Jason Ouellette Third Edition

Development
with the Force.com

Platform

Building Business Applications in the Cloud

Developer’s Library

http://www.allitebooks.org

Praise for Development with the Force.com Platform,
Third Edition

“The third edition of Development with the Force.com Platform is a must-read for anyone building
enterprise applications in the cloud. Whether you’re a CEO or a code ninja, Jason’s insight into the
Force.com platform is priceless. Why waste time learning from your own mistakes when you can
learn from a master.”

—Howard Brown, CEO and Founder, RingDNA

“T absolutely love this book. Jason has organized and written it in a simplified manner which
makes the concepts easy to grasp for all audiences. I recommend it for any developer, consultant, or
manager new to or currently working with the Force.com platform.”

—Stephanie Buchenberger, Salesforce.com Delivery Manager, Appirio

“Solid evolution of an already well-written book! The layout, format and content make it a great
tutorial for developers new to Apex as well as an informative and thorough reference for the most
experienced architect. Very up to date to the platform with practical examples that will undoubtedly
be used again and again.”

—Tom Hedgecoth, Vice President, Global Consulting — sakonent

“This is still the best, most comprehensive book on the Force.com platform written. If you are new
to Force.com, then this is the place to start. If you're an experienced developer, then this is the book
you’ll return to, over and over again. It’s an essential companion for all Force.com developers.”

—Kevin Ott, Senior Director, Engineering, Cisco Systems

“Jason touches on all the core elements of Force.com with a balanced blend of configuration and
code. If you're new to the platform, this book will save you countless hours as you come up to
speed—and if you're a seasoned expert you probably already own it. In either case, consider it
required reading.”

—Adam Purkiss, Principal Architect, MondayCall Solutions, and Organizer of the Bay Area Salesforce
Developer User Group

“As a Salesforce system administrator and business analyst making the transition to Force.com
developer, this book helps me daily. It’s at the perfect level to cut through the vast amount of
information available for developing on Force.com on the one hand, and get to the details needed to
make my programs work on the other. I keep this book open perpetually, and it’s the first place I go
when I get stuck. The sample coding is strong and very reusable; it’s the #1 tool in my box. I'd highly
recommend Development with the Force.com Platform to anyone making the transition from Salesforce
system administrator or business analyst to developer.”

—Gene Teglovic, PSA Consultant, Financialforce.com

vww allitebooks.cond

http://www.allitebooks.org

This page intentionally left blank

vww allitebooks.conl

http://www.allitebooks.org

Development with
the Force.com
Platform

Building Business
Applications in the Cloud

Third Edition

Jason Ouellette

vvAddison-Wesley

Upper Saddle River, NJ ® Boston e Indianapolis ® San Francisco
New York e Toronto ® Montreal ¢ London ® Munich e Paris ® Madrid
Cape Town e Sydney e Tokyo e Singapore ® Mexico City

vww allitebooks.cond

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Library of Congress Control Number: 2013950238
Visit us on the Web: informit.com/aw
Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior

to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

Screenshots © 2014 Salesforce.com, Inc. All rights reserved.

ISBN-13: 978-0-321-94916-5
ISBN-10: 0-321-94916-1

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

First printing: December 2013

vww allitebooks.cond

Editor-in-Chief
Mark Taub

Executive Editor
Laura Lewin

Development Editor
Songlin Qiu
Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Karen Annett

Indexer
Heather McNeill

Proofreader
Chuck Hutchinson

Technical Reviewers
Adam Purkiss
Gene Teglovic

Publishing Coordinator
Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor
Nonie Ratcliff

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

Contents at a Glance

Introducing Force.com 1
Database Essentials 21
Database Security 71
Business Logic 99

Advanced Business Logic 143
User Interfaces 185
Advanced User Interfaces 233
Mobile User Interfaces 263

© 0 N o a », 0w NN BB

Batch Processing 281

[N
(=}

Integration with Force.com 301
11 Advanced Integration 339

12 Social Applications 369

Index 387

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

1 Introducing Force.com 1

Force.com in the Cloud Computing Landscape 1
Platform as a Service (PaaS) 2
Force.com as a Platform 4
Force.com Services 7

Inside a Force.com Project 9
Project Selection 9
Team Selection 11
Lifecycle 12
Tools and Resources 15

Sample Application: Services Manager 17
Background 17
User Roles 18
Development Plan 19

Summary 19

2 Database Essentials 21

Overview of Force.com’s Database 21
Objects 22
Fields 23
Relationships 25
Query Language 26
Data Integration 29

Working with Custom Objects 32
Force.com Developer Edition 32
Tools for Custom Objects 33
Object Creation 35
Field Creation 38
Entering and Browsing Data 41
Additional Database Features 43

Sample Application: Data Model 49
Data Model Design Goals 49
Data Model Specification 50

vww .allitebooks.cond

http://www.allitebooks.org

viii

Contents

Implementing the Data Model 58
Importing Data 64
Summary 69

Database Security 71
Overview of Database Security 71
Object-Level Security 74
Profiles 74
Permission Sets 76
Field-Level Security 77
Record-Level Security 79
Record Ownership 79
User Groups 80
Sharing Model 80
Sample Application: Securing Data 84
Designing the Security Model 85
Implementing the Security Model 88
Testing the Security Model 94
Summary 98

Business Logic 99
Introduction to Apex 100
Introducing the Force.com IDE 101
Installation 101
Force.com Perspective 101
Force.com Projects 103
Problems View 103
Schema Explorer 103
Apex Test Runner View 103
Execute Anonymous View 104
Apex Language Basics 105
Variables 105
Operators 109
Arrays and Collections 110
Control Logic 113
Object-Oriented Apex 117
Understanding Governor Limits 120

vww allitebooks.conl

http://www.allitebooks.org

5

Contents

Database Integration in Apex 120
Database Records as Objects 121
Database Queries 122
Persisting Database Records 128
Database Triggers 130
Database Security in Apex 133

Debugging Apex Using Developer Console 133
Checkpoints 133
Execution Logs 134

Unit Tests in Apex 136
Test Methods 136
Test Data 136
Running Tests 137

Sample Application: Validating Timecards 138
Force.com IDE Setup 138
Creating the Trigger 138
Unit Testing 140

Summary 142

Advanced Business Logic 143
Aggregate SOQL Queries 144
Aggregate Functions 144
Grouping Records 145
Grouping Records with Subtotals 146
Additional SOQL Features 148
Inner Join and Outer Join 148
Semi-Join and Anti-Join 150
Multi-Select Picklists 154
Salesforce Object Search Language (SOSL) 154
SOSL Basics 155
SOSL in Apex 155
Transaction Processing 156

Data Manipulation Language (DML) Database
Methods 157

Savepoints 159
Record Locking 161

vww .allitebooks.cond

ix

http://www.allitebooks.org

X Contents

Apex Managed Sharing 162
Sharing Objects 162
Creating Sharing Rules in Apex 163
Sending and Receiving Email 168
Sending Email 168
Receiving Email 172
Dynamic Apex 174
Dynamic Database Queries 175
Schema Metadata 177
Dynamic Instance Creation 179
Custom Settings in Apex 180
Sample Application: Adding Email Notifications 181
Summary 183

6 User Interfaces 185
Introduction to Visualforce 186
Overview of Visualforce 186
Getting Started with Visualforce 188
Visualforce Controllers 191
Standard Controllers 191
Custom Controllers 193
Controller Extensions 197
View Components 198
View Component Basics 198
Data Components 200
Action Components 203
Primitive Components 204
Force.com-Styled Components 205
Force.com User Interface Components 208
Visualforce and the Native User Interface 209
Standard Pages 210
Standard Buttons 213
Page Layouts 213
Custom Buttons and Links 215
Custom Tabs 215

Contents

Visualforce in Production 215
Debugging and Tuning 215
Security 218
Error Handling 220
Governor Limits 221
Unit Tests 222

Sample Application: Skills Matrix 222
Basic Implementation 224
Full Implementation 224
Implementation Walk-Through 225

Summary 232

Advanced User Interfaces 233
Asynchronous Actions 233
Partial Page Refresh 234
Action as JavaScript Function 235
Action as Timed Event 237
Action as JavaScript Event 237
Indicating Action Status 238
Modular Visualforce 240
Static Resources 241
Inclusion 242
Composition 242
Custom Visualforce Components 244
Dynamic Visualforce 246
Dynamic Field References 246
Component Generation 248
Single-Page Applications in Force.com 250
JavaScript Remoting 250
Force.com with Angular]S 251
Introduction to Force.com Sites 254
Enabling and Creating a Site 254
Security Configuration 255
Adding Pages to a Site 256
Authenticating Users 257
Sample Application: Enhanced Skills Matrix 258
Summary 262

Xi

Xii

Contents

8

10

Mobile User Interfaces 263
Overview of Salesforce Mobile Technology 263
Salesforce Applications 264
Custom Applications 265
Getting Started with Mobile Web Applications 267
Frameworks 268
Data Access 269
Deployment 270
Sample Application: Mobile Timecard Entry 272
Summary 279

Batch Processing 281
Introduction to Batch Apex 282
Batch Apex Concepts 282

Understanding the Batchable Interface 283
Applications of Batch Apex 284
Getting Started with Batch Apex 285
Developing a Batch Apex Class 285
Working with Batch Apex Jobs 286
Using Stateful Batch Apex 289
Using an Iterable Batch Scope 290
Limits of Batch Apex 292
Testing Batch Apex 293
Scheduling Batch Apex 293
Developing Schedulable Code 293
Scheduling Batch Apex Jobs 294
Sample Application: Missing Timecard Report 296
Creating the Custom Object 297
Developing the Batch Apex Class 298
Testing the Missing Timecard Feature 299
Summary 300

Integration with Force.com 301
Apex Callouts 301
Calling RESTful Services from Apex 302
Calling SOAP Services from Apex 304
Calling into Force.com Using REST 306

11

Contents

Getting Started with Force.com REST APl 306
Force.com REST API Walk-Through 308
Creating Custom Apex REST Web Services 312
Calling into Force.com Using SOAP 314
Understanding Force.com SOAP APl 314
Using the Enterprise APl 322
Creating Custom Apex SOAP Web Services 326
Sample Application: Anonymous Benchmarking 329
Visualforce Page Design 330
Visualforce Controller Design 331
Integrating the SOAP Web Service 333
Sample Implementation 335
Summary 338

Advanced Integration 339
Introduction to the Force.com Streaming APl 340
Overview 340
Getting Started with Force.com Streaming APl 341
Working with the Force.com Bulk APl 344
Overview 345
Importing Records 346
Exporting Records 347
Getting Started with Force.com Canvas 349
Overview 349
Getting Started with Force.com Canvas 350
Introduction to the Force.com Tooling APl 354
Overview 355
Getting Started with Force.com Tooling API 355
Understanding the Force.com Metadata APl 360
Overview 360
Getting Started with the Metadata APl 361
Sample Application: Database Integration 363
Integration Scenario 363
Implementation Strategy 363
Sample Implementation 364
Summary 366

Xiii

Xiv Contents

12 Social Applications 369
Overview of the Chatter Data Model 370
Chatter Posts 370
Chatter Comments 374
Feed-Tracked Changes 376
Followed Records 376
Using Chatter in Apex 378
Introduction to the Chatter REST APl 379
Working with Chatter Visualforce Components 380
Sample Application: Follow Project Team 382
Summary 386

Index 387

Acknowledgments

There are many people to thank for this book.

Laura Lewin: Laura is an Executive Editor at Pearson. She’s the person I email when

I'm late on a chapter to apologize and offer unique excuses. No matter how friendly her
response, which is always extremely friendly, the exchange helps pressure and shame me
into working harder to meet the deadlines.

Adam Purkiss, Gene Teglovic: The technical reviewers for this edition have really
impressed me with what they caught in the draft. They verified all of the code listings
and made countless suggestions for improvement throughout.

Songlin Qiu: Songlin is a Development Editor at Pearson. There are no figure/listing
numbering, styling, grammatical, or consistency problems that go unnoticed when she’s
on the job.

Olivia Basegio: Olivia is an Editorial Assistant at Pearson. She’s a big part of making the
publishing process fairly painless.

Kavindra Patel, Nick Tran: These two work at Salesforce.com and have been longtime
supporters of the book, especially this third edition. I can’t thank them enough.

Jay Gauthier: Jay is the VP of R&D at Software AG. His detailed feedback on the second
edition of this book drove some of the improvements found in this edition.

Gretchen, Mark, Tom, and Nate: Writing this book made me true to my panda name,
so +1,000 for your associated pain and suffering. Now that it’s done, I need a new name,
like Well-Tempered Panda.

Tracey: Thank you for supporting me as always, checking on me to see if I'm still alive in
my writing chair, and making “rocket fuel” (iced coffee), which lost its kick somewhere
around Chapter 6.

About the Author

Jason Ouellette is a SaaS entrepreneur and independent technology consultant with 17 years
of experience in the enterprise software industry, including 9 years of hands-on work with
Salesforce.com. He is currently CTO and Co-Founder of SocialPandas, a SaaS product company
focused on converting social data into actionable intelligence for salespeople. In his prior role
as Chief Architect of Appirio, a leading Salesforce.com consultancy, he led the development
of popular Salesforce AppExchange applications such as Cloud Sync, Cloud Factor, and
Professional Services Enterprise. He was recognized by Salesforce as a Force.com MVP in
2011-2013, and Force.com Developer Hero in 2009. He has a B.S. in Information and Decision
Systems from Carnegie Mellon University.

Preface

I wrote this book to help developers discover Force.com as a viable, even superior tool for
building business applications.

I'm always surprised at how many developers I meet who aren’t aware of Force.com as a
platform. They know of Salesforce, but only that it’s a CRM. Even those who have heard of
Force.com are amazed when I describe what Appirio and other companies are building with it.
“I didn’t know you could do that with Force.com” is a common reaction, even to the simplest
of things such as creating custom database tables.

Since the second edition of this book, Salesforce has delivered more than six major releases.
This third edition refocuses the book on custom application development and away from
“clicks not code”-style, configuration-driven features. It contains updates throughout to cover
new capabilities such as Developer Console, JSON support, Streaming and Tooling APIs, REST
integration, and support for MVC frameworks like Angular]S in Visualforce. It also features a
new chapter: Chapter 8, “Mobile User Interfaces.”

Although there are more cloud-based application development platforms than ever before,
Force.com continues to offer unique and outstanding value for business applications. With its
core strength in customer data management, deep set of thoughtfully integrated features, and
support for open standards, Force.com can save you significant time and effort throughout the
software development lifecycle.

Key Features of This Book

This book covers areas of Force.com relevant to developing applications in a corporate
environment. It takes a hands-on approach, providing code examples and encouraging
experimentation. It includes sections on the Force.com database, Apex programming language,
Visualforce user interface technology, integration to other systems, and supporting features
such as workflow and analytics. SFA, CRM, customer support, and other prebuilt applications
from Salesforce are not discussed, but general Force.com platform skills are helpful for working
in these areas as well. The book does not cover cloud computing in general terms. It also avoids
comparing Force.com with other technologies, platforms, or languages. Emphasis is placed on
understanding Force.com on its own unique terms rather than as a database, application server,
or cloud computing platform.

Although Force.com is a commercial service sold by Salesforce, all the material in this book
was developed using a free Force.com Developer Edition account. Additionally, every feature
described in this book is available in the free edition.

Throughout the text, you will see sidebar boxes labeled Note, Tip, or Caution. Notes explain
interesting or important points that can help you understand key concepts and techniques.
Tips are little pieces of information that will help you in real-world situations, and often offer
shortcuts to make a task easier or faster. Cautions provide information about detrimental
performance issues or dangerous errors. Pay careful attention to Cautions.

Target Audience for This Book

This book is intended for application developers who use Java, Ruby, or other high-level
languages to build Web and rich client applications for end users. It assumes knowledge
of relational database design and queries, Web application development using HTML and
JavaScript, and exposure to Web services.

Code Examples for This Book

The code listings in this book are available on Github: http://goo.gl/fjfRqMX. They are also
available as a Force.com IDE project, also freely available on Github: https://github.com/
jmouel/dev-with-force-3e.

http://goo.gl/fjRqMX
https://github.com/jmouel/dev-with-force-3e
https://github.com/jmouel/dev-with-force-3e

Editor's Note: We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’'d
like to see us publish in, and any other words of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author as well as your name and
phone number or email address. I will carefully review your comments and share them with
the author and editors who worked on the book.

Email: laura.lewin@pearson.com

Mail: Laura Lewin
Executive Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

Introducing Force.com

This chapter introduces the concepts, terminology, and technology components of the Force.com plat-
form and its context in the broader Platform as a Service (Paa$S) landscape. The goal is to provide
context for exploring Force.com within a corporate software development organization. If any of the
following sentences describe you, this chapter is intended to help:

= You have read about cloud computing or PaaS and want to learn how Force.com compares with
other technologies.

= You want to get started with Force.com but need to select a suitable first project.

= You have a project in mind to build on Force.com and want to learn how you can leverage
existing development skills and processes.

This chapter consists of three sections:

» Force.com in the cloud computing landscape—Learn about PaaS and Force.com’s unique
features as a PaaS$ solution.

= Inside a Force.com project—Examine how application development with Force.com differs
from other technologies in terms of project selection, technical roles, and tools.

= Sample application—A sample business application is referenced throughout this book to
provide a concrete basis for discussing technical problems and their solutions. In this chapter,
the sample application’s requirements and use cases are outlined, as well as a development plan,
mapped to chapters of the book.

Force.com in the Cloud Computing Landscape

Phrases like cloud computing and Platform as a Service have many meanings put forth by many
vendors. This section provides definitions of the terms to serve as a basis for understanding
Force.com and comparing it with other products on the market. With this background, you
can make the best choice for your projects, whether that is Force.com, another PaaS product, or
your own in-house infrastructure.

vww allitebooks.cond

http://www.allitebooks.org

Chapter 1 Introducing Force.com

Platform as a Service (PaaS)

The platform is infrastructure for the development and deployment of software applications.
The functionality of a platform’s infrastructure differs widely across platform vendors, so this
section focuses on a handful of the most well-known vendors, those who have helped to
pioneer the concept of PaasS itself. The suffix “as a Service” (aaS) means that the platform exists
“in the cloud,” accessible to customers via the Internet. Many variations exist on this acronym,
most notably SaaS (Software as a Service) and laaS (Infrastructure as a Service). PaaS sits in the
middle of these two, a multiplying force for developers to leverage the cloud itself to build and
run the next generation of cloud-enabled services.

PaaS is a category within the umbrella of cloud computing. Cloud computing is a phrase to
describe the movement of computing resources away from physical data centers or servers in

a closet in your company and into the network, where they can be provisioned, accessed, and
deprovisioned instantly. You plug a lamp into an electrical socket to use the electrons in your
region’s power grid. Running a diesel generator in your basement is usually not necessary. You
trust that the power company is going to provide that service, and you pay the company as you
use the service. Likewise with the wide availability of high-speed Internet connectivity, cloud
computing has become as practical as centralized power generation.

Cloud computing as a general concept spans every conceivable configuration of infrastructure,
well outside the scope of this book. The potential benefits are reduced complexity and cost
versus a traditional approach. The traditional approach is to invest in infrastructure by acquir-
ing new infrastructure assets and staff or redeploying or optimizing existing investments. Cloud
computing provides an alternative, and PaaS$ in particular strives to lower the cost of develop-
ing and deploying applications through the simplification and centralization of commodity
hardware and software infrastructure. The following subsections introduce the mainstream

PaaS$ products, those focused on application developers rather than bloggers or other users,

and include brief descriptions of their functionality. Consult the Web sites of each product for
further information.

Amazon Web Services

Amazon Web Services refers to a family of cloud computing products. The most relevant to
PaaS is Elastic Beanstalk, a platform for running Java applications that provides load balancing,
auto-scaling, and health monitoring. The platform is actually built on several other Amazon
Web Services products that can be independently configured by advanced users, with the most
significant being Elastic Compute Cloud (EC2). EC2 is a general-purpose computing platform,
not limited to running Java programs. You can provision virtual instances of Windows or Linux
machines at will, loading them with your own custom operating-system image or one prebuilt
by Amazon or the community. These instances run until you shut them down, and you are
billed for usage of resources such as the central processing unit (CPU), disk, and network.

A raw machine with an operating system (OS) on it is a great start, but to build a business
application requires you to install, manage access to, maintain, monitor, patch and upgrade,
back up, plan to scale, and generally care and feed in perpetuity an application platform on the
EC2 instance. Many of these tasks are still required of Amazon'’s higher-level Elastic Beanstalk

Force.com in the Cloud Computing Landscape

offering. If your organization has the skills to build on .NET, Java 2 Platform Enterprise Edition
(J2EE), a LAMP stack (for example, Linux, Apache, MySQL, and PHP), or other application
stacks, plus the OS, database administration, and information technology (IT) operations expe-
rience, Amazon’s virtual servers in the cloud could be a strong alternative to running your own
servers in-house.

Amazon provides various other products that complement Elastic Beanstalk and EC2. These
include Simple Queue Service for publish-and-subscribe-style integration between applications,
Simple DB for managing schemaless data, and Simple Storage Service, a content repository.

Google Cloud Platform

Google Cloud Platform is the name for a family of cloud services from Google. Of all of them,
App Engine is the closest to a PaaS. It's designed to host Web applications. App Engine is like
having an unlimited number of servers in the cloud working for you, preconfigured with a
distributed data store and Python, Java, Go, or PHP-based application server. It’s much like
Amazon’s Elastic Beanstalk but focused on providing a higher-level application platform.

App Engine includes tools for managing the data store, monitoring your site and its resource
consumption, and debugging and logging. Like Amazon, Google also offers access to raw
computing resources via Google Compute Engine, their answer to EC2.

App Engine is free for a set amount of storage and page views per month. Developers requiring
more storage or bandwidth for their applications can purchase it by setting a maximum daily
dollar amount they’re willing to spend, divided into five buckets: CPU time, bandwidth in,
bandwidth out, storage, and outbound email.

Windows Azure

Windows Azure is Microsoft’s cloud computing initiative. It provides a wide variety of IaaS
products such as virtual machines, storage, SQL database, identity, cache, service bus, and a
content delivery network. Windows Azure is much lower level than Google App Engine or
Amazon Elastic Beanstalk. It includes services that would be useful in building an application,
but hosting the application itself is a manual process. For example, you would need to provi-
sion a virtual machine to run Windows, place your .NET-based application there, and leverage
a Windows Azure SQL Database for structured storage.

Force.com

Force.com is targeted toward corporate application developers and independent software
vendors. Unlike the other PaaS offerings, it does not expose developers directly to its own
infrastructure. Developers do not provision CPU time, disk, or instances of running operating
systems. Instead, Force.com provides a custom application platform centered around the rela-
tional database, one resembling an application server stack you might be familiar with from
working with .NET, J2EE, or LAMP.

Although it integrates with other technologies using open standards such as Simple Object
Access Protocol (SOAP) and Representational State Transfer (REST), the programming languages

Chapter 1 Introducing Force.com

and metadata representations used to build applications are proprietary to Force.com. This is
unique among the PaaS products and comes with a learning curve. The payoff for learning
Force.com is a significantly higher level of abstraction than other PaaS products, ideally result-
ing in higher productivity for developers.

To extend the reach of Force.com to a larger developer community, Salesforce provides a subset
of Force.com called Database.com. Database.com includes much of Force.com but without the
user interface (UI) technologies and CRM-oriented data model. It’s priced per user, record, and
transaction. Along the same lines, Salesforce offers Heroku to developers who want to work
directly with standard databases and development languages but still benefit from the time-
saving abstractions of PaaS.

Force.com is free for developers. Production applications are priced primarily by storage used
and number of unique users.

Force.com as a Platform

Force.com is different from other Paa$ solutions in its focus on business applications. Force.
com is a part of Salesforce.com, which started as a SaaS customer relationship management
(CRM) vendor. But Force.com is not CRM. It provides the infrastructure commonly needed for
any business application, customizable for the unique requirements of each business through
a combination of code and configuration. This infrastructure is delivered to you as a service on
the Internet.

Because you are reading this book, you have probably developed a few business applications

in your time. Consider the features you implemented and reimplemented in multiple applica-
tions, the unglamorous plumbing, wiring, and foundation work. Some examples are security,
user identity, logging, profiling, integration, data storage, transactions, workflow, collaboration,
and reporting. This infrastructure is essential to your applications but expensive to develop and
maintain. Business application developers do not code their own relational database kernels,
windowing systems, or operating systems. This is basic infrastructure, acquired from software
vendors or the open source community and then configured to meet user requirements. What
if you could do the same for your application infrastructure? This is the premise of Force.com.

The following subsections list differentiating architectural features of Force.com with brief
descriptions.

Multitenancy

Multitenancy is an abstract concept, an implementation detail of Force.com, but one
with tangible benefits for developers. Figure 1.1 shows a conceptual view of multitenancy.
Customers access shared infrastructure, with metadata and data stored in the same logical
database.

Force.com in the Cloud Computing Landscape

Customer 1

Customer 2

Customer n

Figure 1.1 Multitenant architecture

The multitenant architecture of Force.com consists of the following features:

= Shared infrastructure—All customers (or tenants) of Force.com share the same
infrastructure. They are assigned an independent logical environment within the Force.
com platform.

At first, some might be uncomfortable with the thought of handing their data to a third
party where it is comingled with that of competitors. Salesforce’s whitepaper on its
multitenant technology includes the technical details of how it works and why your data
is safe from loss or spontaneous appearance to unauthorized parties.

Note
The whitepaper is available at http://wiki.developerforce.com/page/Multi_Tenant_Architecture.

= Single version—Only one version of the Force.com platform is in production. The same
platform is used to deliver applications of all sizes and shapes, used by 1 to 100,000 users,
running everything from dog-grooming businesses to the Japanese national post office.

= Continuous, zero-cost improvements—When Force.com is upgraded to include new
features or bug fixes, the upgrade is enabled in every customer’s logical environment
with zero to minimal effort required.

Salesforce can roll out new releases with confidence because it maintains a single version of its
infrastructure and can achieve broad test coverage by leveraging tests, code, and configurations
from its production environment. Salesforce’s internal process for regression testing the plat-
form using its customers has a name fitting its aggressive role: The Hammer. You, the customer,

http://wiki.developerforce.com/page/Multi_Tenant_Architecture

Chapter 1 Introducing Force.com

are helping maintain and improve Force.com in a systematic, measurable way as a side effect of
simply using it. This deep feedback loop between Force.com and its users is something imprac-
tical to achieve with on-premises software. Additionally, detailed communication of release
schedules and contents, opt-in features, and the critical update system for backward-
incompatible changes help keep customers and developers well informed and applications
stable.

Note

Find more details on “The Hammer” at http://blogs.developerforce.com/engineering/2013/05/
here-comes-the-hammer.html.

Relational Database

The heart of Force.com is the relational database provided as a service. The relational database
is the most well understood and widely used way to store and manage business data. Business
applications typically require reporting, transactional integrity, summarization, and struc-
tured search, and implementing those on nonrelational data stores requires significant effort.
Force.com provides a relational database to each tenant, one that is tightly integrated with
every other feature of the platform. There are no Oracle licenses to purchase, no tablespaces
to configure, no Java Database Connectivity (JDBC) drivers to install, no Object-Relational
Mapping (ORM) to wrangle, no Data Definition Language (DDL) to write, no queries to opti-
mize, and no replication and backup strategies to implement. Force.com takes care of all
these tasks.

Application Services

Force.com provides many of the common services needed for modern business application
development. These are the services you might have built or integrated repeatedly in your
past development projects. They include logging, transaction processing, validation, workflow,
email, integration, testing, reporting, and user interface.

These services are highly customizable with and without writing code. Although each service
can be valued as an individual unit of functionality, their unification offers tremendous value.
All the features of Force.com are designed, built, and maintained by a single responsible party,
Salesforce. Salesforce provides documentation for these features as well as support staff on

call, training and certification classes, and accountability to its customers for keeping things
running smoothly. This is in contrast to many software projects that end up as a patchwork of
open source, best-of-breed tools and libraries glued together by you, the developer, asked to do
more with fewer people, shorter timelines, and cheaper, often unsupported tools.

Declarative Metadata

Almost every customization configured or coded within Force.com is readily available as simple
Extensible Markup Language (XML) with a documented schema. At any point in time, you
can ask Force.com for this metadata via a set of Web services. The metadata can be used to

http://blogs.developerforce.com/engineering/2013/05/here-comes-the-hammer.html
http://blogs.developerforce.com/engineering/2013/05/here-comes-the-hammer.html

Force.com in the Cloud Computing Landscape

configure an identical environment or managed with your corporate standard source control
system. It is also helpful for troubleshooting, allowing you to visually compare the state of two
environments. Although a few features of Force.com are not available in this declarative meta-
data form, Salesforce’s stated product direction is to provide full coverage.

Programming Language

Force.com has its own programming language, called Apex. It allows developers to script inter-
actions with other platform features, including the user interface. Its syntax is a blend of Java
and database-stored procedure languages like Transact-SQL (T-SQL) and can be written using a
Web browser or a plug-in to the Eclipse Integrated Development Environment (IDE).

Other platforms take a different approach. Google’s App Engine simultaneously restricts and
extends existing languages such as Python so that they play nicely in Google’s PaaS environ-
ment. This offers obvious benefits, such as leveraging the development community, ease

of migration, and skills preservation. One way to understand Apex is as a domain-specific
language. Force.com is not a general-purpose computing platform to run any Java or C#
program you want to run. Apex is kept intentionally minimalistic, designed with only the
needs of Force.com developers in mind, built within the controlled environment of Salesforce
Research and Development. Although it won't solve every programming problem, Apex’s
specialized nature leads to some advantages in learning curve, code conciseness, ease of refac-
toring, and ongoing maintenance costs.

Force.com Services

Force.com can be divided into four major services: database, business logic, user interface, and
integration. Technically, many more services are provided by Force.com, but these are the high-
level categories that are most relevant to new Force.com developers.

Database

Force.com is built around a relational database. It allows the definition of custom tables
containing up to 800 fields each. Fields contain strongly typed data using any of the standard
relational database data types, plus rich types such as currency values, picklists, formatted text,
and phone numbers. Fields can contain validation rules to ensure data is clean before being
committed and formulas to derive values, like cells in a spreadsheet. Field history tracking
provides an audit log of changes to chosen fields.

Custom tables can be related to each other, allowing the definition of complex data schemas.
Tables, rows, and columns can be configured with security constraints. Data and metadata are
protected against accidental deletion through a “recycling bin” metaphor. The database schema
is often modifiable instantly, without manual migration. Data is imported from files or other
sources with free tools, and application programming interfaces (APIs) are provided for custom
data-loading solutions.

Data is queried via a SQL-like language called Salesforce Object Query Language (SOQL). Full-
text search is available through Salesforce Object Search Language (SOSL).

Chapter 1 Introducing Force.com

Business Logic

Apex is the language used to implement business logic on Force.com. It allows code to be struc-
tured into classes and interfaces, and it supports object-oriented behaviors. It has strongly typed
collection objects and arrays modeled after Java.

Data binding is a first-class concept in Apex, with the database schema automatically imported
as language constructs. Data manipulation statements, trigger semantics, batch processing, and
transaction boundaries are also part of the language.

The philosophy of test-driven development is hardwired into the Force.com platform. Methods
are annotated as tests and run from a provided test harness or test API calls. Test methods are
automatically instrumented by Force.com and output timing information for performance
tuning. Force.com prevents code from being deployed into production that does not have
adequate unit test coverage.

User Interface

Force.com provides two approaches for the development of user interfaces: page layouts and
Visualforce. Page layouts are inferred from the data model, including validation rules, and then
customized using a What You See Is What You Get (WYSIWYG) editor. Page layouts feature the
standard Salesforce look and feel. For many applications, Page layouts can deliver some or all of
the user interface with no development effort.

Visualforce allows developers to build custom user interfaces. It consists of a series of XML
markup tags called components with their own namespace. As with Java Server Pages (JSP), ASP.
NET, Velocity, and other template-processing technologies, the components serve as containers
to structure data returned by the Controller, a class written in Apex. To the user, the resulting
Web pages might look nothing like Salesforce, or adopt its standard look and feel. Visualforce
components can express the many types and styles of Uls, including basic entry forms, lists,
multistep wizards, Ajax, mobile applications, and content management systems. Developers can
create their own components to reuse across applications.

User interfaces in Visualforce are public, private, or some blend of the two. Private user inter-
faces require a user to log in before gaining access. Public user interfaces, called Force.com Sites,
can be made available to anonymous users on the Internet.

Integration

In the world of integration, more options are usually better, and standards support is essential.
Force.com supports a wide array of integration technologies, almost all of them based on indus-
try-standard protocols and message formats. You can integrate other technologies with Force.
com using an approach of configuration plus code. Here are some examples:

= Web services—Apex Web Services allows control of data, metadata, and process from any
platform supporting SOAP over Hypertext Transfer Protocol (HTTP), including JavaScript.
This makes writing composite applications that combine Force.com with technology
from other vendors in many interesting and powerful ways possible. Force.com’s Web

Inside a Force.com Project

services API has evolved over many years, spanning more than 20 versions with full
backward compatibility.

= REST—The Force.com database is accessible via REST calls. This integration method is
much lighter weight than Web services, allowing Web applications to query and modify
data in Force.com with simple calls accessible to any development language.

= Business logic—Business logic developed in Apex can be exposed as a SOAP or REST
service, accessible with or without a Force.com user identity. For SOAP services, Force.
com generates the Web Service Definition Language (WSDL) from your Apex code.
Additionally, Force.com converts WSDL to Apex bindings to allow access to external Web
services from within the platform.

= Inbound and outbound email—You can create virtual email inboxes on Force.com
and write code to process the incoming email. Sending email from Force.com is also
supported.

= Mashups—Force.com provides an API for making HTTP requests, including support for
client-side certificates, Secure Sockets Layer (SSL), proxies, and HTTP authentication.
With this, you can integrate with Web-based resources, everything from static Web pages
to REST services returning JavaScript Object Notation (JSON).

= Across Salesforce customers—Salesforce-to-Salesforce (S2S) is a publish-and-subscribe
model of data sharing between multiple Force.com environments. If the company
you need to integrate with already uses Force.com and the data is supported by S2§,
integration becomes a relatively simple configuration exercise. There is no code or
message formats to maintain. Your data is transported within the Force.com environment
from one tenant to another.

If your requirements dictate a higher-level approach to integration, software vendors like IBM’s
Cast Iron Systems, Informatica, MuleSoft, SnapLogic, and Jitterbit offer adapters to Force.com
to read and write data and orchestrate complex transactions spanning disparate systems.

Inside a Force.com Project

This section discusses what makes a Force.com project different from a typical corporate
in-house software development effort, starting with project selection. Learn some tips for select-
ing a project in Force.com’s sweet spot. Then examine how traditional technical roles trans-
late to development activities in a Force.com project and how technologies within Force.com
impact your product development lifecycle. Lastly, get acquainted with the tools and resources
available to make your project a success.

Project Selection

Some projects are better suited to implementation on Force.com than others. Running into
natural limits of the Paa$S approach or battling against the abstraction provided by the platform
is possible. Always strive to pursue projects that play into Force.com strengths. No absolute

10 Chapter 1 Introducing Force.com

rules exist for determining this, but projects with the following characteristics tend to work
well with Force.com:

= The project is data centered, requiring the storage and retrieval of structured data.

Structured data is the most important point. Implementing a YouTube-like application
on Force.com is not the best idea because it primarily works with unstructured data in
the form of video streams. Force.com supports binary data, so a video-sharing Web site
is certainly possible to build. But handling large amounts of binary data is not a focus
or core competency of Force.com. A hotel reservation system is an example of a more
natural fit.

= The user interface is composed primarily of wizards, grids, forms, and reports.

Force.com does not restrict you to these user interface patterns. You can implement any
type of user interface, including “rich” clients that run using Flash in the browser, and
even full desktop applications that integrate with Force.com via its Apex Web Services
API. But to capture the most benefit from the platform, stick with structured, data-driven
user interfaces that use standard Web technologies such as Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS), and JavaScript.

= The underlying business processes involve email, spreadsheets, threaded discussions,
and hierarchies of people who participate in a distributed, asynchronous workflow.

Standard Force.com features such as Chatter, workflow, approvals, and email services
add a lot of value to these applications. They can be configured by business analysts or
controlled in depth by developers.

= The rules around data sharing and security are fine-grained and based on
organizational roles and user identity.

User identity management and security are deep subjects and typically require high
effort to implement in a custom system. With Force.com, they are standard, highly
configurable components that you can leverage without coding. You can then spend
more time thinking through the “who can see what” scenarios rather than coding the
infrastructure to make them possible.

= The project requires integration with other systems.

Force.com is built from the ground up to interoperate with other systems at all its layers:
data, business logic, and user interface. The infrastructure is taken care of, so you can
focus on the integration design. Exchange a million rows of data between your SQL
Server database and Force.com. Call your Apex services from a legacy J2EE application or
vice versa. Add an event to a Google calendar from within your Visualforce user interface.
These scenarios and more are fully supported by the platform.

= The project manipulates data incrementally, driven by user actions rather than a
calendar.

Force.com is a shared resource. Simultaneously, other customers of varying sizes are using
the same infrastructure. This requires Force.com to carefully monitor and fairly distribute
the computing resources so that all customers can accomplish their goals with a high
quality of service. If one customer’s application on Force.com was allowed to consume a

Inside a Force.com Project

disproportionate share of resources, other customers’ applications would suffer resource
starvation. The limitations in place, called governors, prevent too much memory, CPU,

disk, or network bandwidth from being concentrated in the hands of any one customer.
The platform strongly enforces these governor limits, so the best Force.com applications
involve computing tasks that can be split into small units of work.

= The data volume is limited, below a few million records per table.

Data volume is important to think about with any system: How large is my data going to
grow and at what rate? Force.com consists of a logical single transactional database. No
analytical data store exists. Applications that require access to large volumes of data, such
as data warehousing and analytics, cannot be built on Force.com. Other software vendors
such as GoodData provide solutions in this area, but all involve copying data from Force.
com to their own products.

Force.com is not an all-or-nothing proposition. If your project does not fit within these guide-
lines, you might still want to explore Force.com but in conjunction with other PaaS solutions
such as Heroku. Thanks to Force.com’s integration capabilities, Heroku and Force.com can

be used together as a composite solution, with Heroku augmenting Force.com where general-

purpose computing is needed.

Team Selection

The best people to staff on Force.com projects might already work at your company. Projects do
not require brand-new teams staffed with Force.com experts. With the majority of the platform
based in mature technology, such as relational databases and Web development, adapting exist-
ing teams can be a straightforward task.

Here are some examples of traditional software development roles and how they can contribute
to a Force.com project:

= Business analyst—Substantial Force.com applications can be built entirely by
configuration, no computer science background or coding skills required. Salesforce refers
to this as “clicks, not code.” Business analysts who are proficient with Microsoft Excel
and its macro language, or small-scale databases like Microsoft Access and FileMaker Pro,
can get hands-on with the Force.com data model, validation rules, workflows, approval
rules, security models, and page layouts.

= Data modeler—A data model forms the core of a Force.com application. Data modelers
can use their existing entity-relationship tools and techniques to design the data
layer, with some deltas to account for Force.com-specific idiosyncrasies. Rather than
scripts of DDL statements, their work output is Force.com’s metadata XML or manual
configuration of the data objects. Data modelers can also design reports and report types,
which define data domains available to business users to build their own reports.

= Database administrator—Many traditional DBA tasks are obsolete in Force.com because
there is no physical database to build, monitor, and tune. But a DBA still has plenty of
work to do in planning and implementing the Force.com object model. There are objects

vww allitebooks.cond

11

http://www.allitebooks.org

12

Chapter 1 Introducing Force.com

to define or permissions to configure, and the challenges of data transformation and
migration are still as relevant in Force.com as in any database-backed system.

= Database developer—The design of Force.com’s programming language, Apex, has
clearly been inspired by stored procedure languages like T-SQL. Existing database
developers can adapt their skills to writing Apex code, particularly when it requires
detailed work on the datalike triggers.

= Object-oriented analysis and design specialist—Force.com includes an object-oriented
language, and persistent data is represented as objects. With all of these objects floating
around, people with skills in traditional techniques like Unified Modeling Language
(UML) are valuable to have on your project team. Larger applications benefit from a well-
designed object model, and as in any language, designing before writing Apex code can
be a real time-saver.

= User interface designer—Force.com supports modern Web standards for creating usable,
flexible, and maintainable Uls. UI designers can help by building screen mock-ups, page
layouts, and the static portions of Visualforce pages to serve as templates and assets for
developers.

= Web developer—Developers who have built Web applications can quickly learn enough
Apex and Visualforce and build similar applications on Force.com, typically with much
less effort. Skills in HTML, CSS, JavaScript, or Adobe Flex are needed to build custom
Force.com user interfaces.

= 4GL developer—Developers proficient in fourth-generation languages such as Java,
C#.NET, and PHP usually have no problem picking up Apex code. It has the same core
syntax as Java, without the Java-specific libraries and frameworks.

= Integration specialist—Force.com is a producer and consumer of Web services and
supports REST as well as any integration strategy based on HTTP. An integration
expert can design the interaction between systems, define the remote operations, and
implement them using Force.com or a specialized integration product.

= Quality assurance (QA) engineer—Testing is a critical part of any software project, and
on Force.com testing is mandatory before code is deployed to production. A QA engineer
can write automated unit tests in Apex and test plans for security and integration testing.
Standard tools like Selenium can be used to automate UI testing.

= Operations specialist—Although there are no servers or operating systems to manage,
larger deployments of Force.com can involve integration with on-premises systems.
Single Sign-On (SSO) integration and data migration are two common examples.
Operations experts can help in this area, as well as with application deployment and
Force.com administration tasks such as user maintenance.

Lifecycle

The software development lifecycle of a Force.com project is much like an on-premises Web
application development project, but with less toil. Many moving parts exist in J2EE, .NET, or
LAMP projects. Most require a jumble of frameworks to be integrated and configured properly
before one line of code relevant to your project is written.

Inside a Force.com Project

This section describes areas of Force.com functionality designed to streamline the development
lifecycle and focus your time on the value-added activities related to your application. Each of
these areas has implicit costs and benefits. On the cost side, there is usually a loss of control
and flexibility versus technologies with less abstraction. Evaluating these features and judging
whether they constitute costs or benefits for your project is up to you.

Integrated Logical Database

Relational databases are still the default choice for business applications, despite the availability
of alternatives like NoSQL, XML, and object-oriented databases. The relational model maps well
onto business entities, data integrity is easily enforceable, and implementations scale to hold
large data sets while providing efficient retrieval, composition, and transactional modification.

For business applications coded in an object-oriented language, accessing relational databases
introduces an impedance mismatch. Databases organize data in terms of schemas, tables, and
columns. Programs organize data and logic into objects, methods, and fields. Many ways exist
to juggle data between the two, none of them ideal. To make matters more complicated, many
layers of protocol are needed to transport queries, resultsets, and transactions between the
program and the database.

In Force.com, the database tables are called objects. They are somewhat confusingly named
because they do not exhibit object-oriented behavior. The name comes from the fact that they
are logical entities that act as tables when being defined, loaded with data, queried, updated,
and reported on, but are surfaced to programs as typed data structures. No mismatch exists
between the way data is represented in code and the way it’s represented in the database. Your
code remains consistent and concise whether you are working with in-memory instances of
your custom-defined Apex classes or objects from the database. This enables compile-time vali-
dation of programs, including queries and data manipulation statements, to ensure that they
adhere to the database schema. This one seemingly simple feature eliminates a whole category
of defects that were previously discovered only through unit tests or in production by unfortu-
nate users.

The logical aspect of the database is also significant. Developers have no direct access to the
physical databases running in Salesforce’s data centers. The physical data model is a metamodel
designed for multitenant applications, with layers of caches and fault tolerance, spanning
servers in multiple data centers. When you create an object in Force.com, no corresponding
Oracle database table is created. The metadata describing your new table is stored and indexed
by a series of physical tables, becoming a unified, tenant-specific vocabulary baked into the
platform’s higher-level features. The synergy of integrated, metadata-aware functionality makes
Force.com more than the sum of its individual features.

Metadata-Derived User Interface

As described previously, the definition of your objects becomes the vocabulary for other
features. Nowhere is this more evident than in the standard Force.com user interface,
commonly referred to as the “native” UL This is the style pioneered by the Salesforce Sales and

13

14

Chapter 1 Introducing Force.com

Service Cloud products: lots of tabular displays of data, topped with fat bars of color with icons
of dollar signs and telescopes, and a row of tabs for navigation.

It is worth getting to know the capabilities of the native UI even if you have reservations about
its appearance or usability. To some, it is an artifact of an earlier era of Web applications. To
others, it is a clean-cut business application, consistent and safe. Either way, as a developer,
you cannot afford to ignore it. The native Ul is where many configuration tasks are performed,
often for features not yet visible to Eclipse and other tools.

If your project’s user interface design is amenable to the native Ul, you can build screens almost
as fast as users can describe their requirements. Rapid application prototyping is an excellent
addition or alternative to static screen mock-ups. Page layouts are descriptions of which fields
appear on a page in the native Ul They are automatically created when you define an object
and configured with a simple drag-and-drop layout tool.

Simplified Configuration Management

Configuration management is very different from what you might be accustomed to from
on-premises development. Setting up a development environment is trivial with Force.com.
You can provision a new development environment in a few clicks and deploy your code to it
using the familiar Eclipse IDE.

When added to your Eclipse IDE or file system, Force.com code and metadata are ready to be
committed to an existing source control system. Custom Apache Ant build tasks are available
to automate your deployments. Sandboxes can be provisioned for testing against real-world
volumes of data and users. They are automatically refreshed from snapshots of production data
per your request. Force.com'’s packaging feature allows you to partition your code into logical
units of functionality, making it easier to manage and share with others at your company or in
the larger community.

Integrated Unit Testing

The ability to write and execute unit tests is a native part of the Apex language and Force.com
development environment. Typically, a test framework is an optional component that you
need to integrate into your development and build process. With the facility to test aligned
closely with code, writing and executing tests becomes a natural part of the development life-
cycle rather than an afterthought.

In fact, unit tests are required by Force.com to deploy code into production. This applies to all
Apex code in the system: user interface logic, triggers, and general business logic. To achieve
the necessary 75% test coverage often requires as much if not more code than the actual Apex
classes.

To make sure you don’t code yourself into a corner without test coverage, a great time to write
tests is while you code. Many development methodologies advocate test-driven development,
and writing tests as you code has benefits well beyond simply meeting the minimum require-
ments for production deployment in Force.com. For example, a comprehensive library of tests

Inside a Force.com Project

adds guardrails to refactoring and maintenance tasks, steering you away from destabilizing
changes.

Integrated Model-View-Controller (MVC) Pattern

The goal of the MVC pattern is maintainable user interface code. It dictates the separation
of data, visual elements that represent data and actions to the user, and logic that medi-

ates between the two. If these three areas are allowed to collide and the codebase grows large
enough, the cost to fix bugs and add features becomes prohibitive.

Visualforce adopts MVC by design. For example, its view components do not allow the expres-
sion of business logic and vice versa. Like other best practices made mandatory by the platform,
this can be inconvenient when you just want to do something quick and dirty. But it is there
to help. After all, quick-and-dirty demos have an uncanny tendency to morph into production
applications.

Integrated Interoperability

Force.com provides Web services support to your applications without code. You can desig-
nate an Apex method as a Web service. WSDL is automatically generated to reflect the method
signature. Your logic is now accessible to any program that is capable of calling a Web service,
given valid credentials for an authorized user in your organization. You can also restrict access
by Internet Protocol (IP) address or open up your service to guests.

As in other languages, Apex provides you with a WSDL-to-Apex tool. This tool generates Apex
stubs from WSDL, enabling you to integrate with SOAP-enabled business processes existing
outside of Force.com. Lower-level Apex libraries are also available for raw HTTP and XML
processing.

End of Life

Retiring a production application requires a few clicks from the system administrator. Users

can also be quickly removed or repurposed for other applications. Applications can be readily
consolidated because they share the same infrastructure. For example, you might keep an old
user interface online while a new one is being run in parallel, both writing to the same set

of objects. Although these things are possible with other technologies, Force.com removes a
sizable chunk of infrastructure complexity, preserving more intellectual bandwidth to devote to
tackling the hard problems specific to your business.

Tools and Resources

Force.com has a rich developer ecosystem, including discussion groups for reaching out to the
development community on specific subjects, a source-code repository for open source projects,
a Web site called AppExchange where you can browse for free and paid extensions to the plat-
form, services companies to help you plan and implement your larger projects, and Ideas, a site
for posting your ideas for enhancing the platform.

15

16

Chapter 1 Introducing Force.com

The following subsections list some tools and resources that exist to make your Force.com proj-
ects successful.

Developer Force (http://developer.force.com)

Developer Force is a rich source of information on Force.com. It contains documentation, tuto-
rials, e-books written by Salesforce, a blog, and a wiki with links to many more resources inside
and outside of Salesforce.

Developer Discussion Boards (http://community.salesforce.com)

The developer discussion boards are a public discussion forum for the Force.com development
community, divided into a dozen separate boards by technology area. Users post their ques-
tions and problems, gripes, and kudos. Other users in the community contribute answers and
solutions, including Salesforce employees. The boards are a great way to build a reputation as a
Force.com expert and keep current on the latest activity around the platform.

Ideas (http://ideas.salesforce.com)

If you have a suggestion for improving Force.com or any Salesforce product, visit the Ideas site
and post it. Other users in the community can vote for it. If your idea is popular enough, it
might be added to the next release of Force.com. Incidentally, Ideas is a reusable component of
Force.com, so you can build your own customized idea-sharing sites for your company.

Code Share (http://developer.force.com/codeshare)

Code Share is a directory of open source code contributions from the Force.com community,
with links to the source code hosted on Google Code. Salesforce employees have contributed
many projects here. Code Share projects include the Facebook Toolkit, a library for integrating
with Facebook, and the Toolkit for PayPal X Payments platform, to leverage PayPal’s Adaptive
Payments API in Force.com applications.

Platform Documentation

Salesforce provides documentation through online, context-sensitive help within the Web
user interface, as well as HTML and Portable Document Format (PDF) versions of its reference
manuals. You can find all documentation at Developer Force.

AppExchange (http://www.appexchange.com)

AppExchange is a directory of ready-to-install applications developed on Force.com. The appli-
cations consist of metadata, such as Visualforce pages and Apex code, deployable into your
Force.com environment. Users can rate applications from one to five stars and write reviews.
Many free applications are written by Salesforce employees to illustrate new platform features.
Commercial applications are also available for trial and purchase. AppExchange is how inde-
pendent software vendors distribute their Force.com applications to Salesforce customers.

http://www.appexchange.com
http://developer.force.com
http://community.salesforce.com
http://ideas.salesforce.com
http://developer.force.com/codeshare

Sample Application: Services Manager

Dreamforce and Cloudforce

Salesforce has a series of user conferences every year called Dreamforce and Cloudforce. San
Francisco hosts the largest Dreamforce venue, with thousands attending to participate in train-
ing sessions, booths, product demos, keynote speeches, breakout sessions, executive briefings,
and, of course, the parties. Dreamforce and Cloudforce are fun ways to stay up to date with the
technology. Refer to http://www.salesforce.com/events for more information.

Systems Integrators

For deployments including significant numbers of users, integration with other enterprise
systems, or complex data migrations, consider contracting the services of a systems integrator.
You can find systems integrators who have competency with Force.com, Sales Cloud, Service
Cloud, and other Salesforce products. For more information, view the Salesforce consulting
partners page at https://appexchange.salesforce.com/consulting.

Technical Support

When you encounter undocumented or incorrect behavior in the system, submit a defect
report. If the issue can be described simply, like a cryptic error message, search for it in the
discussion groups. In many cases, someone else has already run into the same problem before
you, posted about it, and attracted the attention of Salesforce employees. If not, the ability to
log and track Force.com platform support cases is available in Force.com’s Web user interface.

Sample Application: Services Manager

Every following chapter in this book contributes to the construction of a sample application
called Services Manager. Services Manager is designed for businesses that bill for their employ-
ees’ time. These businesses need accurate accounting of when and where employees are staffed,
numbers of hours worked, skills of the employees, project expenses, amounts billed to custom-
ers, and so forth. This section describes these features in preparation for later discussions of
their design and implementation.

The goal is not to build a fully functional application for operating a professional services busi-
ness, but to provide a logically related set of working code samples to accompany the technical
concepts covered in this book.

Background

Imagine you own a professional services business. The services your company provides could be
architecture, graphic design, software, law, or anything with the following characteristics:

= High cost, highly skilled employees
= Complex projects lasting a week or more
= Resources billed out at an hourly rate

= High cost of acquiring new customers

17

http://www.salesforce.com/events
https://appexchange.salesforce.com/consulting

18

Chapter 1 Introducing Force.com

Your profit comes from the difference between the billing rate and the internal cost of
resources. This is typically small, so your process must be streamlined, repeatable, and scalable.
To increase profit, you must hire more resources and win more customer projects.

User Roles

The users of the Services Manager application span many roles in the organization. The roles
are covered in the following subsections, with a summary of their responsibilities and how they
use Services Manager.

Services Sales Representative

Sales reps work with customers to identify project needs and manage the relationship with
the customer. Reps use the Sales Cloud product from Salesforce to manage their sales process.
In general, they do not use Services Manager directly, but start the process by winning the
contract.

Staffing Coordinator

Staffing coordinators manage and schedule resources for projects. When the opportunity is
closed, they are notified via email. They then create a project using Services Manager and staff
it by matching the availability and skills of resources against the scheduling and skill require-
ments of the project.

Project Manager

Project managers are responsible for success of projects on a daily basis. They direct and priori-
tize project activities for resources and customers. They use Services Manager to manage the
detailed weekly schedules of their consultants and monitor the health and progress of their
projects.

Consultant

The consultant is engaged directly with the customer and is responsible for the project deliver-
ables. In Service Manager, he or she logs time spent on the project, indicates the completion of
project milestones, and submits expenses.

Accounts Receivable

Accounts receivable is responsible for invoicing and collecting customers based on work that
has been delivered. At the end of each billing cycle, they use Services Manager to generate
invoices for customers.

Services Vice President

The VP is responsible for the services profit and loss and success of the team. Services Manager
provides the VP with reports on utilization and other metrics for assessing the team’s overall
performance.

Summary

Development Plan

The Services Manager sample application is developed incrementally throughout this book,
each chapter building on the previous. Every chapter covers a set of technical concepts
followed by the relevant Services Manager requirements, design, and implementation. The goal
is to expose you to the abstract technology and then make it practical by getting your hands
dirty on the sample application.

The following list names the remaining chapters in this book, with brief descriptions of the
features of Services Manager to be covered:

= Chapter 2, “Database Essentials”—Design and create the database and import data.

= Chapter 3, “Database Security”—Define users, roles, and profiles. Configure sharing
rules.

= Chapter 4, “Business Logic”—Build triggers to validate data and unit test them.

= Chapter 5, “Advanced Business Logic”—Write services to generate email notifications
based on user activity.

= Chapter 6, “User Interfaces”—Construct a custom user interface for tracking the skills of
consultants.

= Chapter 7, “Advanced User Interfaces”—Enhance the skills-tracking user interface with
Ajax.

= Chapter 8, “Mobile User Interfaces”—Create a mobile user interface for entering
timecards.

= Chapter 9, “Batch Processing”—Locate missing timecards using a batch process.

= Chapter 10, “Integration with Force.com”—Calculate and transmit corporate
performance metrics to a fictional industry-benchmarking organization.

= Chapter 11, “Advanced Integration”—Develop a Java program to update Force.com
with information from a human resources database.

= Chapter 12, “Social Applications”—Automate built-in platform collaboration features to
help project teams communicate.

Summary

This chapter has introduced you to Force.com, explained how it differs from other Paa$ tech-
nologies and what infrastructure it’s designed to replace, and given guidelines for its use on
your projects. Here are a few thoughts to take away from this chapter:

= Force.com is a PaaS uniquely designed to make business applications easy to build,
maintain, and deliver. It consists of database, business logic, user interface, and
integration services, all of them interoperable and interdependent, accessible through
configuration or code.

19

20 Chapter 1 Introducing Force.com

= The most suitable applications for implementation on Force.com operate primarily on
structured data. Traditional software development roles are still relevant in the Force.
com world, particularly Web and client/server developers. Data modeling takes on a new
importance with the platform, as data objects are tightly integrated with the rest of the
technology stack, and unit testing is mandatory.

= Services Manager is the sample application built on throughout this book. It’s designed
to serve companies in the professional services space, those selling projects to customers
and billing them for the time of its skilled employees.

Database Essentials

In Force.com, the database provides the framework for the rest of your application. Decisions you

make on how to represent data have significant consequences for flexibility and maintainability.
Understanding the unique behaviors of the Force.com database is critical for successful applications.
Force.com operates at a higher level of abstraction than a relational database, so although existing rela-
tional database skills are helpful, the Force.com database is a completely different animal.

This chapter covers topics in Force.com database design and development:

= Overview of Force.com’s database—Get an overview of the Force.com database and how it’s
different from standard relational databases.

= Working with custom objects—Custom objects are components within the Force.com database
that store your data. Learn how they are created and then test them by entering and browsing
their data.

= Additional database features—The Force.com database has a few features that are less
frequently used but powerful. They include fields defined as aggregates of other fields, fields
that limit the valid values of another field, the ability to display the same object differently
in multiple user interfaces, and objects that store frequently accessed settings for optimal
performance.

= Sample application—Design a Force.com data model for the Services Manager, implement the
objects using Schema Builder, and import sample data.

Note
The code listings in this chapter are available in a GitHub Gist at http://go0.gl/D0y91g.

Overview of Force.com’s Database

This section provides background on the database functionality within Force.com. It covers
objects, fields, relationships, queries, and how data is integrated with your application logic.

vww allitebooks.cond

http://goo.gl/DOy91g
http://www.allitebooks.org

22

Chapter 2 Database Essentials

Each Force.com-specific database feature is described and contrasted with its equivalent in a
standard relational database.

Objects

Strictly speaking, Force.com does not store objects in its database. Force.com'’s objects are more
closely related to database tables than they are to anything in object-oriented programming.
Objects contain fields, which are equivalent to the columns of a database table. Data is stored
in objects in the form of records, like rows in a database table.

Objects belong to one of two categories: standard and custom. Standard objects provide data
for Salesforce applications like Sales Cloud or core platform functionality such as user identity.
They are built in to Force.com and cannot be removed, although you can extend them by
adding your own fields. Custom objects are defined by you, the developer, and you'll be spend-
ing most of your time with them as you build your own applications. Custom objects include
custom settings, a close relative of the custom object intended for small amounts of frequently
accessed data, like user preferences.

Beyond the name, custom objects differ from their relational table counterparts in some signifi-
cant ways.

Logical, Not Physical Objects

Unlike relational database tables, custom objects have no physical representation accessible to
the Force.com developer. There are no physical storage parameters to tune, no tablespace files
to create and manage. The Force.com platform decides how best to represent, index, back up,
migrate, scale, and tune your database.

Delegated Operations

For the most part, operational concerns such as performance and reliability are managed
entirely by the platform. This means you can design and build an application without worrying
how to support it in production.

When you run your own database software and hardware, you inevitably face operational tasks
such as backup, recovery, and replication for scalability. Although nothing prevents you from
exporting the data from your Force.com instance and backing it up to your own servers, there
is normally no reason to do so.

Note

Force.com applications that involve tens of thousands of users, tens of millions of records,

or hundreds of gigabytes of total record storage belong to a category called Large Data
Volume (LDV) deployments. Such deployments require special architectural considerations

to maintain favorable performance. For more information, refer to the whitepaper titled “Best
Practices for Deployments with Large Data Volumes” at http://wiki.developerforce.com/page/
Best_Practices_for_Deployments_with_Large_Data_Volumes.

http://wiki.developerforce.com/page/Best_Practices_for_Deployments_with_Large_Data_Volumes
http://wiki.developerforce.com/page/Best_Practices_for_Deployments_with_Large_Data_Volumes

Overview of Force.com’s Database

Undelete Support

Normally, when a row is deleted in a standard relational database and you need to recover it
after a commit, you're out of luck unless you have backups of the database or are using a data-
base that provides some proprietary technology like Oracle’s Flashback. To avoid this situation,
you could implement your own support for undeleting rows, like triggers to copy data to an
audit table or a “deleted” column to accomplish a “soft” delete.

In contrast, Force.com provides undelete functionality on every object. When records are
deleted, they go into the Recycle Bin, where they stay until they expire (15 days after deletion)
and are gone for good or an administrator undeletes them. Deleted records can be queried and
programmatically undeleted as well.

Accidentally dropping a table or another database object can also lead to a lot of unpleasant
work for a system administrator. If your database vendor doesn’t offer specialized recovery
features, you are stuck recovering data from backups. In Force.com, deleting objects sends them
to the Recycle Bin. They stay there until they expire or are explicitly erased or undeleted by an
administrator. If an object is undeleted, its definition and all its data are restored.

Fields

Fields are like columns in a database. They belong to an object and have a name, label for
display purposes, and constraints such as data type and uniqueness.

In Force.com, there are two categories of fields: standard and custom. Standard fields are fields
that are created by Force.com for its own internal use, but are also available to users. They can
be hidden from view and unused, but not completely removed or redefined. They are a part of
the Force.com data model that is static, relied on to exist by other layers of Force.com technol-
ogy. Examples of standard fields are Id (unique identifier) and Created By (the user who created
the record). Custom fields are created by you, the developer, to store data specific to your
applications.

Some important differences between Force.com database fields and relational database columns
are described in the subsections that follow.

Logical, Not Physical Fields

When you define a new field for your custom object, Force.com does not create a correspond-
ing field in its physical database. Instead, it associates your new field with an existing “Flex”
field, a VARCHAR column of its generic data table. This provides Force.com with the flexibility
to redefine data types, add richer data types, and perform other processing on the data outside
of a database’s typically rigid rules. Although this implementation detail of Force.com is not
relevant to learning how to use Force.com’s database, it does help explain some of its underly-
ing behavior.

23

24

Chapter 2 Database Essentials

Unique ldentifiers

Typical database tables include one or more columns to contain the primary key, the unique
identifier for each row. In Force.com, every object has a standard field called Id. This field is
automatically populated with an 18-character, case-insensitive, alphanumeric string to uniquely
identify your records. Unique identifiers can also be expressed as 15-character, case-sensitive
strings, and this is how they appear in the Salesforce user interface. In most cases, the two
styles of unique identifiers can be used interchangeably. So when you are designing your Force.
com database, there is no need to add a field to contain a unique identifier.

Validation Rules

Validation rules place restrictions on the values of a new or updated record. They prevent users
and programs from inserting data that your application defines as invalid. Rules are defined in
an expression language similar to the function language found in the cells of a Microsoft Excel
worksheet. The validation rule in Listing 2.1 prevents a record from containing a Start Date
greater than its End Date.

Listing 2.1 Sample Validation Rule

AND (
NOT (
ISNULL (Start_Date_ c)
)y
NOT (
ISNULL (End Date c)
),
(Start_Date_ ¢ > End Date_c)

When the expression evaluates to true, it is treated as a validation failure. For the rule to evalu-
ate as true, the value in the fields Start Date c and End Date_ c must be non-null, and the
value of Start Date_ c must be greater than End Date c.

Formula Fields

Formula fields contain values that are automatically calculated by Force.com, derived from
other fields in the same object or in different objects. They use the same expression language as
validation rules.

For example, Listing 2.2 shows a formula for a field called Billable Revenue__ c.

Listing 2.2 Sample Formula Field

Billable Revenue c = Week Total Hrs_c * Rate Per Hour c

Overview of Force.com’s Database

Week Total Hrs c and Rate Per Hour c are custom fields. When a new record is inserted
or one of the two fields is updated, the two fields are multiplied, and the result is stored in the
Billable Revenue c field.

Rich Data Types

Force.com supports a few flavors of the typical string, number, date/time, and Boolean data
types. It also supports richer data types that lend themselves to direct usage in user interfaces
with prebuilt validation, input masks, and output formatting. The rich types are phone, pick-
list, multi-select picklist, email, URL, geolocation, and rich text area.

Picklists are particularly valuable, as they address the clutter of “lookup tables” dangling off
most relational data models. These lookup tables often contain only a key and description and
can be readily replaced with picklist fields. Internally, picklists maintain their own identifiers
for values, allowing their labels to be modified without updating the records that reference
them.

History Tracking

Most databases do not provide developers a way to track every change made to records in a
table. Typically, this is something that is implemented using another table and some code.

In Force.com, any object can have History Tracking enabled on it. Every field with History
Tracking enabled that is changed gets a new record inserted in a corresponding History object
containing the old and new values.

Note

Field history data can be subject to automatic deletion. Organizations created on or after June
2, 2011, retain their history data for 18 months. You can log a case with Salesforce to request
a longer retention period. Organizations created before this date retain field history data
indefinitely.

Relationships

The capability to define and manage relationships between data entities is the basis for much
of the value of relational databases. Relationships allow data from one entity to be logically
separated from others. With this separation, data can be modified without integrity loss and
combined with other entities for analysis.

Data relationships in Force.com resemble those found in standard relational databases. You can
express one-to-one, one-to-many, and many-to-many relationships. But relationships in Force.
com are closely controlled and managed by the platform and also integrated with many plat-
form features. Some important points are listed in the subsections that follow.

25

26

Chapter 2 Database Essentials

Integrity Enforced

When you define a relationship in Force.com, a relationship field is created to contain the
foreign key. Force.com prevents you from using a foreign key to a different object. It enforces
that the foreign key points to an object of the correct type.

This is basic foreign key constraint checking, like in a relational database. The difference
in Force.com is that you can never elect to turn it off. It is a mandatory, always-on feature,
protecting your data from inconsistency.

There is one minor exception to this rule. Many standard objects contain special fields that can
be related to multiple object types. For example, a support case can be assigned to an individual
user or a group representing a collection of users. In the Case object, the Ownerld field can
contain the ID of a record in the User object or the Group object. Both types of foreign keys are
valid. Note that polymorphic foreign key fields are defined by Salesforce and cannot be created
by developers.

Explicitly Defined

In Force.com, all relationships are predefined, established when objects and fields are created.
With the exception of semi- and anti-joins, you do not specify join conditions when you write
queries. Instead, you specify the fields you want, and Force.com takes care of traversing the
necessary relationships to retrieve the data.

Query Language

Force.com has two query languages. One is called Salesforce Object Query Language (SOQL)
and is used for structured queries. The other language, Salesforce Object Search Language
(SOSL), is used for searching the full text of one or more objects.

SOQL

Don't let the name confuse you. Despite some similarities in syntax, SOQL is very different
from SQL. It has more in common with a reporting or object-traversal language than its more
mathematically grounded ancestor.

Listing 2.3 shows a sample SOQL query on a custom object. It returns the names, statuses, and
expected revenue amounts for the top-ten largest uninvoiced projects started in the last quarter,
in descending order by pending revenue.

Listing 2.3 Sample SOQL Query

SELECT Name, Total Billable Revenue Pending Invoice ¢, Project Status_ c
FROM Proj_ c
WHERE Invoiced c = FALSE and Start_Date_ c = LAST_ QUARTER
ORDER BY Total Billable_Revenue_Pending Invoice c¢ DESC LIMIT 10

Overview of Force.com’s Database

The query specifies a list of columns to be returned (SELECT), the object to query (FROM), filter
conditions (WHERE), sorting results (ORDER BY) in descending (DESC) order, and a hard limit
on the maximum number of rows to return (LIMIT).

Selecting a single object is the simplest type of SOQL query. More advanced queries select
fields from multiple related objects, nested resultsets from child objects using subqueries, and
perform semi-joins and anti-joins using IN and NOT IN.

The following subsections describe the four most significant differences between SQL
and SOQL.

Implicit Join

In SQL, you can join any table with any other table, typically with one or more Boolean expres-
sions involving pairs of columns. Assuming that the data types of the columns in the join
expression are comparable, the join query returns the corresponding rows of both tables as
specified in your join expression.

In Force.com, data from multiple standard and custom objects can be combined, but only in
ways predetermined by you when you designed your database. SOQL itself does not support
any concept of joins, other than semi-join and anti-join. Using SOQL, you tell the Force.com
platform which fields of which objects to retrieve, and the platform does the work of traversing
the data, maintaining the integrity between objects in accordance with the relationships you
defined.

This behavior has its pros and cons. You cannot perform truly ad hoc queries, in which data
from multiple objects is combined in ways possibly unanticipated by the database designer. But
it results in much simpler, more concise queries that can be optimized entirely by the platform.

Nested Resultsets
In SQL, querying two tables in a one-to-many relationship without aggregate functions and

GROUP BY results in a cross product of the rows. For example, assume you have a table
containing orders and another table with their line items, and issue the query in Listing 2.4.

Listing 2.4 Relationship Query in SQL

SELECT Orders.OrderId, OrderLinelItems.LineItemId
FROM Orders, OrderLineltems
WHERE Orders.OrderId = OrderLineItems.OrderId

Assume that there are two orders (1 and 2), each with three line items (1-3 and 4-6). Table 2.1
shows the results of executing the query.

27

28

Chapter 2 Database Essentials

Table 2.1 Results of SQL Join Query

Orders.Orderld OrderLineltems.Lineltemid

N NN R R e
o 00~ W N P

To begin comparing this with Force.com, Listing 2.5 shows an equivalent query in SOQL.

Listing 2.5 Relationship Query in SOQL

SELECT OrderId, (SELECT LineItemId FROM OrderLineItems)
FROM Orders

Note the lack of a WHERE clause to perform the join and the use of a subquery to nest the line
items. Force.com is aware of the parent-child relationship between Orders and OrderLineltems,
so it performs the join automatically. The result can be visualized as arrays of nested records,
as shown in Figure 2.1. The outer record is the order, and each order contains an array of line
items.

No Functions in Column List

You might have included functions like LEFT, RIGHT, MID, LEN, and IFF along with your
columns in a SQL SELECT statement. SOQL does not permit functions in the SELECT list. The
only exceptions are built-in aggregate functions such as COUNT, which returns the number
of records in the query. But aggregate functions can’t be used in a query containing any other
fields in the SELECT list.

Governor Limits

Force.com prevents a single user from consuming more than its fair share of system resources.
This ensures a consistent level of system performance for all tenants. Limitations placed on
resource consumption are called governor limits. A few examples of governor limits are the
number of records that can be queried at one time, the amount of memory used by your code,
and the size of messages sent between Force.com and external hosts. Some governor limits vary
based on the type of licensing agreement you have in place with Salesforce.

Overview of Force.com’s Database

Orders

Figure 2.1 Nested results of SOQL query

SOSL

SOSL provides full-text search capabilities across many objects and fields simultaneously. This is
an always inefficient and often impossible task in SOQL. SOSL statements can perform a search
over all records, or incorporate SOQL to narrow the search scope and achieve the best of both
worlds: structured and unstructured search. The SOSL expression in Listing 2.6 returns the IDs
of records in four custom objects that begin with the word java in any of their fields.

Listing 2.6 Query in SOSL

FIND 'java*' IN ALL FIELDS
RETURNING Project c, Resource c, Assignment c, Skill c

Data Integration

Integration refers to the incorporation of the database into the rest of your application, the
business logic, and the user interface. If your application consists solely of stored procedures,
there is no integration; your code runs inside the database process and hits database objects
directly. More commonly, there are application servers that need to communicate with the
database.

With Force.com, either you are coding “on the platform,” which is akin to writing stored proce-
dures, or you are developing a “composite application,” which executes somewhere else but

29

30

Chapter 2 Database Essentials

integrates with Force.com data and logic. The following subsections describe how integrating
data in Force.com differs from traditional Web application development.

Object-Relational Mapping

In traditional Web application development, one of the most important integration technolo-
gies is Object-Relational Mapping (ORM). This layer of infrastructure maps data objects from
the database to and from the data structures in your program. Any ORM technology must be
well integrated into your development process, efficient at runtime, and flexible in order to
accommodate all data access patterns required by your application and allow for future schema
changes. Java developers might use Hibernate, Ruby has ActiveRecord, and so forth.

With Force.com, the ORM layer is built in to the platform. Data objects, metadata objects, and
queries have direct representation in Apex code. When you create a new custom object, it’s
immediately accessible by name in Apex code. If you accidentally mistype the name of a field
in your new object, your code will not compile.

For example, the snippet of Apex code in Listing 2.7 selects a single record from the Resource
object, updates the value of its Hourly Cost Rate field, and commits the updated record to the
database.

Listing 2.7 Apex Code Snippet

public void grantRaise (String resourceName, Decimal newRate) {
Resource ¢ r = [select Id, Hourly Cost Rate c
from Resource_ c
where Name = :resourceName limit 1];
if (r != null) {
r.Hourly Cost Rate c = newRate;
update r;
}
}

Note the use of an in-line SOQL query (in square brackets), the custom object as a first-class
object in code (Resource_ _c), and in-line data manipulation (update statement).

Metadata in XML

Metadata in Force.com is created using one of the platform’s Web-based user interfaces, the
Force.com IDE, or the Metadata API. Unlike SQL databases, Force.com does not use Data
Definition Language (DDL) but has its own XML schema for metadata. Listing 2.8 shows a
simple example of Force.com’s XML metadata.

Overview of Force.com’s Database

Listing 2.8 Metadata XML for a Custom Object

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
<deploymentStatus>Deployed</deploymentStatus>
<fields>
<fullName>Start Date c</fullName>
<label>Start Date</labels>
<type>Date</type>
</fields>
<label>Project</label>
<nameField>
<label>Project Name</label>
<type>Text</type>
</nameFields>
<plurallabel>Projects</pluralLabel>
<searchlLayouts/>
<sharingModel>ReadWrite</sharingModel>
</CustomObject>

This XML describes an object with a human-readable name of Project. It contains a single
custom field called Start Date, of type Date. The Sharing Model of ReadWrite means that

all users in the organization can edit the records in the Project object. Force.com provides a
Metadata API for importing metadata XML into the platform. This is how development tools
such as the Force.com IDE operate.

Generated User Interfaces

In the process of defining a custom object, described in the next section, you will see a number
of settings related to the visual appearance of your object. These settings help Force.com gener-
ate a user interface for manipulating the data in your object. From here on, this is referred to as
the “native” user interface, native meaning that it is built in to Force.com.

Force.com’s native user interface is tightly integrated with your data model. The definitions of
your objects, fields, and relationships are combined with additional configuration settings to
create full-featured user interfaces that can perform create, read, update, delete (CRUD) opera-
tions on your data. Note that the concept of CRUD is also referred to as read, create, edit, delete
(RCED) in the Salesforce world.

SOAP and REST APIs

Force.com provides SOAP and REST APIs for accessing data from outside of its platform. Using
these APIs, you can run SOQL and SOSL queries, import millions of records at a time, modify
records individually or in batches, and query metadata.

vww allitebooks.cond

31

http://www.allitebooks.org

32

Chapter 2 Database Essentials

Working with Custom Objects

This section describes how to create and manage custom objects in Force.com. This is an intro-
duction to the process, so you can experiment with your own objects and data. It starts with
instructions for getting your own Force.com Developer Edition account and gives a brief intro-
duction to the tools available for working with custom objects. The rest of the section covers
object creation and customization, field creation, entering and viewing data using the native
user interface, and additional database features.

Force.com Developer Edition

To get hands-on with Force.com development, you need a development environment.
Environments are known as organizations, or “orgs” for short. Orgs come in different shapes
and sizes based on the licensing agreement with Salesforce. Salesforce gives its Developer
Edition (DE) away free. DE orgs are full featured but have hard limits on the amount of storage
(5MB of data, 20MB of files) and number of users (two full users and three platform-only users).
When you are ready to test your application with production data and user volumes, license a
Force.com Sandbox or Force.com Enterprise Edition (EE).

Tip
Contact a Salesforce sales representative for more information about the different licensing
options for Force.com.

Registration

Visit http://developer.force.com with your Web browser. From this page, there is a link or
button to create a free DE account. Complete the sign-up form. Within a few minutes, two
emails are sent to the address you provide. The first email is a login confirmation containing a
temporary password and a link to log in. The second email is a welcome message to Force.com,
with links to resources for developers.

Logging In

Click the login link in the first email. Your browser is directed to a page that forces you to
change your password. If there is maintenance scheduled for your organization, you may need
to acknowledge it prior to the password change page. Passwords must be at least eight charac-
ters long and alphanumeric. Here, you also choose a security question and answer, as shown in
Figure 2.2. The security challenge is used in the event that you forget your password.

At this point, you are logged in to your own Force.com organization.

http://developer.force.com

Working with Custom Objects

sabosforce com = Change Patswand

= 1

4

Welcome to salesforce.com!

For securily reasons, your password must now be ehanged. Your password was last changed or resel on 4/27/2013 9:20
PM

User Name paigoturner.dl.3e2@gmail.com

New Password
Use ai loast 8 and inchude a i of letters and numbars.

Verify New Password
Quostion | —home—

Anzwer
W will ask you to answer this question # you forget your password.

Bave

Figure 2.2 Force.com password change page

Tools for Custom Objects

Many tools are available that work with Force.com, created by Salesforce and independent
software vendors. But if you're new to Force.com, it’s best to start with the free tools supported
by Salesforce. Unless noted otherwise, all tools are available from the DeveloperForce Web site
(http://developer.force.com). After you're comfortable with the standard tools, explore the
range of solutions offered by the Force.com independent software vendor (ISV) community.

Tools for Metadata

Metadata is the description of a Force.com application, from the data model to the user inter-
face and everything in between. In this chapter, the focus is on the data model, and there are
three tools available from Salesforce for building it.

Force.com App Builder Tools

App Builder Tools are built in to the native Web user interface of Force.com. They are the
easiest and most full-featured tools for working with objects and many other features. When
new features are added to Force.com'’s database, you'll find them in the App Builder Tools first.
To use App Builder Tools, log in to Force.com and click Setup. In the App Setup area, click
Create, Objects.

33

http://developer.force.com

34

Chapter 2 Database Essentials

Force.com Schema Builder

The Schema Builder is a drag-and-drop interface for building and maintaining database
schemas. It renders objects and relationships in a standard entity-relationship diagram style.
The database for the Services Manager sample application, found later in this chapter, is built
with Schema Builder. To use Schema Builder, log in to Force.com and click Setup. In the App
Setup area, click Schema Builder.

Force.com IDE

The Force.com IDE is a plug-in to the Eclipse development environment. Its strength is devel-
oping Apex code and Visualforce pages and managing the metadata for larger deployments
involving multiple Force.com organizations. It provides some functionality for working with
custom objects, but the objects are presented in raw metadata XML, not in a friendly user
interface. For more information about the Force.com IDE and installation instructions, visit
http://wiki.developerforce.com/page/Force.com_IDE.

Tools for Data

Data tools enable you to import and export data in bulk. They are usually used in a migration,
in which data from an existing system is loaded into Force.com.

Force.com Data Loader

Data Loader has the richest data import features of any Salesforce-provided data tool. To get
the Windows version login to Force.com, visit the Administration Setup area, and click Data
Management, Data Loader. There is also a community-supported Mac OS X version at
http://www.pocketsoap.com/osx/lexiloader.

Import Wizard

The Import Wizard is a tool built in to the native user interface. It allows bulk data to be
imported as new or updated records of custom objects. To use it, log in to Force.com and click
Setup. In the Administration Setup area, click Data Management, Import Custom Objects. The
Import Wizard walks you through a seven-step process for getting the data from a comma sepa-
rated values (CSV) file into Force.com.

Force.com Excel Connector

Excel Connector is an add-in to Microsoft Excel that allows bidirectional data movement
between a worksheet and a Force.com object. You can fill an Excel worksheet with records from
a Force.com object. In the worksheet, you can change values by simply editing the correspond-
ing cells. The modified values can then be written back to the Force.com object. If you're

an Excel power user, you will appreciate this tool. You can download it at http://wiki.
developerforce.com/page/Force.com_Excel _Connector.

http://www.pocketsoap.com/osx/lexiloader
http://wiki.developerforce.com/page/Force.com_IDE
http://wiki.developerforce.com/page/Force.com_Excel_Connector
http://wiki.developerforce.com/page/Force.com_Excel_Connector

Working with Custom Objects

Object Creation

The easiest way to understand the object creation process is to try it. Log in to Force.com using
your DE account and click Setup. In the App Setup area, click Create, Objects. Figure 2.3 shows
the screen as it appears in a new Force.com organization, with no objects yet defined.

Custom Objects ~ ealesforcs.com - Developer Editian

Home Chatter Leads A F Cases *

Expand Al | Coliaj Al
i Helo for this Page @

@, Quick Find Custom Objects

Custom objects are database tables that allow you 1o siore data specific to your arganization in salesforce com.
Force.com Home You can use cusiom objects (o extend Jcom fi ity o to build new applicati ignali

Onca you have craatad a custom object, you can creats a custom tab, custom related lists, repors, and
System Overview dashboards for users 1o interact with the custom object data. You can also access custom object data through the
Force.com AP,

Personal Setup
New Custom Object || Schema Builder

+ My Personal Information L 2

* Emall Mo Custom Objects have been defined

& Import

» Desktop Integration

» My Chatter Sattings

= My Social Accounts and

Contacls

App Setup

¢ Customize

O Create
Apps
Cuslom Labels
Interaction Log Layauts
Otjects
Packages
Report Types

Tabs
+ Workflow & Approvals

e Aatn

Figure 2.3 Custom objects in Force.com App Builder Tools

To begin, click the New Custom Object button.

Object Definition
The first step of building the custom object is its definition screen. The inputs to this screen are
as follows:

= Label—This label is a human-readable name of your custom object.

= Object Name—This is a very important name. It's how you refer to your custom object
when you write Apex code, formula fields, and validation rules. It’s automatically
populated from the label, but it can be set manually. Although not shown on this screen,
internally Force.com appends the Object Name with “__c” to designate it as a custom
object rather than a standard object.

35

36 Chapter 2 Database Essentials

Tip
Avoid naming your custom object something overly terse or common, and avoid the names of
standard objects. It can be difficult to differentiate multiple objects with the same name.

= Description—It’s good practice to set a description for your object if you're working with
other developers.

= Context-Sensitive Help Setting—This setting dictates how the Help for This Page link
in the corner of every page behaves on your custom object. By default, it shows the
standard Force.com help. You can configure it to display a custom Visualforce page
instead. Visualforce pages are discussed in Chapter 6, “User Interfaces.”

= Record Name Label and Format—Every object has a standard field called Name. It’s
used in the native user interface as a label for your record. Name can have an Auto
Number data type, which causes names to be automatically generated from a pattern, or
a Text data type with a maximum length of 80 characters. Name values are not required
to be unique.

= Allow Reports—If checked, this custom object can participate in the reporting feature of
Force.com.

= Allow Activities—If this is checked, users can associate calendar events and tasks to
records of your custom object. You can find the calendar and tasks features on the
Home tab.

= Track Field History—If this option is checked, Force.com creates an additional object to
store changes to selected fields.

= Deployment Status (in development, deployed)—If an object is in development status,
it’s hidden from the users in your org, except those with the Customize Application
permission. Deployed objects become visible to any user, as dictated by the security
configuration of the object and org.

= Object Creation Options—Unlike the other options, which can be changed later,
these options are available only when a custom object is first created. Add Notes and
Attachments Related List to Default Page Layout allows external documents to be
attached to records of your custom object, like attachments on an email. Launch New
Custom Tab Wizard is a shortcut for building a custom tab at the same time as you
define your object.

After you've clicked the Save button on the definition page and clicked through pages concern-
ing the object’s behavior in the user interface, the detail page of your new custom object

is shown. It contains a series of bordered boxes with titles. Each box contains configura-

tion options for a different aspect of the object. Most aspects are described in the following
subsections.

Standard Fields

Standard fields are automatically part of every object. They are used for platform-wide func-
tions. The Created By, Last Modified By, Name, and Owner fields help provide record-level
access control of your data. Data security is discussed further in Chapter 3, “Database Security.”

Working with Custom Objects

Custom Fields and Relationships

Custom fields are created by you, the developer, to store data specific to your applications.
Custom relationships express associations between the records in a pair of objects, such as a
purchase order and its line items. Initially, your object does not contain any custom fields or
relationships. After you've added some, they are listed here and can be edited and deleted.

Validation Rules

Validation rules define what constitutes a valid record, preventing records that do not conform
from being stored in the database. When a validation rule is added, it applies to data coming
from anywhere: a bulk import process, a user interface, a Web service call from another appli-
cation. When validation rules are defined, they are shown in this list and can be edited and
deleted.

Triggers

Triggers are much like triggers in relational databases, except written in Apex code. They fire
before or after a data manipulation action such as insert, update, delete, and undelete. They
can inhibit the action or extend it by acting on other database objects, modifying data, or even
calling out to external Web services.

Page Layouts

A page layout brings together all the native user interface elements for a custom object. This
includes the buttons along the top and bottom of the screen, the fields displayed, and related
lists, which are records of child objects.

Page layouts are assigned to profiles. This allows different user interfaces to be shown to differ-
ent types of users. For example, you need one user interface for entering a contact for a support
case, but a different one for entering job applicant information. Both end up as records in the
Contact object, but the user interfaces can appear very different.

Search Layouts

In this section, you can customize the display of your object in the native search user inter-
faces. Make a point of editing the Tab layout. It’s the most frequently used and worth customiz-
ing to save yourself time. The Tab layout displays recently viewed, created, or modified objects
on your custom tab. By default, it contains only the Name field.

Standard Buttons and Links

When a custom object is created, a native user interface is also created for that object to enable
CRUD operations without coding. The native user interface contains a collection of stan-

dard buttons, and this list allows you to override their behavior. With overrides, you can use
Visualforce to develop a custom user interface to be shown for actions that require special treat-
ment, such as the creation of a new record in your object.

37

38

Chapter 2 Database Essentials

Custom Buttons and Links

This section allows the definition of one or more custom buttons to appear in the native user
interface for your object. For example, you might want to add a Verify button, which would
pop up a new window and allow the user to view the results of some analysis performed on the
record.

Field Creation

As in object creation, the easiest way to understand field creation is to try it. Return to your
custom object detail page and click the New button in the Custom Fields & Relationships
section. The first page of the New Custom Field Wizard prompts for field type. The data types
can be thought of in terms of seven categories:

1.

Text, Text Area, Text Area (Long), Text Area (Rich), Text (Encrypted)—Text fields are
varying lengths of Unicode text. Force.com does not allow fields with other encodings.
Text stores 1 to 255 characters, Text Area stores the same number of characters but allows
line breaks, and Text Area (Long) and Text Area (Rich) store up to 32,000 characters. The
Rich Text Area field allows images, links, and basic formatting information to be stored
in-line with the text. One limitation of both the Long and Rich Text Areas is that Force.
com’s full-text search feature looks at only the first 2,048 characters. The encrypted text
field stores up to 175 characters using the Advanced Encryption Standard (AES) algorithm
with a 128-bit master key.

Picklist, Picklist (Multi-Select)—A picklist is a list of suggested values that is presented
to the user. Multi-select enables a user to select multiple values. Record Types can be used
to create multiple lists of suggested values for the same field, to be shown to different
types of users. Picklist values are not enforced at the database level without the addition
of a trigger or validation rule.

Number, Percent, Currency, Geolocation—Number can store signed values from 1 to
18 digits long, decimal places included. Currency and Percent are also Numbers but add
type-specific formatting, such as a dollar sign. Geolocation stores a latitude and longitude
pair formatted as a decimal or in degrees, minutes, and seconds.

Checkbox—Checkbox is a Boolean field. It stores a true or false value, and is represented
in the native user interface as a check box.

Date, Date/Time—In the native user interface, dates are rendered with a calendar picker
component and times with a separate, time-masked field with AM/PM selector.

Email, Phone, URL—These types are provided to enhance the experience in the native
user interface. For example, uniform resource locators (URLs) are clickable and open in a
new Web browser window.

Relationship (Lookup, Master-Detail)—These define relationships between two objects.
They are covered in more detail in the subsection, “Relationship Fields.”

Working with Custom Objects

After you've established the field type, the detail page is shown. The settings on this page are
described here. Note that not all settings are relevant to every data type.

Label—The label is the human-readable name of your field.

Field Name—Like Object Name, this is an important name. It’s the name used to refer to
your field in Apex code, formula fields, and validation rules. It’s automatically populated
from the label, but it can be set manually. Field names cannot contain spaces. Although
it’s not shown on this screen, internally Force.com appends the Field Name with “_ ¢”
to differentiate it from standard fields.

Description—Use this text area to document the purpose of your field to other
developers.

Help Text—If you provide help text for your field, a small blue circle icon containing the
letter i is shown beside it in the native user interface. If a user hovers the mouse over this
icon, your help text is displayed.

Required—If this is checked, a record cannot be saved unless this field contains a value.
This applies to records created anywhere, in the native user interface, imported from
other systems, and programmatically.

Unique—Text and Number fields allow a uniqueness constraint to be applied. If this is
checked, new records must contain a unique value for this field, one that does not occur
in other records, or it cannot be saved. Like the Required attribute, this is enforced at the
database level.

External ID—Text and Number fields can be designated as External IDs. By default,

the only unique identifier on an object is the standard Id field. But if External ID is
checked, your custom field can be used to uniquely identify records. External IDs are also
searchable from the Search sidebar. Note that each object can have at most three External
ID fields.

Default Value—If no value is provided for this field in a new record, this optional
expression is evaluated and shown as a default value, but can be overwritten by the user.
The expression is written in the same language as formula fields and validation rules. It
can be as simple as a static value or a series of calculations performed on other fields.

Relationship Fields

Relationship fields can express one-to-one, one-to-many, and many-to-many relationships
between objects. Creating relationships keeps data normalized, but also adds to the complexity
of the data model, causing greater complexity in code and user interfaces that rely on it.

There are two types of relationship fields: Lookup and Master-Detail. Lookup relationships

are the default choice. They are the most flexible and transparent in their operation. You can
create up to 20 of them on a single object, they maintain their own record of ownership, and
child records can be reassigned to a new parent. By default, deleting a related record clears the
value of the field referencing it. Optionally, the Lookup relationship can be defined to prevent
a related record from being deleted.

39

40

Chapter 2 Database Essentials

Master-Detail relationships are useful for enforcing mandatory relationships, in which a child
record cannot exist without its parent record. All child records in a Master-Detail relationship
must have a parent record specified. When the master record in a Master-Detail relationship is
deleted, all associated detail records are also deleted. Up to four nested levels of Master-Detail
relationships can be created, counting from the master object to the most deeply nested child
object. Master-Detail relationships have some other special behaviors, such as allowing aggrega-
tion of child records through roll-up summary fields, discussed later in this chapter.

Tip

When moving to Force.com from a relational database, resist the urge to create an object for
every table and expect to join them all together with relationships. Force.com has hard limits on
the distance between objects that can be joined together for purposes of user interface, report-
ing, formulas, and triggers. Queries on a child object can reference a maximum of five levels

of parent objects. In the reverse scenario, queries against a parent object can reference only a
single level of child objects. There are workarounds, such as using formula fields to consolidate
fields from distant objects, but keeping your object and relationship count low pays dividends
later in the development process.

Table 2.2 summarizes the differences between Lookup and Master-Detail relationships.

Table 2.2 Comparing Lookup and Master-Detail Relationships

Lookup Relationship Master-Detail Relationship

Child records exist independent of parent Child records cannot exist without parent

Child records can always be reparented Child records can be reparented if the option
to do so is enabled when the relationship is
created

Independent ownership Always owned by parent record

One of three user-defined options: Deletion of par- Deletion of parent cascades to delete children
ent clears Lookup value (default), deletion of par-

ent is prohibited, or deletion of parent cascades to

delete children (custom objects only)

No roll-up fields Roll-up summary fields supported

Unlimited nesting, although limited by SOQL Up to four nested levels

Additional Field Types

Some field types have special behavior, different than simply storing a value. These are listed
here:

= Auto Number—Most databases have an identity or sequence field, a field that
automatically increments itself when a new record is added. In Force.com, Auto Number

Working with Custom Objects

fields are read-only text fields with a maximum length of 30 characters. You define the
length, a display format used to generate values, and the starting number. For example,
if you define an Auto Number field with a display format of Project-{0000} and a starting
number of 100, the Auto Number field in your first record will contain a value of
Project-0100.

= Formula—Formula fields are read-only fields that are calculated by Force.com based on
an expression you provide when defining the field. The output of a formula can be a
currency, date, date/time, number, percent, or text value.

= Roll-Up Summary—Roll-up summary fields allow child records in a Master-Detail
relationship to be summarized and the result stored in the parent record.

Entering and Browsing Data

One of the happy consequences of building a database in Force.com is that you receive a full-
featured data maintenance user interface with near-zero development cost. It is the “native”
Force.com user interface. It allows users immediate access to your data with a consistent look
and feel, and helps developers visualize and test decisions related to database design.

It’s good practice to use the native user interface to test your data model by creating records
with dummy values. This helps identify missing fields, nonintuitive page layouts, and addi-
tional validation rules needed. After your object contains some records, browse them using
Views and Search. Customize Views to show the optimal set of columns. Usable Views are
helpful later in the development process for troubleshooting data problems.

Getting Started

Salesforce often adds new features that users must opt in to use. For example, users must opt
in to features that involve significant changes to the user interface. Salesforce recently released
a faster, more powerful user interface for working with lists of records and for editing records
with fewer clicks. Before starting this section, check to make sure your org has these features
enabled. Go to the Setup, App Setup area, click Customize, User Interface, and then check the
Enable Enhanced Lists and Enable Inline Editing options; click the Save button.

Entering Data

Custom tabs are containers for developer-defined user interfaces. These tabs, such as the Home
tab, are displayed at the top of the page. Tabs are the gateway to the native list view and
CRUD user interfaces for an object and can also present entirely custom user interfaces built in
Visualforce.

If you have not created a custom tab for your object, do so now by going to Setup and, in the
App Setup area, clicking Create, Tabs. Click the New button in the Custom Object Tabs section.
In the details page, select your custom object from the drop-down list, pick a tab style, and
optionally enter a description. Skip through the remaining pages, accepting the default values.

vww allitebooks.cond

41

http://www.allitebooks.org

Chapter 2 Database Essentials

To create a new record in your custom object, click the Create New drop-down on the left side
of the screen and select your object from the list. An edit screen is shown, as in Figure 2.4,
which shows editing a new record in the standard object named Contact. This screen is defined
by the page layout. Make note of things you don’t like as you enter test data and return to the
page layout to fix them. This process is identical for standard and custom objects.

Contact Edit: New Contact ~ salesforce. com - Develaper Edition
J Home Chatter Campalgns Leads Accounts m Cases + - L
)
= Contact Edit Heip for this Page @
“/ New Contact H
Contacts not associated with accounts ane private and cannol be viewed by other users or included in reports.
Contact Edit Save | SavodNew Cancel
Contact Information I = Reguired Information
Contsct Owner Paige Tumer Fhond
First Name —Noag—- 1 Home Phone
Last Name I Mobile
Account Name @G Other Phone
Tite Fax
Department Email
Birthdate Assistant
Reparts To aQ Asst. Phone
Losd Source | - Name—
Addross Information Coovlsiing Address o Other Address
Mailing Stroel | E Other Street | T
Mailing City Othar City
Mailing Btate/Provinco Other State/Province
Mailing Zip/Fostal Code Other ZipPostal Code
Malling Country Other Country

Figure 2.4 Creating a new record in the Contact object

When your new record is saved, the page changes to a view mode. This is also controlled by
the page layout. If you’ve enabled Inline Editing, you can double-click the editable fields to
change their values.

Browsing Data

Your first encounter with a list of records is usually on the home page of your custom object.
Click your custom object’s tab, and you'll see a section listing recently viewed records. It shows
only the Name of your records. To customize this list of recently viewed records to show more
fields, go to the custom object definition, Search Layouts section, and edit the tab layout to add
more fields. Figure 2.5 shows an example of the Contacts Home tab layout with Name, Account
Name, Title, Phone, and Email fields visible.

Working with Custom Objects 43

Contacts: Home ~ salesforcs.com - Developer Editlan
‘ Home Chatter Campaigns Leads Accounts m Cases + -
]
= Contacts Ted ma more! | Hesp for this Page @
%/ Home H
View: | All Contacts 3 Gel | Edit] Create New View
Recent Contacts L] Racently Viewed
Naims Account Name Title Phona Email
Frank Edna GanaPoint WP, Tachnalogy (650) 867-3450 efranki@genapaint com
Young, Andy Dickanson ple SVP, Oparstions {TBS) 241-6200 a_youngBdickensan.com
Rogers, Jack Burlingion Taxtiles of America WF, FacHities (336) 222-7000 rogersi@buriington.com
Grey, Jane Univirsity of Arizana Dean of Administration (520) 7T73-8050 jana_grayEuca.edu
Rarr, Tim Grand Hotels & Regors Lid SR, Administration and Finance {312) 586-1000 barr_timigrandholals com
Reports Tools
HTML Email Status Repart Import My Accounts & Contacts
Partner Accounty 5y to Outiook
Mpiling Ligt Imgort My Organization's Accounts & Cantacts
Contact History Ropon Mass Dateie Conlacts
Rouncad Cotieéts Mess Email Contacts
Go to Reports » Mass Stay-in-Touch
Mass Add Contacts to Campaign
L

Figure 2.5 Contacts Home tab

Another way to browse data is a View. A View is a native user interface that displays the records
of a single object as a list. It includes such features as sorting, pagination, columns that can

be dragged to reorder, and the capability to delete and edit data in-line without switching

to another user interface. To define a View, you specify the list of fields to be displayed and,
optionally, filter criteria to restrict the list to a manageable size.

To show a View on your own object’s data, click its tab and then click the Go button. This
displays the selected View, which is All by default. Unless you’'ve already customized your All
View, it contains only the Name field. Customizing Views is another task, like building tabs
and page layouts, that can increase developer productivity, even if you don’t plan to use the
native user interface outside of administration. Figure 2.6 shows a custom object’s View.

Additional Database Features

This section introduces a set of features of the Force.com database that are unique to the way
the Force.com platform works. Their configuration and behavior build on the definition of
objects and fields, extending them to support more complex native user interfaces, calculations
performed on groups of records, and the storage of configuration data.

44 Chapter 2 Database Essentials

Projacts ~ salasforce.com - Daveloper Edition
ﬁrce,com — v O < orvices Hanagor »
| Home chater Files [T A Skills Dashboards Reports +
&
N A All ¢ | Edit | Delate | Croate New View EITl bred | & © I
Now Project || Change Owner | £) kHCnFFGHIJKLMNGPGRSYu\«'WXYZC'.'-:rMI'l
Action Project Hame Billable Hours Start Daty Statws Stage Type
Edit | Dot | € Butingion Toxstes ... 200 2212009 Green In Progross BEabio
Edit| Dal | €5 Espress Logistics ... 0 2008 Graen In Pregrass Non-Billabie
Edit| Del | @) GenePoint B0z 1122009 In Pregress In Progress Bilable
Edit| Dol | €3 Grand Holols & Ry... 150 211812009 allow In Progross Bilably
Edit | Dol | @ Tast Project Grean Pranned Bamable
Edit| Dol | United Ol & Gas C... 500 21972000 Green Complatod Bitable
16af6x 0 Sclocted = Pagal 1 lof1

Figure 2.6 View of custom object

The following features are discussed in this section:

= Roll-up summary fields—Roll-up summary fields are like formula fields that operate on
a group of records, calculating their sum, minimum, maximum, or a record count.

= Dependent fields—Dependent fields enable the standard “cascading picklist” user
interface pattern, in which user selection in one picklist filters the available values in a
second.

= Record types—Record types allow records in a single object to take on multiple
personalities in the native user interface. For example, the standard object Account is
designed to store information on businesses, but with minor adjustments can support
data on individuals as well. This can be accomplished with record types.

= Custom settings—Custom settings store and manage user preferences, aspects of an
application that can be configured by users rather than hard-coded by developers.

Roll-Up Summary Fields

Summarizing data in SQL databases is a routine matter of invoking GROUP BY and an aggre-

gate function like SUM. Force.com'’s ad hoc query functionality in SOQL provides data group-
ing and aggregation, but it is subject to limits regarding the number of records aggregated. For
the flexibility to obtain aggregate data regardless of data volume, Force.com requires that it be

Working with Custom Objects

calculated incrementally, either by the database itself or in Apex code. As a result, it’s best to
plan for summary-level data as the database is designed.

Roll-up summary fields are the mechanism for instructing the database that you’d like
summary data to be calculated without custom code. You specify the child object to summa-
rize, the function to apply to the child records, and filter criteria on the child records. The
database then takes care of keeping the roll-up summary values up to date as child records are
created, modified, and deleted. For example, given an Invoice Header object and Invoice Line
Item child object, you could use a roll-up summary field on the Invoice Header to maintain a
running count of invoice line items.

Roll-up summary fields are added to objects using the same process as adding other types of
custom fields. There are additional options to define the summary calculation, which consists
of three parts:

= Summarized object—A drop-down list contains the objects you are permitted to
summarize. This is restricted to child objects in a Master-Detail relationship with the
object you're creating the roll-up summary field on. Lookup relationships are not
supported.

= Roll-up type—Select the calculation to be performed on the child records and the
field of the child object to perform it on. The fields available in this list depend on the
calculation. If your calculation is Sum, the list contains fields of type Number, Currency,
and Percent. With Min or Max, you can also summarize Date and Date/Time fields.
Note that you cannot roll up other roll-up summary fields or formula fields that contain
references to other objects, merge fields, or functions returning dynamic values such as
TODAY and NOW.

= Filter criteria—By default, all records are included in the summary calculation.
Alternatively, you can also specify one or more filter criteria to restrict the records
involved in the calculation. Build filter criteria by selecting a field to filter, the operator
to apply, and the value. If you add more than one criterion, the effect is additive. All
filter criteria must be satisfied for the record to be included in the summary calculation.

After you have specified the summary calculation and saved the new field, Force.com begins
calculating the summary values on existing records. This can take up to 30 minutes. An icon is
displayed beside the field to indicate that the calculation is running.

You can define at most ten roll-up summary fields per object. Make a point of creating them
toward the end of your database design process because they make it more difficult to change
your objects. For example, you can’t convert a Master-Detail relationship to a Lookup relation-
ship without first removing the roll-up summary fields.

Dependent Fields

Dependent fields are primarily used to define cascading picklists. Cascading picklists are a user
interface pattern in which the values in one picklist depend on the selection in another pick-
list. For example, a picklist for state/province might depend on another picklist for country.

45

46

Chapter 2 Database Essentials

When a user selects a country, the state/province picklist is populated with a set of values that
make sense given the selected country. In Force.com, the first picklist is called the dependent
field, and the second is the controlling field. The controlling field can be a standard or custom
picklist (with at least 1 and fewer than 300 values) or a check box field, but cannot be a multi-
select picklist. The dependent field can be a custom picklist or multi-select picklist.

A dependent field is an ordinary picklist field with an additional attribute to relate it to a
controlling field. To visualize the relationship between the fields, modify your object’s page
layout so that the controlling field appears above the dependent field. Then perform the
following steps to define the relationship between their values:

1. Navigate to the Custom Field Definition Detail page for the dependent field.

2. In the Picklist Options subsection, click the New link next to the label for Controlling
Field.

3. Select the controlling field and click the Continue button.

4. Use the grid to specify which values of the controlling field should be included in the
dependent field. Picklist values of the controlling field are shown as columns. Values of
the dependent field appear as rows. Double-click individual values to include or exclude
them or hold down the Shift key while clicking multiple values and click the Include
Values and Exclude Values buttons to make changes in bulk.

Record Types

Record types overload the native user interface behavior of a single object. This allows you to
get more mileage out of your existing objects or limit the complexity of a new data model.

For example, Salesforce uses this feature in its CRM product. Person Accounts are a record type
of the Account object. Accounts ordinarily store information about businesses, but the Person
Account record type adapts Account to store information about individuals. Salesforce opted to
overload Account with a record type rather than creating an entirely new object.

Before creating a separate object to represent every business entity, ask yourself if the entity

is truly new or merely a slight variation of another entity. Where you find slight variations,
consider using a single object to do the work of many. The single object contains a superset of
the objects’ fields. The record type of each record determines which variation of the business
entity is stored. Force.com consults the record type and the user’s profile to display the correct
page layout.

Even if you don’t plan to use the native user interface, record types can expand the flexibil-
ity of your data model. By using record types, you gain an additional standard field called
RecordTypeId. In custom user interfaces, you can use this to drive different functionality. Of
course, you can always add your own custom field to accomplish the same thing, but record
types force you to make your design explicit at the native Force.com level and provide tight
integration with native Force.com security.

Working with Custom Objects

Creating a Record Type

Record types are defined at the object level after an object is created. To manage Record types
for custom objects, go to the App Setup area and click Create, Objects; then find the section
called Record Types. For standard objects, find the standard object in the App Setup, Customize
menu, and within it, click Record Types.

Every object has a default record type called Master. It contains the master list of values for
all picklist fields in the object. New record types are cloned from the Master record type if no
other record types exist, and given a name, label, and description. Normally, record types are
in an active state, which makes them available to users who are creating and editing records.
Deactivating a record type is required before it can be deleted.

After a record type is saved, it enters an edit mode. Edit mode permits the maintenance of pick-
list values for the record type. The list of picklist type fields in the object is shown, with Edit
links beside each. These Edit links take you to a screen that allows picklist values to be custom-
ized. Here, you can select all, or a subset of the picklist values, and provide a custom default
value.

This is just one way to manipulate the picklist values of a record type. When adding new pick-
list values in an object with more than one record type defined, you are asked which record
types they apply to. By default, new picklist values are added only to the Master record type,
leaving other record types unchanged.

Custom Settings

Custom settings are a special data storage feature designed for relatively simple, frequently
accessed data. The type of data stored in custom settings is ancillary, used to configure or
control your application rather than the operational data itself, which belongs in standard and
custom objects. For example, user preferences in a Java application might be stored in an XML
or properties file. In Force.com, they would be stored in custom settings. Once data is stored in
a custom setting, it’s readily accessible throughout the Force.com platform in Apex, Visualforce,
formula fields, validation rules, and Web Services API. As an example, a custom setting named
Expert might indicate whether a given user receives the default or advanced version of a user
interface.

A custom setting is an object definition, much like a standard or custom database object. It
consists of a name, a type, and one or more fields. There are two types of custom settings: List
and Hierarchy:

= List—The List is the simpler form, behaving like a database object except for the fact
that records are accessed one at a time, by unique name. For example, you might define
a custom setting with fields representing configurable options in your application,
and each named record representing a collection of those options, such as Test and
Production.

47

48

Chapter 2 Database Essentials

» Hierarchy—The Hierarchy type expands upon the List type, adding the ability to relate
data to organization, profile, and user. If a value is not provided for a given level, it
defaults to the levels above it. With Hierarchy types, you can create applications that
manage settings for individual users, but defer to a profile or organization-wide default
when necessary without storing and maintaining redundant, overlapping information.

Using List Custom Settings

The following steps describe how to build a simple custom settings object and manage the
values stored in it:

1. Go to the App Setup area and click Develop, Custom Settings. This is where custom
settings are defined and their values maintained.

2. Click the New button to define a new custom settings object. Label is the display name
for your object, Object Name is the name by which you'll refer to it in programs. Enter
Config Setting as the Label and ConfigSetting as the Object Name. For Setting Type,
select List. Visibility controls how this setting behaves when packaged. Leave it as
Protected. Use the Description field to explain the purpose of your custom setting to
other developers in your organization.

Tip

It's a good practice to follow a naming convention for your custom settings so that they can be
easily differentiated from custom objects. For example, append the word Setting to the end of
any custom setting name. The value of naming conventions will become more apparent when
you write Apex code that interacts with the database.

3. Click the Save button. Your custom setting is now created and needs some fields and
data. Each custom setting can have up to 300 fields.

4. In the Custom Fields section, click the New button to create a new field. Custom settings
fields use a subset of the data types available to custom object fields. They are Checkbox,
Currency, Date, Date/Time, Email, Number, Percent, Phone, Text, Text Area, and URL.
Select Checkbox for your field and click the Next button. For the field label, enter Debug.
The Field Name, used to refer to the field in code, is automatically populated. Click the
Next button.

5. Click the Save button to finish your field definition.

You're ready to store values in your custom settings object. Force.com provides a standard user
interface for this purpose. Click the Manage button and then the New button. There is a field
for the Name of the setting record, which serves as a human-readable identifier for the record.
Following the name are the custom fields you've defined on the custom setting. In this case,
you have a single check box field named Debug. Enter Default for the name, check the Debug
box, and click the Save button.

Sample Application: Data Model 49

Using Hierarchy Custom Settings

Hierarchy type custom settings provide additional options when storing values. To see them
in action, create a new custom settings object called Hierarchy Setting with an object name

of HierarchySetting. Again, add a check box field named Debug. The default value of Debug
selected here is the organization-level setting, which applies if there are no values defined for a
user or profile.

When you've finished creating the custom setting, add a new value to it. You are prompted
to set the value of the Debug field as with the List custom setting example. But there is an
additional system field called Location. Location determines at which level in the hierarchy
the setting applies. There are two options: Profile and User. Try to create two custom setting
records, one with Debug checked for the System Administrator profile and the other a user in
that profile with Debug unchecked.

Caution

There are storage limits on custom settings data. For example, in a Developer Edition organiza-
tion, you cannot store more than 2MB total in all of your custom settings. To view your current
storage usage and the storage limit for your organization, go to the App Setup area and select
Develop, Custom Settings.

Sample Application: Data Model

In this section, you'll build the Force.com database for the Services Manager sample application
and import records into it. It begins with a discussion of design goals and a specification of the
Services Manager data model. The remainder of the section describes how to implement the
data model specification on Force.com and load sample data.

Data Model Desigh Goals

At a high level, the purpose of the Services Manager sample application is to staff consultants
on customer projects based on their skills, and bill the customers for the consultants’ time. This
means the Force.com data model must store and manage information about the consultants,
customers, projects, staffing assignments of consultants to projects, time spent on projects, and
the skills of the consultants. This data model forms the foundation of the Services Manager
sample application, implemented piecewise throughout this book, designed to illustrate features
of the Force.com platform.

Two other, more tactical goals are described in the subsections to follow.

50

Chapter 2 Database Essentials

Optimized for Force.com Developer Edition

A guiding principle of this book is to focus on features available in the free, Developer Edition
of the Force.com platform. Although it is possible to build a more realistic version of the
Services Manager, one that could form the basis of a production application, it is likely to
introduce dependencies on a premium version of the platform. The most notable example of a
design decision that impacts licensing cost is user authentication, and it is worth discussing in
depth.

In a real-world implementation, each consultant in the Services Manager would be its own user
(a record in the standard object named User). This would enable that consultant to log in and
view only the information he or she has access to. This granular user identity, authentication,
and data access control (covered in Chapter 3) is one of the most valuable features of the Force.
com platform, so naturally it is not free for unlimited use. Salesforce charges per user for its
product.

Rather than using the standard User object and being subject to license restrictions, the Services
Manager implementation is designed around the Contact object. There is no relevant limit on
the number of free Contact records, and they are easy to create, with no passwords or activa-
tion codes required.

If you have a premium Force.com organization and would like to experiment with the User
object, it is a simple migration path from the Contact object. Create a Lookup field on the User
object, referring to the Contact object. That way, you can always restrict the Contact to the
corresponding User who is currently logged in to Salesforce.

Leverage Standard Objects

There are many advantages to using standard objects wherever possible. They are shared by
Salesforce’s CRM applications such as Service Cloud and Sales Cloud, so there are many special
features built in to the platform that you can benefit from. Also, if you plan to build or install
other applications in your Force.com environment, they likely also leverage these objects. It's
much simpler for applications to interoperate and coexist when they share the same core data
objects.

The Services Manager tracks data about consultants and the companies that hire them. This is
an excellent fit for the standard objects Contact and Account, respectively. They contain many
standard fields for such things as name, addresses, phone numbers, and email address, which
can be customized to meet the needs of any application. If the standard fields are not sufficient,
you can also add custom fields, the same types of fields you add to custom objects.

Data Model Specification

This section provides the blueprint for building out the data model. As you learn to use the
Schema Builder (described in the subsequent section) or an equivalent tool, refer back to this
section for the details of the objects, fields, and relationships needed for Services Manager.

Sample Application: Data Model

The first five subsections cover the objects and their fields. Although relationships are displayed
alongside fields in Force.com’s user interface, they are kept intentionally separate from the
fields here. Instead, they are covered in the final subsection. It is easier to create relationships
when all of the objects being related to each other already exist.

Contact

In the Services Manager application, a Contact record represents a consultant, an employee of
the fictional professional services company. Contacts can also store information about a client
of the services company. Contacts contain basic information, such as first and last name, email
address, phone number, and mailing address. This is already captured by the standard Contact
object. Contacts also have information specific to services delivery, such as primary skill,
number of years of experience, education, and the hourly cost rate. The full list of custom fields
to add to the Contact object is shown in Table 2.3.

Table 2.3 Contact Custom Fields

Field Name Type Type Options Description

Active Checkbox Default Value: Checked If false, this consultant has
left the company or is other-
wise unavailable

Education Text Length: 255 College(s) attended

Highest Education Picklist
Level

Home Office Text
Hourly Cost Currency
Rate

Industry Start Date Date

Region Picklist
Start Date Date
Years of Formula
Experience

Values: High School, AA, BS, MS,
MA, PhD

Length: 255

Length: 16, Decimal Places: 2

Values: Unspecified, East, West,
Central

Return Type: Number,

Decimal Places: 0, Formula:
FLOOR ((TODAY ()
Start_Date_ c)

- Industry
/ 365)

Most advanced degree
attained

Office that this consultant
typically works out of and/or
lives nearest to

Internal cost of resource, per
hour

Date started in the field

Area in the country this con-
sultant works in

Date started with consulting
company

Calculated from Industry Start
Date

vww allitebooks.cond

http://www.allitebooks.org

52

Chapter 2 Database Essentials

Project

A project is a unit of work that the customer has contracted. It has financial attributes, such
as the number of hours allocated for its completion, the expected revenue, and how billing is
to be handled. It also has attributes for tracking its lifecycle, such as start and end date, status,
stage, and notes. Table 2.4 contains the list of fields in the Project custom object.

Table 2.4 Project Fields

Field Name Type Type Options Description

Name Text Length: 80 Project name

Type Picklist Values: Billable, Type of project
Non-Billable

Start Date Date Date project begins

End Date Date Date project ends

Billable Hours Number Length: 7, Decimal ~ Number of billable hours allo-
Places: O cated for this project, usually

specified in the SOW

Consulting Budget Currency Length: 16, Decimal Amount budgeted for consulting
Places: 2 portion of this project

Expense Budget Currency Length: 16, Decimal Amount budgeted for expenses
Places: 2

Invoiced Checkbox Default Value: Has the customer been invoiced?
Unchecked

Location Text Length: 255 Geographic location of this

project

Project ID Auto Number External ID, Human-readable unique ID for
Display Format: this project
Project-{00000},
Starting Number: 1

Notes Long Text Area Length: 32,000 General notes on the project

Stage Picklist Values: Planned, In Stage of the project
Progress, Completed,
Canceled

Status Picklist Values: Green, Status of the project
Yellow, Red

Status Notes Text Area Explanation of the project status

Sample Application: Data Model

Assighment

Projects are staffed with resources by the creation of assignments. Assignments associate

a resource with a project for a specified period. Assignments contain a status, the role the
resource is performing on the project, information about the hours billed and remaining, and
expected and actual revenue. All Assignment fields are listed in Table 2.5.

Table 2.5 Assignment Fields

Field Name Type Type Options Description
Name Auto Display Format: Assignment
Number {MMDDYYYY}-{000}, Starting
Number: 1
Start Date Date Date that the assigned resource
begins work on the project
End Date Date Date that the assigned resource
finishes work on the project
Currently Formula Return Type: Text, Formula: If true, today is between Start
Assigned IF (AND (Start_Date c <= Date and End Date
TODAY (), End Date_ c >=
TODAY ()), "Yes", "No")
Description Text Length: 255 Description of this assignment
(e.g., Design, Development)
Hourly Cost Currency Length: 4, Decimal Places: 2 Internal cost of the assigned
resource
Hourly Rate Currency Length: 4, Decimal Places: 2 Rate at which the assigned
resource is billed out
Total Hours Number Length: 5, Decimal Places: 2 Number of hours to be worked
during this assignment
Planned Cost Formula Return Type: Currency, Expected cost of this assign-
Decimal Places: 2, Formula: ment, equal to Total Hours multi-
Total Hours__c * plied by Hourly Cost

Hourly Cost_ c

Planned Formula Return Type: Currency, Expected revenue from this
Revenue Decimal Places: 2, Formula: assignment, equal to Total
Total Hours c * Hours multiplied by Hourly Rate

Hourly Rate c¢

Planned Margin Formula Return Type: Currency, Expected margin from this
Decimal Places: 2, Formula: assignment, equal to Planned
Planned_Revenue__ c Cost minus Planned Revenue

- Planned Cost_ c

53

54

Chapter 2 Database Essentials

Field Name Type Type Options Description
Role Text Length: 255 Role of the resource on this proj-
ect (e.g., Developer, Instructor)
Status Picklist Values: Tentative, Scheduled, Status of the assignment
Closed
Skill

To ensure that projects are staffed with qualified resources, the application must store informa-
tion about the skills of each resource. A skill contains a name, type, and numeric rating of the
competency level of the associated resource. Table 2.6 provides the list of fields in the Skill
entity.

Table 2.6 Skill Fields

Field Name Type Type Options Description

Name Auto Number Display Format: skill-{00000}, Skill name
Starting Number: 1

Notes Text Length: 255 Additional detail to back

up the rating

Rating Picklist Values: O - None, 1 - Minimal, Proficiency of associated
2 - Below Average, 3 - Average, Contact in this skill
4 - Above Average, 5 - Expert

Type Picklist Validation Rule: Type of skill (e.g., Java),
ISPICKVAL(Type ¢, ''), nonempty value required

Values: Amazon Web Services, Apex,
Application Design, C#, Data Modeling,
Documentation, Facebook, Google
Data, GUI Design, Java, Perl, PHP,
Project Management, Ruby, Training

Timecard

As resources work on projects, they keep track of their time. The hours spent each day are
logged to a timecard. Each timecard represents a week of work on the project. Multiplying the
number of hours worked by the internal cost of the consultant produces a cost. You can find
the full list of fields in the Timecard custom object in Table 2.7.

Table 2.7 Timecard Fields

Sample Application: Data Model

Field Name Type Type Options Description
Name Auto Display Format: Timecard name
Number {MMDDYYYY}-{00000},
Starting Number: 1
Billable Checkbox If true, hours in this timecard are
billable
Sunday Hours Number Length: 2, Decimal Hours worked on Sunday
Places: 2
Monday Hours Number Length: 2, Decimal Hours worked on Monday
Places: 2
Tuesday Hours Number Length: 2, Decimal Hours worked on Tuesday
Places: 2
Wednesday Hours Number Length: 2, Decimal Hours worked on Wednesday
Places: 2
Thursday Hours Number Length: 2, Decimal Hours worked on Thursday
Places: 2
Friday Hours Number Length: 2, Decimal Hours worked on Friday
Places: 2
Saturday Hours Number Length: 2, Decimal Hours worked on Saturday
Places: 2
Invoiced Checkbox If true, this timecard has been
invoiced
Invoice Number Text Length: 255 Invoice number associated with
this timecard
Invoice Date Date Date timecard was invoiced
Status Picklist Values: Saved, Status of this timecard
Submitted, Approved,
Rejected
Notes Long Text Length: 32,000 Any comments on the timecard,
Area entered by the consultant
Week Ending Date Last day in the week recorded by

this timecard (a Saturday)

55

56

Chapter 2 Database Essentials

Field Name Type Type Options Description

Total Hours Formula Return Type: Total number of hours worked this
Number, Decimal week, equal to the sum of the
Places: 2, Formula: individual hours columns (Sunday
Sunday Hours ¢ + to Saturday)

Monday_ Hours__c¢ +
Tuesday_ Hours__ c +
Wednesday Hours c¢

+ Thursday Hours c
+ Friday Hours_ c +

Saturday Hours_c

Summary of Data Relationships

Table 2.8 lists the data relationships in the Services Manager and the Force.com relationship
types corresponding to them.

Table 2.8 Relationships in Services Manager

Child Requires

Parent Child Parent? Force.com Relationship Type
Account Project No Lookup

Timecard Assignment No Lookup

Contact Skill Yes Master-Detail

Project Timecard Yes Master-Detail

Contact Timecard Yes Master-Detail

Project Assignment Yes Master-Detail

Contact Assignment Yes Master-Detail

Figure 2.7 shows the same relationships in a diagram format.

The two Lookup relationships in the Services Manager are between Account and Project,

and Timecard and Assignment. They are Lookup relationships because they are optional. An
Account does not require a Project, and a Project does not require an Account. An Assignment
does not require a Timecard.

The remainder of the relationships are Master-Detail. In all of them, the child record requires

a parent record. For example, Timecard records cannot exist without a corresponding Contact
and Project. For mandatory relationships like this, Master-Detail is a good starting point
because referential integrity is enforced. If a Project record is deleted, all child Timecard records
are also deleted.

Sample Application: Data Model

Project bbbl Account

Assignment 3,

Contact Skill

Standard object

- Custom object
>_

Master-Detail relationship

> ---- Lookup relationship

Figure 2.7 Relationship diagram

You might wonder why Contact and Skill are not a many-to-many relationship. It would be the
more normalized way to go. But with the simpler, single Master-Detail relationship, the only
repeated field is Skill Type. You can use a picklist field to keep users working from the same

list of valid skills and a validation rule to increase data integrity. If Skill had a larger set of its
own attributes and they could not be expressed as picklists, it would be a good candidate for a
many-to-many relationship.

You should be aware of the following limitations of Master-Detail relationships:

= Force.com supports a maximum of four levels of cascading Master-Detail relationships. So
a child object in a Master-Detail relationship can be the parent of another Master-Detail
relationship, and so on. The four-level limit in genealogical terms means that a child
can have a great-grandparent object but not a great-great-grandparent. The canonical
example of cascading Master-Detail is the purchase order: A purchase order contains one
or more line items, and each line item contains one or more line item details.

= A single object cannot be the child in more than two Master-Detail relationships. When
an object is the child of two Master-Detail relationships, that object is referred to as
a junction object. It joins two parent objects in a many-to-many relationship. In the
Services Manager data model, Assignment and Timecard are junction objects.

In Force.com as in any technology, there are many ways to do the same things, some better
than others. Given this first cut of the Services Manager data model, these restrictions on
Master-Detail do not seem to be a problem. Incidentally, all the reasons that Master-Detail

57

58

Chapter 2 Database Essentials

relationships were chosen can be also satisfied using Lookup fields in conjunction with other
Force.com features, to be discussed in later chapters.

Implementing the Data Model

This section walks through the creation of the Services Manager data model in Force.com

using Force.com App Builder Tools and Schema Builder. This includes a custom application to
contain the user interface components, four custom objects, and the fields and relationships on
both the custom and standard objects.

To begin, log in to your DE account and click Setup.

Creating a Custom Application

It's a good practice to define your custom application first so that you can add tabs to it as you
build them. The following steps describe how to create a custom application, assign its tabs,
and determine which users can see it:

1. In the App Setup section, click Create, Apps. A list of applications is displayed. Ignore the
built-in applications. Most come with the DE account and cannot be removed. Click the
New button.

2. Enter a label for the application, a name, and a description, and then click the Next
button. The label is the human-readable label for the application, displayed to users.
Name is an internal name, used by Force.com at the API level.

3. Optionally, select an image to be displayed as the logo for your application. This image is
shown in the upper-left corner when your application is active. When you're done, click
the Next button.

Tip
To prepare an image for use as an application logo, first go to the Documents tab and click
the New button. Check the Externally Available Image check box, enter a name to identify the

image, and click the Browse button to locate a file on your computer. Click the Save button to
upload the image.

4. This screen is for selecting the tabs to be included in the custom application. Home tab
is a system-provided tab included in every application and cannot be removed. There are
no tabs defined for the application yet, so do nothing here. Click the Next button.

5. You can restrict access to your application by profile, a grouping of user permissions
discussed in Chapter 3. For now, grant access to System Administrator by clicking the last
check box in the Visible column. Then click the Save button.

You are returned to the list of applications, but it now contains your new application. If you
activate your application by selecting it from the list in the upper-right corner drop-down,
you'll see that it contains a single tab, the Home tab.

Sample Application: Data Model

Creating a Custom Object

The following steps define the custom object for Project:

1. In the App Setup section, click Schema Builder. Initially, all objects, standard and custom,
are shown on the canvas. System objects, a subset of standard objects, are not shown.

2. Click the Clear All link to hide all objects from the canvas. This makes it easier to focus
on the task.

3. Click the Elements tab. Drag the Object item from the palette on the left onto the
canvas. The dialog in Figure 2.8 is shown to capture the details of the new object.

Schama Bullder — salasforce.com - Daveloper Edition

Create New Object

Label |
Plural Labal |
Starts With [Comsoramt =]
Object Name |

Description

Context- \
Sensitive Help © OP®N 1he standard Salsstorcs com Help & Training window

Betting Opan a window using a Visualforce page
Record Name |
Data Type [Teat =

Allow Reports
Allow Activities
Track Fleld
History
Available for

Figure 2.8 Create New Object dialog

4. Enter Project for the Label and Projects for the Plural Label. The Object Name defaults to
Project. Enter a one-line description of the object in the Description field. Enter Project
Name for the Record Name Label, and leave the data type Text. Check Allow Reports,
Allow Activities, and Track Field History; then click the Save button.

5. Now that the object has been created, it’s time to create the fields. Start with the Type
field. It is a picklist field, so drag a picklist from the palette on the left to the canvas,
dropping it directly onto the Project object.

6. In the resulting dialog, enter Type for the label. When your cursor exits the label, the
Field Name is automatically populated. For the list of values, enter Billable. Press Enter

60

Chapter 2 Database Essentials

to start a new line, and then enter Non-Billable. Click to enable the Use First Value as
Default Value option. Click the Save button. You should see the Type field added to the
top of the Project object.

Repeat steps 5 and 6 until all the fields of Project, listed in Table 2.4, are created. There will be
different options in step 6 depending on the type of the field.

At this point, you have finished defining the first custom object of the Services Manager sample
application. To create the remainder of the objects, follow the same steps.

Note

A few of the objects require that the standard field Name be changed from its default type (Text
of length 80) to an Auto Number type. This cannot be done within the Schema Builder. Instead,
visit the App Builder Tools (Setup, Create, Objects), click the object, click the Edit link beside
the standard Name field, and proceed to set the type to Auto Number.

Creating Relationship Fields

The following steps create the Lookup relationship between Project and Account:

1. In the Elements tab in Schema Builder, drag the Lookup relationship type from the
palette. Drop it onto the child object. In this case, the child object is Project.

2. In the dialog, enter the Field Label and Field Name. This is typically the name of the
parent object. For the Project-Account relationship, the name is Account.

3. In the Related To drop-down list, select the parent object and then click the Next button.
The parent object is Account. The Child Relationship Name and Related List Label are
automatically set. The dialog should look like Figure 2.9.

4. Click the Save button to create the relationship field. A line will indicate the new
relationship between the two objects. The fork symbol at one end of the line indicates
the child object. In this case, the fork appears on the Project side.

Repeat these steps until all the Lookup relationships listed in Table 2.8 are created. The steps to
create Master-Detail relationships are slightly different. The following steps create the Master-
Detail relationship between Project and Timecard:

1. In the Elements tab in Schema Builder, drag the Master-Detail relationship type from the
palette. Drop it onto the child object. In this case, the child object is Timecard.

2. In the dialog, enter the Field Label and Field Name. This usually refers to the parent
object. In the Project-Timecard relationship, the name is Project.

3. In the Related To drop-down list, select the parent object and then click the Next button.
The parent object is Project. The Child Relationship Name and Related List Label fields
are automatically set, in this case to Timecards. The dialog should look like Figure 2.10.

Sample Application: Data Model

Schama Builder ~ salesforce com - Developer Edition

Create Lookup Field (Object: Project)

Field Label
Fiald Name
Duseription

Help Teat

Rolated To

Child
Relationship
me

Related List
Label

| Actount

| Account

This text displays on detall and edit pages when users hover over
the Indo icon next o this field

[Accowmt =]
Selact the ofher object 10 which this object s related,

| Proects

[Profects
Spaciy the titke that the relsted list will Rave in all of the layouts
associated with the parent.

Save Cancel

Figure 2.9 Create Lookup Field dialog

Schama Bullder ~ salasforce com - Developer Edivian

Create Master-Detail Field ({Object: Timecard)

Field Label
Flald Nama
Description

Hodp Text

Falated To

Child

Relationship
Ty

Sharing Setling

Related List
Label

Roparentable

|Pragect
[Profeet

This taxt displays on dotall and adit pages whin usars hovar
ovar tha Info ican next io this flald.

Salact the othar objact 1o which this object is related

| Temecards

Bedocd the minimum access level required on the Master
record 1o erante, adit, or dalste related Detail records:

Road Onily. Aows users with at least Read scoess 1o the
Mastar racord to create, adit, or delate related Datail records.

= Read/Write. Aiows users with at least Read/Wite access
1 thir Mastar recard to create, adit, or delate related Datal
records.

| Temecards.
Specity the lithe that the related list will have in all of the leyouts
associated with the parent

Child records can ta reparanted 10 othar parent rcords
_Slvt Cancel

Figure 2.10 Create Master-Detail Field dialog

61

62 Chapter 2 Database Essentials

4. Click the Save button to create the relationship field. A line will indicate the new
relationship between the two objects. The fork symbol at one end of the line indicates
the child object. In this case, the fork appears on the Timecard side.

As you build the relationships, the visual representation in Schema Builder should resemble the
diagram in Figure 2.7.

Tip

One of the most important parts of creating relationships is making sure that they are created
on the correct object. In the one-to-many relationship, the “one” side is the parent, and the
“many” side is the child. Always create the relationship field on the child, relating it to the par-
ent. You can always delete the field and start over if you make a mistake.

Repeat these steps for each relationship in Table 2.8. When you’re done, visit the list of custom
objects (Setup, Create, Objects). Figure 2.11 shows the list. Compare it with yours, paying
particular attention to the values in the Master Object column. This column is showing the
Master-Detail relationships. There should be a total of five master objects listed across all of the
relationships.

Custom Objects ~ ealasforce.com - Developer Edition

Home Chatter Leads A P Cases + -
Expand A3 | Coliapss Al
: Hei for this Page @

@, uick find Custom Objects

Custom objects are database tables that allow you 1o siore data spacific to your srganization in salesforce com.
Force.com Home You can use custom objects (o extend Jcom fi ity o to build new applicat gl

Onca you have creatad a custom object, you can craata a custom tab, custom related lists, reports, and
System Overview dashboards for users to interact with the custom object data. You can also access custom object data through the

Force.com API.

Personal Setup

New Custom Objoct || Schema Bullder
+ My Personal Infi on [uturn, B e

* Emall Action Label Master Object Deployed Dascription

et u Contact,
+ Deskiop Integration Edit| Dol Assignment Project

+ My Chatter Settings Edit| Dol Project
= My Social Accounts and Edit| Dol Shil Contacl
Contacts

Edil| Dol Timacard Contact, Projact

AN

App Setup
¢ Customize
O Create
Apps
Custom Labels
Interaction Log Layauts
Objects
Packages.
Report Types
Tabs

+ Workflow & Approvals

e Aatn

Figure 2.11 Services Manager custom objects list

Sample Application: Data Model 63

Creating a Validation Rule

The Skill object requires a new validation rule to enforce that Skill Type field contains a
nonempty value. Although this requirement could be configured at the user interface level via
a page layout, placing it on the object itself ensures that it is applied consistently across all user
interfaces and other channels for data input, such as importing tools. It doesn’t make sense to
have a Skill record without a Skill Type. Follow these steps to create the validation rule:

1. Go to the Obijects list in App Builder Tools (Setup, Create, Objects) and click the Skill
object.

2. Find the Validation Rules heading and click the New button.
3. Set the name to Type.

4. The code in Listing 2.9 checks for an empty picklist value. Enter it in the Error Condition
Formula text area.

Listing 2.9 Error Condition Formula for Skill Type Field

ISPICKVAL (Type c, '')

5. In the Error Message text area, enter “Type must contain a value.”

6. Click the Save button to create the validation rule.

Creating a Custom Object Tab

Custom object tabs are the gateway to all the native user interface functionality for manag-
ing data in your custom object. The following steps create a custom object tab for the Project
object:

1. Go to the Obijects list in App Builder Tools (Setup, Create, Tabs) and click the New button
in the Custom Object Tabs heading.

2. The New Custom Object Tab Wizard is now displayed. Select the Project object from the
Object field. Click the Lookup icon (magnifying glass) to select a style for the tab and
then click the Next button.

3. Visibility of this tab by profile is easy to change later, so leave this screen unchanged and
click the Next button. This means the new tab is visible for all profiles.

4. In the Add to Custom Apps screen, click the Include Tab check box at the top to uncheck
it for all applications, and then check it for Services Manager only. Click the Save button
to complete the creation of the custom tab.

Repeat these steps to create custom object tabs for all four custom objects in the Services
Manager.

64

Chapter 2 Database Essentials

Setting Field Visibility
New custom fields are hidden by default. They are not visible in user interfaces in Force.com,

and they are also invisible to external tools such as Data Loader. To start using these fields, you
must first make them visible.

Perform the following steps to make the custom fields in Contact visible:
1. In the Administration Setup area, click Manage Users, Profiles.
2. Click the System Administrator profile.

3. Scroll down to the heading Field-Level Security, and click the View link beside the
Contact object.

4. Click the Edit button, and enable all of the check boxes in the Visible column.

5. Click the Save button to commit your changes to the object’s field visibility.

Repeat these steps for the other four objects.

Importing Data

In this section, you will import sample project and resource data into the Force.com database
using the Data Loader tool. This process is divided into three stages: preparing the data, import-
ing it, and then verifying it visually using the native user interface. This is certainly not the
only way to import data into Force.com, and probably not the easiest. But it employs a free,
widely used, fully supported tool from Salesforce that can scale up to support large numbers of
records and complex objects.

Data Preparation

Data Loader operates on CSV files. The first line of the file contains a header listing the
columns present in the data. The following lines are the body of the data, with each line a
record, values separated by commas. You should have access to Microsoft Excel or an equiva-
lent tool for working with CSV files.

To begin, export CSV files for the Project and Contact objects. Because there is no data yet in
the database, these files will be empty except for the header line. This serves as a template for
the import file, providing an example of the data layout expected by the Data Loader.

To export, perform the following steps:

1. Launch Data Loader. Click the Export button.

2. Enter your username and password and click the Log In button. Make sure your password
includes a Security Token appended to it. If you have not yet obtained a Security Token,
log in to Force.com using your Web browser; navigate to Setup, My Personal Information,
Reset My Security Token; click the Reset Security Token button; and get the Security
Token from the email sent to you by Force.com. Click the Next button when your login
is completed.

Sample Application: Data Model 65

3. Select the Project object to export. Click the Browse button to name the export file and
specify its directory. Name the file the same as the object name, and save it where you'll
readily find it, such as the desktop. Then click the Next button.

4. Click the Select All Fields button. Then remove the system fields, which are Id, Ownerld,
IsDeleted, CreatedDate, CreatedByld, LastModifiedDate, LastModifiedByld, and
SystemModstamp. Click the Finish button.

5. Answer Yes to the confirmation dialog. The export is performed, and a summary dialog
is shown. Click the OK button to dismiss it. You now have a CSV file on your desktop
containing a single line with the names of the exported fields.

Repeat this process for the Contact object, but this time remove all the standard fields in step 4
except for Id.

You should have two files on your desktop. Create a new worksheet and import contact.csv
into it. Repeat this for project.csv.

Listing 2.10 is a sample import file containing five Contact records. In the first column, use
the actual 1d values from your contact .csv instead of the values shown here. Listing 2.11
contains five sample Project records. Make sure you save the Project and Contact Excel work-
sheets as two separate CSV files when you're done. (Note: Only a certain number of code char-
acters will fit on one line on the page. The arrow symbol indicates where code that should be
entered as one line is wrapped to the next line.)

Listing 2.10 CSV Import File for Contact

ID,ACTIVE_C,EDUCATION C,HIGHEST EDUCATION LEVEL C,
wHOURLY COST RATE__C,HOME OFFICE C,REGION C,START DATE C,
= INDUSTRY START DATE C,YEARS OF EXPERIENCE C
00310000008TTBgAAO, TRUE,

wUniversity of Chicago,MS,100,Chicago,Central,2/3/2003,6/1/1983,
00310000008TTBrAAO, TRUE, St. Edwards
wUniversity,BS,50,Austin, Central,5/15/2006,5/15/2006,
00310000008TTBSAAO, TRUE, Cascade College,BS,40,Portland,West,
w7/1/2008,1/1/2005,

003i0000008TTBtAAO, TRUE, University of

wArizona, PhD, 120, Tucson,West,10/15/2004,3/1/1992,
00310000008TTBUAAO, TRUE, Fordham University,MS,125,New
wYork,East,6/28/2007,5/1/1979,

Listing 2.11 CSV Import File for Project

NAME, TYPE__C,START DATE_ C,END DATE C,BILLABLE HOURS C,

= CONSULTING_BUDGET _C,EXPENSE BUDGET C,INVOICED C,LOCATION_C,
wDROJECT ID__C,NOTES__ C,STAGE _C,STATUS _C,STATUS NOTES_ C
GenePoint,Billable,1/12/2015,,800,

66

Chapter 2 Database Essentials

w200000,20000, FALSE, "Mountain View, CA",

= Phase 2,In Progress,Green,

Grand Hotels & Resorts Ltd,Billable,2/16/2015,,100,
=30000,0,FALSE, "Chicago, IL",

=, ,In Progress,Green,

United 0il & Gas Corp.,Billable,2/9/2015,,500,
w75000,10000, FALSE, "New York, NY",

=, ,In Progress,Green,

Burlington Textiles Corp of America,Billable,2/2/2015,,200,
=40000,5000, FALSE, "Burlington, NC",

=, ,In Progress,Green,

Express Logistics and Transport,Non-Billable,3/1/2015,,0,
w(0,60,FALSE, "Portland, OR",

= Presales,In Progress,Green,

Data Import

Now that the data is prepared, you're ready to import it. Launch Data Loader again, log in, and
then follow these steps:

1. From the File menu, select Update.
2. Select Contact from the list of Salesforce objects.
3. Click the Browse button and locate your contact.csv file, and then click the Next button.

4. The file structure is verified, and a small dialog is displayed showing the number of records
contained in the file. Check to make sure that this matches the number of records you
expected. Click the OK button to continue.

5. The mapping dialog takes columns from your file and matches them with fields in the
Force.com object. Click the Create or Edit a Map button.

6. The easiest way to create the mapping is to click the Auto-Match Fields to Columns
button. Because the import files were actually once export files, the columns should
match perfectly. Figure 2.12 shows the result of this mapping. All the available Force.
com fields except for Ownerld were mapped to columns of the CSV file. The YEARS_OF_
EXPERIENCE__C column has no mapping because it is a Formula field and cannot be
modified. Click the OK button to continue.

7. The new mapping is copied to the current mapping screen. Click the Next button.

8. Click the Browse button to locate a directory to save the results of the import. Data Loader
creates two files, one containing errors and another containing success messages. Click the
Finish button to begin the import and click Yes to confirm.

9. A dialog is shown with the results of the import. If you received errors, click the View
Errors button to examine them, fix your import file accordingly, and try the import again.

Repeat this process for project.csv.

Sample Application: Data Model

Match the Salesforee flelds to your eolumns.

Clear Mapping Auto-Match Fields to Columns

Name Label Trpe
Arcountid Accoust 1D reference
AssisantName Assistant's Name sring
AssistantPhone Asst, Phone phone
Birthdate Rirthdate date
Department Department strirg
Deseription Coenact Description nexmarea
Email Emad email
EmaiiBouncedDare Email Bounced Date daterime
EmailBouncedReason Emad Bounced Reason sring
Fax Business Fax phone
Firsthame First Hame string

Drag the Salesforce flelds down to the column mapping. To remove a mapping, select a row and click Delete. 4

Fila Column Hesder Namme
Actve_t Acive_e

Education_c Education_¢
Highest_Education Level_c | Highett_Educaton Level_c
Home_Office_¢ Home_Office_c
Hourly_Cost_Rate_c Hourly_Cost_Rate_c
Industry_Start_Date_c Indusery_Saart_Date_g
Region_t Region_c

Start_Date_¢ Star_Date_g

YEARS_OF EXPERENCE_C

oK Save Mapping Cancel

Figure 2.12 Column-to-field mapping for contact.csv

Data Verification

Data Loader outputs a CSV file containing the records successfully imported. But a more
friendly way to look at the successfully imported data is to log in to Force.com and browse the
records using the native user interface.

After you log in, select the Services Manager application from the application drop-down list
in the upper-right corner of the screen. It contains six tabs, one for each of the custom objects
defined in this chapter plus the standard Accounts and Contacts tabs. Click the Contacts tab
and then click the Go button to display the view named All Contacts, which contains all the
records of the Contact object.

You should see a list of the contact records you just imported. By default, only the names are
shown. You can modify this view to show more fields by clicking the Edit link to the left of the
Create New View link and then adding fields in the Select Fields to Display section. Figure 2.13
shows a modified All Contacts View.

Figure 2.14 shows the detail of an individual Contact record. Verify that the currency and dates
imported correctly. Notice that the number of years of experience was calculated from the
Industry Start Date field.

67

68

Chapter 2 Database Essentials

Contaces - salesforcs.com - Developer Edition o
Paige Tumer » Halp Sorvices Managor =
Home Projects Skills. +
| "4/ AN Contacts +| ER | Delete | Create New View B bree &0
Now Contact | Add te Campaign | (1) ABCDEFGHIJKLMNOPQOQRSTUVWXY Z Omer Al
Action Name + Homa Office Regien Hourly Gost Rato Years of Exporienco 5tart Datn.
Edit| Del | €3 Forbes, Sean Austin Central 550,00 6 BM52006
Edit] Del | @ Genzalez, Ross Chicago Central $100.00 - 232003
Edit | Dol | € Rogers, Jack Porfland Wt $40.00 8 THIZ008
Edit | Dol | @ Stumulier, Pat Tucson West §120.00 n 10152004
Edit| Dol | @ Young, Andy Mew York Eant $125.00 EN) B2R/2007
16al6= 0Selected = # 4 Pravious Next» » Page| 1 of1
Figure 2.13 Modified All Contacts View
Cantact: Mr Andy Young ~ salesforce.com - Developer Edition
= Back to List: Profiles
Cpporunitios [0 | Casos |0 | Open Activitios [0 | Acinily Hsslory [0} | ; 10] | Notes & (-]
HTML Ernad Status [0}
Contact Detail (Edit | Dolste | Clona Request Lipdate
Contact Ownar | Paige Turner [Change] Phana (TB5) 241-6200
Name N Andy Young Homa Phona Naw York
Account Namo Dickanson plc Mobilo (785) 265-5350 I
Tide SVP, Oparations Other Phane |
Department Intormal Operations Fax
Hirthdato Emall @ youngfidickenzon.com
Roparts To Asslstant
Lead Source Purchasad List Asst. Phone
Malling Address 1301 Hoch Drive Other Address 1301 Hoch Drive
Lawrence, K5 66045 Lawrance, KS 66045
usA usA
Languages Enghsh Level Primery
Created By Paige Tumer, 4/27/2013 T:43 PM Last Modified By Paige Tumer, 5372013 10:44 PM
Description
* Services Manager
Active Hourly Cost Rate $125.00
Education Fordham University Start Date B/28/2007
Highest Education MS Industry Start Date 5/1/1979
Lavel
Home Office Maw York Years of Experlence 34
Region East
Edit | Delete Clone | Reguest Update
(=) Opportunities New Opportunity | Opportunities Hoip (7
No recards 1o display
_ -5 = -

Figure 2.14 Contact record detail

Summary

To complete your rounds, browse to the Projects tab. Manually associate each Project with a
parent Account of your choice, and verify that all the field types were imported correctly.

Summary

This chapter engaged you with the Force.com database in areas essential for application devel-
opment. The skills covered in this chapter should enable you to build various data-driven
applications, all through configuration rather than coding. Here are some key points to take
forward:

= The Force.com database is not a standard relational database. It’s a logical database based
on Objects and Fields, like Tables and Columns but tuned for business applications and
integrated into every feature of the platform.

= Custom objects are the backbone of development in Force.com. By defining them and
their fields, you are also defining a user interface that is programmatically generated by
Force.com. This interface allows data to be entered and browsed without coding, while
preserving the data integrity called for in your object definition.

= Services Manager consists of four custom objects and leverages two standard objects:
Account and Contact.

69

This page intentionally left blank

Database Security

For many developers, securing an application is the drudge work left after the fun and challenging
development work is done. The good news is that Force.com makes security relatively painless, whether
you think about it before, during, or after an application is built. The concepts of user identity, data
ownership, and fine-grained access control are baked into the platform, requiring configuration rather
than coding in most cases.

You might wonder why this chapter is about only database security rather than being a general discus-
sion of security. After all, Force.com is more than a database. The reason is that the database is the
center of Force.com development. Just as object definitions are leveraged throughout the platform to
construct native user interfaces and strongly typed procedural code expressions, data security measures
are equally pervasive.

This chapter contains the following sections:

= Overview of database security—Take a high-level view of the database security features
available in Force.com and how they interact to protect your data.

= Object-level security—Get in depth on the methods for protecting individual data objects and
their fields.

= Record-level security—Learn how to control access to individual records within your Force.com
database.

= Sample application—Walk through the design and implementation of the security model for
the Services Manager.

Overview of Database Security

Force.com provides a multilayered approach to data security. Each layer secures data using a
different approach, and the layers build on each other to provide a deep, configurable defense.
Figure 3.1 identifies the layers of security and their relationship to data and other layers.

72 Chapter 3 Database Security

Object-Level Security
(Profiles, Permission Sets)

Record-Level Security
(Organization-Wide Defaults)

(Sharing Reason)

Figure 3.1 Security architecture

The box enclosing the Object represents object-level security, which is provided by profiles and
permission sets. A profile is a unit of Force.com metadata used to group users with common
data access requirements. It contains a set of permissions for every object defined in the Force.
com organization. These permissions determine whether users belonging to the profile are
authorized to read, create, edit, and delete records of each object. Also within the profile are
rules determining access to individual fields of an object. Fields can be hidden entirely or
defined as read-only directly in the profile or in page layouts.

Permission sets contain the same permission-related metadata as profiles, but a user can be
assigned to many of them at once. In contrast, a user is assigned to a single profile at a time.
Permission sets are generally used to override profiles on an individual user basis.

Record-level security is layered on top of object-level security. It further restricts access to data
based on the concept of record ownership. But it can never override object-level security.
Organization-wide defaults define the default, most restrictive sharing behavior of each object,
and sharing reasons create exceptions to this default behavior, granting access to specific
groups of users.

Another way to think about Force.com security features is to imagine them as a funnel, as
shown in Figure 3.2. Requests for data enter the top of the funnel and descend, filtered through
successive layers of security technology. If the requests survive until the bottom of the funnel,
they have passed security clearance and are granted.

Overview of Database Security 73

Figure 3.2 Security architecture as a funnel

The four filters in the funnel are described here:

1. Object permissions—At the top of the funnel, the data request is evaluated against
the object permissions. They ensure that the requesting user is authorized by its profile
to take the desired action on this object. The solid line under this level indicates that
requests denied at this point stop moving through the funnel.

2. Field accessibility—The requesting user’s profile is consulted again to determine whether
fields are included in the request that are read-only or hidden.

3. Sharing model—If the user is not the owner of this record or otherwise privileged with
an administrative profile, organization-wide defaults are applied. These defaults designate
records of each object as private, public with Read and Write access, or public with read-
only access. In a slight break of the funnel concept indicated by the dashed line, if the
sharing model prohibits access, the request has one more chance to be granted through
exceptions called sharing reasons.

74

Chapter 3 Database Security

4. Sharing reasons—Sharing reasons override the organization-wide defaults. The owner
of the requested record is matched against a list of sharing reasons relevant to its group
affiliation. If a sharing reason is found, access is granted. Groups are defined as simple
lists of users and other groups or as a hierarchy, allowing permissions of subordinates to
be inherited by their superiors.

Object-Level Security

Object-level security is governed by the profile and permission sets assigned to the user. Profiles
control data access for a group of users on the level of objects and fields. Permission sets also
control data access at the object and field level, but are designed to maximize reuse and flexibil-
ity. This section describes profiles and permission sets and how they are configured.

Profiles

Profiles are the primary way to customize the Force.com user experience. They contain a large
number of settings to control the user interface and data security of your organization. Users
are assigned to profiles based on the tasks they need to perform in your system.

The two types of profiles are standard and custom. Standard profiles are provided with Force.
com and cannot be renamed or deleted, although they can be reconfigured. Custom profiles
have the same functionality as standard profiles but can be named. They can also be deleted if
no users are assigned to them.

To manage profiles, click Setup, and in the Administration Setup area, click Manage Users,
Profiles. In the realm of data security, the two primary sections to focus on are Administrative
Permissions and Object Permissions.

Tip

Make sure Enhanced Profile List Views and Enhanced Profile User Interface options are enabled
for your organization. The Enhanced Profile List Views feature allows up to 200 profiles at a
time to be compared and modified easily, with far fewer clicks than the default user interface.
The Enhanced Profile User Interface organizes profile settings by common administrative tasks
and makes them searchable. To enable these features, click Setup, and in the App Setup area,
click Customize, User Interface.

Administrative Permissions

Two administrative privileges in a profile trump all other security features in Force.com: Modify
All Data and View All Data. Users of a profile with these permissions can modify and view all
records of all objects, overriding all Force.com security measures. These permissions are power-
ful, so grant them with extreme care in a production environment. Developers need these

Object-Level Security

permissions to work with tools such as the Force.com IDE, but this applies only in a sandbox or
development environment.

Object Settings

Object permissions are divided into two sections: one for standard objects and another for
custom objects. They have identical functionality. Note that object permissions cannot be
edited on standard profiles. Figure 3.3 shows the section of a custom profile that defines object
permissions.

Profile: Staffing Coardinator - salecfarce.com = Davaloper Editian
Profile: Staffing Coordinator = & i +
! Profile Hikp foe ths Page @
A Staffing Coordinator
Force.com Home Find Settings... # || Clane Doloto | Edit Propertios
System Overview Profile Ovendow > Object Settings | ~
Personal Setup All Object Sattings
¥ My Parsonal Inf tion Object Name Object Permissions Total Fiekds Tab Settings Page Layouts
= Emall Agcounts Read. Creale, Edit £ Defaull On Account Layout
* Import Assignments Read, Create, Edit, Delete 18 Default On Assignmant Layout
* Deskiop Integration Campeign Members - 29 - Campaign Member Page Layout
= My Chatter Sattings ch Dafaul O
+ My Social Accaunts and e 5 = oo
Centacts Chattar Groups - - DefaultOn -
Console - - Tab Hidden -
App Setup Contacts Read, Creats, Edit 41 Dofault On Contact Layout
* Customize Content - Tab Hidden
+ Create Dashboards - - Defaull On
= Davelop Data.com - = Tah Hidaen
* Deploy = =
Schama Buldsr Documants aad, Craate, Edit, Delats - Default On
Camks App Proviowsr Events - 20 - Event Layout
Instafiod Packages Files - - Defautt On
AppExrtmage Madmictece Farngrsts - - Tab Hiddon -
Critical Updates
Homa - Defaull On Homa Page Dafaull
Ideas 5 5 i " R T
Administration Setup |deas Read. Creale Default On faries by Record Type
Litwaries - - Tob Hidden -
& Manace Usars Misséng Timecards No Access L3 Detault On Missing Timecard Layout
Mass Emall Usars Eeopin - - Cotmilt On -~
Rolos Prafit £ - Default On -
Pormission Sets Pralects Read. Create. Edit. Delels 18 Default On Prolect Lavout

Figure 3.3 Configuring object permissions on a custom profile

Each object name is followed by a list of its permissions. The permissions are described in the
following list:

= Read—The Read permission allows users to view records of this object.

= Create—The Create permission permits Read access and the addition of new records to
the object.

» Edit—The Edit permission allows records in this object to be read and modified, unless
overridden by field-level permissions.

75

76

Chapter 3 Database Security

= Delete—The Delete permission enables users to read, edit, and remove records from this
object. Deleted records are moved to the Recycle Bin, where they can be undeleted or
permanently erased.

= View All—The View All permission is like the systemwide View All administrative
permission but scoped to a single object. It’s designed for use in exporting data because
it circumvents other security features of the platform, ensuring that all records are
accessible.

= Modify All—Like View All, the Modify All permission is intended for bulk data
operations such as migration and cleansing. It allows users to modify all fields of all
records in this object, overriding every other security measure.

New custom objects initially have all permissions disabled for all profiles, except those with
View All Data or Modify All Data administrative permissions. This platform behavior of default-
ing to the most secure configuration ensures that your data is not unintentionally exposed.

Licensing

Profiles are associated with a user license. Licenses are how Salesforce charges for the Force.com
platform when you're ready to go into production with an application. Salesforce has many
license types to provide flexibility in pricing, including low-priced options for external custom-
ers and partners known as “portal licenses,” but the most basic licenses are Salesforce and
Salesforce Platform. The Salesforce Platform license allows full use of Force.com but disables
the business domain-specific functionality, such as CRM or Sales Force Automation (SFA). For
example, a Salesforce license grants you the use of the Opportunity and Case objects, but a
Salesforce Platform license does not. Sometimes even infrastructure features are downgraded.
For example, profiles for a full Salesforce license can delegate administration on standard and
custom objects. The Salesforce Platform license limits this feature to custom objects only.

Planning ahead pays in regard to licensing Force.com. If you are sure you do not need the extra
features of the Salesforce license, select the Salesforce Platform license for your profiles. This
cuts down on the number of objects and features you see during development and prevents
you from accidentally referencing one of them. Also, in order to assign a user to a profile, that
user must have a user license that matches the profile. Your custom profile cannot be associ-
ated with a different license after it has been created.

Permission Sets

Permission sets are a powerful complement to profiles. They contain the same user inter-
face and data security settings as profiles, but are designed to address situations in which the
settings do not apply to a large enough population of users to justify the use of a profile, or
there are too many valid combinations of settings to create a profile for each one.

For example, if one special sales rep was allowed to tentatively staff consultants to projects,
he or she would require the permissions resulting from a partial combination of the Sales Rep
profile and the Staffing Coordinator profile. It is not possible to combine profiles or partially

Object-Level Security

apply them, so without permission sets you would need to create a whole new one-off profile
for this situation. Permission sets provide an elegant, maintainable solution. You would create
a permission set to grant access to the Assignment object only. The special sales rep would get
assigned to this permission set, leaving his or her profile unchanged.

To manage permission sets, click Setup, and in the Administration Setup area, click Manage
Users, Permission Sets. The overview page of a permission set is shown in Figure 3.4. It provides
links to all of the configurable areas of a permission set. They are divided into settings specific
to applications and settings that apply to all applications. After a permission set is created,

it can be assigned to users using the related list on the user page labeled Permission Set
Assignments.

Parmission Ser- Services Manager - Manage Assignments ~ salesforce.com = Daveloper Edition
Pormission St Help for this Page @
S ke i Services Manager - Manage Assignments
Force.com Home S, Find Settings... # ||| Clone | Delata | | Emt Proparties
Systan Ovcview Permission Set Overview Asaigred Users
Descrigtion AFiName Sarvices_Manager_Mansga_Assignments
Personal Setup User License Namespace Prefie
= My Parsonal Information Crosted By Paige Turner, S202013 6:37 AM Last Madified By Paige Turner, 5/29/2013 £:38 AM
» Email
+ Import
* Duskiop Integration Apps
+ My Chatter Sattings
e AU Satiings that apply io Salosforce apps, such s Asslgned Apps
Sales, and custom apps built on Force.com Settings that specify which apps are visibie in the app menu
Learn More
Assigned Connected Apps
App Setup Settings that specify which connectod agps are visitia in the
+ Customiza s
» Croate Object Settings
* Dovelop wllonu o accass objscts and fialds, and settings such as
+ Deploy tab availabity
Sehema Bulder App Permissions
Canvas App Previewer ::nr:;‘m'h parform app-apecific actions, such as "Manage
Inataliad Packages i e
AppExchange Marketplace Apox Class Accoss
Critical Updatos Parmigsions to axocuts Apox classes
Visualforce Page Access
Administration Setup Permissions to execule Visuallone pages
B Manage Usars
Lisars System
Mass Emall Lisors
Roles
2 Sutlings thal apply scross all apps, such as m ion:
Pormission Suts rocond and user managomont Pormessions to porform actions that apply doross apps, such as
Profiles Lsen More “Modify All Data®

Figure 3.4 Permissions set overview

Field-Level Security

Security of fields is determined by a combination of the profile and the page layout. The more
restrictive of the two always takes precedence. The two ways to edit field-level security are
through the profile directly using the Field-Level Security section or through a feature called
Field Accessibility. Field Accessibility is a bit more sophisticated because it provides a consoli-
dated view of fields across page layouts and profiles.

77

78

Chapter 3 Database Security

Field-Level Security in Profiles

To reach the Field-Level Security section, click Setup, and in the Administration Setup area,
click Manage Users, Profiles. Select a profile by clicking its name and scroll down to the Field-
Level Security section. Click the View link next to the object name, such as Project, shown in
Figure 3.5.

Project Fisld-Loval Security for profila: Staffing Coard, - .£0M = lopar Editian
J‘érce.com s DO < rico: Maroger -
Home Contacts Projects A Skills *
- Epersl | v Y Project Field-Level Security toe peafile Hatp for this Page @
S ek Bud Staffing Coordinator
Force.com Home) Lo Piowe
AT el Field Name Field Type Visitle Read-Only
m Overview
b Account Leokup L
Billabie Hours Numbar L
Personal Setup -
Consulting Burdgat Cumaney +
* My Personal Information Craated By Loakup 7 7
& Emall
Es End Date Date v
* Dasktop Integration Expansa Budgat Curmency s
+ My Chatter Settings (] [+
&,:,’:‘:‘m ootk &C Las Modified By Lowskup v -
Locaton Toxt ra
App Sotup Noles Long Tea! Area +
+ Customize Owintt Lodkup v
& Creata Project 1D Auta Number v v
¢ Davelop Project Name Text v
+| Deplay 2 Stage Picklist v
Schema Bullder
Start Data Dt <
Carviat Ao Bravh tart D a.
Instafied Packages ok Pidast v
AppExchange Markstplace Status Notes Taut Araa ¥
Critical Updates Type Picklist <
Edit | Back o Profie
Administration Setup

Figure 3.5 Configuring field-level security for the Project object

The two possible states for a field are visible and read-only. Fields marked as visible are avail-
able for display and modification on page layouts belonging to this profile. Read-only fields
might also be visible on a page layout, but values in these fields cannot be modified.

Field Accessibility

Field Accessibility addresses the finer control of fields provided through the combination of
page layout and profile. The more restrictive of two settings always wins. So, if a page layout
defines a field as read-only that is defined in the profile as being invisible, the profile takes

precedence, and the field is hidden. Field Accessibility provides an easy way to see this behavior
in action.

To use Field Accessibility, click Setup, and in the Administration Setup area, click Security
Controls, Field Accessibility. Select an object and then drill in by Field or Profile to see the
corresponding field accessibility table. Each field has one of four accessibility values:

Record-Level Security

= Required—If a field is defined as required in its page layout and visible in its profile, it is
a required field. This means for a record to be saved, it must contain a value for this field.

= Editable—A field defined as visible in both the page layout and the profile is designated
as editable. This field appears to the user and can be modified.

= Read-only—If a field is declared read-only on its profile or visible in its profile and read-
only in its page layout, then it is a read-only field. It appears in the page layout, but its
value cannot be modified.

= Hidden—Fields that are set to invisible on their profile or page layout are hidden.
Hidden fields are never shown to the users of this profile.

Try marking a field as read-only in its page layout but invisible in its profile. Then hover the
cursor over the word Hidden in the field accessibility table. You'll see the message that the field
is hidden because of field security. If you edit the field again and make it visible via the profile,
the field becomes read-only per the page layout.

Record-Level Security

In Force.com, individual data records within an object are secured through a combination of
three concepts:

1. Record ownership—All records except those on the child side of a Master-Detail
relationship have a single named owner. Record owners are individual users or groups of
users. Ownership of a record can be transferred manually to another user or group.

2. User groups—Users can be organized into flat lists and placed in a hierarchy. Groups can
contain individual users as well as other groups.

3. Sharing model—The sharing model consists of two parts: organization-wide defaults
and sharing reasons. The organization-wide defaults can be configured to lock down
all records by object, regardless of their owner. Sharing reasons selectively override the
defaults to allow access based on record ownership or arbitrary criteria.

This section discusses each concept in more depth.

Record Ownership

When a new record is created, it’s owned by the user who created it. The owner has full control
over the record. The owner can read, edit, and delete the record; share with other users; and
transfer ownership to a different user.

You can experiment with record ownership by creating a record in the native user interface and
examining its detail. Notice that its owner field is set to your user, the user creating the record.
To share the record with others, click the Sharing button. To transfer ownership, click the
Change link beside the owner name.

79

80

Chapter 3 Database Security

Owners are typically individual users, but a queue can also be an owner. A queue is a holding
area for records to which users are assigned. When a user takes ownership of a record in
queue, it leaves the queue and is assigned directly to that user. To configure queues, go to the
Administration Setup area and click Manage Users, Queues.

Most objects support record ownership. The notable exception is child objects in a Master-
Detail relationship. Records in these child objects have no owners. They inherit ownership
from their parent records, and changes in ownership must be made on the parent record.

User Groups

Record-level sharing operates on groups of users, not individual users. Force.com provides two
mechanisms for grouping users relevant to sharing: public groups and roles.

Public Groups

At its simplest level, a public group is a named list of users included in the group. This list can
also contain other public groups. To define a public group, click Setup. In the Administration
Setup area, click Manage Users, Public Groups.

A best practice for public groups is to keep the membership list as short as possible. This
improves performance and simplifies maintenance. Build larger groups up from smaller
subgroups rather than working with individual users.

Roles

Roles are also groups of users but are organized in a hierarchy. Users in roles can inherit the
privileges of the roles below them in the hierarchy. This includes record ownership.

A user belongs to one role at a time, and all applications in your Force.com organization use a
single role hierarchy.

To define roles, click Setup. In the Administration Setup area, click Manage Users, Roles. The
first time you use this feature, Force.com asks you to select a sample set of roles to get started.

Sharing Model

The sharing model defines how record-level privileges are granted to users who do not own
the record. Configuring the sharing model is a two-part process. Organization-wide defaults are
used to establish the most restrictive level of access for each object. Sharing reasons override
the defaults to grant access to individual records.

Organization-Wide Defaults

Every object that allows record ownership has an organization-wide default setting dictating
how records are shared between the owner and other users. Custom objects have several default
settings:

Record-Level Security

= Private—Records belong to the owner and only the owner. With the exception of the

data administration-level privileges View All and Modify All, records are accessible only
to their owners.

= Public Read-Only—Any user can view records in this object but cannot edit or delete

them. Only the owner and users with administrative privileges have rights to edit and
delete.

= Public Read/Write—Any user can view, edit, and delete records in this object. All newly
created custom objects default to this setting.

= Controlled by Parent—This option is available only to child objects in Lookup
relationships. It delegates record-sharing decisions to the parent record. The child records
behave as if they lack an owner. Objects with this default setting have the same record-
sharing behavior as children in a Master-Detail relationship.

When setting organization-wide defaults, begin with the user to receive the minimum access to
data. Set the organization-wide default settings with this user in mind. All users then have at
least this level of access to records. To configure organization-wide defaults, click Setup. In the
Administration Setup area, click Security Controls, Sharing Settings. Figure 3.6 shows the screen
with organization-wide defaults.

Sharing Settings ~ salesforce.com - Developer Edition
J‘(‘)rce.u m o DR < orvicos Manoger -
Home Contacts Projects Ass Skills +
Expard All | Colupse AS 3 :
@ Quick find Sharing Settings

Cteria-Based Sharing Fules Vigeo Tutarial | Helg ior his Page @)
Force.com Home This page displays your arganization’s sharing sattings. Thase saitings spacify the lavel of accesa
your users have lo each others’ data
System Overview

Manage sharing settings for: All Objects
Personal Setup
+ My Personal Information Detault Sharing Settings
© Emall Organization-Wide

e, Defaults Edit Crganization-Wice Defauts Help 7
+ Desklop Integration Oibjoct Dofault Accoss. Grani Accoss Using Hisrarchios.
* My Ghatter Settings Load Public Read/Writo/Transler ¥
* My Soclal Accounts and Contacts
Account, Gontriel and Assel Public Resd/Wiite v
App Setup Contact Privatn v
Opporiunity Public ReadWrite v
* Customize Case Public ReadWrite/Tranafer v
= Create
¥ Duvelop Campaign Public Full Access i
+ Deploy Activity Private L
Schoma Buildor Calendar Hide Datails and Ad Events -
Canvas App Previewss Prica Boak 1o v
Inataliad Packages
AppEsEhanGs Markstplace Assignment Controlled by Parent
Critical Updatos. Project Private v
Saill Controlied by Pasant

Administration Setup

* Manage Users

Timecand

Figure 3.6 Configuring organization-wide defaults

Cantrolied by Pasent

81

Chapter 3 Database Security

The rightmost column of check boxes called Grant Access Using Hierarchies determines
whether the role hierarchy is used on this object to propagate permissions upward to supe-
rior roles. By default, this behavior is enabled. Disabling it causes roles to function like public
groups. Record permissions are shared only between a pair of roles, never aggregated up the
role hierarchy.

Sharing Reasons

Sharing reasons override the organization-wide defaults to allow individual records to be shared
between groups of users. The groups can be roles or public groups. The behavior of the sharing
reason depends on the groups involved and the type of sharing reason.

Sharing between roles results in asymmetric privileges. Users in subordinate roles do not receive
any privileges of their superiors, but superiors receive all the privileges of their subordinates.
Sharing with public groups is symmetric, granting equal rights to both parties. In other words,
a user has access to all records that are accessible to its descendants in the role hierarchy.

Note

Objects with the most permissive organization-wide default (public read/write) cannot use shar-
ing reasons.

Objects with the most permissive organization-wide default (public read/write) cannot use
sharing reasons. The four types of sharing reasons are as follows:

1. Manual—The owner of a record can elect to manually share it with another user or
group of users. The owner specifies the level of access (Read Only or Read/Write) to be
granted. To configure manual sharing, click the Sharing button on a detail record in the
Force.com native user interface. Figure 3.7 shows the user interface for sharing a record
named GenePoint in the Project object.

2. Sharing rules—Sharing rules allow records to be shared automatically by Force.com
based on group membership or arbitrary criteria. In Figure 3.8, a sharing rule is being
created for the Project object. It specifies that members of the West business unit can
automatically read and write all Project records owned by their colleagues in the same
business unit. In Figure 3.9, a criteria-based sharing rule is being defined to provide users
in the Executive role with Read and Write access to billable projects.

3. Procedural—Records can be shared programmatically using Apex code. This allows a
developer to define the conditions that govern the sharing of a record. This is discussed
in Chapter 5, “Advanced Business Logic.”

4. Delegated administration—Profiles contain two special systems permissions called
View All Data and Modify All Data. If these are granted, they exempt users in that
profile from all sharing rules, giving them access to all records regardless of owner. This
privilege is intended for data import, export, and cleansing programs that need to run
unencumbered by sharing rules.

Record-Level Security 83

L Sharing Desail; Genefoin 1 salesforc:com = Oeveloper Edition 2
ﬁrcc,com Search st T I 5ervicos Hanugor -]

Home Contacts B/l W Assignments Skills Timecards +

> =

" Sharing Dotadl Halp for this Page
M GenePoint
GenePaint

This page lists the users, groups, roles, and terrtories that have sharing access to GenaPoint. Click Expand List 1o view all usars wha have access
L1

View: | All ¢ Edit] Create New View

ABCDEFGHIJKLMNOPORSTUYVWXY Z Oter All

User and Group Sharing Add | | Expand List Usar and Gioup Snating Help 7
Action Typa Nama ¢ Accass Lavel Roascn
User Ealge Tumar Full Accass Ownar

Explanation of Access Lavels

« Full Access - User can view, edit, delele, -ﬁlrun:hﬂnrmd.ﬂnrﬂnlllumrdlh-inyimludhmmm
= Read/Write - User can view and edil the record, and add records,

ORMON}' Usar ca vidw 1o rscond. and add mmlrﬂwp d o add nobes. of

» Private - User cannol access the record in any way.

Copyright © 2000-2013 salesforos.com, Inc. All ights reserved. | Privacy Statement | Security Statement | Tarms of Usa | 508

Figure 3.7 Manually sharing a Project record

Setup: Project Sharing Rule ~ salesforce.com - Developer Edition Fo
- Setu Project Sharing Rube ~ 13 [+] - = — — =
Duiick Fend Belup Hatp for this Page
camnian | coimmans | PrOjECE Sharing Rule
Force.com Home Use sharing rules to make b your i vice sharing sefings for
definad sets of users.
System Overview Note: "Roles and subordinates” includes all users in a role, and the roles below that role. This
includes portal rokes that may give access 1o users cutside the erganization,
Personal Setup You ean use sharing rules only 1o Grant wider access to data, not 1o restrict access.
+ My Parsonal Information
+ Emall Step 1: Rule Name | = Ruguired Infarmation
* Impart Label | west
* Duskiop Integration
B G it Rula Kama | west '
* My Social Accounts and Contacts Daserigtion
App St Step 2: Sefect your rule type
iy Auls Tyne Based on record owner | Based on crileria
+ Groato =
:D ; Step 3: Select which records to be shared
Schuma Buikder Projoct: owned | Roles 2 West L]
Carvas App Proviewer ¥ mambars of
Installed Packages
AppExchangn Makotplacs Stop 4: Select the users to sharo with
Critical Updates Share with | Roles et
Administration Setup Step 5: Select the lovel of access for the users
* Manage Usars Access Level | Readiwrite
* Manage Apps
» Company Profile
O Security Controls L | | Cancal J
Sharing Seaings

Figure 3.8 Creating a sharing rule for projects

84

Chapter 3 Database Security

Setup: Projict Sharing Rube = salosforce.com - Developer Edition

+ My Parsonal Information Step 1: Rule Name | = Roguired Information
+ Email Label I R
ol Import

+ Dusktop Integration Rule Name | miianie

+ My Chatter Sattings

»/ My Social Accounts and Contacts Stop 2: Select your rule type
Fula Type Basod on rocord owner |« Based on oritera
App Setup
i Customize Step 3: Select which records to be shared
.t Criteria Figld Operator Valug
¥l Davelop | Troe : | equals z Billable @y AND
» Deploy - :
Schama Builder Mone Hose AlD
Canvas App Priviswer ans flome:s AND
Instatod Packages rTe— 3 | ==Nome== z AND
ApErcange Markeiplsce —~None=— 1| —None—
Critical Updates
Add Fiter Legic...

Administration Setup Step 4: Seloct the users to share with

* Manage Users
Shara with :

+ Manage Apps rowith | Aoles Exeuve

+ Company Profile

@ Security Gontrols

Sharing Settings Accoss Lovel | Read/Wite

Step 5: Select the level of access for the users

ik Accossibity

Password Policies Bave Cancsl
Session Settings .
Network Acoess

Login Access Policies

Cartificate and Koy Managomant

Single Sign-On Sattings

Auth. Prosiders

Igennty Provider

View Setup Audit Tral

Figure 3.9 Creating a criteria-based sharing rule for projects

Sample Application: Securing Data

The fictional organization driving the development of your Services Manager sample applica-
tion is organized into independent business units by geography. Business units generally do
not share resources or projects, but might do so in special circumstances. All business units

roll up to an executive team, which has access to all data. The employees of each business unit
perform essentially the same tasks: booking deals, staffing projects, billing time on projects, and
invoicing their clients.

From this description of the organization’s structure, consider how to make the best use of the
data security features of Force.com. The goal is to allow users access to precisely the right data
they need in order to perform their jobs, no more and no less. The configuration of Force.com
security features necessary to achieve the goal will be referred to as the security model.

In this section, you will walk through the design, implementation, and testing of the security
model for the Services Manager application.

Sample Application: Securing Data

Designing the Security Model

To begin the design process, review the fundamentals of Force.com security and the sample
application’s security requirements:

= Force.com data security has two facets: profiles and the sharing model. Profiles protect
objects and their fields, and the sharing model controls access to individual records.

= Data security in the sample application is determined by an employee’s job function and
business unit. Job functions are identical across business units, and business units do not
normally share data.

The design strategy followed in the remainder of this section examines each of the sample
application’s security requirements and discusses the configuration of the Force.com security
features necessary to satisfy them.

Security by Job Function

Job functions dictate what type of data a user is allowed to view and modify. For example,
consultants should not create projects or assignments. A staffing coordinator creates projects
and assigns resources to them. But a consultant is allowed to create and edit timecards.

As you're thinking about job functions, you're naturally discussing the objects that make up
the application. In Force.com, profiles control access to objects and fields. To design profiles for
the Services Manager application, start by listing all job functions and objects in a grid. At the
intersection of each job function and object, determine the level of access needed. The level of
access is expressed as a series of permissions. The permissions are read, create, edit, and delete.
Table 3.1 shows the output of this exercise.

Table 3.1 Services Manager Profiles

Profile Project Contact Timecard Assignment Skill Account
Sales Rep Read Read Read Read
Create Create
Edit Edit
Delete Delete
Staffing Read Read Read Read Read
Coordinator
Create Create Create Create
Edit Edit Edit Edit

Delete Delete Delete

85

Chapter 3 Database Security

Profile Project Contact Timecard Assignment Skill Account
Project Read Read Read Read Read Read
Manager
Edit Create Create
Edit Edit
Delete Delete
Consultant Read Read Read Read Read Read
Create Create
Edit Edit
Delete
Accounts Read Read Read Read Read Read
Receivable
Create Create Edit Create
Edit Edit Edit
Delete
Vice President Read Read Read Read Read Read
Create Create Create Create Create Create
Edit Edit Edit Edit Edit Edit
Delete Delete Delete Delete Delete Delete

Security by Business Unit

Business units are autonomous minicompanies that have a somewhat competitive relationship
with each other. All business units report to an executive team. The sample organization is
shown in Figure 3.10.

Figure 3.10 Services Manager business units

Sample Application: Securing Data

The Force.com security model must account for the following facts about the organization:

= In normal day-to-day operations, business units do not share data. This includes projects,
resources, customers, and contacts. All data is private, belonging to the business unit that
created it.

= In some cases, business units might need to share records. For example, a consultant with
specialized skills is needed on projects in all three business units.

= Members of the executive team are able to read and write all data.

In the preceding section, you designed profiles to provide each job function in the organization
with access to objects and fields. Now you must look at the requirements to protect each record
of data. This is where Force.com’s record-level security features come into play. To design for
record-level security, use the following three steps:

1. Establish the sharing model—For each object, determine the most restrictive mode
of sharing that is called for on its records. For the custom objects found in Services
Manager, the options are Private, Public Read Only, and Public Read/Write. Private
means that records remain under the control of their owners. Do not consider objects
on the Detail side of Master-Detail relationships because records in these objects inherit
ownership from their parent record. The output of this step is a list of objects, each with
a default access setting (Private, Public Read Only, or Public Read/Write).

2. Build groups of users—Identify scenarios in which users need to share data outside of
the restrictive defaults defined in the sharing model. Look for groups of users involved in
these exceptions to the sharing model. Examine the flow of information between the two
groups. It can be symmetric, with both groups getting equal access to the data. Or it can
be one-sided, with one group receiving elevated rights to another group’s data without
reciprocation. The output of this step is a list of roles and public groups. Use roles where
the sharing relationship is one-sided, and public groups where the relationship is equal.

3. Set sharing rules—Using the list of roles and public groups from the preceding step,
build a list of sharing rules. To build each rule, follow three steps, as shown here:

a. Determine which group owns the record to be shared.
b. Identity the other group requiring access to the records owned by the first group.

c. Decide whether the other group requires Read Only or Read/Write access to the
shared record.

Following the first step creates the results given in Table 3.2, which shows the sharing model
chosen for each object.

87

88

Chapter 3 Database Security

Table 3.2 Sharing Model for Services Manager

Object Sharing Model
Project Private
Contact Private
Account Private

In the second step, the groups of users are defined. In Services Manager, the only groups
relevant to sharing are the business units. Each business unit will become a role, including the
executive team.

For the final step of defining sharing rules between the groups, the requirement is to allow
users in the same business unit to collaborate on records. To accomplish this task, grant each
business unit Read/Write access to records owned by users in its business unit.

Implementing the Security Model

In the preceding section, you designed the sharing model for the Services Manager sample
application. In this section, you will implement it in your Force.com DE organization. The
implementation involves five separate tasks:

1.

Create profiles—Profiles control access to objects and fields. The profiles in Services
Manager are modeled after job functions such as Consultant and Project Manager.

Configure field accessibility—Profiles also provide fine-grained control over the fields
within an object. In Services Manager, several cases exist in which a particular type of
user needs Read access to an object, but not the whole object. Some fields are sensitive
and should be hidden. Supporting these cases using field-level accessibility settings

is easy.

Set organization-wide defaults—This is the first step in defining record-level control
over data. All records have an owner, initially the user who created the record.
Organization-wide defaults are defined on each object and dictate which users besides the
owner, if any, also receive access to the records.

Establish role hierarchy—Roles provide a way to group users into a hierarchy. Users at
higher levels in the hierarchy receive access to all records owned by their subordinates.
In the Services Manager example, roles are used to model geographically distinct business
units. By default, business units do not share data with each other. An executive team at
the top of the hierarchy receives access to all data.

Add sharing rules—Sharing rules are one way to override the organization-wide defaults.
They automatically share records between two groups of users based on record ownership
and group membership. In Services Manager, sharing rules are used to allow record
owners in the same business unit to collaborate on the same data. For example, if two

Sample Application: Securing Data

Project Managers are in the West, they should be able to see each other’s Project records
because they work on the same team.

Create Profiles

On the Setup screen in the Administration Setup area, click Manage Users, Profiles. For each
profile identified in Table 3.1, follow these steps:

1.
2.

Click the New Profile button.

Select an existing profile to use as the starting point for the new custom profile. Standard
Platform User is a good choice because the Services Manager sample application can work
with a Salesforce Platform user license.

Enter the profile name and click the Save button.

The new profile is created—a copy of the existing one. Click the Edit button to
customize it.

In Custom App Settings, select Services Manager as the default.

Scroll down to the Standard Object Permissions section. Check off the boxes as
appropriate to grant access to Accounts and Contacts. Repeat the same process in the
Custom Obiject Permissions section for the four custom objects in the Services Manager
application.

Click the Save button. As a shortcut to create more profiles, click the Clone button and
start building the next profile from step 3.

When you're done, your Profiles page should resemble Figure 3.11.

Configure Field Accessibility

In addition to object-level security, you also need to protect sensitive fields. Newly created
custom fields are always invisible. They must be explicitly made visible using a profile or
permission set. You need to consider the sensitivity of each field to each type of user, an excel-
lent security best practice enforced by Force.com. For example, a Consultant can see all of the
fields on a Project object except the finance-related fields Consulting Budget, Expense Budget,
and Invoiced.

Follow this procedure to set the visibility of fields in an object:

1.

Click Setup, and in the Administration Setup area, click Security Controls, Field
Accessibility.

Click the object to configure—for example, Project.
Click View by Profiles.

Select the profile—for example, Consultant. At a glance, you can see the access level of
every field in the profile.

89

90

Chapter 3 Database Security

© N o o

= Timecard—All fields visible, but invoice-related fields (Invoiced, Invoice Number, Invoice

= Assignment—All fields visible, but finance-related fields (Hourly Cost, Hourly Rate,
Planned Cost, Planned Margin, Planned Revenue) are hidden from the Consultant

= Contact—All fields visible, but the Hourly Cost Rate field is hidden from the Consultant

For each field to change, click its corresponding field access value.

Click the first Visible check box to make the field visible to this profile.

Click the Save button.

Repeat from step 4 until every profile is assigned the correct access levels for this object.

jf)rce.u_n N

Home

Profiles ~ salasforce.com

Search

Contacts Projects Assignments Skills

Bearch

Timecards

Devaloper Editian

*

Paige Turner = Help

Services

(o]

Expand Al | Collapse All

QY Quick Find
Force.com Home
System Overview

Personal Setup

* My Personal Infermation
+ Email

» Import

= Desktop Integration

* My Chatter Settings

* My Secial Accounts and
Contacts

App Setup

» Customize
* Create

= Develop

» Deploy

> Help for this Page €
Profiles $
All Profilas : Edit| Delete | Create New View S
NewProfile | [f3) A B CDEF BHIJKLMNOPQRSSTUVW
X ¥ Z Other All

Action Profile Nama User License 4

Edit | Cl... Silver Partner User Silver Partner

Edit | Ci... Standard Platform User Salesforce Platform

Edil | D... Stafling Coordinalor Saleslorca Platiorm

Edit|D... SalesRep Salesforce Platform

Edit| D... Project Manager Salesforce Platform

Edit | D... Consultant Salesforce Platform

Edit | D... Accounts Receivable Salesforce Platform

Edit | D... Vice President Salesforce Platform

Edit | Cl... System Administralor Saleslorce

Edit| Cl... Solution Manager Salesforce

Edit| Cl... Read Only Salesforce
1-25of 28 =| 0 Selected x| Nextr & Page 1 of2

Figure 3.11 Services Manager profiles

Repeat this process on the following objects:

Date) are hidden from the Consultant profile.

profile.

profile.

S¥rax 1024x768

Make all fields on the object visible for the remaining profiles. When you’re done with these
steps for the Project object, your Field Accessibility screen for the Consultant profile should
resemble that shown in Figure 3.12.

Sample Application: Securing Data

* My Personal Information

» Email

= Import

= Desktop Integration

* My Chatter Settings

* My Social Accounts and Contacts

App Setup

= Customize

Create

» Develop

» Deploy
Schema Builder
Canvas App Previewer
Installed Packages
AppExchange Markelplace
Critical Updales

Administration Setup

+ Manage Users

* Manage Apps

* Company Profile

@ Security Controls
Sharing Settings
Field Accessibility
Password Policies
Session Settings
Nelwork Access

Fisld Accessibility: Project ~ salesforce.com - Davelopar Edition

View by Fields
Use this option to choose a field and view a table of field accessibility for different
profiles and record types.

View by Profiles Current View
Choose a profile to view a table of field accessibility for different record types.
Profile: Consuliant

Field accessibility for Profile: Consultant

Click on a cell in the table below to change the field's accessibility
Fields Fiold Accoss
Account Ednatie

Figure 3.12 Accessibility of Project fields to Consultant profile

Set Organization-Wide Defaults

Follow these steps to configure the organization-wide defaults:

1.

2
3.
4

Click Setup. In the Administration Setup area, click Security Controls, Sharing Settings.
Click the Edit button.
In the Project row, select Private. Repeat this for Contact.

Click the Save button.

All Projects and Contacts are now private. This means that only the owner of a Project or
Contact is able to see it. Although this is not the desired behavior, it is the most restrictive
setting. From there, you will use sharing rules to open access to members of the same business

unit.

Establish Role Hierarchy

In the Services Manager sample application, business units are represented using roles. Roles are
chosen over public groups because they provide the one-way sharing needed between business
units and the executive team.

91

92

Chapter 3 Database Security

To configure the roles, follow these steps:

1. Click Setup. In the Administration Setup area, click Manage Users, Roles. If you’ve never
used this feature before, click the Set Up Roles button to continue past the display of
sample role hierarchies.

2. Rename CEO to Executive.
3. Rename three of the roles reporting to Executive to West, Central, and East.

4. Delete the unneeded roles, starting with those at the lowest level of the hierarchy.

When you're done, your role hierarchy should appear as shown in Figure 3.13.

Creating the Role Hisrarchy - talasforce.com = Developer Edition

jf)rcc.com s e

Home Contacts Projects Assignments Skills Timecards #

Expand All | Collapse All Help for this Page @
. . olp for this Page
@ Quick Find Creating the Role Hierarchy 9
You can build on the existing role hierarchy shown on this page. To insert a new role,
Force.com Home click Add Role.
Your Organization's Role Hierarchy Show in tree view
System Overview
Collapse All Expand All
5 None
Personal Setup Add Rola
+ My Personal Information 5" Execullve Edit| Del| Assign
+ Email Add Role
3 ipore B Central Edit| Del| Assign
» Desktop Integration & m _
+ My Chatter Settings t- East Edit| Del| Assign
+ My Social Accounts and Add Roie
Contacts B West Edit| Del| Assign
Add Role
App Setup
= Customize
» Create
» Develop
» Deploy
Schema Builder

Figure 3.13 Services Manager roles

Add Sharing Rules

The goal in using sharing rules is to allow users in the same business unit to collaborate and
share data. A record created by one user should be available to all users in the same business
unit and their superiors, the executive team.

Sample Application: Securing Data

To configure sharing rules, follow these steps:

1.
2.

Click Setup. In the Administration Setup area, click Security Controls, Sharing Settings.

Scroll to the bottom of the screen. Click the New button in the Project Sharing Rules
section.

Enter a rule label, and its name will be automatically set based on the label—for example,
West.

The first pair of drop-down lists identifies the record owners who will be sharing. Select
Roles from the first drop-down list and a role from the second—for example, West.

Select the group of users to share with. To share records within the same business
unit, set this pair of drop-downs to the same values as those in the preceding step—for
example, Roles and West.

The final drop-down list, Access Level, specifies the level of access that the second group
of users receives to the shared records. Select Read/Write.

Repeat this process to share Project records within the other two business units, Central and
East. Records are automatically shared with executives because they lie above the business units
on the role hierarchy. Figure 3.14 shows the completed list of sharing rules.

Sharing Sertings ~ salesforce.com - Developer Edition
sl el Lead Sharing Rules New | Recalculate Load Sharing Rulos Help 7
O Security Controls
Shating Seling No sharing rulas specified.
Field Accessibility
Passwerd Policies Account Sharing Rules Mow || Rocalculate Ageount Bharing Rules Help |2
Seasion Sattings
Notwork Acooss No sharing rules specified
Login Access Policies
Certificate and Key Managemant Contact Sharing Rules _New || Recalculate Contact Sharing Rules Help (7
Singhe Sign-On Settings
Auth. Providers Action Crieria Shared With Contact
Identity Provider Edit | Dol Ownar in Relo: Cantral Roba: Cantral Read/Writs
iAW S8LE AT Edit| Dol Owner in Rolo: Enst Rolo: Enst ReadNiito
Expiro All Passwords i . i
o alad Ademink = Edit | Del Owneor in Rolo: West Rolo: West ReadWrite
Remots Sihe Satiings — -
HTML D and Semings | PRACUOLY Sharing Wow || Racalculats Opportuniey Sharing Rules Halp (7
* Communication Templates
= Translation Workbench Na sharing rulas specified.
= Data Managemant
* Monitoring Case Sharing Rules Mew || Recalculate Cosn Sharing Rules Halp (7
* Mabile Administration
* Deskiop Administration No gharing rules specified
= Emall Administration
+] Google Apps Campaign Sharing Rules | Mew || Recalculate Campaign Sharing Rules Help 7
No sharing s Spocified,
Project Sharing Rules New | | Recalculate Profect Sharng Rules Halp 7
Action Criteria Shared With Access Lovel
Edit | Dol Ownér in Rola: Caniral Rl Cantral RaadWrila
Edit | Dal Ownar in Rolo, East Role: Easl RisadWrils
Edit| Dol O in Rote: Weest FRole: West Read/Wrile

Figure 3.14 Services Manager sharing rules

93

94

Chapter 3 Database Security

Testing the Security Model

Although Services Manager is a sample application, it’s a good idea to get into the habit of

testing the security of all Force.com applications before you go into production with them.

If you do not take the time to test methodically, a user or group of users could be unable to
perform their jobs or become exposed to confidential data intended for other users.

Security testing requires the same level of patience and attention to detail as the actual configu-
ration. If you've kept a spreadsheet or another document with the details of your configuration,
you can use it to construct a test plan. Where feasible, make sure you test from the perspective
of every group of uniquely privileged users. The native user interface is a great tool for security
testing because it exposes the underlying security model accurately, without the distortion of
potentially buggy custom code found in custom user interfaces.

Test object and field visibility by visiting tabs. Test access levels by looking for buttons that
modify the state of the record on the pages in these tabs. Test sharing rules by creating records
with different owners and checking their visibility to other users.

In the following subsections, you will create three additional users for testing, prepare some
test data, verify object and field visibility for three profiles, and test manual sharing between
two roles.

Create Additional Users

Force.com Developer Edition provides you with up to seven free users for your testing. Two of
the users are licensed to use the full Salesforce functionality, which includes all the standard
objects. Three of the users are Salesforce Platform Users, meaning they have access to a subset
of the standard objects. Two of the users are Force.com - App Subscription users, which are
roughly equivalent to Salesforce Platform Users. Services Manager can be tested using Salesforce
Platform Users.

Although you could use one user and cycle him through the various roles and profiles, creat-
ing as many users as you can makes testing more efficient and intuitive. Start with a Staffing
Coordinator in the West, a Consultant in the West, and a Vice President in the Executive team.

Follow these steps to create each new Salesforce Platform user:
1. Click Setup. In the Administration Setup area, click Manage Users, Users.
2. Click the New User button.

3. Enter First and Last name and then Email. Set Profile to one of the custom Services
Manager profiles and select a role. Make sure that the check box Generate New Password
and Notify User Immediately is selected. Then click the Save button.

4. You will receive an email with a link to log in as your new user. Visit this login link.
5. Set your new password.

6. Click Setup. In the Personal Setup area, click My Personal Information, Grant Login
Access.

Sample Application: Securing Data

7. Grant login access to your administrator by entering a date in the second input field and
clicking the Save button. This is a time-saving step that allows you, the administrator, to
log in temporarily as the user without going through the full login process of entering a
username and password.

Repeat this process for each new user. When you're done, you should have a list of users resem-
bling the one shown in Figure 3.15.

All Ugars ~ salesforce.com - Déveloper Edition
Search,. Search Paige Tumer * Help Services Manager ~

gnments Skills Timecards 4

Users Help for this

All Users 3+ Edit| Create New View n

ABCDEFGHIJKLMNOPOQRSTUVWXYZ

New User Rosel Password(s) Add Multiple Users

Bction Full Name + Alias Username Last Login Rele Active Profile
Edit Bar,Tim TBar timbarr.dl+3e@omail.com West v Consultant
i Staffi

Edit Cade,Barry BCade barrycade di+3e@amail.com West v c;-gignmr

Edit E::::’ Chatter chatty004iD000000ISyeac zbrvthe7art@chatter salesforce.com w aiecEes
Force.com -

Edit Dwyer, Barb BDwye barbdwyer.di+3ef@gmail.com v Mﬁ bacrigtion
User

. Oakey, : 5/26/2013 . Vi

Edit g COake camieoakeydi+3e@amail.com 1aapy Exacuive o =

= Tumer, > 2 512972013 System

Edl paice PTum paigetumer.d.3e@gmail.com 12:10 AM ¥ administrator

Now User Resot Password(s) Add Multiple Users

AB AREEIAIL LR MMAD ABIE T I WY VT

Figure 3.15 Services Manager users

Prepare Data

If you log in as a nonadministrator, you'll notice that no Project records are visible. But you
imported some in the preceding chapter, so where are they? Because your sharing model is set
to Private, they are accessible only to the owner, which is the administrator user you used to
import them.

To get started with testing profiles, you need to transfer ownership of some records. Log in as
the administrator. Grant your Consultant user ownership of a Contact record by visiting the
record and clicking the Change link beside the owner name. Figure 3.16 shows the record with
a new owner. Note that the owner is different from the user who created the record.

95

96

Chapter 3 Database Security

Contact: Mr Tim Barr - salesforce.com - Developer Edition

Contact Detail Edit Dslete Clone Request Update
Gontact Owner Tim Barr [Change] Phone (785) 241-6200
Name Mr Tim Barr Home Phone New York
Account Name Mobile (T85) 265-5350
Title Other Phone
Department Fax
Birthdate Emall
Reports To [View Org Chart] Assistant n
Lead Source Purchased List Asst. Phone
Mailing Address 1301 Hoch Drive Other Address 1301 Hoch Drive
Lawrence, KS 66045 Lawrence, KS B6045
usa usa
Languages English Level Primary
Created By Paige Tumer. 4/27/2013 7:43 PM Last Modified By Paige Tumner, 5292013 12:28 AM
Description

¥ Services Manager

Active v Hourly Cost Rate $125.00
Education Fordham University Start Date G2B/2007
Highest Education MS Industry Start Date 5/1/1879
Level
Home Office New York Years of Experience 34
Region East

Edit Delete Clone Request Update

(' Opportunities New Opportunity Opporiuniies Help 7

No records lo display

Figure 3.16 Contact record with new owner

Repeat the same process to transfer ownership of a Project to your user in the Staffing
Coordinator profile.

Test the Consultant Profile

Now log in as a user in the Consultant profile. Click the Contacts tab and click the Go button.
You should see the Contact record. Using the Timecard tab, verify that you can create a new
record. Do the same for the Skills tab. Note that the Assignment tab does not contain a New
button. That’s because the Consultant profile prohibits this user from creating an Assignment
record. Also notice that the Hourly Cost field is hidden.

Before you leave this record, click the New Skill button and add a few skills to the consultant.
Then click around in the other tabs to verify that the consultant cannot create a Project or
Contact and cannot see the hidden fields in these objects.

Test the Staffing Coordinator Profile

When you're satisfied with the Consultant, log out and log in as a Staffing Coordinator. Verify
the following behaviors of this profile:

= Can create, edit, and delete Projects and view all their fields

= Can create, edit, and delete Assignments

Sample Application: Securing Data

= Can create, edit, and delete Contacts
= Cannot create, edit, or delete Skills

= Cannot create, read, edit, or delete Timecards

Test the Executive Role, Vice President Profile

Log in as your Executive VP user and verify that this user has full access to any of the records
owned by the other users. This includes the ability to edit, delete, and change ownership and
share the records.

Recall that the privileged access of this user stems from a combination of two Force.com secu-
rity features:

1. Executive role—The Executive role is at the top of the role hierarchy. All Project and
Resource records owned by users below this level are automatically shared with users
belonging to the Executive role.

2. Vice President profile—The Vice President profile has full access to all the objects and
fields used in the Services Manager.

Test Business Unit Collaboration

Say that the Central business unit’s Staffing Coordinator requests a specialized consultant for
a high-profile project, but this consultant works in the West. Verify that the security model
supports this scenario using the following steps:

1. Log in as the System Administrator or an Executive VP user.

2. Locate the record of a Contact working in the West. Verify this by clicking the Contact
record’s Owner field and examining the value of that user’s role.

Click the Sharing button.
Click the Add button.

In the Search drop-down list, select Roles.

o o M

Select Role: Central and click the Add button. The Share With list now contains Role:
Central. Keep the Access Level at Read Only because you do not want the Central users
to be modifying this West-owned Contact.

7. Click the Save button.

The sharing detail screen for this Contact should look like Figure 3.17. Note the presence of
both the sharing rule and the newly added manual share.

97

98

Chapter 3 Database Security

Sharing Datall: Tim Barr ~ salesforce.com - Developar Edition

ﬁrce.com o= R < orvices anager -
. Home EoUTER Projects A Shkills. *
&l
* = Sharing Oetail Halp for this Page g
“/ Tim Barr
Tim Barr

This page lists (he users, groups, roles, and terrtones thal have sharng access 1o Tim Barr, Click Expand List 1o view all users who have access lo
it

View: all 3 Edit] Croato Now View

ABCDEFGHIJKLMNOPORSETUVYWXY Z Oher All

User and Group Sharing Add Expand List
Action Typa Name + Contact Access Reanon
Edil| Del Rola Cantral Road/Write Manual Sharing
User Paige Turner Road/Write Account Shating
Usor Tim Barr Full Accoss Crwnier
Role West Read/Write Conlact Sharing Rule

Explanation of Access Levals

= Full Accaas - Uises can view, edit, delete, and transfor the record. User can alsd eatend shafing accass 16 olhes users.

* Read/Wriin - User can view and edit tho record, and add associated rocards. notos, and atiachments io it

= Read Only - User can view the record, and add associated records o it. They cannot edit the record or add notes or sttachments.
= Privale - User cannol access the record in any way.

Copyright © 2000-2013 salesforce.com, inc. AN rights reserved. | Privacy Statoment | Security Statement | Terms of Use | 508
Compliance

Figure 3.17 Sharing detail for a Contact record

Now that the record is shared with Central, it’s time to test it. Make sure you're logged in as the
System Administrator. Modify the Staffing Coordinator user so that it belongs to the Central
role, and log in as that user. Staff the West consultant to a project by creating an Assignment,
setting this consultant as the Contact. If you are able to do this, the manual share is working

as intended.

Summary

This chapter introduced the data security features provided by the Force.com platform. These
features can eliminate much of the effort required in traditional application development to
build basic security infrastructure. Here are a few points to consider before moving on:

= Data can be protected at the object, field, and record level.

= Profiles control access to objects and fields. A combination of object and field
permissions plus page layouts determines the degree to which a field is accessible to
users.

= Most records have a built-in concept of ownership. The record’s owner, plus
organization-wide defaults and sharing reasons that override these defaults, determines
nonowners’ rights to view and modify records.

Business Logic

Business logic in Force.com is developed in Apex, a programming language designed for the Force.com
platform. Through Apex code, many platform features, such as the database and user interface, can be
customized to meet the needs of individual users and companies.

This chapter introduces Apex as a language for writing business logic, specifically where it interacts
with the Force.com database. It uses a combination of explanatory text and code snippets to introduce
concepts and encourage experimentation. This approach assumes you’re already experienced in some
other high-level, object-oriented programming language and would like to see for yourself how Apex is
different.

The chapter consists of the following sections:

Introduction to Apex—Learn basic facts about Apex and how it differs from other
programming languages.

Introducing the Force.com IDE—Tuake a brief tour of the Force.com IDE, a user interface for
developing, debugging, and testing Apex code.

Apex language basics—Learn the building blocks of the Apex language, such as data types and
loops.

Database integration in Apex—Incorporate the Force.com database into your Apex programs
through queries, statements that modify data, and code executed automatically when data is
changed.

Debugging Apex using Developer Console—With Developer Console, you can directly inspect
the state of your Apex code as it runs.

Unit tests in Apex—Write tests for your code and run them in Developer Console.

Sample application—Walk through the implementation of a data validation rule for the
Services Manager sample application.

Note
The code listings in this chapter are available in a GitHub Gist at http://go0.gl/evtet.

http://goo.gl/evtet

100

Chapter 4 Business Logic

Introduction to Apex

Apex is a stored procedure-like language that runs entirely on the Force.com platform. It
provides object-oriented features and tight integration with the Force.com database. It’s mainly
used in custom user interfaces and in triggers, code that is executed when data is changed in
the database.

Apex is not a general-purpose programming language like Java or C. Its scope is limited to
business and consumer applications that operate on relational data and can benefit from the
feature set of the surrounding Force.com platform.

Apex programs exist in a multitenant environment. The computing infrastructure used to
execute Apex is operated by Salesforce and shared among many developers or tenants of the
system. As a result, unlike general-purpose programming languages you are familiar with, the
execution of Apex programs is closely controlled to maintain a consistently high quality of
service for all tenants.

This control is accomplished through governor limits, rules that Force.com places on programs
to keep them operating within their allotted share of system resources. Governor limits are
placed on database operations, memory and bandwidth usage, and lines of code executed.
Some governor limits vary based on the type of licensing agreement you have in place with
Salesforce or the context that the code is running in, and others are fixed for all users and use
cases.

Note

The most prevalent governor limits are discussed throughout this book, but it is not a complete
treatment of the subject. The authoritative guide to governor limits is the Force.com Apex Code
Developer’s Guide, available at http://developer.force.com. Educate yourself on governor limits
early in the development process. This education will alter the way you architect your Apex code
and prevent costly surprises. Additionally, test all of your Apex code with production-like data
volumes. This helps to expose governor-related issues prior to a production deployment.

Here are a few important facts about Apex:

= It includes integrated testing features. Code coverage is monitored and must reach 75%
or greater to be deployed into a production environment.

= It is automatically upgraded. Salesforce executes all of its customers’ unit tests to verify
that they pass before deploying a major release of the Force.com platform. Your code is
always running on the latest version of Force.com and can take advantage of any and all
new functionality without the hassle and risks of a traditional software upgrade process.

= There is no offline runtime environment for Force.com. You can edit your code on
your desktop computer, but it must be sent to Force.com for execution.

= Apex is the only language that runs on the Force.com platform. You can integrate
Apex with programs running outside of Force.com using HTTP-based techniques such
as REST.

http://developer.force.com

Introducing the Force.com IDE

= The Force.com database is the only database integrated into the Apex language.
Other databases can be integrated through Web services or other technology using HTTP.

The two primary choices for developing Apex code are the Web-based App Builder Tools and
the Force.com IDE, provided as a stand-alone application as well as a plug-in to the standard
Eclipse IDE. The Force.com IDE is the more powerful and developer-friendly of the two, so it is
used throughout this book.

Introducing the Force.com IDE

The Force.com IDE is an extension to the standard Eclipse development tool for building,
managing, and deploying projects on the Force.com platform. This section covers installation
and gives a brief walk-through of the Force.com IDE components used throughout this book.

Installation

The Force.com IDE is distributed in two forms: a stand-alone application and a plug-in to the
Eclipse IDE. If Force.com is your primary development language or you are not an existing
Eclipse IDE user, the stand-alone version is a good choice. The plug-in version of the Force.com
IDE requires Eclipse, which you can find at www.eclipse.org. Only specific versions of Eclipse
are supported by the Force.com IDE. If you are already using Eclipse but it’s an unsupported
version, keep your existing Eclipse version and install the supported version just for use with
the Force.com IDE. Multiple versions of Eclipse can coexist peacefully on a single computer.

Visit http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse to learn how to install
the stand-alone and plug-in versions of the Force.com IDE.

Force.com Perspective

A perspective is a concept used by Eclipse to describe a collection of user interface components.
For example, Eclipse has built-in perspectives called Java and Java Debug. By installing the
Force.com IDE, you've added a perspective called Force.com. Figure 4.1 shows the Force.com
perspective, indicated in the upper-right corner.

If you do not see the Force.com perspective, click the menu option Window, Open Perspective,
Other; select Force.com from the Open Perspective dialog; and click the OK button. The Open
Perspective dialog is shown in Figure 4.2.

The Force.com perspective includes several user interface panels, called Views. You can see two
of them at the bottom of Figure 4.1: Execute Anonymous and Apex Test Runner. It also adds a
new type of project called the Force.com Project, which is shown in the left-side Navigator tab.
The first step to using the Force.com IDE is to create a Force.com Project.

101

http://www.eclipse.org
http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

102

Chapter 4 Business Logic

Force com = Devalopment with the Forca.com Matiom (3rd Edition)/src/classes/ TimecardManager.cls - Force.com IDE

[l salesforceschema

SOE]5 0 Q& gD Joa
4 0|]
public class TimecordManager (
public class Ti extends ion {}
public stotic void handleTimecordChenge(listeTimncord__c» oldTimecards,
2 List<Timecord__c» newTimecords) {
> B applications Set«lls contoctlds = new Set<IDo();
T &l for (Timecord__c timecord : newTimecords) [
M TestTimecardManager cli contectlds. cdé(timecard. Contoct__c);
(%) TestTimerardManager sl -meta xmi 1
; :"““m i o - List<hssignment _c» assigneents - [selact Id, Start Date e,
- A End_Date__c, Contact__c from Assignment__c
(¥ Timecarasarager o metaxmi where Contact__c in -contactIds J;
* (= dotuments if Cossigrments. sice() == 8) {
* > ohjeens throw néw TimecordExceptionl'No assignments');
o Booleen hasAssipnment;
ngs for (Timecard_.c ard : nenTimecards) {
> 3 b [N PP -
¥ (s viggers
¥ valicateTimecard wrigger Source | Metadama| B
i B valdwaTimecard crigger-metaxm! [problems | 8 apex Test Runner | B Execute anonymous 5 | &% syncheonae| =a
packagexml

i Flaform (3rd Edimiond |

Saurce to exccute:

Log category: | Apex Codt

| Exmtuite Ancomprenis.

Results:

-
i}

Figure 4.1 Force.com perspective

000

Open Perspective

& CVS Repository Exploring
Debug
® Force.com (default)
& ava
s\’ Java Browsing
I:J Java Type Hierarchy
Resource
E Software and Workspace Center
Eﬂ Team Synchronizing
X xmL

[Show all

Cancel

OK

Figure 4.2 Open Perspective dialog

Introducing the Force.com IDE

Force.com Projects

A Force.com Project allows you to read and write code, user interfaces, and other metadata
objects within a Force.com organization from your local computer. Although this metadata is
edited locally, it must be deployed to the Force.com service to run. Deployment to Force.com
occurs automatically every time you make a modification to an object in a Force.com Project
and save the changes. The contents of a Force.com Project are visible in the Navigator or
Package Explorer Views.

Note
Force.com does not provide its own integrated source control system, but Force.com Projects

can be integrated into your company’s source control system through the built-in Team features
of Eclipse. Refer to the Eclipse documentation for more information.

Problems View

The Force.com IDE leverages the standard Eclipse View called Problems to display compilation
errors. When you save changes to an object in a Force.com Project, it is sent over the network
to the Force.com service for compilation. If compilation fails, Force.com-specific errors are
added to the Problems View. In most cases, you can double-click a problem row to navigate to
the offending line of code.

Schema Explorer

The Schema Explorer allows direct interaction with the Force.com database. Use it to inspect
objects and fields and to execute database queries and preview their results. To open the
Schema Explorer, double-click the object named salesforce.schema in any Force.com Project.
In Figure 4.3, the Schema Explorer is open and displaying the fields in the Project object in
its right panel. In its left panel, a query has been executed and has returned a list of Contact
records.

Apex Test Runner View

All business logic written in Force.com must be accompanied by unit tests to deploy it to a
production environment. Apex Test Runner View is a user interface to run unit tests and view
test results, including statistics on code performance and test coverage. If the Apex Test Runner
is not already visible on the bottom of your screen, go to the Window menu and select Show
View, Apex Test Runner.

103

104 Chapter 4 Business Logic

IB-Ealusm]q.-]e]8-i-ve-
[| M Force.com
i rackageisplorer 2| B YS0|8 with the Farce.cam Pk Edwiont H =na
v [Development with the Force.com Patles
B Referenced Packages Query Results Rain Ma Sehema Refreah Schema
-
* = applications SLLECT Wame, » @ Project_Share
it (SELECT Tota!_Hours_c FROM Timecards_r, T @ Praject_c
oo FSELECT Stare_Diane__r, Endl_Dare__c FROM Avsignments_r) am
M TestTimecardmanager.cis || || FROM Cantact @ 1D Frefoc a0l
) TeuTimeeardManager els b @ Fromtdoor URLY
W Timecardmunager chy ame Tinecards_r prT— v @ Labes
¥ Timecarasanager crs-me| | W pat stamuier bR Accens
* & doduments ® Tiem Barr Tinecards_ri1) Assignments_r{1) r O Feeids - 23
* 25 objeers ® andy Young # [Account_e - reference custam)
& pages ® John Bond # [mitable_mours__c - _double icustom)
B sermings ® Stella Paviova » [Consuling_Budges_r - currency (custam)
* b ® Lauren Boyle * O Createciyid - reference
v s viggers = Rabara Levy O Creatednue - daterime
M valicaeTimecard irigger ® jouh Davis # [Ene_oate_¢ - date (custom)
¥, validae Timecard wrigger= = jane Grey b [Espense_Budger_« - eurveney (custom)
% packagexm ® Arthur Song » Oud-id
[salesforceschema ® Ashley James b O invokced__c = _boolean {custom)
» Tom Ripley O Beteted - _boalesn
® s BErus # [Lastmodied®rid - reference
® Edna Frank b O LassMadificdBate - datetire
- = # [Locanan_¢ - string feustom)
[——
Semema Fupiarer |
[Proierms [8 Apex Test Rumner | ® Execure Ancavmeus| &7 Symenranize =0
e i Log casegery: | Apew Code 2| Loglevel
& Code Coverage Resuins Debug Log:
(5 valicataTimecard (ApexTrigger) — 0 lines not teted,
1 SManager (ApexClass] — O fines nottesteq, 1| 770 APEX_CODE DERLIC APEX_PROFILING INFO,CALLOUT INFO, DR,
Ime<arduanager (AoexClass) - 0 lines nottested. L 5y'05:25 423 (42195 8000) EXECUTION_STARTED
21:05:25.423 (423989000)| CODE_UNIT_STARTED|[EXTERMAL]|O1pé
TestTimecasaManager. pasitieTes

Figure 4.3 Force.com IDE Schema Explorer

Execute Anonymous View

The Execute Anonymous View provides an interactive, immediate way to execute arbitrary
blocks of Apex code. Unless noted otherwise, you can execute all the code snippets in this
chapter directly from the Force.com IDE using the Execute Anonymous View.

To try the Execute Anonymous View, first create a new Force.com Project. Go to the File menu
and select File, New Force.com Project. Enter a project name; enter your Force.com username,
password, and security token; and click the Next button. If you receive an error on this step,
double-check your username, password, and security token. Also make sure you're provid-

ing the credentials for a Developer Edition organization, given that other types of organiza-
tions might not have access to the Force.com API. Select the metadata components Apex and
Visualforce; then click the Finish button to create the project.

After you've created a project for your Development Edition organization, the Execute
Anonymous View should be visible in the lower-right half of the screen. If not, go to the
Window menu and select Show View, Execute Anonymous. In the Source to Execute text
box, enter the code given in Listing 4.1. If the text box is not visible, resize your Execute
Anonymous View until it’s tall enough to see it. If the text box is disabled, double-click the
Execute Anonymous tab to maximize and enable it. After you've entered the code, click the
Execute Anonymous button to run it.

Apex Language Basics

Listing 4.1 Hello World

String helloWorld(String name) {
return 'Hello, ' + name;

}

System.debug (helloWorld ('Apex')) ;

This sample code defines a function called helloworld that accepts a single String parameter.
It then invokes it with the name Apex and displays the results, Hello Apex, to the debug log.

Apex Language Basics

This section describes the building blocks of the Apex language. The building blocks are vari-
ables, operators, arrays and collections, and control logic. Basic knowledge of the syntax and
operation of Apex is valuable for almost any custom development task in Force.com, including
triggers, custom user interfaces, and integration with external systems. The section concludes
with an introduction to Apex governor limits. Knowledge of governor limits is a critical part of
writing business logic that scales from Developer Edition organizations to production organiza-
tions with real-world data volumes.

Variables

This subsection covers variable declaration, data types, constants and enums, and type conver-
sions. It also provides detail on rounding numbers and converting dates to and from strings,
common tasks in business applications.

Variable Declaration

Apex is a strongly typed language. All variables must be declared before they’re referenced. At
minimum, a variable declaration consists of the data type followed by the variable name. For
example, Listing 4.2 is a valid statement.

Listing 4.2 Variable Declaration

Integer i;

The variable 1 is declared to be an Integer. Apex does not require variables to be initialized
before use, but doing so is good practice. The variable i initially contains a null value.

Variable names cannot start with numbers or symbols, cannot contain two or more consecu-
tive underscore characters, and must not conflict with Apex reserved words. These are special
keywords used by the Apex language itself. The list of reserved words is available in the
Force.com Apex Code Developer’s Guide.

105

106

Chapter 4 Business Logic

Variable names are not case sensitive. Try defining two variables with the same name, one in
uppercase and one in lowercase, to prove this, as in Listing 4.3. If you try to execute this code,
you will receive a compilation error citing a duplicate variable.

Listing 4.3 Case Insensitivity of Variable Names

Integer i;
String I;

Data Types

In Apex, all data types are objects. There is no concept of a primitive type such as an int in
Java. Table 4.1 lists Apex’s standard atomic data types. These types contain a single value at a
time or a null value.

Table 4.1 Standard Atomic Data Types

Data Type Valid Values

String Zero or more Unicode characters.

Boolean True or false.

Date Date only; no time information is included.

Datetime Date and time value.

Time Time only; no date information is included.

Integer 32-bit signed whole number (-2,147,483,648 to 2,147,483,647).
Long 64-bit signed whole number (-263 to 263-1).

Decimal Signed number with whole (m, Integer) and fractional components (n),

expressed as m.n. Total length of number, including sign and decimal point,
cannot exceed 19 characters.

Double 64-bit signed number with a decimal point (-263 to 263-1).
Blob Binary data.
ID ID is a variation of the String type to store the unique identifiers for Force.com

database records. ID values are restricted to 18 characters. Values are checked
at compile and runtime, and a StringException is thrown if they do not
conform.

Object Object is the generic type. Variables defined as Object are essentially type-
less and can receive any value. Typeless code is vulnerable to runtime errors
because it is invisible to the compiler’s type checking functionality.

Apex Language Basics

Constants and Enums

A constant is a variable that cannot be modified after it has been initialized. It is declared using
the £inal keyword and can be initialized only in constructors, in initializers, or in the declara-
tion itself.

An enum is a set of identifiers. Listing 4.4 provides an example of a constant as well as an
enum. The constant is an Integer type; the enum is named MyConstants and contains three
members. The variable x is initialized to the first member, and its data type is the enum itself,
which can be thought of as a user-defined data type.

Listing 4.4 Defining an Integer Constant and an Enum

final Integer MAGIC_NUMBER = 42;
Enum MyConstants { One, Two, Three }
MyConstants x = MyConstants.One;

After it has been declared, an enum can be referenced in Apex code like any built-in data
type. It can also be converted into an Integer from its zero-indexed position using its ordinal
method or into a String using its name method.

Converting Data Types

The two ways to convert one data type to another are implicit and through conversion
methods. Implicit conversion means that no method calls or special notation is required to
convert one type into another. Conversion methods are functions that explicitly convert a
value from one type to another type.

Implicit conversion is supported for numeric types and String types. For numbers, the rule is
this: Integer = Long - Double = Decimal. Conversions can move from left to right without
casting, as Listing 4.5 demonstrates.

Listing 4.5 Implicit Conversion of Numeric Types

Integer i = 123;
Long 1 = 1i;
Double d = 1;
Decimal dec = d;

For Strings, ID and String are interchangeable, as shown in Listing 4.6. If conversion is
attempted from String to ID but the String is not a valid ID, a System.StringException is
thrown.

107

108

Chapter 4 Business Logic

Listing 4.6 Converting between ID and String

String s = 'a0I80000003hazV';
ID id = s;
String s2 = id;

When implicit conversion is not available for a pair of types, you must use a conversion
method. Data type objects contain a static conversion method called valueOf. Most conver-
sions can be handled through this method. Listing 4.7 is a series of statements that convert a
string into the various numeric types.

Listing 4.7 Type Conversion Methods

String s = '1234"';

Integer i = Integer.valueOf (s);
Double d = Double.valueOf (s);
Long 1 = Long.valueOf (s);

Decimal dec = Decimal.valueOf (s);

When a type conversion method fails, it throws a TypeException. For example, when the code
in Listing 4.8 executes, it results in an error: System. TypeException: Invalid integer:
1234.56.

Listing 4.8 Type Conversion Error

String s = '1234.56';
Integer i = Integer.valueOf(s);

Rounding Numbers

Rounding occurs when the fractional component of a Decimal or Double is dropped (round),
or when a Decimal is divided (divide) or its scale (number of decimal places) reduced
(setscale). Apex has a set of rounding behaviors called rounding modes that apply in all three
of these situations. By default, the rounding mode is HALF_EVEN, which rounds to the nearest
neighbor, or to the even neighbor if equidistant. For example, 0.5 rounds to 0, and 0.6 to 1. For
the complete list of rounding modes, refer to the Force.com Apex Code Developer’s Guide at www.
salesforce.com/us/developer/docs/apexcode/index.htm.

Listing 4.9 demonstrates the three operations that can cause rounding.

Listing 4.9 Three Rounding Operations

Decimal d = 123.456;

Long rounded = d.round(RoundingMode.HALF EVEN) ;

Decimal divided = d.divide(3, 3, RoundingMode.HALF EVEN) ;
Decimal reducedScale = d.setScale(2, RoundingMode.HALF_EVEN) ;

http://www.salesforce.com/us/developer/docs/apexcode/index.htm
http://www.salesforce.com/us/developer/docs/apexcode/index.htm

Apex Language Basics

Converting Strings to Dates

Strings can be converted to Date and Datetime types using the valueOf conversion methods,
but the string values you're converting from must be in a specific format. For Date, the format
is YYvyY-MM-DD; for Datetime, YYYY-MM-DD HH:MM:SS, regardless of the locale setting of the
user. Time does not have a valueOf method, but you can create one with its newInstance
method, providing hours, minutes, seconds, and milliseconds. Listing 4.10 shows the creation
of all three types.

Listing 4.10 Creating Date, Datetime, and Time

Date d = Date.valueOf ('2015-12-31");
Datetime dt = Datetime.valueOf ('2015-12-31 02:30:00');
Time t = Time.newInstance(2,30,0,0);

Converting Dates to Strings

Dates can be converted to strings through the String.value0of method. This applies a default
format to the date values. If you want control over the format, Datetime has a format method
that accepts a Date pattern. This pattern follows the SimpleDateFormat pattern found in the
Java API, which is documented at the following URL: http://download.oracle.com/javase/1.4.2/
docs/api/java/text/SimpleDateFormat.html. For example, the code in Listing 4.11 outputs Thu
Dec 31, 2020.

Listing 4.11 Formatting a Datetime

Datetime dt = Datetime.valueOf ('2020-12-31 00:00:00');
System.debug (dt.format ('E MMM dd, yyyy'));

Operators

Apex supports the standard set of operators found in most languages. Each operator is listed in
Table 4.2 along with its valid data types, precedence if mathematical, and a brief description. In
an expression with two operators, the operator with lower precedence is evaluated first.

Table 4.2 Operators, Their Data Types, and Precedence

Operators Operands Precedence Description
= Any compatible types 9 Assignment
+, - Date, Datetime, Time 4 Add or subtract days on Date, Datetime,

milliseconds on Time, argument must be
Integer or Long

+ String N/A String concatenation

109

http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html

110

Chapter 4 Business Logic

Operators Operands Precedence Description
+, -, *, / Integer, Long, Double, 4 Numeric add, subtract, multiply, divide
Decimal
! Boolean 2 Logical negation
- Integer, Long, Double, 2 Arithmetic negation
Decimal
++, -- Integer, Long, Double, 1 Unary increment, decrement
Decimal
&, |, Integer, Long, Boolean 10 Bitwise AND, OR, XOR
<<, >>, >>>lInteger, Long 10 Signed shift left, signed shift right,
unsigned shift right
==, <, >, Anycompatible types 5 (<, >, <=, Not case sensitive, locale-sensitive com-
<=, >=, != >=), 6 (==, |=) parisons: equality, less than, greater than,

less than or equal to, greater than or
equal to, not equal to

&&, || Boolean 7 (&&), 8 (||) AND, OR, with short-circuiting behavior
(second argument is not evaluated if first
argument is sufficient to determine result)

===, l== Map, List, Set, Enum, N/A Exact equality, exact inequality
SObject
() Any 1 Group an expression and increase its pre-
cedence
? Boolean N/A Shortcut for if/then/else expression

Operators not included in Table 4.2 are the assignment variations of date, string, and numeric
(+=, -=, *=, /=) and bitwise (| =, &=, "=, <<=, >>=, >>>=) arithmetic. For example, x = x + 3
assigns x to itself plus 3, but so does x += 3.

Arrays and Collections

Arrays and collections are a family of data types that contain a sequence of values. It includes
Lists and Arrays, Sets, and Maps. This subsection covers each of the three types and describes
how to create them and perform some basic operations. Each collection type is different, but
there are four methods you can invoke on all of them:

1. clear—Removes all elements from the collection

2. clone—Returns a copy of the collection

3. isEmpty—Returns false if the collection has elements, true if empty
4

. size—Returns the number of elements in the collection as an Integer

Apex Language Basics

Lists and Arrays

Lists and Arrays contain an ordered sequence of values, all the same type. Duplicate values
are allowed. Unlike Lists, the length of an Array is fixed when you initialize it. Lists have a
dynamic length that is adjusted as you add and remove elements.

To declare a List variable, use the List keyword followed by the data type of its values in angle
brackets. Because Lists and Arrays are containers for other values, they must be initialized
before values can be added to them. The new keyword creates an instance of the List. Listing
4.12 declares a variable called stringList that contains Strings, initializes it, and adds a value.

Listing 4.12 Creating a List

List<String> stringList = new List<String>();
stringList.add('Hello');

To create an Array, specify a variable name, data type, and length. Listing 4.13 creates an Array
of Strings named stringArray, initializes it to accommodate five elements, and then assigns a
value to its first element.

Listing 4.13 Creating an Array

String[] stringArray = new String[5];
stringArray[0] = 'Hello';

Multidimensional Arrays are not supported. But you can create a two-dimensional List object
by nesting a List within another List. In Listing 4.14, 1ist2 is defined as a List containing Lists
of Strings. A String List called childList is initialized, populated with a value, and added to
list2.

Listing 4.14 Nested List Usage

List<List<String>> list2 = new List<List<String>>();
List<String> childList = new List<Strings>();
childList.add('value') ;

list2.add(childList) ;

Arrays and Lists have interchangeable behavior and syntax in Apex, as demonstrated in Listing
4.15. Lists can be initialized using an Array initializer, and its elements accessed using the
square-bracket notation. Arrays can be initialized using the List constructor, and accessed using
the List getters and setters. But for the sake of code clarity, picking one usage style and stick-
ing with it is a good idea. In this book, List is the standard because it better reflects the object-
oriented nature of these collection types.

111

112

Chapter 4 Business Logic

Listing 4.15 Mixed Array and List Syntax

List<Integer> intList = new Integer[3];
intList [0] = 123;

intList.add (456) ;

Integer[] intArray = new List<Integer>();
intArray.add (456) ;

intArray.set (0, 123);

Arrays and Lists preserve the order in which elements are inserted. They can also be sorted in
ascending order using the sort method of the List object. For custom sorting behavior, you
can implement the Comparable interface on the classes in your list. This interface allows you
to examine two objects and let Force.com know if the objects are equal or if one occurs before
the other.

Sets

The Set is another collection type. Like a List, a Set can store only one type of element at a
time. But Sets do not allow duplicate values and do not preserve insertion order. Sets are initial-
ized like Lists. In Listing 4.16, a set named stringSet is created, and two values are added.

Listing 4.16 Basic Set Usage

Set<String> stringSet = new Set<String>();

stringSet.add('abc') ;
stringSet.add('def');
System.debug (stringSet.contains ('abc')) ;

The final statement in Listing 4.16 outputs true, illustrating one of the most valuable features
of the Set collection type: its contains method. To test whether a particular String exists in an
Array or a List, every element of the List must be retrieved and checked. With a Set, this test
can be done more efficiently thanks to the contains method.

Maps

The Map type stores pairs of keys and values and does not preserve their insertion order. It
maintains the relationship between key and value, functioning as a lookup table. Given a key
stored in a Map, you can retrieve its corresponding value.

Maps are initialized with a key data type and value data type. Listing 4.17 initializes a new
Map called myMap to store Integer keys and String values. It inserts a single value using the put
method and then retrieves it using the get method. The last line of code prints abc because
that is the value associated with the key 123.

Apex Language Basics

Listing 4.17 Basic Map Usage

Map<Integer, String> myMap = new Map<Integer, Strings();
myMap.put (123, 'abc');
System.debug (myMap.get (123)) ;

Other useful methods of Maps include containsKey (returns true if the given key exists in the
Map), remove (returns and removes an element by key), keySet (returns a Set of all keys), and
values (returns an Array of all values).

Control Logic

This subsection describes how to control the flow of Apex code execution. It covers conditional
statements, loops, exception statements, recursion, and asynchronous execution.

Conditional Statements

Conditional statements evaluate a Boolean condition and execute one code block if true,
another if false. Listing 4.18 provides an example, defining a function that prints true if an
Integer argument is greater than 100, false otherwise.

Listing 4.18 Conditional Statement Usage

void testValue (Integer value) {
if (value > 100) {
System.debug('true') ;
} else {
System.debug('false');
}
}

testValue(99);
testValue(101) ;

In addition to this simple if, else structure, you can chain multiple conditional statements
together using else if.

Note

In conditional code blocks that contain a single statement, the curly braces around them
can be omitted. This is true of all the control logic types in Apex. For example, if (a > 0)
return 1 / a; else return a; is a valid statement.

113

114

Chapter 4 Business Logic

Loops

Loops in Apex behave consistently with other high-level languages. Table 4.3 lists the loop
statements available in Apex.

Table 4.3 Types of Loops

Name Syntax Description
Do-While Loop do { code_block } Executes code block as long as Boolean condition
while (condition) ; is true. Evaluates condition after running code
block, executing the code block at least once.
While Loop while (condition) ({ Executes code block as long as Boolean condi-
code_block; } tion is true. Evaluates condition before running
code block, so code block might not be executed
at all.
Traditional For for (init; exit Executes init statement once. Loops on the fol-
Loop condition; increment) |owing steps: exit loop if Boolean exit condi-
{ code_block; } tion evaluates to false, executes code block,

executes increment statement.

List/Set Iteration for (var : list/set) For every element of the list or set, assigns var to
For Loop { code block } the current element and executes the code block.
Cannot modify the collection while iterating.

The keywords break and continue can be used to further control the loops. To immediately
exit a loop at any point in its execution, use break in the code block. To abort a cycle of loop
execution in the middle of a code block and move to the next cycle, use continue.

Exception Statements

Exceptions are classes used to signal a problem at runtime. They abort the normal flow of code
execution, bubbling upward until explicitly handled by some other code, carrying with them
information about the cause of the problem.

Apex allows custom exception classes to be defined that are meaningful to your programs.

It also provides system exception classes corresponding to areas of the Force.com platform.
Some common system exceptions are DmlException (issues with changes to the database),
NullPointerException (attempt to dereference a null value), QueryException (issues with
database queries), and TypeException (issues converting data types).

The two ways to use exceptions in your code are to raise an exception with the throw keyword
and handle an exception with the try, catch, and £inally keywords:

1. Raise an exception—When your code cannot proceed due to a problem with its input
or other issue, you can raise an exception. An exception stops execution of the code
and provides information about the problem to its callers. Only custom exceptions,

Apex Language Basics

classes that are subclasses of Force.com’s Exception class, can be raised. The names of
all custom exception classes must end with the word Exception. Construct an instance of
your exception class using an optional message or another exception as the preceding
cause and provide it as an argument to the throw keyword.

2. Handle an exception—An exception handler in Apex is a code block defined to expect
and take action on one or more named exception classes. It consists of a try code block,
zero or more catch code blocks, and optionally a £inally code block. The try code
block is executed first. If an exception is raised, Apex looks for a catch code block that
matches the exception class. If it’s found, execution skips to the relevant catch. If not,
the exception is bubbled upward to the caller. After the code in the try completes,
successfully or not, the £inally code block is executed.

Listing 4.19 demonstrates both forms of exception statements. It inserts a Timecard record
within a try block, using a catch block to handle a database exception (DmlException). The
code to handle the database exception itself raises an exception, a custom exception class called
MyException. It ends by printing a final message in the finally block.

Listing 4.19 Sample Exception Statements

class MyException extends Exception {}
Timecard_ c timecard = new Timecard c();
try {
insert timecard;
} catch (DMLException e) {
throw new MyException('Could not create Timecard record: ' + e);
} finally {
System.debug ('Exiting timecard creation code');

Recursion

Apex supports the use of recursion in code. The maximum stack depth is not documented, so
experiment with your own code before committing to a recursive algorithm. For example, the
code in Listing 4.20 fails with System.Exception: Maximum stack depth reached: 1001.

Listing 4.20 Recursion with Unsupported Depth

Integer counter = 0;
void recursive() {
if (counter < 500) {
counter++;
recursive() ;

}

recursive() ;

115

116

Chapter 4 Business Logic

Asynchronous Execution

Code in Apex normally is executed synchronously. From the user’s point of view, there is a
single thread of execution that must complete before another can begin. But Apex also supports
an asynchronous mode of execution called future methods. Code entering a future method
completes immediately, but the body of the method isn’t executed until later, at a time deter-
mined by the Force.com platform.

The code in Listing 4.21 declares a future method called asyncMethod with a single parameter:
a list of strings. It might use these strings to query records via SOQL and perform DML opera-
tions on them.

Listing 4.21 Future Method Declaration

@future
public static void asyncMethod(List<String> idsToProcess) {
// code block

}

Future methods typically are used to perform expensive tasks that are not time-critical. A
regular synchronous method can begin some work and invoke a future method to finish it. The
future method starts fresh with respect to governor limits.

Future methods have many limitations, as follows:

= You cannot invoke more than ten future methods in a single scope of execution. There is
no guarantee of when these methods will be executed by Force.com or in what order.

= Future methods cannot call other future methods.

= Future method signatures are always static and return void. They cannot use custom
classes or database objects as parameters—only primitive types such as String and Integer
and collections of primitive types.

= You cannot test future methods like ordinary methods. To write testable code that
includes future methods, keep your future methods limited to a single line of code that
invokes a normal method to perform the actual work. Then in your test case, call the
normal method so that you can verify its behavior.

= Force.com limits your usage of future methods in a 24-hour period to 250,000 or 200 per
licensed user, whichever is greater. This limit is shared with Batch and Scheduled Apex.

Note

Batch Apex is an additional feature for asynchronous execution. It provides much greater con-
trol than future methods and supports processing of millions of records. Batch Apex is covered
in Chapter 9, “Batch Processing.”

Apex Language Basics

Object-Oriented Apex

Apex is an object-oriented language. This subsection describes Apex in terms of five standard
characteristics of object-oriented languages, summarized here:

Encapsulation—Encapsulation combines the behavior and internal state of a program
into a single logical unit.

Information hiding—To minimize tight coupling between units of a program,
information hiding limits external visibility into the behavior and state of a unit.

Modularity—The goal of modularity is to establish clear boundaries between
components of a program.

Inheritance—Inheritance allows one unit of code to define its behavior in terms of
another.

Polymorphism—Polymorphism is the capability to interact with multiple units of code
interchangeably without special cases for each.

These principles of object-oriented programming help you learn the Apex syntax and behaviors
from a language-neutral point of reference.

Encapsulation

Encapsulation describes the bundling of a program’s behavior and state into a single definition,
usually aligned with some real-world concept. In Apex that definition is a class.

When a class is defined, it becomes a new data type in Apex. Classes contain variables,
methods, properties, constructors, initializers, and inner classes. These components are summa-
rized in the following list, and their usage is demonstrated in Listing 4.22:

Variables—Variables hold the state of an object instance or class. By default, variables
declared inside a class are scoped to individual object instances and are called member
variables. Every instance of an object gets its own member variables and can read and
write their values independently without interfering with the values stored in other
object instances. There are also class variables, also known as static variables. They are
declared using the static keyword. Static variables are shared across all instances of the
object.

Methods—Methods define the verbs in a class, the actions to be taken. By default,

they operate within the context of individual object instances, able to access all visible
member variables. Methods can also be static, operating on the class itself. Static methods
have access to static variables but never member variables.

Properties—A property is a shortened form of a method that provides access to a static
or instance variable. An even shorter form is called an automatic property. These are
properties with no code body. When no code is present, the logic is implied. Getters
return their value; setters set their value.

117

118

Chapter 4 Business Logic

= Constructors—A constructor is a special method executed when a class is instantiated.
Constructors are declared much like methods, but share their name with the class name,
and have no return type declaration.

= Initializers—An initializer contains code that runs before any other code in the class.

= Inner classes—An inner class is a class defined within another class.

Listing 4.22 Class Definition

class MyClass {
static Integer count; /* Class variable */
Integer cost; /* Member variable */
MyClass (String c) { /* Comstructor */ }
void doSomething() { /* Method */ }
Integer unitCost { get { return cost; } set { this.cost = value; } }
Integer q { get; set; }
{ /* Initializer */ }

class MyInnerClass { /* Inner class */ }

Tip

Code listings containing static variables or inner class declarations cannot be tested in the
Execute Anonymous View of the Force.com IDE. Create a stand-alone class and then invoke it
from the Execute Anonymous view. To create a stand-alone class in the Force.com IDE, select
your Force.com Project and then select New, Apex Class from the File menu.

Information Hiding

Class definitions include notation to limit the visibility of their constituent parts to other code.
This information-hiding notation protects a class from being used in unanticipated and invalid
ways and simplifies maintenance by making dependencies explicit. In Apex, information
hiding is accomplished with access modifiers. There are two places to use access modifiers: on
classes, and on methods and variables:

= Classes—An access modifier of public makes a class visible to the entire application
namespace, but not outside it. A global class is visible to Apex code running in every
application namespace.

= Methods and variables—If designated private, a method or variable is visible only
within its defining class. This is the default behavior. An access modifier of protected
is visible to the defining class and subclasses, public is visible to any Apex code in the
same application namespace but not accessible to other namespaces, and global can be
used by any Apex code running anywhere in the organization, in any namespace.

Apex Language Basics

Modularity

Apex supports interfaces, which are skeletal class definitions containing a list of methods with
no implementation. A class built from an interface is said to implement that interface, which
requires that its method names and the data types of its argument lists be identical to those
specified in the interface.

The proper use of interfaces can result in modular programs with clear logical boundaries
between components, making them easier to understand and maintain.

Inheritance

Apex supports single inheritance. It allows a class to extend one other class and implement
many interfaces. Interfaces can also extend one other interface. A class extending from another
class is referred to as its subclass.

For a class to be extended, it must explicitly allow it by using the virtual or abstract
keyword in its declaration. Without one of these keywords, a class is final and cannot be
subclassed. This is not true of interfaces because they are implicitly virtual.

By default, a subclass inherits all the functionality of its parent class. All the methods defined
in the parent class are also valid on the subclass without any additional code. This behavior can
be selectively overridden if the parent class permits. Overriding a method is a two-step process:

1. The parent class must specify the virtual or abstract keywords on the methods to be
overridden.

2. In the subclass, the override keyword is used on the virtual or abstract methods to
declare that it’s replacing the implementation of its parent.

After it’s overridden, a subclass can do more than replace the parent implementation. Using the
super keyword, the subclass can invoke a method in its parent class, incorporating its func-
tionality and potentially contributing its own.

Polymorphism

An object that inherits a class or implements an interface can always be referred to in Apex
by its parent class or interface. References in variable, property, and method declarations treat
the derived objects identically to objects they are derived from, even though they are different

types.

This polymorphic characteristic of object types can help you write concise code. It works with
the hierarchy of object types to enable broad, general statements of program behavior, behav-
ior applying to many object types at once, while preserving the option to specify behavior per
object type.

One example of using polymorphic behavior is method overloading, in which a single method
name is declared with multiple argument lists. Consumers of the method simply invoke it by
name, and Apex finds the correct implementation at runtime based on the object types.

119

120

Chapter 4 Business Logic

Understanding Governor Limits

Governor limits are imposed on your running Apex code based on the type of resource
consumed. When a governor limit is encountered, your code is immediately terminated
with an exception indicating the type of limit reached. Examples of resource types are heap
(memory used during execution) and SOQL queries.

Table 4.4 lists a few of the most important governor limits. Additional governor limits are
introduced later in the book.

Table 4.4 Subset of Governor Limits

Resource Type Governor Limit
Heap 6MB
Apex code 1,000,000 lines of code executed, 3MB code size
Database 50,000 records retrieved via SOQL
Note

Namespaces are used to separate and isolate Apex code and database objects developed by
different vendors so that they can coexist and interoperate in a single Force.com organization.
Governor limits are applied independently to each namespace. For example, if you install a
package from Force.com AppExchange, the resources consumed by code running inside that
package do not count against the limits applied to your code.

Database Integration in Apex

In Apex, the Force.com database is already integrated into the language and runtime environ-
ment. There are no object-relational mapping tools or database connection pools to configure.
Your Apex code is automatically aware of your database, including all of its objects and fields

and the security rules protecting them.

This section examines the five ways the database is exposed in Apex code, which are summa-
rized here:

1. Database records as objects—Database objects are directly represented in Apex as classes.
These classes are implicitly imported into your code, so you're always developing from
the latest database schema.

2. Database queries—SOQL is a concise expression of the records to be queried and
returned to your programs.

3. Persisting database records—Apex has a built-in Data Manipulation Language (DML),
providing verbs that create, update, or delete one or more records in the database.

Database Integration in Apex

4. Database triggers—Triggers are code that register interest in a specific action or actions
on a database object, such as an insert or delete on the Account object. When this action
occurs, the trigger code is executed and can inhibit or enhance the behavior of the
database action.

5. Database security in Apex—Normally, Apex code runs in a privileged mode, granting it
full access to all the data in the system. Alternatively, you can configure it to run under
the same restrictions imposed on the current user, including object and record-level
sharing rules.

Database Records as Objects

All database objects, standard and custom, are available as first-class members of the Apex
language, automatically and transparently. This eliminates the mind-numbing, error-prone
work of importing, mapping, and translating between relational and program data structures,
chores commonly required in general-purpose programming languages. In Apex, references to
database objects are verified at compile time. This reduces the possibility of runtime surprises
caused by field or object mismatches. Listing 4.23 shows an example of creating a record in the
Contact object and setting its first name field.

Listing 4.23 Creating a Record

Contact contact = new Contact();
contact.FirstName = 'Larry';

Database relationships are also exposed in Apex. The __ r syntax refers to a relationship field,
a field that contains a reference to another object or list of objects. Listing 4.24 builds on the
previous listing, creating an Assignment record and associating it with the Contact record.

Listing 4.24 Creating a Record with Relationship

Assignment_c assignment = new Assignment_ c();
assignment.Contact r = contact;

The Force.com IDE’s Schema Explorer can take the mystery out of relationship fields like
Contact__r. It displays the correct syntax for referring to fields and relationships, based on
the actual schema of the database object. Its Schema list on the right side displays all objects,
custom and standard. Drilling into an object, the Fields folder lists all fields in the object and
their types. A reference type indicates that a field is the child object in a Lookup relationship.
Expand these fields to reveal their parent object’s type and name. For example, in the Project
custom object, Account__ r is the foreign key to the Account object. This is demonstrated in
Figure 4.4.

121

Chapter 4 Business Logic

-] uom]q: 9] : “ e

[M Force.com
—- with the | =g
L
B auery resuhs #un Me Senema g
SELECT id, Name FROM Project_c b @ Project_Share
¥ @ Projpct ¢
@ D Prefix: 201
@ Frontdoor URLS
F @ Labeis
P @ Access
e e — O Fields - 23

* O Accoumt_ - reference (custarm
@ Fareign Key: Account_r
P @ Accens
- & Label
¥ @ Type Data - reference
@ Soap Type: 1D
@ Length 18
@ Byte Lengih: 18
* @ eference To
O Account
+ [miiabie_Hours__g - _double jeustam)
* O Contuhting_Budger_c - currency (custom)
+ O Createdivid - reference
+ [CreatedDate - datetime
v [0 End_Dare_c - dme cumom)
* O txpenie_Budger_c - currency (tustiom)
» Ou-id
0 vaiced_c - _boalean fcustam)
* [0 sDeleved - _bookean
b O LantMiodifiediyid - reference
* O LastsacdifecDate - datetime
¢ O Location_e - string [custam)
» [same - string
¢ [mates__e - eewrarea (eustam)

" J01I0000000rMg 3/ United O & Cas Corp.

& 30110000000rMgAd Burlingron Textles Corp of America
¥ 40110000000 Mq ¥ Expreds Loghtics and Transpart

® a0LI0000000r Mg L GenePoint

¥ 401i0000000MqR4 Grand Hotels & Resarts Lid

Sehema Explarer |

1o] EXT Y

Figure 4.4 Viewing relationships in Schema Explorer

Data integrity is protected in Apex at compile and runtime using object metadata. For example,
Name is defined as a read-only field in Contact, so the code in Listing 4.25 cannot be compiled.

Listing 4.25 Attempted Assignment to Read-Only Field

Contact ¢ = new Contact();
c.Name = 'Larry';

After a database object is referenced in Apex code, that object cannot be deleted or edited in a
way that invalidates the code. This protects your code from changes to the database schema.
Impacted code must be commented out before the database objects are modified.

Database Queries

You've seen how data structures in Apex are implicitly defined by the objects in your data-
base. Force.com provides two query languages to populate these objects with data: Salesforce
Object Query Language (SOQL) and Salesforce Object Search Language (SOSL). SOSL, addressed
in Chapter 5, “Advanced Business Logic,” provides unstructured, full-text search across many
objects from a single query.

Database Integration in Apex

The focus of this section is SOQL because it is the workhorse of typical business applications.
This section includes subsections on the basics of SOQL, filtering and sorting, how to query
related objects, and how to use SOQL from Apex code.

As you read this section, you can experiment with the sample SOQL queries using the Force.
com IDE’s Schema Explorer. In the Navigator or Package Explorer View, expand the node for
your Force.com Project and double-click salesforce.schema. Enter a query in the text box in the
upper-left corner and click the Run Me button. The results appear in the table below the query.
In Figure 4.5, a query has been executed against the Project object, returning four records. Note
that many of the queries rely on objects from the Services Manager sample application rather
than standard Force.com objects.

s e m|q-]4] R
& Force.com
—. with the fx =8
5
B query esuhs Huan Me i,
SELECT Name, Lotation_¢, Stage_c. Status_ ¢, Bilable_Mours_c @ Project_Share

FROM Project_c @ Projct_c
WHERE Starus_e IN [Grees’, yellow) it .
ORDER BY Billable_Hours_ ¢ DESC A

@ Frontdoor URLS

@ taben
» @ Access

— e e Fieids - 33

Name Location_g Stage_x Statis_g 0 Fieids }

® CenePoint Mauntain View, CA | In Frogress Crieam » [Account_c = reference (tustom)

® Unined Oil & Gas Ca New York, KY In Frogress Croen [mitabde_Heurs e - _doubile (eustam)

® Rurlington Testiles Rurlingtan, NC In Pragres Crean [consuling_Budget g - currency [custan

® Grand Hotels & Res| Chicage, IL In Progress Green O Creaedsyid - reference

O CreatedDate - datetime
[end_Date_c - date frustomy

b [Fxpemus_Rudget__e - curremey (ruttam)
Owu-u

- O e _basiean feus o)
O tameter ook
O asmas yld nee

[LastmodifiedDate - datetime
O Laeatien__¢ - string (eustam)
O name - string
[0 Notes__c - vewuarea icustom)
[ownerid - reference
O Project_iD_c - swring (custom)
* [Stage_c - picklist fcustam)
[srart_Dase_c - date (custom)
O Satus_Mates__e - teatares feuvtam)
[0 status_¢ - pickiist {custom)
O SrtemMadina:
[Type_c - pickdiat teustom)

2etire

Sehema Explarer |

Figure 4.5 Running SOQL queries in Schema Explorer

Note

This book does not cover every feature and nuance of SOQL. For the complete specification,
visit http://developer.force.com and download the latest Force.com SOQL and SOSL Reference.

SOQL Basics

Despite being one letter away from SQL and borrowing some of its syntax, SOQL is completely
different and much easier to understand on its own terms. Just as Apex is not a general-purpose

123

http://developer.force.com

124

Chapter 4 Business Logic

programming language like Java, SOQL is not a general-purpose database query language like
SQL. SOQL is specifically designed and optimized for the Force.com database.

A SOQL statement is centered on a single database object, specifying one or more fields to
retrieve from it. The fields to select are separated by commas. Listing 4.26 is a simple SOQL
statement that returns a list of Account records with Id and Name fields populated. SOQL is
not case sensitive. SOQL keywords are shown throughout the book in uppercase and metadata
objects in title case for readability only.

Listing 4.26 Simple SOQL Statement

SELECT Id, Name
FROM Account

Filtering Records

SOQL supports filter conditions to reduce the number of records returned. A filter condition
consists of a field name to filter, an operator, and a literal value.

Valid operators are > (greater than), < (less than), >= (greater than or equal to), <= (less than or
equal to), = (equal to), != (not equal to), IN and NOT IN (matches a list of literal values, and
supports semi-joins and anti-joins), and INCLUDES and EXCLUDES (match against multi-select
picklist values). On String fields, the LIKE operator is also available, which applies a pattern

to filter records. The pattern uses the % wildcard to match zero or more characters, _ to match
one character, and the \ character to escape the % and _ wildcards, treating them as regular
characters.

Multiple filters are combined in a single SOQL statement using the Boolean operators AND and
OR and grouped with parentheses. Listing 4.27 returns the names of accounts with a type of
direct customer, a modification date sometime during the current year, and more than $100
million in annual revenue.

Listing 4.27 SOQL Statement with Filter Conditions

SELECT Name
FROM Account
WHERE AnnualRevenue > 100000000
AND Type = 'Customer - Direct'
AND LastModifiedDate = THIS_YEAR

Notice the way literal values are specified. Single quotation marks must be used around String
literals but never with other data types. THIS_YEAR is a built-in relative time function. The
values of relative time functions vary based on when the query is executed. Other relative time
functions are YESTERDAY, TODAY, TOMORROW, LAST WEEK, THIS WEEK, NEXT WEEK, and so forth.

Absolute dates and times can also be specified without single quotation marks.
Dates must use the Yyyyy-MM-DD format. Datetimes can be YYYY-MM-DDThh:mm: ssZ,

Database Integration in Apex

YYYY-MM-DDThh:mm: ss+hh:mm, Of YYYY-MM-DDThh:mm: ss-hh:mm, indicating the positive or
negative offset from Coordinated Universal Time (UTC).

In addition to filter conditions, SOQL supports the LIMIT keyword. It sets an absolute upper
bound on the number of records that can be returned from the query. It can be used in
conjunction with all the other SOQL features. For example, the SOQL statement in Listing 4.28
returns up to ten Account records modified today.

Listing 4.28 SOQL Statement with Record Limit

SELECT Name, Type
FROM Account
WHERE LastModifiedDate = TODAY
LIMIT 10

Sorting Query Results

Results of a query can be sorted by up to 32 fields in ascending (asc, the default) or descend-
ing (DESC) order. Sorting is not case sensitive, and nulls appear first unless otherwise specified
(NULLS LAST). Multi-select picklists, long text areas, and reference type fields cannot be used as
sort fields. The SOQL query in Listing 4.29 returns records first in ascending order by Type and
then in descending order by LastModifiedDate.

Listing 4.29 SOQL Statement with Sort Fields

SELECT Name, Type, AnnualRevenue
FROM Account
ORDER BY Type, LastModifiedDate DESC

Querying Multiple Objects

The result of a SOQL query can be a simple list of records containing rows and columns or hier-
archies of records containing data from multiple, related objects. Relationships between objects
are navigated implicitly from the database structure. This eliminates the work of writing accu-
rate, efficient join conditions common to development on traditional SQL databases.

The two ways to navigate object relationships in SOQL are child-to-parent and parent-to-child.
Listing 4.30 is an example of a child-to-parent query, returning the name, city, and Force.com
username creating its contact of all resources with a mailing address in the state of California.
It selects and filters fields of the Project object, the parent object of Account. It also selects the
Name field from the User object, a parent two levels removed from Project via the Account’s
CreatedBy field.

125

126 Chapter 4 Business Logic

Listing 4.30 SOQL with Child-to-Parent Relationship

SELECT Name, Account__r.Name, Account__r.CreatedBy.Name
FROM Project_ c
WHERE Account__r.BillingState = 'CA'

Caution

The results of child-to-parent relationship queries are not completely rendered in the Force.
com IDE. You can double-click a row and column to view fields from a parent record, but this is
limited to direct parents only. Fields from parent-of-parent objects, such as the contact r.
CreatedBy relationship in Listing 4.29, are omitted from the results. This is a limitation not of
SOQL, but of the Force.com IDE.

At most, five levels of parent objects can be referenced in a single child-to-parent query, and
the query cannot reference more than 25 relationships in total.

The second form of relationship query is the parent-to-child query. Listing 4.31 provides an
example. The parent object is Resource, and the child is Timecard. The query selects from every
Contact its Id, Name, and a list of hours from its Timecards in the current month.

Listing 4.31 SOQL with Parent-to-Child Relationship

SELECT Id, Name,
(SELECT Total Hours__ c
FROM Timecards r
WHERE Week Ending c¢ = THIS MONTH)
FROM Contact

A parent-to-child query cannot reference more than 20 child objects. Double-clicking the
parent record in the results table brings up the child records for viewing in the Force.com IDE.

Using SOQL in Apex

Like database objects, SOQL queries are an integrated part of the Apex language. They are
developed in-line with your code and verified at compile time against your database schema.

Listing 4.32 is an example of a SOQL query used in Apex. It retrieves a list of Project records for
this year and loops over them, summing their billable hours in the variable totalHours. Note
the usage of the variable named statuses directly in the SOQL query, preceded by a colon.
This is known as a bind variable. Bind variables can appear on the right side of a WHERE clause,
as the value of an IN or NOT 1IN clause, and in the LIMIT clause.

Database Integration in Apex

Listing 4.32 SOQL Query in Apex

Decimal totalHours = 0;
List<String> statuses = new String[] { 'Green', 'Yellow' };
List<Project__c> projects = [SELECT Billable Hours_ c

FROM Project_ c

WHERE Start Date ¢ = THIS YEAR and Status_c IN :statuses];
for (Project c project : projects) {

totalHours += project.Billable Hours_ c;

}

System.debug (totalHours) ;

This code relies on a List to store the results of the SOQL query. This means the entire SOQL
query result must fit within the heap size available to the program. A better syntax for looping
over SOQL records is a variation of the List/Set Iteration For Loop called a SOQL For Loop. The
code in Listing 4.33 is a rewrite of Listing 4.32 using the SOQL For Loop. This allows it to run
when the Project object contains up to 50,000 records for this year without consuming 50,000
records’ worth of heap space at one time.

Listing 4.33 SOQL Query in Apex Using SOQL For Loop

Decimal totalHours = 0;

for (Project__c project : [SELECT Billable Hours_c
FROM Project_ c
WHERE Start Date c = THIS YEAR]) {
totalHours += project.Billable Hours_c;

}

System.debug (totalHours) ;

An additional form of the SOQL For Loop is designed for use with Data Manipulation Language
(DML). Consider how the code in Listing 4.32 could be adapted to modify Project records
returned from the SOQL query rather than simply summing them. With the existing code, one
Project record would be modified for each loop iteration, an inefficient approach and a quick
way to run afoul of the governor limits. But if you change the type of variable in the For Loop
to a list of Project records, Force.com provides up to 200 records per loop iteration. This allows
you to modify a whole list of records in a single operation.

Note

Looping through a list of records to calculate the sum of a field is provided as an example of
using SOQL with Apex. It is not an optimal way to perform calculations on groups of records
in the database. Chapter 5 introduces aggregate queries, which enable calculations to be
returned directly from a SOQL query, without Apex.

127

128

Chapter 4 Business Logic

Any valid SOQL statement can be executed in Apex code, including relationship queries. The
result of a child-to-parent query is returned in a List of objects whose types match the child
object. Where fields from a parent object are included in the query, they are available as nested
variables in Apex code. For example, running the query in Listing 4.30 within a block of Apex
code returns a List<Project _c>. If this List is assigned to a variable named projects, the
first Account record’s billing state is accessible by projects [0] .Account r.BillingState.

Parent-to-child queries are returned in a List of objects, their type matching the parent object.
Each record of the parent object includes a nested List of child objects. Using Listing 4.31 as
an example, if results contains the List<Contacts> returned by the query, results[0] .
Timecards_r[0] .Total Hours c accesses a field in the first Contact’s first Timecard child
record.

Note
Usage of SOQL in Apex is subject to governor limits. For example, you are limited to a total of

100 SOQL queries, or 300 including parent-to-child queries. The cumulative maximum number
of records returned by all SOQL queries, including parent-to-child, is 50,000.

Persisting Database Records

Changes to database records in Force.com are saved using Data Manipulation Language (DML)
operations. DML operations allow you to modify records one at a time, or more efficiently

in batches of multiple records. The five major DML operation types are listed next. Each is
discussed in more detail later in this subsection.

= Insert—Creates new records.

= Update—Updates the values in existing records, identified by Force.com unique identifier
(19) field or a custom field designated as an external identifier.

= Upsert—If records with the same unique identifier or external identifier exist, this
updates their values. Otherwise, it inserts them.

= Delete—Moves records into the Recycle Bin.

= Undelete—Restores records from the Recycle Bin.

DML operations can be included in Apex code in one of two ways: DML statements and data-
base methods. Beyond the syntax, they differ in how errors are handled. If any one record in

a DML statement fails, all records fail and are rolled back. Database methods allow for partial
success. This chapter uses DML statements exclusively. Chapter 5 provides information on data-
base methods.

Database Integration in Apex

Note
Usage of DML in Apex is subject to governor limits. For example, you are limited to a total of

150 DML operations. The cumulative maximum number of records modified by all DML opera-
tions is 10,000.

Insert

The Insert statement adds up to 200 records of a single object type to the database. When all
records succeed, they contain their new unique identifiers. If any record fails, a DmlException
is raised and the database is returned to its state prior to the Insert statement. For example,
the code in Listing 4.34 inserts a Contact record and uses it as the parent of a new Resource
record.

Listing 4.34 Inserting a Record

try {
Contact ¢ = new Contact (FirstName = 'Justin', LastName = 'Case',

Hourly Cost Rate ¢ = 75, Region c = 'West');
insert c;
} catch (DmlException e) {
System.debug (LoggingLevel .ERROR, e.getMessage());

}

Update

Update saves up to 200 existing records of a single object type. Existing records are identified
by unique identifier (1d). Listing 4.35 illustrates the usage of the Update statement by creating
a Resource record for Doug and updating it. Refresh the Resources tab in the native user inter-
face to see the new record.

Listing 4.35 Updating Records

Contact doug = new Contact (FirstName = 'Doug', LastName = 'Hole');
insert doug;

doug.Hourly Cost Rate_ ¢ = 100;

doug.Home_Office_ ¢ = 'London';

update doug;

Upsert

Upsert combines the behavior of the Insert and Update operations on up to 200 records of
the same object type. First, it attempts to locate a matching record using its unique identifier

or external identifier. If one is found, the statement acts as an Update. If not, it behaves as an
Insert.

129

130

Chapter 4 Business Logic

The syntax of the Upsert statement is identical to Update and Insert, but adds a second,
optional argument for specifying an external identifier. If an external identifier is not provided,
the record’s unique identifier is used. The code in Listing 4.36 upserts a record in the Contact
object using the field Resource ID c (created in Chapter 11, “Advanced Integration”) as

an external identifier. If a Contact record with a Resource ID ¢ value of 1001 exists, it is
updated. If not, it is created.

Listing 4.36 Upserting a Record

Contact ¢ = new Contact (Resource ID c¢ = 1001,
FirstName = 'Terry', LastName = 'Bull');
upsert c Resource_ID_c;

Delete and Undelete

Delete and Undelete statements move up to 200 records of the same object type to and from
the Recycle Bin, respectively. Listing 4.37 shows an example of the Delete statement. A new
Resource record named Terry is added and then deleted.

Listing 4.37 Deleting Records

Contact terry = new Contact (FirstName = 'Terry', LastName = 'Bull');
insert terry;
delete terry;

Listing 4.38 builds on Listing 4.37 to undelete the Terry record. Concatenate the listings in the
Execute Anonymous view to test. The database is queried to prove the existence of the unde-
leted record. Try running the code a second time with the undelete statement commented out
to see that it is working as intended.

Listing 4.38 Undeleting Records

undelete terry;
Contact terry2 = [SELECT Id, Name
FROM Contact WHERE Name LIKE 'Terry%' LIMIT 1];
System.debug (terry2.Name + ' exists');
delete terry;

Database Triggers

Triggers are Apex code working in concert with the Force.com database engine, automatically
invoked by Force.com when database records are modified. Trigger code can perform any neces-
sary processing on the modified data before or after Force.com completes its own work. The
following list describes scenarios commonly implemented with triggers:

Database Integration in Apex

= A validation rule is required that is too complex to define on the database object using
formula expressions.

= Two objects must be kept synchronized. When a record in one object is updated, a trigger
updates the corresponding record in the other.

= Records of an object must be augmented with values from another object, a complex
calculation, or external data via a Web service call.

This subsection covers the essentials of trigger development, including definition, batch
processing, and error handling.

Definition
A trigger definition consists of four parts:

1. A unique trigger name to differentiate it from other triggers. Multiple triggers can be
defined on the same database object.

2. The name of the database object on which to create the trigger. You can create triggers
on standard and custom objects.

3. A comma-separated list of one or more trigger events that cause the trigger code to be
executed. An event is specified using two keywords. The first keyword is either before or
after, indicating that the trigger is to be executed before or after the database operation
is saved. The second keyword is the DML operation: insert, update, delete, Or
undelete. For example, the trigger event before update means that the trigger is fired
before a record is updated. Note that before undelete is an invalid trigger event.

4. The block of Apex code to execute when the trigger event occurs. The code typically
loops over the list of records in the transaction and performs some action based on
their contents. For insert and update triggers, the list of records in the transaction
is provided in the variable Trigger.new. In a before trigger, these records can be
modified. In update, delete, and undelete triggers, Trigger.old contains a read-only
list of the original versions of the records. Also available to your trigger code is a set of
Boolean variables indicating the event type that fired the trigger. They are useful when
your trigger is defined on multiple events yet requires separate behavior for each. These
variables are Trigger.isBefore, Trigger.isAfter, Trigger.isInsert, Trigger.
isUpdate, Trigger.isDelete, and Trigger.isUndelete.

Listing 4.39 is an example of a trigger named validateTimecard. It is triggered before inserts
and updates to the Timecard custom object. It doesn’t do anything yet because its code block is

empty.

Listing 4.39 Trigger Definition

trigger validateTimecard on Timecard c(before insert, before update) {
// code block

131

132

Chapter 4 Business Logic

Triggers cannot be created in the Execute Anonymous view. Create them in the Force.com IDE
by selecting File, New, Apex Trigger. To test triggers, use the native user interface to manu-
ally modify a relevant record, or write a unit test and invoke it from the Apex Test Runner or
Execute Anonymous view.

Tip
A best practice for organizing trigger logic is to place it in an Apex class rather than the body of

the trigger itself. This does not change anything about the behavior of the trigger or its governor
limits, but encourages code reuse and makes the trigger easier to test.

Batch Processing in Triggers

Manual testing in the native user interface and simplistic unit tests can lull you into the false
belief that triggers operate on a single record at a time. Not to be confused with Batch Apex,
triggers can always be invoked with a list of records and should be optimized accordingly.
Many ways exist to get a batch of records into the Force.com database, including the Data
Loader and custom user interfaces. The surest way to a production issue with governor limits is
to write a trigger that operates inefficiently when given a batch of records. The process of hard-
ening a trigger to accept a batch of records is commonly called bulkifying the trigger.

Batches can be up to 200 records. When writing your trigger code, look at the resources
consumed as you loop over Trigger.new Or Trigger.old. Study the governor limits and make
sure your code splits its work into batches, doing as little work as possible in the loop. For
example, if you have some additional data to query, build a set of IDs from the trigger’s records
and query them once. Do not execute a SOQL statement for each loop iteration. If you need to
run a DML statement, don’t put that in the loop either. Create a List of objects and execute a
single DML statement on the entire List. Listing 4.40 shows an example of looping over a batch
of Contact records (in the variable contacts) to produce a list of Assignment records to insert.

Listing 4.40 Batching DML Operations

List<Assignment c> toInsert = new List<Assignment c>();
for (Contact contact : contacts) {
toInsert.add(new Assignment c(
Contact r = contact));

}

insert tolnsert;

Error Handling

Errors are handled in triggers with try, catch blocks, consistent with other Apex code. But
uncaught errors within a trigger differ from other Apex code in how they can impact execution
of the larger database transaction the trigger participates in.

Debugging Apex Using Developer Console

A common use of errors in triggers is for validation. Strings describing validation errors can
be added to individual records or fields using the addError method. Force.com continues to
process the batch, collecting any additional errors, and then rolls back the transaction and
returns the errors to the initiator of the transaction.

Note

Additional error-handling behavior is available for transactions initiated outside of Force.com;
for example, through the SOAP API. Records can fail individually without rolling back the entire
transaction. This is discussed in Chapter 10, “Integration with Force.com.”

If an uncaught exception is encountered in a trigger, whether thrown by the system or the
trigger code itself, the batch of records is immediately aborted, and all changes are rolled back.

Database Security in Apex

Outside of Anonymous blocks, Apex always runs in a privileged, system context. This gives it
access to read and write all data. It does not honor object-, field-, and record-level privileges of
the user invoking the code. This works well for triggers, which operate at a low level and need
full access to data.

Where full access is not appropriate, Apex provides the with sharing keyword. For example,
custom user interfaces often require that access to data is limited by the privileges of the
current user. Using with sharing, the sharing rules applying to the current user are evaluated
against the data requested by queries and updated in DML operations. This option is discussed
in detail in Chapter 6, “User Interfaces.”

Debugging Apex Using Developer Console

Because Apex code cannot be executed on your local machine, debugging Apex requires some
different tools and techniques than traditional software development. This section describes
how to debug your code using two features of the Force.com’s Developer Console. Developer
Console allows you to set checkpoints to capture a snapshot of the state of your program. It
also records execution logs when users perform actions in your application, allowing you to
step through the logic and resources consumed.

Checkpoints

Checkpoints allow you to freeze variables at a specific point of execution in your program
and examine them later. The point in the code at which the checkpoint is captured is called a
checkpoint location. It is similar to a breakpoint in a standard development environment.

To work with checkpoints, open Developer Console and click the Checkpoints tab. To set a
checkpoint location, locate the code using the Tests or Repository tab and click to the left of

133

134

Chapter 4 Business Logic

the desired line. In Figure 4.6, a checkpoint location has been set at line 10, indicated by the
dot to the left of the line number.

Force.com Developer Console
Fle= Debug+ Tewt+ Workapace+ Heps € o
T mm——
e N oo o 15 LA
1 QisTest
Z private class TestTimecardManager {
private static ID contactId, projectId;

static {
Contact contact = new Contact(PirstName = 'Nobody', LastName = 'Special');
insert contact;
contactId = contact.Id;
Project ¢ project = new Project c(Name = 'Projl’');

10 insert project;

projectId = project.ld;

}

@isTest static void positiveTest() {
Date weekEnding = Date.valueOf(' 2009-04-11");
insert new Rssignment_c(Project__c = projectld,
Start_Date_c = weekEnding - &, End Date_ o = weekEnding,
Contact__c = contactld);
insert new Timecard c¢c(Project_ ¢ = projectld,

Week_Ending__c = weekEnding, Contact__c = contactld);
3

legs Tests |[Checkpolnks| OueryEditor Progress Problems =
Nemespece oy e | Dote rile Line Hteration
none TestTimecardManager 1 05700 23:49:30 TestTimecsndManager 0]

hetps:/ /na 15 sabestorce.com) CoPager O g

Figure 4.6 Setting a heap dump location

When code is executed at a checkpoint location, a checkpoint is generated. It can be viewed
by double-clicking on a row in the Checkpoints tab, as shown in Figure 4.7. A checkpoint has
been selected in the Checkpoints tab at the bottom, and its details shown in the top panel.
The Symbols tab lists the program’s variables and their values at the point in time of the
checkpoint.

Execution Logs

Testing or debugging code from a user’s point of view, directly from the native user interface,
is often necessary. With the Developer Console pop-up window open, you can continue using
Force.com in the main browser window. Actions you perform in the application result in
execution log entries. Click the Logs tab in Developer Console to examine them.

In Figure 4.8, the user’s action has resulted in a log entry, shown in the top table, which is
selected and opened by double-clicking it. The top and middle of the screen display the raw
execution log on the right panel, and an analysis in the left panels. The Stack Tree, Execution
Overview, and Execution Stack provide different views of the Force.com resources consumed
and their impact on response time.

Debugging Apex Using Developer Console 135

Force.com Developer Consale o

flo~ Debug= Test~ Workspacn= Heb+ € >

TIRE
i

Logs Tests [CHGKpoinS] Query Editor Progress Problems »

e (T

Namespace Qs ne | Date File une Tteration
none TestTamocarnManager 0 0903 73:49:30 TestTimecaraManager b} L
e e Eit Propertes,

Figure 4.7 Examining a heap dump

ao0 Force.com Developar Console LS

UMIT_USAGE ... Number of S00L queries: 1 out of 100
IMIT_USAGE .. Hurmber of query s O gut of 50000
LIMIT_USAGE ... Mumber of SO5L queries: O out of 20
UIMIT_USAGE .. Mumber of DML statements: 0 out of 150
LIMIT_USAGE ... Mumber of DML roves: 0 cut of 10000
LIMIT_USAGE ... Mumber of code staterments: § out of 200000

I his Frame) Exscutable] Debug Onty 7] Flter

Hean Query Tipe Semrows Ay rows Haxrows Minrow
185 nia na nfa na na
H na na L na ma I
o L] LU LU L Ll
» a " " wa a
L] na na na wa ma
L} nla nla nfa nia nla
[
fans reas See]
Aot to de-refererce.. L]
Attt 1o derelererce . Urvnsd (=1
Mo stsgamenes. %

[iFimer | Cick here o fner thelog st

Figure 4.8 Examining the execution log

136

Chapter 4 Business Logic

Unit Tests in Apex

Testing Apex code consists of writing and executing unit tests. Unit tests are special methods
written to exercise the functionality of your code. The goal of testing is to write unit tests that
execute as many lines as possible of the target code. The number of lines of code executed
during a test is called fest coverage and is expressed as a percentage of the total lines of code.
Unit tests also typically perform some pretest preparation, such as creating sample data, and
posttest verification of results.

Test Methods

Test methods are static Apex code methods, annotated with @isTest. They are written within
an outer class, also annotated with @isTest. Tests are subject to the same governor limits as all
Apex code, but every test method is completely independent for the purposes of limit tracking,
not cumulative. Also, test classes are not counted against the code size limit for a Force.com
organization.

A test is considered successful if its method is executed without encountering an uncaught
exception. A common testing pattern is to make a series of assertions about the target code’s
state using the built-in method System.assert. The argument of assert is a Boolean expres-
sion. If it evaluates to true, the program continues; otherwise, a System.Exception is thrown
and causes the test to fail.

Listing 4.41 shows a simple test method. It asserts two statements. The second is false, so the
test always fails.

Listing 4.41 Test Method

@isTest static void negativeTest() {
Integer i = 2 + 2;
System.assert (1 == 4);
System.assert(i / 2 == 1);

}

Rather than adding two numbers together, most unit tests perform substantial operations in
one or more other classes. Sometimes it’s necessary to examine the contents of a private vari-
able or invoke a protected method from a test. Rather than relaxing the access modifiers of the
code to make them visible to tests, annotate the code you are testing with @Testvisible. This
annotation provides your test code with privileged access but otherwise preserves the access
modifiers in your code.

Test Data

With the exception of users and profiles, tests do not have access to the data in the Force.com
database. You can annotate a class or method with @isTest (SeeAllData=true) to make the
organization’s data visible to tests, but this is not a best practice. The recommended approach

Unit Tests in Apex

is for tests to create their own temporary test data. All database modifications occurring during
execution of a test method are automatically rolled back after the method is completed. Create
your own test data in a setup phase before your tests are executed, and limit your assertions to
that test data.

Running Tests

All tests are automatically executed when migrating code to a production environment, even
unchanged and existing tests not included in the migration. Tests can and should be executed
manually throughout the development process. Three ways to run tests are described in the
following list:

1. The Force.com native user interface includes a test runner. In the App Setup area, click
Develop, Apex Classes, and then click the Run All Tests button.

2. In the Force.com IDE, right-click an Apex class containing test methods and select Force.
com, Run Tests.

3. From Developer Console, click the Tests tab and the New Run button. Select the tests to
include, and click the Run button. Alternatively, right-click on the Classes folder
in Eclipse and select Force.com, Run Tests to execute all tests in your organization.
Figure 4.9 shows Developer Console after running a test.

Force.com Developer Consale
file= Debug+ Test+ Woropacns Help~s < o
. -
e N oo o 15 KR
1 QisTest
Z private class TestTimecardManager {
private static ID contactId, projectId;

static {
Contact contact = new Contact(PirstName = 'Nobody', LastName = 'Special');
insert contact;
contactId = contact.Id;
Project_ ¢ project = new Project_ c(Name = 'Projl');
insert project;
projectId = project.ld;
}

"

Logs [Fewts] Checkpoints Query Editor Progress Problems

Satus | Test Run Duration [TSR T overall Codda Coversge 1]

" 4) 20130900 233247, paigeturmendl Jelgmad.com 4 4 Class. Percert Lines

v 2T 2013-09-03 T, paigetuenee . Sograil com] . AppConreter % o data

- 3= TestTimecerdManager L} 4 AppLed % No data

-] teathicvabaassgrments [-=] BaseCoriy % Mo data

o =] testhichssgnments o BaseConfigControler % o data

b] tesimateh i Bere e kiS 0% N ot

N 3 pospediest on [- o noam

ChangefassanmiControlier Test 0% b gata

o e o N ot

ContentControter % i cata

DreaiCorereher 0% tio dlata

FellowPrajectCorirolier Extenaion % Ko data

FooterConroer % o et

hetps:/ /nals salesforce.com/ § CSiPages I i h i

Figure 4.9 Viewing test results in Developer Console

137

138 Chapter 4 Business Logic

Sample Application: Validating Timecards

This section applies Apex, SOQL, DML, and triggers to ensure that timecards entered into the
Services Manager sample application have a valid assignment. An assignment is a record indi-
cating that a resource is staffed on a project for a certain time period. A consultant can enter
a timecard only for a project and time period he or she is authorized to work. Triggers are one
way to enforce this rule.

The following subsections cover the process of configuring the Force.com IDE for Apex devel-
opment, creating the trigger code to implement the timecard validation rule, and writing and
running unit tests.

Force.com IDE Setup

Begin by creating the Force.com IDE Project for the Services Manager sample application, if you
have not already done so. Select the menu option File, New, Force.com Project. Enter a project
name, username, password, and security token of your Development Edition organization

and click the Next button and then the Finish button. The Force.com IDE connects to Force.
com, downloads the metadata in your organization to your local machine, and displays a new
project node in your Navigator view.

Creating the Trigger

Listing 4.42 defines the trigger to validate timecards. It illustrates a best practice for trigger
development: Keep the trigger’s code block as small as possible. Place code in a separate class
for easier maintenance and to encourage code reuse. Use naming conventions to indicate
that the code is invoked from a trigger, such as the Manager suffix on the class name and the
handle prefix on the method name.

Listing 4.42 Trigger validateTimecard

trigger validateTimecard on Timecard c(before insert, before update) {
TimecardManager.handleTimecardChange (Trigger.old, Trigger.new) ;

}

To create this trigger, select File, New, Apex Trigger. Enter the trigger name, select the object
(Timecard _c), enable the two trigger operations (before insert, before update), and click
the Finish button. This creates the trigger declaration and adds it to your project. It is now
ready to be filled with the Apex code in Listing 4.42. If you save the trigger now, it will fail
with a compilation error. This is because the dependent class, TimecardManager, has not yet
been defined.

Continue on to creating the class. Select File, New, Apex Class to reveal the New Apex Class
Wizard. Enter the class name (TimecardManager), leave the other fields (Version and Template)
set to their defaults, and click the Finish button.

Sample Application: Validating Timecards

Listing 4.43 is the TimecardManager class. It performs the work of validating the timecard on
behalf of the trigger. First, it builds a Set of resource Ids referenced in the incoming set of time-
cards. It uses this Set to query the Assignment object. For each timecard, the assignment List is
looped over to look for a match on the time period specified in the timecard. If none is found,
an error is added to the offending timecard. This error is ultimately reported to the user or
program initiating the timecard transaction.

Listing 4.43 TimecardManager Class

public with sharing class TimecardManager {
public class TimecardException extends Exception {}
public static void handleTimecardChange (List<Timecard c> oldTimecards,
List<Timecard c> newTimecards) {
Set<ID> contactIds = new Set<ID>();
for (Timecard c timecard : newTimecards) {
contactIds.add(timecard.Contact_ c);
}
List<Assignment c> assignments = [select Id, Start_Date c,
End Date c, Contact c from Assignment c
where Contact ¢ in :contactIds];
if (assignments.size() == 0)
throw new TimecardException('No assignments');
}
Boolean hasAssignment;
for (Timecard c timecard : newTimecards) {
hasAssignment = false;
for (Assignment c assignment : assignments) {
if (assignment.Contact_ ¢ == timecard.Contact_ c &&
timecard.Week Ending c - 6 >= assignment.Start_Date_ c &&
timecard.Week_Ending c <= assignment.End Date_ c) {
hasAssignment = true;
break;

}
if (!hasAssignment) {
timecard.addError ('No assignment for contact ' +
timecard.Contact c¢ + ', week ending ' +
timecard.Week Ending c);

139

140

Chapter 4 Business Logic

Unit Testing

Now that the trigger is developed, you must test it. During development, taking note of the
code paths and thinking about how they are best covered by unit tests is a good idea. An even
better idea is to write the unit tests as you develop.

To create unit tests for the timecard validation code using the Force.com IDE, follow the same
procedure as that for creating an ordinary Apex class. An optional variation on this process is to
select the Test Class template from the Create New Apex Class Wizard. This generates skeleton
code for a class containing only test methods.

Listing 4.44 contains unit tests for the TimecardManager class. Before each unit test, test data
is inserted in a static initializer. The tests cover a simple positive case, a negative case in which
no assignments exist for the timecard, a second negative case in which no valid assignments
exist for the time period in a timecard, and a batch insert of timecards. The code demonstrates
a best practice of placing all unit tests for a class in a separate test class with an intuitive,
consistent naming convention. In our example, the TimecardManager class has a test class
named TestTimecardManager, the class name prefaced by the word Test.

Listing 4.44 Unit Tests for TimecardManager Class

@isTest
private class TestTimecardManager {
private static ID contactId, projectId;

static {
Contact contact = new Contact (FirstName = 'Nobody', LastName = 'Special');
insert contact;
contactId = contact.Id;
Project ¢ project = new Project c(Name = 'Projl');
insert project;
projectId = project.Id;

@isTest static void positiveTest()
Date weekEnding = Date.valueOf ('2015-04-11");
insert new Assignment c(Project ¢ = projectId,
Start Date c¢ = weekEnding - 6, End Date c¢ = weekEnding,
Contact ¢ = contactId);
insert new Timecard c(Project_ ¢ = projectId,
Week Ending c = weekEnding, Contact__c¢ = contactId);

@isTest static void testNoAssignments() {
Timecard c timecard = new Timecard c(Project_ c¢ = projectId,
Week Ending ¢ = Date.valueOf ('2015-04-11"'),
Contact__c¢ = contactId);

Sample Application: Validating Timecards

try {
insert timecard;

} catch (DmlException e) {
System.assert (e.getMessage () .indexOf ('No assignments') > 0);
return;

}

System.assert (false) ;

@isTest static void testNoValidAssignments() {

Date weekEnding = Date.valueOf ('2015-04-04"');

insert new Assignment c(Project_ ¢ = projectId,
Start_Date_ c = weekEnding - 6, End Date_ c = weekEnding,
Contact__c¢ = contactId);

try {
insert new Timecard c(Project_ c¢ = projectId,
Week Ending c = Date.today(), Contact_ c = contactId);

} catch (DmlException e) {
System.assert (e.getMessage () .indexOf ('No assignment for contact') > 0);
return;

}

System.assert (false) ;

@isTest static void testBatch() {
Date weekEnding = Date.valueOf ('2015-04-11"');
insert new Assignment c(Project ¢ = projectId,
Start _Date c¢ = weekEnding - 6, End Date c = weekEnding,
Contact__c¢ = contactId);
List<Timecard c> timecards = new List<Timecard c>();
for (Integer i=0; i1<200; i++) {
timecards.add (new Timecard c(Project ¢ = projectId,
Week Ending c¢ = weekEnding, Contact ¢ = contactId));

}

insert timecards;

After saving the code in the unit test class, run it by right-clicking in the editor and selecting
Force.com, Run Tests. After a few seconds, you should see the Apex Test Runner view with a
green check box indicating that all tests passed, as shown in Figure 4.10. Expand the results
node to see 100% test coverage of the TimecardManager, and scroll through the debug log to
examine performance information and resource consumption for each of the tests.

141

142

Chapter 4 Business Logic

10] 0 m Q| #1504l

[| Force.com

= [mobtems [agex £ e [&? | Sifee

Lo Choar Re-fum Log category. | Apax Code t Loglevet: — o
* (@) Code Caverage Resulte Debug Log

5 validateTimecard (ApexTrigger) == 0 lines not tested, LODN covtred
27.0 APEX_CODEDEBUGAFEX_PROFILING,INFO,CALLOUT JNFOLDB,INFO VALIDATION, %
10 TimeeardManager [ApesClass) - O lines nat tested, 100X covered 105125 533 (43335 B0MOIIECITION, STARTED
31-05:3%,471 (42 10RBA0C)|CODE_LUNTT_STARTED)[FXTRRNAL] |01 p0000O0 1r&K0]
TestTimecardManager. pusiiie
210525 424 METHOD_ENTRYIL

JI ES 25424 I[CIN!I'—']IOII ¥ 1
21:05:25.515 (5 15850000) OML_ENDH(7)

21:05:25.516 (516108000 |DML_RECINL |m| iOpinsen Type: Project_ciRows:1
31.08:25. 565 (S6RTR4000)|BML_FNDH[10]

2005125, 566 (SE6EIH000) METHOD_DUT|[2}TestTimecardManay

21.08.25.567 (3672440001/0ML BECINILG] 0 Inyer Type: Assignment,_clRaw:1
21:05:25.617 (517105000)[0ML_ENDI[16]

210525617 6173220001/ BML_BEGINI{13]10% dnsent Type: Timecard_ciRows: 1
21:05:25 629 (6298460001/CODE_LUNIT_STARTEDMEXTERNAL) 01 qi00000009EDD valic
Timeeard tigger event Saforeinsert foe [new)

21:05:25.535 {5 AFTHOG_ENTRYI[1]|01 .
21:03:25.633 METHOD_DUT|[LT
210525635 (5. IMETHOD_ENTRYI[

Timecardbunager. handle TimeeardChamge(LIST < Timecard_es, LIST«<Timeeard_ex)
210575635 (FLOATO00) [SYETEM, rmt'lurrm r\ﬂ\'l[(n(init > (integer)

210525636 1 1

21:05:25, u{cu’n. Qlselect i, Starn_€
Contacs_ fram AViignmem_g where CONtact_g = m,wm

21.08:25. _DCICUTE |

210525 535 (5 THOO_EXIT ({2}

Timecardbanager. handle TimecardChamgelLIST <Timecard_g>, LIST<Timeeard_ex)
21:05:25,B47 {53993 5000) [CUMULATIVE_LIMIT_USAGE
21:05:25, BATILIMIT_USAGE_FOR NS idetaulty|
Number of SOGL queries: 1 out of 100

Mumber of query Fows: 1 sut of 50000

Kumber of S05L queries: 0 out of 20

Kumber of DML statements: 4 out of 150

Mumiber of DML rows: 4 st of 10000

Number of code statements: 19 out of 200000
Maxsmum beap size: 0 out of 6000000
Mumber of calicuts: 0 cut of 10

Number of Emall lwvecatons: 0 out of 10

Mamber of felds describes: 0 out of 100

Mumber of recond type describes: O out of 100
Mumber of child relationships describes: 0 out of 100

lo° |

Figure 4.10 Viewing test results

Summary

This chapter is arguably the most important chapter in the book. It describes core Apex
concepts and syntax that form the basis of all subsequent chapters. Absorb this chapter,
augmenting it with the information available through the developer.force.com Web site and
community, and you will be well prepared to write your own Force.com applications.

Before moving on, take a few minutes to review these major areas:

= Apex is the only language that runs inside the Force.com platform and is tightly
integrated with the Force.com database. Apex is strongly typed and includes object-
oriented features.

= The Force.com database is queried using SOQL and SOSL, and its records are modified
using DML. All three languages can be embedded directly inside Apex code.

= Resources consumed by Apex programs are tightly controlled by the Force.com platform
through governor limits. Limits vary based on the type of resource consumed. Learn the
relevant governor limits as early as possible in your development process. This ensures
that you write efficient code that scales up to production data volumes.

Advanced Business Logic

In the preceding chapter, you learned the basics of the Apex language for developing business logic. This
chapter extends your knowledge of Apex to reach more features of the Force.com platform. The follow-
ing topics are covered:

Aggregate SOQL queries—Aggregate queries operate on groups of records, summarizing data
declaratively at the database level rather than in Apex.

Additional SOQL features—SOQL includes features for querying related objects and multi-
select picklists.

Salesforce Object Search Language (SOSL)—SOSL is a full-text search language, a
complement to SOQL, that allows a single query to search the textual content of many database
objects and fields.

Transaction processing—Apex includes database methods to enable the partial success of
transactions, saving and restoring of database state, and locking of records returned from a
query.

Apex managed sharing—Managed sharing allows programmatic control over record-level
sharing.

Sending and receiving email—Apex programs can send and receive email with support for text
and binary attachments and templates for standardizing outbound messages.

Dynamic Apex—Execute database queries that aren’t hard-coded into your programs, query
Force.com for your database’s metadata, and write generic code to manipulate database records
regardless of their type.

Custom settings in Apex—Data from custom settings can be retrieved, created, updated, and
deleted from Apex.

Sample application—The Services Manager sample application is enhanced to send email
notifications to users when a business event occurs.

144

Chapter 5 Advanced Business Logic

Note
The code listings in this chapter are available in a GitHub Gist at http://g00.gl/q65M4.

Aggregate SOQL Queries

SOQL statements that summarize or group records are called aggregate queries. Aggregate queries
in SOQL run at the database level rather than in Apex. This results in much better performance
and simpler code. This section covers three aspects of aggregate SOQL queries:

= Aggregate functions—Rather than simply returning the discrete values of a database
field in a SELECT statement, aggregate functions such as suM apply a simple calculation
on each record and return the accumulated result.

» Grouping records—The GROUP BY syntax works with aggregate functions to return a set
of summarized results based on common values.

= Grouping records with subtotals—SOQL provides two special forms of the GROUP BY
syntax to calculate subtotals and return them in the query results.

Aggregate Functions

Aggregate functions in SOQL work much like their SQL counterparts. They are applied to fields
in the SELECT list. After you include an aggregate function in a query, nonaggregate fields in
the same query are not allowed. The six aggregate functions available in SOQL are

= avG—Calculates an average of the values in a numeric field.

= couNT—Counts the values in a numeric, date, or string field, including duplicate values
but not nulls. Unlike all other aggregate functions, the argument to COUNT is optional.

= COUNT DISTINCT—Counts the unique values in a numeric, date, or string field, excluding
nulls.

= MIN—Returns the minimum value in a numeric, date, or string field. The minimum of
a string field is the first value when values are sorted alphabetically. If the string is a
picklist type, the minimum is the first value in the picklist.

= MAX—Returns the maximum value in a numeric, date, or string field. The maximum of a
string field is the last value when values are sorted alphabetically. If the string is a picklist
type, the maximum is the last value in the picklist.

= suM—Computes the sum of values in a numeric field.

All queries containing aggregate functions return a special Apex object called
AggregateResult, except the no-argument form of COUNT, which returns an integer. The
AggregateResult object contains the aggregate values calculated by running the query. They
have default field names expro for the first field, expr1, and so forth. Alternatively, you can

http://goo.gl/q65M4

Aggregate SOQL Queries

provide an alias immediately following the aggregate function column to provide a friendlier
label for the value in your code. Aggregate result fields are accessed using the get method.

To get started with aggregate functions in Apex, open Force.com IDE’s Execute Anonymous
view and type in and run the code given in Listing 5.1.

Listing 5.1 Returning the Record Count

Integer 1 = [SELECT COUNT() FROM Timecard c];
System.debug (i) ;

This code prints the number of records contained in the Timecard c object to the debug
log. The SOQL query returns an integer because it uses the no-argument form of the COUNT
aggregate function. In contrast, the example in Listing 5.2 uses the SuM aggregate function and
returns an AggregateResult object, with an alias Total specified on the aggregate column.
Note that if an alias were not specified, the aggregate column would be named expro0.

Listing 5.2 Calculating a Sum

AggregateResult r = [SELECT SUM(Total Hours_c) Total
FROM Timecard c];
System.debug(r.get ('Total'));

Note

Normal SOQL governor limits apply to aggregate functions. The number of records used to
compute an aggregate result are applied toward the limit on records returned. So although your
COUNT query returns a single result record, if it counted more than 50,000 records, your query
will fail with an exception. If such a failure is disruptive to your application, make sure you use
a WHERE clause to reduce the number of records that are processed in the query. The LIMIT
keyword is not allowed in queries with aggregate functions, except for the special form of the
COUNT function that has no field argument.

Grouping Records

SOQL provides the GROUP BY syntax for grouping records by one or more fields. When a query
contains a grouping, its results are collapsed into a single record for each unique value in the
grouped field. Because you can no longer return individual field values, all fields not specified
as grouped must be placed within aggregate functions.

Listing 5.3 shows a simple example of grouping records without aggregate functions. It exam-
ines all the records in the Contact object and returns only the unique values of the field
Region c.

145

146

Chapter 5 Advanced Business Logic

Listing 5.3 Returning Unique Records by Grouping Them

for (AggregateResult r : [SELECT Region__c FROM Contact
GROUP BY Region ¢]) {
System.debug(r.get ('Region_c'));

}

Although aggregate functions can be used alone in a simple query, they are much more power-
ful when used in conjunction with record groupings. Listing 5.4 demonstrates aggregate func-
tions with record groupings. It groups all Timecard records by the geographic region of the
consultant (Contact) who performed the work, and sums their reported hours. This results in
one record per geographic region with the region’s name and a sum of their timecard hours.

Listing 5.4 Using Aggregate Functions with Record Groupings

for (AggregateResult r : [SELECT Contact_ r.Region_ c,
SUM (Total_Hours_ c) FROM Timecard c
GROUP BY Contact r.Region c 1) {
System.debug(r.get ('Region_c') + ' ' + r.get('expr0'));

}

You're already familiar with the wHERE keyword in SOQL for filtering query results using
Boolean expressions. Filtering on the results of aggregate functions requires the HAVING
keyword. It works just like WHERE, but the field being filtered must be wrapped with an aggre-
gate function and included in the GROUP BY list.

The code in Listing 5.5 outputs the average hourly cost rates for consultants by education level,
but excludes records at or below an average cost rate of $100. The filtering of the average cost
rates is specified by the HAVING keyword.

Listing 5.5 Filtering Grouped Records by Aggregate Function Values

for (AggregateResult r : [SELECT Highest Education Level c ed,
AVG (Hourly Cost Rate_c¢) FROM Contact
GROUP BY Highest_ Education Level c
HAVING AVG(Hourly Cost Rate «c¢) > 100]) {
System.debug(r.get('ed') + ' ' + r.get('expr0'));

Grouping Records with Subtotals

Two special forms of grouping in SOQL produce subtotals and grand totals for the record
groupings specified in the query. They are GROUP BY ROLLUP and GROUP BY CUBE, and they
replace GROUP BY syntax and support up to three grouped fields. These functions make it easier
for developers to produce cross-tabular or pivot-style outputs common to reporting tools, where
groups become the axes and aggregate values are the cells. The Force.com database calculates

Aggregate SOQL Queries

the totals and provides them in-line, in the results, eliminating the need to write Apex to post-
process the data.

Listing 5.6 demonstrates GROUP BY ROLLUP to add subtotals to combinations of two fields:
Status__c and Region_ _c. Because Status__c appears first in the GROUP BY ROLLUP func-
tion, the subtotals are calculated for each of its unique values. The function GROUPING is used
to identify subtotal records, and also to order the results so that the subtotals appear last.

Listing 5.6 Subtotals on Two Field Groupings

for (AggregateResult r : [SELECT Project_ r.Status_ c, Contact_ r.Region_c,
SUM(Total Hours_ c) hours, COUNT(Id) recs,
GROUPING (Project_r.Status_ c) status, GROUPING(Contact r.Region_ c) region
FROM Timecard c
GROUP BY ROLLUP (Project r.Status c, Contact r.Region c)
ORDER BY GROUPING (Project r.Status_ c), GROUPING (Contact r.Region c) 1) {
System.debug (LoggingLevel . INFO,

r.get('Status__c') + ' ' + r.get('Region_c') + ' ' +
r.get ('region') + ' ' + r.get('status') + ' ' +
r.get ('hours') + ' ' + r.get('recs'));

Listing 5.7 shows the result of running the code in Listing 5.6 on a database containing 13
Timecard records spread across West and Central regions’ projects in Yellow and Green status.
Note the third and fourth columns contain the value of the GROUPING function. Here, a 1
indicates that the record is a subtotal, and O indicates a normal record. For example, the fifth
record from the top is a subtotal on status because the 1 appears in the status column. The
other values in that record indicate the sum of all Timecard hours for projects in Yellow status
is 109, and that this constitutes three records’ worth of data. The final record contains the
grand totals, which you can verify by adding the record count of the Green subtotal (10) to the
Yellow subtotal (3).

Listing 5.7 Excerpt of Debug Log after Running Code in Listing 5.6

16:04:43.207|USER_DEBUG| [7] | INFO|Green West 0 0 230.0 6
16:04:43.207|USER_DEBUG| [7] | INFO|Green Central 0 0 152.0 4
16:04:43.207 |USER_DEBUG| [7] | INFO|Yellow Central 0 0 109.0 3
16:04:43.207 |USER_DEBUG| [7] | INFO|Green null 1 0 382.0 10
16:04:43.207|USER_DEBUG| [7] | INFO|Yellow null 1 0 109.0 3

[
[
[
[
[
16:04:43.207 |USER_DEBUG| [7] |INFO|null null 1 1 491.0 13

To experiment with GROUP BY CUBE, replace the word ROLLUP with CUBE in Listing 5.6 and
run the code. The GROUP BY CUBE syntax causes all possible combinations of grouped fields
to receive subtotals. The results are shown in Listing 5.8. Note the addition of two records,
subtotals on the Region ¢ field indicated by a 1 in the region column.

147

148 Chapter 5 Advanced Business Logic

Listing 5.8 Excerpt of Debug Log after Changing Listing 5.6 to Group By Cube

16:06:56.003 | USER_DEBUG| [7] | INFO|Green Central 0 0 152.0 4
16:06:56.003 |USER_DEBUG| [7] | INFO|Green West 0 0 230.0 6
16:06:56.004 |USER DEBUG| [7] | INFO|Yellow Central 0 0 109.0 3
16:06:56.004 |USER_DEBUG| [7] | INFO|Green null 1 0 382.0 10
16:06:56.004 |USER_DEBUG| [7] | INFO|Yellow null 1 0 109.0 3
16:06:56.004 |USER_DEBUG| [7] | INFO|null West 0 1 230.0 6
16:06:56.004 |USER_DEBUG| [7] | INFO|null Central 0 1 261.0 7
16:06:56.005|USER DEBUG| [7] | INFO|null null 1 1 491.0 13

Additional SOQL Features

Although SOQL doesn’t allow arbitrary joins, it provides some control over how related objects
are navigated. This section discusses inner and outer joins, as well as semi-joins and anti-joins:

= Inner join and outer join—SOQL statements that include related objects normally do so
by outer join, but can perform an inner join instead using a WHERE clause.

= Semi-join and anti-join—Semi-join and anti-join are types of relationship queries that
use the results of a subquery to filter the records returned from the parent object.

= Multi-select picklists—A multi-select picklist is a form of picklist field that allows
multiple values to be stored for a single record. The standard conditional filters of the
SOQL wHERE clause do not suffice for handling multiple values within a single record and
column, so SOQL provides special syntax to handle this case.

Inner Join and Outer Join

A SOQL statement consists of a single base object, specified using the FROM keyword. All fields
in the base object can be retrieved in the query, as well as fields from parent and child objects
depending on their distance away from the base object. Force.com takes care of joining related
objects together to retrieve the requested fields.

These implicit joins are always outer joins. An outer join returns all records from the base
object, including records that do not refer to a related object. To get a feel for this behavior,
create a new Project record in the native user interface and leave all of its fields blank, but enter
Test Project for the Name. Open Force.com IDE’s Schema Explorer and enter and run the
query given in Listing 5.9.

Listing 5.9 SOQL Outer Join

SELECT Name, Account__r.Name
FROM Project_ c

Additional SOQL Features

This query returns the name and account name of the Projects. Account is the parent object
of Project through a Lookup relationship. Because it is a Lookup relationship and not Master-
Detail, it can contain a null value in Account ¢, the Account foreign key field. With no
foreign key to Account, Account _r, the foreign object reference, is also null.

You should see the five records imported from Listing 2.11 in Chapter 2, “Database Essentials,”
plus the newly added record, named Test Project. Figure 5.1 shows the result of running the
query. The Test Project record contains no value for Account _ r yet was included in the results
anyway. This is due to the outer join behavior.

=)lcs Lt IO
[T M Force.com
| B Development with e Foroesom Patfarm (ird idisan I‘.‘i]]
|
Guery Resules Run Me b
SELECT Hame, Account_r.Name ® Account
FROM Project_c # 10 Prefis: 001

@ Frempdoor URLS
@ Labels
& Access

O Fieids - a7
» O] Accountiumber = striny
Accgunt, o "
0 Asee r - piehlist

[0 Active_c - pickdist tcustom)
O Annusievenue - curremey
00 sitingCry - string
O mningCountry - string
0 wilingPastaiCode - string
10 millingSxate - strimg
[0 milingtareet - textarea
« [Creasedayid - reference
[CreatedCate - datetime
[0 cusomerfricriny._c - picklist fcustomd

e Tramupert Accaun t

Account
® Grand Hatehs & Resorty L1d Accoust
® Test Project

100 indutry - pickdist
O wbeleted - _bookean

» O sgraw - string
O sgrawCompanyid - wring
I astaceiityDate - date
] Lastidedifiedibyid - reference
0 Lantsiod fieciDate - datetime
0 mastermecordsd - reference
0 Mame - sising
0 numberOfEmployees - int

| sehema Explorer |

J o] e mms

Figure 5.1 Outer join results in Schema Explorer

In a relational database, this same query translated to SQL would result in five rows. The Test
Project row would not be returned because it does not match a row in the Account table. Joins
in SQL are inner by default, returning only rows that match both tables of the join.

To duplicate this inner join behavior in SOQL, simply add a filter condition to eliminate
records without a matching record in the related object. For example, Listing 5.10 adds a filter
condition to Listing 5.9 to exclude Project records without a corresponding Account.

149

150

Chapter 5 Advanced Business Logic

Listing 5.10 SOQL Inner Join

SELECT Name, Account__r.Name
FROM Project_ c
WHERE Account_ ¢ != null

The results of this query are shown in Figure 5.2. It has returned five records, each one with a
corresponding parent Account record. The newly added Project record without the Account is
correctly omitted.

e gll-Belucm]|q: |10 - we-

[| M Force.com
= Kdisan] I.‘i] =51

Query Results Run Me Schema P
SELECT Hame, Account_r.Name v @ Account

FROM Project_c @ |0 Prefix: 001

WHERE Agcaura_e | null it
...... ANIDGF = LW

o et [m A5, il 1

® Ceneaint Account > D 2 r: :

® urlington Texties Corp of America Account " nac M.It picidist (custom)

® Crand Wotel & Resorts Lid Account 4 D stinec reanug = cufrency.

> HingCity - 41ri
® Express Logiatics and Transport Account : u:" 0‘-r'h- string
® United 04 & Gas Coep Accoun " v ingCounery - sering

* [silingPastalCode - string
* [silingState - string

* [milingSareet - textarea

* [Createdyid - reference
» [CreatedDute - datetime

* [0 custome: & = plckiist frusomb
O pee ares

» O Fax

="

» [mdustry - picidist

* [bbeleted - _boolean

» O sgraw - string

* O sgrawCompanyid - vring
0] LastaceninyDate - date

* [LavibtediifiecByid - reference

* O tasmodifiediate - datetime

[0 Mastermecordsd - reference

¥ [Mame - stsing

* [MumberOfEmptoyess = _int

Scherma Explores

=] |sEm@g

Figure 5.2 Inner join results in Schema Explorer

Semi-Join and Anti-Join

In Chapter 4, “Business Logic,” you learned the two ways related objects can be included in
SOQL: parent-to-child and child-to-parent queries. Semi-join and anti-join queries enhance the
functionality of both queries, and add the ability to make child-to-child queries. In general,
they allow records from one object to be filtered by a subquery against another object.

For example, suppose you need a list of all Account records that have at least one Project record
in a yellow status. To make sure you have a valid test case, edit one of the Project records in the
native user interface to set it to a yellow status. Try to write a query to return its Account, with
Account as the base object.

Additional SOQL Features

You can’t do this without using a semi-join. Listing 5.11 shows one attempt. But it returns
the unique identifiers and names of all Accounts and the unique identifiers of any Projects in
yellow status. You would still have to write Apex code to filter through the Account records to
ignore those without Project child records.

Listing 5.11 Parent-to-Child Query, Filter on Child

SELECT Id, Name,
(SELECT Id FROM Projects_r WHERE Status_c = 'Yellow')
FROM Account

Figure 5.3 shows the result of executing this query. Grand Hotels & Resorts Ltd is the Project in
yellow status, and you can see that its Project record has been returned in the relationship field

Projects_ r.

Jenll-daelaem]-] 18- w6

[| Foree.com
= nason 11| el
Query Results Run Me b Refraih Schema
SELECT id, Name, ¥ & Accoumt
{SELECT ki FROM Projects_r WHERE Status_c = “Yellow') @ 1D Prefix: 001
FROM Aceownt * & Frondoor URLS
b @ Labels |
F @ Access
v [Fisddy - a7
] Accountiumber = $ing

W Barme Projects_t
& 001000000 Thid 2f CenePoint

® 00LI0000007ho504 United Ol & Gas, U

® 001I000000ThYS 14 United DIl & Cas, Singapore

® 00LI0000007h5 24 Edge Communications

® 001i000000ThES L Burlington Teatiles Corp af America

. i

® 001I0000007hn554 Dikenson ple

= 0010000007 hES6d Grand Hotels & Resorts Lid Propects_ri1)
® (0110000007hn5 74 Exress Logistes and Transpory

= QDLI0O0V00ThE38) University of Atlzana

® 00LI0000007hE5% Unhed Ol & Cas Corp.

® 001/000000ThuIA sForce

b D] AccountSaunce - piehiist
* O actve_c - pickdist (custom)
¥ O Asnusthevenus - currency.
s [SlingCiy - string
» [miingCounery - sering
» O milingPastaiCede - string
* [silingState - string
* [milingSareet - textarea
* [Createdyid - reference
* [CreatedDate - datetime
* O Cunomerfriorny_c = pikist (customb
» [Deseription - rentares
00 Fax - phone

>
="

* [wdustry - pickdise

+ [biDeleied - _boolean

» O sgraw - string

* O sgrawCompanyid - vring

* O astactvityDate - date

* [LavibtediifiecByid - reference
* [cassodifieciate - datetime
O MasterRecordsd - reference

¥ [Mame - stsing

* O NumberOfEmptoyees - int

Sehemna Explorer
I | |e B mma

Figure 5.3 Parent-to-child query, filter on child

Listing 5.12 rewrites this query using a semi-join. Read it from the bottom up. A subquery iden-
tifies Projects in yellow status, returning their Account unique identifiers. This set of Account
unique identifiers is used to filter the Account records returned by the query. The result is a
single Account, as shown in Figure 5.4.

151

152

Chapter 5 Advanced Business Logic

Listing 5.12 SOQL with Semi-Join

SELECT Id, Name
FROM Account
WHERE Id IN
(SELECT Account__c FROM Project__c WHERE Status_ c = 'Yellow')

jenll-daelaem]q-]800

[| M Foree.com
- Haditsan) I‘.‘i] H
Cuery Results Run Me Schema
SILECT W, Name ¥ @ Account
FROM Accourc @ D Prefix: 001
WHERE M IN
-8
SELECT Actount_c FROM Project_c WHIRE Status_¢ = Yellow] Fronudoor URLS
* @ Labels U
b @ Access
v [Fisddy - a7
* Oa INumber - $tring

b D] AccountSaunce - piehiist

» [active_c - picidist {custom)
¥ O Asnusthevenus - currency.
* O sitingCy - string

» [miingCounery - sering

» O milingPastaiCede - string

* [silingState - string

* [milingSareet - textarea

* [Createdyid - reference

» [CreatedDute - datetime

* O Cunomerfriorny_c = pikist (customb
» [Deseription - rentares

00 Fax - phone

="

* [wdustry - pickdise

* O bbeleted - _boolean

IO sgtaw - string

* O sgrawCompanyid - vring

* O astactvityDate - date

* [LavibtediifiecByid - reference
* [cassodifieciate - datetime
[0 Mastermecordsd - reference
» [Mame - siring

* O NumberOfEmptoyees - int

7] Name
® 001i000000ThuSBAAA Grand Hotels & Resorts Lid

Schema Explorer

leo® | |e B mma

Figure 5.4 SOQL with parent-to-child semi-join

An anti-join is the negative version of a semi-join. It uses the NOT IN keyword to allow the
subquery to exclude records from the parent object. For example, Listing 5.13 returns all
Accounts except those containing Projects in a green status. Note that the results include the
Project in yellow status, as well as all Account records not associated with a Project.

Listing 5.13 SOQL with Anti-Join

SELECT Id, Name
FROM Account
WHERE Id NOT IN
(SELECT Account ¢ FROM Project c WHERE Status c = 'Green')

Returning to semi-joins, Listing 5.14 provides an example of another type, called child-to-
child. It joins two child objects that aren’t directly related by relationship fields. The records in

Additional SOQL Features

the Timecard object are filtered by contacts that have at least one assignment as a consultant.
This means Timecards logged by contacts who are not assigned to a project as a consultant are
excluded from the results. Child-to-child refers to the Timecard and Assignment objects, which
are related to each other only in so much as they are children to other objects.

Listing 5.14 SOQL with Child-to-Child Semi-Join

SELECT Project r.Name, Week Ending c, Total Hours_ c
FROM Timecard c
WHERE Contact_c¢ IN
(SELECT Contact__c FROM Assignment ¢ WHERE Role ¢ = 'Consultant')

Listing 5.15 demonstrates a third type of semi-join, the child-to-parent. Timecards are filtered
again, this time to include consultants with an hourly cost rate of more than $100. Child-to-
parent refers to the relationship between the Timecard and Contact objects. Contact is the
parent object, and it is being used to restrict the output of the query on Timecard, the child
object.

Listing 5.15 SOQL with Child-to-Parent Semi-Join

SELECT Project__r.Name, Week Ending c, Total Hours_ c
FROM Timecard c
WHERE Contact c¢ IN
(SELECT Id FROM Contact WHERE Hourly Cost Rate c¢ > 100)

Several restrictions are placed on semi-join and anti-join queries:

= The selected column in the subquery must be a primary or foreign key and cannot
traverse relationships. It must be a direct field on the child object. For example, it would
be invalid to rewrite the subquery in Listing 5.12 to return Account__r.Id in place of
Account__ c.

= A single query can include at most two semi-joins or anti-joins.

= Semi-joins and anti-joins cannot be nested within other semi-join and anti-join
statements, and are not allowed in subqueries.

= The parent object cannot be the same type as the child. This type of query can always be
rewritten as a single query without a semi-join or an anti-join. For example, the invalid
query SELECT Name FROM Project ¢ WHERE Id IN (SELECT Id FROM Project c
WHERE Status ¢ = 'Green') can be expressed without a subquery: SELECT Name
FROM Project__c WHERE Status_ c = 'Green'.

= Subqueries cannot be nested and cannot contain the OR, count (), ORDER BY, Or LIMIT
keywords.

153

154

Chapter 5 Advanced Business Logic

Multi-Select Picklists

Multi-select picklists are interchangeable with ordinary picklists in queries, except for being
prohibited in the ORDER BY clause. SOQL includes two additional features for filtering multi-
select picklists, described in the following list:

= Semicolon AND operator—The semicolon is used to express multiple string literals. For
example, 'Java;Apex' means that the multi-select picklist has both Java and Apex items
selected in any order. The semicolon notation can be used with the = and != SOQL
operators to make assertions about the selected items of multi-select picklists.

= INCLUDES and EXCLUDES keywords—The INCLUDES and EXCLUDES keywords are
followed by comma-separated lists of literal values. The INCLUDES keyword returns
records in which the selected values of a multi-select picklist are included in the list of
values. The EXCLUDES keyword returns records that match none of the values.

The semicolon notation can be combined with the INCLUDES and EXCLUDES keywords to
express any combination of multi-select picklist values.

To try this out, create a multi-select picklist named Requested Skills on the Project object. Run
the SOQL statement given in Listing 5.16 using the Force.com IDE’s Schema Explorer. It returns
Project records with the multiple selection of Apex, Java, and C# in the Requested Skills field
and also records with only Python selected. Populate Project records with matching values to
see them returned by the query.

Listing 5.16 SOQL with Multi-Select Picklist

SELECT Id, Name
FROM Project_ c
WHERE Requested Skills ¢ INCLUDES ('Apex;Java;C#', 'Python')

Salesforce Object Search Language (SOSL)

Data stored in the Force.com database is automatically indexed to support both structured

and unstructured queries. SOQL is the language for structured queries, allowing records from a
single object and its related objects to be retrieved with precise, per-field filter conditions. SOSL
is a full-text search language for unstructured queries. It begins by looking across multiple fields
and multiple objects for one or more search keywords, and then applies an optional SOQL-like
filter on each object to refine the results.

To decide which query language to use, consider the scope of the query. If the query spans
multiple unrelated objects, SOSL is the only practical choice. If the query searches for words
within many string fields, it can probably be expressed more concisely in SOSL than SOQL. Use
SOAQL for queries on a single object with filters on various data types.

Salesforce Object Search Language (SOSL)

SOSL Basics

At the highest level, a SOSL query specifies search terms and scope. The search terms are a
list of string literals and can include wildcards. The search scope is fields containing string
data from one or more objects. This excludes Number, Date, and Checkbox fields from being
searched with SOSL.

SOSL query syntax consists of four parts:

= Query—The query is one or more words or phrases to search on. The query can include
the wildcards * (matches any number of characters) and ? (matches any single character)
at the middle or end of search terms. Enclose a search term in quotation marks to
perform an exact match on multiple words. Use the logical operators AND, OR, and AND
NOT to combine search terms and parentheses to control the order in which they’re
evaluated. Note that searches are not case sensitive.

= Search group—The search group is an optional part of the SOSL query indicating the
types of fields to search in each object. Valid values are ALL FIELDS (all string fields),
NAME FIELDS (the standard Name field only), EMAIL FIELDS (all fields of type Email),
and PHONE FIELDS (all fields of type Phone). The default value is ALL. FIELDS.

= Field specification—The field specification is a comma-separated list of objects to
include in the result. By default, the 1d field of each object is included. Optionally, you
can specify additional fields to return by enclosing them in parentheses. You can also
specify conditional filters using the same syntax as the SOQL WHERE clause, set the sort
order with the ORDER BY keyword, and use the LIMIT keyword to limit the number of
records returned per object.

= Record limit—This optional value specifies the maximum number of records returned by
the entire query, from all the objects queried. If a record limit is not provided, it defaults
to the maximum of 200.

These four parts are combined in the following syntax: FIND 'query' IN search group
RETURNING field specification LIMIT record limit. The single quotation marks around
query are required.

SOSL in Apex

SOSL in Apex works much like SOQL in Apex. Queries are enclosed in square brackets and
compiled directly into the code, ensuring that the query syntax is correct and references valid
fields and objects in the database.

As with SOQL, bind variables can be used to inject variable values from the running program
into select parts of the query. This injection of values is performed in a secure manner because
Apex automatically escapes special characters. Bind variables are allowed in the search string
(following FIND), filter literals (in the WHERE block), and the LIMIT keyword.

155

156

Chapter 5 Advanced Business Logic

SOSL is not allowed in triggers. It will compile, but will fail at runtime. It is allowed in unit
tests and custom user interfaces, as covered in Chapter 6, “User Interfaces.” In this chapter, you
can experiment with SOSL using the Execute Anonymous view.

Note

You are limited to 20 SOSL queries returning a maximum of 2,000 rows per query.

Listing 5.17 is a sample SOSL query in Apex. It returns the names of records in the Project and
Contact objects that contain the word Chicago in any of their fields.

Listing 5.17 SOSL in Apex

List<List<SObject>> result = [

FIND 'Chicago'

RETURNING Project c(Name), Contact (Name)
1;

List<Project__c> projects = (List<Project__ c>)result[0];
for (Project c project : projects) {

System.debug ('Project: ' + project.Name) ;
List<Contact> resources = (List<Contacts>)result[l];

for (Contact resource : resources) {
System.debug ('Contact: ' + resource.Name) ;

}

Figure 5.5 shows the results of running this code in the Execute Anonymous view. If your
debug log is cluttered with too many other entries to see the output of the query, set Apex code
to the Debug level and all other Log categories to None.

Transaction Processing

This section covers three features of Apex that control how transactions are processed by the
database:

= Data Manipulation Language (DML) database methods—DML database methods are
much like DML statements from Chapter 4, but add support for partial success. This
allows some records from a batch to succeed while others fail.

= Savepoints—Savepoints designate a point in time that your code can return to.
Returning to a savepoint rolls back all DML statements executed since the establishment
of the savepoint.

= Record locking—Apex provides a SOQL keyword to protect records from interference by
other users or programs for the duration of a transaction.

Transaction Processing

= mllcs- | Qe | 8- e ot
73 [Forencom
[% probiems | 8 Apex Test Runner | 8 Execute Anoeymoss B | &7 Synchronize S8
Active Project: | Development with the Force.com Patform (ird Edition) Log categary: | Apex Code 3] Loglevel: —

Source 1o execute:

Liat<List<3Obpects > resll = |

FIND ‘Chicags’

RETURNING Praject_ciName), CantactiName)
1,

List<Praject_c> projects = [List<Project__c>result|0)
for (Projet_c project ; projecul |
SystemaebugIPrajecy ' + projectName);

1

List<Contaits resources = (List<Contact=jresult{1];
for (Contae resausce * resources) |

| | SystemsebugrContaet * + resource Nama}
1

Reswlts,

P iy
Execute Anonymols: RETURNING Project_ciNama), Contactiiame)
Exerute Ananymaus
Fxecute Anonymaus: List<Project_c> projects = [Livt<Praject_c>resit0];

lixecute Ananymau: for (Project _c project : projects) |

Execure Anonymous: System.debuglProject: ' + projectNamak;

Execure Ananymauy: |

Exetute Ananymaus. List<Contacts resources = (List<Contacts heswhf1];

Exetute Anonymots: for (Cotact resource : resources) |

Execute Anamymous: System.debugl' Contaer ' + revource Namel:

Fxrtute Aramymay |

OB23.56.004 1342 180001 EXECUTION_STARTED

08:23:56.004 (342290000 [CODE_UNIT_STARTED|[EXTERNAL] bexecute_anonymous_apex
082356 048 (485 _DERUGH] Grana Hateis & Resor Lid
08 23.56.048 (489170000 |USER_DEBUC11]IDEBUC IComtact Rose Conzales

08:23:55 048 (480 7B000) |USER_DEBUGH 1 1]|DESUGIC ontact: john Bond

08:23:56.040 (43034000} |USER_DEBUCI| L1]|DE8UCIComuact: Andy Young

082355 _LINFT_FI) ¢
OB23:36.040 (491060001 LXECUTION_FNTHED

pen

Figure 5.5 Results of SOSL in Apex

Data Manipulation Language (DML) Database Methods

All database operations in Apex are transactional. For example, an implicit transaction is
created when a trigger fires. If the code in a trigger completes without error, DML operations
performed within it are automatically committed. If the trigger terminates prematurely with an
uncaught exception, all DML operations are automatically rolled back. If multiple triggers fire
for a single database operation, all trigger code succeeds or fails as a group.

In Chapter 4, you were exposed to DML statements. These statements accept a single record

or batch of records. When operating on a batch, they succeed or fail on the entire group of
records. For example, if 200 records are inserted and the last record fails with a validation error,
none of the 200 records are inserted.

Apex offers a second way of making DML statements called DML database methods. DML data-
base methods allow batch DML operations to fail on individual records without impacting the
entire batch. To do this, they do not throw exceptions to indicate error. Instead they return

an array of result objects, one per input record. These result objects contain a flag indicating
success or failure, and error details in the event of failure.

A DML database method exists for each of the DML statements. Each method takes an optional
Boolean parameter called opt_allOrNone to specify batch behavior. The default value is
true, indicating that the behavior is “all or none.” This makes the method identical to a DML

157

158

Chapter 5 Advanced Business Logic

statement, with one failed record causing the failure of all records and a DmlException. But if
the opt_allorNone parameter is false, partial success is allowed.

Note

DML database methods are subject to the same governor limits and general restrictions as
DML statements. Refer to Chapter 4 for more information.

Listing 5.18 inserts a batch of two Skill records using the insert database method. It passes
false as an argument to allow partial success of the DML operation. The insert method
returns an array of SaveResult objects. They correspond one-to-one with the array passed as
an argument to the insert method. Each saveResult object is examined to check for failure,
and the results are displayed in the debug log.

Listing 5.18 DML Database Method Usage

Contact tim = [SELECT Id
FROM Contact
WHERE Name = 'Tim Barr' LIMIT 1];
Skill ¢ skilll = new Skill c(Contact_c¢ = tim.Id,

Type c¢ = 'Java', Rating c¢ = '3 - Average');
Skill c skill2 = new Skill c(Contact c¢ = tim.Id,
Rating c = '4 - Above Average');

Skill cI] skills = new Skill c[] { skilll, skill2 };
Database.SaveResult [] saveResults =
Database.insert (skills, false);
for (Integer i=0; i<saveResults.size(); i++) {
Database.SaveResult saveResult = saveResults[i];
if (!saveResult.isSuccess()) {
Database.Error err = saveResult.getErrors() [0];
System.debug ('Skill ' + i + ' insert failed: '
+ err.getMessage());
} else {
System.debug ('Skill ' + i + ' insert succeeded: new Id = '
+ saveResult.getId());

The result of executing this code is shown in Figure 5.6. The debug log indicates the first record
is inserted, but the second failed because it doesn’t contain a value for the Type c field. This
is enforced by a validation rule created in Chapter 2. If you edit this code and remove the
second argument to Database. insert, which enables partial success, the failure of the second
record raises an exception and rolls back the successful insertion of the first record.

Transaction Processing

SINSNIA [0 U G o e

o1
[T M Force.com

[Probhems | B Apex Test Rurmer |] Enscite Anowymous SI] &7 Synehronize | =3
ject: the Force. form (rd Editien) ¢ Lo categary: | Apex Code 3] Loglevel: — r 1

Source 1o execute

Databaye imperttybill, false),
for (Integer |=0; |<saveResults Al 1++) |
saveResult =
W{aveResultivSucerssi) |
Databasefrror err = unluu'l-u!lbmr\(l[l!
SystemcetuglSkill' + | + ' insert
+ errgetessagel:
Jehe|
SystemBebuglSkill ' + | + * Insert succetded: new id =
+ saveResultgendil

Reswlts,

AT A P
Execute AnOnymous: System.debualSiN ' + | + ' indert succesded: newid =

Execute Anomymoss: » saveResult genid()

Fxecute Arorymous |

Execute Anonyma: |

083040030 (357 17000) EXECUTION_STARTED

08:30-40.039 (39730000)|CODE_UNIT_STARTED|[EXTERNAL] execute_ananymaus_apes
Q8. 30.40.047 (47 o]

05 30:40,047 (474 L9000) SYSTEM_ CONSTRUCTOR EXITIE]|<init>0

08 30:40,067 (676850000 [CODE_UNIT_STARTEDI[EXTERNAL] Validation Skiltmew
OB3040.067 (677850001 ICODE_UNT_FINISHEDN sk n_l

OBI0A0.067 _UNIT_START
0830040068 (6803 m)ﬂ:'com UINIT_FINISHED Vi dmnnik.l e

OB30-40, 104 1 nm _UNIT_STAR il new
08.30.40.105 (10516 DE_UNIT. Skill new

OB:30:40.125 uzsuluwllusm uml[lul.mmlskmu insert succeeded: new d = A021000000IKBUAAAC
DEBUCI fatled; Ty

08:30:40.120 (1 ODE_UKIT_| ¥ _apen
083040128 (1293 36000 EXECUTION_FINSHLD

] o®

Figure 5.6 Results of insert DML database method

Savepoints

Savepoints are markers indicating the state of the database at a specific point in the execution
of your Apex program. They allow the database to be restored to a known state in case of error
or any scenario requiring a reversal of all DML operations performed since the savepoint.

Set a new savepoint using the Database.setSavepoint method, which returns a Savepoint
object. To restore the database to a savepoint, call the Database.rollback method, which
takes a Savepoint object as its only argument.

Several limitations exist on the use of savepoints. The number of savepoints and rollbacks
contributes toward the overall limit on DML statements, which is 150. If you create multiple
savepoints and roll back, all savepoints created after the savepoint you roll back to are invali-
dated. Finally, you cannot share a savepoint across triggers using a static variable.

Listing 5.19 is an example of using the setSavepoint and rollback methods. First, a save-
point is set. Then, all the Project records in your database are deleted, assuming your database
doesn’t contain more than the governor limit of 10,000 records for DML. Finally, the database
is rolled back to the savepoint. The number of records in the Project object is counted before
each operation in the program to illustrate its behavior.

159

160

Chapter 5 Advanced Business Logic

Listing 5.19 Savepoint and Rollback Usage

void printRecordCount () {
System.debug ([SELECT COUNT() FROM Project c] + ' records');
}
printRecordCount () ;
Savepoint sp = Database.setSavepoint () ;

delete [SELECT Id FROM Project_c];
printRecordCount () ;

Database.rollback(sp) ;
printRecordCount () ;

The results of running the code snippet in the Execute Anonymous view are shown in

Figure 5.7. The debug log indicates that the Project object initially contains five records. They
are all deleted, leaving zero records. Then the database is rolled back to the savepoint estab-
lished before the deletion, resulting in a count of five records again.

N ILara T

[M Force.com
:‘ [£ Protiems | & ﬁII Apex | &0 ,[.ﬂnulnw] o8 :
B | Actove Project: | Development wth the Force.com Plaiorm (ird idion) ¢ Log category: | Aptx Code t| Logienel: — &

Source 1o execute:

void printRecordCount) |
Syatem.debugl] SELECT COUNTI FROM Projct_c | + ' records).
]

printRecardCountl);
Savepdint 3p - Databise setSavepaintl);

delete [SELECT a FROM Praject_c |
wrinthecardCountl);

Durabaye rethackisp)
printRecordCountl);

Territe Anamymous

Results.

LT PP A
Execute Anonymous: void printRecordCount {

Execute : 1 SELECT C

Execute Ancmymeus: |

Execute Ancnymeus: printRedordCounti);

Execute Anonymous: Savepoins sp = Database secavepoinsl;
Eurcute Anoaymeus:

Execute Ancymous: delete [SILECT i FROM Project_c |
Execute Anonymous: printRecardCountll

Exeeute Anonymeus:

Farcute Anonymeus.: Databate rolbuckis);

Execute Ancnymous: printRecordCountl);

14:52:32.058 (589540001 EXECUTION_STARTED

_e] 4 records:

14:5233.058 { }CODE_UkIT_! ¥ _apex
14:52.30.082 (E2 1 39000} USER_DEBUC|[2]| DEBUG]S records

145243, DEBUG 2] recards

145233 records

145233, ICODE_UNIT, _apen

1452 3,496 (408872000 EXECUTIGN_FRSHED

le°]

Figure 5.7 Results of savepoint and rollback sample code

Transaction Processing

Record Locking

Apex code has many entry points. Code can be invoked from outside of Force.com via a Web
service call, by modifying a record with a trigger on it in the native user interface, inside Force.
com IDE in an Execute Anonymous view, or in a unit test. Additionally, multiple users or
programs can be running the same code simultaneously or code that uses the same database
resources.

DML operations using values returned by SOQL or SOSL queries are at risk for dirty writes. This
means values updated by one program have been modified by a second program running at the
same time. The changes of the second program are lost because the first program is operating
with stale data.

For example, if your code retrieves a record and then modifies its value later in the program, it
requires a write lock on the record. A write lock prevents the record from being concurrently
updated by another program. Write locks are provided in Apex via the SOQL FOR UPDATE
keyword. This keyword indicates to Apex that you intend to modify the records returned by the
SOQL query. This locks the records, preventing them from being updated by another program
until your transaction is complete. No explicit commit is necessary. The records are unlocked,
and changes are automatically committed when the program exits successfully or is rolled back
otherwise.

Note

You cannot use the ORDER BY keyword with FOR UPDATE. Query results are automatically
ordered by 1d field.

Listing 5.20 is an example of record locking in Apex. Tim Barr is given a raise of $20. His
Resource record is retrieved and locked, the hourly cost is incremented, and the database

is updated. The use of FOR UPDATE ensures that this code running simultaneously in two
contexts still results in the correct outcome: a $40 increase in hourly cost rate, $20 from each
of the two independent execution contexts, serialized with FOR UPDATE. Without the locking,
a dirty write could cause one of the updates to be lost. For this example to execute without
errors, make sure you have a Contact record named Tim Barr with a non-null value for the
Hourly Cost Rate c field.

Listing 5.20 Record Locking Example

Contact tim = [SELECT Id, Hourly Cost_Rate_ c
FROM Contact
WHERE Name = 'Tim Barr' LIMIT 1
FOR UPDATE] ;

tim.Hourly Cost Rate c += 20;

update tim;

161

162

Chapter 5 Advanced Business Logic

Apex Managed Sharing

Apex managed sharing allows Apex code to add, edit, and delete record sharing rules. This is
the third and most advanced type of record sharing provided by Force.com. It provides the
Apex developer with full control of record sharing. Apex managed sharing uses the same infra-
structure as the other two types of record sharing, discussed in Chapter 3, “Database Security,”
and briefly reviewed here:

= Force.com managed sharing—These are record sharing rules maintained by Force.com.
A native user interface enables administrators to add, edit, and delete these rules. Rules
are based on user, group, or role membership and defined individually on each object.
They are configured in the Administration Setup area, Security Controls, Sharing Settings.

= User managed sharing—Users who own records can grant permission to additional users
from the native user interface. This is a manual process. The owner visits a record to
share and clicks the Sharing button to add, edit, or remove its sharing rules.

This section is divided into two parts, described next:

= Sharing objects—Sharing objects are where Force.com stores record sharing rules. The
fields of sharing objects are described, as well as restrictions on their use.

= Creating sharing rules in Apex—This walks you through the infrastructure behind
sharing rules, finishing with a code sample to add a sharing rule in the Services Manager
sample application schema.

Sharing Objects

Every custom object, except Detail objects in a Master-Detail relationship, has a corresponding
sharing object to store its record-level sharing rules. The sharing object is created automatically
by Force.com and is invisible to the native user interface. It can be seen in the Force.com IDE'’s
Schema Explorer. Its name is the name of your object with _ Share appended. For example,
the sharing object for the Project ¢ object is Project Share.

The sharing object contains explicit sharing rules. These are created by Force.com managed
sharing, user managed sharing, and Apex managed sharing. It does not contain implicit shares
such as organization-wide defaults.

Four fields of the sharing object control how records are shared between users and groups, as
follows:

= ParentID—ParentId is the unique identifier of the record being shared.

= UserOrGroupId—This is the unique identifier of the user or group that the sharing rule
is granting access to. Groups are public groups or roles.

= AccessLevel—This field stores the level of access granted to the user or group for this
record. The three valid values are Read (Read Only), Edit (Read and Edit), and A11 (Full
Control). Apex managed sharing cannot set a record to A11. The value of AccessLevel

Apex Managed Sharing 163

must be more permissive than the organization-wide default or a runtime exception is
thrown.

= RowCause—The purpose of the RowCause field is to track the origin of the sharing rule.
Valid values are Manual (the default) or a custom sharing reason, defined on the object
in the Apex Sharing Reasons related list. Manual sharing rules can be edited and removed
by the record owner and are reset when record ownership changes. Sharing records with
a custom reason are not reset when ownership changes and cannot be edited or removed
without the administrative permission Modify All Data.

Restrictions

Two important restrictions exist on Apex managed sharing:

= Objects with an organization-wide default sharing level of Public Read/Write, the most
permissive setting, cannot use Apex managed sharing. Set the level to Private or Public
Read Only instead.

= After a sharing record is created, the only field that can be updated is the access level. If
you need to change other fields, delete the sharing record entirely and re-create it.

Caution

When the organization-wide sharing default is changed for an object, all sharing rules are recal-
culated. This causes your Apex managed sharing rules to be deleted. To re-create them, you
must implement an Apex class to participate in the recalculation event. This code uses the
Apex batch processing feature to allow processing of millions of records in smaller groups of
records, to stay within governor limits. The Apex batch processing functionality is covered in
Chapter 9, “Batch Processing.”

Creating Sharing Rules in Apex

Figure 5.8 shows the Force.com managed sharing settings for the Project object, configured in
Chapter 3. The sharing rules specify that projects owned by members of one role are shared by
all users in that role. This is defined three times because three separate roles exist, one for each
region in the sample company.

Navigate to an individual Project record and click the Sharing button. Figure 5.9 is an example
of the resulting screen. It lists the sharing rules in effect for this record. The first sharing rule
is the default one, specifying that the owner has full control over the record. The second is the
sharing rule maintained by Force.com managed sharing, configured using the screen shown in
Figure 5.8, which allows users in the same role as the owner (West) to edit the record.

164 Chapter 5 Advanced Business Logic

_ Shating Senings ~ sabesforce.com - Developer Edition .
Flekd Accassibilty
Passweed Policles Account Sharing Rules Now | | Recslculste Account Sharing Rules Help (7,
Session Sellings
Rakwark fasees Mo sharing rules specified.
Login Access Policies
Certificate and Key Management Contact Sharing Rules _Now | Recalculate Cantact Sharing Rules Help (7
Single Sign-On Settings
Auth. Providers Action Critaria Shared With Cantact
Mentity Provider Edil | Del Crwner in Role: Central Ruole: Central ReadWrite
Ve Setup Audit Trail Edit | Dal Owner in Rol: East Rl East ReadiWin
Expira Al Passwords ; :
Delegated Administration Edit | Dl Ownarin Rola; Wast Rols: Wast Read/\Write
Remote Site Settings.
[« Sharing
HTM and Sattings. Pp y
+ Rules v | | Reoaloutute Opparnity] Help (¥
+ Communication Templates
+ Translation Workbanch o sharing rules speciied.
+ Dato Mansgement
+ Manitoring Case Sharing Rules Now | | Recalcutate Casa Sharing Rules Helg |7
+ Mobile Administration
+ Deskiop Administration Mo shaing rules specilied.
+ Emall Administration
* Google Apps Campaign Sharing Rules Campaign Sharing Rules Halp (T
No sharing rules specified.
Project Sharing Rules. Now | | Recalculate Project Sharing Rules Help (7.
Action Criteris Shared With Access Lovel
Edt | Dol Owner in Role; Ceniral Bote: Central ReadWiite
Edit | Del Ownarin Rols: Enst Role: East Read\Wrise
Edit | Dl Owner in Role; West Role: West ReadWrite

| Torms of Use | 508

Figure 5.8 Sharing rules for Project object

0.6 Shating Detail: GenePoins - salesforce.com = Develaper Edition o
ﬁrcc.coln Search, Ssarch Paige Turner = Holp Services Manager ~
J Home Contacts Shilts +
Sharing Detadl Haln for this Page i@
ﬂ GenePoint
GenePaint

This page lists the users. groups. roles, and territories that have sharing access 0 GenePoint. Click Expand List to view all users who have acoess
tolt

View: | All 3| Edif| Create New View
ABCDEFGHIJKLMNOPORSTUNY WX Y Z Other M

User and Group Sharing A || Expand List User and Group Sharing Help 7
Action Type Nama + Accoss Level Ruason
User Tim Bart Full Access Cwnes
Roilo Wast Road/Writa Cusstom Objoct Sharing Rua
Explanation of Access Lovels

» Full Accoss - User can viow, edit, dolels, and transfer the recond. meammmmmmww

» ReadWrite - User can view and oo the record, and add records, notes, and

* Ruad Only - User can view the record, mmawmhtwmwmmwmmww
» Privale - User cannol access the record in any way.

Copyright © 2000-2013 salasforce.com, Inc. All rights masrved. | Privacy Statsmont | Sacurity Statermant | Tarms of Uss | 508
Complance

Figure 5.9 Sharing detail for Project record

Apex Managed Sharing

You’ve visited screens in the native user interface where record sharing is taking place. Next,
look a level deeper at the data driving the sharing behavior. Open the Force.com IDE’s Schema
Explorer and run the query shown in Listing 5.21. It illustrates how Force.com stores the
information for the sharing rules in Figure 5.9 and what you will be manipulating with Apex
managed sharing.

Listing 5.21 SOQL Query on Project Share Object

SELECT ParentId, UserOrGroupld, AccessLevel
FROM Project__ Share
WHERE Parent.Name = 'GenePoint'

Figure 5.10 is the result of running the query. Note that the identifiers in your Force.com orga-
nization will be different from those in the figure.

jeli-Ealuom|q.]| @]d-i-wG-
[| M Feree.com

[Kditian) I‘.‘i] =g

| Query Resules.
SELECT Parentid, UserOrGrounid, AccessLevel

FROM Project_Share
WHERE Parent Name = Tenepeint’

Schema

¢ o PioMetLShan
@ Lahels
b Access

v O Fields - 8
0 Accessievel - piciint
O = I
* [nDeleted - _boolean
= O tastodifiedyid - reference
* [LastModifiedDate - datetime
* [Parenuid - reference

Parertid ~ seOrGroumie. | Accessievel
. AAE URAAD AN

q A Edit

* @ PushTopic
@ Queusbobjest
¢ @ RecosdType
= @ Report
- @ Reportfesd
@ SewpbntityAccess
b & Sne
“ @ SHeFeed
& SaeHisory
LR
b @ Solution
* @ SalutionFerd
» @ SolutionMistery
* @ SolutionStans
P SuncReiource
- @ Task
= @ Taskbeed

Scherma Explores

leo®] EXT Y

Figure 5.10 Results of SOQL query on Project Share object

Try to decode the meaning of each record. The parentId field contains the unique identifier
of the record being shared. The query has filtered by the name GenePoint, which is a Project
record. The UserOrGroupId field contains the unique identifier of a User or Group record. The
AccessLevel field is one of the four access levels (All, None, Edit, View), although only Edit
and View can be set using Apex managed sharing.

165

166

Chapter 5 Advanced Business Logic

The first record has All access, so it’s the default sharing rule granting the owner of the record

full access. The second record might be a mystery at first. The UserOrGroupId does not match
up with the unique identifier of the West region’s role record. Run the query shown in Listing
5.22 to track down the meaning of this value.

Listing 5.22 SOQL Query on Group Object

SELECT Id, Type, RelatedId
FROM Group

The Group object stores information about roles and other groups in Force.com. Figure

5.11 displays the results of the query. The Related1d field contains the same value as the
UserOrGroupId value of the second sharing record. This is where Force.com managed sharing
has stored the fact that the Project record named GenePoint is shared with other members of
the West role.

lenllc-Galaem]Q: |80 v
[| M Foree.com
(= Rditsan] I.‘i]

Query Resules Run Me Schema Refresh Schema

SLLECT i, Type, Relatedid "k

FROM Croup * @ Labels
b @ Access
v [Fields - 8
= [Accessievel - mickiint
*Ou-u
7] Type Relatecid * [hDeleted - _boglean
8 DOCACIOO0MATXEAT Organization # [tasmodifedbyid - reference.
® DOCHIOO0O0ONIBAEAD | Role DOTOOGO0O0HAISEAT * [LastModifedDate - datetime
= goc: » [Farenuid = reference
® QOGHOOD000ONIBIEAD | Roke OOLOOOO0O0HADEAS * O Rowcase - piekdist
v [userOrGrouphd - reference
0
= OOCOOOOOOONIBEEAS | Role DOEO0O0000HAIEAS » & Access
. IBFEAA > @ Labe
P COCIOOO00COMANEAS T @ Type Duta - reference

@ Soap Type: 10
@ Length 18
@ Byte Lengsh- 18
¥ @ Reference To

B Child Relaticns higs
S Projct_c
b @ PushTopic
b O QueueSobject
b @ RecosdType
» @ Repart
* @ ReportFeed
@ SetupEnttyAccess
- @ She
* @ Sheferd

Scherma Explores

=] |sEm@g

Figure 5.11 Results of SOQL query on Group object

Apex managed sharing allows you to insert new rows into the Project Share object, and
other sharing objects, and specify custom sharing reasons that are meaningful to your applica-
tion. Custom sharing reasons are maintained for each object individually. To try adding one,
go to the App Setup area and click Create, Objects and select the Project object. Scroll to the
bottom of the page. In the Apex Sharing Reasons list, add a new reason with a label of My

Apex Managed Sharing

Sharing Reason. Force.com automatically suggests a Name, converting spaces to underscores.
Refer to the custom sharing reason in your Apex code by adding ¢ to the end of the name.

Listing 5.23 contains sample code you can run in the Execute Anonymous view. It shares the
GenePoint record with an additional user, specifying the custom sharing reason, with Read-
only access.

Listing 5.23 Inserting Sharing Rule on Project Object

User carrie = [SELECT Id FROM User
WHERE Name = 'Carrie Oakey' LIMIT 1];
Project ¢ genePoint = [SELECT Id FROM Project_ c

WHERE Name = 'GenePoint' LIMIT 1];
Project__Share share = new Project__ Share(
ParentId = genePoint.Id,
UserOrGroupld = carrie.Id,
rowCause = Project__Share.rowCause.My Sharing Reason_c,
AccessLevel = 'Read');
insert share;

After executing this code, refresh the Sharing Details for GenePoint and you should see the
screen shown in Figure 5.12. It shows that the new custom sharing rule has been added.
Because the sharing rule was created by Apex code and uses a custom sharing reason, it’s
preserved across changes of record ownership and cannot be edited or deleted by users unless
they have the Modify All Data administrative permission in their profile.

Sharing Detail: GenePoint ~ salesforce.com - Developer Edition K

ﬁrce.c{)m Sowreh, Bearch Paige Tumer = Halp Services Manager =
| Home Contacts Rl l Assignmonts Skills Timecards +
Sharing Detail Halp for thia Paga @
A GenePoaint

GenePoint

This page fists the users, groups, roles, and territories that have sharing access 1o GenePoint. Clck Expand List to view all users who have acoess
toit.

View: | All 3 Edit| Create New View
ABCDEFOBHIJKLMNOPGRSTUWVWYZ Oher AN

User and Group Sharing _Add | | Expand List Lisar and Group Sharing Hala (7
Action Typa Nama ¢ Ascass Lavel Roascn
Edil | Del Usar Camie Qpkay Fead Only My Sharing Roascn
Usar Tim Bamr Full Access Cwmar
Role Wast RaadWrite Custom Object Sharing Rule
Explanation of Access Levels

* Full Aconss - Uisar can view, oL, delote, and transfer tha recond Mmmmwmr’thomm
= ReacdWrils - User can view and edit the record, and sdd

» Read Oriy - Usar can view tha mcord, and add 0@ Thay it thy ndﬂnu!u

= Privale - User cannol access the record in arry way,

Copyright © 2000-2013 aslasforca.com, inc. All rights resarved. | Privacy Statemant | Sacurtty Stntemant | Tarms of Lise | 508
Comglanea

Figure 5.12 Sharing detail for Project record with Apex managed sharing rule

167

168

Chapter 5 Advanced Business Logic

Sending and Receiving Email

Force.com allows emails to be sent and received in Apex code. This functionality can be helpful
in many scenarios. For example, you could send an email from within a trigger to notify users
of events occurring in the application, such as work that requires their attention. You could
write code to automate the classification of incoming emails to customer support, searching for
keywords and routing them to the proper support employees. This section describes how to use
the objects and methods built in to Apex to process inbound and outbound email and intro-
duces the administration screens of the native user interface that support them.

Sending Email

The three ways to send email in Apex are the following:

» SingleEmailMessage—Sends an email to up to ten receivers. The email addresses of
receivers are provided as strings. A string containing HTML or plain text is used as the
message body.

= SingleEmailMessage with template—Sends to up to ten receivers, but the unique
identifiers of Contact, Lead, or User objects must be used instead of strings to provide the
receivers’ email addresses. The message body is constructed from a template. Templates
are globally available to an organization as defined by an administrator or private to an
individual user. Templates can include merge fields to dynamically substitute field values
from the receiver’s record and, optionally, field values from an additional, related object.

= MassEmailMessage—Behaves like a SingleEmailMessage with template but can send
email to up to 250 receivers in a single call.

Each of these three ways of sending email contributes toward the maximum of 10 email calls
within a single context, an instance of running Apex code. To translate that to the number of
email messages, if you use the SingleEmailMessage object with 10 recipients, you can reach
a maximum of 100 recipients (10 recipients times the 10 invocation maximum) within a single
execution of your program. You can reach 2,500 recipients using the MassEmailMessage.
Force.com imposes a daily limit on mass emails, which varies based on the edition of Force.
com being used. If this limit is exceeded, an exception is thrown with the exception code
MASS_MAIL LIMIT EXCEEDED.

Using singleEmailMessage

You can run the code in Listing 5.24 directly in the Execute Anonymous view. It looks up the
User record for the current user and sends a test message to its email address.

Listing 5.24 Sending Email

User you = [SELECT Email
FROM User
WHERE Id = :UserInfo.getUserId()

Sending and Receiving Email

LIMIT 1];
Messaging.SingleEmailMessage mail =
new Messaging.SingleEmailMessage() ;
mail.setToAddresses (new String[] { you.Email });
mail.setSubject ('Test message');
mail.setPlainTextBody ('This is a test');
Messaging.sendEmail (new Messaging.SingleEmailMessage[] { mail });

Check the email account associated with your Force.com user for the new message. If you do
not see the message, it might be in your junk mail folder. If it’s not in your inbox or junk mail
folder, your email server might have refused its delivery. In this case, Force.com will send you
the returned message with any delivery error information, given that you are both the sender
and the receiver.

Note

Force.com provides online tools to help you authorize its mail servers to ensure that its mes-
sages are delivered. Go to the Administration Setup area and click Email Administration,
Deliverability and Test Deliverability for more information.

Notice that the sender and receiver of the email are identical. You have sent a message to your-
self via Force.com. By default, Apex email methods run using the identity of the current user.
The current user’s email address becomes the “from” address in outbound emails. Alternatively,
you can define an organization-wide email address and use it to set the “from” address. This
enables all of your outbound emails to be sent from a single set of authorized, public email
addresses. To define an organization-wide email address, go to the Administration Setup area
and click Email Administration, Organization-Wide Addresses.

Using singleEmailMessage With Template

Templates standardize the appearance and content of emails. They also make including
dynamic content in messages without cumbersome, hard-to-maintain code full of string
concatenations simple. To add a new email template, go to the Personal Setup area and click
Email, My Templates.

When a template is used to send a message, you must provide a targetObjectId value. This is
the unique identifier of a Lead, Contact, or User record. The email address associated with this
record becomes the recipient of the email.

Optionally, a whatId can be provided. This is the unique record identifier of an Account,
Asset, Campaign, Case, Contract, Opportunity, Order, Product, Solution, or any custom object.
The fields from this record can be referenced in your template using merge fields. When the
message is sent, the record is retrieved and its data substituted into the message body in the
locations specified by the merge fields.

169

170

Chapter 5 Advanced Business Logic

Listing 5.25 sends an email using a template. Before trying it, create a template with the unique
name of Test_Template. Set its text or HTML content to Hello {!User.FirstName}! or the
equivalent to demonstrate the use of merge fields. Mark the template as available for use. In
Listing 5.25, a SOQL query is used to retrieve the template’s unique identifier so that it isn’t
hard-coded into the program.

Listing 5.25 Sending Email Using a Template

User you = [SELECT Email
FROM User
WHERE Id = :UserInfo.getUserId()
LIMIT 1];

EmailTemplate template = [SELECT Id

FROM EmailTemplate
WHERE DeveloperName = 'Test_ Template'
LIMIT 1];
Messaging.SingleEmailMessage mail =
new Messaging.SingleEmailMessage () ;
mail.templateId = template.Id;
mail.targetObjectId = you.Id;
mail.setSaveAsActivity(false);
Messaging.sendEmail (new Messaging.SingleEmailMessage[] { mail });

Note

The setSaveAsActivity method was called in Listing 5.25 to disable the HTML email track-
ing feature, which is not compatible with the User object (targetObjectId). The setSaveAs-
Activity method is described in the upcoming subsection, “Additional Email Methods.”

Using MassEmailMessage

Mass emails can be sent to 250 recipients in a single method call. The code for sending a mass
email is similar to that for sending a single email with a template. The difference is that a
MassEmailMessage object is created instead of a SingleEmailMessage. At minimum, you
must provide a value for targetObjectIds (an array of Lead, Contact, or User record unique
identifiers) and a templateId.

Optionally, you can provide whatIds, an array of record unique identifiers corresponding to
the array of targetObjectIds. Field values from these records add dynamic content to the
message body. The records are limited to Contract, Case, Opportunity, and Product types. Note
that none of these object types are available in a Force.com platform-only license.

Listing 5.26 demonstrates the use of the MassEmailMessage. It selects one Contact in the
system and sends an email using the same template created for Listing 5.25.

Sending and Receiving Email

Listing 5.26 Sending a Mass Email

User you = [SELECT Email
FROM User
WHERE Id = :UserInfo.getUserId()
LIMIT 1];

EmailTemplate template = [SELECT Id

FROM EmailTemplate

WHERE DeveloperName = 'Test_ Template'

LIMIT 1];
Messaging.MassEmailMessage mail = new Messaging.MassEmailMessage () ;
mail.templateId = template.Id;
mail.targetObjectIds = new Id[] { you.Id };
mail.setSaveAsActivity(false);
Messaging.sendEmail (new Messaging.MassEmailMessage[] { mail });

Transactional Email

The transactional behavior of the sendEmail method is consistent with that of Force.com data-
base DML methods. When an invocation of Apex code is completed without error, email

is sent. If an uncaught error causes the program to be terminated prematurely, email is not
sent. If multiple emails are sent, by default they all fail if one fails. Setting the optional
opt_allOrNone parameter of the sendEmail method to false enables partial success of

a group of outbound messages. In this case, the sendEmail method returns an array of
SendEmailResult objects. These objects can be used to determine the success or failure of
each message and include error details in case of failure.

Additional Email Methods

The following list describes useful methods that apply to both singleEmailMessage and
MassEmailMessage objects:

= setCcAddresses—This method accepts a string array of email addresses to carbon copy
on the email.

= setSenderDisplayName—The sender display name is shown in email reading programs
as a label for the sender email address.

= setReplyTo—The reply-to address is the email address designated to receive replies to
this message. If not specified, it's always the sender’s email address.

= setBccSender—If this is set to true, Force.com blind-carbon-copies the sender’s email
address. In a mass email, the sender is copied only on the first message. Force.com
prevents use of this feature if an administrator has enabled Compliance BCC Email.
You can do this in the Administration Setup area by clicking Email Administration,
Compliance BCC Email.

171

172

Chapter 5 Advanced Business Logic

setUseSignature—By default, Force.com appends the sending user’s signature to
the end of outbound emails. You can edit this signature in the Personal Setup area by
clicking Email, My Email Settings. To turn off this feature, pass false to this method.

setFileAttachments—The argument to this method is an array of
EmailFileAttachment objects. These objects contain the names and data of
attachments to be sent with the message. They provide a method to set the attachment
body (setBody) and filename (setFileName). The total size of the attachments for a
single message cannot exceed 10MB.

setDocumentAttachments—Force.com has a native object type for storing content
called Document. You can find it in the native user interface by clicking the Documents
tab. Here you can create, edit, and delete Documents and group them into folders. Each
Document record has a unique identifier, and this method accepts an array of them.
Each Document specified is sent as an attachment to the message. All attachments in a
single message, including file attachments, cannot exceed 10MB.

setOrgWideEmailAddressId—Use this method to specify the unique identifier of an
organization-wide email address. This email address is used as the “from” address rather
than the address of the current user. To define organization-wide email addresses and
obtain their unique identifiers, go to the Administration Setup area and click Email
Administration, Organization-Wide Addresses.

setSaveAsActivity—Force.com’s outbound email can be configured to track

the behavior of email recipients who are Leads or Contacts in the system. This is
accomplished with an invisible image embedded in messages sent using templates.
When receivers who haven’t blocked multimedia content in their email readers open the
message, the Force.com service is contacted and tracks this information. By visiting the
receiver’s Lead or Contact record, you can see the date the email was first opened, the
number of times it was opened, and the date it was most recently opened. By default,
this setting is enabled. To disable or enable it for the organization, go to the App Setup
area and click Customize, Activities, Activity Settings and select Enable Email Tracking.
To disable it for a specific message, pass false to this method.

Receiving Email
The two steps for configuring Force.com to process inbound emails are as follows:

1. Write an Apex class that implements a specific interface (Messaging.

InboundEmailHandler) and method (handleInboundEmail). This provides your code
access to the envelope (Messaging. InboundEnvelope) and content (Messaging.
InboundEmail) of inbound emails, including mail headers and attachments. It is
otherwise standard Apex code with no special restrictions. The return value of this
method is a Messaging. InboundEmailResult. To indicate processing failure, set the
success field of this object to false. Any explanatory message set in the message field
is returned to the sender as an email response.

Sending and Receiving Email 173

2. Create an Email Service using the native user interface. An Email Service is associated
with one or more Force.com-issued email addresses that serve as the gateways to your
Apex class. When email arrives at the email address, your Apex class is invoked to
process it.

If your Apex code fails with an uncaught exception while processing an incoming email,
Force.com treats the email as undeliverable. This is much like a mail gateway behaves when
presented with an unknown recipient email address. An email is returned to the sender with
diagnostic information about the problem, including the error message from your Apex code.

To personalize email processing based on the identity of the sender, use one of these strategies:

= Have all users share a single inbound email address. Your Apex code reads the sender’s
“from” address and customizes behavior based on that, perhaps by querying Contact or
Lead for more information about them.

= Issue each user or group of users a unique email address. Your Apex code can adjust its
behavior based on the “to” address of the incoming message.

Caution

There are governor limits on inbound email. The maximum size of each inbound message,
attachments included, is 10MB. The maximum size of each message body, text and HTML
combined, is 100KB. The maximum size of each binary attachment is 5MB and 100KB for text
attachments. The maximum heap size for Apex email handlers is 18MB. If any of these limits
are reached, your Apex code will not be invoked, and the offending message will be returned to
its sender.

Getting Started with Inbound Email Processing

Follow these next steps to create a new Apex class to process inbound email in the Force.com
IDE. This is a simple example that sends a reply to the inbound message with the original
message quoted in the body.

1. Make sure your Force.com project is selected and click New, Apex Class in the File menu.
2. Enter MyEmailService for the name and select the Inbound Email Service template.

3. Click the Finish button. Enter the code given in Listing 5.27, skipping the class, method,
and result declarations because they are provided by the template. Save your changes.

Listing 5.27 Receiving Email

global class MyEmailService implements
Messaging.InboundEmailHandler {
global Messaging.InboundEmailResult
handleInboundEmail (Messaging.InboundEmail email,
Messaging.InboundEnvelope envelope) {

174

Chapter 5 Advanced Business Logic

Messaging.InboundEmailResult result = new
Messaging.InboundEmailresult () ;
Messaging.SingleEmailMessage outbound = new
Messaging.SingleEmailMessage () ;
outbound.toAddresses = new String[] { email.replyTo };
outbound.setSubject ('Re: ' + email.subject);
outbound.setHtmlBody ('<p>This reply was generated by Apex.'
+ 'You wrote:</p><i>' + email.plainTextBody + '</i>');
Messaging.sendEmail (new Messaging.SingleEmailMessage[]
{ outbound });
return result;

4. In the native user interface, go to the App Setup area and click Develop, Email Services.
5. Click the New Email Service button.

6. Enter a service name. Enter MyEmailService as the Apex class. Leave the other options set
to their defaults and click the Save button.

7. Click the Activate button. Then click the New Email Address button to create a Force.
com-generated email address.

8. This screen allows you to whitelist email addresses and domains that are allowed to use
this email service. By default, it’s configured to allow emails only from the current user’s
email address. Accept this setting by clicking the Save button.

9. You should now see an email address listed at the bottom of the page, as shown in Figure
5.13. Copy the address to your Clipboard, open your favorite email application, and send
a test message to this address. Within a minute, you should receive an email in response,
generated by your Apex class.

Dynamic Apex

Dynamic Apex describes features of Apex that bypass its typically strongly typed nature. For
example, database queries, objects, and fields are part of the language, and references to them
are strongly typed, validated at compile time. Dynamic Apex allows you to work with these
objects as ordinary strings rather than compiled parts of your program. This has its advantages
in that your program can be more dynamic and generic. It also has disadvantages, the primary
one being that your code can suffer a greater variety of errors at runtime.

This section describes three dynamic Apex features. Dynamic database queries are SOQL and
SOSL queries executed at runtime from strings rather than from compiled code. Schema meta-
data allows Apex code to introspect the structure of the Force.com database, including its
objects, fields, and relationships. Type methods allow introspection of an object’s type, includ-
ing creation of a new instance.

Dynamic Apex 175

Email Service ~ salasforce.com - Developer Edition

Expand Al | Colispen All

@ uick Fing Email Service: MyEmailService Hipt Mo Free

Edit Doactivate Cancel
Email Servieo Nomo MyEmailSenvica

Force.com Home

System Overview ApexClass MyEmailSandce
Accept Mtachments None

Personal Setup ;ﬁ;‘;?:mnslll i

* My Personal information Accept Email From Al email addresses (subject 10 security seitings)

- Convert Text

+/ Import Atiachments to

+ Daskiop Integration oary S

My Chatter Settings Ao
* My Social Accounts and
Contacts * Failure Response Settings
Ovar Emall Rale Discard message
Limit Action
App Sety
g Deactivated Emall Discard message
= Customize Addrass Actien
* Croate Deactivated Email Discard mossagpe
O Develop Service Action
Aptx Clisses Unauthonticated Discard message
A T Sender Actien
" Unauthorized Discard message
.::Tn Test Execution Priirein ey
Enable Error
Components Routing
Cuslom Seltings
Emall Sarvices
Pages Email Addresses Merw Emadl Address
Sites
Static Resources Action Emall Address Gontaxt Usar
ook Vi | Edil myemaservice fin-35uxpy31142omeyasSydzenz3Tyub040simusiian v, Paige
Rimote Accass 1yvead, il apex sabpsionon com Turnar

& Nsnta

Figure 5.13 Email service configuration

Dynamic Database Queries

In Chapter 4, you learned about bind variables. They are variables whose values are injected
into SOQL and SOSL statements in predefined locations, notated with colons. But bind vari-
ables are not powerful enough to support an entirely dynamic WHERE clause, one that includes
conditional filters added and subtracted based on the behavior of the program. You could write
every combination of WHERE clause and use long strings of conditional statements to pick the
right one. An alternative is a completely dynamic query, executed using the Database.query
method.

Listing 5.28 provides an example of two dynamic queries. The first is on the Contact object.
The results of the query are returned in a list of Contact records. Other than the dynamic query
itself, this code should be familiar. The second query selects Project records but treats them as a
list of SObject objects.

Listing 5.28 Dynamic SOQL Queries

List<Contact> resources = Database.query(
'SELECT Id, Name FROM Contact');
for (Contact resource : resources) {

System.debug(resource.Id + ' ' + resource.Name) ;

}

176

Chapter 5 Advanced Business Logic

List<SObject> projects = Database.query('SELECT Id, Name FROM Project_c');
for (SObject project : projects) {
System.debug (project.get ('Id') + ' ' + project.get('Name'));

}

The SObiject is a typeless database object. It allows you to interact with database records
without declaring them as a specific type. The get method of the SObject allows the retrieval
of a field value by name. The getsobject method returns the value of a related object. These
values also have setter methods: set and setSObject. Used in conjunction with DML state-
ments or database DML methods, you can write generic code that operates on a series of
database objects. This is particularly useful when you have several objects with the same field
names because it can reduce the amount of code.

Tip
Use the escapeSingleQuotes of the String object to prevent SOQL injection attacks. This

method adds escape characters (\) to all single quotation marks in a string.

SOSL queries can also be constructed and executed dynamically. The Search.query method
returns a list of lists containing SObjects. Listing 5.29 provides an example of its use.

Listing 5.29 Dynamic SOSL Query

List<List<SObject>> result = Search.query(

'"FIND \'Chicago\' '

+ 'RETURNING Contact (Name), Project c(Name)');
for (List<SObject> records : result) {

for (SObject record : records) {

System.debug (record.get ('Name')) ;

}

}

The SOSL query returns the names of Project and Contact records containing the word Chicago.
The outer loop is executed for each type of object specified in the RETURNING clause. The inner
loop runs over the matching records of that object type. For example, the first iteration of the
loop assigns records to a list of Contact records that matched the search term. The second itera-
tion assigns it to the matching Project records.

Note
Dynamic queries have all the same governor limits as their static counterparts.

Dynamic Apex

Schema Metadata

Schema metadata is information about the Force.com database, available to your Apex code
dynamically, at runtime. It has many potential uses, such as customizing the behavior of Apex
code installed in multiple organizations, driving the construction of dynamic queries, or veri-
fying that the database is configured in a certain way. This section describes the five types of
schema metadata (object, field, child relationship, picklist, and record type) and includes code
that can be run in the Execute Anonymous view to demonstrate accessing them.

Note

You are limited to a maximum of 100 calls to schema metadata methods. All five types of
schema metadata methods contribute equally to the limit.

Object Metadata

Object metadata is information about the database objects in the Force.com organization. It
includes custom as well as standard objects. Listing 5.30 provides an example of retrieving
object metadata. The metadata of all objects in the database is retrieved, and their names and
labels are printed to the debug log.

Listing 5.30 Retrieving Object Metadata

Map<String, Schema.SObjectType> objects = Schema.getGlobalDescribe () ;
Schema.DescribeSObjectResult objInfo = null;
for (Schema.SObjectType obj : objects.values()) {

objInfo = obj.getDescribe() ;

System.debug (objInfo.getName() + ' [' + objInfo.getLabel() + ']');

}

Field Metadata

Field metadata provides access to all the attributes of fields you configure on a database object.
Listing 5.31 demonstrates how to access field metadata. The fields of the Project _c object are
retrieved, including standard and custom fields. The getDescribe method is invoked on each
to return its metadata, a Schema.DescribeFieldResult object. The name, label, data type,
precision, and scale of each field are displayed in the debug log.

Listing 5.31 Retrieving Field Metadata

Map<String, Schema.SObjectFields> fields =
Schema.SObjectType.Project c.fields.getMap() ;

Schema.DescribeFieldResult fieldInfo = null;

for (Schema.SObjectField field : fields.values()) {
fieldInfo = field.getDescribe () ;
System.debug (fieldInfo.getName ()

177

178

Chapter 5 Advanced Business Logic

+ ' [" + fieldInfo.getLabel() + '] '

+ fieldInfo.getType () .name ()

+ '(' + fieldInfo.getPrecision()

+ ', ' + fieldInfo.getScale() + ")');
}

Tip

If you do not know the type of an object, you can still retrieve its metadata using
getSObjectType. For example, if 20110000000rMg1 is the unique identifier of a Project
record, the result of Id.valueOf ('a0110000000rMgl') .getSObjectType () can replace
Schema.SObjectType.Project c in the second line of Listing 5.31.

Child Relationship Metadata

Child relationship metadata contains the child’s object type, the relationship name, and an
object identifying the field in the child object that relates it to the parent. Listing 5.32 demon-
strates the retrieval of child relationship metadata from the Contact object. Compare the results
with what you see in the Force.com IDE’s Schema Explorer for the Contact object.

Listing 5.32 Retrieving Child Relationship Metadata

Schema.DescribeSObjectResult res = Contact.SObjectType.getDescribe() ;

List<Schema.ChildRelationship> relationships = res.getChildRelationships();
for (Schema.ChildRelationship relationship : relationships) {
System.debug (relationship.getField() + ', ' + relationship.getChildSObject());

}

Picklist Metadata

Picklist metadata provides access to the master list of available picklist values for a picklist

or multi-select picklist field. It does not include the assignments of picklist values to record
types, nor does it provide any information about the relationship between picklist values in
dependent picklists. Listing 5.33 is an example of its use, printing the picklist values of the Skill
object’s Type field to the debug log.

Listing 5.33 Retrieving Picklist Metadata

Schema.DescribeFieldResult fieldInfo =
Schema.SObjectType.Skill c.fields.Type c;

List<Schema.PicklistEntry> picklistValues = fieldInfo.getPicklistValues() ;
for (Schema.PicklistEntry picklistValue : picklistValues) {
System.debug (picklistValue.getLabel()) ;

}

Dynamic Apex

Record Type Metadata

Record type metadata contains the names and unique identifiers of record types defined
on an object. It also indicates the availability of the record type to the current user
(isAvailable) and whether the record type is the default record type for the object
(isDefaultRecordTypeMapping).

Listing 5.34 provides an example of using record type metadata. It retrieves the record types in
the Contact object and prints their names to the debug log.

Listing 5.34 Retrieving Record Type Metadata

Schema .DescribeSObjectResult sobj = Contact.SObjectType.getDescribe () ;
List<Schema.RecordTypelInfo> recordTypes = sobj.getRecordTypeInfos();
for (Schema.RecordTypelInfo recordType : recordTypes) {

System.debug (recordType.getName ()) ;

}

Dynamic Instance Creation

Sometimes it can be useful to create an object instance without hard-coding its type in a
program. For example, your program might include an extensibility mechanism for other
developers to add or customize its behavior. One way to do this is to expose an Apex interface,
document it, and allow users to provide the name of a custom Apex class that implements

the interface. Listing 5.35 is a simplified version of this scenario that can run in the Execute
Anonymous window.

Listing 5.35 Creating Instance from Type Name

interface MyType { void doIt(); }
class MyTypeImpl implements MyType {
public void doIt() { System.debug('hi'); }
}
Type t = MyTypelmpl.class;
if (t != null) {
MyType mt = (MyType)t.newlnstance();
mt.doIt();

}

Notice that MyTypeImpl is defined as the type to be created in the program on line 5, so it isn’t
dynamic. The dynamic form is Type . forName ('MyTypeImpl '), which is invalid in the Execute
Anonymous window because MyTypeImpl is transient, defined in the scope of the Execute
Anonymous code block only. To try the dynamic type lookup, create the interface and class
using the Force.com IDE.

179

180

Chapter 5 Advanced Business Logic

Custom Settings in Apex

You are not limited to using the native user interface for managing data in custom settings, as
demonstrated in Chapter 2. Custom settings can also be created, updated, and deleted using
standard DML methods. This means you can build your own user interfaces for managing
them, or use them to store frequently accessed, simple configuration values needed by your
programs. Force.com provides increased performance for custom settings access versus ordinary
database access, and custom settings are exempt from the governor limits placed on database
access. For example, you might use a custom setting named Debug as a global switch to enable
verbose logging within your Apex code.

To get started with custom settings in Apex, run the code in Listing 5.36. It inserts a custom
setting record, setting its name and its field value. It assumes you already have defined a List
type custom setting object named ConfigSetting containing a single Checkbox field named
Debug.

Listing 5.36 Creating a Custom Setting Record

insert new ConfigSetting c(Name = 'Default', Debug c = false);

Now that your custom setting has a value, try retrieving it. Run the code in Listing 5.37 in the
Force.com IDE’s Execute Anonymous view.

Listing 5.37 Retrieving a Custom Setting Value

ConfigSetting c¢ cfg = ConfigSetting c.getValues('Default');
System.debug (cfg.Debug c);

The first line retrieves the named record, Default, which you created in Listing 5.36. The second
line prints the value of the custom field to the debug log. You can also retrieve a Map of all
fields and values using the getall method.

To update a custom setting value, retrieve it by name, and then update it as you would a data-
base record. Listing 5.38 provides an example.

Listing 5.38 Updating a Custom Setting Record

ConfigSetting c¢ cfg = ConfigSetting c.getValues('Default');
cfg.Debug_ ¢ = true;
update cfg;

You can also delete custom setting records using the delete DML method, as shown in
Listing 5.39.

Sample Application: Adding Email Notifications

Listing 5.39 Deleting a Custom Setting Record

ConfigSetting c cfg = ConfigSetting c.getValues('Default');
delete cfg;

Hierarchy type custom settings allow a user or profile to be related to them. If no user or

profile is specified, they become organization-wide defaults. The code in Listing 5.40 assumes
you have created a Hierarchy type custom setting named HierarchySetting with a single

text field named Field. It creates a new record and relates it to the current user by setting the
system field SetupOwnerId to the current user’s unique identifier. This same field also accepts
a profile unique identifier to make the custom setting apply to a profile instead of a user. And if
SetupOwnerId is set to null, it becomes an organization-wide default.

Listing 5.40 Creating a Hierarchy Type Custom Setting Record

insert new HierarchySetting c(
SetupOwnerId = UserInfo.getUserId(),
Field c¢ = 'My user preference value');

To retrieve a Hierarchy type custom setting value, use the getInstance method of the custom
setting object. By default, it returns the “lowest” level of setting value, meaning the value most
specific to the current user. If a user-level setting is available, it is returned. Otherwise, the
return value is the setting associated with the user’s profile. If no user or profile-level settings
are present, the organization-wide default is returned. This behavior can be overridden by
passing a user or profile unique identifier as an argument to the getInstance method.

Sample Application: Adding Email Notifications

This section applies your knowledge of Apex’s outbound email features to enhance the Services
Manager sample application. Many scenarios in Services Manager could benefit from email
notifications. For example, consultants have requested that they get an email when a timecard
is approved or rejected by their project managers.

To implement this change, add a trigger on the after update event of the Timecard object.
If the new value of the Timecard’s Status field is Approved or Rejected, query the Contact
record that created the Timecard. Send an email notification of the change to the Contact.

Listing 5.41 is a sample implementation. It begins by checking to make sure that the updated
Timecard contains a new value for the Status field and that the new status is either Approved
or Rejected. If so, it makes three queries to retrieve data to send the notification email: the
email address of the Contact logging the Timecard, the name of the Project, and the name of
the user modifying the Timecard record. It constructs the email message and sends it.

181

182 Chapter 5 Advanced Business Logic

Listing 5.41 Email Notification Trigger on Timecard

trigger handleTimecardNotifications
on Timecard c (after update) {
for (Timecard c¢ timecard : trigger.new) {
if (timecard.Status_ c !=
trigger.oldMap.get (timecard.Id) .Status_ c &&
(timecard.Status ¢ == 'Approved' ||
timecard.Status ¢ == 'Rejected')) {
Contact resource =
[SELECT Email FROM Contact
WHERE Id = :timecard.Contact ¢ LIMIT 1];
Project ¢ project =
[SELECT Name FROM Project c
WHERE Id = :timecard.Project ¢ LIMIT 1];
User user = [SELECT Name FROM User
WHERE Id = :timecard.LastModifiedById LIMIT 1];
Messaging.SingleEmailMessage mail = new
Messaging.SingleEmailMessage () ;
mail.toAddresses = new Stringl[]
{ resource.Email };
mail.setSubject ('Timecard for !
+ timecard.Week Ending c + ' on '
+ project.Name) ;
mail.setHtmlBody ('Your timecard was changed to '
+ timecard.Status_c + ' status by '
+ user.Name) ;
Messaging.sendEmail (new Messaging.SingleEmailMessage[]
{ mail });

This implementation is not batch-safe. It makes four SOQL queries per Timecard. Even if this
were addressed, the code could easily reach the limit of ten email invocations.

To fix this problem, you could change the code to use the MassEmailMessage, building a list
of recipient Contact objects from the batch. Unfortunately, the MassEmailMessage’s whatIds
field cannot be used with custom objects, so you'll have to forgo the customized message
detailing the changes to the Timecard.

An alternative is to anticipate the governor limit. If a batch of Timecards requires more than
ten email notifications, send the ten and suppress subsequent notifications.

Summary

Summary

This chapter has introduced some of the advanced features of Apex, features that you might
not need in every application but that contribute to your knowledge of what is possible with
Apex. Before moving on to the next chapter, consider these final points:

Aggregate queries provide a standard, declarative way to perform calculations on groups
of records in the database.

Rules governing record sharing can be controlled in Apex code using Apex managed
sharing.

You can send and receive emails in Apex code. This provides your applications an
additional way to interact with users.

Although Apex features strongly typed database objects and queries, you can also write
code that uses database resources dynamically. This carries with it the risk of runtime
errors but opens up new possibilities of dynamic behavior to your applications. It is
particularly powerful when writing custom user interfaces.

You can read and write custom settings from Apex like any database object, but without
the governor limits.

183

This page intentionally left blank

User Interfaces

Force.com’s native user interface provides a consistent and simple way to search, create, update, and
delete database records. It combines the definition of database objects with user interface metadata
such as page layouts to produce user interfaces through configuration rather than code. For developers
and administrators, this makes customization straightforward. For users, the uniformity means that
learning to use one screen in Force.com provides the experience to learn all screens with minimal incre-
mental effort.

For applications that require a greater level of control over the appearance and behavior of the user
interface, Visualforce offers a solution. Visualforce is a technology in the Force.com platform for build-
ing custom user interfaces. Visualforce user interfaces can be built to look nothing like Force.com,
exactly like Force.com, or your own unique blend of the two.

This chapter covers the basics of Visualforce in the following sections:

= Introduction to Visualforce—Learn the concepts and terminology of Visualforce.

= Visualforce controllers—See how controllers contain the business logic that drives the user
interface.

= View components—Learn how view components define the appearance of Visualforce pages.

= Visualforce and the native user interface—Understand where and how Visualforce pages
coexist with the native user interface of Force.com.

» Visualforce in production—Look at how security, governor limits, error handling, and testing
are handled with Visualforce.

= Sample application—Implement a feature of the Services Manager sample application called
the Skills Matrix. It is a Visualforce page for viewing and editing the skill sets of consultants.

Note
The code listings in this chapter are available in a GitHub Gist at http://go0.gl/SQAIO.

http://goo.gl/SQAI0

186

Chapter 6 User Interfaces

Introduction to Visualforce

This section presents an introduction to Visualforce. It covers the following topics:

= Overview of Visualforce—Examine the pieces of Visualforce and how they’re put
together to aid in understanding this chapter and online reference materials.

= Getting started with Visualforce—Take a brief look at how Visualforce development
projects work, learn the tools for Visualforce development, and build a “hello world”
example.

Overview of Visualforce

Visualforce is a combination of a page containing the presentation and Apex classes contain-
ing the business logic. The presentation is usually HTML rendered in the Web browser, but
Visualforce also supports content types such as XML and PDF. HTML output is typically inter-
active, building up state by collecting user input across a series of related pages.

Force.com processes Visualforce pages on its servers. Only the final rendered page and

partial page updates are returned to the Web browser—never the raw data or business logic.
Visualforce is driven by metadata. It can use the definition of fields in the database to provide
the appropriate user interface, without custom code. For example, a Visualforce page with an
input field mapped to a Date field in the database is rendered with a calendar picker compo-
nent, consistent with the Force.com native user interface.

The architecture of Visualforce follows the Model-View-Controller (MVC) pattern. This pattern
dictates the separation of presentation (View), business logic (Controller), and data (Model). In
Visualforce, business logic and data are combined in the controller, named after its MVC coun-
terpart. The presentation lives in the page.

Figure 6.1 shows the relationship between the page and the controller in Visualforce, as well as
some of Visualforce’s internals.

Controller

The controller is Apex code that reads and writes data in the model, typically the Force.com
database. The interaction of the controller with the user interface is accomplished through vari-
ables and action methods. Variables are exposed to the presentation layer through getter and
setter methods. Getter methods allow the page to retrieve the value of a variable and display

it for the user. Setter methods allow the user to modify the value of a variable through a user
interface component such as a text input box.

Action methods perform the processing work on behalf of the user. They are wired up to
buttons, links, and even asynchronous events on the user interface.

Introduction to Visualforce

(p)

age
View Components
[Actions J

[View State J

(S
/ N\
/

Controller < ; Ll |A ; ;
[Setters J [Getters J [Methods J
[Variables (Model) J

A J

Figure 6.1 Visualforce architecture

AN

Force.com provides default controller implementations, called standard controllers. Standard
controllers replicate the behavior of the native user interface, such as editing and creating
records, but allow customization of its user interface without code. Custom behavior can be
added to standard controllers using controller extensions, which are classes written in Apex.
You can also implement a controller from scratch in Apex. This is called a custom controller.

Page

The Visualforce page defines the appearance of your user interface using a mixture of standard
HTML and Visualforce-specific XML markup. The XML markup is used to add view compo-
nents to the page. View components bind the controller to the page, defining how data and
user actions are to be rendered in the user interface. Force.com provides a standard set of view
components to support common HTML user interface patterns and supports user-defined
components.

In Figure 6.1, the arrows between the page and the controller represent expressions. Expressions
are embedded in view components to allow the page to reference methods in the controller

or in system classes such as UserInfo. Expressions in Visualforce use the same language as
formula fields in the database, with a special prefix and suffix added. For example, { ! save} is
an expression that invokes the save method of the controller.

Note

Visualforce maintains a strict separation of business logic and presentation. No business logic
is allowed in a Visualforce page, not even for trivial formatting tasks.

187

188

Chapter 6 User Interfaces

Getting Started with Visualforce

This subsection offers a path to getting your hands on Visualforce, divided into three parts, as
follows:

1. Development process—Begin your development contrasting Visualforce with standard
Web application development.

2. Development tools—Take a look at Visualforce development in the Force.com IDE and
the native user interface.

3. “Hello World” example—Build your first Visualforce page with a custom controller.

Development Process

Visualforce development projects are much like standard Web application development proj-
ects. They have server-side logic to be coded, and user interfaces to be designed, wired up,
and tested. User interface developers must collaborate closely with their server-side counter-
parts to make sure that the necessary data and logic are available to them. The user interfaces
themselves are changing rapidly to satisfy the aesthetic and usability demands of project
stakeholders.

Unlike with other Web application projects, Force.com eliminates much of the work of choos-
ing and integrating Web frameworks. In terms of simply serving data-driven Web content,
Force.com is the only framework you need. The important task then becomes strategizing on
how best to use the platform to minimize custom development effort and maintenance cost
while maximizing reuse and flexibility.

Walk through the native user interface and think carefully about what features you can reuse,
extend, and override. Force.com offers a lot of user interface functionality by default and
exposes a variety of hooks into it. Work with the native user interface where possible, rather
than circumventing it. The further your project goes toward a fully custom user interface, the
more work you spend to implement things that are potentially already provided, maintained,
and constantly improved by Force.com.

Development Tools

The two tools for working with Visualforce are the native user interface and the Force.com IDE.
The examples in this book can be built in either tool, but all screenshots are shown from the
Force.com IDE.

In the native user interface, developers can enable a footer on the bottom of all Visualforce
pages that includes syntax highlighting and an integrated help system. Called develop-

ment mode, it’s enabled on a per-user basis; you can enable it by visiting the Personal Setup
area and clicking My Personal Information, Personal Information and checking both the
Development Mode and Show View State in Development Mode boxes. You must have
Customize Application permission enabled on your profile to select these options. With devel-
opment mode enabled, you can create new Visualforce pages on the fly by visiting them (for

Introduction to Visualforce

example, /apex/myPage) as well as edit existing pages. Figure 6.2 shows an example of editing
a Visualforce page in development mode.

Page Editor - Skills_Matrix

C Search Search Paige Tumer = Halp Services Manager -~
force.com
| Home Contacts Projects m +
N
Services Manager
A skills Matrix
Contset Tim Rasr : Gol
Skills Save
Type Rating Lant Modified Date
Appiication Dosign 5 - Expent ' 61072013 10:14 AM
Apax 4 - Above Average BA02013 10:14 AM
Java 3 - Average i 61072013 10:14 AM
i 1 - Mnimal 3 6102013 10:14 AM
Amazon Web Services 0= bone : 61072013 10:14 AM
Pad —Nooe— ' 61012013 10:14 AM
X' Sk Mairix SidiaMairicControlier W &
" q Y “ " e Component Agterence Whers ks this used?

[<apexipage control Ler="£killsMatrisController"
| tabStylo=-Skill c>
| =style>
-contactlabel { padding-rights 15@: ¥
-gobutton { margin-lefe: 10px:
=/style>
<apox:acctionfoader title=" Scrvwol Hanager”
ul mubtitle="skilla Matrix*
<apexipagehensages />
<apex:form id="form“>
<apexioutputlabel value="Contact:” for="selectedContactId®
styleClass="contactLabel® />
<apoximelectList id="selectedContactTd” titlw— Contact ™
value="{|salectedContactid} " sizes~1:

Poston: aren oW L, Cn 1

Figure 6.2 Visualforce page in development mode

Force.com IDE integrates Visualforce pages and controllers into the familiar Eclipse user inter-
face. In Figure 6.3, the Visualforce page editor is active. You've already worked with the Force.
com IDE to create triggers. Visualforce controllers are displayed in the folder named classes.
Visualforce pages are in a separate folder named pages.

“Hello World” Example

To get a sense for Visualforce controllers and pages, follow these steps to create a simple
working example:

1.

Open the Force.com IDE, select a Force.com Project, and select File, New, Visualforce
Page. Alternatively, you can right-click any object within a Force.com Project to reach the
New menu.

Enter MyPage6_1 for the label, press Tab, and click the Finish button.

In the page editor, enter the code shown in Listing 6.1. Do not save it yet. If you do, it
will fail to compile because it references a controller class that doesn’t exist.

189

190

Chapter 6 User Interfaces

]v “-'lqvie
Ealhu.w-

M suils_wasrinpage H | 8 swilssmazringansrotersi |

j$ec) pages Skills_Matrix page - Force.com IDE -

Jugers/jasan) De

8 Referenced Packages
Y&

* & applications

b clasee

* (= documents

* & objects

¥ 5 pages

%) Shalls_Matrinpage-metas
. G ubs
* S triggers
X packagexml

[l satesforceschems

[probiems 11| B8 agex | 8 ecure
k& kL 1

<upes:puge “SkillsMatrixContral ler-

tobStyle="Skill_c™=

ctbyles

.contoctlabel { podding-right: 15w }

.pollutton { margin-left: lfes; }

atyles

supexisectiondeader titles"Services Momager™
subtitles"Skills Metriz® /s

<apexipageessages /r

<opex:form id="fors™s

«opex:outputlabel value="Contoct:”
stylellasss"contactiabel /s

«<opex:selectlist id="selectedContactld” title="Contoct”™
value="{lselectedlontoctid)} " size="1%
<opex:sglectiptions volue="{fcontoctOptions]” /»

</apex:selectlists

<opex:commandlutton actione"[/refresh]” values"Gol "~

for="salectedfontace [d”

styleClass- "godutton” /.
p ia
«opex:pogellock title="Skills®
<opex: pogeBlockButtons »
wopex:comandButton action="f1save}” value= "Sove”
disoklods"{INOT i gFditable)” /s
«/apex:pogedlockButions>

<opex:pogellockTable unlu:-'l’flti!dnﬁkl 118}" vore"skill™
e

rendered-"{IselectedContaceld /=

«open:ealusn volues"{/skill. r,-pe_.r} />

<aprx:ealusn headerValues "Roting
sapexioutputField values {MHH Rating..c}"

Source | Metadata |

o

Deseription = | Resource | Pann

o ©) apexpage

imm | smarimsen | 101

Figure 6.3 Force.com IDE’s Visualforce page editor

Listing 6.1 MyPage6 1 Code

<apex:page controller="MyPageController6_1">

<apex:form>
Your name:

<apex:inputText value="{!name}" />

<apex:outputText value="{!message}" />

<apex:commandButton action="{!hello}" value="Say Hi" />

</apex:form>
</apex:page>

4. Select File, New, Apex Class. Enter MyPageController6_1 for the name and click the

Finish button.

5. In the Apex code editor, enter the code shown in Listing 6.2. Select File, Save All to save
both the controller and the page code. Check the Problems view to make sure that there

are no compilation errors.

Listing 6.2 MyPageController6 1 Code

public class MyPageControlleré 1 {

public String name { get;

set; }

public String message { get; private set; }

Visualforce Controllers

public PageReference hello() {
message = 'Hello, ' + name;
return null;

}
}

6. In your Web browser, log in to Force.com and edit the URL to remove everything after
the hostname, replacing it with /apex/MyPage6_1. Your URL should look something like
this: https://naé6.salesforce.com/apex/MyPage6_1. You should see your custom Visualforce
page. Enter your name and click the Say Hi button to see the hello message.

Visualforce Controllers

Controllers provide the business logic behind Visualforce pages. They supply data to the page,
accept input from users through the page, perform actions on behalf of the user, and redirect
the browser to new pages. Controllers come in three flavors:

= Standard controllers—Force.com provides default controller implementations called
standard controllers. They contain the same functionality as found in the native user
interface. No custom Apex code is involved in a standard controller.

= Custom controllers—Custom controllers are the opposite of standard controllers,
providing no default functionality and consisting entirely of custom Apex code.

= Controller extensions—Controller extensions are the middle ground between standard
and custom controllers. They begin with a standard controller and extend or override its
functionality with custom Apex code.

Standard Controllers

Every database object, both standard and custom, has a standard controller. Its name is simply
the name of the object. No Apex code exists for a standard controller. The controller imple-
mentation is already provided by Force.com.

Working with a Single Record

By default, the standard controller operates on a single record at a time. It receives this record
from the id parameter in the URL. Try this for yourself by creating a new Visualforce page
named MyPage6_3 with the code in Listing 6.3.

Listing 6.3 Visualforce Page Using Standard Controller

<apex:page standardController="Project_c"»>
The current project is: {!Project_ c.Name}
<apex:form >

191

https://na6.salesforce.com/apex/MyPage6_1

192

Chapter 6 User Interfaces

<apex:commandButton action="{l!edit}" value="Edit {!Project c.Name}" />
<apex:commandButton action="{!list}" value="Go To List" />
</apex:form>
</apex:page>

If you visit the page in your browser (/apex/mypageé_3) without providing an id, you'll

see no current project named in the page. If you append an id value for a Project record (for
example, /apex/MyPage6 3?1d=a008000000CTwEw), you can get the name of the project and
working edit and list buttons.

Listing 6.3 demonstrates a few actions provided by the standard controller, leveraged using
expression language in view components. For example, access to the current project record

is provided through {!Project__ c}, and access to the navigation actions through {!edit}
and {!1list}. In general, the following expressions are available in a page that uses a standard
controller:

= Data—{!id} is the unique identifier of the current record, and {!object} is the current
record itself, where object is the lowercase name of your object. All fields of the object
are automatically available, including related child objects but not parent objects.

= Navigation—{ ! cancel} navigates to the cancel page, {!edit} to the standard edit page,
and {!view} to the standard view page.

= Action and navigation—{ !delete} deletes the current record and navigates to the
standard delete page, and { !save} saves the current record and refreshes the page.

= Action only—({ !quicksave} saves the current record without navigation.

Working with Multiple Records

A variation of the standard controller exists called the standard set controller. It operates on
a list of records rather than a single record. The list is produced by executing a view, a user-
defined set of column names, filter criteria, and sort criteria for an object. To try it, create
another Visualforce page named MyPage6_4 with the code given in Listing 6.4.

Listing 6.4 Visualforce Page with Standard Set Controller

<apex:page standardController="Project c" recordSetVar="projects">
<apex:repeat value="{!projects}" var="p">
{!p.Name}

</apex:repeat>
</apex:page>

Visit /apex/myPage6_4 with your browser, and you'll see a list of all projects. Force.com has
used the user’s most recently executed view to obtain a list of project records, sorted by the
first column in the view, even if that column is not displayed in the Visualforce page. The
records are available to your page in the variable projects, specified by the page attribute

Visualforce Controllers

recordSetVar. The recordSetvar indicates to Force.com that the standard set controller
should be used.

The standard set controller allows you to work with up to 10,000 records at once and supports
pagination with a variable page size. It also supports multiple selection and actions on a
selected set of records.

The following expressions are valid in any page that uses a standard set controller:

= Data—The variable name you set in recordSetVar is bound to the current list of
records, {!selected} is an array of SObjects that are selected, { !resultsSize} sets or
gets the number of records currently displayed, and {!completeResult} is a Boolean
containing false if more than 10,000 records exist.

= Pagination—Navigate across multiple pages of data using the {!first}, {!last},
{inext}, and {!previous} actions. { !pageNumber} sets or gets the current
page number, and { !pageSize} sets or gets the number of records in a page.
{ thasPrevious} returns true if a previous page exists, and { !hasNext} returns true if
a subsequent page exists.

= Filters—{!filterId} is the unique identifier of the currently selected filter (list view),
and {!listViewOptions} is an array of SelectOption objects containing the names and
identifiers of the available list views.

= Navigation—{ ! cancel} navigates to the cancel page, and {!edit} to the standard
edit page.

= Action and navigation—{ !delete} deletes the current record and navigates to the
standard delete page, and { !save} saves the current record and refreshes the page.

= Action only—({ !quicksave} saves the current record without navigation.

Custom Controllers

Custom controllers provide complete control over the behavior of a page with no default
implementation. A custom controller is simply an Apex class designed to be bound to a
Visualforce page. There is no new syntax to learn. At a high level, building a custom controller
consists of defining the data to make available to the page and the actions that the page can
invoke.

Exposing Data

The purpose of exposing data in a controller is to make it available to the page. Within a page,
page components can use expressions to bind to it and render HTML or some other representa-
tion of the data. This binding is by reference, so data modified in the page can also be modified
in the controller.

193

194

Chapter 6 User Interfaces

Simply making a variable public does not provide a Visualforce page access to it. The variable
must have a getter method, a setter method, or both, depending on whether you intend to
provide read-only or read and write access to the data.

For example, the page component inputText is an input and output component. It renders
any existing or default value by invoking the getter and then invokes the setter to update the
value after it is changed by the user and the page is submitted.

Expression language allows traversal of an object through dot notation, so providing separate
getters and setters for every field in a database record, for example, is not necessary. Expose
the object itself and use dot notation to access its fields. For example, the code in Listing 6.5
exposes a Project record for read-only access using the automatic properties feature of the Apex
language. The read-only access is accomplished using the private access modifier keyword

for the set accessor. Thanks to the Project getter, the page can contain expressions like
{!project.Name} and even {!project.Account r.BillingCity} because you’'ve made
the parent object’s field available through a SOQL statement in the constructor.

Listing 6.5 Custom Controller, Read-Only Access to Project Record

public class MyPageController6 5 {
public Project c project { get; private set; }
public MyPageController() {
project = [SELECT Name, Account r.BillingCity FROM Project c
WHERE Name = 'GenePoint' LIMIT 1];

Caution

Placing business logic in the getter and setter methods is bad practice and, in many cases,
prohibited at runtime. Make a habit of exposing data through Apex automatic properties rather
than full getter or setter methods. Automatic properties do not allow a code body to be added.

Expressions are the closest you can get to business logic on the page without resorting to
JavaScript. For example, you can combine expressions to form more complex expressions. The
expression {!isVisible && isEditable} invokes both the getIsvisible and getIsEdit-
able methods on the controller and evaluates to true if they are both true. Conditionals are
also supported. For example, the condition expression {!IF (tabSelected, 'currentTab',
'secondaryPalette') } uses the value of the tabSelected method to determine whether to
return one string (currentTab if true) versus another (secondaryPalette if false).

Writing Action Methods

Actions on a page are wired up to action methods in the controller, again by expres-
sion language. Action methods are public, nonstatic controller methods that return a

Visualforce Controllers 195

PageReference object or null. If null, the current page is refreshed. If not, the PageReference
is used to determine the location of the new page.

Actions have three purposes:

1. Preserve view state—The view state is maintained by Force.com within your page at
runtime and posted back to its servers for the invocation of an action. It consists of the
values of all of your controllers’ accessible, nontransient variables. It allows you to build
stateful interactions consisting of multiple pages without writing boilerplate code to copy
values around in hidden fields, in the URL, or by using stateful patterns in the controller
such as session objects, which are not supported by Force.com. You can opt out of
actions entirely, redirecting the user at a browser level using standard HTML anchors and
forms. But by doing so, you're circumventing some of the value provided by Visualforce
and giving yourself extra work.

2. Invoke custom logic—Actions can perform some custom logic, such as using DML
methods to upsert a record to the database. Other than the constructor, action methods
are the only place you should write new business logic or call existing Apex code in a
Visualforce controller.

3. Trigger page navigation—The PageReference object returned by an action determines
the page to be refreshed in the browser. Construct a PageReference from a page name,
such as new PageReference ('MyPage'). The URL of the browser remains the same, but
the body is refreshed with the contents of Mypage. This is not always desirable behavior,
because a user can click the Reload button in the browser and potentially trigger the
same action with the same input data. For example, this would result in duplicate records
if the action code performs an insert DML operation. You can tell Force.com to redirect
the user to the new page by calling the setRedirect method on the PageReference
and passing true. A redirect updates the browser’s URL and resets the view state, giving
the user a fresh start and preventing any problems with the browser’s Reload button.

Listing 6.6 is a sample controller to illustrate a common pattern in Visualforce: wrapping a
database object with an Apex class. The wrapper object allows you to enhance a class for partic-
ipation in user interface tasks, such as formatting data. In Listing 6.6, the wrapper exists to add
a selected attribute. This attribute is bound to an inputCheckbox view component, shown
in Listing 6.7, allowing the user to select multiple items. The action can then perform a mass
update based on the selection. In the sample code, it simply outputs the unique identifier of
each selected Project record to the debug log.

Listing 6.6 Controller with Wrapper Pattern

public class MyPageControlleré 6 {
public List<ContactWrapper> contacts { get; set; }
public MyPageController6 6() {
contacts = new List<ContactWrappers();
List<Contact> records = [SELECT Name FROM Contact];
for (Contact record : records) {

196 Chapter 6 User Interfaces

contacts.add (new ContactWrapper (record)) ;

}

public PageReference doSomething()
for (ContactWrapper wrapper : contacts) {
if (wrapper.selected) {
System.debug (wrapper.data.Id) ;

}

return null;
}
class ContactWrapper {
public Contact data { get; private set; }
public Boolean selected { get; set; }
public ContactWrapper (Contact data) {
this.data = data;
this.selected = false;

Listing 6.7 Page with Wrapper Pattern

<apex:page controller="MyPageControlleré 6">
<apex:form>
<apex:pageBlock title="Sample Code">
<apex:pageBlockButtons >
<apex:commandButton action="{!doSomething}"
value="Do Something" />
</apex:pageBlockButtons>
<apex:pageBlockTable
value="{!contacts}" var="contact">
<apex:column headerValue="Selected">
<apex:inputCheckbox value="{!contact.selected}" />
</apex:column>
<apex:column headerValue="Contact Name">
{!contact.data.Name}
</apex:column>
</apex:pageBlockTable>
</apex:pageBlock>
</apex:form>
</apex:page>

Visualforce Controllers

Tip
To clearly differentiate your controller code from triggers and other Apex code, adopt a naming
convention and stick to it. A good one is to suffix your class name with the word Controller.

Controller Extensions

The final type of controller is the controller extension. A controller extension is a custom
controller that extends the behavior of a standard controller. Controller extensions are primar-
ily used to integrate Visualforce more tightly with the native user interface. Many features of
Visualforce integration such as overriding standard buttons are not supported for pages that use
custom controllers.

Custom controllers can be easily retrofitted to become controller extensions. Multiple exten-
sions can be used in a single page, enabling a large monolithic controller to be divided into
smaller controllers by behavior, where some pages might use only a subset of the behaviors.

Listing 6.8 illustrates a trivial controller extension class, and Listing 6.9 shows a page that

uses it. The only difference between it and a custom controller is that a constructor is

required, allowing the standard controller (StandardController for a single record or
StandardSetController for multiple records) to be passed to the class. In a page that uses the
controller extension, all the built-in actions from the standard controller are available implic-
itly, without any code.

Listing 6.8 Sample Controller Extension with Single Action Method

public class MyPageController6 8 {
private ApexPages.StandardController controller;
public MyPageControlleré6 8 (ApexPages.StandardController controller) {
this.controller = controller;

}

public PageReference doSomething() { return null; }

}

Listing 6.9 Page Using Sample Controller Extension

<apex:page standardController="Project_ c"
extensions="MyPageController6 8">
<apex:form>
<apex:commandButton action="{!doSomething}"
value="Do Something" />
</apex:form>
</apex:page>

197

198

Chapter 6 User Interfaces

View Components

View components work with the controller to define the appearance and behavior of a
Visualforce user interface. They connect variables in the controller to input and output
elements, such as text boxes and labels, and methods in the controller to action-oriented
elements, such as buttons and links. Force.com provides a library of standard view components
to support common Web user interface design patterns.

This section contains the following subsections:

= View component basics—Here, you'll learn how to add any view component to a
page and some of the common characteristics. This material is preparation for the five
subsections to follow, which cover specific types of standard view components.

= Data components—Data components enable Visualforce pages to move data in and out
of the controller using standard HTML elements.

= Action components—Action components invoke methods on the controller, updating
the view state and refreshing the page or navigating to a new page.

= Primitive components—Several components exist with similar syntax to HTML tags,
bridging the gap between Visualforce functionality and standard HTML.

= Force.com-styled components—These components allow Visualforce pages to inherit
the appearance of the Force.com native user interface.

= Force.com user interface components—The Force.com Ul components inherit the
appearance of the native user interface as well as its behavior. They are large-scale
building blocks for incorporating native Force.com user interface functionality wholesale
into your custom pages.

View Component Basics

The three important areas to understand about view components are the following:

= View component syntax—View components are embedded in a Visualforce page using
XML markup.

= Page definition—Every user interface page must begin with the page component. All
Visualforce components must be declared within the page component.

= Component visibility—The rendered attribute, present on most components, allows
conditional rendering of its HTML.

View Component Syntax

Adding view components to a Visualforce page involves constructing XML markup. The
markup consists of three parts: the component name, an optional set of attributes, and an
optional component body. Listing 6.10 is a sample usage of the view component dataList.
It demonstrates all three parts of referencing a view component in a Visualforce page.

View Components

Listing 6.10 Sample View Component Usage

<apex:datalist value="{!contacts}" var="contact"s
{!contact.Name}
</apex:datalist>

Component Name

The component name is specified in the name of the tag. The component is dataList, pref-
aced with the apex namespace to instruct Force.com that this is a standard view component.
The dataList component renders an HTML list, which is a series of LI tags within a UL tag.

Attributes

Each view component has its own shape. The shape is the set of attributes accepted by the view
component and their data types. Attribute values are either static names or expressions.

The dataList component iterates over the values in the controller, creating LT HTML tags for
each. The value attribute specifies the source of these values. The value {!contacts} is expres-
sion language syntax that retrieves the reference of the contacts variable from the controller
using its getter method, getContacts. If this method is not available, its access modifier is not
public, or it returns an incompatible data type, then the Visualforce page cannot be compiled.
The var attribute specifies a variable name that can be referenced in the component body to
access each element of the collection.

Note

Almost every Visualforce component accepts an id attribute. This attribute is used to provide
a unique identifier to the component. The unique identifier can be used to obtain a reference
to the component at runtime, from JavaScript or other Visualforce components. Chapter 7,
“Advanced User Interfaces,” includes more information on using the id attribute.

Component Body

The component body is the text between the start and the end of the XML tag. If no compo-
nent body is specified, the tag is said to be self-closing. Each component can define its own
treatment of the component body.

For example, dataList uses the component body to format its list elements. In the sample
code, the name of each resource in the list is displayed in bold. The behavior of a self-closing

instance of dataList depends on the collection type. If you pass a list of primitive types, Force.

com can simply return their string representation in the page. But if you pass a list of complex
types such as Contact records as in this example, how to dereference the records to produce
text for the list items is not clear. If this example had no component body, a list of empty LI
tags would be produced.

199

200

Chapter 6 User Interfaces

Page Definition

Every Visualforce user interface page must begin with the page component. Its main purpose is
to connect the page to a controller and optionally override the global appearance of the page.

The page component requires either a standard or a custom controller to be specified. The
standardController attribute is used to reference a standard controller, and its value is the
name of a standard or custom object. Optionally, an extensions attribute can be provided
with a comma-separated list of custom Apex classes that extend the standard controller. To
specify a custom controller instead, set the controller attribute to the name of a custom
controller class.

By default, pages are styled consistently with the Force.com native user interface. They include
its stylesheet, sidebar, and header region containing application tabs, banner, and drop-down
list of applications. You can override this behavior by setting the standardStylesheets,
sidebar, and showHeader Boolean attributes.

Controlling Component Visibility

The rendered attribute is available on most standard Visualforce components. It is a Boolean
value that indicates whether the component is included in the page. Setting rendered to
false does not hide the component using CSS. It omits it entirely from the rendered page.

For some applications, this server-side approach to visibility is a strong alternative to CSS or
JavaScript techniques such as using the display: none style directive to hide page elements.
The rendered attribute is especially powerful when used in conjunction with the partial page
refresh feature of Visualforce, discussed in Chapter 7.

Data Components

Data components allow fields and records from the Force.com database to be manipulated
within a Visualforce page. They are divided into three categories:

= Metadata-aware components—The HTML rendered by these smart components varies
based on the definition of the field. These components are valid only when bound to
database objects.

= Primitive data components—If your field data is contained in a variable in Apex code
rather than a database object, use primitive data components to render input and output
HTML elements bound to their values.

= Repeating components—If you have a list of any type of object, you can iterate over it
with a repeating component to render its contents.

Metadata-Aware Components

Metadata-aware components use the definition of database objects to determine the appearance
of the component on the page. There are two components: one for input (inputField) and
one for output (outputField).

View Components

The inputField component displays the appropriate input element in HTML for the database
field it’s bound to. Its value attribute defines the binding. For example, an inputField bound
to a picklist renders HTML including the valid picklist values and selected value. The
inputField also provides a visual indicator when the database field is required, consistent
with the native user interface. The inputField component must be contained within a form
component. Listing 6.11 shows an example of its usage.

Listing 6.11 Sample Usage of inputField Component

<apex:form>
<apex:inputField value="{!project.Stage c}" />
</apex:form>

The outputField formats the value of a field using the correct pattern for that field’s data
type. For example, an outputField bound to a currency field displays the currency type and
decimal point. The value attribute binds the component to data in the controller. In Listing
6.12, the page expression { !project.Billable Hours_ _c} provides the source of data for the
outputField

Listing 6.12 Sample Usage of outputField Component

<apex:outputField value="{!project.Billable Hours c}" />

Primitive Data Components

Primitive data components add Visualforce functionality to standard HTML tags. Use these
components when you are working with data that is not contained in a database object or
when the standard Visualforce rendering or behavior is not desirable.

Table 6.1 describes the primitive data components. With the exception of outputLabel, all
components listed in the table must be contained in a form component or a compilation error
results.

Table 6.1 Primitive Data Components

Component Sample Usage Value Data Sample HTML Output
Type

outputLabel <apex:outputLabel String <label>outputLabel</
value="outputLabel" /> labels>

inputCheckbox <apex:inputCheckbox Boolean <input type="checkbox"
value="{!booleanvalue}" /> checked="checked"/>

inputFile <apex:inputFile Blob
value=" { !blobvalue} " /> <input type=|lfile"/>

201

202

Chapter 6 User Interfaces

Component

inputHidden

inputSecret

inputText

inputTextArea

selectList

selectRadio

selectCheckboxes

Sample Usage

<apex:inputHidden
value="{!hiddenvalue}" />

<apex:inputSecret

value="{!secretValue}" />

<apex:inputText

value="{!textvValue}" />

<apex:inputTextArea

value="{!textAreavalue}"

/>

<apex:selectList
value="{!selectedItem}">

<apex:selectOptions
value="{!optionvalues}" />

</apex:selectList>

<apex:selectRadio
value="{!selectedItem}">

<apex:selectOptions
value="{!optionvalues}" />

</apex:selectRadio>
<apex:selectCheckboxes
value="{!selectedItem}">

<apex:selectOptions
value="{!optionvalues}" />

</apex:selectCheckboxes>

Value Data
Type
String

String

String

String

String or
String][] if
multiselect
(selectList),
SelectOption[]
(selectOptions)

String (selec-
tRadio),
SelectOption[]
(selectOptions)

String or
String|[] if mul-
tiselect (select-
Checkboxes),
SelectOption[]
(selectOptions)

l

Sample HTML Output

<input type="hidden"
value="hiddenValue"/>

<input type="password"
value=""/>

<input type="text"
value="textValue"/>

<textarea>textArea

Value
</textarea>

<select size="1">
<option value="">

optionvValue
</option>
</select>

<input type="radio"/>
<label>optionValue
</labels>

<input type="checkbox"
/>

<label>optionValue</
label>

Repeating Components

Repeating components are bound to a list or set of values. They iterate over them, rendering

the component body for each child in the collection.

The three types of repeating components are dataList, dataTable, and repeat. They all
require two attributes: value, a binding to the collection, and var, the name of the variable
that contains a reference to the current child.

View Components

The difference between the three components is in how the HTML is rendered. The dataList
component is rendered as an HTML list, with each element of the collection rendered as a list
item (LI tag). The dataTable component is rendered as an HTML table, with each element in a
table row (TR tag). The repeat component provides no HTML formatting, leaving that entirely
up to the Visualforce developer.

Listing 6.13 demonstrates usage of the repeat component to loop over the elements of the
collection skills__r. Each element of the collection is assigned to the variable skill. This
variable is valid within the body of the repeat so that you can render its data—in this case,
using an outputField component to display each child’s Type c field. A common use of the
repeat component is in conjunction with a custom controller method that returns a list of
records. You can iterate over the list with repeat, outputting HTML elements as you go.

Listing 6.13 Sample Usage of repeat Component

<apex:repeat value="{!8kills r}" var="skill"s
<apex:outputField value="{!skill.Type c}" />
</apex:repeat>

Action Components

Action components allow the page to invoke a method on the controller. The controller
method typically performs some operation on the contents of the page, such as updating the
database, and then either refreshes the page or navigates to a new page.

Before any refreshing or navigation takes place, the state of the user interface input elements
on the page is injected into the variables of the controller using setters. This way, they are
accessible from within your action code.

The two basic action components are commandButton and commandLink. The commandBut -
ton is rendered as an HTML button, whereas the commandLink is rendered as an anchor. Both
are valid only inside a form component. They are typically used with an action attribute that
specifies the name of the controller method to invoke or the URL of a new page to navigate to
and a value attribute that displays a label to the user. Listing 6.14 is an example of using the
commandBut ton, which invokes the doSomething method of the controller when clicked.

Listing 6.14 Sample Usage of commandButton Component

<apex:form>
<apex:commandButton action="{!doSomething}"
value="Do Something" />
</apex:form>

203

204

Chapter 6 User Interfaces

The page component also has an action, specified in the init attribute. This action is called
automatically upon page load but should not be used for initialization code. Its purpose is to
immediately redirect the user to a new page.

Before invoking a controller method, all action components perform validation on data compo-
nents, accepting user input that is contained within their parent form. For example, if an input
component is required but no value is provided, an error results. Errors can be displayed using
the pageMessages or messages component (described in the “Error Handling” subsection of
this chapter) and beside any inputField components if their database field is defined to do so.
You can disable this validation behavior by setting the action component’s immediate attri-
bute to true.

Note

Visualforce includes actions that operate asynchronously, allowing modifications to the page
without a full page refresh. These actions are discussed in Chapter 7.

Primitive Components

Many standard components mirror standard HTML tags, summarized in Table 6.2. These primi-
tive components might seem unnecessary because you can always write the equivalent HTML
without using a Visualforce component. But one thing plain HTML cannot do is server-side
conditional rendering.

Table 6.2 Primitive Components

Component Sample Usage Sample HTML Output
outputPanel <apex:outputPanel> <spans>outputPanel
outputPanel

</apex:outputPanel>
outputText <apex:outputText> outputText
outputText
</apex:outputText>

outputLink <apex:outputLink value= <a href="http://developer.

"http://developer.force.com"> force.com">Click here
Click here

</apex:outputLink>
image <apex:image
value="myimage.png" />
iframe <apex:iframe src="http:// <iframe width="100%"
developer.force.com" /> scrolling="no" height="600"
frameborder="0"
title="Content" src="http://

developer.force.com"></iframe>

View Components

With regular HTML, your markup always appears in the page, increasing its size and load time,
and hiding it requires JavaScript or CSS. Visualforce provides the rendered attribute, allowing
you to improve the performance of your pages by conditionally rendering markup based on the
state of the controller.

There are two additional primitive components: includeScript and stylesheet. They
both accept a value attribute to specify the URL of a script or stylesheet resource to load.
These components do not have a rendered attribute, but using them instead of their HTML
counterparts can improve page performance and maintainability. The script and stylesheets
are included directly in the HTML HEAD tag for the page, which is not possible to do from

a Visualforce page using HTML. Additionally, these components ensure that scripts and
stylesheets are not duplicated on the page.

Force.com-Styled Components

Force.com’s native user interface makes heavy use of CSS and JavaScript within its Web pages
to provide a consistent look and feel across the platform. Many Visualforce components deliver
this same styling to developers, without requiring any knowledge of Force.com’s CSS or other
implementation details. The following list groups these components into five categories based
on their function:

= Page structure—sectionHeader, pageBlock, pageBlockSection, and
pageBlockSectionItem are the native structural elements used by Force.com to organize
a page into a hierarchy of clearly identifiable sections, subsections, and sets of label/field
pairs.

= Action containers—pageBlockButtons and toolbar/toolbarGroup organize a series of
buttons or links for performing actions on the page.

= Table—pageBlockTable is used like a dataTable but renders rows and columns in the
Force.com native style.

= Paging components—panelBar/panelBarItem and tab/tabPanel group components
into pages that can be dynamically shown and hidden.

= Notifications—pageMessages displays errors and information.

Figure 6.4 illustrates all the components in use on a single Visualforce page.

205

206 Chapter 6 User Interfaces

(- XeXs] Page Editar - FaceeStyledCampanants o
ﬁrcc_com o e s e
|
| Home lzﬂnii Projects Skills + |
p- Iﬂ:dmi:lndw.lill Halp for shis Poage i
4/ subtitle
sectionHeader. description
e pageMessages
pageBlock title 1 2 pagoBiock holpTite 7
caumin 1 column 2 column 3
Labell Fiald1 Labelz Fiald2

oty “ET

Figure 6.4 Force.com-styled components
Listings 6.15 and 6.16 implement the controller and page shown in Figure 6.4.

Listing 6.15 Sample Controller with Force.com-Styled Components

public class ForceStyledComponentsControllerExtension {
private final List<Contact> contacts;
public ForceStyledComponentsControllerExtension (
ApexPages.StandardSetController stdController) {
this.contacts = (List<Contacts>)stdController.getRecords() ;
}
public PageReference initPage() {
ApexPages.addMessage (new ApexPages.Message (
ApexPages.Severity.INFO, 'pageMessages'));
return null;

Listing 6.16 Sample Page with Force.com-Styled Components

View Components

<apex:page standardController="Contact"
recordSetVar="contacts"
extensions="ForceStyledComponentsControllerExtension"
action="{!initPage}">
<apex: form>
<apex:sectionHeader title="sectionHeader.title"
subtitle="subtitle"
description="sectionHeader.description"
help="http://developer.force.com" />
<apex:pageMessages />
<apex:pageBlock title="pageBlock.title"
helpUrl="http://developer.force.com"
helpTitle="pageBlock.helpTitle">
<apex:pageBlockButtons>
<apex:commandButton action="{!save}"
value="pageBlockButtons 1"/>
<apex:commandButton action="{!save}"
value="pageBlockButtons 2" disabled="true" />
</apex:pageBlockButtons>
<apex:pageBlockTable var="r" value="{!contacts}"
title="pageBlockTable.title" rows="1">
<apex:column>column 1l</apex:column>
<apex:column>column 2</apex:column>
<apex:column>column 3</apex:column>
</apex:pageBlockTable>
<p />
<apex:pageBlockSection title="pageBlockSection.title"
columns="2">
<apex:pageBlockSectionItems>
<apex:outputPanel>Labell</apex:outputPanel>
<apex:outputPanel>Fieldl</apex:outputPanel>
</apex:pageBlockSectionItems>
<apex:pageBlockSectionItems
<apex:outputPanel>Label2</apex:outputPanel>
<apex:outputPanel>Field2</apex:outputPanel>
</apex:pageBlockSectionItems>
</apex:pageBlockSection>
</apex:pageBlock>
<p />
<apex:tabPanel switchType="client" selectedTab="name2">
<apex:tab label="tab 1"
name="namel">tabPanel tab 1l</apex:tab>
<apex:tab label="tab 2"
name="name2">tabPanel tab 2</apex:tab>
</apex:tabPanel>

207

208

Chapter 6 User Interfaces

<p />
<apex:toolbar>
<apex:outputText>toolbar</apex:outputText>
<apex:outputLink value="http://developer.force.com">
outputLink 1l</apex:outputLinks>
<apex:toolbarGroup itemSeparator="1line" location="right">
<apex:outputLink value="http://">outputLink 2</apex:outputLink>
<apex:outputLink value="http://">outputLink 3</apex:outputLink>
</apex:toolbarGroup>
</apex:toolbars>
<p />
<apex:panelBar>
<apex:panelBarItem label="panelBarItem.label 1">panelBarItem 1
</apex:panelBarItem>
<apex:panelBarItem label="panelBarItem.label 2">panelBarItem 2
</apex:panelBarItem>
<apex:panelBarItem label="panelBarItem.label 3">panelBarItem 3
</apex:panelBarItem>
</apex:panelBar>
</apex:form>
</apex:page>

Force.com User Interface Components

Four view components are available that each replicate coarse-grained areas of Force.com’s
native user interface functionality. These components are a single reference on your Visualforce
page, but they expand to produce many subordinate user interface elements when rendered to
users. They are summarized in the following list:

1. listviews—The listViews component is rendered by Force.com on the list page of an
object tab when the Enable Enhanced Lists option is disabled for the organization.

2. enhancedList—The enhancedList component consists of a drop-down list of view
names and a table of records returned by executing the view.

3. relatedList—The relatedList component renders the records of any one of an
object’s child objects.

4. detail—The detail component provides a subset of the native user interface’s detail
page for an object.

listviews Component

The listviews component includes the capability to create and edit list views, as well as
execute them and render their records. The only required attribute of 1istviews is type,
which binds a database object type to the component.

Visualforce and the Native User Interface

enhancedList Component

The enhancedList component is a more modern version of the 1istViews component. It has
the same functionality but also includes drag-and-drop reorderable columns, sortable columns,
and results pagination with dynamic page sizes. It appears in the native user interface only
when Enable Enhanced Lists is enabled for the organization.

The required attributes of enhancedList are height (the height of the component in pixels)
and either type (the database object type displayed by the component) or 1istId (the unique
identifier of the list view).

relatedList Component

The relatedList component renders a list of child records. It is the same component that
appears in the native interface below the detail for a record. It is paginated and allows related
records to be edited, deleted, and created, depending on the object permissions of the current
user.

The required attributes of relatedList are list, the name of the child relationship to be
rendered in the list, and subject, an expression language reference to the parent record on the
controller (defaults to the id parameter of the page if not provided). Both Master-Detail and
Lookup relationships are supported by relatedList.

detail Component

The detail component replicates the functionality of the native user interface on the detail
page of a record. It respects the page layout of the record, including page layouts defined per
record type. It also supports in-line editing for the edit mode of an object.

Like the relatedList component, detail requires a subject or it attempts to read a record
identifier from the page’s id URL parameter. By default, all related lists are rendered below the
detail section unless the relatedList parameter is set to false.

Visualforce and the Native User Interface

Force.com provides many places for Visualforce pages to be integrated into its native user
interface. You can embed Visualforce pages inside standard user interface pages, override the
buttons that navigate between pages, override the standard pages entirely, and add buttons and
tabs to navigate to an entirely custom user interface. Areas of the native user interface exten-
sible through Visualforce are summarized here:

= Standard pages—Standard pages provide the default user interface for maintaining
records in the Force.com database. These pages can be overridden with your custom
Visualforce pages.

= Standard buttons—Standard buttons normally navigate the user to standard pages, such
as the New button, which moves the user to the edit page for a new record. But these

209

210 Chapter 6 User Interfaces

buttons can be remapped to your custom Visualforce pages, to inject an additional visual
step before the standard page or to hide it altogether.

= Page layouts—Page layouts define the position of fields, buttons, and related lists in the
native user interface. Visualforce pages can be embedded within page layouts.

= Custom buttons and links—Custom buttons appear at the top and bottom of standard
pages and links within a detail page. They can navigate the user to a Visualforce page.

= Custom tabs—Custom tabs are added to an application and appear at the top of the Web

browser under the application banner. A Visualforce page can be configured as a custom
tab.

Standard Pages

The native user interface consists of four standard pages for working with database records.
These can all be overridden, as described here:

1. Tab—The tab page appears when a custom object tab is clicked. Figure 6.5 provides an
example of this page.

Projects: Homa ~ salesfarcs com - Developer Edition

Saarch Bearch Palge Turner = Halj Services Manager ~
N i " e
| Home Gontacts A skills +
]
8 _a Projeets. Halp far this Page G
I | Home
View: All ¢ 6Go1| Edil|Creale New View |I
Now
Recent Projects LR Recantly Viewtd
Projoct Namn Location Status Biliable Hours Owner Last Namo
GenePaint Mountain View, CA Grean BOO Bar
Grand Haotels & Resorts Lid Chicago, IL Yaliow 100 Turmee
Tt Project Tuirmoe
LUinitmd O & Gas Corp, Neow York, NY Groon 800 Turngr
Expross Logistics and Transpor Porland, DR 0 Turnor
Burlinglon Textles Corp of America Burlington, NC Greon 200 Tumer

Copyright © 2000-2013 salesforce.com, inc. ANl rights reserved. | Privacy Statemant | Security Statement | Tarms of Use | 508
Compliance

Figure 6.5 Standard tab page

Visualforce and the Native User Interface

2. List—The list page displays a series of records in a tabular view, as shown in Figure 6.6.
You reach it by clicking the Go button from the tab page.

| Home Contacts .

J‘érce.com

Projects ~ salesforce.com - Developer Edition

Shkills

Seaseh

Palge Tumar = Halp

Services Manager ~

&
" A All & Edét | Delete | Create New View

= 0

Now Project

Action

Edit | Dol
Edit | Dal
Edit| Dal
Edit | Dol
Edit | Dot
Edit | Dal

1-G6al6 =

Change Gwner |)

Project Name +
Burington Textiles Gomp

Express Logistcs and Tr...

Grand Holols & Resorts
Tt Project
United Ol & Gas Corp,

0 Selocted =|

Status
Groen

Green
Yllow

Groen

Figure 6.6 Standard list page

AHCnFEGHlJKI.MNﬂPGRSYU\-'W*YZ(X'-:rIII'l

Location
Burlington, NG
Parttand, OR
Mountain View, CA
Chicogo, IL

Now York, NY

Blliable Hours
200

0

60D

100

500

Cwnar First Name
Paige

Paige

Tm

Paigy

Paign

Paiga

Page| 1 lof1

3. View—The view page is a read-only view of a single record and its related records. Figure
6.7 is the view page for the Contact object. A page layout, determined by profile and
optionally record type, is used to determine the appearance of the view page.

4. Edit—The edit page uses the same layout as the view page but allows the values of a
record to be modified and saved. This is shown in Figure 6.8 for the Contact object.

Caution

Override the standard edit page with caution. The standard edit page provides deep functional-
ity, such as page layouts and record types, that cannot be replicated in a Visualforce page with-
out a significant amount of custom code.

To override a standard page, go to the App Setup area and click Create, Objects and select the
object. Scroll to the Buttons, Links, and Actions section. Tab, view, and edit pages can be over-
ridden only with Visualforce pages that use a standard, single record controller. The list page
must use a standard set controller. Controller extensions are supported in all pages.

211

212

Chapter 6 User Interfaces

ﬁl’CC.C om

Contact: Mr Tim Barr ~ salesforce.com - Developer Edizion

Figure 6.7 Standard view page

Search, Ssarch Paige Turner = Help Services Manager -
| Homo Projects Shkills +
[
b Mr Tim Barr
DoRa= |I
Custowmize Page | Edi Layout | Printoble View | Help for s Page @ |
4 Show Feed @ Folow
= Back to List: Projects
Opoortriiog] | Casos i | Dose Achilion |0 | Activity Hislory 13 | | Molos 8 | | HIML
Contact Datail Edit | Delsto || Clone || Request Update
Contact Cwner Tien Bare [Change] Fhone (783) 241-6200
Mama M Tim Barr Homa Phane Mew York
Account Nama Mobile (T85) 205-5350
Title Other Phana
Department Fax
Histhdate Email
Repoa Ta [Vigw Org Chart] Assistant
Lead Source Purchased List Asst. Phano
Malling Address 1301 Hoch Driva Other Address 1301 Hoch Drive
Lawrence, KS G645 Lawvence, K5 66045
usA usa
Langusges English Level Primary
Crented By Paiga Turnar, A7Z7/2013 7:43 PM Last Modified By Paige Turnar, /2013 6:47 AM
Duscription
w Services Manager
Active Hourly Cost Rate 5125.00
Educotion Fardham Uinivarsity SrtDate G2B2007
Highaest Education Level MS Industry Start Date 511979

Contact Edit: Mr Tim Barr ~ saleaforce.com - Developer Edition

Search. Search Paige Tuner = Help
Skills +
| = Gomtact Edit Hlp for s Paga @)
4 Mr Tim Barr
Contacts not associated with accounts are private and cannot be viewed by other users or included in reports, |I
Contact Edit Sn) (S & M| | Cancel
Contact Information | = Raguicsd kfarmation
Contact Gwner Tim Barr Phone |i7as) 241-8200
FirstHame | wr Tim Horme Plione | New York
Last Hame | parr Moblle (785) 265-5350
Account Hame 5] Giher Phong
Titla Fax
Department Email
Birthdato Assintant
Reports To @ Asst. Phone
Lead Saurce | Purchased List
Address Information
Mailing Straet (7301 Hach Dfive
Mailing City | Lswvance Other €Y Lawewnce
Mailing StateProvince y5 Other Stata/Province y5
Mailing ZipPostal Code paoas Diher ZipPostal Code groas
Malling Country Usa Oihor Country U5

Figure 6.8 Standard edit page

Visualforce and the Native User Interface

Standard Buttons

Visualforce pages can be shown as the result of clicking a native user interface button, overrid-
ing the button’s standard behavior. The following standard buttons can be overridden:

= New—The New button normally navigates the user to the edit page on a new record.

= Delete—This is the page navigated to after a record is deleted. The default behavior is to
navigate to the tab page.

= Clone—The Clone button copies the values from the current record into a new record
and places the user in edit mode on that record. This behavior can be customized by
overriding the Clone button.

= Accept—The Accept button applies to records owned by a queue rather than a single
user. It enables a user to remove a record from the queue, assigning ownership of the
record to himself. This button appears on the list page only when it is displaying records
owned by a queue.

To override a standard button, go to the App Setup area and click Create, Objects and select the
object. Scroll to the Buttons, Links, and Actions section. Your Visualforce page must use a stan-
dard, single record controller, with or without extensions.

Page Layouts

A Visualforce page can be embedded in an object’s page layout alongside its fields. Figure 6.9
shows a new section called My Section, defined using the page layout editor. My Page is the
name of a Visualforce page that has been dragged into My Section and is now visible whenever
a record of that object is viewed or edited.

The result of adding the Visualforce page called My Page to the layout for the Contact object
is shown in Figure 6.10. The text “Hello Visualforce” is being rendered by the Visualforce page
embedded within the record’s detail page.

To add a Visualforce page to a page layout, go to the App Setup area and click Create, Objects
and select the object. Scroll to the Page Layouts section and click the Edit link for the page
layout. For your Visualforce pages to appear in the page layout editor, they must conform to
the following guidelines:

= They cannot already be in use by a tab.
= They use a standard, single record controller, with or without extensions.

= Their controller’s object type matches that used by the page layout. For example, for a
Visualforce page to appear on the Contact page layout, it must use a standard Contact
controller.

213

214 Chapter 6 User Interfaces

salesforce.com - Developer Edition

Savo * | Quick Save | Proview Ax... ¥ | Cancel | | £ ndo | 5 Bucs || 5 Layost Properties. | |

Force.com Home Fioids | @ Quick Find| Paga Nama I
Buttons. M Section

System Overview - (iRl B
Rolated Lists MyPags

Persanal Setup
My Parsonal
Email
ot Cont
Desktop Integration

My Chatter Settings Highlights Panel

My Scclal Accounts and . o
Contacts Customizo the

npho

Contact Detail Stancar Butions
[Edit] [Dwtete| | Clone| |Sharing| | Request Update
: z [Enable Gustomer Portal User | | Enabile Pariner Portal Login
+ Croate
+ Davelop View Customer Portal User | View Partner User

App Sotup

+ Deploy Disable Customer Portal User| | Disable Partnar User
Schoma Buildor
Carrvas A Braviewnr Enabile Partner Super Access| | Disable Partner Super Accoss
Installed Packnges
AppExchange Marketplace
Critical Updales

Administration Setup

+/ Manage Users

Manage Apps.

Company Prafile

Security Gontrols | MyERgR
Communication Templates

Figure 6.9 Adding a Visualforce page to page layout

_ Contact: Mr Tim Barr ~ salesforce.com - Developer Edition o
ﬁrCC.COI'n Search, Ssarch Palge Turner = Help Services Manager ~
| Home N=lS-SH Projects Skills T +
(5
L Mr Tim Barr

DoRa= |I
Custowmize Page | Edi Layout | Printoble View | Help for s Page @ |
- Snhow Feed @ Foliow
= Back to List: Prajects.

Opoortriiog] | Casos i | Dose Achilion |0 | Activity Hislory 13 | | Molos 8 | 1 HTML
Contact Datail Edit | Delsto || Clone || Request Update
Contact Cwner Tien Bare [Change] Fhone (783) 241-6200
Mama M Tim Barr Homa Phane Mew York
Account Nama Mobile (T85) 205-5350
Title Other Phona
Department Fax
Histhdate Email
Repors o [Vigw Org Chart] Assistant
Lead Source Purchased List Asst Phane
* My Section

Hello Visualforce

Figure 6.10 Embedded Visualforce page

Visualforce in Production

Custom Buttons and Links

You can configure buttons and links that navigate to any Visualforce page. These buttons and
links are then added to page layouts. Buttons and links are defined on the database object. In
the App Setup area, click Create, Objects, and then click the object. Scroll to the Buttons, Links,
and Actions area and click the New button.

Custom buttons and links tied to Visualforce pages can be added to the object’s detail page
layout or a related list page layout. The detail page layout requires a standard controller. The
related list layout requires a standard set controller. Controller extensions can be used with
either.

Custom Tabs

You can configure any Visualforce page as a new tab in the Force.com native user interface.

To add a new Visualforce tab, go to the App Setup area and click Create, Tabs. Click the New
button in the Visualforce Tabs section to create a tab. Select a Visualforce page, give the new
tab a unique label and name, select a tab label and style, set tab visibility on profiles and appli-
cations, and click Save.

Visualforce in Production

This section describes areas of focus for real-world user interfaces written in Visualforce. It
includes the following subsections:

= Debugging and tuning—Force.com provides Web-based tools for debugging and tuning
Visualforce pages.

= Security—Securing Visualforce pages is an important task. Visualforce pages can expose
users to records they should not see under record sharing rules and cause runtime errors
due to lack of object or field visibility.

= Error handling—Error handling in Visualforce is a process of catching all exceptions
and handling them thoughtfully, with both the integrity of the database and the user
experience in mind.

= Governor limits—The code running in Visualforce controllers is subject to governor
limits, applied within the scope of each user-initiated action.

= Unit tests—Force.com requires test coverage on the code in Visualforce controllers and
provides system methods to assist.

Debugging and Tuning

Developer Console is the first place to look to troubleshoot unexpected behavior from a
Visualforce user interface. While Developer Console is open, every interaction with

215

216

Chapter 6 User Interfaces

Force.com is logged and can be examined in depth. In Figure 6.11, Developer Console is active
and contains six entries, shown in the bottommost table.

Force.com Developar Consale
Flo~ Debug~ Tem~ Woropore» Heps < >

e e TR |
Exscution Tree Perfarmance Tres Timestamg Event Decaiiy
une Ouracion Heag Oork-ak: 100 SYSTEM_METHL. [42]lwystem. Listlteratze hashienf)
355 fapex/Sdis_Matrix P g 000646102 HEAPALLOCATE [12]/BrtesS
55 Visustorcn Page SKL. T77.05 o OUORARI02 SYSTEM METM.. [12]|sysem.Listiverator hashent)
) Sviskre Viewstze . 152 8 ST HEAP_ALLOCATE [12]|Bytes:12
o 3 Apex Cass Sty 7.66 Fri] 00846100 WARIABLE SCO.. [12]|contea Conaa rueslakie
3 Apem Cass S 62 pr g OlDEc46: 102 WARIABLE_ASSL.. [02]|contecti{ werid™: 1, “walue®;{"Name"; "Josh Denis™,Id™;
Tlramest 002 5 00545102 STATEMENT_EX.. (13|
Doedd 00 4 06100 STATOMENT_EX.. [13))
= rasved .02 H D04k 102 HEAP ALLOCATE [13]|Byies18
WORMGIM SYSTEM METW. [L3]UST<Sptem SekecOion> aceOtec)
uni; D e O e: 102 HEAP_ALLOCATE [EXTERNAL] Bytescd

Seriize Viewst.. 1.5% DO08:46:102 SYSTEM_METH.. [13]|LIST <Sirstem. SelectOpton= adaDbject)

0
Fashext 0.0 5 O006:86:102 SYSTEM_METH.. [12]|systiem.Lstiverator.hashen()
add o 4 O0rDe- 46102 HEAP ALLOCATE [12]|Bytess
Fashea .02 5 D005:45:102 SYSTEM_METH. [12]|system. Listlterator hashent(}
add 0.03 4 G602 HEAP_MLLOCATE [12](0yesc12
ParsNect o0z 5 0461102 WARIABLE SCO... [12]lcomtectiComactitruesfalan:
sdd om 4 R85 1T VABIARIF ARET (17 11rresh a1 " R iy Frhuss™ "l
PasNest o0] — — =
= S - | Tris Frame 7] Exscutabin |1 Debug Octy 7] Fitee
JiSga] Tests Checkpoints Query fditor Progress Problems ¥
User Apphcation Operstion Time b Resd Sire
Paige Tumer Browser e 09700 234202 AETCE 1 de-reference . 8625
Paige Tumer Brenweser faije 0903 234252 Astrenct 1 de-refereree . Uneead B2
Paige Tumer Broveser e CR/CE 23:44102 N Emsgnmenss. et
Peige Tumer Uriangwn ApexTestiandier 09/03 23:45:30 No ssignments. Unresd 850821
Paige Tuemes Brereae fapex/Sadil_Mateix D9/04 £0:06:37 Success 258
Paige Tumner Broveser Aoy Matix OG04 00:06:46 tracTess. (heny

Fiter | Click here to filter the kg list

Figure 6.11 Developer Console

The last log entry has been clicked, and the other panels of Developer Console are refreshed
with detailed information. This information is centered around the Apex code executed in the
controller associated with the page, as well as any Apex code executed as a result of control-
ler code. If a bug exists in your controller code, it should be obvious in the Execution Tree,
Execution Log, and Stack Tree panels as you trace the flow of instructions.

The next place to look for bugs is the Visualforce page markup. If Force.com encounters some-
thing invalid in the course of rendering a Visualforce page, such as a null reference in your
controller, it can interrupt the processing of your page entirely and display an error message.
Trial and error can be helpful in these situations. Comment out portions of your Visualforce
page using HTML comment tags (<!-- sample comment -->) until the page functions again
and you've isolated the troublesome portion. An in-browser development tool such as Firebug
or Chrome Developer Tools is also helpful if the page renders successfully but has a client-side
presentation or logic issue. These tools enable close inspection of the JavaScript, HTML, and
CSS in the page.

Visualforce in Production

When you're ready to improve the performance of your Visualforce page, examine the view
state. The view state contains the values of local variables in your controller. They are encoded
and embedded in the page itself in a hidden field and sent back to Force.com upon every user
action. Sending the view state back and forth to the browser and processing it in Force.com can
reduce the responsiveness of your user interface. View state is limited to 128K, but performance
can be impacted well before the limit is reached.

The Visualforce development mode footer contains a tab called View State, shown in Figure
6.12. With it, you can examine the contents of the view state: the variables saved there, along
with their sizes and contents. Double-clicking one of the folders opens a dialog with charts
showing the contribution of various types of view state toward the limit.

Page Editor = fapex/SkillsMatrix
A e () () () (Ll hoops:/ fdevwithi af.visualf il save_new= Lisfdc.override=1 W)
ﬁrcc.(:om Search AL, v Search Paiga Tuner = Halp
Optices
Home Chatter Projects “'“‘n Reports +
, Services Manager
% Skills Matrix
Resource: | Tum Barr S *
Cortrrt | Capacity
Skills
Ised) Avallable View Stats (KB}
Type '
Project Managamant |
X Pagalidhor Conbrober 1]
e ————————— W vses | e T T
N - O T T o nor
+ 3 Vhow St I Available [T
FI=1 W =xceeding L
24 Controters am
2 ShastprCamier 213
5 soleciodRescurce: 12
™ e 0 I 20 30 40 50 G 70 B0 W 100 W0 120 13 Ll
) Usar_r 058
55 RecorcTypela g TRO00000NEmREARS 0.1
T Curmanpleotioin Surg usn ooe
o _r sng COMMON 3914000 wect. CuaryHBaL. 109
Tuser_c Firg DOSAC000001 cpFRAN ooe
=[] Sing W B000000LpoaCAAS oe =
J selecsnasims [15] LISTem_e> (R
T stonacie Bocioan trus [T
T seisenainsnresis frrg BO18000000L pocadAR 153
T8

Figure 6.12 View state

Your goal is to minimize the view state. Look for controller variables that do not need to persist
across page views, and add the transient keyword to them. The transient keyword tells
Force.com not to save the state of the variable in the Web page, removing the round-trip cost
of transporting that data to and from the Web browser. Avoid querying extraneous information
from the database in your SOQL calls. Also, simplify and streamline any nested data structures
that are required in the view state.

217

218

Chapter 6 User Interfaces

Note

Performance tuning Visualforce pages is a complex subject beyond the scope of this book. An
excellent resource is a best-practices document from Salesforce itself, available at http://www.
salesforce.com/docs/en/cce/salesforce_visualforce_best_practices/salesforce_visualforce_
best_practices.pdf. Learning these best practices early in the development process can prevent
costly rework. Additionally, test all of your Visualforce pages with realistic data volumes. This
helps to expose performance issues prior to a production deployment.

Security

Securing a Visualforce user interface involves controlling access to the objects, the records, and
the page itself. Visualforce obeys the object and field-level security rules configured in profiles.
Record security is handled by the controller through special keywords in Apex in conjunction
with custom code that can be written to enforce application-specific security rules. Access to
the page is granted by the user’s profile.

Note

As Visualforce is a Web technology, it’s also critical to guard your Visualforce pages against
vulnerabilities native to the Web. This includes Cross-Site Scripting (XSS), SOQL Injection,

and Cross-Site Request Forgery (CSRF). There are many built-in features of Visualforce and
Apex that address these vulnerabilities transparently to the developer, but it's a good idea

to be aware of them. Depending on the nature of your Visualforce pages, additional effort

may be needed to protect against them. For more information, consult the Secure Coding
Guideline document published by Salesforce, available at http://wiki.developerforce.com/page/
Secure_Coding_Guideline.

Object-Level Security

Access to database objects and fields is determined by the profile and is consistent with the
native user interface. This protects the database and maintains the centralized control of data
security, but also exposes the user interface to various runtime errors if improperly configured.
For example, if the user’s profile denies all access to an object, this object is essentially invis-
ible. When a Visualforce controller attempts to select from it, the page fails with an exception.
Other configuration problems are handled more transparently to the user. If the user’s profile
lacks edit access on an object and a Visualforce page binds an inputField to that object, it is
automatically rendered as an outputField, appropriately blocking user input.

When developing a controller, check that the SOQL, SOSL, and DML operations are fully
compatible with the set of profiles expected to use the page. As a developer, you have full visi-
bility to every object and field, but do not assume that your users have the same level of access.
Test the Visualforce pages by logging in as a test user or cycling through profiles on a single
test user. You can also write unit tests that run under the privileges of a specific user using the
System.runAs method, covered in more detail in the “Unit Tests” subsection.

http://www.salesforce.com/docs/en/cce/salesforce_visualforce_best_practices/salesforce_visualforce_best_practices.pdf
http://www.salesforce.com/docs/en/cce/salesforce_visualforce_best_practices/salesforce_visualforce_best_practices.pdf
http://www.salesforce.com/docs/en/cce/salesforce_visualforce_best_practices/salesforce_visualforce_best_practices.pdf
http://wiki.developerforce.com/page/Secure_Coding_Guideline
http://wiki.developerforce.com/page/Secure_Coding_Guideline

Visualforce in Production

Record-Level Security

Standard controllers always honor the record-level security of the current user. But by default,
record sharing rules are ignored by code in custom controllers. These controllers run in a
system context, like a trigger.

Note

Record sharing rules are still honored by the methods of standard controllers that have exten-
sions defined, but the code in an extension class itself still runs in system mode.

For example, if a user’s profile grants the user access to a particular object, your custom control-
ler queries it, and your Visualforce page displays the results, the user can read every record in
the object, regardless of the sharing settings.

You can change this behavior in the controller code by specifying a security mode in the class
definition. Two security modes are available: with sharing and without sharing. The
controller definition in Listing 6.17 uses with sharing to configure the controller to honor
record sharing rules.

Listing 6.17 Custom Controller Using Record Sharing Rules

public with sharing class MyController {
// the code in this controller honors record sharing rules

}

The without sharing security mode indicates that a class should not obey record sharing
rules, which is the default state. You do not need to change this unless your code accesses
objects that have record sharing rules defined that you would like to enforce in your user inter-
face. Subclasses inherit the security mode from their parent class, but inner classes do not. In
nested calls, where one class calls another class, the current security mode is applied unless
explicitly specified.

After a security mode is chosen, no additional work is required. SOSL and SOQL statements
automatically return the correct subset of records based on the sharing rules for each object.
But if a record is referenced directly that is not shared with the user, such as through a DML
method updating a foreign key, a runtime error is thrown. Use a try, catch block around DML
methods to make sure that this situation is properly handled.

Page-Level Security

Profiles determine which users are able to use a Visualforce page. Pages must be explicitly
enabled for each profile that requires access. If this is not done, users will receive an error page
titled Insufficient Privileges when attempting to view the page.

To grant a profile access to a page, go to the Administration Setup and click Manage Users,
Profiles. Select the desired profile, scroll to the Enabled Visualforce Page Access section and

219

220 Chapter 6 User Interfaces

click the Edit button. Select pages from the Available Visualforce Pages list and click the Add
button to add them to the Enabled Visualforce Pages list. Click Save when you’re done.

Note

Users with the Customize Application permission can access all Visualforce pages in the
organization.

Error Handling

The two main concerns when handling errors in Visualforce are how uncaught exceptions
impact the user interface and how to communicate caught exceptions to users.

Uncaught Exceptions

Allowing an uncaught exception in a trigger is often an appropriate way to notify the user of a
problem because Force.com displays a nicely formatted error message to the user in the native
user interface. But in a Visualforce page, uncaught exceptions result in an alarming, generic
Force.com error page whose appearance cannot be controlled or customized in any way.

As this is typically not consistent with the usability and look and feel of a custom user inter-
face, one of the goals of error handling in Visualforce is to avoid these uncaught exceptions.
Place a try, catch block around every action method, or at least those that perform SOSL,
SOQL, or DML operations.

A benefit of uncaught exceptions in triggers is that they roll back the current transaction.
Catching all exceptions in your Visualforce controller forces your code to roll back explicitly
if required by your application. For example, if your controller has two DML statements in
an action method and fails on the second with a caught exception, the first statement is still
committed to the database at the conclusion of the method. If this leaves the database in an
undesirable state for your application, set a savepoint at the beginning of the method and
roll back to it in the catch block. For an example of using savepoints, refer to Listing 5.19 in
Chapter 5, “Advanced Business Logic.”

Error Communication

Visualforce provides page components and corresponding data objects for communicating
errors to the user in a consistent way. The page components are messages and pageMessages,
which display the page-level errors returned by a controller. These components are placed on
pages, typically at the top, and render the ApexPages.Message objects added to the page.
Message objects contain a message and optional severity. Severity is used to style the message
when displayed in the pageMessages component and can also be filtered on in test methods.

Listing 6.18 is an example of code to add an error-severity message to the page. To be visible, it
must be rendered by a messages or pageMessages component.

Visualforce in Production

Listing 6.18 Sample Usage of Page Messages

ApexPages.addMessage (new ApexPages.Message (
ApexPages.Severity.ERROR, 'Something went wrong'));

Governor Limits

Visualforce controllers have the same set of governor limits as all Apex code. Table 6.3 reviews
these limits.

Table 6.3 Subset of Governor Limits

Resource Type Governor Limit

Visualforce Iteration Components 1,000 items per collection
(e.g., apex:repeat)

Heap 6MB

Apex code 200,000 lines of code executed, 3MB code size
SOQL 100 queries

Records from SOQL 50,000 records cumulatively for all SOQL queries
DML 150 DML statements

Records in DML 10,000 records cumulatively for all DML statements

Governor limits apply during execution of user-initiated actions and are not cumulative. When
an action is complete, the governor limits reset. For example, if your controller contains a save
method bound to a commandButton, the governor limits apply during the execution of the
save method. When the user clicks the button again or takes another action that invokes a
method, the governor limits begin counting your resource consumption again from zero.

If you need to work with larger data sets in your Visualforce pages and are bumping into gover-
nor limits, consider whether you can partition the user interface into a series of read-only and
read-write subpages. If so, you can take advantage of higher governor limits on the read-only
pages by adding the readonly="true" attribute to the apex:page element. The governor limit
increases are shown in Table 6.4.

Table 6.4 Relaxed Governor Limits for Read-Only Visualforce Pages

Resource Type Governor Limit

Visualforce Iteration Components (e.g., 10,000 items per collection

apex:repeat)

Records from SOQL 1,000,000 records cumulatively for all SOQL queries

221

222

Chapter 6 User Interfaces

Unit Tests

Unit tests are mandatory for all Apex code, including Visualforce controllers but not the
pages themselves. Your application code must have at least 75% test coverage before it can be
deployed to a production environment.

The mechanics of writing unit tests for controllers is similar to that of triggers, with some addi-
tional system methods for test setup. But the strategy for testing controllers is unique, because
controller code normally relies on the Web browser to drive it.

Listing 6.19 provides an example of the test setup code. It starts by creating an instance of the
controller class and getting a reference to the Visualforce page to test. This is a PageReference
instance, created by passing the page name as an argument. The Test .setCurrentPage
method sets the context of the test method to the page you want to test.

Listing 6.19 Sample Controller Test Method

static testMethod void sampleTestMethod() {
MyPageController controller = new MyPageController();
PageReference page = new PageReference ('MyPage');
Test.setCurrentPage (page) ;

}

The body of your tests can employ one or more of the following test strategies to exercise code
in the controller:

= Directly invoke controller methods and getters/setters.

= Add a test harness to constructor code to read URL arguments to establish controller state
or perform actions.

= Verify data in the database using SOQL and SOSL queries.

» Use System.runAs blocks to simulate different users, such as System.runas (user)
block; }.

Caution

Even 100% test coverage on the controller class does not guarantee a bug-free user interface.
Testing Visualforce pages is like testing any Web application. Test it manually with your Web
browser or with an automated Web testing tool.

Sample Application: Skills Matrix

One of the features of the Services Manager sample application is skill set management. The

skills of consultants are tracked using the Skill object, a child of the Contact object. Entering
skills in the native user interface involves navigating to the Contact’s record and clicking the
New button in the Skills related list and then selecting a skill type and a rating.

Sample Application: Skills Matrix

Users of the application have requested a more streamlined way to enter and view skills, called
the Skills Matrix. The requirements of the Skills Matrix follow:

= Reduce navigation clicks—Provide a single screen for entering and viewing all skill-
related information. The screen shows the skills and ratings of a single contact at a time
in tabular format: skill types as rows and a single column to view and edit ratings.

= Encourage data completeness—All skill types are shown at all times. This is in contrast
with the native user interface, which shows only the skills containing ratings. Showing
all skill types, including those lacking a rating, encourages users to treat the user interface
like a survey and should increase data completeness.

= Allow all to view, restrict editing—Whether a rating is editable or read-only depends
on the current user. If the user is editing her own contact record, all ratings are editable.
If the user is a manager, vice president, or system administrator (by profile), the user is
allowed to edit the skills of any contact. If the user does not meet any of the previous
criteria, the skill ratings are read-only.

This section describes building the feature in three parts. The first part is a basic implemen-
tation, to allow the selection of a contact and editing of its skills. The second part adds the
finishing touches to implement the full set of requirements. The final section provides a
sample, full implementation of the feature, shown in Figure 6.13, and comments on portions
of the code.

salosforce.com - Developer Edition
ﬁrCC.C()Ill Search Beaseh Palge Tumer = Halp Sarvices Manager -
Home Contacts Projects A m +
al
4 Bervices Manages
4 skills Matrix
Contact: | Tim Rarr i Gel

Skills Save

Typs Rating Last Modified Dats
Application Design 5 - Expen : BNAR0TITIT PM
Apex 4 - Above Average B132013 517 PM
Java 3 - Average 5 B30T WITPM
Documentation 1 - Minimal : BMA2013 817 PM
c# 1= Minimai & BNAR013 M7 PM
Amazon Web Services 0 - None - BNY2013 917 PM
Project Management -Nane-- s B30T TIT PM
Ruby None i B1W2013 917 PM
PHP Nane 8 BM3RZ013 917 PM
Parl -Nane-- . BM32013 517 PM
GUI Design Nane : B2013 517 PM
Googhe Data Nane-- : BIA2013 917 PM
Training ~Nane. : BAA2013 017 PM
Diata Madeling ~-Nane-- : BMAZ013 517 PM
Facebook “Nane : BM3RZ013 917 PM

Figure 6.13 Skills Matrix sample implementation

223

224

Chapter 6 User Interfaces

Basic Implementation

In the basic implementation, build a Visualforce page with a drop-down list at the top contain-
ing contact names and a table below it with the skills and ratings. The only skills shown are
those that already contain ratings for the contact. The ratings can be edited and saved by any
user.

Start by creating the page and controller in the Force.com IDE. Add a selectList compo-
nent and a corresponding getter in the controller to return a list of SelectOption objects,
constructed from the names and unique identifiers of records of the contact object. Add a
refresh commandButton to fetch the skills for the currently selected contact.

Build and test the drop-down list of contacts before moving on to the list of skills. Then flesh
out the controller, querying the Type ¢ and Rating c fields of the Skill c records
belonging to the selected contact. [terate over that list in the page, displaying the ratings as
drop-down lists. Add an action method to the controller to save changes to the skills list. Use
the upsert database method, as later your skills list will contain both new and edited records.
Add a commandButton on the page to invoke the action method.

Test your user interface frequently during development. Add your page to the native user
interface with a Visualforce tab or override the Skills custom object tab. To override the tab,
in the App Setup area, click Create, Objects and select Skill. Scroll to the Buttons, Links, and
Actions section. Click the Edit link for the action Skills Tab. For the Override With, select the
Visualforce Page radio button. Select your Skills Matrix page from the drop-down list and click
the Save button.

Full Implementation

After you get the basic implementation into a working state, move on to the more challenging
requirements: the complete list of skill types and data security.

To get the complete list of types, use the metadata methods to query the values of the
skill c¢.Type c picklist. Iterate over the values, checking for the presence of corresponding
Skill records for the contact. Create Skill records where they are missing.

For data security, you cannot rely on built-in Force.com record-level security alone. It operates
on the ownerId field, the unique identifier of the user who has ownership rights to a record.
In the Skills Matrix, ownership of a contact record does not determine who is allowed to edit
or view its skills. An administrator might import contact data from a legacy system, or a user in
human resources might be the owner of the contact.

The assumption is that every consultant and other user of the Services Manager application

has a license to log in to Force.com as an independent user with his own credentials. Each full
user license carries with it a unique record in the standard User object. This user identity can be
correlated to the contact record to determine at runtime the behavior of the Skills Matrix. To
create this correlation, add a lookup field to the Contact object called User, setting its parent

to the standard User object. For each contact record, provide a value of the new User field. This

Sample Application: Skills Matrix

lookup of the User from Contact can drive the decision of the controller to make a set of skills
editable or not.

When you're done with the implementation, test it against the three user scenarios: privileged
user, consultant editing his or her own skills, and consultant viewing the skills of another
consultant.

Tip

Only users with the System Administrator profile will have access to your new Skills Matrix
page. To open the page to nonadministrative users, in the Administration Setup area, click
Manage Users, Profiles and select the profile of the users. Scroll to the Enabled Visualforce
Page Access section and click the Edit button. Select your page from the Available Visualforce
Pages list and click the Add button to move it to the Enabled Visualforce Pages list. Click the
Save button when you’re done.

Implementation Walk-Through

This subsection provides the code for a sample implementation of the Skills Matrix. It includes
the controller, the page, and controller test cases.

Skills Matrix Controller

Listing 6.20 contains a sample implementation of the Skills Matrix controller class. The
controller has four variables, each with a getter method for access by the Visualforce page. The
selectedContactId variable contains the unique identifier of the contact selected for editing
or viewing. isEditable is a flag used by the page to enable or disable the Save button and to
determine whether to render skills as text fields or editable drop-down lists. The selected
Contact variable contains several fields from the Contact object needed throughout the
controller, queried using the selectedContactId. The selectedsSkills list contains the skill
types and ratings to be displayed and edited in the user interface, and this same list is used to
update the database upon a save action.

The controller has two actions: save and refresh. The save action applies the changes from
the drop-down lists of skill ratings by upserting them into the database. The refresh action
uses the unique identifier of the currently selected contact (selectedContactId) to query the
database for Skill records. It compares them against the complete list of skill types via the data-
base metadata call getPicklistValues. Finally, it updates the isEditable variable based on
whether the current user is privileged or is associated with the currently viewed contact.

Several helper methods are in the controller. addError and addInfo are shortcuts for adding
notifications to the page, displayed using the pageMessages component. The get
CurrentUserContact method queries the Contact record corresponding to the current user.
The isManager method returns true if the user is privileged, enabling the user to edit the skills
of any contact.

225

226 Chapter 6 User Interfaces

Listing 6.20 Skills Matrix Controller

public class SkillsMatrixController {
public String selectedContactId { get; set; }
public Boolean isEditable { get; private set; }
public Contact selectedContact { get; private set; }
public List<Skill c»> selectedSkills { get; private set; }
public List<SelectOption> getContactOptions() {
List<SelectOption> options = new List<SelectOption>();
options.add(new SelectOption/(
"', '-- Select Contact --'));
List<Contact> contacts = [SELECT Id, Name
FROM Contact ORDER BY LastName] ;
for (Contact contact : contacts) {
options.add (new SelectOption(contact.Id,
contact.Name)) ;

}

return options;
}
public PageReference refresh() {
if (selectedContactId == null) {
addError ('Select a contact');
return null;
}
selectedContact = [SELECT Id, Name,
User r.UserRoleld,
User r.Profileld,
(SELECT Type c, Rating c, LastModifiedDate
FROM Skills r ORDER BY Rating c DESC)
FROM Contact
WHERE Id = :selectedContactId
LIMIT 1];
Set<String> skillTypes = new Set<String>();
selectedSkills = new List<Skill c>();
for (Skill ¢ skill : selectedContact.Skills r)
skillTypes.add(skill.Type c);
selectedSkills.add(skill) ;
}
Schema.DescribeFieldResult field = Skill c.Type c.getDescribe();
String picklistValue = null;
for (Schema.PicklistEntry entry : field.getPicklistValues()) {
picklistValue = entry.getLabel();
if (!skillTypes.contains (picklistvValue)) {
selectedSkills.add(
new Skill c(Contact c = selectedContact.Id,
Type c = picklistValue));

}

if (isManager()) {

Sample Application: Skills Matrix

isEditable = true;

} else {
Contact userContact = getCurrentUserContact () ;
isEditable =
selectedContact != null && userContact != null

&& selectedContact.Id == userContact.Id;

}

return null;
}
private void addError (String msg) {
ApexPages.addMessage (new ApexPages.Message (
ApexPages.Severity.ERROR, msg));
}
private void addInfo(String msg) {
ApexPages.addMessage (new ApexPages.Message (
ApexPages.Severity.INFO, msg));
}
public Contact getCurrentUserContact () {
List<Contact> userContact = [SELECT Id, Name,
User r.UserRoleId, User r.Profileld
FROM Contact
WHERE User_c = :UserInfo.getUserId()
LIMIT 1];
if (userContact.size() == 0) {
addError ('No contact associated with user');
return null;
} else {
return userContact.get (0);

}

private Boolean isManager() {
List<Profile> profiles = [SELECT Id
FROM Profile WHERE Name IN (

'Project Manager', 'Vice President', 'System Administrator')
AND Id = :UserInfo.getProfileId() LIMIT 1];
return profiles.size() == 1;

}

public PageReference save() {
try {
upsert selectedSkills;
addInfo('Changes saved');
catch (DmlException e) {
addError ('Could not save changes: ' + e.getMessage());

}

return null;

—

227

228

Chapter 6 User Interfaces

Skills Matrix Visualforce Page

Listing 6.21 contains sample code for the Skills Matrix Visualforce page. It uses Force.com-
styled view components to achieve an appearance that resembles the native user interface. The
pageBlock and pageBlockButtons components visually separate the selection of the resource
from the skills data and Save button, and the sectionHeader component mimics the appear-
ance of a native object tab.

The pageBlockTable component iterates over the list of skills, displaying them as a table using
standard Force.com styling. Each row of the table includes two columns. The first column
contains the skill type. The second contains two components: one for editing the skill rating
and another strictly for viewing it. Only one of these components is shown at a time. They are
rendered conditionally based on whether the controller has determined the data to be editable.
If the skills data is editable, only the inputField component is rendered. If the current user
does not have the rights to edit the ratings, only the outputField is rendered.

Listing 6.21 Skills Matrix Visualforce Page

<apex:page controller="SkillsMatrixController"
tabStyle="Skill c">
<style>
.contactLabel { padding-right: 15px; }
.goButton { margin-left: 10px; }
</style>
<apex:sectionHeader title="Services Manager"
subtitle="Skills Matrix" />
<apex:pageMessages />
<apex:form id="form">
<apex:outputLabel value="Contact:" for="selectedContactId"
styleClass="contactLabel" />
<apex:selectList id="selectedContactId" title="Contact"
value="{!selectedContactId}" size="1">
<apex:selectOptions value="{!contactOptions}" />
</apex:selectList>
<apex:commandButton action="{!refresh}" value="Go!"
styleClass="goButton" />
<p />
<apex:pageBlock title="Skills">
<apex:pageBlockButtons>
<apex:commandButton action="{!save}" value="Save"
disabled="{!NOT isEditable}" />
</apex:pageBlockButtons>
<apex:pageBlockTable value="{!selectedSkills}" var="skill"
rendered="{!selectedContactId != ''}">
<apex:column value="{!skill.Type c}" />
<apex:column headerValue="Rating"s>
<apex:outputField value="{!skill.Rating c}"

Sample Application: Skills Matrix

rendered="{!NOT isEditable}" />
<apex:inputField value="{!skill.Rating c}"
rendered="{!isEditable}" />
</apex:column>
<apex:column value="{!skill.LastModifiedDate}" />
</apex:pageBlockTable>
</apex:pageBlock>
</apex:form>
</apex:page>

Controller Tests

The test cases in Listing 6.22 achieve 96% coverage of the Skills Matrix controller. They begin
with a static initializer and init method to prepare the database for the tests by adding test
data. This data is not permanent. All database actions during testing are rolled back automati-
cally upon test completion.

The test cases rely on two Contact records: Tim and Barry. To test the behavior of the Skills
Matrix on existing data, Tim is given a single Skill record, whereas Barry is left without skills.
For testing security, Tim’s Contact record is associated with a User record named Tim, whereas
Barry’s Contact record is not mapped to a User record. Update the query for the users in the
static initializer to match two usernames in your own organization.

Listing 6.22 Skills Matrix Unit Test Class

@isTest

private class TestSkillsMatrixController {
static PageReference page;
static SkillsMatrixController controller;
static Contact barry, tim;
static User barryUser, timUser;

static {
timUser = [SELECT Id FROM User WHERE Name = 'Tim Barr' LIMIT 1];
barryUser = [SELECT Id FROM User WHERE Name = 'Barry Cade' LIMIT 1];
init();

}
private static void init()
barry = new Contact (FirstName = 'Barry', LastName = 'Cade');
tim = new Contact (FirstName = 'Tim', LastName = 'Barr',
User c = timUser.Id);
insert new Contact[] { barry, tim };
Skill_c[] skills = new Skill_ c[] {
new Skill c(Type c = 'Java', Rating_ c = '3',
Contact ¢ = tim.Id) };
insert skills;
page = new PageReference('SkillsMatrix');

229

230 Chapter 6 User Interfaces

Test.setCurrentPage (page) ;
controller = new SkillsMatrixController();
}
static testMethod void testAsUser() {
System.runAs (timUser) {
init () ;
controller.selectedContactId = barry.Id;
controller.refresh() ;
System.assert (!controller.isEditable) ;
controller.selectedContactId = tim.Id;
controller.refresh() ;
System.assert (controller.isEditable) ;

}

static testMethod void testNoContactForUser () {
System.runAs (barryUser) {
init();
controller.selectedContactId = barry.Id;
controller.refresh() ;
System.assert (ApexPages.hasMessages (ApexPages.Severity.ERROR)) ;

}

static testMethod void testNoSkills() {
controller.getContactOptions () ;
controller.selectedContactId = barry.Id;
controller.refresh() ;
System.assert (controller.selectedSkills.size() > 0);
System.assert (controller.isEditable) ;

}

static testMethod void testWithSkills()
controller.getContactOptions () ;
controller.selectedContactId = tim.Id;
controller.refresh();
System.assert (controller.selectedSkills.size() > 0);
System.assert (controller.selectedSkills.get (0) .Type c == 'Java');

}

static testMethod void testNoContactSelected() {
controller.selectedContactId = null;
PageReference ref = controller.refresh();
System.assert (ApexPages.hasMessages ()) ;

}

static testMethod void testSave() {
final String skillRating = '5 - Expert';
controller.getContactOptions () ;

Sample Application: Skills Matrix 231

controller.selectedContactId = barry.Id;
controller.refresh() ;
List<Skill c> selectedSkills = controller.selectedSkills;
Skill ¢ skill = selectedSkills.get (0);
skill.Rating c¢ = skillRating;
String skillType = skill.Type c;
controller.save() ;
System.assert (ApexPages.hasMessages (ApexPages.Severity.INFO)) ;
Skill ¢ savedSkill = [SELECT Rating ¢ FROM Skill c
WHERE Contact ¢ = :barry.Id AND
Type c¢ = :skillType LIMIT 1];
System.assert (savedSkill != null &&
savedSkill.Rating_ ¢ == skillRating);

The test methods are described here in the order in which they appear in the code:

= testAsUser—This test uses the System.runAs method to assume the identity of Tim.
Tim is assigned to a User, so when his corresponding Contact record is selected and the
list of skills is refreshed, the isEditable flag should be set to true. If Barry is selected,
the flag should be false.

= testNoContactForUser—System.runAs is used again, this time to test for an error
condition. Barry’s user does not have a child Contact record, so he should receive
an error when visiting the Skills Matrix. Without a mapping to the User object, the
application cannot determine whether the current user has access to edit skills.

= testNoSkills—This test method runs as a System Administrator. It selects Barry from
the contact list and refreshes, asserting that there are Skills records. These records are
created from the Skill object’s Type ¢ field’s picklist values. Another assertion is made
that the skill ratings are editable because an administrator can edit the skills of all
contacts.

= testWithSkills—This test retrieves the skills for Tim and asserts that the Java skill
is first in the list. This is because Tim already has a Skill record for Java, and existing
records should be placed at the top of the user interface.

= testNoContactSelected—The selected contact is set to null to verify that an
information message is added to the page. This message instructs the user to select a
contact.

= testSave—This test uses the controller to rate Barry as an expert in the first skill on the
skills list. It then queries the database independently to verify that the controller saved
the data correctly.

232 Chapter 6 User Interfaces

Summary

This chapter has covered the basics of Visualforce. Visualforce is a challenging but rewarding
area of the Force.com platform, enabling the development of custom, data-intensive Web user
interfaces using high-level languages for both logic and presentation. Mastering Visualforce
requires the application of all of your Force.com skills and knowledge: the database, security
model, and Apex code.

Use this chapter as a jumping-off point to the online documentation and Visualforce
Developer’s Guide. The Visualforce Developer’s Guide contains the most current and complete
information on the standard Visualforce view components.

Before moving on to the next chapter, consider what you’ve learned about Visualforce:

= A strong distinction exists between the controller and the page. No business logic is
allowed on the page.

= The state of your pages at runtime is maintained automatically by Force.com. This
enables you to design stateful interactions across one or many pages without writing
custom state transfer code, assuming you always use Visualforce action components
rather than raw HTML tags such as anchors.

= Custom controller code runs as the system user by default, meaning record-level security
is not honored.

Advanced User Interfaces

Now that you are familiar with the basics of Visualforce, this chapter introduces features that enable
you to build richer, more interactive user interfaces. The features are divided into the following sections:

= Asynchronous actions—Visualforce has built-in, cross-browser support for Ajax behavior,
without requiring you to write JavaScript code or integrate with JavaScript libraries.

= Modular Visualforce—Visualforce has a number of features to enable you to write modular
pages. You can embed static content, build pages that include other pages, define page templates,
and create your own library of custom Visualforce components.

= Dynamic Visualforce—Learn how to create Visualforce pages that can change their structure
on the fly, based on administrator-maintainable declarative metadata or the results of executing
Apex code.

= Single-page applications in Force.com—Take a slight detour away from Visualforce to
develop high-performance Web applications that use the latest client-side frameworks and Force.
com as the data layer.

= Introduction to Force.com Sites—Visualforce pages can be accessed by users who do not have
accounts in your Force.com organization using a feature called Force.com Sites.

= Sample application—The Services Manager sample application’s Skills Matrix is enhanced
to demonstrate Ajax behavior and the use of JavaScript libraries and custom Visualforce
components.

Note
The code listings in this chapter are available in a GitHub Gist at http://goo.gl/IMfqgc.

Asynchronous Actions

So far, you've built Visualforce pages that have a simple interaction with their controller. They
display data from the controller, potentially allowing the user to change it, and then submit
it using an action component such as a commandButton. The action component invokes a

http://goo.gl/lMfqc

234

Chapter 7 Advanced User Interfaces

method on the controller that returns a PageReference, navigating the user to a new page or
refreshing the current page.

Visualforce actions also support more complex, asynchronous interactions with the page,
commonly referred to as Ajax. Ajax is short for Asynchronous JavaScript and XML. Visualforce
supports Ajax in two ways:

1. It allows actions to run in the background. The user is free to continue working with the
page while Force.com processes the result. For example, a duplicate checking algorithm
could examine the page while the user is inputting data, flagging duplicate records as
they are discovered.

2. Actions can refresh a subset of the Visualforce page, such as a table of data, rather than
the entire page. This can create a richer, more interactive experience for users and often
better-performing pages.

This section explains how to add Ajax behavior to Visualforce pages. It includes the following
subsections:

= Partial page refresh—Refresh selected elements on the page rather than the whole page.

= Action as JavaScript function—Define a JavaScript function that calls an action method
on the controller.

= Action as timed event—Configure an action method to fire at a predefined time
interval.

= Action as JavaScript event—Bind a JavaScript event (such as onclick) to a controller
action method.

= Indicating action status—Reflect the status of an asynchronous action on the page.

Partial Page Refresh

Any action component can refresh part of a page using the reRender attribute. This attribute
contains a comma-separated list of identifiers (the id values) of Visualforce view components
to be refreshed when the action is completed. The identifiers must be of Visualforce compo-
nents, not raw HTML elements. If no reRender value is provided or the identifiers are invalid,
the entire page is refreshed. This is the default behavior of an action component.

Listings 7.1 and 7.2 are a Visualforce page and controller that demonstrate partial page refresh.
A commandButton is defined to increment an integer value in the controller when clicked, via
the increment method. The amount to be incremented is passed from the page to control-

ler during the click, using the param component. The increment method returns a null
PageReference to remain on the current Visualforce page rather than navigating to a new
page. This is a requirement for partial page refreshes.

An outputPanel displays the current value of the integer. The reRender attribute is set on the
commandButton to refresh only the outputPanel rather than the entire page.

Asynchronous Actions

Listing 7.1 Visualforce Page Using Partial Page Refresh

<apex:page controller="MyPageController7_1">
<apex:form>
<apex:commandButton action="{!increment}" value="Increment"
reRender="result">
<apex:param assignTo="{!amount}" value="2" />
</apex:commandButton>
<apex:outputPanel id="result">The value is: {!value}
</apex:outputPanel>
</apex:form>
</apex:page>

Listing 7.2 Visualforce Controller Using Partial Page Refresh

public class MyPageController7 1 {
public Integer value { get; private set; }
public Integer amount { get; set; }
public MyPageController7 1() {
value = 0;
}
public PageReference increment () {
value += amount;
return null;

Note

Not every Visualforce component supports being the target of a reRender attribute. If you dis-
cover a component that is not refreshing properly, enclose it in an outputPanel component,
give the outputPanel a unique id value, and specify that id value in the reRender attribute.

Action as JavaScript Function

The action component actionFunction allows you to call an Apex method in the controller
as a JavaScript function. This decouples the user interface representation of the action from the
action itself. You've already experienced action components that require a user to click a link
or button to trigger a controller action. With actionFunction, you can call an action from
anywhere in your page, including custom JavaScript code.

To use the actionFunction component, minimally specify an action to invoke in the action
attribute, a JavaScript function name in the name attribute, and enclose it in a form compo-
nent. Optionally, you can define arguments on the function by nesting param components

235

236 Chapter 7 Advanced User Interfaces

inside the actionFunction tag. You can also define a JavaScript function to be invoked when
the action is complete by using the oncomplete attribute.

Listings 7.3 and 7.4 contain page and controller code demonstrating the use of
actionFunction and partial page refresh. It multiplies a number by two using a controller
method exposed as a JavaScript function. The resulting value is displayed on the page using a
pageMessages component and also refreshed in the call to the JavaScript function. This causes
a stateful interaction in which the number is multiplied in a series.

Listing 7.3 Visualforce Page Using actionFunction

<apex:page controller="MyPageController7_ 3">
<apex:outputPanel id="result"s>
<apex:pageMessages />
<a onclick:"timesTwoFunction('{lvalue}'); return false;">
Run

</apex:outputPanel>
<apex:form>
<apex:actionFunction name="timesTwoFunction"
action="{!timesTwo}" reRender="result"s>
<apex:param name="argl" value="" assignTo:"{lvalue}" />
</apex:actionFunction>
</apex:form>
</apex:page>

Listing 7.4 Visualforce Controller Using actionFunction

public class MyPageController7 3 {
public Integer value { get; set; }
public MyPageController7 3() {
value = 1;
}
public PageReference timesTwo() {
value *= 2;
addInfo('The result is: ' + value);
return null;
}
private void addInfo(String msg) {
ApexPages.addMessage (new ApexPages.Message (
ApexPages.Severity.INFO, msg));

Asynchronous Actions

Action as Timed Event

The actionPoller component invokes a method on the controller at a constant time interval.
It can be used to perform a long-running operation incrementally, using a series of smaller
steps. Another common usage is to perform a repetitive background task such as querying the
database for some interesting business event. For example, a user interface designed for project
staffers might use an actionPoller to automatically refresh a list of available resources once
per minute.

To use actionPoller, provide a value for the action attribute, the controller method to
invoke, and enclose it in a form component. This usage fires the action method every 60
seconds. Optionally, provide a value for the interval attribute, the time in seconds to wait
between invocations of the action. This value must be 5 or greater. You can also set the
onsubmit and oncomplete attributes, JavaScript functions to call before the action is invoked
and after the action is completed.

Listing 7.5 is a sample page that uses the actionPoller along with the controller from
Listing 7.4. Rather than requiring the user to click a link to multiply the number by two, the
action happens automatically every 5 seconds.

Listing 7.5 Visualforce Page Using actionPoller

<apex:page controller="MyPageController7_ 3">
<apex:outputPanel id="result"s>
<apex:pageMessages />
</apex:outputPanel>
<apex:form>
<apex:actionPoller interval="5" action="{!timesTwo}"
reRender="result" />
</apex:form>
</apex:page>

Action as JavaScript Event

To invoke an action on the controller as a result of a JavaScript event, use the actionSupport
component. This component fires an action whenever the event is detected on the enclosing
Visualforce component.

The actionSupport component is placed within the body of a Visualforce component that
fires the JavaScript event of interest. For example, an inputField component renders an HTML
input element, so it fires standard JavaScript events such as onfocus, onblur, onclick, and so
forth. Placing an actionSupport component within the inputField component allows it to
listen for one of these events and invoke a controller method in response.

237

238

Chapter 7 Advanced User Interfaces

To use actionSupport, specify the name of the controller method to invoke in its action
attribute, and a single JavaScript event to listen for in the event attribute. By default, action-
Support overrides the default browser-level handlers for the selected event. To disable this
behavior, include a disableDefault attribute with the value of false. The onsubmit and
oncomplete attributes are also supported to allow pre- or postprocessing of the request using
your own JavaScript function.

Reusing the controller code from Listing 7.4, the Visualforce page in Listing 7.6 fires the
timesTwo action when the text field receives focus. Try it by clicking somewhere else on the
page, and then into the text field.

Listing 7.6 Visualforce Page Using actionSupport

<apex:page controller="MyPageController7_3">
<apex:outputPanel id="result">
<apex:pageMessages />
</apex:outputPanel>
<apex:form>
<apex:inputText>
<apex:actionSupport action="{!timesTwo}"
event="onfocus" reRender="result" />
</apex:inputText>
</apex:form>
</apex:page>

Indicating Action Status

You've learned how to invoke actions asynchronously. To notify users when asynchronous
actions are being performed, use the actionStatus component in conjunction with any
action component.

The actionStatus component can notify users of two states: when an asynchronous action
is started and when it is stopped. To use it, place it in the location on your page where you
want to show the status message. Use the startText and stopText attributes to specify the
messages to be shown to the user. If you need to pass arguments to the action, use a nested
param component.

Listing 7.7 provides an example of using the actionStatus component, building on the page
from Listing 7.6 and the controller from Listing 7.4. When the text field receives focus, the
action is fired, and the status message changes to Started. When the action is complete, the
status message is set to Stopped.

Listing 7.7 Visualforce Page Using actionStatus

<apex:page controller="MyPageController7_3">
<apex:outputPanel id="result">
<apex:pageMessages />

Asynchronous Actions

</apex:outputPanel>
<apex:actionStatus id="status"
startText="Started" stopText="Stopped" />
<apex:form>
<apex:inputText>
<apex:actionSupport action="{!timesTwo}"
event="onfocus" reRender="result" status="status" />
</apex:inputText>
</apex:form>
</apex:page>

To display an image or a stylized message, you can use the start and stop facets. Facets are
modifiers accepted by some Visualforce components to specify rich values that cannot be
contained in XML attributes, such as nested HTML elements. Listing 7.8 is an example of using
the facets to mark up the status message with H2 HTML heading elements.

Listing 7.8 Code Snippet Using actionStatus with Facets

<apex:actionStatus id="status">
<apex:facet name="stop">
<h2>Stopped</h2>
</apex:facet>
<apex:facet name="start">
<h2>Started</h2>
</apex:facet>
</apex:actionStatuss>

To display a dynamic status message, you can write a JavaScript function to modify HTML
elements on the page and call it from the actionStatus component. The actionStatus
component supports the onStart and onStop attributes, which specify JavaScript functions to
be invoked when the associated action is started and stopped. Listing 7.9 provides an example
of this usage, using JavaScript to update the HTML content of an outputPanel in response to
the actionStatus changing state.

Listing 7.9 Code Snippet Using actionStatus with JavaScript

<apex:page controller="MyPageController7_ 3">
<script type="text/javascript"s
function start() {

document .getElementById (" {!$Component.myStatus}") .innerHTML 'Started';

}
function stop() {
document .getElementById (" {!$Component .myStatus}") .innerHTML = 'Stopped';
}
</script>
<apex:outputPanel id="result">

239

240

Chapter 7 Advanced User Interfaces

<apex:pageMessages />
</apex:outputPanel>
<apex:actionStatus id="status"
onStart="start () ;" onStop="stop();" />
<apex:outputPanel id="myStatus"s></apex:outputPanels>
<apex:form>
<apex:inputText>
<apex:actionSupport action="{!timesTwo}"
event="onfocus" reRender="result" status="status" />
</apex:inputText>
</apex:form>
</apex:page>

Referencing Visualforce Components from JavaScript

In Listing 7.9, the status of the action invocation is displayed in the element myStatus using
JavaScript. For the purposes of the example, the element is an outputPanel Visualforce compo-
nent rather than a simple div tag. This illustrates an important aspect of using JavaScript in
Visualforce pages.

Each Visualforce component is assigned a unique identifier, set in its id attribute. When you
override this id attribute and provide your own value, Visualforce fully qualifies it by affix-
ing the identifiers of any containers included between your component and the root page
component.

If your JavaScript code attempts to reference a Visualforce component using the raw identifier
as it appears in the HTML, it will fail to locate it. Instead, use {!$Component.id}, where id is
the identifier you set on your Visualforce component. When the page is rendered, Visualforce
reads this token and replaces it with the fully qualified value of the identifier. If the identifier
cannot be found, the token is replaced with an empty string.

If your component is contained within a form component, you must provide the form with an
id value as well and include the form identifier in the component reference. For example, if
the form identifier is myForm and the component you want to obtain a reference to is myText,
the usage is { ! $Component .myForm:myText }.

Tip
Use the View Source feature of your Web browser or a plug-in such as Firebug to debug compo-
nent identifier problems.

Modular Visualforce

Visualforce pages that are modular, composed of a number of smaller, reusable building blocks,
improve usability by providing consistent appearance and behavior. They are also easier to

Modular Visualforce

develop and maintain. Common functionality is defined once in a single place rather than
repeated in multiple pages.

Visualforce provides several features you can use to create modular, highly maintainable pages:

= Static resources—Reusable images, scripts, stylesheets, and other static content can be
stored in static resources, available for embedding in all Visualforce pages in the Force.
com organization.

= Inclusion—The contents of one Visualforce page can be included in another page. A
common use for this is page headers and footers.

= Composition—Composition allows one Visualforce page to serve as a template for
another. The template specifies the static and dynamic portions of a page. Use the
template to inject dynamic content while maintaining a consistent page layout and
structure.

= Custom Visualforce components—Visualforce provides a library of standard
components such as pageBlock and dataTable, but also allows you to define your own
custom components, reusable in any page.

Static Resources

Static resources are containers for content used in Visualforce pages that does not change.
Examples of unchanging content include images, stylesheets, and JavaScript files. Although
any service that allows storage of URL-accessible data can perform a similar role, static
resources have the benefit of being tightly integrated with the Visualforce page. Their names
are validated when the page is compiled, preventing the creation of a page that refers to an
invalid static resource. They are also inaccessible to anonymous public Internet users. Users
not authenticated to your Salesforce organization cannot load your static resources unless you
explicitly allow it using Force.com Sites.

A static resource can be a single file or a zip archive consisting of many files. The maximum
size of a single static resource is 5SMB, and no more than 250MB of static resources can be
defined in any single Force.com organization.

To create a new static resource, follow these steps:
1. In the App Setup area, click Develop, Static Resources.
2. Click the New button to add a new static resource.

3. Enter a name for the static resource. The name cannot contain spaces or other
nonalphanumeric characters, must begin with a letter, and must be unique. The name is
used to refer to the static resource in Visualforce pages.

4. Specify an optional description to explain the purpose of this static resource to
other users.

5. Click the Browse button to find a file in your file system to provide the content for the
static resource.

241

242

Chapter 7 Advanced User Interfaces

6. Leave the Cache Control setting at its default value, Private. This setting is discussed later
in the “Introduction to Force.com Sites” subsection.

7. Click the Save button to complete the static resource definition.

If your static resource contains a single file, refer to it in your Visualforce page using the syntax
{1$Resource.name}, where name is the name of the static resource to include.

The syntax is different for referring to a single file within a static resource that is a zip archive.
Use { !URLFOR ($Resource.name, 'path/tofile') }, where name is the name of the static
resource, and path/tofile is the full path to the desired file.

Inclusion

A simple way to create modular Visualforce pages is to use the include component. It embeds
the content of the included page in the current page. The pageName attribute specifies the
name of the Visualforce page to include. The included page must be a Visualforce page. You
cannot include arbitrary URLs.

Listing 7.10 provides an example of using the include component. It embeds the page named
SkillsMatrix between two horizontal rules.

Listing 7.10 Visualforce Page Using include

<apex:page>
<hr />
<apex:include pageName="SkillsMatrix" />
<hr />

</apex:page>

When a single Visualforce page ends up containing multiple controllers due to the include
component, controllers are isolated from each other and operate independently. The controller
of the included page does not have access to the state of the controller on the parent page, and
vice versa. But pages are included inline, so JavaScript functions and DOM references can be
made across included pages without security restrictions.

Caution

Be careful when using messages and pageMessages components in pages that are to be
included in other pages. If the included page and parent page both supply one of these compo-
nents, the same page messages will be rendered in multiple locations.

Composition

Composition is a powerful way to create modular Visualforce pages. It allows a Visualforce
page to be defined as a template. The template can contain static content and placeholders for

Modular Visualforce 243

content that can be overridden by an implementing page. This enforces a standard structure for
the pages without requiring Visualforce developers to remember a sequence of include compo-
nents. It also places more control over the appearance of many pages within the scope of a
single page (the template) for easier maintenance.

In the template page, the insert component is used to define a named area that can be over-
ridden by a page implementing the template. The implementing page uses the composition
component to set the name of the page to serve as its template. It then provides content for the
named areas of the template using the define component.

For example, a template might consist of a header, body, and footer, with horizontal rules
between each. Listing 7.11 defines this template page, named MyPage7_11. Note that the
header area includes its own default content. This optional content is rendered in the event
that content is not provided by an implementing page.

Listing 7.11 Visualforce Page as Template

<apex:page>
<apex:insert name="header">
<hl>Header</hl>
</apex:insert>
<hr /><apex:insert name="body" />
<hr /><apex:insert name="footer"s
Inheriting the footer content
</apex:insert>
</apex:page>

The template is not interesting to render by itself, but in Listing 7.12 it’s implemented using
the composition component. The template attribute specifies the template defined in Listing
7.11, which should be named MyPage7_11 for this example to work properly. The three
dynamic areas are merged into the template to result in the final rendered output. The header
area is provided, so it overrides the content defined by the template. The footer is inherited
from the template.

Listing 7.12 Visualforce Page Using Template

<apex:page>
<apex:composition template="MyPage7 11">
<apex:define name="header">
Overriding the header content
</apex:define>
<apex:define name="body">
This is the body content
</apex:define>
</apex:compositions>
</apex:page>

244

Chapter 7 Advanced User Interfaces

Composition works with multiple controllers identically to the include component. They run
independently of each other, but all content is rendered in the same page.

Custom Visualforce Components

Custom components allow you to build a library of reusable user interface elements, encapsu-
lating behavior and appearance while integrating with the data on the page and in the control-
ler using the standard expression language. With custom components, all the functionality of
standard components such as pageBlock and inputField is available to you to define from
scratch using Visualforce and Apex code.

Custom components can be used to hide the implementation details of client-side technology
like JavaScript. For example, a component can wrap a JavaScript user interface library such as
Sencha’s Ext JS, freeing Visualforce page developers from the details of integrating Ext JS code
into their pages. Custom components can also serve as full-blown pages themselves, reading
and writing in the Force.com database through standard or custom controllers.

Defining a Custom Component

To create a new component, select File, New, Visualforce Component in the Force.com IDE. Or,
using the Web browser, navigate to App Setup and click Develop, Components.

Custom components are defined with component as the root-level element rather than the
familiar page. Following the component tag is an optional set of attribute components speci-
fying the names and types of variables that can be shared between the page and the compo-
nent. Supported types are primitives, standard and custom database objects, one-dimensional
arrays, and custom Apex classes. Attributes can be declared as required, meaning that a page
using the component must provide a value or it fails to compile. Attributes can also be assigned
to member variables in a controller using the assignTo attribute.

The remainder of the component definition is identical to a standard Visualforce page, contain-
ing a combination of JavaScript, CSS, HTML elements, and standard components, as well as
other custom components.

Listing 7.13 provides an example of a component for showing an address on a Google Map.

Listing 7.13 Custom Visualforce Component to Render Google Map

<apex:component >

<apex:attribute name="address" type="string" required="true"
description="Address to show on the Google map" />

<apex:includeScript
value="https://maps.googleapis.com/maps/api/js?sensor=false" />

<scripts>

var geocoder;

var map;

function init() {

Modular Visualforce

geocoder = new google.maps.Geocoder () ;
var latlng = new google.maps.LatLng(-34.397, 150.644);
var mapOptions = {
zoom: 17,
center: latlng,
mapTypeld: google.maps.MapTypelId.ROADMAP
}
map = new google.maps.Map (document .getElementById ("map-canvas"),
mapOptions) ;

function renderAddress (address) {
geocoder.geocode ({ 'address': address },
function(results, status) {
if (status == google.maps.GeocoderStatus.OK) {
map.setCenter (results[0] .geometry.location) ;
var marker = new google.maps.Marker ({
map: map,
position: results[0].geometry.location
1 i
} else {
alert ("Geocode failed: " + status);

K
}

var previousOnload = window.onload;
window.onload = function()
if (previousOnload) {
previousOnload() ;
}
init () ;
renderAddress (' {!address}');
}
</script>
<div id="map-canvas" style="width: 320px; height: 480px;"></div>

</apex:component >

Using a Custom Component

Using a custom component in a page is much like using a standard component. The differ-
ence is that instead of prefacing the component with the apex namespace, you use c. Listing
7.14 shows an example of using the custom component defined in Listing 7.13 to render a
Google Map for an address. It references the GoogleMap component, followed by a value for its
required address attribute containing the street address to render on the map. In this example,
the attribute value is hard-coded into the page, but this is not the only way to provide an

245

246

Chapter 7 Advanced User Interfaces

attribute value. Like standard components, attribute values can include expression language,
enabling them to share data with the controller.

Listing 7.14 Visualforce Page Using Custom Component

<apex:page>
<c:GoogleMap address="1 market st. san francisco, ca" />
</apex:page>

Dynamic Visualforce

Normally when a user visits a Visualforce page, Force.com constructs HTML or other content
from the Visualforce components and their bindings to the controller. In contrast, dynamic
Visualforce features allow the definition of the page itself, both its components and their
bindings to the controller, to be determined at runtime, outside of the page. These features
are most often used by software vendors who deliver Force.com applications on the Salesforce
AppExchange, where the same application code must run within multiple, distinct customer
organizations and adapt itself accordingly.

This section covers dynamic Visualforce features in more detail in the following subsections:

» Dynamic field references—Dynamic field references allow the fields displayed in
a Visualforce page to be injected into the page when viewed by a user. They can be
provided by Apex code in the page controller or by Field Sets, a type of declarative
metadata configurable without code.

= Component generation—Visualforce pages can be constructed dynamically in Apex
code. This can be essential for certain specialized user interfaces, but come with trade-offs
not present with static pages.

Dynamic Field References

Dynamic field references are designed for situations in which you need to be flexible about
which field to render. Ordinary field references are found in Visualforce components and
determine their relationship to the controller. For example, an outputText component with
content {!project.Name} renders the Name field of the object named project in the control-
ler. The equivalent dynamic field reference is { !project [field] }, where field is a String value
containing the name of the field to display.

The data referenced by a dynamic field reference must be available at runtime or an error will
occur. If you're using a standard controller, call the method addrields to notify the controller
about new fields if possible, and it will take care of retrieving the data. For custom controllers,
controller extensions, or queries involving related objects, build a dynamic SOQL query string
and execute it with Database.query.

Dynamic Visualforce

Listings 7.15 and 7.16 provide the Visualforce controller and page code for a simple example
of dynamic field references. The Visualforce page renders a simple XML-encoded collection of
Project records, embedded in HTML. The determination of which fields to display from each
Project record is determined dynamically inside the controller. The fields are rendered in the
page using two nested repeat components. The outer repeat iterates over an array of Project
records returned by the controller. The inner repeat cycles through each field name from
the controller, combining it with the record reference to obtain the value of that field for the
current record.

Listing 7.15 Visualforce Controller Using Dynamic Field References

public class MyPageController7 16 {
public List<String> fields { get; set; }
public List<Project c»> records { get; set; }
public MyPageController7 16() {
fields = new String[] { 'Id', 'Name', 'CreatedDate' };
records = [SELECT Name, CreatedDate FROM Project c];

Listing 7.16 Visualforce Page Using Dynamic Field References

<apex:page controller="MyPageController7 16">
<pre>
<projects>
<apex:repeat value="{!records}" var="record">
<projecté>
<apex:repeat value="{!fields}" var="field">
<{!field}sgt;{!record[field] }</{!field}sqt;
</apex:repeat>
< /project>
</apex:repeat>
< /projectsé>
</pre>
</apex:page>

Using Field Sets

Imagine the fields variable in Listing 7.15, which contains the list of field names to display
on the Visualforce page, must be maintained by a nondeveloper. You could create a custom
object to store the fields in the database and build a Visualforce user interface to manage them.
Or you could use field sets and avoid all of that work.

A field set is a user-defined ordered list of fields on an object that can be referenced from
Visualforce or Apex. A field set is editable using an administrative user interface built in to
Force.com, leaving the code that uses it unchanged. For custom objects, go to the App Setup

247

248

Chapter 7 Advanced User Interfaces

area; click Create, Objects; select the object; and find its Field Sets section. Standard objects are
also in the App Setup area under Customize.

Once a field set is created, it can be referenced in a Visualforce component with the syntax
{1$0bjectType.ObjectName.FieldSets.FieldSetName}, where ObjectName is the name of
the standard or custom object that the field set is defined on, and FieldSetName is the name
of the field set.

The fields of a field set are automatically loaded by the standard controller. For custom control-
lers, add accessors for the fields and dynamically construct SOQL from the field set to ensure
the data is available to the page.

Component Generation

Dynamic field references are useful when you do not know what fields to display. Component
generation comes into play when you do not know what object to render. It allows the
construction of a Visualforce page from Apex code.

To start using component generation, add one or more dynamicComponent elements to your
Visualforce page. This serves as the container into which the generated components

are injected. The dynamicComponent is bound to a controller method, specified in the
componentValue attribute, that must return an instance of Component .Apex. * to be rendered.

Listings 7.17 and 7.18 show a controller and page that leverage component generation to
display a detail component bound to the user’s selection of one of three object types. A
dynamic SOQL statement is generated using the list of accessible fields from the selected object
type to retrieve the most recently modified record. The generated detail component is bound
to its result.

Listing 7.17 Visualforce Controller Using Dynamic Components

public class MyPageController7 18 {
public SObject record { get; set; }
public String selectedObject { get; set; }
public List<SelectOption> getAvailableObjects() {
List<SelectOption> options = new List<SelectOption>();

options.add(new SelectOption('Project_ c', 'Project'));
options.add(new SelectOption('Timecard c', 'Timecard'));
options.add(new SelectOption('Contact', 'Contact'));

return options;
}
public PageReference refresh() {
Schema.SObjectType targetType =
Schema.getGlobalDescribe () .get (selectedObject) ;
Map<String, Schema.SobjectField> fields =
targetType.getDescribe () .fields.getMap () ;
List<String> queryFields = new List<String>();

Dynamic Visualforce

for (String s : fields.keySet()) {
if (fields.get(s).getDescribe().isAccessible())
queryFields.add(s);
}
}
String sogl = 'SELECT ';
for (String s : queryFields) {

1 [
’ 7

+

sogl += s
}
sogl = sogl.substring(0, sogl.length() - 2);
sogl += ' FROM ' + selectedObject;
sogl += ' ORDER BY LastModifiedDate DESC LIMIT 1';
try {
record = Database.query(soql) ;
} catch (QueryException e) {}
return null;
}
public Component.Apex.Detail getComponent () {
Component .Apex.Detail result =
new Component.Apex.Detail();
result.expressions.subject = '{!record.Id}';
result.title = false;
result.relatedList = false;
return result;

Listing 7.18 Visualforce Page Using Dynamic Components

<apex:page controller="MyPageController7 18">

<apex:form >

<apex:selectList value="{!selectedObject}" size="1">
<apex:selectOptions value="{!availableObjects}"/>

</apex:selectList>
<apex:commandButton value="Refresh" action="{!refresh}" />

</apex:form>

<apex:dynamicComponent componentValue:"{!component}"/>

</apex:page>

Note

Component generation is not a viable substitute for standard static Visualforce pages. Its use
should be strictly limited to user interfaces that adapt to user actions in ways that can’t be
coded in static markup.

249

250

Chapter 7 Advanced User Interfaces

Single-Page Applications in Force.com

A single-page application is an application that runs almost entirely within the Web browser.
In contrast, older Web application architectures generate the appearance and behavior of Web
pages primarily on the server. Single-page applications tend to be more interactive and respon-
sive than Web applications that rely on full or even partial page refreshes from the server.

Single-page applications can be challenging to build as they are heavily reliant on client-side
JavaScript code. Many JavaScript frameworks have sprouted up to assist developers. They
address the difficulties in implementing complex user interfaces by separating the concerns of
Web user interfaces using Model-View-View Model (MVVM) or Model-View-Controller (MVC)
patterns. Some examples of frameworks to support single-page application development are
Backbone.js, Knockout.js, Angular]S, and Ember.js.

At first glance, this seems to replace much of Visualforce. Although it does replace the
Web-rendering portions of Visualforce with its own data binding and templating technologies,
Visualforce continues to provide the glue that makes everything work smoothly. For example,
it loads the single-page application code, making communication between the user’'s Web
browser and Force.com secure and authenticated without additional development effort. The
resulting blend of Force.com and JavaScript performs better than Visualforce for many types
of user interfaces, minimizes proprietary code, and keeps back-end dependencies clear and
modular to maximize testability.

JavaScript Remoting

JavaScript remoting allows a controller method to be invoked directly from JavaScript with
no Visualforce components necessary. Instead, you annotate the controller method with
@RemoteAction and write a small amount of JavaScript to call it.

Although similar in function to JavaScript remoting, the actionFunction Visualforce compo-
nent differs in some significant ways. The actionFunction component is designed for use in a
Visualforce page with other native Visualforce components. Like most Visualforce components,
it uses a form to create a stateful interaction between the controller and the page. This is not
the case with remoting, which makes it a bit more responsive as a result. Remoting is also asyn-
chronous, while the actionFunction component is synchronous.

JavaScript remoting is particularly helpful in the development of single-page applications on
Force.com. With JavaScript remoting, the focus of the Force.com platform shifts to the back
end. It serves the raw resources to power the user interface, both static files and dynamic data
via controller method invocations. Once loaded, the user interface is rendered entirely in
JavaScript within the browser, with callouts made to the Apex controller as needed for its data
services.

Single-Page Applications in Force.com

Force.com with AngularJS

Angular]S is a popular open source Web development framework located at http://angularjs.org.
It is a powerful tool for using the MVVM pattern, or Model-View-Whatever (MVW) as Google
prefers it, in your Web application. For example, you can take advantage of its bidirectional
data binding to tie the application’s model to its view, making Angular responsible for keeping
them in lockstep at all times. This type of tight data binding provides users an experience free
of Refresh and Save buttons and confusing mismatches between the model and view.

The demonstration page shown in Figure 7.1 is adapted from steps O through 5 of the Angular
tutorial available at http://docs.angularjs.org/tutorial. It retrieves a list of projects from the
Force.com database and allows the user to order them by name or date created, and search the
list by name.

sabisfarce. com - Daveloper Edition "
Jforee.com Y ...)
‘_m Contacts Projects Skills +
' Projects
SBearch: Bort bry: Alphabetical @

Burngton Textiles Corp of America Burlinglon, NG May 5, 2013

Express Logistos and Transport Portiand, OR May 5, 2013
GanoPoint Mountain View, A May 5. 2013
Grand Hotels & Resorts Lid Chicago. IL May 5. 2013
Tast Project Jun 2, 2013
United Oil & Gas Cor. New York, NY May 5, 2013

Copyright © 2000-2013 satesionce.com, inc. ANl rights reserved, | Privacy Statemant | Security Statemaent | Tarms of Liso | 508
Compliance

Figure 7.1 Project list using Angular and JavaScript remoting

An implementation of the Visualforce controller and page code for the Angular-powered project
list can be found in Listings 7.19 and 7.20. The subsections that follow provide a code walk-
through of the Angular-specific aspects of Listing 7.20.

251

http://angularjs.org
http://docs.angularjs.org/tutorial

252 Chapter 7 Advanced User Interfaces

Listing 7.19 Visualforce Controller Using RemoteAction

public with sharing class MyPageController7 20 {
@RemoteAction
public static List<Project ¢> load() {
return [SELECT Name, Location ¢, CreatedDate
FROM Project c 1;

Listing 7.20 Visualforce Page Using Angular

<apex:page controller="MyPageController7_ 20">
<style>
.toolbar { margin-bottom: 20px; }
td { padding: 5px; }
</style>
<scripts>
function ProjectListCtrl ($scope, $rootScope) {
MyPageController7 20.load (function(result, event) {
if (event.status) {
$scope.projects = result;
SrootScope. $apply () ;
}
}, { escape: false });
$scope.orderProp = 'CreatedDate';
}
</script>
<apex:pageBlock tabStyle="Project c" title="Projects"s
<apex:outputPanel html-ng-app=""
html-ng-controller="ProjectListCtrl">
<div class="toolbar">
Search: <input ng-model="query" />
Sort by:
<select ng-model="orderProp">
<option value="Name">Alphabetical</option>
<option value="CreatedDate">Newest</option>
</select>
</div>
<table>
<tr ng-repeat="project in projects
| filter:query | orderBy:orderProp"s>
<td>
<apex:outputText value="{{project.Name}}" />
</td>
<td>
<apex:outputText value="{{project.Location c}}" />

Single-Page Applications in Force.com

</td>
<td>
<apex:outputText value="{{project.CreatedDate
| date}}" />
</td>
</tr>
</table>
</apex:outputPanel>
</apex:pageBlock>
<script src="//ajax.googleapis.com/ajax/
w]libs/angularjs/1.0.7/angular.min.js">
</scripts>
</apex:page>

Angular Controller

The Angular controller is responsible for the business logic of a single view. In Listing 7.20,
the Angular controller is named ProjectListCtrl and specified in an in-line script tag. It
invokes the remote action load on the Visualforce controller with the option escape: false.
This instructs it to forgo HTML entity encoding of the remote action’s response. When the
remote action is completed, the resulting array of projects is provided to Angular, and all its
bound user interface elements are notified using the $apply () method.

Angular Template

Much like a Visualforce page, an Angular template brings the Angular controller and model
together into a rendered Web page. It contains HTML, CSS, and Angular-specific markup.

Listing 7.20 contains a single Angular template within a Visualforce outputPanel component.
Important aspects of the template are described in the following list:

= The outputPanel contains custom HTML attributes (prefaced with html- to make them
acceptable to Visualforce) to specify the Angular controller and ng-app to register the
DOM with Angular. In Visualforce, this sort of control over the HTML output is only
possible in an outputPanel.

= The two HTML input fields are bound to the controller using the ng-model attribute.

= The table row is repeated for each element in the projects model, filtered by the input
query and ordered by the drop-down selection.

= Markup (in double curly brace notation) is used to output elements of the model within
outputText components.

= A standard HTML script tag includes version 1.0.7 of Angular from Google. This could
just as well be loaded from a Force.com static resource or a Visualforce component with
the script in-line.

253

254

Chapter 7 Advanced User Interfaces

Introduction to Force.com Sites

Sites is a feature of Force.com that enables public access to your Visualforce pages. A site is a
collection of ordinary Visualforce pages and access control settings assigned to a unique base
URL. You can define one or many sites within a Force.com organization. Sites can be individu-
ally brought up or down by your organization’s system administrator.

This section divides the discussion of Force.com Sites into four parts, summarized next:

1. Enabling and creating a site—Turn on the Force.com Sites feature and create your
first site.

2. Security configuration—Configure the privileges granted to the anonymous user of
your site.

3. Adding pages to a site—Select Visualforce pages that are accessible within a site.

4. Authenticating users—Blend public and private pages by integrating a site with
Customer Portal.

Enabling and Creating a Site

To enable Force.com Sites for the first time in your organization, go to the App Setup area and
click Develop, Sites. You should see the screen shown in Figure 7.2.

Rogister Farce.com Domain Name ~ salesforce. com - Developer Editian
Expand Al | Collapse Al
a S[tBS Halp for this Pags G
Quick Find

Force.com Home What is a Site?

memuummuymmmmmpublmmmm and applications that are directly integratod with your

users 1o 0g in with a usemams and password. You can publicly axpose
any jon stored in your i through pages that match the loak and fee! of your company’s brand. Use
sites 1o creste public community sites 1o gather customer feedback, branded login and registration pages for your portals,
Web forms for capluring leads, and so on.

System Overview

Personal Setup

My Personal Infermation Because files ane hisled on Force.com sarvers, thisne are no data integration issuss. And becauss sias ans bull on

= Email native Visualforce pages, data validation on collected information is parformed automatically. You can allow usars io
*! lmpart access your sie through your unique Force.com domain and URL, or you can register your own branded domain o
+ Desklop Integration subdomain lo redinect to your sile.
= My Chatter Settings Craate multiple sites that appaal o dffenent sudisnces and ur.sly yuur mpam Varis business needs. For axamps,
+ My Social Accounts and a seftwars eampany could creata sna sita far naw and a third for marketing.
Contacts

Your Sies

Yfour Force.com Domain o o
s S -~

App Satup [oMy force Co ehopers

MyCompany.force.com |—- | MyCompany force combcustomens.
+ Customize I e
B Crasts T MyCompany force. commarkating
O Davalop Register Your Force.com Domain

Apex Triggers T ot startad, firmt ragister your company's Forcs com domain. Your Forca.com damain must ba uniqua and must

Apox Test Exocution consist of only using your e name or & variation of your
AP company's name, such as mycompanyportal.

Custom Seitings £l You cannat madify your Force com domain nama aftor the registration pracoss,
Email Sorvices
£ & di
Sitas L
Static Resources.
Tools
Remate Access

+ Deploy

Schema Bullder

nais.f Check

| have read and accepted the Force,com Sites Terms of Use Register My Fores.com Domain

Figure 7.2 Enabling the Force.com Sites feature

Introduction to Force.com Sites 255

You must pick a Force.com domain name to continue. A domain name provides a unique, root
address for all of your sites. You can remap this address to your own brand-name address (not
Force.com) by configuring a CNAME alias on your domain hosting provider.

Enter your domain name, select the box to indicate that you've read the terms of use, and click
the Check Availability button. After your domain name has been accepted, you can define your
first site. Adding a site also creates a number of sample components, pages, and controllers in
your organization.

To create a site, go to the App Setup area; click Develop, Sites; then click the New button.
You should see a page like Figure 7.3. Provide a label and name for the site, such as www. The
label is shown in the list of sites and clicking on it allows you to edit the site’s properties. Set
the Active Site Home Page setting to UnderConstruction. This is a standard placeholder page
provided with Force.com to let visitors know that the site is not available yet.

New Site ~ salesforce com - Developer Edition

- New Site ~ sabesforce.com - De. |l
ﬁrce_c.om = S N < crvices Manager
Home Contacts Projects Shkills Missing Skills Matrix Utilization +
Expand All | Cotagme Al e
p i Haip tar mis Page @
9, Quick Find Site Edit
Ferce.com Home New Site Save | Cancel
System Overview St Labil]
Site Name |
Persanal Setup Site Description
¢ My Personal Infarmation
+ Email
i ot Bio Contact | Puige Turner &€y

+ Duskicp Integration
+ My Chatter Settings
+ My Social Accounts and

Default Web hispoiforce-toak-Sa-developar-adition.na15. force com!
Address

Contacts i
Active Site Homa | X
Pago
App Setup Inactive Stts Homa inmainmeeance @) [Preview]
+ Customize e
> 2 Site Tomplate GaeTemplate L4
@ Dovelop Site Robots.tat]
Apex Classes Sita Favarits lcon -
i3 4
Apex Test Exocuion A .
APl URL Rewriter Class @
Components
Custlom Seltings L bt
Ermail Services
Paces e e

Figure 7.3 Creating a new site

After your first site is defined, the main Sites page should look as shown in Figure 7.4.

Security Configuration

When a new site is created, a corresponding profile is also created to manage the privileges
of the guest user. The guest user is a special type of Salesforce.com license that represents the
anonymous user of your site.

256

Chapter 7 Advanced User Interfaces

salosforce com - Daveloper Edition
Expand Al | Collapse Al

. Hek for this Page @
@, Quick find Sites
Force.com Home What is a Site?
Force.com sites enables you 1o ﬂ“u NU"C wabsites and applications that are directly integrated with your
System Overview g users 1o log in with a usemname and password. You can publicly expose
any stond in your o Ihlwgnpaunswtmmmlhvlwkm|mldmlrmmnhmm Uso
4105 1o craate public community sites 10 gather customee feedback, brandad Iogin and registration pages for your portals,
Personal Setup Web forms for capturing leads, and s on.
* My Personal Infermation Becausa sites aro hosted on Force.com sarvers, there am no data integration issues. And bacause sites are bullt on
+ Email native Visualforce pages, data vasdaton on coliected information is porformed automatically. You can aliow users 10
iy SCCHEE your sl Mrough your unique Forca.com domain and LIRL, o you can register your own branded domain or
port subdomain 1o redinect to your site.
+ Desklop Integration
+ My Chatter Suttings Create multiple sites that appeal to different sudiences and satisfy your compamy's various business needs. Fuw
& My Social Accounts and @ software compary could create one site for new . another for , and @ third for i
Contacts Your Sites
Your Force.com Damaln
—|—’. MyComeany ferca comidevelopers
APy owp ¥ mycompany orcecom |
*l Customize = =
= Croate
D Ceestop Groate Your Force.com Sites
Apax Triggers
Apox Tost Exocution Yaur Farce.com domain nama is force-book-3 it 15.force.com
AP . .
Foroe.com Sites Tarms and Conditions
Camponants
Cuslom Saltings
Emall Sorvices Sites (force-book-3e-
Pages developer- Mew
Sdas edition.na15.force.com)
Static Resources Action Site Label + Site URL Site Description Active Site Type Last Modified By
Tools hitpleeee-book-a- Paige Tumar,
Remote Access Bt] Denciste oy Govalopor-edilion.na1s .. v FORBLOM 6pc013 1:42 PM
+ Deplay

Figure 7.4 Sites main page

The guest profile for each site is configured using the native user interface. To view the profile,
navigate to the Site Details page for the site and click the Public Access Settings button.
Configure the privileges of the guest profile with extreme caution because mistakes can expose
sensitive data in your Force.com organization to the entire world.

Note

The guest profile does not appear with other profiles in the Administration Setup area (Manage
Users, Profiles). You must use the Public Access Settings button on the Sites Detail page to
reach it.

If a page in a site uses static resources, make sure that they can be accessed from the guest
profile. Go to each static resource and set its Cache Control to Public.

Adding Pages to a Site

A site starts off with a series of system-defined pages such as Exception and FileNotFound.
These pages are shown to users in the event of errors in the site. You can redefine them by
simply editing them.

Introduction to Force.com Sites 257

You can also add your own custom pages to the site. To add pages, click the Edit button in the
Site Visualforce Pages section. Select one or more pages from the list on the left and click

the Add button to move them to the list of Enabled Visualforce Pages. Click Save when

you're done.

The URL of your pages is the default Web address of the site followed by the name of the page.
For example, in Figure 7.5, the default Web address is https://force-book-3e-developer-edition.
nalS.force.com. If a page named MyPage is added to the site, users can access it at https://
force-book-3e-developer-edition.nal5.force.com/MyPage.

Site Detall ~ salesforce.com - Developer Edition
J‘brce.com Saarch Saarch Paige Tumer = Halp
Home Contacts Projects A Shkills *
Expand Al | Collapse All i B Halpforthis Paga ©
Q, Quéck Find WWW
Eortt i Home « Bck 10 List: Sites
Site Detail Edit | Public Access Settings | Login Sottings | URL Redirects | Denctivate
System Overview Sita Labal www Sita Mama www
Sita Deacrigtion Site Contact Paige Tumes
Personal Setup Active Legin Mot Allowad
* My Personal Information Active Site Home UnderConstruction [Proview]
& Emall Page
+) import Sitw Favarite loon Inactive Sits Home inMaintenance [Preview)
+ Desktop Integration Page
+ My Chatter Settings Site Robots.txt Site Tomplate SitaTamplate [Praview]
» My Social Accounts and Enabile Foeds Analytics Tracking
Contacts Coda
URL Rawriter Class Croated By Paige Turner, 6252013 1:42 PM
App Setup Last Modified By Pasge Tumer, 262013 1:43 PM
» Customize Edit | Public Access Seftings | Login Settings | URL Redirocts Deactivate
» Create
B Develop
Apex Classes Custom URLs Custom URLS Holp 7
Apax Triggees
A T R Action Domain Name Path Site Primary Custom URL
APl Edit | Dol | Viaw | Proview as Admin ferce-bock-Jo-develcpar-adifion.naliforcacom /
Companenis
Cuslom Settngs Site Visualforce Pages Edit Enabios Visuaioren Fage Aceoss Holp 7
Email Services
Pages Visualforce Page Name AppExchange Package Name
Siten BandwidthExceaded

Figure 7.5 Site Details page

Note

A site must be activated before any pages in it are accessible. To activate a site, select its
Active check box in the Site Details page or click the Activate link on the main Sites page.

Authenticating Users

Anonymous users can be converted to named, authenticated users through the Customer
Portal, or portal for short. A portal allows you to extend Force.com to your partners and
customers without requiring full user accounts for each of them. It is tightly integrated with
Force.com Sites.

https://force-book-3e-developer-edition.na15.force.com
https://force-book-3e-developer-edition.na15.force.com
https://force-book-3e-developer-edition.na15.force.com/MyPage
https://force-book-3e-developer-edition.na15.force.com/MyPage

258 Chapter 7 Advanced User Interfaces

Enable portal integration by clicking the Login Settings button on the Site Details page. In the
Login Settings section, click the Edit button and select an existing portal from the drop-down
list, and then click the Save button. Figure 7.6 shows a site enabled to log in to the portal
named Customer Portal.

Login Settings ~ salesforce.com - Daveloper Edition

jbrce.com e DO < rico: Marager -
Home Contacts Projects A Skills +
e A1 | Gallapse Al
Expand Al | Coltapse All Login Ssitings Hutp for this Page @
Q, Quéck Find WWW
Forcecem Home You can enabie users 1o log in 1o an existing portal from your site.
« Back 1o Site Datail: waw
System Overview Login Settings Edit
Login Settings
Personal Setup G ¥
Login Enabled for Cusiomer Portal
+ My Persanal Information Change Password ChangaPasswerd [Praview]
+ Emalil
= Import My Profile Page
+ Desktop -
* My Chattar Settings Gonnections (HTTF}
+ My Social Accounts and Securs Wib Address took-Je-developer-eaition.nn 1. force.
Caontacts
Registration Settings
App Sotup To alow registration, enable login and registration for & portal, then add tha appropliate Visuallorce pages 1o the sito.
» Customize Eait
+ Groate
B Develop
Apax Clasans
Apax Triggees
Apox Tost Exooution
AP
Companents.
Custom Seltngs
Email Services
Pages
Siten

Figure 7.6 Login Settings page

Note

If no portals are listed, you must configure one that is login enabled. Go to the App Setup area
and click Customize, Customer Portal, Settings. Setting up a portal is not within the scope of
this book, so refer to the online documentation for more information.

Sample Application: Enhanced Skills Matrix

This section builds on the Services Manager’s Skills Matrix feature developed in Chapter 6,
“User Interfaces.” Users of the Skills Matrix feature have requested the ability to compare a
consultant’s skills with those of other consultants without navigating to a new page. They
would like to see the ratings of other consultants in the same skill visually layered atop the
existing Skills Matrix user interface, as shown in Figure 7.7.

Sample Application: Enhanced Skills Matrix 259

salosfarce.com - Developor Edition
J‘érce.com - DO < rvicoc aroger -
Home Contacts Projects l 1 I +
Services Manager
4 skills Matrix
Contact: Tirn Barr i Ool
Skills Save
Type Rating Last Modified Date
Appication Design Q_ _BAR013 817 PM
Apex a Hice: | agirem
Java L] 3247 PM
P) P Saan Forbas 4 - Above Averaga SOATPR
tation A
s John Bond 3- Avarage
(=2 [7] Josh Davis 3 - Averago IGATPM
Amazon Web Services @ Babaalewy 3- Avarage ITATEM
Lix D'Ci 2 - Balow A
Progect Managemant (7] il ke 2917 PM
Lauren Bayle 1 - Minirnal
Ruby L] ITITPM
PHP @ | -Nom i 61372013 9:17 PM
Fen 0 o= f BII32013 1T PM
GLI Design D [home— : BN013 917 PM
Googla Data Q | —rome-- : 12013 .17 PM
Training @ | —none—- : G013 AT PM
Data Modaling [- : GHV2013 847 PM

Figure 7.7 Skills Matrix with comparison overlay

The following technologies from this chapter are used in the development of the feature:

= JavaScript integration—jQuery Ul (a free, open source JavaScript and CSS library for
Web applications) is integrated to provide an easing effect, fading in and out the list of
other resources and their skill ratings. jQuery Ul is available at http://jqueryui.com.

= Custom Visualforce components—The overlay containing the other consultants’ skills
is encapsulated in its own custom Visualforce component and controller.

= actionSupport component—This component is used to show and hide the skills
comparison overlay when the user hovers over an informational icon.

Begin by developing a custom component for retrieving and rendering a list of skill ratings
and consultants. The input to this component is a skill type and a resource identifier of the
currently selected consultant. The skill type is the name of a proficiency that consultants are
measured on, a picklist value from skill c¢.Type_ ¢, such as Java or Apex. The resource
identifier is used to exclude the current consultant from the list because his or her skill ratings
are already shown on the Skills Matrix user interface.

Listing 7.21 provides a sample implementation of the controller to support the requirements,
and Listing 7.22 shows the custom component that uses it.

http://jqueryui.com

260 Chapter 7 Advanced User Interfaces

Listing 7.21 CompareSkillsController

public class CompareSkillsController {
public String contact { get; set; }
public String skill { get; set; }
public List<Skill c¢> getData() {
return [SELECT Contact r.Name, Type c, Rating c
FROM Skill c
WHERE Type c = :skill
AND Rating ¢ NOT IN ('', 'O - None') AND
Contact__c¢ != :contact
ORDER BY Rating ¢ DESC];

Listing 7.22 CompareSkillsComponent

<apex:component controller="CompareSkillsController">
<apex:attribute name="skillType" description="Type of skill"
type="String" required="true" assignTo="{!skill}" />
<apex:attribute name="contactId"
description="Id of contact to compare with"
type="String" required="true" assignTo="{!contact}" />
<apex:pageBlock >
<apex:pageBlockSection collapsible="false" columns="1">
<apex:facet name="header">
Other Resources with {!skillType}

<a onclick="hideOverlay(); return false;"
href="" style="text-decoration: underline;">Hide

</apex:facet>
<apex:pageBlockTable value="{!data}" var="item">
<apex:column value="{!item.Contact r.Name}" />
<apex:column value="{!item.Rating c}" />
</apex:pageBlockTable>
</apex:pageBlockSection>
</apex:pageBlock>
</apex:component >

To incorporate this component into the Skills Matrix page, perform the following steps:

1. Add the code shown in Listing 7.23 to the bottom of the SkillsMatrixController
class. The new method and property are used to refresh the skills comparison
component.

Sample Application: Enhanced Skills Matrix

Listing 7.23 Adding Component Support to the Skills Matrix Controller

public PageReference refreshCompareSkills() {
return null;

}

public String selectedSkillType { get; set; }

2. Edit the Skills Matrix page to add sidebar="false" to the apex:page component. This
frees up extra horizontal screen real estate that is used to display the skills comparison
overlay. Also add the CSS in Listing 7.24 to the style tag.

Listing 7.24 Adding Component CSS to the Skills Matrix Page

.compare-skills {
position: absolute;
width: 400px; height: 250px;
display: none;

}

3. Also on the Skills Matrix page, insert the code in Listing 7.25 after the closing tag of the
form component. It adds an outputPanel containing the CompareSkillsComponent,
rendered as an overlay with a fading effect from jQuery Ul in the showOverlay JavaScript
function.

Listing 7.25 Adding CompareSkillsComponent to the Skills Matrix Page

<apex:outputPanel id="compareSkills" styleClass="compare-skills">
<c:CompareSkillsComponent skillType="{!selectedSkillType}"
contactId="{!selectedContactId}" />
</apex:outputPanel>
<script src="//ajax.googleapis.com/ajax/libs
= /jquery/1.10.1/jquery.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs
= /jqueryui/1.10.3/jquery-ui.min.js"></script>
<script>
function showOverlay (e) {
$('.compare-skills').css('top', e.layerY)
.css('left', e.layerX).fadeIn();
}
function hideOverlay() {
$('.compare-skills') .fadeOut () ;

}

</scripts>

4. TFor the final step, insert the code given in Listing 7.26 to the Skills Matrix page,
immediately following the opening tag of the column component containing the

261

262 Chapter 7 Advanced User Interfaces

skill rating (headervValue="Rating"). It adds an informational icon beside each skill.
Hovering over this icon displays the overlay containing the skills comparison.

Listing 7.26 Adding actionSupport to the Skills Matrix Page

<apex:image value="/img/msg icons/infolé6.png"
style="margin-top: 2px; margin-right: 10px;">
<apex:actionSupport event="onmouseover"
action="{!refreshCompareSkills}" rerender="compareSkills"
oncomplete="showOverlay (event) ;" onsubmit="hideOverlay();">
<apex:param name="pl" value="{!skill.Type c}"
assignTo="{!selectedSkillType}" />
</apex:actionSupport>
</apex:image>

Summary

In this chapter, you've seen some of the ways Visualforce can produce effective user interfaces,
from action components that provide Ajax behavior to the integration of open source Web
application technologies such as JQuery. Before switching gears in the next chapter, take a
moment to review these key points:

= Stick with standard and custom Visualforce components wherever possible to keep your
user interface running smoothly with the rest of Force.com today and in future releases.

= Strive to adopt the many features of Visualforce that foster modularity, such as
composition and custom components, rather than copying and pasting code from page
to page.

= You can use Visualforce to create public-facing Web pages through Force.com Sites. Sites
are simply a series of configuration settings that enable a guest profile to access a set of
pages, extending your existing investment in Visualforce.

Mobile User Interfaces

Mobile applications are subject to design constraints including processing power, reduced screen size,
and limited or unreliable network connectivity. Addressing these constraints while still delivering func-
tional applications is the goal of numerous technology platforms, development techniques, and dedi-
cated technical books. There are endless methods for building mobile applications, all of them equally
valid depending on the details of the device, application, and needs of the user.

Salesforce and the Force.com platform support the latest best practices and technology platforms used to
develop mobile applications, extending them with dedicated toolkits and hooks in the Force.com plat-
form. This chapter provides exposure to the common approaches to building mobile applications and
dives deeper on one specific approach, the mobile Web (also referred to as HTMLS) application. It is
organized into the following sections:

= Overview of Salesforce mobile technology—Get familiar with how Salesforce supports mobile
devices in terms of its own applications and custom applications.

= Getting started with mobile Web applications—Walk through the technology components
and choices for building mobile Web applications using Force.com.

= Sample application—Create a phone and tablet-friendly timecard entry feature for the Services
Manager sample application.

Note
The code listings in this chapter are available in a GitHub Gist at http://g00.gl/SVU7RT.

Overview of Salesforce Mobile Technology

Mobile devices are by definition always on the go, exposed to vagaries of battery life and
network connectivity as well as the physical size constraints of displays and input devices. The
formidable technical challenge of these problems and the huge demand for mobile devices
have driven rapid innovation. From this innovation comes a proliferation of operating systems,

http://goo.gl/SVU7RT

264

Chapter 8 Mobile User Interfaces

user interface styles, development frameworks, and architectural techniques, all vying for devel-
oper attention.

Every significant technology vendor has framed mobile technology in its own terms. Salesforce
is no exception. Salesforce offers its own mobile philosophy and supporting technologies, both
in the application and platform space. These are discussed in this section, divided into two
parts:

= Salesforce applications—There are three actively supported mobile applications from
Salesforce, each with its own unique feature set.

= Custom applications—Salesforce advocates three distinct approaches to mobile
application development, providing tools and frameworks to support them.

Salesforce Applications

Although it is possible to use Salesforce’s standard Web user interface from a browser-equipped
mobile device, it has significant drawbacks. The desktop-centric user interface is cumbersome
on a smaller screen, requiring lots of zooming and panning to find and click anything. The
performance is sluggish due to the large amount of information, media, and code on each
page. And if network connectivity is lost, it can also mean the loss of functionality and work in
progress.

To improve the experience for mobile users, Salesforce offers three applications specifically
designed for mobile phones and tablets:

= Salesforce Classic—This is the original Salesforce mobile application. It is geared toward
users who need offline access to data. Administrators can select data to synchronize
with the mobile device by user or profile, and remotely delete the data at any point. By
default, the standard Sales and Service Cloud application data is synchronized with the
device, including contacts, accounts, and opportunities.

= Salesforce Touch—Salesforce Touch can be thought of as a reskinned subset of the
Salesforce Web application, designed for devices that rely on touch input rather than
a keyboard and mouse. All data remains on the Salesforce servers, not on the mobile
device. Standard and custom object tabs are available, with limited record creation and
editing functionality.

= Chatter Mobile—Chatter Mobile is focused on collaboration. You can post and comment
on feeds, create and edit records, view and add files, participate in groups, and view
dashboards and user profiles.

Many independent software vendors have released applications that address the Salesforce
market. Some are tailored for a particular workflow, such as sales or service. Others are neutral,
adopting the tabs and layouts from your Salesforce organization and providing generic data
management in a mobile form factor. Run a search on your mobile device’s application market-
place to learn more.

Overview of Salesforce Mobile Technology

Custom Applications

There are many ways to develop custom mobile applications that leverage the Force.com plat-
form. Salesforce has assembled tools and techniques for each of the three distinct approaches to
mobile development, listed here:

= Native applications—Native applications have unrestricted access to all of the features
of the mobile device. This power can be used to deliver the best possible user experience,
but typically comes with a high development cost, especially if an application must be
supported on multiple mobile vendors’ devices.

= Mobile Web applications—On the opposite end of the spectrum, mobile Web
applications run inside the mobile device’s Web browser based on HTMLS. They do
not have access to the full set of device capabilities, but with this compromise comes
advantages in terms of ease of development and distribution.

= Hybrid applications—Hybrid applications are mobile Web applications deployed inside
a native application that serves as a “container.” The most notable benefits are access
to native device features and the ability to promote and distribute the application on
device-specific marketplaces.

The Salesforce Mobile Software Development Kit (SDK) provides open source technology to
aid in the development of all three types of custom mobile applications. Download it from the
following location:

= i0S—https://github.com/forcedotcom/SalestorceMobileSDK-iOS
= Android—https://github.com/forcedotcom/SalesforceMobileSDK-Android

Note

The Salesforce Mobile SDK page at http://wiki.developerforce.com/page/Mobile_SDK is an
excellent starting point for diving deeper into Salesforce’s mobile development technology.

Native Applications

Native applications are purpose-built for each device platform. For example, a native mobile
developer targets one or more mobile platforms such as iOS, Android, Windows Phone, and
BlackBerry 10. Although there are vendors that promise shortcuts, strictly speaking each plat-
form adds its own jargon, development tools and frameworks, and unique approach to mobile
challenges such as user interface paradigm, hardware abstraction, and software deployment.

The advantages of native applications include usability, integration with hardware and native
applications (such as those managing calendars and contacts), access to secure offline storage,
and built-in application distribution. Disadvantages vary but typically involve the cost and
complexity of supporting multiple devices and operating systems.

265

https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android
http://wiki.developerforce.com/page/Mobile_SDK

266 Chapter 8 Mobile User Interfaces

Salesforce Mobile SDK provides libraries and sample projects for developing native applications
for i0OS and Android. Specifically, it helps developers in four main areas:

= Login—The Mobile SDK simplifies the OAuth login process.

= Offline data caching—SmartStore is a component of the Mobile SDK that enables the
secure storage of data for offline access.

= REST—The Force.com REST API is provided as a set of friendly infrastructure classes.

= Application creation—The Mobile SDK includes a tool called forceios that generates a
sample native application to connect to a Salesforce organization and run a simple query.
This can be a good starting point for your development.

Mobile Web Applications

Mobile Web applications rely on the mobile device’s browser to function. Often they are ordi-
nary Web pages designed to adapt their user interfaces from full-size monitors to tiny mobile
screens. This usage of standard Web technology to deliver the same application to desktop and
mobile users can be a huge time savings over native application development.

Another significant advantage to mobile Web applications is that they are served up from
servers, not stored on the mobile device. This means developers can continually improve the
application remotely, and users always see the latest version. Native and hybrid applications
have a binary component that is downloaded and installed on the device. Although the binary
can be updated after it is installed, that is an additional manual step for the user.

Unfortunately, mobile Web applications are rarely able to deliver the same level of user experi-
ence as a native application. Due to size and battery constraints, tablets and phones have a
subset of the processing power of laptop and desktop computers. Their Web browser cannot
render complex pages or execute code as quickly. Additionally, the standard user interface
components that the user is familiar with from the mobile device are either Web-based approxi-
mations or entirely different, requiring the user to adapt to the new way of representing data
and controls.

Salesforce Mobile SDK includes two libraries that are extremely helpful in building mobile Web
applications integrated with Force.com, described next:

= SmartSync—SmartSync exposes Salesforce records as JavaScript objects, with query and
CRUD access seamlessly supported. It extends a popular open source framework called
Backbone.js to accomplish this.

= forcetk.js—This JavaScript library is a wrapper of the Salesforce REST API.

Hybrid Applications

Hybrid applications promise the best of both worlds, combining the flexibility of native with
the ease of development of Web. In a hybrid application, some content is shipped in the binary
like a normal native application, while some is left out and delivered through Web pages

Getting Started with Mobile Web Applications

instead. Their distinguishing feature is a “container” that hosts the Web content and grants it
access to native resources.

Being a mixture of native and Web, hybrid applications share the pros and cons of both. For
example, if your hybrid application relies extensively on Web content, it will suffer the user
experience limitations of mobile Web applications. In general, hybrid applications rely on the
judgment of the developer to select the best way (native or Web) to implement functionality
on a feature-by-feature basis.

This introduces a larger issue of complexity. Although developers have greater flexibility with
hybrid applications, building them requires knowledge of both mobile Web and native technol-
ogy, plus the “container” layer between them. The container in the Salesforce Mobile SDK is
called Cordova (formerly PhoneGap).

Note

Due to their significant dependence of technology unrelated to Force.com, hybrid and native
applications are outside the scope of this book. Refer to the Salesforce Mobile SDK home page
at http://wiki.developerforce.com/page/Mobile_SDK for more information.

Getting Started with Mobile Web Applications

Out of all three types of custom mobile applications, Web applications are arguably those
closest to and benefiting most from the Force.com platform, particularly if they are mobile
versions of Visualforce pages. Mobile aside, Web applications can be challenging to build due
to rapidly moving trends in usability, browser standards, and security practices. Mobile Force.
com applications add a number of additional challenges that are addressed in this section.

At a high level, there are three major areas to examine when building mobile Web applications
with Force.com:

= Frameworks—Web development frameworks typically adopt some design pattern such
as MVC (Model-View-Controller) or MVVM (Model-View-View Model). These patterns
separate logic from presentation and allow the construction of scalable, interactive Web
applications. They usually bundle or recommend a templating and data access layer.
Some frameworks are specifically tailored for mobile applications.

= Data access—Assuming that Force.com is the data layer for the mobile application, there
are a few options for integrating it.

= Deployment—Deployment concerns how mobile users will find and start using your
mobile application. This is more complex with mobile Web applications than native
applications.

267

http://wiki.developerforce.com/page/Mobile_SDK

268

Chapter 8 Mobile User Interfaces

Frameworks

Web development frameworks can reduce and manage the complexity of building Web applica-
tions, particularly the Single Page Applications (SPAs) that are becoming commonplace. SPAs
rely on the Web browser to execute the majority of the user interface code, such as fetching
the model and using it to render views. This is in contrast to the original breed of Web applica-
tions, which performed these duties on the Web or application server.

Any Web framework could be relevant to mobile Web development, but this subsection divides
them into two camps:

= Mobile Components for Visualforce—This Salesforce-provided open source library
blends jQuery Mobile with Visualforce components to make mobile-ready Visualforce
pages easier to create.

= Web MVC frameworks—Web frameworks such as Knockout, Backbone, Ember, and
Angular are behind many popular, modern Web applications, including those from
Salesforce. Any of these can be used to build mobile Force.com-enabled applications, and
Salesforce provides sample applications to get you started.

Mobile Components for Visualforce

Mobile Components for Visualforce is a series of simple Visualforce components that generate
HTML for mobile devices. They leverage jQuery Mobile framework, but wrap it to make it easier
to use in Visualforce.

There are three types of components in Mobile Components for Visualforce, described here:

1. Structural components—These components help determine the layout of the page.
The App component is the container for all other components. Splitview renders the
traditional left-side navigation, right-side detail layout, and is typically used with the
SplitViewTemplate in an apex:composition component. Page defines a dynamic
content page as found in a Single Page Application. The Header and Footer components
are children of Page and contain content to be placed at the top and bottom of the page.
The content component, also a child of Page, is the generic container for content.

2. Data components—The List component renders a list of records resulting from a SOQL
query. The Detail component uses the page layout definition of an SObject to render its
fields in proper position. Both of these components are read-only, meaning they do not
allow the users to edit their data.

3. Navigation component—This component generates a navigation bar containing links to
show content within the page or URLs outside of the page.

To install Mobile Components for Visualforce in your Salesforce organization, complete the
following steps:

1. Download the source code by running git clone https://github.com/
forcedotcom/MobileComponents.git or equivalent in a Git client application.

https://github.com/forcedotcom/MobileComponents.git
https://github.com/forcedotcom/MobileComponents.git

Getting Started with Mobile Web Applications

2. Zip the source code so that it can be deployed. For example: cd MobileComponents/
Visualforce; zip -r mobile components.zip src/*

3. Visit the Workbench home page at http://wiki.developerforce.com/page/Workbench.
Click the Login to Workbench Now on Developerforce link or https://workbench.
developerforce.com directly, authenticate to your organization by clicking the Login with
Salesforce button, and select Deploy from the Migration menu. Check Rollback on Error
and click the Choose File button in Google Chrome (the Browse button in Firefox) to
locate your locally stored zip file. Proceed through the wizard to upload the file.

4. Test the deployment by visiting /apex/MobilePage in your Web browser.

Notes

The full documentation and source code for Mobile Components for Visualforce are available at
http://wiki.developerforce.com/page/MobileComponents.

Web MVC Frameworks

Web MVC frameworks include jQuery Mobile, Angular]S, and Backbone.js. Although these
frameworks can be used directly to build mobile Web applications with Force.com, Salesforce
has put together open source projects called Salesforce Mobile Packs to make this process easier.
There is one Mobile Pack for each of the supported frameworks. The Mobile Packs contain fully
functional sample applications leveraging each of the frameworks with Force.com data.

Salesforce also provides Mobile Design Templates, which provide attractive and functional CSS
and HTML for common Force.com data-rendering scenarios.

Note

Salesforce Mobile Packs can be found at http://www2.developerforce.com/mobile/services/
mobile-packs. Mobile Design Templates are located at http://www2.developerforce.com/
mobile/services/mobile-templates.

Data Access

Data access is one of the major design decisions involved in building a Force.com mobile
Web application. There are a few different ways to use the Force.com REST API. This includes
authenticating to Force.com and reading and writing its data.

There are two choices for authentication, described next:

= OAuth—In OAuth, the developer creates a Connected Application in Force.com and uses
it when creating the application. For the user who has not yet authenticated, he or she is
directed to a special Salesforce login page. After login, the user is prompted to share his
or her information with the application. If granted access, the user is redirected back to

269

http://www2.developerforce.com/mobile/services/mobile-packs
http://www2.developerforce.com/mobile/services/mobile-packs
http://www2.developerforce.com/mobile/services/mobile-templates
http://www2.developerforce.com/mobile/services/mobile-templates
http://wiki.developerforce.com/page/Workbench
https://workbench.developerforce.com
https://workbench.developerforce.com
http://wiki.developerforce.com/page/MobileComponents

270

Chapter 8 Mobile User Interfaces

the mobile Web application, which now has an access token that grants it permission to
access Force.com on the user’s behalf. Like a session with the Salesforce Web interface,
the token eventually expires and must be refreshed by the application to obtain a

valid one.

= Session sharing—If the mobile Web application is hosted inside Force.com or an
application already authenticated to Force.com, a session identifier can be embedded in
the page. This can be used to make requests to Force.com without asking the user to log
in again.

These two authentication methods can also be combined in a single application, granting more
flexibility in how the application is hosted.

When it comes to accessing Force.com data, the decisions depend on how you build your
application. For example, some data access methods are available only for a specific Web
MVC framework. Others only work when hosted within Visualforce pages. A few of the most
common methods follow:

= SmartSync—SmartSync keeps your Web page’s data model in sync with the Force.com
data. As you retrieve or make changes to a collection or model in your Web application,
SmartSync makes the necessary calls to Force.com to mirror them persistently in the
Force.com database. SmartSync is an extension of the Backbone framework, so your
application must be using Backbone to leverage it.

= JavaScript remoting—Auvailable only to Visualforce pages, JavaScript remoting involves
adding a RemoteAction annotation to a static controller method. This makes the
method accessible to JavaScript without any of the overhead of the Visualforce view
state. Keeping data access as lightweight as possible is critical for mobile applications, so
JavaScript remoting is a best practice when building mobile applications in Visualforce.

= actionFunction component—This method of data access is only available to
Visualforce pages. Like JavaScript remoting, it makes a call from the browser’s JavaScript
to the Visualforce controller. It requires less code than JavaScript remoting to call it, but
performance is not as good due to its reliance on view state.

= Force.com REST API—The forcetk.js library wraps the Force.com REST API so that
it is easier to use from JavaScript. Because your Web page will be served from a server
other than the REST API endpoint, accessing the endpoint violates same-origin security
policy in modern Web browsers. This policy states that a script on a page cannot
access a host other than the one serving the page itself. To address this, a proxy is
provided by Salesforce, called the AJAX Proxy. For more information, refer to the online
documentation at http://www.salesforce.com/us/developer/docs/ajax/Content/
sforce_api_ajax_queryresultiterator.htm#ajax_proxy.

Deployment

Because mobile Web applications are just Web pages, deployment ultimately requires that
the user simply visit your application’s URL. If you’ve built your application to use OAuth for

http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy
http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy

Getting Started with Mobile Web Applications

authentication, you can host its Web pages anywhere. If you're using session sharing, you need
to host it in an application, referred to here as a container that the user has already used to
authenticate to Salesforce.

The advantage of a container is that users don’t need to authenticate to Salesforce again just to
use your application. Additionally, they have all of the other features included in the container
application. But don’t be fooled. At the end of the day, the container is purely a Visualforce
page viewer and bookmarker. To be successful, your Visualforce page has to be mobile ready.

The mobile applications that can serve as containers for Visualforce pages are Salesforce Classic
and Salesforce Touch. To enable a Visualforce page to be shown in Salesforce Classic, follow
these steps:

1. In the App Setup area, click Create, Tabs. Click the Visualforce tab you’d like to make
available in Salesforce Classic, and check the Mobile Ready check box.

2. Create a configuration to make the Visualforce page visible. In the Administration Setup
area, click Mobile Administration, Salesforce Classic, Configurations. Click the New
Mobile Configuration button. Enter a name for the configuration, make it active, and
select the users and profiles who will use this mobile configuration.

3. With your new configuration, you make tabs visible to the mobile device. Click the
Customize Tabs button in the Mobile Tabs section of the configuration. Select a tab from
the list of available tabs, click the Add button, and click the Save button.

Note

Refer to the Salesforce Classic Implementation Guide for more information, which can be found
at http://www.salesforce.com/us/developer/docs/mobilelmplGuide/index.htm.

The steps to add your Visualforce pages to Salesforce Touch are next:

1. In the Administration Setup area, click Mobile Administration, Salesforce Touch, Settings.

Check the Enable Visualforce in Salesforce Touch check box. This step needs to be
performed only once for an entire organization.

2. For each Visualforce page to be displayed in Touch, go to the App Setup area, click
Develop, Pages. Click the Visualforce page, and check the Available in Touch check
box. You also need a Visualforce tab for each page. To create one, go to the App Setup
area; click Create, Tabs; and click the New button in the Visualforce Tabs section. Select
the Visualforce page to be displayed in Touch, give your tab a label and name, pick a
style, and click the Next button. On the following two pages, select the profiles that can
access the tab and which custom applications include it. Then click Save to finish the
Visualforce Tab Creation Wizard.

271

http://www.salesforce.com/us/developer/docs/mobileImplGuide/index.htm

272

Chapter 8 Mobile User Interfaces

Note

Unless you plan to use your new Visualforce tabs with Salesforce Classic, there is no need to
enable the Mobile Ready option. It has no effect on Salesforce Touch.

Sample Application: Mobile Timecard Entry

The goal of this section is to build a mobile-ready timecard entry interface for consultants. The
requirements for this interface are as follows:

1. Users are already using Salesforce Touch. They do not want to install a new mobile
application on their phones and tablets. They also don’t want to authenticate to an
additional application or page.

2. Allow hours to be entered on a project as quickly as possible, with minimal clicking
around.

3. Timecards are precreated based on the current week and available assignments, so they
are always valid. There is no need to know the assignment or look up any additional
information.

4. Hours can be entered and saved, but do not need to be submitted right away. This allows
the consultant to keep track of his or her hours on a daily basis rather than waiting until
the end of a week.

5. Five of the most recent timecards can be displayed. Timecards in an Approved or
Submitted status are locked and cannot be edited. Other timecards can be edited and
saved or submitted.

The finished page is shown in Figure 8.1 on an iPhone and in Figure 8.2 on the Web. Upon
viewing the page, the consultant is immediately able to see the timecards he or she is respon-
sible for entering based on his or her assignments. The page is responsive, so in the mobile
browser the list of timecards is shown at the top. With a wider screen, this navigation list is
pulled to the left. Clicking on a timecard displays its hours, which are totaled dynamically as
they are entered.

The mobile timecard entry page can be constructed in three steps, described next:

1. List timecards—Write a controller method that returns the five most recent timecards.
If no timecards exist yet for the current week and projects that the consultant is assigned
to, create and return them in the list of recent timecards. Render each timecard in a list
that includes the week ending date, project name, and timecard status.

2. Navigate to timecard—Allow the user to navigate to a timecard by clicking it. This
causes the panel described in the next step to be refreshed.

3. View and edit timecard—Display the hours (Monday through Friday only) and total
hours for the currently selected timecard. If the timecard is not in an Approved or
Submitted status, allow the hours to be edited. Provide a button to save changes made to
the hours and another button to save changes and submit the timecard.

Sample Application: Mobile Timecard Entry 273

GanePoint: 8/23/2013

Timecard for GenePoint,

Week Ending 8/23/2013

Total Hours: 9.5

Save Submit

Figure 8.1 Mobile timecard entry page in iPhone

ana Mazilla Firafox W

| fo latil

Timecard for GenePoint, Week Ending 8/23/2013

5 25 |2

GenaPoint: 8/8/2013

Tots Houwrs: 9.5
Save Submit

Figure 8.2 Mobile timecard entry page in Web browser

Listing 8.1 is the controller to implement the first step. It uses JavaScript remoting rather than
ActionFunction to provide the best performance for the Visualforce page. The 1oad method
looks up the current user’s Contact record and looks for Assignment records within the current
week. For every Assignment record without a Timecard record, a Timecard record is created.
Finally, the most recent five Timecard records by Wweek_Ending__c are returned.

274 Chapter 8 Mobile User Interfaces

Listing 8.1 Visualforce Controller for Mobile Timecard

public with sharing class MobileTimecardController {

@RemoteAction
public static List<Timecard c> load() {
Contact ¢ = currentResource() ;
if (¢ == null) {
return null;

}

Date currentWeekEnding =

Date.today () .toStartOfWeek () .addDays (6) ;
// Create a current week's timecard for each assignment

for (Assignment c a : [SELECT Project_ c
:c.Id

FROM Assignment_ _c WHERE Contact_c¢ =
AND Status__ ¢ = 'Scheduled'

AND Start Date_ ¢ < :currentWeekEnding

AND End Date c >= :currentWeekEnding

1|

if ([SELECT Id FROM Timecard_ c
WHERE Contact_c¢ = :c.Id

AND Week Ending c = :currentWeekEnding

AND Project_c = :a.Project_c
LIMIT 1].size() == 0) {

insert new Timecard c(Project_ ¢ = a.Project_c,

Week Ending ¢ = currentWeekEnding,
Contact__c¢ = c.Id);

}
}

List<Timecard c> timecards = [SELECT Project__r.Name,

Week Ending ¢, Status_ c,

Monday Hours_ c, Tuesday Hours_ c, Wednesday Hours_ c,

Thursday Hours_ c, Friday Hours_ c
FROM Timecard c
WHERE Contact__c¢ = :c.Id
ORDER BY Week Ending c¢ DESC
LIMIT 5 1;
return timecards;
}
private static Contact currentResource() {
List<Contact> contacts =
[SELECT Id, Name FROM Contact
WHERE User c = :UserInfo.getUserId(
if (contacts != null && contacts.size()
return contacts.get (0);

}

return null;

)

] .

1

)

Sample Application: Mobile Timecard Entry

Listing 8.2 is a Visualforce page that provides the timecard list functionality for the first step. It
does not include the Visualforce header, sidebar, or standard stylesheets to improve load perfor-
mance. It uses Twitter Bootstrap for simple styling and responsive grid system, and Angular]S
to dynamically bind data from the Visualforce controller to and from the HTML elements. The
Angular]S aspects of the page are important to examine closely:

= MobileTimecardCtrl is the name of the Angular]S controller.
MobileTimecardController is the Visualforce controller, which is referenced when
RemoteAction methods are called. Note the usage of its 1oad method. This sets a scope
variable called timecards, which is bound to the HTML list items using the ng-repeat
attribute.

= Ignore the use of the ng-click attribute and the navClass callout in the list items for
now. Those are part of the second step, for navigation.

= Bootstrap is an open source project consisting of CSS and JavaScript to help produce
clean, consistent, responsive Web applications for desktop and mobile browsers. For
more information, see https://github.com/twbs/bootstrap. In this page, the important
parts of Bootstrap are the grid. The row-£1luid CSS class sets up a row in the visual grid
system that positions the elements in your page. The span family of CSS classes (spanl
through spani2) makes up the columns of your page. A single row can consist of a single
spanl2, or 12 spanl elements, and everything in between. In the mobile timecard page,
the navigation bar on the left is a span3, and the detail area, shown when a timecard is
clicked, is spano.

Listing 8.2 Visualforce Page for Mobile Timecard

<apex:page showHeader="false" standardStylesheets="false"
sidebar="false"
controller="MobileTimecardController">
<head>
<meta name="viewport"
content="width=device-width,initial-scale=1.0,
maximum-scale=1.0,user-scalable=0"/>
<link
href="https://netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/css/
whootstrap.css"
rel="stylesheet" />
<style>
input [type="number"] { width: 30px; }
</style>
</head>
<body>
<script>
function MobileTimecardCtrl ($scope, S$rootScope, $location) {
MobileTimecardController.load (function (result, event) {
if (event.status) {

275

https://github.com/twbs/bootstrap

276

Chapter 8 Mobile User Interfaces

$scope.timecards = result;
SrootScope. $apply () ;
}
}, { escape: false });
}
</script>
<apex:outputPanel html-ng-app=""
html-ng-controller="MobileTimecardCtrl" styleClass="container-fluid">
<div class="row-fluid">
<div class="span3">
<div class="well sidebar-nav">
<ul class="nav nav-list">
<1li ng-class="navClass (' {{timecard.Id}}")"
ng-repeat="timecard in timecards">
<a ng-click="nav('{{timecard.I1d}}')">
{{timecard.Project r.Name}}:
{{timecard.Week Ending c | date:'M/d/yyyy'}}

{{timecard.Status_c}}

</1li>

</div>
</divs>
<div class="span9">
</div>
</div>

</apex:outputPanel>

<script
src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.0rcl/
wangular.min.js">

</script>

</body>

</apex:page>

Listing 8.3 implements the second step, in-page navigation, with the addition of two functions
for the MobileTimecardCtrl Angular]S controller. Insert it after the load function in the first
script tag.

For a simple page like this, creating many Visualforce pages, one for each view, adds unnec-
essary overhead. An alternative is to allow the user to navigate but stay within the page,
providing the page with the logic and visual templates necessary to encompass all of the user
interactions. Clicks on anchors change the “route” understood by the Web framework, but it
is handled entirely by the Web framework. The browser does not load a new Web page. This
type of dynamic navigation within a page is typical of a Single Page Application, described in
Chapter 7, “Advanced User Interfaces.”

The navClass method returns the HTML class needed to display highlighting around the
“active” (selected) timecard by comparing the list element’s route to the current path reported

Sample Application: Mobile Timecard Entry 277

by the browser. With every timecard displayed in the list, this method is called to determine its
style class.

The nav method is called when the user clicks a timecard. Rather than using the standard href
attribute, the ng-click attribute allows the navigation to stay within Angular]S. The method
first finds the selected timecard in the model, the list of timecards previously retrieved using
the Visualforce controller’s 1oad method. It then sets that timecard to the edit variable so that
it can be bound to the detail region of the page, to be added in the third step. It also checks to
see if the timecard is in an editable state, setting a readonly variable accordingly.

Listing 8.3 Angular Controller Addition for Navigation

$scope.navClass = function(page) {
var currentRoute = $location.path().substring(1) || '';
return page === currentRoute ? 'active' : '';
}
$scope.nav = function(timecardId) {
$location.path(timecardId) ;
for (var idx in $scope.timecards) {

if ($scope.timecards[idx].Id == timecardid) ({
$scope.edit = $scope.timecards[idx];
$scope.readOnly = $scope.edit.Status ¢ == 'Submitted' ||
$scope.edit.Status__c == 'Approved';
return;

}
}

$scope.edit = null;

}

Listings 8.4, 8.5, and 8.6 implement the changes needed to allow timecards to be viewed and
edited. Listing 8.4 adds a new method to simply save the timecard. The Angular]S code in the
browser maintains edits made to the timecard data and passes it into the Visualforce controller
where it is updated in the Force.com database.

Listing 8.4 Visualforce Controller Addition to Edit Timecard

@RemoteAction
public static void save(Timecard c¢ timecard) {
update timecard;

}

Insert the code in Listing 8.5 into the div element with class span9. This is the right side of the
page and will contain the detail of the selected timecard. There are two portions of HTML, but
only one is visible at any given moment. They are displayed conditionally using the ng-show
attribute. If there is a currently selected timecard, the edit variable will contain it; otherwise,

it is null. The timecard fields are rendered using input elements, and they are disabled if the

278 Chapter 8 Mobile User Interfaces

timecard is not editable. The bidirectional data binding of AngularJS is demonstrated with the
dynamic calculation of total hours in the timecard from the user input fields.

Listing 8.5 Visualforce Page Addition to Edit Timecard

<div class="row-fluid">
<div class="spanl2" ng-show="edit != null">
<form><fieldset>
<legend>Timecard for {{edit.Project r.Name}},
Week Ending {{edit.Week Ending c | date:'M/d/yyyy'}}
</legend>
<div class="control-group">
<div class="controls">
<input type="number" ng-model="edit.Monday Hours__ c"
placeholder="M" ng-readonly="readOnly"></input>
<input type="number" ng-model="edit.Tuesday Hours__c"
placeholder="T" ng-readonly="readOnly"></inputs>
<input type="number" ng-model="edit.Wednesday Hours c"
placeholder="W" ng-readonly="readOnly"></input>
<input type="number" ng-model="edit.Thursday Hours__c"
placeholder="Th" ng-readonly="readOnly"></input>
<input type="number" ng-model="edit.Friday Hours__ c"
placeholder="F" ng-readonly="readOnly"></inputs>
<label>Total Hours: {{edit.Monday Hours c + edit.Tuesday Hours c +
edit.Wednesday Hours_c + edit.Thursday Hours_c +
edit.Friday Hours c}}</label>
<div ng-hide="readOnly">
<button ng-click="save('Saved')" type="submit"
class="btn">Save</button>
<button ng-click="save ('Submitted')" type="submit"
class="btn">Submit</buttons>
</div>
</div>
</div>
</fieldset>
</form>
</divs>
<div class="spanl2" ng-show="edit == null">
Please select a timecard to edit it.
</div>

</div>

Listing 8.6 is the final piece to the timecard entry page. Insert it into the AngularJS controller.
It adds a save method, which is wired up to the Save and Submit buttons in Listing 8.5. It sets
the status of the timecard and calls the Visualforce controller’s save action to save it. It then
resets the page so that no timecard is selected.

Summary

Listing 8.6 Angular Controller Addition to Edit Timecard

Sscope.save = function(status) {
$scope.edit.Status__ ¢ = status;
MobileTimecardController.save ($scope.edit,

function (result, event) {
if (event.status)
$location.path('/");
Sscope.edit = null;
$rootScope. Sapply () ;

}

}. { escape: false });

To test this feature, install Salesforce Touch on your mobile device and perform the following
steps:

1. Enable the page for Touch access. Go to the App Setup area and click Develop, Pages.
Click the Visualforce page, click the Edit button, check the Available in Touch check box,
and click the Save button.

2. Add a Visualforce tab for your new page. In the App Setup area, click Create, Tabs. Click
the New button in the Visualforce Tabs section. Select the MobileTimecard Visualforce
page, give the tab a label and name that you’d like to see on your mobile device. Select a
tab style, profiles, and application visibility, and save the tab.

3. Launch Salesforce Touch on your mobile device and log in.

4. Click the List icon in the upper-left corner to overlay the list of accessible pages. You
should see your Mobile Timecard page as an option. Select it to start using the mobile
timecard entry feature.

Summary

Mobile development with Force.com is a rapidly changing subject, with an active open source
community around it. There are a wealth of options for building mobile applications, some
directly baked into Salesforce products, some born within Salesforce but supported by the
community, and many other general-purpose technologies that can be helpful.

Before moving on to the next chapter, take a moment to review a few highlights related to
mobile development:

= Salesforce provides three mobile applications that are ready to download and use for
Android and iOS devices: Salesforce Classic, Salesforce Touch, and Chatter Mobile. Of
the three, the first two are the most interesting to mobile developers because they can be
extended with custom Visualforce pages.

279

280

Chapter 8 Mobile User Interfaces

= There are three major types of custom mobile applications: native, Web, and hybrid.

Native is the closest to the mobile device’s hardware and therefore offers the best
performance and depth of features. Web runs within the mobile device’s Web browser,
and offers the least control to the developer but can be easier to develop and deploy.
Hybrid strives to be the best of both approaches, a mix and match of native and Web.
Pick the option that makes the most sense for your application, users, and development
skill set.

Although Visualforce is a good starting point for mobile Web applications, your
Visualforce controllers and pages need to be optimized for this purpose. Visually they
should be responsive, adapting to the screen resolution of the device. In terms of data,
they should be frugal, requesting data only as needed and avoiding page navigation.
Using Visualforce as the container for a Single Page Application is a helpful pattern. A
number of open source projects are available to help with Web applications, from data
management to responsive design.

Batch Processing

You've learned two ways you can process database records within the Force.com platform: triggers

and Visualforce controllers. Each has its own set of platform-imposed limitations, such as how many
records can be created at one time. As you accumulate tens of thousands of records or more in your
database, you might need to process more records than permitted by the governor limits applying to trig-
gers and controllers.

Although Salesforce has simplified and incrementally relaxed governor limits in recent Force.com
releases, triggers and Visualforce controllers are fundamentally not suited to processing large amounts
of data in a multitenant environment. They are driven by user interaction, and must be limited to
provide good performance to all users. The Force.com platform carefully controls its resources to main-
tain high performance for all, so resource-intensive tasks such as processing millions of records must be
planned and executed over time, balanced with the demands of other customers.

Batch processing makes this possible, and Batch Apex is the Force.com feature that enables batch
processing on the platform. With Batch Apex, data-intensive tasks are taken offline, detached from user
interactions, the exact timing of their execution determined by Salesforce itself. In return for relinquish-
ing some control, you, the developer, receive the ability to process orders of magnitude more records
than you can in triggers and controllers.

In this chapter, you will learn how to use Batch Apex to create, update, and delete millions of records at
a time. It is divided into five sections:

= Introduction to Batch Apex—Learn the concepts and terminology of Batch Apex, what it can
do, and when you should and should not use it.

= Getting started with Batch Apex—Walk through a simple example of Batch Apex. Develop
the code, run it, and monitor its execution.

» Testing Batch Apex—Like any other Apex code, proper test coverage is required. Learn how to
kick off Batch Apex jobs within test code.

= Scheduling Batch Apex—Although Salesforce has the final say on when Batch Apex is run,
you can schedule jobs to run using a built-in scheduler. Learn how to use the scheduling user
interface and achieve finer-grained control in Apex code.

» Sample application—Enhance the Services Manager application by creating a scheduled batch
process to identify missing timecards.

282

Chapter 9 Batch Processing

Note
The code listings in this chapter are available in a GitHub Gist at http://g00.gl/Iw8XT.

Introduction to Batch Apex

Prior to the availability of Batch Apex, the only options for processing data exceeding the
governor limits of triggers and controllers were tricky workarounds to shift work off the plat-
form. For example, you might have hundreds of thousands of records spanning multiple
Lookup relationships to be summarized, deduplicated, cleansed, or otherwise modified en
masse algorithmically. You could use the Web Services API to interact with the Force.com data
from outside of Force.com itself, or you could use JavaScript to process batches of data inside
the Web browser. These approaches are usually slow and brittle, requiring lots of code and
exposing you to data quality problems over time due to gaps in error handling and recovery.
Batch Apex allows you to keep the large, data-intensive processing tasks within the platform,
taking advantage of its close proximity to the data and transactional integrity to create secure,
reliable processes without the limits of normal, interactive Apex code. This section introduces
you to concepts and guidelines for using Batch Apex to prepare you for hands-on work.

Batch Apex Concepts

Batch Apex is an execution framework that splits a large data set into subsets and provides
them to ordinary Apex programs that you develop, which continue to operate within their
usual governor limits. This means with some minor rework to make your code operate as Batch
Apex, you can process data volumes that would otherwise be prohibited within the platform.
By helping Salesforce break up your processing task, you are permitted to run it within its
platform.

A few key concepts in Batch Apex are used throughout this chapter:

= Scope—The scope is the set of records that a Batch Apex process operates on. It can
consist of 1 record or up to 50 million records. Scope is usually expressed as a SOQL
statement, which is contained in a Query Locator, a system object that is blessedly
exempt from the normal governor limits on SOQL. If your scope is too complex to be
specified in a single SOQL statement, then writing Apex code to generate the scope
(called an iterable scope) programmatically is also possible. Unfortunately, using Apex
code dramatically reduces the number of records that can be processed because it is
subject to the standard governor limit on records returned by a SOQL statement.

= Batch job—A batch job is a Batch Apex program that has been submitted for execution.
It is the runtime manifestation of your code, running asynchronously within the Force.
com platform. Because batch jobs run in the background and can take many hours
to complete their work, Salesforce provides a user interface for listing batch jobs and
their statuses, and to allow individual jobs to be canceled. This job information is also
available as a standard object in the database. Although the batch job is not the atomic
unit of work within Batch Apex, it is the only platform-provided level at which you have
control over a batch process.

http://goo.gl/Iw8XT

Introduction to Batch Apex

= Transaction—Each batch job consists of transactions, which are the governor limit-
friendly units of work you’re familiar with from triggers and Visualforce controllers. By
default, a transaction is up to 2,000 records (with no limit for an iterable scope), but you
can adjust this downward in code. When a batch job starts, the scope is split into a series
of transactions. Fach transaction is then processed by your Apex code and committed
to the database independently. Although the same block of your code is being called
upon to process potentially thousands of transactions, the transactions themselves are
normally stateless. None of the variables within it are saved between invocations unless
you explicitly designate your Batch Apex code as stateful when it is developed. Salesforce
doesn’t provide information on whether your transactions are run in parallel or serially,
nor how they are ordered. Observationally, transactions seem to run serially, in order
based on scope.

In the remainder of this section, these concepts are applied to take you one step closer to
writing your own Batch Apex.

Understanding the Batchable Interface

To make your Apex code run as a batch, you must sign a contract with the platform. This
contract takes the form of an interface called Batchable that must be implemented by your
code. It requires that you structure your processing logic into the following three methods:

= start—The start method is concerned with the scope of work, the raw set of records
to be processed in the batch. When a batch is submitted to Salesforce for processing,
the first thing it does is invoke your start method. Your job here is to return a
QueryLocator or an Iterable that describes the scope of the batch job.

= execute—After calling the start method, Force.com has the means to access all the
records you've requested that it operate on. It then splits these records into sets of up to
200 records and invokes your execute method repeatedly, once for each set of records.
At this point, your code can perform the substance of the batch operation, typically
inserting, updating, or deleting records. Each invocation of execute is a separate
transaction. If an uncaught exception is in a transaction, no further transactions are
processed and the entire batch job is stopped.

Caution

Transactions that complete successfully are never rolled back. So, an error in a transaction
stops the batch, but transactions executed up to that point remain in the database. Thinking of
an overall Batch Apex job as transactional is dangerous, because this is not its default behav-
ior. Additionally, you cannot use savepoints to achieve a single pseudotransaction across the
entire batch job. If you must achieve jobwide rollback, this can be implemented in the form of a
compensating batch job that reverses the actions of the failed job.

= finish—The finish method is invoked once at the end of a batch job. The job ends
when all transactions in the scope have been processed successfully, or if processing
has failed. Regardless of success or failure, £inish is called. There is no requirement

283

284

Chapter 9 Batch Processing

to do anything special in the method. You can leave the method body empty if

no postprocessing is needed. It simply provides an opportunity for you to receive a
notification that processing is complete. You could use this information to clean up any
working state or notify the user via email that the batch job is complete.

With this initial walk-through of the Batchable interface, you can begin to apply it to your
own trigger or Visualforce controller code. If you find a process that is a candidate to run as a
batch, think about how it can be restructured to conform to this interface and thus take advan-
tage of Batch Apex.

Applications of Batch Apex

Like any feature of Force.com, Batch Apex works best when you apply it to an appropriate use
case that meshes well with its unique capabilities. The following list provides some guidelines
when evaluating Batch Apex for your project:

Single database object—Batch Apex is optimized to source its data from a single, “tall”
(containing many records) database object. It cannot read data from other sources,
such as callouts to Web services. If the records you need to process span many database
objects that cannot be reached via parent-child or child-parent relationships from a
single database object, you should proceed carefully. You will need to develop separate
Batch Apex code for every database object. Although this is doable and you can share
code between them, it creates maintenance headaches and quickly exposes you to the
limitation of five active batch jobs per organization.

Simple scope of work—Although Batch Apex allows the use of custom code to provide it
with the records to process, it is most powerful when the scope of work is expressed in a
single SOQL statement. Do some work up front to ensure that the source of data for your
batch can be summed up in that single SOQL statement.

Minimal shared state—The best design for a Batch Apex process is one where every unit
of work is independent, meaning it does not require information to be shared with other
units of work. Although creating stateful Batch Apex is possible, it is a less mature feature
and more difficult to debug than its stateless counterpart. If you need shared state to be
maintained across units of work, try to use the database itself rather than variables in
your Apex class.

Limited transactionality—If your batch process is a single, all-or-nothing transaction,
Batch Apex is only going to get you halfway there. You will need to write extra code to
compensate for failures and roll back the database to its original state.

Not time-critical—Salesforce provides no hard guarantees about when Batch Apex is
executed or its performance. If you have an application that has time-based requirements
such that users will be prevented from doing their jobs if a batch does not run or
complete by a specific time, Batch Apex might not be a good fit. A better fit is a process
that must run within a time window on the order of hours rather than minutes.

Getting Started with Batch Apex

These guidelines might seem stifling at first glance, but Batch Apex actually enables an impres-
sive breadth of interesting applications to be developed that were previously impossible with
other forms of Apex.

Getting Started with Batch Apex

You don’t need an elaborate use case or huge data volumes to get started with Batch Apex. This
section walks you through the development of a simple Batch Apex class that writes debug

log entries as it runs. The class is submitted for execution using the Force.com IDE and moni-
tored in the administrative Web user interface. Two more versions of the Batch Apex class are
developed: one to demonstrate stateful processing and the other an iterable scope. The section
concludes with a description of important Batch Apex limits.

Developing a Batch Apex Class

Although the class in Listing 9.1 performs no useful work, it leaves a trail of its activity in the
debug log. This is helpful in understanding how Force.com handles your batch-enabled code. It
also illustrates the basic elements of a Batch Apex class, listed next:

= The class must implement the Database.Batchable interface. This is a parameterized
interface, so you also need to provide a type name. Use SObject for batches with a
QueryLocator scope, or any database object type for an Iterable scope.

= The class must be global. This is a requirement of Batch Apex classes.

Listing 9.1 Sample Batch Apex Code

global class Listing9 1 implements Database.Batchable<SObject> {
global Database.QueryLocator start (Database.BatchableContext context) {
System.debug ('start');
return Database.getQueryLocator (
[SELECT Name FROM Project c ORDER BY Name]) ;
}
global void execute (Database.BatchableContext context,
List<SObject> scope) {
System.debug ('execute') ;
for (SObject rec : scope) {
Project ¢ p = (Project_ c)rec;
System.debug ('Project: ' + p.Name);
}
}

global void finish(Database.BatchableContext context) {
System.debug('finish');
}
}

285

286 Chapter 9 Batch Processing

Before actually running the code in the next subsection, review these implementation details:

= The start method defines the scope by returning a QueryLocator object constructed
from an in-line SOQL statement. The SOQL statement returns all Project records in
ascending order by the Name field. The SOQL statement can use parameters (prefaced
with a colon) like any in-line SOQL in Apex code. Relationship queries are acceptable,
but aggregate queries are not allowed. You can also pass a SOQL string into the
getQueryLocator method, which allows the scope of the batch to be specified with
dynamic SOQL.

= The execute method is called once per transaction with a unique group of up to 2,000
records from the scope. The records are provided in the scope argument.

» The finish method is called when all transactions have completed processing, or the
batch job has been interrupted for any reason.

» The BatchableContext object argument in all three methods contains a method for
obtaining the unique identifier of the current batch job, getJob1D. This identifier can
be used to look up additional information about the batch job in the standard database
object AsyncApexJob. You can also pass this identifier to the System.abortJob method
to stop processing of the batch job.

Working with Batch Apex Jobs

Batch Apex can be executed from a Visualforce page, scheduled to run automatically at specific
times, or kicked off from within a trigger. But the easiest way to experiment with it is in the
Execute Anonymous view in the Force.com IDE.

First, enable debug logging for your user in the Administration Setup area; select Monitoring,
Debug Logs; and add your user to the list of monitored users by clicking the New button. This
is no different than debugging any Apex class. Using the Execute Anonymous view, enter

the code in Listing 9.2 and execute it. The batch is submitted and its unique job identifier
displayed in the results box.

Listing 9.2 Running Sample Batch Apex Code

Listing9 1 batch = new Listing9 1();
Id jobId = Database.executeBatch (batch);
System.debug ('Started Batch Apex job: ' + jobId);

The executeBatch method of the Database class does the work here. It queues the batch job
for processing when Force.com is ready to do so. This could be in seconds or minutes; it is
not specified. The Listing9 1 sample class is very simple, but in many cases you would need
to pass arguments, either in the constructor or via setter methods, to adjust the behavior of a
batch process. This is no different from any Apex class.

Getting Started with Batch Apex

To start a batch in response to a button click or other user interface action, apply the code
shown in Listing 9.2 within a Visualforce custom controller or controller extension class. Now
that you have submitted your batch job, it’s time to monitor its progress. In your Web browser,
go to the Administration Setup area and select Monitoring, Apex Jobs. This page, shown in
Figure 9.1, allows you to manage all the batch jobs in your Force.com organization.

Apex Jobs ~ salesforce.com - Daveloper Edition

‘ﬁ)rCC.CUITI Saarch Saarch Palge Tumer = Halp Services Manager ~

Home Contacts Projects A Skills Missing T +

Expand Al | Collagms AN

0, Quick Find Apex Jobs

Forcacam Hame. Monitor the status of all Apex jobs, and optionally abort jobs that are in progress.

View: | All ¢ Creale New View

System Overview Action Submitted Date + Job Type Status Suatus Detall Total Batches Batches Processed Failures Submitted By Co

TA201310:36 Batch Tumer,
PM Apax

Processing 1 0 o por

Parsonal Setup Abort

* My Personal Information
+ Emall

» Import

+ Desktop Integration

= My Chatter Settings

» My Social Aceounts and
Contacts

App Sotup

» Customize

= Croate

» Develop

* Deploy
Schema Builder
Carvas App Proviewor
Ingtnfed Packages
AppExchange Marketplace
Critical Updates

Administration Setup

Figure 9.1 Apex Jobs user interface

The single Listing9_1 job you executed should be visible. By this time, it is most likely in the
Completed status, having few records to process. If Force.com is very busy, you might see a
status of Queued. This means the job has not been started yet. A status value of Processing indi-
cates the job is currently being executed by the platform. If a user interrupts the job by clicking
the Abort link on this page, the job status becomes Aborted. A job with a Failed status means
an uncaught exception was thrown during its execution. If you scroll to the right, you can also
see the Apex Job Id, which should match the one returned by the Database.executeBatch
method.

Take a closer look at the values in the Total Batches and Batches Processed columns. To avoid
confusion, disregard the word Batches here. Total Batches is the number of transactions needed
to complete the batch job. It is equal to the scope (which defaults to 200) divided into the
number of records returned by the start method. The Batches Processed column contains

the number of times the execute method of your Batch Apex class was invoked so far. As the
processing proceeds, you should see it increment until it is equal to the Total Batches value.

287

288

Chapter 9 Batch Processing

For example, if you have fewer than 200 Project records in your database, you should see a 1
in both columns when the batch is complete. If you have between 201 and 400 records, you
should see 2 instead. If you have 1,500 records and the system is processing the 300th record,
you should see a value of 8 in Total Batches and 1 in Processed Batches. All the informa-

tion on the page is also accessible programmatically, contained in the standard object named
AsyncApexJob.

You have seen the batch job run its course. Proceed back to the Debug Logs page. Here you can
review the job’s execution in detail, thanks to the System.debug statements throughout the
code. Figure 9.2 is an example of what you might see there.

Dabug Logs ~ salesforce.com - Developar Edition

J‘brce.com Saarch Saarch Paige Tumer = Halp
Home Contacts Projects A Skills Missing +
Expand All | Colapsa AR
T Quick Find Debug Logs
A debug ko reconds d system and emors that occur when executing a transaction or wl

Force.com Hame system generates & debug log for @ user every ime that user execules 8 iransaction that is included in the fiter criterie

retain debug logs for the usam apecified balow.

System Overview
View: | Al 3| Create Mew View

Personal Setup Monitored Usars New

* My Personal Information Action Nama * Last Request Date. Log Requests Avallatle
E Emall Dulite | Resat | Fifors Tumer, Paige 711072013 10:45 PM 7

+ Import

+ Deskiop Integration
= My Chatter Settings

+ My Social Accounts and Debug Logs Dubete ANl
Contacts Etordot
User Reguest Type Application Operation Status Duvation (ma) |
App Setuy) i
P Virw | Download | Debete ;:g: Agl Unknown Balch Apax Success 4
¥ Customiza .
* Croate View | Download | Desote Eﬁgr Api Unknown SerialBaichApexRangeChunkHandlar Success 260 i
» Develop i
B Deploy View | Download | Delate ?;r!gn:r Al Unknown SeriaiBalchApexRangeChunkHandier Success 105
Schema Builder S
Canvas App Proviewse View | Download | Dalate ?1‘22 A Unknawn Balch Apex Success 148
Instafed Packages
AppExchange Marketplace
Critical Updates Dulete All

Administration Setup

Figure 9.2 Debug logs from sample Batch Apex code

Four separate logs each cover a different aspect of the batch execution. Each is described next
in the order they are executed, although this might not be the order shown on the Debug Logs

page:
1. Results of evaluating the code in the Execute Anonymous view.

2. Invocation of the start method to prepare the data set for the batch.

3. Results of running the execute method, where the batch job performs its work on the
subsets of the data.

4. All the transactions have been processed, so the finish method is called to allow
postprocessing to occur.

Getting Started with Batch Apex

These results are somewhat interesting, but appreciating what the batch is doing is hard
without more data. You could add 200 more Project records, or you can simply adjust the scope
to process fewer records per transaction. Listing 9.3 is an example of doing just that, passing
the number 2 in as the scope, the second argument of the Database.executeBatch method.
This indicates to Force.com that you want a maximum of two records per transaction in the
batch job.

Listing 9.3 Running Sample Batch Apex Code with Scope Argument

Listing9 1 batch = new Listing9 1();
Id jobId = Database.executeBatch(batch, 2);
System.debug ('Started Batch Apex job: ' + jobId);

After running this code in the Execute Anonymous view, return to the debug logs. You should
now see two additional logs in the execute phase, for a total of three transactions of two
records each. The three transactions are needed to process the six Project records.

Using Stateful Batch Apex

Batch Apex is stateless by default. That means for each execution of your execute method,
you receive a fresh copy of your object. All fields of the class are initialized, static and instance.
If your batch process needs information that is shared across transactions, one approach is

to make the Batch Apex class itself stateful by implementing the stateful interface. This
instructs Force.com to preserve the values of your static and instance variables between
transactions.

To try a simple example of stateful Batch Apex, create a new Apex class with the code in
Listing 9.4.

Listing 9.4 Stateful Batch Apex Sample

global class Listing9 4
implements Database.Batchable<SObject>, Database.Stateful {
Integer count = 0;
global Database.QueryLocator start (Database.BatchableContext context) {
System.debug('start: ' + count);
return Database.getQueryLocator (
[SELECT Name FROM Project c ORDER BY Name]) ;
}
global void execute (Database.BatchableContext context,
List<SObject> scope) {

System.debug ('execute: ' + count);

for (SObject rec : scope) {
Project ¢ p = (Project_ c)rec;
System.debug('Project ' + count + ': ' + p.Name);

count++;

289

290

Chapter 9 Batch Processing

}
}

global void finish(Database.BatchableContext context) {
System.debug ('finish: ' + count);
}
}

Take a moment to examine the differences between this class and the original, stateless version.
Implementing the interface Database.Stateful is the primary change. The other changes

are simply to provide proof in the debug log that the value of the count variable is indeed
preserved between transactions.

Run the modified class with a scope of two records and examine the debug log. Although the
log entries might not be ordered in any discernible way, you can see all the Project records
have been visited by the batch process. Assuming you have six Project records in your database,
you should see a total of six new debug log entries: one to begin the batch, one for the start
method, three entries’ worth of transactions (of two records each), and one for the finish
method.

Notice the value of the count variable throughout the debug output. It begins at O in the first
transaction, increments by two as Project records are processed, and begins at 2 in the second
transaction. Without implementing Database.Stateful, the count variable would remain
between 0 and 2 for every transaction. The value of the count variable is 6 when the finish
method is reached.

Using an Iterable Batch Scope

All of the sample code so far has used a QueryLocator object to define the scope of its batch.
This enables up to 50 million records to be processed by the batch job, but requires that the
scope be defined entirely using a single SOQL statement. This can be too limiting for some
batch processing tasks, so the iterable batch scope is offered as an alternative.

The iterable scope allows custom Apex code to determine which records are processed in the
batch. For example, you could use an iterable scope to filter the records using criteria that are
too complex to be expressed in SOQL. The downside of the iterable approach is that standard
SOQL limits apply. This means you can process a maximum of 50,000 records in your batch
job, a dramatic reduction from the 50 million record limit of a QueryLocator object.

To develop a batch with iterable scope, you must first write code to provide data to the batch.
There are two parts to this task:

= Implement the Iterator interface—The Iterator is a class for navigating a collection
of elements. It navigates in a single direction, from beginning to end. It requires that
you implement two methods: hasNext and next. The hasNext method returns true
if additional elements are left to navigate to, false when the end of the collection has
been reached. The next method returns the next element in the collection. Iterator
classes must be global.

Getting Started with Batch Apex

= Implement the Iterable interface—Think of this class as a wrapper or locator
object that directs the caller to an Iterator. It requires a single global method to be
implemented, called Iterator, which returns an Iterable object. Like Iterator,
classes implementing Iterable must be global.

You could write two separate classes, one to implement each interface. Or you can implement
both interfaces in a single class, the approach taken in the code in Listing 9.5.

Listing 9.5 Project Iterator

global class ProjectIterable
implements Iterator<Project c¢»>, Iterable<Project c> {
List<Project c¢> projects { get; set; }
Integer i;
public ProjectIterable() {
projects = [SELECT Name FROM Project c ORDER BY Name];
i=0;
}
global Boolean hasNext () {
if (i >= projects.size()) {
return false;
} else {
return true;

}

global Project ¢ next() {
i++;
return projects[i-1];

}

global Iterator<Project c¢> Iterator() {
return this;

With the implementation of the Iterable class ready for use, examine the code in Listing
9.6. It is very similar to the first Batch Apex example. The only notable differences are that the
parameterized type has been changed from sobject to Project__ ¢, and the start method
now returns the Iterable class developed in Listing 9.5.

Listing 9.6 Iterable Batch Apex Sample

global class Listing9 6
implements Database.Batchable<Project c¢> {
global Iterable<Project c> start (Database.BatchableContext context) {
System.debug('start');
return new ProjectIterable();

291

292 Chapter 9 Batch Processing

}

global void execute (Database.BatchableContext context,

List<Project c> scope) {
System.debug ('execute') ;

for (Project__c rec : scope) {

}

System.debug ('Project: ' + rec.Name);

}

global void finish(Database.BatchableContext context) {

System.debug ('finish') ;

}
}

Turn

on the debug log for your user and run the Listing9 6 job. Examine the logs and see

for yourself that you've accomplished the same work as the Listing9 1 code using an iterable
scope instead of a QueryLocator object.

Limits of Batch Apex

You must keep in mind several important limits of Batch Apex:

Future methods are not allowed anywhere in Batch Apex.

Batch jobs are always run as the system user, so they have permission to read and write
all data in the organization.

The maximum heap size in Batch Apex is 12MB.

Calling out to external systems using the HTTP object or webservice methods is limited
to one for each invocation of start, execute, and f£inish. To enable your batch process
to call out, make sure the code implements the Database.AllowsCallouts interface in
addition to the standard Database.Batchable interface.

Transactions (the execute method) run under the same governor limits as any Apex
code. If you have intensive work to do in your execute method and worry about
exceeding the governor limits when presented with the default 200 records per
transaction, reduce the number of records using the optional scope parameter of the
Database.executeBatch method.

The maximum number of queued or active batch jobs within an entire Salesforce
organization is five. Attempting to run another job beyond the five raises a runtime error.
For this reason, you should tightly control the number of batch jobs that are submitted.
For example, submitting a batch from a trigger is generally a bad idea if you can avoid it.
In a trigger, you can quickly exceed the maximum number of batch jobs.

Scheduling Batch Apex

Testing Batch Apex

Batch Apex can be tested like any Apex code, although you are limited to a single transaction’s
worth of data (one invocation of the execute method). A batch job started within a test runs
synchronously, and does not count against the organization'’s limit of five batch jobs.

The class in Listing 9.7 tests the Batch Apex example from Listing 9.1 and achieves 100% test
coverage. The annotation IsTest (SeeAllData=true) allows the test to access the data in the
organization rather than requiring it to create its own test data. Alternatively, you could modify
the code to omit the annotation and insert a few Project records to serve as test data.

Listing 9.7 Batch Apex Test

@IsTest (SeeAllData=true)
public with sharing class Listing9 7 {
public static testmethod void testBatch() {
Test.startTest () ;
Listing9_ 1 batch = new Listing9 1();
ID jobId = Database.executeBatch(batch) ;
Test.stopTest () ;

The test method simply executes the batch with the same syntax as you have used in the
Execute Anonymous view. The batch execution is bookended with the startTest and
stopTest methods. This ensures that the batch job is run synchronously and is finished at

the stopTest method. This enables you to make assertions (System.assert) to verify that the
batch performed the correct operations on your data.

Scheduling Batch Apex

Along with Batch Apex, Salesforce added a scheduler to the Force.com platform. This enables
any Apex code, not just Batch Apex, to be scheduled to run asynchronously at regular time
intervals. Prior to the introduction of this feature, developers had to resort to off-platform
workarounds, such as invoking a Force.com Web service from an external system capable of
scheduling jobs.

This section describes how to prepare your code for scheduling and how to schedule it from
Apex and the administrative user interface.

Developing Schedulable Code

An Apex class that can be scheduled by Force.com must implement the Schedulable interface.
The interface requires no methods to be implemented; it simply indicates to the platform that
your class can be scheduled. Code that is executed by the scheduler runs as the system user, so

293

294

Chapter 9 Batch Processing

sharing rules or other access controls are not enforced. At most, ten classes can be scheduled at
one time.

The class in Listing 9.8 enables the Batch Apex example from Listing 9.1 to be schedulable. It
does this by implementing the Schedulable interface, which has a single method: execute.
Although you could implement this interface directly on your batch class, the best practice
recommended by Salesforce is to create a separate Schedulable class.

Listing 9.8 Schedulable Batch Apex

global class Listing9 8 implements Schedulable {
global void execute (SchedulableContext sc) {
Listing9_1 batch = new Listing9_1();
Database.executeBatch (batch) ;

Scheduling Batch Apex Jobs

To schedule a job using the user interface, go to the App Setup area and click Develop, Apex
Classes. Click the Schedule Apex button. In Figure 9.3, the Listing9_8 class has been config-
ured to run Saturday mornings at 11:00 a.m. between 7/10/2013 and 8/10/2013.

Schadule Apex ~ salesfarce.com - Developer Edition

J‘brce.com Saarch Saarch Paige Tumer = Halp
Home Contacts Projects A Skills. Missing +
Expand Al | Coflapse All ik P @
Schedule Apex g e Pom
Schedule an Apex class that implemants the "Schadulable’ interdface 1o be automatically executed on a weakly or
Force.com Home monthly interval,
System Overview Save | | Cancel
Personal Setup dobName | Lisuings_s
* My Personal Infermation Apex Class | Listingd_ 8 aQ
+ Emall Schedule Apox Exscution
* Import Froquency . waosdy
» Deskicp Integration Manthly Rucurs every woek on
= My Chatter Settings Sunday
» My Social Aceounts and
Contacts Monday
Tuesday
App Setuy)
% Wednesday

* Customize
» Create Thursday
B Develop Friday

Apax Classes .

Apax Triggers

::'T“IE po swr | 71002013 [TA0R013]

Componants End |B/10i2013 [7102013]

Custom Settings Proferred Start Time | 1000 AM ¢

Email Services

Pages

Qtas Exnct start tima will dapand on job quoua activity.

Figure 9.3 Schedule Apex user interface

Scheduling Batch Apex

To view and cancel scheduled jobs, go to the Administration Setup area and click Monitoring,
Scheduled Jobs. This is shown in Figure 9.4 with the previously scheduled job. At this point,
you can click Manage to edit the schedule, or Del to cancel it.

All Schedulad Jobs ~ salnsforce,com - Developer Editian

‘}t(-‘)rce.c o1mn Saarch Search [P RN I Sorvices Manager ~
Home Contacts Projects Skills Missing T +

Expand All | Colagee All
0 Quick Find All Scheduled Jobs Hi o ke P Y

Farce.com Home

System Overview

Personal Setup

* My Personal Information
+ Emall

+ Import

+ Desktop Integration

= My Chatter Settings

» My Social Aceounts and
Contacts

App Setup

» Customize

» Croate

» Develop

* Deploy
Schema Builder
Carvas App Proviewor
Instalied Packages
AppExchange Marketplace
Critical Updates

Administration Setup

The All Scheduled Jobs page lists all of the jobs scheduled by your users, Multiple job typés may display on this
page. You can delele scheduled jobs if you have the permission to do so.

View: | All Scheduled Jobs 3| Create New View

ABICIDEFGHIJIKLMNOPGORIS TUYWXY Z Oher NI

Action Job Name + Submitied By Submitted Started Moxt Scheduled Run Type
Managa | Del Listng8 8 Turmar, Paige 7110/2013 10:51 PM THA2013 100 AM Schedulod Apex
ABICDEFGHIJKLMHNOPOARSTUY WX Y Z Othe Al

Figure 9.4 All Scheduled Jobs user interface

The same management of scheduled jobs available in the user interface can be automated using
Apex code, as described next:

= Create a scheduled job—Use the System.schedule method to schedule a new job. This
method requires three arguments: the name of the job, the schedule expression, and an
instance of class to schedule. The schedule expression is a string in crontab-like format.
This format is a space-delimited list of the following arguments: seconds, minutes,
hours, day of month, month, day of week, and year (optional). Each argument is a value
specifying when the job is to run in the relevant units. All arguments except seconds
and minutes permit multiple values, ranges, wildcards, and increments. For example, the
schedule expression 0 0 8 ? * MON-FRI schedules the job for weekdays at 8:00 a.m.
The 8 indicates the eighth hour, the question mark leaves day of month unspecified, the
asterisk indicates all months, and the day of week is Monday through Friday. The time
zone of the user scheduling the job is used to calculate the schedule.

Note

For a full reference to schedule expressions, refer to the Force.com Apex Code Developer’s
Guide section on the subject, available at http://www.salesforce.com/us/developer/docs/
apexcode/index_Left.htm#StartTopic=Content/apex_scheduler.htm.

295

http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content/apex_scheduler.htm
http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content/apex_scheduler.htm

296

Chapter 9 Batch Processing

= View a scheduled job—To get attributes about a scheduled job, such as when it will be
executed next, query the standard object CronTrigger. It includes useful fields such as
NextFireTime, PreviousFireTime, as well as StartTime and EndTime, calculated from
the time the scheduled job was created to the last occurrence as specified by the schedule
expression.

= Delete a scheduled job—The System.abortJob method deletes scheduled jobs.
It requires a single argument, the identifier returned by the SchedulableContext
getTriggerID method. This can also be obtained from the Id field of a CronTrigger
record.

= Modify a scheduled job—The standard object CronTrigger is read-only, so to modify a
job, you must delete it first and then re-create it.

The code in Listing 9.9 can be executed in the Execute Anonymous view to schedule the
Listing9_8 class to run monthly on the first day of every month at 1:00 a.m. in the user’s
time zone. You can verify this by examining the scheduled job in the user interface or querying
the CronTrigger object.

Listing 9.9 Sample Code to Schedule Batch Apex
System.schedule ('Scheduled Test', '0 0 1 * * ?', new Listing9 8());

Caution

After an Apex class is scheduled, its code cannot be modified until all of its scheduled jobs are
deleted.

Sample Application: Missing Timecard Report

A common application of Batch Apex is to distill a large number of records down to a smaller,
more digestible set of records that contain actionable information. In the Services Manager
sample application, consultants enter timecards against assignments, specifying their daily
hours for a weekly period. When consultants fail to enter their timecards in a timely manner,
this can impact the business in many ways: Customers cannot be invoiced, and the budget of
billable hours can be overrun without warning. With a large number of timecards, consultants,
and projects, manually searching the database to identify missing timecards isn’t feasible. This
information needs to be extracted from the raw data.

The management users of the Services Manager have requested a tool that enables them to
proactively identify missing timecards. They would like to see a list of the time periods and the
assignments that have no timecard so that they can work with the consultants to get their time
reported. This information could later be used as the basis of a custom user interface, report or
dashboard component, or automated email notifications to the consultants.

Sample Application: Missing Timecard Report

This section walks through the implementation of the missing timecard report. It consists of

the following steps:

1. Create a custom object to store the list of missing timecards.

2. Develop a Batch Apex class to calculate the missing timecard information.

3. Run through a simple test case to make sure the code works as expected.

Creating the Custom Object

Your Services Manager users in supervisory positions have asked to see missing timecards of
their consultants. Specifically they want the dates of missing timecards, the offending consul-
tants, and their assigned projects. There are two fields necessary to provide the requested infor-
mation: the assignment, which automatically includes the resource and project as references,

and the week ending date that lacks a timecard for the assignment.

Create a new custom object to store this information, naming it Missing Timecard. Add a
lookup field to Assignment and a Date field named Wweek Ending c to mirror the field of the
same name in the Timecard object. Create a custom tab for this object as well. When you’re
done, the Missing Timecard object definition should resemble Figure 9.5.

Expand AT | Collapse All

2, Quick Find
Farce.com Home
System Overview

Personal Setup

* My Personal Information
+ Emall

+ Import

+ Deskiop Integration

* My Chatter Settings

+ My Social Accounts and
Contacts

App Setup

» Customize
O Create
Appa
Cuziom Labals
Interaction Log Layouts
Objects
Packages
Repart Typas
Global Actione Mew!
Taba
* Werkflow & Approvals

*! Develop
* Deplay
Schema Builder
Carvas App Previewar
Instalied Packages
ArnE yrhanne Markeninens

Custom Object: Misting Timacard — salasfores.com - Developar Edition

Custom Object
Missing Timecard

Standard Fieds [4) | Custom Figids & Refationships (2] | Valkiation Rules [0 | PageLeyouts [1] | Figld Sets (BETA @) |

Hulp for this Page @

Search Loyosdn (6] | Bitiorss, Links, o Actions (8} | Hecord Types [8] | Apox Sharing Roosons 9 |
Apins Fhareg Recalculation 1) | Qbiest Limés [15)

‘Custom Object Definition

Detall LEAR || Oobele
Singular Labal Missing Timacard Description
Plural Label Missing Timecards Enable Reports
Object Mame Missing_Timecard Track Activities
APIMama Missing Timecand__c cnl.ﬂ:':::::;
Track Fietd History
Deployment Status Daployed
Help Settings Standard salesioron com Help
Window
Created By Pgege Turner, 7152013 1223 PM Modified By Paige Turner, 7/52013 1223 PM
Standard Fields Stancard Feids Helg 7
Action Fisld Label Foeld Name Data Type Controlling Field
Croated By CreatedBy Lookup(Usar)
Last Madifisd By LastModiiodBy Loakup{Lisar)
Edit Missing Timacard Nama Nama Auts Numiboe
Edit Owner Ownar Loakup{User,Quaue)

Custom Fields &
Relationships

New | | Fisld Dependencien

Cantrolling Fleld Modified By

Action Field Label AP Name Duts Typa
Edit| Dal ¢ L
Edit| Dal Week Ending Week_Ending__c Dale

Custom Fisids & Relatiocanips Halp 7

Paige Turnor, T/S2013 12:24 PM
Paige Turnes, T//2013 12.24 PM

Related Lookup Filters

Figure 9.5 Missing timecard custom object definition

297

298

Chapter 9 Batch Processing

Developing the Batch Apex Class

A good design approach for Batch Apex is to consider the input schema, output schema, and
the most direct algorithm to transform input to output. You've already designed the output
schema based on what the users want to see: the Missing Timecard object. That leaves the
input and the algorithm to be designed.

Consider the algorithm first, which drives the input. The algorithm loops through assignments
that are not in Tentative or Closed status. It builds a list of Week Ending dates of valid time-
cards (in Submitted or Approved status) in the same project as the assignment. It then cycles
through the weeks between the start and end dates of the assignment, up to the current day.

If a week ending date is not found in the list of timecard Week Ending dates, it is considered
missing and its assignment and date are added to the Missing Timecards object.

With the algorithm nailed down, move on to the input. The key to a concise, maintainable
Batch Apex class is formulating the right SOQL query to provide the input records. Most of the
effort is in finding the optimal SObject to base the query on. If you pick the wrong SObject,
you could be forced to augment the input in your execute method, resulting in more queries,
this time subject to SOQL governor limits.

It is clear from the algorithm that the batch input must include Assignment records and corre-
sponding Timecard records. But Assignment and Timecard are two separate many-to-many rela-
tionships with no direct relationship with each other.

Although basing the query on the Assignment or Timecard objects might be tempting, this
leads to a weak design. For example, if you query the assignments in the start method and
then augment this with Timecard records in the execute method, you need to build dynamic
SOQL to optimize the second query given the input Assignment records. This is a sure sign that
you should continue to iterate on the design.

When you switch tracks and design the batch around the Project object, life becomes easier.
From Project, you have access to Timecard and Assignment records at the same time. The code
in Listing 9.10 implements the missing timecard feature with a query on Project as the input.

Listing 9.10 MissingTimecardBatch

global class MissingTimecardBatch
implements Database.Batchable<SObject> {
global Database.QueryLocator start (Database.BatchableContext context) {
return Database.getQueryLocator ([SELECT Name, Type c,
(SELECT Name, Start Date c, End Date c
FROM Assignments_r WHERE Status__c NOT IN ('Tentative', 'Closed')),
(SELECT Status__c, Week Ending c
FROM Timecards r
WHERE Status ¢ IN ('Submitted', 'Approved'))
FROM Project c
1)
}
global void execute (Database.BatchableContext context,
List<SObject> scope) {

Sample Application: Missing Timecard Report

List<Missing Timecard_ c> missing = new List<Missing Timecard c>();
for (SObject rec : scope) {

Project ¢ proj = (Project c)rec;

Set<Date> timecards = new Set<Date>();

if (proj.Assignments_r != null) {

for (Assignment c assign : proj.Assignments 1) {
if (proj.Timecards r != null) {
for (Timecard c¢ timecard : proj.Timecards r) {
timecards.add(timecard.Week Ending c);

}
}

/** Timecards are logged weekly, so the Week Ending c field is always
* a Saturday. We need to convert an assignment, which can contain an
* arbitrary start and end date, into a start and end period expressed
* only in terms of Saturdays. To do this, we use the toStartOfWeek
* method on the Date object, and then add 6 days to reach a Saturday.
*/

Date startWeekEnding =
assign.Start_Date_ c.toStartOfWeek () .addDays (6) ;
Date endWeekEnding =
assign.End Date c.toStartOfWeek () .addDays(6) ;
Integer weeks = 0;
while (startWeekEnding.addDays (weeks * 7) < endWeekEnding) {
Date d = startWeekEnding.addDays (weeks * 7);
if (d >= Date.today()) {
break;
}
if (!timecards.contains(d)) {
missing.add (new Missing Timecard c(
Assignment ¢ = assign.Id,
Week Ending_c = d));
}

weeks++;

}

insert missing;

}

global void finish(Database.BatchableContext context) {

}

Testing the Missing Timecard Feature

To achieve adequate test coverage, add unit tests to the Batch Apex class that create assign-
ments and timecards in various combinations, kick off the batch, and then query the Missing
Timecard object and verify the presence of the correct data.

299

300

Chapter 9 Batch Processing

You can also test informally from the user interface and the Execute Anonymous view in the
Force.com IDE. For example, create an Assignment record for the GenePoint project, starting
4/1/2015 and ending 4/30/2015 for Rose Gonzalez, and set its status to Scheduled. Enter a
timecard for her for week ending 4/11/2015 on the GenePoint project, and set its status

to Approved. Now run the MissingTimecardBatch from Force.com using the code in
Listing 9.11.

Listing 9.11 Running MissingTimecardBatch

Database.executeBatch (new MissingTimecardBatch()) ;

Check the Apex Jobs to monitor the progress of your batch job. When it’s done, visit the
Missing Timecard tab. You should see three Missing Timecard records for the GenePoint assign-
ment, with the dates 4/4/2015, 4/18/2015, and 4/25/2015. The 4/11/2015 date is not included
because a valid Timecard record exists for it.

To try some more test scenarios, first clear the Missing Timecard records so you don’t have to
sift through duplicates. The code in Listing 9.12 is an easy way to do so, and you can run it
from the Execute Anonymous view.

Listing 9.12 Reset Results of MissingTimecardBatch

delete [SELECT Id FROM Missing Timecard c];

Summary

Batch processing in Force.com enables you to query and modify data in volumes that would
otherwise be prohibited by governor limits. In this chapter, you've learned how to develop,
test, and schedule batch jobs, and applied batch processing to the real-world problem of identi-
fying missing database records.

When using Batch Apex in your own applications, consider these key points:

= Batch Apex is optimized for tasks with inputs that can be expressed in a single SOQL
statement and that do not require all-or-nothing transactional behavior.

= With its limit of five active batch jobs per organization, one input data set per job, and
a lack of precise control over actual execution time, Batch Apex is the nuclear option of
Force.com data processing: powerful, but challenging to build and subject to proliferation
problems. Use it sparingly, when all other options are exhausted. If triggers or Visualforce
controllers can do the same job given expected data volumes, consider them first.

= You can implement the Schedulable interface to run any Apex code at regular time
intervals, not just Batch Apex. Schedules can be managed via the administrative user
interface and in Apex code.

Integration with Force.com

The Force.com platform offers various features to integrate its data and processes with those of other
applications. These features are leveraged by independent software vendors as part of stand-alone inte-
gration products and also exposed to developers and system administrators of Force.com. This chapter
describes the integration features that can bridge Force.com with other applications.

Force.com integration features leverage the Web standards of REST and SOAP to send and receive data
over HTTP. REST stands for Representational State Transfer, a common form of Web-accessible API.
SOAP is an acronym for Simple Object Access Protocol. These standards can be used to communicate
with Force.com bidirectionally, meaning you can call into and out of Force.com with them.

This chapter is divided into the following sections:

= Apex callouts—Initiate requests to systems on the Web via REST and SOAP directly from inside
your Apex code.

= Calling into Force.com using REST—With the Force.com REST API, you can access Force.com
data and logic using a REST-style interface.

= Calling into Force.com using SOAP—Learn how to use the Enterprise API to make the data
objects and Apex code in your organization available outside of Force.com.

= Sample application—Walk through an integration scenario with the Services Manager sample
application, extending it to calculate and transmit corporate performance metrics to a fictional
industry-benchmarking organization.

Note
The code listings in this chapter are available in a GitHub Gist at http://go0.gl/GBXT6.

Apex Callouts

A callout is a request made to a system outside of Force.com from within the platform. There
are many Web APIs, free and premium, that can be quickly integrated into your Apex code
using Apex callouts. This section describes how to work with the two different styles of callouts
in Force.com:

http://goo.gl/GBXT6

302

Chapter 10 Integration with Force.com

1. Calling RESTful services from Apex—Force.com includes classes for issuing HTTP and
HTTPS requests, encoding and decoding URLs and Base64 content, and performing
cryptographic signing and hashing often needed to comply with the security
requirements of external services.

2. Calling SOAP services from Apex—Apex code can be generated directly from WSDL,
producing methods for invoking an external Web service and representing the input and
output data in native Apex data structures rather than SOAP.

Caution

Force.com tightly controls outbound requests from its platform. Understanding the limits before
jumping into development of integrations is important. These limitations apply to both Web ser-
vice callouts and HTTP requests.

Request and response messages cannot exceed the maximum Apex heap size, normally 6MB.
Apex code can make a maximum of ten HTTP requests in a single transaction. By default, a
single request cannot run longer than 10 seconds. If a transaction contains more than one
request, the total time of all requests cannot exceed 120 seconds.

Calling RESTful Services from Apex

Twitter, Facebook, Yahoo!, Google, and countless others provide REST APIs for their services.
REST is designed for lightweight clients, those running inside Web browsers or other scripting
environments. Rather than generating static language bindings from a metadata description,
as found with WSDL in the Web services world, the REST approach is dynamic. Its emphasis is
on a concise syntax for URLs that represent resources and the use of HTTP methods to describe
actions on those resources.

REST services usually return data in XML or JSON format, with the format specified by the
caller of the service. JSON stands for JavaScript Object Notation, a standard format for repre-
senting JavaScript objects as strings. Like XML, it’s widely used for communication between
programs.

To invoke REST-style services, Apex can make HTTP requests from the Force.com platform to
external servers on the Internet, as well as parse their JSON and XML responses. The core Apex
classes that allow you to work with HTTP are described here:

= HttpRequest—This class contains the parameters for making an HTTP request. It
includes methods for working with the request body, HTTP headers, the HTTP method
type, client certificates, HTTP compression, and timeouts.

= HttpResponse—When an HTTP request is sent, an instance of the HttpResponse class is
returned. Methods are available for getting the raw response body, HTTP status code, and
HTTP headers.

= Http—This class is used to perform the HTTP operation. It contains a single method
called send to initiate the operation, which accepts an instance of HttpRequest and
returns an HttpResponse.

Apex Callouts

In addition to these three classes, here are two other useful classes for working with HTTP in
Apex:

1. EncodingUtil—This class contains methods for URL and Base64 encoding and
decoding.

crypto—Use the Crypto class to compute cryptographic hashes and signatures
commonly required to authenticate to HTTP services. It includes the methods
generateDigest to generate a one-way hash digest for a message, generateMac to
generate a message authentication code given a private key, and sign to produce a
digital signature for a message using a private key.

To get started with HTTP in Apex, try writing a method to invoke a RESTful service. The service
used in the following example is provided by Yahoo!. It’s a geocoding service, returning lati-
tude and longitude given a street, city, and state. The service is documented at http://developer.
yahoo.com/boss/geo. Listing 10.1 is a sample of the result of invoking the service.

Listing 10.1 Sample JSON Response from Yahoo! Geocoding REST Service
cbfunc ({

"query": {

"count": 1,

"created": "2013-07-21T05:03:202",
"lang": "en-US",
"results": {
"place": {
"centroid": {
"latitude": "37.547031",
"longitude": "-122.314827"

In the code sample in Listing 10.2, the geocoding service is called and its response parsed using
the JSON API provided by Force.com.

Listing 10.2 Integrating the Yahoo! Geocoding Service
public class Listingl0 2 {
private static String APP_ID = 'BltiUc7k';

public static Result geocode (String location) {
HttpRequest req = new HttpRequest () ;
String query = 'select centroid from geo.places where text="'
+ location + '"';
String url = 'http://query.yahooapis.com/vl/public/ygl?appid="
+ APP_ID + '&g=' + EncodingUtil.urlEncode (query, 'UTF-8')

303

http://developer.yahoo.com/boss/geo
http://developer.yahoo.com/boss/geo

304 Chapter 10 Integration with Force.com

+ '&format=json';
req.setEndpoint (url) ;
req.setMethod ('GET') ;
Http http = new Http();
HTTPResponse res = http.send(req);
JSONParser parser = JSON.createParser (res.getBody());

while (parser.nextToken() != null) {
if ((parser.getCurrentToken() == JSONToken.FIELD NAME) &&
(parser.getText () == 'centroid')) {

parser.nextToken () ;
return (Result)parser.readValueAs (Result.class);
}
}
return null;
}
public class Result {
public String latitude;
public String longitude;
public String asString() {
return latitude + ', ' + longitude;

Tip
The Listingl0_2 class will not work without a Remote Site Setting authorizing Force.com to
call out to the Yahoo! service. To add this setting, go to the Administration Setup area and click

Security Controls, Remote Site Settings. Click the New Remote Site button and enter a name to
remember the site (no spaces allowed) and the root of the URL (http://query.yahooapis.com).

To test the code, open the Execute Anonymous view in the Force.com IDE and execute the
statements given in Listing 10.3. The result (contained in the debug log) should be a single line
containing the latitude and longitude of the input address.

Listing 10.3 Testing the Yahoo! Geocoding Integration

Listingl0_2.Result r = ListinglO_2.geocode
("1 market st san francisco ca');
System.debug (r.toString()) ;

Calling SOAP Services from Apex

Force.com provides a code generation tool in its native user interface for creating Apex-friendly
classes and methods from SOAP Web service definitions found in WSDL files. Like most code

http://query.yahooapis.com

Apex Callouts

generation tools, using it is a hit-or-miss experience. When it works on your WSDL, it can save
considerable effort over the alternative of manually constructing and parsing SOAP messages.
But be prepared for cryptic error messages when code cannot be generated due to the imped-
ance mismatch between WSDL, SOAP, and Apex.

If you're able to use your WSDL wholesale or slim it down to successfully generate Apex code,
most of your work is done. Invoking the remote SOAP Web service becomes a relatively simple
matter of preparing the right input via Apex classes, invoking a method, and using the result-
ing Apex classes in your program. No interaction with HTTP or XML is necessary because these
details are hidden by the generated Apex code.

Caution

For integrations that require a series of Web service calls strung together with cookies to main-
tain state between them, you cannot use the Apex code generated from WSDL. Additionally,
generated code does not support HTTP-level authentication.

In general, no developer-modifiable options exist in the generated code, which uses an internal,
undocumented API to perform the actual Web service callout. If your Web service call requires
control over the SOAP message content or HTTP headers, you must write code to make the
request from scratch using HTTPRequest, as described in the next subsection.

Here are the steps needed to generate Apex from WSDL:

1. Save the WSDL file on your local machine.

2. Go to the App Setup area and click Develop, Apex Classes.
3. Click the Generate from WSDL button.
4

. Click the Browse button and locate the WSDL in your file system and then click the
Parse WSDL button. The WSDL must describe a document-style service because Remote
Procedure Call (RPC) is not supported.

5. Each WSDL namespace can be mapped to an Apex class name to be generated. You can
map multiple namespaces to the same class. Force.com suggests an Apex class name
based on the WSDL, but you can override this suggestion. When you’re done naming the
classes, click the Generate Apex Code button.

6. If you refresh your Force.com IDE by right-clicking the project and selecting Force.com,
Refresh from Server, you should see the new Apex class. If not, make sure that it was
generated successfully and that you've subscribed to new Apex classes by right-clicking
the Force.com project and selecting Force.com, Add/Remove Metadata Components.

Caution

Due to the complexity of WSDL, conflicts between its naming conventions and Apex syntax
rules, and the limit on Apex class size, the WSDL to Apex feature might not work as expected
in all cases. Investigate these issues further in the Force.com online help. As a best practice,
keep your WSDL as simple as possible. Manually edit it to strip out extraneous services and
ports.

305

306

Chapter 10 Integration with Force.com

Before you can run this code, you must authorize Force.com to make an outbound call to the
endpoint of the Web service. Go to the Administration Setup area, click Security Controls,
Remote Site Settings, and then add the host.

Calling into Force.com Using REST

Force.com provides a REST form of its core data access API to query and modify standard and
custom objects. It also allows Apex developers to turn custom classes into REST Web services.
This section provides an introduction to using REST to call into Force.com in three parts:

= Getting started with Force.com REST API—Learn how Force.com functionality is
exposed in the REST style and how to authenticate to it.

= Force.com REST API walk-through—Using your computer’s command line, you can
take an interactive tour of the Force.com REST APL

= Creating custom Apex REST Web services—With a few simple modifications, an Apex
class can be serving REST-style requests from the Web.

Note

Because REST requests and responses are typically so concise, you can practice using them
directly from your computer’s command line using standard OS-level tools to make Web
requests. The examples in this section rely on the tool named cURL, available free for every
platform at http://curl.haxx.se.

Getting Started with Force.com REST API

Data access concepts in Force.com translate naturally into the REST style of API. SObjects and
rows within them become URLs, and HTTP actions express DML operations: GET for read-only
requests for basic information, POST to create records, PATCH to update records, and DELETE to
delete them. Because not all HTTP clients support the full range of methods, Force.com also
allows a special URL parameter (_HttpMethod) to specify the action. By default, REST API calls
return JSON-encoded responses, but you can override this by appending .xml to the end of
URLs, or by sending the standard HTTP Accept header with the desired content type.

Almost every REST API call requires authentication to Force.com. This is done using OAuth.
OAuth is an industry-standard way of negotiating access to a system without requiring users

to share their login credentials. OAuth operates using tokens instead. Tokens have advantages
over the typical username/password credentials. They can be audited and revoked by the user.
They also typically provide limited access to the system. In the case of Force.com, OAuth access
tokens grant bearers the ability to make API calls only. They cannot log in to the Salesforce
Web user interface.

http://curl.haxx.se

Calling into Force.com Using REST

Note

OAuth is a complex subject well beyond the scope of this book. The Force.com REST API
Developer’s Guide, found at www.salesforce.com/us/developer/docs/api_rest/index.htm, pro-
vides some introductory information on using OAuth to authenticate to Force.com.

If you are calling the REST API on behalf of another user, OAuth is the recommended approach
for authentication because you do not need to store others’ usernames and passwords. But
when you're learning and experimenting with simple REST API examples, OAuth can present a
significant hurdle.

A shortcut is to use the username-password OAuth flow, which still accepts username and pass-
word directly. Listing 10.4 provides a sample request and response.

Listing 10.4 Sample Password Authentication Request and Response

curl https://login.salesforce.com/services/oauth2/token
-d "grant_ type=password" -d "client id=$CLIENT ID"
-d "client secret=$CLIENT SECRET"
-d "username=SUSERNAME" -d "password=$PASSWORD"

"id": "https://login.salesforce.com/id/...",
"issued_at": "1374386510993",

"instance url": "https://nal5.salesforce.com",
"signature": "...",

"access_token": "..."

The value in the response’s access_token field is needed to run all of the examples in this
section. To get one yourself, set the $USERNAME environment variable to your Salesforce user-
name, $PASSWORD to your Salesforce password with security token appended. The variables
$CLIENT ID and $CLIENT SECRET are your OAuth Consumer Key and Consumer Secret. These
come from a Connected App, which you can create using the following steps:

1. In the App Setup area, click Create, Apps.
. Click the New button in the Connected Apps section.

. Fill out Connected App Name, API Name, and Contact Email.

2

3

4. Check Enable OAuth Settings.

5. Set the Callback URL to http://localhost.
6

. In Available OAuth Scopes, select Access and Manage Your Data (api).

The resulting Connected App is shown in Figure 10.1.

307

http://www.salesforce.com/us/developer/docs/api_rest/index.htm
http://localhost

308

Chapter 10

Integration with Force.com

jbrce.com

Connected App: Chapter 10 = salesforce.com - Developer Edition

Saarch, Search Palge Tumaer =

System Overview

Personal Setup

* My Personal Information
+ Emall

+ Import

+ Deskiop Integration

= My Chatter Settings

» My Social Aceounts and
Contacts

App Sotup

* Customize

B Create
Apps
Cusiom Labels
Interaction Log Layouts
Objocts
Packages
Report Types
Global Actions New!
Taba

¥ Workflow & App

Versien 1.0

Home Contacts Projects Skills Missing Skills Matrix Utilkzation +
Emu LTSV connacnd App Name i
Q, Quick Find Ghapter 10
Forentoin Hame = Back to List Custom Apps
Edit Delote

APIMame Chaper_10
Description
Croated Date 7/24/2013 11:33 PM
By: Paige Turner
Contact Phonn
Contact Emall paigeturner.dl. Je@gmall.com
Last Modiflod Date 7/21/2013 11:33 PM
By: Paiga Tumar
¥ Basic Information
info URL Start URL
Mabile Start URL
* DAuth Settings
(:mn:m IMVEHAZKNIBA 1 ThvingUPNBZIsIPFonkoftelO g _vPwROYSE5KzI ::m;{n
0y r
Selected Access and manage your data (api) Gallba
OAuth ur
Scopes

¥ Moblle Integration

Figure 10.1 Connected App configuration

Force.com REST APl Walk-Through

Now that you have obtained an OAuth access token, you are ready to try the Force.com REST
API. Set the access token as the environment variable $TOKEN. Also, be sure to replace na15 in
the following examples with your own instance of Force.com. To identify your instance, look
at the instance_url field of the OAuth username-password flow, or the URL in your Web

browser when you log in to Force.com.

Note

This section is not a complete reference to the REST API. Consult the Force.com REST API
Developer’s Guide, found at www.salesforce.com/us/developer/docs/api_rest/index.htm,
for the latest and most detailed information on the REST API, which Salesforce continuously
improves in each major release of the platform.

Listing 10.5 is an example of one of the simplest REST API calls. It returns the services avail-
able via REST in the specified version and instance of the Force.com platform. Here, the result
indicates four services. In subsequent examples, you’ll try all the services, except recent.

The recent service returns the same data as you see in the Recent Items box in the Web user

interface.

http://www.salesforce.com/us/developer/docs/api_rest/index.htm

Calling into Force.com Using REST

Listing 10.5 Services Available Request and Response

curl https://nal5.salesforce.com/services/data/v28.0\
-H "Authorization: OAuth "STOKEN -H "X-PrettyPrint:1"

"sobjects" : "/services/data/v28.0/sobjects",
"identity" : "https://login.salesforce.com/id/... ",
"connect" : "/services/data/v28.0/connect",
"search" : "/services/data/v28.0/search",
"quickActions" : "/services/data/v28.0/quickActions",
"query" : "/services/data/v28.0/query",
"tooling" : "/services/data/v28.0/tooling",
"chatter" : "/services/data/v28.0/chatter",
"recent" : "/services/data/v28.0/recent"

}
Tip

The backslash (\) character found at the end of the first line in Listing 10.5 and other listings
in this chapter is a line-continuation character for UNIX shells. Translate it as appropriate to
your own command-line environment.

To retrieve basic information on an SObject, use the sobjects service, as demonstrated in
Listing 10.6. You can also omit the object name (/Project__ c) to get a list of all SObjects,

or append /describe to the end of the URL to obtain the full, detailed list of fields on the
SObject. If an error occurs in processing this request or any REST request, the response contains
message and errorCode keys to communicate the error message and code.

Listing 10.6 Basic Information Request for an SObject

curl https://nal5.salesforce.com/services/data/v28.0/sobjects/Project c\
-H "Authorization: OAuth "S$TOKEN -H "X-PrettyPrint:1"

Another usage of the sobjects service is shown in Listing 10.7. Here an individual record is
returned, identified by its unique identifier. The fields parameter specifies a subset of fields to
return. You can omit this parameter to retrieve all fields. If your record is a binary object such
as a Document, append /body to the URL to retrieve the binary content.

Listing 10.7 Record Retrieval by Unique Identifier Request and Response

curl https://nal5.salesforce.com/services/data/v28.0\
/sobjects/Project ¢/a01i0000000rMgl?fields=Name, Status_ c\
-H "Authorization: OAuth "S$TOKEN -H "X-PrettyPrint:1"
{
"attributes" : {
"type" : "Project_ c",
"url" : "/services/data/v20.0/sobjects/Proj c/a0110000000rMglAAE"

309

310

Chapter 10 Integration with Force.com

b

"Name" : "GenePoint",
"Status__c" : "Green",
"Id" : "a01i0000000rMglAAE"

Listing 10.8 demonstrates record retrieval by external identifier. The record with a Project
ID c value of Project-00001 on the Project ¢ SObject is returned.

Listing 10.8 Request for Retrieval of Record by External Identifier

curl https://nal5.salesforce.com/services/data/v28.0\
/sobjects/Project c/Project ID c/Project-00001\
-H "Authorization: OAuth "STOKEN -H "X-PrettyPrint:1"

A simple SOQL query is shown in Listing 10.9. To run a SOSL query, use search instead of
query in the URL.

Listing 10.9 SOQL Query Request

curl https://nal5.salesforce.com/services/data/v28.0\
/query?qg=SELECT+Name+FROM+Project _c\
-H "Authorization: OAuth "STOKEN -H "X-PrettyPrint:1"

To create a record, make a POST request with the SObject type in the URL and a JSON or XML
request body containing the record’s field values. Listing 10.10 creates a new Project__ ¢
record named Test Project. A successful response provides the new record’s unique identifier.

Listing 10.10 Create Record Request and Response

echo '{ "Name": "Test Project" }' |\
curl -X POST -H 'Content-type: application/json')\
-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1" -d e-\
https://nal5.salesforce.com/services/data/v28.0/sobjects/Project c

"id" : "a0110000003aFzrAAE",
"success" : true,
"errors" : []
}
Tip

To adapt the command in Listing 10.10 to run in Windows Command Prompt, remove the
single quotation mark characters (') in the echo statement, replace the single quotation mark
characters around the Content-type header with double quotation mark characters ("),
remove the backslash (\) line-continuation characters and concatenate the lines into a single
line, and replace $TOKEN with $TOKEN%.

Calling into Force.com Using REST

Updating a record follows a similar process to creating a record. Make a PATCH request with
the URL containing the SObject type and unique identifier, and a request body with the field
values to update. In Listing 10.11, the record created in Listing 10.10 gets its name updated.

Listing 10.11 Update Record Request

echo '{ "Name": "Updated Test Project" }' |\
curl -X PATCH -H 'Content-type: application/json'\
-H 'Authorization: OAuth '$TOKEN -H "X-PrettyPrint:1" -d @-\
https://nal5.salesforce.com/services/data/v28.0\
/sobjects/Project ¢/a01i0000003aFzrAAE

The only difference between an upsert and update request is that upsert uses an external identi-
fier rather than the unique identifier. If the external identifier value is not found, the request
creates the record and its unique identifier is returned. Otherwise, the record is updated, and
nothing is returned upon success. Listing 10.12 demonstrates an upsert of a Project ¢
record.

Note

Listing 10.12 will return an INVALID FIELD FOR_INSERT UPDATE error unless you change
the project ID c field type from Auto Number to Text first because Auto Number fields are
read-only.

Listing 10.12 Upsert Record Request and Response

echo '{ "Name": "Upserted Project" }' |\
curl -X PATCH -H 'Content-type: application/json'\
-H "Authorization: OAuth "STOKEN -H "X-PrettyPrint:1" -d @-\
https://nal5.salesforce.com/services/data/v28.0\
/sobjects/Project c¢/Project ID c¢/Project-11111

Deleting a record by its unique identifier is shown in Listing 10.13. You can also delete a record
by its external identifier. In both cases, nothing is returned by a successful request.

Listing 10.13 Delete Record Request

curl -X DELETE\
-H 'Authorization: OAuth 'STOKEN -H "X-PrettyPrint:1"\
https://nal5.salesforce.com/services/data/v28.0\
/sobjects/Project ¢/a01i0000003aFzrAAE

311

312

Chapter 10 Integration with Force.com

Creating Custom Apex REST Web Services

Force.com REST API is a powerful but generic way to access data. For some application-specific
data access scenarios, such as those involving transactions that span multiple database objects,
a custom API is helpful. You can expose your Apex classes as REST services, making simple
atomic units of work accessible to callers outside of Force.com, and hiding the implementation
details from them. Requests to custom Apex REST services are made via HTTP in JSON or XML
format, dictated by the Content-Type header, with JSON the default.

For an Apex class to become a REST Web service, it must follow different rules than ordinary
Apex classes. The most significant rules are listed here:

Global class access modifier—A class that contains any REST services must use the
global access modifier. This means the class is visible to all programs running in the
Force.com organization.

URL mapping annotation—A class containing REST services must be mapped to a
URL so that it can be invoked. Define the URL mapping using the @RestResource
annotation.

HTTP verb annotation—Each method accessible via REST must be annotated with
a corresponding HTTP verb. The verbs are @HttpDelete, @HttpGet, @HttpPatch,
@HttpPost, and @HttpPut, and the same verb can’t be assigned to more than one
method. These methods must also be global and static.

Method parameters—The REST request body is automatically mapped into the
parameters of the method. Method parameters are not supported for the eHttpDelete
and eHttpGet verbs. The REST request URL is never automatically mapped to method
parameters and requires code to extract its values.

Data types—Data types supported in REST methods are primitive types (except Blob and
sObject), sObjects, List and Map (String keys only) containing primitives or sObjects, and
user-defined classes.

Security—REST methods run as a system administrator, without regard for object-,
field-, or record-level sharing rules. To enforce record sharing rules, define the class
with the with sharing keyword. To enforce object- and field-level security, use the
results of the getDescribe method (Schema.DescribeSObjectResult and Schema.
DescribeFieldResult) to check the user’s permission to the data.

Supporting classes—User-defined Apex classes, inner or outer, that are arguments or
return values for a REST service method must be defined as global.

Additionally, custom Apex REST Web services are subject to standard Apex governor limits. A
subset of these governor limits is listed in Table 10.1.

Calling into Force.com Using REST

Table 10.1 Subset of Apex REST Service Governor Limits

Resource Type Governor Limit

SOQL 100 queries

Records from SOQL 50,000 records

DML 150 DML statements

Records in DML 10,000 records

Stack depth 16

Heap 6,000,000 bytes

Apex code 200,000 lines of code executed

Listing 10.14 defines a simple Apex REST service that returns a record in the Project custom
object given its unique identifier.

Listing 10.14 Custom Apex REST Web Service

@RestResource (urlMapping="'/Listingl0_14/*")
global with sharing class Listingl0 14 {
@HttpGet
global static Project ¢ doGet () {
RestRequest req = RestContext.request;
String projectId = reqg.requestURI.substring(
req.requestURI.lastIndexOf ('/")+1);
Project ¢ result = [SELECT Id, Name, Status__c, Owner.Name
FROM Project ¢ WHERE Id = :projectId];
return result;

In Listing 10.15, the custom REST Web service is invoked and returns fields from the Project
record with unique identifier a0110000000rMg1.

Listing 10.15 Custom Apex REST Web Service Request and Response

curl -H 'Authorization: OAuth 'S$STOKEN -H "X-PrettyPrint:1"\
"https://nal5.salesforce.com/services/apexrest/Listingl0 14/a0110000000rMgl"

{

"attributes" : {
"type" : "Project_ c",
"url" : "/services/data/v27.0/sobjects/Project c¢/a0110000000rMglAAE"

b

"Name" : "GenePoint",

313

314

Chapter 10 Integration with Force.com

"Owner" : {
"attributes" : {
n type n : llName n ,
"url" : "/services/data/v27.0/sobjects/User/005i0000000LUJSAAO"
}
"Name" : "Tim Barr",
"Id"™ : "00510000000LUJSARO"
¥
"OwnerId" : "00510000000LUJSARO",
"Id" : "a01i0000000rMglAAE",
"Status_ c" : "Green"

}

Calling into Force.com Using SOAP

Force.com provides many SOAP APIs, each focused on a different area of platform functional-
ity. For example, you can query and modify standard and custom objects using SOAP. You can
also make custom classes into SOAP Web services. This section provides an introduction to
using SOAP to call into Force.com in three parts:

1. Understanding Force.com SOAP API—This section describes high-level concepts
common to all the subsequent sections, including how to invoke SOAP Web services
from Java and the handling of data types and errors.

2. Using the Enterprise API—The Enterprise API is a set of SOAP Web services that allow
fine-grained, strongly typed access to the data in your Force.com database, including
execution of SOQL and SOSL queries and full read and write capabilities on the records of
all objects.

3. Creating custom Apex SOAP Web services—Although Force.com provides a built-in
SOAP API to access your data, you can also define your own custom SOAP API using Apex
code. Custom Apex SOAP Web services are typically written to optimize for application-
specific usage patterns; for example, combining what would be many SOAP API calls into
a single, robust method executed entirely on the Force.com platform.

Understanding Force.com SOAP API

Force.com SOAP API allows data, logic, and metadata to be accessed from outside the Force.
com platform by any program that can communicate using SOAP messages over HTTP. With a
strongly typed language like Java or C#.NET, stub code is generated from the Force.com SOAP
APT’'s WSDL. The program must log in to Force.com to establish a session and can then invoke
the SOAP API methods.

This section describes concepts that can be applied to using any Force.com SOAP API method.
It consists of the following parts:

Calling into Force.com Using SOAP

= Basics of Force.com SOAP API—Learn about the two different styles of Force.com SOAP
API methods, how they are secured, and limits placed on their use.

= Generating stub code—Walk through the process for generating Java code from Force.
com SOAP API WSDL.

= Logging in—The first SOAP API call typically establishes a session with Force.com by
logging in. This session is used to make subsequent SOAP API calls until it is invalidated
explicitly or it expires.

= Force.com data types in SOAP—Understand how data types in Force.com objects are
expressed in the SOAP API.

= Error handling—Force.com SOAP API signals errors in a few ways, depending on where
the errors originate.

Basics of Force.com SOAP API

The Force.com SOAP API comes in two forms, Enterprise and Partner. Both APIs have the same
core set of calls, such as query to execute a SOQL query. The difference between the APIs is
how database objects are represented in your code.

The Enterprise API provides a strongly typed representation of the objects in your Force.com
database. This allows your code to operate naturally with Force.com data, using the field names
and data types as you would in Apex code. When you redefine an object or add a new object,
the Enterprise WSDL is automatically updated to reflect the changes. You need to manually
regenerate the client code from the latest WSDL, but this is a small price to pay for concise,
maintainable code.

The Partner API is designed for independent software vendors who write applications that must
interoperate with many different Force.com organizations. They cannot rely on a single, static
representation of standard and custom objects because all customers of Force.com are free to
create their own database schemas. With the Partner API, you can write generic code to access
any object in any Force.com organization. It’s more verbose to work with than the Enterprise
API, but more flexible as well.

Note

This book does not cover the Partner API. For more information about it, consult the
Force.com SOAP API Developer’s Guide, available at www.salesforce.com/us/developer/
docs/api/index.htm.

Versions

With each major release of the Force.com platform, new versions of its WSDL are also released.
To take advantage of new features, your code must be updated to use the latest WSDL.

If the new features are not needed, no action is required. Your code will continue to work
without modification. This is because each WSDL has an endpoint URL in it that includes its
version.

315

http://www.salesforce.com/us/developer/docs/api/index.htm
http://www.salesforce.com/us/developer/docs/api/index.htm

316

Chapter 10 Integration with Force.com

Note

In its documentation, Salesforce commits to maintaining Web service versions for a minimum
of three years. It also states that one year of notice will be provided for discontinued Web
service versions.

Security

Force.com uses Secure Sockets Layer (SSL) v3 and Transport Layer Security (TLS) to protect the
communications between your client application and the Force.com platform.

After your client program has logged in, all the API calls respect the full set of data security
features in Force.com at the object, field, and record level. For this reason, configuring a Force.
com profile and user account dedicated solely to integration is a good practice. It might have
elevated privileges compared with other, Web-based users. You can configure this profile to
accept logins only from the API address of your corporate integration server using the Login IP
Ranges on the profile or logins at specific times that your integration is scheduled to run using
the Login Hours section.

API Limits

Salesforce limits the number of API calls that can be executed during a 24-hour period. Every
call into Force.com is counted against this limit, including calls made by the Force.com IDE.
The exact limit depends on the edition of Force.com you have licensed.

To view your API limit and current consumption, go to the Administration Setup area and click
Company Profile, Company Information. You can configure Force.com to email you when
your organization is close to its API call limit. Go to the Administration Setup area and click
Monitoring, API Usage Notifications. Click the New button to define a new notification, speci-
fying the user to receive the notification, the usage threshold that triggers notifications, and
how often they are sent.

Generating Stub Code

If you're using a strongly typed language like C#.NET or Java to integrate with Force.com, your
first step is to generate stub code from a Force.com WSDL. All standard Force.com WSDLs are
available in the App Setup area; to access them, click Develop, API. Click each WSDL link and
save the resulting document on your local file system.

Each language and development tool typically provides a facility for parsing WSDL and gener-
ating stub code that can be incorporated into your program. The steps for generating Java stub
code from WSDL are described next.

Note

Salesforce advises that you use the Force.com Web Service Connector (WSC) with its SOAP
API. Download it from https://github.com/forcedotcom/wsc. Download the source code from
https://github.com/forcedotcom/wsc. Follow the instructions there to compile the source
code into a WSC JAR file, which requires Maven (http://maven.apache.org/). If you would
rather download a WSC JAR file than build it, find one at http://code.google.com/p/sfdc-wsc/
downloads/list.

https://github.com/forcedotcom/wsc
https://github.com/forcedotcom/wsc
http://maven.apache.org/
http://code.google.com/p/sfdc-wsc/downloads/list
http://code.google.com/p/sfdc-wsc/downloads/list

Calling into Force.com Using SOAP 317

Follow these steps to create Java stub code using WSC and the Eclipse IDE:
1. Create a new Java project. In this example, the project is named Chapter1o0.
2. Copy the WSC jar and enterprise.wsdl files into the top level of your Java project.

3. Create a new Run Configuration to execute the stub generator. Figure 10.2 shows the
Run Configuration.

Run Canfigurations
Create, manage, and run configurations —
Run 3 Java spplication Q
i X8 - Name: |Cenerate stub code
@ Main . 09+ Arguments | ik JAY | %, Cluspath | B Soarce | B Fnviranm: ent| [Common
8 Apache Tomeat Praject.
@ teimse Application
1 Felipis Data ook Chapter10 | Browse.
4 Generic server Aol class
& Cenerie ServeriExremal Launch)
5 HTTE Preview £oem.eree. wi.tools. wiic Searth...
5 2 preveew o - . — ~
0 b Aot ude system Bbraries when searching for a main class
W [T Java Application Inciude inherited maina when searching for & main clats
7] Generate stub code S20p In main
Julnin -
Ji Junin Plug-in Test
m Maven Build
O5Gi Framewark
Jig Task Content Test
L
Apphy Revert
Fitter matched 16 of 16 items.
(k)] Clase un

Figure 10.2 Eclipse Run Configuration to generate stub code using WSC

4. Click the Arguments tab and enter enterprise.wsdl.xml ./enterprise.jar in the
Program Arguments text box. These arguments tell the program to generate the stub code
for the enterprise.xml.wsdl file into a jar named enterprise.jar.

5. Click the Run button on the Run Configuration and refresh your project. It should
contain the stub code for the Force.com Enterprise API, as depicted in Figure 10.3.

318 Chapter 10 Integration with Force.com

Java - Eclipsa = [Usars/jason/Desktop/book v3 /warkspace
7 = e | =1
T FOO - O W P Y e (e s [Q Gk access W Y | 48 pova e [V
14 Package Explorer i 3 == =n
¥ Chapter10
e
-l JRE System Ubrary BavaSt-1.6]
¥ W Referenced Librares
¥ (= force-wic-28.0.0-jar-with-dependencies. jar
¥ 5 enterprive ju
¥ (i om sforee soag enserpeive
b B com sforce seap. enmerprise faul
¥ B com.sforce 3040, enterprise sobject
2 META- I
¥ enterprive jar
] enterprive waddlaml
B feree-wae- 2B.0.0-jar-with-dependeneies jar
{5 Problems 5 Javadoe Declaration 1 Consale oLl
0 ems
Dereription o Repouree Path Loc stian Type

Figure 10.3 Java project with stub code generated

Logging In

Logging in to Force.com from a program begins with the user credentials of username and pass-
word, the same as logging in to the native user interface using a Web browser. This subsection
describes four additional details to be aware of to successfully log in, summarized here:

= API Enabled permission—The user logging in must have the API Enabled permission on
his or her profile.

= Security token or white-listed IP address—Force.com requires either a security token
appended to the password or API calls to be issued from a white-listed IP address.

= Login call—When successful, the login method returns two items of information needed
in subsequent calls: a URL to the Salesforce server and the user’s session identifier.

= Troubleshooting login problems—Force.com includes a Login History report that can
be helpful in identifying problems.

API Enabled Permission

The user logging in via API must have the API Enabled permission set on his or her profile. This
permission is found in the Administrative Permissions section. A profile with the API Enabled
permission is shown in Figure 10.4.

Calling into Force.com Using SOAP

Profile: Sales Rep ~ salesforce.com -

Developer Edition

Administrative Parmissions

AP Enabled Manage Public
Documents

Chattor Infornal User Manage Public List
Views

Creato and Own Now «" Manage Public
Chattor Groups. Ropnris

Edit HTML Manage Pubiic
Tempiates Templates

Irvite Customers To " Moderate Chatter

Chatter
IF Restrict Roquests

Manage Business

Password Nevar
Expiron

Send Outbound

Hours Holideys Messages
Manage Dashbsards Transfor Record
Manage Dynamic View Setup and
Dashbanrds Configuration
Manage Lotterheads
General User Permisslons
Allow emall-bassd Manage Gontont

idantity confirmation Permissions

Croata and Mass Edits from
Customnize Reports Lints.
Croate and Share Mass Email 7
Links to Chatter
Create Libraries Roport Bullder
Deliver Uploaded \(Run Flows
Files and Persanal
Content
Drag-and-Drop Run Roports o
Dashbaard Bullder
Edit Events Send Emall
Edit Tasks " Shaow Custom
Sidebar On All
Pagos

Fanort Qannsts Vs Fasruntad Nats

Figure 10.4 Profile with the API Enabled permission

Caution

A few editions of Force.com don’t allow APl access. If you don’t see the API Enabled permis-
sion on the profile page or cannot enable it, contact Salesforce support.

Security Token or White-Listed IP Address

The security token is a string of characters appended to the end of a user’s password. It allows
a user to log in to Force.com from any IP address, assuming that IP address restrictions are not
configured on his or her profile. To obtain a security token, visit the Personal Setup area and
click My Personal Information, Reset My Security Token. A new security token is generated and
emailed to the address associated with the user.

An alternative to security tokens is IP white-listing. White-listing instructs Force.com to accept
requests from a specific IP address. To white-list an IP address, go to the Administration Setup
area and click Security Controls, Network Access. Click the New button, enter the IP address in
the Start IP Address and End IP Address fields, and then click the Save button.

The Login Call

To log in, invoke the login method with a username and password. If the login is successful,
a LoginResult object is returned; otherwise, an exception is raised. The LoginResult object

320

Chapter 10 Integration with Force.com

contains the URL of the server to send SOAP API requests to and the session identifier that
uniquely identifies your authenticated session with Force.com. Both of these attributes must be
sent in the HTTP headers of subsequent requests for them to succeed.

Listing 10.16 contains sample Java code to log in. Note that WSC takes care of the details
described earlier for logging in, but this is not the case if you use a different Web service stack,
such as Apache Axis.

Note

The code in Listing 10.16 doesn’t include exception handling or importing the generated stub
code. It also doesn’t factor in the use of corporate proxies, which might block outbound HTTPS
traffic. Java can be configured to pass connections through a proxy. If your connections to
Force.com are failing, check with your network administrator to see whether a proxy could be
the cause.

Listing 10.16 Java Fragment to Log In

ConnectorConfig config = new ConnectorConfig() ;
config.setUsername (user) ;
config.setPassword (pass) ;

EnterpriseConnection connection = Connector.newConnection(config);

When you're done with a session, you can invoke the logout API call. It causes the session to
become invalid, ensuring that it is not used accidentally elsewhere by your program.

By default, sessions expire after two hours, but you can change this in the Administration Setup
area by clicking Security Controls, Session Settings. Web service calls that use an expired or
invalid session throw an exception with an INVALID SESSION_ID exception code.

Troubleshooting Login Problems

All logins to Force.com create an entry in the login history, shown in Figure 10.5. To view it, go
to the Administration Setup area and click Manage Users, Login History.

The login history can be helpful for troubleshooting login problems. If you see your program’s
login attempt listed but failed, the login request has successfully reached Force.com'’s servers
but is being rejected. If the request is not listed at all, you need to investigate the connection
between your server and Force.com.

Calling into Force.com Using SOAP

Login History ~ salesforce.com - Davelopar Edition o

My Chatter Settings
: M: Sochal Mm::.) View: | All = | Creale New View
Contacts Usernanse Login Time +
TI21/2013
App Satup paigeturnar.dl dsfomaileom 11:15:19 PM
POT
+ Customize
B Craat 2112013
o paigelumer.dl Jofigmail.com 11:15:11 PM
= Dovelop POT
8l Daplay, 7212013
Schema Builder paigeturnar.dl efigmail.com 11:13:07 PM
GCarvas App Proviower POT
Instatied Packages 712112013
A af Jpfligmail com §:13:02 PM
Critical Updates POT

TrR1R03
i 3ofigmai v
Administration Setup pigetumar.dl 3efigmail com \;ﬁg 20 P

O Manage Usars T3
Users paigeturnar.dl deftgmail com §:08:27 PM
Mass Email Usors PaT
= 7242013

paigetumer. o Sefomaicom &51:11 PM
Permission Sels POT
e RN
oSO paiaelumer il Sefigma com 82831 PH
Login History 72472013
paigeturnerdl de@amail.com B:28:30 PM
Manage Apps POT
Company Profile 712112013
Security Gontrols paigelumer dl 3aflgmail.com B:22.54 PM
Domain Managemant Haew POT
Communication Templates 7212013

ol B com B304z PM
Data Managemant POT
Manitoring

Mobile Administration

Flralritk]
paigeturnar.dl defigmail com 6:34:12 AM

Figure 10.5 Login history page

Force.com Data Types in SOAP

Source I Login Type Status Browser Platform Application Clie

50019320 O giccass 122

Apex AP1 e —— Unknown NA LI
Other Java
50.0.193.20 pillyn) SUCOUSE [gil ey ooy Unknown NIA NiA
Mo

50,0.183.20 Application Succoss Firafox 22 08X Browsor NIA

Ramate
50.0.183.28 A =20 Success Unknown Unknown RestExample KA
50018328 "0 Siconss Unknown Unknown RestExampla NIA
. Access 2.0
Partnar Java " i
Wbt Product & (Salasfores. com) U g b WA

Parinar Jdnva
S0.099328 by SUCSESS (el e com) UTNOWN Ape Plugin NIA

50.0.183.28 ;m Bucobss :;’:utmm) Unknown Apex Plugin - NA
50019320 [P Success g Unknown Apax Plugin NI
50.0.183.20 Application Success Firnlox 22 M Bowser NA
50018929 Appication Success Cheoma28 (oo Bowser NIA

Parinar Java
50.0.183.20 Produet Succass |Salesiorce. com) Unknown Apex Plugin - NA

Table 10.2 lists the Force.com data types and their mapping to SOAP data types.

Table 10.2 Mapping of Force.com Data Types to SOAP Types

Force.com Data Type
Auto Number

Formula

Roll-Up Summary

Lookup Relationship, Master-Detail Relationship
Checkbox

Currency

Date, Datetime

Number

SOAP Type
String.

Depends on the data type of the formula. Can be
Double, String, Date.

Double.
ID.
Boolean.
Double.

Date. Always UTC, convert to local time zone. If
time portion isn’t present, midnight is returned.

Integer (numbers with no fractional component);
otherwise Double.

321

322

Chapter 10 Integration with Force.com

Force.com Data Type
Percent

Email, Phone, Picklist, Picklist (Multi-Select),
Text, Text Area, Text (Long), URL

Binary (Attachment, Document)

Note

SOAP Type
Double.
String.

Base64-encoded string.

Refer to the documentation for your programming language or SOAP utility library to map SOAP

types to language-specific data types.

Error Handling

Three categories of errors are raised by Force.com SOAP API, described here from lowest to

highest level of abstraction:

1. System exceptions—System exceptions are language-specific and indicate lower-level
problems occurring in the Web services stack. For example, using Java with the WSC, the
ConnectionException contains nested exceptions to indicate specific problems, such as

a java.net.SocketException.

2. API faults—API faults are caused by malformed SOAP messages, authentication failures,
or query-related problems. They are SOAP-level errors that contain an exception code
and a message. For example, in Java, a LoginFault class extends ApiFault and indicates
that the login to Force.com failed. A general API fault with an exception code of
INSUFFICIENT ACCESS indicates that the user does not have sufficient access to perform

the operation.

3. Application errors—These are language-neutral, Force.com-specific errors that vary based
on the Web services involved. For example, services that modify one or more records
return an Error object upon failure. The Error object contains a status code, a message,
and an array of fields impacted by the error. As a concrete example, if your record
modification violates the referential integrity of the Force.com database, an Error object
containing FIELD INTEGRITY EXCEPTION as its status code is returned.

Using the Enterprise API

At the highest level, the Enterprise API consists of core services that allow query and modifica-
tion of Force.com data, plus a set of types reflecting the standard and custom objects defined
in your Force.com organization. Using these core services and types is a fairly straightforward
exercise after your code has established a session with Force.com.

Calling into Force.com Using SOAP

This section divides the Enterprise API into four functional groups, described here:

1. Retrieving records—Retrieve records using SOQL or SOSL queries, by unique identifier,
or based on their modification or deletion time stamp.

2. Writing records—Learn how to create and update records using the Enterprise API.

3. Deleting and undeleting records—By deleting records, you send them to the recycling
bin, where they can later be undeleted if necessary.

4. Modifications in bulk—Modifications can be performed on up to 200 records at a time
to conserve API calls and improve performance.

Retrieving Records

The most common way to retrieve records is via SOQL. This is accomplished with the query
service. A SOQL statement is passed as input, and a QueryResult object is returned. This object
contains an array of records returned by the query.

The number of records returned by the query service is a function of the batch size. The default
batch size in Java using WSC is 2,000 records, 500 for Axis and other Web service clients. If a
query result contains more records than the batch size, use the queryMore service to retrieve
additional batches of records.

The code in Listing 10.17 demonstrates the query and queryMore services in Java to build a
list of Project records.

Listing 10.17 Java Fragment to Execute SOQL Query

List<Project c> projects = new ArrayList<Project c>();
QueryResult gr = connection.query("SELECT Id, Name FROM Project c");
boolean done = false;
if (gr.getSize() > 0) {
while (!done) {
SObject[] records = gr.getRecords() ;
if (records != null)
for (SObject record : records) {
projects.add((Project c)record) ;
}
if (qr.isDone()) {
done =
} else {
gr = connection.queryMore (gqr.getQueryLocator()) ;
}
}
}

true;

}

323

324

Chapter 10 Integration with Force.com

You can set a custom batch size (up to 2,000 records) by providing a QueryOptions header.
This is demonstrated in Java in Listing 10.18.

Listing 10.18 Java Fragment for Setting Query Batch Size

connection.setQueryOptions (2000) ;

There’s no guarantee Force.com will return the requested number of records in a batch. For
example, if a SOQL statement selects two or more custom fields of type long text, the batch size
will never be more than 200 records. Queries on binary data always return a single record at a
time.

Other Ways to Retrieve Records

A few other approaches are available for retrieving records, described next:

» Using SOSL—The search service executes a SOSL statement and returns a Search
Result object, which contains an array of SearchRecord objects. Each SearchRecord
contains an SObject instance representing a matching record. Because SOSL can return
many object types, each SearchRecord object can contain a different type of SObject.

= By unique identifier—If you know the unique identifier of an object, you can retrieve
it by using the retrieve service. Its inputs are a string containing a comma-separated
list of field names to retrieve, the type of object as a string, and an array of up to 2,000
record unique identifiers. It returns an array of SObject instances.

= By time stamp—The getUpdated and getDeleted services return the unique identifiers
of records updated or deleted between a range of dates.

Writing Records

The basic services for writing records closely resemble their counterparts in Apex code. Services
exist for creating, updating, upserting, deleting, and undeleting records. These services can
accept one record at a time or up to 200 records in a single invocation.

Creating Records

To create one or more records, invoke the create service, passing in an array of SObjects. Each
SObject must contain at a minimum the values for the required fields defined on the object.
The service returns an array of SaveResult objects. Each SaveResult indicates success or
failure of an individual record. In the case of failure, the saveResult also contains an array of
Error objects indicating the error reason.

The code in Listing 10.19 demonstrates the create service in Java. It creates a Contact record
from the values of firstName and lastName.

Calling into Force.com Using SOAP

Listing 10.19 Java Fragment to Create Record

Contact contact = new Contact();
contact.setFirstName (firstName) ;
contact.setLastName (lastName) ;
SaveResult [] result = connection.create(
new SObject[] { contact });
if (result != null && result.length == 1) {
if (result[0].isSuccess()) {
System.out.println("Created contact with Id: "
+ result [0] .getId());
} else {
System.out.println("Failed to create contact: " +
result [0] .getErrors () [0] .getMessage()) ;

Updating Records

To modify existing records, use the update service. Its arguments and return value are identical
to those of the create method. The major difference is that the SObjects must contain a value
for the 14 field. This value is the unique identifier of the record to be updated.

Use the upsert service when you want to create records that don’t exist and update them

if they do exist. To determine whether a record exists, the upsert service examines a field
containing unique identifiers. This field can be the internal 14 field or a custom field desig-
nated as an external identifier. The first argument to the upsert service is the name of the
unique identifier field, and the second is an array of SObjects. The service returns an array of
UpsertResult objects. Like the saveResult object, it contains a success or failure indicator
and an array of errors upon failure.

Note

You must perform an additional step to set fields to null during an update or upsert. Each
object instance has a special array field called £ieldsToNull. To set a field to null, add the
name of the field to this list.

Deleting and Undeleting Records

To delete records, call the delete service and pass in an array of record unique identifiers to
delete. Unlike the other DML operations, delete accepts different types of objects in a single
call. The service returns an array of DeleteResult objects indicating the success or failure of
each deletion, as well as any error messages.

The undelete service restores deleted records from the Recycle Bin. Its input is a list of record
unique identifiers, and it returns an array of UndeleteResult objects for use in tracking the
outcome of each undeletion.

325

326

Chapter 10 Integration with Force.com

Modifications in Bulk

Bulk modifications involve more than one record. You can create, update, upsert, delete,

or undelete a maximum of 200 records in a single call. By default, Force.com allows partial
failure, meaning some records can fail while others succeed. To override this behavior, add the
AllorNoneHeader to the call and set it to true. This causes Force.com to roll back all modifi-
cations made by the call unless all records are successfully processed.

The ability to process multiple object types in a single call is a powerful feature of bulk modi-
fications. This is supported on create, update, delete, and undelete operations, but not upsert.
For example, you can create a Resource and Skill in one round-trip to Force.com. This requires
that the Skill record references its parent Resource using an external identifier rather than an Id
because an Id for the record doesn’t exist yet.

There are several important limitations of bulk create and update calls that involve multiple
object types:

= Up to ten unique object types are allowed per call.

= You can't reference a new record of the same type in a single call. For example, if two
Contact records were related to each other, you would need to create the parent first and
then create the child and relate it to the parent in a separate call.

= [f there are related records in the call, parent records must be located ahead of child
records in the request.

= You cannot modify records of multiple object types if they participate in the Salesforce
Setup menu. This limitation includes custom settings objects, GroupMember, Group, and
User.

Creating Custom Apex SOAP Web Services

With SOAP Web services, you can create higher-level APIs of your own directly in the Force.
com platform and invoke them from your own programs outside of Force. Your custom SOAP
services can bundle a series of related queries or updates into a single call, providing an atomic
unit of work and reducing network traffic and API call consumption.

Caution

Custom SOAP services run with administrative rights by default, granting your Apex code access
to all data in the organization.

One way to understand the value of Apex SOAP Web services is to first examine limitations in
the Enterprise API. The Enterprise API is a direct representation of the objects in your database
as SOAP message types, with methods to query and modify them per record or in batches. This
low-level access to the Force.com database through standard protocols and messages opens your
Force.com applications to the outside world but isn’t perfect for every integration scenario. The
following list points out some areas in which the Enterprise API can fall short:

Calling into Force.com Using SOAP

Transactions—There is limited support in the Enterprise API for transactions that
span multiple objects. If an external program must modify many objects in an atomic
operation, it needs to detect failure for each call and apply a compensating action to
reverse prior successes.

Integrated security—The Enterprise API always applies object-, field-, and record-level
sharing rules of the currently logged-in user. This cannot be disabled by an external
program calling into Force.com. If greater rights are needed, an administrator must
alter the user’s profile or the program must log in with the credentials of a more
privileged user. This can complicate integration programs by requiring many logins of
varying privileges or put the organization at risk by running integration programs with
administrative rights.

Performance—As your integration programs get more complex, they can become chatty,
making many calls to Force.com to fetch different types of records and postprocess them
off-platform. This consumes more of the API calls toward the organization’s daily limit
and reduces performance by putting more data on the wire.

The definition of a custom SOAP service is slightly different from that of a regular Apex class.
The differences are listed here:

Global class access modifier—A class that contains any SOAP services must use the
global access modifier. This means the class is visible to all programs running in the
Force.com organization.

SOAP methods—Each method accessible via SOAP must be defined with the webservice
keyword. These methods must also be static.

Security—SOAP methods run as a system administrator, without regard for object-,
field-, or record-level sharing rules. To enforce record sharing rules, define the class
with the with sharing keyword. To enforce object- and field-level security, use the
results of the getDescribe method (Schema.DescribeSObjectResult and Schema.
DescribeFieldResult) to check the user’s permission to the data.

Supporting classes—User-defined Apex classes, inner or outer, that are arguments or
return values for a SOAP service method must be defined as global. Member variables of
these classes must be defined using the webservice keyword.

No overloading—SOAP service methods cannot be overloaded. Overloaded methods
result in a compile error.

Prohibited types—The Map, Set, Pattern, Matcher, Exception, and Enum types are not
allowed in the arguments or return types of Apex SOAP services.

Additionally, SOAP services written in Apex must abide by its governor limits. A subset of these
governor limits is listed in Table 10.3.

327

328

Chapter 10 Integration with Force.com

Table 10.3 Subset of Apex SOAP Service Governor Limits

Resource Type
SOQL

Records from SOQL
DML

Records in DML
Stack depth

Heap

Apex code

Governor Limit

100 queries

50,000 records

150 DML statements

10,000 records

16

6,000,000 bytes

200,000 lines of code executed

Listing 10.20 defines a simple Apex SOAP service that creates a record in the Project custom

object given a name.

Listing 10.20 Sample Apex Code for Custom SOAP Service

global class Listingl0 20 {

webservice static ID createProject (String name) {

Project ¢ proj

insert proj;

return proj.Id;

}
}

new Project c(Name

name) ;

Calling an Apex SOAP Service

To call an Apex SOAP service from client code, follow these steps:

1. In the App Setup area, click Develop, Apex Classes.

2. Locate the class containing the Apex SOAP service and click the WSDL link.

3. Save the WSDL on your local file system. You’ll need this plus the Enterprise WSDL in
order to call the custom Apex SOAP service.

4. Generate stub code from the custom WSDL and add it to your project.

5. Authenticate using the Enterprise WSDL by passing a ConnectorConfig to Connector.
newConnection method; then change the service endpoint to the one from the custom

WSDL.

6. Create a new SoapConnection from the ConnectorConfig, and invoke the custom Apex

SOAP service method.

Sample Application: Anonymous Benchmarking

Listing 10.21 demonstrates the invocation of the custom createProject service in Java using
the WSC, with the stub code generated to a .jar file named Listing10_20.

Listing 10.21 Java Fragment for Invoking Custom Apex SOAP Service

ConnectorConfig config = new ConnectorConfig() ;

config.setUsername (user) ;

config.setPassword (pass) ;

Connector.newConnection (config) ;

config.setServiceEndpoint (com.sforce.soap.Listingl0_20.Connector.END POINT) ;
SoapConnection sconn = new SoapConnection(config);

String projectId = sconn.createProject ("Test Project");

Sample Application: Anonymous Benchmarking

In a services organization, utilization is a valuable metric for managing the business. A simple
definition of utilization is the number of hours worked, typically hours billable to the client,
divided by the total number of hours in a time period, expressed as a percentage.

In this section, the Services Manager sample application is extended with a Visualforce page
that performs a basic utilization calculation between two dates. To calculate billable hours
worked, it queries the Timecard custom object. For available hours, it uses a built-in Apex func-
tion for date arithmetic to compute the number of working hours between the two dates.

Integration comes into the picture with the addition of anonymous benchmarking. Imagine an
independent organization that collects and analyzes the performance data of services compa-
nies. Companies submit their anonymized metrics and compare their performance with that
of other companies in their industry. For the Services Manager sample application, you have
access to a fictional benchmarking organization reachable through a SOAP Web service call.

The remainder of the section describes the design and implementation of the utilization page,
controller, and integration to the anonymous benchmarking SOAP Web service. It is divided
into the following subsections:

= Visualforce page design—Build a simple Visualforce page to capture the start and end
dates of the utilization calculation, and display the results.

= Visualforce controller design—Develop a controller to retrieve the billable hours worked
and the available hours, and perform the utilization calculation.

= Integrating the SOAP Web service—Add code to the controller to call out to the
anonymous benchmarking SOAP Web service to share the results of the utilization
calculation.

= Sample implementation—Examine sample code for the utilization page and
controller. Try this code in its entirety, copy portions of it, or contrast it with your own
implementation.

329

330 Chapter 10 Integration with Force.com

Visualforce Page Design

The goal of this section is a Visualforce page resembling what’s shown in Figure 10.6. A user
has entered start and end dates to compute utilization, selected the Share Anonymously check
box to indicate that she would like the results sent out over the Web to the benchmarking
service, and clicked the Calculate button. This populated the lower three rows with the utiliza-
tion results. The results include the total hours worked in the time period (from the Timecard
object), the total number of consulting resources in the system (from the Contact object), and
the utilization as a percentage.

salosforce com - Developer Edition

ﬁm.colr}_ Saarch, Saarch Palge Turnar = Halp
| Home Gontacts Projects A skills Missing Skills Matrix +
N

Services Manages
=E Utilization

e Shared anonymous benchrmark data

Caleulnte]

SaniDate 32001 | 7212013)
EndDate |g21/2003 || 7212013 |
Share Anonymously
Totsl Hours 80,00
Total Resources &
Utilization (%) 13.00

Calculate

Copyright © 2000-2013 salesforos.com, inc. All rights reserved, | Privagy Stilemant | Sacurity Statement | Terms of Liss | 508
Compliance

Figure 10.6 Utilization Visualforce page

The page is styled to look like part of the native Force.com native user interface. The
sectionHeader component is used to render the heading bar. This is followed by the
pageMessages component to show errors and information to the user. The Calculate button is
a commandButton, enclosed in a pageBlockButtons component. The Start and End date fields
are both inputField components with their value attributes set to SObject Date fields in the
controller, providing a calendar picker user interface when focus is received. The styling of each
row is accomplished by pageBlockSectionItem components, each with two child compo-
nents. For example, the pageBlockSectionItem to render the row for Start Date contains an
outputLabel and an inputField.

Sample Application: Anonymous Benchmarking

Begin by prototyping this page, focusing on the appearance, layout, and user interaction.
Create a custom controller class, adding a placeholder action method to calculate the utiliza-
tion. Create member variables for the start and end dates, binding them to any Date field in

a standard or custom object. This binding means you can use the inputField component to
render the start and end date fields, making them calendar input controls rather than plain text
fields. Add a Boolean member variable for the Share Anonymously option, bound to an input-
Checkbox component.

You're ready to move on to build out the controller to compute utilization and integrate the
benchmarking SOAP Web service.

Visualforce Controller Design

The job of the controller is to take the user input and calculate utilization, optionally sending
the results to the Web service. Real-world calculations of utilization can be complex. For
example, some organizations subtract paid time off from the total hours available. Or with a
large or diverse pool of resources, utilization might be calculated separately per business unit or
geographic region.

In the Services Manager sample application, the utilization calculation is intentionally kept
simple. One minor complication is in defining the available working hours, the denominator in
the utilization formula. Rather than assuming that all consultants are billable 24 hours a day,
use Force.com to store the company’s business hours.

To manage business hours, go to the Administration Setup area and click Company Profile,
Business Hours. Force.com comes preconfigured with business hours that run for 24 hours per
day, 7 days a week. Because you don't expect your consultants to work 168-hour weeks, click
the Edit link and update the default business hours to something more reasonable. To designate
a day off, leave the start and end time blank. Figure 10.7 shows the business hours configura-
tion for a 45-hour workweek, working 8:00 a.m. to 5:00 p.m. weekdays with Saturdays and
Sundays off.

331

332

Chapter 10 Integration with Force.com

Qrganization Busingss Hours ~ salesforce.com - Devaloper Edition

T'CE.COIT1 Saarch Search [ER R "B Sorvices Manager -
Home Contacts Projects A Skills Missing T Skills Matrix +
Expand Al | Colapse All 2 : 1 e R
Q. Quick Find Organization Business Hours RN
Select the days and hours that your support 18am is available. These hours, when associated with escalation rules,
Force.com Home delermine the bmes al which cases can escalale.
If you enter biank business hours for a day, that means your organization does not operate on that da
System Overview i v i ¥
Personal Setup Business Hours Edit Save | Cancel
+ My Persanal Stop 1. Busis Hours Namao I = Roguirnd Informasion
E Emall Businoss Hours | Defauit Use these business
+ Import Hame hours as the default
+ Deskiop Integration Active
= My Chatter Settings
+ My Social Accounts and Step 2. Time Zo
Caontacts b, e S
Time Zone | {CMT-07-00) Pacific Daylight Time (America/Los_Angeles)
App Sotu
P Step 3. Business Hours
» Customize
» Create Sunday o 24 hours
¢ Develop Monday 500 AM 18 500 M 24 hours
B Dty Tuosday 500 AM 1o 5.00 P 24 hours
el Wednescay .00 aM 1 5:00 M 24 hours

Canvas App Proviewor

Instafied Packages Thursdsy g.o0 AM 1 500 Py 24 hours

AppExchange Marketplace Friday B:00 AM b 500 M 24 hours

Critical Updatos Saturday to 24 hours
Administration Setup 2ors | [Corent

Figure 10.7 Configuring business hours

With business hours configured, you're ready to compute utilization. The following list outlines
the steps:

1. Write a SOQL query to select the Total Hours__ c field from all timecards that are

billable and between the start and end dates entered by the user.

Add up all the values of the Total Hours__c field. This is the numerator in the
utilization calculation.

Assume that the Wweek Ending_c field of timecards is always a Saturday. If the start
or end date entered by the user is not a Saturday, adjust it accordingly. If you do not
take this simplifying step, you’ll have to compensate for non-Saturday time ranges by
subtracting the hours of individual days from the total.

The number of hours available must account for the business hours of the organization.
The business hours you configured in the Force.com native user interface are stored in a
standard object named BusinessHours, queryable from SOQL. Write SOQL to obtain the
unique identifier of the default BusinessHours record. Call the static diff method on
the BusinessHours class, passing the unique identifier and the adjusted start and end
dates. This returns a long value with the number of milliseconds elapsed between the two
dates during which the organization was open for business.

Sample Application: Anonymous Benchmarking

Integrating the SOAP Web Service

The fictional anonymous benchmarking service provides a URL to the WSDL for its Web
service. The Web service allows companies to submit their utilization calculations anonymously
for contribution in a database. Companies are differentiated by industry only, using a stan-
dard industry classification system called the North American Industry Classification System
(NAICS), developed by the United States Census Bureau. NAICS codes are six-digit numbers.
The list of NAICS codes is available at www.census.gov/eos/www/naics/reference_files_
tools/2007/naics07_6.txt. For example, 541511 is the code for companies providing Custom
Computer Programming Services.

To integrate the Web service, begin by generating an Apex class from the WSDL. The WSDL is
available at http://force-book-developer-edition.na6.force.com/AnonymousBenchmarkWsdl.
Download it to your local machine and then follow these steps:

1. In the App Setup area, click Develop, Apex Classes and click the Generate from WSDL
button.

2. Click the Browse button, locate the WSDL file in your file system, and click the Parse
WSDL button.

3. You should see the screen shown in Figure 10.8, which is prompting for an Apex class
name to receive the generated code. You can name your class anything you want, but
this example uses the name BenchmarkWS. Then click the Generate Apex Code button.

New Apax Code from WSDL - talasforce.com - Developar Edition

Jorce.com ot
Home Contacts Projects A Skills Missing Skills Matrix +
Expand Al | Coltapse All Haloor thla Page @
Q Quick Find New Apex Code from WSDL s
Foren o Hame Step 2: Specify Class Names
Pravious || Generste Apex code Cance
System Overview
& Parse successful Wamings 0, Errors 0
Parsonal Satup =T —
Tha fellowing Apex class nama(s) wam derived from the WSDL documant nemespaces. Pleasa modify the
* My Personal Information class name(s) as appropriate. The same Apex class name can be used for multiple WSDL namespaces,
= Emall creating @ single class, Note, though, that a single Apex class can be al mos! 100,000 characters. The
= Import generated Apex class(es) include mathods for ealling the third-party web services represented by the WSDL
+ Deskiop Integration document
+ My Chatter Settings
» My Social Accounts and ‘WSDL Namespace Apax Class Name
Contacts
pfisoap. sforce. |
PP Satip. Pravious || Ganerate Apex code | Cancel
» Customize
» Create
B Develop
Agdx Classas
Apax Triggers
Apex Tes| Execution
AP
Companents
Custom Settings
Email Services
Pages

Sras

Figure 10.8 Generating Apex from anonymous benchmarking WSDL

333

http://www.census.gov/eos/www/naics/reference_files_tools/2007/naics07_6.txt
http://www.census.gov/eos/www/naics/reference_files_tools/2007/naics07_6.txt
http://force-book-developer-edition.na6.force.com/AnonymousBenchmarkWsdl

334 Chapter 10 Integration with Force.com

You should now have a new Apex class called Benchmarkws. Before you can test it out, enable
the endpoint URL in Remote Site Settings. In the Administration Setup area, click Security
Controls, Remote Site Settings. Click the New Remote Site button and enter a name for the site
and its URL (https://force-book-developer-edition.na6.force.com). Figure 10.9 shows the result
of adding the remote site.

All Remate Sites = salesforce.com - Developar Edition
J‘brce.com Saarch Saarch (OSSR Sorvices Manager -]

Home Contacts Projects A Skills Missing Skills Matrix +

Expand All | Colupse AN 7
Q Quick Find All Remote Sites

Below is the list of Wab addresses that your organization can invoke from salesforce.com, To add anol
Farce.com Home

View: | All Remote Sites ¢ Create New View

System Overview ABCDEFGHIJKLMNO
New Remato Site
Personal Setup Action Remoto Sito Nama 1 Mamospace Prefix Ramats Sp URL Active Croated By Croa
My P
y Personal Information hitps: Marce. Turnae, T
Emall Edit|Del AnoaymousBenchmark _ badk-developar: " Paige 830
sy Bifisicn,.naG farc.com g)

e,
My Chatter Settings - hitgihwww apaxdavnetcom v Paign 7:43

My Social Accounts and Contacts 2, A 7120
Eon Dol Yahis } bidaueryyshoompiscom # Lamt 12

:Dcskmplnhgm.lnn Ect Dol ANt Turner, 4127

App Setup

» Gustomizo

* Create

» Davelop

+ Deploy
Schema Builder
Canvas App Freviewer
Instaliod Packages
AppExchange Marketploce
Critieal Upsates

ABCDEFGHIJKELMNO

Administration Setup

Figure 10.9 Remote site settings

Finally, test the generated Apex class using the code given in Listing 10.22. You can execute
this code directly from the Execute Anonymous view.

Listing 10.22 Testing the Web Service Call from Apex

BenchmarkWsS.AnonymousBenchmark service =
new BenchmarkWsS.AnonymousBenchmark () ;
BenchmarkWS.UtilizationEntry ue =
new BenchmarkWS.UtilizationEntry();
ue.naicsCode = '541511"';
ue.startDate = Date.parse('7/1/2013"');
ue.endDate = Date.parse('7/31/2013');
ue.totalHours = 35;
ue.totalResources = 1;
ue.utilization = 88;

https://force-book-developer-edition.na6.force.com

Sample Application: Anonymous Benchmarking

BenchmarkWS.SubmissionStatus[] results =
service.submitUtilizationData (
new BenchmarkWS.UtilizationEntry([] { ue });
if (results != null) {
for (BenchmarkWS.SubmissionStatus result : results) {
if (!result.success) {
System.debug (result.errorMessage) ;

Sample Implementation

Listing 10.23 contains the controller code for the utilization Visualforce page, and Listing 10.24
contains the page itself. This implementation brings together the three elements discussed in
this section: the user interface to calculate utilization, the utilization computation itself, and
the Web service callout.

Listing 10.23 Sample Code for Utilization Controller

public class UtilizationController {

public Timecard c cardl { get; private set; }
public Timecard c card2 { get; private set; }
public Boolean shared { get; set; }
public Decimal utilization { get; private set; }
public Decimal totalHours { get; private set; }
public Integer totalResources { get; private set; }
public UtilizationController() {

cardl = new Timecard c();

card2 = new Timecard c();
}
public PageReference calculate() {

Date startDate = cardl.Week Ending c;

Date endDate = card2.Week Ending c;

// assumes all active resources are billable

List<Contact> contacts = [SELECT Id FROM Contact
WHERE Active ¢ = TRUE AND Start Date ¢ < :startDate];
List<Timecard c> timecards = [SELECT Week Ending_c,

Total Hours_ c FROM Timecard_c
WHERE Billable c¢ = true AND
Week Ending c¢ >= :startDate AND
Week Ending c¢ <= :endDate
ORDER BY Week Ending c¢];
totalHours = 0;
if (timecards.size() == 0) {

335

336 Chapter 10 Integration with Force.com

return null;
}
for (Timecard c timecard : timecards) {
totalHours += timecard.Total Hours_ c;
}
// adjust start and end dates to match timecard week endings
Timecard_ c firstTimecard = timecards.get(0);
Timecard c lastTimecard = timecards.get (timecards.size() - 1);
if (startDate < firstTimecard.Week Ending c) {
startDate = firstTimecard.Week Ending c.addDays(-6);
cardl.Week Ending c = startDate;
}
if (endDate > lastTimecard.Week Ending c) {
endDate = lastTimecard.Week Ending c;
card2.Week Ending ¢ = endDate;
}
totalResources = contacts.size();
Long availableHours = totalResources *
calculateAvailableHours (startDate, endDate);
utilization = 100 * totalHours.divide (availableHours, 2);
if (shared) {
shareUtilization() ;

}

return null;
}
public static Long calculateAvailableHours (
Date startDate, Date endDate) {
BusinessHours bh = [SELECT id FROM BusinessHours
WHERE IsDefault = true];
DateTime startTime = DateTime.newlInstance (

startDate.year (), startDate.month(), startDate.day(),
0, 0, 0);

DateTime endTime = DateTime.newInstance (
endDate.year (), endDate.month(), endDate.day(),
0, 0, 0);

Decimal diff = Decimal.valueOf (
BusinessHours.diff (bh.id, startTime, endTime)) ;
return diff.divide (3600000, 0).round();
}
private void shareUtilization() {
BenchmarkWs.AnonymousBenchmark service =
new BenchmarkWsS.AnonymousBenchmark () ;
BenchmarkWS.UtilizationEntry ue =
new BenchmarkWS.UtilizationEntry () ;
ue.naicsCode = '541511';
ue.startDate = cardl.Week Ending c;
ue.endDate = card2.Week Ending c;

Sample Application: Anonymous Benchmarking

ue.totalHours = totalHours;
ue.totalResources = totalResources;
ue.utilization = utilization;
BenchmarkWS.SubmissionStatus[] results =
service.submitUtilizationData (
new BenchmarkWS.UtilizationEntry[] { ue });
if (results != null)
for (BenchmarkWS.SubmissionStatus result : results) {
if (!result.success) {
ApexPages.addMessage (new ApexPages.Message (
ApexPages.Severity.ERROR, result.errorMessage));
} else {
ApexPages.addMessage (new ApexPages.Message (
ApexPages.Severity.INFO,
'Shared anonymous benchmark data'));

Listing 10.24 Sample Code for Utilization Visualforce Page

<apex:page controller="UtilizationController"s>
<apex:sectionHeader title="Services Manager"
subtitle="Utilization" />
<apex:form>
<apex:pageMessages id="msgs" />
<apex:pageBlock id="util"s
<apex:pageBlockButtons>
<apex:commandButton action="{!calculate}"
value="Calculate" rerender="msgs, util" />
</apex:pageBlockButtons>
<apex:pageBlockSection columns="1">
<apex:pageBlockSectionItems
<apex:outputLabel value="Start Date" />
<apex:inputField value="{!cardl.Week Ending c}" />
</apex:pageBlockSectionItem>
<apex:pageBlockSectionItem>
<apex:outputLabel value="End Date" />
<apex:inputField value="{!card2.Week Ending c}" />
</apex:pageBlockSectionItems>
<apex:pageBlockSectionItems>
<apex:outputLabel value="Share Anonymously" />
<apex:inputCheckbox value="{!shared}" />
</apex:pageBlockSectionItems>

337

338

Chapter 10 Integration with Force.com

<apex:pageBlockSectionItem>
<apex:outputLabel value="Total Hours" />
<apex:outputText value="{!totalHours}" />
</apex:pageBlockSectionItems>
<apex:pageBlockSectionItem>
<apex:outputLabel value="Total Resources" />
<apex:outputText value="{!totalResources}" />
</apex:pageBlockSectionItems>
<apex:pageBlockSectionItem>
<apex:outputLabel value="Utilization (%)" />
<apex:outputText value="{!utilization}" />
</apex:pageBlockSectionItems>
</apex:pageBlockSection>
</apex:pageBlock>
</apex:form>
</apex:page>

Summary

With its integration features, the Force.com platform is open for interoperability with other
applications and systems running on Force.com, elsewhere on the Internet, and behind your
corporate firewall. The capability to call the platform bidirectionally using Web standards helps
to break down the functional silos of Force.com and other applications.

Chapter 11, “Advanced Integration,” covers additional integration features, such as the ability
to securely embed other applications within the user interface, build custom developer tools,
and provide external applications with a real-time stream of updated data. Before jumping in,
take a minute to review the following points from this chapter:

= You can call out to SOAP and REST Web services from Apex using its built-in support for
HTTP, XML, and JSON, as well as the WSDL to Apex tool.

= OAuth is a Web standard for authentication, configured in Force.com using Connected
Apps.
= With code annotations and tools to map Apex to SOAP and REST, your Apex code

can become Web services, ready for incorporation into programs running outside of
Force.com.

Advanced Integration

This chapter focuses on Force.com integration features that are highly specialized and not typically
essential for everyday application development. They are features often used by independent software
vendors to extend the Force.com platform at a low level to add new capabilities.

Due to their specialized nature and complexity, the APIs covered here each have their own dedicated
reference guides at http://developer.force.com. The intent of this chapter is to provide a brief introduc-
tion to the APIs and sample code that can serve as a way to get started with them.

This chapter is divided into sections that each address a different integration feature:

Introduction to the Force.com Streaming API—The Streaming API provides near-real-time
notifications about the creation and modification of database records.

Working with the Force.com Bulk API—The Bulk API is a way to get mass quantities of
database records in and out of Force.com.

Getting started with Force.com Canvas—Canvas provides a secure mechanism to embed user
interfaces, hosted outside Force.com, into Chatter and Visualforce pages.

Introduction to the Force.com Tooling API—The Tooling API is used by the Force.com IDE
and other tools to maintain code artifacts and access debugging functionality.

Understanding the Force.com Metadata API—The Metadata API enables you to write
code to perform development and configuration management tasks such as database object
maintenance and application migration. It is the same API used by the Force.com IDE.

Sample application—In an integration scenario for the Services Manager sample application,
a Java program is developed to update Force.com with information from a human resources
database.

Note
The code listings in this chapter are available in a GitHub Gist at http://g00.gl/ 7TKuTFT.

http://developer.force.com
http://goo.gl/7kuTFT

340

Chapter 11 Advanced Integration

Introduction to the Force.com Streaming API

The Force.com Streaming API delivers notifications to your program when records in the Force.
com database are created or modified. This can be useful for user interfaces that have a real-
time data requirement or to keep an external database in sync with Force.com. Streaming API is
a scalable alternative to polling Force.com for changes or writing triggers with callouts.

This section provides an introduction to Force.com Streaming API in two parts, described here:
1. Overview—Learn the key concepts involved in the Streaming API.

2. Getting started with Force.com Streaming API—Construct a working example that uses
the Streaming API within a Visualforce page.

Note

For more information about the Streaming API, consult the Force.com Streaming API
Developer’'s Guide, found at http://www.salesforce.com/us/developer/docs/api_streaming/
index.htm.

Overview

Streaming notifications in Force.com are best understood in terms of publishers and subscrib-
ers. Force.com can be configured to publish notifications when something interesting happens
with a database object. This publishing configuration is expressed through a PushTopic. The
PushTopic defines the database object to monitor, a public name that subscribers can reference
called a Channel, and guidance on what conditions in the database object must be satisfied to
create a notification. The subscriber is a program inside or outside of Force.com that uses the
Bayeux protocol (CometD implementation) to register interest in and receive the streaming
notifications.

PushTopics are ordinary Force.com database records, but contain four components that are
critical to properly configuring your streaming notifications, described in the following list:

1. Channel name—This is the name that client applications will use to subscribe to the
streaming notifications on this PushTopic. It must be 25 characters or fewer and be
unique in your organization.

2. SOQL query—The SOQL query defines the database object and fields that you are
monitoring for changes, plus optionally the criteria used to determine whether a change
is worthy of a notification. To receive notifications, the subscriber must have at least read
access to the object, field-level security to the fields in the WHERE clause, and visibility to
the records causing the notifications via sharing rules.

http://www.salesforce.com/us/developer/docs/api_streaming/index.htm
http://www.salesforce.com/us/developer/docs/api_streaming/index.htm

Introduction to the Force.com Streaming APl 341

3. NotifyForOperations—By default, notifications are sent on the Channel when
matching records are created or updated (a11). Use this field to limit notifications to only
creation (Create) or only modification (Update) of records.

4. NotifyForFields—This setting instructs the Channel on what fields in the SOQL query
are considered changes and trigger a notification. Any filters in a WHERE clause are always
evaluated first. By default, it is set to Referenced, which means all fields in the query are
factored into the decision. Other valid values are A11 (all fields in the object, even those
not in SELECT or WHERE), Select (fields in a SELECT clause only), and where (fields in a
WHERE clause only).

As soon as a PushTopic is created, it is instantly available to subscribers. Likewise, when it is
modified, the new definition takes effect immediately. You can delete a PushTopic record to
stop its notifications, or set IsActive to false to disable it temporarily.

Each Force.com organization has a limit of 20 PushTopics. There are also per-edition limits on
subscribers per topic and notifications per day. There are also a number of limitations on the
SOQL query used in PushTopics, described next:

= Subset of objects—All custom objects are supported, but only a handful of standard
objects: Account, Campaign, Case, Contact, Lead, Opportunity, and Task.

= Subset of query features—Aggregate queries, semi-join and anti-joins, count, limit,
relationship fields, order by, group by, and formula fields are not supported.

= Required fields—The query must include the 14 field.

= Maximum length—The query cannot exceed 1,300 characters.

Getting Started with Force.com Streaming API

A simple way to experiment with the Streaming API is to create a Visualforce page to serve

as the subscriber. You can then visually see notifications as they arrive. Figure 11.1 shows a
sample Visualforce page to do this. The button on the top starts and stops notifications by
creating and deleting a PushTopic record. The table below it displays notifications as they arrive
from Force.com, in response to the creation and modification of Timecard records.

342 Chapter 11 Advanced Integration

o)

Channel

" Force.com Streaming AP| Example

MopiciTimecardUpdates”
“hopicTMmecardUpdates” “07282013-01612° “s0Ji0000002YZCcAAK™ “created” "2013-07-29T04:26:06.000+0000°

salosforce com - Developer Edition "
ﬁrce.com Saarch, Saarch Palge Turnar = Halp
m Conlacts Projects Assig Skills Missing Skills Matrix Utilization +

Name d Type Created
T050Z2013-000027 "E0I0000002LWIAAAT “updated” “2013-07-29T04:24:58,000+0000°

Cogyright © 2000-2013 saleatorcs.com, Inc. All fights resarved. | Privacy Statamant | Security Stalemant | Tarma of Uss | 508

Com

Figure 11.1 Streaming APl example

To try this example in your own Salesforce organization, create the controller class in Listing
11.1. Then download the CometD library at http://download.cometd.org/cometd-2.2.0-
distribution.tar.gz. Uncompress it and extract the following files:

m cometd-2.2.0/cometd-javascript/common/target/org/Cometd.js

= cometd-2

jquery-1.

= cometd-2

= cometd-2

.2

5

.2

.2

.0/cometd-javascript/jquery/src/main/webapp/jquery/
.1.3s

.0/cometd-javascript/jquery/src/main/webapp/jquery/json2.js

.0/cometd-javascript/jquery/src/main/webapp/jquery/

jquery.cometd.js

Place them into a zip file and upload it as a static resource named cometd. Now you can create
the Visualforce page given in Listing 11.2.

Listing 11.1 Visualforce Controller for Streaming APl Example

public with sharing class MyPageControllerll 1 {
public Boolean started { get; set; }
private static final String TOPIC NAME = 'TimecardUpdates';
public MyPageControllerll 1() ({

http://download.cometd.org/cometd-2.2.0-distribution.tar.gz
http://download.cometd.org/cometd-2.2.0-distribution.tar.gz

Introduction to the Force.com Streaming API

started = 1 == [SELECT count () FROM PushTopic

WHERE Name = :TOPIC_NAME];
}
public PageReference stop() {
PushTopic p = [SELECT Id from PushTopic
WHERE Name = :TOPIC_NAME LIMIT 1];
if (p != null) {
delete p;
}
started = false;
return null;
}
public PageReference start() {
PushTopic p = new PushTopic();
p.Name = TOPIC NAME;

p.Query = 'SELECT Id, Name, Status__c FROM Timecard c';

p.ApiVersion = 28.0;
p.NotifyForOperations = 'All';
p.NotifyForFields = 'Referenced';
insert p;

started = true;

return null;

Listing 11.2 Visualforce Page for Streaming APl Example

<apex:page controller="MyPageControllerll 1">
<apex:form id="form">

<apex:includeScript value="{!URLFOR ($Resource.

'Cometd.js') }"/>

<apex:includeScript value="{!URLFOR ($SResource.

'jquery-1.5.1.3s')}"/>

<apex:includeScript value="{!URLFOR ($SResource.

'jquery.cometd.js') }"/>

<apex:includeScript value="{!URLFOR ($Resource.

'json2.js') }"/>

cometd,

cometd,

cometd,

cometd,

<apex:sectionHeader title="Force.com Streaming API Example" />

<apex:commandButton action="{!start}" value="Start"
rerender="form" rendered="{!NOT started}" />
<apex:commandButton action:"{!stop}" value="Stop"
rendered="{!started}" />

<apex:outputPanel id="comet" rendered="{!started}">
<script type="text/javascript"s

(function($) {

343

344 Chapter 11 Advanced Integration

$ (document) .ready (function() {

$.cometd.init ({

url: window.location.protocol + '//' + window.location.hostname +
' /cometd/28.0/",

requestHeaders: { Authorization: 'OAuth {!$Api.Session ID}'}

1

$.cometd.subscribe (' /topic/TimecardUpdates', function (message) {
$('#content') .append (
'<tr><td>' + JSON.stringify(message.channel) + '</td>' +
'<td>' + JSON.stringify (message.data.sobject.Name) + '</td>' +

'<td>' + JSON.stringify (message.data.sobject.Id) + '</td>' +
'<td>' + JSON.stringify(message.data.event.type) + '</td>' +
'<td>' + JSON.stringify(message.data.event.createdDate) + '</td>' +
'</tr>');
1
1
}) (jouery)
</script>

</apex:outputPanel>
<p />
<table id="content" width="80%"><tr><th>Channel</th><th>Name</th>
<th>Id</th><th>Type</th><th>Created</th></tr>
</table>
</apex:form>
</apex:page>

Working with the Force.com Bulk API

The Force.com Bulk API allows the import or export of large quantities of records, split into
units of work called batches. Up to 20 million records per 24-hour period can be imported into
Force.com. Both REST and SOAP versions of the API are provided.

This section focuses on hands-on examples with the REST flavor of the Bulk API. The examples
require a tool named cURL, available free for every platform at http://curl.haxx.se.

This section provides an introduction to Force.com Bulk API in three parts, described here:

1. Overview—Get to know the terminology and workflow of the Bulk API, and prepare to
use it by authenticating using OAuth.

2. Importing records—Walk through API usage examples of creating a job to import
records and verify its successful completion.

3. Exporting records—In a series of API calls, submit a SOQL query for a bulk export and
retrieve the results.

http://curl.haxx.se

Working with the Force.com Bulk APl 345

Note

For a comprehensive look at the Bulk API, refer to the Force.com Bulk API Developer’s Guide,
found at http://www.salesforce.com/us/developer/docs/api_asynch/index.htm.

Overview
Bulk API operates in terms of a two-tier system of containers to track units of data movement

work. Each tier is described here:

= Batch—A batch is a set of records to be imported. The records are represented in CSV
or XML format. For import jobs, a batch cannot exceed 10,000 records. Batches are not
applicable to export jobs, which use result files that cannot exceed 1GB.

= Job—A job is a list of batches. The job specifies the type of operation that will be
performed in the batches, such as insert or query.

Authentication

Bulk REST API calls require authentication to Force.com. Use the username-password OAuth
flow, which accepts username and password, to establish an authenticated session. Listing 11.3
provides a sample request and response.

Listing 11.3 Sample Password Authentication Request and Response

curl https://login.salesforce.com/services/oauth2/token
-d "grant_type=password" -d "client id=$CLIENT ID"
-d "client_secret=$CLIENT SECRET"
-d "username=SUSERNAME" -d "password=$PASSWORD"

"id": "https://login.salesforce.com/id/...",
"issued at": "1374386510993",

"instance url": "https://nal5.salesforce.com",
"signature": "...",

"access_token": "..."

The value in the response’s access_token field is needed to run all of the examples in this
section. To get one yourself, set the $USERNAME environment variable to your Salesforce user-
name, $PASSWORD to your Salesforce password with security token appended. The variables
$CLIENT_ID and $CLIENT_SECRET are your OAuth Consumer Key and Consumer Secret. These
come from a Connected App, which you can reuse from Chapter 10, “Integration with Force.
com.”

Now that you have obtained an OAuth access token, you are ready to try the Bulk API exam-
ples. Set the access token as the environment variable $TOKEN. Also, be sure to replace nals in

http://www.salesforce.com/us/developer/docs/api_asynch/index.htm

346

Chapter 11 Advanced Integration

the following examples with your own instance of Force.com. To identify your instance, look
at the instance_url field of the OAuth username-password flow, or the URL in your Web
browser when you log in to Force.com.

Importing Records

To import records, an authenticated user creates an import job, adds batches of data to it, closes
the job, checks for completion, and then retrieves the results. The results are provided per
batch and indicate the status of each imported record. Examples of each step in this process are
provided in the remainder of this subsection.

Listing 11.4 creates a bulk import job. It specifies that the records in the job are to be inserted
into the Project custom object from a CSV file.

Listing 11.4 Creating a Bulk Import Job

echo '<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<operation>insert</operation>
<object>Project c</object>
<contentType>CSV</contentType></jobInfo>' |\
curl -X POST -H 'Content-type: application/xml' \
-H "X-SFDC-Session: "$TOKEN -d @-\
https://nal5.salesforce.com/services/async/28.0/job

Tip

To adapt the command in Listing 11.4 and other listings in this chapter to run in Windows
Command Prompt, remove the single quotation mark characters (') in the echo statement,
replace the single quotation mark characters around the Content-type header with double
quotation mark characters ("), remove the backslash (\) line-continuation characters and con-
catenate the lines into a single line, and replace $TOKEN with $TOKEN%.

Make a note of the job identifier, in the id field of the XML response. It is used in all of the
requests that follow. In Listing 11.5, JOB_1D is a placeholder for the job identifier returned
from the import creation request. Replace it with your own. The records in the batch are sent
in the body of the request, composed of three Project records with unique names.

Listing 11.5 Adding Records to Bulk Import Job

echo 'Name
Projectl
Project2
Project3' |\
curl -X POST -H 'Content-type: text/csv' \
-H "X-SFDC-Session: "$TOKEN --data-binary @-\
https://nal5.salesforce.com/services/async/28.0/job/JOB_ID/batch

Working with the Force.com Bulk APl 347

Save the batch identifier that is returned. You will need it to check for the results of the batch.

You can add more batches to the job by repeating the request. When you’re done adding
batches, send the request in Listing 11.6 to close the job, again setting the job identifier to your
own. Closing the job signals to Force.com that it can begin processing the job.

Listing 11.6 Closing the Bulk Import Job

echo '<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<state>Closed</state></jobInfo>' |\
curl -X POST -H 'Content-type: application/xml' \
-H "X-SFDC-Session: "S$TOKEN -d @-\
https://nal5.salesforce.com/services/async/28.0/job/JOB ID

Job processing is asynchronous, so requests complete immediately but processing continues in
the background. To check for the status of the job, send the request in Listing 11.7 with your
job identifier.

Listing 11.7 Checking the Status of the Bulk Import Job

curl https://nal5.salesforce.com/services/async/28.0/job/JOB_ID \
-H "X-SFDC-Session: "$TOKEN

When the job is complete, you can retrieve the results of its batches. Each batch result indicates
the success or failure of every record within the batch. Listing 11.8 shows a sample request to
retrieve the batch status. Replace the job identifier and batch identifier (BATCH_ID) with your
own.

Listing 11.8 Retrieving Results of the Bulk Import Job

curl https://nal5.salesforce.com/services/async/28.0/\
job/JOB_ID/batch/BATCH ID/result \
-H "X-SFDC-Session: "$TOKEN

Exporting Records

The Bulk API can also be used to query Force.com to export large numbers of records in a CSV
or XML file format. First a bulk export job is created; then a batch is added to the job contain-
ing a SOQL statement. The SOQL cannot contain relationship fields; nested queries; or the
aggregate functions COUNT, ROLLUP, SUM, or GROUP BY CUBE. Next, the status of the job is
checked, and, finally, the results retrieved in files, each up to 1GB in size.

To begin, create a bulk export job using the request in Listing 11.9.

348 Chapter 11 Advanced Integration

Listing 11.9 Creating the Bulk Export Job

echo '<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<operation>query</operation>
<object>Project c</object>
<contentType>CSV</contentType></jobInfo>' |\
curl -X POST -H 'Content-type: application/xml' \
-H "X-SFDC-Session: "$TOKEN -d @-\
https://nal5.salesforce.com/services/async/28.0/job

Keep track of the job identifier returned in the response. Create a batch within the job, specify-
ing the SOQL statement. In Listing 11.10, the names and identifiers of the Project records will
be exported. Replace JoB_ID with your job identifier.

Listing 11.10 Creating the Bulk Export Batch

echo 'SELECT Id, Name FROM Project c' \\
curl -X POST -H 'Content-type: text/csv' \
-H "X-SFDC-Session: "$TOKEN --data-binary @-\
https://nal5.salesforce.com/services/async/28.0/job/JOB_ID/batch

Make a note of the batch identifier. Use the request in Listing 11.11 to check the status of your
export job.

Listing 11.11 Checking the Status of the Bulk Export Job

curl https://nal5.salesforce.com/services/async/28.0/job/JOB_ID\
-H "X-SFDC-Session: "S$STOKEN

When the job is complete, the results are ready to retrieve. This is a two-step process. First,
retrieve the list of result identifiers. Then, for each result identifier, make a request to retrieve
the actual results. Listing 11.12 is an example of the first step. Be sure to replace the JoB_ 1D
and BATCH_ID placeholders with your own values.

Listing 11.12 Retrieving Result Identifiers of the Bulk Export Job

curl https://nal5.salesforce.com/services/async/28.0/\
job/JOB_ID/batch/BATCH ID/result \
-H "X-SFDC-Session: "S$STOKEN

The last step in the process is shown in Listing 11.13. In addition to job and batch identifiers,
replace RESULT ID with one of the result identifiers from the prior request.

Getting Started with Force.com Canvas

Listing 11.13 Retrieving Results of the Bulk Export Job

curl https://nal5.salesforce.com/services/async/28.0/\
job/JOB_ID/batch/BATCH_ID/result/RESULT ID \
-H "X-SFDC-Session: "STOKEN

Getting Started with Force.com Canvas

The Force.com Canvas allows you to integrate Force.com with custom applications, located
outside of Force.com, at the user interface level. It consists of a flexible content “container”
located in Force.com and code libraries (JavaScript and Java) to augment your custom applica-
tion to take advantage of the Force.com Canvas. The libraries provide functionality around
security, sizing of the content container, and communication between Canvas applications and
the container.

This section provides an introduction to Force.com Canvas in two parts, described here:
1. Overview—Learn the basic components of the Canvas and how they work.

2. Getting started with the Force.com Canvas—Walk through an example of a Canvas
application hosted on your local computer.

Note

The Force.com Canvas is a complex and relatively new area of Force.com with many ways
to implement it. Consult the Force.com Canvas Developer’s Guide, found at http://www.
salesforce.com/us/developer/docs/platform_connect/index.htm, for the most current and
complete information on this feature.

Overview

Canvas integrates applications at the user interface level, through the Web browser. The typical
scenario for an integrated user interface is mashing up Force.com data with data from an exter-
nal system. In this scenario, the external system can maintain its own database and processes,
but leverage Force.com data opportunistically from the currently logged-in user. The alternative
is typically heavier-weight integration whereby the servers of the external application attempt
to stay synchronized with data from Force.com.

The two most important features of the Canvas are authentication and cross-domain
XMLHttpRequest (XHR). These are described in the following list:

= Authentication—Authentication enables your external Web application to verify that it
is truly hosted inside a Force.com organization, with an authenticated Force.com user at
the helm. It does this in one of two ways: by allowing the Web user to OAuth to Force.
com or via Signed Request. OAuth is no different from OAuth in other contexts. Signed

349

http://www.salesforce.com/us/developer/docs/platform_connect/index.htm
http://www.salesforce.com/us/developer/docs/platform_connect/index.htm

350 Chapter 11 Advanced Integration

Request is a method whereby the Force.com platform digitally signs a request to your
application’s Web server. The request includes the identity and session information

of the authenticated Force.com user. If the request is decrypted and the signature
verified, you can trust that it originated from Force.com and can use the session to make
subsequent requests to Force.com. Canvas Java SDK provides code for verifying data sent
by the Signed Request authentication method.

= Cross-domain XHR—Because your Web application is being served inside an IFRAME, it
is subject to cross-domain scripting limitations enforced by the standard security policies
of Web browsers. This means JavaScript in your Web pages cannot call out to servers
other than the one serving the parent Web page. Because a common scenario with
mashups is to include data from Force.com, Canvas JavaScript SDK provides API calls to
proxy your requests back to Salesforce.

Getting Started with Force.com Canvas

Because so much of a Canvas application resides outside of Force.com by definition, it is a chal-
lenge to provide a generic, widely accessible example without pulling in many other technolo-
gies. This section walks through an example that leverages a local Web server and two static
HTML pages to demonstrate OAuth authentication and cross-domain XHR requests.

The purpose of the example is to highlight the most common features of Canvas, and to

do so without requiring an application server. In a more realistic application of Canvas, the
OAuth process would originate on the Web server so the authorizations can be stored and
managed securely rather than forcing the user to authenticate every time the page is rendered.
Alternatively, Signed Request could be used to provide a transparent single sign-on process for
the user, whereby the Force.com session is shared securely with the external Web application.

Figure 11.2 shows the sample application running within the Canvas App Previewer. The Login
link has been clicked, prompting the user with an OAuth authorization pop-up. When autho-
rization is complete, a callback Web page closes the pop-up and refreshes the parent window.
The access token obtained during this process is displayed. The user can then click the My
Chatter Profile link, which makes a cross-domain XHR request using the Canvas JavaScript SDK
to the Chatter REST endpoint to get the current user’s Chatter profile and display the raw JSON
response.

Getting Started with Force.com Canvas 351

Canvas App Previewar = salesforce com = Daveloper Edition

€ Canvas App Previewer Halp or tis Page @
ﬂ Heroku Quick Start

Canvas Apps

Salect & Canvas app 1o proviw.

P Force.com Canvas Example

BB BLE v | ARG TGV . FOBRE i BT 3 W TTuBEaEakITa!
i1_gkkalyZveOoRgyVrulolkagixyD

I fil

{“address™y |
{“6tato”:"CA", "country”s "U8*, “strook” snull, "eity” taull, "zip®s"94110%, “formattedh |
ddr “AnCA

s‘}. unername” n-intuxmn -dl.Jefgmail.con” mu'n'ﬂmﬁutnn: dis3ak
i1.com®

|{*rank®i1,* xm:ila irale'), “sanagerid”inull, aboutse” mu:u *tancrive® strue, e

hatteractivie

"10." =10, ") "0},
’{o‘imru‘wn: 1, lullwingcouru '
{“total®:0, "records”10, "people” 10}, “managessame” snull, “name” : "Paige
Taurner”™,“title"inull, "userType®™:"Internal”, " firstNene" : "Paige” .'10Itbllulu' “Turne
©*, *companyMoma®: “None ", “ghota”: { “url®:" faorvicea/data/vZ8. D/chattar /uaora

fphota”, “larg 171 httpsa /i
|fprofilephoto/005/F",) ionId®inull, “smal " i “httpn:
{/c.rals.cantant.. force. cnﬂ!prnﬂ.lnpmmfnﬂsn"r “fullPmallPhobollr1®s “httpa:
//oa15.8al

_!dlhuu‘_pmﬂlw ZN'I Dﬂqﬂ'rmll‘l' “standardEnallPhotoUrl™i"hetps:

Idehul:ﬁmﬂle 45.pngtfromEnaiis]” 1 “mySubscription” snull,* iaTnThisCommunity” s
trus, " id" e DG!iﬁﬂOﬂWldlsw +“moeif®: {*largolconyrl®: -H-qﬁeon
(fprofiletd.png”, "mediunlconticl®: "/ iag/ icon/profiled2. pag”, "small Tconlicl®: =

Figure 11.2 Canvas App in Canvas App Previewer

The following steps describe the process for getting the example up and running:

1. Create Connected App—In the App Setup area, go to Create, Apps and create a new
Connected App. Set the Name, API Name, and Contact Email fields. Check Enable OAuth
Settings. Provide a Callback URL, and add “Access and Manage Your Data (api)” to the
Selected OAuth Scopes list. In the Supported App Types section, check Force.com Canvas.
For the Canvas App URL, provide the URL to your local Web server and the path you are
using to host the Canvas App pages. For Access Method, select OAuth Webflow (GET).
For Locations, select Chatter Tab and Visualforce Page, and then click the Save button.
Figure 11.3 shows an example of this configuration.

352

Chapter 11 Advanced Integration

Connected App: Chapter 11 = salesforce com = Davelopaer Edition
« Back lo List: Cuslom Apps
Edit Delote

Versian 1.0
AP Mame Chapler_11
Dascription
on Croated Date 772772013 6247 PM
By: Paige Turner
Contact Phone
Contact Emall paigeturner.di@gmail.com
Ind Last Modifled Date T/27/2013 7:28 PM
By Paign Turnor

¥ Basic Information
info URL Start LRL
Mobile Start URL.

* DAuth Seottings

Consumer 3MVGIAZKNIBN1 ThvinpUPNDBZ9s_stmRzizmarE_MOUUBAUGN 1ykiFAFGWDYYETTIC YE3 Click 10 revesl
futs Key Howat
Selected Accass and manage your data (api) Callback hiips-iiacalhost
CAulh URL chapleri
Scopes [eallbmek himl

* Mobile Integration
e Implements Screon
Locking & PIN Protection

+ Supported App Types
Fares.com Carvas
Canvas App URL hitips:iocalhostichapter!l
Access Mothod Outh Wabllow (GET)
ooh Locations Chatter Tab
Visualforce Page

Figure 11.3 Connected App configuration

2. Set up local Web server with SSL—Get a Web server running on your machine to
host the Canvas App. Make sure you have enabled SSL, using a self-signed certificate if
necessary. Test the SSL configuration with your browser before proceeding. If there are
any untrusted or invalid certificate errors, the Canvas App will fail to load or function
properly.

3. Add Canvas App pages—Create the two pages in Listing 11.14 and Listing 11.15
within a directory on your Web server, naming them index.html and callback.html,
respectively. In the examples here, they are located in a directory called chapter11, but
you can put them anywhere as long as they match the settings in your Connected App.

4. Configure Canvas App pages—In your version of Listing 11.14, replace REDIRECT URI
and CLIENT ID with the Callback URL and Consumer Key, respectively, from your
Connected App configuration. Also update the instance URL in the SCRIPT tag used to
load the Canvas Javascript API to match your organization.

5. Preview the Canvas App—You should now be able to see the Canvas App in the App
Setup area, Canvas App Previewer. You can also see it in the Chatter tab. If there are
issues, use your Web browser’s debugging facility to troubleshoot.

Getting Started with Force.com Canvas

Listing 11.14 Main HTML Page for Canvas Example

<html>
<head>
<script type="text/javascript"
src="https://nal5.salesforce.com/canvas/sdk/js/28.0/canvas-all.js">
</script>
</head>
<body>
<script>
function profileHandler (e) {
var profileUrl = Sfdc.canvas.oauth.instance() +
"/services/data/v28.0/chatter/users/me";
Sfdc.canvas.client.ajax (profileUrl, {
client: Sfdc.canvas.oauth.client (),
failure: function(data) {
alert (data) ;
b
success: function(data) {
if (data.status === 200)
Sfdc.canvas.byId("chatter profile").innerHTML =
JSON.stringify(data.payload) ;

}
P
}
function loginHandler (e)
var uri;
if (!Sfdc.canvas.oauth.loggedin()) {

uri = Sfdc.canvas.oauth.loginUrl() ;
Sfdc.canvas.oauth.login ({
uri: uri,
params: {
response_type : "token",
client_id : "CLIENT_ID",
redirect uri : encodeURIComponent ("REDIRECT URI")

P
}
return false;
}
Sfdc.canvas (function() {
var login = Sfdc.canvas.byId("login");
var loggedIn = Sfdc.canvas.oauth.loggedin() ;
if (loggedIn) {
Sfdc.canvas.byId("oauth") .innerHTML = Sfdc.canvas.oauth.token() ;
var profile = Sfdc.canvas.byId("profile");
profile.onclick = profileHandler;

353

354

Chapter 11 Advanced Integration

}
login.onclick = loginHandler;
1
</script>
<hl>Force.com Canvas Example</hl>
<div>access_token</div>
<textarea id="oauth" rows="2" cols="80" disabled="true"></textarea>
<div>
<a 1d="login" href="#">Login

My Chatter Profile

</divs>
<textarea id="chatter profile" rows="20" cols="80"></textarea>
</body>
</html>

Listing 11.15 Callback HTML Page for Canvas Example

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en">

<head>

<script type="text/javascript"s

try
window.opener.Sfdc.canvas.oauth.childWindowUnloadNotification (

self.location.hash) ;

} catch (ignore) {}

self.close();

</script>

</head>

<body>

</body>

</html>

Introduction to the Force.com Tooling API

The Force.com Tooling API enables the creation of developer productivity tools for the Force.
com platform. With the Tooling API, features of tools such as the Force.com IDE are accessible
to your own programs. This includes the ability to compile code, perform code completion in
an editor, set breakpoints for debugging, and retrieve trace log results.

This section provides an introduction to Force.com Tooling API in two parts, described here:
1. Overview—Examine the high-level features of the Tooling API.

2. Getting started with the Force.com Tooling API—Build a working example of the
Tooling API that allows you to edit and compile an Apex class within a Visualforce page.

Introduction to the Force.com Tooling APl 355

Note

Consult the Force.com Tooling APl Developer’s Guide, found at http://www.salesforce.com/us/
developer/docs/api_tooling/index.htm.

Overview

The Tooling API is available in both REST and SOAP forms. This section focuses on Apex class
deployment; however, the Tooling API also provides the following services:

= Code—Check the syntax of Apex classes, triggers, Visualforce pages, and Visualforce
components.

= Deployment—Commit code changes to your organization.

= Debugging—Set heap dump markers and overlay Apex code or SOQL statements on an
Apex execution. Set checkpoints to generate log files. Access debug log and heap dump
files.

= Custom fields—Manage custom fields on custom objects.

Getting Started with Force.com Tooling API

The power of the Tooling API can be demonstrated using a basic Visualforce page that calls to
the Tooling API's REST endpoint from the Apex controller. Figure 11.4 shows the sample user
interface. On the left side are the Apex classes available in the organization, accessible with an
ordinary SOQL query on ApexClass. On the upper-right side is the body of the selected Apex
class. Below it is a Save button, which deploys changes to the class body.

The process for deploying Apex code or other types of Force.com logic is to create a
MetadataContainer, add to it the wrapper object corresponding to the type of artifact to be
deployed (in this case, ApexClassMember), create a ContainerAsyncRequest, and track the
progress of the request using a specialized Tooling API query service.

Below the Save button are two fields that illustrate the internal state of the deployment: the
Containerld and Requestld. These are maintained both to check the status of the deployment
(via the Refresh Status button), and to properly clean up (by deleting the MetadataContainer)
when the user clicks the Start Over button.

To use the example, click Edit beside the class you’'d like to edit. Make a change to the class
body and click Save. You should see two successful JSON responses concatenated in the log
output box, and the other buttons in the user interface should become enabled.

Figure 11.5 shows the results of clicking the Refresh Status button. According to the JSON
response, the deployment is complete and without compiler errors. Click the Start Over button.
You should see your changes to the selected Apex class reflected in the user interface and
anywhere that Apex code is visible.

http://www.salesforce.com/us/developer/docs/api_tooling/index.htm
http://www.salesforce.com/us/developer/docs/api_tooling/index.htm

356

Chapter 11 Advanced Integration

ﬁrcc.com

salesforce.com = Developer Edition

" Saarch... Search Palge Tumer = Halp
‘_m Contacts Projocts 9 Skills Missing Skills Matrlx Utilization +
" Tooling APl Example
e e RS
Eiff BanchmadkWs v public MyPageControlier?_3{){
i ChangoPasswordControiar v }‘ﬂ"‘ i
Eif CrangePasswordGontroorTest public PageRefenance tmesTwol) {
£ : > value *s 2;
COMPYEIICOnoN eddinfolxyezy: * + value),
Edil F y Foturn Aull;
Edd ForgolPasswordController 1
private void acdinfo(String meg) {
Edil ForgolPasswordControlier Test W’?W-M
B Lissng10_14 7 ll| y POy el
Ediy Listing10_2 o il
Edit Listing10_20 7
Edit Listing8_1 ' Bave |
Edi Listingd_4 v JZEmAAD, Rag 1¢i0000000RRSGAAG
B Listingd 6 v Refresh Status | Stant Over
Ed Listingd 8 v I
Eift MissingTimocardBatch v " "40010000000UCHRAAD
Eeia MyErmais ‘wm?s'nlruu.
Eifl MyPageController1_1 <
Ed MyPageController1_2 s .f'm':,.n:cm“ nnlc ORFBGANG
Ed MyPageConiroliers_1 “erors” <[]

Figure 11.4 Result of Save button click

ﬁrcc.com

salosforce.com = Developer Edition

“ComgilerErmors” : I,
“Errorisg” : mull

H

“queryLocator | null,

|_“entityTypahlama® : *ContainerAsyncRequast™

" Saarch... Search Palge Tumer = Halp
‘_m Contacts Projects Skills Missing Skills Matrix Utilization +
" Tooling API Example
e s R T 1
Et BonchmarkWs v public MyPageConiroller?_3{
Eift ChangePasswondCantroler v }m i
i GhangoPasswordGontrosorTest public PageReferance timesTwol) {
£ ; > valug *= 2;
COMPYEIICOnoN eddinfo{xyzzy: * + value);
Eda F ¥ '_lm ull;
5B FomoiPasswondConkrolibe peivate void scdinfo(Sting msg) {
s i ApoxPages. Savarity INF, n:::‘ '
Edt Listing10_14 v } :
Edit Listing10_2 o il
Edif Listing10_20 7
Edit Listing® 1 v | Bawe |
Edi Listingd 4 v Ce c0000000UZEMAAD. Reg 1di0000000RRagAAG
B Listng8 6 v Refresh Status | Stant Over
Rl Lisings. 0 id Type® | “ContalnarAsyncRequest”,
it MissingTimecardBatch v [e q
1dr0000000RRSEAAG”
Eil MyEmailSonvics 1
Edit MyPageController!1_1 v “I" ; *1i00D0000RRSGANG”,
£ na > State® "Completad®,

Figure 11.5 Result of Refresh Status button click

The code in Listing 11.16 and Listing 11.17 provides an implementation of the controller and
page for the Tooling API example. The controller makes extensive use of HTTP callouts and the

Introduction to the Force.com Tooling API

built-in JSON parsing support.

Note

For the sample code to work, you must add a Remote Site setting to allow requests to the
Tooling APl endpoint. The endpoint is the root of your instance URL, for example, https://nalb.

salesforce.com.

Listing 11.16 Visualforce Controller for Tooling APl Example

public class MyPageControllerll 16 {

public
public
public
public
public
public

String editBody { get; set; }
String editClassId { get; set; }
String containerId { get; set; }
String requestId { get; set; }
String log { get; set; }
List<ApexClass> getClasses() {

return [SELECT Id, Name, IsValid FROM ApexClass
ORDER BY Name 1] ;

}

public

PageReference edit () {

editBody = [SELECT Body FROM ApexClass
WHERE Id = :editClassId LIMIT 1] [0].Body;
return null;

}

public

log =

PageReference save() {

.
7

// Create MetadataContainer

HttpRequest req = newRequest ('/sobjects/MetadataContainer',

'POST') ;
Map<String, Objects> args = new Map<String, Objects>();

args.put ('Name', 'ClassContainer');

String result = sendRequest (req, args);
containerId = null;

try {

containerId = getResultId(result);

} catch (Exception e) {

log += result;

return null;

}

// Create ApexClassMember

req =

newRequest ('/sobjects/ApexClassMember',

'"POST') ;

args

= new Map<String, Objects>();

args.put ('ContentEntityId', editClassId);

357

https://na15.salesforce.com
https://na15.salesforce.com

358 Chapter 11 Advanced Integration

args.put ('Body', editBody) ;
args.put ('MetadataContainerId', containerId);
log += sendRequest (req, args);
// Create ContainerAsyncRequest
req = newRequest ('/sobjects/ContainerAsyncRequest', 'POST');
args = new Map<String, Object>();
args.put ('IsCheckOnly', 'false');
args.put ('MetadataContainerId', containerId);
result = sendRequest (req, args);
log += result;
requestId = getResultId(result);
return null;
}
public PageReference reset() {
cleanup (containerId) ;
editClassId = '';
requestId = '';
containerId = '';
log = '';
editBody = '';
return null;
}
public PageReference refresh() {
String sogl = 'SELECT Id, State, CompilerErrors, ErrorMsg FROM ' +
'ContainerAsyncRequest where id = \'' + requestId + '\'';
HttpRequest req = newRequest ('/query/?g=' +
EncodingUtil.urlEncode (sogl, 'UTF-8'),
'GET') ;
log = sendRequest (req, null);
return null;
}
public static void cleanup(String containerId) {
sendRequest (newRequest (' /sobjects/MetadataContainer/' + containerId,
'DELETE'), null);
}
private static HttpRequest newRequest (String toolingPath,
String method) {
HttpRequest req = new HttpRequest();
req.setHeader ('Authorization',
'Bearer ' + UserInfo.getSessionID());
req.setHeader ('Content-Type', 'application/json');
req.setHeader ('X-PrettyPrint' , '1');
req.setEndpoint (getInstanceUrl () +
'/services/data/v28.0/tooling' + toolingPath) ;
req.setMethod (method) ;
return req;

Introduction to the Force.com Tooling API

private static String sendRequest (HttpRequest req,
Map<String, Object> args) {
Http h = new Http();
if (args != null) {
reqg.setBody (Json.serialize(args)) ;
}
HttpResponse res = h.send(req) ;
return res.getBody () ;
}
private static String getInstanceUrl() {
String url = System.URL.getSalesforceBaseUrl ()
.toExternalForm() ;
url = url.replace('visual.force', 'salesforce');
url = url.replace('c.', '');
return url;
}
private static Id getResultId(String body) {
Map<String, Objects> result = (Map<String, Objects)
JSON.deserializeUntyped (body) ;
return (Id)result.get('id');

Listing 11.17 Visualforce Page for Tooling APl Example

<apex:page controller="MyPageControllerll 16">
<apex:form id="form">
<apex:pageBlock title="Force.com Tooling API Example">
<apex:pageBlockSection columns="2">
<apex:pageBlockTable value:"{!classes}" var="c">
<apex:column >
<apex:commandLink value="Edit" action="{!edit}"
rerender="editor">
<apex:param name="editClassId"
assignTo="{!editClassId}" value="{!c.Id}" />
</apex:commandLink>
</apex:column>
<apex:column value="{!c.Name}" />
<apex:column value="{!c.IsValid}" />
</apex:pageBlockTable>
<apex:outputPanel id="editor"s>
<apex:inputTextArea id="editBody" rows="15" cols="90"
value="{!editBody}" disabled="{!editClassId == NULL}" />
<p/><apex:commandButton value="Save" action="{!save}"
disabled="{!editClassId == NULL}" rerender="editor" />
<p/>
ContainerId: {!containerId},

359

360

Chapter 11 Advanced Integration

RequestId: {!requestId}

<apex:commandButton value="Refresh Status" action="{!refresh}"
disabled="{!requestId == NULL}" rerender="editor" />
<apex:commandButton value="Start Over" action:"{lreset}"
disabled="{!containerId == NULL}" />
<p/>
<textarea disabled="true" rows="10" cols="90">
{!1log}
</textarea>
</apex:outputPanel>
</apex:pageBlockSection>
</apex:pageBlock>
</apex:form>
</apex:page>

Understanding the Force.com Metadata API

The Metadata API allows the direct manipulation of objects, page layouts, tabs, and most of the
other configurable features in Force.com. By using the Metadata API, you can automate many
of the click-intensive tasks commonly performed in the Force.com IDE or in the native Web
user interface, such as the creation of database objects and fields.

This section provides an introduction to the Metadata API in two parts, described here:

1. Overview—The Metadata API is different from the Enterprise API in two major ways.
First, it can operate on objects in memory or using zip files containing many objects
represented as XML files. Second, its operations are asynchronous, returning immediately
with a result identifier to use for follow-up calls to check the status.

2. Getting started with the Metadata API—Walk through a sample of calling the Metadata
API to create a new object using Java.

Note

The details of how the Metadata APl operates on each type of metadata in Force.com are out-
side the scope of this book. Consult the Force.com Metadata API Developer’s Guide, found at
www.salesforce.com/us/developer/docs/api_meta/index.htm, for the latest information and
detailed descriptions of all the available methods of the Metadata API. Salesforce continues to
expand the reach of the Metadata API in every release.

Overview

The Metadata API consists of two types of services: file-based and object-based. These service
types are summarized next:

http://www.salesforce.com/us/developer/docs/api_meta/index.htm

Understanding the Force.com Metadata APl 361

= File-based services—The file-based services are deploy and retrieve. The deploy
service takes a Base64-encoded zip file containing the components to deploy into the
Force.com organization. The zip file must contain a manifest file named package .xml
at its root to describe the contents of the zip. The retrieve service downloads metadata
from Force.com and returns it as a zip file complete with package.xml as manifest. Its
input is a RetrieveRequest object to specify the types of metadata to download. Both
services can operate on up to 1,500 metadata objects per call.

= Object-based services—The object-based services are create, update, and delete. To
invoke create or delete, pass an array of Metadata objects. The Metadata object is
the superclass of a wide array of objects that contain metadata for specific features of
Force.com. For example, the CustomObject class represents a custom database object,
and Layout represents a page layout. Unlike data records in which a unique identifier
(149) field is the key, metadata uniqueness comes from a combination of its type and
fullName field. The update service takes an array of UpdateMetadata objects, which
each contain a Metadata object and the current name of the object to replace.

Note

Force.com’s documentation uses the term declarative to describe its file-based services, and
CRUD (for create, read, update, and delete) to describe its object-based services.

All Metadata API services are asynchronous, returning immediately with an AsyncResult
object. This object contains a unique identifier for tracking the status of the asynchronous
operation. For object-based services, the service to check status is called checkStatus. For the
file-based service deploy, the status service is checkDeployStatus, and for retrieve, it’s
checkRetrieveStatus.

Getting Started with the Metadata API
To get started with the Metadata API, follow these steps:

1. In the App Setup area, click Develop, APL

2. Right-click the Download Metadata WSDL link and save it on your local file system.
You'll need this plus the Enterprise WSDL in order to call the Metadata API.

3. Generate stub code from the WSDL (for example, by using WSC as described in Chapter
10) and add it to your project.

Listing 11.18 demonstrates usage of the Metadata API in Java by creating a new database object
given a name and its plural name. The code assumes the existence of a member variable called
sessionId, previously populated from the login call’s LoginResult. It prepares the minimum
set of metadata required to call the create service, which is a custom object name, full name,
label, deployment status, sharing model, and name field. After invoking the asynchronous
create service, it loops to check the status using the checkStatus service until the invocation
is complete.

362 Chapter 11 Advanced Integration

Listing 11.18 Java Fragment for Creating Object

public void createObject (String name, String pluralName)
try
ConnectorConfig config = new ConnectorConfig() ;
config.setUsername (user) ;
config.setPassword (pass) ;
com.sforce.soap.enterprise.Connector.newConnection (config) ;
config.setServiceEndpoint (Connector.END POINT) ;
MetadataConnection connection = new MetadataConnection(config);
CustomObject obj = new CustomObject();
obj.setFullName (name + " c");
obj.setLabel (name) ;
obj.setPlurallabel (pluralName) ;
obj.setDeploymentStatus (DeploymentStatus.Deployed) ;
obj.setSharingModel (SharingModel .ReadWrite) ;
CustomField nameField = new CustomField() ;
nameField.setType (FieldType.AutoNumber) ;
nameField.setLabel ("Name") ;
obj.setNameField (nameField) ;
AsyncResult [] result = connection.create(
new Metadatal[] { obj });
if (result == null) {
System.out.println("create failed");
return;
}
boolean done = false;
AsyncResult [] status = null;
long waitTime = 1000;
while (!done) {
status = connection.checkStatus (
new String[] { result[0].getId() });
if (status != null) {
done = status[0].isDone() ;
if (status[0].getStatusCode() != null) {
System.out.println("Error: " +
status[0] .getStatusCode() + ": " +
status[0] .getMessage ()) ;
}
Thread.sleep(waitTime) ;
waitTime *= 2;
System.out.println("Current state: " +
status[0] .getState());

}

System.out.println("Created object: " +

Sample Application: Database Integration

status[0] .getId());
} catch (Throwable t) {
t.printStackTrace () ;
}
}

Sample Application: Database Integration

This section explores a common integration scenario using the Services Manager sample appli-
cation. It describes the scenario and the implementation strategy and ends with sample code.

Integration Scenario

Force.com applications often require the use of data that is stored in other enterprise systems.
This information can initially be pushed to Force.com through Data Loader or another data
migration tool. But when Force.com is not the system of record for this information and
updates occur, Force.com is left with stale data.

Updated data could be reloaded into Force.com through data migration tools, scheduled to run
at regular time intervals, but this approach can quickly become impractical. This is especially
true where there are requirements for real-time updates, integration to multiple systems, intri-
cate data mappings, or complex business rules governing the updates.

Imagine that the company using your Services Manager application has a human resources
system containing the names, addresses, and other core information about employees. This

employee information is duplicated in Force.com in the Contact standard object. Because Force.

com is not the system of record for these fields, they should be set to read-only on their page
layouts to maintain data integrity between Force.com and the human resources system. But
when the human resources system is updated, Force.com must also be updated. This is the goal
of the integration.

Implementation Strategy

To retrieve changes from the human resources system, you could call out from Force.com using
HTTP or a REST Web service call, as described in Chapter 10. But when you would do this is
not clear because Force.com does not receive notifications when the human resource system is
updated. Polling the system for changes would be inefficient and quickly hit governor limits on
Web service callouts.

Instead, use the Enterprise API to connect to Force.com and upsert the modified records. Begin
by updating a single field called Active ¢, indicating whether the employee is active. After
you get this field working, move on to support additional fields such as the address and phone
fields of the Contact record.

363

364

Chapter 11 Advanced Integration

The first problem is finding a common key to employees in both systems. Assume that the
human resources system cannot be changed and focus on adapting Force.com to maintain
the mapping between the two systems. Create a new field named Resource ID (API name of
Resource ID c) on the Contact object to store employee identifiers used by the human
resources system. For this example, make it a Number type, six digits in length, required,
unique, and an external ID.

Caution

Remember that you need to regenerate the client code from Enterprise WSDL after you add this
new field; otherwise, it will not be available to your program.

Sample Implementation

The code in Listing 11.19 is a sample Java implementation of the integration. It assumes that
you've already generated the Java stub code from Enterprise WSDL using the WSC. It expects

a file named import.json to be located in the working directory. This is a JSON-encoded file
containing an array of Contact records to update. Listing 11.20 is an example of the file format
expected by the program.

Note
The sample implementation uses a JSON library available at www.json.org/java.

Listing 11.19 Sample Java Implementation of Integration Scenario

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
import com.sforce.soap.enterprise.Connector;
import com.sforce.soap.enterprise.EnterpriseConnection;
import com.sforce.soap.enterprise.UpsertResult;
import com.sforce.soap.enterprise.sobject.Contact;
import com.sforce.soap.enterprise.sobject.SObject;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;
public class Listingll 19 {
EnterpriseConnection connection;
public void login(String user, String pass, String securityToken) {
ConnectorConfig config = new ConnectorConfig() ;

http://www.json.org/java

Sample Application: Database Integration

config.setUsername (user) ;
config.setPassword(pass + securityToken) ;
try {
connection = Connector.newConnection(config) ;
} catch (ConnectionException e) {
e.printStackTrace() ;

}
public void processImportFile (String jsonFile) {
List<SObject> changes = new ArrayList<SObject>();
try {
String json = readFileAsString(jsonFile);
JSONArray array = new JSONArray (json);
for (int i=0; i<array.length(); i++) {
changes.add (importResource (array.getJSONObject (1))) ;

}

if (changes.size() > 0) {

UpsertResult [] results = connection.upsert ("Resource ID c",

changes.toArray (new SObject [changes.size()]));
int line = 0;
for (UpsertResult result : results) ({
System.out.print (line + ": ");
if (!result.isSuccess()) {
for (com.sforce.soap.enterprise.Error e
: result.getErrors()) {
System.out.println(e.getStatusCode() + ": " +
e.getMessage()) ;
}
} else {
System.out.println("success");

}

line++;

}

} catch (Throwable t) {
t.printStackTrace() ;

}

private Contact importResource (JSONObject rec)
throws JSONException {
Contact result = new Contact();
result.setResource ID__ c(Double.valueOf (
rec.getInt ("ResourceID"))) ;
result.setActive c(rec.getBoolean ("Active"));
return result;

}

private static String readFileAsString(String filePath)

365

366 Chapter 11 Advanced Integration

throws IOException {
StringBuffer fileData = new StringBuffer(1000);
BufferedReader reader = new BufferedReader (
new FileReader (filePath)) ;
char[] buf = new char[2048];
int numRead = 0;
while ((numRead = reader.read(buf)) != -1) {
fileData.append(buf, 0, numRead) ;
}
reader.close() ;
return fileData.toString();
}
public static void main(String[] args) {
Listingll 19 demo = new Listingll 19();
demo.login ("USERNAME", "PASSWORD", "SECURITYTOKEN");
demo.processImportFile ("import.json") ;

}
}

Listing 11.20 Sample JSON Input File

[

"ResourceID": 100000,
"Active": false

"ResourceID": 100001,
"Active": false

Before running the program, change the Resource ID values in the file to match your contacts,
and the arguments of the login method to your user credentials.

Note that the only field updated by the sample implementation is Active__c. As a challenge,
enhance the program to support updates to additional fields of the Contact object, or related
objects like User.

Summary

This chapter has provided the basics of Force.com'’s Streaming, Bulk, Canvas, Tooling, and
Metadata APIs. Consider the following points for review as you move on to the next chapter:

Summary 367

= The Streaming API allows you to get extremely granular and timely notifications about
your data, at the level of changes to individual fields. On the other end of the spectrum,
the Bulk API is optimized to move millions of records at a time in and out of the
platform.

= Canvas is a container technology for displaying your Web user interface within Force.
com and providing integration of security context and other services that go well beyond
what is possible with a raw IFRAME.

= With the Metadata and Tooling APIs, you can build tools that automate development
tasks, such as creating and modifying database objects and code. You can also use it
to back up your entire organization’s configuration or replicate it to a new Force.com
account.

This page intentionally left blank

Social Applications

This chapter introduces Chatter, a layer of functionality that spans all Salesforce applications and
the Force.com platform. Chatter provides the means for users to communicate with each other in

the context of the applications and data central to their work, privately and entirely internal to their
company. It is delivered securely to their Web browsers and most mobile devices. In adopting Chatter,
Salesforce customers, partners, and application developers gain the best features of consumer services
such as Facebook that form a social glue that makes interacting at work a compelling, relevant, and
professional experience.

Chatter is a collection of collaboration features, including user profiles, forums, polls, questions and
answers, file sharing, and private messaging. This chapter focuses on the integration of the most basic
Chatter features into custom applications. Brief descriptions of its sections follow:

Overview of the Chatter data model—The heart of Chatter is the data model, standard
objects in the Force.com database that allow any application to participate in the conversation
and automate Chatter interactions. Once you have an understanding of its data model,
incorporating Chatter into your Apex programs is straightforward.

Using Chatter in Apex—Although the Chatter data model is available, it’s the lowest-level
way to access Chatter features. Chatter in Apex is a built-in library that provides Chatter
features as first-class Apex classes.

Introduction to the Chatter REST API—The Chatter REST API is valuable for integrating
Chatter into applications residing outside of the Force.com platform. Like Chatter in Apex, it
hides implementation details of Chatter that would otherwise be exposed by direct access to the
data model.

Working with Chatter Visualforce components—Learn how to add Chatter functionality to
your custom user interfaces with minimal effort using standard Visualforce components.

Sample application—Modify the Services Manager sample application to make staying in
touch with resources on a project team using Chatter easy.

Note
The code listings in this chapter are available in a GitHub Gist at http://go0.gl/FfsbSo.

http://goo.gl/FfsbSo

370 Chapter 12 Social Applications

Overview of the Chatter Data Model

Chatter posts, comments, and the list of records followed in Chatter are stored in standard
database objects, accessible in SOQL, SOSL, Apex code, the Web Services API, and generally
anywhere you need them. With this developer-friendly approach, you can build any number of
interesting Chatter-aware programs. You can automatically follow a set of records based on user
actions, batch process posts and comments to identify patterns, build an alternative user inter-
face for Chatter, and even extend Chatter outside of your organization by integrating it with
external applications.

After you have a good grasp of the data model, all of these scenarios are trivial to implement on
the platform. But compared with the standard platform objects such as Contacts and Accounts,
Chatter has a slightly more complex data model, including objects with some distinctive quali-
ties, summarized here:

= Dynamic—The objects in the Chatter schema can appear and disappear based on the
Chatter configuration. For example, when Chatter is disabled in an organization, the
Chatter objects are completely hidden, as if they never existed. Also, objects containing
Chatter posts are dynamically created when Chatter is enabled for a custom object.

= Relationship-rich—The whole purpose of Chatter is to link social and business data, so
Chatter objects consist primarily of foreign keys to other objects.

= Designed for high volume—Chatter objects usually do not allow records to be updated.
Some objects can’t even be queried directly and must be referenced indirectly from a
parent object.

This section introduces you to the Chatter data model by exploring these four areas:

= Chatter posts—Learn how to query, create, and delete the three main types of Chatter
posts, based on the parent record’s object type.

= Feed-tracked changes—Feed-tracked change records are created automatically by Force.
com to provide an audit trail of database activity. They can be queried but never directly
created, updated, or deleted.

= Chatter comments—You can query, create, and delete Chatter comments, given a parent
post.

= Followed records—Get a list of followers for a record, and follow and unfollow records
by creating and deleting simple Chatter configuration records.

Chatter Posts

Chatter posts are stored using a series of relationships that follow a common pattern, illustrated
in Figure 12.1. Starting from the right of the diagram, a Feed object, suffixed with the word
Feed, contains Chatter posts. Feed objects exist for each Chatter-enabled parent object type. The
parent object is on the left, and the line between them indicates that a single parent record can
have zero to many posts.

Overview of the Chatter Data Model 371

£l

<Object> N

<Object>Feed

Figure 12.1 Chatter post schema pattern

Note

Feed objects are unusual for Force.com in that they are read-only. To insert or delete Chatter
posts, you must use the generic FeedItem object, discussed later in this chapter.

The Feed objects appear and disappear based on the Chatter configuration. For example,
if Chatter is enabled on the Project _c custom object, then an object named Project
Feed exists, the object used to store posts related to Projects. If Chatter is later disabled for
Project ¢, the Project Feed object is removed from the Force.com database.

The five types of post content, indicated by the Type field of the Feed objects, are described
here:

= Text (TextPost)—This is the default type of Chatter post. It contains plaintext, with no
HTML markup or rich formatting allowed. The text is contained in the Body field. The
sample code in this chapter focuses on the text post type because the other post types
behave almost identically, differing only on the fields used to store data.

= URL (LinkPost)—The Chatter user interface allows you to attach a single URL to a post,
which appears immediately below the post text. The URL value is stored in the LinkUrl
field, with the URL label in Tit1le.

= File (ContentPost)—From the Chatter user interface, you can select a file to attach
to a post. The file can be a reference to another Chatter-attached file or uploaded
from your local computer. The file content is base-64 encoded and placed in the
ContentData field. Several additional file-related metadata fields are also stored with the
file: ContentFileName and ContentDescription (input by the user during upload),
ContentType (file MIME type), and ContentSize (file size in bytes).

= Field change (TrackedChange)—This post type is relevant only to feed-tracked changes.
It is generated by Force.com itself and cannot be created by users or programs.

= Status update (UsersStatus)—Chatter users can change their status from their profile
page or any Chatter user interface. This action triggers Force.com to insert a status update
Chatter post, with the Body field set to the new status.

The remainder of this subsection contains SOQL queries and Apex code snippets to demon-
strate how to work with posts and their parent feed objects. They are organized into the follow-
ing four scenarios:

372

Chapter 12 Social Applications

= Standard object feeds—When Chatter is enabled for an organization, most standard
objects have corresponding Chatter feeds.

= Custom object feeds—Every custom object that is Chatter-enabled by the administrator
has its own feed.

= User feeds—Separate feeds exist for the Chatter user profile as well as the standard User
object.

= Home tab feed—The Home tab has its own feed, called NewsFeed. This contains a
collection of all the activity in followed records.

Caution

Understanding posts and feeds is critical because the rest of the section builds upon this
knowledge.

Standard Object Feeds

When Chatter is enabled for an organization, feed objects exist for every standard object that
supports Chatter. Listing 12.1 is an example of retrieving the ten most recent Chatter posts on
the Contact object using the ContactFeed object.

Listing 12.1 Chatter Query on Standard Object

SELECT ParentId, Body, Type, CreatedBy.Name, CreatedDate
FROM ContactFeed
ORDER BY CreatedDate DESC LIMIT 10

To create a post on the Contact object, you need the Id of a Contact record to serve as the
parent of the post. This Id becomes the ParentId column in FeedItem. Force.com takes care
of determining which feeds the post belongs to based on the type of object referenced by the
pParentId. This means you can use the same code to create posts regardless of the type of
object you're posting about.

The sample code in Listing 12.2 contains a method for creating a Chatter post. Pass it the Id of
a Contact record in the recordId argument, and the text of the post body in the text argu-
ment. Make a note of the return value because it is used later to remove the post.

Listing 12.2 Creating a Chatter Post

public Id post(Id recordId, String text) {
FeedItem post = new FeedItem(ParentId = recordId, Body = text);
insert post;
return post.Id;

}

Overview of the Chatter Data Model 373

Tip

You can quickly test the method in Listing 12.2 using the Execute Anonymous feature in the
Developer Console or the Force.com IDE. For example: Id i = post ([SELECT Id FROM
Contact LIMIT 1].Id, 'test');

Unlike creating posts, the code to delete posts is object-specific, not generic. It requires the
specific feed object containing the post to be known. For example, if you created a post with
a Contact record as the parentId, delete the post from the ContactFeed object, as shown in
Listing 12.3.

Listing 12.3 Deleting a Chatter Post

public void deleteContactPost (Id postId) {
ContactFeed post = [SELECT Id FROM ContactFeed
WHERE Id = :postId];
delete post;

}

Custom Object Feeds

Chatter posts on custom objects behave identically to standard objects, with two exceptions.
The naming scheme for the feed objects is slightly different, and a feed object does not exist
until Chatter is enabled on the custom object. For example, if you enable Chatter on the
Project__c object, the Project Feed Chatter object becomes available.

Listing 12.4 demonstrates a query for posts on the project ¢ object. As you can see,

the columns are identical to that of the standard feed, but the FrROM clause refers to the
Project _ c-specific feed object. To get any feed object’s name, strip the ¢ from the end of
your custom object’s API name and then add the Feed suffix. You can follow this pattern to
access the posts of any custom object.

Listing 12.4 Chatter Query on Custom Object

SELECT ParentId, Body, Type, CreatedBy.Name, CreatedDate
FROM Project_ Feed

Note

The procedure for creating and deleting Chatter posts in custom objects is identical to that of
standard objects.

374

Chapter 12 Social Applications

User Feeds
Two feeds contain user-related Chatter posts:
= UserFeed—UserFeed contains feed-tracked changes for fields on your User object, as well

as posts by other users on your profile. You cannot query another user’s UserFeed unless
you log in to Force.com as that user.

= UserProfileFeed—The UserProfileFeed is a superset of the UserFeed. It includes Chatter
from other objects followed by the user, such as groups. It requires the use of the Chatter
REST API to query it, described later in this chapter.

The SOQL in Listing 12.5 returns the Chatter posts for the current user, the user logged in to
Force.com and executing the query.

Listing 12.5 Chatter Query on UserFeed

SELECT ParentId, Id, Type, CreatedById, CreatedDate
FROM UserFeed

Note

The procedure for creating and deleting Chatter posts in UserFeed is identical to that of stan-
dard objects.

News Feed

If you've experimented with Chatter in the Force.com user interface, you might have noticed
that the Home tab aggregates all the posts and comments you follow in one place. The Chatter
appearing on the Home tab is accessible only via the Chatter REST API.

Chatter Comments

The handling of Chatter comments is slightly different from that of other Chatter data.
Comment data is stored in a single, large object called FeedComment that cannot be queried
directly. The Feed object becomes a junction object, associating Chatter posts to the subject of
the post and zero or more comments. This three-way relationship is shown in Figure 12.2, with
the left side the parent of the post and the right side the list of comments.

d
N

2

<Object> <Object>Feed &g FeedComment

Figure 12.2 Chatter comment schema pattern

Overview of the Chatter Data Model

The relationship between the Feed junction object and the FeedComment object is called
FeedComments. Listing 12.6 provides an example of querying it. The result is all the posts in
the Project__ c custom object feed and all of the comments for each post.

Listing 12.6 Chatter Query for Comments

SELECT ParentId, Type, CreatedById, CreatedDate, Body,
(SELECT CommentBody, CreatedById, CreatedDate FROM FeedComments)
FROM Project_ Feed

To create a comment, insert a record into the FeedComment object. Listing 12.7 provides a
sample method for doing this. To test it, you need the Id value of a record in a Feed object. For
example, if you want to add a comment to an Account post, get the Id of the post to comment
on from the AccountFeed object. This Id value is then passed into the method as the first argu-
ment, postId. The second argument is the text of the comment to create. Save the post1d and
the value returned by this method, as these are needed to delete the comment.

Listing 12.7 Creating a Chatter Comment

public Id comment (Id postId, String text) {
FeedComment comment = new FeedComment (
FeedItemId = postId, CommentBody = text);
insert comment;
return comment.Id;

You cannot update a FeedComment record, but you can delete it. Like with deleting posts,
deleting comments is tricky because you cannot directly query the FeedComment object to
retrieve the record to delete. If your program creates or queries FeedComment records and
can keep them around in a cache, that is ideal. If this is not possible, you must query the
FeedComment object in order to delete it.

Listing 12.8 shows a sample method for deleting a comment by querying it first via its parent
post. To use it, you must pass the FeedItemId of the parent post in the Project Feed object
as the postId, and the Id of the FeedComment record as commentId, returned by the comment
sample method. Although this example operates on comments in Project Feed only, the
same pattern can be applied to comments in all feeds.

Listing 12.8 Deleting a Chatter Comment

public void deleteComment (Id postId, Id commentId) {
Project_ Feed post = [SELECT Id,
(SELECT Id from FeedComments WHERE Id = :commentId)
FROM Project Feed WHERE Id = :postId];
delete post.FeedComments[0] ;

}

375

376

Chapter 12 Social Applications

Feed-Tracked Changes

Feed-tracked changes provide an audit trail of modifications to a set of fields. For each record in
an object that has feed-tracked changes enabled, there can be many corresponding feed-tracked
change records. Each change record captures the original field value, the new field value, the
field name, and the new and old currencies if multicurrency is enabled in the organization and
the field is a currency type.

The change records for all objects in an organization with feed-tracked changes enabled are
stored in a single object called FeedTrackedChange. The schema pattern for this object is illus-
trated in Figure 12.3.

FeedTrackedChange

<Object> <Object>Feed

Figure 12.3 Chatter feed-tracked changes schema pattern

FeedTrackedChange cannot be queried or modified in any way by any user, even an admin-
istrator. Like Chatter comments, it must be queried indirectly via its junction object. Listing
12.9 shows an example of querying all posts on Contact records and their corresponding
FeedTrackedChange records.

Listing 12.9 Querying Chatter Feed-Tracked Changes

SELECT ParentId, Type, CreatedById, CreatedDate,
(SELECT FeedItemId, FieldName, OldValue, NewValue
FROM FeedTrackedChanges)
FROM ContactFeed

To see the query in action, enable feed-tracked changes on the Contact Phone field; then
change the Phone value on a record and run the query. You should see a new record with a
Type value of TrackedChange containing a nested FeedTrackedChange record. The nested
record has the old and new Phone values along with the full field name, Contact.Phone. Had
you changed two feed-tracked change fields within the same transaction, you would see two
nested FeedTrackedChange records instead of one.

Followed Records

Users register interest in the Chatter activity of a record by clicking Follow icons in the Force.
com user interface or by automatically following owned records. Users can follow other users as
well as records in standard and custom objects. The information about followers is prominently
displayed throughout the standard user interface, and used to email digests and notifications to
users if Chatter is configured to do so.

Overview of the Chatter Data Model

All of this functionality hinges upon a single, simple object, called EntitySubscription. Its
two important fields are Parent1d, the record being followed, and SubscriberId, the Id of
the user doing the following. For every record-to-user relationship in the organization, a unique
record in EntitySubscription exists to express it.

With simple queries on the EntitySubscription object, you can retrieve a list of records
followed by a user, or the users following a specific record. Less useful might be a query for the
full set of following relationships in the entire organization, as shown in Listing 12.10.

Listing 12.10 Querying Chatter Following Relationships

SELECT ParentId, SubscriberId, CreatedById, CreatedDate
FROM EntitySubscription

To follow a record programmatically, insert a new ParentId and SubscriberId pair into the
EntitySubscription object. Listing 12.11 provides a sample method to do this. Test it by
passing in the Id of a record to follow and the Id of a User record to follow it.

Listing 12.11 Method for Following a Record

public Id follow(Id recordId, Id userId) {
EntitySubscription e = new EntitySubscription/(
ParentId = recordId, SubscriberId = userId);

insert e;
return e.Id;

}

For example, call it with the Id of an Account record and your user’s Id value; then refresh the
Account’s view page to see yourself instantly listed as a follower. Make a note of the Id value
returned by the method. This is used later to unfollow the record.

Note

Each EntitySubscription record uniquely identifies a relationship between parent record
and User record, so a runtime error is thrown if a new record matches an existing record’s
ParentId and SubscriberId.

Unfollowing a record involves deleting the appropriate row in the EntitySubscription object
that relates the record to the user. Listing 12.12 provides a sample method for doing just that.
To use the method, pass the EntitySubscription record identifier returned by the follow sample
method in Listing 12.11.

377

378

Chapter 12 Social Applications

Listing 12.12 Method for Unfollowing a Record

public void unfollow(Id subscriptionld) {
delete [SELECT Id FROM EntitySubscription
WHERE Id = :subscriptionId];

Although this simple example can work, it’s unlikely that your program would possess the
unique identifier of the EntitySubscription record. You could just as easily delete records
on more readily available information, such as the EntitySubscription’s ParentId or
SubscriberId.

Using Chatter in Apex

Although Chatter data is accessible in Apex using SOQL queries, Chatter in Apex provides a
simpler solution. It consists of a series of Apex classes called ConnectApi that expose Chatter
features in a simpler way, as an API rather than a data model. With Chatter in Apex, Chatter
data is preformatted for display, and many features can be accessed with a single method call.
Using the data model is typically not as easy or concise.

Note

For more information about Chatter in Apex, visit the online documentation at http://www.
salesforce.com/us/developer/docs/apexcode/Content/apex_classes_connect_api.htm.

Listing 12.13 and Listing 12.14 are the Visualforce controller and page to display the current
user’s feed items and comments. The Chatter in Apex getFeedItemsFromFeed method returns
the posts and comments for the current user (the 'me' argument), and these are iterated over
in the Visualforce page using nested repeat components.

Listing 12.13 Visualforce Controller for Chatter Example

public with sharing class MyPageControllerl2 13 {
public List<ConnectApi.FeedItem> getFeedItems() {
return ConnectApi.ChatterFeeds.getFeedItemsFromFeed (null,
ConnectApi.FeedType.Record, 'me').items;

Listing 12.14 Visualforce Page for Chatter Example

<apex:page controller="MyPageControllerl2 14">
<style>

img { margin: 4px; width: 25px; }

.actor { font-weight: bold; }

http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_connect_api.htm
http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_connect_api.htm

Introduction to the Chatter REST API

.comments { margin-left: 40px; }
</style>
<apex:repeat value="{!feedItems}" var="feedItem">
<div>
<apex:image url="{!feedItem.photoUrl}"/>
{!feedItem.actor.name}:
{!feedItem.body.text}
<apex:outputPanel >
<apex:repeat value="{!feedItem.comments.comments}"
var="comment" >
<div class="comments">
<apex:image url="{!comment.user.photo.smallPhotoUrl}"/>
{!comment.user.name}:
{!comment.body.text}
</div>
</apex:repeat>
</apex:outputPanel>
</divs>
</apex:repeat>
</apex:page>

Introduction to the Chatter REST API

The Chatter REST API provides access to Chatter functionality, including feeds, users, groups,
followers, and files. Being a REST AP], it can be integrated in Web, mobile, and desktop
applications built in any technology that is capable of making HTTP requests. It is a valuable
alternative to using the Chatter data model directly, hiding the details of how Chatter data is
represented and offering a high-level API instead.

Note

For more information about the Chatter REST API, consult the Chatter REST API Developer’s
Guide, found at http://www.salesforce.com/us/developer/docs/chatterapi/index.htm.

To get started with Chatter REST API, examine some examples of REST requests for common
Chatter functionality. Like other REST examples in the book, the following three listings can
be run from the command line. They assume you have an authorization token set in the
TOKEN environment variable, and that you replace the instance na15 with your own Salesforce
instance.

Listing 12.15 requests the News Feed of the current user, which is the Chatter feed found on
the Home tab. To request a different user’s News Feed, replace me with the user record’s unique
identifier.

379

http://www.salesforce.com/us/developer/docs/chatterapi/index.htm

380

Chapter 12 Social Applications

Listing 12.15 Sample Request for News Feed

curl https://nal5.salesforce.com/services/data/v28.0\
/chatter/feeds/news/me/feed-items)\
-H "Authorization: OAuth "S$TOKEN -H "X—PrettyPrint:l"

Listing 12.16 returns a list of all of the records followed by the current user.

Listing 12.16 Sample Request for Followed Records

curl https://nal5.salesforce.com/services/data/v28.0\
/chatter/users/me/following\
-H "Authorization: OAuth "STOKEN -H "X-PrettyPrint:1"

To create a simple text-type feed post, follow the sample found in Listing 12.17.

Listing 12.17 Sample Request for Posting a Feed Item

echo '{ "body" : { "messageSegments" :\
[{ "type": "Text", "text" : "Hello world" } 1 } }' |\
curl -X POST -H 'Content-type: application/json'\
-H "Authorization: OAuth "$TOKEN -H "X-PrettyPrint:1" -d e-\
https://nal5.salesforce.com/services/data/v28.0\
/chatter/feeds/news/me/feed-items

Tip

To adapt the command in Listing 12.17 and other listings in this chapter to run in Windows
Command Prompt, remove the single quotation mark characters (') in the echo statement,
replace the single quotation mark characters around the Content-type header with double
quotation mark characters ("), remove the backslash (\) line-continuation characters and con-
catenate the lines into a single line, and replace $TOKEN with $TOKEN%.

Working with Chatter Visualforce Components

When Chatter is enabled on an object, users viewing a record of that object see a rich user
interface to manage posts and comments, followers, and their interest in following the record.
This same native user interface functionality is also available to Visualforce developers. Using
Chatter components, you can embed the same Chatter toolbar, in its entirety or in pieces,
within your custom user interfaces.

Working with Chatter Visualforce Components

Chatter is supported in Visualforce through eight dedicated components in the chatter
namespace, and an additional Chatter-specific attribute on the generic detail component, as
described here:

= feed—This component renders a list of Chatter posts and comments for the selected
record. It also provides a text box at the top for creating new posts. The selected record is
specified using the entityId attribute.

= feedWithFollowers—This component embeds the full Chatter toolbar. It includes the
functionality of the feed component, and adds the list of followers to the right side, the
Show/Hide Chatter buttons, and the Follow/Unfollow buttons.

= feedWithFollowers—This component embeds the full Chatter toolbar. It includes the
functionality of the feed component, and adds the list of followers to the right side, the
Show/Hide Chatter buttons, and the Follow/Unfollow buttons.

= newsFeed—Use this component to render the News Feed for the current user, the same
feed data shown on the Home tab.

= follow—Including this component on a page renders a Follow button if the user is not
following the record and an Unfollow button otherwise.

= followers—The followers component simply displays a list of users following the
current record. Users are represented as thumbnail photos, which can be clicked to drill
into their profiles.

= showChatter—This attribute of the detail component, if set to true, includes the full
Chatter toolbar at the top of the detail page.

= userPhotoUpload—This component allows you to upload a photo for the current user’s
Chatter profile.

To try one of the Chatter components, create a new Visualforce page that uses a standard
controller. Pick an object that you know has Chatter enabled. Listing 12.18 shows a custom
Project__ c page that includes the feedWwithFollowers component, and Figure 12.4 is

the result of visiting the custom page. There are no posts, comments, or followers of the
Project__c record, but the feedWithFollowers component has made creating and viewing
all of these items using the standard Force.com-styled user interface possible.

Listing 12.18 Visualforce Page with Chatter Component

<apex:page standardController="Project c"»>
<apex:sectionHeader title="Project"
subtitle="{!record.Id}" />
<apex:pageBlock title="Chatter Components"s>
<chatter:feedWithFollowers entityId="{!record.Id}" />
</apex:pageBlock>
</apex:page>

381

382

Chapter 12 Social Applications

ﬁrce.com

salosforce com - Developer Edition

Palge Turnar = Halp Services Managsr ~

@ Post il Flo & Link g Poll

Write somathing

Show: All Updates =

There e no updales.

Sonby: PostDstn =

I Home Contacts A Skills Missing Skills Matrix Utilization +
¢ 4l 201i0000000rMq1AAE
Chatter Components
- Hsdo Foed

@ Follow
Faollowars

Na followers.

Copyright © 2000-2013 salesforce.com, inc. All rights reserved. | Privacy Staternent | Security Satement | Terms of Use | 308 Complisnce

Figure 12.4 Output of Visualforce page with Chatter component

You should be aware of a few gotchas with Visualforce Chatter components as you begin using

them:

= A Visualforce page cannot contain more than one of the five Chatter components at one
time. If you attempt to use more than one, the page cannot be saved.

= Chatter components cannot be added to a Visualforce page unless the API version of the
page is at least 20.0. If the API version is set incorrectly, an Unknown Component error
will prevent the page from being saved.

= You cannot use Chatter components with Visualforce Sites. The Chatter components will

be invisible to Sites users.

Sample Application: Follow Project Team

One of the initial challenges with using Chatter is building up a relevant set of records to
follow. Salesforce’s automatic following of owned records is a good start. But users of your
Services Manager sample application would like a quick-and-easy way to follow all the resources

assigned to a consulting project.

This section walks through a sample implementation of a custom button called Follow Team,
added to the Project object’s layout. The button launches a Visualforce page that uses the

Sample Application: Follow Project Team 383

standard Project _c controller and a controller extension. Because the page is shown when
the user clicks the button, the action attribute of the page invokes the custom controller code
to perform the following logic immediately, without additional user action. The results of the
following logic are displayed in a page message.

Following records in Chatter using Apex code involves adding records to the
EntitySubscription object. The sample code in Listing 12.19 is the full controller extension
implementation.

Listing 12.19 Controller Extension Code

public with sharing class FollowProjectControllerExtension {
private ApexPages.StandardController controller;
public FollowProjectControllerExtension (
ApexPages.StandardController stdController)
this.controller = stdController;
}
public PageReference followProject() {
Id currentUserId = UserInfo.getUserId();
Set<Id> userIds = new Set<Id>();
for (List<Assignment c> assignments
[SELECT Contact r.User c FROM Assignment c WHERE
)
{

Project ¢ = :controller.getRecord().Id]
for (Assignment_ c assignment : assignments)
Id uid = assignment.Contact__r.User c;
if (currentUserId != uid && uid != null) ({

userIds.add (uid) ;

}
if (userIds.size() == 0) {
error ('Project has no assignments.');
return null;
}
Set<String> subs = new Set<Strings>();
for (List<EntitySubscriptions> recs
[SELECT ParentId FROM EntitySubscription
WHERE SubscriberId = :currentUserId
AND ParentId IN :userIds]) {
for (EntitySubscription rec : recs) {
subs.add (rec.ParentId) ;

}
Integer followCount = 0;
List<EntitySubscription> adds = new List<EntitySubscriptions();
for (Id userld : userIds) {
if (!subs.contains(userId)) {

384 Chapter 12 Social Applications

adds.add (new EntitySubscription(
ParentId = userId, SubscriberId = currentUserId));
followCount++;
}
}

insert adds;
info(followCount + ' users followed');
return null;
}
private static void info(String text) {
ApexPages.Message msg = new ApexPages.Message (
ApexPages.Severity.INFO, text);
ApexPages.addMessage (msg) ;
}
private static void error (String text) {
ApexPages.Message msg = new ApexPages.Message (
ApexPages.Severity.ERROR, text);
ApexPages.addMessage (msg) ;

}

Two tricky areas of the implementation are as follows:

= Duplicate records cannot be added, so existing EntitySubscription records on the assigned
users must be checked first. This is done by building a set of record identifiers that are
already followed, storing them in the subs variable, and consulting them before creating
a new EntitySubscription.

= Retrieving the users to follow from a project is somewhat indirect. Start with the list of
Assignment records for the Project record. Each Assignment record contains a Contact
that is assigned to the project. Each Contact includes a User__ c field, which optionally
contains a reference to a Salesforce User record. The User record identifier becomes the
ParentId, the record to follow.

The Visualforce page behind the custom Follow Team button is provided in Listing 12.20. Key
points in the page are the action attribute to invoke the following logic when the page is
shown, and the pageMessages component to provide feedback to the user about the newly
followed records, if any.

Listing 12.20 Visualforce Page for Custom Button

<apex:page standardController="Project c"
extensions="FollowProjectControllerExtension"
action="{!followProject}">
<apex:pageMessages />

</apex:page>

Caution

Sample Application: Follow Project Team

Invoking a controller method upon Visualforce page load is bad practice for security reasons,
as it can be exploited in a Cross Site Request Forgery (CSRF) attack. Visualforce pages are
normally protected from CSRF using hidden variables that prevent a hijacker from redirecting
the browser to a simple URL. To protect a page like the one in Listing 12.20, you could add a
token that is checked in the controller before executing the logic. For more information, exam-
ine the security-related documents available at wiki.developerforce.com/index.php/Security.

After you have created the controller extension class and the page, add a custom button on the
Project custom object called Follow Team. Figure 12.5 shows the button configuration.

ana Project Custom Buttan or Link: Fallow Team ~ talesforcs. com - Davelopor Edition I

.1 Ja { & hrips /nals salesforce.com/ 00b 0000000 SvipageName = 0110000000 AwX bty =0110000000AWXx&se tupid=Cu C} dJ ll.l ‘ﬁ = f .'.i
force.com = o P
Home Contacts Projects Skills Missing Skills Matrix Utilization +

Expand Al | Coltapse All

Q, Quick Find

Force.com Home

System Overview

Personal Setup

= My Personal Information
» Email

+ Import

+ Dashiop Integration

+ My Chatter Sottings

* My Social Accounts and
Centacts

App Setup

* Customize

O Creats
Apps
Cusiom Labeis
Interaction Log Layouts
Otjects
Packagas
Repart Types
Global Actions New!
Tahs

Figure 12.5 Custom button configuration

Projoct Gustom Button or Link

Follow Team

« Back to Custon Object: Project

Custom Button or Link
Datail

Label Follow Team
Name Follow_Team
Display in oxisting windaw with

Bahavier
sidebar

Contant Source
Height (in plxels) B0
Description

Created By

Visunlioren Page

Page Turmes, RIBZ013 1:20 AM

Halg for this Page @)

Edit Window Open Proparties Daelate Whare is this used?

Dbject Name Projoct

Display Typs Datall Page Buttan

VisuaHfores Page FollowProjact
Modified By Paige Tumes, BE2013 1:20 AM

Edit | Window Open Propertios | Delete Whars is this used?

To test the new feature, add the button to the Project’s page layout. Then visit a Project record
that has at least one Assignment and where the Assignment has a Contact with a non-null
User_ _c field. Note that if a project has assignments but none of the contacts assigned have an
associated user record, you will receive the “Project has no assignments” error message. Click
the Follow Team button. Refresh the current user’s profile to verify that the assigned user is

followed.

385

386 Chapter 12 Social Applications

Summary

Chatter provides the building blocks for developers to create socially aware applications inside
and outside the Force.com platform. As you review the key integration features of Chatter,
consider the potential it brings to drive new applications and interactions in your organization:

= Chatter is itself a platform, consisting of a public data model, user interface components,
and tight integration with the greater Force.com platform. This provides flexibility for
any application to exercise and extend Chatter functionality.

= With Chatter in Apex, you can access Chatter data and metadata from your Apex code
without the overhead and complexity of dealing with the raw database records. The
Chatter REST API offers the same advantages but can be used with any technology.

Index

Sym b0| S accessing data
mobile Web applications
+ (addition) operator, 110 actionFunction component, 270
& (AND) operator, 110 authentication, 269-270
&& (AND) operator, 110 JavaScript remoting, 270
- (arithmetic negation) operator, 110 REST API, 270
= (assighment) operator, 110 SmartSync, 270
\ (backslash), UNIX line-continuation REST API, 306
character, 309 AccessLevel field, 163
/ (division) operator, 110 access modifiers, 118
== (equality) operator, 110 accounts receivable profile, 18, 86
=== (exact equality) operator, 110 actionFunction component, 235-236
== (exact inequality) operator, 110 mobile Web application data access, 270
> (greater than) operator, 110 Visualforce
>= (greater than or equal to) operator, 110 controller, 236
() (grouping operators), 110 page code, 236
? : (if/then/else expression shortcut), 110 actionPoller component, 237
< (less than) operator, 110 actions, 203-204
<= (less than or equal to) operator, 110 asynchronous
! (logical negation) operator, 110 as JavaScript events, 237-238
* (multiplication) operator, 110 as JavaScript functions, 235-236
!= (not equal to) operator, 110 partial page refreshes, 234-235
| (OR) operator, 110 status messages, 238-240
|| (OR) operator, 110 as timed events, 237
<< (signed shift left) operator, 110 container components, 205
>> (signed shift right) operator, 110 custom controllers, 195-197
+ (string concatenation) operator, 110 custom logic, invoking, 195
- (subtraction) operator, 110 trigger page navigation, 195
- (unary decrement) operator, 110 view state preservation, 195
++ (unary increment) operator, 110 wrapper pattern, 195-196
>>> (unsigned shift right) operator, 110 expressions
A (XOR) operator, 110 standard controllers, 192
4GL developer contributions, 12 standard set controllers, 193
actionStatus component, 238-240
A actionSupport component, 237-238, 262
addError method, 225
abortJob method, 296 addFields method, 246
Accept button, 213 addInfo method, 225

accessibility (fields), 78-79, 89-90 addition (+) operator, 110

administrative permissions

administrative permissions, 75
aggregate functions, 144-145

AVG, 144

COUNT, 144-145
COUNT_DISTINCT, 144
governor limits, 145
MAX, 144

MIN, 144

records, grouping, 146
SUM, 144-145

AggregateResult object, 145
aggregate SOQL queries, 144

aggregate functions, 144-145
AVG, 144
COUNT, 144-145
COUNT_DISTINCT, 144
governor limits, 145
MAX, 144
MIN, 144
records, grouping, 146
SUM, 144-145
grouping records, 145-146
with aggregate functions, 146
filtering grouped, 146
without aggregate functions, 145-146
grouping records with subtotals, 147-148
debug log excerpt, 147
GROUP BY CUBE clause, 147-148
GROUP BY ROLLUP clause, 147

Ajax (Asynchronous JavaScript and XML)

actions, 234
as JavaScript events, 237-238
as JavaScript functions, 235-236
partial page refreshes, 234-235
status messages, 238-240
as timed events, 237
Visualforce support, 234

Proxy, 270

demonstration page, 251
templates, 253
timecard entry in-page navigation
controller, 277
tutorial Web site, 251
Visualforce page code, 252-253
Web site, 251
anonymous benchmarking SOAP Web
service, 333-335
anti-joins
overview, 152
restrictions, 153
Apex, 7
AggregateResult object, 145
aggregate SOQL queries, 144
aggregate functions, 144-145
grouping records, 145-146
grouping records with subtotals,
147-148
arrays
creating, 111
initializing, 111-112
sorting, 112
Batch
Batchable interface, 283-284
batch jobs, 282, 286-289
classes, creating, 285-286
iterable scope, 290-292
limitations, 292
missing timecard class,
developing, 298-299
project evaluation guidelines,
284-285
scheduling, 293-296
scope, 282
stateful, 289-290
testing, 293
transactions, 283

Amazon Web Services, 2-3
AND (&) operator, 110
AND (&&) operator, 110
AngularJS, 251-253
controllers
ProjectListCtrl, 253
timecard editing, 279
Visualforce, implementing, 252

callouts, 301-302
REST services, 302-304
SOAP services, 305-306
Chatter, 378-379
Visualforce controller, 378
Visualforce page, 378
Web site, 378

classes
ConnectApi, 378
custom Apex REST services, creating,
312-314
custom Apex SOAP Web services
rules, 327
HTTP, 302-303
code deployment in Tooling API, 355
Code Developer’s Guide Web site, 108
code execution
asynchronous, 116
conditional statements, 113
Execute Anonymous View, 104-105
exception statements, 114-115
governor limits, 120
loops, 114
recursion, 115
collections
clearing, 109
cloning, 109
emptiness, 109
size, 109
custom Apex REST Web services,
312-314
Apex class rules, 312
creating, 313
governor limits, 312
invoking, 313-314
custom settings, 180-181
creating, 180
deleting, 180
governor limits, 180
hierarchy type, 181
updating, 180
values, retrieving, 180
custom SOAP Web services, 326
Apex class rules, compared, 327
calling, 328
creating records example, 328
governor limits, 327
invoking, 329
limitations, 326-327
Services Manager anonymous
benchmarking, 333-335
database integration
data integrity, 122
DML statements. See DML,
statements

Apex

objects, referencing, 121-122
overview, 120-121
queries. See queries
security, 133
data types, 106
Blob, 106
Boolean, 106
converting, 107-108
Date, 106
date to string conversions, 109
Datetime, 106
Decimal, 106
Double, 106
ID, 106
Integer, 106
Long, 106
Object, 106
String, 106
string to date conversions, 109
Time, 106
debugging, 133
checkpoints, 133-135
execution logs, 134
dynamic, 174
instances, creating, 179
schema metadata, 177-179
SOQL queries, 175-176
SOSL queries, 176
governor limits, 100, 120
Apex code, 120
databases, 120
heaps, 120
namespaces, 120
lists
creating, 111
initializing, 111-112
nesting, 111
overview, 111
sorting, 112
managed sharing, 162
organization-wide sharing defaults,
changing, 163
rules, creating, 163-167
sharing objects, 162-163
maps, 112-113
object-oriented principles, 117
encapsulation, 117-118
information-hiding notation, 118

389

Apex

inheritance, 119
modularity, 119
polymorphism, 119
operators, 109
AND (&&), 110
addition (+), 110
arithmetic negation (-), 110
assignment (=), 110
bitwise, 110
division (/), 110
equality (==), 110
exact equality (===), 110
exact inequality (!==), 110
greater than (>), 110
greater than or equal to (>=), 110
grouping, 110
if/then/else expression (? :), 110
less than (<), 110
less than or equal to (<=), 110
logical negation (!), 110
multiplication (*), 110
not equal to (!=), 110
OR (|}), 110
signed shift left (<<), 110
signed shift right (>>), 110
string concatenation (+), 110
subtraction (-), 110
unary decrement (--), 110
unary increment (++), 110
unsigned shift right (>>>), 110
ORM code snippet, 30
overview, 100-101
receiving email, 172-173
class, creating, 173-174
governor limits, 173
personalizing based on sender
identity, 173
services, configuring, 174-175
uncaught exceptions, 173
sending email, 168
attachments, 172
blind-carbon-copies, 171
carbon copies, 171
mass emails, 170-171
notifications, 181-182
organization-wide email address
unique identifiers, 172
reply-to addresses, 171

sendEmail method, 171

sender display names, 171
signatures, 172

SingleEmailMessage object, 168-169
templates, 169-170

tracking, 172

sets, 112

SOQL queries, 126-128
SOSL, 155-157

Test Runner View (IDE), 103
transaction processing

DML database methods, 157-158
record locking, 161
savepoints, 159-160

triggers, 130-131

batching, 132

bulkifying, 132

definitions, 131-132

error handling, 132-133

names, 131

timecard validation, creating,
138-139

unit tests, 136

results, viewing, 137

running, 137

test data, 137

test methods, 136

Test Runner View, 103
TimecardManager class, 140-141

variables, 105

APIs

access modifiers, 118
checkpoints, 133-135
classes, 117
constants, 107
declaring, 105-106
enums, 107

names, 105-106
rounding, 108

Bulk, 344

authentication, 345-346
exporting records, 347-349
importing records, 346-347
two-tier system, 345

Web site, 345

Canvas, 349

authentication, 349-350
cross-domain XHR, 350

example application, 350-354
Web site, 349
Metadata, 360
object creation example, 361-363
services, 360-361
Web site, 360
REST
authentication, 306-307
Chatter, 379-380
Connected Apps, creating, 307
creating record requests, 310
data access, 306
data integration, 31
deleting record requests, 311
Force.com REST API Developer’s
Guide Web site, 308
mobile Web application data
access, 270
record retrieval by external
identifiers, 310
record retrieval by unique
identifiers, 309
services available call, 308-309
SObject basic information
request, 309
SOQL query request, 310
updating record requests, 311
upserting record requests, 311
SOAP
data integration, 31
enabled permissions, 318-319
Enterprise. See Enterprise API
error handling, 321
Force.com data types, 321
IP white-listing, 319
limits, 316
logging in/out, 318-320
login call, 320
login problems, troubleshooting, 320
Partner, 315
security, 316
security tokens, 319
stub code, generating, 316-317
Web Service Connector (WSC), 316
WSDL versions, 315-316
Streaming
example, 341-344
PushTopcis, 340-341
Web site, 340

architectures 391

Tooling, 354
Apex code, deploying, 355
internal state of deployment, 355
overview, 355
query service, 355
status, refreshing, 355
user interface, 356
Visualforce controller example,
357-359
Visualforce page example, 359-360
Web site, 355
App Builder Tools, 33
App Engine, 3
AppExchange, 16
applications
AppExchange, 16
Connected Apps, creating, 351
custom, creating, 58
LDV deployments, 22
mobile
Chatter Mobile, 264
containers, 271
hybrid, 265, 267
native, 265-266
Salesforce Classic, 264
Salesforce Mobile SDK, 265
Salesforce Touch, 264
timecard entry page. See mobile
timecard entry page
Web. See mobile applications, Web
services, 6
Services Manager. See Services Manager
application
single-page, 250
Angular]S, 251-253
JavaScript remoting, 250
social. See Chatter
architectures
application services, 6
declarative metadata, 7
multilenancy, 4-6
programming languages, 7
relational databases, 6
security, 71
Visualforce, 186-187

392

arithmetic negation (-) operator

arithmetic negation (-) operator, 110
arrays
creating, 111
initializing, 111-112
sorting, 112
Assignment object
fields, 54
overview, 53
assignment (=) operator, 110
asynchronous actions
as JavaScript events, 237-238
as JavaScript functions, 235-236
partial page refreshes, 234-235
status messages, 238-240
actionStatus component, 238-240
dynamic, 239
images/stylized messages, 239
as timed events, 237
asynchronous code execution, 116
Asynchronous JavaScript and XML. See Ajax
asyncMethod, 116
attachments (email), 172
attributes
page components, 200
reRender, 234
showChatter, 381
view components, 199
authentication
Bulk API, 345-346
Canvas, 349-350
mobile Web applications, 269-270
REST APIs, 306-307
sites users, 258
auto numbers, 40-41, 322
availability (PushTopics), 341
AVG aggregate function, 144

B

backslash (\), UNIX line-continuation
character, 309
Batchable interface, 283-284
Batch Apex, 116
Batchable interface, 283-284
batch jobs, 282
executing, 286
execution detail, viewing, 288
progress, monitoring, 287-288
scope, 289

classes, creating, 285-286
iterable scope, 290-292
limitations, 292
missing timecard class, developing,
298-299
project evaluation guidelines, 284-285
scheduled jobs
creating, 295
editing, 296
viewing, 296
scheduling, 293-296
Apex user interface, 294-295
sample code, 296
schedulable code development, 294
scope, 282
stateful, 289-290
testing, 293
transactions, 283
batch jobs, 282
bulk export
batches, creating, 348
creating, 347-348
results, retrieving, 348-349
status, checking, 348
bulk import
closing, 347
creating, 346
records, adding, 346-347
results, retrieving, 347
status, checking, 347
executing, 286
execution detail, viewing, 288
limitations, 292
progress, monitoring, 287-288
scheduled
creating, 295
deleting, 296
editing, 296
scheduling, 293-296
Apex user interface, 294-295
schedulable code development, 294
scope, 289
triggers, 132
BenchmarkWS class, 334
binary data types, 322
bitwise operators, 110
blind-carbon-copies (email), 171
blobs, 106

Boolean data type, 106
break keyword (loops), 114
browsing data, 42-44
Bulk API, 344
authentication, 345-346
records
exporting, 347-349
importing, 346-347
two-tier system, 345
Web site, 345
bulk jobs
export
batches, creating, 348
creating, 347-348
results, retrieving, 348-349
status, checking, 348
import
closing, 347
creating, 346
records, adding, 346-347
results, retrieving, 347
status, checking, 347
bulk modifications (records), 326
business analyst contributions, 11
business units
collaboration, testing, 97-98
security, 85-88
buttons
custom
custom obijects, creating, 38
Visualforce pages, 215
native user interface, 213
standard, 37

C

callouts (Apex), 301-302
REST services, 302-304
formats, 302
HTTP classes, 302-303
integrating, 303-304
invoking, 303
testing, 304
SOAP services, 305-306
Canvas, 349
authentication, 349-350
cross-domain XHR, 350

Chatter 393

example application
adding pages, 352
callback HTML page, 354
configuring pages, 352
Connected App, creating, 351
local Web servers, configuring, 352
main HTML page, 353-354
previewing, 352
running in App Previewer, 350
Web site, 349
carbon copies (email), 171
catch keyword (exceptions), 115
channel names, 340
Chatter
Apex, 378-379
Visualforce controller example, 378
Visualforce page, 378
Web site, 378
comments, 374-375
creating, 375
deleting, 375
query, 375
schema pattern, 374
feed-tracked changes, 376
following records, 376-378
following relationships, 377
method, 377
unfollowing, 377-378
Mobile, 264
objects
dynamic, 370
high-volume design, 370
relationship-rich, 370
posts, 370-372
content, 371
creating, 372-373
custom object feeds, 373
deleting, 373
Feed objects, 370-371
news feeds, 374
schema pattern, 370
standard object feeds, 372-373
user feeds, 374
REST API, 379-380
followed records request, 380
news feed request, 379-380
post request, 380
Web site, 379

394 Chatter

Services Manager Follow Team button,
382-385
configuring, 385
controller extension code, 383-384
testing, 385
Visualforce page, 384-385
Visualforce components, 380-382
feed, 381
feedWithFollowers, 381
follow, 381
followers, 381
limitations, 382
newsFeed, 381
showChatter attribute, 381
userPhotoUpload, 381
Visualforce page, creating, 381
checkboxes
defined, 38
SOAP type, mapping, 322
checkpoints, 133-135
child relationships
child-to-parent, 125-126
metadata, 178
semi-joins
child-to-child, 153
child-to-parent, 153
classes
access modifiers, 118
Apex
ConnectApi, 378
custom Apex REST services, creating,
312-314
custom Apex SOAP Web services
rules, 327
HTTP, 302-303
Batch Apex, creating, 285-286
BenchmarkWSs, 334
constructors, 118
defining, 118
information-hiding notation, 118
inheritance, 119
initializers, 118
inner, 118
Iterable, 291
Iterator, 290
methods, 117

MissingTimecardBatch
creating, 298-299
reset results, 300
running, 300
MyEmailService, 173-174
properties, 117
TimecardManager
creating, 138-139
unit tests, 140-141
variables, 117
clear method (collections), 109
Clone button, 213
clone method (collections), 109
closing bulk import jobs, 347
cloud computing
benefits, 2
overview, 2
Paas, 2
Amazon Web Services, 2-3
Force.com, 3-4
Google Cloud Platform, 3
Windows Azure, 3
Cloudforce conference, 17
code execution (Apex)
asynchronous, 116
conditional statements, 113
exception statements, 114-115
examples, 115
handling, 115
raising, 115
governor limits, 120
loops, 114
recursion, 115
Code Share, 16
collections
arrays
creating, 111
initializing, 111
sorting, 112
clearing, 109
cloning, 109
emptiness, 109
lists
creating, 111
initializing, 111
nesting, 111
sorting, 112

maps, 112-113
sets, 112
size, 109
ComeD library, 342
commandButton component, 203
commandLink component, 203
comments (Chatter), 374-375
creating, 375
deleting, 375
query, 375
schema pattern, 374
communication errors, 220-221
CompareSkillsComponent
creating, 259-260
support, adding, 261
CompareSkillsController, 260
composition (modular Visualforce
pages), 243-244
conditional statements, 113
condition expressions, 194
configuration management, 14
configuring
Canvas App pages, 352
email services, 174-175
field accessibility, 89-90
Follow Team button, 385
IDE, 138
local Web servers, 352
sharing rules, 92-93
ConnectApi classes, 378
Connected Apps, creating
Canvas, 351
REST API, 307
constants, 107
constructors, 118
Consultant profile
permissions, 86
Services Manager application, 18
testing, 96
ContactFeed object, 372
Contact object
CSV import file, 69
fields, 51
overview, 51
Containerld field, 355

converting data types 395

containers
dynamicComponent elements, 248
mobile applications, 271
static resources, 241-242
continue keyword (loops), 114
controlled by parent records, 81
controller attribute (pages), 200
controllers, 186-187
actionFunction component, 236
actions
as JavaScript events, 237-238
timed events, 237
Angular]s, 253
mobile timecards, editing, 279
project list example, 252
timecard entry in-page
navigation, 277
Chatter example, 378
custom, 193-197
actions, 195-197
exposing data, 193-194
dynamic field reference, 247
extensions, 197
governor limits, 221
mobile timecards
editing, 277
list functionality, 274
partial page refresh, 235
Services Manager
business hours, configuring, 331
Follow Team button extension code,
383-384
Skills Matrix, 225-227, 229-231
utilization calculation, 332
utilization code, 335-337
standard, 191-193
multiple records, 192-193
single records, 191-192
Streaming API example, 342
Tooling API example, 357-359
unit tests, 222
conversion methods, 108
converting data types, 107-108
conversion methods, 108
dates to strings, 109
exceptions, 114
implicit conversion, 107-108
strings to dates, 109

396

COUNT aggregate function

COUNT aggregate function, 144-145

COUNT_DISTINCT aggregate function, 144

Create Lookup Field dialog box, 61
Create New Object dialog box, 59
create permission, 75
createProject service, 329
create service, 324
cross-domain XHR, 350
CRUD (create, read, update, delete)
operations, 31
Crypto class, 303
CSRF (Cross Site Request Forgery)
attacks, 385
CSS (components), adding, 261
CSV files
Contact import, 69
exporting, 64-65
Project import, 65
cURL, 306
currency
fields, 38
SOAP data type, mapping, 322
custom Apex Web services
REST, 312-314
Apex class rules, 312
creating, 313
governor limits, 312
invoking, 313-314
SOAP, 326
Apex class rules, compared, 327
calling, 328
creating records example, 328
governor limits, 327
invoking, 329
limitations, 326-327
Services Manager anonymous
benchmarking, 333-335
custom applications, creating, 58
custom buttons
custom obijects, creating, 38
Visualforce pages, 215
custom components
creating, 259-260
CSS, adding, 261
defining, 244-245

Google Map example, 245-246
support, adding, 259-260
custom controllers, 193-197
actions, 195-197
custom logic, invoking, 195
trigger page navigation, 195
view state preservation, 195
wrapper pattern, 195-196
exposing data, 193-194
custom fields. See fields, creating
custom links
custom objects, creating, 38
Visualforce pages, 215
custom objects, 22
creating, 35, 59-60
activities, allowing, 36
custom buttons/links, 38
custom fields, 37
definition, 35-36
deployment status, 36
descriptions, 36
field history tracking, 36
help settings, 36
labels, 35
names, 35
page layouts, 37
record name label, 36
reports, allowing, 36
search layouts, 37
standard buttons/links, 37
standard fields, 36
triggers, 37
validation rules, 37
missing timecards, creating, 297
tabs, creating, 63
tools, 33-34
App Builder Tools, 33
data, 34
Force.com IDE, 34
metadata, 33
Schema Builder, 34
custom settings, 180-181
defined, 47
governor limits, 180
hierarchy, 49, 181
list, 48

records
creating, 180
deleting, 180
updating, 180
storage limits, 49
types, 47-48
values, retrieving, 180
custom tabs, 215

D

data
batch processing. See Batch Apex
browsing, 42-44
entering, 41-42
exposing (custom controllers), 193-194
expressions
standard controllers, 192
standard set controllers, 193
importing, 64
import process, 66
preparations, 64-66
verification, 67-69
integration, 29
metadata XML, 30-31
native user interface, 31
object-relational mapping, 30
REST APIs, 31
SOAP APIs, 31
integrity, 122

mobile Web applications access, 269-270

actionFunction component, 270
authentication, 269-270
JavaScript remoting, 270
REST API, 270
SmartSync, 270
modeler contributions, 11
relationships
explicitly defined, 26
integrity enforced, 26
records, creating, 121
Services Manager application, 55-58
SOQL, 26-27
SOQL versus SQL, 27-28
SOSL, 29
viewing, 121
REST API access, 306

databases 397

security
architecture, 71
field accessibility, 73
object-level. See object-level security
overview, 71-74
permission sets, 72
profiles, 72
record-level, 72
sharing model, 73
sharing reasons, 74
Services Manager application integration
implementation strategy, 363-364
sample implementation, 364-366
scenario, 363
storage custom settings
defined, 47
governor limits, 180
hierarchy, 49, 181
list, 48
records, 180
storage limits, 49
types, 47-48
values, retrieving, 180
tools, 34
Data Loader, 34
Excel Connector, 34
Import Wizard, 34
Database.com, 4
databases
administrator contributions, 12
Apex integration
DML statements. See DML,
statements
integrity, 122
objects, referencing, 121-122
overview, 120-121
queries. See queries
security, 133
change exceptions, 114
custom settings, 47-48
defined, 47
hierarchy, 49
list, 48
storage limits, 49
types, 47-48
data. See data
developer contributions, 12
fields. See fields

398 databases

governor limits, 120 inputText, 202
integration, 29 inputTextArea, 202
logical, 13 outputLabel, 202
metadata XML, 30-31 selectCheckboxes, 202
native user interface, 31 selectList, 202
object-relational mapping, 30 selectRadio, 202
REST APIs, 31 repeating, 201-203
SOAP APIs, 31 dataList component, 203
objects. See objects Data Loader tool, 34
queries. See queries data preparation, 64-66
records. See records Contact CSV import file, 69
relational, 6 exporting CSV files, 64-65
relationships. See relationships Project CSV import file, 65
security data verification, 67-69
Apex, 133 importing data, 66
architecture, 71 Data Manipulation Records. See DML
field accessibility, 73 data model (Services Manager)
object-level. See object-level security design goals
object permissions, 73 Developer Edition, optimization, 50
overview, 71-74 standard objects, leveraging, 50
permission sets, 72 implementing
profiles, 72 custom application, creating, 58
record-level, 72 custom objects, creating, 59-60
sharing model, 73 custom object tabs, creating, 63
sharing reasons, 74 field visibility, 64
services, 7 Lookup relationship, creating, 60
tables. See objects Master-Detail relationships,
triggers, 130-131 creating, 60-62
batching, 132 validation rules, creating, 63
bulkifying, 132 specification, 50
custom objects, creating, 37 assignments, 53-54
definitions, 131-132 contacts, 51
email notifications, 181-182 data relationships, 55-58
error handling, 132-133 projects, 52
names, 131 skills, 53
page navigation, 195 timecards, 53-56
timecard validation, creating, dataTable component, 203
138-139 data types
data components, 200-203 Apex, 106
metadata-aware, 200-201 blob, 106
inputField, 201 Boolean, 106
outputField, 201 converting, 107-108
Mobile Components for Visualforce, 268 converting dates to strings, 109
primitive, 201-202 converting strings to dates, 109
inputCheckbox, 202 date, 106
inputFile, 202 datetime, 106
inputHidden, 202 decimal, 106

inputSecret, 202 double, 106

ID, 106
Integer, 106
long, 106
object, 106
string, 106
time, 106
arrays
creating, 111
initializing, 111-112
sorting, 112
collections
clearing, 109
cloning, 109
emptiness, 109
size, 109
converting, 114
fields, selecting, 38
lists
creating, 111
initializing, 111-112
nesting, 111
overview, 111
sorting, 112
maps, 112-113
rich, 25
sets, 112
SOAP types, mapping, 321
dates, 38
converting to strings, 109
defined, 106
SOAP type, mapping, 322
String conversions, 109
datetime data type
converting to strings, 109
defined, 106
SimpleDateFormat pattern, 109
SOAP type, mapping, 322
string conversions, 109
DE accounts
logging in, 32
orgs, 32
registration, 32
debugging
Apex, 133
checkpoints, 133-135
execution logs, 134
batch jobs execution details,
viewing, 288

development 399

Visualforce
component identifier problems, 240
user interfaces, 216
decimals
defined, 106
rounding, 108
declarative metadata, 7
declaring
future methods, 116
variables, 105-106
delegated administration sharing reason, 82
Delete button, 213
delete permission, 76
delete service, 325
Delete statement, 130
deleting
Chatter comments, 375
custom setting records, 180
PushTopics, 341
record requests, 311
records, 130, 325
scheduled batch jobs, 296
dependent fields, 46
deploying mobile Web applications, 271-272
deployment status, 36
detail component, 209
Developer Console
Apex, debugging, 133-134
unit test results, viewing, 137
Visualforce user interfaces, debugging,
216-218
Developer Force Web site, 16
development
Batch Apex schedulable code, 294
discussion boards, 16
environments, 32
lifecycle, 12
configuration management, 14
end of life, 15
integrated logical databases, 13
integrated unit testing, 14-15
interoperability, 15
MVC pattern, 15
native user interfaces, 14
mobile applications
hybrid, 2635, 267
native, 265-266
Salesforce Mobile SDK, 265
Web. See mobile applications, Web

400

development

Visualforce
process, 188
tools, 188-190
dialog boxes
Create Lookup Field, 61
Create New Object, 59
Open Perspective, 101
dirty writes, 161
division (/) operator, 110
DML (Data Manipulation Language), 128
database methods, 157-158
insert example, 158
opt_allOrNone parameter, 158
statements
Delete, 130
Insert, 129
Undelete, 130
Update, 129
Upsert, 129-130
DmIlException exception, 114
domain names (sites), 255
double data type
defined, 106
rounding, 108
Do-While loops, 114
Dreamforce conference, 17
dynamic Apex, 174
instances, creating, 179
queries
governor limits, 176
SOQL, 175-176
SOSL, 176
schema metadata, 177
child relationship, 178
field, 177-178
limits, 177
object, 177
picklist, 178
record type, 179
dynamic Chatter objects, 370
dynamicComponent elements, 248
dynamic field references, 246-248
dynamic status messages, 239
dynamic Visualforce, 246
component generation, 248-249
dynamic field references, 246-248

E

EC2 (Elastic Compute Cloud), 2-3
editing
mobile timecards, 277-279
scheduled batch jobs, 296
edit page, 211
edit permission, 75
Elastic Beanstalk, 2
email
fields, 38
integration, 9
receiving, 172-173
class, creating, 173-174
governor limits, 173
personalizing based on sender
identity, 173
services, configuring, 174-175
uncaught exceptions, 173
sending, 168
attachments, 172
blind-carbon-copies, 171
carbon copies, 171
mass emails, 170-171
notifications (Services Manager
application), 181-182
organization-wide email address
unique identifiers, 172
reply-to addresses, 171
sendEmail method, 171
sender display names, 171
signatures, 172
SingleEmailMessage object, 168-169
templates, 169-170
tracking, 172
SOAP data type, mapping, 322
enabled permissions (SOAP API), 318-319
encapsulation, 117-118
EncodingUtil class, 303
end of life, 15
enhancedList component, 209
Enhanced Profile List Views, 74
Enhanced Profile User Interface, 74
Enterprise API
overview, 315
records
bulk modifications, 326
creating, 324-325

deleting/undeleting, 325
retrieving, 323-324
updating, 325
upserting, 325
writing, 324
EntitySubscription object, 377
enums, 107
environments, 32
equality (==) operator, 110
error handling
SOAP API, 321
triggers, 132-133
Visualforce, 220-221
communication, 220-221
uncaught exceptions, 220
errors
communication, 220-221
data type conversions, 108
events
JavaScript, 237-238
timed, 237
exact equality (===) operator, 110
exact inequality (!==) operator, 110
Excel Connector, 34
exceptions
incoming email, 173
statements, 114-115
examples, 115
handling, 115
raising, 115
uncaught, 220
EXCLUDES keyword (multi-select
picklists), 154
Execute Anonymous view (IDE)
batch jobs, running, 286
missing timecard report, testing, 300
REST services integration, testing, 304
executeBatch method, 286
execute method (Batchable interface), 283
execution logs, 134
exporting
CSV files, 64-65
records, 347-349
batches, creating, 348
creating bulk export jobs, 347-348
results, retrieving, 348-349
status, checking, 348

fields

expressions
combining, 194
condition, 194
if/then/else, 110
scheduling, 295
standard controllers
actions, 192
data, 192
navigation, 192
standard set controllers
action, 193
data, 193
filters, 193
navigation, 193
pagination, 193
extensions (controller), 197
extensions attribute (pages), 200
external IDs, 39

F

facets, 239
FeedComments relationship, 375
feed component, 381
Feed objects, 370-371
custom obijects, 373
news, 374
standard objects, 372-373
users, 374
FeedTrackedChange object, 376
feed-tracked changes (Chatter), 376
feedWithFollowers component, 381
Field change Chatter posts, 371
fields, 23
accessibility, 73, 78-79, 89-90
Assignment object, 54
auto number, 41
categories, 23
checkboxes, 38
Contact object, 51
Containerld, 355
creating, 37
default values, 39
descriptions, 39
external IDs, 39
help text, 39
labels, 39
names, 39

401

fields

required, 39
types, selecting, 38
unique, 39
date/time, 38
dependent, 46
dynamic references, 246-248
email/phone/URL, 38
field sets, 247-248
fieldsToNull, 325
formula, 24-25, 41
history tracking, 25, 36
logical, 23
metadata, 177-178
multi-select picklists, 154
NotifyForFields, 341
NotifyForOperations, 341
numbers/percent/currency/
geolocation, 38
picklists, 38
metadata, 178
multi-select, 154
SOAP type, mapping, 322
Project object, 52
query results, sorting, 125
relationships. See relationships
Requestld, 355
rich data types, 25
roll-up summary, 41, 45
security, 77
field accessibility, 78-79, 89-90
profiles, 78
sharing objects, 162-163
Skill object, 54
standard, 36
text, 38
Timecard object, 56
unique identifiers, 24
validation rules, 24

filtering
multi-select picklists, 154
records
grouped, 146
SOQL, 124-125
standard set controllers, 193
finally keyword (exceptions), 115

finish method (Batchable interface), 284

follow component, 381

followers component, 381

following records (Chatter), 376-378
following relationships, 377
method, 377
relationships, 377
request, 380
unfollowing, 377-378

Follow Team button, 382-385
configuring, 385

controller extension code, 383-384

testing, 385
Visualforce page, 384-385
Force.com

architecture
application services, 6
declarative metadata, 7
multilenancy, 4-6
programming languages, 7
relational databases, 6

Database.com, 4

developers, 3

perspective, 101

Project, 103

services, 7
business logic, 8
database, 7
integration, 8-9
user interface, 8

technology integrations, 4

visibility, 64 Force.com-styled components, 204-205
fieldsToNull field, 325 action containers, 205
fields variable, 247 notifications, 205
file-based services, 361 page structure, 205

File Chatter posts, 371 paging, 205
files (CSV) samples
Contact import, 69 controller, 206

exporting, 64-65 page, 207
Project import, 65 table, 205

forcetk.js library, 266
For loops, 114, 127
formatting
datetime data types, 109
REST services, 302
SimpleDateFormat pattern, 109
strings for dates, 109
formulas, 24-25, 41, 322
frameworks (mobile Web applications),
268-269
Mobile Components for Visualforce,
268-269
Web MVC, 269
functions (aggregate), 144-145
AVG, 144
COUNT, 144-145
COUNT_DISTINCT, 144
governor limits, 145
MAX, 144
MIN, 144
records, grouping, 146
SUM, 144-145
future methods, 116
declaring, 116
limitations, 116

G

geolocation fields, 38
getCurrentUserContact method, 225
getDescribe method, 177
getinstance method, 181
getSObject method, 176
Google Cloud Platform, 3
governor limits, 120

aggregate functions, 145

Apex code, 120

custom Apex Web services

REST, 312
SOAP, 327

custom settings, 180

databases, 120

dynamic queries, 176

Force.com Apex Code Developer’s Guide

Web site, 100

heaps, 120

inbound email, 173

namespaces, 120

hybrid applications 403

overview, 100
Visualforce, 221
greater than (>) operator, 110
greater than or equal to (>=) operator, 110
GROUP BY clause (record groupings), 145
GROUP BY CUBE clause, 147-148
GROUP BY ROLLUP clause, 147
groups
operators, 110
records, 145-146
with aggregate functions, 146
filtering, 146
subtotals, 147-148
without aggregate functions, 145-146
users, 80
public, 80
roles, 80

H

The Hammer, 6
handlelnboundEmail method, 172
handling
errors
SOAP API, 321
triggers, 132-133
Visualforce, 220-221
exceptions, 115
HAVING keyword (grouped records,
filtering), 146
heap governor limits, 120
Hello World
code example, 105
Visualforce example, 189-191
help
settings (custom objects), 36
text, 39
hierarchy custom settings, 49, 181
high volume objects, 370
history tracking
custom obijects, 36
fields, 25
HTTP Apex classes, 302-303
Http class, 302
HttpRequest class, 302
HttpResponse class, 302
hybrid applications, 265, 267

404

laaS

laaS. See PaaS
id attribute (view components), 199
IDE
Execute Anonymous view
batch jobs, running, 286
missing timecard report, testing, 300

REST services integration, testing, 304

installation, 101
perspective, 101
Project, 103
Schema Explorer, 103
Services Manager application
configuration, 138
Views
Apex Test Runner, 103
Execute Anonymous, 104-105
Problems, 103
Visualforce page editor, 189
Ideas Web site, 16
IDs
defined, 106
external, 39
string conversion, 108
iframe component, 204
if/then/else expression shortcut (? :), 110
image component, 204
implicit conversions (data types), 107-108
importing
data, 64
import process, 66
preparations, 64-66
Contact CSV import file, 69
exporting CSV files, 64-65
Project CSV import file, 65
verification, 67-69
records, 346-347
adding records to bulk import jobs,
346-347
closing bulk import jobs, 347
creating bulk import jobs, 346
results, retrieving, 347
status, checking, 347
Import Wizard, 34
InboundEmailHandler interface, 172
inbound email. See receiving email
include component, 242

includeScript component, 205
INCLUDES keyword (multi-select
picklists), 154
inclusion (modular Visualforce), 242
information-hiding notation, 118
Infrastructure as a Service. See PaaS
inheritance (Apex), 119
initializers, 118
inner classes, 118
inner joins, 149-150
inputCheckbox component, 202
inputField component, 201
inputFile component, 202
inputHidden component, 202
inputSecret component, 202
inputTextArea component, 202
inputText component, 202
insert database method, 158
Insert statement, 129
installing
IDE, 101
Mobile Components for Visualforce,
268-269
instances, creating, 179
Integers, 106
integration, 29
Apex callouts, 301-304
databases in Apex, 120-121
DML statements. See DML,
statements
integrity, 122
objects, referencing, 121-122
queries. See queries
security, 133
logical databases, 13
metadata XML, 30-31
native user interface, 31
object-relational mapping, 30
REST APIs, 31
services, 8-9
Services Manager application
implementation strategy, 363-364
sample implementation, 364-366
scenario, 363
SOAP APIs, 31
specialist contributions, 12

Visualforce and native user interface,
209-210
custom buttons/links, 215
custom tabs, 215
page layouts, 213
standard buttons, 213
standard pages, 210-211
interfaces
Batchable, 283-284
InboundEmailHandler, 172
Schedulable, 294
Stateful, 290
interoperability, 15
IP white-listing, 319
isEmpty method, 109
@isTest, 136
iterable batch scope, 290-292
Iterable class, 291
Iterator class, 290

Java
createProject service, 329
create service, 324
Metadata API object creation example,
361-363
query batch sizes, setting, 324
SOQL queries, executing, 323
stub code, generating, 317
JavaScript
dynamic action status messages, 239
events, 237-238
forcetk.js library, 266
JQuery UI, 259
Object Notation (JSON), 302, 364-366
remoting, 250, 270
Skills Matrix comparison overlay, 261
Visualforce components,
referencing, 240
job function security, 85-86
jobs
bulk export
batches, creating, 348
creating, 347-348
results, retrieving, 348-349
status, checking, 348

licensing 405

bulk import
closing, 347
creating, 346
records, adding, 346-347
results, retrieving, 347
status, checking, 347
joins
anti-joins
overview, 152
restrictions, 153
inner, 149-150
outer, 148-149
semi-joins
child-to-child, 153
child-to-parent, 153
parent-to-child, 151
restrictions, 153
jQuery Ul, 259
JSON (JavaScript Object Notation), 302,
364-366

K

keywords
break, 114
catch, 115
continue, 114
EXCLUDES, 154
finally, 115
HAVING, 146
INCLUDES, 154
LIMIT, 125
throw, 115
try, 115

labels

custom objects, 35

fields, 39
layouts

page, 37

search, 37
LDV (Large Data Volume) deployments, 22
less than (<) operator, 110
less than or equal to (<=) operator, 110
licensing

orgs, 32

profiles, 76

406

lifecycles (development)

lifecycles (development), 12
configuration management, 14
end of life, 15
integrated logical databases, 13
integrated unit testing, 14-15
interoperability, 15
MVC pattern, 15
native user interfaces, 14

LIMIT keyword (records), 125

links
custom

custom obijects, creating, 38
Visualforce pages, 215
standard, 37
listings
actionFunction component (Visualforce)
controllers, 236
pages, 236
actionPoller component, 237
actionStatus component, 238
with facets, 239
JavaScript functions, 239
actionSupport component, 237-238
aggregate functions
COUNT, 145
SUM, 145
Angular]S project list example
(Visualforce)
controller, 252
page code, 252-253
Apex ORM code snippet, 30
arrays
creating, 111
initializing, 112
Batch Apex
class, 285
execution scope, 289
iterable batch example, 291
project iterator, 291
running batch jobs, 286
schedulable code, 294
scheduling example, 296
stateful example, 289
test, 293
Bulk API password authentication, 345
bulk export jobs
creating, 348
results, retrieving, 348-349
status, checking, 348

bulk import jobs
closing, 347
creating, 346
records, adding, 346
results, retrieving, 347
status, checking, 347
Canvas App
callback HTML page, 354
main HTML page, 353-354
Chatter
feed-tracked changes, 376
following records, 377
following relationships, 377
unfollowing records, 378
Visualforce component page, 381
Visualforce controller example, 378
Visualforce page example, 378
Chatter comments
creating, 375
deleting, 375
query, 375
Chatter posts
creating, 372
custom object query, 373
deleting, 373
standard object query, 372
user feed query, 374
Chatter REST API requests
followed records, 380
news feed, 380
posts, 380
class definitions, 118
commandButton component, 203
conditional statements, 113
constants, defining, 107
Contact CSV import file, 69
custom Apex REST Web services
creating, 313
invoking, 313
custom Apex SOAP Web services
creating record example, 328
invoking, 329
custom controllers
extensions, 197
read-only access to Project
record, 194
wrapper patterns, 195-196

custom settings
creating custom setting records, 180
deleting, 181
updating, 180
values, retrieving, 180
data integrity, 122
data type conversions
conversion methods, 108
errors, 108
ID and string, 108
implicit conversion, 107
strings to dates, 109
datetime data types, formatting, 109
dynamic queries
SOQL, 175
SOSL, 176
Enterprise API
creating records, 325
query batch sizes, 324
record retrieval SOQL query, 323
enums, defining, 107
error-severity message, 221
exception statements, 115
Force.com-styled components
controller, 206
page, 207
formula field example, 24-25
future method declaration, 116
Hello World, 105
include component, 242
inputField component, 201
insert DML database method, 158
instances, creating, 179
lists
creating, 111
initializing, 112
nesting, 111
maps, 113
Metadata API object creation, 362-363
metadata XML example, 31
MissingTimecardBatch class
creating, 298-299
reset results, 300
running, 300
mobile timecard entry page
editing timecards, 277-279
listing timecards controller, 274

listings 407

listing timecards Visualforce
page, 275
navigation, Angular]S controller, 277
outputField component, 201
Project CSV import file, 65
receiving email, 173
records
creating, 121
deleting, 130
inserting, 129
locking, 161
relationships, creating, 121
undeleting, 130
updating, 129
upserting, 130
records, grouping
with aggregate functions, 146
debug log excerpt, 147
filtering grouped, 146
GROUP BY CUBE clause, 147-148
GROUP BY ROLLUP clause, 147
without aggregate functions, 146
recursion, 115
repeat component, 203
REST API
authentication, 307
creating record requests, 310
deleting record requests, 311
record retrieval by external
identifiers, 310
record retrieval by unique
identifiers, 309
services available call, 309
SObject basic information
request, 309
SOQL query request, 310
updating record requests, 311
upserting record requests, 311
rounding operations, 108
savepoints, 160
schema metadata
child relationship, 178
field, 177
object, 177
picklist, 178
record type, 179

408

listings

sending email
mass email, 171
SingleEmailMessage object, 168
template, 170

Services Manager application

anonymous benchmark Web service,

testing, 334
email notifications, 182

integration implementation example,

364-366

utilization controller, 335-337
Utilization page code, 337-338

Services Manager Follow Team button
controller extension code, 383
Visualforce page, 384

Services Manager Skills Matrix
controller, 226-227
unit test, 229-231
Visualforce page, 228

Services Manager Skills Matrix

comparison overlay

actionSupport, adding, 262
CompareSkillsComponent, 260
CompareSkillsController, 260
component CSS, adding, 261
component support, adding, 261
JavaScript integration, 261

sets, 112

sharing rules, inserting, 167

Skill type field error condition

formula, 63

SOAP AP], logging in, 320

SOQL
child-to-child semi-join, 153
child-to-parent relationships, 126
child-to-parent semi-join, 153
filter conditions, 124
Group Object query, 166
inner join, 150
multi-select picklists, 154
outer join, 148
parent-to-child query, 151
parent-to-child relationships, 126
Project Share Object query, 165
query in Apex, 127
query in Apex with For loop, 127
record limits, 125
relationship query, 28

semi-join, 152
sort fields, 125
statement, 124
SOSL
Apex, 156
query, 29
SQL relationship query, 27
standard controllers
multiple records, 192
single records, 191
Streaming API Visualforce
controller, 342
test methods, 136
TimecardManager class
creating, 139
unit tests, 140-141
Tooling API example (Visualforce)
controller, 357-359
page, 359-360
triggers
batching, 132
definition, 131
validateTimecard trigger, 138
validation rule example, 24
variables
declaring, 105
name case insensitivity, 106
view components syntax, 199
Visualforce
controller partial page refresh, 235
controller unit test, 222
dynamic components, 248-249
dynamic field references, 247
Hello World example, 190
pages as templates, 243
partial page refresh, 235
record-level security, 219
view components, 244, 246
Yahoo! geocoding REST service
integrating, 303
invoking, 303
testing, 304

lists

creating, 111
custom settings, 48
initializing, 111-112
nesting, 111

overview, 111
pages, 211
sorting, 112
List/Set Iteration For loops, 114
listViews component, 208
local Web servers, configuring, 352
locking records, 161
logging in
DE accounts, 32
SOAP API, 318-320
enabled permissions, 318-319
IP white-listing, 327
logging out, 320
login call, 320
problems, troubleshooting, 320
security tokens, 319
logical databases integration, 13
logical negation (!) operator, 110
login method, 320
LoginResult object, 320
logs
debug, 288
execution, 134
long data type, 106
Lookup relationships
creating, 60
defined, 39
Master-Detail relationships,
compared, 40
Services Manager application, 55
SOAP type, mapping, 322
loops, 114, 127

M

managed sharing (Apex), 162
organization-wide sharing defaults,
changing, 163
restrictions, 163
sharing objects, 162-163
sharing rules, creating, 163-167
inserting, 167
Project object, 164
SOQL queries, 165-166
viewing, 163, 167
manual sharing reason, 82
maps, 112-113
mashups, 9

methods 409

MassEmailMessage object, 170-171
mass emails, sending, 170-171
Master-Detail relationships
creating, 60-62
defined, 40
Lookup relationships, compared, 40
Services Manager application, 55-57
SOAP type, mapping, 322
MAX aggregate function, 144
messages component, 220-221
metadata
declarative, 7
schema, 177
child relationship, 178
field, 177-178
limits, 177
object, 177
picklist, 178
record type, 179
tools, 33
XML, 30-31
Metadata API, 360
object creation example, 361-363
services, 360-361
Web site, 360
metadata-aware components, 200-201
inputField, 201
outputField, 201
methods
abortjob, 296
access modifiers, 118
action, 195-197
addError, 225
addFields, 246
addInfo, 225
Apex test, 136
clear, 109
clone, 109
defined, 117
DML database, 157-158
insert example, 158
opt_allOrNone parameter, 158
execute, 283
executeBatch, 286
finish, 284
future, 116
declaring, 116
limitations, 116

methods

getCurrentUserContact, 225
getDescribe, 177
getInstance, 181
getSObject, 176
handleInboundEmail, 172
isEmpty, 109
login, 320
nav, 277
navClass, 277
overloading, 119
query
SOQL, 175
SOSL, 176
rollback, 159
schedule, 295
sendEmail, 171
setBccSender, 171
setCcAddresses, 171
setDocumentAttachments, 172
setFileAttachments, 172
setOrgWideEmailAddressld, 172
setReplyTo, 171
setSaveAsActivity, 172
setSavePoint, 159
setSenderDisplayName, 171
setUseSignature, 172
size, 109
start, 283
testAsUser, 231
testNoContactForUser, 231
testNoContactSelected, 231
testNoSKkills, 231
testSave, 231
testWithSkills, 231
valueOf
date to string conversions, 109
string to date conversions, 109
MIN aggregate function, 144
MissingTimecardBatch class
creating, 298-299
reset results, 300
running, 300
missing timecard reports, 296-297
missing timecards information,
calculating, 298-299

missing timecards list custom object,

creating, 297
testing, 299-300

mobile applications

Chatter Mobile, 264

containers, 271

hybrid, 265, 267

native, 265-266

Salesforce
Classic, 264
Mobile SDK, 265
Touch, 264

timecard entry page
editing timecards, 277-279
in-page navigation, 276-277
listing timecards, 273-276
requirements, 272
testing, 279
viewing in Web browsers, 273
viewing on iPhones, 273

Web, 265
data access, 269-270
deployment, 271-272
frameworks, 268-269
overview, 266
Salesforce SDK libraries, 266

Mobile Components for Visualforce, 268-269

documentation/source code Web
site, 269
installing, 268-269
types, 268
Mobile Design templates, 269
Mobile Packs, 269
mobile timecard entry pages
in-page navigation, 276-277
requirements, 272
testing, 279
timecards
editing, 277-279
listing, 273-276
viewing
iPhones, 273
Web browsers, 273
Model-View-Controller (MVC) pattern, 15
Modify All permission, 76
modularity (Apex), 119
modular Visualforce pages, 241
composition, 243-244
custom components, 244-246
defining, 244-245
Google Map example, 245-246
inclusion, 242
static resources, 241-242

monitoring batch jobs, 287-288
multilenancy, 4-6

multiplication (*) operator, 110
multi-select picklists, 154

MVC (Model-View-Controller) pattern, 15
MyEmailService class, 173-174

N

NAICS (North American Industry Classification
System) codes, 333
names
channel, 340
custom objects, 35
fields, 39
sender display (email), 171
sites domain names, 255
triggers, 131
variables, 105-106
view components, 199
namespaces, 120
native applications, 265-266
native user interfaces
CRUD (create, read, update, delete)
operations, 31
data integration, 31
development lifecycle, 14
new features, enabling, 41
view components, 208-209
detail, 209
enhancedList, 209
listViews, 208
relatedList, 209
Visualforce development tool, 189
Visualforce integration, 209-210
custom buttons/links, 215
custom tabs, 215
page layouts, 213
standard buttons, 213
standard pages, 210-211
navClass method, 277
navigation
expressions
standard controllers, 192
standard set controllers, 193
Mobile Components for Visualforce, 268
mobile timecard entry page, 276-277
nav method, 277
nesting lists, 111

object-level security

New button, 213
New Custom Field Wizard
default values, 39
descriptions, 39
external IDs, 39
help text, 39
labels, 39
names, 39
required fields, 39
types, selecting, 38
unique fields, 39
New Custom Object Tab Wizard, 63
news feeds
defined, 381
requests, 379-380
North American Industry Classification System
(NAICS) codes, 333
not equal to (!=) operator, 110
notifications, 205
action status
actionStatus component, 238-240
dynamic, 239
images/stylized messages, 239
Streaming API
PushTopics, 340-341
Web site, 340
NotifyForFields field, 341
NotifyForOperations field, 341
NullPointerException exception, 114
number data type, 38, 322

o)

OAuth, 270, 306-307
object-level security, 72, 74
field-level security, 77
field accessibility, 78-79
profiles, 78
permission sets, 76-77
profiles, 74
administrative permissions, 75
Enhanced Profile List Views, 74
Enhanced Profile User Interface, 74
field-level security, 78
licenses, 76
object permissions, 75-76
Services Manager, creating, 89-90
Services Manager, listing, 85-86
types, 74

411

412 object-oriented programming

object-oriented programming, 117 FeedTrackedChange, 376
analysis and design specialist logical, 22
contributions, 12 LoginResult, 320
encapsulation, 117-118 MassEmailMessage, 170-171
information-hiding notation, 118 metadata, 177
inheritance, 119 operational tasks, 22
modularity, 119 permissions, 73, 75-76
polymorphism, 119 Project
Object-Relational Mapping (ORM), 30 CSV import file, 65
objects, 22, 106 custom object tab, creating, 63
AggregateResult, 145 fields, 52
Assignment overview, 52
fields, 53 sharing rules, 164
overview, 53 records
Chatter creating, 42, 121
dynamic, 370 relationships, creating, 121
high-volume design, 370 types, 47
relationship-rich, 370 referencing in Apex, 121-122
Contact SaveResult, 324
CSV import file, 69 security, 218
fields, 51 services, 361
overview, 51 sharing, 162-163
ContactFeed, 372 fields, 162-163
creating, 35, 59-60 restrictions, 163
activities, allowing, 36 SingleEmailMessage, 168-169
custom buttons/links, 38 Skill
custom fields, 37 fields, 54
definition, 35-36 overview, 54
deployment status, 36 validation rule, creating, 63
descriptions, 36 SOQL relationships, 125-126
field history tracking, 36 child-to-parent, 125-126
help settings, 36 parent-to-child, 126
labels, 35 standard, 22
with Metadata API, 361-363 tabs, creating, 41
names, 35 Timecard
page layouts, 37 fields, 56
record name label, 36 overview, 53
reports, allowing, 36 undelete support, 23
search layouts, 37 Views, 43-44
standard buttons/links, 37 Open Perspective dialog box, 101
standard fields, 36 operations specialist contributions, 12
triggers, 37 operators, 109
validation rules, 37 & (AND) operator, 110
EntitySubscription, 377 AND (&&), 110
Feed, 370-371 addition (+), 110
custom objects, 373 arithmetic negation (-), 110
news, 374 assignment (=), 110
standard objects, 372-373 bitwise, 110

users, 374

division (/), 110
equality (==), 110
exact equality (===), 110
exact inequality (!==), 110
greater than (>), 110
greater than or equal to (>=), 110
grouping, 110
if/then/else expression (? :), 110
less than (<), 110
less than or equal to (<=), 110
logical negation (!), 110
multiplication (*), 110
not equal to (!=), 110
OR (|]), 110
signed shift left (<<), 110
signed shift right (>>), 110
string concatenation (+), 110
subtraction (-), 110
unary decrement (--), 110
unary increment (++), 110
unsigned shift right (>>>), 110
opt_allOrNone parameter (DML database
methods), 158
organization-wide

email address unique identifiers, 172

security defaults
overview, 80-82
Services Manager application, 91
orgs, 32
ORM (Object-Relational Mapping), 30
OR (|) operator, 110
OR (| |) operator, 110
outbound email. See sending email
outer joins, 148-149
outputField component, 201
outputLabel component, 202
outputLink component, 204
outputPanel component, 204
outputText component, 204
overloading methods, 119
overriding
standard buttons, 213
standard pages, 210-211
ownership (records), 79-80

pages

P

PaaS (Platform as a Service), 2
Amazon Web Services, 2-3
Force.com, 3-4
Google Cloud Platform, 3
Windows Azure, 3

pageBlockButtons component, 228

pageBlock component, 228

pageBlockTable component, 228

pageMessages component, 220-221

pages
adding to sites, 256-257
Canvas App

adding, 352
configuring, 352
components, 200
layouts
custom objects, creating, 37
Visualforce pages, adding, 213
security, 219
standard native user interface
edit, 211
list, 211
overriding, 211
tab, 210
view, 211
structure components, 205
view state, preserving, 195
Visualforce, 187
actionFunction component, 236
adding to page layouts, 213
adding to Salesforce Touch, 271
Angular]S example code, 252-253
asynchronous actions. See
asynchronous actions
Chatter components, 381
Chatter example, 378
dynamic, 246-249
JavaScript events, 237-238
mobile timecards, 275-276, 278
modular, 241-246
native user interface buttons/links
navigation, 215
as native user interface tabs, 215
partial refreshes, 234-235

413

pages

performance tuning, 217-218

public access. See sites

security, 218-220

Services Manager Follow Team
button, 384-385

Services Manager Skills Matrix,
228-229

Services Manager Utilization, 337-338

Services Manager Utilization page,
creating, 330-331
standard pages, overriding, 210-211
Streaming API example, 343
timed events, 237
Tooling API example, 359-360
viewing from native user interface
buttons, 213
viewing in Salesforce Classic, 271
pagination expressions, 193
paging components, 205
Parentld field, 162
parent-to-child relationships, 126
queries, 151
semi-join, 151
partial page refreshes, 234-235
Partner SOAP API, 315
percent data type, 38, 322
performance
custom Apex SOAP Web services, 327
Visualforce pages, tuning, 217-218
permissions
administrative, 75
enabled (SOAP API), 318-319
object, 73, 75-76
Services Manager profiles, 85-86
sets, 72, 76-77
perspectives, 101
phone data type, 322
phone fields, 38
picklists, 38
metadata, 178
multi-select, 154
SOAP type, mapping, 322
Platform as a Service. See PaaS
platform documentation, 16
polymorphism, 119
posts (Chatter), 370-372
content, 371
creating, 372-373
deleting, 373

Feed objects, 370-371
custom object, 373
news, 374
standard objects, 372-373
user, 374

schema pattern, 370

primitive components, 204-205
primitive data components, 201-202

inputCheckbox, 202
inputFile, 202
inputHidden, 202
inputSecret, 202
inputText, 202
inputTextArea, 202
outputLabel, 202
selectCheckboxes, 202
selectList, 202
selectRadio, 202

private records, 81

Problems View (IDE), 103
procedural sharing reasons, 82
profiles, 74

administrative permissions, 75
defined, 72
Enhanced Profile List Views, 74
Enhanced Profile User Interface, 74
field-level security, 78
licenses, 76
object permissions, 75-76
Services Manager application, 18, 91-92
accounts receivable, 18
consultants, 18
creating, 89-90
listing, 85-86
project managers, 18
sales representatives, 18
staffing coordinators, 18
Vice President, 18
types, 74
user groups, 80

programming languages, 7
ProjectListCtrl controller, 253
project manager profile

permissions, 86
Services Manager application, 18

projects, 103

CSV import file, 65
custom object tab, creating, 63

development lifecycle, 12
configuration management, 14
end of life, 15
integrated logical databases, 13
integrated unit testing, 14-15
interoperability, 15
MVC pattern, 15
native user interfaces, 14
fields, 52
overview, 52
selecting, 10-11
sharing rules, 164
team selection, 11-12
tools/resources
AppExchange, 16
Code Share, 16
developer discussion boards, 16
Developer Force Web site, 16
Dreamforce/Cloudforce
conferences, 17
Ideas site, 16
platform documentation, 16
systems integrators, 17
technical support, 17
Visualforce, 188
properties, 117
public groups, 80
public read-only records, 81
public read/write records, 81
PushTopics, 340-341
availability, 341
components, 340-341
deleting, 341
limitations, 341

Q

quality assurance engineer contributions, 12
queries
batch sizes, setting, 324
dirty writes, 161
exceptions, 114
joins
anti-joins, 152-153
inner, 149-150
outer, 148-149
semi-joins. See semi-joins
parent-to-child, 151
SOQL. See SOQL queries

records 415

SOSL, 29
Apex, 155-157
dynamic, 176
record retrieval, 324
syntax, 155
QueryException exception, 114
query method
SOQL, 175
SOSL, 176
queryMore service, 323
query service, 323

R

raising exceptions, 115
RCED (read, create, edit, delete)
operations, 31
Read permission, 75
receiving email, 172-173
class, creating, 173-174
governor limits, 173
personalizing based on sender
identity, 173
services, configuring, 174-175
uncaught exceptions, 173
records
adding to bulk import jobs, 346-347
batch processing. See Batch Apex
controlled by parent option, 81
counts, returning, 145
creating, 42, 121
custom setting
creating, 180
deleting, 180
updating, 180
deleting, 130
Enterprise API
bulk modifications, 326
creating, 324-325
deleting/undeleting, 325
retrieving, 323-324
updating, 325
upserting, 325
writing, 324
exporting, 347-349
batches, creating, 348
creating bulk export jobs, 347-348
results retrieving, 348-349
status, checking, 348

records

feed-tracked changes (Chatter), 376
filtering, 124-125
following
method, 377
relationships, querying, 377
request, 380
grouping, 145-146
with aggregate functions, 146
filtering grouped, 146

without aggregate functions, 145-146

grouping with subtotals, 147-148
debug log excerpt, 147

GROUP BY CUBE clause, 147-148

GROUP BY ROLLUP clause, 147
importing, 346-347

adding records to bulk import jobs,

346-347
closing bulk import jobs, 347
creating bulk import jobs, 346
results, retrieving, 347
status, checking, 347
inserting, 129
limits, 125
locking, 161
ownership, 79-80
private, 81
public read-only, 81
public read/write, 81
PushTopics, 340-341
availability, 341
components, 340-341
deleting, 341
limitations, 341
relationships, creating, 121
requests
creating, 310
deleting, 311
updating, 311
upserting, 311
retrieving
external identifiers, 310
unique identifiers, 309
security, 72, 79
record ownership, 79-80
user groups, 80
Visualforce user interfaces, 219
sharing, 80-82
organization-wide defaults,
80-82, 163

Services Manager application, 87-88

restrictions, 163
sharing objects, 162-163
sharing reasons, 82
sharing rules
inserting, 167
Project object, 164
SOQL queries, 165-166
viewing, 163, 167
type metadata, 179
types, 46-47
undeleting, 130
unfollowing, 377-378
updating, 129
upserting, 129-130
viewing, 42
recursion, 115
registration, 32
relatedList component, 209
relational databases, 6
relationship-rich Chatter objects, 370
relationships
child metadata, 178
comparison, 40
creating, 39-40
data, 25
explicitly defined, 26
integrity enforced, 26
SOQL, 26-27
SOQL versus SQL, 27-28
SOSL, 29
viewing, 121
FeedComments, 375
fields, 38
comparison, 40
creating, 39-40
Lookup, 39
Master-Detail, 40
following, 377
Lookup, 39
creating, 60

Services Manager application, 55

SOAP type, mapping, 322
Master-Detail, 40
creating, 60-62

Services Manager application, 55-57

SOAP type, mapping, 322
parent-to-child queries, 151
records, creating, 121

Services Manager application, 55-58
SOQL, 125-126
child-to-parent, 125-126
parent-to-child, 126
viewing, 121
repeat component, 203
repeating components, 201-203
reply-to addresses (email), 171
reports
custom obijects, allowing, 36
missing timecard, 296-297
missing timecards information,
calculating, 298-299

missing timecards list custom object,

creating, 297
testing, 299-300
Representational State Transfer. See REST
Requestld field, 355
requests
Chatter posts, 380
followed records, 380
news feed, 379-380
password authentication, 307
records
creating, 310
deleting, 311
retrieving, 309-310
updating, 311
upserting, 311
services available, 308
SObject basic information, 309
SOQL query, 310
reRender attribute, 234
resources

rules

API
authentication, 306-307
Chatter, 379-380
Connected Apps, creating, 307
creating record requests, 310
data access, 306
deleting record requests, 311
Developer’s Guide Web site, 308
mobile Web application data
access, 270
record retrieval by external
identifiers, 310
record retrieval by unique
identifiers, 309
services available call, 308-309
SObject basic information
request, 309
SOQL query request, 310
updating record requests, 311
upserting record requests, 311
custom Apex REST Web services,
312-314
Apex class rules, 312
creating, 313
governor limits, 312
invoking, 313-314
integration, 9
services, calling from Apex, 302-304
formats, 302
HTTP classes, 302-303
integrating, 303-304
invoking, 303
testing, 304

rich data types, 25

Apex Code Developer’s Guide Web
site, 108

AppExchange, 16

Code share, 16

developer discussion boards, 16

Developer Force Web site, 16

Dreamforce/Cloudforce conferences, 17

Ideas Web site, 16

platform documentation, 16

REST AP, 308

security Web site, 385

systems integrators, 17

technical support, 17

REST (Representational State Transfer), 301

roles. See profiles
rollback method, 159
roll-up summaries
fields, 41, 45
SOAP type, mapping, 322
rounding, 108
RowCause field, 163
rules
Apex Web services classes
REST, 312
SOAP, 327
governor limits, 120
aggregate functions, 145
Apex code, 120

417

418 rules

custom Apex REST Web services, 312
custom Apex SOAP Web services, 327
custom settings, 180
databases, 120
dynamic queries, 176
Force.com Apex Code Developer’s
Guide Web site, 100
heaps, 120
inbound email, 173
namespaces, 120
overview, 100
Visualforce, 221
managed sharing, 153
creating, 163-167
organization-wide sharing defaults,
changing, 163
restrictions, 163
sharing objects, 162-163
sharing, 82
inserting, 167
Services Manager application, 92-93
viewing, 163, 167
validation
fields, 24
Skill object creating, 63

S

S2S (Salesforce-to-Salesforce), 9
SaaS. See PaaS
Salesforce
Classic, 264
implementation guide, 271
Visualforce pages, viewing, 271
Mobile Packs, 269
Mobile SDK
download Web sites, 265
home page, 267
libraries, 266
Object Query Language. See SOQL
Object Search Language. See SOSL
Touch, 264
mobile timecard entry page,
testing, 279
Visualforce pages, viewing, 271
Salesforce-to-Salesforce (S2S), 9
sales representatives profile
permissions, 86
Services Manager application, 18

sample application. See Services Manager
application
savepoints, 159-160
example, 159-160
limitations, 159
restoring to, 159
setting, 159
SaveResult objects, 324
Schedulable interface, 294
schedule method, 295
scheduling Batch Apex, 293-296
Apex user interface, 294-295
sample code, 296
schedulable code development, 294
scheduled jobs
creating, 295
deleting, 296
editing, 296
Schema Builder, 34
custom objects, creating, 59-60
Lookup relationships, creating, 60
Master-Detail relationships,
creating, 60-62
Schema Explorer, 103
relationships, viewing, 121
SOQL queries, running, 123
scope
Batch Apex, 282
batch jobs
adjusting, 289
iterable batch, 290-292
search layouts, 37
sectionHeader component, 228
Secure Coding Guideline document Web
site, 218
security
Apex, 133
architecture, 71
authentication
Bulk API, 345-346
Canvas, 349-350
mobile Web applications, 269-270
REST APIs, 306-307
sites users, 258
Cross Site Request Forgery attacks, 385
custom Apex SOAP Web services, 327
fields, 77
accessibility, 73, 78-79, 89-90
profiles, 78

object-level. See object-level security
objects, 218
overview, 71-74
permission sets, 72, 76-77
profiles, 72, 74
administrative permissions, 75
Enhanced Profile List Views, 74
Enhanced Profile User Interface, 74
field-level security, 78
licenses, 76
object permissions, 75-76
Services Manager, creating, 89-90
Services Manager, listing, 85-86
types, 74
records, 72, 79
record ownership, 79-80
sharing model, 80-82
user groups, 80
Visualforce user interfaces, 219
resources Web site, 385
Secure Coding Guideline document Web
site, 218
Services Manager application
business units, 85-88
designing, 85
field accessibility, 89-90
implementing, 88-89
job functions, 85-86
organization-wide defaults, 91
profiles, 89-92
sharing rules, 92-93
Skills Matrix, 224-225
testing, 94-98
sharing model, 73
sharing reasons, 74
sites, 255-256
SOAP API
IP white-listing, 319
overview, 316
tokens, 319
Visualforce user interfaces, 218
object-level, 218
page-level, 219
record-level, 219
selectCheckboxes component, 202
selectedContactld variable, 225

services

selecting
field types, 38
projects, 10-11
teams, 11-12
selectList component, 202
selectRadio component, 202
semi-joins
child-to-child, 153
child-to-parent, 153
parent-to-child, 151
restrictions, 153
sendEmail method, 171
sender display names (email), 171
sending email, 168
attachments, 172
blind-carbon-copies, 171
carbon copies, 171
mass emails, 170-171
notifications (Services Manager
application), 181-182
organization-wide email address unique
identifiers, 172
reply-to addresses, 171
sendEmail method, 171
sender display names, 171
signatures, 172
SingleEmailMessage object, 168-169
templates, 169-170
tracking, 172
services, 7
application, 6
business logic, 8
create, 324
createProject, 329
custom Apex REST Web, 312-314
Apex class rules, 312
creating, 313
governor limits, 312
invoking, 313-314
custom Apex SOAP Web, 326
Apex class rules, compared, 327
calling, 328
creating records example, 328
governor limits, 327
invoking, 329
limitations, 326-327
Services Manager anonymous
benchmarking, 333-335

419

services

database, 7
delete, 325
email, configuring, 174-175
integration, 8-9
Metadata API, 360-361
query, 323
queryMore, 323
REST, calling from Apex, 302-304
formats, 302
HTTP classes, 302-303
integrating, 303-304
invoking, 303
testing, 304
SOAP, calling from Apex, 305-306
sobjects
record retrieval by external
identifiers, 310
record retrieval by unique
identifiers, 309
SObject basic information
request, 309
update, 325
upsert, 325
user interface, 8
Web, integration, 9
Services Manager application
anonymous benchmarking service,
333-335
background, 17-18
business hours, configuring, 331
database integration
implementation strategy, 363-364
sample implementation, 364-366
scenario, 363
data model design goals, 49-50
Developer Edition optimization, 50
standard objects, leveraging, 50
data model implementation
custom application, creating, 58
custom obijects, creating, 59-60
custom object tabs, creating, 63
field visibility, 64
Lookup relationship, creating, 60
Master-Detail relationships,
creating, 60-62
validation rules, creating, 63
data model specification, 50
assignments, 53-54

contacts, 51
data relationships, 55-58
projects, 52
skills, 53
timecards, 53-56
email notifications, 181-182
Follow Team button, 382-385
configuring, 385
controller extension code, 383-384
testing, 385
Visualforce page, 384-385
hours utilization calculation, 332
IDE configuration, 138
importing data, 64
data preparation, 64-66
import process, 66
verification, 67-69
missing timecard report, 296-297
missing information, calculating,
298-299
missing timecards list custom object,
creating, 297
testing, 299-300
mobile timecard entry page
editing timecards, 277-279
in-page navigation, 276-277
listing timecards, 273-276
requirements, 272
testing, 279
viewing in Web browsers, 273
viewing on iPhones, 273
security
business units, 85-88
designing, 85
field accessibility, 89-90
implementing, 88-89
job functions, 85-86
organization-wide defaults, 91
profiles, creating, 89-90
roles, 91-92
sharing rules, 92-93
testing, 94-98
Skills Matrix
complete list of skill types,
creating, 224
contacts drop-down list, creating, 224
controller, creating, 225-227
controller tests, 229-231
data security, 224-225

page, creating, 224
requirements, 223
sample implementation, 223
skills list, creating, 224
Visualforce page, 228-229
Skills Matrix comparison overlay,
259-262
actionSupport, adding, 262
component CSS, adding, 261
component support, adding, 261
custom components, creating,
259-260
JavaScript integration, 261
TimecardManager class, creating,
138-139
timecard validation
trigger, creating, 138-139
unit testing, 140-141
user roles, 18
accounts receivable, 18
consultants, 18
project managers, 18
sales representatives, 18
staffing coordinators, 18
Vice President, 18
utilization
controller code, 335-337
page code, 337-338
Visualforce page, creating, 330-331
session sharing, 270
setBccSender method, 171
setCcAddresses method, 171
setDocumentAttachments method, 172
setFileAttachments method, 172
setOrgWideEmailAddressld method, 172
setReplyTo method, 171
sets, 112
setSaveAsActivity method, 172
setSavepoint method, 159
setSenderDisplayName method, 171
setUseSignature method, 172
sharing
reasons, 74
delegated administration, 82
manual, 82
procedural, 82
records, 82
sharing rules, 82

Skill object

records, 73, 80-82
organization-wide defaults, 80-82,
163
procedural, 82
restrictions, 163
Services Manager application, 87-88
sharing reasons, 82
rules, 82, 92-93
inserting, 167
Services Manager application, 92-93
viewing, 163, 167
sharing objects, 162-163
fields, 162-163
restrictions, 163
showChatter attribute, 381
signatures (email), 172
signed shift left (<<) operator, 110
signed shift right (>>) operator, 110
SimpleDateFormat pattern, 109
Simple Object Access Protocol. See SOAP
SingleEmailMessage object, 168-169
single-page applications, 250
Angular]S, 251-253
controllers, 253
demonstration page, 251
templates, 253
tutorial Web site, 251
Visualforce controller,
implementing, 252
Visualforce page code, 252-253
Web site, 251
JavaScript remoting, 250
sites
creating, 255
domain name, 255
enabling, 254
main page, 255
pages, adding, 256-257
security, 255-256
user authentication, 258
size
collections, 109
query batches, 324
static resources, 241
size method (collections), 109
Skill object
fields, 54
overview, 54
validation rule, creating, 63

421

422 Skills Matrix

Skills Matrix Services Manager anonymous
comparison overlay, 259-262 benchmarking, 333-335
actionSupport, adding, 262 services, calling from Apex, 305-306
component CSS, adding, 261 sobjects service
component support, adding, 261 record retrieval
custom component, creating, external identifiers, 310
259-260 unique identifiers, 309
JavaScript integration, 261 SObject basic information request, 309
complete list of skill types, creating, 224 social applications. See Chatter
contacts drop-down list, creating, 224 Software as Service. See PaaS
controllers SOQL (Salesforce Object Query
creating, 225-227 Language), 26-27

tests, 229-231
data security, 224-225
page, creating, 224
requirements, 223
sample implementation, 223
skills list, creating, 224
Visualforce page, 228-229

aggregate queries, 144
aggregate functions, 144-145
grouping records, 145-146
grouping records with subtotals,
147-148
Chatter queries
comments, 375

SmartSync custom object, 373
library, 266 feed-tracked changes, 376
mobile Web applications data following relationships, 377
access, 270 standard object, 372
SOAP (Simple Object Access Protocol), 301 user feed, 374
API, 31 dirty writes, 161

enabled permissions, 318-319
Enterprise. See Enterprise API
error handling, 322
Force.com data types, 321
IP white-listing, 319
limits, 316
logging in/out, 318-320
login call, 320
login problems, troubleshooting, 320
Partner, 315
security, 316
security tokens, 319
stub code, generating, 316-317
Web Service Connector (WSC), 316
WSDL versions, 315-316

custom Apex SOAP Web services, 326
Apex class rules, compared, 327
calling, 328
creating records example, 328
governor limits, 327
invoking, 329
limitations, 326-327

joins
anti-joins, 152-153
inner, 149-150
outer, 148-149
semi-joins. See semi-joins
multi-select picklists, 154
queries
Apex, 126-128
child-to-parent, 125-126
dynamic, 175-176
example, 26-27
parent-to-child, 126, 151
PushTopics, 340
record retrieval, 323
record sharing, 165-166
relationships, 125-126
REST API request, 310
results, sorting, 125
Schema Explorer, 123
records
filter conditions, 124-125
limits, 125

SQL, compared, 27-28
column list functions, 28
governor limits, 28
implicit joins, 27
nested resultsets, 27-29

statements, 124
filter conditions, 124
record limits, 125
sort fields, 125

sorting
lists/arrays, 112
query results, 125
SOSL (Salesforce Object Search
Language), 29

Apex, 155-157

dirty writes, 161

queries
dynamic, 176
example, 29

record retrieval, 324

syntax, 155
column list functions, 28
governor limits, 28
implicit joins, 27
nested resultsets, 27-29

SQL versus SOQL, 27-28
Staffing Coordinator profile

permissions, 86

Services Manager application, 18

testing, 96-97

standard buttons

custom obijects, creating, 37

listing of, 213

overriding, 213

standardController attribute, 200
standard controllers, 191-193

multiple records, 192-193

single records, 191-192

standard fields

custom objects, creating, 36

defined, 23

standard links, 37
standard objects, 22
standard pages

edit, 211

list, 211

overriding, 210-211

tab, 210

view, 211

strings 423

standard set controllers, 192-193
start method (Batchable interface), 283
stateful Batch Apex, 289-290
Stateful interface, 290
statements
conditional, 113
Delete, 130
DML. See DML, statements
exception, 114-115
examples, 115
handling, 115
raising, 115
Insert, 129
loops, 114
SOQL, 124
filter conditions, 124
record limits, 125
sort fields, 125
Undelete, 130
Update, 129
Upsert, 129-130
static resources, 241-242
status
bulk export jobs, 348
bulk import jobs, 347
messages, displaying, 238
dynamic, 239
images/stylized, 239
Status update Chatter posts, 371
storage custom settings, 47-48
defined, 47
hierarchy, 49
limits, 49
list, 48
types, 47-48
Streaming API
example, 341-344
CometD library, 342
Visualforce controller, 342
Visualforce page, 343
PushTopics, 340-341
availability, 341
components, 340-341
deleting, 341
limitations, 341
Web site, 340
strings
concatenation (+) operator, 110
converting to dates, 109

424 strings

date conversions, 109
defined, 106

Skills Matrix controllers, 229-231
TimecardManager class, 140-141

ID conversion, 108
structural components (Mobile Components
for Visualforce), 268
stub code, generating, 316-317
stylesheet component, 205
subtraction (-) operator, 110
SUM aggregate function, 144-145
systems integrators, 17

T

table components, 205
tables. See objects
tabs
creating, 41, 63, 215
page, 210
targetObjectlds unique identifiers
email templates, 169
MassEmailMessage object, 170
teams, selecting, 11-12
technical support, 17
technology integrations, 4
templatelds unique identifiers, 170
templates
Angular]S, 253
Mobile Design, 269
sending email, 169-170
Visualforce pages as, 243-244
testAsUser method, 231
testing
anonymous benchmarking Web
service, 334
Batch Apex, 293
REST services integration, 304
Services Manager application, 97-98
Follow Team button, 385
mobile timecard entry page, 279
Services Manager security, 94-98
additional users, creating, 94-95
Consultant profile, 96
data preparation, 95-96
Staffing Coordinator profile, 96-97
Vice President profile, 97
unit tests
Apex. See Apex, unit tests
integrated, 14-15
missing timecard report, 299-300

Visualforce controllers, 222
test methods (Apex), 136
testNoContactForUser method, 231
testNoContactSelected method, 231
testNoSkills method, 231
testSave method, 231
testWithSkills method, 231
text
Chatter posts, 371
fields, 38
SOAP data type, mapping, 322
Text Area data type, 322
throw keyword (exceptions), 115
time data type, 38, 106
TimecardManager class
creating, 138-139
unit tests, 140-141
Timecard object
fields, 56
overview, 53
timed events, 237
Tooling API, 354
Apex code, deploying, 355
internal state of deployment, 355
overview, 355
query service, 355
status, refreshing, 355
user interface, 356
Visualforce examples
controller, 357-359
page, 359-360
Web site, 355
tools
cURL, 306
custom objects, 33-34
App Builder Tools, 33
data, 34
Force.com IDE, 34
metadata, 33
Schema Builder, 34
data, 34
Data Loader, 34
Excel Connector, 34
Import Wizard, 34
Data Loader
data preparation, 64-66
data verification, 67-69
importing data, 66

Schema Builder
custom obijects, creating, 59-60
Lookup relationships, creating, 60

Master-Detail relationships, creating,

60-62
Visualforce development, 188-190
Web Service Connector, 316
tracking email, 172
transaction processing
DML database methods, 157-158
insert example, 158
opt_allOrNone parameter, 158
record locking, 161
savepoints, 159-160
example, 159-160
limitations, 159
restoring to, 159
setting, 159
transactions
Batch Apex, 283
custom Apex SOAP Web services, 327
triggers, 130-131
batching, 132
bulkifying, 132
custom obijects, creating, 37
definitions, 131-132
email notifications, 181-182
error handling, 132-133
names, 131
page navigation, 195
timecard validation, creating, 138-139
troubleshooting SOAP API login
problems, 320
try keyword (exceptions), 115
tuning Visualforce user interfaces, 217-218
TypeException exception, 114

U

unary decrement (=) operator, 110
unary increment (++) operator, 110
uncaught exceptions, 220
undelete service, 325
Undelete statement, 130
undeleting records, 130, 325
unfollowing records, 377-378
unique identifiers

email templates, 169

fields, 24

users

mass emails, 170
organization-wide email addresses, 172
record retrieval, 309, 324
unit tests
Apex, 136
results, viewing, 137
running, 137
test data, 137
test methods, 136
Test Runner View, 103
integrated, 14-15
missing timecard report, 299-300
Skills Matrix controllers, 229-231
TimecardManager class, 140-141
Visualforce controllers, 222
UNIX line-continuation character (\), 309
unsigned shift right (>>>) operator, 110
update service, 325
Update statement, 129
updating
custom setting records, 180
records, 129
Enterprise API, 325
requests, 311
upserting records
Enterprise API, 325
requests, 311
upsert service, 325
Upsert statement, 129-130
URLs
Chatter posts, 371
fields, 38
SOAP data type, mapping, 322
user feeds (Chatter posts), 374
user interfaces
Apex Test Runner View, 103
custom, creating. See Visualforce
designer contributions, 12
Enhanced Profile, 74
jQuery, 259
modularity, 119
native. See native user interface
services, 8
Tooling API example, 356
UserOrGroupld field, 162
userPhotoUpload component, 381
users
authentication
Bulk API, 345-346

425

users

Canvas, 349-350

mobile Web applications, 269-270

REST APIs, 306-307
sites, 258
creating, 94-95
groups, 80
public, 80
roles, 80
permission sets, 72
profiles, 74
administrative permissions, 75
defined, 72
Enhanced Profile List Views, 74

Enhanced Profile User Interface, 74

field-level security, 78

licenses, 76

object permissions, 75-76
Services Manager, 85-86, 89-90
types, 74

roles (Services Manager application),

18, 91-92
accounts receivable, 18
consultants, 18
project managers, 18
sales representatives, 18
staffing coordinators, 18
Vice President, 18

\Y

validateTimecard trigger, 131
validation rules
custom obijects, 37
fields, 24
Skill object, creating, 63
valueOf method
date to string conversions, 109
string to date conversions, 109
variables, 105
access modifiers, 118
checkpoints, 133-135
classes, 117
constants, 107
data types, 106
blob, 106
Boolean, 106
converting, 107-108
converting dates to strings, 109

converting strings to dates, 109
date, 106
datetime, 106
decimal, 106
double, 106
1D, 106
Integer, 106
long, 106
object, 106
string, 106
time, 106
declaring, 105-106
enums, 107
fields, 247
names, 105-106
rounding, 108
selectedContactld, 225
verifying data imports, 67-69
Vice President profile
permissions, 86
Services Manager application, 18
testing, 97
View All permission, 76
view components (Visualforce), 198
action, 203-204
attributes, 199
Chatter support, 380-382
feed, 381
feedWithFollowers, 381
follow, 381
followers, 381
limitations, 382
newsFeed, 381
userPhotoUpload, 381
component body, 199
custom, 244-246
CompareSkillsComponent, creating,
259-260
CSS, adding, 261
defining, 244-245
Google Map example, 245-246
support, adding, 261
data, 200-203
metadata-aware, 200-201
primitive, 201-202
repeating, 201-203
facets, 239

Force.com-styled, 204-205
action containers, 205
notifications, 205
page structure, 205
paging, 205
sample controller, 206
sample page, 207
table, 205

identifier problems, debugging, 240

Mobile Components for Visualforce,

268-269
documentation/source code Web site,
269
installing, 268-269
types, 268

names, 199

native user interface, 208-209
detail, 209
enhancedList, 209
listViews, 208
relatedList, 209

page, 200

primitive, 204-205

referencing from JavaScript, 240

syntax, 198-199

visibility, 200

viewing

batch jobs execution detail, 288

fields, 64

mobile timecard entry pages
iPhones, 273
Web browsers, 273

relationships, 121

scheduled batch jobs, 296

sharing rules, 163, 167

unit test results, 137

Visualforce pages
native user interface buttons, 213
Salesforce Classic, 271
Salesforce Touch, 271

view page, 211
Views, browsing data, 43-44

Apex Test Runner, 103

Execute Anonymous, 104-105

Problems, 103

view state, preserving, 195
Visualforce
architecture, 186-187

Visualforce 427

asynchronous actions
Ajax support, 234
as JavaScript events, 237-238
as JavaScript functions, 235-236
partial page refreshes, 234-235
status messages, 238-240
as timed events, 237
Chatter components, 380-382
feed, 381
feedWithFollowers, 381
follow, 381
followers, 381
limitations, 382
newsFeed, 381
userPhotoUpload, 381
controllers, 186-187
actionFunction component, 236
Angular]S project list example, 252
Chatter example, 378
custom, 193-197
dynamic field reference, 247
editing mobile timecards, 277
extensions, 197
governor limits, 221
mobile timecard list
functionality, 274
partial page refresh, 235
Services Manager Follow Team
button extension code, 383-384
Services Manager Skills Matrix,
225-227, 229-231
standard, 191-193
Streaming API example, 342
unit tests, 222
debugging, 216
development
process, 188
tools, 188-190
dynamic, 246
component generation, 248-249
dynamic field references, 246-248
error handling, 220-221
communication, 220-221
uncaught exceptions, 220
Hello World example, 189-191
Mobile Components, 268-269
documentation/source code Web
site, 269

Visualforce

installing, 268-269
types, 268
modular, 241
composition, 243-244
custom components, 244-246
inclusion, 242
static resources, 241-242
native user interface integration,
209-210
custom buttons/links, 215
custom tabs, 215
page layouts, 213
standard buttons, 213
standard pages, 210-211
overview, 186
pages, 187
actionFunction component, 236
adding to page layouts, 213
adding to Salesforce Touch, 271
Angular]S example code, 252-253
Chatter components, 381
Chatter example, 378
dynamic, 246-249
JavaScript events, 237-238
mobile timecards, 275-276, 278
native user interface buttons/links
navigation, 215
as native user interface tabs, 215
performance tuning, 217-218
security, 218-220
Services Manager Follow Team
button, 384-385
Services Manager Skills Matrix,
228-229
Services Manager Utilization, 337-338
Services Manager Utilization page,
creating, 330-331
standard pages, overriding, 210-211
Streaming API example, 343
timed events, 237
Tooling API example, 359-360
viewing from native user interface
buttons, 213
viewing in Salesforce Classic, 271
performance, tuning, 217-218
public access. See sites

security, 218
object-level, 218
page-level, 219
record-level, 219
Services Manager application
business hours, configuring, 331
hours utilization calculation, 332
utilization controller code, 335-337
Utilization page, 330-331, 337-338
Streaming API page, 343
Tooling API example
controller, 357-359
page, 359-360
view components, 198
action, 203-204
attributes, 199
component body, 199
custom. See custom components
data, 200-203
facets, 239
Force.com-styled, 205-208
identifier problems, debugging, 240
names, 199
native user interface, 208-209
page, 200
primitive, 204-205
referencing from JavaScript, 240
syntax, 198-199
visibility, 200

W

web developer contributions, 12
Web development frameworks, 268-269
Mobile Components for Visualforce,
268-269
documentation/source code Web
site, 269
installing, 268-269
types, 268
Web MVC, 269
Web servers, configuring, 352
Web services
Connector (WSC), 316
Description Language. See WSDL
integration, 9

Web sites
AJAX Proxy, 270
Angular]S, 251
anonymous benchmark WSDL, 333
Apex Code Developer’s Guide, 100, 108
AppExchange, 16
Bulk API, 345
Canvas, 349
Chatter
Apex, 378
REST API, 379
Code Share, 16
CometD library, 342
cURL, 306
Data Loader Mac OS X version, 34
DE account registration, 32
developer discussion boards, 16
Developer Force, 16
Dreamforce/Cloudforce conferences, 17
Excel Connector, 34
expressions, scheduling, 295
Force.com IDE, 34
Ideas, 16
IDE installation, 101
jQuery UI, 259
Large Data Volume (LDV)
deployments, 22
Metadata API, 360
Mobile Components for Visualforce, 269
Mobile Packs, 269
multilenancy whitepaper, 5
NAICS codes, 333
OAuth, 307
REST API Developer’s Guide, 308
Salesforce
Classic implementation guide, 271
Mobile SDK, 265, 267
Secure Coding Guideline document, 218
security resources, 385
SimpleDateFormat pattern, 109
SOAP Partner API, 315
Streaming API, 340
systems integrators, 17
Tooling API, 355
Visualforce pages, performance
tuning, 218
Web Service Connector, 316
Yahoo! geocoding REST service, 303

Yahoo! geocoding REST service

whatlds unique identifiers
email templates, 169
MassEmailMessage object, 170
While loops, 114
Windows Azure, 3
wizards
Import, 34
New Custom Field
default values, 39
descriptions, 39
external IDs, 39
help text, 39
labels, 39
names, 39
required fields, 39
types, selecting, 38
unique fields, 39
New Custom Object Tab, 63
wrapper patterns, 195-196
write locks, 161
WSC (Web Service Connector), 316
WSDL (Web Services Description Language)
Services Manager anonymous
benchmark, 333
stub code, generating, 316-317
versions, 315-316

X

XML metadata, 30-31
XOR (”) operator, 110

Y

Yahoo! geocoding REST service
integrating, 303
invoking, 303
testing, 304

429

	Table of Contents
	1 Introducing Force.com
	Force.com in the Cloud Computing Landscape
	Platform as a Service (PaaS)
	Force.com as a Platform
	Force.com Services

	Inside a Force.com Project
	Project Selection
	Team Selection
	Lifecycle
	Tools and Resources

	Sample Application: Services Manager
	Background
	User Roles
	Development Plan

	Summary

	2 Database Essentials
	Overview of Force.com’s Database
	Objects
	Fields
	Relationships
	Query Language
	Data Integration

	Working with Custom Objects
	Force.com Developer Edition
	Tools for Custom Objects
	Object Creation
	Field Creation
	Entering and Browsing Data
	Additional Database Features

	Sample Application: Data Model
	Data Model Design Goals
	Data Model Specification
	Implementing the Data Model
	Importing Data

	Summary

	3 Database Security
	Overview of Database Security
	Object-Level Security
	Profiles
	Permission Sets
	Field-Level Security

	Record-Level Security
	Record Ownership
	User Groups
	Sharing Model

	Sample Application: Securing Data
	Designing the Security Model
	Implementing the Security Model
	Testing the Security Model

	Summary

	4 Business Logic
	Introduction to Apex
	Introducing the Force.com IDE
	Installation
	Force.com Perspective
	Force.com Projects
	Problems View
	Schema Explorer
	Apex Test Runner View
	Execute Anonymous View

	Apex Language Basics
	Variables
	Operators
	Arrays and Collections
	Control Logic
	Object-Oriented Apex
	Understanding Governor Limits

	Database Integration in Apex
	Database Records as Objects
	Database Queries
	Persisting Database Records
	Database Triggers
	Database Security in Apex

	Debugging Apex Using Developer Console
	Checkpoints
	Execution Logs

	Unit Tests in Apex
	Test Methods
	Test Data
	Running Tests

	Sample Application: Validating Timecards
	Force.com IDE Setup
	Creating the Trigger
	Unit Testing

	Summary

	5 Advanced Business Logic
	Aggregate SOQL Queries
	Aggregate Functions
	Grouping Records
	Grouping Records with Subtotals

	Additional SOQL Features
	Inner Join and Outer Join
	Semi-Join and Anti-Join
	Multi-Select Picklists

	Salesforce Object Search Language (SOSL)
	SOSL Basics
	SOSL in Apex

	Transaction Processing
	Data Manipulation Language (DML) Database Methods
	Savepoints
	Record Locking

	Apex Managed Sharing
	Sharing Objects
	Creating Sharing Rules in Apex

	Sending and Receiving Email
	Sending Email
	Receiving Email

	Dynamic Apex
	Dynamic Database Queries
	Schema Metadata
	Dynamic Instance Creation

	Custom Settings in Apex
	Sample Application: Adding Email Notifications
	Summary

	6 User Interfaces
	Introduction to Visualforce
	Overview of Visualforce
	Getting Started with Visualforce

	Visualforce Controllers
	Standard Controllers
	Custom Controllers
	Controller Extensions

	View Components
	View Component Basics
	Data Components
	Action Components
	Primitive Components
	Force.com-Styled Components
	Force.com User Interface Components

	Visualforce and the Native User Interface
	Standard Pages
	Standard Buttons
	Page Layouts
	Custom Buttons and Links
	Custom Tabs

	Visualforce in Production
	Debugging and Tuning
	Security
	Error Handling
	Governor Limits
	Unit Tests

	Sample Application: Skills Matrix
	Basic Implementation
	Full Implementation
	Implementation Walk-Through

	Summary

	7 Advanced User Interfaces
	Asynchronous Actions
	Partial Page Refresh
	Action as JavaScript Function
	Action as Timed Event
	Action as JavaScript Event
	Indicating Action Status

	Modular Visualforce
	Static Resources
	Inclusion
	Composition
	Custom Visualforce Components

	Dynamic Visualforce
	Dynamic Field References
	Component Generation

	Single-Page Applications in Force.com
	JavaScript Remoting
	Force.com with AngularJS

	Introduction to Force.com Sites
	Enabling and Creating a Site
	Security Configuration
	Adding Pages to a Site
	Authenticating Users

	Sample Application: Enhanced Skills Matrix
	Summary

	8 Mobile User Interfaces
	Overview of Salesforce Mobile Technology
	Salesforce Applications
	Custom Applications

	Getting Started with Mobile Web Applications
	Frameworks
	Data Access
	Deployment

	Sample Application: Mobile Timecard Entry
	Summary

	9 Batch Processing
	Introduction to Batch Apex
	Batch Apex Concepts
	Understanding the Batchable Interface
	Applications of Batch Apex

	Getting Started with Batch Apex
	Developing a Batch Apex Class
	Working with Batch Apex Jobs
	Using Stateful Batch Apex
	Using an Iterable Batch Scope
	Limits of Batch Apex

	Testing Batch Apex
	Scheduling Batch Apex
	Developing Schedulable Code
	Scheduling Batch Apex Jobs

	Sample Application: Missing Timecard Report
	Creating the Custom Object
	Developing the Batch Apex Class
	Testing the Missing Timecard Feature

	Summary

	10 Integration with Force.com
	Apex Callouts
	Calling RESTful Services from Apex
	Calling SOAP Services from Apex

	Calling into Force.com Using REST
	Getting Started with Force.com REST API
	Force.com REST API Walk-Through
	Creating Custom Apex REST Web Services

	Calling into Force.com Using SOAP
	Understanding Force.com SOAP API
	Using the Enterprise API
	Creating Custom Apex SOAP Web Services

	Sample Application: Anonymous Benchmarking
	Visualforce Page Design
	Visualforce Controller Design
	Integrating the SOAP Web Service
	Sample Implementation

	Summary

	11 Advanced Integration
	Introduction to the Force.com Streaming API
	Overview
	Getting Started with Force.com Streaming API

	Working with the Force.com Bulk API
	Overview
	Importing Records
	Exporting Records

	Getting Started with Force.com Canvas
	Overview
	Getting Started with Force.com Canvas

	Introduction to the Force.com Tooling API
	Overview
	Getting Started with Force.com Tooling API

	Understanding the Force.com Metadata API
	Overview
	Getting Started with the Metadata API

	Sample Application: Database Integration
	Integration Scenario
	Implementation Strategy
	Sample Implementation

	Summary

	12 Social Applications
	Overview of the Chatter Data Model
	Chatter Posts
	Chatter Comments
	Feed-Tracked Changes
	Followed Records

	Using Chatter in Apex
	Introduction to the Chatter REST API
	Working with Chatter Visualforce Components
	Sample Application: Follow Project Team
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

