code Developer’s Guide, 100 , 108
 AppExchange, 16
 Bulk API, 345
 Canvas, 349
 Chatter

 Apex, 378
 REST API, 379

 Code Share, 16
 CometD library, 342
 cURL, 306
 Data Loader Mac OS X version, 34
 DE account registration, 32
 developer discussion boards, 16
 Developer Force, 16
 Dreamforce/Cloudforce conferences, 17
 Excel Connector, 34
 expressions, scheduling, 295
 Force.com IDE, 34
 Ideas, 16
 IDE installation, 101
 jQuery UI, 259
 Large Data Volume (LDV)

deployments, 22
 Metadata API, 360
 Mobile Components for Visualforce, 269
 Mobile Packs, 269
 multilenancy whitepaper, 5
 NAICS codes, 333
 OAuth, 307
 REST API Developer’s Guide, 308
 Salesforce

 Classic implementation guide, 271
 Mobile SDK, 265 , 267

 Secure Coding Guideline document, 218
 security resources, 385
 SimpleDateFormat pattern, 109
 SOAP Partner API, 315
 Streaming API, 340
 systems integrators, 17
 Tooling API, 355
 Visualforce pages, performance

tuning, 218
 Web Service Connector, 316
 Yahoo! geocoding REST service, 303

	Table of Contents
	1 Introducing Force.com
	Force.com in the Cloud Computing Landscape
	Platform as a Service (PaaS)
	Force.com as a Platform
	Force.com Services

	Inside a Force.com Project
	Project Selection
	Team Selection
	Lifecycle
	Tools and Resources

	Sample Application: Services Manager
	Background
	User Roles
	Development Plan

	Summary

	2 Database Essentials
	Overview of Force.com’s Database
	Objects
	Fields
	Relationships
	Query Language
	Data Integration

	Working with Custom Objects
	Force.com Developer Edition
	Tools for Custom Objects
	Object Creation
	Field Creation
	Entering and Browsing Data
	Additional Database Features

	Sample Application: Data Model
	Data Model Design Goals
	Data Model Specification
	Implementing the Data Model
	Importing Data

	Summary

	3 Database Security
	Overview of Database Security
	Object-Level Security
	Profiles
	Permission Sets
	Field-Level Security

	Record-Level Security
	Record Ownership
	User Groups
	Sharing Model

	Sample Application: Securing Data
	Designing the Security Model
	Implementing the Security Model
	Testing the Security Model

	Summary

	4 Business Logic
	Introduction to Apex
	Introducing the Force.com IDE
	Installation
	Force.com Perspective
	Force.com Projects
	Problems View
	Schema Explorer
	Apex Test Runner View
	Execute Anonymous View

	Apex Language Basics
	Variables
	Operators
	Arrays and Collections
	Control Logic
	Object-Oriented Apex
	Understanding Governor Limits

	Database Integration in Apex
	Database Records as Objects
	Database Queries
	Persisting Database Records
	Database Triggers
	Database Security in Apex

	Debugging Apex Using Developer Console
	Checkpoints
	Execution Logs

	Unit Tests in Apex
	Test Methods
	Test Data
	Running Tests

	Sample Application: Validating Timecards
	Force.com IDE Setup
	Creating the Trigger
	Unit Testing

	Summary

	5 Advanced Business Logic
	Aggregate SOQL Queries
	Aggregate Functions
	Grouping Records
	Grouping Records with Subtotals

	Additional SOQL Features
	Inner Join and Outer Join
	Semi-Join and Anti-Join
	Multi-Select Picklists

	Salesforce Object Search Language (SOSL)
	SOSL Basics
	SOSL in Apex

	Transaction Processing
	Data Manipulation Language (DML) Database Methods
	Savepoints
	Record Locking

	Apex Managed Sharing
	Sharing Objects
	Creating Sharing Rules in Apex

	Sending and Receiving Email
	Sending Email
	Receiving Email

	Dynamic Apex
	Dynamic Database Queries
	Schema Metadata
	Dynamic Instance Creation

	Custom Settings in Apex
	Sample Application: Adding Email Notifications
	Summary

	6 User Interfaces
	Introduction to Visualforce
	Overview of Visualforce
	Getting Started with Visualforce

	Visualforce Controllers
	Standard Controllers
	Custom Controllers
	Controller Extensions

	View Components
	View Component Basics
	Data Components
	Action Components
	Primitive Components
	Force.com-Styled Components
	Force.com User Interface Components

	Visualforce and the Native User Interface
	Standard Pages
	Standard Buttons
	Page Layouts
	Custom Buttons and Links
	Custom Tabs

	Visualforce in Production
	Debugging and Tuning
	Security
	Error Handling
	Governor Limits
	Unit Tests

	Sample Application: Skills Matrix
	Basic Implementation
	Full Implementation
	Implementation Walk-Through

	Summary

	7 Advanced User Interfaces
	Asynchronous Actions
	Partial Page Refresh
	Action as JavaScript Function
	Action as Timed Event
	Action as JavaScript Event
	Indicating Action Status

	Modular Visualforce
	Static Resources
	Inclusion
	Composition
	Custom Visualforce Components

	Dynamic Visualforce
	Dynamic Field References
	Component Generation

	Single-Page Applications in Force.com
	JavaScript Remoting
	Force.com with AngularJS

	Introduction to Force.com Sites
	Enabling and Creating a Site
	Security Configuration
	Adding Pages to a Site
	Authenticating Users

	Sample Application: Enhanced Skills Matrix
	Summary

	8 Mobile User Interfaces
	Overview of Salesforce Mobile Technology
	Salesforce Applications
	Custom Applications

	Getting Started with Mobile Web Applications
	Frameworks
	Data Access
	Deployment

	Sample Application: Mobile Timecard Entry
	Summary

	9 Batch Processing
	Introduction to Batch Apex
	Batch Apex Concepts
	Understanding the Batchable Interface
	Applications of Batch Apex

	Getting Started with Batch Apex
	Developing a Batch Apex Class
	Working with Batch Apex Jobs
	Using Stateful Batch Apex
	Using an Iterable Batch Scope
	Limits of Batch Apex

	Testing Batch Apex
	Scheduling Batch Apex
	Developing Schedulable Code
	Scheduling Batch Apex Jobs

	Sample Application: Missing Timecard Report
	Creating the Custom Object
	Developing the Batch Apex Class
	Testing the Missing Timecard Feature

	Summary

	10 Integration with Force.com
	Apex Callouts
	Calling RESTful Services from Apex
	Calling SOAP Services from Apex

	Calling into Force.com Using REST
	Getting Started with Force.com REST API
	Force.com REST API Walk-Through
	Creating Custom Apex REST Web Services

	Calling into Force.com Using SOAP
	Understanding Force.com SOAP API
	Using the Enterprise API
	Creating Custom Apex SOAP Web Services

	Sample Application: Anonymous Benchmarking
	Visualforce Page Design
	Visualforce Controller Design
	Integrating the SOAP Web Service
	Sample Implementation

	Summary

	11 Advanced Integration
	Introduction to the Force.com Streaming API
	Overview
	Getting Started with Force.com Streaming API

	Working with the Force.com Bulk API
	Overview
	Importing Records
	Exporting Records

	Getting Started with Force.com Canvas
	Overview
	Getting Started with Force.com Canvas

	Introduction to the Force.com Tooling API
	Overview
	Getting Started with Force.com Tooling API

	Understanding the Force.com Metadata API
	Overview
	Getting Started with the Metadata API

	Sample Application: Database Integration
	Integration Scenario
	Implementation Strategy
	Sample Implementation

	Summary

	12 Social Applications
	Overview of the Chatter Data Model
	Chatter Posts
	Chatter Comments
	Feed-Tracked Changes
	Followed Records

	Using Chatter in Apex
	Introduction to the Chatter REST API
	Working with Chatter Visualforce Components
	Sample Application: Follow Project Team
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

