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PREFACE

The scope of energy-efficient computing is not limited to main computing com-
ponents (e.g., processors, storage devices, and visualization facilities), but it can
expand to a much larger range of resources associated with computing facilities,
including auxiliary equipment, water used for cooling, and even physical and floor
space that these resources occupy. Energy consumption in computing facilities
raises various monetary, environmental, and system performance concerns.

Recent advances in hardware technologies have improved the energy con-
sumption issue to a certain degree. However, it still remains a serious concern
for energy-efficient computing because the amount of energy consumed by com-
puting and auxiliary hardware resources is affected substantially by their usage
patterns. In other words, resource underutilization or overloading incurs a higher
volume of energy consumption when compared with efficiently utilized resources.
This calls for the development of various software energy-saving techniques and
new algorithms that are more energy efficient.

This book, Energy-Efficient Distributed Computing Systems , seeks to provide
an opportunity for researchers to explore different energy consumption issues
and their impact on the design of new computing systems. The book is quite
timely since the field of distributed computing as a whole is undergoing many
changes. Vast literature exists today on such energy consumption paradigms and
frameworks and their implications for a wide range of distributed platforms.

The book is intended to be a virtual roundtable of several outstanding
researchers, which one might invite to attend a conference on energy-efficient
computing systems. Of course, the list of topics that is explored here is by no
means exhaustive, but most of the conclusions provided here should be extended
to other computing platforms that are not covered here. There was a decision
to limit the number of chapters while providing more pages for contributing

xxix
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authors to express their ideas, so that the book remains manageable within a
single volume.

We also hope that the topics covered in this book will get the readers to think
of the implications of such new ideas on the developments in their own fields. The
book endeavors to strike a balance between theoretical and practical coverage of
innovative problem-solving techniques for a range of distributed platforms. The
book is intended to be a repository of paradigms, technologies, and applications
that target the different facets of energy consumption in computing systems.

The 26 chapters were carefully selected to provide a wide scope with minimal
overlap between the chapters to reduce duplications. Each contributor was asked
that his/her chapter should cover review material as well as current developments.
In addition, the choice of authors was made so as to select authors who are leaders
in their respective disciplines.

Albert Y. Zomaya
Young Choon Lee
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CHAPTER 1

POWER ALLOCATION AND TASK
SCHEDULING ON MULTIPROCESSOR
COMPUTERS WITH ENERGY
AND TIME CONSTRAINTS

KEQIN LI

1.1 INTRODUCTION

1.1.1 Energy Consumption

Performance-driven computer development has lasted for over six decades. Com-
puters have been developed to achieve higher performance. As of June 2010, three
supercomputers have achieved petaflops speed: Cray Jaguar (224,162 proces-
sors, 1.759 petaflops), Dawning Nebulae (120,640 processors, 1.271 petaflops),
and IBM Roadrunner (122,400 processors, 1.042 petaflops) [1]. According to
Moore’s law of computing hardware, the following quantities increase (decrease)
exponentially, doubling (halving) approximately every 2 years: the number of
transistors per integrated circuit (cost per transistor), processing speed, mem-
ory/storage capacity (cost per unit of information), and network capacity [2].

While performance/cost has increased dramatically, power consumption in
computer systems has also increased according to Moore’s law. To achieve higher
computing performance per processor, microprocessor manufacturers have dou-
bled the power density at an exponential speed over decades, which will soon
reach that of a nuclear reactor [3]. Such increased energy consumption causes
severe economic, ecological, and technical problems.

• Economic Impact . Computer systems consume tremendous amount of
energy and natural resources. It has been reported that desktop computers
in the United States account for over 10% of commercial electricity

Energy-Efficient Distributed Computing Systems, First Edition.
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2 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSOR COMPUTERS

consumption [4]. A large-scale multiprocessor computing system consumes
millions of dollars of electricity and natural resources every year, equivalent
to the amount of energy used by tens of thousands US households [5]. A
large data center such as Google can consume as much electricity as does
a city. Furthermore, the cooling bill for heat dissipation can be as high as
70% of the above cost [6]. Supercomputers are making less efficient use of
space, which often results in the design and construction of new machine
rooms or even entirely new buildings.

• Ecological Impact . Desktop computers produce as much carbon dioxide
(CO2) as millions of cars. A recent report reveals that the global informa-
tion technology industry generates as much greenhouse gas as the world’s
airlines, about 2% of global CO2 emissions [7]. The heat dissipation prob-
lem gets increasingly worse because of higher computing speeds, shrinking
packages, and growing energy-hungry applications such as multimedia and
communications.

• Technical Impact . Large-scale multiprocessor computers require expensive
packaging and cooling technologies, and demand for sophisticated fault-
tolerant mechanisms that deal with decreased reliability due to heat dissipa-
tion caused by increased energy consumption. Despite sophisticated cooling
facilities constructed to ensure proper operation, the reliability of large-scale
multiprocessor computing systems is measured in hours, and the main source
of outage is hardware failure caused by excessive heat. It is conceivable that
a supercomputing system with 105 processors would spend most of its time
in checkpointing and restarting [8].

It is clear that there are compelling economic, environmental, and technical rea-
sons for emphasis on energy efficiency.

1.1.2 Power Reduction

Power conservation is critical in many computation and communication envi-
ronments and has attracted extensive research activities. For high performance
supercomputers, energy-aware design has significance impact on system perfor-
mance. It is noticed that performance per rack equals to performance per watt
times watt per rack, where watt per rack is determined by thermal cooling capa-
bilities and can be considered as a constant of order 20 kW for an air-cooled
rack. Therefore, it is the performance per watt term that determines the rack
performance. It is found that in terms of performance per watt, the low fre-
quency and low power embedded IBM PowerPC consistently outperforms high
frequency and high power microprocessors by a factor of 2–10. This is one of
the main reasons why IBM chose the low power design for the Blue Gene/L
supercomputer that was developed around a processor with moderate frequency.
In mobile computing and communication environments, efficient processor power
management increases the lifetime of battery operated devices such as hand-held
mobile computers and portable embedded systems. Energy efficiency is a major
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design constraint in these portable devices, since battery technology has not been
developed in the same pace as semiconductor industry.

Reducing processor energy consumption has been an important and pressing
research issue in recent years. There has been increasing interest and importance
in developing high performance and energy-efficient computing systems. There
exists a large body of literature on power-aware computing and communication.
The reader is referred to References [3, 9–11] for comprehensive surveys.

There are two approaches to reducing power consumption in computing sys-
tems. The first approach is the method of thermal-aware hardware design, which
can be carried out at various levels, including device level power reduction,
circuit and logic level techniques, and architecture level power reduction (low
power processor architecture adaptations, low power memories and memory hier-
archies, and low power interconnects). Low power consumption and high system
reliability, availability, and usability are main concerns of modern high perfor-
mance computing system development. In addition to the traditional performance
measure using FLOPS, the Green500 list uses FLOPS per watt to rank the perfor-
mance of computing systems, so that the awareness of other performance metrics
such as energy efficiency and system reliability can be raised [12]. All the current
systems that can achieve at least 400 MFLOPS/W are clusters of low power pro-
cessors, aiming to achieve high performance/power and performance/space. For
instance, the Dawning Nebulae, currently the world’s second fastest computer,
which achieves peak performance of 2.984 PFLOPS, is also the fourth most
energy-efficient supercomputer in the world with an operational rate of 492.64
MFLOPS/W [12]. Intel’s Tera-scale research project has developed the world’s
first programmable processor that delivers supercomputer-like performance from
a single 80-core chip, which uses less electricity than most of today’s home
appliances and achieves over 16.29 GFLOPS/W [13].

The second approach to reducing energy consumption in computing systems is
the method of power-aware software design at various levels, including operating
system level power management, compiler level power management, application
level power management, and cross-layer (from transistors to applications) adap-
tations. The power reduction technique discussed in this chapter belongs to the
operating system level, which we elaborate in the next section.

1.1.3 Dynamic Power Management

Software techniques for power reduction are supported by a mechanism called
dynamic voltage scaling (equivalently, dynamic frequency scaling, dynamic
speed scaling, and dynamic power scaling). Many modern components allow
voltage regulation to be controlled through software, for example, the BIOS or
applications such as PowerStrip. It is usually possible to control the voltages
supplied to the CPUs, main memories, local buses, and expansion cards [14].
Processor power consumption is proportional to frequency and the square
of supply voltage. A power-aware algorithm can change supply voltage
and frequency at appropriate times to optimize a combined consideration of
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performance and energy consumption. There are many existing technologies and
commercial processors that support dynamic voltage (frequency, speed, power)
scaling. SpeedStep is a series of dynamic frequency scaling technologies built
into some Intel microprocessors that allow the clock speed of a processor to
be dynamically changed by software [15]. LongHaul is a technology developed
by VIA Technologies, which supports dynamic frequency scaling and dynamic
voltage scaling. By executing specialized operating system instructions, a
processor driver can exercise fine control on the bus-to-core frequency ratio and
core voltage according to how much load is put on the processor [16]. LongRun
and LongRun2 are power management technologies introduced by Transmeta.
LongRun2 has been licensed to Fujitsu, NEC, Sony, Toshiba, and NVIDIA [17].

Dynamic power management at the operating system level refers to supply
voltage and clock frequency adjustment schemes implemented while tasks are
running. These energy conservation techniques explore the opportunities for tun-
ing the energy-delay tradeoff [18]. Power-aware task scheduling on processors
with variable voltages and speeds has been extensively studied since the mid-
1990s. In a pioneering paper [19], the authors first proposed an approach to energy
saving by using fine grain control of CPU speed by an operating system scheduler.
The main idea is to monitor CPU idle time and to reduce energy consumption
by reducing clock speed and idle time to a minimum. In a subsequent work [20],
the authors analyzed offline and online algorithms for scheduling tasks with
arrival times and deadlines on a uniprocessor computer with minimum energy
consumption. These research have been extended in References [21–27] and
inspired substantial further investigation, much of which focus on real-time appli-
cations, namely, adjusting the supply voltage and clock frequency to minimize
CPU energy consumption while still meeting the deadlines for task execution.
In References [28–42] and many other related work, the authors addressed the
problem of scheduling independent or precedence constrained tasks on unipro-
cessor or multiprocessor computers where the actual execution time of a task may
be less than the estimated worst-case execution time. The main issue is energy
reduction by slack time reclamation.

1.1.4 Task Scheduling with Energy and Time Constraints

There are two considerations in dealing with the energy-delay tradeoff. On the
one hand, in high performance computing systems, power-aware design tech-
niques and algorithms attempt to maximize performance under certain energy
consumption constraints. On the other hand, low power and energy-efficient
design techniques and algorithms aim to minimize energy consumption while still
meeting certain performance requirements. In Reference 43, the author studied the
problems of minimizing the expected execution time given a hard energy budget
and minimizing the expected energy expenditure given a hard execution dead-
line for a single task with randomized execution requirement. In Reference 44,
the author considered scheduling jobs with equal requirements on multiproces-
sors. In Reference 45, the authors studied the relationship among parallelization,
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performance, and energy consumption, and the problem of minimizing energy-
delay product. In References 46, 47, the authors attempted joint minimization
of energy consumption and task execution time. In Reference 48, the authors
investigated the problem of system value maximization subject to both time and
energy constraints.

In this chapter, we address energy and time constrained power allocation and
task scheduling on multiprocessor computers with dynamically variable volt-
age, frequency, speed, and power as combinatorial optimization problems. In
particular, we define the problem of minimizing schedule length with energy
consumption constraint and the problem of minimizing energy consumption with
schedule length constraint on multiprocessor computers [49]. The first problem
has applications in general multiprocessor and multicore processor computing
systems, where energy consumption is an important concern, and in mobile
computers, where energy conservation is a main concern. The second problem
has applications in real-time multiprocessing systems and environments such as
parallel signal processing, automated target recognition, and real-time MPEG
encoding, where timing constraint is a major requirement. Our scheduling prob-
lems are defined such that the energy-delay product is optimized by fixing one
factor and minimizing the other.

1.1.5 Chapter Outline

The rest of the chapter is organized as follows: In Section 1.2, we present the
power consumption model; define our power allocation and task scheduling prob-
lems on multiprocessor computers with energy and time constraints; describe
various task models, processor models, and scheduling models; discuss problem
decomposition and subproblems; and mention different types of algorithms. In
Section 1.3, we develop optimal solution to our problems on uniprocessor com-
puters and multiprocessor computers with given partitions of tasks, prove the
strong NP-hardness of our problems, derive lower bounds for optimal solutions,
and the energy-delay tradeoff theorem. In Section 1.4, we present and analyze
the performance of pre-power-determination algorithms, including equal-time
algorithms, equal-energy algorithms, and equal-speed algorithms. We show both
numerical data and simulation results of our performance bounds. In Section 1.5,
we present and analyze the performance of post-power-determination algorithms.
We demonstrate both numerical data and simulation results of our performance
bounds. In Section 1.6, we summarize the chapter and point out several further
research directions.

1.2 PRELIMINARIES

1.2.1 Power Consumption Model

Power dissipation and circuit delay in digital CMOS circuits can be accurately
modeled by simple equations, even for complex microprocessor circuits. CMOS
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circuits have dynamic, static, and short-circuit power dissipation; however, the
dominant component in a well-designed circuit is dynamic power consumption p
(i.e., the switching component of power), which is approximately p = aCV 2f ,
where a is an activity factor, C is the loading capacitance, V is the supply
voltage, and f is the clock frequency [50]. Since s ∝ f , where s is the processor
speed, and f ∝ V φ with 0 < φ ≤ 1 [51], which implies that V ∝ f 1/φ , we know
that the power consumption is p ∝ f α and p ∝ sα , where α = 1 + 2/φ ≥ 3.

Assume that we are given n independent sequential tasks to be executed on m
identical processors. Let ri represent the execution requirement (i.e., the number
of CPU cycles or the number of instructions) of task i , where 1 ≤ i ≤ n. We use
pi (Vi , fi , respectively) to represent the power (supply voltage, clock frequency,
respectively) allocated to execute task i . For ease of discussion, we will assume
that pi is simply sα

i , where si = p
1/α

i is the execution speed of task i . The
execution time of task i is ti = ri/si = ri/p

1/α

i . The energy consumed to execute
task i is ei = piti = rip

1−1/α

i = ris
α−1
i .

We would like to mention the following number of basic and important obser-
vations: (i) fi ∝ V

φ
i and si ∝ V

φ
i : Linear change in supply voltage results in

up to linear change in clock frequency and processor speed; (ii) pi ∝ V
φ+2
i and

pi ∝ f α
i and pi ∝ sα

i : Linear change in supply voltage results in at least quadratic
change in power supply and linear change in clock frequency and processor
speed results in at least cubic change in power supply; (iii) si/pi ∝ V −2

i and
si/pi ∝ s

−(α−1)
i : The processor energy performance, measured by speed per watt

[12], is at least quadratically proportional to the supply voltage and speed reduc-
tion; (iv) ri/ei ∝ V −2

i and ri/ei ∝ s
−(α−1)
i , where ri is the amount of work to be

performed for task i : The processor energy performance, measured by work per
Joule [19], is at least quadratically proportional to the supply voltage and speed
reduction; (v) ei ∝ p

1−1/α

i ∝ V
(φ+2)(1−1/α)

i = V 2
i : Linear change in supply volt-

age results in quadratic change in energy consumption; (vi) ei = ris
α−1
i : Linear

change in processor speed results in at least quadratic change in energy con-
sumption; (vii) ei = rip

1−1/α

i : Energy consumption reduces at a sublinear speed,
as power supply reduces; (viii) eit

α−1
i = rα

i and pit
α
i = rα

i : For a given task,
there exist energy-delay and power-delay tradeoffs. (Later, we will extend such
tradeoff to a set of tasks, i.e., the energy-delay tradeoff theorem.)

1.2.2 Problem Definitions

The power allocation and task scheduling problems on multiprocessor computers
with energy and time constraints addressed in this chapter are defined as the
following optimization problems.

Problem 1.1 (Minimizing Schedule Length with Energy Consumption
Constraint)

Input : A set of n independent sequential tasks, a multiprocessor computer
with m identical processors, and energy constraint E .
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Output : Power supplies p1, p2, . . . , pn to the n tasks and a schedule of the n
tasks on the m processors such that the schedule length is minimized and
the total energy consumption does not exceed E .

Problem 1.2 (Minimizing Energy Consumption with Schedule Length
Constraint)

Input : A set of n independent sequential tasks, a multiprocessor computer
with m identical processors, and time constraint T .

Output : Power supplies p1, p2, . . . , pn to the n tasks and a schedule of
the n tasks on the m processors such that the total energy consumption is
minimized and the schedule length does not exceed T .

The framework of investigation can be established based on the product of
three spaces, namely, the task models, the processors models, and the schedul-
ing models. The above research problems have many variations and extensions,
depending on the task models, processors models, and scheduling models. These
power allocation and task scheduling problems can be investigated in a variety
of ways to consider sophisticated application environments, realistic processor
technologies, and practical scheduling algorithms.

1.2.3 Task Models

Our independent sequential tasks can be extended to precedence constrained
tasks, parallel tasks, and dynamic tasks, which arise in various application
environments.

• Independent and Precedence Constrained Tasks . A set of independent tasks
can be scheduled in any order. A set of n precedence constrained tasks can
be represented by a partial order ≺ on the tasks, that is, for two tasks i
and j , if i ≺ j , then task j cannot start its execution until task i finishes.
It is clear that the n tasks and the partial order ≺ can be represented by a
directed task graph, in which, there are n vertices for the n tasks and (i, j)

is an arc if and only if i ≺ j . Furthermore, such a task graph must be a
directed acyclic graph (dag).

• Sequential and Parallel Tasks . A sequential task requires one processor to
execute. A parallel task requires several processors to execute. Assume that
task i requires πi processors to execute and any πi of the m processors
can be allocated to task i . We call πi the size of task i . It is possible
that in executing task i , the πi processors may have different execution
requirements. Let ri represent the maximum execution requirement on the
πi processors executing task i . The execution time of task i is ti = ri/si =
ri/p

1/α

i . Note that all the πi processors allocated to task i have the same
speed si for duration ti , although some of the πi processors may be idle
for some time. The energy consumed to execute task i is ei = πipiti =
πirip

1−1/α

i = πiris
α−1
i .
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• Static and Dynamic Tasks . A set of tasks are static if they are all available
for scheduling at the same time. A schedule can be determined before the
execution of any task. A set of tasks are dynamic if each task has its own
arrival time. A scheduling algorithm should be able to schedule currently
available tasks without knowing the arrival of future tasks.

1.2.4 Processor Models

The following processor technologies can be incorporated into our power allo-
cation and task scheduling problems.

• Continuous and Discrete Voltage/Frequency/Speed/Power Levels . Most
existing research assume that tasks can be supplied with any power and
processors can be set at any speed, that is, voltage/frequency/speed/power
can be changed continuously. However, the currently available processors
have only discrete voltage/frequency/speed/power settings [40, 52, 53].
Such discrete settings certainly make our optimization problems more
difficult to solve.

• Bounded and Unbounded Voltage/Frequency/Speed/Power Levels . Much
existing research also assumes that voltage/frequency/speed/power can
be changed in any range. However, the currently available processors
can only change voltage/frequency/speed/power in certain bounded range.
Power-aware task scheduling algorithms developed with such constraints,
though more complicated, will be more practically useful.

• Regular and Irregular Voltage/Frequency/Speed/Power Levels . Much exist-
ing research also assume that voltage/frequency/speed/power can be changed
according to certain analytical and mathematical relation. However, real
processors hardly follow such regular models and exhibit irregular rela-
tion among voltage, frequency, speed, and power. Such irregularity makes
analytical study of algorithms very hard.

• Homogeneous and Heterogeneous Processors . A multiprocessor computer
is homogeneous if all the processors have the same power–speed relation-
ship. A multiprocessor computer is heterogeneous with α1, α2, . . . , αm, if
each processor k has its own αk , such that power dissipation on proces-
sor k is ∝ s

αk

k , where 1 ≤ k ≤ m. Heterogeneity makes the scheduling of
sequential tasks more difficult and the specification of parallel tasks more
sophisticated.

• Overheads for Voltage/Frequency/Speed/Power Adjustment and Idle Proces-
sors . In reality, it takes time and consumes energy to change voltage,
frequency, speed, and power. A processor also consumes energy when it is
idle [40]. Although these overheads are ignored in most existing research, it
would be interesting to take these overheads into consideration to produce
more realistic solutions.

• Single and Multiple Systems . Processors can reside on a single computing
system or across multiple computing systems.
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1.2.5 Scheduling Models

As in traditional scheduling theory, different types of scheduling algorithms can
be considered for power-aware task scheduling problems.

• Preemptive and Nonpreemptive Scheduling . In a nonpreemptive schedule,
the execution of a task cannot be interrupted. Once a task is scheduled on
a processor, the task runs with the same power supply until it is completed.
In a preemptive schedule, the execution of a task can be interrupted at any
time and resumed later. When the execution of a task is resumed, the task
may be assigned to a different processor, supplied with different power,
and executed at different speed. Depending on the processor model, such
resumption may be performed with no cost or with overheads for relocation
and/or voltage/frequency/speed/power adjustment.

• Online and Offline Scheduling . An offline scheduling algorithm knows all the
information (execution requirements, precedence constraints, sizes, arrival
times, deadlines, etc.) of the tasks to be scheduled. An online algorithm
schedules the tasks in certain given order. When task j is scheduled, an
online algorithm only knows the information of tasks 1, 2, . . . , j but does
not know the information of tasks j + 1, j + 2, . . . Current tasks should be
scheduled without any knowledge of future tasks.

• Clairvoyant and Non-Clairvoyant Scheduling . Virtually all research in
scheduling theory has been concerned with clairvoyant scheduling, where
it is assumed that the execution requirements of the tasks are known a
priori. However, in many applications, the execution requirement of a task
is not available until the task is executed and completed. A non-clairvoyant
scheduling algorithm only knows the precedence constraints, sizes, arrival
times, and deadlines of the tasks and has no access to information about
the execution requirements of the tasks it is to schedule. The execution
requirement of a task is known only when it is completed.

1.2.6 Problem Decomposition

Our power allocation and task scheduling problems contain four nontrivial sub-
problems, namely, system partitioning, precedence constraining, task scheduling,
and power supplying. Each subproblem should be solved efficiently, so that
heuristic algorithms with overall good performance can be developed.

• System Partitioning . Since each parallel task requests for multiple pro-
cessors, a multiprocessor computer should be partitioned into clusters of
processors to be assigned to the tasks.

• Precedence Constraining . Precedence constraints make design and analysis
of heuristic algorithms more difficult.

• Task Scheduling . Precedence constrained parallel tasks are scheduled
together with system partitioning and precedence constraining, and it
is NP-hard even when scheduling independent sequential tasks without
system partitioning and precedence constraint.
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• Power Supplying . Tasks should be supplied with appropriate powers and
execution speeds, such that the schedule length is minimized by consum-
ing given amount of energy or the energy consumed is minimized without
missing a given deadline.

The above decomposition of our optimization problems into several subproblems
makes design and analysis of heuristic algorithms tractable. Our approach is
significantly different from most existing studies. A unique feature of our work is
to compare the performance of our algorithms with optimal solutions analytically
and validate our results experimentally, and not to compare the performance of
heuristic algorithms among themselves only experimentally. Such an approach is
consistent with traditional scheduling theory.

1.2.7 Types of Algorithms

There are naturally three types of power-aware task scheduling algorithms,
depending on the order of power supplying and task scheduling.

• Pre-Power-Determination Algorithms . In this type of algorithms, we first
determine power supplies and then schedule the tasks.

• Post-Power-Determination Algorithms . In this type of algorithms, we first
schedule the tasks and then determine power supplies.

• Hybrid Algorithms . In this type of algorithms, scheduling tasks and deter-
mining power supplies are interleaved among different stages of an algo-
rithm.

1.3 PROBLEM ANALYSIS

Our study in this chapter assumes the following models, namely, task model:
independent, sequential, static tasks; processor model: a single system of homoge-
neous processors with continuous and unbounded and regular voltage/frequency/
speed/power levels and without overheads for voltage/frequency/speed/power
adjustment and idle processors; scheduling model: nonpreemptive, offline, clair-
voyant scheduling. The above combination of task model, processor model, and
scheduling model yields the easiest version of our power allocation and task
scheduling problems.

1.3.1 Schedule Length Minimization

1.3.1.1 Uniprocessor computers. It is clear that on a uniprocessor computer
with energy constraint E , the problem of minimizing schedule length with energy
consumption constraint is simply to find the power supplies p1, p2, . . . , pn, such
that the schedule length

T (p1, p2, . . . , pn) = r1

p
1/α

1

+ r2

p
1/α

2

+ · · · + rn

p
1/α
n
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is minimized and the total energy consumed e1 + e2 + · · · + en does not exceed
E , that is,

F(p1, p2, . . . , pn) = r1p
1−1/α

1 + r2p
1−1/α

2 + · · · + rnp
1−1/α
n ≤ E.

Notice that both the schedule length T (p1, p2, . . . , pn) and the energy consump-
tion F(p1, p2, . . . , pn) are viewed as functions of p1, p2, . . . , pn.

We can minimize T (p1, p2, . . . , pn) subject to the constraint F(p1, p2,

. . . , pn) = E by using the Lagrange multiplier system:

∇T (p1, p2, . . . , pn) = λ∇F(p1, p2, . . . , pn),

where λ is a Lagrange multiplier. Since

∂T (p1, p2, . . . , pn)

∂pi

= λ · ∂F (p1, p2, . . . , pn)

∂pi

,

that is,

ri

(
− 1

α

)
1

p
1+1/α

i

= λri

(
1 − 1

α

)
1

p
1/α

i

,

where 1 ≤ i ≤ n, we have pi = 1/λ(1 − α), for all 1 ≤ i ≤ n. Substi-
tuting the above pi into the constraint F(p1, p2, . . . , pn) = E, we get
R (1/λ(1 − α))1−1/α = E, where R = r1 + r2 + · · · + rn is the total exe-
cution requirement of the n tasks. Therefore, we obtain pi = 1/λ(1 − α)

= (E/R)α/(α−1), for all 1 ≤ i ≤ n.
The above discussion is summarized in the following theorem, which gives

the optimal power supplies and the optimal schedule length.

Theorem 1.1 On a uniprocessor computer, the schedule length is minimized
when all tasks are supplied with the same power pi = (E/R)α/(α−1), where 1 ≤
i ≤ n. The optimal schedule length is TOPT = Rα/(α−1)/E1/(α−1).

1.3.1.2 Multiprocessor computers. Let us consider a multiprocessor com-
puter with m processors. Assume that a set of n tasks is partitioned into m groups,
such that all the tasks in group k are executed on processor k , where 1 ≤ k ≤ m.
Let Rk denote group k and the total execution requirement of the tasks in group
k . For a given partition of the n tasks into m groups R1, R2, . . . , Rm, we are
seeking power supplies that minimize the schedule length.

Let Ek be the energy consumed by all the tasks in group k . We observe that
by fixing Ek and adjusting the power supplies for the tasks in group k to the
same power (Ek/Rk)

α/(α−1) according to Theorem 1.1, the total execution time
of the tasks in group k can be minimized to Tk = R

α/(α−1)

k /E
1/(α−1)

k . Therefore,
the problem of finding power supplies p1, p2, . . . , pn, which minimize the
schedule length is equivalent to finding E1, E2, . . . , Em, which minimize the
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schedule length. It is clear that the schedule length is minimized when all the m
processors complete their execution of the m groups of tasks at the same time
T , that is, T1 = T2 = · · · = Tm = T , which implies that Ek = Rα

k /T α−1. Since
E1 + E2 + · · · + Em = E, we have

Rα
1 + Rα

2 + · · · + Rα
m

T α−1
= E,

that is,

T =
(

Rα
1 + Rα

2 + · · · + Rα
m

E

)1/(α−1)

and

Ek =
(

Rα
k

Rα
1 + Rα

2 + · · · + Rα
m

)
E.

Thus, we have proved the following theorem.

Theorem 1.2 For a given partition R1, R2, . . . , Rm of n tasks into m groups
on a multiprocessor computer, the schedule length is minimized when all the tasks
in group k are supplied with the same power (Ek/Rk)

α/(α−1), where

Ek =
(

Rα
k

Rα
1 + Rα

2 + · · · + Rα
m

)
E

for all 1 ≤ k ≤ m. The optimal schedule length is

TOPT =
(

Rα
1 + Rα

2 + · · · + Rα
m

E

)1/(α−1)

for the above power supplies.

1.3.2 Energy Consumption Minimization

1.3.2.1 Uniprocessor computers. It is clear that on a uniprocessor computer
with time constraint T , the problem of minimizing energy consumption with
schedule length constraint is simply to find the power supplies p1, p2, . . . , pn,
such that the total energy consumption

E(p1, p2, . . . , pn) = r1p
1−1/α

1 + r2p
1−1/α

2 + · · · + rnp
1−1/α
n .

is minimized and the schedule length t1 + t2 + · · · + tn does not exceed T , that is,

F(p1, p2, . . . , pn) = r1

p
1/α

1

+ r2

p
1/α

2

+ · · · + rn

p
1/α
n

≤ T
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The energy consumption E(p1, p2, . . . , pn) and the schedule length F(p1, p2,

. . . , pn) are viewed as functions of p1, p2, . . . , pn.
We can minimize E(p1, p2, . . . , pn) subject to the constraint F(p1, p2, . . . ,

pn) = T by using the Lagrange multiplier system:

∇E(p1, p2, . . . , pn) = λ∇F(p1, p2, . . . , pn),

where λ is a Lagrange multiplier. Since

∂E(p1, p2, . . . , pn)

∂pi

= λ · ∂F (p1, p2, ..., pn)

∂pi

,

that is,

ri

(
1 − 1

α

)
1

p
1/α

i

= λri

(
− 1

α

)
1

p
1+1/α

i

,

where 1 ≤ i ≤ n, we have pi = λ/(1 − α), for all 1 ≤ i ≤ n. Substituting the
above pi into the constraint F(p1, p2, . . . , pn) = T , we get R ((1 − α)/λ)1/α =
T and pi = λ/(1 − α) = (R/T )α , for all 1 ≤ i ≤ n.

The above discussion gives rise to the following theorem, which gives the
optimal power supplies and the minimum energy consumption.

Theorem 1.3 On a uniprocessor computer, the total energy consumption is min-
imized when all tasks are supplied with the same power pi = (R/T )α , where
1 ≤ i ≤ n. The minimum energy consumption is EOPT = Rα/T α−1.

1.3.2.2 Multiprocessor computers. By Theorem 1.3, the energy consumed
by tasks in group k is minimized as Ek = Rα

k /T α−1 by allocating the same power
(Rk/T )α to all the tasks in group k without missing the time deadline T . The
minimum energy consumption is simply

E1 + E2 + · · · + Em = Rα
1 + Rα

2 + · · · + Rα
m

T α−1
.

The following result gives the optimal power supplies that minimize energy
consumption for a given partition of n tasks into m groups on a multiprocessor
computer.

Theorem 1.4 For a given partition R1, R2, . . . , Rm of n tasks into m groups on
a multiprocessor computer, the total energy consumption is minimized when all
the tasks in group k are supplied with the same power (Rk/T )α , where 1 ≤ k ≤ m.
The minimum energy consumption is

EOPT = Rα
1 + Rα

2 + · · · + Rα
m

T α−1

for the above power supplies.
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1.3.3 Strong NP-Hardness

The sum of powers problem is defined as follows:

Problem 1.3 (Sum of Powers)

Input : A set of integers {r1, r2, . . . , rn} and an integer m ≥ 2.
Output : A partition of the set into m disjoint subsets, where the sum of integers

in subset k is Rk , 1 ≤ k ≤ m, such that Rα
1 + Rα

2 + · · · + Rα
m is minimized.

Theorems 1.2 and 1.4 imply that on a multiprocessor computer, the problem of
minimizing schedule length with energy consumption constraint and the problem
of minimizing energy consumption with schedule length constraint are equivalent
to finding a partition R1, R2, . . . , Rm of the n tasks into m groups such that
Rα

1 + Rα
2 + · · · + Rα

m is minimized. This is exactly the same problem as the sum
of powers problem. Hence, we have reached the following theorem.

Theorem 1.5 On a multiprocessor computer with m ≥ 2 processors, the prob-
lem of minimizing schedule length with energy consumption constraint and the
problem of minimizing energy consumption with schedule length constraint are
equivalent to the sum of powers problem.

We can easily prove that the sum of powers problem is NP-hard even when
m = 2 and α = 2. We use a reduction from the well-known partition prob-
lem [54], that is, to decide whether there is a partition of a set of integers
{r1, r2, . . . , rn} into two disjoint subsets, such that R1 = R2, where R1 and R2
are the sums of integers in the two subsets. Let R = R1 + R2 be the sum of all
integers. Since R2

1 + R2
2 = R2

1 + (R − R1)
2 = 2(R1 − R/2)2 + R2/2, we know

that R2
1 + R2

2 is minimized as R2/2 if and only if R1 = R/2, that is, there is a
partition. Actually, the following result is known in Reference 54 (p. 225).

Theorem 1.6 The sum of powers problem is NP-hard in the strong sense for all
rational α > 1. Consequently, on a multiprocessor computer with m ≥ 2 proces-
sors, the problem of minimizing schedule length with energy consumption con-
straint and the problem of minimizing energy consumption with schedule length
constraint are NP-hard in the strong sense.

1.3.4 Lower Bounds

Assume that R1, R2, . . . , Rm are continuous variables. By using a Lagrange
multiplier system, it is easy to show that the multivariable function

f (R1, R2, . . . , Rm) = Rα
1 + Rα

2 + · · · + Rα
m

subject to the constraint R1 + R2 + · · · + Rm = R is minimized when R1 = R2 =
· · · = Rm = R/m. If there exists such a partition, we have the optimal schedule
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length TOPT = ((m/E) (R/m)α)1/(α−1), by Theorem 1.2. Of course, in general,
there may not exist such a partition and the above quantity can only serve as
a lower bound for the optimal schedule length. The following theorem gives a
lower bound for the optimal schedule length TOPT for the problem of minimizing
schedule length with energy consumption constraint.

Theorem 1.7 For the problem of minimizing schedule length with energy con-
sumption constraint on a multiprocessor computer, we have the following lower
bound:

TOPT ≥
(

m

E

(
R

m

)α)1/(α−1)

for the optimal schedule length.

Similarly, we know that if there exists a partition that results in R1 = R2 =
· · · = Rm = R/m, the minimum total energy consumption could be EOPT =
m(R/m)α /T α−1 by Theorem 1.4. The following theorem gives a lower bound
for the minimum energy consumption EOPT for the problem of minimizing energy
consumption with schedule length constraint.

Theorem 1.8 For the problem of minimizing energy consumption with sched-
ule length constraint on a multiprocessor computer, we have the following lower
bound:

EOPT ≥ m

(
R

m

)α 1

T α−1

for the minimum energy consumption.

Since it is infeasible to compute optimal solutions in reasonable amount of
time, the lower bounds in Theorems 1.7 and 1.8 can be used to evaluate the per-
formance of heuristic algorithms when they are compared with optimal solutions.

1.3.5 Energy-Delay Trade-off

The lower bounds in Theorems 1.7 and 1.8 essentially state the following impor-
tant theorem.

ETα−1 Lower Bound Theorem (Energy-Delay Trade-off Theorem). For any
execution of a set of tasks with total execution requirement R on m processors
with schedule length T and energy consumption E, we must have the following
tradeoff:

ET α−1 ≥ m

(
R

m

)α

by using any scheduling algorithm.
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The above energy-delay tradeoff theorem implies that our power allocation
and task scheduling problems are defined such that the energy-delay product is
optimized by fixing one factor and minimizing the other.

Notice that the lower bounds in Theorems 1.7 and 1.8 and the energy-
delay tradeoff theorem are applicable to various sequential task models
(independent or precedence constrained, static or dynamic tasks), various
processor models (regular homogeneous processors with continuous or discrete
voltage/frequency/speed/power levels, bounded or unbounded voltage/frequency/
speed/power levels, with/without overheads for voltage/frequency/speed/power
adjustment, and idle processors), and all scheduling models (preemptive or
nonpreemptive, online or offline, clairvoyant, or non-clairvoyant scheduling).
These lower bounds have also been extended to parallel tasks [55].

1.4 PRE-POWER-DETERMINATION ALGORITHMS

1.4.1 Overview

We observe that for independent sequential tasks considered in this chapter, we
only need to deal with two subproblems, namely, scheduling tasks and deter-
mining power supplies. Depending on which subproblem is solved first, we
have two types of power-aware task scheduling algorithm, namely, pre-power-
determination algorithms and post-power-determination algorithms.

In pre-power-determination algorithms, we first determine power supplies and
then schedule the tasks. Let A1-A2 denote a pre-power-determination algorithm,
where A1 is an algorithm for power allocation and A2 is an algorithm for task
scheduling. Algorithm A1-A2 works as follows: First, algorithm A1 is used to
assign powers to the n tasks. Second, algorithm A2 is used to produce a schedule
of the n tasks (whose execution times are known) on the m processors.

In this section, we consider the following pre-power-determination algorithms:

• Equal-Time Algorithms (ET-A). The power supplies p1, p2, . . . , pn are
determined in such a way that all the n tasks have the identical execution
time, that is, t1 = t2 = · · · = tn.

• Equal-Energy Algorithms (EE-A). The power supplies p1, p2, . . . , pn are
determined in such a way that all the n tasks consume the same amount of
energy, that is, e1 = e2 = · · · = en.

• Equal-Speed Algorithms (ES-A). All the n tasks are supplied with the same
power and executed at the same speed, that is, p1 = p2 = · · · = pn and
s1 = s2 = · · · = sn.

In all the above algorithms, A is any task scheduling algorithm.
We propose to use the classic list scheduling algorithm [56] and its variations

to solve the task scheduling problem.

• List Scheduling (LS). The algorithm works as follows to schedule a list
of tasks 1, 2, . . . , n . Initially, task k is scheduled on processor k , where
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1 ≤ k ≤ m, and tasks 1, 2, . . . , m are removed from the list simultaneously.
On the completion of a task k , the first unscheduled task in the list, that
is, task m + 1, is removed from the list and scheduled to be executed on
processor k . This process repeats until all tasks in the list are finished.

Algorithm LS has many variations depending on the strategy used in the initial
ordering of the tasks. We mention two of them here.

• Largest Requirement First (LRF). This algorithm is the same as the LS
algorithm, except that the tasks are arranged such that r1 ≥ r2 ≥ · · · ≥ rn.

• Smallest Requirement First (SRF). This algorithm is the same as the LS
algorithm, except that the tasks are arranged such that r1 ≤ r2 ≤ · · · ≤ rn.

We call algorithm LS and its variations simply as list scheduling algorithms .
Notice that for equal-time algorithms ET-A, since all tasks have the same

execution time, all list scheduling algorithms generate the same schedule. Hence,
we basically have one algorithm ET-LS. However, for equal-energy algorithms,
EE-A, and equal-speed algorithms, ES-A, different list scheduling algorithms
generate different schedules and have different performance. Therefore, we will
distinguish algorithms EE-SRF, EE-LS, EE-LRF, and ES-SRF, ES-LS, ES-LRF.

1.4.2 Performance Measures

Let TA denote the length of the schedule produced by algorithm A and EA

denote the total amount of energy consumed by algorithm A. The following
performance measures are used to analyze and evaluate the performance of our
power allocation and task scheduling algorithms.

Definition 1.1 The performance ratio of an algorithm A that solves the problem
of minimizing schedule length with energy consumption constraint is defined as
βA = TA/TOPT. If βA ≤ B, we call B a performance bound of algorithm A. The
asymptotic performance ratio of algorithm A is defined as β∞

A = limR/r∗→∞ βA

(by fixing m), where r∗ = max{r1, r2, . . . , rn} is the maximum task execution
requirement. If β∞

A ≤ B, we call B an asymptotic performance bound of algo-
rithm A. Algorithm A is called asymptotically optimal if β∞

A = 1.

Definition 1.2 The performance ratio of an algorithm A that solves the problem
of minimizing energy consumption with schedule length constraint is defined as
γA = EA/EOPT. If γA ≤ C, we call C a performance bound of algorithm A. The
asymptotic performance ratio of algorithm A is defined as γ ∞

A = limR/r∗→∞ γA

(by fixing m), where r∗ = max{r1, r2, . . . , rn} is the maximum task execution
requirement. If γ ∞

A ≤ C, we call C an asymptotic performance bound of algo-
rithm A. Algorithm A is called asymptotically optimal if γ ∞

A = 1.

When tasks have random execution requirements, TA, TOPT, βA, β∞
A , B , EA,

EOPT, γA, γ ∞
A , and C are all random variables. Let x be the expectation of a

random variable x .

www.allitebooks.com

http://www.allitebooks.org
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Definition 1.3 If βA ≤ B, then B is an expected performance bound of algo-
rithm A. If β∞

A ≤ B then B is an expected asymptotic performance bound of
algorithm A.

Definition 1.4 If γA ≤ C then C is an expected performance bound of algo-
rithm A. If γ ∞

A ≤ C then C is an expected asymptotic performance bound of
algorithm A.

1.4.3 Equal-Time Algorithms and Analysis

1.4.3.1 Schedule length minimization. To solve the problem of minimizing
schedule length with energy consumption constraint E by using the equal-time
algorithm ET-LS, we notice that t1 = t2 = · · · = tn = t , that is, ti = ri/p

1/α

i = t ,
for all 1 ≤ i ≤ n, where t is the identical task execution time. The above equation
gives pi = (

ri/t
)α

, where 1 ≤ i ≤ n. Since the total energy consumption is

r1p
1−1/α

1 + r2p
1−1/α

2 + · · · + rnp
1−1/α
n = E,

namely,
rα

1 + rα
2 + · · · + rα

n

tα−1
= E,

we get

t =
(

rα
1 + rα

2 + · · · + rα
n

E

)1/(α−1)

.

Therefore, the schedule length of algorithm ET-LS is

TET-LS =
⌈ n

m

⌉
t =

⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

E

)1/(α−1)

.

By Theorem 1.7, the performance ratio of algorithm ET-LS is

βET-LS = TET-LS

TOPT
≤ m

⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

Rα

)1/(α−1)

.

The above discussion is summarized in the following theorem.

Theorem 1.9 By using the equal-time algorithm ET-LS to solve the problem of
minimizing schedule length with energy consumption constraint on a multiproces-
sor computer, the schedule length is

TET-LS =
⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

E

)1/(α−1)

.
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The performance ratio is βET-LS ≤ BET-LS, where the performance bound is

BET-LS = m
⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

(r1 + r2 + · · · + rn)
α

)1/(α−1)

.

1.4.3.2 Energy consumption minimization. To solve the problem of min-
imizing energy consumption with schedule length constraint T by using the
equal-time algorithm ET-LS, we notice that enough energy E

ET-LS
should be

given such that T
ET-LS

= T , that is,

⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

EET-LS

)1/(α−1)

= T .

The above equation implies that the energy consumed by algorithm ET-LS is

EET-LS =
(⌈ n

m

⌉ 1

T

)α−1 (
rα

1 + rα
2 + · · · + rα

n

)
.

By Theorem 1.8, the performance ratio of algorithm ET-LS is

γET-LS = EET-LS

EOPT
≤

(
m

⌈ n

m

⌉)α−1
(

rα
1 + rα

2 + · · · + rα
n

Rα

)
.

The above discussion is summarized in the following theorem.

Theorem 1.10 By using the equal-time algorithm ET-LS to solve the problem
of minimizing energy consumption with schedule length constraint on a multipro-
cessor computer, the energy consumed is

EET-LS =
(⌈ n

m

⌉ 1

T

)α−1 (
rα

1 + rα
2 + · · · + rα

n

)
.

The performance ratio is γ
ET-LS

≤ C
ET-LS

, where the performance bound is

CET-LS =
(
m

⌈ n

m

⌉)α−1
(

rα
1 + rα

2 + · · · + rα
n

(r1 + r2 + · · · + rn)
α

)
.

1.4.4 Equal-Energy Algorithms and Analysis

1.4.4.1 Schedule length minimization. To solve the problem of mini-
mizing schedule length with energy consumption constraint E by using an
equal-energy algorithm EE-A, where A is a list scheduling algorithm, we
notice that e1 = e2 = · · · = en = E/n, that is, ei = rip

1−1/α

i = E/n, for all
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1 ≤ i ≤ n, where E/n is the identical energy consumption of the n tasks. The
above equation gives pi = (

E/nri

)α/(α−1)
, si = p

1/α

i = (
E/nri

)1/(α−1)
, and

ti = ri/si = r
α/(α−1)

i (n/E)1/(α−1), where 1 ≤ i ≤ n.
Let A(t1, t2, . . . , tn) represent the length of the schedule produced by algorithm

A for n tasks with execution times t1, t2, . . . , tn, where A is a list scheduling algo-
rithm. We notice that for all x ≥ 0, we have A(t1, t2, . . . , tn) = xA(t ′1, t

′
2, . . . , t

′
n),

if ti = xt ′i for all 1 ≤ i ≤ n. That is, the schedule length is scaled by a factor of
x if all the task execution times are scaled by a factor of x . Therefore, we get
the schedule length of algorithm EE-A as

TEE-A = A(t1, t2, . . . , tn) = A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

( n

E

)1/(α−1)

.

By Theorem 1.7, the performance ratio of algorithm EE-A is

βEE-A = TEE-A
TOPT

≤ mn1/(α−1)A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

Rα/(α−1)
.

By using any list scheduling algorithm A, we get

A(t1, t2, . . . , tn) ≤ t1 + t2 + · · · + tn

m
+ t∗,

where t∗ = max{t1, t2, . . . , tn} is the longest task execution time. Hence, we
obtain

βEE-A ≤
n1/(α−1)

(
(r

α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n ) + m(r∗)α/(α−1)

)
Rα/(α−1)

= n1/(α−1)

(
r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n

Rα/(α−1)
+ m

(
r∗

R

)α/(α−1)
)

,

where r∗ = max{r1, r2, . . . , rn} is the maximum task execution requirement. The
asymptotic performance ratio of algorithm EE-A is

β∞
EE-A = lim

R/r∗→∞
βEE-A ≤ n1/(α−1)(r

α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n )

Rα/(α−1)
.

The above discussion is summarized in the following theorem.

Theorem 1.11 By using an equal-energy algorithm EE-A to solve the problem
of minimizing schedule length with energy consumption constraint on a multipro-
cessor computer, the schedule length is

TEE-A = A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

( n

E

)1/(α−1)

.
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The performance ratio is

βEE-A ≤ n1/(α−1)

(
r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n

Rα/(α−1)
+ m

(
r∗

R

)α/(α−1)
)

.

As R/r∗ → ∞, the asymptotic performance ratio is β∞
EE-A ≤ BEE-A, where the

asymptotic performance bound is

BEE-A = n1/(α−1)(r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n )

(r1 + r2 + · · · + rn)
α/(α−1)

.

1.4.4.2 Energy consumption minimization. To solve the problem of min-
imizing energy consumption with schedule length constraint T by using an
equal-energy algorithm EE-A, we notice that enough energy EEE-A should be
given such that TEE-A = T , that is,

A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

(
n

EEE-A

)1/(α−1)

= T .

The above equation implies that the energy consumed by algorithm EE-A is

EEE-A = n

T α−1

(
A(r

α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

)α−1
.

By Theorem 1.8, the performance ratio of algorithm EE-A is

γEE-A = EEE-A
EOPT

≤ n

(
mA(r

α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

Rα/(α−1)

)α−1

≤ n

(
r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n

Rα/(α−1)
+ m

(
r∗

R

)α/(α−1)
)α−1

.

The asymptotic performance ratio of algorithm EE-A is

γ ∞
EE-A = lim

R/r∗→∞
γEE-A ≤ n(r

α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n )α−1

Rα
.

The above discussion is summarized in the following theorem.
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Theorem 1.12 By using an equal-energy algorithm EE-A to solve the problem
of minimizing energy consumption with schedule length constraint on a multipro-
cessor computer, the energy consumed is

EEE-A = n

T α−1

(
A(r

α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

)α−1
.

The performance ratio is

γEE-A ≤ n

(
r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n

Rα/(α−1)
+ m

(
r∗

R

)α/(α−1)
)α−1

.

As R/r∗ → ∞, the asymptotic performance ratio is γ ∞
EE-A ≤ CEE-A, where the

asymptotic performance bound is

CEE-A = n(r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n )α−1

(r1 + r2 + · · · + rn)
α

,

1.4.5 Equal-Speed Algorithms and Analysis

1.4.5.1 Schedule length minimization. To solve the problem of minimizing
schedule length with energy consumption constraint E by using an equal-speed
algorithm ES-A, we notice that p1 = p2 = · · · = pn = p, that is,

E = r1p
1−1/α + r2p

1−1/α + · · · + rnp
1−1/α = Rp1−1/α,

which gives p = (E/R)α/(α−1). Since s1 = s2 = · · · = sn = s, we get s = p1/α =
(E/R)1/(α−1) and ti = ri/s = ri (R/E)1/(α−1). Hence, we get the schedule length
of algorithm ES-A as

TES-A = A(t1, t2, . . . , tn) = A(r1, r2, . . . , rn)

(
R

E

)1/(α−1)

.

By Theorem 1.7, the performance ratio of algorithm ES-A is

βES-A = TES-A
TOPT

≤ A(r1, r2, . . . , rn)

R/m
.

By using any list scheduling algorithm A, we get

A(r1, r2, . . . , rn) ≤ R

m
+ r∗,

which implies that

βES-A ≤ 1 + mr∗

R
.
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It is clear that for a fixed m , βES-A can be arbitrarily close to 1 as R/r∗ becomes
large.

The above discussion yields the following theorem.

Theorem 1.13 By using an equal-speed algorithm ES-A to solve the problem
of minimizing schedule length with energy consumption constraint on a multipro-
cessor computer, the schedule length is

TES-A = A(r1, r2, . . . , rn)

(
R

E

)1/(α−1)

.

The performance ratio is

βES-A ≤ 1 + mr

R
.

As R/r∗ → ∞, the asymptotic performance ratio is β∞
ES-A = 1.

1.4.5.2 Energy consumption minimization. To solve the problem of min-
imizing energy consumption with schedule length constraint T by using an
equal-speed algorithm ES-A, we notice that enough energy EES-A should be
given such that TES-A = T , that is,

A(r1, r2, . . . , rn)

(
R

EES-A

)1/(α−1)

= T .

The above equation implies that the energy consumed by algorithm ES-A is

EES-A =
(

A(r1, r2, . . . , rn)

T

)α−1

R.

By Theorem 1.8, the performance ratio of algorithm ES-A is

γES-A = EES-A
EOPT

≤
(

A(r1, r2, . . . , rn)

R/m

)α−1

≤
(

1 + mr∗

R

)α−1

.

As R/r∗ becomes large, γES-A can be arbitrarily close to 1.

Theorem 1.14 By using an equal-speed algorithm ES-A to solve the problem
of minimizing energy consumption with schedule length constraint on a multipro-
cessor computer, the energy consumed is

EES-A =
(

A(r1, r2, . . . , rn)

T

)α−1

R.
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The performance ratio is

γES-A ≤
(

1 + mr∗

R

)α−1

.

As R/r∗ → ∞, the asymptotic performance ratio is γ ∞
ES-A = 1.

1.4.6 Numerical Data

In Table 1.1, we demonstrate numerical data for the expectation of the
performance bound BET-LS given in Theorem 1.9 and the expectation of the per-
formance bound CET-LS given in Theorem 1.10, where n = 1, 2, 3, . . . , 15 and
α = 3.0, 4.0, 5.0. For each combination of n and α, we generate 20,000 sets of n
random execution requests. In each set, the n execution requests are independent
and identically distributed (i.i.d.) random variables uniformly distributed in
[0, 1]. For each set of n random execution requests r1, r2, . . . , rn, we calculate
BET-LS. The average of the 20,000 values of BET-LS is reported as the expected
performance bound BET-LS. A similar process is performed to get the expected
performance bound CET-LS. The maximum 99% confidence interval of all the data
in the table is also given. We observe that as n increases, BET-LS (CET-LS, respec-
tively) quickly approaches its stable value, that is, the limit limn→∞ BET-LS
(limn→∞ CET-LS, respectively). Both BET-LS and CET-LS increase as α

increases.

TABLE 1.1 Numerical Data for the Expected Performance Bounds BET−LS and
CET−LS

a

α = 3 α = 4 α = 5

n BET−LS CET−LS BET−LS CET−LS BET−LS CET−LS

1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
2 1.2640340 1.6907929 1.2880188 2.4780966 1.3061883 3.8923041
3 1.3532375 1.9228341 1.3904990 3.2061946 1.4189932 5.8662235
4 1.3867956 1.9966842 1.4310920 3.4847355 1.4713283 6.5784617
5 1.3982354 2.0269460 1.4521804 3.5441669 1.4888736 6.6706692
6 1.4057998 2.0470706 1.4584030 3.5018100 1.5022930 6.5576159
7 1.4104677 2.0506264 1.4637247 3.4949204 1.5088842 6.5677028
8 1.4134329 2.0410096 1.4678481 3.4582288 1.5122321 6.3209251
9 1.4156317 2.0348810 1.4711866 3.4471772 1.5159571 6.2137416

10 1.4151582 2.0379807 1.4698276 3.4048056 1.5154895 6.1304240
11 1.4160890 2.0323743 1.4719247 3.3859182 1.5156527 6.0539296
12 1.4139975 2.0254020 1.4739329 3.3727408 1.5190419 6.0878647
13 1.4138615 2.0243764 1.4748107 3.3570116 1.5200183 6.0082183
14 1.4145436 2.0204771 1.4754312 3.3439681 1.5226907 5.8638511
15 1.4136195 2.0204157 1.4739066 3.3324817 1.5193218 5.8842350

a99% confidence interval, ±2.718%.
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TABLE 1.2 Numerical Data for the Expected Asymptotic Performance Bounds
BEE−A and CEE−A

a

α = 3 α = 4 α = 5

n BEE−A CEE−A BEE−A CEE−A BEE−A CEE−A

1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
2 1.0883879 1.1970545 1.0545042 1.1854814 1.0386468 1.1819932
3 1.1108389 1.2494676 1.0674159 1.2306497 1.0479554 1.2207771
4 1.1195349 1.2633028 1.0725624 1.2440485 1.0515081 1.2326371
5 1.1232283 1.2708740 1.0749250 1.2505880 1.0531375 1.2394887
6 1.1256815 1.2736246 1.0763288 1.2524318 1.0541672 1.2428750
7 1.1263593 1.2759891 1.0768743 1.2565030 1.0544601 1.2447639
8 1.1286415 1.2738426 1.0771574 1.2545767 1.0551808 1.2436191
9 1.1289966 1.2757221 1.0774763 1.2568825 1.0552782 1.2447769

10 1.1292004 1.2766495 1.0776918 1.2572239 1.0555105 1.2442652
11 1.1291663 1.2781207 1.0783142 1.2570462 1.0556260 1.2471731
12 1.1293388 1.2786435 1.0784883 1.2569814 1.0559882 1.2457928
13 1.1294392 1.2786065 1.0786491 1.2577500 1.0560901 1.2458283
14 1.1291546 1.2797332 1.0786508 1.2576963 1.0561657 1.2480804
15 1.1294269 1.2792081 1.0787218 1.2584264 1.0561504 1.2476369

a99% confidence interval, ±0.375%.

In Table 1.2, we demonstrate numerical data for the expectation of the
performance bound BEE-A given in Theorem 1.11 and the expectation of the
performance bound CEE-A given in Theorem 1.12. The data are obtained
using a method similar to that of Table 1.1. It is observed that as n increases,
BEE-A (CEE-A, respectively) quickly approaches its stable value. Surprisingly,
both BEE-A and CEE-A decrease as α increases. It is clear that the asymptotic
performance of equal-energy algorithms is better than the performance of
equal-time algorithms, especially for large α.

1.4.7 Simulation Results

In this section, we demonstrate some experimental data. Our experimental per-
formance evaluation is based on two performance measures, namely, normalized
schedule length and normalized energy consumption.

Definition 1.5 The normalized schedule length NSLA of an algorithm A that
solves the problem of minimizing schedule length with energy consumption con-
straint is defined as

NSLA = TA

((m/E)(R/m)α)1/(α−1)
.



26 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSOR COMPUTERS

According the the above definition, the normalized schedule length of the
equal-time algorithm ET-LS is

NSLET-LS = m
⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

Rα

)1/(α−1)

.

For an equal-energy algorithm EE-A, the normalized schedule length is

NSLEE-A = mn1/(α−1)A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

Rα/(α−1)
.

For an equal-speed algorithm ES-A, the normalized schedule length is

NSLES-A = A(r1, r2, . . . , rn)

R/m
.

We notice that NSLA serves as a performance bound for the performance ratio
βA = TA/TOPT of any algorithm A that solves the problem of minimizing sched-
ule length with energy consumption constraint on a multiprocessor computer.
When the ri’s are random variables, TA, TOPT, βA, and NSLA all become ran-
dom variables. It is clear that for the problem of minimizing schedule length
with energy consumption constraint, we have βA ≤ NSLA, that is, the expected
performance ratio is no greater than the expected normalized schedule length.
(Recall that we use x to represent the expectation of a random variable x .)

Definition 1.6 The normalized energy consumption NECA of an algorithm A
that solves the problem of minimizing energy consumption with schedule length
constraint is defined as

NECA = EA

Rα/(mT )α−1
.

According the the above definition, the normalized energy consumption of the
equal-time algorithm ET-LS is

NECET-LS =
(
m

⌈ n

m

⌉)α−1
(

rα
1 + rα

2 + · · · + rα
n

Rα

)
.

For an equal-energy algorithm EE-A, the normalized energy consumption is

NECEE-A = n(mA(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n ))α−1

Rα
.

For an equal-speed algorithm ES-A, the normalized energy consumption is

NECES-A =
(

A(r1, r2, . . . , rn)

R/m

)α−1

.
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TABLE 1.3 Simulation Results for the Expected NSLa

n ET-LS EE-SRF EE-LS EE-LRF ES-SRF ES-LS ES-LRF

30 1.4160086 1.5788606 1.5358982 1.1830203 1.2950870 1.2777859 1.0570897
40 1.4162681 1.4614432 1.4275593 1.1598898 1.2209157 1.2095402 1.0326068
50 1.4160963 1.3939270 1.3671321 1.1476734 1.1778906 1.1681927 1.0210129
60 1.4142811 1.3501833 1.3289118 1.1419086 1.1484774 1.1398580 1.0147939
70 1.4145643 1.3183999 1.2995623 1.1387841 1.1277784 1.1188316 1.0106644
80 1.4137537 1.2940370 1.2787042 1.1364289 1.1116303 1.1047328 1.0081871
90 1.4141781 1.2760247 1.2622851 1.1350882 1.0990160 1.0933288 1.0065092

a99% confidence interval, ±0.355%.

TABLE 1.4 Simulation Results for the Expected NECa

n ET-LS EE-SRF EE-LS EE-LRF ES-SRF ES-LS ES-LRF

30 2.0166361 2.4942799 2.3687384 1.3987777 1.6795807 1.6387186 1.1184317
40 2.0141396 2.1375327 2.0427624 1.3452555 1.4955667 1.4714876 1.0671827
50 2.0101674 1.9436148 1.8768266 1.3208927 1.3900636 1.3667759 1.0421333
60 2.0079074 1.8256473 1.7667130 1.3062980 1.3195213 1.2992718 1.0294409
70 2.0065212 1.7388610 1.6960039 1.2976417 1.2720398 1.2538434 1.0214559
80 2.0112500 1.6743670 1.6388005 1.2911207 1.2366120 1.2199077 1.0165503
90 2.0061604 1.6282674 1.5961585 1.2881397 1.2087291 1.1947753 1.0129208

a99% confidence interval, ±0.720%.

It is noticed that NECA is a performance bound for the performance ratio γA =
EA/EOPT of any algorithm A that solves the problem of minimizing energy
consumption with schedule length constraint on a multiprocessor computer. It is
also clear that for the problem of minimizing energy consumption with schedule
length constraint, we have γ A ≤ NECA, that is, the expected performance ratio
is no greater than the expected normalized schedule length.

Notice that for a given power allocation and task scheduling algorithm A, the
expected normalized schedule length NSLA and the expected normalized energy
consumption NECA are determined by m , n , α, and the probability distribution
of the ri’s. In our simulations, the number of processors is set as m = 10. The
number of tasks is in the range n = 30, 40, . . . , 90. The parameter α is set as 3.
The ri’s are i.i.d. random variables with a uniform distribution in [0, 1].

In Tables 1.3 and 1.4, we show our simulation results. For each combination
of n and algorithm A ∈ {ET-LS, EE-SRF, EE-LS, EE-LRF, ES-SRF, ES-LS,
ES-LRF}, we generate 5000 sets of n tasks, produce their schedules by using
algorithm A, calculate their NSLA (or NECA), and report the average of NSLA

(or NECA), which is the experimental value of NSLA (or NECA). The 99%
confidence interval of all the data is also given in the same table. We observe
the following facts:
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• The equal-time algorithm ET-LS exhibits quite stable performance. The
expected normalized schedule length NSLET-LS (the expected normalized
energy consumption NECET-LS, respectively) is almost identical to the
expected performance bound BET-LS (CET-LS, respectively) given in
Table 1.1.

• The performance of equal-energy algorithms improves as n increases. The
expected normalized schedule length NSLEE-A (the expected normalized
energy consumption NECEE-A, respectively) decreases as n increases, that is,
R/r∗ increases, and eventually approaches the expected performance bound
BEE-A (CEE-A, respectively) given in Table 1.2. The speed of convergence
depends on algorithm A. It is clear that algorithm LRF leads to faster speed
of convergence than LS and SRF.

• The performance of equal-speed algorithms improves as n increases. The
expected normalized schedule length NSLES-A and the expected normal-
ized energy consumption NECES-A decrease as n increases, that is, R/r∗
increases, and eventually approaches 1, as claimed in Theorems 1.13 and
1.14. Again, algorithm LRF leads to faster speed of convergence than LS
and SRF.

• The performance of the three list scheduling algorithms are ranked as SRF,
LS, LRF, from the worst to the best. Algorithm EE-LRF performs notice-
ably better than EE-SRF and EE-LS. Similarly, Algorithm ES-LRF performs
noticeably better than ES-SRF and ES-LS. This is not surprising since LRF
schedules tasks with long execution times earlier and cause less imbalance
of task distribution among the processors. On the other hand, SRF schedules
tasks with short execution times earlier, and tasks with long execution times
scheduled later cause more imbalance of task distribution among the proces-
sors. It is known that LRF exhibits better performance in other scheduling
environments.

• The equal-time algorithm ET-LS performs better than equal-energy algo-
rithms EE-SRF and EE-LS for small n . As n gets larger, ET-LS performs
worse than EE-A and ES-A for all A. The equal-speed algorithm ES-A per-
forms better than the equal-energy algorithm EE-A for all A. For large n ,
the performance of the seven pre-power-determination algorithms are ranked
as ET-LS, EE-SRF, EE-LS, EE-LRF, ES-SRF, ES-LS, ES-LRF, from the
worst to the best.

1.5 POST-POWER-DETERMINATION ALGORITHMS

1.5.1 Overview

As mentioned earlier, both the problem of minimizing schedule length with
energy consumption constraint and the problem of minimizing energy consump-
tion with schedule length constraint on a multiprocessor computer are equivalent
to the sum of powers problem in the sense that they can be solved by finding
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a partition R1, R2, . . . , Rm of the n tasks into m groups such that the sum
of powers Rα

1 + Rα
2 + · · · + Rα

m is minimized. Such a partition is essentially a
schedule of the n tasks on m processors. Once a partition (i.e., a schedule) is
determined, Theorems 1.2 and 1.4 can be used to decide actual power supplies,
which minimize either schedule length or energy consumption. This is exactly the
idea of post-power-determination algorithms, where we first schedule the tasks
and then determine power supplies, that is, power supplies p1, p2, . . . , pn are
determined after a schedule of the n tasks on the m processors is decided, and a
schedule is produced without knowing the actual task execution times but based
only on task execution requirements.

Again, we can decompose our optimization problems into two subproblems,
namely, scheduling tasks and determining power supplies. We use the notation
A1-A2 to represent a post-power-determination algorithm, where A1 is an algo-
rithm for task scheduling and A2 is an algorithm for power allocation. Algorithm
A1-A2 works as follows: First, algorithm A1 is used to produce a schedule of
the n tasks (whose execution times are unknown) by using r1, r2, . . . , rn as task
execution times. Second, algorithm A2 is used to assign powers to the n tasks on
the m processors. We propose to use the list scheduling algorithm and its vari-
ations to solve the scheduling problem (i.e., the sum of powers problem). Since
our power allocation algorithms based on Theorems 1.2 and 1.4 yields optimal
solutions, we have post-power-determination algorithm LS-OPT, SRF-OPT, and
LRF-OPT.

1.5.2 Analysis of List Scheduling Algorithms

1.5.2.1 Analysis of algorithm LS. Let PLS be the sum of powers of the
partition of a list of tasks into m groups produced by algorithm LS, and POPT
be the minimum sum of powers of an optimal partition of the list of tasks. The
following theorem characterizes the performance of algorithm LS in solving the
sum of powers problem.

Theorem 1.15 By using algorithm LS to solve the sum of powers problem for a
list of tasks, we have PLS/POPT ≤ BLS, where the performance bound is

BLS = max
1≤m′≤m−1
0≤r≤1/m′

⎧⎪⎪⎨
⎪⎪⎩

(m − m′)
(

1 − m′r
m

)α

+ m′
(

1 − m′r
m

+ r

)α

(
r ≤ 1

m

)
?

1

mα−1
: rα + (m − 1)

(
1 − r

m − 1

)α

⎫⎪⎪⎬
⎪⎪⎭ .

(Note: An expression in the form (c) ? u : v means that if a boolean condition c is
true, the value of the expression is u; otherwise, the value of the expression is v.)

The proof of the above theorem is lengthy and sophisticated. The interested
reader is referred to Reference 49 for the proof.
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1.5.2.2 Analysis of algorithm LRF. Let PLRF be the sum of powers of the
partition of a list of tasks into m groups produced by algorithm LRF. The fol-
lowing theorem characterizes the performance of algorithm LRF in solving the
sum of powers problem.

Theorem 1.16 By using algorithm LRF to solve the sum of powers problem for
a list of tasks, we have PLRF/POPT ≤ BLRF, where the performance bound is

BLRF = mα−1
(

max
1≤m′≤m−1

{
(m − m′)

(
m + 1 − m′

m(m + 1)

)α

+ m′
(

2m + 1 − m′

m(m + 1)

)α})
.

The above theorem can be proved by following the same reasoning in the
proof of Theorem 1.15. Again, the interested reader is referred to Reference 49
for the proof.

1.5.3 Application to Schedule Length Minimization

Theorem 1.15 can be used to analyze the performance of algorithm LS-OPT,
which solves the problem of minimizing schedule length with energy consump-
tion constraint on a multiprocessor computer. By Theorem 1.2, the schedule
length produced by algorithm LS-OPT is TLS−OPT = (

PLS/E
)1/(α−1)

, where PLS
is the sum of powers of the partition produced by algorithm LS. Also, the optimal
schedule length is TOPT = (

POPT/E
)1/(α−1)

, where POPT is the minimum sum of
powers of an optimal partition. Hence, we get

βLS−OPT = TLS−OPT

TOPT
=

(
PLS

POPT

)1/(α−1)

≤ B
1/(α−1)

LS .

Notice that the condition R/r∗ → ∞ is equivalent to r → 0 in Theorem 1.15,
and it is easy to see that limr→0 BLS = 1. Thus, we have β∞

LS−OPT = limR/r∗→∞
βLS−OPT ≤ limr→0 B

1/(α−1)

LS = 1.

Theorem 1.17 By using algorithm LS-OPT to solve the problem of minimizing
schedule length with energy consumption constraint on a multiprocessor com-
puter, the schedule length is

TLS−OPT =
(

PLS

E

)1/(α−1)

.

The performance ratio is βLS−OPT ≤ BLS−OPT = B
1/(α−1)

LS , where BLS is given by
Theorem 1.15. As R/r∗ → ∞, the asymptotic performance ratio is β∞

LS−OPT = 1.

The following theorem can be obtained in a way similar to that of Theorem
1.17.
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Theorem 1.18 By using algorithm LRF-OPT to solve the problem of minimizing
schedule length with energy consumption constraint on a multiprocessor com-
puter, the schedule length is

TLRF−OPT =
(

PLRF

E

)1/(α−1)

.

The performance ratio is βLRF−OPT ≤ BLRF−OPT = B
1/(α−1)
LRF , where BLRF is

given by Theorem 1.16. As R/r∗ → ∞, the asymptotic performance ratio is
β∞

LRF−OPT = 1.

1.5.4 Application to Energy Consumption Minimization

Theorem 1.15 can be used to analyze the performance of algorithm LS-OPT,
which solves the problem of minimizing energy consumption with schedule
length constraint on a multiprocessor computer. By Theorem 1.4, the energy
consumption of the schedule produced by algorithm LS-OPT is ELS−OPT =
PLS/T α−1, where PLS is the sum of powers of the partition produced by algo-
rithm LS. Also, the minimum energy consumption of an optimal schedule is
EOPT = POPT/T α−1, where POPT is the minimum sum of powers of an opti-
mal partition. Hence, we get γLS−OPT = ELS−OPT/EOPT = PLS/POPT ≤ BLS. The
asymptotic performance ratio γ ∞

LS−OPT can be obtained in a way similar to that
of Theorem 1.17.

Theorem 1.19 By using algorithm LS-OPT to solve the problem of minimizing
energy consumption with schedule length constraint on a multiprocessor com-
puter, the energy consumed is

ELS−OPT = PLS

T α−1
.

The performance ratio is γLS−OPT ≤ CLS−OPT = BLS, where BLS is given by
Theorem 1.15. As R/r∗ → ∞, the asymptotic performance ratio is γ ∞

LS−OPT = 1.

The following theorem can be obtained in a way similar to that of Theorem
1.19.

Theorem 1.20 By using algorithm LRF-OPT to solve the problem of minimizing
energy consumption with schedule length constraint on a multiprocessor com-
puter, the energy consumed is

ELRF−OPT = PLRF

T α−1
.

The performance ratio is γLRF−OPT ≤ CLRF−OPT = BLRF, where BLRF is given by
Theorem 1.16. As R/r∗ → ∞, the asymptotic performance ratio is γ ∞

LRF−OPT = 1.
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TABLE 1.5 Numerical Data for the Performance Bounds BLS−OPT and CLS−OPT

α = 3 α = 4 α = 5

m BLS−OPT CLS−OPT BLS−OPT CLS−OPT BLS−OPT CLS−OPT

2 1.3660254 1.8660254 1.3999105 2.7434735 1.4212571 4.0802858
3 1.4168919 2.0075827 1.4721932 3.1907619 1.5098182 5.1963533
4 1.4517046 2.1074462 1.4886206 3.2987700 1.5361359 5.5682478
5 1.5235253 2.3211293 1.5274255 3.5635275 1.5430156 5.6686715
6 1.5653646 2.4503664 1.5695451 3.8665303 1.5814389 6.2547465
7 1.6075236 2.5841321 1.5955042 4.0615694 1.6094683 6.7101114
8 1.6621450 2.7627259 1.6149005 4.2115046 1.6277417 7.0200781
9 1.7031903 2.9008574 1.6495521 4.4884680 1.6399180 7.2325010

10 1.7406107 3.0297256 1.6757104 4.7054035 1.6627810 7.6443430

TABLE 1.6 Numerical Data for the Performance Bounds BLRF−OPT and
CLRF−OPT

α = 3 α = 4 α = 5

m BLRF−OPT CLRF−OPT BLRF−OPT CLRF−OPT BLRF−OPT CLRF−OPT

2 1.1547005 1.3333333 1.1885514 1.6790123 1.2141069 2.1728395
3 1.1858541 1.4062500 1.2382227 1.8984375 1.2806074 2.6894531
4 1.2165525 1.4800000 1.2568900 1.9856000 1.3012612 2.8672000
5 1.2360331 1.5277778 1.2893646 2.1435185 1.3286703 3.1165123
6 1.2453997 1.5510204 1.3018050 2.2061641 1.3496519 3.3180818
7 1.2593401 1.5859375 1.3116964 2.2568359 1.3585966 3.4069214
8 1.2636090 1.5967078 1.3236611 2.3191587 1.3675714 3.4978408
9 1.2727922 1.6200000 1.3284838 2.3446000 1.3781471 3.6073000

10 1.2771470 1.6311044 1.3351801 2.3802336 1.3833651 3.6622436

1.5.5 Numerical Data

In Table 1.5, we demonstrate numerical data for the performance bounds in
Theorems 1.17 and 19. For each combination of α = 3, 4, 5 and m = 2, 3, . . . ,

10, we show BLS−OPT and CLS−OPT.
In Table 1.6, we demonstrate numerical data for the performance

bounds in Theorems 1.18 and 20. For each combination of α = 3, 4, 5 and
m = 2, 3, . . . , 10, we show BLRF−OPT and CLRF−OPT.

It is clear that algorithm LRF leads to improved performance compared with
algorithm LS. Tighter performance bounds can be obtained by more involved
analysis.

1.5.6 Simulation Results

In this section, we demonstrate some experimental data.
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TABLE 1.7 Simulation Results for the Expected NSLa

n SRF-OPT LS-OPT LRF-OPT

30 1.0535521 1.0374620 1.0024673
40 1.0303964 1.0214030 1.0008078
50 1.0195906 1.0134978 1.0003326
60 1.0136363 1.0092786 1.0001669
70 1.0100516 1.0068138 1.0000894
80 1.0076977 1.0052356 1.0000527
90 1.0060781 1.0041218 1.0000335

a99% confidence interval, ±0.058%.

For a post-power-determination algorithm A-OPT, where A is a list scheduling
algorithm, the normalized schedule length is

NSLA−OPT =
(

Rα
1 + Rα

2 + · · · + Rα
m

m(R/m)α

)1/(α−1)

,

where R1, R2, . . . , Rn is a partition into m groups produced by algorithm A for
n tasks. The normalized energy consumption is

NECA−OPT = Rα
1 + Rα

2 + · · · + Rα
m

m(R/m)α
.

In Tables 1.7 and 1.8, we show our simulation results. For each combination
of n and algorithm A ∈ { SRF-OPT, LS-OPT, LRF-OPT }, we generate 5000
sets of n tasks, produce their schedules by using algorithm A, calculate their
NSLA (or NECA), and report the average of NSLA (or NECA), which is the
experimental value of NSLA (or NECA). The 99% confidence interval of all the
data in the same table is also given. We observe the following facts:

• The performance of the three post-power-determination algorithms are
ranked as SRF-OPT, LS-OPT, LRF-OPT, from the worst to the best.

• The post-power-determination algorithms perform better (as measured by
NSLA and NECA) than the pre-power-determination algorithms, although
there is no direct comparison among the performance bounds given in
Theorems 1.9, 1.11, 1.13, 1.17, and 1.18, and the performance bounds given
in Theorems 1.10, 1.12, 1.14, 1.19, and 1.20.

1.6 SUMMARY AND FURTHER RESEARCH

We have investigated nonpreemptive offline non-clairvoyant scheduling of inde-
pendent sequential static tasks on a single computing system of homogeneous
processors with continuous and unbounded and regular voltage/frequency/
speed/power levels and without overheads for voltage/frequency/speed/power



34 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSOR COMPUTERS

TABLE 1.8 Simulation Results for the Expected NECa

n SRF-OPT LS-OPT LRF-OPT

30 1.1102206 1.0765611 1.0051583
40 1.0619973 1.0427680 1.0016418
50 1.0395262 1.0268312 1.0006819
60 1.0274261 1.0187010 1.0003373
70 1.0201289 1.0136876 1.0001829
80 1.0154632 1.0104982 1.0001088
90 1.0122283 1.0082873 1.0000684

a99% confidence interval, ±0.117%.

adjustment and idle processors. We have developed and analyzed pre-power-
determination and post-power-determination algorithms, which solve the
problems of minimizing schedule length with energy consumption constraint
and minimizing energy consumption with schedule length constraint. The
performance of all our algorithms is compared with optimal solutions. It is found
that the best algorithm among all our algorithms in this chapter is LRF-OPT,
whose performance ratio is very close to optimal.

Possible further research can be directed toward precedence constrained tasks,
parallel tasks, discrete and/or bounded voltage/frequency/speed/power levels, het-
erogeneous processors, and online scheduling. These extensions to our study in
this chapter are likely to yield analytically tractable algorithms.
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CHAPTER 2

POWER-AWARE HIGH PERFORMANCE
COMPUTING

RONG GE and KIRK W. CAMERON

2.1 INTRODUCTION

High performance computing (HPC) is indispensable for scientific discovery and
technological revolution. Today’s HPC computers are able to perform peta (1015)
floating-point operations per second by using hundreds of thousands of processing
units. Such unprecedented computational capability enables scientists to solve
complex problems previously deemed intractable. With the aid of HPC systems,
scientists are able to make breakthroughs in a wide spectrum of fields such as
nanoscience, fusion, climate modeling, and astrophysics [1, 2].

Computational capability, albeit growing at a relatively healthy rate, still
remains a bottleneck to the advances of many national and global priority grand
challenge problems. Understanding and mitigating the effects of global warming
require finer resolution simulation with regional details in more complex models.
Facilitating regional adaption to climate variability and change needs 1000-fold
increase to exaflop-scale (1018) [3] in computing power. Nuclear energy sci-
ence and engineering simulations also require similar computing power to create
robust, predictive simulations that have quantifiable uncertainties for reactors over
40–60 year lifetime [4]. Ten exaflop-scale of computing power is necessary for
computational simulations of highly efficient combustion design for transporta-
tion. To meet the demand of these applications, petascale computers will continue
to increase in performance and exascale computers are expected to debut around
2018.

Power and energy are key challenges in future HPC systems, and they must
be efficiently used for HPC to be affordable, scalable, and available. Large-scale
computer systems have to use massive numbers of processing units for designed
peak performance. Consequently, the power and energy consumption is huge.
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For example, the Jaguar system at Oak Ridge Nation Laboratory that is ranked
as the #1 supercomputer in the top 500 list in November 2009 contains 26,520
compute nodes and 224,162 cores, and delivers 1.76 petaflops at the expense of
7 MW of electrical power [5]. As a rule of thumb, 1 MW of power incurs $1
million energy bill and requires additional 1 MW of power in cooling. Powering
and cooling Jaguar and another petascale system to be built by 2012 will cost
Oakridge National Lab and University of Tennessee $33 million annually. An
exascale computer could consist of ∼100 million of processor cores [6]. Even
using today’s most energy-efficient design such as PowerXCell architecture, the
exascale computer will consume 1.3 GW of power. Such power consumption is
unacceptable. The practical power is limited around 20 MW . At present, about
90% of the data center failures and unavailability are due to power outages. The
larger power requirement for the future systems is certain to exacerbate data
center failures and unavailability.

Energy-efficient HPC requires not only efficient hardware and system design
but also aggressive runtime power management to adapt the power use to appli-
cation demand. Without adaptive power allocation, the exascale systems with
the most power-efficient design technology will be around 67 MW [6]. Runtime
adaptive power allocation must be applied in order to reduce the system power to
acceptable levels with 20 MW . With the adaptive power allocation, an application
segment that demands very high floating-point operations and operates entirely
out of registers can throttle/shut down memory or communication, and a differ-
ent application segment that demands high DRAM bandwidth and relatively little
floating-point operations can throttle down floating-point units.

Adaptive power allocation is challenging because it is employed at component
level and on application segments. It requires fine-grain, detailed power and
energy profiles of every system component, particularly the processing units, the
memory and storage subsystems, and networking. Meanwhile, adaptive power
allocation must not sacrifice performance for HPC applications, which in turn
require in-depth understanding of the detailed interrelation between application
performance and power consumption. Segment level performance quantification
for the variety of HPC applications will be challenging, especially provided that
their execution patterns vary with the underlying architecture and system scale.

We are in dire need of techniques for obtaining fine-grain, detailed power pro-
files of system components to identify best adaptive power allocations for energy
efficiency. Most existing power profiling research is focused on a specific single
computer component at microarchitecture level such as processor [7, 8], disk [9],
memory [8], and networking interface [10] using simulation, direct measurement,
and analytical estimation. Neither of these techniques can be adapted to all the
components on the system nor can they be integrated easily to reveal the power
profile of the entire system. Some have studied the power efficiency of parallel
and distributed systems at the system or building level [11–13]. However, coarse
grained power profiling is not particularly useful for determining exactly where
and how power is consumed by an application and the individual components in
a distributed system.
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We are also in dire need of analytical models for quantifying and predicting
the performance impact of adaptive power allocations. Most existing scalability
models focus on the performance speedup from parallel processing. They are
unable to capture the combined performance scalability at multiple dimensions,
including system size, power modes of components, and affinity of processing
units.

In this chapter, we introduce the models and techniques that are designed to
meet these needs and enable adaptive power allocation for HPC systems and
applications. Specifically, the models and techniques include the following:

• PowerPack hardware/software toolkit for fine-grain, detailed power profiling
of multiple system components, synchronized with application segments in
HPC systems.

• Practical power and performance models for quantifying the interrelation
between application performance and power consumption on HPC systems
capable of power adaptation.

• Model-directed adaptive power allocation for performance-constrained
energy-efficient computing.

The rest of the chapter is organized as follows. Some background about current
technology and power consumption are introduced in the next section. Section 2.4
presents the PowerPack tool for fine-grain power and energy profiling for HPC
applications and systems. Section 2.5 presents the Power-Aware Speedup model
for quantifying the performance impact of dynamic processor power alloca-
tion. Section 2.6 describe a model-directed design of adaptive power allocation.
Section 2.7 concludes our work.

2.2 BACKGROUND

2.2.1 Current Hardware Technology and Power Consumption

2.2.1.1 Processor power. Complementary metal oxide semiconductor
(CMOS) is a technology for constructing integrated circuits for computer
components, including microprocessors, microcontrollers, and static RAM. The
power consumption of silicon CMOS logic circuits [14] is approximated by

P = ACV 2f + Pshort + Pleak. (2.1)

The power consumption of CMOS logic consists of three components:
dynamic power Pd = ACV 2f , which is caused by the charging and discharging
of the capacitive load on each gate’s output; short circuit power Pshort, which is
caused by the short-circuit current momentarily flowing within the cell; and leak
power Pleak, which is caused by leakage current regardless of the gate’s state.
Here f is the operating frequency, A is the activity of the gates in the system
(reduced activity corresponds to smaller A value), C is the total capacitance seen
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by the gate outputs, and V is the supply voltage. Dynamic power Pd dominates
total power P , accounting for 70% or more on today’s CMOS devices, Pshort
typically accounts for 10–30% and Pleak accounts for about 1% [15] of total P .1

The dominant dynamic power suggests three key strategies for power reduction
on today’s microprocessors and caches.

1. Using two processing units with a frequency f consumes less power com-
pared with using a single processing unit with doubled frequency 2f for
the same computational capacity. Multicore architecture follows this strat-
egy. Multicore technology uses multiple slower, low power cores instead
of faster single cores. At present, quad-core and hexa-core processors are
commonplace on production high performance computing systems, and
processors with tens to hundreds of cores have merged [19].

2. Reducing voltage and frequency can exponentially reduce power. Both low
power design and power-aware dynamic voltage and frequency scaling
(DVFS) technology follow this strategy. Low power processors such as
PowerPC used in BlueGene systems run at low frequency. In contrast,
high performance processors such as Intel Xeon and AMD Opteron run
at high frequency with higher power consumption. A DVFS processor
can be switched among several performance states, each determined by
a pair of voltage and frequency. Normally, the frequency is proportional
to the voltage, and scaling a processor to low frequency results in cubic
power reduction on DVFS processors. DVFS technology is available on
most commodity server processors. The performance states are normally
controlled by operating systems or users.

3. Low activity consumes less power compared to high activity.

2.2.1.2 Memory subsystem power. DRAM is the mainstream memory
technology used in HPC systems. Commodity DRAM devices have only recently
begun to address power concerns as low power DRAM devices have become
standard for applications in mobile phones and portable electronics [6].

To understand the DRAM device power consumption, it is necessary to under-
stand the basic functionality of DRAM devices. DRAM devices have several
operating states, including idle, refresh, precharge, active, read, and write. Dur-
ing the idle state the DRAM clock and input buffers are turned off. Refresh is
periodically performed on the cells to keep information. In order to activate a
bank with a row for reading or writing, the bank must first be charged. The
charge is carried out by the precharge operation. The charge allows the chip to
sense a particular row and amplify the signal from that row. The active operation
presents bank and row addresses and causes a read of the wordline into a sense
amplifier. Activating the row is also known as opening the row. Once the row has
been activated or “opened”, Read command is possible to that row by steering

1In the future, leakage power (Pleak) will grow in significance with continuing decreases in feature
size and increases in processor frequency and reducing leakage power will also be important [16–18].
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the data from the sense amplifiers, through registers and pipelines to the output.
A write operation is similar to a read operation. It begins with precharge and then
activate. The data to be written is driven into the cells by the sense amplifiers.

The power consumption of the memory subsystem varies with the states.
The power consumption can be classified into three levels: background power,
activation power, and read/write power. Background power is the base power
consumed by the memory cells for storing data, and it is aggregated over idle,
refresh, and precharging states. Activation power is the extra power consumed
by addressing the row and copying the data to the sensor amplifier. Read/write
power are the power consumption for steering the actual data from the sensor
amplifier. The activation power and read/write power are normally larger than
the background power.2 Figure 2.1 shows the power consumption of a DDR3
[20].

The power breakdown on the commodity DRAM device suggests the
following:

• Reducing the number of memory rows that are opened reduces power con-
sumption of memory subsystem.

• Reducing the number of reads/writes and thus reducing power consumption.

Good memory locality reduces both activation and read/write power
consumption.

2.2.2 Performance

Execution time T (or delay D for the same meaning) is the ultimate measure
of performance for an application on a given system [21]. The execution time
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Figure 2.1 The memory subsystem power consumption of a commodity DRAM device.
The power consumed by opening a row is a little more than background power. The
read/write power dominates the power consumption of the memory subsystem.

2The numbers are extracted from Reference 20.
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of an application is affected by CPU speed, memory hierarchy, and application
execution pattern.

The sequential execution time T (1) for a program on a single processor con-
sists of two parts: the time that the processor is busy executing instructions Tcomp
and the time that the processor waits for data from the local memory system
Tmem [22], that is,

T (1) = Tcomp(1) + Tmem(1). (2.2)

Memory access is expensive: the latency for a single memory access is equiv-
alent to the time for the CPU to execute hundreds of instructions. Memory time
Tmem can account for up to 50% of execution time for an application that hits
the closest cache for 99% of the data accesses.

The parallel execution time on n processors T (n) consists of additional items
that are denoted as parallel overhead. Synchronization time, Tsync(n), is due to
load imbalance and serialization. Communication time, Tcomm(n), occurs when
the processor is stalled waiting for a data transfer from or to a remote processing
node. The time that the processor is busy executing extra work, Textra(n), is due
to parallel data decomposition and task assignment. The parallel execution time
is formalized as

T (n) = Tcomp(n) + Tmem(n) + Tsync(n) + Tcomm(n) + Textra(n). (2.3)

Parallel overhead, the sum of Tsync(n), Tcomm(n), and Textra(n)), is quite expen-
sive. For example, the network communication time for a single piece of data
can be as large as the computation time for thousands of instructions. Moreover,
parallel overhead tends to increase with the number of processing nodes.

The ratio of sequential execution time to parallel execution time on n proces-
sors is the parallel speedup, that is,

speedup(n) = T (1)

T (n)
. (2.4)

Ideally, the speedup grows linearly with the number of processors for a fixed-
size problem and is equal or close to n when n processors are used. However,
the achieved speedup for real applications is typically sublinear due to parallel
overhead.

2.2.3 Energy Efficiency

The energy (E ) consumed by an application is the aggregated power over its exe-
cution time. Energy can be calculated as the product of the average power during
its execution and the time interval between the starting time t1 and finishing time
t2 = t1 + D, where D is the delay:

E =
∫ t2

t1

P dt = Pavg × (t2 − t1) = Pavg × T . (2.5)



RELATED WORK 45

Equation 2.5 suggests that energy reduction requires less execution time,
smaller average power, or both.

Energy efficiency is measured by energy-delay product (e.g., E · D or E · D2)
[23]. Lower numbers represent “better” efficiency.

2.3 RELATED WORK

We focus our discussion in three close related subareas: power profiling on large-
scale systems, performance scalability on power-aware parallel systems, and
adaptive power allocation for energy-efficient computing. Owing to the space
limit, we limit our discussions in embedded systems [24] and mobile systems
[25], even though these systems can share same techniques for energy efficiency.

2.3.1 Power Profiling

There are three primary approaches used to profile power of systems and com-
ponents such as simulators, direct measurements, and performance-counter-based
models.

2.3.1.1 Simulator-based power estimation. The power simulators are nor-
mally built on or used in conjunction with performance simulators. The perfor-
mance simulators provide resource usage counts, while the power simulators
estimate energy consumption using power models for the resources. Most of the
power simulators are at architecture level and for single computer components
such as processor, memory, disk, or interconnect. Few of them are at system
level and estimate power consumption of software and applications.

Component Power Simulators . Several processor power simulators are
available. These simulators are usually built on instruction-level performance
simulators and add extra modules to performance simulator to estimate power
consumption. Wattch [7] and SimplePower [8, 26] model the total processor
power as the dominant dynamic power CMOS chips without considering leakage
power and short-circuit power. These two simulators are based on SimpleScalar
[27] performance simulator. PowerTimer [28] is a simplified version of Wattch
for PowerPC processors. TEM2P2EST [29] and the Cai-Lim model [30] are
also built on SimpleScalar [27] but models both dynamic and leakage power.
Power simulators for other major computer components are also available. For
example, DRAMSim [31] simulates the power consumption of DRAM system.
Orion [10] simulates interconnection network power at the architectural level
based on the performance simulator LSE [32]. Dempsey [33] simulates the
power consumption of hard disk drives.

System Power Simulators . The system power simulators simulate the power
consumption of applications or software. Softwatt [34] quantifies the power
behavior of both the application and operating system based on SimOS [35].
Powerscope [36] samples system activity by periodically recording the program
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counter (PC) and process identifier (PID) of the currently executing process,
collects and stores current, and then maps the energy to specific processes and
procedures.

2.3.1.2 Direct measurements. Power can be directly measured both intru-
sively [37, 38] and nonintrusively. The intrusive measurements require inserting
precision resistors into the power supply lines to components under study and use
power meters to measure the voltage drop on the resistor. The current through
the component is calculated by the voltage drop over the resistor divided by its
resistance. The nonintrusive approach [39, 40] uses ammeters to measure the
current flow of the power supply lines directly.

Tiwari et al. [40] use ammeters to measure the current drawn by a processor
while running programs on an embedded system and develope a power model to
estimate power cost. Isci and Martonosi [39] use ammeters to measure the power
for P4 processors to derive their event-count-based power model. Bellosa et al.
[37] derive CPU power by measuring current on a precision resistor inserted
between the power line and supply for a Pentium II CPU; they use this power
to validate their event-count-based power model and save energy. Joseph et al.
[38] use precision resistor to measure power for a Pentium Pro processor. These
approaches can be extended to measure single processor system power. Flinn
et al. [41] use a multimeter to sample the current being drawn by a laptop from
its external power source.

2.3.1.3 Event-based estimation. Most high-end CPUs have a set of hard-
ware counters to count performance events such as cache hit/miss, and memory
load. If power is mainly dissipated by these performance events, power can be
estimated based on performance counters. Isci and Martonosi [39] develope a
runtime power monitoring model that correlates performance event counts with
CPU subunit power dissipation on real machines. CASTLE [38] does similar
work on performance simulators (SimpleScalar) instead of real machines. Joule
Watcher [37] also correlates power with performance events, the difference is that
it measures the energy consumption for a single event, such as a floating-point
operation and L2 cache access, and uses this energy consumption for energy-
aware scheduling.

2.3.2 Performance Scalability on Power-Aware Systems

Parallel speedup models analytically describe how application performance scales
with the number of concurrent computing processors. Such models often also
indicate performance bound and limiting factors. Several models have been pro-
posed [42–49], each focusing on a unique limiting factor. The first parallel
speedup model is Amdahl’s law [42]. Amdahl’s Law states that speedup is
limited by the fraction of the workload that cannot be computed in parallel.
Amdahl’s law is also known as strong scaling , as problem sizes under study will
not change with the number of computing units. Later, Gustafson [45] argues
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that one tends to scale problem size, instead of keeping it constant, for accuracy
when more computing units available, and thus proposes a fixed-time speedup
model. It quantifies the ability to scale up workload with the number of com-
putational nodes while maintaining the same execution time. As memory wall
emerges as a limiting factor of performance, Sun and Ni [47] argue that the prob-
lem size can be scaled further in large memory systems to gain more speedup
and increase simulation accuracy. They accordingly present a memory-bounded
speedup model, where speedup is constrained by main memory size. While fixed-
time speedup and memory-bounded speedup models study how to scale workload
to gain parallel speedup and simulation accuracy, whereas isoefficiency metric
proposed by Grama et al. [44] studies how to scale workload to obtain same
parallel computing efficiency. These models are powerful in analyzing parallel
performance and scalability in parallel computing but limited to conventional
systems. They are problematic when used to analyze the performance effects of
power mode on the emerging power-scalable systems. The analytical model pro-
posed by Cho and Melhem [50] studies the interaction between parallelism and
energy consumption. This model assumes that frequency scaling unanimously
affects executions of any workload and thus cannot guide the design of adaptive
power allocation.

2.3.3 Adaptive Power Allocation for Energy-Efficient Computing

Adaptive power allocation in HPC is premised by energy savings without per-
formance impact for applications. Adaptive power allocation can be deployed
at node level by consolidating the application to a few servers and shutting
down unused nodes [51, 52]. Adaptive power allocation can also be deployed
at the component level. At present, major computer components such as proces-
sor, disk, memory [53], and monitor accommodate Advanced Configuration and
Power Interface (ACPI) components. These components have one or more active
modes and several sleep modes. Usually the deeper sleep modes consume less
power but require longer time to transit to active modes. These components can
be put to sleep states to reduce power consumption when there are no user and
no system accesses. Only processor has more than one active mode in production
systems, while other components such as multiple-speed disks [54, 55] are studied
in simulations. If the processor is designed with high performance, it is normally
capable of DVFS and can be switched among several active performance states,
each determined by a pair of frequency and voltage. If the processor is designed
with low power, it is normally capable of clock gating. Clock gating does not
change processor frequency. However, it prevents clock from propagating to por-
tions of the circuitry, so that the flip-flops in the portion do not change state and
their dynamic power consumption is zero.

Adaptive power allocation using DVFS is studied most on high performance
systems for scientific computation. Experiments on real systems show that energy
is more efficiently utilized by scaling processor to low power modes during
its slack times, that is, communication [56–59], memory access [60, 61], load
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imbalance [62, 63], and their combinations [64, 65]. One difficulty in adapt-
ing processor power/performance is the identification of CPU slackness. One
approach to address this difficulty is to profile the code execution and find out
code regions with low processor utilization offline [56, 57, 66].

This static approach can provide optimal power reduction but requires pre-
execution profiling and instrumentation. Another approach is to predict applica-
tions’ CPU slack times based on history execution and schedule processor power
modes at run time [64, 65, 67]. This approach is more desirable as it is transpar-
ent to applications. However, it requires characterizing the power requirements
of code segments and execution patterns.

The other difficulty in adapting processor power is the identification of the
target CPU frequency to guarantee performance. To solve this, we must know how
exactly CPU frequency would affect performances of typical execution patterns
and applications. Owing to the unavailability of such knowledge, previous work
use assumptions and simplifications. For example, [59] assumes that the execution
times of communication function calls do not vary with processor frequency. On
the basis of this assumption, the target frequency during communication would
be the lowest available processor frequency. Nevertheless, the execution times
of communication function calls do vary with processor frequency [59], since
there are still some computation involved, and consequently the designated target
frequency results in underestimated performance loss.

To maximally save energy and minimally impact performance, we need mod-
els and techniques to understand power consumption and the interaction with
performance. The following sections present the models and techniques for these
purposes.

2.4 POWERPACK: FINE-GRAIN ENERGY PROFILING OF HPC
APPLICATIONS

2.4.1 Design and Implementation of PowerPack

2.4.1.1 Overview. PowerPack is designed to address the need for fine-grained
power/energy profiling on typical parallel and distributed systems (i.e., com-
puter clusters). PowerPack comprises both hardware and software components.
The hardware components include sensors, meters, circuits, and data acquisition
devices that enable direct power measurement and instrumentation. The soft-
ware components include drivers for various meters and sensors, and user-level
APIs (application programming interfaces) for controlling power profiling and
code synchronization. Together, these hardware and software components enable
two unique features: (i) fine-grained component-level power measurement and
(ii) automatic synchronization between power profiles and application code seg-
ments. At present, PowerPack is portable to any commodity-based cluster with a
standard power supply (e.g., ATX, BTX), and any number or types of processors,
disks, memory, and NICs (network interface cards). We are working on extending
PowerPack to high density blade systems and accelerated blade systems.
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Figure 2.2 PowerPack overview.

Figure 2.2 shows a typical PowerPack deployment for power profiling on a
high performance commodity-based cluster. PowerPack simultaneously measures
power consumption of the entire system and constituent components. To obtain
isolated component power, we tap a precision sensing resistor into each individual
DC power line (explained in detail later in this section) and then measure the
voltage difference at two ends of the resistor using a digital meter. All system DC
power lines are measured simultaneously and used to derive component power
according to a derived mapping between lines and components. To obtain total
system power including AC/DC conversion, AC power is measured via an inline
sensor device between the system power cable and the wall outlet. PowerPack
supports various types of power sensors (or meters): (i) National Instruments
data acquisition system such as Analog Input Module NI 9205NI and cDAQ
chassis NI cDAQ9172 for DC power measurement; (ii) Watt’s Up Pro power
meter for AC power measurement; and (iii) ACPI-enabled power supply. The
combination of DC and AC measurements allows us to capture and isolate total
power usage, including inefficiencies in AC to DC conversion. This redundant
set of measurements allows us to verify the accuracy of each technique.

The software contained in PowerPack serves two purposes: online data record-
ing and postmortem data analysis. The online data recording components record
meter readings and synchronize power profiling with code segments. PowerPack
supports two types of synchronization methods. The first type uses client-server
structures to synchronize power profiling with code segments, that is, the data
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collection servers poll the meters and record data; then the client API triggers the
server to record data. The second type uses a timestamp-based approach to syn-
chronize multiple data streams from various meters, sensors, and performance
instruments. We note that the gathering of power profiling data is purposely
“out-of-band,” meaning the data is collected, collated, and analyzed on a sepa-
rate computer (Fig. 2.1). Such measurement ensures that power profiling does
not impact the system under test. Postmortem data analysis software processes
the data and creates the power profiles of applications, systems, and components.

PowerPack directly measures one node at a time. To obtain in-depth power
consumption of an entire cluster, we use a node remapping approach. Node
remapping works as follows. Suppose we are running a parallel application on
M nodes, we fix the measurement equipment to one physical node (e.g., node 1)
and repeatedly run the same workload M times. Each time we map the tested
physical node to a different virtual node. Since all slave nodes are identical (as
they should be and we experimentally confirmed), we use the M independent
measurements on one node to emulate one measurement on M nodes. For fine-
grain analysis of a heterogeneous environment, we can instrument one version
of each type of node for coverage.

2.4.1.2 Fine-grain systematic power measurement. PowerPack uses
direct or derived measurements to isolate components within nodal power
profiles. Specifically, we isolate CPU, memory, disk, motherboard, CPU fans,
and system fans. Using combined AC and DC measurements, we can also
isolate the power supply. The remaining components are treated as “others,”
which includes onboard video card, keyboard, onboard network adapter, etc.
Our measurement approach is as follows: if a component is powered through
individual pins, we measure power consumption through every pin and use
the sum as the component power; if two or more components are powered
through shared pins, we observe the changes on all pins while adding/removing
components and running different micro-benchmarks to infer the mapping
between components and pins.

In the following discussion, we use a 9-node cluster as the exemplar platform
to detail the fine-grain power measurement for each component. Each node of
the cluster is equipped with two dual-core AMD Opteron processors running at
1.8 GHz, six 1-GB SDRAM modules, one Western Digital WD800 SATA hard
drive, one Tyan Thunder S2882 motherboard, two CPU fans, and two system
fans. The dual-core dual-processor system was selected to further demonstrate
the effectiveness of PowerPack for profiling dominant multicore architecture in
HPC [28]. Unless explicitly stated, the measurement results in the succeeding
sections are obtained at this system.

CPU Power . According to our experiments confirmed by the ATX power
supply design guide, the four cores are powered through four +12 VDC pins.
Thus, we can profile CPU power consumption by measuring all +12 VDC pins
directly.

Disk Power . The disk is connected to a peripheral power connection indepen-
dently and powered by one +12 VDC pin and one +5 VDC pin. By directly
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measuring both +12 VDC and +5 VDC pins, we can profile disk power con-
sumption directly.

Memory Power . Memory modules are powered through four +5 VDC pins.
The power consumption for memory is directly measured from these four pins. In
previous work, we relied on a linear extrapolation technique to deduce memory
power consumption. For systems where memory is not powered through ded-
icated pins, we recommend using our previous linear extrapolation techniques
[25] to isolate memory power consumption.

Motherboard Power . NIC and other onboard components are powered through
+3.3 VDA pins. It is challenging to separate NIC power consumption from
other onboard components directly. However, our measurements indicate that the
onboard NIC only consumes a minimal amount of power under maximum load.
We have verified this by monitoring the total system power consumption changes
under saturated network card bandwidth, and by consulting the documentation
of the NIC. Thus, based on our empirical measurements, NIC power can be
approximated with a constant value. For simplicity, the power consumption of
other onboard components can be treated as constant too. This simplification can
be further justified by the fact that compute nodes typically do not access onboard
components such as the video card. In addition, dynamic power usage from the
memory and processors far exceeds NIC and motherboard power consumption.
At present, PowerPack isolates the energy use for CPU, memory, NIC, and disk.
Profiling and analysis of other components, including PCI devices is left to future
work.

CPU and System Fans . Integrating multiple cores into a single computing
node demands more powerful cooling. In the system under test, there are two
CPU fans, with one for each processor, and two system fans on each node of our
dual-core dual-processor cluster. Each fan is powered by a +12 VDC pin and a
+5 VDC pin.

2.4.1.3 Automatic power profiling and code synchronization. Once the
manual instrumentation setup is complete, the process of obtaining and con-
trolling power profiling is fully automated by software. In fact, the PowerPack
software includes all the micro-benchmarks necessary to isolate power lines in
the instrumented node. Additionally, all the experimental data gathered herein
are obtained remotely via local intranet. In this section, we describe the software
components of PowerPack that automate the entire profiling process and correlate
the power profiles with application source code. PowerPack provides a suite of
API calls for the application to control and communicate with a meter control
process.

The structure of the profiling software is shown in Figure 2.3, in which the
data collection computer executes a meter control thread and a group of meters
read threads where each meter read thread corresponds to one digital meter. The
meter read threads collect readings from the meters and send them to the meter
control thread. The meter control thread monitors messages from applications
running on the cluster and modifies shared variables of the meter read threads
according to the messages received.
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Figure 2.3 Software architecture for automatic power and energy profiling. Our software
automates the process of profiling power data and correlating the results to source code in
a distributed system. Through modular design, the system software is portable to different
systems, meters, etc.

To synchronize the live power profiling process with the running application,
profiled applications trigger message operations through a set of user-level APIs
or library calls informing the meter control thread to take corresponding actions
to annotate the power profile. Thus, by inserting the power profile API pmeter_
start_session and pmeter_end_session before and after the code region of interest,
we are able to map the power profile to the source code. In Figure 2.4, we list a
commonly used subset of the power profile API in PowerPack.

//connect to meter control thread
pmeter_init ( char *ip_address, int *port);

//set power profile log file and options
pmeter_log (char *log_file, int *option );

//start a new profile session and label it
pmeter_start_session ( char *session_label );

//stop current profile session
pmeter_end_seesion ( );

//disconnect from the meter control thread
pmeter_finalize( );

Figure 2.4 The commonly used PowerPack power meter profile API.
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PowerPack also supports commercial data acquisition software such as the
NI LabView system that only has GUI (graphic user interface) and is trig-
gered by human input. Instead of implementing drivers for this meter, we record
time-stamped data samples coming from the NI cDAQ9172 chassis with user
configured LabView modules, then align and merge these samples with other
data sources using time information.

2.4.2 Power Profiles of HPC Applications and Systems

2.4.2.1 Power distribution over components. We begin our analysis with
system-wide power distribution for sequential applications on a single compute
node. Figure 2.5 shows the snapshots of power distribution under two kinds
of scenarios—case 1: no user application is running on the system; and case
2: the system is running one of the three applications from the SPEC CPU
2000 benchmark suite cite (164.gzip and 171.swim) and the Linux standard file
copy command (cp) programs. These three benchmarks are computation inten-
sive (164.gzip), memory access intensive (171.swim), and disk access intensive
(cp), respectively. Compared against idle system, their power profiles reveal how
components’ power changes when one computing component is stressed. For
case 2, the system is running four instances of the same program such that each
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Figure 2.5 Power distribution for a single node under different workloads: (a) zero user
workload or idle; (b) CPU bounded workload 164.zip; (c) memory-bounded workload
171.swim; and (d) disk bounded workload cp.
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of the four cores simultaneously executes one copy of the application and the
load is symmetric. We obtain the following observations from Figure 2.5:

1. Since different workloads stress different components, both system power
and individual component power vary with workload. Component usage is
also reflected in the power profile.

2. The system power under zero user workload (152.2 W) is more than 72.9%
of the total system power under load. Reducing power consumption of the
power supply and fans could save significant energy. We note that cheap,
inefficient power supplies are typical in clusters that use commodity parts.
Power supplies traditionally account for less than 2% of the acquisition
budget of a server node. Improving power supply and fan efficiencies is
important but well beyond the scope of our work.

3. When the system is under load, CPU power dominates (e.g., for 164.gzip,
CPU power is 56% of system power). However, depending on the workload
characteristics, disk and memory may also be significant consumers of the
total power budget. The components that dominate the power budget in a
system should be the first targets of optimizations for power and energy
reduction.

2.4.2.2 Power dynamics of applications. As a case study and proof of con-
cept, we profile the power and energy consumption of the NAS FT benchmark
on our cluster using the PowerPack framework. We measured CPU, memory,
disk, CPU fan, and motherboard power consumption over time for different
benchmarks running on different numbers of compute nodes. The FT benchmark
exhibits obvious alternating computation phase, memory phase, and communica-
tion phase. Therefore, its power profile reveals how components’ power change
with execution phases for a single application. In particular, the FT benchmark
begins with a warm up phase and an initialization phase followed by a certain
number of iterations. Each iteration consists of computation (fft), memory access
(matrix transpose), all-to-all communication, memory access, computation, and
a reduced communication. In Figure 2.6, we plot the power profiles of the NPB
FT benchmark with problem size B during 1 iteration when running on 16 cores
of 4 nodes. The illustrated power profiles of a parallel application are for one of
the computing nodes unless explicitly stated otherwise.

The CPU power consumption varies from 119 W in the computation function
(cffts-1) to 72 W in all-to-all communication intensive function (mpi_all-to-all).
The memory power consumption varies from 28 W in the memory-intensive
function (transpose_local) to 18 W in communication functions. The power pro-
files of CPU and memory are interrelated: when memory power increases, CPU
power typically decreases and vice versa. We also observe fairly constant power
consumption for the disk since the FT benchmark requires few disk accesses. The
power consumed by the motherboard (NIC + other chipset components) and fans
(CPU and system fans) is constant. For simplification, we will not discuss the
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Figure 2.6 The synchronization of power profiles with code segments for FT benchmark
with Class B, 16 processes on 4 nodes. The synchronization allows us to perform detailed
power-efficiency analysis on selected code segments and identify application segments
and components for power-performance optimization.

disk, motherboard, and fans power consumption in succeeding discussions since
none of the benchmarks under study task the disk extensively, and we observe
motherboard and fan power consumption varies little across applications.

The fine-grain power profiles are useful for identifying application segments
and corresponding components for power reduction. For example, the CPU still
consumes almost 41% of its peak power during sending and receiving communi-
cations. This is likely due to spin locks running on the processor while blocked
waiting for a data transmission.

2.4.2.3 Power bounds on HPC systems. The HPC Challenge (HPCC)
benchmark [6] is a benchmark suite that aims to evaluate the performance of HPC
architectures from multiple aspects and to explore the performance boundaries
of current systems. HPCC organizes the benchmarks into four categories; each
category represents a type of memory access pattern characterized by the bench-
mark’s memory access spatial and temporal locality. Currently, HPCC consists of
seven benchmarks: HPL, STREAM, RandomAccess, PTRANS, FFTE, DGEMM,
and b_eff Latency/Bandwidth. In this work, we use PowerPack to explore
the critical power aspects of a system corresponding to HPCC performance
bounds.

A single HPCC run tests eight benchmark tests in a sequence as follows:
(i) Global PTRANS, (ii) Global HPL, (iii) Star DGEMM + Local DGEMM,
(iv) Star STREAM, (v) Global MPI RandomAccess, (vi) Star RandomAccess,
(vii) Local RandomAccess, and (viii) Global MPI FFT, Star FFT, Local FFT,
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and Latency/Bandwidth. Figure 2.7 shows one power profile of the HPCC bench-
marks with a problem size where HPL achieves its maximum performance on two
nodes. Power consumption is tracked for major computing components includ-
ing CPU, memory, disk, and motherboard. The power profile is unique of each
application. These four components capture nearly all the dynamic power usage
of the system that is dependent on the application. From the data, we observe
the following:

1. Each test in the benchmark suite stresses processor and memory power
relative to their use. For example, as Global HPL and Star DGEMM have
high temporal and spatial locality, they spend little time waiting on data
and stress the processor’s floating-point execution units intensively and
consume more processor power than other tests. In contrast, Global MPI
RandomAccess has low temporal and spatial memory access locality, thus
this test consumes less processor power because of more memory access
delay, and more memory power because of cache misses.

2. Changes in processor and memory power profiles correspond to communi-
cation to computation ratios. Power variation patterns are similar for global
tests such as PTRAN, HPL, and MPI_FFT because of similarities in their
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Figure 2.7 A snapshot of the HPCC power profile when running a full HPCC benchmark
suite using eight cores. The single run of HPCC consists of seven micro-benchmark tests
in order as follows: (1) PTRANS, (2) HPL, (3) Star DGEMM + single DGEMM, (4) Star
STREAM, (5) MPI_RandomAccess, (6) Star_RandomAccess, (7) Single_RandomAccess,
and (8) MPI_FFT, Star_FFT, single FFT, and latency/bandwidth.
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computation and communication phases. For example, HPL computation
phases run 50 W higher than its communication phases. Processor power
does not vary as much during STAR (embarrassingly parallel) and LOCAL
(sequential) tests because of limited processing variability in the code run-
ning on each core. In GLOBAL modes, memory power varies but total
power doesn’t change much since memory power is substantially less than
processor power on the system under test.

3. Disk power and motherboard power are relatively stable over all tests in the
benchmarks. None of the HPCC benchmarks stresses local disks heavily.
Thus, power variations due to disk accesses are not substantial. On this
system, the NIC, and thus its power consumption, is integrated in the
motherboard. Nonetheless, communication using the gigabit Ethernet card
does not result in significant power use under even the most intensive
communication phases.

4. Processors consume more power during GLOBAL and STAR tests since
they use all processor cores in the computation. LOCAL tests use only one
core per node and thus consume less energy.

2.4.2.4 Power versus dynamic voltage and frequency scaling.
At present, many distributed systems have various power modes available
to conserve energy. For example, typical AMD Opteron and Intel Xeon
processors can scale power through changing a frequency and voltage pair;
this technique is referred as dynamic voltage and frequency scaling (DVFS).
The power consumption on such processors typically changes significantly with
frequency [22].

DVFS has been used for power reduction and energy conservation in high
performance distributed systems [7, 15, 16, 18, 19, 23] by scaling down
processor frequency during processor slackness, or when slower processor
speed does not impact performance significantly. Our intention in this work is
to demonstrate the insight that PowerPack provides to quantitatively explain
the power-performance efficiency and energy conservation of applications using
DVFS. The AMD Opteron processors on our experimental cluster have two
publicly available (i.e., exposed) frequencies 1000 and 1800 MHz.

Figure 2.8 shows the profiles of FT with two different processor frequencies.
The impact of voltage and frequency scaling varies with computation, memory,
and communication phases. When scaling down processor frequency from 1800
to 1000 MHz, the CPU power drops about 40 W from 124 W to 84 W during
computation phases, and drops about 22 W from around 82 W to 60 W during
communication phases. Although not shown, processor power consumption with
a fixed frequency is larger during communications than during idle time (no user
applications running), indicating there are some computations involved during
communications. CPU frequency scaling also impacts the memory access pattern
and memory power consumption for FT; the memory power profile of FT fluctu-
ates more at 1000 MHz than at 1800 MHz. Meanwhile, scaling down processor
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Figure 2.8 Power profiles at 1800 and 1000 MHz when the system is executing FT.
When CPU frequency decreases from 1800 MHz to 1000 Hz, CPU power consumption
decreases from about 110 W to about 69 W, and power consumption of other components
is unchanged.

frequency slightly increases the execution time of FT because of a large portion
of communication, which execution time nearly changes with frequency. Despite
the overall execution time increases, scaling down CPU frequency conserves
energy for FT.

The power profiles under various voltages and frequencies indicate that adapt-
ing the CPU frequency to meet the different computation needs during various
execution phases for an application such as FT would achieve the best combina-
tion of energy and performance. Specifically, if we scale up CPU frequency to its
maximum during computation and scale down CPU frequency during memory
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and communication, we can potentially save energy with negligible impact on
execution time. Figure 2.9 shows the resulting power profiling of an intelligent
scheduling following this idea. In this scheduling, the CPU frequency is set to
1800 MHz during computation- and memory-intensive phases, and 1200 MHz
during communication phases. As we can see, the power consumption during
communications with intelligent scheduling is about 30 W lower than that with
fixed 1800 MHz, and the execution times are similar. Overall, this scheduling
achieves 12.1% energy savings with 1.2% performance impact.

2.5 POWER-AWARE SPEEDUP MODEL

In this section, we introduce an analytical model to formalize the interacting per-
formance effects of parallel computing and frequency scaling on power-aware
parallel systems. We will also demonstrate the model usage in predicting appli-
cation performance and scalability and guiding the design of adaptive processor
power allocation for energy efficiency.

2.5.1 Power-Aware Speedup

We propose power-aware speedup and denote it as

SN(w, f ) = T1(w, f0)

TN(w, f )
, (2.6)
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Figure 2.9 Profiles of FT when intelligent DVFS scheduling is employed. Compared to
the profiles when CPU is fixed at 1800 MHz, the power consumption during communica-
tion drops about 30 W with minimal increase in execution time.
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where
S, the speedup gained from scaling of processor count N and

frequency f for an application execution on power-aware parallel
systems;

w, the workload or total amount of work (in instructions or
computations);

f, the clock frequency in clock cycles per second, and f0 is the base
frequency;

T1(w, f ), the sequential execution time or the amount of time to complete
workload w on 1 processor with frequency f ; and

TN(w, f ), the parallel execution time or the amount of time to complete
workload w on N processors with frequency f .

Power-aware speedup is the ratio of sequential execution time for a workload
w and base frequency f0 on 1 processor to the parallel execution time for the
workload and frequency f on N processors.

Given this definition, next we detail the additional equations necessary to
quantify the execution times of Equation 2.6. We will use the terms defined by
Equation 2.6 and introduce definitions as needed to understand each derivation
step and then use the defined terms to express equations that build on one another.
By the end, the equations will be quite large, but our hope is that the fundamental
concepts remain straightforward.

2.5.1.1 Sequential execution time for a single workload T1(w, f).
CPI: the average number of clock cycles per workload .

Using this definition and others from Equation 2.6, we define sequential exe-
cution time as

T1(w, f ) = w
CPI

f
. (2.7)

This is a variant of the CPU performance equation [22]. The time to execute
a program on 1 processor is the product of the workload w and the rate at which
workloads execute CPI/f or seconds per workload. For now, we assume that f
is a fixed value, noting that T1(w, f ) depends on the processor frequency.

2.5.1.2 Sequential execution time for an ON-chip/OFF-chip workload.
T1(w

ON, f ON), T1(w
OFF, f OFF)

wON, ON-chip workload , or all workloads that do not require data
residing OFF-chip at the time of execution,

wOFF, OFF-chip workload , or all workloads that require OFF-chip
data accesses at the time of execution,
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f ON, ON-chip clock frequency in clock cycles per second.
Affected by processor DVFS,

f OFF, OFF-chip clock frequency in clock cycles per second. Not
affected by processor DVFS, and

CPION, CPIOFF, the average number of clock cycles per ON-chip (CPION) or
OFF-chip (CPIOFF) workload.

Other work [60, 68] has shown that a given workload w can be divided into
ON-chip wON workload and OFF-chip wOFF workload. Under these constraints,
the total amount of work (in instructions or computations) is given as w = wON +
wOFF. We can modify our simple representation of sequential execution time3 as

T1(w, f ) = T1(w
ON, f ON) + T1(w

OFF, f OFF) = wON CPION

f ON
+ wOFF CPIOFF

f OFF
.

(2.8)

Assuming that ON-chip and OFF-chip frequencies are equal (f ON = f OFF)
and CPI = (CPION+CPIOFF)

2 , this equation reduces to Equation 2.7. We observe that
generally for ON-chip and OFF-chip workloads f ON �= f OFF, meaning CPU and
memory bus frequencies differ, and CPIOFF �= CPIOFF, meaning the workload
throughput is different for ON- and OFF-chip workloads.

2.5.1.3 Parallel execution time on N processors for an ON-/OFF-chip
workload with DOP = i. TN(wi

ON), TN(wi
OFF)

where
i , the degree of parallelism or DOP defined as the maximum

number of processors that can be busy computing a workload for
an observation period given an unbounded number of processors;

m , the maximum DOP for a given workload;
wi, the amount of work (in instructions or computations) with

DOP = i;
wi

ON, the number of ON-chip workloads with DOP = i;
wi

OFF, the number of OFF-chip workloads with DOP = i;
N , the number of homogeneous processors available for computing

the workloads;
wPO, the parallel overhead workload due to extra work for

communication, synchronization, etc.;
T (wPO, f ) : the execution time for parallel overhead wPO for frequency f ;

3This does not account for out-of-order execution and overlap between memory access and compu-
tation, simplifying the discussion for now.
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TN(w, f ): the parallel execution time or the amount of time to complete
workload w on N processors for frequency f .

The total amount of work (in instructions or computations) is given as w =∑
1≤i≤m(wi

ON + wOFF
i ), where1 ≤ i ≤ m. Thus,

TN(wi, f ) = TN(wON
i , f ON) + TN(wOFF

i , f OFF)

= wON
i

i
· CPION

f ON
+ wOFF

i

i
· CPIOFF

f OFF
, (2.9)

where (m ≤ N).4 Next, we include the additional execution time T (wPO, f ) for
parallel overhead. We assume parallel overhead workload cannot be parallelized,
but that it is divisible into ON-chip (wPO

ON) and OFF-chip (wOFF
PO ) workloads.

Thus,

TN(w, f ) =
m∑

i=1

(
TN(wON

i , f ON) + TN(wOFF
i , f OFF)

)
+ T (wPO, f ) (2.10)

and

TN(w, f ) =
m∑

i=1

(
wON

i

i
· CPION

f ON
+ wOFF

i

i
· CPIOFF

f OFF

)

+
(

TN(wON
PO , f ON) + TN(wOFF

PO , f OFF)

)
. (2.11)

2.5.1.4 Power-aware speedup for DOP and ON-/OFF-chip workloads.
SN(w, f ).

f ON
0 : the lowest available ON-chip frequency.

SN(w, f ): the ratio of sequential execution time T1(w, f0) to parallel
execution time TN(w, f ).

On power-aware parallel systems, ON-chip frequency f ON may change
because of DVFS scheduling of the processor. As a consequence, power-aware
speedup has two key variables: ON-chip clock frequency (f ON) and the number
of available processors (N ) computing workload w . Speedup is computed
relative to the sequential execution time to complete workload w on 1 processor

4Strictly speaking, this limitation is not required. For M > N , we can add an �i/N� term to Equation
2.9 and succeeding equations to limit achievable speedup to the number of available processors, N .
We omit this term to simplify the discussion and resulting formulae.
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at the lowest available ON-chip frequency, f ON
0 . Power-aware speedup is

defined using Equations 2.8 and 2.11 as

SN(w, f ) = T1(w, f0)

TN(w, f )
=

[
wON CPION

f ON
0

+ wOFF CPIOFF

f OFF

]/
[

m∑
i=1

(
wON

i

i
· CPION

f ON
+ wOFF

i

i
· CPIOFF

f OFF

)

+ (TN(wON
PO , f ON) + TN(wOFF

PO , f OFF))

]
. (2.12)

Equation 2.12 illustrates how to calculate power-aware speedup. For a more
intuitive description, assume the workload is broken into a serial portion w1 and
a perfect parallelizable portion wN such that w = w1 + wN , N = m, and wi = 0
for i �= 1, i �= m. Then, allowing for flexibility in our execution time notation,
we can express the power-aware speedup under these conditions as

SN(w, f ) =
[
T1(w

ON, f ON
0 ) + T1(w

OFF, f OFF)

]/
[[

TN(wON
1 , f ON) + TN(wOFF

1 , f OFF)
] + [

TN(wON
N , f ON) + TN(wOFF

N , f OFF)
]

+ [
TN(wON

PO , f ON) + TN(wOFF
PO , f OFF)

]]
.

(2.13)

Here, T1(w
ON, f ON

0 ) + T1(w
OFF, f OFF) is the base line sequential execution

time when neither of parallel computing and frequency scaling is applied.
TN(wON

1 , f ON) is the sequential portion of the workload affected by CPU
frequency scaling but not affected by parallelism. TN(wOFF

1 , f OFF) is the
sequential portion of the workload not affected by CPU frequency scaling or
parallelism. TN(wON

N , f ON) is the parallelizable portion of the workload, also
affected by CPU frequency. TN(wOFF

N , f OFF) is the parallelizable portion of
the workload not affected by CPU frequency. TN(wON

PO , f ON) is the parallel
overhead affected by CPU frequency. TN(wOFF

PO , f OFF) is the parallel overhead
not affected by CPU frequency.

2.5.2 Model Parametrization and Validation

In the previous section, we have focussed on analytical modeling of simulta-
neous speedup of parallelism and frequency scaling. In this section, we present
methodologies to derive model parameters and apply the model to real appli-
cations on power-scalable clusters to examine its correctness and accuracy. We
first present a coarse-grain parametrization method that estimates simultaneous
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speedup of frequency scaling and parallelism using their individual speedups, and
then present a fine-grain parametrization that estimates speedup using detailed
application and system profiles.

2.5.2.1 Coarse-grain parametrization and validation.
Parametrization. The idea of this coarse-grain parametrization is using speedups
from each individual enhancement for an application to estimate their interactions
and the overall speedup. Specifically, we first obtain the speedups solely from
frequency scaling while processor count is fixed at 1. Second, we obtain the
speedups solely from parallel computing while the processor frequency is fixed
at base frequency, and further use this information to derive parallel overhead.
Third, we estimate the effects of frequency scaling on parallel overhead. Finally,
we use the obtained information to estimate the performances and speedups if
both enhancements are applied. For this parametrization method, we make two
assumptions.

Assumption 2.1 A majority of the workload can be completely parallelized,
such that w = ∑m

i=1 wi = wN , where N = m and wi = 0 for i �= m. Under this
assumption,5 sequential execution time T1(w, f ) in Equation 2.8 is simplified as

T1(w, f ) = [
T1(w

ON
N , f ON) + T1(w

OFF
N , f OFF)

]
= wON

N · CPION

f ON
+ wOFF

N · CPIOFF

f OFF
. (2.14)

Parallel execution time TN(w, f ) in Equation 2.11 is simplified as

TN(w, f ) = [
TN(wON

N , f ON) + TN(wOFF
N , f OFF)

]
+ [

T (wON
PO , f ON) + T (wOFF

PO , f OFF)
]

= T1(w, f )

N
+ [

TN(wON
PO , f ON) + TN(wOFF

PO , f OFF)
]
. (2.15)

Assumption 2.2 Parallel overhead is not affected by ON-chip frequency [48],
that is, wON

PO = 0. Under Assumption 2, Equation 2.15 reduces to

TN(w, f ) = T1(w, f )

N
+ TN(wOFF

PO , f OFF). (2.16)

Equation 2.16 holds for all the available processor frequencies. Our coarse-
grain parametrization method focuses on this equation and uses several steps to
derive its parameters for performance prediction.

5Most speedup models are calculated only analytically. Thus, it is common to make the assumption
that w = w1 + wN . In practice, speedup analysis focuses solely on the parallelizable portion of the
code and w1 is considered negligible. We follow this common practice, though we are exploring
ways to measure w1 directly.



POWER-AWARE SPEEDUP MODEL 65

Step 1. Measure the sequential execution time at base frequency T1(w, f0) and
parallel execution time at ON-chip base frequency TN(w, f ON

0 ) for each available
processor count.

Step 2. Derive the parallel overhead time using the measured times from Step 1
and Equation 2.16 such that the parallel overhead T (wOFF

PO , f OFF) for a processor
count N is

T (wOFF
PO , f OFF) = TN(w, f ON

0 ) − T1(w, f ON
0 )

N
. (2.17)

Step 3. Measure the workload sequential execution time T1(w, f ) for each
available frequency f when processor count is fixed at 1.

Step 4. Use the derived parallel overhead in Step 2 and measured sequential
execution time from Step 3 to predict the parallel execution time TN(w, f ) for
any given combination of processor count N > 1 and frequency f > f ON

0 .

TN(w, f ) = T1(w, f )

N
+ TN(wOFF

PO , f OFF) = T1(w, f )

N

+
[
TN(w, f ON

0 ) − T1(w, f ON
0 )

N

]
. (2.18)

Validation. We apply the proposed power-aware speedup model and coarse-gain
parametrization method to predict the overall speedup for FT from simultaneous
scaling of processor count and frequency. The power-aware cluster is the same
one for evaluating extended Amdahl’s law. The cluster consists of 16 computer
nodes, where the processor on each node can be scheduled among five fre-
quencies from 600 to 1400 MHz with 200 MHz increment. Table 2.1 shows
that prediction errors for FT are less than 3% using our model, compared to as
large as 72% using extended Amdahl’s Law. With these results, our assumptions

TABLE 2.1 Performance Prediction Using Power-Aware Speedup Model and
Coarse-Grain Parametrization on a Power-Scalable Cluster

Frequency, MHz

N 600, % 800, % 1000, % 1200, % 1400, %

1 0 0 0 0 0
2 0 0.2 0.2 0.2 0.3
4 0 0 0.1 0.1 0.2
8 0 0.4 2.0 1.2 0.7
16 0 2.1 2.2 2.3 1.4

Each table entry is the prediction error of speedup from a combination of processor frequency
and processor count using coarse-grain parametrization against the measured speedup. A processor
frequency 600 MHz and processor count 1 are used as the basis for comparison. Their values show
no error since they are measured values exemplifying individual speedups from parallelism and
frequency scaling.
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appear reasonable. In fact, this is a very practical means of predicting application
performance and power-aware speedup. Nonetheless, there are drawbacks to this
approach. First, this technique requires several measurements of the sequential
T1(w, f ) and parallel TN(w, f ON

0 ) execution times. Second, this technique does
not quantitatively separate ON-chip and OFF-chip workloads. Thus, the effects
of frequency scaling are accounted for but inseparable from the execution time.
Third, the assumptions are the root cause of observable error: assuming that
perfect parallelizable workload overestimates the returns of parallel computing;
and assuming that frequency-independent parallel overhead underestimates the
returns of frequency scaling.

2.5.2.2 Fine-grain parametrization and validation.
Parametrization. The drawbacks in coarse-grain parametrization can be partly
resolved by a fine-grain parametrization method presented here. The key idea of
this fine-grain parametrization method is evaluating every and each single item on
the right-hand side of Equation 2.11 and using these items to estimate execution
time. The evaluation is conducted with the aid of application and system profiling
tools, including hardware counters [69], mpptest [70], and LMbenchmark [71].
While the coarse-grain parametrization method depends on several preruns of an
application to collect the execution times, this method requires only one prerun to
profile application. This method can be used to design and implement frequency
scheduler for energy conservation, as shown in Section 2.6.

This fine-grain parametrization technique consists of three steps: workload
profiling, unit workload execution time estimation, and overall execution time
estimation.

Step 1: Workload profiling (wON, wOFF)
The goal of this step is to obtain the distribution of the ON-/OFF-chip work-

loads for an application. Typically, ON-chip workloads consist of computations
with data residing in on-chip devices such as registers, L1 or L2 cache; OFF-chip
workloads consist of computations with data from off-chip devices such as main
memory or disk. These workloads can be profiled using hardware performance
counters, some special registers that accurately track low level operations and
events such as the number of executed instructions, and cache hits and cache
misses with minimum overhead. An API PAPI [69] is available to read the event
counts from hardware counters.

The limited number of counters requires us to select a few important low level
events to monitor. In this work, we focus on executed instructions and cache
accesses and use these events to estimate ON-/OFF-chip workloads. Specifically,
we count the following PAPI events: total instructions (PAPI_TOT_INS), L1
data cache accesses (PAPI_L1_DCA), L1 data cache misses (PAPI_L1_DCM),
L2 cache accesses (PAPI_L2_TCA), and L2 cache misses (PAPI_L2_TCM).
Table 2.2 shows the mapping of these events6 to ON-/OFF-chip workload for

6We use data cache access to approximate total cache access, as the latter is not available from
performance counter.
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TABLE 2.2 Workload Measurement and Decomposition

Workload Memory Level Derivation from PAPI events

ON-chip CPU/Register PAPI_TOT_INS-PAPI_L1_DCA
L1 Cache PAPI_L1_DCA-PAPI_L1_DCM
L2 Cache PAPI_L2_TCA-PAPI_L2_TCM

OFF-chip Main memory PAPI_L2_TCM

an application on a system with a on-chip L2 cache. The total on-chip work-
load is then estimated using the sum of instructions, L1 cache accesses, and L2
cache accesses, and the total off-chip workload is estimated using the number
of main memory accesses (or L2 cache misses). We assume that hardware event
counts are similar across different processors for the same workload and obtain
measurements on one of the processors.7

Step 2: Unit workload execution time CPION/f ON, CPIOFF/f OFF, and
TN(wPO, f )

Next, we measure the average event time CPIj /f where j = [1, 2, 3, 4] for
CPU/Register, L1 cache, L2 cache, main memory, respectively. Essentially, each
event time is determined by system characteristics such as memory and I/O
bandwidths and latencies. In our work, we use LMBENCH [71] benchmarks
to evaluate event time of access to L1 cache, L2 cache, and main memory with
each available frequency. Some of the event times such as cache access times are
inversely proportional to processor frequency, and some such as main memory
access time are independent of processor frequency. The weighted sum of register,
L1 cache, and L2 cache event times is the unit on-chip workload time, where
the weight of each event is the percentage of this event count toward the entire
on-chip event count. The measured average main memory event time is the
unit off-chip workload time. Parallel overhead TN(wPO, f ) is measured using
MPPTEST [70] toolset. We figure out the communication types and their message
sizes that are involved in the application, and then use MPPTEST to measure
the communication times. The total time to finish all the communication given a
frequency is then the parallel overhead under this frequency. Theoretically, the
time does not change with processor frequency and we observe this in our results.

Step 3. Overall execution time and speedup estimation
After we profiled workload and obtained system characteristics from Steps

1 and 2, we use them to estimate the execution time of an application using
Equations 2.8 and 2.11. We substitute the parameters into Equation 2.8 to predict
sequential execution time, T1(w, f ), and its variations with processor frequency.
This means we rely on Assumption 1 that the total workload is parallelizable. We
substitute the obtained parameters into Equation 2.11 to predict parallel execution
time for any given processor count and frequency.

7This technique is commonly used for regular SPMD codes. We observe the performance event counts
are within 2% from sequential execution to parallel execution. For non-SPMD codes, we could obtain
results from individual processors and perform similar (albeit more cumbersome) analyses.
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Validation. We have applied power-aware speedup model and this fine-grain
parametrization technique to FT on the same power-scalable cluster introduced
before and obtained error rates similar to those in Table 2.1. Here, we use
the lower–upper diagonal (LU) benchmark from the NAS Parallel Benchmark
suite as a case study. LU uses a symmetric, successive overrelaxation numerical
scheme to solve a regular-sparse, block lower, and upper triangular system. LU
is an iterative solver with a limited amount of parallelism and a memory foot-
print comparable to FFT. LU exhibits a regular communication pattern and fairly
intensive memory accesses.

Our workload profiling shows ON-chip workloads wON account for 98.8% and
OFF-chip workload or memory instructions account for 1.2% of application LU.
Despite of LU’s significant memory footprint, most data (97.4%) are hit on L1
cache. The distribution of ON-chip workload is 44.6% CPU/Register instructions,
53.8% L1 cache instructions, and 1.4% L2 cache instructions. Given this ON-chip
workload distribution, we can calculate the weighted average CPI/f for ON-chip
workloads, CPION/f = 0.446 · (CPI1/f ) + 0.538 · (CPI2/f ) + 0.014 · (CPI3/f ),
where f is any of the available frequencies.8 Similarly, the weighted average
CPI/f for OFF-chip workloads is CPIOFF/f = CPI4/f .

Table 2.3 presents the seconds per ON-/OFF-chip workload for each avail-
able processor frequency on the system. Our premise is that ON-chip workload
time is affected by frequency while OFF-chip workload time is not. The results
basically comply with this premise. The discrepancy on OFF-chip workload
execution time is due to a hardware-driven decrease in the bus speed f OFF

for lower CPU clock frequencies. This is system-specific behavior captured by
our parameter measurements. So, the effects are included in our predictions.
Nonetheless, we are investigating this further to determine if it is common across
platforms.

LU transmits 310 doubles per message when running on two nodes and
155 doubles per message when running on four nodes. Table 2.3 shows the

TABLE 2.3 Unit ON-/OFF-Chip Workload Time and Parallel Overhead Time in
Seconds

600 MHz 800 MHz 1000 MHz 1200 MHz 1400 MHz

CPION/f ON(10−9) 3.65 2.74 2.19 1.83 1.56
CPIOFF/f OFF(10−9) 140 140 110 110 110
Communication cost for 155

doubles (10−6)

25 25 25 25 25

Communication cost for 310
doubles (10−6)

200 167 167 167 167

8This assumes one floating-point double (FPD) computation per memory operation. For the actual
predictions, we adjust to account for instruction-level parallelism that enables about 2.42 FPD com-
putations per memory operation.
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communication times for each of these cases. The trend is similar as the num-
ber of nodes increases. Basically, processor frequency has no noticeable effects
on communication cost. The only exception is message size (310 doubles) on
the slowest frequency where communication cost is influenced by the processor
(f ON). We use the product of number of messages and communication time to
compute TN(wPO, f ).

Table 2.4 presents the prediction error using power-aware speedup model
and the fine-grain parametrization on LU and a comparison with coarse-grain
parametrization. We observe that errors using coarse-grain parametrization
increase steadily when processor count and frequency increase. Errors using
fine-grain parametrization increase with processor count but appear to be
leveling off with frequency scaling. Our assumptions explain these observations.
Assuming the workload is completely parallelizable in both techniques increases
the error rates. We are presently working to obtain better estimates of DOP to
help reduce these errors—though all speedup models suffer this problem. We
separate the ON- and OFF-chip workloads in fine-grain parametrization, which
leads to better accuracy. The trade-off is a more detailed application and system
profiling.

2.6 MODEL USAGES

This section demonstrates the practical usages of power-aware speedup model
in improving power-performance efficiency of parallel applications on power-
scalable systems. In this work, we choose E · D to evaluate power-performance
efficiency.

We will first show a model usage in identifying system configuration in pro-
cessor count and frequency for an application execution that delivers optimal
power-performance efficiency. Then we will show another usage in designing
runtime scheduler that adapts processor power/performance modes to save energy
while maintaining application performance. Fine-grain parametrization method is
used in both usages.

TABLE 2.4 Power-Aware Speedup Errors in percent for LU

Frequency, MHz

600 800 1000 1200 1400

N FP SP FP SP FP SP FP SP FP SP

1 5 0 7 0 3 0 4 0 1 0
2 6 0 6 2 5 4 6 3 8 6
4 2 0 6 3 8 4 10 7 7 7
8 3 0 1 4 8 8 11 10 7 13

FP uses fine-grain parameterizations to perform predictions. CP uses course-grain parameterizations
to perform predictions.
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2.6.1 Identification of Optimal System Configurations

This usage focuses on identifying system configuration, that is, a pair of processor
count and processor frequency, which will deliver the best power-performance
efficiency for an application ahead of its actual execution.

It takes three steps to identify the optimal system configurations for an given
application. First, use power-aware speedup model, application profile, and sys-
tem profile to predict application performance for any combination of processor
count and frequency on the system. Second, estimate system power consumption
for the same combinations of processor count and processor frequency in step
1. Third, calculate and evaluate energy-performance efficiencies in E · D and
identify the configuration with optimal efficiency.

Performance prediction is performed using methodology introduced in Section
2.5.2.2. We use system and application profiling tools to collect system and appli-
cation characteristics and derive model parameters. These parameters are then
plugged into Equation 2.11 to predict application performances at various system
configurations. Power estimation is conducted using the methodology presented
in Reference 59. We assume that there are two levels of power consumption
of a computer node: one is when the system is dedicated to computation and
the other is when the system is dedicated to communication. The former further
varies with CPU frequency, while the latter does not. Both do not change with
processor count for application execution.

Figure 2.10 shows the projected power-performance efficiencies in EDP
(Energy-Delay Product) values for LU benchmark class B if the cluster
introduced earlier can scale up to 1024 nodes. Executing LU on more processors
before reaching 128 leads to power-performance efficiency improvement.
However, further increasing processor count causes efficiency degradation.
This is explained by the fact that when processor count increases, performance
gain from parallel computing diminishes because of parallel overhead; while
energy consumption steadily increases. The effect of frequency scaling on
power-performance efficiency is dependent on processor count, as indicated
by our power-aware speedup model. Scaling up processor frequency leads to
efficiency improvement when processor count is small. Nevertheless, when
processor count is equal to or larger than 256, increasing frequency beyond a
certain point would degrade efficiency. Using power-performance efficiency
metric prevents us from giving unwarranted preference to configurations that
deliver relative faster execution but with much higher energy consumption. Our
power-aware speedup model recommends allocating 256 processors each running
at 1200 MHz to execute application LU class B for best power-performance
efficiency.

Further increasing either processor frequency or count incurs worse power-
performance efficiency. Although we do not show here, we would like to note
that our model can easily identify for users the maximum speedup achievable
on the system as well as system configurations that meet a user-specified energy
budget for an application.
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Figure 2.10 Power-performance efficiencies with EDP under various system configura-
tions. X axis is number of processors, Y axis is processor frequency, and Z axis is the
power-performance efficiency in EDP. Optimal System Configuration is 256 processors
with 1200 MHz CPU Frequency.

High performance computing systems normally use batch systems for job and
resource scheduling. In a batch system, each job uses a batch script file for users
to specify job information and request resources. One of the items in resource
request is processor count. It only requires a simple extension for a batch system
to incorporate optimal system configuration for power-performance efficiency on
a power-scalable system. That is, add an item processor frequency to the script
file. The processor count and frequency will be fixed throughout the application
execution. It is shown that such scheduling minimizes energy consumption [72]
for an application in which CPU utilization is uniform during its execution.

2.6.2 PAS-Directed Energy-Driven Runtime Frequency Scaling

Previous section presents an approach to improving efficiency by identifying
and allocating optimal system configuration for an application. This approach is
most energy efficient for applications where CPU utilization is consistent dur-
ing their executions [72]. Nevertheless, this approach may miss opportunities
of further energy saving for other applications where CPU utilization varies
dramatically over time. For example, application FFT repeatedly executes a
computation-intensive code segment followed by a communication code seg-
ment. For applications such as FFT, dynamically adapting processor frequency
to computation demand saves more energy without adversely degrading appli-
cation performance [73]. This section presents the design of such a dynamic
frequency scheduling using power-aware speedup model.

The challenges of the design lie in online identifying (i) phases when pro-
cessor is not fully utilized and (ii) the proper frequencies for these phases that
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TABLE 2.5 Power/Performance Modes Available on
Dual-Core Dual Processor Cluster

Frequency, MHz Voltage, V

1000 1.10
1800 1.15
2000 1.15
2200 1.20
2400 1.25
2600 1.30

maintain performance and save energy. To address these challenges, we discretize
an application execution to a series of time intervals, and for each interval use
our power-aware speedup model to predict performance and identify a minimum
frequency that meets the performance constraint. The performance constraint is
represented as a performance loss, such as 5%, compared to performance at
maximum frequency. Specifically, we first instrument and profile workload for
an interval using methodology presented in Section 2.5.2.2. We monitor on-
chip cache accesses and off-chip memory accesses, and derive communication
time during this interval. These information will tell whether the current inter-
val is appropriate to scale down frequency for power reduction. Second, we use
history-based prediction schemes to predict the workload at next interval [64].
The simplest prediction scheme is PAST, which uses the very recent history and
assumes that the workload at the next interval would remain the same. PAST
is able to provide good prediction for steady workloads but not for alternating
workloads. In this work, we adopt exponential moving average (EMA) that uses
all the workload in the history but gives more weight to the latest. Third, we sub-
stitute the predicted workload to Equation 2.11 to calculate the execution time at
each available frequency and identify the target frequency, which is the minimal
frequency that meets the performance constraint.

We use NPB FT benchmark as a case study and show the efficiency
improvement through model-oriented dynamic frequency scheduling. The
results are obtained from a dual-core dual-processor cluster. Each core has
six power/performance modes available, as shown in Table 2.5. One iteration
of this three-dimensional FFT implementation involves a collective all-to-all
communication where each process exchanges a large amount of data with
all the other processes. A realization of one-dimensional FFT and a local
transposition precedes this communication and a transposition close-up and two
other one-dimensional FFTs follow this communication. The iteration ends with
a collective all-reduce communication.

Figure 2.11 shows the workload profile captured on one process when FT is
running with 16 processes on 16 cores: (a) the retired instructions, (b) and (c) the
on-chip L1 and l2 cache accesses, and (d) the off-chip main memory accesses.
We observe that (i) there is an evident alternation between high plateau and low
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Figure 2.11 The workload characteristics of NPB FT benchmark on 1 core when exe-
cuting with 16 parallel processes on 16 cores. (a) shows the number of retired instructions
over the time, (b) and (c) show the on-chip cache accesses, and (d) shows the off-chip
main memory accesses.

plateau for all the events. The high plateau represents the computation memory
phase and the low plateau represents the communication phase; (ii) cache accesses
are intensive during computation phases; (iii) most of the data are hit in the L1
cache for FFT computation; and (iv) main memory access spikes during local
transposition.

Figure 2.12 is the resulting dynamic frequency settings by the model-oriented
scheduler. The settings meet our expectations: the frequency is scaled down dur-
ing communication phases and scaled up during computation phases. In addition,
the scheduler recognizes the memory-intensive phases (local transposition) and
scales down frequency according. Overall, this model-oriented scheduler achieves
14% energy savings with 3% performance degradation (5% allowable specified
by the user) and improves power-performance efficiency by 11%.

2.7 CONCLUSION

Improving power-performance efficiency is critical for future high-end com-
puting systems. Although innovative computer architectures and revolutionary
computing approaches may provide partial solutions to break efficiency barriers,
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Figure 2.12 The dynamic frequency scaling for FT directed by power-aware speedup
model. The time interval is 250 ms.

exploiting adaptive power allocation during application execution is needed to
bring the energy consumption to practical level.

This chapter presents theories, techniques, and toolkits for analyzing, con-
trolling, and improving the energy efficiency of high-end computing systems.
Specifically, our contributions and findings presented in this work include the
following:

1. Power and Energy Profiling for Distributed Scientific Applications . As a
measurement infrastructure for efficient high-end computing, we present a
software and hardware toolkit named PowerPack for profiling, evaluating,
and characterizing power and energy consumption of distributed parallel
systems and applications. PowerPack provides fast and accurate power-
performance evaluation of large-scale systems at component level and at
function granularity. Typical applications of PowerPack include but are
not limited to (i) quantifying the power, energy, and power-performance
efficiency of given distributed systems and applications; (ii) understand-
ing the interactions between power and performance at a fine granularity;
(iii) validating the effectiveness of candidate technology for efficiency
improvement. In our work, we apply PowerPack to several case studies and
obtain numerous insights on improving power-performance efficiencies of
distributed scientific computing.

2. Predictive Models of Performance Scaling on Power-Scalable Clusters .
Adaptive power allocation for energy-efficient computing requires accurate
prediction of the impacts of different system configurations on application
performance. We present a new power-aware speedup model that quan-
tifies the performance effects of parallelism, power/performance modes,
and their combinations. Coupled with metrics for efficiency evaluation,
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this new speedup model can predict system configurations that result in
power-performance efficiency.
We show that the model is practical for using on power-scalable par-
allel systems. The model-directed power management can automatically
and transparently improve energy efficiency for applications on large-scale
power-aware clusters.

We expect that other components such as memory, disk, networking, and
cooling systems will support power-aware features. In the future, we would like
to explore holistic performance and power management and exploit all avail-
able power-aware components to improve the system’s overall energy efficiency.
We will also study how to adapt our work to innovative architectures such as
heterogenous multicore and accelerator-based systems.
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CHAPTER 3

ENERGY EFFICIENCY IN HPC SYSTEMS

IVAN RODERO and MANISH PARASHAR

3.1 INTRODUCTION

Power consumption in high performance computing (HPC) platforms is becom-
ing a major concern for a number of reasons including cost, reliability, energy
conservation, and environmental impact. At present, high-end HPC systems con-
sume several megawatts of power, enough to power small towns, and are in
fact, soon approaching the limits of the power available to them. For example,
the Cray XT5 Jaugar supercomputer at Oak Ridge National Laboratory (ORNL)
with 182,000 processing cores consumes about 7 MW. The cost of power for this
and similar HPC systems runs into millions per year.

To further add to the concerns, because of power and cooling requirements
and associated costs, empirical data show that every 10◦C increase in temperature
results in a doubling of the system failure rate, which reduces the reliability of
these expensive system. As supercomputers, large-scale data centers are meant
to be clusters composed by hundreds of thousands or even millions processing
cores [1] with similar power consumption concerns.

Existing and ongoing research in power efficiency and power management has
addressed the problem at different levels, including data center design, resource
allocation, workload layer strategies, cooling techniques, etc. At the platform level
(individual node or server), current power management research broadly falls into
the following categories—processor and other subsystems (e.g., memory, disk,
etc.) level, operating system (OS) level, and application level.

Although the processor is the most power consuming component, other sub-
systems have incorporated energy management functionalities such as memory,
storage, and network interfaces (NICs). Within the OS, there are fewer power
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management techniques available and include OS control of processor C-states,
P-states, and device power states or sleep states.

At the application level, several approaches have also been proposed such as
those based on exploiting communication bottlenecks in MPI (Message Passing
Interface) programs.

In this chapter, we study the potential of proactive application-centric aggres-
sive power management of data center’s resources for HPC workloads. Specif-
ically, we consider power management mechanisms and controls (currently or
soon to be) available at different levels and for different subsystems, and lever-
age several innovative approaches that have been taken to tackle this problem in
the last few years, that can be effectively used in a cross-layer application-aware
manner for HPC workloads.

To do this, we first profile standard HPC benchmarks with respect to behaviors,
resource usage, and power dissipation. Specifically, we profile the HPC bench-
marks in terms of processor, memory, storage subsystem, and NIC usage. From
the profiles, we observe that across different workloads the utilization of these
subsystems varies significantly, and there are significant periods of time in which
one or more of these subsystems are idle but still require a large amount of power.

On the basis of the empirical power characterization and quantification of the
HPC benchmarks, we investigate using simulations the potential energy saving of
proactive, application-aware, power management strategies. We use traces from
different systems and focus on performance and energy consumption metrics.

The obtained results show that by using proactive, component-based power
management, we can reduce the average energy consumption. The results also
show that proactive configuration of subsystems works better with a higher num-
ber of nodes and with workloads composed of bursts of job requests with similar
requirements, which is common in scientific HPC workflows.

The main contributions of this work are summarized as follows:

(i) We argue that different existing techniques for energy management can be
combined to improve energy efficiency of data center’s servers by configur-
ing them dynamically depending on the workloads’ resource requirements,

(ii) We profile HPC benchmarks with respect to behaviors, resource usage, and
power impact on individual computing nodes and determine empirically
(rather than with estimations) possible ways to save energy,

(iii) We propose different algorithms for proactive, component-based power
management, attempting to improve energy efficiency with little or no per-
formance loss, and

(iv) We quantify possible energy savings of the proposed power management
strategies at both server and datacenter levels.

The rest of this chapter is organized as follows:

• Discussion of background and related work (Section 3.2),
• Description of proactive, component-based power management (Section 3.3),
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• Quantification of possible power savings through component-based power
management (Section 3.4),

• Experimental evaluation and discussion of obtained results (Section 3.5),
• Concluding remarks (Section 3.7).

3.2 BACKGROUND AND RELATED WORK

HPC is the application of parallel processing for running advanced application
programs (that are either too large for standard computers or would take too long)
efficiently, reliably, and quickly. A HPC system is essentially a network of nodes,
each of which contains one or more processing units, as well as its own memory.
These systems are ranked by the Top 500 list1 that lists the fastest supercomputers
worldwide based on the highest score measured using the Linpack benchmark
suite in terms of TFlops (trillions of floating point operations per second).

As demand for processing power and speed grows, issues related to power
consumption, air conditioning, and cooling infrastructures are critical concerns
in terms of operating costs. Furthermore, power and cooling rates are increas-
ing eight-fold every year [2] and are becoming a dominant part of IT budgets.
Addressing these issues is thus an important and immediate task for HPC systems.

While Top 500 focuses on performance, the Green500 list2 provides rankings
of the most energy-efficient supercomputers in the world based on the “Flops-
per-Watt” metric [3].

In the following, we review the most significant power management tech-
niques using different approaches, among the vast literature in the area of power
management and energy efficiency for HPC.

3.2.1 CPU Power Management

In their recent work, Liu and Zhu [4] survey power management approaches
for HPC systems. As they discuss, since processors dominate the system power
consumption in HPC systems, processor level power management is the most
addressed aspect at server level. The most commonly used technique for CPU
power management is dynamic voltage and frequency scaling (DVFS), which is
a technique to reduce power dissipation by lowering processor clock speed and
supply voltage [5, 6].

3.2.1.1 OS-level CPU power management. OS-level CPU power manage-
ment involves controlling the sleep states or the C-states [7] and the P-states of the
processor when the processor is idle [8]. C-state is the capability of the processor
to be in various low power idle states with varying wake-up latency. P-state is the
capability of running the processor at different voltage and frequency levels [9].

1Top 500 Supercomputers site: http://www.top500.org/.
2Top 500 Most Energy-Efficient Supercomputer Site. http://www.green500.org.
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The advanced configuration and power interface (ACPI) specification provides
the policies and mechanisms to control the C-states and P-states of the proces-
sor when they are idle. Modern OSs (e.g., Linux kernel) implement ACPI-based
policies to reduce the processor performance and power when it is less active or
in idle state [10].

3.2.1.2 Workload-level CPU power management. Several approaches to
enforce power management based on the workload characteristics have already
been developed. Some of the most successful approaches were based on over-
lapping computation with communication in MPI programs and using historical
data and heuristics.

Kappiah et al. [11] developed a system called Jitter that exploits internode bot-
tleneck in MPI programs (i.e., executed blocked processes due to synchronization
points in lower P-sates). Lim et al. [12] developed an MPI runtime system that
dynamically reduces CPU performance during communication regions assuming
that in these regions the processor is not on the critical path.

Other approaches have also studied the bound on the energy saving for an
application without incurring in significant delay [13].

Freeh et al. proposed a model to predict execution time and energy con-
sumed of an application running at lower P-states [14] and techniques based on
phase characterization of the applications, assigning different P-states to phases
according the previous measurements and heuristics [15].

Cameron et al. [16] proposed power management strategies based on applica-
tion profiles, but they concentrate only on power management of the CPU using
DVFS and does not implement any power control of the peripheral devices.

Researchers have developed different scheduling algorithms and mechanisms
to save energy to provide resources under deadline restrictions. Chen et al. [17]
address resource provisioning proposing power management strategies with SLA
constraints based on steady state queuing analysis and feedback control theory.
They use server turn on/off and DVFS for enhancing power savings.

3.2.1.3 Cluster-level CPU power management. Ranganathan et al. [18]
designed cluster-level power management controller and employed a manage-
ment agent running on each server and the server that exceeded the power
budget according to the SLA (Service Level Agreement) was throttled down
to an appropriate level.

Horvath and Skadron [19] exploited DVFS for use with dynamic reconfigura-
tion for multitier server clusters, which is a typical architecture of current server
clusters.

Wang and Chen [20] proposed a control algorithm to manage power consump-
tion of multiple servers simultaneously. The controller monitors the power value
and CPU utilization of each server, computes a new CPU frequency for each
processor, and directs each processor to change frequency in a coordinated way.

Leveraging DVFS mechanism, Hsu and Feng [6] propose automatically adapt-
ing, power-aware algorithm that is transparent to end-user applications and deliver
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considerable energy savings with tight control over DVFS-induced performance
slowdown.

Rountree et al. [21] developed a system called Adagio to collect statistical
data on task execution slacks, compute the desired frequency, and represent the
result in a hash table. When task is executed again, an appropriate frequency can
be found in the hash table.

Raghavendra et al. [22] propose a framework that coordinates and unifies five
individual power management solutions (consisting of HW/SW mechanisms).
Their work leverages feedback mechanisms to federate multiple power man-
agement solutions and builds an approach to unify solutions with minimum
interference across controllers. Moreover, their coordination solution gives higher
power savings than individual methods.

3.2.2 Component-Based Power Management

Although the CPU is the component that requires most power of the server, the
relative power demand by other components is increasing very quickly, specially
for multi- and many-core architectures, where different cores and an important
amount of memory are included in the same chip die.

Figure 3.1 illustrates a possible decomposition of the power requirements of
a server by components for a state of the art multicore server. We can appreciate
that the aggregation of power requirements of memory, disk, and network are
comparable to the power dissipated by the CPU. However, the power required
by each component depend on the workload characteristics [23]. Other compo-
nents include the motherboard, chipset, fans, power supplies, etc., but we do not
consider them in our approach.

In the following sections, we discuss existing power management approaches
at the component level.

3.2.2.1 Memory subsystem. Substantial work has also been done for adapt-
ing the RAM memory subsystem for saving energy. Delaluz et al. [24, 25]

CPU

Memory

Disk

Network

Others

Figure 3.1 Possible distribution of power requirements per component.
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studied compiler-directed techniques and OS-based approaches [26, 27] to reduce
the energy consumed by the memory subsystem. Huang et al. [28] proposed
power-aware virtual memory implementation in OS to reduce memory energy
consumption.

Fradj et al. [29, 30] propose multibanking techniques that consist of individ-
ually setting banks in lower-power modes when they are not accessed.

Diniz et al. [31] study dynamic approaches for limiting the power consumption
of main memories by limiting consumption by adjusting the power states of the
memory devices as a function of the memory load.

Hur and Lin [32] propose using the memory controller (thus, at chip level)
to improve RAM energy efficiency. They exploit low power modes of modern
RAMs extending the idea of adaptive history-based memory schedulers.

3.2.2.2 Storage subsystem. Existing research work also addresses the stor-
age subsystem management to improve energy efficiency of servers. Rotem et al.
[33] focus on the energy consumed by the storage devices such as hard disks
in standby mode. They suggest file allocation strategies to save energy with a
minimal effect on the system performance, that is, the file retrieval time, while
reducing the I/O activity when there is no data transfer.

Pinheiro and Bianchini [34] study energy conservation techniques for disk
array-based network servers and propose a technique that leverages the redun-
dancy in storage systems to conserve disk energy [35]. Colarelli and Grunwald
[36] analyze an alternative design using massive arrays of idle disks (spin-
down/up disks).

Other approaches have addressed energy efficiency of storage systems by
spinning-down/up disk [36] and the reliability of such techniques [37].

Solid state drive (SSD) disks have also been taken into account toward saving
energy consumption for the storage subsystem [38, 39].

The research work discussed earlier addresses energy efficiency by manag-
ing different subsystems individually (e.g., CPU via DVFS). However, recent
approaches have proposed energy efficiency techniques for processor and mem-
ory adaptations [40, 41].

Li et al. [42] combine memory and disk management techniques to provide
performance guarantees for control algorithms.

Ranganathan et al. [18] highlight the current issue of underutilization and
over provisioning of the servers. They present a solution of peak power bud-
get management across a server ensemble to avoid excessive over provisioning
considering DVS (Dynamic Voltage Scaling) and memory/disk scaling.

In contrast to all these approaches, we consider dynamic configuration of mul-
tiple subsystems within a single server. Thus, we propose using different mech-
anisms and techniques that have been already developed in different domains.
Our approach is then complimentary to existing and ongoing solutions for energy
management for HPC data centers.
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3.2.3 Thermal-Conscious Power Management

Several approaches have been proposed for energy efficiency in datacenters,
including factors such as cooling and thermal considerations. More et al. [43]
propose a method to infer a model of thermal behavior to automatically reconfig-
ure the thermal load management systems, thereby improving cooling efficiency
and power consumption. In Reference 44, they also propose thermal manage-
ment solutions focusing on scheduling workloads considering temperature-aware
workload placement. Bash and Forman [45] propose a policy to place the work-
load in areas of a data center that are easier to cool resulting in cooling power
savings. Tang et al. [46] formulate and solve a mathematical problem that maxi-
mizes the cooling efficiency of a data center. This is focused on task assignment
that maximizes the cooling efficiency.

Bianchini et al. [47] propose emulation tools for investigating the thermal
implications of power management. In Reference 48, they present C-Oracle, a
software prediction infrastructure that makes online predictions for data center
thermal management based on load redistribution and DVFS.

3.2.4 Power Management in Virtualized Datacenters

With the increase of cloud computing, virtualized datacenters are being increas-
ingly considered for traditional HPC applications.

In the context of virtualized datacenters, Nathuji and Schwan [49] investi-
gate the integration of power management and virtualization technologies. In
particular, they propose VirtualPower to support the isolated and independent
operation of virtual machine (VM) and control the coordination among VMs to
reduce the power consumption. Rusu et al. [50] propose a cluster-wide on/off
policy based on dynamic reconfiguration and DVS. They focus on power, exe-
cution time, and server capacity characterization to provide energy management.
Kephart et al. [51, 52] address the coordination of multiple autonomic man-
agers for power/performance trade-offs by using a utility function approach in a
nonvirtualized environment.

A large body of work in data center energy management addresses the problem
of the request distribution at the VM management level in such a way that the
performance goals are met and the energy consumption is minimized. Song et al.
[53] propose an adaptive and dynamic scheme for adjusting resources (specifi-
cally, CPU and memory) between VMs on a single server to share the physical
resources efficiently. Kumar et al. [54] present vManage, a practical coordination
approach that loosely couples platform and virtualization management toward
improving energy savings and QoS and reducing VM migrations. Soror et al.
[55] address the problem of optimizing the performance of database manage-
ment systems by controlling the configurations of the VMs in which they run.
Laszewski et al. [56] present a scheduling algorithm for VMs in a cluster to
reduce power consumption using DVFS.
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3.3 PROACTIVE, COMPONENT-BASED POWER MANAGEMENT

Our approach is based on power management of the different components at the
physical server layer in a proactive manner. We assume that the application’s
profiles (in terms of resource usage) are known in advance. Therefore, we can
power down subsystems or use low power modes of a host system that are not
required by the jobs mapped to it based on the application’s profiles. We also map
jobs to physical servers attempting to optimize energy efficiency with minimum
penalty in performance.

In contrast to other typical approaches that allocate jobs with nonconflicting,
that is, dissimilar, resource requirements together on the same physical server
in order to optimize the performance, our policy is to allocate jobs with similar
resource requirements together on the same physical server. This allows us to
downgrade the subsystems of the server that are not required to run the requested
jobs in order to save energy. To do this, we consider specific configurations of
the physical servers’ subsystems to reduce their energy demand. Specifically,
it follows an energy model that leverages previous research on energy-efficient
hardware configurations (e.g., low power modes) in the following four different
dimensions:

• CPU Speed using Dynamic Voltage and Frequency Scaling (DVFS). We are
able to reduce the energy consumed by those applications that are, for
example, memory bound [57].

• Memory Usage. For those applications that do not require high memory
bandwidth, we consider the possibility of slightly reducing the memory
frequency or possibly shutting down some banks or channels of memory in
order to save power [58].

• High Performance Storage. It may be possible to power down unneeded
disks (e.g., using flash memory devices that require less power) or by
spinning-down disks [59].

• High Performance Network Interfaces . It may be possible to power down
some network subsystems (e.g., Myrinet interfaces) or using idle/sleep
modes.

3.3.1 Job Allocation Policies

We have implemented two different job allocation policies: a static approach
where physical servers maintain their initial subsystem configuration and a
dynamic one that allows the physical servers to be reconfigured dynamically.
The algorithm followed by the static resource provisioning approach for a
given job is shown in Equation 3.1. For readability, we have simplified the
algorithm assuming that each job can be allocated in a single server. The
complete approach returns a set of servers. Given the resource requirements of
a job request (reqcpu, reqmem, reqdisk, reqnic), the available physical servers
(s1, . . . , sn), it returns the most appropriate server to run the requested job. The
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resource requirements of the job request are the CPU, memory, storage, and
network demand, respectively:

job_mapping(req : job request, (3.1)

(reqcpu, reqmem, reqdisk, reqnic) : resource requirements,

S = (s1, . . . , sn) : physical servers) = sk :

sk ∈ S ∧ S ′ = match_reqs(req, S) ∧
sk ∈ S ′ ∧ sk ∈ less_reqs(S ′) ).

First, the algorithm discards the servers that do not match the resource require-
ments of the job request. To do this, it uses the match_reqs function, which is
defined in Equation 3.2:

match_reqs(req, S) = S ′ ⇔ S ′ ⊆ S ∧ ∀si ∈ S ′ : (3.2)

( sicpu
≥ reqcpu ∧ simem

≥ reqmem ∧
sidisk

≥ reqdisk ∧ sinic
≥ reqnic ).

If a server that matches the job requirements is not available, the job request
cannot be served. If we follow a first come first serve (FCFS) scheduling policy
with the static approach, a request may remain queued (thus blocking all follow-
ing queued jobs) until a server with the required configuration becomes available.
However, the scheduling policy may decide selecting another job from the queue
(e.g., backfilling jobs).

Otherwise, we select the server with lowest power requirements (i.e., with the
most subsystems disabled or in low power mode) and hosting the fewest jobs
from the set of matching servers. It allows us to balance the load among the
servers and avoid possible contention of resources. To select the server that best
matches the conditions described earlier, the less_reqs function is used.

In our dynamic approach, when required physical resources are unavailable, we
reconfigure an available physical server to provide the appropriate characteristics
and then provision it. Specifically, we can reconfigure servers if they are idle, but
if there are no idle servers available, we can reconfigure only those servers that
are configured to use fewer subsystems than those that are requested (if a server is
configured to deliver high memory bandwidth, we cannot reconfigure it to reduce
its memory frequency, since that would negatively impact jobs already running
on it. However, if a server is configured with reduced memory frequency, we
can reconfigure it to deliver full memory bandwidth without negatively impacting
running jobs). Moreover, we try to fill servers with requests of similar types. Not
only does this efficiently load servers it also allows more servers to remain fully
idle, which allows them to be configured to host new jobs.
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3.3.2 Workload Profiling

In order to define the application’s profiles, we characterize the workload behavior
into I/O intensive, memory intensive, communication intensive, and compute
intensive regions with respect to time. Most of the standard profiling utilities
are designed for comparing computation efficiency of the workloads and systems
on which they are running, hence their outputs are not very useful from the
subsystem usage point of view. On the basis of the workload characterization,
we can perform an efficient job allocation as described in Section 3.3.1.

We profiled standard HPC benchmarks with respect to behaviors and sub-
system usage on individual servers. It allows us to estimate the possibilities of
component-based power management in HPC workloads (Section 3.4). To collect
runtime OS-level metrics for CPU utilization, hard disk I/O, and network I/O we
used different mechanisms such as “mpstat”, “iostat”, “netstat”, or “PowerTOP”
from Intel. We also patched the Linux kernel 2.6.18 with the “perfctr” patch
so that we can read hardware performance counters online with relatively small
overhead. We instrumented the applications with PAPI (Performance Applica-
tion Programming Interface) and, since the server architecture does not support
total memory LD/ST counter, we counted the number of L2 cache misses, which
indicates (approximately) the activity of memory.

A comprehensive set of HPC benchmark workloads has been chosen. Each
stresses a variety of subsystems—compute power, memory, disk (storage), and
network communication. They can be classified in three different classes as fol-
lows:

• Standard . HPL Linpack that solves a (random) dense linear system in double
precision arithmetic, and FFTW that computes the discrete Fourier trans-
form.

• CPU Intensive. TauBench, which is an unstructured grid benchmark of
Navier Stokes solver kernels.

• I/O Intensive. b_eff_io, which is an MPI-I/O application, and bonnie++
that focus on hard drive and file system performance. We ran two distributed
instances of bonnie++ using a script and ssh.

Figure 3.2 shows the obtained profiles for three representative benchmarks
with different behaviors and trends.

Axes of the plots have time as the X -axis, and on the Y -axis we show from
the top to the bottom CPU utilization, memory utilization (L2 cache misses), disk
utilization (number of blocks accessed), network utilization (traffic of packets on
the NIC), and the average P-state residency of the CPU’s cores. The plots show
the measurements and the bezier curves (dashed lines) to better identify their
trends, except the plots of P-state residency that only show the bezier curves, for
readability.

The application’s profiles show different usage level of the subsystems over
time. However, subsystem’s usage can be discretized into CPU-, memory-, disk-,
and network bound based on the potential impact of using low power modes on
the application execution’s performance.
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(a) (b) (c)

Figure 3.2 Application profiles for (a) HPL, (b) b_eff_io, and (c) bonnie++ bench-
marks.

For example, in Figure 3.2, we can appreciate that HPL shows low disk
usage, b_eff_io shows low CPU usage, and bonnie++ shows low CPU and NIC
usages. However, there are other subsystems that have low usage only during
some intervals of time, such as memory in bonnie++.

In Section 3.4, we discuss the trends and quantify the power saving opportu-
nities based on the application profiles such as those shown in Figure 3.2.

3.4 QUANTIFYING ENERGY SAVING POSSIBILITIES

The fundamental requirement to study the potential energy saving with the
approach suggested in this chapter is to gather reliable usage data for processor,
memory, storage subsystem, and the NIC, and their associated power require-
ments for a set of representative and standard HPC workloads.

It allows us to quantify the potentials of component-level power management
and to define an upper bound for possible energy savings. Along with the potential
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energy savings of using component-based power management, we also study the
possible overheads of using these low power modes and switching between the
different modes.

To do this, we characterize and analyze the power dissipation of the different
subsystems and quantify the possible saving using existing techniques based on
using low power modes to reduce the energy consumption.

Although we first focus on single servers, using the profiling information
we will be able to proactively map job requests to servers configured with the
appropriate low power modes at the datacenter level.

3.4.1 Methodology

We conducted experiments with two Dell servers, each with a Intel quad-core
Xeon X3220 processors, 4 GB of memory, two SATA (Serial Advanced Tech-
nology Attachment) hard disks, and two 1 Gb ethernet interfaces. We also used
a 160 GB Intel X25-M Mainstream SATA SSD disk. The processors operate at
four frequencies ranging from 1.6 to 2.4 GHz. This is intended to represent a
general-purpose rack server configuration widely used in large data centers.

To empirically measure the “instantaneous” power consumption of the servers,
we used a “Watts Up?”.NET power meter that was attached between the wall
power and the server. This power meter has an accuracy of ±1.5% of the mea-
sured power with sampling rate of 1 Hz. We estimate that the consumed energy
integrating the actual power measures over time.

3.4.2 Component-Level Power Requirements

In order to quantify the possible power savings of using component-based power
management in a server, we have studied empirically the power characteristics
of different subsystems individually. Specifically, we have studied CPU, RAM
memory, disk storage, and NIC.

Equation 3.3 shows the simplified dynamic power dissipation model that we
consider for CPU, where C is the capacitance of the processor (that we consider
fixed), α is an activity factor (also known as switching activity), and V and f are
the operational voltage and frequency, respectively:

Pcpu ∼ C × V 2 × α × f. (3.3)

Table 3.1 summarizes the server’s power savings and the associated delays for
the different subsystem. For the CPU, the workload was generated with lookbusy
(a synthetic load generator). During CPU activity, the power demand differs up
to around 82 W (i.e., 39% of total server power) depending of the frequency used,
but without any load, the difference is only up to around 8 W (i.e., 3.78% of total
server power). However, although CPU power is the more power demanding
subsystem of the server, we rely on the CPU frequency management performed
within the OS with “cpufreq” using the “ondemand” governor. For disk storage,
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TABLE 3.1 Server’s Power Savings and Associated Delays

Subsystem Savings Delay

CPU frequency (idle) 8 W “Instantaneous”
CPU frequency (loaded) 82 W “Instantaneous”
RAM memory 8 W “Instantaneous”
Hard disk 10 W 5–7 s
Solid state disk 14 W “instantaneous”
NIC 3 W 0.15 s (on) 3–4 s (off)

we consider two different possibilities, on the one hand, using spin-down/up
techniques with traditional disks, and, on the other hand, using an SSD disk.
With a traditional disk, we can save almost 10 W of power (i.e., around 7.5%).
However, there is an overhead for spinning-down/up the disk. For spinning down
the disk the delay is around 0.05 s and for spinning up the delay is around 5–6
s. There is also an overhead of energy due to the peak power required to spin up
the disk’s motor (around 60 J of energy, according to our experiments). We also
consider using an SSD drive, which can save around 14 W of power when it is
idle (i.e., 3% less power with respect to a disk in low power mode), according
to our experiments. The SSD drive also has a much faster access time and does
not require spinning-down techniques to reduce its power consumption.

We use low power mode for the network subsystem switching on/off the NIC
dynamically. We made the assumption that data centers’ servers have usually
two different NICs (a faster one for actual computations and a slower one for
control/administration purposes). Disabling the NIC, we can save around 3 W
(i.e., 2.47%) and the overheads for switching on and switching off the NIC are
around 0.15 and 3–4 s, respectively.

Memory power dissipation can be classified as being dynamic power dissipa-
tion that occurs only during reads and writes, or static power dissipation due to
transistor leakage. Equation 3.4 shows a simple model for memory static power
dissipation, where V cc is the supply voltage, N is the number of transistors, kdesign
is a design-dependent parameter, and Ileak is a technology-dependent parameter.
We will consider kdesign and Ileak as fixed parameters:

Pstatic = V cc × N × kdesign × Îleak. (3.4)

Since the increasing contribution of static power is clearly evident even in
today’s design, we can reduce the static power dissipation, reducing either V cc
or N . Some existing approaches based on multibanking techniques try to set banks
of memory in lower-power modes when they are not accessed, thus reducing N .
Other approaches may dynamically reduce the voltage when memory is not in the
critical path of the running workload. Since these techniques are not standardly
available in widely used systems (such as ours), we estimate the potential savings
from memory removing physically two of the four banks of memory that are
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available in the server. Using the same subsystems configurations, but with only
2 GB of RAM memory installed, we were able to save around 8 W of power (i.e.,
5.78%), on an average. We estimate short delay for switching to low power mode.

3.4.3 Energy Savings

In this section, we first present the estimated energy savings for a single server
using a power model based on the empirical measurements shown in Table 3.1
and assuming an accurate use of low power modes (“Simulation” in Figure 3.3).
Thereby, we assume that the workload profile is known in advance. The simu-
lations were conducted using MATLAB. We used the benchmarks presented in
Section 3.3.2, which, as we discussed previously, have different requirements
and behaviors in terms of subsystems utilization.

We also present the energy saving obtained from actual experiments on real
hardware (“Validation” in Fig. 3.3). We applied low power modes based on the
application profiles with minimal penalty in performance. In addition, we per-
formed experiments using SSD technology for storage (“With SSD” in Fig. 3.3).
Although we present the saving for a single server, the results were obtained
using the testbed described in Section 3.4.1.

Figure 3.3 shows the relative energy savings with respect to the energy used
without component-level power management techniques, for each of five different
benchmarks.

We can appreciate that CPU- and network-intensive benchmarks provide more
opportunities of energy savings from disk optimization (e.g., FFTW), while I-/O-
intensive benchmarks provide more opportunities of energy savings from other
subsystems (e.g., NIC). Furthermore, benchmarks with higher utilization of the
different subsystems (i.e., HPL) obtain less energy savings.

The average energy saving with actual executions is lower than the energy sav-
ing estimated through simulations due to the lack of memory power management
in the real hardware and the lesser accuracy in switching between power modes.
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Figure 3.3 Relative energy savings per benchmark.
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Figure 3.4 Energy savings per component for (a) HPL, (b) b_eff_io, and (c) bonnie++.
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Figure 3.5 Energy savings per component for (a) TauBench and (b) FFTW.

Using SSD, technology reduces the energy consumption significantly. For
nondisk intensive benchmarks (e.g., HPL) the savings are moderate, while the
energy savings are much higher for I-/O-intensive benchmarks.

Figures 3.4 and 3.5 show the distribution of energy savings per component
for the different benchmarks using simulation.

We do not observe any clear correlation between the distribution of energy
savings per component and the total energy savings because, among other things,
the total savings may depend on the amount of time for which the subsystems
are used in low power mode during the benchmark’s execution.

3.5 EVALUATION OF THE PROPOSED STRATEGIES

In this section, we evaluate the possible energy savings that can be achieved at
the datacenter level using proactive, component-based power management with
a deterministic approach. To do this, we use simulation with traces of parallel
workloads. Along with traces, we also use the profiling of workloads and energy
savings at server level shown previously.
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3.5.1 Methodology

To evaluate the performance and energy efficiency of the proposed approach,
we used real HPC workload traces from widely distributed production systems.
Since not all of the required information is obtainable from these traces, some
data manipulation was needed.

For our experiments, we have used the kento–perf simulator (formerly called
Alvio [60]), which is a C++ event-driven simulator that was designed to study
scheduling and allocation policies in HPC systems.

We have simulated a homogeneous cluster system based on servers with four
CPUs and 8 GB of RAM each, which is a state of the art server configuration.

We also have considered the number of nodes that conformed the original
systems of the workloads described in Section 3.5.2.

Using our measurements and existing research [61, 62] (e.g., to obtain the
power required by a subsystem scaling from the total server power), we config-
ured the simulations with the power required for the different subsystems and the
switch latencies shown in Table 3.1. The model has some simplifications, such
as using a coarse grain level for switch latencies (we use longer latencies) due
to the accuracy of the simulator is by the order of seconds.

Specifically, for the CPU, we consider three different states: running mode,
that is, C0 C-state and highest P-state (no savings), low power mode, that is,
C0 C-state and the deepest P-state, and idle state, that is, C-state different to
C0 (saving shown in Table 3.1). For the memory and storage subsystems, we
consider two states (regular and low power mode) based on Table 3.1 assuming
the use of newer technology for memory power management.

Since we assume that modern systems use power management techniques
within the OS, we consider low power mode in our simulations when the servers
are idle because low power modes may be significantly lower in the idle state than
when they are in a running state [63]. We also assume that when an application
is running on a server with one of its required subsystems in idle mode, the OS
will switch the required subsystems to running mode.

Also taking into account the power required by the previous subsystems, we
also include the power required by other components such as motherboard and
fans in our model. Therefore, some fixed amount of power is always required,
independent of the specific physical server configuration used. However, we do
not consider the power required for cooling and to manage external elements.

Although this model is not completely accurate with respect to applications’
execution behaviors, it gives us a base framework to evaluate the possibilities of
proactive, component-based power management.

3.5.2 Workloads

In the present work, we have used traces from the Grid Observatory,3 which
collects, publishes, and analyzes logs on the behavior of the EGEE Grid,4 and

3Grid Observatory Site: http://www.grid-observatory.org/.
4Enabling Grid for E-sciencE Site, http://www.eu-egee.org/
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traces of the Intel Paragon system located at the San Diego Supercomputer Center
(SDSC) from the parallel workload archive. While SDSC is a traditional HPC
system composed by 416 homogeneous nodes, the EGEE Grid is a large-scale
heterogeneous and distributed system composed of more than 4200 nodes.

Since the traces are in different formats and include data that is not used,
they are preprocessed before being given as input to the simulation framework.
First, we convert the input traces to standard workload format (SWF).5 We also
combine the multiple files of which they are composed into a single file. Then,
we clean the trace in SWF format in order to eliminate failed jobs, cancelled
jobs, and anomalies.

As the traces found from different systems do not provide all the information
needed for our analysis, we needed to complete them using a model based on
the benchmarking of HPC applications (Section 3.3.2).

After calculating the average percentage of CPU, memory, storage, and net-
work usage for each benchmark, we randomly assign one of the possible bench-
mark profiles to each request in the input trace, following a uniform distribution.

We also generate two variants of each trace randomly assigning benchmark
profiles by bursts. The bursts of job requests are sized (randomly) from 1 to 5
job requests and from 1 to 10 job requests. These traces are intended to illustrate
the submission of scientific HPC workflows that are composed of sets of jobs
with the same resource requirements.

3.5.3 Metrics

We evaluate the impact of our approach on the following metrics: makespan
(workload execution time, which is the difference between the earliest time of
submission of any of the workload tasks and the latest time of completion of any
of its tasks), average-bounded slowdown (BSLD), energy consumption (based on
both static and dynamic energy consumption), and energy delay product (EDP).

We define BSLD for a given job:

BSLDjob = max

(
1,

runtimejob + waittimejob

max(runtimejob, threshold)

)
,

We consider a threshold of 60 s, which is commonly used in HPC systems to
avoid the influence of unrepresentative (very short) jobs.

3.6 RESULTS

We have conducted our simulations using the proposed strategies, workloads,
and system models described in the previous sections with respect to a refer-
ence approach, which represents the most commonly used configuration in HPC
datacenters. Specifically, we have evaluated the following strategies:

5Parallel Workload Archive Site: http://www.cs.huji.ac.il/labs/parallel/workload/.
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• REFERENCE (REF). It implements the typical reactive power management
at the OS level (i.e., DVFS when the CPU is not loaded). It follows the
First-Fit resource selection policy to allocate job requests to servers. This
means that it maps a given job to the first available physical servers that
match the request requirements.

• STATIC . It implements our proactive approach with the proposed static
allocation policy. It means that the servers’ configurations remain constant;
therefore a physical server can host only applications that match its specific
characteristics. Specifically, we consider eight classes of configurations (one
for each possible combination of their subsystems configuration) and we
model the same amount of servers with each one.

• DYNAMIC . It implements our proposed approach similarly to the STATIC
strategy, but implementing dynamic resource reconfigurations when they are
necessary. This means that when there are not available resources configured
with the requested configuration, it reconfigures servers reactively in order
to service new application requests.

• DYNAMIC-2 . It implements the same policy of the DYNAMIC strategy,
but it allows to reconfigure the subsystems of a server only when it is idle.

We have used three different variants of the workloads described in
Section 3.5.2 as follows:

• NO-BURSTS . It follows the original distribution of the workloads described
in the previous section.

• BURSTS-5 and series BURSTS-10. The job requests are by bursts sized
randomly from 1 to 5 and from 1 to 10, respectively.

Figures 3.6–3.8, and 3.9 show the relative makespan, average BSLD, energy
consumption, and EDP results, respectively. In each of these figures, we show
the results obtained from both EGEE and SDSC traces in the same Y -axis scale.
For readability, the results are normalized to the results obtained with the REF-
ERENCE configuration and the NO-BURSTS workload variant.

Figures 3.6 and 3.7 show that both makespan and BSLD results follow sim-
ilar patterns. With the REFERENCE strategy, the delays are shorter than those
obtained with the STATIC strategy. However, the delays obtained with the REF-
ERENCE and the DYNAMIC strategy are very similar. This is explained by the
fact that using STATIC strategy with available resources matching the request
requirements is harder because the number of resources with the same subsystem
configuration is fixed. This is specially significant with the SDSC because it has
less number of nodes and, therefore, a small number of nodes of each subsystem
configuration.

In fact, the obtained results from EGEE are, in general, better than those
obtained from SDSC because with EGEE there are a much higher number of
nodes of each configuration, which results in higher probability to find resources
that matches the job’s requirements.
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Figure 3.6 Relative makespan for (a) EGEE and (b) SDSC.

As with the STATIC strategy, the makespan obtained from the DYNAMIC-2
policy is longer than that obtained from the REFERENCE strategy. In both cases,
the makespan is longer because of scheduling issues (resource limitations cause
job blocking in the queue) and not because of the use of low power modes.

The BSLD is higher with the STATIC and DYNAMIC-2 strategies. It means
that with both of these policies the job waiting times are much longer than the
job waiting times with STATIC and DYNAMIC.

The impact of the size of the workload bursts on the different metrics is signif-
icant with the STATIC and DYNAMIC-2 strategies. This is explained because of
the fact that it is easier to allocate jobs in nodes with the same configuration when
they are submitted together (filling servers with jobs with same requirements).
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Figure 3.7 Relative BSLD for (a) EGEE and (b) SDSC.

However, using the SDSC workload, there is not much difference between bursts
of up to 5 and bursts up to 10 because in SDSC the number of nodes is smaller.

Although the makespan is shorter with the REFERENCE approach, the energy
consumption is lower with our proposed strategies than that obtained with REF-
ERENCE. Specifically, both STATIC and DYNAMIC approaches obtain between
6% and 12% of energy savings with respect to the REFERENCE approach.

The EDP obtained with the DYNAMIC strategy is around 5% lower (on
average) than the that obtained with the REFERENCE approach. However, the
DYNAMIC-2 strategy presents a higher EDP. In both cases, the energy efficiency
is better for those workloads composed by bursts of jobs with similar require-
ments. It allows us to perform a more efficient mapping because the probabilities
to reconfigure a server are lower. It also results in lower over provisioning of the
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Figure 3.8 Relative energy consumption for (a) EGEE and (b) SDSC.

server’s subsystems, which is the difference between the subsystems that are in
active mode and the subsystems required by the applications.

Although the energy consumption is lower in STATIC approach with respect
to the REFERENCE approach, the EDP is much higher. This is explained by the
fact that the limitations in the subsystems availability results in lower resource
utilization and, therefore, even though the energy consumption of the resources
is lower, the resources are used during longer time.

Therefore, we can conclude that STATIC and DYNAMIC-2 strategies do not
provide significant improvements with respect to the REFERENCE approach, but
DYNAMIC presents better energy efficiency (more than 5%, on average) with
very little penalty on the performance (makespan). Moreover, we have stated that
a higher number of nodes facilitates the proactive configuration of subsystems
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Figure 3.9 Relative EDP for (a) EGEE and (b) SDSC.

in scenarios with restrictions (STATIC and DYNAMIC-2), provides more energy
savings, and reduces the over provisioning (in terms of subsystems).

3.7 CONCLUDING REMARKS

In this chapter, we studied the potential impact of deterministic application-centric
power control at the device level on the overall energy efficiency of a system.
Specifically, we analyzed the energy consumption of a node according to the
usage of its processor, memory, storage subsystem, and the NIC. Moreover, we
evaluated the possible energy savings at a datacenter level through the use of
proactive power management.
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Our simulations showed that proactive, component-based power management
can be effective to save energy if the systems have sufficient mechanisms to pro-
vide an accurate dynamic management of the subsystems based on the character-
istics of the workload. The results stated that using application-aware subsystem,
power control can save additional energy, so it is fundamental to characterize the
workload appropriately.

We conclude that power management at the subsystem level cannot
be neglected because of the increasing requirements of energy efficiency
optimization in large-scale data centers. We believe that our proposed predictive
application-aware power management approach has sufficient potential to tackle
this problem at the datacenter level. Moreover, we stated that the potential of
proactive power management techniques is higher when the number of nodes
available is higher. We also can conclude that current and ongoing technologies
such as memory that allow DVS must be adopted and supported in large-scale
data centers to enhance global energy optimizations. Finally, the findings of
this work showed that there are opportunities to improve the job scheduling
and resource allocation strategies in HPC systems considering proactive,
component-level power management.

3.8 SUMMARY

Energy efficiency of large-scale data centers is becoming a major concern not
only for reasons of energy conservation, failures, and cost reduction but also
because such systems are soon reaching the limits of power available to them.
HPC systems may consume power in megawatts, and of all the power consumed
by such a system only a fraction is used for actual computations.

In this chapter, we studied the potential of application-centric proactive power
management of data center’s resources for HPC workloads. Specifically, we con-
sidered power management mechanisms and controls (currently or soon to be)
available at different levels and for different subsystems, and leverage several
innovative approaches that have been taken to tackle this problem in the last few
years, can be effectively used in a application-aware manner for HPC workloads.

To do this, we first profiled standard HPC benchmarks with respect to behav-
iors, resource usage, and power impact on individual computing nodes. On the
basis of the findings at the server level, we proposed proactive, component-based
power management techniques with the purpose of improving energy efficiency
with little or no performance loss. We then evaluated our proposed algorithm
through simulations using empirical power characterization and quantification.

The obtained results showed that by using proactive, component-level power
management, we can reduce the average energy consumption without significant
penalty in performance if the systems have sufficient mechanisms to provide an
accurate dynamic management of the subsystems based on the characteristics of
the workload.

The results also stated that the potential of proactive power management tech-
niques is higher when the number of nodes available is higher.
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Our findings motivate the development of autonomic components responsible
for component-based power management and the implementation of power-aware
scheduling and resource allocation strategies in HPC systems.
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CHAPTER 4

A STOCHASTIC FRAMEWORK
FOR HIERARCHICAL SYSTEM-LEVEL
POWER MANAGEMENT

PENG RONG and MASSOUD PEDRAM

4.1 INTRODUCTION

Dynamic power management (DPM), which refers to a selective shut off or slow
down of components that are idle or underutilized, has proven to be a particularly
effective way of reducing power dissipation in such systems. In the literature,
various DPM techniques have been proposed, from heuristic methods presented
in early works [1, 2] to stochastic optimization approaches [3, 4]. Among the
heuristic DPM methods, the time-out policy is the most widely used approach and
has been implemented in many operating systems. The time-out policy is simple
and easy to implement, but it has many shortcomings, such as not making use of
the statistical information about the service request (SR) rates and having a limited
ability to trade off performance and energy dissipation. Stochastic approaches are
mathematically rigorous approaches that are based on stochastic models of SRs
and are thus able to derive provably optimal DPM policies.

Reference 5 considered job scheduling as part of a power management policy
and proposed an on-line scheme that groups jobs based on their device usage
requirements and then checks every possible execution sequence of the job groups
to find out the one with minimal power consumption. This work is quite valuable
because it demonstrates the potential for additional power saving by doing job
scheduling. However, this work also has a few shortcomings. First, each time a
new job is generated, the search procedure to find the minimal-power execution
sequence has to be repeated. Second, this scheme does not explore the possibility
of reducing the system energy by changing the working state of devices that have
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multiple functional states. Third, exact knowledge of the device usage of a job
is required before the job can be scheduled. It is also assumed that this device
usage profile does not change during the lifetime of a job. It is not clear how
this scheme can capture the dependence between two parts of the same job, if
the two parts exhibit very different device usage behavior. Finally, this scheme
does not make use of any prediction or expectation of the future behavior of the
system and thus can only make a greedy on-line decision.

To capture dependencies between different system components, a power man-
ager must have a global view of the system architecture, connection among
components, system resources that are shared among these components, and any
possible functional dependency between the components. In addition, application-
level scheduling requires the power manager to work closely with the operating
system scheduler. Both these tasks are beyond the capabilities of the existing
component-level power management solutions.

A number of power saving mechanisms have been already incorporated into
various standards and protocols. Examples are the power management function
defined in USB bus standard and the power saving mode in the IEEE 802.11
protocol. An USB device will automatically enter a suspended state if there is
no bus activity for 3 ms. A wireless local area network (WLAN) card operating
in the power saving mode needs to wake up periodically at the beginning of a
beacon interval and listen for traffic identification message.

In most cases, these built-in power management solutions cannot be changed
because they ensure the correct functionality of a device running the related
protocol. In this sense, we consider such a device as an uncontrollable or self-
power-managed component. Even beyond protocol considerations, vendors have
already begun to develop power management software specifically designed
for their products. An example is the enhanced adaptive battery life extender
(EABLE) for Hitachi (IBM Storage Systems, originally) disk drive, which is
self-managed and is incorporated into the device driver [6]. EABLE dynamically
determines the appropriate mode based on the actual disk access pattern and
the internal level of drive activity. Finally, implementation of the device power
manager by the designers and manufacturers of the device itself may relieve
the system integrators of the burden of mastering detailed hardware and device
driver expertise and thus facilitates power awareness in system integration with
multiple components.

The component designer does not know the global characteristics and perfor-
mance requirements of the system in which the component will be incorporated.
Therefore, the best the designer can do is to provide a generic local power man-
agement policy for the component but make some tuning parameters of the local
policy controllable by the system designer and the system-level power man-
ager. On the other hand, a system engineer, who devises the architecture of an
EMC system and takes care of interfacing and synchronization issues among
the selected components, can devise a global power management policy that
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may help the local power manager (LPM) to improve power efficiency of the
component.

On the basis of the above considerations, we define the problem of hierarchical
power management (HPM) for an EMC system with self-power-managed compo-
nents. More specifically, this chapter targets a uniprocessor computer system that
consists of multiple I/O devices. It is possible to extend the proposed approach
and apply it to a multiprocessor system or a computer cluster, a task which is
beyond the scope of this chapter. The problem is then formulated as a math-
ematical program with the aid of continuous-time Markovian decision process
(CTMDP) models and solved accordingly.

The key contributions of this chapter may be summarized as follows.

1. A hierarchical DPM architecture is proposed, where the power management
function is decomposed into system and component levels. This division
facilitates the integration of various power management techniques into a
two-tiered organization and enhances system-level power awareness. At the
system level, flow control on the SR traffic is used to improve the effective-
ness of built-in component-level power management solutions. Note that
the proposed power management architecture can easily handle service
providers (SPs) with or without built-in LPMs.

2. CTMDP-based application-level scheduling is incorporated into system-
level power management to achieve further power reduction. This schedul-
ing is stochastically optimized by using the CTMDP model. Applications
are scheduled based on the global system state comprising the states of
the individual components, the number of waiting tasks, and application
stochastic characteristics. In this way, our proposed solution is very differ-
ent from that in Reference 5.

3. The proposed system-level power management handles component state
dependencies, where the state of a SP is affected by states of the other SPs.

The remainder of this chapter is organized as follows. In Section 4.2, related
works are discussed. The background of CTMDP is introduced in Section 4.3.
Details of the proposed hierarchical DPM framework are described in Section 4.4.
In Section 4.5, stochastic model of the system-level power management is pro-
vided. The energy optimization problem is formulated and solved as a mathemat-
ical program in Section 4.6. Experimental results and conclusions are provided
in Sections 4.7 and 4.8, respectively.

4.2 RELATED WORK

The CTMDP-based DPM approach was first proposed in Reference 4. CTMDP-
based approach makes policy changes in an asynchronous and event-driven
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manner and thus surmounts the shortcoming of an earlier work based on
discrete-time Markovian decision processes [3], which relied on periodical
policy evaluation. Therefore, CTMDP-based DPM approach is more suitable for
implementation as part of a real-time operating system environment because of
its event-driven nature. Owing to space limitation, the background for CTMDP
models is not provided here. Interested readers may refer to Reference 7.

The literature also proposes other stochastic DMP approaches. Reference 8
improved on the modeling technique in Reference 3 using time-indexed semi-
Markovian decision processes. Recently, Theocharous et al. [9] discussed several
promising DPM techniques including partially observable Markovian decision
processes based approach; however, no results are published so far.

In the literature, some works related to HPM have been reported. Reference 10
proposes a DPM methodology for networks-on-chips, which combines node- and
network-centric DPM decisions. More specifically, the node-centric DPM uses
time-indexed semi-Markovian decision processes, whereas the network-centric
DPM allows a source node to use network sleep/wake-up requests to force sink
nodes to enter specified states. Our proposed work differs from this approach by
providing a more general and mathematically rigorous framework for defining and
solving hierarchical DPM problems in an EMC system. In particular, application-
level scheduling is exploited and component state dependency is considered by
the system-level power manager. In addition, by using a globally controlled SR
flow regulation process, our framework can handle self-power-managed SPs and
dynamically adjust their local power management policies. Reference 11 pro-
poses a hierarchical scheme for adaptive DPM under nonstationary SRs, where
the term hierarchical refers to the manner by which the authors construct a
DPM policy. This is different from what is proposed in this chapter. More pre-
cisely, in their work, the authors formulate policy optimization as a problem
of seeking an optimal rule that switches policies among a set of precomputed
ones. However, this chapter assumes that the SPs are fully controllable and have
no built-in power management policy. This work differentiates SR generation
between “modes” (applications), but application-level scheduling is not consid-
ered. In addition, it focuses on developing power management policies for a
single device.

Another kind of HPM schemes incorporate into one platform multiple hard-
ware components with identical or exchangeable functionality but different levels
of power and performance. Reference 12 proposes a scheme that equips each
mobile node two complementary radios (long-distance high power vs. short-
distance low power) and uses both radios to participate in contact discovery.
This scheme controls the wake-up interval of each radio to trade between energy
savings and the performance of message delivery. Reference 13 presents a HPM
architecture that focuses on providing high levels of consistency in a laptop by
integrating two additional low power processors: StrongARM and ATmega. In
this chapter, a dedicated distribution of each application over the processors is
predesigned to evaluate power saving.
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4.3 A HIERARCHICAL DPM ARCHITECTURE

In this chapter, we consider a uniprocessor computer system that consists of
multiple I/O devices, for example, hard disk, WLAN card, or USB devices.
Batches of applications keep running on the system. When an application is
running on the CPU, it may send requests to one or more devices for services.
A performance constraint is imposed on the average throughput of the computer
system. The constraint is defined as a minimum amount of completed application
workloads over a fixed period of time. It is also required that each application
gets a proportional (fair) amount of CPU execution time over a long period.
Our objective is to minimize the energy consumption of the computer system.
More precisely, this chapter focuses on reducing energy consumption of the
I/O devices. Saving processor and memory energy is out of the scope of this
chapter. Readers interested in these power components can refer to References 14
and 15.

The architecture of our proposed hierarchical DPM framework that contains
two SPs, that is, two I/O devices, is presented in Figure 4.1. This architecture
has two levels of PM: the component level and the system level. In the former,
each SP is controlled by a LPM. The LPM performs a conventional PM function,
that is, it monitors the number of SRs that are waiting in the component queue
(CQ) and consequently adjusts the state of the SP. In the latter level, the global
power manager (GPM) acts as the central controller that attempts to meet a
global performance constraint while reducing the system power consumption. In
particular, GPM performs three separate functions.

SFC1

SQ1

SP1

CQ 1

LPM1

Control

GPM

SP2

CQ2

LPM2

Control

SFC2

SQ2

System level

SR1 SR2

Shared 
resource

CPU 
scheduler

Control

Schedule

Content

Component level

Application

Figure 4.1 Block diagram of a hierarchical DPM structure.
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1. It determines the state of the service flow controller (SFC) and regulates
the SR traffic that is subsequently fed into the CQs. Note that in this
architecture, the GPM cannot overwrite the LPM policy or directly control
the state transition of an SP. Thus, regulating SR flow is the method used
by GPM to guide the local PM policy and improve the power efficiency
of the SPs.

2. It works with the CPU scheduler to select the right applications to run so
as to reduce the system power dissipation. This decision is in turn made
on the basis of the current state of the PM system, including the states of
the SPs and the number of SRs waiting in a service queue (SQ).

3. It resolves the contention for shared resources between different SPs and
dynamically assigns the resources so as to increase the system power effi-
ciency. As the side note, the SFC performs three functions, namely, SR
transfer, SR blocking, and fake SR generation, to adjust the statistics of
the SR flow that reaches the SP. The SRs that are blocked by the SFC are
kept in a SQ.

4.4 MODELING

We represent the hierarchical DPM structure by a CTMDP model as shown in
Figure 4.2. This model, which is constructed from the point of view of the GPM,
is utilized to derive a system-level PM policy. The CTMDP model contains the
following components: an application model (APPL), the SQ, the SFC, and a
simulated service provider (SSP).

The SSP is a CTMDP model of the LPM-controlled SP as seen by the GPM.
More precisely, it is a composition of the state-transition diagram of the SP and
the corresponding LPM policy. Notice that the CQ model is not needed because
from the viewpoint of the GPM, the CQ and SQ are identical. In the following
subsections, the APPL, SFC, and SSP models are described in detail followed by
modeling of the dependencies between the SPs. An example transition diagram
for the SSP is provided in Figure 4.2.

4.4.1 Model of the Application Pool

It is assumed that the applications running on the computer system can be classi-
fied into different types based on their workload characteristics , that is, their SR
generation rates and the target SPs (i.e., service destinations.) In Reference 11,
the authors report that the pattern of SRs generated by an application and sent to
a hard disk may be modeled by a Poisson process. Here, we use a more general
model, that is, a CTMDP model, to describe the complex nature of SR generation
of an application. When an application that is running on the CPU moves from
one internal state to next, it generates various types of SRs with different rates.
For example, as illustrated in Figure 4.3, in state r1a , application type 1 generates
SR1 with a rate of λ

(1)
1a and SR2 with a rate of λ

(2)
1a . Similarly, in state r1b, the
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Figure 4.3 CTMDP models of application types (a) 1 and (b) 2.

generation rates for these two SRs become λ
(1)
1b and λ

(2)
1b , respectively. In state

r1a , application type 1 transits to state r1b with a rate of υ1,ab, which also implies
that the average time for application type 1 to stay in state r1a is 1/υ1,ab.

Using the CTMDP model for each application type, we can set up the CTMDP
model of an application pool, S APPL. A state of SAPPL is a tuple comprising
the corresponding state for every application type and information about the
application currently running on the CPU. The CTMDP model of the example
SAPPL, as depicted in Figure 4.4, has eight global states, (r1x, r2y ,flag), where r1x

denotes the service generation state x for application 1 and r2y denotes state y for
application type 2. flag = 1 (2) meaning the first (second) application is running.
For example, (r1a, r2a ,1) means that application type 1 is running and it is in
state r1a . Furthermore, the state of application type 2 was r2a just before it was
swapped out. The CTMDP model has a set of autonomous transitions between
state pairs with the same activation flag value. The transition rates are denoted by
υi,xy , where x and y denote the service generation states of application type i. For
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Figure 4.4 CTMDP model of an application pool.

example, the transition between (r1a, r2a ,1) and (r1b, r2a ,1) is autonomous. Notice
that a transition from (r1a, r2a ,1) to (r1b, r2b,1) is disallowed because application
2 is not running; therefore, it cannot possibly change its service generation state.
The model also has a set of action-controlled transitions between global states
with the same r1x, r2y values.

The action set is AAPPL = {run_Appli}, where Appli denotes application
type i. For example, if the global state of the SAPPL is (r1x, r2y ,1) and the action
run_Appl2 is issued then the new global state of the system will be (r1x, r2y, 2).
A transition between (r1a, r2b,1) and (r1a, r2a ,2) is not allowed because it implies
that during context switch from application type 1 to type 2, the service generation
state of application 2 changed, an impossibility in our model.

The number of states grows exponentially with the number of application
types. Thus, to mitigate scalability issue, one must group all interesting
applications into a relatively small number of application types. According to
our experimental results and observations, although the number of different
applications may be large, the number of different application classes is rather
small.

The reason why application scheduling based on the global system state can
reduce the total system power consumption can be explained by a simple example.
Let us consider a system with only one SP. There are two application types A1
and A2. A1 generates SRs at a rate of one request per unit time, while A2
generates three requests per unit time. The SP wakes up as soon as a request
is generated and sleeps when all requests have been serviced. Two execution
sequences are considered. In the first sequence, there is no application scheduling.
Each application is alternately executed for exactly one unit of time. In the second
sequence, we perform application scheduling based on the number of waiting
requests in the SQ. More precisely, during the running period of A1, as soon as
a request is generated, the scheduler switches to A2. After A2 is run for one unit
of time, A1 will be brought back to continue its execution. This policy ensures
that all SRs that are targeted to the SP are bundled together and that the SP
sleep time is maximized. Assuming that the wake-up and sleep transition times
and energy dissipation values are fixed, the total energy consumption of the SP
under these two execution sequences is depicted in Figure 4.5. It is seen that
application scheduling can maximize the SP sleep time.
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Figure 4.5 An example of the effectiveness of application scheduling: (a) without appli-
cation scheduling and (b) with application scheduling.

We must convert the performance constraint for individual applications to
those for the individual SPs. The total execution time of an application is the
sum of the CPU time, the memory stall time, and the I/O device access time.
The throughput of a computer system may then be defined as the ratio of the
completed computational workload to the total execution time of the application.
Although in a multiprogramming system, the calculation of stall time due to I/O
devices can be very complicated, it is straightforward to bound the total I/O stall
time by constraining the average delay experienced by each I/O operation. This is
because the total I/O stall time is never more than the total I/O operation delay.1

On the basis of this observation, we impose constraints on the average service
delay of every request sent to each SP to capture the performance constraint on
each application.

It is also important to allocate a fair share of the CPU time to each applica-
tion. In a Linux system, the GPM-based application scheduling algorithm can be
implemented using multiple run queues, each associated with a different applica-
tion type. On the basis of the decision made by the power manager, at the context
switch time, some run queue will be selected and the scheduler will pick one
task from this queue to run on the CPU. Inside a run queue, the original priority-
based scheduling algorithm of the Linux kernel is used for task selection. Thus,

1This is because the I/O operation delay of a request is the waiting time plus the service operation
time. The I/O stall time refers to the delay that is encountered during application execution due to
I/O operations. If there is only one running thread that is stalled after generating each I/O request, the
I/O stall time will be equal to the I/O operation delay. However, in a multithreaded parallel execution
environment, the total I/O stall time for the entire batch of executing programs has to be considered.
Therefore, the total I/O stall time tends to be less than the total I/O operation delay because some
portion of the I/O stall time may be effectively utilized by running other ready applications.
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it is clearly seen that the GPM does not intervene in the scheduling of applica-
tions that have the same workload characteristics. The existing fair scheduling
schemes [16] such as the FCFS or round-robin can be used for these applications.
For applications that exhibit different workload characteristics, we must impose
a fairness constraint as follows. Let fr

ar denote the frequency that APPL state
r is entered and action ar is chosen in that state, r ∈ SAPPL and ar ∈ AAPPL. Let
τ

ar
r denote the expected duration of time that APPL will stay in state r when

action ar is chosen. Let flag(r) denote the flag value component of state r . A
fairness constraint states that application type i cannot, on average, occupy more
than ci percentage of the CPU time. This can be written as

∑
r: flag(r)=i

f
ar,i
r τ

ar,i
r ≤ ci × 100%, where ar,i = run_Appli (4.1)

where f
ar,i
r τ

ar,i
r is the probability that APPL stays in state r and chooses action

ar,i . One way to determine the value of ci is to make it proportional to the com-
putation workload of application type i. The calculation of fr

ar and τ
ar
r actually

involves variables and states of other component models in the system, and there-
fore, it is not convenient to present here. The actual form of this constraint is
given in Section 4.5.

4.4.2 Model of the Service Flow Control

As illustrated in Figure 4.2, the SFC is modeled as a stationary, CTMDP with a
state set SSFC = {Block, Xf er,GenF } and an action set ASFC = {Goto_Block,

Goto_Xf er, Goto_GenF }. The detailed states and transitions of the SFC are
explained as follows:

GenF. In this state, the SFC generates a fake service request (FSR). An FSR
is treated in the same way as a regular SR by the SP but requires no service
from the SP. FSRs are used to wake up the SP when the GPM decides it
is the right time to do so. The purpose of FSR is mainly to improve the
response time of SP and prevent it from entering a wrong (deep sleep or
off) state when the GPM expects a lot of activity in the near future. Delay
and energy consumption associated with the transition from Xfer to GenF
account for the overhead of generating an FSR. The action Goto_Xfer takes
place autonomously when the SFC is in GenF.

Block. In this state, the SFC blocks all incoming SRs from entering the CQ
of the SP. This state may be entered from the Xfer state only when all
generated SRs have been serviced by the SP. Therefore, when the SFC
remains in the Block state, the SSP sees that there are no pending SRs.
The purpose of blocking SRs is to reduce the wake-up times of the SP and
extend the SP sleep time.

Xfer. In this state, the SFC continuously moves SRs from the SQ to the CQ,
and therefore, the SP will wake up to provide the requested services. As
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noted earlier, the CQ is not included in the system-level DPM model, so the
function of SFC at the Xfer state is different from its real function, which
is described as follows. In this model, when the SFC is in the Xfer state,
the SSP knows the status of SQ and acts the same way that the SP does
when the real SRs arrive in the CQ. The time and energy consumption
associated with the transition from the Block to the Xfer state accounts
for the overhead of moving about the SRs. The action Goto_Block works
autonomously when and only when the SFC is in the Xfer state and SQ is
empty.

All other state transitions, which have not been mentioned above, take effect
immediately and consume no energy.

4.4.3 Model of the Simulated Service Provider

The SSP is a CTMDP model that simulates the behavior of the SP under the
control of the LPM. Since in the proposed hierarchical DPM architecture, the
GPM cannot directly control the state transition of the SP, the SSP is modeled
as an independent automaton. If the LPM employs a CTMDP-based PM policy
then the modeling of SSP will be easy; that is, the CTMDP model of SP with
the LPM policy can be used directly, except that the SRs waiting in the SQ must
be considered together when the SSP is making a decision. However, if the LPM
uses another PM algorithm, a question will arise as to how accurately a CTMDP
SSP model can simulate the behavior of the power-managed SP.

Let us consider an SP with fixed time-out policy, for example, a typical hard
disk drive, which has two power states: active at 2.1 W and low power idle at
0.65 W. The transition power and time between the two states are 1.4 W and 0.4
s, respectively. The LPM adopts a two-competitive time-out policy, where the
time-out value is set to 0.8 s.

The CTMDP model of the corresponding SSP is depicted in Figure 4.6.

Sleep. This is a low power state. The SSP goes to the idle state when the SFC
is in Xfer or GenF state, and the SQ is not empty.

Idle

Work

Sleep

TO1 TOn

n states

Figure 4.6 CTMDP SSP model of HDD with fixed time-out policy.
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Work. A functional state, where the SSP provides service to the SR that is
waiting in the SQ.

Idle. This is a nonfunctional state. If the SFC is in either Xfer or GenF state
and the SQ is not empty, the SSP goes to the work state; otherwise, it goes
to TO1 state.

TOi . i = 1, 2, . . . , n. This is one of the n full-power but nonfunctional time-
out states. These states are used to simulate the time-out policy. When the
SFC is in Xfer or GenF state and the SQ is not empty, the SSP goes back
to the idle state; otherwise, the SSP goes to the TOi+1 state or sleep state
if the SSP is in the TOn state. Since the time for the SSP to transfer from
the idle to the TOn state is a random variable, whereas in the time-out
policy, the time-out value is fixed, multiple TO states are used to improve
the simulation accuracy.

The reason for using multiple TOi states (instead of just one) is explained
as follows. Assume a chain with n TO states is used to approximate a time-out
policy whose time-out value is set to t . Let τ denote the time for the SSP to
transfer from the idle to the TOn state. Let τ0 and τ1, . . . , τn−1, respectively,
denote the period for which the SSP stays in the idle and the TO1, . . . , TOn−1
states when there are no incoming SRs. As required by the CTMDP model, τ0
and τ1, . . . , τn−1 are independent random variables, each following an exponential
distribution with mean 1/λ and variance 1/λ2. To make the expected value of τ

equal to the desired time-out value t , it is required that E(τ) = n/λ = t , where
τ = ∑n−1

i=0 τi . Thus, variance of τ is D(τ) = ∑n−1
i=0 D(τi) = n/λ2 = t2/n. From

this equation, we can see that for a given t , as n increases, D(τ) is reduced.
In other words, the accuracy of the CTMDP model of a fixed time-out policy
increases.

We performed a simulation study to evaluate how the approximation accuracy
is related to the number of TO states in the SSP model in terms of energy and
service delay for the above-mentioned hard disk example. Results are presented
in Figure 4.7. The average power and delay of the SP under a fixed time-out
policy is compared with three SSPs, which each use one, two, and three TO
states to simulate the same time-out policy. It is demonstrated that with three TO
states, behavior of the SSP becomes indistinguishable from that of the hard disk
with a fixed time-out policy.

4.4.4 Modeling Dependencies between SPs

There are different types of dependencies between SPs. The first type is mutual
exclusion that arises, for example, when two SPs contend for the same non-
sharable resource, such as a low speed I/O bus. Consequently, at any time, only
one SP can be in its working state. When constructing the CTMDP model of the
system, one can account for this type of hard dependency constraint by marking
any system state that violates mutual exclusion as invalid and by forbidding all
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Figure 4.7 Comparison between the CTMDP model of the SSP and the fixed time-out
policy for the hard disk.

state-action pairs that cause the system to transit to an invalid state. The sec-
ond type is shared resource constraint, where two SPs indirectly influence one
another’s behavior because of their utilization of a shared resource. For example,
SPs may want to buffer their SRs in a shared buffering area of a finite size. So
when the number of SRs for one SP goes up, the probability that SRs for the
other SP will be blocked increases. In this case, the first SP may have to work
harder to ensure that it is not overutilizing the shared buffer area. This type of
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soft dependency constraint is handled by adding appropriate constraints to the
system-level power optimization problem formulation.

4.5 POLICY OPTIMIZATION

4.5.1 Mathematical Formulation

Let I denote the number of SPs in the power-managed system. Let x represent
the global state of this system, which is a vector whose elements are the states of
the APPL, SQi , SFCi , and SSPi models, where i = 1, 2, . . . I . Let ax denote an
action enabled in state x, which is a tuple composed of the actions of the APPL
and SFCi models. The constrained energy optimization problem is formulated as
a linear program as follows:

Minimize{f ax
x }

(∑
x

∑
ax

f ax
x γ ax

x

)
, (4.2)

where f
ax
x is the frequency that global state x is entered in and action ax is

chosen in that state. γ
ax
x is the expected cost, which represents the expected

energy consumed when the system is in state x and action ax is chosen, and is
calculated as

γ ax
x = τ ax

x pow(x, ax) +
∑
x′ �=x

p
ax

x,x′ene(x, x ′), (4.3)

where τ
ax
x = 1/

∑
x′ �=x σ

ax

x,x′ denotes the expected duration of time that the sys-
tem will stay in state x when action ax is chosen, and σ

ax

x,x′ is the rate of
the transition from state x to state x ′ when action ax is chosen. In addition,
p

ax

x,x′ = σ
ax

x,x′/
∑

x′′ �=x σ
ax

x,x′′ denotes the probability that the system will next come
to state x ′ if it is in state x and action ax is chosen. This linear program is solved
for variables f

ax
x while satisfying the following constraints:

∑
ax

f ax
x =

∑
x′ �=x

∑
a′
x

f
a′
x

x′ p
a′
x

x′,x ∀x ∈ X (4.4)

∑
x

∑
ax

f ax
x τ ax

x = 1 (4.5)

f ax
x ≥ 0 (4.6)∑
x

∑
ax

f ax
x τ ax

x (qi,x − Diλi,x) ≤ 0, i = 1, 2, . . . , I (4.7)

∑
x:f lag(rx)=i

∑
ar,j ∈ax

f ax
x τ ax

x ≤ cj × 100%, j = 1, 2, . . . , J (4.8)
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where rx denotes the state of APPL in global state x and ar,j = run_Applj .

∑
x

∑
ax

f ax
x τ ax

x δ(qi,x, Qi) ≤ Pi,b i = 1, 2, . . . , I (4.9)

or

∑
x

∑
ax

f ax
x τ ax

x δ

(∑
i

qi,x, Q

)
≤ Pb with a shared Q. (4.10)

where

δ(x, y) =
{

1, if x = y;
0, otherwise.

Equations 4.4–4.6 capture properties of a CTMDP. Inequalities (Eq. 4.7),
based on the Little theorem [17], impose constraints on the expected task delay
of SPi , where qi,x represents the number of waiting tasks in the queue SQi when
the system is in state x, Di is the expected service delay experienced by SRi ,
and λi,x is the generation rate of the SRi at system state x. Inequalities 4.8 are
the same as 4.1 and state that on average, application type j should not use more
than cj percent of the CPU time. J is the number of application types in APPL.
Constraints 4.9 and 4.10) ensure that the probability that SQ becomes full is less
than a preset threshold. Constraint 4.9 is imposed when each type of SR utilizes
its own nonsharable SQ, while constraint 4.10 is applied when a shared SQ is
used for all types of SRs. This linear program is solved by using a standard
solver, that is, MOSEK [18].

4.5.2 Optimal Time-Out Policy for Local Power Manager

The DPM optimization discussed up to now assumes that the time-out policy
used for LPM has been given and is unable to change. However, in many real
cases, the embedded power management solutions provide mechanisms for the
user to tune the local policy parameters. For example, Windows power manager
provides multiple optional schemes and allows users to change the length of idle
duration that triggers to enter low power mode. Also, some latest WLAN cards
can be configured to wake up every so many multiples of the beacon intervals
and the length of a beacon interval is negotiable. In terms of this observation, we
define an optimization problem that simultaneously optimizes the system-level
power management policy and the time-out policy of the LPM.

The optimization of time-out values cannot be directly incorporated into
CTMDP-based DPM optimization framework. A perturbation-analysis-based
time-out optimization technique was proposed in Reference 19. Here, we are
proposing an indirect approach to obtain a near-optimal solution for time-out
values. For this purpose, the CTMDP SSP model that was presented in



124 A STOCHASTIC FRAMEWORK FOR HIERARCHICAL SYSTEM-LEVEL POWER MANAGEMENT

Idle

Work

TO1,n

TO2,1
TO2,n

n+1 states

p1

p2

Sleep

TO1,1TO1,0

TO2,0

Figure 4.8 CTMDP SSP model of HDD for time-out optimization.

Figure 4.6 has been modified as shown in Figure 4.8. In this model, there are
two TO state chains starting from a low power nonfunctional state, for example,
the idle state. The two chains correspond to different time-out values, denoted
as t1 and t2. Apart from the SSP model in Figure 4.6, a TO,0 state is added to
each TO chain, representing the start of an idle period. Once the model enters
the idle state, if no task is queuing, it immediately transfers to the TO2,0 state
with probability p1 or to the TO1,0 state with probability p2 = 1 − p1 and takes
no time. This models the behavior that during each idle period, time-out value
t1 is taken with probability p1 and time-out t2 with probability p2. Here, p1
and p2 are the controlling parameters to be optimized with the system-level
DPM policy. Once they are solved, the optimal time-out value topt can be
approximated by

topt ≈ p1t1 + p2t2. (4.11)

To combine the optimization of local time-outs with system-level DPM policy
and use the linear programming approach, we need to define an action set for the
SSP model, as ASSP = {Goto_T O1,0,Goto_T O2,0}. Now, the system action ax

should be a tuple composed of the actions of the APPL, SFC, and SSP models.
Thus, after updating the linear program 4.2–4.10 accordingly and solving the
optimization problem, we can obtain the values of p1 and p2 as

p1 =
∑

q=0,s=Idle
ax=Goto_TO1,0

f ax
x

/ ∑
q=0,s=Idle

f ax
x , p2 = 1 − p1, (4.12)

where q and s denote the states of the SQ and SSP when the system is in state x,
respectively. Equation 4.11 is next used to determine the optimal time-out values
of the local policy. It is worth noting that to achieve a good approximation of
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the optimal value, the t1 and t2 values should be selected carefully to ensure that
topt is between t1 and t2. This can be achieved using an iterative approach. In
case that either p1 or p2 is close to 1, we choose a new set of time-out values
and redo the optimization. Assuming p1 = 1 and t1 < t2, the new time-outs are

t ′1 = max(0, t1 − t ′2), t ′2 = t1 + t2

2
. (4.13)

Further, we can simply use more than two TO state chains for a low power
physical state to improve the accuracy.

Notice that the SSP model presented in Figure 4.8 is for a device that has
only one low power nonfunctional state, that is, a “Sleep” state as marked in the
figure. The two time-out values t1 and t2, which are approximated by the two TO
state branches in the SSP model in Figure 4.8, are predetermined values used to
calculate the topt value that will be used by the LPM to control the state transition
from idle to sleep. For a device with two low power states, that is, a shallow
sleep (drowsy) state and a deep sleep state, this simple model may be extended
in a straightforward manner by adding a pair of TO states between every two
neighboring system states to capture the time-out state transition between the
corresponding system states.

4.6 EXPERIMENTAL RESULTS

For this experiment, we recorded a real trace of device requests generated by
four concurrently running applications on a Linux PC. The applications were of
two types. Three of the applications were file manipulation programs, which read
some data file, edit it, and write back to the disk. The fourth application was a
program that periodically reads data from another machine through a WLAN
card, searches for relevant information, and saves this information onto the disk.
The request generation pattern of the first type of application was modeled with
a Poisson process with an average rate of 0.208 requests per second. The request
generation statistics of the second program type can be best characterized by a
two-state CTMDP model. The state transition rate and generation rates of SR to
hard disk λhd and to WLAN card λwlan are[

0 0.0415
0.0063 0

]
(s−1),

λhd = [0.0826, 0.0187]
λwlan = [0.1124, 0.1124]

(s−1).

The CPU usage ratio for these two groups of applications (i.e., two applica-
tion types) is 53:47. For our experiments, we used the hard disk drives Hitachi
Travelstar 7K60 and Orinoco WLAN card as SPs. Power dissipation and start-
up energy and latency of the disk drive and the WLAN card are reported in
Table 4.1.

For the first set of simulations, we only consider the hard disk driver. The
average service time for a disk request is 67 ms. In this case, with the help
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TABLE 4.1 Energy/Transition Data of Hard Disk Driver and WLAN Card

Start-Up Wake-Up
State Power (W) Energy (J) Time (s)

Hitachi 7K60 Active 2.5 — —
Performance idle 2.0 0 0
Low power idle 0.85 1.86 0.4
Stand-by 0.25 10.5 2

Orinoco WLAN Transfer 1.4 — —
Receive 0.9 — —
Sleep 0.05 0.15 0.12

of the operating system, FSR can be designed as a disk read operation that
accesses the latest data read from the hard disk. Since this data must have been
stored in the data cache of the hard disk, it does not have to be read out from
the disk, so the service time of an FSR is only the sum of the disk controller’s
overhead and the data transfer time, which is about 3 ms.

We used the lower envelope algorithm [20], which is a two-competitive policy
extended for a device with multiple low power states, as the time-out policy
for the LPM. The LPM policy has two time-out values, 1.7 and 14.4 s, each
corresponding to one low power state. Under this policy (named TO1), the SP
starts in the highest power state (“Active” = “Performance idle”). If there are
no new requests, after 1.7 s, it enters the “Low-power-idle” state. If no requests
arrive, after 14.4 s, it enters into the “Stand-by” state. We also experimented with
a different set of time-out values, that is, 0.34 and 14.4 s. This version is denoted
by TO2. The results are presented in Table 4.2.

In Table 4.2, the first column gives the CPU usage ratio between the two
types of applications. The type of the built-in LPM policy is reported in the

TABLE 4.2 Hierarchal PM Simulation Results for Single SP

LPM Performance 1PM-TO 1PM-CTMDP HPM HPM-S
CPU Usage Policy Constraints (W) (W) (W) (W)

0.53:0.47 TO1 0.0765 1.2728 1.0467 1.2591 0.9505
0.5 1.2728 0.9309 1.0443 0.788

TO2 0.0882 1.1582 1.0414 1.1436 0.8651
0.5 1.1582 0.9309 1.0106 0.7274

0.7:0.3 TO1 0.078 1.3805 1.1152 1.342 0.9951
0.5 1.3805 0.9956 1.1047 0.8302

TO2 0.0903 1.2559 1.1107 1.2032 1.0594
0.5 1.2559 0.9956 1.0966 0.8734

0.3:0.7 TO1 0.0685 1.19 0.9647 1.1058 0.957
0.5 1.19 0.7922 0.9276 0.788

TO2 0.076 1.0162 0.9451 1.012 0.7373
0.5 1.0162 0.7922 0.8422 0.6015
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second column. For each LPM policy, we simulate twice for different perfor-
mance constraints in terms of the bound on the average number of waiting SRs
in the SQ. This bound is reported in the third column. In each case, the smaller
bound corresponds to the actual SR delay in the time-out policy simulation. The
second one is a looser constraint given for the purpose of examining the ability
of our proposed hierarchical DPM approach to trade off latency for lower energy
consumption.

Four policies are compared in Table 4.2, they are one-level time-out pol-
icy (1PM-TO), one-level CTMDP policy (1PM-CTMDP), HPM, and HPM with
application scheduling (HPM-S). For the stochastic policies, the SR generation
statistics is assumed to be known. The average power consumptions of the SP
under different policies are reported in the last four columns of the table. Compar-
ing HPM with local power management policy 1PM-TO, it can be seen that HPM
improves the energy efficiency of LPM-controlled SPs, especially when there is
a large positive slack, in which case up to 22% energy saving is achieved. This
saving is made possible because of the system-level service flow control policy
incorporated in HPM, which monitors the state of LPM and subsequently adjusts
the rate of SRs sent to the SP in order to make the SP run more power efficiently
and increase the chance that it stays in its lower power states. HPM-S even out-
performs the optimal component-level CTMDP policy by as much as 24% in
terms of saving energy consumption.

To better understand how the energy saving is achieved by HPM policies, the
break down of the total power consumptions of the SP under different policies is
presented in Figure 4.9, where TO1 is used as the local policy with the CPU usage
ratio 0.53:0.47 and the performance constraint set to 0.5. As compared to the time-
out policy, HPM and HPM-S significantly reduced the SP energy consumed at
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Figure 4.9 Breakdown of the power consumption of the service provider. Perf. Idle.,
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high power idle states and dissipated for wake-ups by a total amount of 33.9
and 60.3 mJ/s, respectively, with a small increase in average standby power by
6.9 and 10.8 mW, respectively, because of the SP staying longer in the standby
mode. From this figure, it is demonstrated that HPM approaches allow the SP
to spend more time at the lowest power state while reducing wake-up overhead
simultaneously. When compared to 1PM-CTMDP, HPM and HPM-S reduce the
wake-up energy dissipation at the cost of extra energy consumed in high power
idle states. This difference lies in the fact that 1PM-CTMDP makes a decision
to transit to a low power state as soon as it becomes idle, whereas HPM and
HPM-S must wait until a local time-out counter expires.

The application-level scheduling incorporated into HPM selects applications
to run based on the global system state, that is, states of the SP and the SQ,
and dynamically adjusts the SR generation rate to help reduce the SP state-
transition times and increase the duration that the SP stays in low power states,
while meeting the given timing and fairness constraints. To emphasize on the
effect of application scheduling on power management, the CPU usage of each
application type is divided into bins corresponding to the SSP states and compared
in Figure 4.10 between the HPM and HPM-S policies, where the simulation setup
is the same as that used to generate Figure 4.9. The labels on the x-axis, TOHn

and TOLn, n = 1, 2, respectively, represent the time-out states while the SP is
in Hitachi performance-idle and low-power-idle states. Note that in Figure 4.9,
energies consumed in the TOH and TOL states are added to those consumed in
performance-idle and low-power-idle states, respectively.

In Figure 4.10, each bar represents the CPU usage of an application type with
respect to an SSP state, which equals to the time when the application is running
while the SSP is in the associated state divided by the overall running time of
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Figure 4.10 Breakdown of CPU usage of applications under HPM policies.
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TABLE 4.3 Hierarchal PM Simulation Results for Single SP with Optimal Local
Time-Out Policy

CPU Usage Performance Optimal Optimal HPM Optimal Optimal HPM-S
Ratio Constraints TOH (s) TOL (s) (W) TOH (s) TOL (s) (W)

0.53 :
0.47

0.088
0.5

0.035
0.019

50.0
15.7

1.057
0.887

0.024
0.020

22.3
13.1

0.868
0.697

0.7 :
0.3

0.090
0.5

0.028
0.023

63.1
30.2

1.125
0.996

0.027
0.022

43.4
21.8

1.000
0.838

0.3 :
0.7

0.076
0.5

0.021
0.016

41.0
10.0

0.978
0.731

0.017
0.015

10.6
10.0
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all application types. As shown in the figure, without application scheduling, the
two application types Appl1 and Appl2 have very close CPU usages on all SSP
states. However, under the HPM-S policy, at highest power SSP states, the CPU
usages of Appl1 are much higher than those of Appl2, while the reverse exists
at the lowest power state, standby. Appl1 has a higher SR generation rate than
Appl2. Executing Appl1 rather than Appl2 at high power state will make more
likely that a new SR is generated while the SP is still in a high power state.
In this case, the SP will be easier to transit back to the work state with less
energy dissipated for state transition and faster response time. On the other hand,
performing Appl2 at a state closer to the lowest power state is likely to increase
the interval before the next SR and thus creates more idle duration for the SP to
stay in the lowest power state and reduce the energy consumption.

In the second set of simulations, we still considered a single SP but exploited
the technique presented in Section 4.5.2 to determine the optimal time-out values
for the LPM. The results are presented in Table 4.3. In this table, the obtained
optimal time-out values are listed before the corresponding HPM policy. As
compared to the results in Table 4.2, it is observed that for the HPM-S policy,
using optimal local time-outs does not incur much energy saving. The main reason
is that the incorporated application scheduling technique is able to counteract the
impairment introduced by an imperfect local time-out policy. However, the HPM
policy did benefit from an optimal local time-out and improve the energy saving
by 8.7% on average.

In the third set of simulations, we considered two SPs: a hard disk and a
WLAN card. The average service time for a wireless request is 830 ms. In this
simulation, policy TO2 is used for the LPM of the hard disk driver and a two-
competitive policy with a time-out value of 200 ms is used for the WLAN card.
The WLAN card also wakes up every second to listen for traffic identification
message. We used the SR trace with a CPU usage ratio 53:47 in this simula-
tion. The results of the power consumption of each component are presented in
Table 4.4. The experimental results demonstrate that the HPM-S algorithm can
jointly schedule applications for different SPs to achieve minimal total system
energy consumption.
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TABLE 4.4 Hierarchal PM Simulation Results for Two SPs

Performance Constraints 1PM-TO2 1PM-CTMDP
for Different SPs (W) (W) HPM (W) HPM-S (W)

Sim1 HD 0.09 1.157 1.045 1.142 0.881
WLAN 0.05 0.384 0.343 0.378 0.310

Sim2 HD 0.2 1.157 1.01 1.066 0.788
WLAN 0.2 0.384 0.322 0.331 0.282

4.7 CONCLUSION

This chapter presented an HPM architecture that aims to facilitate power aware-
ness in an EMC system with multiple components. Given a performance con-
straint, this architecture improves both component-level and system-wide power
savings using information about SR rates by tuning the PM policies of compo-
nents. The technique to obtain an optimal time-out for LPM is also presented.
Experimental results demonstrate that the system-level PM approach can result
in significant extra energy savings.

An interesting direction for future work is to extend the HPM approach to
handle nonstationary SR generation. One possible solution is to construct off-
line a policy tree where each leaf node represents an optimal policy for a given
set of system parameters, for example, delay constraint, request generation rates,
and the CPU share of different application types. At run time, system parameters
will be dynamically detected and used as an index in the policy tree. The policy
table that matches the current settings will be exploited.
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CHAPTER 5

ENERGY-EFFICIENT RESERVATION
INFRASTRUCTURE FOR GRIDS,
CLOUDS, AND NETWORKS

ANNE-CÉCILE ORGERIE and LAURENT LEFÈVRE

5.1 INTRODUCTION

In the age of petascale machines, cloud computing and peer-to-peer systems,
large-scale distributed systems need an ever-increasing amount of energy. These
systems urgently require effective and scalable solutions to manage and limit
their electrical consumption. As of now, most efforts are focused on energy-
efficient hardware designs. Thus, the challenge is to coordinate all these low
level improvements at the middleware level to improve the energy efficiency of
the overall systems. Resource management solutions can indeed benefit from a
broader view to pool the resources and to share them according to the needs of
each user.

Large-scale distributed systems consist in collections of multiple computing
and storage resources that communicate through a communication system that can
either be shared with other infrastructures or not. The overall energy consumption
of such systems is huge and can be split into the following two parts:

• the fixed part, which depends on the system’s size and type of each equip-
ment (computing, storing, and networking equipment);

• the variable part, which depends on the usage of computing and storage
facilities and on the networking traffic.

To reduce the fixed energy costs, equipments can be put into sleep modes
when they are not in use; for example, computers and cores can be turned off.
Likewise, to reduce the variable costs, some slowdown techniques can be used,
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such as dynamic voltage frequency scaling (DVFS) [1] for processors or adaptive
link rate (ALR) [2] for network interface cards (NICs). These techniques adjust
the processor speed or the transmission rate with respect to load when the full
resource capacity is not required, thus saving energy with only a minor impact
on performance. Improvements on the design of hardware components are also
desirable to enhance the energy efficiency of each equipment. These techniques
can be combined at the system management level to coordinate the local energy-
aware decisions and to tightly couple energy consumption and workload. The
goal is to achieve a consumption–workload relation as proportional as possible
in a consume-as-you-use manner [3]. Thus, the fixed part of the energy costs will
be suppressed, and so will be the wastage due to idle consuming resources.

In-advance reservation mechanisms are widely used in large-scale distributed
systems [4–6] since they guarantee users a certain quality of service, including
with respect to deadlines and specific hardware and software constraints, in an
infrastructure-as-a-service way. Indeed, users can specify a deadline (when the job
should be completed), a start time, and some hardware and software constraints,
for example. In-advance reservations also allow a more flexible and predictable
resource management: the length of each reservation is known at its submission,
thus making the task of scheduling algorithms easier.

We propose an energy-efficient reservation infrastructure for large-scale
distributed systems (ERIDIS) in order to optimize the energy used by such
systems. This infrastructure acts at the resource manager level and includes the
following:

• energy sensors that collect, in real time, the energy consumption of resources
and directly measure the impact of the taken decisions;

• allocating and scheduling algorithms to optimize the reservation placement;
• on/off facilities to put resources into sleep mode when they are not used;
• prediction algorithms to anticipate the workload;
• workload aggregation policies to avoid frequent on/off cycles for the

resources.

Section 5.2 deals with the related works. ERIDIS is presented in Section 5.3.
Then, we propose three applications of this infrastructure: in a grid and data center
context in Section 5.4, in a cloud context in Section 5.5, and finally in a network
context in Section 5.6. Section 5.7 concludes and presents our perspectives.

5.2 RELATED WORKS

Although energy has been a matter of concern for sensor networks and battery-
constrained systems since their creation, energy issues are recent for plugged
systems. We present some related works in the domain of energy efficiency that
can be used in data centers, grids, clouds, and wired networks.
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5.2.1 Server and Data Center Power Management

A huge waste of energy can be observed for various computing and networking
equipment: PCs, switches, routers, servers, etc. because they remain fully pow-
ered on during idle periods. In a data center context, different policies can be
applied on different levels: the node level, the cluster level, or the network level.

Data centers are made up of a large number of servers with high power
requirements concentrated in a small area. They need huge power capacities and
the first difficulty is to find out the consumption of all their components (network
equipment, nodes, cooling system). In Reference 7, the authors make a model of
energy consumption that uses the CPU’s activity. A different approach consists
in deducing it by using event-monitoring counters [8], for example.

Naturally, the first idea to save energy is to be able to shut down idle nodes
[9]. This leads to a problem: how to wake them up when required? Wake-On-
LAN is a mechanism implemented on Ethernet cards to allow a distant user to
wake up a PC by sending it some packets via the network [10]. However, such
a mechanism requires the Ethernet card to be powered at all times.

Another issue is to have an energy-aware scheduling algorithm to attribute
nodes to the tasks, which can either be divisible or not [9, 11], requiring synchro-
nization [12], etc. In Reference 13, the authors discuss minimization of consumed
energy by minimizing the number of joules per operation. The resource manager
gets a set of awake nodes and should minimize its size as much as possible.
When a task ends on a node, it tries to move the other tasks on this node to the
other running nodes. And if a new task arrives, it tries to put it on the awake
nodes. The other nodes remain off. This algorithm includes no load-balancing
mechanisms, so it seems that some nodes will be worn prematurely, while others
will stay unused.

Other energy-aware resource management algorithms include load balancing
[8] and thermal management concerns [14, 15]. As presented for all the
algorithms, the unnecessary wake-ups waste energy twice: by the wake-up
power spike and during the idle state on time before going to sleep again. Such
algorithms should thus be carefully designed in order not to shut down nodes
unnecessarily.

5.2.2 Node Optimizations

Energy savings at the node level can also lead to great energy savings with the
scale effects. To reduce the wake-up power spike and the booting time, “suspend
to disk” techniques can be used. When a node switches to that state, all the content
of the main memory is saved to the hard drive in an hibernate file, preserving
the state of the operating system (all the open applications, documents, etc.). All
of the node’s components are turned off and, at the next state switch, the node
will load the hibernate file, restoring the previous state.

Other hardware improvements could be done into the CPU. Some algorithms
include DVFS techniques [1, 7, 11, 12]. The CPU reduces its frequency and
voltage when it is under use [1]. These techniques have already been standards
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Figure 5.1 Possible states per node component.

on laptops since few years. This increases the range of possible energy savings
a lot since they allow to save energy when the nodes are not idle, and not fully
used either.

Actually, each computing node is made up of an assembly of several com-
ponents, as shown in Figure 5.1, and each component can be optimized to save
energy. The node components are summarized in Figure 5.1. This figure shows
which node components can be switched off or put in lower modes. Each com-
ponent indeed benefits from different states from fully on to fully off, which
correspond to different energy consumptions. For example, a CPU has one off-
state and several on-states, which correspond to each possible frequency and
scaling on this CPU [1]. Most of the components are the subject of specific stud-
ies: NICs [10], disks [16], and CPUs [17], for example. However, the mother-
board remains the component consuming the most energy, and it can only be
turned off when the entire node can. Thus, IPMI (Intelligent Platform Manage-
ment Interface) techniques are really useful to remotely and quickly switch nodes
on and off [18].

5.2.3 Virtualization to Improve Energy Efficiency

Virtualization is now widely used to provide a large number of computing
resources, and the energy consumption of cloud infrastructures is as problematic
as in data centers and grids [19–21]. Yet, even if virtualization adds a software
layer that consumes energy [22], it actually allows finer load consolidation on
each node [23] and offers the possibility to use live migration techniques [24] to
strengthen load aggregation. Still, these techniques have a cost [25] and should
be carefully studied in order to reduce the overall consumption of clouds.

5.2.4 Energy Awareness in Wired Networking Equipment

The consumption of wired networking devices has been considered for about 10
years by two research teams, mainly, one in Portland [26–29] and the other in
Florida [10, 30]. In Reference 26, the authors present an interesting approach
[26]: they want to switch off network interfaces, routers, and switch components.
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They first analyze traces and check whether there really are periods of inactivity
[26, 27]. Then, they design algorithms to shut down resources based on periodic
protocol behavior and traffic estimation [27]. They analyze that a lot of energy
can be saved this way, by running their algorithm onto utilization traces. Then,
they propose to save energy even on underutilization periods. Therefore, they use
the low power modes available on most Ethernet interfaces [28] (that means using
Gigabit Ethernet cards at 10 MBps, 100 MBps, or 1 GBps). Their results show
that their algorithm does not affect the communication performance in terms of
both delay and packet loss.

Their algorithms are based on predictions to take sleeping decisions. They use
buffer occupancy, the behavior of previous packet (arrival times), and a maximum
bounded delay [29]. They assume that the routers are able to store packets in
their buffer even if they are asleep. When the buffer occupancy reaches a certain
size, they wake up the whole router.

The real problem of shutting down networking devices is how to ensure
network presence. Indeed, when a switch is asleep, it cannot answer to the
requests (ARP requests or PING, for example). Moreover, normally when a link
is re-established, an auto-negotiation protocol is run (to synchronize clocks, to
determine link type, and to determine link rate, etc.) and this takes about few
hundreds of milliseconds, which is too long on high capacity links. To address
this, they modify the auto-negotiation protocol for their algorithms [29]: the auto
negotiation is not run after sleeping periods because those are really short and
the link has not changed state during the process.

Another solution is to use proxying techniques: the Ethernet card or the switch
filter packets that require no response (such broadcasts), replies to packets that
require minimal response (such as ping), and only wakes up the system for
packets requiring a nontrivial response [10]. In Reference 10, the authors give
a complete analysis of the traffic received by an idle PC, and they explain that
most of this traffic would be filtered out or trivially responded to by a proxy.

These authors have also proposed an algorithm called ALR, which changes the
link’s data rate based on an output buffer threshold policy [30]. This algorithm
does not affect the mean packet delay.

5.2.5 Synthesis

Lots of computing and networking equipment are concerned by these overall
observations on the waste of energy: PCs, switches, routers, servers, etc. In
a context of large-scale distributed systems, different policies can be applied
depending on where users want to make savings: at the node level, the data
center level, or the network level.

At the node level, you can use direct voltage-scaling techniques and frequency-
scaling techniques to reduce the energy consumption of the CPU. But one can
also imagine putting into sleep cores, memory benches, or disks, for example.
Indeed, computers are increasingly multicore and multibank. So it should be
possible to turn on and shut down one core or one bank on request.
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At the data center level, different solutions are also possible to reduce energy
consumption, such as energy-efficient task scheduling, proxying techniques to
ensure network presence, or resource virtualization. With the scale effect, the
potential savings are huge.

At the network level, we can consider the possibility to shut down entire
redundant routes with all their components. But we can also shut down, one
by one, the interfaces of the routers, switches, and computers or just scale their
speed.

5.3 ERIDIS: ENERGY-EFFICIENT RESERVATION INFRASTRUCTURE
FOR LARGE-SCALE DISTRIBUTED SYSTEMS

Different techniques are available to improve the energy efficiency in large-scale
distributed systems, but they require a unified framework to associate them. In
order to reach this goal, we propose an ERIDIS.

5.3.1 ERIDIS Architecture

With the growing number of deadline-driven applications such as meteorolog-
ical disaster or earthquake forecast, or important large data transfers (e.g., for
daily news), reservation infrastructures for large-scale distributed systems are
increasingly important.

Our ERIDIS strives to optimize energy consumption in such systems. This
infrastructure acts at the resource manager level and includes the following:

• energy sensors that collect, in real time, the energy consumption of resources
and directly measure the impact of the taken decisions;

• allocating and scheduling algorithms to optimize the reservation placement;
• on/off facilities to put resources into sleep mode when they are not used;
• prediction algorithms to anticipate the workload;
• workload aggregation policies to avoid frequent on/off cycles for the

resources.

The premise behind ERIDIS is that parts of the computing and networking
resources can be put into sleep state when not needed to execute user tasks in
order to consume less energy. Through coordinated resource management, both
the opportunity to allow resources to go to sleep and the duration of these sleeping
events can be increased. Depending on whether they have a computation or a
data transfer to be done, users make reservation requests that consist of, at least,
the following:

• an earliest possible start time, a deadline, a number of computing resource
required, and a duration in the case of a computing job, or
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• an earliest possible start time, a deadline, a data volume to be transferred
(in GB, for example), a source node, and a destination node in the case of
a networking job.

Other precisions can be included as a particular computing environment or a
particular geographic location to use for a computing job, or a bit-rate transmis-
sion profile (maximum possible bit-rate over time) for a networking job. These
particular additional options are detailed in the following sections.

Figure 5.2 presents the logical architecture of ERIDIS: users are connected to a
reservation portal, which is the ERIDIS gateway for them. Each portal is directly
connected to an ERIDIS manager, which is a local resource manager and is in
charge of the management of a whole cluster of resources (computing, cloud, or
networking resources). For example, for a grid infrastructure, each cluster (e.g.,
grid site) has its own ERIDIS resource manager to keep the overall architecture
scalable, fast, and robust. So, users send their requests to their local gateway,
which is a part of the resource manager, and this latter is in charge of dealing
with the other resource managers, if required.

Each resource managed by ERIDIS is monitored by energy sensors
(wattmeter), which provides accurate and periodical measurements to the
manager. Thus, at the end of each reservation, ERIDIS is able to compute

User

Reservation
Portal Cluster limits 

ERIDIS Manager

Cloud resources
Networking resources

Wattmeters

Computing resources

Users

Figure 5.2 ERIDIS components.
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the energy consumption of this particular reservation, and can provide this
information to the user in order to increase energy awareness.

The structure of an ERIDIS manager is presented in Figure 5.3. Administra-
tors and system designers can specify the green policies they want to use: on/off
techniques, DVFS techniques, etc. These choices are taken into account in the
reservation scheduler and in the resource management modules. The reservation
scheduler is in charge of scheduling the incoming reservation requests and allo-
cating resources to them. The resource management module is responsible for
putting resources into sleep state or waking them up if required. All the compo-
nents of this manager are described in detail in parallel with the explanation of
the working of ERIDIS.

Each ERIDIS manager maintains an agenda for each resource that it is in
charge of (resource agendas shown in Fig. 5.3). An agenda stores all the future
reservations concerning the resource. So, it may contain different resource states:
powered on but idle, turned off, booting, switching off, or partially or fully
reserved, with the duration spent in each state. The resource management module
is responsible for updating the agendas if some resources are down.

An example of such a resource agenda is shown in Figure 5.4. This agenda
contains two reservations and the resource is switched off between these two
reservations and again after the second reservation. The date of a change in
resource state is called an event .

This model uses a continuous time model in order to have the storage of the
agendas be more flexible and less space using. The storage of the agendas is
structured in time–capacity list , which is made of (t[i], c[i]) tuples, where t[i]
represents an event (time) and c[i] is the percentage of the resource that is used
from that event to the next one. For example, for a bandwidth reservation, the
capacity is the reserved bandwidth portion; and for a computing job, the capacity
represents the percentage of CPU that has been reserved for this job. Thus, at
each time, a resource knows which percentage of its overall capacity is used.
Some particular values are used for the capacity to represent the power-on and
shut-down periods.

These tuples are sorted in increasing order of t[i]. If (t[n], c[n]) is the last
tuple then it means that the resource is unused from t[n] to ∞. The ERIDIS
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manager is in charge of updating the agendas of the resources it is managing.
Yet, each resource stores each own agenda to know when it should go to sleep
and when it should wake up.

As a matter of fact, the architecture of ERIDIS is semidecentralized since
each local manager gets full control of the resources it manages. Moreover, local
managers discuss among themselves in a point-to-point manner without a global
supervisor on top of them. For example, in a cloud context, if a user requires
more resources than its local manager can offer him, then the local manager
will contact another manager to request the number of resources that it lacks.
If the number of available resources is still insufficient, the local manager will
ask another manager in addition, and so on, until it depletes the whole list of
resource managers. This is why each ERIDIS manager is not necessarily directly
linked to a user portal.

This semidecentralized feature ensures that the architecture is scalable, fast,
and robust since any ERIDIS manager is in charge of a limited number of resource
and has a privileged access to the other ERIDIS managers.

5.3.2 Management of the Resource Reservations

A reservation is like a lease contract between the resource provider and the
resource user: the user can use the reserved resources during a limited time
interval that has been fixed during the negotiation process between the user
and the provider. The negotiation takes place in a three-step handshake process
(Fig. 5.5).

First, the user sends a request that contains its resource and time constraints,
that is, at least the type of resources, the required number, the reservation duration,
and a deadline. Second, the reservation manager proposes a solution, which can
either fulfill the user’s requirements if it is possible or propose the earliest possible
reservation start time if the deadline constraint cannot be respected (due to system
load). If the request is not acceptable because it asks for too many resources or
it does not respect the system’s admission rules, the request is rejected and is
notified to the user.
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Figure 5.5 Reservation negotiation between the user and an ERIDIS manager.

Finally, if the reservation manager has made a proposition, the user has a
fixed amount of time to answer it and express his agreement or disagreement.
Otherwise, the request is rejected. If the user accepts the manager’s proposition,
the manager updates all the concerned agendas by adding this new reservation.
Algorithm 5.1 details the algorithm used to process the request. The scheduling
algorithm will be detailed later (Algorithm 5.2).

The reservation management system should guarantee that the negotiated reser-
vation terms are well respected. It also has to dynamically schedule in time the
reservations and allocate them the most appropriate resources.

Algorithm 5.1

Request Processing:
if the request is not acceptable
reject it

else
launch the scheduling algorithm
if the request cannot be satisfied

propose the earliest possible start time
(given by the scheduling)

else
send the offer to the user (given by the scheduling)
wait for the answer

if there is no answer or the answer is no
discard the request

else
place the reservation on each concerned agenda

Figure 5.6 presents the different reservation states. First, the user sends a
requests that is either rejected or accepted, and in that case, the manager makes a
proposition. Then, this proposition is either accepted or rejected by the user. If it is
accepted, the reservation is scheduled. This reservation can be rescheduled before
its start time if the manager needs to move this reservation to accept a new one.
This rescheduling is still bound by the resource and time constraints negotiated
between the user and the ERIDIS manager. No renegotiation is allowed in our
model. During the reservation, the user has access to the reserved resources until
the reservation’s end time.
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Algorithm 5.2

Scheduling-Algorithm:
find d the earliest possible start time with a satisfying set r of

free resources
List = [d]
for each agenda event between d and (deadline-reservation duration)

if the reservation can be placed before this event
find the set of the least consuming free resources at that time
add the possible start time to List with the resource set

else if the reservation can be placed after this event
find the set of the least consuming free resources at that time
add this event to List with the set of resources

if List contains only d
return d and r

else
for each date inList
estimate the reservation energy consumption if it starts at
this date
with the corresponding set of resources

propose the less energy consuming date and set of resources to
the user

REQUEST

Placement process
Not possible

or not allowed

REJECTED PROPOSITION

Accepted
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End time or
termination request
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user's constraints

Timeout or
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RUNNING
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Figure 5.6 Management of a reservation: the different states.
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The scheduling algorithm should provide either the most energy-efficient pos-
sibility in terms of both time placement and resource allocation or the earliest
possible start time if the deadline constraint cannot be satisfied. This algorithm
is executed after the admission control process, that is, to say that it is executed
on requests that respect the system’s rules and can be accepted depending on the
system’s load.

If the reservation is possible, the scheduling algorithm provides a reservation
start time and a set of resources to be used during the reservation. Algorithm 5.2
details the scheduling method. The first step is to find the earliest possible start
time. As the request has passed the admission control, it is acceptable and thus,
the user constraints in terms of resources can be satisfied at one time or another.
So, this first step will determine if the deadline constraint can be satisfied or
not. Indeed, if the earliest possible start time does not allow the reservation to
end before the deadline because of the system load, this start time is directly
proposed to the user, which can either accept or decline this proposition.

The earliest possible start time is found by looking linearly at each event
from the current time to see if a reservation satisfying the user’s constraints can
be placed before or after this event. Only the feasible solutions are examined,
the algorithm does not put a reservation start time before the current time, for
example. This restriction of the solution space to certain dates (i.e., the events)
ensures that the algorithm is fast and scalable and that the found solution is
energy efficient, since the reservation has been aggregated with at least another
one (by definition of the events).

When the earliest possible d has been found, the scheduling algorithm looks
linearly at all the resources that can accept a reservation starting at d , and it picks
the N least consuming resources at that time (taking into account the necessary
switching on and off), where N is the number of resources required by the user.
The energy-consumption estimation of a reservation is detailed in Section 5.3.4
(consumption estimator module in Fig. 5.3). This set of N resources should satisfy
the user’s constraints (e.g., if he or she specified some particular hardware or
software constraints), and should be the least consuming set of resources among
all the possible sets at d .

When the earliest possible solution (d and r) has been found, the algorithm
(Algorithm 5.2) searches if there is a better solution, in terms of energy consump-
tion, after d but still before the deadline. So, the algorithm examines each event
in the time interval between d and the deadline minus the reservation duration
requested by the user. The process is similar to the one used to find d and r .
However, each event of the time interval is considered, and for each event, the
set of the N least consuming resources is determined. At the end, all these solu-
tions are compared in terms of energy consumption and the best one is chosen.
This solution is optimal, since the algorithm tests all the possibilities that can be
the less consuming ones because of the energy-saving properties of reservation
aggregation.
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5.3.3 Resource Management and On/Off Algorithms

The scheduling algorithm aims at aggregating as much as possible the reser-
vations in order to save energy, and especially the energy used to switch the
resources on and off. However, switching the resources on and off can be dif-
ficult and requires time and energy. Thus, when a resource is switched off,
it should stay off for a certain period of time to save more energy than is
being used when switching it off then on again. Switched-off resources con-
sume energy but less energy than when they are idle (powered on but not in
use) [25]. Thus, a subtle balance needs to be adopted to ensure energy savings
by switching resources off. That is why, at the end of each reservation, the
resource manager determines if the freed resources should remain on or switched
off.

First, for each resource, the manager examines the resource agenda to see
whether another reservation has been put just after it. If this is the case, the
resource stays on. Otherwise, the manager uses a prediction algorithm (detailed
in Section 5.3.5) to estimate whether the resource is going to be used soon
(reservation prediction module in Figure 5.3). If this is the case, it stays on; oth-
erwise, the resource is switched off. This process is described by Algorithm 5.3.

Algorithm 5.3

Reservation End:
Provide the energy consumed by the overall reservation to the user
for each reserved resource

if this resource has an imminent reservation
let it on

else
launch the prediction algorithm
if the resource is going to be used soon

let it on
else

turn it off

The problem here is to have a reliable and fast solution to remotely switch
the resources on and off when necessary. This requires some hardware facilities
on the resources and a dedicated infrastructure to access them. For example, in
a grid or cloud context, IPMI facilities can be used [18].

Moreover, each resource has a copy of its own agenda, and thus, when it goes
into sleep state, it uses a timer to know when it should wake up again. So, the
previous mechanism to remotely switch on and off the resources is used only
when a reservation, which was not planned when the resource went to sleep,
occurs. Yet, switching operations on and off should be fast enough to avoid
impacting the reactivity of the whole system.



146 ENERGY-EFFICIENT RESERVATION INFRASTRUCTURE

5.3.4 Energy-Consumption Estimates

As seen in the architecture, ERIDIS embeds energy sensors to monitor in real
time the energy consumption of the resources it manages. So, at the end of each
reservation, the ERIDIS manager reports the energy consumption of the overall
reservation to the user to increase his energy awareness (Algorithm 5.3).

As seen previously, estimations of the energy consumption of some reserva-
tions are needed to take best scheduling decisions. To make these estimations,
the ERIDIS manager requires an energy profile for each resource it is managing.
This energy profile contains information about the following:

• the energy and time required to switch the resource off;
• the energy and time required to switch the resource on;
• the mean power used by the resource when it is off (i.e., sleep state);
• the mean power used by the resource when it is idle (i.e., powered on but

not used);
• the relation between the capacity usage (in percentage) and the mean power

usage of the resource (function giving the power consumption as a function
of the percentage utilization of the resource).

The ERIDIS manager is responsible for drawing up these energy profiles
by using benchmarks and energy sensors (resource energy profiles illustrated
in Fig. 5.3). These profiles are periodically updated (e.g., each month) because
hardware usage (“wear and tear”), heat, or humidity conditions, among others,
can impact the energy consumption of the resources.

By exploiting these energy profiles, it becomes easy for the resource manager
to estimate the energy consumption of a reservation. This estimation includes the
energy cost to wake up and to switch off resources if it is necessary. Thus, if, for
example, the reservation is aggregated after another one, the energy cost to wake
up the resources is saved. Similarly, if a reservation shares some resources with
another one, because it does not require the full resource, the working energy cost
of the resources is split between the two reservations according to the percentage
of the resource that each of them is using.

5.3.5 Prediction Algorithms

As explained earlier, prediction algorithms are used to ensure a good planning of
the off–on cycles. Our prediction algorithms rely on the recent history (the past
part of the agenda). They are based on average values of past inactivity period
durations and feedbacks, which are average values of differences between the
past predictions and the past corresponding real events in the agenda.

For example, with computing resources, when a node is freed the average value
of the last few free intervals of time (when the node is not used) is computed,
and it is assumed to be the value of the next free interval of time. This prediction
algorithm has been tested in Reference 31 with usage traces of a cluster belonging
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to French experimental grid, Grid’5000. In about 70% of the cases, the algorithm
takes a good decision between switching off the resource and leaving it on. More
generally, the energy gain is significant.

To illustrate how ERIDIS works, three use cases will be presented: grid man-
agement (Section 5.4), cloud management (Section 5.5), and data transfer in a
network overlay (Section 5.6).

5.4 EARI: ENERGY-AWARE RESERVATION INFRASTRUCTURE
FOR DATA CENTERS AND GRIDS

The energy consumption of data centers worldwide has doubled between 2000
and 2006 [32]. The incremental US demand for data center energy between 2008
and 2010 is the equivalent of 10 new power plants [32]. These alarming figures
lead to thinking about new technologies and infrastructures in order to increase
the energy efficiency of large-scale distributed systems such as data centers, grids,
and clouds.

The main leverage to make large-scale distributed infrastructures more energy-
efficient is to reduce energy wastage. Indeed, resources are always fully powered
on even when they are not in use. So, grids require energy-aware frameworks
capable of switching unused resources off without impacting user applications in
terms of both performance and usage. This is why, we propose the energy-aware
reservation infrastructure (EARI) [31, 33, 34] based on the ERIDIS model.

EARI is devoted to grid infrastructures that support in-advance reservations:
users submit reservation requests. They specify the duration, the number of
resources, and the start time they want. When a reservation is accepted, the
scheduler puts it in its agenda and cannot move it afterwards.

5.4.1 EARI’s Architecture

Figure 5.7 presents the architecture of EARI for a cluster. It is composed of a
traditional data center infrastructure: users, a portal, a scheduler and resource
manager, and the grid resources. However, it is also composed of energy-aware
components: a set of energy sensors plugged to the resources and an energy-aware
manager that is responsible for applying the green policies of EARI.

All the resources managers are linked and communicate between them in
order to satisfy user requests. The global EARI is evaluated in Reference 33 by
simulating a replay of 1 year of logs of Grid’5000. On the Lyon site of Grid’5000
(150 nodes), we have deployed energy sensors that fully monitor the site [35].
This provides an experimental test bed where we can test our frameworks with
real energy measurements.

5.4.2 Validation of EARI on Experimental Grid Traces

To evaluate EARI, we conducted experiments based on a replay of the 2007
traces of the Grid’5000 platform (these traces have been studied in Reference 31).
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Figure 5.7 EARI components.

We moved the reservations on a time scale by respecting several policies. Our
replay mechanism worked as follows: each reservation was treated when its
submission time came, so no arrival law was needed for the reservations. A
timer simulated the running time of the experiment, and at each second, the
manager looked into the log database to see if there was a new event, and the
scheduling algorithm was launched when required.

We designed the following six policies to conduct our experiments:

• User . We always selected the solution that fitted the most with the user’s
demand (the date asked by the user or the nearest possible date);

• Fully Green . We always selected the solution that saved the most energy
(where we need to switch on and off the smallest number of resources);

• 25% Green . We processed 25% of the submission, taken at random, with
the previous fully green policy and the remaining ones with the user policy;

• 50% Green . We processed 50% of the submission, taken at random, with
the fully green policy and the others with the user policy;

• 75% Green . We processed 75% of the submission, taken at random, with
the fully green policy and the others with the user policy;

• Deadlined . We used the fully green policy if it did not delay the reservation
from the initial user’s demand for more than 24 h, otherwise we used the
user policy.

These policies simulate the behavior of real users: there is a percentage of
“green” users who follow the advice given by EARI. Maybe they do not want
to delay their reservation for too long, as in the deadlined policy. Some users
do not want to move their reservation even if they can save energy by following
this; this is the user policy. The fully green policy can illustrate the case of an
administrator decision: the administrator always chooses the most energy-efficient
option.
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Figure 5.8 Energy consumption of EARI for four Grid’5000 sites.

These replay experiments have been conducted on four site traces: Bordeaux,
Lyon, Rennes, and Sophia (Fig. 5.8). These four scenarios represent four different
workloads over a 1-year period. The graphs represent the results for the six
different policies in order to compare their energy savings. A percentage of 100
represents the actual consumption of the platform when no energy saving is used
and so, all the resources are always fully powered on even when they are not
used. We also represent the ideal lowest bound that we called all glued . It is an
unreachable ideal case where we could glue all the reservations: they are all put
one after the other, and the resources are switched off the rest of the time. In
that case, we do not need any prediction, and thus we cannot make prediction
errors. This ideal case is not reachable because it assumes that we know all the
reservations in advance, yet the future is never known!

Aside from that, we see that sometimes our 75%-green policy consumes
more than that of the 50%-green one. This is due to the random factor: we
can move a small reservation that will prevent us from moving a big one at
this place or that will block several others. This behavior is not energy efficient.
Therefore, adding randomness does not necessarily lead to decreasing the energy
consumption.

In all the cases, our fully green policy is the best one. As we can see, using
EARI can lead to energy gains up to 46% depending on the cluster’s load. In all
the cases, this value is close to the unreachable optimal value (“all glued”).

5.5 GOC: GREEN OPEN CLOUD

The cloud’s most well-known features are virtualization, accounting, scalability,
reliability, and security. The resources-as-a-service (RaaS) philosophy leads to
a more flexible management of the physical nodes: clouds provide a strong iso-
lation that allows users to share the same physical resources. Thus, this strong
virtual machine (VM) isolation can also lead to energy savings. Indeed, physical
resources can be exploited more using workload consolidation.
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For this reason, we adapt ERIDIS to cloud environments in order to benefit
from the cloud’s features. Still, some of the following differences between grids
and clouds have to be taken into account:

• agenda (no advance reservation in current cloud infrastructures);
• virtualization and possibility to use live migration;
• usage and thus predictions;
• resource management.

cloud computing seems to be a promising solution to the increasing demand
of computing power needed by more and more complex applications. However,
the studies often lack real values o1 for the electric consumption of virtualized
infrastructures. That is why, as a preliminary step, we have studied the energy
consumption of VMs completing basic operations: boot, shut down, doing a
CPU-burn task, and migrating [36, 37].

These analyses led us to propose the green open cloud (GOC) framework to
manage cloud resources in an energy-efficient way. Among the components of
a cloud architecture, we have decided to focus on virtualization, which appears
as the main technology used in these architectures. We also use migration to
dynamically unbalance the load between the cloud nodes in order to shut down
some nodes, and thus to save energy.

As EARI, GOC supports the “do the same for less” approach and deals with
energy-efficient on/off models combined with prediction solutions [36, 37].

The main features of GOC are the following:

• to switch unused resources off;
• to predict usage;
• to aggregate reservations;
• to use green policies for the users.

In addition, when a user frees some VMs, a consolidation algorithm is used
to aggregate the remaining VMs on the smaller number of nodes. This consol-
idation process is launched in coordination with predictions algorithms in order
to avoid switching off physical resources that will be required right afterwards.
GOC also provides green advice to users such as EARI, in order to aggregate
the reservations in time. This double aggregation in time and space is the core
functionality of GOC. GOC’s manager architecture is presented in Figure 5.9.

5.5.1 GOC’s Resource Manager Architecture

The resource manager is a key component in a cloud infrastructure. To be com-
patible with the broadest possible range of resource management systems, GOC’s
resource manager is built as an overlay of existing cloud resource manager. The
components of GOC’s resource manager are the green boxes shown in Figure 5.9.
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Figure 5.9 Architecture of GOC’s resource manager.

The user’s access portal is directly linked with the admission control module
that is responsible for security. Then, the job acceptance module determines if the
user’s submission is acceptable according to management policies (for example,
the system administrator can put a limit on the resources for a single user). If
the submission is accepted, it is sent to the scheduler and the green policies
module. The scheduler looks at the agenda to see if the submission can be put
into this agenda (enough resources at the date wished by the user). According
to the green policies defined by the admin and by using aggregation, the green
policies module computes other possible slots for this job that are more energy
efficient (the job will consume less energy because it will be aggregated with
others).

The answers of the scheduler and the green policies module are sent back
to the user who picks out one solution between the one he has submitted and
the energy-efficient solutions proposed by the green policies module. Afterward,
the solution chosen by the user is returned to the scheduler, which puts it into the
agenda.

At the end of each reservation, if there is totally or partially free nodes (with
few VMs), the green policies use prediction to anticipate the next use of the
freed resources. If they will be used in a short time, we do not switch them off
or migrate their remaining VMs. We switch them off if they are totally free.
If they are partially free and if their jobs will not end in a short time, we try
to migrate their VMs on other nodes to minimize the number of nodes that are
powered on. Otherwise, if they are partially free and if their jobs will end in a
short time, we do not change anything. It will indeed cost more energy to migrate
the VMs for such a short time.

The green policies module is in charge of taking the on/off and migration
decisions, then it inscribes it in the green agenda, which is read by the green
enforcement module. The latter module is in charge of switching the resources
on an off and migrating the VMs. This part is totally transparent for the nongreen
modules. Indeed, they have no access to the green agenda and the presence proxy
is informed when a node is switched off and so can answer in its place. The green
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enforcement module has access to the agenda in order to switch on the resources
at the beginning of a job.

The resource enforcement module launches the jobs and creates and installs
the VMs of the users. It reads the agenda to know the reservations features (e.g.,
start time, VM configuration). It ensures that the user will not take more resources
than he is allowed to.

The resource status module checks whether the nodes are dead (not working
properly). If the node has been switched off by the green enforcement module,
the presence proxy answers instead. If a node is dead, the module writes it in the
agenda.

5.5.2 Validation of the GOC Framework

In order to validate GOC, we have made real experiments on a small Cloud
test bed in our lab. Our Cloud platform consists of HP Proliant 85 G2 servers
(2.2 GHz, 2 dual-core CPUs per node). XenServer 5.0 is installed on each node.
The resource manager is on another machine plugged on the same network
switch.

We have tested two different scheduling, round-robin and unbalanced, to show
the adaptability of GOC to any kind of cloud resource manager. The following
four scenarios are used to compare GOC with other traditional resource manage-
ment systems:

• Basic: nothing is changed;
• Balancing : migration is used to balance the load between the cloud nodes;
• On/off : the unused nodes are switched off;
• Green the unused nodes are switched off and migration is used to unbalance

the load between cloud nodes. This allows aggregating the load on some
nodes and switching the other ones off. This is the scenario that corresponds
to GOC.

Each scenario is launched on a cloud job arrival example for each scheduling.
All the results are provided in Reference 37. Figure 5.10 presents the average
consumption for these eight experiments. As expected, the green scenario is the
less consuming one. With the unbalanced scheduling, energy consumption is 25%
less than the basic scenario.

5.6 HERMES: HIGH LEVEL ENERGY-AWARE MODEL FOR
BANDWIDTH RESERVATION IN END-TO-END NETWORKS

Scientists increasingly rely on the network for high speed data transfers, dissem-
ination of results, and collaborations. Networks are thus becoming the critical
component. In 2007, to distribute the entire collection of data from the Hub-
ble telescope (about 120 TB) to various research institutions, scientists chose to
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Figure 5.10 Comparison between the scenarios.

copy this data on hard disks and send these hard disks via mail. It was faster
than using the network [38]. To solve this issue, dedicated networks were built to
transfer large amounts of scientific data, for example, for the LHC (Large Hadron
Collider), which produces 15 million GB of data every year [39].

Bandwidth provisioning is feasible for network operators for several years
thanks to protocols such as multiprotocol label switching (MPLS) [40] and
reservation protocol (RSVP) [41]. However, for end users with no knowledge
of network traffic, this task is impossible without collaboration with the other
nodes.

On the other hand, as networks become increasingly essential, their electric
consumption reaches unprecedented peaks [42]. Up to now, the main concern to
design network equipment and protocols was performance only; energy consump-
tion was not taken into account. With the costly growth in network electricity
demand, it is high time to consider energy as a main priority for network design.

To this end, we propose a new complete and energy-efficient bulk data transfer
(BDT) framework, including scheduling algorithms, which provide an adaptive
and predictive management of the advance bandwidth reservations (ABR). This
model is called HERMES : high level energy-aware model for bandwidth reser-
vation in end-to-end networks [43]. It is adapted from ERIDIS to this particular
dedicated network case with BDTs.
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To achieve energy efficiency, HERMES combines several techniques as
follows:

• unused network components are put into sleep mode;
• energy optimization of the reservation scheduling through reservation aggre-

gation;
• minimization of the control messages required by the infrastructure;
• usage of DTN (disruption-tolerant networking) to manage the infrastructure;
• network usage prediction to avoid too frequent on/off cycles.

When a user (end host) has data to transfer, he or she submits a data transfer
reservation that corresponds to a data volume (e.g., 10 GB), a deadline (e.g., “in
2 h”), and a destination (receiver end host). These basic information requirements
are the only ones required for simple data transfer requests. These transfers are
malleable, they are flexible enough to use any transmission rate, to have variable
transmission rates over time, or to be split in several parts.

Additional features can be specified, such as maximal and minimal bandwidths
(e.g., for video streaming or if the receiver is limited by its storage capacities)
and transfer profiles (step functions that express variable bandwidth requirement
over time). These transfers are called rigid in contrast with malleable transfers.

Each network equipment (routers, switches, bridges, repeaters, hubs, transmit-
ters) has two agendas per port (per outgoing link) for both ways (in and out).
An agenda stores all the future reservations concerning its one-way link. This
information is sometimes called the book-ahead interval [44].

Furthermore, each network equipment has also an agenda stating the on and
off periods and the switching stages between on and off. This global agenda is
in fact the combination of all the per-port agendas of the equipment: when no
port is used for a certain amount of time (not too small), the network equipment
can be switched off. Usage prediction algorithms are used to avoid switching the
equipment off if it is going to be useful in a near future.

5.6.1 HERMES’ Architecture

Wired networks are usually not organized as clusters of resources such as grids
and clouds naturally are. However, this kind of self-organization is used since a
long time in ad hoc networks for routing and energy management purposes [45].
Network nodes are divided into virtual clusters with a cluster head managing each
cluster. In our case, the cluster head is the HERMES manager. This manager is
responsible for the agendas of the nodes belonging to its cluster.

The architecture of HERMES is shown in Figure 5.11. Here, the user portal to
access the reservation system is called a gateway . The network case is particular
because it requires the coordinated reservation of several resources at the same
time, but for a particular request, this number of resources is not known in
advance. Indeed, for a data transfer job, several network paths may be possible,
and they may not have the same length.
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5.6.2 The Reservation Process of HERMES

When a gateway receives a reservation request, the first operation to execute is
admission control. The validity of the request is checked. Then, each request
requires to collect the agendas of all the equipment (ports and routers) along the
network paths between the source and the destination.

In order to do this agenda collection, all the agendas of the possible paths will
be sent to the gateway of the receiver. The sender gateway will send a particular
management message. The first node to receive it will transmit it to its HERMES
manager. The manager needs to compute the availability agenda of the possible
subpaths that can be used for this requested reservation. A subpath of a cluster
is a path between two nodes of the cluster that both have a link going outside
of the cluster to another cluster. The availability agenda of a path is obtained
by merging all the agendas of the network components actually on this path. It
contains all the residual bandwidths (unused portions) of the whole path. Each
cluster has a fixed number of subpaths and can maintain an availability agenda
for each of them, and it can update these availability agendas when it updates
the regular resources agendas. So, all the availability agendas are precomputed
and stored using the same format as regular agendas (tuple list).

The manager transmits these subpaths agendas to the next HERMES manager
toward the requested destination with a list for each subpath end node of all
the nodes outside the cluster connected to this particular end node. This allows
building up a path from the source to the destination when all these agendas
are gathered by the receiving gateway. The next HERMES manager does the
same process: it transmits its subpaths and corresponding node lists with the
ones it received from the first manager to the next HERMES manager toward
the requested destination. This algorithm limits the number of clusters that are
involved in the reservation since each manager only transmits the request to the
next manager toward the requested destination and not to all of its neighbors.
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This limitation does not compromise the energy efficiency of HERMES because
one expects that long paths (using numerous nodes) will be more energy consum-
ing than short ones. Moreover, this limitation considerably reduces the computing
time since it does not consider all the paths of the network.

Thus, the receiver gateway ends up with all the required agendas. The gateway
then makes the link between all the possible subpaths to constitute end-to-end
paths between the source and the destination, and it merges the corresponding
availability agenda of the subpaths to obtain one availability agenda per end-to-
end path. Once they are computed, the end-to-end paths can be put into cache in
order to avoid doing this computation too often.

Each end-to-end availability agenda is scanned using the ERIDIS scheduling
algorithm (Algorithm 5.2) to find the solution consuming the least energy. At
each time, the solution tries to use as much bandwidth as it can to reduce the
reservation’s duration, and thus its cost. Then, the solutions of all the end-to-
end paths are compared and the least consuming one is sent back to the sender
gateway and proposed to the user. A global view of this reservation process is
presented in Figure 5.12.

However, this process works only if the necessary ports and routers are on
when the agenda collection is done. Indeed, when they are not used, the network
equipment (individual ports or entire routers) are put into sleep mode. To solve
this issue, DTN [46] technologies are used. Indeed, DTN is perfectly adapted to
this type of scenario where parts of the network are not always available without
any guarantee of end-to-end connectivity at any time.

The idea is to add a kind of TTL (time-to-live) in seconds to each end-user
request: when the TTL expires, if the request has not reached the receiver gateway
and has not come back, then all the sleeping nodes of the path are awaken and
the agenda collection is performed. While the TTL is not expired, the agenda
collection message moves forward along the path until meeting a sleeping node.
Then, as long as the TTL has not expired, the message waits in the previous
node for the sleeping node to wake up, and when it wakes up (wake-up detection
managed by the DTN protocol), the message is sent to it and continues its way.
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Figure 5.12 Reservation process.
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Thus, hop by hop, the agenda collection message moves toward the receiver
gateway.

HERMES gateways and managers are always fully powered on to ensure high
availability and reactivity for the overall system. The gateways are able to wake
up the nodes they are linked to and the managers are able to wake up the nodes
of their clusters. So, each sleeping node need just one awake component (or two
if it is connected to a gateway) linked to its manager to be remotely awaken and
not one component per link.

5.6.3 Discussion

The proposed network management optimizes the energy consumption of the
overall architecture at any time. However, we have not yet studied the energy
optimization of transfers themselves.

Indeed, we have assumed that at any time, the most energy-efficient behavior is
to use as much bandwidth as possible (from source to destination). However, we
have not proved that this algorithm leads to the minimum energy consumption.

Let us consider this example: node A wants to send 200 MB of data to node
B and nodes A and B are directly linked by a 1 GB/s link. Our algorithm will
schedule the transfer and set the bandwidth at 1 GB/s (minus the free bandwidth
portion). If we assume that the free bandwidth portion is negligible, it takes 0.2
s to transmit 200 MB of data at 1 GB/s. Thus, this transfer will consume Etransfer
with PEthernetCard(NodeA, 1GB/s), which denotes the power consumed by node
A when it transmits data at 1 GB/s:

Etransfer = EEthernetCard(NodeA,1 GB/s, 0.2 s)

+ EEthernetCard(NodeB,1 GB/s, 0.2 s)

= PEthernetCard(NodeA, 1 GB/s) × 0.2

+ PEthernetCard(NodeB, 1 GB/s) × 0.2.

However, another solution could be to adjust the Ethernet card to work at
100 MB/s, and thus, it does not use the full capacity and takes more time. In that
case, the transfer consumes

E′
transfer = EEthernetCard(NodeA,100 MB/s, 2 s)

+ EEthernetCard(NodeB,100 MB/s, 2 s)

= PEthernetCard(NodeA,100 MB/s) × 2

+ PEthernetCard(NodeB,100 MB/s) × 2.

If we assume that the NICs are identical and thus have the same power con-
sumption PEthernetCard(100 MB/s) and PEthernetCard(1 GB/s) depending on the rate,
then the second solution uses less energy to transfer the data if and only if

PEthernetCard(1 GB/s)> 10 × PEthernetCard(100 MB/s).



158 ENERGY-EFFICIENT RESERVATION INFRASTRUCTURE

If we use the figures provided in Reference 47, we have PEthernetCard
(100 MB/s) = 0.4 W and PEthernetCard(1 GB/s) = 3.6 W for an NIC. In that
case, our scenario is the most energy efficient with a consumption equal to 0.72
J (and 0.8 J for the second scenario). However, here, we only considered the
energy used to transfer data and not the overall energy of the infrastructure
during a certain period of time. These two energy consumptions thus do
not represent the same period of time (0.2 and 2 s). To compare them over
an identical time period, we should add to Etransfer the cost of staying off
during 1.8s.

We have not taken into account the energy required to switch the NICs on at
the beginning and to switch them off at the end of the transfer since these energy
costs are identical in both scenarios.

This remark shows that our algorithm should be compared with other solutions
and that the optimal solution is hard to find, even in scenarios with fixed routing.
This situation is the result of the nonproportionality between energy and usage:
cost functions are linear by steps and not just linear.

5.7 SUMMARY

Owing to their size and heterogeneity, large-scale distributed systems require
scalable, robust, fault-tolerant, and energy-efficient resource management infras-
tructures. This chapter presented ERIDIS: an Energy-efficient Reservation Infras-
tructure for large-scale DIstributed Systems. ERIDIS is empowered to optimize
the energy consumption of the computing and networking resources and to have
a flexible and adaptive reservation management that satisfies user requirements
through strict reservation policies.

We have adapted ERIDIS to the following three different application fields to
demonstrate its capabilities:

• data center and grid management with the EARI;
• virtualized environments and cloud management with the GOC;
• dedicated network with large data transfers with the (HERMES).

Our next step is to refine the ERIDIS model to take advantage of divisible tasks
that can be suspended and resumed as required if some more urgent tasks need
to be executed. These tasks allow a higher level of flexibility in the reservation
management.
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CHAPTER 6

ENERGY-EFFICIENT JOB PLACEMENT
ON CLUSTERS, GRIDS, AND CLOUDS

DAMIEN BORGETTO, HENRI CASANOVA, GEORGES DA COSTA, and
JEAN-MARC PIERSON

6.1 PROBLEM AND MOTIVATION

Since the advent of large-scale systems such as clusters with thousands of cores
and grids with thousands of nodes, the job placement problem, due to its crucial
importance, has been studied by many researchers. Job placement algorithms,
often implemented as part of usable software infrastructures, have been devel-
oped, which attempt to optimize job placement with respect to different criteria.
These criteria are typically related to notions of time (e.g., response time, wait
time, slowdown), throughput (e.g., number of jobs processed per unit time), and
fairness (e.g., variance of job slowdowns, maximum wait time). Many proposed
approaches tackle job placement as a multiobjective problem so as to address
two or more criteria simultaneously.

This chapter discusses energy consumption as a new criterion for job place-
ment. Energy has long been ignored in the theory and practice of job placement,
but it has now become a crucial issue for the deployment of large-scale comput-
ing platforms. In recent years, energy has been considered as yet another metric
(to minimize) or even as the main optimization goal for job placement. This
chapter highlights and discusses some of the current trends in this context.

In the rest of the sections, we define our context more precisely and provide
a roadmap of the chapter, identifying content that we have left out of our scope.

6.1.1 Context

In this chapter, we focus on the placement of independent jobs, where a job is an
instance of an application that must be executed on behalf of a user. We assume
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that each job has its own characteristics, that is, its own CPU and memory
requirements, without any data or control dependency with other jobs. Conse-
quently, a job can be placed on resources independently from other jobs already
placed and other jobs yet to be placed, provided sufficient resources are available.
In real applications such as scientific workflows [1], jobs exhibit dependencies
with each other, for example, represented as a directed acyclic graph (DAG). In
this chapter, we do not consider job dependencies. In other words, if data/control
dependencies exist between jobs, they are not taken into account by the job place-
ment algorithm. Instead, we assume that the application execution is managed
via an application scheduler. This application scheduler invokes job placement
each time a new job is available for execution (because its dependencies are
cleared). Issues of job synchronization and data movements are thus handled in
an application-specific manner and decoupled from job placement decisions.

We assume that a job’s memory requirement is a hard requirement and that
the job cannot be executed with less memory than required. However, a job can
be executed with a various amount of CPU resource, achieving only a fraction
of peak performance if only a fraction of its CPU requirement is met.

We assume that several jobs may run together on a time-shared host. The
placement algorithm can allocate a fraction of the host (i.e., a fraction of the
CPU resources and a fraction of the memory) to each job. This has become
eminently feasible with virtualization technology. But we also discuss solutions
that do not take advantage of this capability.

The computing infrastructure that hosts the jobs (once they have been placed)
comprises a set of heterogeneous hosts, linked together with an interconnection
network. We assume that the placement algorithm can place each job directly on
any host(s) in the infrastructure. Host heterogeneity encompasses CPU power,
amount of memory, and energy consumption characteristics.

6.1.2 Chapter Roadmap

The rest of the chapter is organized as follows. Section 6.2 highlights techniques
for designing energy-aware infrastructures and defining energy metrics that char-
acterize these infrastructures. Section 6.3 gives an overview of the state of the art
of job placement in production clusters, grids, and clouds. Section 6.4 outlines
a set of scientific and technical challenges that arise when energy is taken into
account for job placement. Section 6.5 reviews recent energy-aware job place-
ment algorithms proposed in the literature and present details about one particular
approach. Section 6.6 discusses remaining roadblocks and opportunities. Finally,
Section 6.7 concludes with a brief summary.

6.2 ENERGY-AWARE INFRASTRUCTURES

Although this chapter focuses on energy-aware job placement issues, this section
first provides a brief description of the infrastructures that will host jobs and the
current techniques used to reduce the energy consumption of these infrastructures.
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6.2.1 Buildings

As environmental concerns become increasingly prevalent, new buildings are
designed with energy management as a priority. For instance, the EnergyStar
program was established to evaluate energy efficiency of products and practices,
including that of buildings.1 The energy efficiency of a building is quantified
via a score between 0 and 100, and buildings that achieve a score of 75 or
above receive the EnergyStar label. There are several comparable efforts in the
industry. For instance, IBM provides tools to evaluate thenergy efficiency of IT
infrastructure.2

More specifically, to evaluate the energy efficiency of a data center, several
of the following metrics are used:

• Perf/Watt . This metric is mainly used, for instance, by Green5003 to rank
the most powerful supercomputers, the vast majority of which are clusters.
It does not encompass the whole energy consumption of the room (such as
air conditioning) but only the consumption of the compute nodes.

• PUE (Power Usage Effectiveness). This metric is complementary to
perf/watt. It quantifies the ratio between the total energy consumed by the
data center and the energy provided to the computing elements.4 In 2006,
a common PUE (power usage effectiveness) value was about 2.0 [2, 3],
meaning that half of the energy consumed was not for computing but was
in fact mostly dedicated to cooling. State-of-the-art data centers today have
a PUE value of 1.5. Yahoo has recently constructed a data center near
Niagara Falls that uses circulating exterior air to cool the servers and is
able to achieve a PUE value around 1.1.5

Even if not directly connected to job placement at the cluster level, these
metrics could be used to inform job placement in a grid or cloud when choosing
among various data centers.

6.2.2 Context-Aware Buildings

A commonly held belief is that a data center in Greenland would consume less
than a data center in the Sahara, since the external average temperature is lower.
But it has been shown (for instance, in the Energy Star study6) that external tem-
perature has little impact on the overall electricity consumption of data centers.

1http://www.energystar.gov/
2http://ibmgreen.bathwick.com/
3http://www.green500.org
4http://www.google.com/corporate/green/datacenters/measuring.html
5http://green.yahoo.com/blog/ecogeek/1125/yahoo-data-center-will-be-powered-by-niagara-
falls.html
6http://www.thegreengrid.org/media/TechForumPresentations2010/ENERGYSTARforDataCenters.
ashx?lang=en
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However, this study does not account for the specifics of the building’s infras-
tructure and of the server room cooling mechanism. In fact, with air circulation
coming from outside, the difference can be be significant, as seen in the Yahoo
data center at Niagara Falls. If instead traditional air conditioning is used then
outside temperature has little influence. Some studies take such infrastructure
aspects into account for deciding on job placement [4].

More and more data centers are built to exploit renewable energy sources.
Solar panels (AISO,7 Phoenix,8 Intel,9 Sun,10 Google,11 etc.) and wind mills
(Google,12 OWC,13 Green House Data,14 Baryonyx15) produce today a part of
the electricity needed by data centers, and at least in one case all the electricity
needed.16 Most of these deployments are small and experimental, mostly because
of the fact that the consumer price of energy from these renewable source is still
higher than standard electricity in many cases.

Solutions are also developed to consume renewable electricity in data centers
in cases in which the price of standard electricity is higher than that of renewable
electricity (typically during daytime), sometimes using chillers to conserve the
cold produced using cheaper standard electricity during nighttime. The chillers
are then put to contribution along with cheaper renewable electricity during day-
time.17 This difference in electricity generation and usage can also reflect on
the data centers usage itself, that is, offloading some work to other data centers
during daytime (e.g., if only standard electricity sources are available locally or
if most of the locally available energy is renewable but from solar panels).

The placement of jobs could take advantage of information about the sources
of electricity used to power clusters. Indeed, an energy-efficient placement should
not only consider electrical concerns (watts) but could also encompass ecolog-
ical concerns. Unfortunately, only few works include these concerns for job
scheduling and placement [5, 6].

6.2.3 Cooling

An important part of the data centers’ energy consumption is due to the need to
cool running components. As explained earlier, the typical PUE of a data center

7http://www.aiso.net/technology-network-sun.html
8http://www.datacenterknowledge.com/archives/2009/06/16/solar-power-at-data-center-scale/
9http://www.datacenterknowledge.com/archives/2009/01/19/intel-testing-solar-power-for-data-
centers/
10http://www.datacenterknowledge.com/archives/2008/05/22/the-solar-powered-blackbox/
11http://www.google.com/corporate/green/clean-energy.html
12http://www.datacenterknowledge.com/archives/2007/11/29/googles-data-center-windmill-farm/
13http://www.datacenterknowledge.com/archives/2009/12/21/data-center-powered-entirely-by-the-
wind/
14http://www.datacenterknowledge.com/archives/2007/11/29/wind-powered-data-center-in-
wyoming/
15http://www.datacenterknowledge.com/archives/2009/07/20/wind-powered-data-center-planned/
16http://www.datacenterknowledge.com/archives/2009/06/16/solar-power-at-data-center-scale/
17http://www.datacenterknowledge.com/archives/2009/06/16/solar-power-at-data-center-scale/
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was about 2.0 in 2006, meaning that 1 W for the infrastructure is wasted for each
watt used to compute. A large fraction of this waste accounts for cooling.

Several techniques exist and often coexist to cooldown server rooms. Tra-
ditionally, air conditioning has been used, but problems arise when the air
circulation between the racks in the rooms has not been optimized. In this case,
some hot spots can exist, and a full investigation, taking into account CFD mod-
els and cold and hot aisle locations, must be conducted. Some vendors (HP with
Dynamic Smart Cooling,18 DegreeC with AdaptivCool19) offer tools for mon-
itoring and adjusting cooling according to heat dispersion and air circulation.
Some researchers [7–9] have proposed placing jobs in a cluster room accord-
ing to current hot spots, in order to balance the heat and reduce the use of air
conditioning.

6.3 CURRENT RESOURCE MANAGEMENT PRACTICES

6.3.1 Widely Used Resource Management Systems

A job’s life cycle proceeds through the following steps when submitted through
to a resource manager:

1. The job is submitted via an interface to the resource manager.
2. The resource manager component uses a job placement algorithm to choose

a resource or a resource set on which the job will be executed and to decide
at which time the job will begin executing.

3. Once the time at which the job is supposed to execute has arrived, the job
is launched on the selected resources by a launcher component.

4. When the job finishes executing, the user who submitted the job is notified
(and results may be sent back to that user).

Depending on the structure of the system, the decision regarding the resources
on which the job is executed may happen either in step 2 or 3, or may happen
in step 2 but refined between step 2 and 3 and/or at step 3.

The vast majority of clusters used for high performance computing (HPC) are
controlled by a batch scheduler that serves as a gateway to the cluster nodes.
This scheduler maintains several queues, corresponding to different priorities, to
which users can submit job requests. Each job request specifies a number of
nodes or processors, as well as a duration. The batch scheduler decides when
each job request can be fulfilled and on which cluster nodes and enforces quotas
(or charges) based on the CPU hours utilized by each user. A job that runs
longer than its specified duration is terminated, often leading users to specify
conservative durations. While a simple approach is for job requests to make

18http://www.hp.com/hpinfo/newsroom/press/2006/061129xa.html
19http://www.adaptivcool.com/
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progress in a queue according to a first come first serve (FCFS) strategy, most
production batch schedulers enable backfilling. Backfilling allows a job request
to jump ahead in a queue. In conservative backfilling, this is allowed provided
that no other job request is postponed [10]. In practice, the only constraint is that
the request at the top of the queue is not postponed [11]. In essence, backfilling
allows small and/or short jobs to jump ahead to fill holes in the schedule. These
holes are due not only to imperfect bin packing of jobs onto cluster nodes but
also to the fact that jobs often get finished before their specified duration. Since
queue waiting times are nondeterministic, most production batch schedulers allow
users to reserve cluster nodes for a specified duration starting at a specified
date. Popular batch schedulers used in production today, many of them are open
source, part of larger software suites, and interoperable, include SGE,20 OAR,
[12] TORQUE,/Moab/Maui21 PBS,22 and LSF.23

Batch scheduling is used routinely for workloads that consist of parallel jobs,
that is, jobs that run concurrently on multiple cluster nodes. However, many
relevant applications fall in the high throughput (HT) category: they consist of
large numbers of sequential tasks. Most batch schedulers are not well suited to
such workloads. A popular resource management solution for HT applications
is provided by Condor.24 [13] Condor can actually be used as a standard batch
scheduler for parallel workloads. However, because it does not require a shared
file system and because it can exploit idle CPU cycles of nondedicated resources,
it is particularly attractive for running HT applications. Its “glide-in” feature
allows it to interact with and acquire resources from batch-scheduled clusters.
Finally, because it can integrate more diverse resources, Condor provides a richer
way for jobs to express resource requirements (beyond number of nodes and time)
and for resources to advertise their capabilities.

The above-mentioned schedulers provide control over resources at a site, but
multiple sites can be aggregated to form a grid. Schedulers have been developed,
who provide access to grid resources based on the Globus toolkit,25 one example
of which is the integration of Condor and Globus. Furthermore, frameworks
to manage application execution on such grids, including data movements and
task synchronizations, are available. A well-known example is Pegasus26 (which
builds on top of the DAGMan metascheduler for Condor). Commercial solutions
have also been developed. For instance, Synfiniway27 provides a framework that
interfaces with batch schedulers at multiple sites and manages data movements
and task synchronizations on behalf of grid users.

20http://gridengine.sunsource.net/
21http://www.clusterresources.com/products.php
22http://www.pbsworks.com/Default.aspx
23http://www.platform.com/workload-management/high-performance-computing
24http://www.cs.wisc.edu/condor/
25http://www.globus.org
26http://pegasus.isi.edu/
27http://www.synfiniway.com
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In recent years, the cloud computing vision has emerged as a new way to
share computer resources: the computing, networking, and storage needs of
applications can be outsourced to clusters made available as part of a “cloud.”
This outsourcing alleviates management overhead of clients, relies on strong
expertise of cloud providers, and promises to afford unprecedented levels of trans-
parency, control, and customization. Cloud computing has been embraced both
in proprietary solutions (Amazon’s EC2,28 IBM’s Smart Business,29 Microsoft’s
WindowAzure,30 Google’s AppEngine,31 Platform’s ISF,32 etc.) and in the open-
source community (Opennebula,33 Eucalyptus,34 Nimbus35). In these systems,
clustered resources are managed using virtual machine (VM) technology. Users
are allocated VM instances that are customizable and decoupled from underly-
ing physical resources. VM technology thus enables consolidation of physical
resources and enforces performance isolation among instances. In most systems,
users can lease instances at an hourly rate, picking desirable instance hardware
configurations among several provided options (e.g., a high RAM instance, a high
CPU instance). Furthermore, with current technology, there is negligible over-
head involved when running an application within a VM instance when compared
to running it on the bare metal.

6.3.2 Job Requirement Description

A job submitted for execution typically comes with resource requirements. The
job placement decision should thus account for these requirements to ensure that
selected resources can meet them.

As mentioned earlier, in traditional HPC settings, jobs are submitted directly
to a cluster and require a given number of cluster nodes for a certain duration. In
a more general grid setting, since there are typically many possible sites that can
accommodate the same job, a job can specify a variety of additional requirements.
Examples of such requirements include the fact that a particular library must be
installed, that a certain amount of scratch disk space is available, or a certain type
of processor architecture is required. In spite of the added expressive power of
requirements beyond the number of nodes and duration, several studies [14–16]
have found that in real-world grid systems such requirements are typically not
provided, or specify only a simple processor architecture requirement.

An evolved, and commercially popular, way to describe job requirements is
the use of SLAs (Service Level Agreement) [17]. SLAs are especially relevant
for emerging cloud platforms, as they allow interactions between a resource

28http://aws.amazon.com/ec2
29http://www.ibm.com/ibm/cloud
30http://www.microsoft.com/windowsazure
31http://code.google.com/appengine/
32http://www.platform.com/private-cloud-computing/private-clo ud-platform-isf
33https://help.ubuntu.com/community/OpenNebula
34http://open.eucalyptus.com/
35http://www.nimbusproject.org/
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provider and a resource user. At a high level, an SLA is a contract stating that
the provider will provide resources with certain performance guarantees and/or
flexibility. Using SLAs, it is possible to change the requirements of a job as part
of a resource negotiation (e.g., changing the number of required nodes could be
done at a price discount). The use of SLAs has been proposed for grids [18], but
adoption has not been as widespread as for clouds.

6.4 SCIENTIFIC AND TECHNICAL CHALLENGES

6.4.1 Theoretical Difficulties

Most previous job placement approaches are formulated with a clear goal in mind.
Two common such goals are minimizing job turnaround time (i.e., ensuring that
jobs complete quickly, which is correlated with user satisfaction) or maximizing
job throughput (i.e., ensure that many jobs are processed per time unit, which
is correlated with resource provider needs to keep their resources utilized). Such
seemingly straightforward objectives turn out to render the job placement problem
NP-complete, and no polynomial-time job placement algorithm is known that can
lead to an optimal solution. As a result, many practical job scheduling solution do
not attempt the explicit optimization of a particular metric but rather provide many
mechanisms by which an administrator can implement custom job placement
strategies.

For many decades, energy was rarely considered as a possible optimization
metric for distributed computing systems since energy was thought to be more
or less free (or at least not a roadblock). Performance was thus the overriding
concern, quantified by different but related metrics. One area in which energy was
always a prime concern is embedded systems. For these systems, the optimization
objective is often dual, encompassing both energy and performance. The same
duality is now pertinent for large-scale wired systems such as clusters, grids, and
clouds, due to rising energy prices and increasing environmental awareness.

6.4.2 Technical Difficulties

To be optimized, a metric must be measurable with reasonable accuracy. One
factor contributing to the relatively slow adoption of energy as an optimization
is the challenge faced by energy measurement techniques. A known technical
limitation here is the accuracy of fine-grain spatiotemporal measures. The ACPI
4.0 standard is not fully implemented in all components. Furthermore, the avail-
able sampling rate of energy measurements may not be sufficient for desired
accuracy levels. Finally, components have different functions that are interde-
pendent (e.g., communication between memory and processors, communication
between machines of a distributed platform). Consequently, it is difficult to derive
the energy consumption due to the execution of an application based on energy
measurements of individual components.
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Even with techniques that provide accurate measures of energy consumption,
several technical limitations remain. For instance, energy consumption is not
necessarily linearly related to workload. For instance, a component running at
20% capacity may consume 80% of its maximum power. For such a component,
reducing the workload may not have a large impact on energy efficiency.

A more general difficulty comes from the fact that the means to adjust energy
consumption to achieve a precise trade-off with levels of performance are limited.
This is due to the small number of necessary actuators or the difficulties to access
them on current computers. While dynamically changing the clock rate of a CPU
is now a commonplace feature, it is still difficult to switch off memory banks
completely or to change the rotation speed of a hard drive at runtime.

The field of embedded systems has provided some answers regarding energy
optimization. But while measuring accurate data at small scale on a limited and
controlled set of components is feasible, it is typically impractical at large scale
with heterogeneous components.

6.4.3 Controlling and Tuning Jobs

Controlling the hardware is not the only way to influence energy consumption,
and energy actuators can be applied on the software, that is, the jobs themselves.
For instance, it is possible to simply stop a job (e.g., suspend, checkpointing, and
termination) so that another job can be executed. While this idea was used in gang
scheduling [19], it can be used for the purpose of controlling energy consumption.
For the same purpose, it is possible to migrate jobs among computers, especially
since live migration [20] can be used at the expense of minimal performance
overheads.

Beyond generic mechanisms for controlling the execution of jobs, the jobs
themselves can be implemented to provide ways for the resource manager to
influence their execution. For instance, in the HPC context, jobs can be imple-
mented so that they are “malleable,” meaning that the number of nodes on which
they execute can be modified at runtime. During their execution, it is thus possible
to tune the trade-off between performance and energy consumption. Similarly,
some jobs can be implemented so that part of their execution can be carried out
on several types of devices (e.g., CPU or GPU), selecting the target device(s) at
runtime. These devices typically lead to different ratios of performance to energy
consumption, thus making it possible to tune the trade-off between the two during
job execution. Alternately, users can specify that once a job begins execution, it
is possible to slow down or power off some cluster components, for example,
power off the hard drive and reduce clock rate via dynamic voltage frequency
scaling (DVFS) [21]. In the context of parallel applications, both Rong et al. [22]
and Etinski et al. [23] use DVFS for exploiting load imbalance and communica-
tion delays inherent to an application for the purpose of energy reduction. The
key idea is to deliberately slow down nodes executing shorter tasks to match
the task with the longest execution time. While in Reference 22, this capabil-
ity is provided by enhancing the job’s implementation itself; in Reference 23,
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it is part of a runtime job execution environment. An additional possibility, used
in Reference 23, is to use overclocking to reduce critical task execution times.
The additional energy cost due to overclocking could be offset by the savings in
execution time.

The more tunable jobs are, the more it is possible to control overall energy
consumption while maintaining a particular trade-off with performance. While
job tuning affords tremendous opportunity, the challenge is that most jobs today
do not allow tuning by the runtime system; for example, many applications are
often static as opposed to autonomic, workflow structures are often statically
implemented instead of being adaptable. Even with jobs that support tuning, it is
crucial that the resource management system be made aware of the tuning options
for each job so as to inform job placement decisions, which is not possible with
most production resource management systems today.

6.5 ENERGY-AWARE JOB PLACEMENT ALGORITHMS

As seen in Section 6.3.1, several resource managers are currently used in produc-
tion clusters. In the vast majority of the cases, energy concerns are not taken into
account explicitly by these resource managers. The resulting job placement may
leave some nodes unutilized, in which case they can be powered off to conserve
energy.

At any rate, in all the above, job placement decisions are made without
explicitly accounting for energy consumption. In this section, we review selected
research works that have proposed strategies and algorithms for energy-aware
job placement. We present one such approach in detail.

6.5.1 State of the Art

The two commonly available mechanisms for reducing power consumption are
(i) to power off cluster nodes and (ii) to slow down cluster nodes via DVFS.
Several works have studied the job placement problem using one or both of these
mechanisms.

Several authors have proposed extensions to standard batch scheduling algo-
rithms to make them energy aware. Nodes are powered off when not used, and job
placement decisions attempt to power a node back on only when absolutely nec-
essary [24]. When placing jobs on cluster nodes that support DVFS, for instance,
during a backfilling step, nodes are slowed down as much as possible while still
respecting constraints on job duration [25].

Beyond extending extant schedulers, many researchers have proposed new
scheduling and job placement algorithms that attempt to optimize energy-related
metrics directly. All these algorithms attempt to provide a sensible trade-off
between performance and energy. Note that a popular mechanism for imple-
menting the produced job placement, used in many of the works cited hereafter,
is VM technology. If job tasks are encapsulated in VM instances, then it is easier
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to control their resource usage and to possibly migrate them among cluster nodes
to better consolidate workload.

Kamitsos et al. [26] attempt to find an optimal policy for powering nodes on
and off using a Markov decision process. Solving the Markov decision process
makes it possible to find a Pareto optimal trade-off between performance and
energy. A similar approach is proposed in Reference 27, in which three met-
rics are considered: queue waiting time, power consumption, and job blocking
probability.

Benoit et al. [28] propose to optimize performance and energy for the mapping
of concurrent pipelined streaming applications on a multiprocessor platform. Such
optimizations are achieved using the optimal solution obtained via the resolution
of an integer linear program. They develop polynomial-time heuristics that reduce
energy consumption while maintaining the application’s latency below a fixed
threshold. Petrucci et al. [29] also formulate the job placement problem as a
linear program, which is solved periodically in a control loop manner. They
consider a heterogeneous cluster with DVFS-enabled nodes and minimize energy
consumption under a set of constraints while allowing task migration. Another
approach that uses a linear program formulation is that in Borgetto et al. [30],
which is detailed in Section 6.5.2.

Hoyer et al. [31] propose statistical allocation planning using two different
approaches for resource allocation. The first approach is pessimistic and allo-
cates to each job the maximum resource fraction it could need, using vector
packing to perform the allocation. Their second approach is optimistic and tries
to overbook each node while maintaining each job over a certain threshold on
performance reduction. Interestingly, their approach entails dynamic monitoring
of VM instances.

Rodero et al. [32] attempt to reduce energy consumption by powering off
subsystems when they are not needed as well as carefully managing VM provi-
sioning.

Entropy [33] is a resource manager for homogeneous clusters, which per-
forms dynamic consolidation of resources based on constraint programming,
using migration and accounting for migration overhead.

Berral et al. [34] achieve significant power consumption reduction via resource
consolidation using machine learning to make resource allocation decisions.
Essentially, their approach favors the allocation of new jobs to already powered
up nodes, possibly using migration.

Power consumption reductions via intelligent resource allocation is not only
studied at the cluster scale but also at a global scale. For instance, in Reference 4,
Le et al. propose a framework to reduce costs in geographically distributed sys-
tem. The goal is to exploit the differences and variability between the energy
costs of data centers, the different time zone where these data centers are located,
and their proximity to “green” power sources. The optimization problem is to
minimize cost while meeting SLAs. A similar approach is followed by Garg
et al. [5].
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6.5.2 Detailing One Approach

The approach we have chosen to detail here for the energy-aware job placement
problem can be partly found in Reference 35, with some extensions in the problem
modeling and formulation.

We chose to investigate the placement of infinite or very long jobs in a virtu-
alized homogeneous cluster, with a static or periodic placement system.

Each host is characterized by its idle power consumption and its loaded power
consumption (both can vary even for homogeneous clusters [36] depending on
the spatial location of the server). We model the dynamic power consumption
as linearly dependent to the CPU usage of the server. As we place ourselves in
a virtualized environment, we are able to assign jobs to each individual shares
of the server capabilities. That way, we will allocate to a job, for example, 50%
of the CPU and 70% of the memory. We also assume that the jobs all require
a certain amount of computation capability to execute themselves, and that this
amount is known.

We derive constraints that form the basis for a linear program formulation of
the resource allocation problem. This program extends that in Reference 37 to
account for power consumption. We first define the following variables. eih is a
binary variable that takes value 1 if job i is allocated to host h , and takes value
0 otherwise. αih is a rational variable that denotes the CPU fraction allocated
to job i on host h . Finally, ph is a binary variable that is set to 1 if host h is
powered on. Our constraints for these variables are as follows:

∀i, h eih ∈ {0, 1} (6.1)

∀i, h αih ∈ Q (6.2)

∀h ph ∈ {0, 1} (6.3)

∀i
∑

h eih = 1 (6.4)

∀i, h 0 ≤ αih ≤ eih (6.5)

∀i, h ph ≥ αih (6.6)

∀h ph ≤ ∑
i eih (6.7)

∀h
∑

i αih ≤ ph (6.8)

∀h
∑

i eihmi ≤ ph (6.9)

∀i
∑

h αih ≤ αi (6.10)

Constraints 6.1–6.3 define the range of the variables. Constraint 6.4 states
that job is allocated to a single host, meaning that for a given i only one eih

value is nonzero. Constraint 6.5 states that a job can consume CPU resources
only on the host to which it is allocated, meaning that for a given i only one αih

value is nonzero. Constraint 6.6 states that if a job consumes CPU resources on
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a host then that host must be powered on. Constraint 6.7 states that if no job is
allocated to a host then that host is powered off. Constraint 6.8 states that the
CPU resources of a host that is powered on are not to be exceeded, and that no
CPU resources are consumed on a host that is powered off. Constraint 6.9 states
that the RAM resources of a host that is powered on are not to be exceeded,
and that no RAM resources are consumed on a host that is powered off. Finally,
Constraint 6.10 states that a job never receives a CPU share that is larger than
its CPU need.

We use as a metric for the job performance what is called the yield (defined
by Eq. 6.12), which is the ratio between what was required by the job and
what job is effectively allocated to it. The energy consumption metric will be
the instant power consumption of the whole system (defined by Eq. 6.11), Cmin

being the idle consumption of a server and Cmax the power consumption when
fully loaded.

E =
∑

h

Cmin
h ph +

∑

h

(Cmax
h − Cmin

h )
∑

i

αih (6.11)

∀i,
∑

h

αih

αi

≥ Y (6.12)

We then model the different objective functions in order to define three distinct
problems. First, we define the boundedyield problem, which models when we
want to optimize the energy consumption of our system and are willing to lose
a certain percentage of performance. The objective here will be to minimize the
energy consumption E while matching the additional constraint of the service
deterioration bound that we fixed (Y ≥ bound).

Second, we define the boundedpower problem, which models the case where
our system cannot exceed a certain bound of power consumption for electric
supply reasons, or simply cost concerns. In this case, the objective will be to
maximize the minimum yield (meaning making the worst allocated job of the
system as happy as possible) while matching the additional constraint of the total
system power consumption that should not be exceeded (E ≤ bound).

Those methods have the advantage to allow us to bound one objective while
optimizing the other, making solutions to the problem easier to compare with
each other.

Finally, we define the mixedobjective problem, which models the fact that
we want to reduce the energy consumption of our system, without compromising
too much the performance of the jobs, and without having any particular need
on either the energy consumption or the yield. This problem, as its name states,
is a dual objective problem, with often antagonist objective. The value we will
seek to optimize is a linear combination of both the aforementioned problems.
As Y and E are not in the same order of magnitude, we had to normalize it so it
could be between 0 and 1, in order to make Z between those values as well. This
normalized value is X = min(1, E/Emax), with Emax being the smallest upper
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bound to E for which the theoretical bound on the optimal yield is no lower than
that obtained assuming the highest possible power consumption.

The metric is defined as follows:

Z = λY + (1 − λ)(1 − X) (6.13)

with λ between 0 and 1.
The problem being defined, we can now solve it. To this purpose, we have

at our disposition a tool to find the optimal solution of a linear program called
GLPK .36 This will allow us to find the optimal solution, therefore being able to
compare ourselves to this optimal. However, finding the solution of this NP-hard
problem [37] cannot be done in reasonable computation time. We will only be
able to compute the optimal solution for small problems (denoted milp is the
following). To cope with this issue, one solution is to relax the mixed integer
linear program formulation, making the integer variables rational. This way, we
can compute in polynomial time a rational bound on the optimal solution, thus
obtaining a point of comparison for our heuristics (denoted lpbound in the
following).

We defined several algorithms in order to solve the energy-aware job place-
ment problem. We used greedy algorithms for each different problem and modi-
fied our algorithm EA-ResAlloc described in Reference 35 in order to match the
constraints of each problem.

Four Greedy algorithms were defined by deriving well-known vector packing
algorithm. Two Greedy algorithms were variants of the first fit, the other variant
of the best fit algorithm. The difference between each pair is the order of jobs to
be packed, here decreasing CPU and decreasing memory demand. Here, we will
only plot the best performing greedy algorithm.

To solve the boundedyield problem, the algorithms will place the jobs at a
yield equal to the yield bound, on the smallest Cmax that can accommodate the
job’s resource need.

To solve the boundedpower problem, the algorithms will place the jobs at a
yield of 1, and then iteratively decrease each job’s allocated resource by small
steps in a round robin manner.

To solve the mixedobjective problem, the algorithms are built
on the above boundedpower algorithm. They first calculate HZ =
max(1, �(1 − λ) × (

∑
i αi)�), which gives the theoretical number of hosts that

is needed to achieve a resource allocation with a given λ value. The energy
bound is then calculated using the HZ first hosts in the host list (the hosts are
sorted by increasing Cmax). This energy bound is then used to solve the problem
using the boundedpower algorithms.

In Reference 35, we proposed a resource allocation heuristic based on the work
in Reference 37 that aims at addressing two antagonist objectives: maximizing
the job yield and minimizing power consumption. This heuristic relies on the

36http://www.gnu.org/software/glpk/
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“energy-aware yield” of a job that is used by the heuristic to conciliate the
following three different goals:

• maximizing job yield;
• placing jobs on energy-efficient hosts; and
• aggregating jobs on a reduced number of hosts in order to power off as

many hosts as possible.

This metric is used in a task allocation heuristic using vector packing. In
our work, we have built on this heuristic so that it can be applied to solve the
boundedyield, boundedpower and mixedobjective problems.

As we have in the energy-aware yield, a parameter that allows one to
favor the energy savings at the expense of the performance or the opposite,
the transposition of the algorithm to each different problem is rather direct.
The boundedpower problem will be solved by doing a binary search on the
aforementioned parameter. For the boundedyield problem, we allocate the jobs
with an objective yield equal to the bound, and set the trade-off parameter to
favor only the performance. Finally, for the mixedobjective problem, we use the
energy-aware yield as it is, as it was designed especially for the bicriteria problem.

We then defined a set of different problems to be solved by each algorithm.
Only for the small problems the mixed integer linear program formulation is
solved; for all the other problems, we compare the different algorithms’ rational
formulation of the linear program. We ran simulations from 4 hosts and 4 jobs
to 64 hosts and 192 jobs, randomly generating both host characteristics and job
CPU and memory needs. For each combination of host and job number, 100
simulations were computed. The graphs were generated by averaging the results
of the corresponding simulation.

Figure 6.1 plots the average minimum yield for each algorithm of the bound-
edpower problem, grouped by number of hosts. As expected, the best results
are for milp and lpbound. For the other algorithms, we can see that the ea-
resalloc_bound_e outperforms the other algorithms on average.

Figure 6.2 plots the average energy consumed by each algorithm of the bound-
edyield problem, grouped by number of hosts in the instance. We only have milp
results for the instances with four hosts, since computing it, for instances, with
six hosts and above takes prohibitive amounts of time. As expected, lpbound
and milp achieve the smallest average energy consumption. For small num-
ber of hosts (4, 6, and 8), our heuristics lead to comparable results. The ea-
resalloc_bound_y algorithm begins to behave differently from the greedy
algorithms, for instances, with over 16 hosts. For the largest instances, it achieves
the best results, giving allocation of an average of 5900 W. For these instances,
ea-resalloc_bound_y is approximately 6% away from lpbound, while the
greedy_boundedyield_4, which is the best of the greedy algorithms for these
instances, is +10% away from the bound.

For the mixedobjective, Figures 6.3 and 6.4 plot, respectively, the average
energy consumption and the average minimum yield for each algorithm, grouped
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Figure 6.3 Energy consumed by each algorithm for each number of hosts.
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by number of hosts in the instances. The best energy consumption is achieved by
the greedy_mixed_1 algorithm, as it focuses on the energy reduction. However,
this algorithm also has the smallest minimum yield of all the algorithms. The
opposite goes for the ea-resalloc_mixed algorithm, which achieves the highest
energy consumption and also the highest minimum yield. This demonstrates the
fact that bicriterion optimization is difficult.

We also ran other types of evaluation of the algorithms. Time spent in solving
the problem is one of them. We have seen that the optimal, given by solving
the problem using the MILP formulation, took unreasonable time to solve once
six hosts and six jobs were past. That is why we chose to use heuristics, here
with the ea-resalloc algorithm, which takes really reasonable time to compute
a solution, even for large systems. For an instance of 500 hosts and 1500 jobs,
ea-resalloc_bound_y produces a solution in 1 s, which is highly acceptable.
The same goes for all the Greedy algorithms that are fast to compute but lack
performance in the solutions.

Good performance is achieved by ea-resalloc in both the boundedyield
and boundedpower problems. It outperforms the greedy algorithms in those
problems. For the mixedobjective problem, we can see that it does not
perform well in terms of energy savings but perform well regarding the job
performance.

6.6 DISCUSSION

6.6.1 Open Issues and Opportunities

We have seen that, in spite of the diversity of proposed approaches for solving
the energy-aware job placement problem, many solutions share the same foun-
dations: (i) powering nodes on and off; (ii) migrating jobs for better workload
consolidation; (iii) exploiting techniques to influence CPU energy consumption;
(iv) developing sensible job placement algorithms given the above capabilities;
and (v) providing to these algorithms accurate estimates of energy consumption.
Hereafter, we discuss technical challenges and opportunities for each of these
five foundations.

The approach consisting in powering hosts on and off is simple and effective.
Not only is energy saved due to the node being powered off but also there is a sav-
ing in energy because of reduced cooling needs [38]. One issue, however, is that
the time for suspending and restarting (i.e., rebooting) a node can be significant.
Suspending a node to RAM or using Powernap reduces this time dramatically
with negligible energy cost [39] but is not always available. Furthermore, pow-
ering a node on or off leads to a brief peak in energy consumption. In general,
powering off a node should only be done based on a reasonable prediction that
the node will not have to be powered up again in the short term. Such predictions
are feasible in some cases [40] but are difficult to obtain in environments that
experience highly dynamic workloads. Given the above, powering nodes off and
on in a near-optimal manner is a difficult problem. As a result, in production data
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centers, the decision to power off nodes is often taken only in “obvious” cluster
underutilization cases.

Powering off and on cluster nodes is more effective if used in conjunction
with techniques to consolidate the workload on those nodes that remain powered
on. A mentioned earlier, a now common approach to perform such consolidation
is to encapsulate jobs (or job tasks) within VM instances and migrate these
instances across cluster nodes. Migration has a performance overhead that can
impact an application negatively, even though live migration techniques can be
used to migrate a VM instance with little overhead [41–43]. However, the energy
overhead of migration is often overlooked. In particular, when migrating a VM
instance between two nodes, both nodes must be powered on until completion
of the migration operation [29, 36]. It is therefore crucial to account for both
the time and the energy overhead of migration, which is done only rarely in the
literature in the context of job placement [33, 44].

A commonplace technique for energy saving is DVFS, and we have seen
that previous research work has advocated the use of DVFS while making job
placement decisions. While DVFS allows significant saving in terms of CPU
energy consumption, the share of the energy consumption due to the CPU is
actually decreasing [45]. In this sense, the use of DVFS for energy saving is
thus likely to become increasingly less effective. To make matters worse, the
energy savings because of DVFS are also limited by the advent of multicore
systems. As explained in Reference 46, significant energy saving requires voltage
scaling and frequency scaling. Unfortunately, even when the core frequencies
can be scaled independently, there is only one voltage rail to the cores from the
motherboard and the voltage is constrained by the highest frequency of any core.
On the basis of advances made in the area of mobile computing and devices,
modern CPUs change their power requirements dynamically based on resource
demands.37 We conclude that, given current technology and trends, job placement
algorithms must go beyond simply enacting DVFS if the goal is near-optimal
energy saving. This raises the interesting question of the interface between the
resource manager in charge of job placement and the hardware. One option is
for the resource manager to consider cluster nodes such as “black boxes” that
perform their own power management. Another is for the resource manager to
actively influence power consumption at the node level (e.g., DVFS, powering
off cores, overclocking cores, switching off memory banks). This latter option
might lead to increased power saving. However, it complexifies job placement
algorithms especially for managing a node that hosts multiple jobs that share
hardware resources.

The job placement problem is algorithmically difficult in most relevant sce-
narios. In fact, it is not only difficult to solve but, before even attempting to
solve it, also difficult to define. Examining the literature, it is quickly apparent
that the authors propose diverse formulations of the problem for different opti-
mization objectives. A crucial issue is thus to identify appropriate metrics in a

37http://www.acpi.info/
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view to defining a family of relevant job placement problems as optimizations
of these metrics. Standard problem definitions are, for instance, widely accepted
in the theoretical scheduling literature [47] and following the same approach for
energy-aware job placement would be a useful development. Those problem def-
initions that have been proposed to date all boil down to solving NP-complete
resource allocation problems (finding optimal solutions are constrained to small
size problem [29]), thus motivating the development of polynomial-time heuris-
tics. However, only few authors develop heuristics that are compared to (bounds
on) the optimal, thus making it possible to quantify their efficacy in an absolute
sense [28, 30, 48]. However, given that there is no consensus on the defini-
tion of the energy-aware job placement problem, it is not possible to compare
these heuristics to each other. One overriding challenge is that the energy-aware
job placement problem is inherently multicriteria since typically several notions
of performance and energy are optimization goals. Multicriteria optimization is
notoriously difficult. The technique that consists in optimizing a weighted linear
(or other) combination of the optimization criteria only provides ad hoc solutions
that may not translate to sensible trade-offs between the criteria. The technique
that consists in bounding all but one criterion and optimizing this criterion may
still be far from a Pareto-optimal solution. Consequently, in spite of results in
the literature thus far, many algorithmic challenges remain.

Investing effort in addressing the aforementioned algorithmic challenges is
worthwhile only if a job placement algorithm has the ability to precisely quantify
the energy saving or cost brought about by job placement and resource manage-
ment decisions (e.g., adding a job, suspending a job, modifying the resource
fraction allocated to a job, powering on a node, slowing down a node). A cru-
cial issue is thus the development and validation of analytical models of energy
consumption [49–51]. These models must be based on accurate observations of
energy consumption under a wide spectrum of hardware resource utilizations.
These observations must be compiled into analytical models to inform job place-
ment decisions, either off-line using representative benchmarks or at runtime.
One difficulty is that accurate models must be obtained via fine-grain energy
measurements at a resolution that may not be achievable today for all hardware
components. Another is that these models can be instantiated and used effectively
for job placement only if the resource utilization of jobs in the workload at hand
can be discovered and characterized at runtime. Such discovery can be done by
monitoring running jobs, for example, using VM instance monitoring techniques
[43, 52–55], which may be intrusive and lead to both performance and energy
penalties.

6.6.2 Obstacles for Adoption in Production

In this chapter, we have seen that many algorithms have been proposed for
solving the job placement problem in an energy-aware manner. However,
these algorithms are developed and evaluated with models that make several
simplifying assumptions (e.g., homogeneous platform, simple linear models of
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energy consumptions, perfect information regarding the workload). Adoption
of these novel energy-aware algorithms in production resource managers, which
are to be used for complex systems is thus not immediate. However, such
adoption is required for research in this area to lead to any practical impact.
For instance, adoption of new resource management technology is notoriously
difficult in production HPC installations that have relied on standard batch
schedulers for decades. In spite of countless advances in the job scheduling
literature showing promises of improved job performance and/or platform
utilization, a surprisingly small number of these advances have made their
way into production batch schedulers. Similarly, one can expect that adoption
of newly proposed energy-aware job placement algorithms in production will
be challenging at best. If adoption is to be reached, it must be achieved via
incremental enhancements to existing production batch schedulers.

The above disconnect between research and production is commonplace and
definitely not unique to the area of energy-aware job placement. We note that the
obtained results show that naı̈ve job placement solutions can lead to vastly sub-
optimal energy consumption. By contrast, proposed novel algorithms can instead
be relatively close to optimal, which should provide compelling motivation for
adopting these algorithms in production systems. Beyond the need for incremen-
tal adoption, identified earlier, another obstacle to adoption is that most efforts
in production systems today are focused on reducing the energy consumption
of the infrastructure itself. For instance, given the large amount of energy spent
for cooling, there is still a large energy payoff for enhancing the infrastructure
(e.g., building, hardware) rather than focusing on software and algorithms. We
are, however, reaching a point of diminishing return in terms of infrastructure
enhancements. The PUE of state-of-the-art production data centers has globally
decreased over the past 5 years from around 2 [2, 3] to below 6.5 today. It
is thus reasonable to expect that software and algorithmic issues, including job
placement algorithms, will play a crucial role in reducing energy consumption in
production data centers in the near future.

6.7 CONCLUSION

In this chapter, we have motivated the development of energy-aware job place-
ment in clusters, grids, and clouds. After describing current computing infrastruc-
tures, state-of-the-art techniques for making these infrastructures energy efficient,
and current resource management approaches, we have identified the challenges
underlying the energy-aware job placement problem. We have reviewed rele-
vant works in the literature that attempt to tackle some of these challenges,
and detailed one particular approach. Finally, we have discussed remaining lim-
its and outstanding opportunities. Beyond the need to address remaining scientific
and technical challenges, we have demonstrated that there are today strong incen-
tives for energy-aware job placement algorithms to be integrated in production
systems.
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COMPARISON AND ANALYSIS
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A computational grid is a distributed computational network enabled with soft-
ware that allows cooperation and sharing of resources. The energy consumption
of these large-scale distributed systems is an important problem. As our society
becomes more technologically advanced, the size of these computational grids
and energy consumption continue to increase. In this chapter, we study the prob-
lem of optimizing energy consumption and makespan by focusing on different
techniques to schedule the tasks to the computational grid. A computational grid
is simulated using a wide range of task heterogeneity and size variety. The heuris-
tics are used with the simulated computational grid and the results are compared
extensively against each other.

7.1 INTRODUCTION

A computational grid is a distributed computational network enabled with soft-
ware that allows cooperation and sharing of resources. The energy consumption
of these large-scale distributed systems is an important problem in today’s soci-
ety. As our society becomes more technologically dependent, the size of these
computational grids and amount of energy consumed continues to increase [1].

Energy is the amount of power used over a specific time interval. Power
and time are the two major factors analyzed to reduce energy consumption in a
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computational grid. Power is defined as the rate the distributed system consumes
electrical energy during operation . There are a few common ways (listed below)
to help minimize the energy consumption of these large-scale distributed systems.
One method is dynamic voltage scaling (DVS) [2]. DVS is used to reduce power
by scaling down each processing element’s (PE) supply voltage (Vdd) to one
of a few discrete (Vdd) levels. Reducing power consumption will increase the
execution time of a task on a PE; however, the overall energy consumption will
decrease because less power is consumed.

Another method is dynamic frequency scaling (DFS). DFS can be used either
for energy conservation or for lowering the heat produced by a processor by
lowering the frequency at which the processor can issue instructions. Lowering
the frequency will increase the amount of time a PE needs to complete a task,
but this leads to energy conservation. Energy is conserved with DFS because the
PE consumes less power when running at lower frequencies.

A third technique commonly used to conserve energy on the PE level is
clock gating. Clock gating adds additional logic to the PE, which disables certain
portions of the switching activity from changing states. This method reduces the
power by preventing the PE from constantly switching, which accounts for a
large fraction of the PE’s energy consumption.

We chose to use the DVS approach because the approach: (i) accurately sim-
ulates real-world problems, (ii) has no switching, and (iii) has a closed form
relationship among voltage, power, energy, and makespan.

In this chapter, we study and analyze seven greedy heuristics-based algorithms.
The greedy heuristics are used to find solutions for the energy-aware task alloca-
tion (EATA) problem of assigning a group of tasks to a set of PEs. Each greedy
heuristic is given the same conditions and parameters to maintain a fair compar-
ison. The proposed heuristics are Greedy-Min, Greedy-Max, Greedy-Deadline,
MaxMin, MinMin StdDev, MinMax StdDev, and ObFun.

Each PE in a large-scale computational grid is composed of many hardware
devices (hard drives, memory, communication links, etc.) that contribute to the
total energy consumption. The presented heuristics provide enough accuracy to
give a good estimate of the total energy consumption while still allowing one to
simulate a large-scale data center [3].

Initially, Greedy-Min, Greedy-Max, Greedy-Deadline, MaxMin, MinMin Std-
Dev, and MinMax StdDev rearrange the tasks so that they are in the order,
and they will be distributed to PEs. Greedy-Min schedules the tasks with the
shortest completion times first. Greedy-Max schedules the tasks with the longest
completion times first. Greedy-Deadline schedules the tasks with the most urgent
deadlines first. MaxMin initially schedules the tasks to the least efficient PEs to
allow easier scheduling of the subsequent tasks. MinMin StdDev first schedules
the tasks in ascending order and then rearranges the tasks in ascending order
based on their standard deviation. MinMax StdDev is similar except that the tasks
are rearranged in descending order after the standard deviation of each task is
determined. After a task is assigned to a PE, the PE is set to the minimum DVS
level that keeps the task from overshooting the deadline constraint.
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ObFun is a greedy heuristic that uses two objective functions to assign tasks to
appropriate PEs. The first objective function decides which task will be assigned
to a PE during each iteration by examining the runtime and power consumption
of each task on every PE. The second objective function determines the most
appropriate PE for the task.

We will compare and analyze the above techniques by examining the results
of numerous simulations. To incorporate variance in our simulations, we vary
the task and PE heterogeneity. The number of tasks also varied from 1000 to
100,000. A detailed explanation of our simulation test bed is given in Section 7.5.

The remainder of this chapter is organized as follows. The problem formulation
is introduced in Section 7.2. Next, the task scheduling heuristics is discussed in
Section 7.3. The simulation results are reviewed in Section 7.4. In Section 7.5,
we present related research. Finally, we present a conclusion in Section 7.6.

7.2 PROBLEM FORMULATION

7.2.1 The System Model

Consider a large-scale distributed system, which is a set of tasks (referred to as
a metatask ) and a collection of PEs.

7.2.1.1 PEs. Let the set of PEs be denoted as PE = {PE1, PE2, . . . , PEm}.
Each PE is assumed to be equipped with a DVS module, which we will describe
in the subsequent sections. A PE is characterized by the following:

• The instantaneous power consumption of the PE, pj . Depending on the PE’s
DVS level, pj may vary between pmin

j and pmax
j , where 0 < pmin

j < pmax
j .

• The available memory of PE, mPEj
.

7.2.1.2 DVS. DVS is a method that can be used to conserve energy in a data
center [2]. With the DVS technique, each PE’s supply voltage (Vdd) can be scaled
to a discrete number of Vdd levels. By decreasing the operational frequency (f )
and Vdd, the amount of energy conserved may be increased. A PE will com-
plete fewer computational cycles while operating at a lower frequency; therefore,
decreasing the frequency increases the makespan. The makespan is defined as
the amount of time taken to complete all the tasks given to the data center. The
following equations give the relationship between f , power consumption, and
energy consumption over the period [0, T ]:

f = k · (Vdd − Vt)
2

Vdd
, (7.1)

P = CL · N0→1 · f · V 2
dd, (7.2)

E =
∫ T

0
P(t)dt, (7.3)
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where CL is the switching capacitance, N0→1 is the switching activity, k is a
constant that is dependent on the circuit, T is the total time, and Vt is the circuit
threshold voltage.

7.2.1.3 Tasks. A metatask, T = {t1, t2, . . . , tn}, is a set of tasks where ti is a
task. Each task is characterized by the following:

• The number of computational cycles, ci , that need to be completed.

• The memory requirement of a task, mti
.

• The deadline, di , which is the time by which a task must be finished.

7.2.1.4 Preliminaries. Suppose that we are given a set of PEs and a metatask,
T . Each ti ∈ T must be mapped to a PE such that the deadline constraint of ti is
fulfilled. That is, the runtime of PEj must be less than di . Let the runtime of PEj

be denoted by mj . A feasible task to PE mapping occurs when each task in the
metatask can be mapped to at least one PEj while satisfying all of the associated
task constraints. If mPEj

< mti
, then ti cannot be executed on PEj .

7.2.2 Formulating the Energy-Makespan Minimization Problem

Given is a set of PEs and a metatask, T . The problem can be stated as follows:

• The total energy consumed by the PEs is minimized.

• The makespan , M , of the metatask, t , is minimized.

We can say mathematically,

minimize
n∑

i=1

m∑
j=1

pijxij and minimize max
n∑

i=1

tij xij

subject to the following constraints:

xij ∈ 0, 1, i = 1, 2, . . . , n; j = 1, 2, . . . , m (7.4)

ti → mj, ∀i,∀j ; if mPEj
> mti

; then xij = 1 (7.5)

tij xij ≤ di,∀i, ∀j, xij = 1 (7.6)

(tij xij ≤ di) ∈ 0, 1 (7.7)

n∏
i=1

(tij xij ≤ di) = 1, ∀i, ∀j, xij = 1 (7.8)
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Constraint 7. is the mapping constraint. ti is assigned to PEj when xij = 1.
Constraint 7.5 elaborates on this mapping in conjunction to the memory require-
ments and states that a mapping can exist only if PEj has enough memory to
execute ti . Constraint 7.6 relates to the fulfillment of the deadline of each task.
Constraint 7.7 shows that there is a Boolean relationship between the deadline
and the actual execution time of the tasks. Constraint 7.8 relates to the deadline
constraints of the metatask that will hold if and only if the deadline, di , for each
ti ∈ T is satisfied.

The EATA problem formulation is a multiconstrained, multiobjective opti-
mization problem. The preference must be given to one objective over the other
because the optimization of energy and M oppose each other. The formulation
is in the same form as the generalized assignment problem (GAP) except for
Constraints 7.6–7.8. The major difference between GAP and EATA is that the
capacity of resources in GAP, in terms of the utilization of instantaneous power,
is defined individually, whereas in EATA the capacity of resources is defined in
groups [4].

7.3 PROPOSED ALGORITHMS

In this section, we describe the inner workings of our seven proposed heuristics.
All of the task execution times are obtained from an estimated time of comple-

tion (ETC) matrix [5]. An ETC matrix is a two-dimensional array with |T | rows
and |PEp| columns. Each element in the ETC matrix corresponds to an execution
time of ti on PEj , where i is the row and j is the column. To generate the ETC
matrix, we use a coefficient-of-variation-based (CVB) ETC matrix generation
method [6]. There are three major parameters that determine the heterogeneity
of the ETC matrix as follows:

1. the average execution time of each ti ∈ T , μtask;
2. the variance in the task execution time, Vtask;
3. the variance in the PE heterogeneity, VPE.

Because CVB uses a γ distribution [7], the characteristic shape parameter, α,
and scale parameter, β, must be defined. The gamma distribution’s parameters,
αtask, αPE, βtask, and βPE can be interpreted in terms of μtask, Vtask, and VPE. For
a gamma distribution, μ = βα and V = 1/

√
α. Then

αtask = 1

V 2
task

, (7.9)

αPE = 1

V 2
PE

, (7.10)

βtask = μtask

αtask
, (7.11)
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βPE = G(αtask, βtask)

αPE
, (7.12)

where G(αtask, βtask) is a number sampled from a gamma distribution.
The di for each ti is derived from the ETC matrix and can be represented by

di = |ti |
|PE| · argj max(tij ) · kd, (7.13)

where kd is a parameter that can tighten di [8, 9].

7.3.1 Greedy Heuristics

The resource allocation for the following six greedy heuristics is achieved by
CRAH. Algorithm 7.1 shows the pseudocode for CRAH. The CRAH algorithm
takes as inputs an ETC matrix, PEp, and di for all ti ∈ T . The output of CRAH is
the T to PE mapping, the energy consumption of the best solution, Emin, and M .

Algorithm 7.1: Constructive Resource Allocation Heuristic (CRAH)

Input: ETC, PEp, di ∀ti ∈ T

Output T to PE mapping, Emin, M
INVOKE Greedy Heuristic to rearrange ETC and generate EEC;
While k < kmax do

Generate Random PE;
CALCULATE Esol;
Emin ← Esol
Repeat

Emin ≥ E′
min;

ForEach PEj ∈ PEp do
Add PEj to PE;
CALCULATE Esol;
If Esol < Emin then Emin ← Esol Remove PEj from PE;

end
ForEach PEj ∈ PE do

Remove PEj from PE;
CALCULATE Esol;
If Esol < Emin then Emin ← Esol Add PEj to PE;

end
If Emin ≥ Emin then
INCREMENT k

else
k ← 0
Emin ← Emin

end
until Emin ≥ Emin

end
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Figure 7.1 Simulation flow chart.

At Line 1, one of the six greedy heuristics is invoked to rearrange the ETC matrix
in the order the tasks will be scheduled. This step is different for each heuristic.
Figure 7.2 illustrates one method of rearranging the ETC matrix. Figure 7.2a
shows the original ETC matrix. The rows are sorted in ascending order (Fig. 7.2b).
Next, the rows of the ETC matrix are swapped such that the execution times in
the first column are arranged in ascending order (Fig. 7.2c). Because one must
maintain indexing for a given ETC matrix, under each operation we maintain
the associated index with each element of the matrix. For the above mentioned
matrix rearranging procedures, the corresponding index matrices (I-ETC ’s) are
shown in Figures 7.2d–f. Next, an EEC matrix is generated by multiplying the
PE’s instantaneous power consumption by the task’s estimated completion time.

The outer while loop (Line 3) repeats until there is no significant improvement
in solution quality. Let k be the number of loops with no improvement. The
solution is considered sufficient when k ≥ kmax. An initial resource allocation,
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Figure 7.2 ETC matrix rearranged for Greedy-Min. (a–c) ETC matrices; (d–f) index
matrices.
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PE, is generated by randomly adding PEs until D is violated. Next, one of the
six greedy heuristics is invoked to schedule the tasks, calculate M , and determine
the energy consumption of this solution, Esol.

Inside the repeat-until loop (Line 6), PE is modified (every PEj ∈ PEp is
added and removed from PE) until a locally optimal solution has been found.
In Line 7, note that E′

min is the energy minima found in the previous iteration.
In Line 10 and 15, the solution is evaluated. The change to PE that results in
the largest decrease in Esol is recorded as PE. When a local energy minima is
reached, Emin (i.e., CRAH can no longer add or remove a PE to decrease the
energy consumption), the repeat-until loop terminates. If Emin is less than the
global energy minimum, Emin, then Emin is set to Emin. A new random PE is
generated and the outer while loop repeats.

Algorithm 7.2: Greedy Heuristic Scheduling Algorithm (GHSA)

Input ETC, PEp, di∀ti ∈ T , and PE
Output T to PE mapping, Esol, M
ForEach ti ∈ T do

ForEach PEj ∈ PE do
For DV Sk = 1 to 4 do

If tijk + mj ≤ di then
Assign ti to PEj at DV Sk

mj ← mj + ETC(ij)

Esol ← Esol + EEC(ij)

end
end
If ti not assigned then

dflag ← 1
EXIT

end
end

end
ForEach PEj ∈ PE do

Esol ← Esol + Eidle
end

7.3.1.1 Greedy heuristic scheduling algorithm. The greedy heuristic
scheduling algorithm (GHSA) performs the task scheduling for Greedy-Min,
Greedy-Deadline, Greedy-Max, MaxMin, MinMin Std Dev, and MinMax
StdDev (Fig. 7.1). The major difference among the six greedy heuristics is how
these heuristics schedule T to PE. Algorithm 7.1 shows the pseudocode for
GHSA. GHSA takes as input an ETC matrix, PEp, di˜∀ti ∈ T , and PE. The
output of GHSA is the T to PE mapping, Esol, and M . GHSA starts at the
first element of the ETC matrix and assigns the task to the most suitable PE.
Because a ti to PEj mapping must adhere to the di constraint, at Line 5, the
GHSA heuristic must set PEj to the minimum DVS level, DVS1 (Table 7.1).
The DVSk is incrementally increased until di is met. If the task does not meet
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TABLE 7.1 Power Scalars for Each DVS Level

DVS Level Speed, % Power Scalar

1 70 0.3430
2 80 0.5120
3 90 0.7290
4 100 1

the deadline when running at the highest DVS level (DVS4)then GHSA attempts
to assign ti to the next PE in the ETC matrix. If GHSA fails to schedule ti to
any of the PEs then the deadline constraint cannot be satisfied and a flag, dflag,
is set (Line 9) to indicate that there does not exist any feasible solution. When
ti is successfully assigned to a PE, we must take into account the runtime of ti
and the energy consumed by PEj . In Line 6, ETC(ij) is added to mj and in
Line 7, EEC(ij) is added to Esol. If a feasible solution is obtained, we must
calculate the energy consumed, Esol, to process the ti to PE mapping. Note that
the energy consumed during idle time is accounted for at Line 15. That is,

Eidle = pj · tidle · kidle, (7.14)

where tidle is the difference between M and mj . kidle is a scalar relating the
instantaneous power of a PE under load to an idle PE.

7.3.1.2 Greedy-min. The Greedy-Min heuristic (Algorithm 7.3) schedules the
tasks with the shortest execution times first. The motivation behind scheduling
the shortest tasks first is to induce slack in the schedule. This slack allows the
subsequent tasks with longer execution times to be scheduled without violat-
ing the deadline constraints. Greedy-Min receives an ETC matrix as inputs and
outputs the rearranged ETC matrix, EEC matrix, and I-ETC . Let R be a row
in the ETC matrix and Ci be the i th column in the ETC matrix. Note that
Greedy-Min, Greedy-Deadline, Greedy-Max, and MaxMin all have the same
inputs and outputs. Figure 7.2 illustrates the process of rearranging the ETC
matrix. Greedy-Min rearranges the ETC matrix.

Algorithm 7.3: Greedy-Min

Input ETC Output ETC, EEC, I-ETC
ForEach R ∈ ETC do

Sort R in ascending order
Sort corresponding row in I-ETC

end
∀R ∈ ET C, swap R such that C1 is in ascending order
Apply same changes to I-ETC



198 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT SCHEDULING ALGORITHMS

7.3.1.3 Greedy-deadline. One of the major differences between Greedy-
Deadline and Greedy-Min is in the task scheduling. In Greedy-Deadline
(Algorithm 7.4), the tasks with the most urgent deadlines are scheduled first.
Because tasks are scheduled based on urgency, the tasks that are scheduled later
would have a better chance of being scheduled. Figure 7.3 shows how the ETC
matrix is rearranged . As seen in Figure 7.3c, the rows are sorted in ascending
order. In Figure 7.3d, the rows are swapped such that the execution times in
the first column in the ETC matrix are arranged in ascending order based on
the task’s deadline. After Greedy-Deadline rearranges the ETC matrix, GHSA
is invoked.

Algorithm 7.4: Greedy-Deadline

Input ETC Output ETC, EEC, I-ETC
ForEach R ∈ ETC do

Sort R in ascending order according to each ti’s di;
Sort corresponding row in I-ETC

end
∀R ∈ ET C, swap R such that C1 is in ascending order;
Apply same changes to I-ETC;
INVOKE GHSA;

7.3.1.4 Greedy-max. In Greedy-Max (Algorithm 7.5), the tasks with the
longest execution times are scheduled first. When the tasks with the longest
execution times are scheduled first, only the tasks with the shortest execution
times remain. Because these tasks have the shortest execution times, GHSA
can more easily schedule these tasks without violating the deadline constraints.
Figure 7.4 demonstrates the process of rearranging the ETC matrix for
Greedy-Max. In Figure 7.4b, the rows of the ETC matrix are sorted in ascending
order. In Figure 7.4c, the rows are swapped so that the execution times in the
first column are arranged in descending order.

Algorithm 7.5: Greedy-Max

Input ETC
Output ETC, EEC, I-ETC
ForEach R ∈ ETC do

Sort R in ascending order;
Sort corresponding row in I-ETC;

end
∀R ∈ ETC, swap R such that C1 is in descending order;
Apply same changes to I-ETC;
INVOKE GHSA;
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Figure 7.3 ETC matrix rearranged for Greedy-Deadline. (a) Deadline; (b–d) ETC
matrix.
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Figure 7.4 ETC matrix rearranged for Greedy-Max. (a–c) ETC matrix.

7.3.1.5 MaxMin. During the initial phase of MaxMin (Algorithm 7.6), tasks
are scheduled to the least efficient PEs. The major motivation behind MaxMin
is to allow a slack in the schedules of the most efficient PEs late in the schedul-
ing process. The subsequent tasks can be executed on the most efficient PEs.
Figure 7.5 shows the process of rearranging the ETC matrix. In Figure 7.5b,
the rows of the ETC matrix are sorted in descending order. In Figure 7.5c, the
rows are swapped so that the execution times in the first column are arranged in
descending order.

Algorithm 7.6: MaxMin

Input ETC
Output ETC, EEC, I-ETC
ForEach R ∈ ETC do

Sort R in descending order
Sort corresponding row in I-ETC

end
∀R ∈ ETC, swap R such that C1 is in ascending order
Apply same changes to I-ETC
INVOKE GHSA

7.3.1.6 ObFun. ObFun is a greedy heuristic that uses two objective functions
to determine task to PE mappings. The pseudocode for ObFun is presented in
Algorithm 7.7. ObFun takes as input an ETC matrix, PEp, di˜∀ti ∈ T , and PE.
The output of ObFun is T to PE mapping, the energy consumed by this solution,
Esol, and M .
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Figure 7.5 ETC matrix rearranged for MaxMin. (a–c) ETC matrix.

Algorithm 7.7: ObFun

Input ETC, PEp, di∀ti ∈ T , and PE
Output T to PE mapping, Esol, M
ForEach ti ∈ T do

Calculate T Si

end
Sort TS in descending order
ForEach ti ∈ T S do

ForEach PEj ∈ PE
Calculate PSij

end
j ← argjmin(PSij )

For DV Sk = 1 to 4
If tijk + mj ≤ di

Assign ti to PEj at DV Sk

mj ← mj + ETC(ij)

Esol ← Esol + EEC(ij)

end
end
If ti not assigned then

dflag ← 1
EXIT

end
end
ForEach PEj ∈ PE

Ej ← Ej + Eidle

end

In Line 2, ObFun generates the TaskSelect array (TS ). Every ti has an entry
in TS that is based on the following:

T Si = α1(T2,i − T1,i ) + α2(P2,j − P1,j )
(7.15)

+ α3
T1,i + T2,i

tasks∑
k=1

(T1,k + T2,k),

+ α4 + α5 + α6

where T1,i denotes the minimum estimated completion time of ti . T2,i represents
the second shortest estimated completion time of ti . P1,j and P2,j are the first
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and second most power-efficient PEs for task ti , respectively. α1−3 are weight
parameters and α4−6 are values added to TS if the following conditions are met:

• α4 is added if the PE with the shortest execution time for ti is also the most
power efficient.

• α5 is added if the PE with the shortest execution time for ti and the PE that
is the second most power efficient are the same, or vice versa .

• α6 is added if the PE with the second shortest execution time for ti and the
PE that is second most power efficient are the same.

The values of these parameters are recorded in Table 7.2.
In Line 4, TS is sorted in descending order to allow ObFun to schedule

the most appropriate task (according to the objective function) first. In Line 7,
the most suitable PE for each task is determined and placed in the PE Select
array, PS . Each PE is given a value for every task from the following objective
function:

PS = β1T1,PEj ,ti
+ β2P1,PEj ,ti

+ β3load(PEj ), (7.16)

where T1,PEj ,ti
is the execution time of ti on processor PEj , P1,PEj ,ti

is the
instantaneous power consumption of processor PEj when executing task ti ,
and load(PEj ) is a value added when certain conditions are met. The value
of load(PEj ) is zero if ti satisfies di when assigned to PEj . If ti does not satisfy
di then load(PEj ) equals mj − di . Following the above, ti is assigned to the PE
with the lowest PS value. In Line 12, ObFun determines the lowest DVSk that
PEj can be set before scheduling ti to PEj . After ti is scheduled, the execut-
ing time of ti and the energy consumed by PEj must be recorded. In Line 13,
ETC(ij) is added to mj ; and in Line 14, EEC(ij) is added to Esol. If ti cannot
meet di when PEj is running at the highest DVS level (DVS4), then a flag is
set (Line 16) to indicate a feasible solution does not exist. If a feasible solution
is found, then the total energy consumption of the solution is calculated in a
manner analogous to GHSA.

TABLE 7.2 Parameters Used in
TaskSelect and PE Select

Parameters

α1 0.520656
α2 0.381958
α3 0.0431519
α4 0.160583
α5 0.522339
α6 0.696564
β1 0.0970764
β2 0.400818
β3 0.773407
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7.3.1.7 MinMin StdDev. The MinMin StdDev heuristic (Algorithm 7.8)
schedules tasks with the shortest execution times first, then the rows are
rearranged in ascending order based on each row’s standard deviation. The
motivation behind this algorithm is to schedule the tasks with the most consistent
execution run first. Such a method will provide consistent results each time
the algorithm is run and also will induce slack at the end of the algorithm to
schedule the tasks with more inconsistent runtimes. Figure 7.6 shows how the
ETC matrix is rearranged . In Figure 7.6b, the rows are sorted in ascending
order. The standard deviation function is then run to find the standard deviation
of each row, then the rows are rearranged based on these values as seen in
Figure 7.6c. The first row of Figure 7.6c has a standard deviation of 0.67, the
second row has a standard deviation of 1.82, and the third row has a standard
deviation of 2.78.

Algorithm 7.8: MinMin StdDev

Input ETC Output ETC, EEC, I-ETC
ForEach R ∈ ETC do

Find standard deviation of each ti ∈ Ri

Sort R in ascending order according to each ti’s
standard deviation

Sort corresponding row in I-ETC
end
∀R ∈ ET C, swap R such that C1 is in ascending order
Apply same changes to I-ETC
INVOKE GHSA

7.3.1.8 MinMax StdDev. MinMax StdDev (Algorithm 7.9) runs very simi-
larly to MinMin StdDev. One major difference is that the rows are rearranged
in descending order based on the standard deviation of each row. There are two
advantages that come from rearranging the rows in this manner. Because the
rows are arranged in ascending order and the row with the highest standard devi-
ation is scheduled first, the first task will be scheduled on a PE where it has
the shortest projected runtime. It follows that the subsequent tasks will be more
consistent in runtime over the span of PE’s due to the low standard deviation of
the row. Such an algorithm is able to perform well in the case where many of
the PEs are at full capacity and the algorithm must search to find an available
PE. Figure 7.7c shows how the rows are rearranged in descending order based
on their standard deviation.
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Figure 7.6 ETC matrix rearranged for MinMin StdDev. (a–c) ETC matrix.
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Algorithm 7.9: MinMax StdDev

Input ETC Output ETC, EEC, I-ETC
ForEach R ∈ ET C do

Find standard deviation of each ti ∈ Ri

Sort R in descending order according to each ti’s
standard deviation

Sort corresponding row in I-ETC
end
∀R ∈ ET C, swap R such that C1 is in ascending order
Apply same changes to I-ETC
INVOKE GHSA

7.4 SIMULATIONS, RESULTS, AND DISCUSSION

All of the heuristics introduced in this chapter were implemented in Matlab.
Matlab can efficiently perform operations on large matrices [10]. Because our
simulations make use of large matrices, using Matlab appeared to be the best
choose. The dimensions of the ETC matrix used in our simulation were as large
as 100,000 tasks by 16 PEs. Our results were obtained on a 2.4 GHz Core 2 Duo
system with 2 GB of main memory running the Windows 7 operating system.

The set of tasks used in this simulation study were obtained from an ETC
matrix (explained in the subsequent text). There were two major goals for our
simulation study as follows:

1. To compare and analyze the performance of the seven introduced schedul-
ing heuristics.

2. To measure the impact of system parameter variation.

7.4.1 Workload

For the workload, we obtained task characteristics from an ETC matrix. An
explanation of the generation of our CVB ETC matrix was detailed in Section 7.3.
The mean task execution time, μtask, was fixed at 10, while the variance in the
tasks, Vtask, and the variance in the PEs, VPE, varied between 0.1 and 0.35. These
values were chosen to incorporate variance in our task execution times and are
supported in previous studies [6, 11, 12]. The deadline, di , of each ti is based on
the ETC matrix and given by Equation 7.13. To vary the heterogeneity of di , the
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Figure 7.7 ETC matrix rearranged for MinMax StdDev. (a–c) ETC matrix.
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kd parameter in Equation 7.13 is varied from 1 to 1.8. For small-size problems,
the number of tasks is varied from 1000 to 1000 and the number of PEs is set
to 16 [13]. One can choose a large number of PEs; however, studies show that
in essence, the number of PEs proportionally relates to the number of tasks [14].
Therefore, if one must have 256 PEs to choose from, then they must have at least
500,000 tasks to solve. The number of DVS levels was set to 4. We admit that
having larger numbers of DVS levels can produce refined solutions. However,
the general characteristics of the algorithms will have no bearing on larger or
smaller numbers of DVS levels [3,15–17]. For large-size problems, the number
of tasks varied from 10,000 to 100,000. The rest of the parameters were kept
the same as those for the small-size problems. To facilitate readability, all of the
above system parameters are summarized in Table 7.3.

7.4.2 Comparative Results

7.4.2.1 Small-size problems. The simulation results for the small-size prob-
lems are shown in Figure 7.8a and 7.8b. These figures show the average energy
consumption and makespan of the seven proposed heuristics. To thoroughly
benchmark our heuristics, we varied the simulation system parameters consider-
ably in order to compile a wide range of data. The Vtask, VPE, and kd parameters
each have three possible values as observed in Table 7.3. That means that there
will be 33 combinations, which gives us a total of 27 sets of parameters. This
represents every combination of the system parameters listed in Table 7.3. To
gain confidence in our results, the simulations were run 10 times for each set of
parameters, that is, a total of 270 simulations per heuristic.

There is a great deal of information that can be gathered from the plots. The
gray box is the range that represents ±1 times the standard deviation. The mean
is represented by a black box in the middle of the gray box. The whiskers extend
to ±1.5 times the standard deviation. The bold line that spans the entire plot is
the grand mean. The outliers and extremes are denoted by circles and asterisks,
respectively. Outliers and extremes mark results that fall outside of ±1.5 times
the standard deviation. In the subsequent text, we discuss the results for 1000,
10,000, and 100,000 tasks.

TABLE 7.3 Summary of System Parameters

System Parameters

μtask 10
Vtask {0.1, 0.15, 0.35}
VPE {0.1, 0.15, 0.35}
kd {1, 1.3, 1.8}
|PE| 16
|T | {1,000, 10,000, 100,000}
DVS levels 4
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Tasks. Figure 7.8(a) shows the energy consumption for 1000 task problems.
We can notice that Greedy-Max no longer has the lowest mean energy. MinMin
StdDev now has the lowest mean energy consumption (3.39% lower than Greedy-
Max.) Observe that the two standard deviation heuristics are the only heuristics
that are clearly better than the grand mean. Greedy-Max is the only other Heuristic
that consumes less energy than the Grand Mean. MinMin StdDev and MinMax
StdDev also display the widest range of results observed. This range can be seen
in Figure 7.8(a).

Figure 7.8(b) depicts the makespan of the seven heuristics. Greedy-Min,
Greedy-Deadline, Greedy-Max, MinMin StdDev, and MinMax StdDev all had a
mean makespan within 0.89% of each other, so there is not one heuristics that
is significantly better than others. MaxMin again performed poorly compared to
the rest. ObFun continues to improve as the number of tasks increase, but still
has a higher makespan than the grand mean. If we look at values from individual
sets of parameters then there may be some situations where a certain heuristic
performs better than others. When kd was set to 1.8, and there was high hetero-
geneity in the ETC matrix (Vtask = VPE = 0.35). MinMin StdDev performed 21%
better than Greedy-Max and 7.9% better than MinMax StdDev, which was the
heuristic that had the closest makespan in this case. These results are depicted in
Figure 7.9(a). When there is a high degree of heterogeneity in the ETC matrix,
there are more tasks with longer execution times. In such a circumstance, Min-
Min StdDev is designed to perform consistently better than the rest. Observe that
almost the entire range of MinMin StdDev falls below the grand mean for a case
with a high degree of heterogeneity.

7.4.2.2 Large-size problems.
10,000 task problem size. Figure 7.10(a) shows that there are six heuristics
with highly comparable results, namely, Greedy-Min, Greedy-Deadline, Greedy-
Max, ObFun, MinMin StdDev, and MinMax StdDev. MinMin StdDev obtained
a mean energy consumption only 3.96% greater than the Greedy-Min. We also
can observe that as the problem size increases, ObFun performs better. In certain
cases, ObFun obtained the lowest mean energy consumption compared to the
other heuristics by up to 20% of the mean. Figure 7.9(b) illustrates the mean
energy consumption when VPE is set to 0.1, Vtask is set to 0.1, and kd is set to
1.3. In the above case, ObFun had a mean energy consumption 23.4% higher
than any other heuristic. When there is low task heterogeneity, the objective
function used in ObFun (Eq. 7.15) is especially ineffective. In the case of high
heterogeneity, ObFun usually outperforms the other six heuristics. Equation 7.15
considers the tasks with the first and second shortest execution times. When
the heterogeneity of the tasks is high, it is important to inspect more than one
task during the task scheduling process. Because ObFun considers multiple tasks
with its objective function, ObFun produces better results in the case of high
heterogeneity and worse results in the case of low heterogeneity.

The plot in Figure 7.10(b) shows that for a 10,000 task problem, ObFun
identifies the lowest mean makespan . The TaskSelect and PE Select objective
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Figure 7.9 1000 and 10,000 case examples.
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Figure 7.10 10,000 task problem size.
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functions are introduced in ObFun factor in the loads of each PE when scheduling
tasks. This prevents ObFun from scheduling a majority of the tasks to a few (most
efficient) PEs. This induces a scheduling slack for the later tasks. When there
are more tasks in the problem, it becomes critical that tasks are more evenly
distributed among the PEs. Our results show that heuristics that initially assign
tasks to the most efficient PEs exhibit better results.

100,000 tasks. Figures 7.11(a) and 7.11(b) details the energy consumption and
makespan of the seven heuristics with a 100,000 task problem. ObFun had the
lowest mean energy consumption and was 55.18% smaller than the next lowest
solution. The lowest mean makespan was also achieved by ObFun (41.56% lower
than any other heuristic). Because the objective functions implemented in ObFun
examine the effects of multiple tasks and multiple PEs before selecting a task-PE
pair, ObFun performs extremely well in large-sized problems. We can see that
MaxMin had the largest mean energy consumption and largest mean makespan .
MaxMin continues to demonstrate the same weaknesses observed in all of the
other simulations. On the basis of mean energy consumption and mean makespan ,
Greedy-Deadline had the second best solution. Greedy-Deadline schedules tasks
with the most urgent deadline first. If the tasks with the most urgent deadlines are
not scheduled first, then these tasks may need to be scheduled to an inefficient
PE to meet its deadline constraint. Because of the dominance of ObFun, Greedy-
Min, Greedy-Max, MinMin StdDev, MinMax StdDev, and MaxMin all had mean
energy consumptions and a mean makespan higher than the grand mean. In rare
cases, the outliers of Greedy-Max, MinMin StdDev, and MinMax StdDev can
compete with the mean of ObFun with Greedy-Max coming the closest. Even
in the best case scenario for Greedy-Max (low heterogeneity) does not compete
with ObFun.

The runtimes of the seven proposed heuristics can be seen in Table 7.4. For
small-sized scenarios, the Heuristics have very similar runtimes with the excep-
tion of MaxMin, which was much higher. The complexity of ObFun cannot be
seen in the average runtimes for small-scale problems, but for the large scale
(10,000 and 100,000 tasks) it can be observed that ObFun takes considerably
longer to execute than the rest of the Heuristics. The runtime of ObFun at 100,000
tasks is many times longer than the other heuristics. It is this extended runtime
that allows the objective function in ObFun to work and produce the dominating
results seen in a 100,000 task problem.

To summarize, when solving problems with 1000 tasks, Greedy-Min, Greedy-
Deadline, Greedy-Max, MinMin StdDev, and MinMax StdDev obtained solutions
with the lowest energy consumption and the shortest makespan . For 10,000 task
problems, ObFun, Greedy-Min, Greedy-Deadline, Greedy-Max, MinMin Std-
Dev, and MinMax StdDev demonstrated the highest solution quality. Finally,
for the 100,000 task problems, ObFun vastly outperformed all other heuris-
tics. Overall, we may conclude that ObFun is the best heuristic for large-sized
problems. Greedy-Min, Greedy-Deadline, Greedy-Max, MinMin StdDev, and
MinMax StdDev can each outperform the rest depending on the heterogene-
ity of tasks and machines in the distributed system. Some examples were shown
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Figure 7.11 100,000 task problem size.
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TABLE 7.4 Average Runtime in Seconds

Number of tasks 1,000 10,000 100,000

ObFun 2.89E−2 0.439 21.16
Greedy-Min 2.43E−2 0.233 2.38
Greedy-Deadline 2.38E−2 0.228 2.34
Greedy-Max 2.50E−2 0.235 2.47
MaxMin 4.12E−2 0.404 4.04
MinMin StdDev 2.42E−2 0.262 2.49
MinMax StdDev 2.42E−2 0.252 2.45

above to detail when a Heuristic will outperform the rest. Task and machine
heterogeneity should be taken into account when choosing a heuristic to model a
distributed system.

7.5 RELATED WORKS

In this section, we discuss the related works to the proposed research. To keep the
discussion short and relevant, only a subset of the related works is discussed. This
is due to the fact that a bulk of the related work has already been disseminated
in surveys, such as [18–20].

Most DPM techniques utilize instantaneous power management features sup-
ported by hardware. For example, in Reference 21, the operating system’s power
manager is extended by an adaptive power manager. This adaptive power man-
ager uses the processor’s DVS capabilities to reduce or increase the CPU fre-
quency, thereby minimizing the total energy consumption [22]. The DVS tech-
nique combined with a turn on/off technique is used to achieve high power
savings while maintaining all deadlines in Reference 23. In Reference 24, a
scheme to concentrate the workload on a limited number of processors is intro-
duced. This technique allows the rest of the processors to remain switched off
for a longer time.

There are a wide variety of power management techniques such as heuristic-
based approaches [1,25–28], genetic algorithms [29–32], and constructive algo-
rithms [33]. Most of these techniques have been studied using relatively small
sets of tasks. The techniques introduced in this chapter were given large sets of
tasks allowing one to compare and analyze some traditional power management
techniques when applied to large-scale distributed systems.

7.6 CONCLUSION

This chapter introduced an energy-minimizing task scheduling strategy in dis-
tributed systems. The problem was formulated as an extension of the generalized
assignment problem. Seven heuristics were proposed to solve this problem. All
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seven of these heuristics were greedy heuristics, namely, ObFun, Greedy-Min,
Greedy-Deadline, Greedy-Max, MaxMin, MinMin StdDev, and MinMax Std-
Dev. The seven heuristics were compared against each other with both small
and large problem sizes. The simulation results showed that for small-sized
problems, Greedy-Min, Greedy-Deadline, Greedy-Max, MinMin StdDev, and
MinMax StdDev performed the best. For large-sized problems, ObFun had supe-
rior performance in terms of mean energy consumption and mean makespan
against all of the other proposed heuristics.
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CHAPTER 8

TOWARD ENERGY-AWARE
SCHEDULING USING MACHINE
LEARNING

JOSEP LL. BERRAL, IÑIGO GOIRI, RAMON NOU, FERRAN JULIÀ,
JOSEP O. FITÓ, JORDI GUITART, RICARD GAVALDÁ, and JORDI TORRES

8.1 INTRODUCTION

The cloud and the Web 2.0 have contributed to democratize the Internet, allowing
everybody to share information, services, and IT resources around the network.
With the arrival of digital social networks and the introduction of new IT infra-
structures in the business world, the Internet population has grown enough to
make the need for computing resources an important matter to be handled. While
few years ago enterprises had all their IT infrastructures in privately owned data
centers, nowadays the big IT corporations have started a data-center race, offer-
ing computing and storage resources at low prices, looking for outside companies
to trust them for their data or IT needs.

A single web application in the cloud can be easily used by people from
around the world, so data and computation need to be available from everywhere,
having in mind things such as the quality of service (QoS) and the service-level
agreements (SLAs) between users and servers. Services offered by Google and
YouTube, for example, must be replicated around the globe or just be efficient
enough to move data, jobs, or applications among the data-center farms spread
along the planet. Given the amount of applications running now on the cloud
and the amount that will come, coordinating all its applications, resources, and
services becomes by itself a hard optimization problem.
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8.1.1 Energetic Impact of the Cloud

Having powerful enough data-centers to server applications or computation time
is not the only thing to keep in mind when building the Cloud. As energy-
related costs have become a major cost factor for IT infrastructures and data
centers, power consumption has become an important element to keep in mind
when designing and managing them. This energetic cost is reflected in the electric
consumption, which is sometimes nonlinear with the capacity of that data centers.
It also has direct environmental impact and is conditioned by social pressure
for efficiency. Companies dedicated to cloud-based services, and the research
community are being challenged to find better and more efficient power-aware
resource management strategies.

Until now technological improvement sufficed to cover the increasing IT
demand, bringing faster processors, bigger storage devices, and faster connec-
tions between resources. The energetic factor was not relevant enough to be
focused on. Now the demand is growing faster than technological improvement,
so each time we need bigger data centers to be cooled down in colder places,
having enough power supply [1].

Reaching an optimal performance of cloud services and resource management
requires an intelligent management , conscious of the importance of each resource
used, each service given, the way power is consumed, and the relation between
power consumed and work done. This intelligent management complements the
technological improvement, allowing better resource use, borrowing and lending
resources when it is convenient to do so, and improving the QoS without scaling
up the data centers unnecessarily.

8.1.2 An Intelligent Way to Manage Data Centers

This intelligent management would be easy if the manager knew in detail the
structure and elements in the cloud, if system administrators could keep constantly
watching the system, and if experts could advise what to do in each situation.
Unfortunately this is often not possible. Unfortunately, this is not often possible.
The cloud, as its name suggests, becomes an abstract cloud of resources. Each
domain of resources has its own resource broker and interface for dealing with
resource borrowers and lenders, so a part of the cloud cannot manage or get all
the information from other parts of it.

Also, systems running on the cloud are hard to model, as well as predict. There
are no experts in some applications of the cloud, and some predictive variables
are hidden to the naked eye, so it is very difficult to predict the behavior of the
whole (or just a part of) system when lots of variables are involved. Furthermore,
keeping a human operator watching over all events and resources of the system;
reacting to each change when changes happen so fast; and executing the best
solution each time is not possible. Intelligent management must be automated,
must “understand” what is happening in the system, and must “learn” about
actions to be taken.
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8.1.3 Current Autonomic Computing Techniques

Current data centers and large-scale distributed computing systems are increas-
ingly implementing the techniques of autonomic computing. Automation on
large-scale systems has become a hot spot on system improvements, letting the
systems manage themselves (self-healing, self-protection, self-optimization, and
self-configuring) from expert systems, statistic models, and ad hoc rules.

The intermediary software (also known as middleware) in charge of perform-
ing these autonomic computing techniques requires models that capture the most
important factors of the systems while allowing abstract reasoning. The models
must allow formalizing behaviors and interactions that help the use of optimiza-
tion techniques (from simple heuristics to complex techniques) based on, that
is, what-if predicting techniques or expectation formulas for action results. It is
important to remark that optimizations at different system levels interfere between
them. This makes the behavior of the current systems unmanageable at execu-
tion time, requiring novel optimization techniques that implement self-properties
at runtime. These autonomic techniques must be developed to manage workload
fluctuations and to determine optimal trade-offs between performance and energy
costs.

All these solutions can also be improved if the system learns from itself,
becoming itself an expert, modeling from statistics, and writing and improving
its rules or management policies. ML (and the closely related field, data mining)
brings a set of methods and ideas to, given a set of observations from the system,
infer and induce the behavior of the system. Also, these methods are often easy
to update in front of changes, or just or general enough to accept changes. This
ability to learn for improving the performance of large-scale systems opens a
new wide research area combining the self-capabilities of autonomic computing
and the capabilities of discovering knowledge from systems.

8.1.4 Power-Aware Autonomic Computing

Middleware requires new advanced management mechanisms to provide the
necessary control actuators to successfully manage the resources in order to
add energy efficiency as an operating parameter. Nowadays, the most common
techniques used in the research literature of the area can be summarized as virtual-
ization, turning on/off servers, DVFS (Dynamic Voltage and Frequency Scaling),
and hybrid nodes/hybrid data centers.

• Virtualization is key to reducing power consumption. With virtualization,
multiple virtual servers can be hosted on a smaller number of more pow-
erful physical servers, using less electricity. Virtualization mechanisms are
currently used for consolidation.

• Turning on/off servers reduces the overall consumption through consolida-
tion. As reduction of needed resources is the goal of consolidation, shutting
down of these resources when possible is where actual energy saving is
achieved.
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• DVFS is the reduction of voltage and frequency, providing substantial saving
in power at the cost of slower program execution. Current microprocessors
allow power management by DVFS.

• In hybrid data centers, it is possible to choose among a variety of resources,
depending on the system load and requirements taking into account energy
consumption. Even more, we would like to have the system (not a human
supervisor) choose and learn to choose among different resources with the
same final functionality but with different characteristics.

Usually, all these techniques can also be combined, improving the level of
consolidation and effectiveness. By deciding to turn the physical machines on
and off when virtualized machines are consolidated or specializing the physical
machines where virtual machines (VMs) are going to be consolidated, power
saving can be improved.

8.1.5 State of the Art and Case Study

In this chapter, a brief survey of the state of the art of “intelligent management”
and power-aware techniques is shown in Sections 8.2 and 8.3, focusing on the
works that are introducing machine learning and other artificial intelligence tech-
niques. Also, a case study summarizing our experiences, applying some of these
techniques is introduced in Section 8.4, explaining some practical applications
of each technique and showing results and conclusions on the application of the
learning mechanisms on a self-management system.

8.2 INTELLIGENT SELF-MANAGEMENT

Adaptive and updatable mechanisms have been developed in order to optimize
the management of the cloud and improve the resource usage and the QoS. But
the cloud is becoming more complex and application requirements are increasing
and knowledge-based and data mining techniques are starting to be applied.
Once information about the execution, resources, and requirements is available,
artificial intelligence (AI) and machine learning (ML) can be applied to improve
prediction and information retrieval, letting the system make some decisions with
more autonomy and with more accuracy.

In intelligent management , there are different techniques that are beginning to
be researched and applied. The first ones are the standard AI-based techniques.
These techniques use prediction and heuristic algorithms in order to anticipate
system performance and act in consequence. Fuzzy logic, genetic algorithms,
and other AI methods are used in order to improve QoS, resource allocation, and
execution of applications. The second ones are the ML-based applications. These
techniques use the recorded information from past behaviors to create a model
that best fits the usual behavior and lets the system detect anomalies and make
decisions over the system.
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8.2.1 Classical AI Approaches

AI methods have been historically defined as a machine thinking like human
methods, but nowadays, AI is more like finding a suitable/intelligent solution
with limited time/space. The classical AI methods are about searching a good
solution to a problem on a representation space, or representing knowledge using
ontologies and expert systems, and all of these as optimal as possible. Exhaustive
searches on a representation space are often NP-hard or exponential problems,
and the same happens with many ontology systems or huge expert systems,
so searching methods using heuristics, genetic algorithms, and fuzzy knowledge
techniques are used to perform these searches in a viable way, not finding always
the best solution but having a suboptimal solution in the available space and time.
The solution is intelligent in the sense that it does not examine the whole space
of solutions.

8.2.1.1 Heuristic algorithms. With the capability of using knowledge and
heuristic algorithms, it is possible to predict some situations with good accu-
racy. This prediction can be applied to detect unwanted situations or behaviors
or to view the near future situations such as imminent changes in the work-
load, changes in the resource demand, or limit situations of resource offers. In
approaches such as those presented by Vraalsen [2] and Fahringer [3], some pre-
diction models for parallel programs and grid-based applications are presented,
where a method based on heuristics for predicting application performance is pre-
sented. With these methods, the system looks for detecting unexpected behaviors,
usually caused by unanticipated load on shared grid resources. Once the heuris-
tics detect these unexpected execution behaviors, a fuzzy logic-based algorithm is
used to check and decide how to maintain the QoS of each execution. The fuzzy
logic algorithm uses the information monitored from the application execution
sensors and the performance contracts for the application based on an application
signature model to decide what action must be taken.

8.2.1.2 AI planning. Furthermore, we can find AI techniques not only pre-
dicting behaviors or situations but also managing workflows among machines
of a distributed system. These methods are basically AI planning, methods for
planning, and scheduling events using as guide a set of operators and a set of
observations. Some works done by Deelman et al. [4] and Gil et al. [5] show
methods for scheduling jobs on a grid environment generating, for each job,
resource requirements and available resource workflows. These workflows are
searched and used by AI planning methods to schedule the application execution
matching resource requirements with resource availability.

8.2.1.3 Semantic techniques. Another AI approach to improve the man-
agement and adaption of applications is to use semantics. On the basis of the
principles of the semantic representation systems, there are some ideas presented
about ordering grids and clouds toward an architecture in which information and
services are given a well-defined meaning, thus better allowing computers and
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people to work in cooperation. Acting above syntactic or static valuable rules,
by relating systems, resources, and applications, some approaches look for order-
ing the cloud using logical and coherent matchings between user, resource, and
application. These approaches are no more than ideas and research challenges
yet, and there are some skeptics about the viability of semantic processes in high
performance computing (HPC). Although some works and outlines can be found
in the overview done by De Roure et al. [6] and Ejarque et al. [7], exposing the
current research on the ontology-based resource management is shown in this
chapter.

8.2.1.4 Expert systems and genetic algorithms. There are a lot of app-
roaches dedicated to use expert systems and genetic algorithms for self-
configuring systems. All these approaches are not directly oriented to the
management of clouds or distributed systems, but they give the idea of AI
methods for automatically configuring and optimizing a tasks system, such as
the ones by Wolpert et al. [8], Sirlantzis et al. [9], and Rahman et al. [10]. These
methods, combining classifiers with AI methods, can be used as reference for
the management and planning of autonomic systems and clouds.

But AI approaches usually have to be built and validated by experts, or once
a model is found, it is very difficult to renew it, and the search process must
be repeated. Machine learning techniques supply a new vision of the modeling
process, letting us to find these system models without the explicit requirement
of experts and the ability of being able to update the model in a more easy way.

8.2.2 Machine Learning Approaches

Although some AI planning and other AI methods have been created to self-
optimize or self-configure grid and cloud executions, some problems are related
to lack of adaptation, uncertainty of the model, or extreme complexity of the
system to build a model by experts or single patterns. To solve these problems,
one very relevant solution is machine learning, which allows the creation of
decision and classification models of very complex systems from the examples
of the same system, in an easy way to update that models, or being possible
to make a model that is general or specific enough, extracting the knowledge
directly from the system execution and its environment.

Machine learning mines for data, obtaining the relevant information and
attributes from it, creating the model that explains the system, and finally
using the model to make decisions. The machine learning techniques consist,
generally, on collecting a training data set from the system with data composed
of system values and response attributes and creating a model through induction,
able to explain these examples, expecting that new data will fit in.

The machine learning techniques are divided into supervised learning (such
as classification and regression), unsupervised learning (discover the relationship
between the input data), clustering (find similarities on data), and reinforcement
learning (select the best decision from the past experiences and feedback). Here,
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we discuss briefly about instance-based learning techniques as part of the super-
vised learning and reinforcement learning (RL) as the two most applied group of
techniques in grid and cloud management. Also, feature and example selection
are techniques important in the learning process and also important to understand
how the examined system works.

8.2.2.1 Instance-based learning. Instance-based machine learning, as part
of the supervised learning techniques, allows to predict from a system and its
set of resources and elements information that is often not clear at simple sight,
often fuzzy, and also inaccurate, uncertain, or incomplete. After obtaining this
information, we can use it to create a classifier model or regression model, and
obtain from that information the one required to improve the decision making
process. Then, the model is able to predict or estimate this useful information,
also showing what kind of relation exists between observed data and system
behavior, letting us to understand the system better.

For this prediction process, we need to choose suitable prediction algorithms,
computationally light but able to obtain good results once trained with data
from various workloads. Also, we need to obtain a good training set (a set of
data containing labeled instances from representative executions) and another
test (or validation) set. If, after training, the predictor guesses are close to the
correct values on the test set, we expect that they will also be correct on future
data sets. Figure 8.1 shows the basic schema of a supervised machine learning
process.

Before the cloud, when all the research was based on the grid model, some
methods and solutions were created for grid self-management and adaption of
the system to the applications running on it. For example, some works like [11]
presented a comparison of different machine learning algorithms such nearest-
neighbor, weighted-average, and locally-weighted polynomial regression, upon
the resource managing PUNCH framework, to model and predict application
performances in order to be able to allocate or schedule the application in a grid
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Figure 8.1 Supervised machine learning schema.
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environment. Job and resource scheduling is a problem when expert systems and
policy-based algorithms become expensive or too complex, so we need another
cheaper and more simple system for doing it.

Other works use machine learning on self-management, focusing specifically
on self-healing and fault diagnosis. Detecting failures in resources and applica-
tions, and also the root of failures, has become a very interesting area where
inductive learning methods are also applied. Approaches such the one presented
by Hofer and Fahringer [12] shows an application-specific fault diagnosis based
on indicators, symptoms, and rules. For this approach, two techniques have been
used: a supervised classification to find the reason of the failure and clustering
techniques to find what failures are the result of the same cause. Other works such
as those presented by Zhang et al. [13] focus explicitly on regression functions to
find memory leaks. Also, works by Alonso et al. [14–16] presented a framework
for monitoring a complex web application server and estimate, through learning
and regression techniques, the time until fault of the server caused by resource
leaking, such as memory or CPU. It also proposes a technique for detecting the
root cause component of the fault. All these supervised learning techniques are
usually combined with macropolicies and utility functions, where, depending on
the results, a set of specific decisions are taken in order to adjust the system
according to the prediction. Example given, Poggi et al. [17–19] presented a
framework where, depending on user modeling predictions, machines are set up
or shut down, saving energy by closing as many web servers as possible, keeping
the users predicted as “customers” in the on-line machines.

Thanks to the appearance of the Weka Toolkit [20], several autonomic com-
puting researchers have been able to introduce machine learning into their work
as well as improve them. Wildstrom et al. [21–23] presented an approach for
online hardware reconfiguration using algorithms for rules and decision mak-
ing. Currently, researchers who wish to introduce some ML techniques into
their approaches have the possibility of using that toolkit. With a better research
on machine learning applications, the autonomic computing approaches will be
improved in a better way.

8.2.2.2 Reinforcement learning. Reinforcement learning is the problem
faced by an agent that must learn behavior through trial-and-error interactions in
a dynamic environment [24]. As Kaelbling states, there are two main strategies
for solving reinforcement learning problems: first, to search the space of
behaviors in order to find one that performs well in the environment, by work
in genetic algorithms and genetic programming and second, to use statistical
techniques and dynamic programming methods to estimate the utility of taking
actions in states of the world. While supervised learning involves learning from
labeled examples provided by an external supervisor, in reinforcement learning,
an agent must be able to learn from its own experience.

Current self-management approaches tend to apply the second kind of rein-
forcement techniques, as it is easier to be applied to handle system drifts and
changes. This kind of reinforcement basically consists on defining a function,
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representing the system goal to be maximized. This goal usually is the ben-
efit obtained by the system expressing all the revenues and costs of it; the
resources or power consumption to be reduced; or any random variable rep-
resenting weighted factors from the system expressing the interests of the system
manager.

The learning process consists on learning what policies or actions must be
applied given the system status, observing the results of applying them, and
modifying the decision maker depending on the observed results. Policies and
actions are basically operations or sets of operations done to elements from the
system. These policies and actions are ranked for each situation or status by
their maximum expected return for the goal function in a determined number of
steps, so the decision maker selects the best ranked action given a specific status,
and depending on the result, the ranking is modified. At long term, the ranks
may converge to an optimal 〈status,action〉, whether the system does not change
dramatically its configuration (Fig 8.2).

The implementation of learning algorithms is based on dynamic programming,
showing the ranking function as a recursive formula, looking for the maximum
return of a function at infinite steps forward. So the evaluation of each 〈status,
action〉 pair could be defined as

Q(s, a) = �s′E[R|s ′, π]P(s ′|s, a),

where s is the status, π is the policy being followed, a is the action being
evaluated, R is the return for the goal function, and s ′ is the each possible status
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Figure 8.2 Reinforcement-learning schema.
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resulting after applying a to s . The probabilities and expectations are trained
by running examples and modified online with each resolution after applying
the selected actions for each state. Specifically, the expectation is trained as a
recursive Bellman equation

E[R|st ] = rt + γE[R|st+1],

where the direct reward rt and the future expected reward are weighted depending
on the importance of the immediate results.

In the simplest case, the set of states and actions are discrete, and we can
have a map with each estimation for each state. But as seen in the previous
definition, the 〈status, action〉 space can be incredibly large depending on the
system, as large as the amount of states and actions that can be reached and
performed. This makes the problem of action selection expensive in space and
in time. Thus, it is often interesting to learn the Q(s, a) function using induction
learning techniques, complementing the reinforcement. The expectations can be
replaced by estimations, so Q̂(s, a) function can be trained, acting as a reward
function for each action.

As a simple practical example, let us imagine a system where several actions
can be chosen to be applied given a status, and from scratch, all actions are
equally scored in order to obtain a good result for this status. By choosing the
first random action, the system can check after if the result has been good or
bad, so the score of this action will be modified by raising or degrading it. By
repeating this for some iterations, the scores for each action/status will indicate
what actions have been better rewarded or penalized for each status. At this
point, the system can continue by choosing the most scored actions given a
specific status, as well as continue evaluating them. At long term, the scorings
in a stable system may converge to a stable ranking action/status. More about
the mathematics and basics on reinforcement learning can be found in the works
and tutorials of Kaelbling et al. [24], Sutton and Barto [25], and Bertsekas and
Tsitsiklis [26].

The reinforcement-based algorithms have become recently trendy because of
the potential and promising results on autonomic computing self-management,
as explained by Tesauro et al. [27]. In reinforcement learning based algorithms,
rules and policies can be prioritized and applied depending on the success in
previous executions. As the autonomic computing control loop adjusts all the
systems, the reinforcement learning modules can evaluate applied policies and
decide which ones must be used or avoided in the next iteration. Approaches such
as those proposed by Vienne and Sourrouille [28] use reinforcement learning
to select the rules to be applied for each decision to be taken, having goals
such as a performance level for resources. Other works such as those presented
by Vengerov and Iakovlev [29, 30] and Perez et al. [31] show frameworks for
scheduling resources using reinforcement learning, using as objective function the
optimization of the utility of resources. There are also other works such as the one
presented by Fenson and Howard [32] that show approaches for self-rejuvenation
and self-management functions using these reinforcement learning techniques.
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8.2.2.3 Feature and example selection. Feature selection is the process
of, given a huge set of observed data, finding those variables and data that are
really useful from those that only bring noise or are irrelevant. Usually, we can
obtain several data from observing a grid or cloud system. But in order to predict
or estimate a specific interesting value, not all the collected data is useful, and
including this data in the learning process makes it harder in space or in time,
or makes it inaccurate due to noise.

It also happens when applying knowledge to the self-methods, as all the
self-management aspects must use the correct information to work: self-healing
systems must have the correct signals to detect anomalies and predict the causes
and consequences for failures. Self-protection systems must be able to see the
indicators about attacks when attackers are cloaked or use evasion techniques.
And the self-optimization and self-configuring systems must know about the
execution and requirements of applications, as well as utility of the resources in
order to find the best configuration and best performance. The feature selection
methods are in charge of discovering the relevant attributes from all the data
obtained.

Also, there is the example selection process. When finding or training a model,
the examples must be “good” examples that cause minimum noise and are less
redundant as possible. This example selection process is not trivial, as you want
to keep enough examples for your data set to be general enough, or to give
enough support to cases hard to be learned. Blum and Langley [33] described in
their survey the basics of feature and example selection.

Furthermore, some works on self-management used to perform a principal
component analysis (PCA) [34, 35] in order to find the attributes that can differ-
entiate better our examples. PCA is a feature selection technique by itself, but
it can also find the combination of features that are most relevant, and is able
to treat high dimensional data, reducing the complexity without losing much
information. Zheng et al. [36, 37] proposed the utilization of PCA for detecting
and locating anomalies in large-scale clusters. In their approaches, after collect-
ing data and finding the combination of attributes that better differentiate the
collected examples, an outlier detection is done using the cell-based detection
algorithm. Other works such as those by Lakhina et al. [38, 39] use the PCA
method to detect anomalies in network traffic, also using classification techniques
(supervised learning) to identify network anomalies.

8.3 INTRODUCING POWER-AWARE APPROACHES

At this moment, green computing is being introduced into self-management mid-
dleware, adding to these frameworks new advanced management mechanisms to
successfully optimize the resource usage to add energy efficiency as one of the
fundamental parameters in its management. The current main power-saving tech-
niques applied in the cloud and grid environments are related with virtualization
technology, the turning on/off policies, the DVFS, and the hybrid architecture on
data centers.
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These four technical areas are being covered by approaches that include ad hoc
methods, heuristic algorithms, and determined policies, taking into account that
this requires experts in the whole system and changes in the system make these
approaches to require updates. In order to introduce the intelligent management ,
letting the system to configure and adapt to changes easily, machine learning
techniques are starting to be used to improve the previous methods.

8.3.1 Use of Virtualization

Virtualization is one of the key technologies in the cloud that has enabled cost
reduction and easier resource management for service providers. As virtualization
allows to run several processes, jobs, guest operating system (OS), and also VMs
in one or several physical machines or platforms, it makes possible the consoli-
dation of applications, multiplexing them onto physical resources, and supporting
isolation from other applications sharing the same physical resource. Tasks can
be run everywhere and migrated without many handicaps on the base systems,
but VMs can also perform optimizations over the host OS and physical machine.
The cloud and grid infrastructure take advantage from this technology, decou-
pling them from the system software of the underlying resource, and letting the
movement and migration of VMs in order to place them in the most convenient
place.

The main goals of virtualization are to provide a confined environment where
applications can be run, limit hardware resource access and usage or expand it
transparently for the applications, adapt the runtime environment to the appli-
cation, use dedicated or optimized OS mechanisms for each application, and
manage the whole applications and processes running within VMs. Primet et al.
[40] provided a survey on current OS and network virtualization solutions for
grids. The summarized basic aspects are listed in the following.

• OS-Level Approaches . These approaches allow to virtualize a physical server
enabling multiple isolated and secure virtualized servers to run on a single
physical server. No guest OS is used, and applications are run in a specific
view of the only one OS as if they were running alone on the OS. Some
of these approaches are VServer [41], a kernel patch based on partitioning,
using a “security context” inside a UNIX OS, FreeBSD Jail [42], and also
Solaris Containers, OpenVZ, etc.

• Emulators . VMs simulate the complete hardware used by a guest OS.
VMware [43] is a virtualization software for machines based on x86 archi-
tecture, where virtualization works at the processor level, the VM privi-
leged instructions are trapped and virtualized by the VMware process, and
other instructions are directly executed by the host processor. All hardware
resources of the machine are also virtualized. Other solutions are Microsoft
VirtualPC, VirtualBox, QEMU [44], etc.

• OS in User Space. These approaches provide virtualization through the exe-
cution of guest OSs directly in user space. Some approaches are User Mode
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Linux [45], which allows launching Linux OS as applications of a host
machine running Linux, as well as coLinux, Adeos, L4Ka-based projects,
etc.

• Paravirtualization . The paravirtualization technique does not necessarily
simulate the hardware but instead offers a special API requiring modifica-
tions to the guest OS. The hardware resources are abstract resources not
necessarily similar to the actual hardware resources of the host machine.
Xen [46] is a VM monitor for x86 architecture, allowing the concurrent
executions of multiple OS while providing resource isolation and execu-
tion confinement between them. Other projects using this paravirtualization
approach are Denali and Trango.

• Hardware-Assisted Virtualization . This virtualization allows to run unmod-
ified guest OS, giving to the VM its own hardware. This is possible thanks
to an increased set of processor instructions provided by Intel VT (IVT
[47]), AMD (AMD Pacifica x86 virtualization [48]), IBM (IBM Advanced
POWER virtualization [49]), and Sun (Sun UltraSPARC T1 hypervisor [50]).

This virtualization technology has become a hot research topic for maximizing
benefits, but it has added another layer of abstraction to the management sys-
tems, preventing or making more complex the conventional energy management
for performing efficiently or correctly in virtual environments. During the past
years, works such as the ones presented by Vogels [51] studied the consolidation
advantages using virtualization while other works such as the ones from Nathuji
et al. [52] have widely explored its advantages from a power efficiency point
of view.

Recent work by Petrucci et al. [53] proposed a dynamic configuration approach
for power optimization in virtualized server clusters and outlined an algorithm
to dynamically manage it. All these techniques, applying consolidation policies,
are mainly focused on a power efficiency strategy, taking into account the cost
of turning on or off the resources, as it is explained in Section 8.3.2. Also, VM
migration and VM placement optimization are studied in the work of Liu et
al. [54] to improve the VM placement and consolidate in a better way. On the
basis of these works, Goiri et al. [55, 56] introduced the SLA-factor into the
self-managing virtualized resource policies. The SLA-driven policies look for
facilitating resource management in service providers, allowing cost reduction
and at the same time the SLA agreed QoS fulfillment.

So virtualization technology has opened a wide research area to explore in
order to optimize cloud and grid management. The capability to isolate jobs inside
VMs, and migrate the VMs along physical machines, permits optimizing task
placement and dynamic scheduling without much overhead. Recently, machine
learning techniques are being applied to help manage virtualized platforms to
decide what VMs must be started and how to schedule them, complementing
information about the system or predicting useful information a priori. Also,
these techniques are able to look for patterns in the behavior of the VMs and
host systems to predict their imminent and long-term behavior, making long-term
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policies more accurate. These approaches are often applied within turning on and
off machines or DVFS, as described in the following section.

8.3.2 Turning On and Off Machines

Another energy-saving technique is to determine when a node should be turned
off to save power consumption or when to turn it on to bring service to the cloud.
These actions can be driven by fixed policies or heuristics, depending on the load
being received at each moment or the load expected in a short-term window time.
For example, first approaches such as the ones presented by Pinheiro et al. [57],
Chase et al. [58], and Elnozahy et al. [59] applied turning on and off mechanisms
for power management, as well as by Chen et al. [60] that includes predictive
techniques in a proactive and also reactive automated control.

Goiri et al. [56, 61] showed that a decrease in the number of online machines
obviously assures a decrease in the consumed power and also the system
is often unable to bring service given an increase in load, so a compromise
between online machines and energy saving must be found. In their works, this
decision is driven by means of two thresholds: the minimum working nodes
threshold λmin, which determines when the provider can start to turn off nodes,
and the maximum working nodes threshold λmax, which determines when the
provider must turn on new nodes. After modeling specific loads and machine
consumptions, using different kinds of scheduling and consolidation techniques,
the influence of the turning on/off thresholds by showing the SLA and the
power consumption can be evaluated. Adequate thresholds can be obtained (this
time empirically) in order to decide how many physical machines are needed
online, and the rest can be shut down.

On the basis of the same works, Berral et al. [62] proposed a framework
that provides an intelligent consolidation methodology using different techniques
such as the turning on/off machines, power-aware consolidation algorithms, and
machine learning techniques to deal with uncertain information while maximiz-
ing performance. Using the information from system behaviors, the machine
learning approach used a learned model to predict power consumption levels,
CPU loads, and SLA timings and to improve scheduling decisions. The exper-
iments performed using grid workloads and a cloud environment demonstrate
how consolidation-aware policies give a better energy efficiency than noncon-
solidating ones, and also, the machine learning model responses are much better
with respect to power consumption when the information obtained from users
and tasks is not uniformly accurate.

This turn-on and off technique is also applied by the approach of Kamitsos
et al. [63], which sets unused hosts in a low consumption state to save energy.
In their approach a Bellman’s function based on dynamic programming and
recursive methodology, is used to decide when to set into sleeping status those
hosts that are not needed, maintaining the other submitted jobs in the online hosts.

But turning on and off is not limited to machines. Components and resources
can also be started up and shut down. Policies can decide whether to set on
or off the full machine or a specific component, and Tan et al. [64] showed a
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framework for controlling the system power manager using reinforcement learn-
ing algorithms. In this case, the learner uses a Q-learning algorithm, a popular
algorithm originally designed to find policies in Markovian decision processes.

Summarizing, the main point in the strategy of turning on and off devices,
machines, or resources is to determine at each time what to switch on and off
in order to optimize our goals. Optimal policies select at the best time those
elements that are necessary for the good performance of the system and maintain
the rest in a shutdown or low consumption status. These selection policies can
be improved or optimized by reinforcement learning techniques by adjusting
the number of elements that are not necessary in the system at each time, and
inductive learning techniques can be used to expect the amount of resources to
be used a priori in order to plan on/off device schedulers.

8.3.3 Dynamic Voltage and Frequency Scaling

Another currently applied technique to obtain power efficiency is the Dynamic
Voltage and Frequency Scaling (DVFS). The DVFS techniques allow the reduc-
tion of voltage and frequency, providing substantial saving in power at the cost of
slower program execution. Current microprocessors and other kind of resources
allow the power management by DVFS, reducing the voltage and frequency of
the given devices and allowing the application of policies in order to provide
saving in power at the cost of not offering the full capabilities of the resource
when not needed. As Chen [60] stated in his work, new power-saving policies,
such as DVFS or turning off idle servers, can increase hardware problems and the
problem of meeting SLAs in reduced environments. This can be solved by adding
a smarter scheduling policy to dynamically turn off idle machines to reduce the
overall consumption.

Earlier works on DVFS were mainly focused on power saving on mobile
devices while preserving QoS and performance. The first approaches on power
management used turning server machines on and off, one of the firsts to combine
turning on and off with dynamic voltage scaling in data centers and was studied
by Elnozahy et al. [59], exploring the use of DVFS to respond to changes in
server demands. This work and the work of Sharma et al. [65] have referred to
applying these techniques for server applications, and from here on, other works
have developed this idea toward refining and detailing the scheduling procedure
in order to decide when and how much voltage and frequency scaling should be
applied at each moment.

Reinforcement learning is also used to drive DVFS policies as shown in the
works of Tesauro and Kephart et al. [66, 67]. Their goal was to let the system learn
the actions to be performed with a trial-and-error method, making decisions by
selecting the expected best action and checking the results, allowing to adjust the
ranking for the action. In this case, actions control the CPU frequency, adjusting
it to the optimal trade-off between electric consumption and response time for
transactional jobs running on the given data center.

So tuning the processor voltage and frequency has become an effective method
to reduce the power consumption while tasks can be delayed in time, or the
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required performance is under the system capabilities. The main challenge here is
to know when it is possible to scale up and down voltage/frequency, what policies
are optimal to decide when and how much to do so, and what trade-off must
be permitted between power consumption and QoS. Current techniques using
heuristics and fixed policies are being improved using reinforcement learning
methods, finding the optimal policies that assure the lowest power consumption
without compromising the performance and service requirements.

8.3.4 Hybrid Nodes and Data Centers

Finally, another power-saving technique is to design data centers and machines as
a hybrid architecture, combining high performance and energy-efficient elements,
to switch between one another in the order of the load requirements. Turning on
and off resources or modifying their consumption, by switching resource usage
between the ones designed for energy saving or high performance, could be a
good option depending on the situation or requirement of the load. Combining
low power designed processors with high performance processors or devices in
the same data center provides the system a new degree of freedom, so that there
is no need to modify the elements in the system but to use those elements that
are more prepared to our energy or performance needs.

This combination of different kind of resources has been tackled in local hosts
in some approaches such as the ones presented by Chun et al. [68], who pro-
posed a hybrid architecture that combines the selective usage of processors with
different power consumptions and performances in a single host in order to apply
local energy-saving policies only when allowed by performance. Also, approaches
presented by Nathuji et al. [69] state that a good approach for saving energy is
mixing low power systems and high performance ones in the same data center.

Machine learning techniques applied to the utilization of hybrid data centers
are still in process, as the current state-of-the-art research applies the knowledge
of induction learning works for improving autonomic computing approaches.
Again, the works of Goiri et al. [70, 71] have included learned functions [62] as
management parameters. Also the techniques presented in Section 8.2, referring to
search policies applying reinforcement learning [27, 66], can be applied in order
to decide whether to use a determined kind of resource or another. In conclusion,
the use of hybrid systems is giving new elements to intelligent decision makers,
so new solutions are able to optimize, thus regulating the properties of individual
elements in order to adapt them to loads and scenarios or instead to decide to
select specific elements to fit the specific scenario.

8.4 EXPERIENCES OF APPLYING ML ON POWER-AWARE
SELF-MANAGEMENT

After looking at all the works and publications referring to the new techniques
improving power-aware self-managed systems using data mining and machine
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learning, some experiences on applying them to specific cases of study are shown
here. These cases of study refer to the conclusions obtained from some works
mentioned before [56, 62], where a cloud is scheduled and managed in a power-
aware way, using learning techniques over some of the previously explained
power-saving techniques.

8.4.1 Case Study Approach

The techniques proposed for this case study are consolidation techniques,
reducing power consumption by scheduling virtualized environments, all without
degrading their SLAs in excess. This scheduling policy must consolidate
workloads preserving the QoS of the tasks inside a virtual machine (VM) each
one, agreed on the SLA and taking into account virtualization overheads such
as VM creation, checkpointing, and migration. All of this can be achieved by
unifying different provider requirements in addition to power consumption,
namely, reliability and dynamic SLA enforcement (be able to recover from an
SLA violation during the execution).

This is done by deciding the best location for executing a new job depending on
the resources it requires in order to fulfill its SLA, derived from the information
of the system, including job execution and node status. The proposed policy
periodically calculates whether to move jobs in order to improve global system
utility. This approach decides when and where to create VMs containing jobs,
migrate them, and start up or shut down physical machines, also being aware
that machines in a cluster can have different properties so the data center can be
heterogeneous.

In this section, the whole proposed policy is summarized and evaluation
and improvements obtained in a first implementation, including virtualization
overheads and power consumption, are shown. It is compared against common
policies in a simulated environment that models a virtualized data center, mainly
focusing in this occasion on CPU and memory as a resource. This first proof of
concept is based on HPC jobs and uses deadlines as QoS metric in order to define
the SLA constraints. After evaluating the different power-aware techniques, the
concept of ML is introduced in order to improve the consolidation mechanisms
by predicting information about SLAs before applying the selected schedule.

8.4.2 Scheduling and Power Trade-Off

The scheduling policy consists on finding, on each system status change the opti-
mal combination of <host,VM> to use as input information: the hardware and
software requirements of the VM, the amount of resources required, the resources
offered by the host machine (i.e., those that are available), the energy consump-
tion of the physical machine, the user SLA constraints, and the reliability of the
host. It gives to each machine a dynamic score depending on these parameters
and solves the allocation of each VM on the best machine, taking into account
all those different factors.
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A scheduling round is started when a new VM enters the system, a VM
finishes its execution, a violation in the SLA is detected, or the reliability of a
machine changes. Then, the best <host,VM> combination is found by mapping
all the tentative VM allocations in a scoring matrix filled with the benefit of each
VM temptatively hold in each host machine. Each score indicates the utility (or
benefit) of holding a VM in a host by aggregating all the penalties related to
migration, leaving a machine empty or violating the SLA or any other needed
constraint. At this point, a hill-climbing search algorithm [72] finds the set of
movements optimizing the <host,VM> matrix. And finally, the system performs
the set of operations decided by the new schedule (creation, migration, etc.).
Each value in this scoring matrix represents the score (penalization) of hosting a
VM in a specific host, including the costs involved due to virtualization, power
consumption, reliability, and dynamic SLA enforcement. For example, those hosts
that cannot hold a VM, due to insufficient free resources or hardware/software
constraints, have an ∞ value; those hosts that have jobs that can be consolidated
are penalized in order to force the scheduler to empty it; and the opposite happens
with the nearly full hosts that can allocate jobs from nearly empty hosts. In this
case, those hosts that have the lowest value for a VM are supposed to be the
most suitable.

As it has been already presented, consolidation is applied in order to turn off
unneeded machines (also referred as nodes). Nevertheless, a too aggressive node-
turning-off policy will result in not offering enough resources to execute tasks,
while a passive one will have bigger power consumption. This trade-off depends
on the λmin and λmax thresholds. The effect of these two thresholds has been tested
by executing the grid workload on top of the simulated data center using the score-
based (SB) policy, which is the one that makes a more aggressive consolidation.
This allows evaluating the influence of the turning on/off thresholds by showing
the client satisfaction and the power consumption, respectively.

Figure 8.3 shows that waiting for the nodes to reach a high utilization before
adding new nodes (high λmax) makes the power consumption smaller. In the same
manner, the earlier the system shut downs a machine (high λmin), the smaller
the power consumption is. It demonstrates how turning on and off machines in
a dynamic way can be used to dramatically increase the energy efficiency in
a consolidated data center. On the other hand, as shown in Figure 8.4, client
satisfaction decreases when the turn on/off mechanism is more aggressive and it
shuts down more machines (in order to increase energy efficiency). Therefore,
this is a trade-off between the fulfillment of the SLAs and the reduction of the
power consumption, whose resolution will eventually depend on the provider
interests. For instance, if the provider is having a high client satisfaction, the
provider could decide to reduce it slightly while keeping the client between the
limits of satisfaction, allowing a greater power reduction by letting resources
unused and shutting down them.

Fortunately, average threshold values give a balanced trade-off between energy
and QoS. Experimentally, we found that our environment’s best values are λmin =
30% and λmax = 90% to ensure almost complete fulfillment of the SLAs while
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getting substantial power reduction. A next step would be to dynamically adjust
these thresholds, which is part of our current and future work.

8.4.3 Experimenting with Power-Aware Techniques

The experimental environment set for this case study consists of the simulation
of a whole virtualized data center with 100 nodes using the EEFSIM, a cloud
simulator designed following the procedure in [73] but focused on the energy
consumption and on the CPU power scheduling among VMs. The simulator loads
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a workload trace, simulates the execution on several machines with different a
configuration for each one, and generates the output results using different global
scheduling policies. In addition, these machines can be dynamically turned on/off.
The simulation takes into account both the physical machine boot time and power
consumption and the VM creation and migration power consumption.

The data center is configured to have different types of nodes according to
their virtualization overheads, basically different times for creating and migrating
VMs. The presented approach intends to take benefit of consolidation in large
virtualized data centers executing HPC jobs. For this reason, the evaluation of this
case study has been performed using a grid workload, which has been obtained
from Grid5000 [74] on the week that starts on Monday, October 1, 2007. The set
of policies is evaluated according to different metrics including number of used
nodes, CPU usage, power consumption, and SLA fulfillment. The consolidation
of the system is reflected in the average number of working nodes (those that
are executing a VM), online nodes (those that are turned on) and the power
consumption.

Once the parameters to turn nodes on/off have been set up, according to
the number of loaded nodes, a first basic experimentation is run. The energy
efficiency and SLA fulfillment is compared with four static scheduling algorithms
that do not use migration: a random scheduler (RD), which assigns the tasks
Random; a Round-Robin scheduler (RR), which assigns a task to each available
node; a backfilling strategy (BF), which tries to fill the nodes as much as possible;
and a basic version of the presented SB policy (SB0), which just takes into
account hardware and software requirements (this time, without migrations).

The results presented in Table 8.1 show the power consumption (Pwr) and
different metrics such as the average number of nodes that are actually work-
ing (Work), the average number of nodes running (ON), the client satisfaction
(S ), and the delay. It shows that nonconsolidating policies such as Random and
RR give poor energy efficiency while violating a significant amount of SLAs:
they give the worst results on both criteria. BF gets better SLA fulfillment with
substantially lower cost, as it uses fewer nodes. Finally, the SB policy, which
works with no penalties on virtualization overheads, behaves very similar to the
BF policy.

Using the nonmigrative approach, the SB policy is tested with different config-
urations (SB1 = SB0 + Pvirt, SB2 = SB1 + Pconc) to test the impact of consid-
ering virtualization overheads (creation and concurrency). Table 8.2 shows that
SB1, which adds VM creation overheads, makes a better use of the resources

TABLE 8.1 Scheduling Results of Policies Without Migration

Work/ON CPU, h Pwr, kW S, % Delay, %

RD 24.3 / 41.7 14597.2 1952.1 33.2 474.5
RR 23.5 / 51.9 11844.2 2321.0 60.4 338.4
BF 10.1 / 22.2 6055.3 1007.3 98.0 10.4
SB0 9.9 / 22.4 6055.3 1016.3 98.2 10.4
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TABLE 8.2 Scheduling Results of Score-Based Policies Without Migration

λ Work/ON CPU Pwr S Delay

SB0 30–90 9.85/22.4 6055.3 1016.3 98.2 10.4
SB1 30–90 10.2/22.2 6055.3 1006.7 97.9 10.7
SB2 30–90 10.2/23.0 6068.5 1038.5 99.2 8.8
SB2 40–90 10.4/19.0 6055.1 880.5 98.1 10.2

TABLE 8.3 Scheduling Results of Policies With Migration

λ Work/ON CPU Pwr S Delay Mig

DBF 30–90 9.7/21.3 6056.0 970.6 98.1 12.9 124
SB 30–90 9.7/21.0 6055.8 956.4 99.1 9.0 87
SB 40–90 9.7/18.3 6055.8 850.2 98.4 9.9 87

because it takes into account the time to create VMs and selects better nodes to
perform the same. In addition, it gets worse by SLA fulfillment than solving it
using the SB2, taking care of concurrency overheads, which also causes a small
increment on the power consumption. This is because considering the cost of
concurrent creation of VMs reduces the consolidation ratio but gets better SLA
fulfillment since it produces faster VM creation.

Even though it implies a power consumption increment regarding the basic
configuration, the client satisfaction has been increased and allows the provider
to make a more aggressive turn on/off policy resulting in higher consolidation
and lower power consumption.

Table 8.3 shows the results of the SB scheduler when introducing the capa-
bility to migrate VMs in order to get a better consolidation, applying a dynamic
backfilling (DBF) policy. This applies BF and migrates VMs between nodes in
order to provide a higher consolidation level and the SB proposal using all the
penalties, including the migration capability.

Results for DBF showed a small improvement in power efficiency with respect
to nonmigration variation while getting much better consolidation, caused by the
overheads introduced by migrating VMs, and the SLA fulfillment is maintained
at a medium level as in the nonmigration approach. On the other hand, the SB
policy takes virtualization overheads such as creation and migration into account,
which makes it to get more client satisfaction. And as in the previous experiment,
to give a measure of the improvement in client satisfaction terms, a similar SLA
fulfillment target for DBF and the best of the SB configurations are set, getting
more aggressive turn on/off parameters of λmin = 40% and λmax = 90%. Using
this configuration, a reduction in the data-center power consumption of 15% with
regard to BF is obtained and of 12% when compared with the dynamic variant.
These experiments demonstrate how the SB proposal gets the best power con-
sumption and SLA fulfillment, as it takes into account the migration overheads.
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TABLE 8.4 Score-Based Scheduling Results With Different Costs

Ce Cf Work/ON CPU Pwr S Delay Mig

0 40 10.4/22.9 6055.2 1036.4 99.3 8.6 0
20 40 9.7/21.0 6055.8 956.4 99.1 9.0 87
60 100 9.3/22.0 6057.8 998.8 97.7 11.2 432

One of the advantages of the power-aware SB policy is that it can be easily
configured according to the provider’s requirements. In this experiment, some
variants of the policy are shown: without penalizing empty hosts, using typical
parameters penalizing empty hosts and rewarding near full host, and using more
aggressive parameters for consolidation.

Table 8.4 shows the results of tweaking this parameter. The first variant does
not penalize empty hosts, which implies lower consolidation and worst power
performance, and also does not migrate any VMs since the fillable reward is
not worthwhile. The second variant uses the values used in the previous exper-
iments, which include the empty host penalization and gets better consolidation
while maintaining similar client satisfaction as it performs an accurate number of
migrations. Finally, the third variant has been set up with aggressive parameters,
getting the best consolidation in terms of working nodes, but getting poor energy
efficiency and lower SLA fulfillment, which is mainly because it rewards the
occupation and penalties too much empty hosts, which implies a big amount of
migrations.

8.4.4 Applying Machine Learning

Applying consolidation mechanisms such as the dynamic backfilling described
earlier helps to improve power consumption, but often this can be improved or
easily done by applying knowledge-based techniques such as machine learning.
A first approach focused on learning about the behavior of a job being placed in
a specific target physical machine is discussed here.

The machine learning-aided policy implements a dynamic BF scheduler, using
the information provided directly by the user and using as decision maker the
results of performance and power consumption estimators. When having a pair
<host,VM> in the schedule, the impact the job will cause in the potential host
machine is predicted using context information. So the scheduler has better
confidence on the fact that the selected jobs schedule will not degrade their
performance violating SLAs.

When a new job arrives, the system will try to allocate it, so the candidate
moves will be like “move VM v from its initial temporary host to host h”. Per-
forming a sample run the scheduler can obtain for each combination of VMs
and hosts the performance result of this combination, joint with the information
of the VM (size, requirements, resources used) and the information of the host
(capacity, resources available, information about the other jobs running on it).
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From here on, using machine learning algorithms, a model can be set up, learning
the relation of these elements with the response variable (the resulting perfor-
mance of the job). This model will help the decision maker in predicting values
of expected performance for a given combination before the schedule is applied.

Running some experimentation over the presented scheduling problem the
behavior and performance of different scheduling policies are evaluated using
three different workloads (an HPC, a transactional workload, and an heteroge-
neous one) and using the turn on/off thresholds λmin = 30% and λmax = 60%.
Also, some scheduling algorithms are evaluated for comparing them with the
power-aware one: Random and RR do not use any user-provided information
about the VMs and do not consolidate. For BF and DBF, the user provides for
each VM a figure indicating which percentage of a CPU capacity should suffice to
satisfy the VM SLAs. The algorithms trust this figure as totally reliable and there-
fore will make decisions that may fit the SLAs very tightly, thus saving power.
The algorithm applying machine learning does not use the user-provided informa-
tion but only uses information about the online requirements of the VM in order
to expect the SLA future performance. The results are presented in Table 8.5.

The results obtained using the grid workload show that nonconsolidating poli-
cies such as Random and RR give a poor energy efficiency while violating some
SLAs. BF and DBF fulfill all SLAs with substantially lower cost, and machine
learning performs almost perfectly with respect to SLAs (as we have seen that

TABLE 8.5 Scheduling Results

Work ON CPU usage, h Power, kW SLA, %

Grid workload

RD 16.51 40.76 6017.85 1671.16 88.38
RR 16.11 41.37 5954.91 1696.66 85.99
BF 10.18 27.10 6022.34 1141.65 100.00
DBF 9.91 26.46 6104.33 1118.86 100.00
Machine learning DBF 15.04 37.92 6022.27 1574.78 99.69

Service workload

RD 218.46 400.00 75336.88 19784.38 100.00
RR 290.99 400.00 78419.97 19761.54 100.00
BF 108.79 352.88 59792.09 16257.26 100.00
DBF 108.79 352.88 59748.10 16229.22 100.00
Machine learning DBF 99.61 270.50 61379.38 13673.71 100.00

Heterogeneous workload

RD 224.08 400.00 82137.27 19763.63 88.53
RR 260.66 400.00 84432.96 19713.72 94.20
BF 110.85 330.19 65894.46 16304.38 99.50
DBF 111.03 329.07 66020.58 16214.49 99.59
Machine learning DBF 124.20 307.89 68554.01 15110.33 98.63
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predictions for SLA fulfillment are very accurate). The reason is that the user-
provided figures for the tasks are very close to the real ones (and the load quite
steady), so the BF algorithms will take many decisions that will not violate any
SLA but that look too risky to machine learning, which pays a high price in
consumption for its caution.

On the service workload, the machine learning scheduler is much better with
respect to energy consumption. Note that in this workload, all the schedulers
executed all the tasks, so all SLAs were fulfilled. The workload has a very variable
CPU usage. This means that the user-provided estimation about the CPU to be
used for the given jobs will be a large overestimation for large periods (while it
was very tight on the grid workload), and power will be unnecessarily wasted.
The machine learning scheduler, as being more conservative, estimates better the
SLA fulfillment, and so it is able to reduce the power consumption just to the
required.

Finally, the results obtained using the heterogeneous workload are, as
expected, a mix of the two previous workloads. In this case, the overall SLA
fulfillment by the ML is worse by about 1%, but its overall power consumption
is better by about 10%.

8.4.5 Conclusions from the Experiments

These works and experimentations applying power-aware mechanisms intro-
ducing machine learning are looking to provide a vertical and intelligent con-
solidation methodology to deal with uncertain information, keeping in mind
performance and power consumption. And the results obtained indicated that
significant improvements can be achieved using machine learning models to pre-
dict schedules a priori and decide the movements and operations to be done
within scheduling functions.

The experiments using the grid workload demonstrate how non-consolidation
policies result in poor energy efficiency compared to consolidation-aware poli-
cies such as the BF and scoring policies. Also, the machine learning method is
close enough to these models that use external information with respect to SLA
fulfillment (performance) and much better with respect to power consumption
when the information provided by the users is not uniformly accurate, or the
information is more variable.

8.5 CONCLUSIONS ON INTELLIGENT POWER-AWARE
SELF-MANAGEMENT

As discussed in this chapter, data-center power-aware management techniques
are mainly focused on the autonomic computing field, so power optimization is
done automatically by middleware software in order to deal with the big growth
of the IT infrastructure and the cloud. Furthermore, this automated control is not
just having refined policies, as the systems usually change, requiring the need of
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self-adaption. While autonomic computing properties have several techniques to
update their status, the most useful and currently applied techniques are data min-
ing and machine learning. These learning methods not only can model the system
with good accuracy from examples but also let adapt the model to changes easily.

From the four power-saving strategies presented in this chapter (virtualization,
turning on/off machines, DVFS, and hybrid architecture), recent approaches have
started to apply knowledge-based systems, improving the techniques or allowing
to apply them all together. Instance-based learning can help to complement inex-
istent or uncertain data when dealing with observed data, and also, it can find new
data or discover hidden variables from the system that can be relevant for deter-
mining the behavior of the resources, the clients, or any other element of the cloud
or data center. Furthermore, reinforcement learning techniques are being applied
to decide changes in the system policies, so at each step in the system loop the
learner can observe how good was the previously applied action and then priori-
tize again the actions and modify its policies. Also feature and example selection,
with techniques such as PCA, are being applied to identify which information
obtained from the system is useful, erase outliers and not correct examples, and
find the important attributes that influence most of the system.

In the case of virtualization, most machine learning techniques are dedicated to
predict the system status before and after each creation, migration, or modification
of VMs. Estimating a priori the benefit of realizing a VM operation can reduce
the number of useless operations or drawbacks after operating. Consolidation is
applied as the principal technique when virtualizing, so estimating and predicting
the correct level of consolidation helps to find the optimal power-saving schedule
in the system.

The policies based on turning machines on and off tend to apply reinforcement
learning and dynamic programming formulas, mainly because deciding when
to turn needed or unused machines on or off is an easy policy to learn from
executions. The same happens with DVFS, where resources and devices are
regulated using reinforcement learning too, so finding good policies in order to
adjust levels of power or processor frequency in an optimal way can be achieved
by trial and error during executions and is also a very adaptive technique.

Finally, the construction and usage of hybrid architecture allow the manager
to decide what kind of resources to use in each moment. If self-adaptive man-
agement is applied using techniques such as load prediction, RL learned policies
and a priori data obtainment, the decision maker has some help to find the
most suitable resource scheduling, evaluating not only the load but also the kind
of resources to be used, always using power consumption as one of the most
important parameters.

To conclude this chapter, there are many works applying knowledge and learn-
ing techniques in self-management, but there is more to do so that traditional
decision makers can evolve into new ones that are able to detect the relevant infor-
mation to describe a system, adapt the decision rules when the system changes or
when new elements enter into it, or use the experience and learn to predict future
states of the system and act in consequence. There are several useful works on
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machine learning and data mining awaiting to be applied in cloud and data-center
management situations, and there are many works in self-management awaiting
to be improved and upgraded using new knowledge and learning methods.
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18. Moreno T, Poggi N, Berral JL, Gavaldà R, Torres J. Policy-based autonomous bid-
ding for overload management in ecommerce websites. In: Proceedings of the Group
Decision and Negotiation 2007. Springer-Verlag; Montreal, Canada; 14-1 of May,
2007; pp. 162–166.

19. Poggi N, Moreno T, Berral JL, Gavaldı́ R, Torres J. Self-adaptive utility-based web
session management. Comput Netw 2009;53(10):1712–1721.

20. Witten Ian H., Frank E., Hall Mark A.: Data Mining: Practical Machine Learning
Tools and Techniques (Third Edition). Morgan Kaufmann; January 2011; 629 pages;
ISBN 978-0-12-374856-0.

21. Wildstrom J, Witchel E, Mooney RJ. Towards self-configuring hardware for dis-
tributed computer systems. In: ICAC ’05: Proceedings of the 2nd International
Conference on Automatic Computing. Washington (DC): IEEE Computer Society;
2005. pp. 241–249.

22. Wildstrom J, Stone P, Witchel E, Dahlin M. Machine learning for on-line hard-
ware reconfiguration. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence; Hyderabad, India; 2007. pp. 1113–1118.

23. Wildstrom J, Stone P, Witchel E. Autonomous return on investment analysis of
additional processing resources. In: ICAC ’07: Proceedings of the 4th International
Conference on Autonomic Computing. Jacksonville, Florida, USA; June 11–15, 2007;
IEEE Computer Society; 2007. p. 15.

24. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A survey. J Artif
Intell Res 1996;4:237–285.

25. Sutton RS, Barto AG. Reinforcement learning: an introduction (Adaptive Computation
and Machine Learning). The MIT Press; Massachusetts, USA; 1998.

26. Bertsekas DP, Tsitsiklis JN. Neuro-Dynamic Programming (Optimization and Neural
Computation Series, 3). Athena Scientific; 1996 May.

27. Tesauro G, Jong NK, Das R, Bennani MN. On the use of hybrid reinforcement
learning for autonomic resource allocation. Cluster Comput 2007;10(3):287–299.

28. Vienne P, Sourrouille J-L. A middleware for autonomic qos management based on
learning; 2005.

29. Vengerov D, Iakovlev N. A reinforcement learning framework for dynamic resource
allocation: First results. In: ICAC ’05: Proceedings of the 2nd International Confer-
ence on Automatic Computing. Washington (DC): IEEE Computer Society; 2005.
pp. 339–340.

30. Vengerov D. A reinforcement learning framework for online data migration in hier-
archical storage systems. J Supercomput 2008;43(1):1–19.
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CHAPTER 9

ENERGY EFFICIENCY METRICS
FOR DATA CENTERS

JAVID TAHERI and ALBERT Y. ZOMAYA

9.1 INTRODUCTION

Over the last few decades, computers have become more integral to our lifestyles,
from exchanging simple e-mails to complex discoveries and breakthroughs in sci-
ence, engineering, and medicine. Increasing computational power combined with
advances in data storage and global networking are major components of such
shift in our quality of life [1]. Despite such countless benefits, computers and
more specifically data centers—buildings that accommodate a large number of
networked computer servers—have come under scrutiny because of their con-
sumption of massive amounts of energy [2]. For example, the energy used by US
servers and data centers has doubled for the period from 2000 to 2006. Because
these capital-intensive facilities are essential to our current digital economy, rapid
increase in data centers’ energy consumption and interest in opportunities to cre-
ate efficiencies in the use of such facilities have became a major concern in recent
years.

9.1.1 Background

In general, a data center is composed of the following components: (i) computer
servers to process data, (ii) storage elements to store data, and (iii) network
equipment to communicate, that is, send/receive, data. Data centers also contain
non-IT equipment such as (i) power conversions to provide electricity, (ii) backup
facilities to maintain data reliability, and (iii) environmental control units to
maintain proper temperature and humidity of IT equipment.

Energy-Efficient Distributed Computing Systems, First Edition.
Edited by Albert Y. Zomaya and Young Choon Lee.
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As our economy and society shifts from paper to digital management systems,
data centers invade all sectors of our economy and play a major role in communi-
cation, business, academic, and governmental systems. Small companies usually
house their data centers within their commercial buildings. Large companies with
higher needs, however, usually construct special buildings (thousands of square
feet sometimes) to host their large number of servers. Such data centers are used
by many other third party organizations (i.e., universities, municipalities, and
government institutions) to perform information management and communication
functions.

9.1.2 Data Center Energy Use

Regardless of their use and configuration, data centers are usually more energy
hungry than other buildings, mainly because of high power requirements by IT
equipment as well as their corresponding cooling infrastructures. In fact, data cen-
ters can use as much as 40 times more energy than conventional office buildings
[1]. Thus, large data centers resemble industrial facilities more than commercial
buildings in many cases. For example, data centers in the United States con-
sumed about 1.5% of national electricity in 2006. Power density of data centers
is also increasing every year as the number of servers is expected to continually
grow to expand current data center capabilities. In such a trend, squeezing more
computing power into less space can easily result in more than 20 kW for a
single rack of servers. According to AFCOM’s Data Centre Institute [3], future
power failures/availability can interrupt more than 90% of data centers in the
next 5 years if appropriate actions are not foreseen. As a result, energy-intensive
data centers will consume a significant portion of our future energy and produce
massive greenhouse gas emissions.

9.1.3 Data Center Characteristics

Data centers are housed in specially designed buildings, either new or retrofitted,
without windows and circulation of fresh air to host only computers (not people).
They may range from small rooms (server closets) within conventional buildings
to dedicated large buildings (enterprise-class data centers) to house servers, stor-
age devices, and network equipment. Data center rooms are filled with racks
of servers, storage devices, and network equipment. Data centers also include
power delivery systems to provide backup power, regulated voltage, and AC/DC
convertors. Before reaching IT equipment racks, electricity is first supplied to
an uninterruptible power supply (UPS) unit to prevent experiencing power dis-
ruptions that can cause serious business disruptions as well as data losses. UPS
prevents such interruptions as it uses the AC power to keep its batteries (DC)
fully charged at all times. Power from these batteries is then reconverted from DC
to AC before leaving the UPS and enters the power distribution unit (PDU) that
directly feeds IT equipment racks. Each server, in turn, receives AC power from
PDU and converts it to low voltage DC to be used by its many internal compo-
nents, including the central processing unit (CPU), memory, disk drives, chipset,
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TABLE 9.1 Sample Component Peak Power
Consumption for a Server. Reproduced with
permission from [4].

Component Peak Power (kW)

CPU 80
Memory 36
Disks 12
Peripheral slots 50
Motherboard 25
Fan 10
PSU losses 38
Total 251

fans. The DC voltage serving the CPU is further adjusted by load-specific voltage
regulators (VRs) before reaching the CPU. Table 9.1 shows typical power levels
for various server components [4]. Electricity is also routed to storage devices
and network equipment to facilitate storage and transmission of data. As a result,
the continuous operation of IT equipment and power delivery systems generates
a significant amount of heat that must be removed from the data center so that its
equipment can operate properly. Cooling in data centers is usually provided by
computer room air-conditioning (CRAC) units, while the entire air handling unit
(AHU) is usually situated on the floor. The AHU is responsible for conditioning
and distributing air throughout the data center using its fans, filters, and cooling
coils. In a typical cooling procedure, air enters the top of the CRAC unit and is
conditioned as it passes across coils containing chilled water, which is pumped
from a chiller located outside the room. The conditioned air is then supplied to IT
equipment (primarily servers) through a raised floor plenum, for example, fans
within servers pull in this cold air to reduce their heat. The warmed air, in this
case, stratifies toward the ceiling and reaches CRAC intake.

Because most air circulation in data centers is limited to internal zones, major-
ity of data centers are designed to allow entering only a small amount of outside
air. Therefore, many data centers provide no ductwork for outside air to directly
enter their internal zones—outside air is only provided to adjacent zones such
as office space in such designs. Others admit only a relatively small percentage
of outside air to pressurize their zones.

Data centers use a significant amount of energy to supply three key com-
ponents: IT equipment, cooling, and power delivery. Heat removal procedures
cannot be efficiently designed without careful examination of these components.

9.1.3.1 Electric power. Figure 9.1 symbolically shows how energy is con-
sumed within a typical data center [4, 5]; this also includes equipment that contin-
uously work to ensure uninterrupted execution of primary IT functions. Because
IT equipment performs the most critical operations, UPS equipment is designed
to maintain their electricity supplies even during major utility disruptions. Data
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Main supply

Backup generator Switchgear

Lights, office space, etc.

Cooling system

UPS

PDU

Servers

Storage devices

Network equipment

Figure 9.1 Symbolic energy consumption flow of a data center. Reproduced with per-
mission from [4] and [5].

center equipment usually exhibits high power intensities while all electric pow-
ers are converted to heat during their processes. For example, a recent survey of
power usage in 22 data centers found that a data center’s IT equipment alone
can use almost between 10 and 100 W/sq ft of raised floor area [6, 7]. Since that
report, power intensities have even been increasing over time, largely because of
the increasing heat density of data-processing equipment. As a result, power and
cooling overheads needed to support IT equipment are almost twice the actual
power needs of IT equipment. Overheads are mainly used for power conversions,
backup power, and cooling facilities.

Peak power usage for data centers range from tens of kilowatts to tens of
megawatts for small to large centers, respectively. Increasing power density is
even further worsened when companies are forced to build new data centers.
New buildings are necessary in this case not because of the floor space
shortage, but for their limited capacity in producing extra power and cooling
for new equipment. In fact, this situation has motivated most of the recent
works to improve energy efficiency for data centers. Here, reducing power
consumption will have a direct impact on reducing the resulting heat. Therefore,
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existing infrastructure might still be capable of providing power and cooling
needs for new expansions to defer many costly investments in future data
centers.

9.1.3.2 Heat removal. Maintaining temperature/humidity within specific
ranges is the main objective of air-conditioning systems in data centers. Because
electronic equipment in confined spaces generate a significant amount of heat,
equipment reliability can be seriously jeopardized if it is not adequately/properly
cooled. Similarly, high and low relative humidity levels in data centers can
significantly increase failure rates of IT equipment. To further explain the
importance of a proper cooling infrastructure, consider a fully populated rack
of blade servers that require up to 20–25 kW of power to operate [1]. This
amount of power is equivalent to the peak electricity demand of about 15 typical
California homes [1], but in a much concentrated space (i.e., 2′ × 3.5′ × 6′).
As all this electric power is roughly converted to heat, each rack is expected
to further require 20–25 kW of power to support its associated cooling and
power conversion equipment. To overcome such cooling/power challenges,
many configurations are designed to organize IT equipment inside a data
center. Because smaller data centers rarely face such problem, they sometimes
arbitrarily place their IT equipment throughout the room. Large data centers,
however, use specific configurations to facilitate the cooling process. Figure 9.2
shows a common best practice in which racks are in alternating hot and cold
aisles so that the resulting hot air is removed from the overhead. IT equipment,
in this case, are mounted in racks that are positioned together in long rows.
These racks are then placed on a raised floor that delivers conditioned air.
As a standard terminology, the computer room’s floor area is always called
the raised floor area , even though some rooms do not have actual raised
floors.

Hot
aisle

Hot
aisle

Hot
aisleRackRack

Rear Rear RearFront RearFrontFront Front

Rack Rack
Cold
aisle

Cold
aisle

Figure 9.2 A common best arranging practice for cooling servers inside a data center.
Reproduced with permission from [1].
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9.1.4 Energy Efficiency

Data reliability used to be the only concern of data center designers/operators,
with little or almost no focus on energy efficiency. Because of the exponential
growth of energy consumption in current data centers, this traditional perspective
has recently shifted toward considering energy efficiency as well. As a result,
there is a growing interest in energy efficiency as a potential solution to power
and cooling limitations of current designs.

9.2 FUNDAMENTALS OF METRICS

Despite the hard work of many agencies around the world, reliable information
regarding the total size, power consumption, or efficiency of the data center mar-
ket is still unavailable [8]. In the absence of such vital information, it is very
difficult to predict the growth of the data center industry or even set effective
metrics and targets for the industry. To deal with these issues, proper understand-
ing of the scale of the problem to deliver improvements is the first essential step.
This can be followed by agreeing on an initial set of measurements and metrics
so that data collection can be commenced on a large scale.

9.2.1 Demand and Constraints on Data Center Operators

Incompatible demands and constraints between many organizations—
commercial, political, or industrial—and data centers have significantly
influenced operation of such centers in recent years. The energy use and envi-
ronmental impact of data centers also added another dimension of complexity
for both operators and policy makers. For example, recent public perception
of climate changes substantially influenced our current environmental policies
and social responsibilities. Among many IT industries, data centers were also
targeted, as they demand very high level of energy consumption—policy makers
have identified IT and specifically data center energy consumption as one of the
fastest rising sectors—and it is much easier to measure their performance in
comparison with other IT sectors. This issue became even more serious as the
commodity price of energy has risen sharply in recent years. As a result, data
center operators have substantially changed their commercial/business models
to match the current high rising cost of energy. Energy security and availability
also add to this complexity as the combined pressures of fossil fuel availability,
generation, and distribution; infrastructure capacity; and environmental energy
policy make the prediction of energy availability and its associated cost almost
impossible in the future.

Despite all these constraints, the underlying growth in demand for IT ser-
vices in business is growing every day. This puts more pressure on IT services
and requires better designs to satisfy such exponentially growing requirements.
Besides all these complexities, misunderstanding the proper relationship between
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the falling capital cost of IT equipment and the rising costs of housing and pow-
ering of data center creates massive capacity and financial challenges to this very
particular sector.

9.2.2 Metrics

As the general concept of energy efficiency and its environmental impact, direct
or indirect, become the main concern of many recent developments, data cen-
ter operators are also expected to measure the efficiency of their facilities. On
the basis of this motivation, many agencies worldwide have started working to
develop and apply several metrics to measure efficiency of current and future
data centers. The EU Data Centre Code of Conduct [9] is a major step in this
direction. The scope of metrics in this attempt is only restricted to the data cen-
ter’s mechanical and electrical infrastructure. Thus, these metrics do not reflect
the efficiency of IT services (the end product) delivered to users.

9.2.2.1 Criteria for good metrics. Appropriate metrics for evaluating energy
and power efficiency of data centers are essential, as they can significantly manip-
ulate both organizational profits and environmental goals. These metrics must also
be defined very clear and as productive as possible so that data center stakehold-
ers can discuss and make decisions on them. The following criteria are believed
to be essential for such metrics [10]:

1. Intuitive. Their meaning should be as clear as possible so that just by
stating the term one can judge if it should be increased or decreased. Such
terms (or terminology) must not be too simple or must not ignore important
details, however.

2. Scientifically Accurate. The definitions of the metrics must be accurate
enough so that they can be precisely deployed.

3. Granular . They must be designed so that individual aspects of data centers
can be analyzed in manageable chunks.

4. Nest Together Elegantly . They must be designed so that they can cover
the overall energy efficiency of data centers and nicely complement each
other.

5. Easy to Calculate. They must be fairly easy to measure/calculate so that
data centers can use them to determine the amount of their wasted power
and/or energy in any arbitrary practice, process, or configuration.

6. Easy to Extend . They must be deployable to both current and future IT
hardware products, that is, servers, storage, networking.

7. Sufficiently Flexible. They must be flexible to respond to new technologic
developments; that is, they must not need to be rewritten on arrival of every
new industrial development to increase efficiency in future.

8. Distinguish between Power and Energy . These terms are technically and
semantically distinct and affect different aspects of data centers; they must
be distinguishable in the metrics too.
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9. Precise. They must avoid ambiguous terms that might be seen similar how-
ever very different in semantics; for example, “full load” can be referred
to as both full compute load and full power load .

9.2.2.2 Methodology. Measurement methodologies must also be designed
along with the metrics so that reasonable approximations of the total environmen-
tal and financial cost of services for data centers can be obtained. Many industrial
bodies agree on the following phases for providing better IT energy efficiency for
data centers: (i) determining how efficiently energy is delivered from the power
source to the IT equipment in the facility; (ii) determining how many units of
computing, storage, or networking each IT device can deliver on receiving one
unit of energy; and (iii) determining how many units of useful, end-user work,
each IT service can deliver per benchmark unit of computing. Although the first
phase is more challenging and efficiency metrics are trying to target this part
of the overall holistic energy consumption of data centers, the other two phases
have received more attention from both governmental and industrial agencies.

9.2.2.3 Stability of metrics. To support effective decision making and plan-
ning, metrics must be as stable as possible, at the same time as independent as
possible, so that efficiency in varying IT workloads and equipment within a facil-
ity can be properly reflected. This goes against the general conception of having
sensitive measures to obtain systems performance in different time frames. This
is mainly because local measures are inherently sensitive to changes with volatile
values.

9.3 DATA CENTER ENERGY EFFICIENCY

There are many opportunities to improve energy efficiency of data centers by
proper analysis of metrics and tools that assist operators in understanding their
facilities and the impact of their choices. However, using a sole metric cannot
provide a valid benchmark for making decisions or build business cases in many
occasions. For example, some metrics only have a very limited scope to measure
efficiency of either mechanical or electrical equipment housed within a data
center. It is also unwise to compare delivery efficiency of two operators solely
based on their local infrastructure measurement, as it is only one component
of the delivery chain and cannot properly reflect the efficiency of the whole IT
equipment, software packages, or system architectures.

9.3.1 Holistic IT Efficiency Metrics

IT efficiency metrics should be able to report both energy and financial costs of
delivering IT services. In fact, both business cost modeling and internal/external
carbon markets require at least this level of capability so that effective
management information about IT services can be delivered and used for future
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predictions. As a result, data center infrastructure analysis metrics must be
reversible and independent of IT equipment to determine the total energy use of
an IT device within a data center.

To provide such holistic measurements, a number of individual, single value
measures and metrics have been already proposed to indicate efficiency of various
layers of the IT delivery chain, that is, software efficiency, IT hardware utiliza-
tion, IT hardware efficiency, and data center efficiency. Although the product
of component metrics seems to be descriptive enough to reflect the overall effi-
ciency of data centers, operators should also avoid such flawed approaches with
misleading results. In fact, such metrics are particularly weak in all forms of
economic analysis and should not be used to determine marginal costs.

To better demonstrate why simple and sole energy metrics can mislead man-
agement decisions, an analogy is made between electrical efficiency of a data
center and the fuel efficiency of a vehicle. Table 9.2 shows sample charac-
teristics of three vehicles for this purpose. On the basis of this table, the 38-
ton articulated lorry with 240 ton miles per gallon should be chosen for ordi-
nary shopping! An obvious wrong decision would be one based on the simple
metric of getting the maximum ton-mileage per each gallon of petrol. In fact,
such inappropriate decision is made simply because the vital information of their
suitability to our use (shopping) is naively discarded; thus, the metric led to a
wrong conclusion.

Table 9.3 shows how similarly weak designed metrics for IT equipment con-
solidation in data centers can result in a wrong decision as well. In this example,
an operator spends significant capital, operational expense and tolerates migration
risk to reduce its power use to another service platform. Assume the old platform
is several years old and the IT equipment draws 200 kW at the power supply unit
(PSU), while the new more efficient platform draws only 50 kW at the PSU. As
shown in this table, the facility has a fixed overhead of 100 kW, a rated IT elec-
trical load of 500 kW and would draw 850 kW from the utility feed at full rated
IT load. Here, a simple metric is used to measure how much percentage of the
input power is actually delivered to the IT equipment: the old and new platforms
would have the efficiency of 200/400 = 50% and 50/175 = 29%, respectively.
As a result, the old platform is favored to the new platform despite its obvious
advantages. Such wrong decision could have also been avoided if more sophisti-
cated metrics that consider fixed and proportional consumption ratios were used
instead.

TABLE 9.2 Sample Vehicles for Shopping. Reproduced with permission from [8].

38-Ton Articulated 4-Ton Van Family Hatchback

Fuel economy (miles per
gallon)

8 30 36

Load weight (tons) 30 3 0.5
Load economy (ton

miles per gallon)
240 90 30
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TABLE 9.3 Sample Characteristics of Two Platforms. Reproduced with
permission from [8].

Old Platform New Platform

Fixed utility load of facility (kW) 100 100
Related IT load of facility (kW) 500 500
IT electrical load (kW) 200 50
Proportional electrical load (kW) 300 75
Total utility load (kW) 400 175
Achieved performance 200/400 = 50% 50/175 = 29%

9.3.1.1 Fixed versus proportional overheads. Fixed and proportional
overhead scalars provide a more intuitive understanding of the overall facility
efficiency to operators of data centers. Determining such overheads is particularly
very useful when modular provisioning is used.

Fixed overheads provide a deep understanding of the unchangeable committed
power to a facility. Facilities with high fixed overheads should be upgraded,
decommissioned, or filled to their best practice to minimize the impact of such
fixed losses. Proportional overheads, on the other hand, provide information to
discover the usual complex relationship between the energy consumption of a
center and its IT load. Such analysis can also help to predict the level of energy
reduction as the IT load is reduced.

9.3.1.2 Power versus energy. Power and energy are different. In fact, dis-
tinguishing between these terms is extremely helpful to highlight the benefits that
would be achieved by improving the metrics. Several improvements only save
power, others only save energy, and most save both. In a data center, peak power
demand determines the size of UPS, cooling system, and other utility feeders.
Therefore, saving power tends to reduce the capital expenditure (CapEx) for new
data centers and to defer expensive capacity expansions for existing ones. As a
result, it will have much greater economical impacts on data centers than does the
utility bills, also referred to as operating expenditure (OpEx ). Thus, the majority
of data center operators are more interested in saving power to reduce or defer
CapEx. Despite this, policy makers and corporate level enterprise sustainability
initiatives are more interested in energy, as it determines the quantity of fuel that
must be burned at power plants with its requisite emissions of carbon dioxide
and other pollutants.

The following points highlight major differences between these two terms:
(i) power is a spot measurement at a particular point in time, while energy is
consumption over a period of time; (ii) power is measured in kilowatts (kW),
while energy is measured in kilowatt hours (kW h); and (iii) the peak or highest
power drawn at any point of time is the major concern for power-based designs,
while the summation of energy consumption over a period of time is the major
concern for energy-based designs.

These distinctions are also important because these terms are completely inde-
pendent design entities; a system may draw a large amount of power without using
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TABLE 9.4 Power versus Energy. Reproduced with permission
from [10].

Power Energy

Kilowatts Kilowatt hours
Capacity constraints Electricity bill
Demand charge/utility feeders Kilowatt hour charge
No pollution CO2 emission
Spot measurement, at a peak time Sum, over a period of time
Full load efficiency Part load efficiency

much energy, and vice versa. For example, a 1500-W hair dryer that is used only
5 min a day consumes 15 times more instantaneous power than a 100-W light
bulb does in a whole year. In this case, however, the hair dryer uses only about
one-twentieth as much energy as the light bulb. For data centers, although an
IT manager can save energy by hibernating its idle servers at night, the peak
power demand cannot be reduced. This is because the site’s physical infrastruc-
ture must still be able to support peak computing demands when all servers are
fully deployed.

Despite their fundamental differences, because many analysts and even a very
few energy experts still inaccurately use the terms power and energy interchange-
ably, future discussions of data center energy/power efficiency must be technically
precise to avoid ambiguities. Table 9.4 compares power and energy in terms
relevant to data center operators.

9.3.1.3 Performance versus productivity. Data centers must simultane-
ously consider computational needs, network availability needs, and environmen-
tal goals in their designs. Although some of these goals may look conflicting,
decision makers still need to critically think to find better ways to implement such
systems. For example, data center cooling system design engineers are already
accustomed to search for chillers that use the fewest possible kilowatt per ton to
produce chilled water. Although improving cooling efficiency will have a posi-
tive impact on the overall energy efficiency of the whole system, these facility
experts may still need to think why chilled water needs to be at the 42◦F (6◦C),
which is commonly specified for an office building, instead of 49◦F (9◦C) that is
more appropriate for computer rooms. In fact, compared with chillers working at
42◦F (6◦C), those working at 49◦F (9◦C) would deliver more cooling efficiency,
as they do not need dehumidification anymore.

Analogous examples exist on the IT hardware side of servers and storage as
well. For example, rather than using the most efficient 7200 rpm storage drives,
storage managers can use lower speed drivers to store less frequently used data
because power consumption by such devices is almost cubically related to their
spindle speed. As a result, 7200-rpm drives consume eight times more power than
3600-rpm drives. Thus, by storing rarely used data on slower drives or tapes, both
power and energy consumption can be significantly reduced; this kind of changes
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may be economically implemented without necessarily buying new or more hard-
ware. Business-line application managers might similarly choose to consolidate
few servers via virtualization rather than replacing them with new more efficient
ones during the next IT hardware refresh cycle. In this case, virtualization can
immediately cut power and/or energy by 90%, whereas implementing more effi-
cient power supplies for all hardware devices may only save 5–10% of the total
power and/or energy. Therefore, although energy efficiency initiatives should
not jeopardize IT availability as well as its associated quality of service in any
condition, data center decision makers can still find efficiency opportunities by
considering new configurations that better serve their firms’ business needs.

9.3.2 Code of Conduct

The Code of Conduct (CoC) [9] is a voluntary initiative aimed to bring inter-
ested stakeholders, manufacturers, vendors, consultants, and utilities together to
follow and abide a set of agreed commitments. The CoC has been created in
response to the current increasing energy consumption in data centers as well as
the current demands to reduce its related environmental, economic, and energy
supply security impacts. The CoC also aims to inform and stimulate data center
operators/owners to reduce their energy consumptions without hampering their
critical functions as data centers. This mission can be achieved by better under-
standing the energy demands within data centers and raising their awareness so
that best energy-efficient practices become natural solutions in many cases.

9.3.2.1 Environmental statement. Electricity consumed in data centers,
including enterprise servers, Information and Communication Technology (ICT)
equipment, cooling and power equipment, is expected to substantially contribute
to electricity consumption in the EU commercial sector 1 in the near future.
Western European electricity consumption of 56 TW h per year is estimated to
increase to 104 TW h per year by 2020 [9]. Such an increase in projected energy
consumption poses serious problems for the EU energy and environmental poli-
cies if they are not dealt with properly. As a natural solution, energy efficiency
of data centers should be maximized so that negative impacts of such develop-
ments, such as the carbon emissions, and strain on infrastructure associated with
increases in energy consumption are efficiently mitigated.

9.3.2.2 Problem statement. Data centers have traditionally been designed
with large tolerances for operational and capacity changes as well as possi-
ble future expansions. These factors led to power consumption inefficiencies,
as many today use design practices that have been outdated. As a result, for
many data centers, only a small fraction of the input power is consumed by
its IT systems. Furthermore, most enterprise data centers are even equipped with
redundant power and cooling systems to provide higher levels of reliability, while
IT systems are frequently utilized at lower averages. Ensuring availability and
its associated costs was usually ignored as risks to business performance when
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energy costs used to be relatively small in comparison to the IT budget. Envi-
ronmental responsibilities were also not applicable to IT departments in many
cases. With rise of energy prices, energy consumption of individual data cen-
ters became increasingly important where the operational energy expenditures of
its associated ecological impacts play one of the most important roles in deter-
mining the overall ownership cost of a data center. Increasing willingness of
manufacturers and vendors toward energy efficiency of data centers also led to
many techniques (e.g., simply using existing power management technologies)
to reduce the total cost of ownership (TCO) without prohibiting its initial costs.
Despite many businesses that are already aware of their environmental impacts
and ways to reduce them, many data center operators are still unaware of the
financial, environmental, and infrastructural benefits they can make by improving
the energy efficiency of their facilities.

To make data centers more energy efficient, a multidimensional challenge to
optimize power distribution, cooling infrastructure, IT equipment, and IT output
must be simultaneously dealt with. Although many activities have been initiated
within the industry with numerous vendor-specific products and services, there
are still the risks of confusion, mixed messages, and uncoordinated activities. For
example, independent assessment and coordination tailored to European condi-
tions, such as climate and energy markets regulation, are required to recognize
different energy-saving opportunities.

9.3.2.3 Scope of the CoC. Definition of “data center” in CoC includes all
buildings, facilities, and rooms, containing enterprise servers, server communica-
tion equipment, cooling equipment, and power equipment. CoC covers two main
areas: IT and facility loads. IT load relates to all IT equipment consumption effi-
ciencies and can be described as the IT work capacity available for a given IT
power consumption; facility load relates to all mechanical and electrical systems
such as cooling systems (chiller plant, fans, and pumps), air-conditioning units,
UPS, PDU that support IT electrical loads.

Although it is very important to consider utilization as a part of efficiency in
data centers, CoC considers each center as a complete system and tries to optimize
the whole system (IT systems and infrastructures) to efficiently deliver all sorts of
desired services. Similar to other industrial bodies, CoC will also initially use the
ratio of IT to facility load as a key metric in assessing infrastructure efficiency;
this metric will be known as facility efficiency . The CoC also targets the efficiency
of IT equipment on receiving their delivered power; this will be known as asset
efficiency . The CoC will adopt more comprehensive metrics to cover IT system
designs, IT hardware asset utilizations, and IT hardware efficiencies once these
preliminary metrics are developed and agreed.

The CoC deals with both equipment and system-level issues. At the equipment
level, CoC covers typical deployment of all required sort of equipment within a
data center to provide data, internet, and communication services. Rack-optimized
and non-rack-optimized enterprise servers, blade servers, storage and networking
equipment, CRAC units, UPSs, PDUs, and other miscellaneous equipment such
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as lighting are all included in this level. At system level, CoC proposes actions
to minimize overall energy consumption related to equipment interactions and
system designs for both existing and new data centers. Improved cooling designs,
correct sizing of cooling, correct air management and temperature settings, and
correct selection of power distribution are sample examples for such actions.

9.3.2.4 Aims and objectives of CoC. To minimize energy consumption
of data centers, CoC involves different stakeholders, especially data center
owner/operators, to improve efficiency in their own areas of competence. More
specifically, CoC aims to

1. develop and promote a set of easily understood metrics to measure current
efficiencies and improvement in conjunction with other industrial partners;

2. provide an open process/forum to represent/discuss European stakeholder
requirements;

3. produce a common set of principles in coordination with other interna-
tional initiatives to be referred to;

4. create awareness among managers, owners, and investors about opportu-
nities to improve efficiency of energy suppliers, services, and equipment;

5. create and provide an enabling tool to implement cost-effective energy-
saving opportunities;

6. develop practical voluntary commitments where methods for energy effi-
ciency of data centers can be implemented and improved so that the TCO
can be minimized;

7. determine and accelerate application of energy-efficient technologies;
8. foster development of tools to promote energy-efficient practices;
9. support criteria to measure equipment efficiency, similar to or based on

the ENERGY STAR program specifications, and recommend a set of best
practices;

10. monitor and assess actions to properly determine both progress and areas
of improvement;

11. set energy efficiency targets for public and corporate data center owners
and operators. Targets are differentiated according to the size and sta-
tus of existing data centers, their geographical locations, their return on
investments, etc.;

12. provide reference for other participants who might not have initially signed
and committed themselves to CoC or principles that do not want to make
public commitments.

The CoC should be primarily addressed by data center owners and operators
who may become a participant and then by service providers who may become
endorsers. CoC is also
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13. flexible and open so that it can be applied to a great variety of data center
situations;

14. sufficiently precise to ensure that committed companies will achieve a sig-
nificant part of transparently reported potential energy savings;

15. adaptable to a large variety of national efficiency programs, climates, and
energy infrastructures.

9.3.3 Power Use in Data Centers

As mentioned earlier, a key part of the national Market Transformation Programs
and the EU CoC is to create effective incentives and reporting measures for
efficient use of energy in data centers. It has also been identified that proper
measurement of a data center as well as its IT equipment energy efficiency are
key factors changing the behavior of future IT operators.

Utility power entering a data center needs to pass through a number of stages
of voltage transformation, distribution, and cleaning before being delivered to IT
equipment. In fact, as most of the power consumed within a center is converted to
heat, one way or another, an efficient high capacity cooling system to draw such
additional heat/load is required. Additional power is also needed for a number of
auxiliary support systems (such as lighting, generator preheaters, fire suppression
systems, and human occupied areas) within each center. Figure 9.3 shows a
simplified representation of power delivery and its associated losses for a typical
data center. In this figure, the utility power enters the building on the left and
passes through the power delivery chain to the IT equipment on the right; each
stage in such delivery chain has inherent losses as shown.

9.3.3.1 Data center IT power to utility power relationship. To better
understand, measure, and model the overall energy efficiency of a data center,
the relationship between electrical load of the housed equipment and the utility

IT equipment

Lighting,
generator, fire, etc.

Utility
input 
power

Input
transformers

Master
PDU(s) UPS IT

PDU(s)

Chiller
plant CRAC(s)

IT power path

Non-IT power path

Heat loss

Figure 9.3 IT/non-IT power delivery in a data center. Reproduced with permission
from [8].
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TABLE 9.5 Sample Loss Parameters for a Typical Data Center. Reproduced with
permission from [8].

Rated Power Fixed Proportional Square Law
Devices (watts) Losses, % Losses, % Losses, %

Cabling and switchgear 1,000,000 0.0 0.0 1.5
Power distribution units 1,600,000 0.5 0.0 0.5
UPS 1,100,000 2.0 2.5 5.0
Computer room air

conditioners
1,200,000 10.0 1.5 0.0

Chiller plant 1,500,000 5.0 30.0 0.0
Transformers 2,100,000 0.5 0.0 2.5

power drawn to power and cool such housed equipment must be investigated first.
The power consumed by IT equipment within a data center is passed through
a series of inefficient power conditioning and distribution devices. As a result,
in addition to IT equipment, these auxiliary devices also produce heat. In a
relatively simple model, inefficiency loss for each component is composed of
three factors: fixed, proportional, and square law losses. Fixed losses are for
devices that have a fixed load component every time they are switched on, even
before IT equipment are powered, for example, battery charge maintenance power
of UPS devices. Proportional losses are proportional to the load drawn through
the device, for example, the ratio of compressor pumps inside chillers being
switched on and off is greatly dependent on the cooling load. Square law losses
are electrical losses that are proportional to the square of the carried currents, for
example, electrical losses in transformers and cabling. Table 9.5 shows sample
loss parameters for a typical data center.

In data centers, it is not only the fixed load overheads that affect the fixed load
power draw for zero IT electrical load. In fact, fixed load overheads in power and
cooling chains create extra electrical loads on their parent devices to generate
more heat. This results in further proportional and square law losses in power
and cooling systems, beyond that of the individual fixed losses.

9.3.3.2 Chiller efficiency and external temperature. As most data cen-
ters’ Heating, Ventilation, and Air Conditioning (HVAC) systems are influenced
by both internal and external air temperatures, efficiency of their chillers’ pumps
improves when the external temperature falls. This phenomenon is particularly
more significant where fresh air-cooling systems and/or waterside economizers
are used.

9.4 AVAILABLE METRICS

To address all issues mentioned in the previous sections, several metrics are
proposed. The most influential metrics proposed by The Green Grid, McKinsey,
and Uptime Institute are presented in the following sections.
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9.4.1 The Green Grid

The Green Grid [11] is a nonprofit trade organization of IT professionals that
addresses power and cooling requirements for data centers as well as its entire
information service delivery ecosystem. The Green Grid does not endorse any
vendor-specific products or solutions but instead provides recommendations on
best practices, metrics, and technologies designed to improve the overall data
center efficiency. The Green Grid believes that several metrics can help data
centers to better understand and improve their energy efficiency; such metrics
can help to make smarter decisions on new data center deployments. Further-
more, these metrics provide a dependable way to measure their results against
comparable IT organizations. The Green Grid has already designed three metrics
(power usage effectiveness (PUE), data center efficiency (DCE), and data center
infrastructure efficiency (DCiE)), and is already working toward its fourth metric
(data center productivity (DCP)) [12, 13].

9.4.1.1 Power usage effectiveness (PUE). This metric is designed to mea-
sure the amount of extra power needed to perform effective computation in a
data center; it is defined as follows:

PUE = Total facility power

IT equipment power
.

Figure 9.4 shows the overall power flowchart The Green Grid assumes in
designing its metrics. Here, its equipment power includes the load associated
with all IT equipment, such as computer, storage, and network equipment, along
with supplemental equipment such as KVM switches, monitors, and worksta-
tions/laptops used to monitor or otherwise control the data center. Total facility

Total
facility
power

Building load
Demand from grid

Power
• Switchgear
• UPS
• Battery backup
• Others

• Chillers
• CRACs
• Others

• Servers
• Storage
• Telco
 equipment
• Others

Cooling

IT load

IT
Power

Figure 9.4 The Green Grid’s overall power flowchart. Reproduced with permission
from [11].
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power includes everything that supports IT equipment load such as power delivery
components (e.g., UPS, switchgear, generators, PDUs, batteries, and distribution
losses external to the IT equipment); cooling system components (e.g., chillers,
CRAC units, direct expansion air handler (DX) units, pumps, and cooling tow-
ers); computer, network, and storage nodes; and other miscellaneous component
loads (e.g., data center lighting).

9.4.1.2 Data center efficiency (DCE). This metric is designed to measure
the percentage of power actually consumed for computing inside a data center
and is defined as follows:

DCE = 1

PUE
= IT equipment power

Total facility power
.

9.4.1.3 Data center infrastructure efficiency (DCiE). Because DCE was
rather confusing, The Green Grid decided to rename it to DCiE.

DCiE = DCE = 1

PUE
= IT equipment power

Total facility power
.

Both PUE and DCiE provide ways to determine (i) opportunities to improve
a data center’s operational efficiency, (ii) how a given data center compares with
competitive data centers, (iii) if data center operators are improving the designs
and processes over time, and (iv) opportunities to repurpose energy for additional
IT equipment.

Because both these metrics are essentially the same, they can be equally used
to illustrate the energy allocation in a data center. For example, PUE equal to
3.0 means that a data center demands three times more energy than what it
actually needs to power its IT equipment and DCiE equal to 33% (equivalent to
a PUE of 3.0) suggests that IT equipment consume 33% of the data center’s total
power.

The Green Grid will also consider the development of metrics that provide
more granularities for the PUE and DCiE metrics by breaking it down into the
following components:

PUE = 1

DCiE
= Cooling load factor (CLF) + power load factor (PLF) + 1.0,

where, cooling load factor (CLF) is the total power consumed by chillers, cooling
towers, CRAC units, pumps, etc. divided by the IT load; power load factor
(PLF) is the total power dissipated by switchgears, UPSs, PDUs, etc. divided
by the IT load; and 1.0 represents the normalized IT load. These metrics will
be designed to address the blurring of the lines between the IT equipment and
facility infrastructure as discussed above.
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9.4.1.4 Data center productivity (DCP). For the long term, The Green Grid
is working on a metric to define DCP. DCP is envisioned to naturally evolve
from PUE and DCiE and could be defined as follows:

DCP = Useful work

Total facility power
.

Although DCP is much more difficult to determine, members of The Green
Grid predict that it will be a key strategic focus for the industry. In effect, this
calculation defines data centers as black boxes—power and data enter, heat and
data exist—where a net amount of useful work is performed.

9.4.2 McKinsey

McKinsey proposes a new Corporate Average Datacenter Efficiency (CADE)
metric to measure the individual and combined energy efficiency of corporate and
public sector and third-party-hosted data centers [14]. Similar to the automotive
style CAFE standards, CADE measures DCE across the entire corporate footprint.
Compared to other industry metrics, CADE is the first standard to offer the much
needed double lens by combining facilities with IT. To measure how effectively
a data center uses energy coming into the facility, CADE takes the amount of
power consumed by IT, or the IT load, and divides it by the total power consumed
by the data center. To determine how fully the physical equipment installed at
the facility level is being used, the CADE formula divides the IT load by the
facility’s total capacity. This facility efficiency measure is then multiplied by
the average CPU server utilization and yields the organization’s CADE rating.
Figures 9.5 and 9.6 show individual components of CADE with an example of
how the calculations are performed.

Each data center is measured independently with a weighted average value
based on the installed facility capacity. Since data centers may draw upon differ-
ent sources of energy, CADE can be used to determine the relative “cleanliness”
of the company’s greenhouse gas emissions.

CADE confers a number of advantages. In contrast to other industry metrics,
the CIOs, CEOs and Boards now have a single, integrated metric that combines
facility and IT energy efficiency levels to evaluate the total performance of their
information factories. Just as the automotive industry can point to the miles
per gallon their vehicles achieve, the senior leadership can use CADE to reveal
just how much efficiency their capital-intensive data centers are driving. Most
importantly, CADE is a metric that can propel tangible action. To set targets
for improvement, McKinsey has established five CADE tiers as illustrated in
exhibit (X). Data centers operating at level 1 have a CADE rating of 0–5%
and are weakest from the efficiency point of view. Centers operating at level 5
are maximally efficient and have CADE ratings greater than 40%. While most
organizations are likely to fall within the lower bounds initially, the leadership
can use CADE tiering to establish performance goals. The ranges themselves will
vary as more organizations seek to standardize them. However, since the results
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CADE = ×
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Figure 9.5 Components of CADE. Reproduced with permission from [14].
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Figure 9.6 CADE calculation example. Reproduced with permission from [14].

are measurable, performance becomes easier to gauge across the organization
as well as among individual data centers. CADE has the potential to make a
significant contribution to the data center community.

9.4.3 Uptime Institute

The Uptime Institute assumes a data center electricity flow to be as in Figure 9.7.
It proposed three vital measuring points to collect efficiency data as (i) data center
consumption at the meter, (ii) hardware load at the plug, and (iii) hardware
compute load. On the basis of these measurements, four metrics are designed to
gauge efficiency of different aspects of a data center [10].
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Figure 9.7 The Uptime Institute’s power flowchart. Reproduced with permission
from [10].

9.4.3.1 Site infrastructure power overhead multiplier (SI-POM). The
Site Infrastructure Power Overhead Multiplier (SI-POM) is a dimensionless ratio
to determine the amount of overhead a data center consumes to power up its
critical IT equipment and is defined as follows:

SI-POM = Data center consumption at utility meter
Total hardware AC power consumption at the plug

for all IT equipment

.

SI-POM thus captures all the conversion losses in transformers, UPS, PDU, and
critical power distribution losses, as well as cooling systems, lights, and other
minor building loads. Determining SI-POM is important for two reasons. First, it
can be reduced by improving the energy efficiency of the cooling, UPS, and PDU
system components. Second, its value is significantly influenced by operator skill
in the running of the mechanical plant. Although these opportunities occur either
when a data center is first built or during major upgrading, because physical site
infrastructure lasts for a long time, component and system choices (good or bad)
regarding SI-POM last a long time as well.

It is important to note that many design and operational features that save
energy will not necessarily affect SI-POM. For instance, free cooling strategies
using outside air are unlikely to improve SI-POM because a data center must
still size cooling, UPS, and PDU systems large enough to handle peak cooling
demands when free cooling is not available. The only way for free cooling to
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affect SI-POM is for it to somehow reliably contribute to cooling year-round.
This is unlikely to the extent that peak cooling demands probably occur when
a data center is running a high compute load on a hot, humid summer day,
while free cooling is mostly available on cool winter nights or in low humidity
environments.

9.4.3.2 IT hardware power overhead multiplier (H-POM). The Hardware
Power Overhead Multiplier (H-POM) is a dimensionless ratio to determine the
amount of power wasted in power supply conversion losses or diverted to internal
fans, rather than being in useful computing. For a single device, H-POM is defined
as follows:

H-POM = AC hardware load at the plug

DC hardware computer load
.

For an entire data center, H-POM is the ratio of the total hardware load at the
plug for the entire data center to the total hardware compute load for the entire
data center.

9.4.3.3 DC hardware compute load per unit of computing work done.
This quantitative metric determines how power hungry a particular platform is,
despite the fact that H-POM excludes differences in power supply and fan losses
and focuses on how effectively a piece of equipment utilizes its internal DC watts.
For example, different server architectures consume different levels of DC power
to perform the same amount of computing work or different spindle speeds of disk
storage consume different amounts of power per terabyte of storage provided.
Although it is extremely difficult, from a technical point of view, to create a
single quantitative metric for this measurement, it is important to inform vendors
who wish to reduce their at-the-plug hardware power uses through this factor in
addition to their overall H-POM.

9.4.3.4 Deployed hardware utilization ratio (DH-UR). This metric is a
dimensionless ratio and determines a power fraction in which IT equipment are
not running any application or handling important data. This metric is designed
because most IT equipment are always switched on—unless specifically intended
not to—as it is often impossible to check if a given box is doing something
important or not. As a result, such dormant equipment can waste significant
amount of power during their lifetime. Deployed Hardware Utilization Ratio
(DH-UR) can be defined for both servers and storage elements as follows:

DH-UR
(Servers) = Number of servers running live applications

Total number of deployed servers
,

DH-UR
(Storage) =

Number of terabytes of storage holding important
frequently accessed data

Total terabytes of deployed storage
.
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Although accurately measuring these metrics is almost impossible—if dor-
mant equipment could be easily identified, they would have already been turned
off and removed—managers can still estimate these values or utilize industry
average numbers to estimate the amount of power/energy being wasted within
an organization.

9.4.3.5 Deployed hardware utilization efficiency (DH-UE). Deployed
Hardware Utilization Efficiency (DH-UE) is a dimensionless ratio to determine
the number of servers and storage units that can increase their utilization through
virtualization. This metric is designed because many servers run only a single
application with maximum 25% of their computing load. Since servers running
at low compute loads often draw nearly as much power as those running at high
loads, a large number of such partly loaded servers can quickly consume valu-
able UPS and HVAC capacity and raise the electricity bill. DH-UE for servers
is defined as follows:

DH-UE
(Servers) =

Minimum number of servers necessary to handle peak
computing load

Total number of deployed servers
.

The minimum number of servers necessary to handle peak computational load
is defined as the sum of the highest percentage of compute load each server
experiences, plus any overhead incurred in virtualization, expressed as a percent-
age of the maximum compute load of a single server. This calculation uses peak
percentage of compute load, not the average percentage. A similar definition can
be developed for storage.

9.5 HARMONIZING GLOBAL METRICS FOR DATA CENTER ENERGY
EFFICIENCY

As business demands and energy costs for data centers rise, owners and operators
have focused on the energy efficiency of the data center as a whole, frequently
using energy efficiency metrics. However, the metrics are not always applied
clearly and consistently. To address these inconsistencies, a group of leaders
from across the industry met on January 13, 2010, to agree on data center energy
efficiency measurements, metrics, and reporting conventions [15]. Organizations
represented were the 7 × 24 Exchange [16], ASHRAE [17], The Green Grid
[11], Silicon Valley Leadership Group [18], US Department of Energy’s Save
Energy Now and Federal Energy Management Programs [19], US Environmental
Protection Agency’s ENERGY STAR program [20], US Green Building Council
[21], and Uptime Institute [21].

These organizations aimed to share global lessons and practices with an objec-
tive of arriving at a set of metrics, indices, and measurement protocols to be
formally endorsed or adopted by each participant organization. The following
specific goals were highlighted:
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1. identify an initial set of metrics;
2. define each metric;
3. define the process for measurement of each metric;
4. establish ongoing dialog for development of additional metrics.

During this meeting, the following guiding principles were agreed on:

1. PUE using source energy consumption is the preferred energy efficiency
metric for data centers.

2. When calculating PUE, IT energy consumption should, at a minimum, be
measured at the output of the UPS. However, the industry should progres-
sively improve measurement capabilities over time so that measurement of
IT energy consumption directly at the IT load (i.e., servers) becomes the
common practice.

3. For a dedicated data center, the total energy in the PUE formula will include
all energy sources at the point of utility handoff to the data center owner
or operator. For a data center in a mixed-use building, the total energy will
be all the energy required to operate the data center, similar to a dedicated
data center, and should include IT energy, cooling, lighting, and support
infrastructure for the data center operations.

These principles are meant to help the industry have a common understanding
of energy efficiency metrics that can generate dialog to improve data center effi-
ciencies and reduce energy consumption. Member organizations are committed
to apply and promote these guidelines to their programs. A task force has also
been created to further refine these metrics and identify a road map for the future.
The group also aspires to address IT productivity and carbon accounting in the
future.
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CHAPTER 10

AUTONOMIC GREEN COMPUTING
IN LARGE-SCALE DATA CENTERS

HAOTING LUO, BITHIKA KHARGHARIA, SALIM HARIRI, and YOUSSIF
AL-NASHIF

10.1 INTRODUCTION

The need for energy-efficient large-scale computing systems such as data centers
has increased because of the rise in business demands and energy costs. The US
Environmental Protection Agency (EPA) [1] has recently been devoting efforts
with the IT industry to reach consensus on the measurement and improvement
of data center energy efficiency [2]. The overall efficiency of data centers relies
on power usage efficiency (PUE), server power usage efficiency (SPUE), and
server energy efficiency (SEE). Careful floor planning and IT equipment energy
saving can help reduce PUE and SPUE. Dynamic power within the equipment
provides a more flexible and swift solution without changing the organization
and alignment of the high performance servers.

Today’s data centers are meant to scale up in a rapid manner to match the
increasing service request workload, thus bringing enormous expected issues and
research opportunities. The capability to do energy-aware studies in real time
will not only provide more information for heterogeneous resource configuration
for improved systems but also allow us to study events that cannot be repeated
or that change the entire environment.

Over the past several years, there has been an increasing interest in autonomic
computing methods because of their ability to achieve active control and man-
agement of heterogeneous and dynamic behaviors of large-scale data centers.
These methods could be applied to a wide range of environments such as cyber-
security systems [3], wireless communications [1], and on-demand applications
[1]. Clients such as medical institutions [3], military bases [3], and web service
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providers [4], would benefit in terms of real-time robustness, easier management
schemes, and better resource utilization. It has been validated in real applications
that the overhead for building autonomic computing for self-management is tol-
erable compared with respect to the baseline performance and power standards.

Autonomic computing [5–7] can be implemented as a closed-loop-controlled
system that can periodically detect the anomalies and restore the system to its
normal state. Dynamic power management is achieved by configuring the system
into one of the several power states such that the system operation is confined
within the normal operating region.

In this chapter, we are particularly interested in the dynamic power manage-
ability of large-scale and massively distributed computing systems, for example,
data centers and clouds [8]. There are several challenges that must be addressed
to achieve autonomic control and management of large-scale data centers.

• Given the state-of-the-art architecture and application-specific heterogeneous
floor planning of data center resources, how do we organize and orchestrate
the distributed system so that it could be accessed fairly and efficiently?

• Given the variable incoming workload and stationary data center composi-
tion, how do we dynamically identify the workload requirements and allocate
available resources that meet the performance requirements with minimal
energy consumption?

• What kinds of features are necessary and sufficient for any data center
resource that can accurately characterize the current operational state and
whether or not it is operating normally?

• What data-center-specific power management approaches are applicable in
this research in order to configure the resources to deliver service within a
tight power budget and temperature threshold while meeting the demand for
a maximum possible performance level?

• What are the cost, runtime complexity, and start-up/reconfiguration overhead
associated with real-time management techniques, and how can they be
minimized?

The objective is twofold, besides the energy-efficient goal; we also take into
account the optimization in performance while searching for dynamic configura-
tions that lead to power savings.

10.2 RELATED TECHNOLOGIES AND TECHNIQUES

10.2.1 Power Optimization Techniques in Data Centers

Although data center architecture differ from one another, most data centers are
collections of host servers, storage units, and networking fabrics. Defining a data
center involves confirming the issues such as design model, network, and storage
topology.
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10.2.2 Design Model

The differences in data center design models lie in the dominant types of appli-
cations, the kinds of host servers that compose the data center, and how those
hosts are different from each other. There are two mainstream design models:
the multitier data center model and the server cluster design [9]. The multitier
approach includes web, application, and database tiers of servers, which may or
may not occupy the same physical server. Today, most web-based applications
are built as multitier applications. They are favored by those applications for
their resiliency and high security. The server cluster design model is similar to
a tight collection of homogeneous cores that share a common OS or software
for high performance computing purposes—military applications or high perfor-
mance scientific computing usually benefit from this design model. Commercial
applications are also introducing this cost-benefit model in their clusters for better
manageability, higher bandwidth, and lower latency. A high speed interconnect
network is typically associated with this design model to maximize the perfor-
mance values as part of a service-level agreement (SLA). In this research, we
mainly focus on the server cluster design model.

Figure 10.1 demonstrates a commonly structured data center hierarchy. Groups
of servers are piled up within the server rack/blades, which are interconnected
with each other using Ethernet switches to form the server clusters. Data centers
are thus composed of several clusters or even whole rooms of clusters. In order
to maintain reliability, data centers usually include redundant components or
detailed a backup plan.

According to the complexity and robustness of the design, data centers are
classified into four tiers. Following the basic guidance for installing a data center
room, tier I data centers can be built in a very straightforward manner. In tier II,
availability and throughput can be improved by adding redundant components

Server
racks

Cluster
switch

Figure 10.1 Typical data center element and hierarchy. Reproduced from [10] with
permission from Morgan and Claypool Publishers © 2009.
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Figure 10.2 Data center hardware hierarchy. Reproduced from [10] and [11] with
permission.

to the design. Tier III data centers have multiple power and cooling distribution
paths but only one active path. They also have redundant components and are
concurrently maintainable. Tier IV data centers have two active power and cool-
ing distribution paths, with redundant components in each path, and are supposed
to tolerate any single equipment failure without affecting the load. Most com-
mercial data centers are tier III or IV, and our research focuses on applying
autonomic computing techniques to develop self-management high performance
platforms that are commonly used in such systems. As seen by programers, the
hardware organization of a typical server is shown in Figure 10.2.

Multicore CPUs are usually favored by data center designers for their perfor-
mance and per-unit cost advantages. The model of a single processor with its
associated L1 cache represents the finest granularity in a data center. The next
hierarchy would be the CPU cluster shared by the L2 cache, local DRAM, and
local disk on the server. As the storage unit, DRAM slices and disks are shared
within the whole data center resources. Those resources are interconnected by the
rack switch or even the higher data switches/cluster switches. So we can think
of the whole data center resource as a collection of cores and memory chips.
We also divide the memory into slices that we call ranks . In this research, we
consider a single core and single memory rank as the finest grain for processing
and storing data, respectively.

10.2.3 Networks

Network fabrics comprise several important features such as the manageability of
distributed systems, response time of the accessing request, and load balancing of
networked entities. High connectivity for these fabrics helps offset the accessing



RELATED TECHNOLOGIES AND TECHNIQUES 275

Core

Figure 10.3 Data center networking fabric. Reproduced from [7] with permission from
the CISCO Data Center Infrastructure 2.5 © 2010.

overhead when complexity is increased. Therefore, the choice of networking
topology for data centers involves trade-offs among cost, power, and performance.

Figure 10.3 is an example of data center networking architecture: a four-way
ECMP (equal cost multiple path) tree topology with two core nodes. In this
architecture, two core nodes are connected to the intermediate switches on the
sublayer using 10-gigabit Ethernet and the intermediate nodes are linked with
low end servers by gigabit Ethernet.

Clearly, networking is one of the predominant factors in large-scale distributed
systems and it requires careful consideration. Our focus in this work is not only
on how to improve the performance of the networking system but rather on
techniques that would improve power efficiency in these systems.

10.2.4 Data Center Power Distribution

As shown in Figure 10.4, in addition to the racks and switches with servers
running and connected, a typical data center is composed of several critical power
system parts [4]. The uninterruptible power supply (UPS) module takes care of the
whole room’s power provision, which is delivered through the power distribution
units (PDUs) to other places in the room. Fuel storage tanks and backup diesel
generators are on hand in case of utility-supplied power fails. Cooling units and a
computer air handling unit (namely, computer room air conditioner (CRAC)) are
essential for controlling the temperature. Other facilities such as the switchgear,
collocation units, and pump room for supplying the chilled water used by the
CRAC should also be included.

From the power dissipation point of view, the cooling systems and the PDUs
use up a considerable portion of the delivered power, so there is not really much
remaining power that could be actually used by the IT equipment for operational
use, thus making the power optimization within computing resources the utmost
issue that needs to be solved. In this chapter, we introduce techniques that
can be used to maximize the server power utilization while maintaining their
optimal performance.
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Figure 10.4 Data center power distribution floor planning. Reproduced from [10] with
permission from Morgan and Claypool Publishers; © 2009.

10.2.5 Data Center Power-Efficient Metrics

As discussed in Reference 10, an agreement has been established by industry
leaders on the metrics for data center power efficiency (DCPE). The tradi-
tional way of defining DCPE (PUE), as the total energy of the data center
divided by the IT energy consumption, is favored for measuring the efficiency
ratio.

In this particular work, as we try to minimize the power consumption while
considering the optimal performance metric, we find it useful to count the com-
putation factor as well. A good way to take both factors into account is to use
the energy proportional efficiency (EPE), as opposed to Reference 4. EPE has
three factorized components:

EPE = Computation

Total energy supply

=
(

IT energy supply

Total energy supply

)
×

(
Server energy

IT energy supply

)
×

(
Computation

Server energy

)

=
(

1
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)
×

(
1

SPUE

)
×

(
1

SEPE

)
,

where SEPE refers to the server energy proportion efficiency.
In this metric, we can see that different techniques can be contributed to opti-

mize the EPE for data centers. PUE and SPUE values are related to the initial
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design, floor planning of the data center, and the architecture of the server’s non-
processing components; this should be mainly handled by data center designers
and server product engineers and is beyond the capability of the research scope
of this chapter. What could be really taken seriously is the SEPE factor, which
is basically manipulating the computing process and analyzing the power statis-
tics within the servers’ functionality. In this research, we focus on developing
an effective performance-per-watt algorithm for improving the SEPE, which is
discussed later.

10.2.6 Modeling Prototype and Testbed

An actual testbed would be useful to represent the data Cloud and center archi-
tecture and thus validate our approach. At the UA NSF Center for Autonomic
Computing, we have used the IBM blade system to build 168 cores data center.
We use it as a modeling prototype for our autonomic power efficiency research.
The IBM BladeCenter (Fig. 10.5) has 14 HS22 blades each with two Xeon®
(6-core) 2.66-GHz processors with 12-MB L2 cache, 12 8-GB VLP-DRIMM
DRAM chips, and 160-GB SATA disk. Considering the software aspect of this
system, each individual blade, including the head node, has CentOS installed. A
virtualization tool, Xen, regards the whole blade center platform as one machine.
Eucalyptus also functions as a controller which creates virtual machines (VMs)
and allocates the required physical resources for each application. The Blade-
Center is a good testbed to experiment and evaluate our optimization algorithms
and techniques. Emerging technologies and techniques have promoted modular-
ity and autonomy for data center power management. The dynamic voltage and
frequency scaling (DVFS) technology has been used to achieve energy saving
[8, 12, 13]. Virtualization has been adopted in the design of large-scale data
centers and cloud computing testbeds and is considered a promising approach to
implement massive data orchestration and migration. Virtualization technology
reduces the energy demands of data centers through server consolidation and
dynamic management of computer assets across a pool of servers. The virtu-
alized infrastructure uses middleware to allocate the resources. Customers can
dramatically reduce energy consumption without sacrificing reliability or service
levels [13, 14].

Figure 10.5 IBM BladeCenter HS22.
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Theoretical works have provided possible solutions from different perspec-
tives such as game theory [16, 17], dynamic analysis [18], and gradient-based
methods [16]. Many systems such as Smart Power Management [8], PSALM
[8], and Consil [8] have provided a blueprint for power-aware data center archi-
tecture. Wang and Kandasamy [19] proposed a large-scale power controller that
shifts power among servers based on their performance needs, while controlling
the total power of the system within a constraint. Koller et al. [20] proposed an
application-driven power meter that can estimate and predict the power consump-
tion with low computing complexity for various real applications, thus addressing
the challenge of energy overuse.

Some researchers have placed a more holistic view for real-application sce-
narios. Barroso states the conflict between CPU utilization and delivered amount
of power in mainstream power management techniques. As proposed in Refer-
ence 20, he provides a straightforward solution of “energy proportional com-
puting” based on sorted efficiency levels. The core principle behind energy
proportionality is that computing equipment should consume power in propor-
tion to its utilization level. By combining the load factor with efficiency, the
energy usage profile would be largely improved for various computing systems
and would achieve large energy savings.

Fan et al. [21] showed that there is a huge potential for improvement in energy
saving by power management and reducing peak power for large-scale power
provisioning. According to Zheng et al. [19], managing data center resources for
real experiment scenarios with the given knowledge on the virtualized level can
help reduce overhead and complete on-line reconfiguration. Many other methods
are proposed in References 3, 6, 22 to provide solutions that allow energy-efficient
large-scale computing systems. However, none of these techniques consider the
use of an autonomic management to holistically solve the most urgent issues of
today’s data centers.

10.2.7 Green Computing

A green computer/server is one that has the following features: it is built from
eco-friendly materials, features low power consumption, and has computer power
management (CPM) capabilities; it has fewer and smaller component parts and
generates less heat than previous models; and it is ultimately responsible for
the emission of less CO2 into the atmosphere. A wholly green product will be
packaged in recyclable materials and, at the end of its useful life cycle, will be
traded to the manufacturer or to another organization that will reuse and recycle
the equipment, rather than dumping it into a landfill [23].

There is no common agreement on the definition of “green computing”; how-
ever, the idea can be applied in hardware implementations, algorithms, tools,
services, applications, or whatever can make computing systems more environ-
mentally friendly, for example, by reducing power consumption or CO2 emis-
sions. The computing systems considered here include chips; hard disks; desk-
tops/laptops; servers; network switches/routers; SAN (storage area network),
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RAID (redundant array of inexpensive disks), and other storage systems; clusters;
racks; data centers; and grids and clouds.

Green computing is receiving a lot of interests these days not only because of
the rising energy costs and the potential savings but also because of the impact on
the environment. Energy to manufacture, store, operate, and cool computing sys-
tems has grown significantly in recent years, primarily because of the exponential
growth in the number of these systems and their computing power.

Promoting green, or energy-efficient, computing is critically important for
many reasons. First and foremost, conclusive research shows that CO2 and other
emissions are causing global climate warming and environmental damage. Pre-
serving the planet is a moral goal because it aims at preserving life in Earth.
Planets like ours, which support life, are very rare. None of the planets in our
solar system, or in the nearby star systems, have M-class planets as we know
them.

There has been a huge increase in energy use by industries and in everyday life.
In August 2007, an EPA report [6] anticipated a dramatic growth in energy costs
($4.5 billion in 2006, $7.4 billion projected by 2011) and power consumption (61
billion kW h in 2006, 100 billion projected by 2011) for IT systems. As reported
by the EPA, total electrical demand growth is predicted to increase 30% to 5021
billion kW h in 2035. The largest percentage increase is in the commercial sector
(42%), with the service industries continuing to lead the growth. However, the
dominant share of energy supply lies in coal-fired power plants, which deplete
limited resources. Although the share in other energy resources such as natural
gas, solar energy, and other renewable sources is projected to rise, the total growth
in electricity demand will still run ahead of the supply side by a substantial
amount.

Computing power consumption by large data centers has reached a critical
point. For example, an e-commerce business with 100,000 servers can easily
spend up to $20 million a year on server power. Add another $10 million for
cooling and it tops $30 million a year in power alone. Clearly there is a huge
potential for savings in their infrastructure.

The climate initiative aims to reduce the IT carbon dioxide emissions from
computer operations by 50% between 2007 and 2010. A group, led by PC man-
ufacturers such as Dell, Hewlett-Packard, Lenovo, presented energy-efficient IT
products in a special “green village,” with central information that will point
visitors to other companies with environmentally friendly products. Despite the
huge surge in computing power demands, there are many existing technologies
and methods by which significant savings can be made. There is clear evidence
that a typical organization can reduce their energy footprint while maintaining the
required levels of computing performance. Green computing can lead to appre-
ciable cost savings over time. Reductions in energy costs from servers, cooling,
and lighting are generating substantial savings and considerable increase in the
return of capital in the long run for many corporations. As energy demands in
the world go up, energy supply is flat or declining. Energy-efficient systems help
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ensure healthy power systems and the reliability of appliances in case of unex-
pected outage. Also, more companies are generating more of their own electricity,
which further motivates them to keep power consumption low.

Corporate data centers face limitations and constraints in space, power con-
sumption, and the rising costs associated with energy and physical plant leasing
or rentals. The mismatch between expanded demand and restricted usage affects
corporate growth, which calls for reaching a solution that maximizes profits
but minimizes costs (the Pareto solution). The identification of certain enabling
techniques and hardware design is required to implement the resource recon-
figurations and exercise the required power management features to deliver the
power savings.

Data centers are beginning to exceed usable power and cooling supply due to
high densities, raising issues for green computing studies. The following lists the
main capabilities or requirements for green computing data centers.

• Manageability . The expansion of system scale adds to the complexity of
managing a massively distributed data center. Hence, an efficient tracking
method should be developed to position the targeting node with the least
amount of effort and overhead.

• Overhead . The frequency of configuration changes to a single node directly
influences the dynamism of power management. Adequate node access
ensures fast response but requires low overhead techniques for sensing and
controlling.

• Autonomy . For a data center as large as a room, manual management is
unrealistic. In order to dynamically manage large-scale data center resources,
autonomic management techniques and tools are critically important.

10.2.8 Energy Proportional Computing

Traditional energy-efficient computing focuses on single-objective optimization,
without considering other factors such as the quality of service (QoS), reliability.
Today’s computing systems cannot endure too much degradation of the system
performance when energy-saving schemes are applied. Energy proportional com-
puting introduces a balanced solution and a holistic view of the green system
problem.

The basic idea of energy proportional computing relates the consumed energy
and computation in one metric. This method attempts to devote energy in propor-
tion to the work that has to be performed, that is, utilization. As a single value
that conveys two parameters, this method aims to develop machines that can
optimize the energy according to computing behavior, which is very similar to
our goal in this work. As claimed in Reference 20, energy proportional machines
would barely consume any power if the system is in the idle state, require very
little power with a light workload, and gradually add more power as the activ-
ity level increases, until reaching full energy budget when the system is heavily
loaded.
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This chapter later discusses how to use the idea of energy proportional com-
puting to achieve more efficient computing resource utilization. We use the power
proportional efficiency to measure the power performance optimal level for a data
center. We also use this concept in our performance-per-watt power management
algorithm for autonomic controllers.

10.2.9 Hardware Virtualization Technology

In a data center that contains thousands and even millions of server hosts, a
substantial number of applications are processed by those host nodes. A mismatch
between server capability and an application requesting resource volume results
in imperfect utilization of the host machines. This brings up the problem of data
center collective underutilization and leaves a huge space for improvement of
wasted computation power. If there is a scheme that can help bring together
the unused resources, a tremendous amount of resources and computation power
could be saved.

Virtualization technology [24] has been proposed to address this problem.
In a virtualization technique, there are two kinds of resources, the physical
resources and virtual resources that act as the provisioning task (Fig. 10.6). Phys-
ical resources are the actual host hardware on which applications run. They have
a fixed hardware such as processors, memory, I/O whose capacity and computa-
tion capability cannot be varied. On the other hand, the virtual resources are the
abstracted hardware interface for the “guest applications.” With the virtualized
system, applications are run on the VMs if they are seen by the service end.
The VM still has hardware resources such as processors, memories for services
to run; however, it has no idea which physical machine the process is running
on. Each VM delivers a distinct service to its customers using (virtual) resources
provided by its dedicated VM. In this sense, the physical machine can be seen
as a pool of resources that has the total privilege to allocate, provide, and alter
resources on demand.

Virtual machine

Applications

Operating
system

Host OS Virtual machine monitor

PC hardware

Virtual machine

Applications

Operating
system

Virtual machine

Applications

Operating
system

Figure 10.6 Hardware virtualization platform. Reproduced from [24] with permission
from the Intel Press © 2006.
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A global resource allocator is responsible for mapping virtual resources onto
physical resources. Multiple VMs can be placed on a single host machine without
interaction and interference between them, and also multiplex physical hardware
can hold across VMs. The allocator should manage the contention based on
administration policies, guarantee predictable service rates, and exploit under-
committed resources for efficient utilization.

Clearly, virtualization technology provides flexible and dynamic partitioning,
meets absolute SLAs, and arbitrates VMs by controlled relative importance.
Furthermore, this technology is a key feature for our approach to implement
autonomic management of a data center’s power and performance.

10.2.10 Autonomic Computing

The concept of autonomic computing is being developed in order to overcome
the growing complexity of data center management. Inspired by the human
autonomic neural system, an autonomic computing system can be viewed as a
closed-loop control system. Variation of its essential variables (e.g., power, per-
formance, fault, security) can generate a reconfiguration process that will drive
the system toward a target state that meets the required multiobjective function
of the system.

The target state could be an equilibrium point, a constrained region, or a preset
boundary. In all, configuring variables and the states set are the necessary condi-
tions for the autonomic management. In cybersecurity, the target states are usually
referred to as the characteristic of “survivability,” that is, the system intends to
protect itself and recover from attacks and/or faults. Autonomic performance
management maintains the system at a desired performance level regardless of
the dynamic changes in the environment. In power-efficient systems, the focus
is on how to satisfy a given power budget constraint without any performance
degradation.

In typical autonomic managed systems, an MAPE (monitor, analysis, predict,
and execute) loop is usually involved. An MAPE loop is controlled by an auto-
nomic manager (AM), which implements real-time monitoring, analyzing, and
actuator functions. The monitor proactively or reactively obtains the system state
information and passes it to the analyzer for characterizing the current state and
predicting the next states, so it can determine the appropriate actions that can be
executed by the actuator. In cases where the system is hierarchically structured,
each subsystem will have its AM as shown in Figure 10.7.

The autonomic computing research in this work is based on hierarchical auto-
nomic management. The global controller makes decisions and allocates the
resources to competing requests so that violations of resource SLAs between
application providers and data centers can be avoided. Meanwhile, a local loop
controller takes care of further improvements of the performance values for the
computing systems, estimating the resources needed by the application’s work-
loads on each specific subsystem or low level device.

This multilevel resource control system is ideal for largely distributed comput-
ing systems, which require hierarchical management. In such an environment, a
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Figure 10.7 Autonomic management loops.

local controller adapts to the dynamic changes in workloads of its assigned set of
resources. Furthermore, the separation of functionalities between local controllers
is also suitable for heterogeneous system floor plans. As the responsibility for
internal control functions has been overtaken by local controllers and transformed
into straightforward local resource requests, the complexities of global controllers
reduce significantly and hence improve the overall efficiency of the autonomic
management of the system. This scheme provides a framework for local sub-
systems to carry out different self-management operations without affecting the
global controller.

10.3 AUTONOMIC GREEN COMPUTING: A CASE STUDY

Inspired by the autonomic computing techniques and green computing
techniques, we present in this section our approach to develop autonomic
green distributed computing systems that exploit the technologies discussed
previously. In this scheme, autonomic resource provisioning is continuously
performed for certain applications such that their performance requirements
are maintained while minimizing the energy consumption. The AM takes
the responsibility of dynamically mapping sufficient physical resources to
each VM assigned to run the data center applications. Power-aware man-
agement tools such as DVFS and use system proportions for idle elements
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Figure 10.8 Application Flow (AppFlow).

provide the required power management mechanisms for large-scale dis-
tributed data centers. The autonomic power managers are embedded in each
level and they cooperate with upper-level managers to achieve the overall
system objectives in terms of performance and energy consumption. This
requires the information across all levels to be exchanged in a hierarchical
manner.

A successful management scheme for large distributed systems such as data
centers requires identification of the appropriate features that can accurately
characterize the behavior and current state of the management component or
element (e.g., server, memory rank, or core in a multicore system). To effec-
tively manage the resources of the system, the AM must determine whether the
system operational state meets all the runtime system requirements. We have
developed an Application Flow (AppFlow) data structure that will be used by
the AM to characterize the behavior of the changing “environment” and use that
as a predictor for how it can prepare itself better to manage those changes, as
shown in Figure 10.8. AppFlow is a three-dimensional array of features where
the x-dimension captures spatial variability and the z-dimension captures tempo-
ral variability of these features for each Managed System (MS) (plotted along the
y-dimension) as the workload changes dynamically. These set of necessary and
sufficient features are categorized into two distinct classes: capacity spatial fea-
tures (CSFs) and operating region spatial features (ORSFs). CSFs can be further
broken down into static capacity spatial features (SCSFs) and dynamic capacity
spatial features (DCSFs). As the names suggest, SCSF indicates the maximum
possible capacity of the MS and DCSF indicates the current dynamic capacity
(configuration) of the MS that is changed by the AM based on the requirements
of the application at runtime. The ORSF is the set of features that the AM man-
ages and maintains in order to ensure the “survivability” of the MS . It is to be
noted that CSFs are a set of absolute features and ORSFs are a set of dependent
features that can be derived from CSFs. Along the y-axis of AppFlow , the “time”
vector captures the behavior of the MS over a period of time. In essence, it cap-
tures the temporal variability of the CSFs and ORSFs during workload execution
that help identify trends and predict workload dynamic resource requirements.
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Figure 10.9 Hierarchical autonomic management platform.

10.3.1 Autonomic Management Platform

10.3.1.1 Platform architecture. In this section, we focus on a virtualized
platform that is modeled as a collection of networked devices, namely, the multi-
core processors and the multirank memory subsystems. They constitute the man-
aged system that is continuously controlled by the platform autonomic manager
(PAM). An autonomic power efficiency management is accomplished by allocat-
ing the platform resources to match the requirements of the platform workloads.

Figure 10.9 shows a platform architecture from the programer’s viewpoint,
with autonomic management modules shown on the right side. There are three
levels: the elementary level, the subsystem level, and the platform level. The
elementary level mainly refers to atomic models such as processor cores, L1
cache associated with it, and memory ranks. Elements at this level are modeled
as “atomic models” and are scalable in terms of power efficiency as determined
by the DVFS mechanisms. Each atomic model is managed by a job queue for
scheduling incoming jobs and power manager for sensing or affecting the model
state.

In the subsystem level, the processor and memory subsystem collects the
power states and performance states of the job queues from the atomic models and
controls the configuration within the subsystem. In this level, the subsystems are
scalable due to the variable number of atomic models assigned by the scheduler.
The platform level, which consists of the subsystems, further adjusts the lower
level components according to the application requirements as abstracted in the
current state of its AppFlow.

10.3.1.2 DEVS-based modeling and simulation platform. We use the
DEVS (discrete event system)-based modeling and simulation to model the
behavior of the platform architecture shown in Figure 10.9. The DEVS modeling
framework of the platform is shown in Figure 10.10 where each component
(core, rank, etc.) is modeled as a DEVS atomic model. These DEVS models
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Figure 10.10 Block schematic of autonomic management platform.

enable us to accurately model the behavior of the system components and their
interactions and how they impact the overall system behavior for a wide range
of power and performance optimization strategies at each level of the hierarchy.

A DEVS atomic model is a finite state machine and is defined as [5, 25]

MAtomic = 〈X, S, Y, δint, δext, λ, ta〉,

where
X = the set of inputs accepted by the model;
S = the set of states of the model;
Y = the output set generated by the model;
δint : S → S = the function that captures the internal state transitions for the

model;
δext : S × X → S = the function that captures the state transitions for the model

in response to external inputs;
λ : S → Y = the output function that maps a state to an output from the output

set;
ta = the time advance function for remaining in a state before an internal state

transition occurs.

We have implemented the PAM simulation that is running on the DEVS-Java
environment to evaluate different kinds of optimization and management algo-
rithms. The implementation of the PAM closely models the platform architecture
discussed previously that can be viewed as a collection of cores and memory
chips, and the CPUs and DRAMs are the most power-consuming IT components
in today’s data centers. What is unique about our approach is that we manage
the platform in a hierarchical scheme with observers and controllers at each
level—platform, subsystem, and elementary levels—in order to implement the
required self-management functions with minimal overhead.
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The core operating features are recorded by the monitors of the core power
manager (CPM), which collects features such as the average job wait time,
average job response time that define the current operational state of the core
subsystem. With such information, the CPM can accurately characterize the cur-
rent core’s state and consequently send the control information required to change
the core configuration if it is required to maintain the performance and energy
consumption requirements. At the same time, a similar procedure is applied to
the memory subsystem.

At the subsystem level, each subsystem (core and memory) interacts with the
flow controller. A core flow controller (CFC) tracks the subsystem behavior based
on AppFlow features such as request loss rate or average response time across
all cores. CFC then analyzes if there is any change in the workload and makes
a decision whether to scale the core’s configuration up or down. Similarly, on
the memory side, a memory flow controller (MFC) also acts as the autonomic
power manager that controls the configuration of the whole memory in each VM
using the appropriate AppFlow memory features such as memory loss, average
memory access time, or memory reference rate.

The PAM applies a further power proportional efficiency algorithm to the
whole system. Serving as an observer and controller of the platform, PAM collects
AppFlow information associated with its subsystems to determine the current
operating states of its components, such as the number of active cores/memory
ranks, current power consumption, or other statistics, to characterize the workload
patterns. PAM then analyzes those dynamic features to determine whether or
not an optimal configuration has been reached with respect to both power and
performance. In case, it does not meet the application requirements, PAM will
determine the right scale for the VM’s execution environment (we refer to as
VM template) and then passes that decision to the platform job queue (PJQ)
or flow controllers. The PJQ operates as an actuator that sends the job or the
instructions to reconfigure platform subsystems. For example, the PJQ in the
memory subsystem directs memory-accessed jobs to available memory ranks or
processes an incoming job if it requests a cache access.

In the following sections, we discuss the various aspects of this platform
simulator, such as the effects of different workloads on the systems behavior,
how the platform parameters would be evaluated, its scalability as a multicore
multimemory system, and how the PAM uses the AppFlow features to manage
platform energy consumption.

10.3.1.3 Workload generator. In order to evaluate our autonomic manage-
ment algorithms, we need to generate a wide range of workload scenarios. The
service requester is responsible for generating jobs that will be queued at the PJQ.
Different job-injecting patterns will lead to different workloads and consequently
different platform operations. In our analysis, we divide the workloads into two
categories: CPU intensive and memory intensive. CPU-intensive workloads are
modeled as programs having high ratios of logic or arithmetic operations when
compared to memory access operations. The opposite behavior characterizes the
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memory-intensive workloads where most of the operations are memory load/save
operations.

When a workload is generated, it is broken down into PC instructions, jobs that
require core access, cache access, or memory access. CPU-intensive workloads
lead to intensive access to the cores, and memory-intensive workloads would
burden the memory with instructions after shortly visiting the core and cache.
It is possible that certain cache access or memory access would have misses.
Parameters such as cache/memory reference/hit ratio can be used to character-
ize the type of the current workload. We assign to each generated job its own
cache/memory access features based on a Gaussian distribution. By varying the
miss ratio and cache referencing rate, a specific type of workload behavior can
be generated.

In the service requester model, we also assume a Poisson distribution for the
intervals between successive job generations. Changing the λ value of the interval
function defines heavy or light application workloads. Likewise, the processing
time of an instruction is modeled as a Gaussian distribution, and the parameters
associated with this distribution are the average (μ) and variation (σ 2) of the job
processing time.

10.3.2 Model Parameter Evaluation

10.3.2.1 State transitioning overhead. We assume that the platform can
operate in several states, where each state will deliver different performance
and energy consumption. The goal of the autonomic management algorithm is to
determine for each workload type the ideal platform state that meets this workload
performance and energy consumption. In identifying the optimal operational state
for the platform, we need to take into consideration the transition overhead that
will be incurred by moving the platform from the current state to the desired
target state.

We use Intel® Xeon 5650 processor as an example in our platform simulation
[26]. The 6-core processors are based on a low power microarchitecture that sup-
ports operation within various C-states. C0 is the normal operating state in which
the processor operates with full voltage and frequency. C1, C3, and C6 are low
power states for different levels of power-saving targets. Transitions from core-
active states to sleep states are also supported for long-time idle operations or no
operations. This processor also enables the Intel Turbo Boost Technology, which
allows the processors to run opportunistically faster than the normal frequency,
here the frequency can upscale to 3.06 GHz instead of 2.66 GHz. The transition
overheads between states, even to the turbo and sleep states, are very short, and
in the order of microseconds. The power consumption and performance values
for the core to transition from one state to another are shown in Figure 10.11.

Another case study for the memory rank model was also conducted
(Fig. 10.12). The actual design for this modeling is the Micron VLP RDIMM
modules, as part of the IBM BladeCenter machine. Associated with the memory
rank model are active states and two energy-effective states, which support a
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lower operation voltage. The switching time between low power states and the
active state is very short (4.7 μs), and it takes a quite long time for the memory
rank to hibernate (5 ms).

The platform state is defined by the number of processor cores in the turbo
state and active state, the number of memory ranks in the active state, and their
physical location within the memory hierarchy. Hence, the power consumed by a
platform state is the sum of the power consumed by its constituent parts (cores and
memory ranks). The performance of the platform state depends on the physical
configuration of the platform (number of cores, number of ranks, physical location
of ranks) in that state and the rate of arrival and the type of the incoming workload
(CPU intensive, memory intensive) as shown in Figure 10.13. For example, the
performance and power consumption by a platform state with two active cores
running would be different from those of a platform operating with four active
cores. Furthermore, two states with the same number of active cores operate
differently because they might use different memory states.

10.3.2.2 VM template evaluation. In this task, we need to determine the
optimal configuration in terms of platform state as a function of job request rate.
One metric to determine the appropriate state (template) for a given workload is
the saturation rate. The platform reaches a saturation state when its performance
does not improve as we add more active cores and/or bring memory ranks to



290 AUTONOMIC GREEN COMPUTING IN LARGE-SCALE DATA CENTERS

S0 S1 S2

S3St

…...

Platform state 0:
Core job queue 1, Core job queue 2
Rank job queue 1, Rank job queue 2

Platform state 2:
Core job queue 1, Core job queue 2,
Core job queue 3, Core job queue 4,
Rank job queue 1, Rank job queue 2

Figure 10.13 Platform state and transition graph.

a high performance state. Using the saturation requesting rate, we can deter-
mine if the current platform state is too powerful for the current workload (too
much wasted computing and memory resources) or too small so that the plat-
form cannot handle efficiently the assigned workload. This mismatch between
the platform current state and workload will cause either excessive job losses
due to insufficient resources or enormous wait time for each job, which would
affect either the QoS or the average performance and consumed energy. The
saturation job request rate can be used to measure whether or not the current job
requesting rate can be handled by the current platform state (VM template). For
each platform state (number of active cores and their states, number of mem-
ory ranks and their states), we define the maximum job request rate that can be
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handled by that state (saturation state), and any increase beyond that saturation
rate would require changing the platform state to another template, as shown in
Figure 10.14. Similarly, if the job request rate decreases, the ideal template or
platform state (e.g., less active cores, low power states) will be selected and the
PAM will reconfigure the platform to operate in that state, and so on. In the sim-
ulation, we also consider the impact of queue length on the saturation rate and
consequently its impact on the ideal platform template for a given job request
rate. We also study the impact on performance as the platform size scales up and
whether or not the degradation in the saturated request rate is within tolerated
limits.

10.3.2.3 Scalability analysis. Resource scalability is also an important factor
to be analyzed. We need to make sure that the communication and arbitration
overhead does not cause considerable impact on the system performance while
saving energy. As can be seen in Figure 10.15, the average wait time remains
tens of cycles per job per core/rank as the platform size enlarges. However,
for cache jobs, it keeps the jobs waiting more than expected. Overall, the job-
sending overhead does not exceed 35 instruction cycles, which is tolerable in this
platform. Limited scheduling and communication overhead have been included
as the system scales up in order to ensure better job processing capacity and
more opportunity for energy savings.

10.3.3 Autonomic Power Efficiency Management Algorithm
(Performance Per Watt)

In this section, we present several autonomic power management algorithms. The
search for the optimal platform state as executed by the PAM is formulated as a
performance-per-watt maximization problem as shown below.
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Problem Formulation: Energy Proportional Computing

Max
t

ηt =
N∏

i=1

nJPQi,t

Ei,t

which is equal to

Max
t

L = ln
(
ηt

) =
N∑

i=1
ln nJPQi,t −

N∑
i=1

ln Ei,t

Such that

1. rTimemin ≤ rTimei ≤ rTimemax

2. rLossmin ≤ rLossi ≤ rLossmax

3. dmin ≤ di ≤ dmax

4.
Ns∑
i=1

xij = 1

5. ∨ xij = 0|1
where

ηt = the power proportional efficiency for the instance i during interval t ;
rTimei = the platform responseTime expressed as a sum of the wait-

Time and procTime;
Ei = the platform energy consumed in target state

pi , and Ei is given by Ei =
Ns∑
i=1

(
cij

∗ τtransij
+ pr

∗ nr
∗ tp + pc

∗ nc
∗ tp

)
∗ xij ,

= the sum of the transition energy consumed (cij
∗ τtransjk

), the energy
consumed by the processor subsystem in the target state (pr

∗ nr
∗ tp),

and the energy consumed by the memory subsystem in the target state
(pc

∗ nc
∗ tp);

pr = the power consumed by a memory rank in the active state;
pc = the power consumed by a processor core in turbo state;
nr = the number of memory ranks in active state;
nc = the number of processor cores in turbo state;
Ns = the total number of platform states;
cij = the power consumed in state transition;
τtransij = the time taken for state transition;
rLossk = the platform requestLoss in target state Si;
[rTimemin, rTimemax] and [rLossmin, rLossmax] = the threshold response-

Time and threshold requestLoss range for the platform, respectively;
[dmin, dmax] = the threshold delay range for the memory subsystem;
xij = the decision variable for transition from state pj to pk .
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Constraints 1 and 2 of the optimization equation state that in the target state,
the responseTime and the requestLoss must stay within the required thresh-
old ranges. Constraint 3 states that in the target state, the end-to-end memory
access delay should stay within the threshold range. Constraint 4 states that the
optimization problem leads to only one decision. The decision variable corre-
sponding to that is 1 and the rest of the decision variables are set to 0, meaning
the decision variable is binary. Constraint 5 states that the decision variable
is a 0–1 integer. Following is the platform autonomic management algorithm
(Algorithm 10.1).

Algorithm 10.1: APP for EPC

Initialization;
While (reqRate == getReqRate()) or (t mod interval == 0)

[#core, #rank] = Template[reqRate];
reqLoss = getReqLoss(); rspTime = getRspTime();dLay
= getDelay();

updateStates();
if boundaries are violated, Template–; else do EPC;

end

10.3.4 Simulation Results and Evaluation

Case 1: Memory-intensive workload. As shown in Figure 10.16, the average
wait time experienced by a platform job is nearly negligible at the core and cache
level compared to that at the memory level; the average wait time at the memory
level follows the arrival rate of incoming jobs. We have noticed that at around
2000 simulation cycles, the wait time increases even when the arrival rate drops.
This is because the platform memory was initially overprovisioned to handle
the incoming traffic. At around 2000 simulation cycles, the platform memory
configuration has been increased from one to two ranks, resulting in bringing
down the average wait time. Our scheme gives an average energy savings of
56.25%.

Case 2: CPU-intensive workload. Initially, the platform is configured with
two processor cores and two memory ranks. As it can be seen from Figure 10.17,
the job arrival rate starts increasing from around 4000 simulation cycles, and this
increases the average wait time experienced by the jobs. It is clear that the
average wait time experienced by the jobs is significantly higher in the processor
subsystem than in the cache or the memory subsystem. In order to avert this
increase in the average wait time, the PAM scales up the processor subsystem
from one core at 5000 simulation cycles to two cores at 6000 simulation cycles
and then to three cores at 7000 simulation cycles, bringing it down to one core
again at 9000 simulation cycles when the rate of arrival drops again. Note that
the configuration of the memory subsystem remains more or less static when
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Figure 10.16 Platform operating features and energy savings for memory-intensive traf-
fic patterns. (a) Performance parameters for memory-intensive workload. (b) Platform
configurations for memory-intensive workload.
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Figure 10.17 Platform operating features and energy savings for CPU-intensive traffic
patterns. (a) Performance parameters for CPU-intensive workload. (b) Platform configu-
rations for CPU-intensive workload.

the number of ranks is reduced from two to one around 3000 simulation cycles
and remains there once the PAM establishes that the memory subsystem does
not contribute to the increase in the average wait time as seen by platform jobs.
This leads to a platform energy savings of up to 63.75%. Note that there is a
distinctive phase lag between the monitored average wait time core and the core
configuration.

This phase lag occurs because the PAM has room for improvement in terms
of predicting the arrival rate of the incoming workload. If the PAM accurately
predicts the arrival rate, it could configure the processor subsystem proactively
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even before it starts seeing a real increase in the arrival rate. However, in this
actual case, we notice that the PAM is almost one observation cycle behind in
terms of predicting and appropriately configuring the processor subsystem. We
are investigating this issue further.

Case 3: Mixed workloads. Figure 10.18 shows a mixed workload that con-
sists of both processor-intensive and memory-intensive phases. As expected, the
workload impacts the average wait time experienced by jobs at the processor
subsystem different than the average wait time experienced by the jobs at the
memory subsystem. The request arrival rate increases at around 3000 simu-
lation cycles, but the average wait time—memory increases at around 2000
simulation cycles and the average wait time—processor increases at around 5000
simulation cycles. This is because the memory was initially configured at one
rank and the processor was configured with two cores. The initial memory con-
figuration was too small to handle the incoming traffic and this causes the PAM
to scale out the size of the memory subsystem to two ranks and eventually to four
ranks at around 7000 simulation cycles. At that time, the memory subsystem was
configured to its maximum capacity leading to zero savings in memory energy.
This reconfiguration in the memory subsystem resulted in reducing the average
wait time experienced by jobs in the memory subsystem.

For the processor subsystem, however, the average wait time starts increasing
only around 5000 simulation cycles. It is around this time that the workload
changes phase into becoming more processor intensive and the processor sub-
system needs to scale out to a bigger capacity to handle the workload. Hence,
the PAM reconfigures the processor subsystem from one core to two cores and
then to three cores in the subsequent cycle. This brings down the average wait
time experienced by jobs in the processor subsystem. In this manner, the PAM
reconfigures the platform to an optimal configuration that has a direct impact on
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the overall platform response time, thereby saving platform energy and maintain-
ing platform performance. Note that there is zero energy savings in the memory
subsystem for simulation cycles 7000–9000 because the memory subsystem is
operating at its maximum capacity during this phase.

Our technique gives an overall average platform energy savings of 47.5%
while always maintaining the platform response time within the acceptable thresh-
old level. Next, we study the impact of changing the threshold values on the
platform performance and energy savings.

10.3.4.1 Analysis of energy and performance trade-offs. We varied the
threshold value of the end-to-end delay for the memory subsystem and measured
the impact of that change on the memory energy savings for the same workload.
As expected, for a more stringent threshold value, the opportunity for energy
savings is very little (Fig. 10.19). For example, an increase in the threshold
value from 15 to 20 will increase the savings by around 40%, and an increase
in threshold to 25 will result in an increase that can reach up to 80% in energy
savings. The convergent energy saving will be around 80% for best cases. This
demonstrates the opportunity of increasing power savings when it is acceptable
to degrade performance within threshold values.

We compare our algorithm with five other algorithms as shown in
Figure 10.20—the single-objective optimization algorithms that focus on
minimizing energy or delay only, the previous AppFlow management without
Energy Proportional Computing (EPC), and multiobjective algorithm with
or without the GGA algorithm. For the platform resource utilization aspect,
our approach ranks the highest with around 93% since it targets to have the
least wasted resources throughout the whole process. Also, we achieved best
proportional energy efficiency among all other methods. The energy savings and
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Figure 10.20 Multiobjective evaluation in the algorithm aspect.

performance that have been achieved are quite comparable with the best cases
and better than the other ones.

10.4 CONCLUSION AND FUTURE DIRECTIONS

The dynamic and heterogeneous resources and workloads in large-scale data
centers require self-management services. We presented an architecture for plat-
form autonomic management that performs power and performance management
of high performance server platforms with multicore processors and multirank
memory subsystems. We also presented a power proportional computing algo-
rithm and evaluated its performance using DEVS simulation environment. In
the simulation, we model the platform as an IBM blade system. Our experi-
mental results show that considerable energy savings can be achieved for both
memory-intensive and the CPU-intensive workloads.

In future research, our goal is to validate the simulation results on our IBM
Blade Data Center. In addition, we will evaluate the performance of the PAM
self-management algorithms when applied to a wide range of scientific and engi-
neering applications.
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CHAPTER 11

ENERGY AND THERMAL AWARE
SCHEDULING IN DATA CENTERS

GAURAV DHIMAN, RAID AYOUB, and TAJANA S. ROSING

11.1 INTRODUCTION

Power consumption is a critical design parameter in modern data center and
enterprise environments, since it directly impacts both the deployment (peak
power delivery capacity) and operational costs (power supply, cooling). The
energy consumption of the compute equipment and the associated cooling infras-
tructure is a major component of these costs. The state-of-the-art servers that
populate the data centers are commonly equipped with multiple CPU sockets to
meet the ever-increasing computation demands. However, this enormous level of
integration coupled with high performance does not only lead to higher energy
consumption but also to high power density [1]. The direct consequence of such
high power density is the increase in thermal stress that requires a large and
energy-hungry cooling system to deal with. Hence, modern data centers not only
grapple with the problem of high energy consumption due to computation but
also energy costs due to the cooling subsystem.

The electricity consumption for powering and cooling the data centers in
the United States is projected to cross $7 billions by the end of 2010 [2, 3].
This provides strong motivation for developing mechanisms to efficiently manage
computation in data centers to reduce both the energy consumption and power
density.

Modern data centers and cloud computing providers (such as Amazon EC2
[4]) use virtualization (e.g., Xen [5] and VMware [6]) to get better fault isolation,
improved system manageability, and reduced infrastructure cost through resource
consolidation and live migration [7]. Consolidating multiple servers running in
different virtual machines (VMs) on a single physical machine (PM) increases the
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overall utilization and efficiency of the equipment across the whole deployment.
However, naive consolidation can lead to higher temperatures and resource bot-
tlenecks, which can dramatically deteriorate the performance and increase cooling
costs. In this chapter, we show that based on the characteristics of the different
VMs, the scheduler can highly optimize energy efficiency of the whole cluster.
The scheduler employs multilevel hierarchical optimizations, one at the cluster
level and the other at the PM level. A brief description of these two levels is
given as follows:

• Intermachine Scheduling . The objective is to generate the most energy-
efficient combination of VMs across the PMs. This can be done by exploiting
the characteristics of the VMs to generate a VM combination that is resource
efficient. We show how resource efficiency directly results in high energy
efficiency in the following sections.

• Intramachine Scheduling . The objective is to manage computation within a
PM in order to minimize the energy consumption of that PM. This can be
achieved through exploiting the characteristics of computation to generate
a schedule, which results in an improved thermal profile in a PM. This, as
we show in the subsequent sections, results in energy savings because of
reduction in the cooling requirements.

Thus, we have a hierarchical solution, where at the intermachine level, the
scheduler optimizes energy consumption of the computation based on detecting
the most energy-efficient combination, whereas at the intramachine level, the
scheduler optimizes the cooling energy by eliminating power hotspots. The major
benefit of such an approach is that it nicely decouples cluster- and machine-level
scheduling, resulting in a low overhead and scalable solution. We describe both
the scheduling techniques in detail in forthcoming sections.

11.2 RELATED WORK

A lot of research work has been done in the area of workload (VMs), power
management, and thermal management in data centers. Most of the work largely
ignores the basic architectural characteristics of the VMs. They treat the overall
CPU utilization of the PM and its VMs as an indicator of their respective power
consumption and resource utilization, and use it for guiding the VM manage-
ment policy decisions (VM migration, scheduling, dynamic voltage frequency
scaling/DVFS, etc.). However, our work shows that for energy-efficient interma-
chine and intramachine scheduling, VM workload characterization is very critical,
and just CPU utilization can mislead the scheduling policies into making deci-
sions that can create hotspots of activity, and degrade overall performance and
increase cooling energy costs.

Systems for management of VMs across a cluster of PMs have been proposed
in the past. Eucalyptus [8], OpenNebula [9], and Usher [10] are open source sys-
tems, which include support for managing VM creation and allocation across a
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PM cluster. For management of VMs on larger scale, for instance, across multiple
data center sites, systems such as Grid Virtualization Engine (GVE) [11] have
been proposed. However, these solutions do not have VM scheduling policies to
dynamically consolidate or redistribute VMs. VM scheduling policies for this pur-
pose have also been investigated in the past. In Reference 12, the authors propose
a VM scheduling system, which dynamically schedules the VMs across the PMs
based on their CPU, memory, and network utilization to avoid hotspots of activity
on PMs for better overall performance. The distributed resource scheduler (DRS)
from VMware [13] also uses VM scheduling to perform automated load balanc-
ing in response to CPU and memory pressure. Similarly, in Reference 14, the
authors propose VM scheduling algorithms for dynamic consolidation and redis-
tribution of VMs for managing performance and SLA (service-level agreement)
violations. In Reference 15, the authors model application performance across
VMs to dynamically control the CPU allocation to each VM with the objective
of maximizing the profits. The authors in Reference 16 propose Entropy, which
uses constraint programming to determine a globally optimal solution for VM
scheduling in contrast to the first fit decreasing heuristic used by Wood et al.
[12] and Bobroff et al. [14], which can result in globally suboptimal placement
of VMs. However, none of these VM scheduling algorithms take into account
the impact of the policy decisions on the energy consumption in the system.

Power management in data center like environments has been an active area
of research. In Reference 17, the data center power consumption is managed
by turning servers off depending on demand. Reducing operational costs by
performing temperature-aware workload placement has also been explored [18].

In Reference 19, DVFS is performed based on the memory intensiveness of
workloads on the server clusters to reduce energy costs. Similarly, Ranganathan
et al. and Fan et al. [20, 21] use DVFS to reduce average power consumption in
blade servers with the objective of performing power budgeting. Recent studies
[2, 22] have shown that in modern server systems, the effectiveness of DVFS
for energy management has diminished significantly because of its impact on
the performance of the workloads. In the earlier sections, we had confirmed this
observation and shown how intelligent VM colocation outperforms state-of-the-
art DVFS policies [23, 24] in terms of energy savings.

The problem of power management in virtualized environments has also been
investigated. In Reference 25, the authors propose VirtualPower that uses the
power management decisions of the guest OS (operating system) on virtual power
states as hints to run local and global policies across the PMs. It relies on efficient
power management policies in the guest OS and does no VM characterization
at the hypervisor level. This makes it difficult to port some of the state-of-the-
art power management policies such as [23, 24] in guest OS because of lack of
exclusive access to privileged resources such as CPU performance counters. This
problem has led to adoption of power management frameworks such as cpufreq
and cpuidle in recent virtualization solutions (such as Xen [5]). In Reference
26, the authors develop a power and performance model of a transaction-based
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application running within the VMs and use it to drive cluster-level energy man-
agement through DVFS. However, they assume that the application characteristics
to be known. In Reference 27, a coordinated multilevel solution for power man-
agement in data centers is proposed. Their solution is based on a model that uses
power estimation (using CPU utilization) and overall utilization levels to drive
VM placement and power management. The model and results are based on off-
line trace driven analysis and simulations. In Reference 28, the authors present
GreenCloud, an infrastructure to dynamically consolidate VMs based on CPU uti-
lization to produce idle machines, which could be turned off to generate energy
savings. None of these solutions [25–28] take the architectural characteristics of
the VM into account, which, as we show in Section 11.3.1, directly determine
the VM performance and power profile. In Reference 29, the authors use VM
characteristics such as cache footprint and working set to drive power aware
placement of VMs. But their study assumes an HPC application environment,
where the VM characteristics are known in advance. Besides, their evaluation is
based on simulations. In contrast, vGreen assumes a general purpose workload
setup with no a priori knowledge on their characteristics.

The concept of dynamic architectural characterization of workloads using CPU
performance counters for power management [23, 24], performance management
[30], and thermal management [31] on nonvirtualized systems has been explored
before. For a standalone virtualized PM, the authors in Reference 32 use perfor-
mance counters to enforce power budgets across VMs on that PM. In Reference
33, the authors identify resource contention as a problem for energy efficiency but
primarily focus on scheduling and power management on a single PM. In some
recent literature, performance counters have been used in virtualized clusters to
perform power metering [34–36], QoS management [37], and power budgeting
[38] to aid efficient power provisioning. However, using architectural character-
ization to drive cluster-level VM management from the perspective of energy
efficiency and balanced power consumption has been largely unexplored.

At a PM level, power management techniques are not sufficient to solve the
thermal problems. This is because temperature is a function of power density
rather than the average power. Hence, to optimize energy further, thermal opti-
mizations must be considered. A number of processor-level dynamic thermal
techniques have been suggested in the recent years. They can be broadly classified
into reactive and proactive categories. Reactive techniques include clock gating
[39], DVFS [40], activity migration [41], etc. Recently introduced proactive tech-
niques manage overheating by predicting the temperature and rescheduling the
workload appropriately [42]. The authors in Reference 43 suggest a fan control
algorithm that manages temperature based on input from thermal sensors only.
A class of techniques have been suggested to improve cooling efficiency at the
data center level [44, 45]. The research in these techniques suggest the use of
workload scheduling to help with the air circulation problem in the data center;
hence, better cooling efficiency. However, these techniques cannot be reused at
the socket level since their air flow is highly contained. The authors in Refer-
ence 46 propose a methodology for modeling the convection thermal resistance
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between the heat sink and ambient temperature as a function of the air flow rate,
which is leveraged in our work.

In the subsequent sections, we explain our technique for workload manage-
ment at both the intermachine and intramachine levels. We show how, through
architectural characterization, the system can gain invaluable insights into the
performance and power profile of the workloads, which allows our policies to
outperform the existing state-of-the-art techniques.

11.3 INTERMACHINE SCHEDULING

In this section, we introduce vGreen, a multitiered software system to manage VM
scheduling across different PMs with the objective of managing the overall energy
efficiency and performance. The basic premise behind vGreen is to understand
and exploit the relationship between the architectural characteristics of a VM
(e.g., instructions per cycle, memory accesses, etc.) and its performance and
power consumption. vGreen is based on a client-server model, where a central
server (referred to as vgserv ) performs the management (scheduling, DVFS, etc.)
of VMs across the PMs (referred to as vgnodes). The vgnodes perform online
characterization of the VMs running on them and regularly update the vgserv with
this information. These updates allow vgserv to understand the performance and
power profile of the different VMs and aids it to intelligently place them across
the vgnodes to improve overall performance and energy efficiency.

11.3.1 Performance and Power Profile of VMs

In this discussion, we assume Xen as the underlying virtualization hypervisor. It
is a standard open-source virtualization solution, which also forms the baseline
technology for commercial products such as XenSource, Oracle VM, etc. How-
ever, the ideas presented in this section are independent of Xen and can be applied
to other virtualization solutions such as kernel-based virtual machines (KVM),
etc. as well. In Xen, a VM is an instance of an OS, which is configured with
virtual CPUs (VCPUs) and a memory size. The number of VCPUs and memory
size is configured at the time of VM creation. Xen virtualizes the real hardware
to the VM making the OS running within it believe that it is running on a real
machine. A PM can have multiple VMs active on it at any point in time, and
Xen multiplexes them across the real physical CPUs (PCPUs) and memory. The
entity that Xen schedules over the PCPU is the VCPU, making it the fundamental
unit of execution. Thus, a VCPU is analogous to a thread, and a VM is analogous
to a process in a system running a single OS such as Linux. In addition, Xen
provides a control VM, referred to as Domain-0 (or Dom-0), which is what the
machine running Xen boots into. It acts as an administrative interface for the
user and provides access to privileged operations such as creating, destroying, or
migrating VMs.

The nature of workload executed in each VM determines the power profile
and performance of the VM, and hence its energy consumption. As discussed
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before, VMs with different or same characteristics could be colocated on the
same PM. In this section, we show that colocation of VMs with heterogeneous
characteristics on PMs is beneficial for overall performance and energy efficiency
across the PM cluster. For understanding this, we performed some experiments
and analysis on two benchmarks from SPEC-CPU 2000 suite, namely, eon and
mcf . These two benchmarks have contrasting characteristics in terms of their
CPU and memory utilization. While mcf has high memory per cycle (MPC)
accesses and low instructions committed per cycle (IPC), eon has low MPC and
high IPC. We use a test bed of two dual Intel quad core Xeon- (hyperthreading
equipped) based PMs (16 CPUs each) running Xen. On each of these PMs, we
create two VMs with eight virtual CPUs (VCPUs) each (total of four VMs).
Inside each VM, we execute either eon or mcf as the workload. We use multiple
instances/threads of the benchmarks to generate higher utilization levels. For our
PM (16 CPUs), this implies 4 instances for 25% utilization, 8 instances for 50%,
and 16 instances for 100% utilization. Each PM is equipped with power sensors,
which are interfaced to the Dom-0 OS in a standardized manner using intelligent
platform management interface (IPMI) [47]. We periodically (every 2 s) query
the IPMI interface to log the power consumption of the whole PM for all our
experiments.

In our first set of experiments, we run homogeneous VMs on each PM, that is,
the two VMs with mcf on one PM and two with eon on the other. We refer to this
VM placement schedule as “same” indicating homogeneity. During the execution,
we record the execution time of all the benchmark instances. Figure 11.1a shows
the normalized execution time results for different number of instances of the
benchmarks, where the execution times are normalized against the execution time
with two instances (one instance per VM). We can observe that for mcf in the
“same” schedule (shown as “mcf-same”), as the CPU utilization increases, the
execution time almost increases linearly. For 100% utilization mcf , the execution
time is almost 8.5 × compared to the baseline execution time. The primary reason
for such an observation is the high MPC of mcf . The high MPC results in higher
cache conflict rate and pressure on the memory bandwidth when multiple threads
execute, which decreases the effective IPC per thread and hence increases its
execution time. This is illustrated by the plot of aggregate IPC and MPC of all
mcf threads in Figure 11.1c. We can see how the MPC increases by around 7 ×
as CPU utilization goes from 12% to 100%. However, the aggregate IPC almost
remains constant, which implies that IPC per thread goes down significantly,
resulting in increased execution time observed in Figure 11.1a. In contrast, for
eon (“eon-same”), the execution time is fairly independent of the CPU utilization
because of its much lower MPC. We can observe that the execution time shows
an increase beyond 50% utilization. This happens since our machine has 8 cores
and 16 CPUs (due to hyperthreading), with two CPUs per core. When we reach
50% utilization that corresponds to eight threads of the benchmark, and beyond
that the threads start sharing the pipeline, which reduces the individual IPC of
threads sharing the pipeline. This phenomena is illustrated in Figure 11.1c, where
the IPC slope of eon drops off a little beyond 50% CPU utilization. However,
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Figure 11.1 Comparison of eon and mcf . (a) Normalized execution time, (b) normalized
power consumption, (c) comparison of aggregate IPC and MPC, and (d) comparison of
“mixed” versus “same” VM placement schedules.

this increase in execution time is trivial compared to that of mcf as seen in
Figure 11.1a and c. In summary, this analysis indicates that the performance of a
VM has a strong negative corelation to utilization rate of the memory subsystem.

Similarly, Figure 11.1b shows the system-level power consumption of the PMs
normalized against the power consumption with just two threads. We can observe
that for eon (“eon-same”), the power consumption increases almost linearly to the
increase in utilization. This happens since it has high IPC, which implies higher
CPU resource utilization and power consumption. We can observe that the slope
of increase in power changes at 50% utilization. This is again due to pipeline
sharing between threads beyond 50% utilization, which lowers the contribution
of new threads to power consumption (Fig. 11.1c). In contrast, for mcf , the power
consumption increases initially, but then it saturates. This primarily happens
because of the lower IPC of threads at higher utilization levels as discussed
earlier. As a consequence of this, the difference in power consumption between
the two PMs is almost 20% (∼45 W in our measurements). This analysis indicates
that the power consumption of a VM has direct correlation to IPC of the workload
running inside it.
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These results indicate that coscheduling VMs with similar characteristics is
not beneficial from energy efficiency point of view at the cluster level. The PM
running mcf contributes to higher system energy consumption, since it runs for
a significantly longer period of time. To understand the benefits of coscheduling
heterogeneous workloads in this context, we swapped two VMs on the PMs,
hence running VMs with mcf and eon on both the PMs. We refer to this VM
placement schedule as “mixed,” indicating the heterogeneity. Figure 11.1 shows
the results (indicated as “mixed”) achieved for this configuration in terms of
normalized execution time and power consumption. We can observe that eon
execution time almost stays the same, whereas mcf execution time goes down
significantly at higher utilization rates (around 450% reduction at 100% utiliza-
tion). This happens because we now get rid of the hot spot of intense activity
in the memory subsystem on one PM (running just the mcf VMs in the “same”
schedule) and share the overall system resources in a much more efficient manner.
The average power consumption of the two PMs becomes similar and roughly
lies between that of the two PMs in the “same” schedule, as the overall IPC is
also much better balanced across the cluster.

Figure 11.1d illustrates the comparison of the “mixed” and “same” VM sched-
ules and highlights the benefits of the “mixed” schedule. It plots the following
three key metrics to capture this:

1. Energy Savings . We estimate the energy reduction in executing each com-
bination of VMs using “mixed” over “same” schedule. This is calculated
by measuring the total energy consumption for a VM combination with
two schedules, and then taking their difference. We can observe that across
all utilization levels, the “mixed” schedule is clearly more energy efficient
compared to the “same” schedule. At higher utilization rates (50% and
beyond), it achieves as high as 50% energy savings. This primarily happens
because of the high speedup achieved by it compared to “same” schedule,
as discussed earlier, while keeping the average power consumption almost
similar. The next two metrics provides details on these.

2. Average Weighted Speedup (AWS). This metric captures how fast the work-
load runs on the “mixed” schedule compared to “same” schedule. The AWS
is based on a similar metric defined in Reference 48. It is defined as

AWS =
∑

VMi

Tsamei
Talonei∑

VMi

Tmixedi

Talonei

− 1, (11.1)

where Talonei
is the execution time of VMi when it runs alone on a PM,

and Tsamei
and Tmixedi

are its execution time as part of a VM combination
with “same” and “mixed” schedules, respectively. To calculate AWS, we
normalize Tsamei

and Tmixedi
against Talonei

for each VM, and then take ratio
of the sum of these normalized times across all the VMs in the combination
as shown in Equation 11.1. AWS > 0 implies that the VM combination
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runs faster with “mixed” schedule and vice versa. Figure 11.1d clearly
shows that the “mixed” schedule is able to achieve significant speedup.
The AWS reaches as high as 57% because of efficient resource sharing and
contributes significantly to the energy savings discussed earlier.

3. Increase in Power Consumption . This metric captures the difference
between the average power consumption of the PMs under the “mixed”
and “same” schedule. This is important since we need to make sure that
the speedup achieved does not result in much higher average power
consumption across the cluster. Figure 11.1d shows that the increase
in system power consumption is trivial (<3%) across all the utilization
levels. Thus, high speedups at almost similar average power consumption
results in significant energy savings illustrated in Figure 11.1d.

In summary, this discussion provides us key insights into the VM manage-
ment problem. (i) VM characteristics provide invaluable information on both the
power and performance profile of VMs. (ii) VM scheduling policies should try
to coschedule VMs with heterogeneous characteristics on the same PM. This
results in efficient sharing of resources across the cluster and as a consequence
is beneficial from both energy efficiency and performance point of view. This is
achievable in virtualized environments, since VMs can be dynamically migrated
at runtime across PMs at low overhead using live migration [7].

This provides strong motivation to use online characterization of VMs for
systemwide VM management. In the next section, we describe the overall archi-
tecture of vGreen and present details on how it constructs VM characteristics
dynamically at runtime using a novel hierarchical approach.

11.3.2 Architecture

Figure 11.2 illustrates the overall architecture of vGreen, which is based on a
client-server model. Each PM in the cluster is referred to as a vGreen client/node
(vgnode). There is one central vGreen server (vgserv ), which manages VM
scheduling across the vgnodes based on a policy (vgpolicy) running on the vgserv .
The vgpolicy decisions are based on the value of different metrics, which capture
MPC, IPC, and utilization of different VMs, that it receives as updates from the
vgnodes running those VMs. The metrics are evaluated and updated dynamically
by the vGreen modules in Xen (vgxen) and Dom-0 (vgdom) on each vgnode.
Regular updates from the vgnodes on the metrics allow the vgpolicy to balance
both the power consumption and overall performance across the PMs. We now
describe the vGreen components and the metrics employed in detail.

11.3.2.1 vgnode. A vgnode refers to an individual PM in the cluster. A vgn-
ode might have multiple VMs running on it at any given point in time as shown
in Figure 11.2. Each vgnode has vGreen modules (vgxen and vgdom) installed
on them.
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Figure 11.2 Overall vGreen design.

11.3.2.2 vgxen. The vgxen is a module compiled into Xen (Fig. 11.2) and
is responsible for characterizing the CPU and memory behavior (specifically
IPC and MPC) of running VMs. Since multiple VMs with possibly multiple
VCPUs might be active concurrently, it is important to cleanly isolate the
characteristics of each of these different entities. vGreen adopts a hierarchical
approach for this purpose as illustrated in Figure 11.3. The lowest level of
the hierarchy is the VCPU level, which is the fundamental unit of execution
and scheduling in Xen. When a VCPU is scheduled on a PCPU by the Xen
scheduler, vgxen starts the CPU performance counters of that PCPU to count the
events: (i) instructions retired (INST), (ii) clock cycles (CLK), and (iii) memory
accesses (MEM).

When that VCPU consumes its time slice (or blocks) and is removed from
the PCPU, vgxen reads the performance counter values and estimates its MPC
(MEM/CLK) and IPC (INST/CLK) for the period it executed. This process is
performed for every VCPU executing in the system across all the PCPUs. To
effectively estimate the impact of these metrics on the VCPU power consumption
and performance, vgxen also keeps track of the CPU utilization (util ) of each
VCPU, that is, how much time it actually spends executing on a PCPU over a
period of time. This is important, since even a high IPC benchmark will cause
high power consumption only if it is executing continuously on the PCPU. Hence,
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Figure 11.3 An example of hierarchical metrics in vGreen.

the metric derived for each VCPU is weighted by its util and is referred to as
the current weighted MPC and IPC (wMPCcur and wIPCcur) shown as follows:

wMPCcur = MPC · util,

wIPCcur = IPC · util. (11.2)

They are referred to as current, since they are estimated based on the IPC/MPC
values from the latest run of a VCPU. To also take into account the previous
value of these metrics, we maintain them as running exponential averages. The
following equation shows how weighted MPC is estimated:

wMPC = α · wMPCcur + (1 − α) · wMPCprev, (11.3)

where the new value of weighted MPC (wMPC) is calculated as an exponential
average of wMPCprev, the previous value of wMPC, and wMPCcur (Eq. 11.2).
The factor α determines the weight of current value (wMPCcur) and history
(wMPCprev). In our implementation, we use α = 0.5, thus giving equal weight
to both. The IPC metric is computed in a similar manner as discussed earlier.
We store these averaged metrics in the Xen VCPU structure to preserve them
faithfully across VCPU context switches. This constitutes the metric estimation
at the lowest level of the hierarchy as shown in Figure 11.3.
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At the next level, vgxen estimates the aggregate metrics (vMPC, vIPC, vutil)
for each VM by adding up the corresponding metrics of its constituent VCPUs,
as shown in the middle level of Figure 11.3. This information is stored in VM
structure of Xen to personalize metrics at per VM level and is exported to Dom-0
through a shared page, which is allocated by vgxen at the boot-up time.

11.3.2.3 vgdom. The second vGreen module of vgnode is the vgdom
(Fig. 11.2). Its main role is to periodically (Tup_period) read the shared page
exported by vgxen to get the latest characteristics metrics for all the VMs
running on the vgnode and update the vgserv with it. In addition, vgdom also
acts as an interface for the vgnode to the vgserv . It is responsible for registering
the vgnode with the vgserv and also for receiving and executing the commands
sent by the vgserv as shown in Figure 11.2.

11.3.2.4 vgserv. The vgserv acts as the cluster controller and is responsible
for managing VM scheduling and power management across the vgnode cluster.
The vgpolicy is the core of vgserv , which makes the scheduling and power
management decisions based on periodic updates on the VM metrics from the
vgnodes . The metrics of each VM are aggregated by the vgpolicy to construct
the top-level or node-level metrics (nMPC, nIPC, nutil) as shown in Figure 11.3.
Thus, the knowledge of both the node-level and VM-level metrics allow the
vgpolicy to understand not only the overall power and performance profile of the
whole vgnode but also fine grained knowhow of the breakdown at VM level.

On the basis of these metrics, the vgpolicy runs its balancing and power
management algorithm periodically (Tp_period). The basic algorithm is motivated
by the fact that VMs with heterogeneous characteristics should be coscheduled
on the same vgnode (Section 11.3.1). The problem of consolidation of VMs in
minimum possible PMs has been explored in previous work [12, 16] and is sim-
ilar to bin-packing problem, which is computationally NP-hard. As discussed in
Section 11.2, the existing solutions perform the consolidation based on just CPU
utilization. Our balancing algorithms build on top of these existing algorithms to
perform balancing based on MPC and IPC as well. The overall algorithm runs
in the following four steps:

Algorithm 11.1: MPC Balance Algorithm

Input: vgnode n1
1: If nMPCn1 < nMPCth then
2: return
3: end if
4: pm_min ← NULL

5: for all vgnodes ni except n1 do
6: If (nMPCni

< nMPCth) and (nMPCn1 − nMPCth) < (nMPCth −
nMPCni

) then
7: If !pm_min or nMPCpm_min > nMPCni

then
8: pm_min ← ni
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9: end if
10: end if
11: end for
12: vmmig ← NULL

13: for all vmi in n1 do
14: if (nMPCth − nMPCpm_min) > vMPCvmi

and vMPCvmi
> vMPCvmmig

then
15: vMPCvmmig

← vMPCvmi

16: end if
17: end for
18: if pm_min and vmmig then
19: do_migrate(vmmig, n1, pm_min)

20: end if

1. MPC Balance. This step ensures that nMPC is balanced across all the
vgnodes in the system for better overall performance and energy efficiency
across the cluster. Algorithm 11.1 gives an overview of how the MPC
balance algorithm works for a vgnode n1.
The algorithm first of all checks if the nMPC of n1 is greater than a
threshold nMPCth (step 1 in Algorithm 11.1). This threshold is represen-
tative of whether high MPC is affecting the performance of the VMs in
that vgnode. This is based on the observation in Section 11.3.1, that for
lower MPC workloads (such as eon), the memory subsystem is lightly
loaded and has little impact on the performance of the workload. Hence,
if nMPC is smaller, the function returns, since there is no MPC balanc-
ing required for n1 (step 2 in Algorithm 11.1). If it is higher, then in
steps 4–11, the algorithm tries to find the target vgnode with the minimum
nMPC (pm_min) to which a VM from n1 could be migrated to resolve the
MPC imbalance, subject to the condition in step 6. The condition states that
the target vgnode (ni) nMPC (nMPCni

) must be below nMPCth by atleast
(nMPCn1 − nMPCth). This is required, since otherwise migration of a VM
from n1 to ni cannot bring n1 below the MPC threshold or might make
ni go above the MPC threshold. In steps 7 and 8, it stores the node ni as
target minimum nMPC vgnode (pm_min), if its nMPC (nMPCni

) is lower
than the nMPC of the vgnode currently stored as pm_min . This way, once
the loop in step 5 completes, it is able to locate the vgnode in the system
with the least nMPC (pm_min).
Once the pm_min is found, the algorithm finds the VM (vmmig), which
could be migrated to pm_min for resolving the MPC imbalance (steps
12–17). For this purpose, it scans the list of VMs on n1 to find the VM with
the maximum vMPC, which if migrated, does not reverse the imbalance
by making nMPC of pm_min more than nMPCth (steps 14–15). If such
a VM is found, the algorithm invokes the do_migrate function to live
migrate vmmig from n1 to pm_min [7] in step 19. The decisions taken by
the vgpolicy (updates, migration) are communicated to the vgnodes in the
form of commands as shown in Figure 11.2, while the vgdom component
on the vgnode actually accomplishes the migration.
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The complexity of the MPC balance algorithm (Algorithm 11.1) is linear
(O(n), where n is the number of vgnodes in steps 5–11, and number of
VMs on n1 in steps 13–17) for resolving an MPC bottleneck, since it
requires a single scan of vgnodes and VMs to detect and resolve it. Hence,
in terms of implementation and performance the algorithm is simple and
scalable.

2. IPC Balance. This step ensures nIPC is balanced across the vgnodes for
better balance of power consumption across the PMs. The algorithm is
similar to MPC balance but uses nIPC instead of nMPC.

3. Util Balance. This step balances the CPU utilization of vgnodes to ensure
that there are no overcommitted nodes in the system, if there are other
underutilized vgnodes . The algorithm is again similar to MPC balance but
uses nutil instead of nMPC.

4. Dynamic Voltage Frequency Scaling (DVFS). The vgpolicy may issue a
command to scale the voltage–frequency setting (v – f setting) of a vgnode,
if it deems that it is more energy efficient than VM migration. This may
happen, if there are no enough heterogeneous VMs across the cluster to
be able to balance the resource utilization evenly. The DVFS policy is
itself based on state-of-the-art DVFS policies [23, 24], which exploit the
characteristics of the workload to determine the best suited v – f setting for
it. Specifically, it aggressively downscales the v – f setting if the overall
MPC is high (> nMPCth), otherwise keeps the system at the highest v – f
setting.

Figure 11.4 gives the intuition behind the policy using an example of two
benchmarks, mcf and eon , running at 90% CPU utilization level. It plots the
execution time (Fig. 11.4a) and energy consumption (Fig. 11.4b) at five different
v – f settings. The execution time, energy consumption, and the v – f settings are
normalized against the values at the highest v – f setting. We can observe that
as the frequency is decreased, the execution time of eon almost increases in
proportion to the drop in frequency. For instance, at normalized frequency of
0.54, the increase in execution time is more than 80% (∼ 1

0.54 ). This happens
since eon has high IPC and uses the pipeline of the processor intensively, which
makes its execution time a function of the clock rate of the pipeline or the CPU
frequency. This huge performance degradation has a direct impact on the energy
consumption of eon at lower v – f settings as shown in Figure 11.4b. We can
observe that at all the frequencies the system consumes more energy compared
to the highest v – f setting, reaching as high as 40% more. This implies that for
high IPC workloads, DVFS is actually energy inefficient.

In contrast, for mcf , which has high MPC, we observe that the execution
time (Fig. 11.4a) is actually fairly independent of the CPU frequency. This is a
consequence of the high degree of CPU stalls that occur during its execution due
to frequent memory accesses, which makes its execution time insensitive to actual
CPU frequency. The low performance degradation translates into system-level
energy savings ( Fig. 11.4b), which reaches 10% at the lowest frequency.
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Figure 11.4 Comparison of execution time and energy consumption of mcf and eon
at different frequency levels. (a) Normalized execution time and (b) normalized energy
consumption.

This example also illustrates the fact, that the effectiveness of DVFS for
energy savings is not very significant in modern server class systems. This has
also been observed in previous researches [2, 22] and the reasons for such a
trend include lower contribution of CPU in total system power consumption,
finer voltage settings in modern CPUs due to shrinking process technology, etc.
These observations also motivate our approach to focus more on efficient VM
scheduling to achieve higher energy savings rather than on aggressive DVFS.
Rather, the system resorts to DVFS only when no further benefits are achievable
through scheduling and the MPC is high enough to achieve energy savings. As
we show in Section 11.5, such an approach enables energy savings under both
heterogeneous and homogeneous workload scenarios through VM scheduling and
aggressive DVFS, respectively.

The four steps described earlier in the overall algorithm have relative priori-
ties to resolve conflicts, if they occur. MPC balance is given the highest priority,
since memory bottleneck severely impacts overall performance and energy effi-
ciency as identified in Section 11.3.1 (Fig. 11.1a). IPC balance results in a more
balanced power consumption profile, which helps create an even thermal pro-
file across the cluster and hence reduces cooling costs [49], and is next in the
priority order. Finally, Utilization balance results in a fairly loaded system, and
is representative of the prior state-of-the-art scheduling algorithms. DVFS step
(step 4), as explained earlier, is invoked only if the system is already balanced
from the perspective of MPC, IPC, and CPU utilization, and no further savings
are possible through VM scheduling.

11.4 INTRAMACHINE SCHEDULING

Traditional workload scheduling algorithms, for example, dynamic load balanc-
ing, implemented in OS do not consider either thermal/cooling characteristics of
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the processors they run on or the inherent power characteristics of the threads
running in the system. Not considering thermal/cooling issues has a big drawback
since the heat being dissipated by these running threads actually contributes to the
thermal profile of the system at any given point in time. In this section, we discuss
scheduling algorithm called Cool and Save, which performs thread scheduling
based on the dynamic characterization of the thermal profile of the active threads.
The algorithm incorporates an air-forced convective model to understand the
interaction between thermal characteristics and the fans. It uses performance
counters to predict workload induced power density, and therefore the likely
temperature on the die with associated cooling costs. Such a model helps the
algorithm to estimate the new thermal state and the cooling cost associated with
any scheduling event. On the basis of this understanding, it is able to dynamically
consolidate or spread the running threads, hence achieving an overall balanced
thermal profile that results in higher energy savings due to lower fan speeds. This
algorithm is evaluated using benchmarks with varying runtime power character-
istics and show that Cool and Save is able to achieve up to 85% reduction in
cooling-related energy consumption compared to traditional scheduling policies.

11.4.1 Air-Forced Thermal Modeling and Cost

To provide sufficient cooling to the sockets, each socket is normally associated
with fans. For example, the Sunfire x4270 server has two sockets, where each has
two sets of fans [50]. Figure 11.5 shows a thermal model of two CPU sockets.
The modeling of the individual sockets can be done using an RC network similar
to what is done in HotSpot [1]. To simplify the modeling, the heat path between
the two sockets can be safely neglected since there is no effective conductive
or convective heat path between them, as they are typically placed apart in the
motherboard. The convective resistance, Rconv, between the top of the heat sink
and the ambient temperature, which can be computed as follows:

Rconv = 1

hA
, (11.4)

Rconv2

Temperature at top
of the heat sink

Ambient temperature

Socket 2
thermal model

Heat sink

Chip die

Rconv1

Socket 1
thermal model

Figure 11.5 Multisocket thermal modeling.
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where A is the effective heat sink area and h is the convective heat transfer. The
heat transfer h can be modeled as a function of air flow rate as shown in the
following equation [46]:

h(V ) ∝ V α, (11.5)

where α is a factor with a range of (0.9–1.0) for high-end servers heat sinks.
For the estimation of the cooling costs, the results from Reference 46 are used,
which relate the fan speed, F , with the air flow rate, as V ∝ F . As a result, the
cooling costs for changing the air flow rate from V1 to V2 can be computed as

FP2

FP1
=

(
V2

V1

)3

, (11.6)

where FP1 and FP1 represent the fan power dissipation at V1 and V2, respec-
tively. This formula shows that optimizing the fan speed is crucial for power
savings since reducing the temperature requires an increase in the fan power in
the order of 3/α.

11.4.2 Cooling Aware Dynamic Workload Scheduling

Energy of cooling subsystems could be reduced by intelligently distributing the
workload across the machine’s sockets to reduce fans’ speeds [49, 51]. To illus-
trate this, two machines are used, each with two quad core sockets, where each
socket has its own fan. Two types of jobs are executed, one highly active that
consumes 14 W and the other moderately active consuming 9.5 W. Temperature
threshold is set to 85◦C and ambient temperature is set to 42◦C. For thermal sim-
ulation, an extended version of HotSpot simulator [1] is used, which includes the
cooling model as described earlier in this chapter. Figure 11.6 shows the impact
of workload assignment on cooling cost savings at the socket level. The left part
of the figure shows the thread assignments by state-of-the-art schedulers, while
the right part shows their assignments using cooling aware scheduling algorithm.
The top part of this figure shows how to save the cooling cost when there is a

Spreading: Cooling savings 60%

28 CFM 15 CFM 20 CFM

Highly active thread

Moderatly active thread

28 CFM48 CFM 28 CFM

Socket 1 Socket 2 Socket 1 Socket 2

6 CFM

6 CFM

Consolidation: Cooling savings 68%

Figure 11.6 Cooling aware scheduling at the socket level.
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big imbalance in the total power across the sockets. For such cases, the efficient
solution is to balance power across the sockets. The savings are substantial and
reach 60%. This class of scheduling is called spreading . In the second scenario,
the air flow rate of socket 1 in the original assignment is about twice of that of
socket 2. To minimize the cooling costs, the scheduler migrates the hot thread
from socket 2 to 1 and migrate the two moderate threads from socket 1 to 2.
The new assignment lowers the heat in socket 1 since the total socket power
is reduced by 5 W while maintaining the maximum core power at the same
level. The savings are significant and reach 67%. This class of assignment is
called consolidation . In summary, scheduling the workload is an effective way
to minimize the cooling energy.

To leverage the benefits of controlling both cooling and workload scheduling,
we implement our technique at the OS level. Figure 11.7 depicts the operational
framework of our approach. The input to the scheduler consists of thermal sensors
at each socket, runtime workload characterization, and the incoming workload.
On the basis of this set of inputs, the OS scheduler decides whether to redis-
tribute or consolidate the current workload through migrating some of the threads
across the sockets. The rescheduling period is large (order of seconds) since the
heat sink has a large thermal time constant. This implies that the overhead of
rescheduling the workload is negligible since it is in the range of microseconds.
The rescheduling overhead primarily comes from the OS, transferring the state
of the threads across the cores and any L2 cache misses. Incoming workload is
always assigned to the sockets with lower fan speeds.

11.4.3 Scheduling Mechanism

The cooling cost of the individual servers is equal to the sum of the cubes of their
fans speeds. The fan speed of a socket depends on both the total socket power
and the maximum power consumed by a core, as it will be explained shortly.
Therefore, to lower the heat, we can minimize the maximum power, reduce the
total power, or both. To minimize cooling energy, it is desirable to keep the fan
speed as low as possible. In order to do so, first the threads are spread across
different sockets in order to balance the power density and reduce the socket

Run time workload
characterization

Scheduler

Incoming
workload

Thermal
sensors

Cooling aware scheduling 

Figure 11.7 Cooling aware scheduling framework.
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temperatures and their fan speeds. At this point, consolidation is performed to
further reduce the fans speed. The consolidation phase lowers the cooling cost
by focusing the workload on a smaller set of the fans (higher speed ones) while
keeping their speed in a similar range. This is achieved by consolidating more
hot workload into the sockets that are associated with those fans and unloading
from them multiple moderately active workload to maintain similar total power.

The evaluation of potential cooling savings is performed by a predictor whose
inputs are the power characteristics of the workload and the ambient temperature
of the server. The information required for predictions is periodically collected
and sent to the scheduler. The following thread scheduling algorithm illustrates
workload spreading phase. The consolidation algorithm can be developed in a
similar manner. The period for scheduling is in the order of seconds, which incur
minimal overhead.

Algorithm 11.2: Workload Spreading

1: while not all threads are marked do
2: srcSocket ⇐ pick the socket with the highest CoolingCost
3: destSocket ⇐ pick the socket with the lowest CoolingCost
4: while (not all threads of srcSocket are marked) do
5: Thread1 ⇐ the highest power unmarked thread of srcSocket
6: Thread2 ⇐ the highest power unmarked thread of

destSocket
7: Thread3 ⇐ the second highest power unmarked thread of

destSocket
8: evaluate the CoolingCosts when these migrations are

done:
9: migrating Thread1 to destSocket

10: migrating Thread1 to destSocket and Thread2 to
srcSocket

11: migrating Thread1 to destSocket and {Thread2 + Thread3} to
srcSocket

12: If (any new CoolingCost is lower than current
CoolingCost) then

13: do the migration resulting in the lowest CoolingCost
14: mark the migrated Threads
15: end if
16: end while
17: end while

11.4.4 Cooling Costs Predictor

Figure 11.8 shows the thermal model of a single socket incorporating both the
ambient temperature, Tamb, and the convective resistance, Rconv. The lateral ther-
mal flow between the socket’s cores is ignored because of the high ratio of the
core area to the die thickness [41]. Rv is the die component’s vertical thermal
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Figure 11.8 Steady-state single socket thermal modeling.

resistance, including the thermal interface resistance. Rhs represents the sum of
heat spreader and the heat sink thermal resistances. The thermal resistance Rconv
corresponds to the convective resistance.

To design a low cost runtime predictor, we can utilize the fact that the heat
sink represents a low pass filter with a narrow bandwidth (range of 0.01 Hz
since the heat sink time constant is in the order of tens of seconds), which allows
only the average power to pass that is typically highly stable over a period of
seconds. As a result, steady-state analysis can be used to predict the heat sink
temperature ahead of time while not compromising accuracy. The predicted value
of the convective resistance, Rnew

conv, that is required to calculate the new air flow
can be computed as follows:

Rnew
conv = Tc − Tamb − PmaxRcore∑m

j=1 Pj

− Rhs, (11.7)

where Tc is the critical temperature threshold and P is the power dissipation
of the individual components. The core power can be estimated based on the
temperature readings of their thermal sensors. The temperature is a good metric
since it reflects the density of both dynamic and leakage power. The power of
the individual cores, Pi , can be estimated as

Pi =
βiTi +

(∑N
j=1

�ij

Rcore

(
Rhs + Rcur

conv

)) − �

Rcore + N(Rhs + Rcur
conv)

, (11.8)

where T l
i is the average core thermal sensor reading, where the temperature is

averaged over the socket rescheduling period. �ij = (βiTi − βjTj ), Rcur
conv is the

current convective resistance, β is a factor to convert the thermal sensor readings
of the core to its average temperature (can be estimated at the design time),
and N is the number of cores in the die. The value of � = Pextra(Rhs + Rcur

conv)

corresponds to the contribution of L2 cache and the interconnect between the
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cores to the heat sink temperature. The power of these components, Pextra, can
be estimated using the access frequency (estimated using processor performance
counters) multiplied by the power of each access since they are highly regular.
The power of each access can be estimated during the design time. The predicted
cooling power, P new

cp , can be estimated as

P new
cp =

(
Rcur

conv

Rnew
conv

) 3
α

P cur
cp , (11.9)

where P cur
cp is the current cooling power. The average prediction accuracy across

the set of the benchmarks used in Section 11.5.3.1 is in the range of 5%, which
is good enough for our approach.

11.5 EVALUATION

In this section, we perform a comprehensive evaluation of our multitier energy
management scheduler. We start with evaluating the top-level scheduler that opti-
mizes energy through efficient VM scheduling across the PMs in the deployment.
We show that this can result in average weighted speedup and energy savings
of 40% across diverse workload combinations. Following that, we evaluate the
energy savings of the scheduler at the PM level that focuses on reducing the
cooling energy through intelligent job assignment between the CPU packages.
We show that our intramachine scheduler can reduce the cooling costs by as
much as 72%.

11.5.1 Intermachine Scheduler (vGreen)

The test bed for evaluating vGreen includes two state-of-the-art 45 nm Dual
Intel Quad Core Xeon X5570 (Intel Nehalem architecture with 16 PCPUs each)
based server machines with 24 GB of memory, which act as the vgnodes , and
a Core2Duo-based desktop machine that acts as the vgserv . The vgnodes run
Xen3.3.1 and use Linux 2.6.30 for Dom-0.

For workloads, we use benchmarks with varying characteristics from the
SPEC-CPU 2000 benchmark suite. The used benchmarks and their character-
istics are illustrated in Table 11.1. We run each of these benchmarks inside a
VM, which is initialized with eight VCPUs and 4 GB of memory. We generate
experimental workloads by running multiple VMs together, each running one of
the benchmarks. For each combination run, we sample the system power con-
sumption of both the vgnodes every 2 s using the power sensors in the PM,
which we query through the IPMI interface [47].

We compare vGreen to a VM scheduler that mimics the Eucalyptus VM
scheduler [8] for our evaluation. Eucalyptus is an open source cloud comput-
ing system that can manage VM creation and allocation across a cluster of
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TABLE 11.1 Benchmarks Used

Benchmark Characteristics

eon High IPC/Low MPC
applu Medium IPC/High MPC
perl High IPC/Low MPC
bzip2 Medium IPC/Low MPC
equake Low IPC/High MPC
gcc High IPC/Low MPC
swim Low IPC/High MPC
mesa High IPC/Low MPC
art Medium IPC/High MPC
mcf Low IPC/High MPC

PMs. The default Eucalyptus VM scheduler assigns VMs using a greedy pol-
icy, that is, it allocates VMs to a PM until its resources (number of CPUs and
memory) are full. However, this assignment is static, and it does not perform
any dynamic VM migration based on actual PM utilization at runtime. For
fair comparison, we augment the Eucalyptus scheduler with the CPU utiliza-
tion metrics and algorithm proposed in the previous section, which allow it to
redistribute/consolidate VMs dynamically at runtime. This enhancement is repre-
sentative of the metrics employed by the existing state-of-the-art policies, which
use CPU utilization for balancing (Section 11.2). We refer to this enhanced sched-
uler as E+. For further fairness in comparison, we use the same initial assignment
of VMs to PMs as done by the default Eucalyptus scheduler for both E+ and
vGreen.

We report the comparative results of vGreen and E+ for the following two
primary parameters:

1. System-Level Energy Savings . We estimate the energy reduction in execut-
ing each combination of VMs using vGreen over E+. This is calculated
by measuring the total system-level energy consumption for a VM combi-
nation with E+ and vGreen, and then taking their difference. Note that the
combinations may execute for different times with E+ and vGreen, and
since we do not know the state of the system after the execution (could
be active if there are more jobs, or be in sleep state if nothing to do),
we only compare the energy consumed during active execution of each
combination.

2. Average Weighted Speedup. We also estimate the average speedup of each
VM combination with vGreen. For this, we use the weighted speedup
(AWS) based on a similar metric defined earlier in Section 11.3.1 (refer to
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Equation 11.1). It is defined as

AWS =
∑

VMi

Te+i

Talonei∑
VMi

Tvgreeni

Talonei

− 1, (11.10)

where Talonei
is the execution time of VMi when it runs alone on a PM, and

Te+i
and Tvgreeni

are its execution time as part of a VM combination with
E+ and vGreen, respectively. AWS > 0 implies that the VM combination
runs faster with vGreen and vice versa.

For all our experiments, we use Pp_period and Pup_period as 5s.
On the basis of our experiments across different benchmarks, we choose

nMPCth as 0.02 and nIPCth as 8. These threshold values allowed us to cleanly
separate memory- and CPU-intensive VMs from each other.

11.5.2 Heterogeneous Workloads

In the first set of experiments, we use combinations of VMs running benchmarks
with heterogeneous characteristics. Each VM consists of multiple instances of
the benchmark to generate different CPU utilization levels. In total we run four
VMs, varying the overall CPU utilization of vgnodes between 50% and 100%. We
choose this range of CPU utilization, since it is representative of a consolidated
environment, where multiple VMs are consolidated to get higher overall resource
utilization across the cluster [12]. We run CPU-intensive benchmarks in two VMs
and memory intensive benchmarks in the other two. We did experiments across all
possible heterogeneous VM combinations, but for the sake of clarity and brevity,
have included results for 19 workloads in the following discussion. The excluded
results lead to similar average metrics and conclusions as reported below.

Figure 11.9 shows the results across different utilization levels for the vGreen
system normalized to that with E+. The x -axis on the graphs shows the initial
distribution of VMs on the PMs by the default Eucalyptus scheduler. For instance,
2gcc/2art means that two VMs running gcc are on the first PM, while the two
VMs running art are on the second. We can observe in Figure 11.9a that vGreen
achieves an average of between 30 and 40% system-level energy savings across
all the utilization levels, reaching as high as 60%. The high energy savings are
a result of the fact that vGreen schedules the VMs in a much more efficient
manner resulting in higher speedups while maintaining similar average power
consumption. This results in energy savings, since now the benchmarks run and
consume active power for a smaller duration.

Figure 11.9b shows that vGreen achieves an average of around 30–40%
weighted speedup over E+ across all the combinations at all utilization levels,
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Figure 11.9 Comparison of E+ and vGreen. (a) System-level energy savings and (b)
average weighted speedup.
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reaching as high as 100%. The reason for this is that E+ colocates the high IPC
VMs on one vgnode and the high MPC ones on the second one. Thereafter, since
the CPU utilization of both the vgnodes is balanced, no dynamic relocation of
VMs is done. With vGreen, although the initial assignment of the VMs is same
as with E+, the dynamic characterization of VMs allows the vgserv to detect
a heavy MPC imbalance. This initiates migration of a high MPC VM to the
second vgnode running the high IPC VMs. This results in an IPC and utiliza-
tion imbalance between the two vgnodes , since the second vgnode now runs a
total of three high utilization VMs. This is detected by vgserv , and it responds
by migrating a high IPC VM to the first vgnode. This creates a perfect balance
in terms of MPC, IPC, and utilization across both the vgnodes . This results in
significant speedup as observed in Figure 11.9b. We can see in Figure 11.9b that
some combinations achieve higher weighted speedup compared to others. For
instance, for 2eon/2applu combination, it is around 30%, while for 2eon/2art
it is over 100%. This difference is due to the fact that colocation of art and
eon VMs significantly benefits art from the point of view of larger cache and
memory bandwidth availability, since it has very high MPC. In contrast, applu
benefits lesser because of its lower overall MPC compared to art , which results
in relatively smaller weighted speedup.

Another disadvantage of not taking the characteristics of the workload into
account for scheduling is that there could be significant imbalance in power
consumption across the nodes in a cluster. For instance, the node running high
IPC workloads might have much higher power consumption compared to the
node running high MPC workloads (as observed in Section 11.3.1). This can
create power hot spots on certain nodes in the cluster and be detrimental to
the overall cooling energy costs [49]. Figure 11.10 illustrates the imbalance in
power consumption across the two vgnodes under the E+ system. We can see
that the average imbalance in power consumption could be as high as 30 W,
with the highest imbalance close to 45 W. With vGreen system, this imbalance
is almost negligible because of the better balance of IPC and utilization across the
machines. This results in a better overall thermal and power profile and reduces
power hotspots in the cluster.

11.5.2.1 Comparison with DVFS policies. A possible way for saving
energy with the E+ system is to augment it with a DVFS policy. For comparison,
we consider the following two policies for the E+ system:

1. The “naive” policy . This policy simply resorts to throttling the CPU in
order to reduce the energy consumption in the system. We refer to the
system with the “naive” policy as E+nDVFS.

2. The “smart” policy . This policy is the same as incorporated into the vGreen
system (Section 11.3.2). The policy throttles the CPU only if it deems that
it would result in lower performance impact and higher energy savings. We
refer to the system with the “smart” policy as E+sDVFS.



326 ENERGY AND THERMAL AWARE SCHEDULING IN DATA CENTERS

2eon-2applu

2eon-2art

2eon-2mcf

2eon-2swim

2perl-2
applu

2perl-2
art

2perl-2
mcf

2perl-2
equake

2perl-2
swim

2mesa-2applu

2mesa-2art

2mesa-2equake

2mesa-2swim

2bzip-2applu

2bzip-2art

2bzip-2mcf

2gcc-2applu

2gcc-2art

2gcc-2mcf
Avg.

D
iff

er
en

ce
 in

 p
ow

er
 c

on
su

m
pt

io
n 

(W
)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0
62%
75%
87%
100%

Figure 11.10 Power consumption imbalance in E+: The difference in power consump-
tion between the two PMs under the E+ scheduling algorithm.

Figure 11.11 shows the average weighted speedup and energy consumption
results for the E+sDVFS, E+nDVFS, and the vGreen system normalized against
the results for the E+ system. Figure 11.11a illustrates the average weighted
speedup results across all the combinations at 100% CPU utilization. The vGreen
results are the same as those plotted in Figure 11.9b but have been included for
the sake of comparison. We can observe that across all the combinations, both
the DVFS policies perform slower than the baseline E+ system. This is intuitive,
since the DVFS policies run the system at a lower frequency. However, the
E+sDVFS clearly outperforms the E+nDVFS system across all the workload
combinations. While the E+sDVFS system is on an average always within 2% of
the E+ system, and E+nDVFS system is on an average 22% slower than the E+
system. This happens since the E+sDVFS system exploits the characteristics of
the VMs and performs aggressive throttling only on the nodes running VMs with
high MPC. As discussed in Section 11.3.2, this results in minimal performance
degradation, since such high MPC workloads are highly stall intensive and have
little dependence on CPU frequency. In contrast, the E+nDVFS system naively
throttles even the nodes running high IPC VMs, resulting in the high performance
slowdown as observed in Figure 11.11a.

The average weighted speedups have a direct impact on the energy savings
as illustrated in Figure 11.11b. The E+nDVFS system gets an average of just
1% energy savings across all the combinations. For some workloads, such as
2mesa/2art , it infact consumes more energy than the baseline system. This indi-
cates that the power reduction due to E+nDVFS system is outweighed by the
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Figure 11.11 Comparison of E+, E+nDVFS, E+sDVFS, and vGreen. (a) Normalized
average weighted speedup and (b) normalized energy consumption.
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huge performance slowdown. The E+sDVFS system does better by achieving
around 9% energy savings due to the small performance slowdown. However,
both are clearly outperformed by the vGreen system, which achieves close to 35%
energy savings. This shows that efficient resource utilization across a cluster is
a key to energy efficient computing in virtualized environments.

11.5.2.2 Homogeneous workloads. We also experimented with combina-
tion of VMs running homogeneous benchmarks to evaluate the performance of
our system under cases, where there is no heterogeneity across VMs. We con-
ducted experiments for all the benchmarks in Table 11.1, where all the four VMs
ran the same benchmark. We observed that in all the experiments, there was no
possibility of rebalancing based on characteristics, since the MPC and IPC of
the VMs were already balanced. However, for the case of high MPC workloads,
the vGreen system effectively applies DVFS to get energy savings. Figure 11.12
illustrates the average weighted speedup and energy savings achieved across the
homogeneous set of high MPC workloads. We can observe that vGreen achieves
average system-level energy savings of between 6% and 9% across all the utiliza-
tion levels. The slowdown due to DVFS is between 2% and 5% as indicated in
Figure 11.12a. For high IPC workloads, the results were identical to E+ system,
since vGreen neither does any VM migration nor DVFS.

11.5.3 Intramachine Scheduler (Cool and Save)

The intramachine scheduler called Cool and Save, adds another level of optimiza-
tion on top of the interlevel by reducing the cooling energy within the individual
PMs. For the experimental evaluation, we focus on reducing the cooling energy
of a server that has two sockets with four cores each. Simulation is used instead
of the real measurements because the fan algorithm implemented in the servers
change the whole set of fans at once and cannot be modified by the user to have
individual control over the fans. Table 11.2 gives the parameters that have been

TABLE 11.2 Simulation Parameters

Parameter Value

Issue width 4
ROB 128
Functional units 4 IntALU, 1 IntMult/Div

1 FPALU, 1 FPMult/Div
Branch predictor Tournament 2048 local predictor

8192 global predictor
BTB 2K entries, 1 way
LSQ 32
L1 I-cache 32 kB, 4 ways, 32 B blocks, 1 cycle
L1 D-cache 32 kB, 4 ways, 32 B blocks, 1 cycle
L2 4 MB, 8 ways, 64 B blocks, 12 cycles
Memory latency 200 cycles
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Figure 11.12 Comparison of E+ and vGreen with homogeneous workloads. (a) Average
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used in the simulations. Three simulators are used to perform the evaluation, M5
[52], Wattch [53], and HotSpot-4.0 [1]. The M5 simulator is used to obtain the
architectural-level performance simulation. The M5 traces are fed into Wattch to
obtain the power values of the processor functional units. The power values are
then used to estimate the temperature through the HotSpot simulator. The OS
initiates cooling aware scheduling, CAS, every 4 s, which is sufficient since the
heat sink thermal time constant is in the range of 10 s of seconds. The CAS
algorithm is evaluated against traditional OS scheduling, and dynamic load bal-
ancing (DLB) estimates the level of benefit. The DLB enhances the utilization
of the system resources by scheduling the workload in a way that minimizes
the difference in task queue length across the individual sockets and the indi-
vidual cores. The fan control algorithm is assumed to be the industry standard
closed loop feedback controller that adjusts the fan speed based on the thermal
sensors readings. When the temperature is below the threshold, the fan speed
is set to baseline speed. In case of overheating, the fan algorithm adjusts the
fan speed accordingly to ensure that the cores temperatures do not exceed the
thermal threshold.

Figure 11.13 shows the floorplan obtained by scaling ALPHA 21264 pro-
cessor into 65 nm technology. In these simulations the processor clock speed
is set to 2 GHz. L2 cache area is estimated based on Cacti simulation tool
[54]. In these experiments, a die thickness of 0.2 mm is used. To account for
CPU cores leakage power temperature dependency, the second-order polynomial
model that is proposed in Reference 55 is used. The leakage model coefficients
are extracted empirically based on the given normalized leakage values. To esti-
mate the leakage values for 65 nm technology, the reported value of leakage
power density (0.5 W/mm2 at 383 K [56]) are incorporated in the second-order
polynomial model. For the crossbar bus power consumption, the active power is
scaled depending on the activity in the cores and L2 cache. To obtain accurate
results, the warm-up is also considered since the heat sink has a longer time con-
stant than the die. The core critical temperature is set to 85◦C, which is common
to such designs [42]. For the socket package, a convection thermal resistance
equal to 0.18◦C/W at air flow of 23 CFM is used, which is in the range to what
is being deployed in the state-of-the-art quad core Xeon processor used in server
platforms [57].

Core 1 Core 2

L2 Bus L2

Core 3 Core 4

Figure 11.13 Socket floorplan.
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TABLE 11.3 Benchmarks Characteristics

Average Dynamic Power Standard
Benchmark Power, W Deviation

gcc 4.12 1.8
gzip 5.51 1.65
swim 6.35 1.77
bzip2 7.9 2.25
crafty 9.11 0.66

TABLE 11.4 Workload List

Workload # Benchmarks (Socket 1/Socket 2)

1 {crafty+gzip+gcc}/{crafty+gzip+gcc}
2 {bzip2+gzip+swim+swim}/{crafty+gzip+gcc}
3 {bzip2+swim+gcc+gcc}/{bzip2+swim+gzip+gzip}
4 {crafty+crafty+swim}/{gzip+swim+swim}
5 {bzip2+bzip2+bzip2+bzip2}/{gcc+gcc+gcc+gcc}

The workload is set of SPEC2000 suite shown in Table 11.3, which belongs
to the same class of workload that is used to evaluate vGreen. The selected set
of benchmarks exhibit various levels of power intensity to represent real life
applications. Each benchmark is executed for a representative interval of 5 s
and then repeated the bench execution to obtain a total execution time of 300
s, which is sufficient to evaluate the given policies. To better evaluate the given
policies under various workload conditions, the selected benchmark combinations
(Table 11.4) have different average power intensity and variance.

11.5.3.1 Results. The reported results show that our policy, CAS, outper-
forms the state-of-the-art DLB drastically in energy savings and minimizing air
flow rate that reaches as high as 85% and 53% , respectively. Minimizing these
metrics has a big advantage on lowering the overall cooling costs and acoustic
noise.

Figure 11.14 shows the air flow rate breakdown across two sockets when
using the DLB and CAS polices for all the workload given in Table 11.4. The
results are reported using air flow rate metric instead of absolute fan speed since
this is a standard metric for characterizing the fans. The air flow rate is pro-
portional to fan speed. The first observation is that CAS is able to reduce the
maximum air flow rate by as high as 53% . This figure shows cases for two
sources of air flow improvements, hot cores consolidation (workloads 1, 2, 3),
and spreading (workloads 4, 5). For the consolidation case, we can observe that
CAS is able to maintain cooling with half of the fans only running at similar
speed to the case of DLB. To explain this, let us take the case of workload
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Figure 11.14 Air flow rate in the multisocket system.

1:{crafty+gzip+gcc}/{crafty+gzip+gcc}. Before applying CAS, the power is
balanced across the two sockets where each is required an air flow rate of 9
CFM. To improve cooling efficiency, CAS migrates the hot thread, crafty , from
socket 2 to 1 and the two cold threads, gzip and gcc, from socket 1 to 2 to
maintain power balancing. As a result, socket 1 will be executing {2 crafty}
while socket 2 runs {gcc+gzip+gcc+gzip}. Although socket 1 is running two
hot threads, its fan speed stays almost the same since the socket total power
is maintained at the same level. This indicates that thread consolidation is an
effective way to improve cooling efficiency.

The CAS algorithm performs hot threads spreading when there is a strong
imbalance in the socket power as the case in workload 5. Before applying
CAS, the workload is assigned to the two sockets as {bzip2+bzip2+bzip2+
bzip2}/{gcc+gcc+gcc+gcc}. In this case, socket 2 fan is in idle state (gcc threads
are cold) while the air flow in socket 1 is at a high rate. In this case, the power
dissipation in socket 1 is about double of what is in socket 2. Such power imbal-
ance between them leads to cooling inefficiency due to nonlinear relation between
power cost and temperature reduction. To lower the cooling costs, CAS algorithm
balances the power across the two cores by migrating two instances of bzip2 to
socket 2 and two instances of gcc to socket 1. From the results, it can be seen
that the air flow is lowered from one fan running at 20 CFM to two fans running
at range close to 10 CFM, which leads to drastic power savings.

Figure 11.15 shows the cooling energy savings of applying CAS over the
DLB. The cooling savings is calculated by applying Equation 11.6 to the results
of Figure 11.14. It is clear from the results that applying CAS results in significant
energy savings; the improvement as high as 85%. The appreciable improvement
comes from applying our consolidating or spreading the hot threads as required.
For the consolidating cases, the savings come from running one of the sockets
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Figure 11.15 Fan energy savings over DLB.

fans in idle mode while not increasing the speed of the running fan. The savings in
case of workload 2:{bzip2+gzip+swim+swim}/{crafty+gzip+gcc} is the high-
est, 85%, which is attained by migrating crafty to socket 1 and the two instances
of swim to socket 2. The improvement is high in this case, since it reduces the
total power dissipation in socket 1 while allowing socket 2 to run its fan in idle
mode since its temperature becomes below the threshold. When CAS performs
hot threads spreading, the energy savings come from exploiting the nonlinearity
between cooling cost and temperature reduction. This can be seen in the case of
workload 5, where the savings is 80%. The overhead of migrating the thread and
running CAS is expected to be negligible since it is infrequent (order of seconds).
As a result, one can conclude that employing CAS algorithm is a highly effective
approach for reducing the cooling costs.

11.5.3.2 Overhead of CAS. In these experiments, the CAS algorithm runs
every 4 s to reschedule the workload as required. The total overhead of each run
including the migration overhead is less than 5 ms on average. Consequently,
the overall overhead is below 1%, which is negligible.

11.6 CONCLUSION

In this chapter, we discussed a novel approach to managing workload within
and across the machine with the objective of reducing overall energy consump-
tion. We first introduced vGreen, a system for energy efficient VM management
across a cluster of machines. The key idea behind vGreen is linking workload
characterization of VMs to VM scheduling and power management decisions to
achieve better performance, energy efficiency, and power balance in the system.
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Novel hierarchical metrics to capture VM characteristics as well as scheduling
and DVFS policies to achieve the earlier mentioned benefits were explained.
We then showed how “Cool and Save,” a cooling and thermal aware scheduling
algorithm within a server, can significantly reduce the energy costs and improve
the life and reliability of the fans. Thus, a combination of “vGreen” and “Cool
and Save” can work together to greatly reduce the operational costs in a data
center.
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CHAPTER 12

QOS-AWARE POWER MANAGEMENT
IN DATA CENTERS

JIAYU GONG and CHENG-ZHONG XU

12.1 INTRODUCTION

Power and cooling are emerging to be the key challenges in data-center
environments. An IDC report of 2007 showed that the cost on power and
cooling reached $25 billion in 2005 and was expected to continue to raise
to $40 billion in 2010. The cost of power and cooling has increased at four
times the growth rate for new server spending. In 2005, the cost of power
and cooling was around half of that on new server spending. It was estimated
to be 75% of the cost on new server spending in 2010. It is likely to even
surpass spending on new server hardware. On one hand, the increasing power
consumption leads to increased spending on cooling and power delivery
equipment. For example, a data center consisting of 30,000 ft2 and consuming
10 MW requires an accompanying cooling system that costs from $2 to $5
million [1] with annual running cost of $4–$8 million [2]; the nearly 60 A per
rack currently provisioned in data centers could become a bottleneck for high
density configuration [3]. On the other hand, the increased power indicates the
increased costs on electricity bill. In 2006, servers and data centers in United
States consumed around 61 billion kilowatt hours (kWh) at a cost of about $4.5
billion [4]. By 2011, US data centers will consume 100 billion kWh at a cost of
$7.4 billion per year [4].

High power consumption in a data center can lead to tremendous environment
pollutions. According to the US Environmental Protection Agency (EPA), each
1000 kWh of energy consumption generates 0.72 tons of CO2 emission. The CO2
emission due to US data centers in 2006 was estimated to be 44 million tons,
which is equivalent to the output of 8 million passenger vehicles [4]. In addition,
power consumption can impact reliability and availability of the system as well.
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At present, power consumption becomes a major area of concern for
researchers and leading IT vendors. Power management attracting research
interest since the 1990s in different context of mobile or embedded systems
emphasized on extending battery life. It has since expanded to include reducing
peak power because thermal constraints can limit further CPU performance
improvement. There are a number of previous energy-saving techniques
developed for mobile or embedded systems that can be adapted for power
management in data centers. However, data centers are quite different from the
mobile or embedded devices in the sense of power supplies, workloads, scale,
etc. A large body of recent work on power management in servers and data
centers has been proposed. In this chapter, we investigate the relevant work
in this space. We start this investigation from the definition and classification
criteria of this power management problem.

12.2 PROBLEM CLASSIFICATION

The power management techniques in servers and data centers are focusing on
different dimensions [5]. There are four main categorization criteria: (i) objective
and constraint, (ii) scope and time granularity, (iii) methodology, and (iv) power
management mechanism.

12.2.1 Objective and Constraint

In general, there are two types of objectives in power management. One focuses
on average power optimization by minimizing the power needed to achieve the
performance target. This can be translated to a tracking problem, which means
that the consumed power should track the resource demands of the applications.
The other category emphasizes on peak power in order to optimize the power
provisioning delivery and cooling in data centers. This is essentially a capping
problem that ensures that the power consumption of a system will not violate the
power budget. The power budget is usually required because of power supply
capacity or the heat extraction capacity of the air and cooling infrastructure. High
temperature due to over heat dissipation can compromise the reliability of the
affected components, leading to misbehaviors and failures. Thermal management
is thus necessary in data centers. It can be translated into a capping problem as
well. We categorize thermal management as a branch of power capping problem.

Controlling power will inevitably affect the performance in most systems.
When performance is added as a constraint, the power management problem can
be converted to a constrained optimization problem that minimizes performance
degradation and maximizes power saving.

12.2.2 Scope and Time Granularities

Power management can take place at different scopes, ranging from a component,
a platform, a cluster, to an entire data center. There are many solutions focusing
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on individual component, such as CPU, disk, and memory. Because the execution
of an application tends to involve more than one component, an optimal solution
at component level is not necessarily optimal for power management of system
level. Server virtualization, which proliferates in today’s data centers, adds one
more level of complexity in power management due to the resource sharing
among the virtual machines colocating in the same physical server [6, 7]. We
distinguish the work on power management in virtualized environments from
that for nonvirtualized environments. In data centers, a cluster of servers that
cooperate to process jobs requires to extend power management from server to
cluster level. The server cluster can be either homogeneous or heterogeneous.
Most of existing power management solutions at cluster level focuses on the
homogeneous clusters. And only a few are available for heterogeneous clusters
[8–10]. Ultimately, the power consumption of the entire data center, including
cooling infrastructures and power supplies, should be taken into account. The
power management schemes with respect to cooling infrastructures and power
supplies is beyond the focus in this chapter.

Power management can take place in different scopes. With regard to time,
it can be operated at a granularity from milliseconds to seconds, even to hours.
Software solutions to power management relying on application-level informa-
tion tend to operate at a relatively coarse granularity (seconds to hours). In
contrast, hardware and firmware solutions can operate at a finer granularity, from
milliseconds to seconds, since they have access to more low level hardware
information.

12.2.3 Methodology

We categorized the underlying power management methodologies into indirect
and direct methods.

An indirect method assumes an explicit model to capture the behaviors of a
target system. This method is model based. It relies on a system identification
procedure to build analytical models of the controlled system and determine the
control rule from the model. Such models can abstract the power consumption and
performance as analytic functions on a set of system and application parameters.
These models can even be used for prediction. On the basis of the models, both
optimization and control approaches can be applied for power management. The
most widely used indirect method is the control-theoretic approach.

Control theory provides a powerful mechanism to handle disturbances, uncer-
tainties, and unpredictable changes in systems using feedback [11]. There are
a number of key benefits of the control-theoretic approaches [11]. First, the
quantitative input–output model, such as first-order model, is extremely useful
in feedback control design. Second, the properties of controller, such as stabil-
ity and accuracy, based on this quantitative model can be validated formally
thus theoretical guarantee is provided. Third, control theory provides methods to
estimate dynamic models as well. For example, auto-regressive-moving-average
(ARMA) models can autocorrelate time series data to capture short-term, transient
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behaviors. Using control theory, we can develop multiple-input-multiple-output
(MIMO) models to capture the correlations between different inputs and outputs.
Finally, control theory provides a large variety of well-studied control algorithms
to use in practice.

There are also a number of challenges when applying control theory to power
management. Modeling is difficult because most interrelationships in the sys-
tem are nonlinear. Modeling itself requires system identification, which may not
cover all relevant correlations. Classical control theory only deals with contin-
uous inputs, while the input variables for power management can only take on
discrete values. Although adaptive control can deal with dynamic models, a lim-
itation still exists on how fast the workloads or system behaviors can change.
In addition, using dynamic models may not provide theoretic guarantee on the
properties of controllers.

In contrast, direct methods determine control rules without needs for an explicit
model of a system. One representative example is reinforcement learning (RL),
which learns the impact on system behaviors, such as performance and power
consumption, because of the action taken on the system, such as power state
change. Compared with control theory, RL is model free. It does not require an
explicit model of either the computing system being managed or the external
process that generates workload or traffic. RL is fundamentally a sequential deci-
sion theory that properly treats dynamics in the system. It can improve decision
making policy over time, similar to adaptive control [12]. However, there are
also a few challenges in RL. One is the trade-off between exploitation, which is
to select from what it already knows, and exploration, which is to make better
action selection from unknowns in the future. Performance of the initialization
phase that explores without any knowledge during live online training may be
unacceptably poor. The convergence is hard to prove and the convergence rate
is low. In addition, RL can suffer from poor scalability in large state spaces.

12.2.4 Power Management Mechanism

Essentially, power management is done by transitioning hardware components
back and forth between high- and low-power states or modes. The components
are fully active and operational in high power mode, while the functionality asso-
ciated with the low power modes depends on the particular component. Switching
between power modes may introduce non-negligible overhead in terms of both
energy and performance [13].

Multiple classes of execution states are supported in today’s server processors
for the purpose of power management. These states include the frequency and
voltage (P-state) in active mode, sleep states (C-states) in idle time, and throttle
state (T-state).

Dynamic voltage and frequency scaling (DVFS) is used to switch among
different P-states. DVFS relies on the fact that the dynamic power consumed
by microprocessor is a cubic function of its operating voltage. Thus, reduc-
ing the operating voltage/frequency provides substantial saving in power at the
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cost of slower execution [14]. Most of today’s processors have well-documented
interfaces for DVFS, such as AMD’s Cool‘n’Quiet technology [15] and Intel’s
Enhanced SpeedStep technology [16]. However, the number of voltage or fre-
quency stages is very limited. In multicore processors, it is not flexible to
manipulate P-states because of the dependencies among the cores residing in
the same die. T-states can further throttle down a CPU by inserting stop clock
signals and thus omitting duty cycles. The mechanism to enter different T-states
is to manipulate the processor clock modulation setting (throttling) by modulating
the duty cycle of the processor clock, which changes the effective frequency of
the processors [17].

Sleeping states (C-state) can be utilized when the CPU is idle. In ACPI stan-
dard, C0 is the active state and the sleep states are called C1, C2, . . . , Cn [13].
The deeper the C-state is the more power the processor can save. C-states can rel-
atively cause large switch overhead and might not be effective when the system
is not idle but in a low utilization state.

Current disks also enable power management by deactivation. In active mode,
the disk is being actively used and consumes more power. In idle mode, the
disk can still spin at its regular speed and accesses can be performed without
delay. In low power mode, relatively high transition overhead will be involved,
such as turning the spindle motor off (standby) and turning the disk interface off
(sleep) [18, 19]. Multispeed disk [20] can also be employed to manage power
consumption of disk subsystems.

Power dissipated by a memory subsystem largely depends on its capacity and
bus frequency. In practice, the power consumed by periodic refresh is very small.
Most of the power is consumed by row and column decoders, sense amplifiers,
and external bus drivers because of large arrays with very long and high capac-
itance internal bus lines. To reduce power consumption, one or more of these
subcomponents can be disabled by switching a device to one of several prede-
fined low power states when it is not being actively accessed. Memory controllers
and chipsets can switch the subcomponents to low power states [21] or switch a
memory rank’s power on and off [22]. The non-negligible performance penalty,
called resynchronization cost , is incurred to transition from current low power
state to an active state before access. In addition, multifrequency memory can
dynamically scale the working frequency and consequently the data rate [23].

At system-level, the entire computer can be managed as active, sleep (sus-
pended, hibernated), and power-off states with time and energy overhead for the
transitions between these states [13].

In virtualized environments, although P-states are still useful to regulate power
consumption when they are enabled, problems might occur when manipulating
P-states. Since multiple virtual machines may share a single core, tuning P-states
of a core could threaten desired performance isolation. T-states can further throt-
tle down a CPU by inserting stop clock signals and thus omitting duty cycles.
However, T-states are not always well documented; access to the T-states may
need modification of the clock modulation register. In contrast, C-states can be
utilized when the CPU is idle. However, it incurs relatively large switch overhead
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and might not be effective when the system is less utilized. Instead, in virtual-
ized environments, reallocating CPU resources, by limiting processing time, to
virtual machines can both regulate power consumption and meanwhile retain
performance isolation brought by virtualization. This functionality is provided
by a hypervisor scheduler such as Credit Scheduler [24] in Xen [25]. One more
important power management mechanism introduced by virtualization is virtual
machine migration. Virtual machine migration lead to power consumption migra-
tion. Consolidation enabled by migration can idle servers so that the idle servers
can enter low power states for more power saving.

These four dimensions, objective and constraint, scope and time granularity,
methodology, and power management mechanism, form a large combinatorial
space. We present the power management techniques in data centers along the
dimension of objective in the following sections. Details of the techniques along
other dimensions are elaborated as well.

12.3 ENERGY EFFICIENCY

In this section, we first introduce the metrics used to measure energy efficiency
in clusters and data centers. Then, we investigate the representative techniques to
improve energy efficiency or achieve the goal of energy-proportional computing.

12.3.1 Energy-Efficiency Metrics

There are a variety of metrics proposed and used in power management. In
Reference 26, the authors categorized them into three types: metrics for solo
equipment and devices, metrics for parallel systems, and metrics for cluster sys-
tems and data centers. The most common metric for power efficiency is the
formula EDn, where E is the energy consumed when running an application, D
is the execution time to complete the application, and n is a nonnegative integer
parameter to characterize the trade-off between E and D . The reciprocal variant
of EDn means performancen/power or flopsn/W, which can be used to measure
the power efficiency of parallel systems, such as supercomputers. Here, we only
focus on the metrics for cluster systems and data centers.

The performance of commercial servers and data centers is usually measured
by service output, which is a complex mix of computational processing, data stor-
age, and network communication [4]. In data centers, energy efficiency is broadly
defined as the amount of work processed (performance), mostly computational
work, divided by the total energy consumed in this process, denoted as Green
Grid’s data-center performance efficiency (DCPE) [27]. Standard performance
evaluation corporation (SPEC) set up an industry-standard power-performance
benchmark, SPECpower_ssj2008 [28]. However, there is no actual metric of
DCPE that has been defined yet [29]. Although it is feasible to run a standard
data center workload and measure the total power consumption, the level of
DCPE is still too high and DCPE cannot be used as a practical metric in power
management.
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Thus, it is suggested to factor DCPE into three components that can be inde-
pendently measured and optimized [29], as shown in the following equation:

Energy Efficiency = Computation

Total energy

=
(

1

PUE

)
×

(
1

SPUE

)
×

(
Computation

Total energy to electronic component

)
, (12.1)

where PUE and SPUE stand for power usage efficiency and server power usage
efficiency, respectively. We explain these two terms in the following text.

In data centers, the power consumption includes not only the power consumed
by the servers but also that by cooling, power supplying, and all other facilities.
Thus, Green Grid [27] proposed two metrics, power usage efficiency and its
reciprocal, data-center infrastructure efficiency (DCiE), to measure the energy
efficiency of data centers. PUE is defined as follows:

PUE = Total facility power

IT equipment power
, (12.2)

where total facility power is the total power provisioned to the whole data center,
which consists of IT equipment power and support system power. IT equipment
power is to support all IT equipment in a data center, including both the functional
equipment for computing, storage, and networking, and the supplemental equip-
ment such as monitors. PUE reflects the quality of the data center itself. PUE
ranges from 1.0 to ∞. A PUE value approaching 1.0 indicates 100% efficiency.
It was estimated that 85% of current data centers have a PUE value greater than
3.0 and only 5% have a PUE value of 2.0 [30]. This can be improved to 1.6
or better with proper design. For example, the data center at Lawrence Berkley
National Labs (LBNL) has a PUE value of 1.3 [27]. A survey [31] shows a better
result of an average PUE of around 2.0 for a set of 22 data center surveyed. A
recent update to Reference 31 shows that the PUE value is 1.83 in an average
and the minimum can be around 1.35 for 24 data center surveyed.

The cause of high PUE values is multiple sources of power overhead. Emer-
son Network Power [32] modeled energy consumption for a typical 5000-ft2

data center and analyzed how energy is used within facility. Cooling infrastruc-
ture is the largest fraction of power overhead, which is around 30–50%. The
AC–DC–AC conversion losses in UPS usually consumes 7–12% of power and
it may be even reach 18% [29]. Other facility elements, including PDU and light-
ing, further contribute to more power waste. On the basis of these observations,
the most possible opportunities for efficiency improvements rely on the use of
evaporative cooling towers, more efficient air movement, and the elimination of
unnecessary power conversion losses [29].
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Analogous to PUE, SPUE is defined to reflect the efficiency of a server as
follows:

SPUE = Total server input power

Useful power
, (12.3)

where useful power only includes the power consumed by the electronic com-
ponents directly involved in computation, such as CPU, disk, memory, and
motherboard. Total server input power include useful power and all power losses
in power supplies, fans, and voltage regulator modules (VRM). SPUE ratios of
1.6–1.8 is common in current servers.

In addition to PUE, there are two other metrics used for data centers [33].
One is IT productivity per embedded watt (IT-PEW). The other is data-center
energy efficiency and productivity (DC-EEP) index. Their definitions are shown
as follows:

IT-PEW = IT productivity

Embedded watt
, (12.4)

DC-EEP index = IT-PEW

PUE
= IT productivity

Total facility power
, (12.5)

where IT Productivity is the IT service output of the data center, which can be
regarded as performance, and embedded watt equals to IT equipment power in
Equation 12.2. IT-PEW indicated the power efficiency of IT equipment. DC-EEP
index indicates that of the whole data center.

12.3.2 Improving Energy Efficiency

It is desirable to improve PUE by careful design of data centers so that the energy
efficiency can be improved. These design issues may touch upon careful air flow
handling, use of free cooling, per server 12-V DC UPS [29]. In this chapter, our
focus is on power management techniques for IT equipment itself in data centers.
We do not emphasize on issues of data centers to improve PUE. This kind of
discussion can be found in References 27 and 29.

Power management for improving energy efficiency can be conducted for
different objectives: minimizing energy consumption with performance guarantee,
maximizing performance under power budget, and making trade-off between
power and performance.

12.3.2.1 Energy minimization with performance guarantee. To improve
energy efficiency of a data center, a popular design methodology is to minimize
the energy consumption for processing applications. From data-center adminis-
trators’ perspective, the primary concern is application performance, which can
be represented as quality of service (QoS), service-level agreement (SLA), etc.
It is required to meet performance target and meanwhile minimize energy con-
sumption.
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Early power management study focused on power-on/off scheme. Pinheiro
et al. [34] proposed a load concentration strategy to manage clusterwide power
consumption, in which the nodes in a cluster are turned on or off to ensure the
expected performance is just about acceptable according to the workload. They
presented a heuristic approach based on a simplified throughput estimation model.
When the number of nodes in a cluster is changed, it is needed to redistribute
the incoming requests for load balancing.

Recently, DVFS became widely employed because it could provide signifi-
cant energy saving while avoiding the comparatively large switching overhead
between power-on and power-off states. Sharma et al. [35] investigated adaptive
algorithms for DVS in QoS-enabled web servers to minimize energy consump-
tion subject to service delay constraints, which can be represented by different
deadlines for different client classes. The authors employed synthetic utilization
bounds as control set points for DVS. The control is done on the granularity
of sessions rather than individual requests. Further, for multitier server clusters,
for example, a three-tier web server, Horvath et al. [36] presented a coordinated
DVFS strategy. Each tier has a varying number of servers. All the servers in one
tier run the same application and a request goes through all tiers. The decisions
on frequency adjustments are made on each tier locally according to a simple
stage delay model.

Horvath et al. extended the work [36] to combine both DVFS and power-on/off
mechanism in a cluster with dynamic configuration [37]. They made performance
and power trade-off decisions using end-to-end delay as a simple SLA metric, and
they took into account the overheads for each transition between multiple sleep
modes and standby power levels. Their periodic energy optimization consists of
both active and inactive portions. The active portion has two phases: finding
the minimum number of servers so that the SLA can be met using the highest
frequency of the machines and scaling frequency. The inactive portion deals with
sleep energy optimization by making a trade-off between system wake-up time
overhead and sleep energy conservation.

It is observed that the portion of power due to processors is small in compar-
ison with total system power in some recent clusters. There are still a number
of work using power-on/off mechanism only due to the nontrivial power con-
sumption for active idle servers. Chen et al. [38] proposed a dynamic provisioning
technique to turn on a minimum number of servers required to satisfy application-
specific SLA with consideration of time taken for turning on/off a server and load
dispatching algorithms. The authors established a power model with respect to
CPU utilization and a performance model with respect to number of connec-
tions and login rate. In addition, load can be predicted using a sparse periodic
autoregression (SPAR) model. On the basis of these models, the provisioning
techniques are developed.

In virtualization environments, the resource allocation, such as CPU, memory,
and disk I/O, to each virtual machine should be taken into account as well in
order to achieve performance guarantee. Wang et al. [39] proposed a two-layer
control architecture to provide response time guarantees for virtualized enterprise
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servers. The primary control loop uses a MIMO control over CPU resources to
balance load among virtual machines so that they can achieve roughly the same
normalized response time. The secondary loop controls the normalized response
time of all virtual machines to a desired level by DVFS for power efficiency.

We note that the key issue of minimization clusterwide energy consumption
is modeling. The models may include power model, performance model, and
workload prediction model. On the basis of these models, control theory or
optimization approach can be applied. From the perspective of methodology,
indirect methods can be applied to this kind of problems.

There are few works done in an attempt to solve this problem using direct
methods such as RL. For example, Tan et al. [40] proposed an approach to
learn the power management policy to minimize power consumption for a given
performance constraint by RL in a model-free manner. We still believe that the
indirect methods should be more efficient for this kind of problems.

12.3.2.2 Performance maximization under power budget. In addition
to reducing energy consumption, another energy-efficient design objective is to
control power consumption to adapt to a given power budget so as to reduce the
power (then the performance) of the components when actual power consumption
of the server or cluster exceeds the budget [41]. As a result of controlling power
consumption, the performance should be maximized without using power more
than the budget.

For example, given a budget of power, Gandhi et al. [42] studied the problem
of how to allocate power among a server farm so that the performance can be
optimized. A queuing theoretic model is developed to predict the optimal power
allocation in a variety of scenarios. The optimal power allocation scheme depends
on many factors such as power-to-frequency relationship and the arrival rate of
jobs.

Most of the work of performance maximization under power budget have
overlap with the solutions to power capping. We present more techniques related
to this topic in Section 12.4.

12.3.2.3 Trade-off between power and performance. In data centers, it
is required to enable resource provisioning in accordance with flexible SLAs that
specify dynamic trade-off between performance and cost that can be translated as
power consumption. Indirect methods are mostly employed toward this purpose.

The work by Chase et al. [43] is one of the earliest focusing on energy-
conscious clusterwide resource management. It is based on an economic model
in which the amount of resource is a function of service quality. SLA is used
to make trade-off between service quality and energy consumption. On the basis
of this model, an appropriate amount of resource is allocated to each request.
The number of active servers is determined with the objective of maximizing
the resource efficiency and meanwhile minimizing unproductive cost. The idles
servers can enter to lower-power states for more energy saving.

Chen et al. [44] used SLA to direct trade-off between energy and performance
as well. Unlike Jeffrey et al. [43], they considered power-on/off and DVFS. They
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proposed three online strategies based on steady state queuing analysis, feedback
control theory, and a hybrid mechanism of both. Time and energy overhead of
turning on/off is considered as well.

Kephart et al. [45] proposed an approach to address trade-off between power
and performance, which designed an agent to deal with each aspect of system
behavior, such as power, performance, and availability.

The ultimate goal is to optimize multiple aspects of data-center behavior.
Such a multiagent approach employs a utility function defined as a joint of

power and performance for trade-off decision.
By conveying the utility function between power and performance manager,

a management action can be taken on according to the utility-optimizing power
management policy, which is done by power manager. Meanwhile, performance
manager will get feedback of relevant information. In addition, the authors
employed an RL technique to adaptively learn models of the dependence of
performance and power consumption on workload intensity and the power cap.

Kusic et al. [46] further considered power and performance trade-off in virtual-
ization environments. They presented an online resource provisioning framework
for combined power and performance management with consideration of switch-
ing costs incurred when provisioning virtual machines. The authors formulated
this management problem as one of sequential optimization under uncertainty.
They suggested a limited lookahead control approach to solve this optimization
problem. This work relies on the workload-specific performance models and the
power model is coarse grained without consideration of system usage.

The workload information may not always be available a priori in practice.
In light of this, Gong and Xu [47] suggested that the management of power and
performance should be adaptive. They developed a feedback-control-based coor-
dination system to provide guarantees on an SLA with respect to performance
and a power budget for virtualized servers. Two self-tuning prediction models
are proposed for power and performance. A utility function can be defined to
represent different levels of trade-off between power and performance. The opti-
mal solution to this utility function directs the resource allocation among virtual
machines. In contrast to Reference 46, the power model in this work is fine
grained considering the system usage.

On another track, virtual machine migration provides an alternative way to
save energy by consolidation, which reduces the number of hosts.

Verma et al. [48–50] investigated static/semistatic/dynamic job placement to
achieve different goals in power and performance, such as power minimization
and performance maximization, enabled by virtual machine migration.

There are a few works done using RL to achieve trade-off of power and
performance as well. Tesauro et al. [51] presented an RL approach to developing
effective control policies for real-time power management in application servers.
A trade-off between power and performance is conveyed by a utility function.
This utility function can be used as a reward signal in RL. A hybrid RL approach
is employed. Hybrid RL combines the advantage of both explicit model-based
methods and RL. Instead of training an RL module online, hybrid RL uses off-line
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training on data collected while an externally supplied initial policy is running.
Then, a standard RL approximator can be applied. This approach refers to the
fact that expert domain knowledge can be engineered into initial policy without
needing explicit engineering or interfacing into the RL module.

Tan et al. [40] proposed an online power management technique using RL
to minimize power consumption for a given performance constraint or achieve
different levels of trade-off between power and performance. The best power
management policy can be learned without knowing the workload information
a priori. This approach is model free since it learns the policy directly instead
of selecting from the existing set. However, the experiments were conducted for
hard disk only without deployment at server- or cluster level.

In general, a utility function can be defined to represent different levels of
trade-off between power and performance. Thus the problem can be formulated as
optimization of the defined function. The solution to this category of problems are
mostly model based, which means that the power and performance models, even
the workload prediction model, are needed to solve this optimization problem. If
this kind of models are not available, the indirect method, such as RL, can treat
this utility function as a reward to optimize. To improve the poor performance of
indirect methods during live online training, the initial policy is usually provided.

12.3.3 Energy-Proportional Computing

The concept of energy-proportional computing was first proposed by Barroso
and Holzle in Reference 52. It was based on the observation that the lowest
energy-efficiency region corresponds to the most common operating mode in
today’s servers. In Reference 52, the authors analyzed average CPU utilization
of a sample of 5000 Google servers over a period of 6 months. Although the
distribution of CPU utilization may vary across different clusters and workloads,
a common trend is that servers spend most of time within the 10–50% CPU
utilization range and relatively little aggregate time at high utilization levels.

Server power consumption increases with system utilization. In Reference 52,
the authors studied the power consumption and energy efficiency of a typical
energy-efficient server at different utilization levels. This study shows that even
an energy-efficient server can still consume almost half of its peak power when
it is idle. One more important result from this study is that the energy efficiency
drops quickly as utilization decreases. In the typical operating range, the energy
efficiency is much lower than that at peak performance. For example, the energy
efficiency in 20–30% utilization range is only half of that at peak usage [52].
Obviously, such a profile is not acceptable.

The mismatch between server workload profile and server energy-efficiency
behavior must be addressed largely at hardware level [52]. For example, Fan
et al. evaluated the potential benefit of proportional energy efficiency. They used
traced of activity levels of thousands of machines over 6 months to simulate
the energy saving gained from more energy-proportional servers. If the servers
only consume 10% power of the peak instead of 50%, the energy usage can be
decreased by 50% by increased energy proportionality alone.
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Software alone may not be efficient unless the servers are in inactive idle
modes or running at full speed. Using low power states with low activation
or deactivation and power-friendly task scheduling schemes can enhance
energy proportionality. Meisner et al. [53] designed the entire system to
transition rapidly between a high performance active state and a minimal-power
nap state in response to instantaneous load. By applying this technique,
the energy-proportional behavior can be achieved. The power-friendly task
scheduling enabled by consolidation can concentrate the loads to a few active
servers and let other idle servers enter low power state. But it can lead to
availability degradation caused by spikes in data centers. Further, in data
centers, servers are unlikely to be fully idle even during periods of lower
service demand. It is because the load will be distributed to a large number of
servers instead of concentrating in fewer servers. Another reason is the need
for resilient distributed storage. GFS [54], the Google File System, spreads data
across the entire cluster to improve availability, reliability, and resiliency. Thus,
all servers must be available even during low load periods. As a result, the
software approach might not be feasible.

The poor energy proportionality can be attributed to the poor energy propor-
tionality of each subsystem of a server. The CPU no long dominates platform
power at peak usage in modern servers. It only takes less than 60%. According to
Reference 29, server-class CPUs have a dynamic power range greater than 3.0×.
By comparison, the dynamic range of memory, disk, and networking equipment
is much lower: around 2.0 × for memory, 1.3 × for disk, and 1.2 × for net-
working switches. As a result, to improve energy proportionality at system level
should take into account all the components.

We note that energy-proportional behavior should target the entire data center,
including the power distribution and cooling infrastructure. The efficiency of
power supply units (PSUs) are often 90% efficient at their optimal point, usually
75% load, but it can drop off rapidly below 40% load, sometimes dropping below
50% efficiency [55]. This indicates lack of energy proportionality. Since PSUs are
designed to have much greater peak capacity than the corresponding computing
systems, they are apt to operate at a low load zone. Thus, poor efficiency occurs.

12.4 POWER CAPPING

Traditionally, servers are designed to provide for the worst-case scenario by over-
provisioning, which adds costs with only few benefits for the real environments.
In contrast, a “better-than-worst-case” design approach has been adopted by lim-
iting power consumption (power capping) [56]. Power determines overall facility
cost in data centers because much of the construction cost is directly related to
the maximum power draw supported. Energy usage determines the electricity bill.
Although today’s servers rarely reach the maximum power draws in practice, it
is still a must to control power to avoid overloading the facility’s power delivery
system. Enforcement of power limits can be physical, which means that over-
loading of electrical circuits will cause outage, or contractual, which considers
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the economic penalties for exceeding the negotiated load [57]. Power capping is
a promising technique to manage the power of a single server or the aggregate
power of a cluster of servers. It is effective for data centers, especially at the
cluster level, by monitoring the power usage of an actual data center as well [58].

There are a few works that have proposed control-theoretic approaches for
power capping at system level [41, 59]. Wang and Chen [60] extended the work
[41] from single server to multiple servers. They claimed that the management of
the servers in a cluster should be coordinated since they are coupled because of
the same running application or shared power supply. A MIMO control algorithm
is developed to control multiple servers simultaneously. In each control period,
the controller collects the power measurement and CPU utilization of each server,
computing a new CPU frequency for each server, and directs the servers to scale
CPU frequencies in a coordinated manner.

At cluster level, Femal et al. [58] noticed the uneven distribution of workload
among nodes. Thus, they allocated power nonuniformly according to demands.
A cluster-level manager collects information of all nodes and allocates power to
each node while satisfying total power budget. A node-level manager allocates
power to each device at a fine level of granularity.

Further, the long-term data from real-world servers have been studied in Refer-
ence 2. Two trends were summarized: (i) low resource utilization with infrequent
and short-lived bursts; (ii) the probability of synchronized spikes on all servers
at the same time is rather low. On the basis of these observations, Ranganathan
et al. [2] proposed a power budgeting approach across an ensemble of servers by
leveraging statistical properties of concurrent resource usage.

A enclosure-level controller chooses power budget for each blade, monitors
the blades, and sets servers to throttle or unthrottle. A local agent provides local
power monitoring and control per server. The benefit of this approach is to
provision the power budget of the ensemble to a value much lower than the sum
of the worst-case power for each of the individual servers.

In virtualized environments, the power capping problem is also addressed.
Multilayer control approach is widely used in this scenario. Nathuji et al. [61]
developed a two-layer feedback controller for power budgeting with QoS man-
agement in virtualized servers. One loop monitors power consumption and deter-
mines a platform-level CPU allocation to meet power budget. The other loop is
distributed across virtual machines to bid resource based on shadow price for
each virtual machine. In Reference 62, both power budget and performance are
guaranteed. The power consumption is constrained in a cluster-level power con-
trol loop by scaling CPU frequency. The performance guarantee is achieved by
allocating CPU resources among virtual machines in a performance control loop.

Thermal management techniques are similar to power capping in that they also
consist of heat sensing and heat throttling subsystems [26]. There are two ways
to monitor heat: one is to use direct thermal profiling; the other is to correlate
power and temperature so that the temperature can be inferred indirectly. Heat
can be throttled by either power management or strengthened cooling, which will
increase the cooling cost. Here, we focus on using power management techniques



CONCLUSION 353

for thermal management. Skadron et al. [63] employed a proportional-integral-
differential (PID) controller for dynamic thermal management. This technique
was proposed for a single server. At clusterwide, Heath et al. [64] proposed a
thermal management system. Three temperature thresholds are defined for differ-
ent actions: no action, load adjustment, and turning off. They further developed
an approach combining both energy saving and thermal management. This strat-
egy turns off as many servers as possible without degrading performance based
on usage prediction. Moore et al. [1] investigated the use of temperature-aware
workload placement as a manner to reducing cooling cost. The thermodynamics
is studied in data centers and this information is used to prioritize the servers
according to cooling costs. The scheduling algorithm is directed by the cooling
costs in order to minimize the total cooling cost. The computer room air condi-
tioning (CRAC) supply temperature is adjusted as well in addition to dynamic
turning on/off mechanism.

To address power capping problem, the power model is essential. Thus, only
indirect methods can be applied. Control-based approach using power models is
the mostly a common technique toward this goal.

12.5 CONCLUSION

Power conservation has become a key challenge in data centers. There are a large
variety of power management techniques developed. We summarized representa-
tive work in Table 12.1, with respect to the dimensions of objective, mechanism,
methodology, and scope.

Energy efficiency is a key cost driver for data centers. The average real-
world data centers and servers remains inefficient. They waste two-thirds or
more of their energy because of energy overhead of support systems, including
cooling, UPS, PDU, etc. Although the energy efficiency at data-center level can be
improved by applying best practices to data center and server designs, challenges
still exist as the inherent complex problems and unfavorable technology trends
are difficult to tackle. In this chapter, our focus is not the energy-efficiency
enhancement due to improvement on support system, but the power management
techniques on IT equipment itself.

Power management techniques for data centers can be divided into two groups:
energy-efficiency improvement and power capping. Energy usage determines the
electricity bill. Power determines overall facility cost in data centers because
much of the construction cost is directly related to the maximum power draw
supported. Energy efficiency can be improved by either reducing energy expen-
ditures while maintaining required performance target or increasing performance
gain while satisfying the power budget. In addition, performance and power
are often coordinated to achieve a flexible SLAs specifying dynamic trade-off.
Although today’s servers rarely reach the maximum power draws in practice, it
is still a must to control power to avoid overloading the facility’s power delivery
system. Power capping is a promising technique to manage the power of a single
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TABLE 12.1 Summary of Representative Power Management Techniques in Data
Centers

Technique
(Taken from
References) Objective Mechanism Methodology Scope

[34] Energy saving
acceptable
performance

Node on/off Heuristic
analytical
model

Clusters

[35] Energy
minimization
with delay
constraints

DVFS Analytical
model

Clusters

[36, 37] Energy
optimization
with
end-to-end
delay control

Node on/off,
DVFS,
multiple sleep
states

Optimization,
feedback
control,
analytical
model

Multitier
clusters

[39] Response time
guarantee with
power
efficiency

DVFS, CPU
resource

Two-layer
control,
MIMO

Virtualized
servers

[38] Power saving
SLA

Node on/off Analytical
model

Clusters data
centers

[43] Trade-off Low power,
states

Optimization,
analytical
model

Clusters

[44] Trade-off Node on/off,
DVFS

Feedback
control,
queuing,
hybrid

Clusters

[45] Trade-off Workload
intensity

Optimization Clusters

[46] Trade-off CPU resource LLC Virtualized
clusters

[47] Trade-off CPU resource Adaptive
control

Virtualized
servers

[51] Trade-off Workload
intensity

RL Clusters

[58] Power budget,
throughput

DVFS, device
on/off

Analytical
model

Clusters

[2] Power budget,
SLA

DVFS Heuristic Clusters

[60] Power budget DVFS MPC, MIMO Clusters
[61] Power budget CPU resource Two-layer

feedback
control

Virtualized
clusters
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TABLE 12.1 (Continued )

Technique
(Taken from
References) Objective Mechanism Methodology Scope

[62] Power budget,
performance

DVFS, CPU
resource

Two-layer
feedback
control

Virtualized
clusters

[1] Cooling cost,
temperature
threshold

Node on/off
CRAC
temperature

Analytic
model,
optimization

Data centers

[64] Temperature
threshold
utilization
threshold

Node on/off Analytical
model
heuristic

Data centers

[48–50] Performance,
power budget,
trade-off

Node on/off Analytical
model,
optimization

Virtualized
heteroge-
neous
clusters

[8] Power/throughput
ratio

Node on/off Analytical
model

Heterogeneous
clusters

[9] Energy saving,
QoS-aware

Node on/off,
DVFS

Analytical
model

Heterogeneous
clusters

[10] Power efficiency Workload
allocation

Analytic model Heterogeneous
clusters

server or the aggregate power of a cluster of servers. High temperature due to
over heat dissipation can compromise the reliability of the affected components,
leading to misbehaviors and failures. Thermal management is thus necessary in
data centers.

We note that most of the work in this field rely on analytical models. These
models may cover power model, performance model, and workload predic-
tion model. Guaranteeing correctness and effectiveness is a challenge. Control-
theoretic techniques provide a meaningful hint for the development in power
management in data centers. The limitations of model-based approaches include
the difficulty in modeling, adaptation to system dynamics, etc. In contrast, there
are a few other direct approaches that determine the control rules without explicit
system models. One representative example is RL. It suffers from poor perfor-
mance due to exploration without any knowledge during live online training. The
scalability might be poor in large state spaces.

The power management mechanisms are closely related to the scope where
they are applied. The systemwide power consumption was regulated by control
on CPU in previous work since CPU used to be the dominant power consump-
tion component and multiple low power states are enabled. When the power
consumption on other subsystems, such as memory and disk, keeps increasing,
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more power management mechanisms on these subsystems are required and pro-
vided. The entire server can be managed as active, sleep, and power-off states to
further save power in a cluster.

Virtualization has been widely employed in data centers and brings a number of
benefits, such as performance isolation, server consolidation, and system manage-
ability. It also shed a new light on power management mechanisms by enabling
virtual CPU resource allocation and virtual machine migration. Meanwhile, new
challenges introduced by virtualization have been imposed on traditional power
management techniques mainly because of resource sharing among cohosted vir-
tual machines. The work on power management in virtualization environments
focuses on resource allocation among virtual machines and virtual machine place-
ment across a cluster to meet power and performance requirements.

We also notice that today’s hardware cannot gracefully adapt its power usage to
load change. Low energy efficiency under light load leads to energy inefficiency
in data centers since most of time is spent at low load level in data centers.
Energy proportionality was proposed to be a promising approach to address this
problem. However, the challenge still remains in the hardware of subsystems.
Consolidation can create energy-proportional behavior in clusters built with non-
energy-proportional components by turning off idle servers. But this strategy
can lead to availability degradation due to spikes. In addition, high performance
and high availability system tends to spread the data and computation across
the entire cluster, thus all servers should be available even during low load
periods. Software alone may not reach energy proportionality. To achieve energy
proportionality, both hardware and software aspects should be considered.
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CHAPTER 13

ENERGY-EFFICIENT STORAGE
SYSTEMS FOR DATA CENTERS

SUDHANVA GURUMURTHI and ANAND SIVASUBRAMANIAM

13.1 INTRODUCTION

Data centers play a central role in today’s computing infrastructure. Ubiquitous
connectivity to the Internet (often through high speed broadband and 3G/4G
networks), the proliferation of network-enabled mobile devices such as smart-
phones, and the commoditization of processor and storage hardware have given
rise to a plethora of Internet-based data-centric applications. These range from
classic Internet applications, such as search engines, e-mail, and transaction pro-
cessing, to newer ones, such as social networking and on-line photo and video
sharing. In addition, enterprises are getting increasingly data centric, collecting
and storing voluminous data for information processing, driving enterprise-scale
optimizations through analytics, enhancing user/customer experience, and meet-
ing regulatory requirements. Furthermore, there is a push toward “cloud”-based
computing and storage, where user applications and data reside in data centers
and are accessed through a thin client via a network.

A key aspect shared by many of these applications is that they store and process
enormous amounts of data. An estimate of the scale and pace of this data growth
was provided in a 2008 report from the International Data Corporation (IDC)
[1]. According to the IDC, the amount of data generated worldwide by the year
2011 would have reached a staggering 1800 EB (18 × 1020 B). This report also
highlights that while most of this data is expected to be generated by individuals
(e.g., taking photos on their mobile phones), a substantial portion of the data
will be stored and managed centrally in data centers. In order to meet current
and future storage requirements, data centers accommodate these storage needs
typically on large arrays/farms of hard disk drives (HDDs).
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In addition to storage capacity, disk arrays/farms can enhance I/O throughput.
There already exists a significant latency gap between processors and disks, which
can create severe performance bottlenecks for I/O-intensive applications.

The shift from single-core to multicore processors widens the gap even further
[2]. Therefore, as more cores are added to the die, using such processors to run
I/O-intensive applications will require a large number of disks.

The compounding consequence of using a large number of HDDs for capacity
and performance exacerbates their power consumption [3–5]. In fact, storage
equipment constitutes nearly 10% of the total data center equipment, and as
much as 5% of the data center power goes into powering the storage [6]. This
chapter provides an overview of various techniques to reduce the energy usage
of storage systems in servers and data centers.

We first begin with a tutorial on disk drives, the sources of power con-
sumption within disks, and the abstraction of disk power in the form of power
states (Section 13.2). We then proceed to discuss various hardware and soft-
ware approaches to disk power reduction in Section 13.3. In Section 13.4, we
discuss the relevance of alternate technologies such as nonvolatile memories
(NVMs) and solid-state disks (SSDs) to reduce storage power and present ways
of incorporating them in the server storage stack. Section 13.5 concludes this
chapter.

13.2 DISK DRIVE OPERATION AND DISK POWER

This section provides an overview of the basic operation of a disk drive, the low
level disk operations that consume power, and how disk power consumption can
be abstracted at a higher level as a state machine consisting of power states. The
state machine abstraction of disk power serves as the basis to understand the
rationale behind various approaches to reducing disk power described in the next
section.

13.2.1 An Overview of Disk Drives

An HDD is an electromechanical magnetic storage device. The internal organiza-
tion of an HDD is shown in Figure 13.1. An HDD consists of a stack of circular
platters that are coated with magnetic material on both surfaces. The magnetic
medium is used to store the data bits. The recording area on each platter surface
is divided into circular or serpentine tracks and each track is further divided
into sectors . The platters are mounted on a central spindle that is rotated at a
constant speed (expressed in rotations per minute or RPM) by a DC brushless
motor called the spindle motor (SPM ). Reading and writing of data from and
to a platter is achieved via a read/write head that is mounted on a slider and
floats over the platter surface in an extremely thin cushion of air. Each slider is
connected to an arm and the arms are connected to a central assembly known as
the actuator . Each platter surface has one read/write head and arm. All the arms
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Figure 13.1 Internal structure of a hard disk drive. Reproduced with permission from [7].

move in unison over the surface of the platters, and this movement is effected
by a voice coil motor (VCM ). The disk arms of modern HDDs also contain
piezoelectric microactuators for fine-grained positioning of the heads. In addition
to these electromechanical components, modern HDDs also have a considerable
amount of electronics, such as disk controllers, interface controllers, SPM and
VCM drivers, a large DRAM-based disk cache, error correction code (ECC)
chips, and the data channel. A detailed description of HDD design is given in
References 8 and 9.

13.2.2 Sources of Disk Power Consumption

There are three sources of power consumption within an HDD: the SPM, the
VCM, and the electronics. The power consumed by the electronic components
can be reduced using low power design techniques such as voltage and frequency
scaling, clock gating, and power gating. Since this chapter specifically focuses on
storage-related issues and the power consumption and optimization of electronic
devices have come under extensive scrutiny in the past decade, we primarily
concentrate on the power consumption of the electromechanical components in
the HDD.

Of the two electromechanical components, the SPM consumes the most power.
The power consumed by the SPM can be expressed as [10]

SPM Power ∝ n · ω2.8
SPM · (2r)4.6, (13.1)

where n is the number of platters, ωSPM is the angular velocity of the SPM (i.e.,
the RPM of the disk), and r is the radius of the platters. Since the platters are
always rotating when the disk is powered, Equation 13.1 represents the “static”
power consumed by the disk, whether it is merely idling or actively performing
I/O operations. As the equation indicates, the size of the disk platter has the
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largest impact on SPM power, followed by the rotational speed of the spindle
and then the number of platters in the drive.

The VCM power, on the other hand, is more “dynamic.” The VCM consumes
power only when a disk seek needs to be performed and that too only during
specific phases of a seek operation, depending on the distance that the arms have
to travel across the platter surface.

A seek operation consists of four phases:

• An acceleration phase, during which the VCM consumes power.
• A coast phase of constant velocity, during which the VCM does not consume

power.
• A deceleration phase to stop the arms near the desired track. In order to

accomplish this, the VCM is again powered but the current is reversed to
generate the braking effect.

• A head settling phase.

Figure 13.2 illustrates these four phases for three different seek distances. The
physical behavior of disk seeks can be modeled using the Bang-Bang Triangular
model [11]. In this model, the acceleration and deceleration times are assumed
to be equal. Vmax is the maximum velocity of the arm, and Davg is the average
seek distance. The energy consumed by the VCM is the highest when performing
seeks of distance Davg, since the arms accelerate to the maximum velocity and
subsequently decelerate without coasting, as shown in Figure 13.2b, and the VCM
remains powered during this entire time period.

The energy consumed by the VCM for one seek operation is given by [12]

EVCM = n · JVCM · ω2
VCM

2
+ n · bVCM · ωVCM

3
, (13.2)

where JVCM is the inertia of the arm actuator, ωVCM is the maximum angular
velocity of the VCM, and bVCM is the friction coefficient of the arm actuator.
As we can see from Equation 13.2, slowing the speed of disk seeks and/or using
fewer platters in the spindle can reduce VCM power.

V

t

(a) Seek distance < Davg

Acceleration time Coast time Deceleration time Seek distance

Vmax V

t

(b) Seek distance = Davg

Vmax V

t

(c) Seek distance > Davg

Vmax

Figure 13.2 The phases of a seek operation for short, average, and long seek distances.
Reproduced with permission from [13].
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13.2.3 Disk Activity and Power Consumption

Although HDD power consumption is governed by low level issues such as the
physical design of the drive and the dynamic behavior of the electromechanical
components, as shown in Equations 13.1 and 13.2, most storage power reduction
techniques view disk power at a higher level of abstraction. This abstraction is
provided in the form of HDD power states , where each state corresponds to
a certain type of high level disk activity and has an associated power cost. In
addition, transitioning between the different states may also entail power costs and
extra latencies. Therefore, the power consumption of an HDD can be represented
as a state machine, where the nodes correspond to the power states and the
edges denote the state transitions. A typical HDD power state machine is shown
in Figure 13.3. This state machine corresponds to a Seagate Barracuda disk
drive [14].

When the disk is spinning and not servicing any requests, it is said to be in the
IDLE power state. Most of the power consumed in the idle state is due to the SPM.
When a request comes to the disk and a physical seek (i.e., movement of the arms)
is required, the VCM is activated and the disk transitions out of IDLE. Although
not treated as a power state per se in Figure 13.3, this time period during which
a seek is performed (SEEK) also consumes power. The transfer of bits between
the platters and the data buffers within the drive occurs when the disk is in the
ACTIVE state, during which the data channel is also active and hence consumes
power. Regardless of whether the disk is in IDLE, SEEK, or ACTIVE state, the
SPM always consumes power. In order to reduce SPM power, most disks have
a low power STANDBY state in which the SPM is turned off and the platters are
spun down till they are stationary. The disk cannot perform any I/O when in
the STANDBY state. Therefore, when an I/O request arrives at the disk when it is
in STANDBY, it needs to be spun back to service the request. Transitioning into

IDLE STANDBY

ACTIVE

SPINDOWN

15 s

SPINUP
15 s

13 W

9.3 W 0.8 W

SEEK
12.6 W

Figure 13.3 Power state machine of a 750-GB Seagate Barracuda 7200.10 disk drive.



366 ENERGY-EFFICIENT STORAGE SYSTEMS FOR DATA CENTERS

and out of STANDBY typically incurs significant latency overheads (as indicated
in Figure 13.3).

13.3 DISK AND STORAGE POWER REDUCTION TECHNIQUES

Since a substantial fraction of the power consumed by the disk is due to the
electromechanical parts, techniques to reduce disk power have targeted these
components. While there is a large body of research on reducing disk power,
the majority of the techniques can be classified based on a few basic principles.
Therefore, before we delve into the details of the specific techniques, we first
discuss these principles. The principles can be understood by examining the
power state machine in Figure 13.3.

Principle 1: Spin Down the Platters

As we can see in the figure, the difference in power consumption between the
IDLE, SEEK, and ACTIVE states is much smaller than the difference between them
and the STANDBY state. Therefore, turning off the spindle provides the largest
power reduction. However, since the transition latencies into and out of STANDBY
are large, one has to be careful about when to initiate a disk spin-down decision
in order to reduce the performance impact.

Principle 2: Reduce Seek Activity

Among the powered states of the HDD, we can see that there is a small but
nonnegligible difference in the power consumed when the disk is idle versus
when it is seeking. Therefore, although the VCM is a less effective knob for
managing disk power than the SPM, reducing overall seek activity, by reducing
the number of seeks, the seek distances, and/or the speed of individual seek
operations, can reduce disk power.

Principle 3: Provide for Energy Proportionality

When a disk is not in the STANDBY state, its power consumption varies between
IDLE and its peak power (which is either ACTIVE or SEEK, based on the disk
configuration). This variation in the power is based on the I/O load on the disk
(i.e., the number of I/O requests to the disk in a given interval of time). As we
have seen previously, the difference in power between these states is relatively
small compared to putting the disk in STANDBY. Therefore, there is a large gap
in the power consumption between when the disk is in STANDBY and when it is
powered, but the power variation based on the I/O load is small. This scenario
is qualitatively illustrated in Figure 13.4.

The x -axis of the graph indicates the I/O load; the y-axis, the resulting power
consumption. Let us first look at the solid line, which corresponds to a conven-
tional HDD. When the disk is in STANDBY, denoted as an I/O load value of zero in
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Figure 13.4 Energy proportionality of hard disk drives. The jagged line on the x -axis
shows the transition from a no I/O load condition when the HDD is in STANDBY to a
nonzero I/O load condition or when the disk is in IDLE.

the graph, the power consumption is negligible. However, if the disk is in IDLE
or has a very low but nonzero number of requests to service, the incremental
power needed is significantly higher. Beyond this point, the power consumed by
the disk varies over a small range based on the I/O load. (Although the exact
amount of power consumed during seek operations depends on the seek distance,
an increased I/O load typically leads to higher seek activity and the upward power
trend shown in the figure is a reasonable approximation of the disk power in such
a scenario.)

Ideally, an HDD should consume little to no power when there are no I/O
requests and it may consume its peak power when the I/O load is very high. How-
ever, in between these two extremes, the power consumption should vary in pro-
portion to the I/O load. This scenario is shown by the dashed line in Figure 13.4.
This desirable property is known as energy proportionality [15]. While processors
provide energy proportionality to some extent through dynamic voltage and fre-
quency scaling, HDDs exhibit poor energy proportionality. Although the eventual
goal of storage power management is to achieve energy efficiency and not just
energy proportionality (i.e., the amount of power consumed to perform a certain
task should be as low as possible), it is important to provide the latter in order to
achieve the former, especially in modern data centers, where long-duration idle
periods are less likely and therefore the disk power needs to be controlled based
on variations in the I/O load.
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Using these three principles, storage power techniques can be implemented
through software-only approaches, by redesigning the HDD hardware, or via a
combination of both. We now provide an overview of these techniques. Note that
while we discuss specific techniques, the following discussion is not meant to be
an exhaustive survey of all the proposed techniques in the literature.

13.3.1 Exploiting the STANDBY State

Disk power management by leveraging the STANDBY state involves two steps:
(i) detecting suitable idle periods and (ii) spinning down the platters when it
is predicted that this action would save energy. The first step usually involves
tracking the history of previous idle period characteristics and predicting the
duration of the next idle period based on this history. If this period is determined
to be sufficiently long to outweigh the spin-down and the subsequent spin-up
penalties, the disk is transitioned to STANDBY.

Several idleness predictors use a time threshold to estimate the duration of the
next idle period and to decide whether to spin down the disk. Li et al. [16] used
a fixed threshold for predicting idleness, wherein if the idle period lasts over 2
s, the disk is spun down. However, this work was performed in the context of a
laptop-style HDD, which can transition to and from STANDBY in 1–2 s. The spin-
down threshold could be varied adaptively over the execution of the program
[17, 18]. Golding et al. [19] carried out a detailed study on the effectiveness
of various idle-time predictors for disk power management. Gurumurthi et al.
[20] studied the idleness characteristics of storage systems of servers running
transaction processing workloads. Their study indicated that the bulk of the power
consumed by the storage system is when the disks are in the IDLE state, but the
idleness is in the form of a large number of very short periods that are difficult
to leverage to use the STANDBY power state without paying large performance
penalties. Carrera et al. [21] carried out a similar study for network servers and
arrived at similar conclusions.

Several techniques have been proposed to extend the idle periods of server
disks in order to increase opportunities to spin them down. Papathanasiou and
Scott [22] proposed to cluster disk operations through a combination of delaying
certain disk requests and using aggressive prefetching to increase disk burstiness.
Colarelli and Grunwald [23] proposed a system called massive array of idle disks
(MAID) for archival storage, where a small number of disks are used as a cache
for a larger number of disks that are put in STANDBY. Narayanan et al. [24]
proposed a technique similar to MAID called write offloading , where write data
bound to disks that are spun down are written to disks that are currently not in the
STANDBY state and then moved to their home disks later. Pinheiro and Bianchini
[25] proposed Popular Data Concentration (PDC), in which hot/popular data is
moved to a subset of the disks in the storage system while the remaining ones
are spun down. In a later work, Pinheiro et al. [26] proposed diverted access
techniques for storage systems that employ redundancy (which is typical of most
data center storage). Here, the original and redundant data are stored on separate
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disks and the data accesses are concentrated on the original disks, while the disks
that house the redundant data are kept in STANDBY for long intervals of time.

In addition to using a subset of the disks within the storage system as a
cache, which is the approach followed by MAID, PDC, and write offloading, disk
idleness can also be increased by introducing a caching layer above the disks.
Many server storage systems use large caches to improve performance, and there
are several papers in the literature on effectively leveraging disk and storage
caches to boost performance [27–29]. This performance boost can indirectly
help reduce power consumption by reducing disk seek activity and also extend
idle times to increase opportunities to spin down the platters. However, effective
leveraging of such storage caches to reduce power requires careful tuning of the
various aspects of the caching strategy, such as the replacement policy [30].

13.3.2 Reducing Seek Activity

Since disk seeks are one the biggest limiters of HDD performance, there has
been extensive research into reducing their occurrence. Prior research in this
area attempted to either reduce head movements to access data placed on disk or
optimize the data placement to reduce seek activity [31–35]. In addition to these
performance-centric approaches for reducing seek activity, there have been a few
attempts to develop seek reduction strategies to reduce disk power consumption.
Huang et al. [36] proposed a “Free Space File System” (FS2) that dynamically
creates copies of data blocks in unoccupied disk blocks to reduce mechanical
positioning delays and power consumption. Gurumurthi et al. [37] analyzed the
use of VCM control to manage the operating temperature of disk drives. Such
VCM control can be performed by leveraging the multiple seek speeds provided
in certain disks [38].

13.3.3 Achieving Energy Proportionality

Techniques to provide energy proportionality for storage fall into two categories:
(i) those that change the HDD hardware and (ii) software-only approaches that
provide energy proportionality at the storage system level.

13.3.3.1 Hardware approaches. As Equation 13.1 indicates, there are three
parameters that affect the power consumed by the spindle. While the number of
platters and the size of the platter are fixed when the disk is manufactured, the
RPM of the disk could potentially be varied at runtime. Given the nearly cubic
exponent on the RPM, varying the speed of the spindle can allow the disk power
consumption to vary along a large dynamic range and hence pave the way for a
power characteristic similar to that shown in Figure 13.4. However, changing the
rotational speed of the disk will affect rotational latency and transfer time and
hence will also have a performance impact. Gurumurthi et al. [39] proposed such
a dynamic RPM (DRPM) HDD, which has multiple RPM states and can perform
disk I/O in each of these states, and proposed a control policy for managing
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power and performance in server storage systems. Carrera et al. [21] proposed
a simpler two-speed variant of DRPM and highlighted its benefit for network
servers. There have been several studies on the use of DRPM disks to design
energy-efficient server storage systems [3, 30, 40, 41]. Disks with DRPM-like
features have been commercialized (e.g., Hitachi Deskstar 7K400 [42]). Although
this particular drive has only two RPM levels and it cannot perform I/O at the
lower RPM, it can still provide energy savings by transitioning to the lower RPM
state when in the IDLE state with significantly lower latency than the time it takes
for a conventional HDD go to STANDBY.

Sankar et al. [7] proposed an alternative approach to energy-proportional HDD
design called intradisk parallelism (IDP). IDP extends the architecture of con-
ventional HDDs to exploit parallelism in the I/O request stream. IDP provides
energy proportionality by exploiting the fact that the VCM consumes signifi-
cantly lower power than the SPM. One way to exploit this property is to design
an IDP drive to operate at a lower RPM, but provision multiple actuators to do
parallel I/O within the drive to enhance performance. A two-actuator IDP drive
is illustrated in Figure 13.5. The power-performance point at which the drive
operates depends on the number of actuators that are enabled at a given instant.

13.3.3.2 Software approaches. Guerra et al. [43] provided an overview of
the potential benefits of software-based approaches to energy proportionality in
server storage systems with commonly available storage hardware. They consid-
ered a few disk-level knobs, such as the STANDBY state and variable seek speeds,
as well as several techniques that control data placement and migration across
several disks, such as consolidation, write offloading, and MAID. In general,
software approaches to energy proportionality attempt to manage the ensemble
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Figure 13.5 A two-actuator IDP Drive. Reproduced with permission from [7].
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of storage devices to provide power-performance trade-offs over a wide dynamic
range.

Weddle et al. [44] proposed a storage array design called PARAID that provides
energy proportionality. PARAID uses a striping technique that allows data to be
accessed from fewer or more number of disks based on the I/O load. When the
load is light, several disks can be put into the STANDBY state and data can be
served off a small set of disks. However, when the load is heavy, all the disks
in the array may be necessary to provide acceptable performance. This “gear-
shifting” capability facilitates energy-proportional behavior at the storage system
level.

Verma et al. [45] proposed a storage consolidation layer called SRCMap that
provides energy proportionality. SRCMap creates partial replicas of data volumes
that contain the active data sets within these volumes on multiple disks and
chooses the number of disks that need to be powered up (i.e., number of replicas)
based on the I/O load at coarse time granularities. SRCMap also uses write
offloading [24] to keep disks in STANDBY as long as possible.

13.4 USING NONVOLATILE MEMORY AND SOLID-STATE DISKS

The preceding discussions have centered around reducing the power consumption
of HDD-based storage and addressing some of the limitations imposed by the
electromechanical nature of disk drives. While HDDs remain the bedrock of data
center storage, an effective way of reducing disk power is to use disks that use
some form of solid-state NVM as the storage medium. Such disks, which are
known as SSDs , currently use NAND Flash as the NVM to store data. In the
future, SSDs may employ emerging NVM technologies such as phase change
memory (PCM) or spin transfer torque RAM (STT-RAM).

Flash has traditionally been used in mobile devices and consumer electronic
products, and the commoditization of this memory technology in recent years has
made it cost-effective for complementing, supplementing, and/or even replacing
HDDs. However, this memory technology is not without its limitations. There
can be performance bottlenecks due to the erase-before-write requirement, the
inability to perform in-place updates, and the lifetime constraint of having an
upper bound on program and erase cycles. Some of these issues can be resolved
through the use of nonvolatile write logging [46] and nonvolatile merge caching
[47], using higher endurance, byte-addressable NVMs such as PCM or STT-
RAM, and more sophisticated flash translation layer (FTL) designs [48].

Most commercially available SSDs have standard storage interfaces (e.g.,
SATA) and can therefore be used as drop-in replacements for HDDs.

The power efficiency of SSDs for sequential and random writes is shown in
Figure 13.6. The three sets of bars on the left correspond to SSDs, whereas the
ones on the right correspond to enterprise-class HDDs. The performance data
was obtained from Polte et al. [49]. The average power was estimated from
datasheets and on-line reviews. As the graph indicates, SSDs provide significant
power efficiency benefits for both sequential and random I/O.
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Figure 13.6 Power efficiency of writes for various storage devices. Reproduced with
permission from [47].

Given the benefits of SSDs, it may appear tempting to replace all HDDs in
a data center with SSDs. However, there is still a cost differential between the
two storage media that make SSDs prohibitively expensive as the only storage
medium in a data center. While the cost per megabyte of HDD storage and
NAND Flash has narrowed considerably in recent years, Flash memory is still
more expensive than disk-based storage at present. Moreover, until the density of
Flash memory becomes competitive with magnetic media, replacing large storage
volumes with SSDs will not provide large power gains either [50]. Instead, the
more likely option would be to use Flash and SSDs as a caching tier (albeit a
large one) above the HDDs [50–52]. However, Flash memory can serve as a
storage building block for energy-efficient servers, such as FAWN [53].

13.5 CONCLUSIONS

The explosion in data volumes and our increasing reliance on data-centric appli-
cations continue to stress the storage needs of a data center. One well-exploited
approach to addressing the storage capacity and bandwidth needs is to exploit the
space and parallelism offered by large disk arrays/farms. The number and size of
these disk farms is likely to continue to grow in the future, making their power
consumption a serious concern in the goal toward building cost-effective green
data centers. The thermal stress of placing several drives within a small foot-
print is also likely to significantly increase operating costs. While semiconductor
components have received significant attention for power reduction over the past
couple of decades, the electromechanical components of disk drives pose several
key challenges. In this chapter, we have discussed these power-consuming com-
ponents and broad solution strategies that have been developed to optimize these
components at the hardware and software levels.

Newer NVM technologies offer the promise of significant performance and
power savings, but their price points are still significantly higher than those
of their disk counterparts. Consequently, in the foreseeable future, they can at
best serve as a layer in the storage stack rather than as a complete replacement
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for disk drives. In this layer, they can also play a key role in alleviating the
power consumption of the disk drives, providing a wider continuum of energy-
proportional operation in the storage hierarchy.
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CHAPTER 14

AUTONOMIC ENERGY/PERFORMANCE
OPTIMIZATIONS FOR MEMORY IN
SERVERS

BITHIKA KHARGHARIA and MAZIN YOUSIF

With the increased computing demand coupled with server sprawl in data centers,
power consumption is reaching unsustainable limits. With over a decade of laser
focus on server processor power management, both from industry and academia,
today’s processors have an energy consumption that is reasonably proportional
to their actual workload [1]. However, the same cannot be said about the other
components on the platform, such as main memory and disks. Consequently,
these components waste a large percentage of the server’s energy consumption
when they are idling during periods of inactivity. Given that these components
contribute to an increasing percentage of the data center server’s energy usage [1],
it becomes highly imperative that we not only capitalize on opportunities to save
energy during periods of inactivity but also proactively create opportunities to
extend these periods of inactivity and thereby save more energy. In this chapter,
we focus on the servers’ memory subsystem that has been reported to consume
a major part of the total data center power consumption [2].

This chapter is organized as follows. In Section 14.1, we chart the territory of
power management techniques that exist in the domain of computing systems.
In Section 14.2, we investigate different classes of dynamic power management
(DPM), which is the most popular software power management technique. In
Section 14.3, we discuss different applications of DPM techniques for energy
conservation in platform components (CPU, memory, etc.), in whole systems
(servers, laptops etc.), and in system-of-systems such as today’s data centers. In
Section 14.4, we discuss a DPM-based research technique for power and per-
formance management of system memory in data center server platforms, which
delivers as much as 89.7% improvement in performance per watt compared to the
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best performing traditional technique [3]. We then discuss the counterpart mem-
ory power and performance management techniques that exist in the industry
landscape today. We then conclude with Section 14.5.

14.1 INTRODUCTION

As shown in Figure 14.1, power management techniques can be broadly clas-
sified into software techniques and hardware techniques.1 Hardware techniques
deal with hardware design of power-efficient systems such as low leakage power
supplies, power-efficient components such as transistors and DRAMs, and so on.
Software techniques, on the other hand, deal with power management of hard-
ware components (processor, memory, hard disk, network card, display, etc.)
within a system, such as a server, laptop, PDA, or system-of-systems such as
e-commerce data centers, by transitioning the hardware components into one
of the several different low power states when they are idle for a long period
of time. This technique is also known as dynamic power management (DPM).
DPM is by far the most popular software power management technique and
can be grouped into three most discernable subclasses, as shown in Figure 14.1:
predictive techniques, heuristic techniques, and QoS and energy trade-offs. The
main distinction between these techniques is in the manner in which they deter-
mine when to trigger power state transitions for a hardware component from a
high power state to a low power state or vice versa. Heuristic techniques are
more ad hoc and static in their approach, whereas predictive techniques employ
simple to sophisticated predictive mechanisms to determine how long into the
future the hardware component is expected to stay idle and use that knowledge

Heuristic techniques

Dynamic power
management

Software
techniques

Power management
techniques

Hardware
techniques

QoS and
energy trade-offs

Predictive techniques

OptimizationControl theoretic

Figure 14.1 Classification of existing power management techniques.

1This is an excerpt from Reference 3.
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to determine when to reactivate the component into a high power state so that
it can service jobs again. Recently, researchers have started looking into QoS
and energy trade-offs as a DPM technique to determine how long a hardware
component can be put to “sleep” such that it does not hurt the performance of
the applications. This is a more aggressive power management technique that
takes advantage of the fact that “acceptable performance degradations” can be
used to let the hardware components sleep longer and hence save more power.
This is specifically true for power-hungry domains such as huge data centers that
have service-level agreement (SLA) contracts with their customers that clearly
define the “acceptable performance degradations” such as 97% response time,
0.05% MTBF (mean time between failures), and so on. This concept is depicted
in Figure 14.2, where the data center size (and hence the power consumed) is
always configured a little below than what is required by the incoming traffic,
such that at that configuration, the perceivable degradation in performance is still
acceptable.

As shown in Figure 14.1, QoS and energy trade-off DPM techniques can
be either control-theoretic or optimization-based techniques. Control-theoretic
techniques use feedback mechanisms to refine and adjust power management
decisions based on runtime system behavior. Optimization-based techniques, on
the other hand, employ rigorous mathematical modeling of the problem formu-
lated with a necessary and sufficient set of constraints. Solving these constraints
would yield theoretical maximum power savings while maintaining performance
constraints.

Software power management techniques can also be subdivided based on
where they reside within the system. This is shown in Figure 14.3. They could
be power-aware applications, power-aware compilers that perform optimizations
on the code for power efficiency, and power-aware operating systems (OSs)
that employ the DPM techniques mentioned earlier. Then we have the hardware
design optimizations for power efficiency at the very bottom. Note that, it is
possible for a high level technique to build on top of low level techniques or
share borders across techniques as shown by the dotted boxes in Figure 14.3. For

Incoming
traffic

Data center
size

Time

Figure 14.2 Amplitude lag between data center capacity and incoming traffic.
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Software techniques

Hardware techniques

Power-aware
operating systems 

Power-aware
compilers 

Power-aware
applications 

Figure 14.3 Location-based classification of software power management techniques.

example, power-aware compilers can perform code transformations for power
efficiency such that the targeted hardware component can sleep longer. At run-
time, the power-aware OS then triggers the transition of the hardware component
into the low power sleep state and reactivates it back when required.

Now let us look into some of the research in this field classified based on the
type of DPM technique that they employ.

14.2 CLASSIFICATIONS OF DYNAMIC POWER MANAGEMENT
TECHNIQUES

DPM techniques can be predictive, can be heuristic, or may involve QoS trade-
offs for energy savings.2

14.2.1 Heuristic and Predictive Techniques

Heuristic approaches [5–8] employ simple heuristics to transition a system com-
ponent to a low power mode after it is observed to have remained idle for a
predetermined period of time. Reference 9 proposes various threshold predictors
to determine the maximum amount of time that a memory module must remain
idle before it is transitioned back to a low power state. Reference 10 investigates
memory controller (MC) policies in cache-based systems and concluded that the
simple policy of immediately transitioning the DRAM chip to a lower power
state when it becomes idle is superior compared to more sophisticated policies
that try to predict the idle time of the DRAM chip.

Researchers have also looked at cooperative hardware–software schemes for
DPM. Reference 2 studies page allocation techniques to cluster an application’s

2This is an excerpt from Reference 4.
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pages onto a minimum number of memory modules, thereby increasing the idle-
ness for the other modules. Reference 11 uses such page allocation schemes
combined with the page miss ratio curve metric to determine the optimal mem-
ory size that would give the maximum possible hit ratio for the application.
Reference 12 proposes a scheduler-based policy that uses prior knowledge of
memory modules used by a specific process to allocate the same memory mod-
ules the next time the process is scheduled. Reference 13 builds on this idea to
develop power-aware virtual memory (PAVM), where the OS and the MC com-
municate to enhance memory energy savings through leveraging NUMA memory
infrastructure to reduce energy consumption on a per-process basis. Reference 14
uses a similar idea to actively reshape memory traffic to aggregate idle periods.
Reference 15 demonstrates how adaptive history-based memory schedulers can
be naturally extended to manage DRAM power and energy.

14.2.2 QoS and Energy Trade-Offs

While heuristic and predictive DPM techniques take into consideration the per-
formance attribute in their energy-saving schemes, research that has focused on
QoS trade-offs for energy savings has specifically studied the impact of power
savings on performance. For example, Reference 15 demonstrates that for aggres-
sive DRAM power management, a throttling approach can be used that arbitrarily
reduces DRAM activity by delaying the issuance of memory commands. Clearly,
this may have an impact on memory performance, but it has to take that perfor-
mance hit while trying to stay within its power budget. The philosophy here is
to maximize the performance for a given power budget, the constraint being the
power budget. The same problem can also be expressed in the reverse way where
the constraint is the performance. In this case, DPM techniques are used to reduce
power as aggressively as possible as long as it does not hurt the performance.

Most techniques that manage both power and performance often bind the
power and performance problems in more mathematically rigorous formula-
tions providing statistical guarantees of performance for their power management
schemes. They investigate and generate power-saving opportunities that can be
obtained at the cost of QoS trade-offs within acceptable limits.

This has given rise to the application of proactive mathematically rigorous opti-
mization techniques as well as reactive control-theoretic techniques being applied
for power management while maintaining performance. For example, References
16–19 have developed a myriad of stochastic optimization techniques for portable
devices. In the server domain, Reference 20 presents three on-line approaches
for server provisioning and dynamic voltage scaling (DVS) control for multiple
applications, namely, a predictive stochastic queuing technique, reactive feed-
back control technique, and another hybrid technique where they use predictive
information for server provisioning and feedback control for DVS. Reference 21
studies the impact of reducing power consumption of large server installations
subject to QoS constraints. They develop algorithms for DVS in QoS-enabled web
servers to minimize energy consumption subject to service delay constraints. They
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use a utilization bound for schedulability of aperiodic tasks [22] to maintain the
timeliness of processed jobs while conserving power. Reference 23 investigates
autonomic power control policies for Internet servers and data centers. They use
both the system load and thermal status to vary the utilized processing resources
to achieve acceptable delay and power performance. They use dynamic program-
ing to solve their optimization problem. Reference 24 presents a technique that
controls the peak power consumption of a high density server by implementing
a feedback controller that performs precise system-level power measurements to
periodically select the highest performance state while keeping the system within
a fixed power constraint. Reference 25 proposes a performance-directed dynamic
(PD) algorithm that dynamically adjusts the thresholds for transitioning devices
to low power states, based on available slack and recent workload characteristics.
A departure to this approach is provided by the work of Diniz et al. [26], which
shows that limiting power is as effective an energy conservation approach as
techniques explicitly designed for performance-aware energy conservation.

These DPM techniques have been applied for energy conservation of a wide
range of platforms, devices, and system components. Let us now look at some
of these use cases.

14.3 APPLICATIONS OF DYNAMIC POWER MANAGEMENT (DPM)

Most software power management techniques exploit the overprovisioning of
components, devices, or platforms for power savings. This technique, also known
as dynamic power management (DPM), is extensively used for reducing power
dissipation in systems by slowing or shutting down components when they are
idle or underutilized. DPM techniques can be used for power management of
a single system component such as the processor, system memory, or the NIC
(network interface card). They can also be used for joint power management of
multiple system components or power management of the whole system.

14.3.1 Power Management of System Components in Isolation

Most DPM techniques utilize power management features supported by the
hardware. For example, frequency scaling, clock throttling, and DVS are three
processor power management techniques [27] extensively utilized by DPM. Ref-
erence 28, for example, extends the OS’s power manager by an adaptive power
manager that uses the processor’s DVS capabilities to reduce or increase the
CPU frequency, thereby minimizing the overall energy consumption. Reference
29 combines the DVS technique at the processor level together with a server
turn on/turn off technique at the cluster level to achieve high power savings
while maintaining the response time for server clusters. Reference 30 introduces
a scheme to concentrate the workload on a limited number of servers in a clus-
ter such that the rest of the servers can remain switched off for a longer time.
Reference 21 proposes power-aware QoS management in web servers where the
algorithms reduce processor voltage and frequency as much as possible but not
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enough to cause per-class response time constraint violations. Other techniques
use a utilization bound for schedulability of aperiodic tasks [22, 31] to maintain
the timeliness of processed jobs while conserving power. Similarly, for dynamic
memory power management, Reference 2 uses multiple power modes of Rambus
DRAM (RDRAM) memory and dynamically turns off memory chips with power-
aware page allocation in OS. Reference 15 uses intelligent memory scheduling
using the MC to improve DRAM energy efficiency and manage DRAM power by
exploiting low power modes of modern DRAMs. Hard disk DPM also requires
hard disks supporting multiple disk rotation speeds, a technique that did not
remain hugely popular mainly because of performance issues. For example, disk
time-out determines how long a hard disk must be idle before it spins down [32].
Reference 33 uses periods of inactivity between disk accesses to determine if the
disk can be transitioned to a low power state.

14.3.2 Joint Power Management of System Components

Researchers have also explored joint power management techniques that involve
techniques to jointly maintain power consumption of multiple system components
such as the memory and the hard disk. The synergy between system components
(processor and memory) has been clearly presented in the work of Douglis et al.
[33]. Reference 34 has used the relationship between memory and disk (smaller
the memory size, the higher the page misses and the higher the disk accesses) to
achieve power savings by proactively changing disk I/O by expanding or con-
tracting the size of the memory depending on the workload. They minimize power
consumption by computing the optimal values for disk time-out and memory size
dynamically at runtime under varying workloads. However, they do not consider
the impact of their scheme on performance. Reference 35 addresses base power
consumption for web servers using a power-shifting technique that dynamically
distributes power among components using workload-sensitive policies. They use
the processor and memory power-budget redistribution to achieve that objective.

14.3.3 Holistic System-Level Power Management

Most techniques for DPM justify the need to consider components in isolation.
For example, Reference 36 makes the case that processor is the major power-
consuming component in servers. Following this thread, Reference 37 presents
a request-batching scheme where jobs are forwarded to the processor in a batch
after certain time such that the response time constraint is met for all classes of
customers. This lets the processor be in a lower power state for a longer period
of time and process the jobs in the batch at a later time. Reference 38, on the
other hand, states that data center storage devices can consume over 25% power.
Instructions invoking memory operations have a relatively high power cost, both
within the processor and in the memory system [39]. This has spawned research
in memory power management. However, there has not been much effort to
exploit these existing techniques for different classes of resources (processor,
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memory, cache, disk, network card, etc.) in a unified framework from a whole sys-
tem/platform perspective. While the closest to combining device power models to
build a whole system has been presented in References 1 and 40 aims at building
a general framework for autonomic power and performance management, where
they bring together and exploit existing device power management techniques
from a whole system’s perspective. They extend it for power and performance
management of a high performance server platform within a data center. They
introduce a hierarchical framework for power management that starts at individ-
ual devices within a server to server clusters and cluster of clusters, enabling
power management at every level of the hierarchy of a data center with the solu-
tions being more and more refined as we travel down the hierarchy from cluster
of heterogeneous servers to independent devices. The closest to this approach is
the work done by Rong and Pedram [41], which solves the problem of hierar-
chical power management for an energy-managed computer (EMC) system with
self-power-managed components while exploiting application-level scheduling.

14.4 AUTONOMIC POWER AND PERFORMANCE OPTIMIZATION
OF MEMORY SUBSYSTEMS IN SERVER PLATFORMS

In this section, we first discuss a DPM-based research technique [1] for autonomic
power and performance management of memory subsystems in server platforms.
We then discuss some of the counterpart technique(s) that exist in industry today.

14.4.1 Adaptive Memory Interleaving Technique for Power and
Performance Management

This technique (depicted in shaded boxes in Figure 14.1) employs optimization-
based power and performance (QoS) management of server memory. They formu-
late the power and performance management problem as an optimization problem,
where they constantly maintain the hardware components in a power state such
that they consume minimal possible power while maintaining the performance
within the acceptable threshold bounds. This technique, as depicted by the shaded
box in Figure 14.1, resides under the cover of the OS very close to the hardware
while sharing some borders with it. They also employ DPM for power man-
agement from a whole system perspective by power managing multiple system
components in a cooperative manner.

This technique leverages the wide range of variations observed in the data
center server workloads’ dynamic memory requirements. It uses multipower state
memory technologies such as RDRAM [2] and fully buffered dual in-line memory
module (FBDIMM) [42] to save energy and maintain performance by allocating
just the required amount of memory to applications at runtime and transitioning
any additional memory capacity to low power states.

However, given that server platforms in data center are often configured
at peak performance, the memory subsystem is most often configured at the
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maximum degree of interleaving. This introduces a challenge for the mem-
ory power management problem. Owing to symmetrical distribution of memory
accesses across all memory modules, interleaving does not offer much oppor-
tunity for energy saving and thus provides less opportunity for idleness of the
memory modules. For example, an experimental study to measure the idleness
of memory modules when executing the SPECjbb2005 [43] benchmark on a
server platform (two Dual-Core Intel™ Xeon processors, 5000P Memory Con-
troller Hub, 8-GB DDR2 FBDIMM memory) with fully interleaved (16-way)
memory showed that memory modules were idle for less than 5% of the total
application runtime. Applying existing power management techniques [10, 11]
to this memory subsystem would yield only approximately 4.5% total saving.
However, conducting the same experiment with a smaller degree of interleaving
(12-way) created an imbalance in idleness, making some modules more idle and
others busier. By power managing the idle memory modules, they gained an
energy saving of 25% (14.7 kJ) with negligible impact on SPECjbb2005 perfor-
mance. This demonstrates an opportunity to maximize the memory performance
per watt by dynamically scaling down the degree of interleaving (16-way to
12-way) to adapt to the application’s memory requirements at runtime. With this
objective in mind, they design an autonomic memory subsystem that addresses
the following research challenges related to memory power and performance
management.

1. How to exploit an application’s memory reference behavior to guide the
choice of an appropriate degree of interleaving for the memory subsys-
tem? This depends on how physical allocation of application’s working set
pages on memory modules impacts the power consumed by the memory
subsystem and the application-level performance.

2. How to dynamically predict the impact of a specific degree of interleaving
on the performance-per-watt metric for the platform?

3. How to design smart interleaving techniques that effectively exploit the
platform’s memory hierarchy architecture to maximize its performance per
watt?

4. What enabling techniques and hardware design changes are required to
implement this paradigm shift from static (boot time) interleaving to
dynamically reconfigurable memory interleaving?

5. How to design a dynamic interleaving technique that leverages existing
fine-grained power management techniques to maximize performance per
watt for platforms with interleaved memory?

6. What are the cost, runtime complexity, and reconfiguration overhead asso-
ciated with this technique, and how they can be reduced to attain a greater
return-on-investment?

7. What is the ideal mean time between reconfigurations(MTBRs) for the
technique such that it maintains adaptation to incoming workload without
significantly increasing the overhead of reconfiguration?
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They apply the autonomic computing paradigm to architect an intelligent MC
that continuously reconfigures and scales the memory subsystem for maintaining
power and performance. The objective of the MC is to always maintain the size
and configuration of the memory subsystem in a state where power consumed
is minimal and the system still meets the threshold values for the performance
parameters. Scaling the memory size to a minimum would give huge savings in
power but may impact performance by increasing the miss ratio as well as the
delay experienced by a single memory access time. Hence, the task of the MC
is to allocate as much memory as is required by the application, and the unused
amount of memory can then be transitioned to one of the low power states as
supported by an FBDIMM (Fig. 14.2). We can estimate the application’s memory
requirement at runtime by measuring the application’s current heap usage and
the total number of memory accesses going to each rank. On the basis of the
monitored values, at the end of each time epoch, the MC maintains the system
at the maximum performance per watt by determining (i) what is the minimum
number of memory ranks to be maintained in an active state? and (ii) which
ranks should be selected to be active?

We formulate the MC decision-making process as an optimization problem
where we index time into equidistant epochs of value tobs. The MC searches
for an optimal solution at the beginning of each epoch. Let us consider a state
transition from state Sj to state Sk , where Sj has nj ranks (Rank0 to Rank j ) and
Sk has nk ranks (Rank0 to Rank k), as shown in Figure 14.3. The data migration
process during this state transition involves a rank pair, one from the source pool
of ranks in the state Sj and the other from the destination pool of ranks in the
state Sk . In what follows, we discuss how to determine the target state Sk among
all possible states . Data is then dynamically migrated from a source rank to a
destination rank.

14.4.1.1 Formulating the optimization problem. At the beginning of time
epoch i, the MC searches for the state where the sum of the transition energy
consumed (c∗

jkttransjk
) and the energy consumed in the target state (p∗n∗

ktobs) by
the memory subsystem is the smallest, given that in the target state Sk , the system
can meet all the constraints. The objective function is given by the following.

Minimize energy for interval i

ei =
N∑

k=0

(c∗
jkttransjk

+ p∗n∗
ktobs)

∗xjk,

such that

n∗
kSize / Rank > = N∗

opt pageSize

Max(∨ch:A,CchBWch) <= threshold_chBW

Min(∨nn/2
rank:0arrTimerank) > = threshold_arrTimerank
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n∑

k=0

xjk = 1

∨ xjk = 0|1,

where
N = maximum ranks in the system;
nk = total ranks in state Sk;
p = power consumed per rank;

tobs = unit of time epoch;
cjk = power consumed in transition;

ttransjk
= time taken to transition;

xjk = decision variable for transition from Sj to Sk;
chBWch, arrTimeRank = channel BW and interarrival time in state Sk;

threshold_chBW, threshold_arrTimeRank = threshold channel BW and

request interarrival time;

pageSize = size of a single page (4 kB for our system);

Nopt optimal number of pages for maximum hit ratio [11];

Size/Rank 512 MB for our system.

The first constraint states that the target state should have enough memory to
hold all the Nopt pages . The second constraint states that in the target state, the
maximum of the percent channel BW on a channel should be smaller than the
threshold value set for the channel BW. Ideally, it can be the theoretical upper
limit. The third constraint states that in the target state, the minimum request
interarrival among all the active ranks should be larger than the threshold value
set for the rank where the threshold value is a percentage of the access time.
This is to be experimentally determined. The fourth constraint states that the
optimization problem leads to one and only one solution. The decision variable
corresponding to that is 1, the rest are 0. The fifth constraint states that the
decision variable is a 0–1 integer.

Evaluation of Migration Time ttransjk
and Energy cjk. This technique assumes

a simplistic migration mechanism that is performed under the cover of the OS
and requires minimal changes in hardware itself. During migration, the MC stalls
all memory access requests, and consequently, the time for data migration is a
sum of the data migration time (read time, transfer time, and write time) and the
time needed to make power transition. Given that, fraction of a page per rank is
given by

ppr = [nk/2]

[pageSize/CLSize]
.
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The migration time per rank (MTR) pair (Rank j , Rank k) is given by

MTR = ppr∗Nopt
∗pgSize

CLSizeRankj
/2∗tRead∗1024

+ ppr∗Nopt
∗pgSize

CLSizeRankk
/2∗tWrite∗1024

+ ppr∗Nopt
∗pgSize

MaxThPutChRankj

+ tactjk
.

Power state transition overhead is the time taken to transition from one power
state to another. Figure 14.4 gives the power state transition overhead per DIMM.
The energy consumed in migration is the sum of the power consumed by two
sources,

cjk = nk
∗ptranst

∗
transjk

pMC,

where ptrans is the transition power consumed by a DIMM rank and pMC is the
power consumed in buffers during data migration (Fig. 14.5).
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Figure 14.4 FBDIMM power states. Reproduced with permission from [42].
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14.4.1.2 Memory appflow. At runtime, the MC monitors a set of appli-
cation and memory features to compute the application memory requirements
(N∗

optpageSize), the energy consumed by the memory subsystem, and the appli-
cation end-to-end delay (depends on channel bandwidth utilization chBW and
request arrival rate arrTime). As shown in Figure 14.6, at runtime, they constitute
the memory subsystem operating point in a three-dimensional space. The operat-
ing point changes in response to the incoming workload. The MC triggers a state
transition whenever the operating point goes outside the safe operating zone. This
is depicted by the decision, dZ , in Figure 14.6. The decision is computed using
the optimization approach discussed earlier. Note that the safe operating zone
is defined by threshold bounds along the delay (x) axis, energy (z) axis, and
along the application memory requirements (y) axis. For this work, the thresh-
old delay bounds were predetermined and kept set at that value, the threshold
energy bounds is defined by [emin = 0, emax = N∗pa], where emax represents the
maximum power that is consumed by the memory subsystem when it is config-
ured at its maximum capacity. However, the third threshold bound defined by
the application memory requirements varies as the application behavior changes.

As long as the MC maintains the memory subsystem in the safe operating zone,
it ensures that the subsystem consumes minimal power and maintains application
performance at all workload activity levels.

14.4.2 Industry Techniques

To reduce the power consumption of server memory subsystems, industry solu-
tions have primarily targeted hardware techniques such as

End-to-end delay, d

Energy, (e = nr*sr)

Transient
behavior
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Safe operating zone
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Application Memory
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Figure 14.6 Trajectory traced by the memory subsystem operating point.
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1. memory design enhancements to consume less active and idle power;
2. memory power management hooks such as multiple active and low power

operating states for use by software for more granular and aggressive power
management.

Some of these techniques are listed below.

14.4.2.1 Enhancements in memory hardware design.

1. “Samsung’s 1.35V, 2 Gb DDR3 is an ultra-low-power memory technology,
with more than a 76% power savings over traditional DDR2 at 2 times the
bandwidth” [44].

2. “Micron’s 1-Gb DDR3 modules operate at 1.35-volts giving 21 percent less
power in comparison to standard 1.5-volt, 1-Gb DDR3 memory modules.
In addition, its 2 Gb DDR2 modules operate at 1.5-volts giving 58 percent
power reduction over standard 1 Gb-based 8 Gb 1.8-volt DDR2 memory
modules” [45].

14.4.2.2 Adding more operating states.

1. “Intel is experimenting with three Memory power states - Memory Self
Refresh, Memory Standby, and Memory Offline, all of which use ACPI
(advanced configuration and power interface) to set a server’s memory into
one of the three states depending upon its needs. Memory in self-refresh
mode requires about half the amount of power of memory in the standard
“active idle” mode. Memory in the standby mode would use only about
a third of active-idle power, and memory that’s placed offline requires no
power whatsoever” [4, 46, 47].

14.4.2.3 Faster transition to and from low power states.

1. Intel Nehalem EX claims five times faster transitions to and from low power
states [4, 47]. This makes power management techniques very attractive
because it reduces the risk of any impact on performance owing to sleeping
memory ranks taking too long to wake up and start processing traffic as
they arrive.

14.4.2.4 Memory consolidation.

1. VMware is working with Intel to experiment with another technology that
can swap memory pages around such that most frequently used memory
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pages by VMs or hypervisors could be consolidated onto some riser cards,
allowing other riser cards to be taken off-line entirely [46]. The philoso-
phy of this technique is close to that discussed in Section 14.4.1 with the
major differences being this technique is closer to the hardware working
with memory accesses directly rather than application pages and solves an
optimization problem to determine the theoretical maximum energy savings
with FBDIMM-based server memory subsystems.

It can be argued that the design of more power-efficient memory subsystems
would contribute significantly to reduce server energy consumption by automat-
ically transitioning themselves to low power operating modes whenever they
are idle. However, the parallelization of memory accesses would provide little
opportunity for relative idleness between memory ranks as discussed in Section
14.4.1. Hence, both software and hardware techniques would have to work
hand in glove at best in order to make significant savings without sacrificing
performance.

14.5 CONCLUSION

In summary, this chapter discusses power and performance management tech-
niques for memory subsystems in data center servers. We have looked at a
technique that adaptively changes the degree of interleaving in order to con-
solidate memory accesses on a smaller subset of memory ranks such that the
other ranks are idle and can be transitioned to low power states. This technique
is demonstrated to have given a performance per watt (performance per watt
of power consumed by the platform) improvement of 89.7% compared to the
best performing traditional technique. In addition, we also looked at equivalent
techniques prevalent in industry today and identified how software and hardware
techniques would complement each other to give the maximum energy savings
and make the memory subsystem energy consumption as proportional to its level
of activity as we see it in today’s energy-aware processors [1].
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CHAPTER 15

ROD: A PRACTICAL APPROACH
TO IMPROVING RELIABILITY OF
ENERGY-EFFICIENT PARALLEL DISK
SYSTEMS

SHU YIN, XIAOJUN RUAN, ADAM MANZANARES, and XIAO QIN

15.1 INTRODUCTION

Parallel disk systems, providing high performance data-processing capacity, are
of great value to large-scale parallel computers [1]. A parallel disk system com-
prising of an array of independent disks can be built from low cost commodity
hardware components. In the past few decades, parallel disk systems have become
increasingly popular for data-intensive applications running on massively parallel
computing platforms [2].

Existing energy conservation techniques can yield significant energy sav-
ings in disks. While several energy conservation schemes such as cache-based
energy saving approaches normally have marginal impact on disk reliability,
many energy saving schemes (e.g., dynamic power management (DPM) and
workload-skew techniques) inevitably have noticeable adverse impacts on stor-
age systems [3, 4]. For example, DPM techniques save energy by using frequent
disk spin-downs and spin-ups, which in turn can shorten disk lifetime [5–7],
redundancy techniques [8–11], workload skew [12–14], and multispeed settings
[15, 16]. Unlike DPM, workload-skew techniques such as MAID [17] and PDC
[18] move popular data sets to a subset of disks arrays acting as workhorses,
which are kept busy in a way that other disks can be turned into the standby
mode to save energy. Compared with disks storing cold data, disks archiving hot
data inherently have higher risk of breaking down.

Unfortunately, it is often difficult for storage researchers to improve reliability
of energy-efficient disk systems. One of the main reasons lies in the challenge
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that every disk energy saving research faces today: how to evaluate reliability
impacts of power management strategies on disk systems. Although reliability
of disk systems can be estimated by simulating the behaviors of energy saving
algorithms, there is lack of fast and accurate methodology to evaluate reliability of
modern storage systems with high energy efficiency. To address this problem, we
developed a mathematical reliability model called MINT to estimate the reliability
of a parallel disk system that employs a variety of reliability-affecting energy
conservation techniques [19].

In this chapter, we first study the reliability of a parallel disk system equipped
with a well-known energy saving scheme—the MAID [17] technique. I/O load
skewing techniques such as MAID inherently affect reliability of parallel disks
because of two reasons: First, disks storing popular data tend to have high I/O
utilization than disks storing cold data. Second, disks with higher utilization are
likely to have higher risk of breaking down. To address the adverse impact of load
skewing techniques on disk reliability, a disk-swapping strategy was proposed
to improve disk reliability in MAID by switching the roles of data disks and
cache disks. We evaluate impacts of the disk swapping scheme on the reliability
of MAID-based parallel disk systems.

We summarize our contributions as follows:

1. We developed a model for MAID based on mathematical reliability models
for energy-efficient parallel disk system (MINT) [19].

2. We built single disk swapping and multiple disk swapping mechanisms to
improve reliability of various load skewing techniques.

3. We studied the impacts of the disk swapping schemes on the reliability of
MAID.

The remainder of this chapter is organized as follows. Section 15.2 presents
the framework of the MINT model and MAID system. Section 15.3 studies
single disk swapping and multiple disk swapping strategies on MAID. Section
15.4 presents experimental results and performance evaluation. In Section 15.5,
the related work is discussed. Finally, Section 15.6 concludes the chapter with
discussions.

15.2 MODELING RELIABILITY OF ENERGY-EFFICIENT
PARALLEL DISKS

15.2.1 The MINT Model

MINT is a framework developed to model reliability of parallel disk systems
employing energy conservation techniques [19]. In the MINT framework, we
studied the reliability impacts of a well-known energy saving technique—the
MAID. One critical module in MINT is to model how MAID affects the utiliza-
tion and power-state transition frequency of each disk in a parallel disk system.
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A second important module developed in MINT is to calculate the annual failure
rate (AFR) of each disk as a function of the disk’s utilization, power-state transi-
tion frequency, and as operating temperature. Given the AFR of each disk in the
parallel disk system, MINT is able to derive the reliability of an energy-efficient
parallel disk system. As such, we used MINT to study the reliability of a parallel
disk system equipped with the MAID technique.

Figure 15.1 outlines the MINT reliability modeling framework. MINT is com-
posed of a single disk reliability model, a system-level reliability model, and three
reliability-affecting factors—temperature, power-state transition frequency (here-
inafter referred to as transition frequency or frequency), and utilization. Many
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Figure 15.1 Overview of the MINT reliability modeling methodology.
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energy saving schemes (e.g., MAID [17]) inherently affect reliability-related
factors such as disk utilization and transition frequency. Given an energy opti-
mization mechanism, MINT first transfers data access patterns into the two
reliability-affecting factors—frequency and utilization. The single disk reliability
model can derive individual disk’s AFR from utilization, power-state transition
frequency, age, and temperature because these parameters are the key reliability-
affecting factors. Each disk’s reliability is used as input to the system-level
reliability model that estimates the AFR of parallel disk systems. For simplicity
without losing generality, we considered in MINT four reliability-related fac-
tors, namely, disk utilization, age, temperature, and power-state transitions. This
assumption does not necessarily indicate by any means that there are only four
parameters affecting disk reliability. Other factors having impacts on reliability
include handling, humidity, voltage variation, vintage, duty cycle, and altitude
[20]. That means if a new factor has to be taken into account, one can extend the
single reliability model (Section 15.2.1.4) by integrating the new factor with other
reliability-affecting factors in MINT. Since the infant mortality phenomenon is
out of the scope of this study, we pay attention to disks that are more than
1 year old.

15.2.1.1 Disk utilization. Disk utilization, a reliability-related factor, can be
characterized as the fraction of active time of a disk drive out of its total powered-
on-time [21]. In our single disk reliability model, the impacts of disk utilization
on reliability is a good way of providing a baseline characterization of disk AFR.
Pinheiro et al. studied the impact of utilization on AFR across different disk age
groups [21]. They categorized disk utilization in three levels—low, medium, and
high. Since the single disk reliability model needs a baseline AFR derived from a
numerical value of utilization, we applied the polynomial curve-fitting technique
to model the baseline value of a single disk’s AFR as a function of utilization.
Thus, the baseline value (i.e., Base Value in Equation 15.1) of AFR for a disk
can be calculated from the disk’s utilization.

15.2.1.2 Temperature. Temperature is often considered as the most impor-
tant environmental factor affecting disk reliability. For example, results from
Google show that at very high temperatures, higher failure rates are associated
with higher temperatures. In the low and middle temperature ranges, failure rate
decreases when temperature increases [21].

In the MINT model, the temperature factor is a multiplier to base failure rates,
which reflect reliability at base environmental conditions [20]. The temperature
factor (i.e., Temperature Factor in Equation 15.1) is set to 1 when temperature
is 25◦C because room temperatures of many data centers are kept to 25◦C by
cooling systems. Suppose T is the average temperature, we define the temperature
factor in case of T as T/25 if T is larger than 25◦C. When T exceeds 45◦C, the
temperature factor becomes a constant (i.e., 1.8 = 45/25) because the cooling
systems would not let the room temperature higher than that.
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15.2.1.3 Power-state transition frequency. To conserve energy, power
management policies turn idle disks from the active state into standby. The disk
power-state transition frequency (or frequency for short) is often measured as the
number of power-state transitions (i.e., from active to standby or vice versa) per
month. The reliability of an individual disk is affected by power-state transitions
and, therefore, the increase in failure rate as a function of power-state transition
frequency has to be added to a baseline failure rate (Eq. 15.1).

15.2.1.4 Single disk reliability model. Single disk reliability cannot be accu-
rately described by one-valued parameter because the disk drive reliability is
affected by multiple factors (Sections 15.2.1.1–15.2.1.3). We first compute a
baseline failure rate as a function of disk utilization. Second, the temperature fac-
tor is used as a multiplier to the baseline failure rate. Finally, we add frequency
to the baseline value of the AFR. Hence, the failure rate R of an individual disk
can be expressed as

R = α × Base Value × Temperature Factor

+ β × Frequency Adder,
(15.1)

where Base Value is the baseline failure rate derived from disk utilization (Section
15.2.1.1), Temperature Factor is the temperature multiplier (Section 15.2.1.2),
Frequency Adder is the power-state transition frequency adder to the baseline
failure rate (Section 15.2.1.3), and α and β are two coefficients to reliability R.
If reliability R is more sensitive to frequency than to utilization and temperature,
then β must be greater than α. Otherwise, β is smaller than α. In either cases, α

and β can be set in accordance with R’s sensitivities to utilization, temperature,
and frequency. In our experiments, we assume that all the three reliability-related
factors are equally important (i.e., α = β = 1).

Ideally, extensive field tests allow us to analyze and test the two coefficients.
Although α and β are not fully evaluated by field testing, reliability results are
valid because of two reasons: (i) we have used the same values of α and β to
evaluate impacts of the two energy saving schemes on disk reliability (Section
15.2.2); (ii) the failure rate trend of a disk when α and β are set to 1 are
very similar to those of the same disk when the values of α and β do not
equal to 1.

With Equation 15.1 in place, we can analyze a disk’s reliability in turns of
AFR. Figure 15.2 shows AFR of a 3-year-old disk when its utilization is in the
range between 20% and 80%.

We observe from Figure 15.2 that increasing the temperature from 35 to 40◦C
gives rise to a significant increase in AFR. Unlike temperature, power-state tran-
sition frequency in the range of a few hundreds per month has marginal impact
on AFR. It is expected that when transition frequency is extremely high, AFR
becomes more sensitive to frequency than to temperature.
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(single disk reliability model).

15.2.2 MAID, Massive Arrays of Idle Disks

The MAID technique—developed by Colarelli and Grunwald—aims to reduce
energy consumption of large disk arrays while maintaining acceptable I/O per-
formance [17]. MAID relies on data temporal locality to place replicas of active
files on a subset of cache disks, thereby allowing other disks to spin-down.

Data disksCache disks

Cache manager

Figure 15.3 The MAID system structure.
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Figure 15.3 shows that MAID maintains two types of disks—cache disks and
data disks. Frequently accessed files are copied from data disks into cache disks,
where the LRU policy is implemented to manage data replacement in cache disks.
Replaced data is discarded by a cache disk if the data is clean; dirty data has to
be written back to the corresponding data disk. To prevent cache disk from being
overloaded, MAID can avoid copying data to cache disks that have reached their
maximum bandwidth. The following three parameters will be used in systems:

1. power management policy, by using which drives that have not seen any
requests for a specified period are spun down to sleep, or an adaptive
spin-down to active;

2. data layout, which is either linear, with successive blocks being placed on
the same drive, or striped across multiple drives;

3. cache, which indicates the number of drives of the array that will be used
for cache [17].

15.3 IMPROVING RELIABILITY OF MAID VIA DISK SWAPPING

15.3.1 Improving Reliability of Cache Disks in MAID

Cache disks in MAID are more likely to fail than data disks because of the two
reasons. First, cache disks are always kept active to maintain short I/O response
times. Second, the utilization of cache disks is expected to be much higher than
that of data disks. From the aspect of data loss, the reliability of MAID relies
on the failure rate of data disks rather than that of cache disks. However, cache
disks tend to be a single point of failure in MAID, which if the cache disks fail,
will stop MAID from conserving energy. In addition, frequently replacing failed
cache disks can increase hardware and management costs in MAID. To address
this single point of failure issue and make MAID cost-effective, we designed a
disk swapping strategy for enhancing the reliability of cache disks in MAID.

Figure 15.4 shows the basic idea of the disk swapping mechanism, according
to which disks rotate to perform the cache-disk functionality. In other words, the
roles of cache disks and data disks will be periodically switched in a way that
all the disks in MAID have equal chance to perform the role of caching popular
data. For example, the two cache disks on the left-hand side in Figure 15.4 are
swapped with the two data disks on the right-hand side after a certain period of
time (see Section 15.4.3 for circumstances under which disks should be swapped).
For simplicity without losing generality, we assume that all the data disks in
MAID initially are identical in terms of reliability. This assumption is reasonable
because when a MAID system is built, all the new disks with the same model
come from the same vendor. Initially, the two cache disks in Figure 15.4 can
be swapped with any data disk. After the initial phase of disk swapping, the
cache disks switched their role of storing replica data with the data disks with
the lowest AFR. In doing so, we ensure that cache disks are the most reliable



402 ROD: A PRACTICAL APPROACH TO IMPROVING RELIABILITY OF ENERGY-EFFICIENT

Data disksCache disks

Cache manager

Figure 15.4 Disk swapping in MAID: The two cache disks on the left-hand side are
swapped with the two data disks on the right-hand side.

ones among all the disks in MAID after each disk swapping process. It is worth
noting that the goal of disk swapping is not to increase mean time to data loss
but to boost mean time to cache-disk failure by balancing failure rates across all
disks in MAID.

Figure 15.5 is the logic diagram of the single disk swapping mechanism, which
demonstrates more details about the swapping. When the access rate reaches the
threshold, which is set beforehand, a data disk’s capacity will be checked. If the
data disk has enough free space to hold all the replicas that are hold by a cache
disk, it will be paired with the cache disk for swapping later. Otherwise, other
data disks’ capacity will be checked until a disk that meets the requirement. If
there is no disk that meets the requirement, the disk swapping would not be
executed. This step needs to be executed first to prevent the original data from
misdeleting on the data disk. In our research, we assumed that the data disk’s
capacity is large enough to hold all the cache data and to keep the original data.
The capacity of the cache disk will be examined when it is paired with a data
disk.

If the cache disk has enough free space to hold all the data that are held by the
data disk, the data disk will duplicate all the cache data from the cache disk while
holding all the original data. Then the cache disk will copy the data from the data
disk and keeps all replicas of its own. On the other hand, if the cache disk does
not have enough free space to hold all the data from the data disk, all replicas
it holds will be deleted after they are duplicated to the destination releasing the
space for the data copied from the data disk. At this step, irrespective of whether
or not the cache disk has available capacity, the data needs to be transferred from
cache disk first to prevent original data from either miss-deleting or losing.

Algorithm 15.1 is the single disk swapping algorithm that switches the roles of
cache disks and data disks to improve the reliability of cache disks. The algorithm
is called single disk swapping because the disk swapping occurs only once in
MAID.
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Algorithm 15.1: Single Disk Swapping Algorithm

1. Input The Access Rate of The System;
2. if The Access Rate Reaches The Threshold then
3. Check the Available Capacity of Data Disk;
4. if The Available Capacity of Data Disk Is Enough then
5. Check the Available Capacity of Cache Disk;
6. if The Available Capacity of Cache Disk Is Enough then
7. Data Disk Keeps All Original Data and Duplicates

Cache Data From Cache Disk;
Cache Disk Keeps All Replicas and Copies Data From
Data Disk;

8. else
9. if The Available Capacity of Cache Disk Is NOT

Enough then
10. Data Disk Keeps All Original Data and Duplicates

Cache Data From Cache Disk;
Cache Disk Deletes All Replicas and Copies Data

From Data Disk;
11. end if
12. end if
13. else
14. if The Available Capacity of Data Disk Is NOT Enough then
15. while There Is A Data Disk That Has Enough

Available Capacity
do

16. Check the Available Capacity of Cache Disk;
17. end while
18. end if
19. end if
10. else
21. Don’t Do Swap;
22. end if
23. Disk Swap Ends;

Disk swapping is very beneficial to MAID for two reasons. First, disk swap-
ping further improves the energy efficiency of MAID because any failed cache
disk can prevent MAID from effectively saving energy. Second, disk swapping
reduces maintenance cost of MAID by making cache disks less likely to fail.

15.3.2 Swapping Disks Multiple Times

Now we consider the case where disk swapping is invoked multiple times in
MAID. As described in Section 15.3.1, the single disk swapping mechanism
improves the reliability of the MAID system by making all disks have equal
chance to perform the role of cache disks that have high I/O workload and high
utilization. The single disk swapping algorithm has a major limitation because
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disks are swapped only once throughout their lifetimes. That means single disk
swapping only affects the reliability for a very short period of time. After each
disk swapping, the utilization of those disks with low AFRs are likely to be kept
at a high level, which in turn leads to an increasing AFR of the entire disk system.
In order to improve the reliability of the MAID system for a long time period
(e.g., 1,000,000 h or over 100 years [22]), we address the issue of swapping disks
multiple times (see multiple disk swapping shown in Algorithm 15.2).

In the multiple disk swapping algorithm, the number of disk swapping per
month is an important parameter affecting both reliability and performance of
MAID. This parameter can either be manually set as a constraint or be configured
dynamically according to changing workload conditions. In the static approach,
the disk swapping mechanism is triggered after MAID has been operating for a
certain number of days regardless I/O workload. For example, if the frequency
is set as three times per month, disks will be swapped once every 10 days.

In the dynamic approach, the disk swapping function is invoked once workload
conditions (i.e., access rate) meet the configured value regardless of the time
intervals between two swaps. For instance, if the access rate is set as 2 ∗ 105

numbers per month, the disks will be swapped every time the access rate reaches
2 ∗ 105 numbers per month. The dynamic multiple disk swapping scheme ensures
that disk swaps occur only when it is necessary.

Algorithm 15.2: Algorithm for Multiple Disk Swapping

1. while The Frequency of Disk Swapping Is No More Than
The Given Ones do

2. Run Algorithm 15.1
3. end while
4. Disk Swap Ends;

15.4 EXPERIMENTAL RESULTS AND EVALUATION

15.4.1 Experimental Setup

We developed a simulator to validate the reliability model for MAID. It might be
unfair to compare the reliability of MAID with any non-energy-efficient parallel
disks, since MAID trades extra cache disks for high energy efficiency. To make
fair comparisons, we considered a MAID system with two configurations. The
first configuration referred to as MAID-1 employs existing disks in a parallel
disk system as cache disks to store frequently accessed data. Thus, the first
configuration of MAID improves energy efficiency of the parallel disk system
at the cost of capacity. In contrast, the second configuration—called MAID-
2 —needs extra disks to be added to the disk system to serve as cache disks.

Our experiments were started by evaluating the reliability of the original MAID
system without disk swapping. Then, we studied the reliability impacts of the sin-
gle disk swapping strategy on MAID. Finally, we assessed the reliability impacts
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TABLE 15.1 The Characteristics of the Simulated Parallel Disk System Used to
Evaluate the Reliability of MAID-1 and MAID-2

Energy Number File Access Rate, File Size,
Efficiency Scheme of Disks Numbers per Month kB

NONEa 20 data (20 in total) 0–106 300
MAID-1 15 data + 5 cache (20 in total) 0–106 300
MAID-2 20 data + 5 cache (25 in total) 0–106 300

aOriginal disk system without any energy efficiency scheme.

of the multiple disk swapping scheme. We simulated MAID-1 and MAID-2 cou-
pled with the disk swapping strategies in two parallel disk systems as described
in Table 15.1. For the MAID-1 configuration, there are 5 cache disks and 15
data disks. In the disk system for the MAID-2 configuration, there are 5 cache
disks and 20 data disks. As for the case of non-energy-efficient scheme, we fixed
the number of disks to 20. Thus, we studied MAID-2 and PDC using a parallel
disk system with 20 disks; we used a similar disk system with totally 25 disks to
investigate MAID-1. We varied the file access rate in the range between 0 and 106

times per month. The average file size considered in our experiments is 300 kB.
The base operating temperature is set to 35◦C. In this study, we focused on
read-only workload. Nevertheless, the MINT model should be readily extended
to capture the characteristics of read/write workloads.

15.4.2 Disk Utilization

Figure 15.6 shows that when the average file access rate increases, the utilizations
of MAID-1 and MAID-2 increase accordingly. Compared with the utilization of
MAID-2, the utilization of MAID-1 is more sensitive to the file access rate.
Under low I/O load, the utilizations of MAID-1 and MAID-2 are very close to
each other. When I/O load becomes relatively high, the utilization of MAID-1
is slightly higher than that of MAID-2. This is mainly because the capacity of
MAID-2 is larger than that of MAID-1.

15.4.3 The Single Disk Swapping Strategy

A key issue of the disk swapping strategies is to determine circumstances under
which the disks should be swapped in order to improve disk system reliabil-
ity. One straightforward way to address this issue is to periodically initiate the
disk swapping process. For example, we can swap disks in MAID once every
month. Periodically swapping disks, however, might not always enhance the
reliability of parallel disk systems. For instance, swapping disks under very light
workloads cannot substantially improve disk system reliability. In some extreme
cases, swapping disks under light workload may worsen disk reliability due to
overhead of swapping. As such, our disk swapping strategies do not periodically
swap disks. Rather, the disk swapping process is initiated when the average I/O
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Figure 15.6 Utilization comparison of the MAID access rate impacts on AFR (no swap-
ping).

access rates exceed a threshold. In our experiments, we evaluated the impact
of this access rate threshold on the reliability of a parallel disk system. More
specifically, the threshold is set to 2 ∗ 105, 5 ∗ 105, and 8 ∗ 105 times per month.
These three values are representative values for the threshold because when the
access rate hits 5 ∗ 105, the disk utilization lies in the range between 80% and
90% [21], which in turn ensures that AFR increases with the increasing value of
utilization (Fig. 15.2).

Figures 15.7–15.9 reveal the AFRs of MAID-1 and MAID-2 with and
without using the proposed disk swapping strategy. The results plotted in

 

 
MAID1 (no swap)
MAID2 (no swap)
MAID1 (swap MTTF)
MAID2 (swap MTTF)

0 1 2 3 4 5 6 7 8 9 10

x 105

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Access rate (per month)

A
F

R
 (

%
)

3-Year old hard drive

Figure 15.7 Utilization comparison of the MAID access rate impacts on AFR (threshold
= 2 ∗ 105).
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Figure 15.8 Utilization comparison of the MAID access rate impacts on AFR (threshold
= 5 ∗ 105).
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Figure 15.9 Utilization comparison of the MAID access rate impacts on AFR (threshold
= 8 ∗ 105).

Figures 15.7–15.9 show that for both MAID-1 and MAID-2, the disk swapping
process reduces the reliability of data disks in the disk system. We attribute the
reliability degradation to the following reasons. MAID-1 and MAID-2 only store
replicas of popular data; the reliability of the entire disk system is not affected
by failures of cache disks. The disk swapping processes increase the average
utilization of data disks, thereby increasing the AFR values of data disks.
Nevertheless, the disk swapping strategy has its own unique advantage. Disk
swapping is intended to reduce hardware maintenance cost by increasing the
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lifetime of cache disks. In other words, disk swapping is capable of extending
the mean time to failure or MTTF [21] of the cache disks.

We observed from Figures 15.7–15.9 that for the MAID-based disk system
with the disk swapping strategy, a small threshold leads to a low AFR. Compared
with the other two thresholds, the 2 ∗ 105 threshold showed in Figure 15.7 results
in the lower AFR. The reason is that when the access rate is 2 ∗ 105 numbers
per month, the disk utilization is around 35% [21], which lies in the monotone
decreasing area of the curve shown in Figure 15.2. Thus, disk swapping reduces
AFR for a while until the disk utilization reaches 60%.

15.4.4 The Multiple Disk Swapping Strategy

Section 15.4.3 shows that single disk swapping strategy can improve the reli-
ability of the MAID system. However, the single disk swapping has minimal
reliability impact in a long period of time. For example, Figure 15.7 indicates
that after swapping cache and data disks, the failure rate of the disk system
continues going up as the access rate keeps increasing. We observed that after
the first disk swap without any consecutive disk swaps, the failure rate of disk-
swapping-enabled MAID will become close to that of non-disk-swapping MAID.
Thus, disk swapping must be repeatedly conducted under the condition that the
failure rate of MAID increases.

To evaluate the multiple disk swapping scheme, we configured the access rate
threshold to 2 ∗ 105, 2.5 ∗ 105, and 4 ∗ 105 numbers per month. For example, if
the threshold is set to 2 ∗ 105, the total access rate can be as high as 8 ∗ 105,
which is one of the thresholds chosen for the single disk swapping strategy.

Figures 15.10–15.12 reveal the AFRs of MAID-1 and MAID-2 with both a
single disk swap and multiple disk swaps. The results show that the multiple
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Figure 15.11 Utilization comparison of the MAID access rate impacts on AFR (multiple
threshold = 2.5 ∗ 105).
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Figure 15.12 Utilization comparison of the MAID access rate impacts on AFR (multiple
threshold = 4 ∗ 105).

disk swapping process further reduces the failure rate of data disks in the MAID
system. Comparing the AFR values plotted in Figures 15.7–15.9, we noticed that
the failure rate of MAID with multiple disk swaps is lower than that of the same
with a single disk swap at access rate 10 ∗ 105. As the access rate increases, the
reliability improvement achieved by the multiple disk swapping scheme becomes
more pronounced. The major reason behind the improvement is that swapping
disks multiple times can continue balancing I/O workload of each disk in the
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MAID system in the long run. After each disk swap, if the failure rate of MAID
increases to a certain point (Fig. 15.6), a subsequent disk swap will be initiated.

Figures 15.10–15.12 demonstrate that the failure rate of the multiswapping
MADI system changes periodically. For example, Figure 15.10 shows that imme-
diately after each disk swapping process, the failure rate of MAID increases 5%
because of the overhead caused by copying data among cache disks and data
disks. Then, the failure rate stays stable for a while until the next disk swapping
occurs. We observe that at the second disk swap, the cumulative access rate is
4 ∗ 105, which is the same as the first swapping threshold shown in Figure 15.12.
The forth disk swapping point in Figure 15.10 is the same as that of single disk
swapping threshold shown in Figure 15.9. Comparing Figures 15.12 and 15.9, we
conclude that when access rate reaches 10 ∗ 105, the failure rate of the multiple
disk swapping scheme is lower than that of the single disk swapping scheme.
This reliability improvement is made possible by multiple disk swaps, because
cache disks and data disks are switched after the failure rates of the cache disks
become higher than those of the data disks. Repeatedly swapping cache and data
disks can well balance the failure rates of all the disks in the MAID system.

15.5 RELATED WORK

A hard disk drive (HDD) is a complex dynamic system made up of various elec-
trical, electronic, and mechanical components [23]. An array of techniques were
developed to save energy in single HDDs. Energy dissipation in disk drives can be
reduced at the I/O level (e.g., dynamic power management [5, 7] and multispeed
disks [6]), the operating system level (e.g., power-aware caching/prefetching [9,
16]), and the application level (e.g., software DMP [24] and cooperative I/O
[25]). Existing energy saving techniques for parallel disk systems often rely on
one of the two basic ideas—power management and workload skew. Power man-
agement schemes conserve energy by turning disks into standby after a period of
idle time. Although multispeed disks are not widely adopted in storage systems,
power management has been successfully extended to address the energy saving
issues in multispeed disks [6, 15, 26]. The basic idea of workload skew is to
concentrate I/O workloads from a large number of parallel disks into a small
subset of disks allowing other disks to be placed in the standby mode [17, 18,
27, 28].

Recent studies show that both power management and workload skew schemes
inherently impose adverse impacts on disk systems [3, 4]. For example, the power
management schemes are likely to result in a huge number of disk spin-downs
and spin-ups that can significantly reduce hard disk lifetime. The workload skew
techniques dynamically migrates frequently accessed data to a subset of disks
[29, 30], which inherently have higher risk of breaking down than other disks
usually being kept on standby. Disks that store popular data tend to have high
failure rates due to extremely unbalanced workload. Thus, the popular data disks
have a strong likelihood to become reliability bottleneck. The design of our
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MINT is orthogonal to the aforementioned energy saving studies, because MINT
is focused on reliability impacts of the power management and workload skew
schemes in parallel disks.

A malfunction of any component in a hard disk drive could lead to a fail-
ure of the disk. Reliability—one of the key characteristics of disks—can be
measured in terms of mean-time-between-failure (MTBF). Disk manufacturers
usually investigate MTBFs of disks either by laboratory testing or mathematical
modeling. Although disk drive manufacturers claim that MTBF of most disks is
more than 1 million hours [22], users have experienced a much lower MTBF
from their field data [20]. More importantly, it is challenging to measure MTBF
because of a wide range of contributing factors including disk age, utilization,
temperature, and power-state transition frequency [20].

A handful of reliability models have been successfully developed for storage
systems. For example, Påris et al. [31] investigated an approach to computing
both average failure rate and mean time to failure in distributed storage sys-
tems; Elerath and Pecht [32] proposed a flexible model for estimating reliability
of RAID storage; and Xin et al. [33] developed a model to study disk infant
mortality. Unlike these reliability models tailored for conventional parallel and
distributed disk systems, our MINT model pays special attention to reliability of
parallel disk systems coupled with energy saving mechanisms.

Very recently, Xie and Sun developed an empirical reliability model called
PRESS (predictor of reliability for energy saving schemes) [4]. The PRESS model
can be used to estimate reliability of an entire disk array [4]. To fully leverage
PRESS to study the reliability of disk arrays, one has to properly simulate the
disk arrays. Our MINT approach differs itself from PRESS in the sense that the
goal of MINT is to evaluate reliability of disk systems by modeling the behavior
of parallel disks where energy conservation mechanisms are integrated.

Swapping mechanisms have been thoroughly studied in the arena of memory
and file systems. For example, Paul et al. [34] developed an efficient virtual mem-
ory swapping system—called LocalSwap —to improve performance of clusters;
Plank [35] addressed the issue of checkpoint placement and its impact on the
performance of the PVM platform; Pei and Edward [36] investigated the perfor-
mance of a file system based on the LRU-SP (least recently used with swapping)
policy. Our disk swapping approaches are fundamentally different from the afore-
mentioned swapping mechanisms in the sense that the goal of disk swapping is
to improve the reliability of energy-efficient parallel disk systems by balancing
the failure rates of parallel disks.

15.6 CONCLUSIONS

This chapter presents a reliability model to quantitatively study the reliability of
energy-efficient parallel disk systems equipped with the MAID technique. Note
that MAID is a well-known effective energy saving schemes for parallel disk
systems. It aims to skew I/O load toward a few disks so that the other disks can be
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transitioned to low power states to conserve energy. I/O load skewing techniques
such as MAID inherently affect reliability of parallel disks because disks storing
popular data tend to have high failure rates than disks storing cold data. To address
the reliability issue in MAID, we developed single disk swapping strategies to
improve disk reliability by alternating disks storing hot data with disks holding
cold data. In addition, we introduced multiple disk swapping scheme to further
improve reliability of MAID. Then, we quantitatively evaluated the impacts of
the disk swapping strategies on reliability of MAID-based disk systems. We
demonstrated that the disk swapping strategies can not only increase the lifetime
of cache disks in MAID-based parallel disk systems but can also improve its
reliability in the long period of time by balancing the workload of cache disks
and data disks and then balancing the their utilization correspondingly.

Future directions of this research can be performed in the following order.
First, we will extend the MINT model to investigate mixed read/write work-
loads in the future. Second, we will investigate a fundamental trade-off between
reliability and energy efficiency in the context of energy-efficient disk arrays. A
trade-off curve will be used as a unified framework to justify whether or not
it is worth trading reliability for high energy efficiency. Finally, we will study
the most appropriate conditions under which disk swapping processes should be
initiated.
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CHAPTER 16

EMBRACING THE MEMORY AND I/O
WALLS FOR ENERGY-EFFICIENT
SCIENTIFIC COMPUTING

CHUNG-HSING HSU and WU-CHUN FENG

16.1 INTRODUCTION

Scientific computing helps computers to analyze and solve scientific problems.
It generally demands the highest level of computational power. The memory
wall and the power wall present two technical obstacles toward realizing high
performance from a computer. The memory wall refers to the growing dispar-
ity between processor speed and main memory speed. In other words, the data
retrieving rate lags behind the data processing rate, which oftentimes leaves the
processor in a computer stalled. The power wall refers to the inability to signifi-
cantly increase the clock frequency of a processor (CPU) without heroic cooling
measures. While the high performance computing (HPC) community is actively
addressing both problems, no satisfactory solutions have been found. The intro-
duction of the multicore architecture only exacerbates the problems [1, 2]. In this
chapter, we take a rather different approach—we embrace the memory wall in
order to address the power wall . The converse is also possible, but its discussion
is beyond the scope of this chapter.

The underlying idea is quite simple. If a program runs into a period of intensive
off-chip memory accesses, its performance during this period will largely be
limited by the speed of the memory rather than the CPU, that is, the memory
wall [3]. As a result, decreasing the CPU speed will have little negative effect on
performance, yet it will allow the CPU to run at a lower-power state (via dynamic
voltage and frequency scaling or DVFS,) and thus reduce the power consumption.
Similarly, if the period consists of intensive I/O accesses—the “I/O wall”—we
can apply the same optimization strategy to reduce power consumption.

Energy-Efficient Distributed Computing Systems, First Edition.
Edited by Albert Y. Zomaya and Young Choon Lee.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

417



418 EMBRACING THE MEMORY AND I/O WALLS

 0

 50000

 100000

 150000

 200000

 250000

 300000

0 10 20 30 40 50 60 70 80

N
um

be
r 

of
 a

cc
es

se
s

Time (s)

Off-chip access profile of SPEC gcc

Figure 16.1 The off-chip access pattern of SPEC gcc.

While being seemingly simple, the implementation of the idea is nontrivial.
There are at least two challenges that need to be tackled. The first challenge is
the varying intensity of memory accesses over time. For scientific computing, the
intensity level of memory accesses is different from one time interval to another,
making it difficult to predict the intensity at any given time interval correctly.

Figure 16.1 demonstrates such difficulty by plotting the number of off-chip
accesses for every second of the execution of the SPEC gcc benchmark. Ideally,
when the interval size is as large as 1 s, fluctuations that occur at the interval size
of a millisecond should be smoothed out. However, Figure 16.1 still shows a sig-
nificant amount of fluctuation. This means that correctly predicting the number of
off-chip accesses over any given time interval is not easy. To put it quantitatively,
if we use the number of off-chip accesses in the previous interval to predict the
intensity level of the upcoming interval, we will overestimate accesses 55% of
the time by 157% on an average and underestimate accesses the rest of the time
by 53% on an average.

The second challenge is to relate the memory-access intensity to the perfor-
mance impact on the program precisely. Even if we have perfect knowledge of
the off-chip access pattern such as in Figure 16.1, this knowledge is still insuf-
ficient for us to determine which performance state the CPU should use, that is,
to produce an effective DVFS schedule. Choosing the wrong state may result in
either undesirable performance slowdown or missed opportunities to maximize
energy savings.

For example, one might think that a high cache-miss rate indicates that pro-
gram execution is in a memory-intensive phase. But for a DVFS-enabled CPU
with five performance states, how do we determine which range of cache-miss
rates is appropriate for each state? Unless we can predict fairly accurately to what
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degree the execution time will be lengthened by putting the CPU in each perfor-
mance state, knowing the high cache-miss rate will not help in the selection of
the appropriate state while simultaneously ensuring the tight control of DVFS-
induced performance slowdown. Therefore, we need a model that can associate
the memory-access intensity with the impact on program performance.

The approach presented in this chapter provides a way to address the earlier
mentioned challenges. It is also unique in two other respects. First, it is a type
of active-state power management, that is, it manages power while the processor
is active. In contrast, idle-state power management, typically found on laptops,
manages power while the processor is idle; specifically, it reduces the power
consumption of the processor when the system is idle.

For scientific computing, however, idle-state power management is infeasible
given that the processor is active when executing a program. Hence, idle-state
power management is best used in enterprise environments, where the CPU load
varies at different times of a day. As a result, approaches such as multiple sleep
modes and demand-based switching (DBS) [4] are not appropriate for scien-
tific computing. Figure 16.2 shows the power-usage pattern induced by DBS
for the SPEC gcc benchmark. We can see that DBS does not affect the power-
consumption behavior when the system is in the active state.

Second, our approach is a software-based one rather than a hardware-based
one. Hardware-based approaches rely on the invention of novel low power hard-
ware [5], whereas software-based approaches exploit the different levels of impact
that each execution pattern has on energy and performance, and it alters the
execution pattern or operating hardware in order to achieve energy-efficient com-
puting. In many cases, the hardware that supports software-based optimization
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implements the DVFS technology to provide various power-performance trade-
offs for the software to choose from and change on the fly in pseudo-real-time.

The rest of the chapter is organized as follows. Section 16.2 characterizes
current DVFS algorithms that embrace the memory wall to address the power
wall. The section also lists the main issues that these algorithms have. With this
characterization in hand, we then present a new DVFS algorithm in Section 16.3
that addressed the identified issues above. Section 16.4 describes our evaluation
of the new algorithm through a series of physical measurements on real systems.
To enhance our understanding of what constitutes a good DVFS algorithm, we
discuss in-depth two features of the new algorithm that make it effective. Finally,
Section 16.5 concludes and presents some future directions.

16.2 BACKGROUND AND RELATED WORK

In Section 16.1, we mention that DVFS can be used for software-based, active-
state power management. In this section, we present the related work that uses the
DVFS technology to address the power wall. We refer the readers to Reference 6
for other types of power-reduction techniques.

16.2.1 DVFS-Enabled Processors

The idea of a DVFS-enabled processor (i.e., CPU) can be traced back as early as
1994 [7], when the focus was on how to lower the CPU supply voltage until the
desired clock frequency was reached. The advantage in lowering the CPU supply
voltage because of a reduced frequency lies in the fact that a CPU’s power draw
is proportional to its frequency and to the square of its supply voltage. Moreover,
a CPU’s energy usage is proportional to the square of voltage [8]. Consequently,
reducing CPU frequency allows us to lower CPU voltage, and in turn, decreases
CPU power draw and energy consumption.

Commodity processors that actually supported DVFS did not appear in the
market until early 2000, and even then, only in mobile computing platforms.
This is because mobile computing platforms sought to reduce the energy usage
of a processor so as to extend their battery life. It was not until 2003 that DVFS
made its way into desktop processors, specifically the AMD Athlon64 processor.
The main concern here was to reduce the heat stress and the noise level of a
desktop computer. By late 2004, DVFS gained support in server-class processors
such as the AMD Opteron and Intel Xeon EM64T processors because they dis-
sipated significant heat and compromised the reliability of a computing system
due to overheating. As a rule of thumb, Arrhenius’ equation as applied to micro-
electronics notes that for every 10◦C (18◦F) increase in temperature, the failure
rate of a system doubles. At present, all modern processors support DVFS.

The advanced configuration and power interface (ACPI) specification is also
evolving to standardize the terms used to describe a DVFS-enabled processor.
Specifically, when a processor is in the active state (the C0 state), it is in one of
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TABLE 16.1 The Performance States of an AMD
Athlon64 Processor

P-State Frequency, GHz Voltage, V

P0 2.0 1.5
P1 1.8 1.4
P2 1.6 1.3
P3 0.8 0.9

several performance states (the P-states). Although the P-states are implementa-
tion dependent, P0 always refers to the highest-performance state, and P1 to Pn
refer to successively lower-performance states, up to an implementation-specific
limit of n no greater than 16. So, the P0 state has the peak voltage and frequency,
and the Pi state has a higher voltage and frequency than the Pj state for i < j .
Table 16.1 gives one such example for the AMD Athlon64 3200+ processor.
The frequency–voltage setting in each P-state is generally processor- and BIOS-
specific.

To control a DVFS-enabled processor, commodity operating systems such as
Linux provide an interface for the user or the software to use. For example, the
Linux 2.6 kernel provides a DVFS interface called CPUFreq. This interface allows
the user or software to request a desired P-state by writing the corresponding CPU
frequency to a particular /sys file. Inside the kernel, a driver handles the actual
P-state switches. Typically, the CPU manufacturer suggests a range of voltages to
be used for each P-state through datasheet specification, and the system builder
encodes the exact selection in BIOS. All this effort is to relieve a user from
defining valid P-states by himself because not all frequency–voltage settings are
operable.

16.2.2 DVFS Scheduling Algorithms

The use of DVFS-enabled processors on general-purpose computing systems
(in contrast to real-time or embedded systems) was first proposed by Weiser
et al. [9] who sought to reduce the energy consumption of a computer running
interactive applications. In other words, Weiser et al. exploit system inactivity
for energy-efficient computing by means of DVFS.

The scheduling algorithm proposed by Weiser et al. essentially calculates the
CPU utilization ratio (i.e., the fraction of time that the CPU spends nonidle)
in the previous time interval and uses it to predict the CPU utilization ratio of
the next time interval. To determine which P-state to use, Weiser et al. interpret
the CPU utilization ratio as the normalized workload. This interpretation has
a nice property that there is a natural, one-to-one correspondence between the
CPU utilization ratio and the desired normalized CPU frequency. Thus, if the
CPU utilization ratio is 0.5 on a 2-GHz CPU, then setting the CPU frequency to
1 GHz is predicted to eliminate all CPU idle time (i.e., the CPU utilization ratio
becomes 1).
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While the CPU utilization ratio is easy to derive at runtime and does not
require application-specific information, it does not provide enough informa-
tion to accurately estimate the impact on a program’s performance. As a result,
DVFS algorithms based on CPU utilization can only provide loose control over
DVFS-induced performance loss. This unwanted consequence has been observed
by several studies including References 10–12. Thus, DVFS algorithms with
application-specific information have been proposed in order to provide tighter
control over performance loss.

For example, an application (or task) can be associated with a relative deadline,
in terms of seconds, and a CPU work requirement, in terms of CPU cycles. In
this setting, performance is typically formulated as a linear function of the CPU
frequency (with an intercept of 0). This type of performance model predicts that
the execution time doubles when the CPU frequency is halved. Unfortunately,
this model overly exaggerates the impact that the CPU frequency has on the
execution time. It is only in the worst case that the execution time doubles when
the CPU frequency is halved; in general, the actual execution time is less than
double. This phenomenon, called sublinear performance scaling , is a reflection
of the memory wall.

There have been multiple DVFS algorithms proposed to exploit sublinear
performance scaling in order to achieve higher energy efficiency. We refer to
them as memory-aware algorithms . In this chapter, we target memory-aware,
interval-based DVFS algorithms because they are generally easy to implement.
A DVFS algorithm is considered interval-based if the algorithm reconsiders the
use of the current P-state at the beginning of each fixed-length time interval, for
example, 10 ms. The algorithm proposed by Weiser et al., for example, is an
interval-based algorithm. Other types of DVFS algorithm also exist, including
compiler-assisted, profile-based algorithms [13, 14]. However, these other types
of algorithms are less transparent to end users, making them more difficult to
apply to a wide range of applications.

16.2.3 Memory-Aware, Interval-Based Algorithms

A memory-aware, interval-based DVFS algorithm can be characterized by (i) the
metric used to describe the computational intensity and (ii) the formula used to
calculate the desired CPU frequency. The formula is often generated from an
analytical model that relates the performance of a program to its computational
intensity.

For example, Kotla et al. [15] used instructions per cycle (IPC ) as their
compute-intensive metric, that is, the higher the IPC, the higher the compu-
tational intensity. They proposed a performance model that breaks down the
observed IPC into frequency-dependent and frequency-independent components.
The model predicts the IPC at any CPU frequency given the two IPC compo-
nents. The desired CPU frequency is selected based on the predicted IPCs of
all possible frequencies against a performance requirement. In the algorithm, the
performance-monitoring unit (PMU) is used to gather the necessary information
to calculate the IPC components.
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The PMU is used in the majority of memory-aware, interval-based DVFS
scheduling algorithms. However, the implementation of a PMU-assisted DVFS
algorithm is nontrivial. First, the PMU is notorious for its limited portability
across different CPU types. For example, Choi et al. used the same intensity
metric to design their DVFS algorithm. However, the sets of monitored events
used to calculate the metric are different when the algorithm is implemented
on two different types of Intel processor [16, 17]. Second, the correlation of
event counts to performance is an indirect measure. In addition, the number of
counters in the PMU is limited. As a result, the estimation errors of the metric
are unavoidable. Hence, a PMU-assisted DVFS algorithm ought to minimize its
dependence on the use of the PMU.

Another commonly used metric is memory accesses per instruction (MPI );
the lower the MPI, the higher the computational intensity. For example, Freeh et
al. used MPI in their DVFS algorithms [18–23]. They found out that the MPI
is a better metric to use than the IPC because the metric value remains constant
regardless of the CPU frequency changes. In contrast, the IPC varies greatly
with the CPU frequency. They also found out that, while MPI is a good metric
to measure the memory pressure, the metric alone is not sufficient to capture the
I/O intensity. As a result, an additional metric was required in their algorithms
to measure the intensity of the communication I/O.

In summary, two issues will need to be considered when designing a memory-
aware, interval-based DVFS algorithm. First, the algorithm should use the PMU
as little as possible. Second, the intensity metric should be as comprehensive as
possible. In the next section, we present a metric that addresses the latter issue
and a DVFS algorithm that addresses the former issue.

16.3 β-ADAPTATION: A NEW DVFS ALGORITHM

Here, we describe an interval-based DVFS algorithm that embraces the memory
wall in order to address the power wall by exploiting sublinear performance
scaling. In particular, the algorithm automatically detects memory-bound and I/O-
bound program phases and exploits the sublinear performance scaling of these
phases. Since the algorithm is based on β, a metric that measures the compute
boundedness of an application, the algorithm is called β-adaptation.

16.3.1 The Compute-Boundedness Metric, β

The compute-boundedness metric used in β-adaptation was proposed by Hsu
and Kremer [13]. This metric aims to quantify the compute boundedness of an
application based on the application’s performance sensitivity to CPU frequency
changes. Because it focuses on how the performance is impacted and not what
impacts the performance, the metric can include, implicitly, all non-CPU activities
such as memory accesses and communication latency [21]. As a result, the metric
works independently of whether the program is sequential or parallel since the
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metric is just a measure of how compute bound an application is, and so it does
not matter whether the CPU is waiting for data from the memory system or from
another node. In contrast, metrics such as the number of memory accesses per
instruction (MPI) only concern memory pressure.

Specifically, the compute-boundedness metric that Hsu and Kremer proposed,
denoted as β, is a value between 0 and 1 with 1 being totally compute bound:

β = T (f )/T (fmax) − 1

fmax/f − 1
for all f < fmax, (16.1)

where T (f ) is the execution time at the CPU frequency f and fmax is the peak
CPU frequency. The metric essentially models the application’s performance
slowdown T (f )/T (fmax) − 1 with respect to CPU slowdown fmax/f − 1. By
using the metric, Hsu and Kremer were able to state, for example, that the SPEC
floating-point benchmark suite has a wider range of compute boundedness than
the integer benchmark suite. Garg et al. [24] used the metric to characterize the
workloads in a cloud environment.

An “implicit” assumption made by Hsu and Kremer is that β is invariant
across all CPU frequencies. To see the significance of this, consider a totally
memory-bound application whose performance can be modeled as T (f ) = c,
where c is a constant. If the compute-boundedness metric was chosen to be
the ratio of T (f )/T (fmax) to fmax/f , that is, removing all “−1” terms in
Equation 16.1, the metric value of a totally memory-bound application will
become f/fmax —a function of CPU frequency f . Adding the “−1” terms helps
remove this variance; β of a totally memory-bound application becomes 0.

In β-adaptation, we make the same assumption that the compute-boundedness
metric β is an application-specific constant.

16.3.2 The Frequency Calculating Formula, f∗

Ideally, if we know the value of β a priori, we can easily use Equation 16.1
to compute the desired CPU frequency f ∗ with respect to a given performance
requirement δ (as a percentage), where

T (f ∗)
T (fmax)

− 1 ≤ δ. (16.2)

The performance requirement δ is defined as the normalized performance loss
with respect to the execution time when the program is running at the peak CPU
frequency (i.e., without the use of DVFS). The introduction of δ allows a user to
specify desired energy-performance trade-offs. The larger the δ value, the larger
the potential energy savings.

In β-adaptation, we calculate the desired CPU frequency f ∗ using the follow-
ing formula:

f ∗ = min

{
f : δ ≥ β

(
fmax

f
− 1

)}
, (16.3)
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which simplifies to

f ∗ = max

(
fmin,

fmax

1 + δ/β

)
. (16.4)

The formula is derived from Equations 16.1 and 16.2. Basically, we compute
the lowest CPU frequency whose predicted performance slowdown β

(
fmax
f

− 1
)

does not exceed the maximum possible performance slowdown δ. Note that we
have made another assumption when deriving the formula; that is, running the
program as slowly as possible to meet the deadline just in time will minimize
the energy usage. This assumption is not valid for all δ values [21], but it is true
for small δ values.

Unfortunately, we cannot assume that we know β a priori, as we desire that
β-adaptation not require any application-specific information. While we could
calculate the metric using at least two profile runs of the entire application at
different frequencies before we make the real runs, we want to avoid doing this,
particularly from an end user’s perspective. Thus, the challenge for β-adaptation
lies in the online estimation of β.

In the following section, we discuss how we address this challenge. The key
is to identify one or more observable metrics that have the property of being
invariant to CPU frequency changes.

16.3.3 The Online β Estimation

The β-adaptation algorithm assumes that the compute-boundedness metric β is
an application-specific constant that needs to be estimated while the application
is running. To estimate the value of β online, we have to identify one or more
observable metrics that have the property of being invariant to CPU frequency
changes. (Note that β is calculable but not observable.) The number of such
metrics used in a DVFS algorithm determines the heavy or light use of the
PMU.

In β-adaptation, we use the number of instructions as the observable metric that
has the invariant property. Figure 16.3 provides an evidence for the validity of the
above statement. The figure shows the progress of the number of instructions for
running a synthetic benchmark, which has a mix of compute-bound and memory-
bound phases, at different CPU frequencies. We can clearly see that the number
of instructions increases at a steady rate. More importantly, the total number of
instructions is invariant to CPU frequency changes. Thus, we chose the number
of instructions as the observable metric to assist in the estimation of the β value
online.

Assuming a fixed (unknown) number of instructions II , we can equate the
performance slowdown with changes in workload processing rate, namely, the
MIPS rate (i.e., millions of instructions per second):

T (f )

T (fmax)
= II/T (fmax)

II/T (f )
= mips(fmax)

mips(f )
. (16.5)
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Figure 16.3 The workload distribution of the synthetic benchmark.

Combining it with Equation 16.1, we derive a new equation:

mips(fmax)

mips(f )
= β

(
fmax

f
− 1

)
+ 1, (16.6)

where everything is observable except β.
To estimate β at runtime, we use a regression method over Equation 16.6 and

leverage the fact that most DVFS-enabled microprocessors support a limited set
of CPU frequencies. That is, given n CPU frequencies {f1, . . . , fn}, we derive a
particular β value that will minimize the least-squared error:

min
n∑

i=1

∣∣∣∣mips(fmax)

mips(fi)
− β

(
fmax

fi

− 1

)
− 1

∣∣∣∣
2

. (16.7)

By equating the first differential of Equation 16.7 to 0, we can derive β as a
function of the MIPS rates and CPU frequencies as follows:

β =
∑n

i=1

(
fmax

fi

− 1

) (
mips(fmax)

mips(fi)
− 1

)

∑n
i=1

(
fmax

fi

− 1

)2 . (16.8)

Now we know how to do online β estimation. We also know how to calculate
the desired CPU frequency from a given β value, as described in the previous
section. It is time for us to put them together. In the next section, we show how
to combine the two techniques to implement the β-adaptation algorithm.
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16.3.4 Putting It All Together

The β-adaptation algorithm is based on the use of two techniques: estimating
the compute boundedness of an application, as exhibited by Equation 16.8, and
calculating the desired CPU frequency, as captured by Equation 16.4. Figure 16.4
shows the details of the algorithm. In the figure, I stands for the interval length,
for example, 1 second.

Specifically, the algorithm wakes up every I seconds. It then calculates the
value of β using the most up-to-date MIPS rate, based on Equation 16.8. Once β

is derived, the algorithm computes the CPU frequency f ∗ for the interval based
on Equation 16.4. Since a DVFS-enabled processor only supports a limited set
of frequencies, the computed frequency f ∗ may need to be emulated in some
cases. This sequence of steps is repeated at the beginning of all subsequent time
intervals until the program completes its execution.

The emulation of the computed frequency f ∗, as detailed in step (4) of
Figure 16.4, is a critical piece of the algorithm that greatly enhances the
effectiveness of the β-adaptation algorithm, as we see later in this chapter. For

Hardware:
n frequencies {f1, · · · , fn}.

Parameters:
I: the time-interval size (default 1 s).
δ: slowdown constraint (default 5%).

Algorithm:
(1) Initialize mips(fi), i = 1, . . . , n, by executing the
program at fi for I seconds.

repeat
(2) Compute coefficient β.

β =
∑

i

(
fmax

fi

− 1

) (
mips(fmax)

mips(fi)
− 1

)

∑
i

(
fmax

fi

− 1

)2

(3) Compute the desired frequency f ∗.

f ∗ = max

(
fmin,

fmax

1 + δ/β

)

(4) Execute the current interval at f ∗. (See
Figure 16.5 for the emulation scheme.)

(5) Update mips(f ∗).
until the program is completed.

Figure 16.4 The β-adaptation algorithm.
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(4) Execute the current interval at f ∗.
(4a) Figure out fj and fj+1.

fj ≤ f ∗ < fj+1

(4b) Compute the ratio r.

r = (1 + δ/β)/fmax − 1/fj+1

1/fj − 1/fj+1

(4c) Run r · I seconds at frequency fj.
(4d) Run (1 − r) · I seconds at frequency fj+1.

Figure 16.5 Step (4) of the β-adaptation algorithm.

example, to emulate a frequency of 1.9 GHz, the frequency emulation step can
emulate the frequency by running at 1.8 GHz for I /2 seconds and at 2.0 GHz
for the rest of the I /2 seconds. Details are shown in Figure 16.5, where the ratio
r denotes the percentage of time to execute at frequency fj .

Figure 16.6 shows the execution behavior of the β-adaptation algorithm,
specifically f ∗, on three synthetic workloads, each with different compute bound-
edness. Each synthetic workload iterates between a compute-intensive phase and
a memory-intensive phase. For the workload labeled by X:Y, it means that each
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Figure 16.6 The decision behavior of the β-adaptation algorithm for the synthetic bench-
mark.
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compute-intensive phase takes X units of time to execute and each memory-
intensive phase takes Y units of time to execute. More details on the synthetic
workloads can be found in Section 16.4.2.

As shown in Figure 16.6, the β-adaptation algorithm quickly finds the proper
value for f ∗ to be a little below 1.88 GHz and makes less and less fluctuations,
as time goes by for the 1:1 workload. Similar behavior can be observed for the
other two workloads. In a way, the effectiveness of the algorithm can also be
attributed to the quick convergence of the values for β.

16.4 ALGORITHM EFFECTIVENESS

In this section, we present a series of analyses on the effectiveness of the
β-adaptation algorithm. We start by comparing the experimental results of
the β-adaptation algorithm with other DVFS algorithms in terms of physical
measurements. We then present an in-depth discussion about two unique features
of the algorithm—frequency emulation and the minimum dependence to the
PMU—that lead to the effectiveness of the β-adaptation algorithm.

16.4.1 A Comparison to Other DVFS Algorithms

To evaluate the effectiveness of the β-adaptation algorithm, we compare its exper-
imental results with four interval-based algorithms using the CPU utilization
ratio or the IPC rate. Although we do not claim that the implemented DVFS
algorithms represent a comprehensive comparison of all existing approaches, we
feel that the range is wide enough to give us some hints about the effective-
ness of β-adaptation. Following is a brief description of each algorithm that we
implemented.

2step. This algorithm is based on the CPU utilization ratio and assumes dual
CPU speeds in the processor. If the ratio is higher (or lower) than a prede-
fined high (or low) threshold, the algorithm will set the CPU to the fastest
(or slowest) speed. This algorithm is shown to be the most effective in an
empirical study done by Grunwald et al. [11]. In our implementation, the
two thresholds are 50% and 10%, respectively.

nqPID . This algorithm is also based on the CPU utilization ratio. It was pro-
posed by Varma et al. as a refinement of 2step [25]. Owing to its more
complex mechanism for the prediction of the CPU utilization ratio borrowed
from classical control theory, this algorithm significantly improved the con-
trol over performance loss that the 2step algorithm lacks. The authors also
found out that, unlike 2step, the effectiveness of this algorithm is not crit-
ically dependent on the parameter values.

freq . This algorithm is based on the reclamation of the slack time between the
actual processing time and the deadline [26, 27]. The algorithm keeps track
of remaining CPU work in CPU cycles Wleft and remaining time before
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the deadline in seconds Tleft. The desired CPU frequency is then calculated
as the work divided by the time, that is, f ∗ = Wleft/Tleft. This algorithm
requires that the total amount of work be known a priori. In practice, the
total work is often unpredictable [28] and not always a constant across
frequencies [29].

mips . This algorithm is based on the IPC rate [30]. Given a target MIPS rate
MIPStarget, the algorithm tracks the observed rate MIPSobserved and adjusts
the CPU frequency to f ∗ = fprev · (MIPStarget)/(MIPSobserved), where fprev
is the frequency for the previous interval. In our experiments, each bench-
mark has its own target MIPS rate, which is derived by measuring the MIPS
rate for the entire application and then dividing it by (1 + δ).

In order to acquire high fidelity experimental data, we set up our experiments
to take physical measurements, as shown in Figure 16.7. The experimental results
were collected through a Yokogawa WT210 digital power meter [31]. The power
meter continuously sampled the instantaneous wattage at every 20 μs. The pro-
filing and tested computer both ran the Linux operating system kernel. All the
benchmarks were compiled by GNU compilers with optimization level -O2. All
the benchmarks were run to completion; each run took over a minute.

The hardware platform in our experiments was an HP NX9005 notebook
computer. The choice of a notebook computer, instead of a desktop computer,
was mainly due to our concern about measurement accuracy. Placing a shunt
resistor in series with the desktop processor and its input power supply would
induce large variations of current [32] and cause the power measurement to be
imprecise. Given that the portion of system power consumption consumed by a
processor in a notebook computer is generally much larger than the portion by
a processor in a desktop computer, we feel that the measurement of a notebook
computer provides an effective alternative.

The HP NX9005 computer includes an AMD Athlon XP-M 2200+ processor,
256-MB DDR SDRAM, 266-MHz front-side bus, a 30-GB hard disk, and a 15-in
TFT LCD display. The processor has a total of 384-kB cache space. Because of
the size of the cache, we use the SPEC CPU95 benchmarks in our tests instead
of the more recent SPEC CPU2000 or CPU2006 benchmarks. Using the more
recent SPEC CPU benchmarks would have magnified (and arguably, biased) the

Power strip
Wall

power
outlet

System
under
test

Profiling
computer

Digital
power meter

Figure 16.7 The experimental setup.
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TABLE 16.2 The Effectiveness of Five Different DVFS Algorithms

Program β 2step nqPID freq mips β-Adaptation

swim 0.02 1.00/1.00 1.04/0.70 1.00/0.96 1.00/1.00 1.04/0.61
tomcatv 0.24 1.00/1.00 1.03/0.69 1.00/0.97 1.03/0.83 1.00/0.85
su2cor 0.27 0.99/0.99 1.05/0.70 1.00/0.95 1.01/0.96 1.03/0.85
compress 0.37 1.02/1.02 1.13/0.75 1.02/0.97 1.05/0.92 1.01/0.95
mgrid 0.51 1.00/1.00 1.18/0.77 1.01/0.97 1.00/1.00 1.03/0.89
vortex 0.65 1.01/1.00 1.25/0.81 1.01/0.97 1.07/0.94 1.05/0.90
turb3d 0.79 1.00/1.00 1.29/0.83 1.03/0.97 1.01/1.00 1.05/0.94
go 1.00 1.00/1.00 1.37/0.88 1.02/0.99 0.99/0.99 1.06/0.96

Each table entry is in the format of relative time/relative energy with respect to the total execution
time and system energy usage when running the application at the highest setting throughout the
entire execution.

benefits of the algorithms because of the increased intensity of off-chip accesses
due to larger data footprints. In any case, the SPEC CPU benchmarks exhibit a
wide range of performance sensitivity to CPU frequency change, enabling us to
capture the average effectiveness of the tested algorithms.

Table 16.2 presents the experimental results for the five interval-based DVFS
algorithms. When a program is memory bound or I/O bound (β close to 0), there
is substantial opportunity to reduce CPU energy consumption with negligible
performance loss. In contrast, when a program is CPU bound, there is little
opportunity to reduce CPU power and energy within a tight performance-loss
bound of 5%. Moreover, none of these five DVFS algorithms could produce a
DVFS schedule that had the exact performance degradation of 5%; the actual
performance loss varied from one benchmark to another.

Among the five interval-based DVFS algorithms, the β-adaptation algorithm
outperforms the others. In a sense, it verifies that our mechanism for computing
CPU boundedness on the fly is of low overhead and that the algorithm is effective
in providing tight control over performance loss due to DVFS as well as exploit-
ing the sublinear performance slowdown for significantly more CPU power and
energy savings. Algorithms mips and nqPID arguably rank second. Algorithm
mips delivers better control over performance loss for all eight benchmarks that
we tested, whereas algorithm nqPID performs better with respect to power and
energy reduction but at the expense of more substantial performance loss. This
is especially obvious for the CPU-bound benchmarks. Algorithms freq and 2step
clearly rank last in their effectiveness (or lack thereof).

So, what have we learned from this experiment? First, the number of instruc-
tions is a better metric for specifying the CPU work requirement than the number
of CPU cycles. For the benchmarks we tested, we found that the number of
instructions tends to remain constant across all settings. In contrast, the number
of CPU cycles varies significantly depending on the executed DVFS schedule. For
example, the swim benchmark, when running at the lowest setting, has only 60%
of the CPU execution cycles running at the highest setting. Typically, algorithm
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freq uses the worst-case execution cycles, which in our case is the number of
CPU cycles at the highest setting. This approach exaggerates the amount of the
CPU work to be done and results in less effective energy reduction. This explains
why algorithm mips performs better than algorithm freq .

Second, a large window size of past PMU reports is better than a small window
size of past PMU reports. In the experiments, we found that the MIPS rate varies
significantly from interval to interval, especially for CPU-intensive applications.
However, the accumulated MIPS rate converges quickly. Thus, the use of the
MIPS rate in a global manner seems to be more effective than the use of the
rate in a local manner. This partially explains the effectiveness of algorithm β-
adaptation compared to algorithm mips . One concern, however, for using a large
window size is that the DVFS algorithm may be less responsive for programs
that expose multiple execution phases of varying degrees of CPU boundedness.

Finally, we confirmed that CPU utilization by itself does not provide enough
information about system timing requirements. As a result, the control over per-
formance loss is unsatisfactory. This can be seen from the experimental results
of algorithm 2step and algorithm nqPID . Algorithm 2step does not seem to per-
form any DVFS scheduling. This is because the CPU for the SPEC benchmarks
is active almost all the time, that is, its CPU utilization is always full. In this
case, there exists no optimal threshold values for 2step to make it more effective.
Algorithm nqPID refines algorithm 2step by removing the threshold mechanism
from the end user. While it is more effective than algorithm 2step in terms of
CPU power and energy reduction, the lack of enough information about deadlines
makes it impossible to provide tight control over performance loss.

16.4.2 Frequency Emulation

A modern DVFS-enabled processor supports a limited set of discrete frequencies.
As a consequence, the desired frequency, calculated by an interval-based DVFS
algorithm, may not be supported directly. In the β-adaptation algorithm, we
chose to emulate the frequency with its two neighboring supported frequencies.
An alternative is to use a nearby supported frequency. In this section, we explore
the importance of frequency emulation.

Consider a synthetic benchmark whose off-chip access pattern looks like
Figure 16.8 with a sampling rate of 1 s. We designed the synthetic benchmark
in such a way that the benchmark consists of two phases running interchange-
ably and iteratively. For Figure 16.8, the two phases follow each other, and each
phase is iterated five times. The major difference between the two phases is that
one phase contains a CPU-intensive workload while the other phase contains a
memory-intensive workload. Many real applications exhibit this kind of off-chip
access pattern, in particular, scientific codes that implement some type of iterative
algorithm.

For the synthetic benchmark, we can enumerate all DVFS schedules in order
to find the schedule that meets our needs. Assuming that each phase is allocated
with one P-state from Table 16.1, we derive various performance and energy
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Figure 16.8 The off-chip access pattern of a synthetic benchmark.
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Figure 16.9 The impact of DVFS schedules on the synthetic benchmark.

impact from these schedules, as shown in Figure 16.9. Each point in the figure
represents one distinct DVFS schedule. The XY mark next to a point indicates
that the schedule associated with the point uses the Xth P-state to execute the
CPU-intensive phase and uses the Yth P-state to execute the memory-intensive
phase. Note that the higher the value of X or Y, the higher the CPU frequency.
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Figure 16.9 provides several valuable information to us. First, running the
synthetic benchmark at the slowest CPU speed (i.e., 0.8 GHz) for both phases,
marked by point 11, hurts the benchmark performance significantly. Second,
CPU energy reduction does not necessarily lead to system energy reduction. In
fact, the DVFS schedule denoted by point 11 results in an increase in system
energy consumption, although CPU energy usage is effectively reduced. Third,
a DVFS schedule that reduces more CPU energy than the other schedule does
not guarantee that the schedule will reduce more system energy consumption.
We found out that naively running the CPU-intensive phase at the fastest CPU
speed and the memory-intensive phase at the slowest speed (the DVFS schedule
denoted by point 41) does not reduce more system energy consumption than
running both phases at the fastest speed (the schedule denoted by 11). Finally,
since all DVFS schedules involving the use of 0.8 GHz (from point 41 all the
way to 11) sacrifice too much performance, that is, over 50%, it is undesirable
to use the P3 state.

Figure 16.10 presents a zoomed view of the upper-left corner of Figure 16.9.
From this zoomed graph, we acquire additional valuable information. In the
previous paragraph, we argued against the use of the lowest CPU frequency.
What about the second-lowest CPU frequency (i.e., 1.6 GHz)? From the figure,
we see that the use or not use of this P-state depends on the degree of performance
slowdown that a user would tolerate. If the performance slowdown is restricted
within 8%, then the 1.6-GHz pair should not be used. Hence, a DVFS algorithm
that assigns fixed P-states regardless of the performance requirement is not good.

Figure 16.10 shows an interesting (if not counterintuitive) case: the DVFS
schedule denoted by point 34 finishes the program quicker than the schedule
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denoted by 42. Intuitively, one would expect point 42 to locate on the left of
point 34, meaning the preferred assignment of the CPU-intensive phases with
a higher CPU frequency and the memory-intensive phases with a lower fre-
quency. However, this is not always the case. These data points tell us that the
induced execution time by a DVFS scheduling policy is quite complicated. For
our example, it is the balance between different sensitivity levels of phases with
respect to performance impact.

Hence, we have demonstrated that the intuition for setting the CPU frequency
high for a CPU-intensive phase and low for a memory-intensive phase is inher-
ently flawed. Furthermore, this pattern of setting the CPU-intensive phases to
higher frequencies and memory-intensive phases to lower frequencies unneces-
sarily constrains the exploitation of DVFS for energy-efficient computing. For
example, point 43 results in 4% performance slowdown while the next available
scheduling policy following the above pattern is 42, which results in 9% perfor-
mance slowdown. If the specified performance constraint is between 4% and 9%,
then the pattern constraint only allows us to use scheduling policy 43 that under-
exploits the performance constraint and does not maximize the energy reduction.

Figure 16.11 shows the execution time and CPU energy consumption of run-
ning the synthetic benchmark at a single (possibly emulated) clock frequency
from 2 GHz to 1.6 GHz at decrements of 0.25 GHz. As we can see from the
figure, the use of a single CPU frequency to execute the synthetic benchmark
provides various degrees of performance impact in a more predictable manner
that is desired.

Finally, Figure 16.12 illustrates the effectiveness of the β-adaptation algorithm
for the synthetic benchmark. The figure plots a set of five execution times and
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Figure 16.12 The energy savings delivered by the β-adaptation algorithm.

energy usage numbers for δ at 5%, 10%, 15%, 20%, and 25%, respectively.
As we can see from the figure, the β-adaptation algorithm tightly regulates
DVFS-induced performance slowdown, and in many cases, the actual perfor-
mance slowdown is less than δ. More importantly, the algorithm performs better
than the single-frequency scheme. Outperforming the single frequency indicates
that the β-adaptation algorithm can emulate the desired single CPU frequency
more precisely, which is also important.

In summary, through a series of experiments we found out that frequency
emulation is critical to the effectiveness of the β-adaptation algorithm.

16.4.3 The Minimum Dependence to the PMU

As we mentioned earlier, many interval-based DVFS algorithms rely on the use
of the PMU to compute their respective intensity metrics, thereby causing a porta-
bility problem across different hardware platforms. The β-adaptation algorithm
only needs one event type, the number of instructions, and therefore minimizes
the dependence on the PMU. In contrast, other similar algorithms such as [16,
17, 33–35] require two or more events to be monitored. In addition, they assume
a specific performance behavior of the workload, whereas the β-adaptation algo-
rithm does not. In this section, we explore these design issues in depth.

We start by contrasting the β-adaptation algorithm with Choi et al.’s algorithm
[16, 17]. Choi et al. assume that the workload has the following execution-time
model:

T (f ) = won · 1

f
+ toff, (16.9)
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where won and toff are two metrics invariant to CPU frequency changes. In
this model, the total execution time T (f ) at frequency f is decomposed into a
frequency-dependent part and a frequency-independent part [36]. The frequency-
dependent part models the time spent for the on-chip workload, in terms of CPU
cycles won. The frequency-independent part models the time spent for off-chip
accesses. The model may be inexact for out-of-order processors because on-chip
execution may overlap with off-chip accesses [37, 38], but the error tends to be
quite small in practice [16, 17].

The intensity metric that Choi et al. used in their algorithms, denoted as βCSP,
is the ratio of the frequency-independent part to the frequency-dependent part in
Equation 16.9:

βCSP(f ) = f · toff

won
. (16.10)

Basically, the metric βCSP quantifies the memory boundedness. Its value lies in
between 0 and ∞. The higher the βCSP, the higher the memory boundedness.
Since the βCSP metric varies with CPU frequency changes, Choi et al.’s algorithm
defines the metric as a vector of values, one for each CPU frequency. In contrast,
the β-adaptation algorithm defines the metric as a single value because it is
invariant to CPU frequency changes.

To compute βCSP, Choi et al. applied the regression to the following equation:

βCSP(f ) = CPI(f )

c0
− 1 where CPI(f ) = c1 · MPI + c0 (16.11)

in order to estimate the value of c0 and thus derive the βCSP value [16]. This is
done through observing two events, the number of instructions and the number
of external memory accesses, and then calculating the number of CPU cycles
per instruction CPI(f ) at frequency f and the number of memory accesses per
instruction, MPI. Implicitly, they assume that MPI is invariant to CPU frequency
changes.

In Reference 17, the equation changes as do the set of events monitored. The
change is not due to the development of a better mechanism to compute βCSP.
Instead, it is because the new CPU type does not have PMU support for counting
the number of memory accesses. As a result, three events are monitored instead
of two.

Next, we contrast the β-adaptation algorithm with Ge et al.’s algorithm [33].
Both DVFS algorithms are based on the use of β. However, Ge et al.’s algorithm
does not use regression to derive the β value. The algorithm estimates the on-chip
computation time and off-chip access time directly. It assumes an execution-time
model similar to Choi et al.’s algorithm:

T (f ) =
L2∑

i=cpu

ai ·
(

li · fmax

f

)
+ amem · lmem, (16.12)
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where ai’s are the number of accesses to CPU, L1 cache, L2 cache, and the
off-chip memory and li’s are the average latency (at the peak CPU frequency)
to these memory resources. On one hand, because of the model, the algorithm
is able to compute the β directly without resorting to regression. On the other
hand, four events need to be tracked to provide the values for ai’s. In addition, the
values of li’s are the averages of the execution times of some micro-benchmarks,
which implicitly assume that the sampled execution times are drawn from the
normal distribution. However, the assumption of the normal distribution may not
hold in practice [39], affecting the accuracy of the execution-time model.

Huang and Feng’s work [35] is similar to that of Ge et al. Their algorithm is
also based on the use of β. By assuming an execution-time model, they were able
to reformulate β as a function of the number of CPU stall cycles. As a result, the
novelty of the algorithm is on how to estimate this number indirectly by means
of the PMU. Huang and Feng proposed to derive this number from both on-chip
measurement and off-chip measurement. The intention is to minimize effect of
under- and over-estimation. To implement their algorithm, four events need to
be monitored, some of which are very microarchtecture specific.

In summary, we compared the β-adaptation algorithm with other closely
related algorithms to gain a deeper understanding of the design issues in a
memory-aware DVFS algorithm. These other algorithms make stronger assump-
tions about the execution behavior, thereby resulting in greater dependence on
the PMU. On one hand, the algorithm designed this way will be very effective
on the hardware platform of the choice. On the other hand, the portability of
the algorithm to other platforms is severely limited. The balance between effec-
tiveness and portability becomes a design challenge in a memory-aware DVFS
scheduling algorithm.

16.5 CONCLUSIONS AND FUTURE WORK

In this chapter, we demonstrated how we can embrace the memory wall to address
the power wall for scientific computing. We proposed a software approach that
provides the active-state power management of the CPU by means of DVFS and
takes advantage of sublinear performance scaling in non-CPU activities. In detail,
we presented a DVFS algorithm called the β-adaptation algorithm . This PMU-
assisted, interval-based algorithm uses a compute-boundedness metric called β

to capture the effect of sublinear performance scaling. By design, the algorithm
minimizes its dependence on the PMU, which is essential for the portability of
the algorithm. Through a series of physical measurements on real systems, the
β-adaptation algorithm has proven to be effective. In particular, the algorithm
provides tight control over DVFS-induced performance loss. We attribute part
of the effectiveness to frequency emulation. Finally, the algorithm is simple to
implement and transparent to the end users.

The β-adaptation algorithm can be improved in multiple ways. One particular
direction is to use compiler hints as additional scheduling support. While this
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idea is not new [27, 40], the type of hint that the compiler should provide so
that the overall DVFS algorithm is effective is still a research topic for general-
purpose systems. To relieve the compiler from the difficulty of giving exact
timing information off-line, we could have the compiler simply identify and
distinguish execution phases of a program in terms of compute boundedness
in an approximate manner. The β-adaptation algorithm can then be refined to
compute the β value for each of these phases to further improve its effectiveness
for memory-bound and I/O-bound programs.
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26. AbouGhazaleh N, Mossé D, Childers B, Melhem R. Toward the placement of power
management points in real time applications. In: Workshop on Compilers and Oper-
ating Systems for Low Power; California, USA; 2001 Sep.



REFERENCES 441

27. Azevedo A, Issenin I, Cornea R, Gupta R, Dutt N, Veidenbaum A, Nicolau A.
Profile-based dynamic voltage scheduling using program checkpoints in the COPPER
framework. In: Design, Automation and Test in Europe Conference; Paris, France;
2002 Mar.

28. Lorch J, Smith A. Improving dynamic voltage algorithms with PACE. In: International
Conference on Measurement and Modeling of Computer Systems; Massachusetts,
USA; 2001 Jun.

29. Seth K, Anantaraman A, Mueller F, Rotenberg E. FAST: frequency-aware static tim-
ing analysis. In: International Real-Time Systems Symposium; Cancun, Mexico;
2003 Dec.

30. Childers B, Tang H, Melhem R. Adapting processor supply voltage to instruction-level
parallelism. In: Kool Chips Workshop; California, USA; 2000 Dec.

31. Hirofumi N, Naoya N, Katsuya T. WT210/WT230 digital power meters. Yokogawa
Technical Report 35; 2003.

32. Milenkovic A, Milenkovic M, Jovanov E, Hite D. An environment for runtime power
monitoring of wireless sensor network platforms. In: IEEE Southeastern Symposium
on System Theory; Alabama, USA; 2005 Mar.

33. Ge R, Feng X, Feng W, Cameron K. CPU MISER: a performance-directed, run-time
system for power-aware clusters. In: International Conference on Parallel Processing;
Xian, China; 2007 Sep.

34. Choi K, Soma R, Pedram M. Fine-grained dynamic voltage and frequency scaling
for precise energy and performance trade-off based on the ratio of off-chip access to
on-chip computation times. IEEE Trans Comput Aided Des 2005;24(1):18–28.

35. Huang S, Feng W. Energy-efficient cluster computing via accurate workload charac-
terization. In: International Symposium on Cluster Computing and the Grid; Shanghai,
China; 2009 May.

36. Hennessy J, Patterson D. Computer architecture: a quantitative approach. 3rd ed. San
Mateo (CA): Morgan Kaufmann; 2002.

37. Hsu C-H, Kremer U, Hsiao M. Compiler-directed dynamic frequency and voltage
scheduling. In: Workshop on Power-Aware Computer Systems; Massachusetts, USA;
2000 Nov.

38. Xie F, Martonosi M, Malik S. Compile time dynamic voltage scaling settings: Oppor-
tunities and limits. In: ACM SIGPLAN Conference on Programming Languages
Design and Implementation; California, USA; 2003 Jun.

39. Settlemyer B, Hodson S, Kuehn J, Poole S. Confidence: analyzing performance
with empirical probabilities. In: Workshop on Application/Architecture Co-design
for Extreme-scale Computing; Crete, Greece; 2010 Sep.

40. AbouGhazaleh N, Mossé D, Childers B, Melhem R, Craven M. Collaborative oper-
ating system and compiler power management for real-time applications. In: IEEE
Real-Time Embedded Technology and Applications Symposium; Washington DC,
USA; 2003 May.



CHAPTER 17

MULTIPLE FREQUENCY SELECTION
IN DVFS-ENABLED PROCESSORS TO
MINIMIZE ENERGY CONSUMPTION

NIKZAD BABAII RIZVANDI, ALBERT Y. ZOMAYA, YOUNG CHOON LEE,
ALI JAVADZADEH BOLOORI, and JAVID TAHERI

17.1 INTRODUCTION

Research on low power systems has received a great deal of attention in recent
years since the sustainability of current technologies and practices has become
a serious issue. A few example systems where lowering power usage is critical
are listed below.

• Wireless Sensors . Several sensors extract data from the environment con-
currently, transmit these data to a processing unit, and receive processed
data accompanied by appropriate commands from the processing unit [1–4].
The sensors and their receiver/transmitter are generally powered by battery
and/or solar cells.

• Satellite Circuits . Satellites typically involve massive number of complex
circuits that must work in low power. These circuits are supplied by solar
cells, the only available power supply in satellites.

• Robots and Surveillance Devices . These devices are heavily used in army,
mine extraction, and difficult or unsafe environments for humans.

• Cell Phones and Laptops . These devices are powered by batteries that are
expected to work for a long time.

In the meantime, stiff increases in energy price and the environmental impact
of carbon dioxide emissions associated with energy generation and transportation
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have forced the issue of reducing energy consumption to be extended to a broader
range of system including high performance computing systems (HPCSs).

Various issues such as resource management in both software and hardware
levels must be addressed to reduce energy consumption in HPCS. An impor-
tant issue in hardware resource management is how to reduce power usage
in processors. Recently, many hardware-based approaches have been proposed
to efficiently reduce energy consumption, particularly for processors. Dynamic
voltage–frequency scaling (DVFS) is perhaps the most appealing method incor-
porated into many recent processors. Energy savings with this method is based
on the fact that the power consumption in CMOS circuits has direct relation
with frequency and the square of voltage supply. In this case, the execution
time and power consumption can be controlled by switching between proces-
sor’s frequencies and voltages. Although this approach was initially designed for
single-processor task scheduling [5], it has recently received much attention in
multiprocessor systems as well [6, 7].

DVFS technique and task scheduling can be combined in two ways: (i) sched-
ule generation and (ii) slack reclamation. In the schedule generation, tasks graph
are (re)scheduled on DVFS-enabled processors in a global cost function includ-
ing both energy saving and makespan to meet both energy and time constraints
at the same time [8, 9]. In slack reclamation, which works as a postprocessing
procedure on the output of scheduling algorithms, DVFS technique is used to
minimize the energy consumption of tasks in a schedule generated by a sepa-
rate scheduler. The existing methods based on DVFS technique, however, have
two major shortcomings: (i) most of them focus on schedule generation and do
not adequately take the slack reclamation approaches into account to save more
energy and (ii) the existing slack reclamation methods use only one frequency for
each task among all discrete set of processor’s frequencies. Using one frequency
usually results in uncovered slack time where processor and other devices only
waste energy.

In this chapter, we focus on slack reclamation and propose a new slack recla-
mation technique, multiple frequency selection DVFS (MFS-DVFS). The key
idea is to execute each task with a linear combination of more than one fre-
quency such that this combination results in using the lowest energy by covering
the whole slack time of the task. We have tested our algorithm with both random
and real-world application task graphs and compared with the results in Refer-
ences 7 and 10. The experimental results show that our approach can achieve
energy almost identical to the optimum energy saving.

17.2 ENERGY EFFICIENCY IN HPC SYSTEMS

Many electronic systems in our life such as satellite systems, cell phones, and
game instruments use rechargeable batteries as their power supplies. Although
the battery capacity has grown significantly in recent years (the battery capacity
increases 5% per year), battery life is still the major drawback for most of the
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Figure 17.1 Energy consumption levels in HPCS.

electronic systems. In addition to power-aware battery-based systems, the issue of
energy consumption has recently attracted a great amount of attention in HPCSs.
Energy consumption issue in such systems can be classified into three groups: (i)
system-level resource allocation, (ii) service-level energy load distribution, and
(iii) task scheduling level (Fig. 17.1).

In the system level , the problem is how to distribute computational resources
(e.g., CPU, network, memory, and I/O) between large-scale data storage and data
processing centers (such as supercomputers and data centers). Fairly distributed
resources among applications (or services) not only need to obtain individual
adaptation among resources but also need to understand the interaction between
individual resources when they work as a system. Therefore, the major chal-
lenge here is to find both the relationship among system resources and their
trade-off, which may cause an optimal balance between performance, QoS, and
energy consumption [11]. Among the different technologies at system level for
managing resources between workload, virtualization becomes a key technology
in data centers. Virtualization allows the computational resources to be shared
between different workload levels. Much of the incoming workload to data cen-
ters is of medium size, often requiring a small fraction of the computational
resources. The servers typically spend around 70% of their maximum power
consumption even in low utilization. With virtualization, such a workload can
run within a virtual machine (VM), causing significant savings in overall energy
usage. The associated VMs may require fewer amounts of resources, and there-
fore, they can be run on a single hardware unit. It is obvious that when less
hardware is used, less energy is wasted for both operating and cooling of the
servers.

At service level , energy reduction by load balancing, scheduling, and mapping
workload is important. The main challenge is to utilize appropriate algorithms to
both multiplex/demultiplex workload in order to save energy and make a trade-off
between performance and service cost reduction because of energy savings. Also,
to avoid hot spots in data centers due to high loaded nodes, services can be moved
from nodes with high load and high temperature to nodes with smaller load and
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lower temperature. Generally, this movement of services should happen when
the destination nodes can operate the services in an energy-efficient way [11].

At site level data/task scheduling , the focus of this chapter, the operating
system (OS) and hardware configuration such as dynamic power management,
microarchitecture techniques, and dynamic voltage scaling are used to decrease
power. Here, the typical question could be

“What is the suitable OS/hardware configuration to process tasks in the shortest
possible time and with minimum energy?”

17.3 EXPLOITATION OF DYNAMIC VOLTAGE–FREQUENCY SCALING

DVFS is a popular technique in computer architecture and is used to reduce the
energy consumption of microprocessors or control the amount of the heat gen-
erated by circuits. This technique is commonly utilized in battery-based devices
such as laptops and cell phones where decreasing the energy usage of battery
is necessary. In addition, DVFS is used in high computing nodes not only to
decrease the power of the nodes but also to save more energy to cool down
the nodes’ places. An approximation model shows that the dynamic power in
CMOS circuits is a linear function of both switching frequency and square of
the voltage, that is, CV 2f , where C is the effective switching capacity per clock
cycle. Therefore, workload (or task) can save more energy when it is executed
in lower voltage and frequency. In general, a computing node simultaneously
executes several tasks with intertask relationships (e.g., precedence constraints).
These intertask relationships typically incur slack time (idle time) between tasks
where can be used by DVFS to reduce energy usage. Specifically, the slack time
associated with a task is utilized to execute the task at a lower voltage–frequency;
this in turn results in energy reduction.

There are two ways to combine scheduling and DVFS: (i) independent slack
reclamation and (ii) integrated scheduling generation. The existing methods in
literature based on these combinations have two major limitations: (i) most of
them focus on integrating DVFS and scheduling (integrated schedule generation)
and do not sufficiently consider the slack reclamation approaches to save more
energy and (ii) the existing slack reclamation methods use only one frequency for
each task among all discrete set of processor frequencies. Using one frequency
usually results in uncovered slack time where processor and other devices only
waste energy.

17.3.1 Independent Slack Reclamation

Independent slack reclamation works on the output of other scheduling algorithms
as a postprocessing procedure by applying DVFS technique to minimize energy
consumption of generated tasks by a scheduler. Kimura et al. [7] proposed an
energy reduction algorithm for power-scalable clusters supporting DVFS. In a
simplified version of this algorithm, the appropriate frequency is chosen among
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a set of processor frequencies for each task regarding its slack time. Another
algorithm was proposed in Reference 10 to reclaim slack time for each task in
a directed acyclic graph (DAG) by linear combination of the processor’s highest
and lowest frequencies. To the best of our knowledge, among the existing energy-
aware algorithms in HPCSs, these two methods are the most similar approaches
to our MFS-DVFS algorithm presented in this chapter. We address the simplified
version of these two algorithms as reference DVFS (RDVFS) and maximum-
minimum-frequency DVFS (MMF-DVFS) in the rest of this chapter and use
them as benchmarks to evaluate the performance of our proposed algorithm.

17.3.2 Integrated Schedule Generation

In integrated schedule generation, task graphs are (re)scheduled on DVFS-
enabled processors using a global cost function including both energy saving
and makespan to meet both energy and time constraints at the same time [8, 9].
Therefore, the final schedule will be a trade-off between makespan and energy.
Kappiah et al. [12] presented the just-in-time DVFS technique to fill slack time
in MPI (message passing interface) programs. They utilized a system called Jitter
to reduce the frequency on nodes with more slack times and fewer computations.
Jitter aimed to make sure that the tasks came just in time without increasing
overall execution time. The DVFS technique was applied in Reference 8 on
processors that did not work in peak performance during execution of a parallel
application. The best processor frequency of each task was selected by analyzing
computation and communication power profiles collected before the execution.
A method to reduce power consumption was presented in Reference 13 by
adaptively activating and deactivating hardware resources and, in particular,
memory for intensive HPC applications. Cache missing in accessing the main
memory also plays an important role in adjusting and triggering processor slack
times. Lee and Zomaya [9] presented a DVFS-based algorithm to minimize
both completion time and energy consumption of precedence-constrained
parallel jobs on HPCSs. This method tried to minimize a summation of two
cost functions: completion time and energy. Consequently, the final result was
a trade-off between the quality of scheduling and energy consumption. The
concept of energy scalability in formal terms was introduced by Ding et al.
[14]. In addition to studying the energy efficiency/isoefficiency concept, they
extended an analytical model to investigate the trade-off between performance
and energy saving in HPCS. Molnos and Goossens [15] classified the slack
times in real-time applications into static, work, and shared lack groups for
multiple dependent tasks on multiple DVFS-enabled processors. They proposed
a dynamic dependency-aware task scheduling to adjust voltage/frequency
of each processor regarding the tasks’ real-time deadlines. A profile-based
power-performance optimization method was presented in Reference 16 to also
utilize DVFS in HPCS. Here, the execution of a program was divided into
several regions. In trial steps, profile information of each region, including
power and execution profiles was extracted and then utilized to find its best
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combination of the processors’ voltages and frequencies. In Reference 17, an
upper limit for system energy usage was selected externally. Subsequently, a
combination of performance modeling and performance prediction was applied
to reduce execution times with respect to their predefined energy usage upper
limit. After creating models for both execution time and energy consumption,
key parameters of models were estimated by executing a program for a small
number of times and then regressing the estimated parameters. Here, for better
estimation of parameters, the following steps were iterated until a proper
schedule is achieved: (i) using models to predict each possible scheduling of
tasks, (ii) executing the program a few times with the best predicted schedule,
and (iii) updating estimated key parameters. Rountree et al. [18] proposed
an energy-aware schedule generation algorithm for DVFS-enabled processors
where a combination of all processor frequencies are used along with a linear
programing method to perform the optimization.

17.4 PRELIMINARIES

In this section, the system, application, and energy models used in our study are
described.

17.4.1 System and Application Models

In this work, we assume an HPCS composed of N homogeneous processors
with individual memories. The switching time from one frequency to another is
typically in microseconds (between 30 and 150 μs [19]), while the execution time
of tasks is in milliseconds. Therefore, when compared with the tasks’ execution
time, the switching time can be ignored. We consider a set of M dependent
tasks denoted as A(1), A(2), . . . , A(M) represented by task graph or DAG. The
kth task (A(k)) has the following parameters (Fig. 17.2a): (i) t

(k)
OS is the task

execution time in the original scheduling without slack reclamation; (ii) T (k) is
the whole time the processor assigns to this task and is a summation of the task’s
execution and slack times; (iii) t

(k)
i represents the task execution time when it

is executed in frequencyfi ; (iv) K(k) is the number of tick cycles required for
executing the task and can be calculated as K(k) = fNt

(k)
OS = f

(k)
RD t

(k)
RD, where fN is

the highest processor frequency; and (v) f
(k)
RD and t

(k)
RD are frequencies calculated

from the RDVFS algorithm, explained in Section 17.5.2, and its associated time,
respectively.

17.4.2 Energy Model

A typical DVFS-enabled processor can execute a task in a discrete set of fre-
quencies (f1 < f2 < · · ·> fN−1 < fN). For example, AMD Turion MT-34 can
operate at six frequencies ranging from 800 to 1800 MHz [5]. The power con-
sumption of a processor consists of two parts: (i) a dynamic part that is mainly
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Figure 17.2 Time representation of MFS-DVFS and other algorithms: (a) the original
scheduling, (b) the RDVFS algorithm, (c) the optimum continuous frequency, (d) the
MMF-DVFS algorithm, and (e) our proposed method in this chapter (MFS-DVFS).

related to CMOS circuit switching energy and (ii) a static part that addresses the
CMOS circuit leakage power [20]. In CPUs, the power consumption is formulated
as [21] {

Pdynamic = Cefff v2

Pleakage ∝ v.
(17.1)

Here, Ceff, f , and v represent the effective capacitance and processor’s fre-
quency and voltage, respectively. Because the leakage power is always negligible
when compared with the dynamic power [20], the overall energy consumption
of the kth task (A(k)) in DAG is calculated as

E(k) = Pdynamic t
(k)
i + PIdle(T

(k) − t
(k)
i ). (17.2)
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CPU power consumption can be modeled as a convex function of frequency
as Pdynamic = αf 3 + γ [21]. Therefore, the energy of kth task (A(k)) in Equation
17.2 is changed to

E(k) ≈ (αf 3 + γ )t
(k)
i + PIdle(T

(k) − t
(k)
i ). (17.3)

17.5 ENERGY-AWARE SCHEDULING VIA DVFS

In this section, we explain existing DVFS-based approaches to reduce energy
consumption of processors by reclaiming the slack time for each task. Finally, we
present our algorithm, MFS-DVFS, that uses a linear combination of frequencies
to solve the stated problem.

17.5.1 Optimum Continuous Frequency

The optimal approach to remove slack time and as a result reduce energy con-
sumption of a processor is to perform a task using a continuous frequency by the
processor (Fig. 17.2c). Before moving further, proving the following theorems is
necessary.

Theorem 17.1 If f1 and f2(>f1) execute a task in t1 and t2, respectively, then,
E(k)(f1, t1) < E(k)(f2, t2).

Proof:

E(k)(f2, t2) − E(k)(f1, t1) = (αf 3
2 + γ )t2 + PIdle(T

(k) − t2)

− (αf 3
1 + γ )t1 + PIdle(T

(k) − t1)

= . . .

= (f2 − f1)[αf1f2(f2 + f1) − γ + PIdle]

≥ 0

Generally, PIdle > γ ; therefore, Theorem 17.1 is proved.

Theorem 17.2 If processor frequency is continuous (unrealistic assumption),
the optimum energy for kth task is obtained when the task covers the whole task’s
slack time (T (k)).

Proof: The result in Theorem 17.1 shows that when a frequency covers the whole
slack time, it gives the optimum power consumption. Note that this frequency may
not exist unless the frequency set is continuous.
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Refer to Theorem 17.2, for kth task (A(k)), the optimum continuous frequency
and its related energy are defined as f

(k)
opt-cont and E

(k)
opt-cont and are calculated

as [10] ⎧⎪⎨
⎪⎩

f
(k)
opt-cont = fN

t
(k)
OS

T (k)

E
(k)
opt-cont = [α(f

(k)
opt-cont)

3 + γ ]T (k).

(17.4)

In actual systems, however, frequencies must be chosen from a discrete set
of frequencies. Also, finishing a task by its deadline may require choosing a
frequency that is faster than the optimal frequency. Therefore, the optimal dis-
crete frequency of kth task is the first frequency in the discrete set larger than
f

(k)
opt-cont. This discrete frequency and its associated time are f

(k)
RD and t

(k)
RD, respec-

tively. The algorithm calculating this frequency is referred to as RDVFS for our
comparison [7].

17.5.2 Reference Dynamic Voltage–Frequency Scaling (RDVFS)

RDVFS is a simplified version of the algorithm introduced by Kimura et al.
[7] for power-scalable high performance clusters supporting DVFS. It reduces
energy consumption of processors by selecting the smallest available processor
frequency (fRDVFS) capable of finishing a task in a given time frame (Fig. 17.2b).
The details of RDVFS algorithm are shown in Figure 17.3.

RDVFS algorithm: slack reclamation by one frequency
Input: the scheduled tasks on a set of P processors
1. for task A(k) scheduled on processor Pj

2. Compute the optimum continuous frequency (f
(k)
opt-cont) from

Equation 17.4
3. Pick the closest higher frequency to f

(k)
opt-cont in the cpu

frequency set, e.g.

[fmax, . . . , fn, fn−1, . . . , fmin]

fn−1 < f
(k)
opt - cont < fn

}
⇒ f

(k)
RDVFS = fn

4. t
(k)
RDVFS ← f

(k)
opt - cont

f
(k)
RDVFS

T (k)

5. ERDVFS ← f
(k)
RDVFSt

(k)
RDVFS + PIdle

(
T (k) − t

(k)
RDVFS

)
6. end for
7. return (f

(k)
RDVFS and t

(k)
RDVFS for all tasks)

Figure 17.3 RDVFS algorithm.
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For each task assigned to a processor, fRDVFS, which is the first frequency
larger than optimal frequency (fopt-cont) calculated from Equation 17.4, is likely
to be the best discrete frequency candidate to execute the task within the given
time frame and covering its related slack time. As mentioned before, a major
limitation of RDVFS technique is the usage of only one frequency to execute the
task.

17.5.3 Maximum-Minimum-Frequency for Dynamic
Voltage–Frequency Scaling (MMF-DVFS)

The MMF-DVFS technique presented in Reference 10 is similar to RDVFS as
both these approaches use DVFS to reduce energy consumption of scheduled
dependent tasks in clusters. Unlike RDVFS algorithm which applies only one
frequency to execute a task, MMF-DVFS uses a linear combination of maximum
and minimum processor frequencies to achieve the optimal energy consumption
regarding to slack time of the task, as shown in Figure 17.2d. Before explaining
further details of MMF-DVFS, proving the following lemma is essential.

Lemma 17.1 If fDVFS is the appropriate DVFS frequency obtained from RDVFS
algorithm with task’s energy consumption EDVFS, then there is always a linear
combination of the processor’s minimum and maximum frequencies with energy
consumption less than EDVFS.

Proof: If fN , f1, and fDVFS are the maximum, minimum, and appropriate DVFS
processor frequencies extracted from DVFS algorithm, then the lemma indicates
that the following nonequation always has nonzero values for tfN

and tf1
for kth

task: {
EfN

+ Ef1
≤ EDVFS

tfN
+ tf1

≤ T .
(17.5)

According to Equation 17.3, Ef ≈ Kf 3t . By combining this with Equation
17.5, we achieve the following equation:

{
f 3

N
∗tfN

+ f 3
1
∗tf1

≤ f 3
DVFS

∗(tfN
+ tf1

)

tfN
+ tf1

≤ T .
(17.6)

Assuming tfN
+ tf1

= T , the Equation 17.6 converts to

0 ≤ tfN
≤ fDVFS − f1

fN − fDVFS

∗tf1
,

indicating that there is always a valid positive tfN
and tf1

. The details of MMF-
DVFS algorithm are shown in Figure 17.4.
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MMF-DVFS algorithm: linear combination of maximum and minimum
frequencies

Input: the scheduled tasks on a set of P processors
1. for task A(k) scheduled on processor Pj

2. Calculate amount of time for fmax, fmin:

- t
(k)
fN

← f
(k)
RDVFSt

(k)
RDVFS − T (k)f1

fN − f1

- t
(k)
f1

← T (k)fN − f
(k)
RDVFSt

(k)
RDVFS

fN − f1

3. E(k)MMF - DVFS ← f 3
N t

(k)
N + f 3

1 t
(k)
1

4. end for
5. return (the set of (t

(k)
N , t

(k)
1 ) for all tasks)

Figure 17.4 MMF-DVFS algorithm.

The MMF-DVFS algorithm finds the appropriate time portions of the maxi-
mum and minimum frequencies to execute each scheduled task. It can be seen
from Figure 17.7 that the MMF-DVFS algorithm works in the same way as
RDVFS in the worst case.

In the next section, we present the MFS-DVFS algorithm, which uses a linear
combination of a variety of processor frequencies instead of two to perform a
predefined task (Fig. 17.2e). The new approach is more energy efficient compared
to the other algorithms discussed earlier in this chapter; its energy saving is quite
close to the case of using continuous optimum frequency.

17.5.4 Multiple Frequency Selection for Dynamic Voltage–Frequency
Scaling (MFS-DVFS)

The RDVFS algorithm decreases task execution energy by choosing the best
processor’s speed with respect to the task’s idle time [7]. As an example, a
set of four tasks scheduled on two processors is shown in Figure 17.2a, where
Figure 17.2b, c, and d shows the results of applying the RDVFS, optimum
continuous frequency, and MMF-DVFS algorithms on the task, respectively.
Figure 17.2e also shows the principle of MFS-DVFS algorithm, the proposed
algorithm in this chapter. Initially, the task is executed for t

(k)
N time units with

the highest processor frequency, then its execution frequency is reduced to the
second highest value and spends t

(k)
N−1 time units in this frequency. Then, the

frequency decreases, and the task is executed in other frequencies until it is
finished.

The key idea of MFS-DVFS is to execute tasks using a linear combination
of available frequencies so that their slack times are fully filled/covered. MFS-
DVFS can be defined as finding the best combination of available frequencies
(f1 < . . . < fN) to perform a predefined task with K steps of computation within
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a predefined time T . Therefore, the minimization of power consumption of the
kth task (A(k)) in MFS-DVFS algorithm is formulated as an optimization problem
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min : E(k) =
N∑

i=1
t
(k)
i (αf 3

i + γ ) + PIdle

(
T (k) −

N∑
i=1

t
(k)
i

)
s.t.

1.
N∑

i=1
t
(k)
i fi = K(k)

2.
N∑

i=1
t
(k)
i ≤ T (k)

3. t
(k)
i ≥ 0, for i = 1, 2, . . . , N.

(17.7)

The optimization problem in Equation (17.7) represents the power consump-
tion problem: how to choose t

(k)
i so that the consumed energy of task A(k) is

minimized. For executing the task, the processor has to use the same number of
clock ticks in both RDVFS and MMF-DVFS algorithms as described by con-
straint 1 in Equation (17.7). Applying the two aforementioned theorems simplifies
the optimization problem in Equation (17.7) to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min : E(k) =
N∑

i=1
t
(k)
i (αf 3

i + γ )

s.t.

1.
N∑

i=1
t
(k)
i fi = K(k)

2.
N∑

i=1
t
(k)
i = T (k)

3. t
(k)
i ≥ 0, for i = 1, 2, . . . , N.

(17.8)

To find the best possible values of t
(k)
i , this optimization algorithm must be

applied to all tasks in the scheduling. There are cases that MFS-DVFS cannot
improve the power consumption, for example, when a task reaches to f1 (the
lowest frequency) in the RDVFS algorithm or it has no idle time. Therefore, to
improve the speed of MFS-DVFS algorithm, eligible tasks should be extracted
before optimization

17.5.4.1 Task eligibility. To simplify the formulation, let us consider four
discrete values for frequencies (the real processors have normally four to five
frequencies). In any case, the same procedure can be used for the higher number
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of frequencies. The problem in Equation 17.7 becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min : E(k) =
4∑

i=1
t
(k)
i (αf 3

i + γ )

s.t.

1. t
(k)
1 f1 + t

(k)
2 f2 + t

(k)
3 f3 + t

(k)
4 f4 = K(k)

2. t
(k)
1 + t

(k)
2 + t

(k)
3 + t

(k)
4 = T (k)

3. t
(k)
i ≥ 0, for i = 1, 2, . . . , 4.

Merging constraints 2 and 3 results in⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t
(k)
1 = T (k)f2 − K(k)

f2 − f1
− t

(k)
3

f2 − f3

f2 − f1
− t

(k)
4

f2 − f4

f2 − f1

t
(k)
2 = K(k) − T (k)f1

f2 − f1
− t

(k)
3

f3 − f1

f2 − f1
− t

(k)
4

f4 − f1

f2 − f1
.

Therefore, the power consumption function changes to

E(k) = a
(k)
0 + a

(k)
1 t

(k)
3 + a

(k)
2 t

(k)
4 , (17.9)

where

a
(k)
0 = (αf 3

1 + γ )
T (k)f2 − K(k)

f2 − f1
+ (αf 3

2 + γ )
K(k) − T (k)f1

f2 − f1
,

a
(k)
1 = (αf 3

3 + γ ) + (αf 3
1 + γ )

f3 − f2

f2 − f1
− (αf 3

2 + γ )
f3 − f1

f2 − f1
, (17.10)

a
(k)
2 = (αf 3

4 + γ ) + (αf 3
1 + γ )

f4 − f2

f2 − f1
− (αf 3

2 + γ )
f4 − f1

f2 − f1
.

To guarantee achieving less energy consumption using MFS-DVFS algorithm,
the following condition should be satisfied:

a
(k)
0 + a

(k)
1 t

(k)
3 + a

(k)
2 t

(k)
4 < E

(k)
RD.

a
(k)
0 + a

(k)
1 t

(k)
3 + a

(k)
2 t

(k)
4 shows a three-dimensional surface, and the search region

is where it satisfies the three following constraints: (i) t
(k)
3 ≥ 0, (ii) t

(k)
4 ≥ 0, and

(iii) E
(k)
RD > 0. The first two constraints in Equation 17.11 are also considered by

optimization in Equation 17.8. The only constraint that specifies the search region
is constraint 3. If a task satisfies this constraint, then it can be concluded that
there is a valid search region for this task where MFS-DVFS gives better result
than RDVFS. Then linear programing explores this search region to find out the
best suitable frequencies and their associated times. The details of MFS-DVFS
algorithm are shown in Figure 17.5.
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MFS-DVFS algorithm: linear combination of frequencies
Input: the scheduled tasks on a set of P processors
1. For task A(k) scheduled on processor Pj

2. Apply RDVFS algorithm on this task
3. if E

(k)
RD > 0 for this task then

- this task is eligible for MFS-DVFS
- Solve optimization problem in Equation 17.6 by

linear programing
else

RDVFS is the optimal result
4. end if
5. end for
6. return (the voltages and frequencies of optimal execution)

Figure 17.5 MFS-DVFS algorithm.

17.6 EXPERIMENTAL RESULTS

In this section, we present the results of energy consumption obtained from
simulating our MFS-DVFS algorithm in comparison with RDVFS, MMF-DVFS,
and optimum continuous frequency. In order to compare the algorithms, the
following schedulers were used with a different number of processors: (i) list
scheduling, (ii) list scheduling with longest processing time (LPT) first, and (iii)
list scheduling with shortest processing time (SPT) first.

The simulations were carried out using the simulator we developed as a part
of this study.

17.6.1 Simulation Settings

We use the voltage/frequency setting of two real processors in our simula-
tions: Transmeta Crusoe [7] and Intel XScale [22]. Table 17.1 shows the volt-
age/frequency and the related power consumption of these processors following
the convex models of each processor. These models use least-square curve fitting
to fit a convex function (αf 3 + γ ) on the frequency-power of two real processors,
as shown in Figure 17.6.

We evaluate the performance of MFS-DVFS with two sets of task graphs:
randomly generated and real-word parallel applications. The two real-world appli-
cations used in our experiments were LU decomposition and Gauss–Jordan
method, with DAGs extracted from Reference 19. We applied a large number of
variations in the number of processors and tasks for each application in our simu-
lations. The random task graph set consisted of 1500 graphs with five graph sizes
of 100, 200, 300, 400, and 500 nodes, together with three different schedulers
on five sets of 2, 4, 8, 16, and 32 processors.

These task graphs have different number of tasks, task distributions, commu-
nication costs, and task dependencies. The execution cycle of these randomly
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Figure 17.6 The least-square modeling of (a) Transmeta Crusoe, and (b) Intel XScale
processors.

TABLE 17.1 The Voltage/Frequency Setting of Two Real Processors in the
Experiments with Their Power Consumption and Convex Models

Level Frequency (MHz) Voltage (V) Power (W)

Transmeta Crusoe

0 667 1.6 5.3
1 600 1.5 4.2
2 533 1.35 3.0
3 400 1.225 1.9
4 300 1.2 1.3

Convex model P = 1.94 × 10−5

(
f

106

)3

+ 4.44 mW

Intel XScale

0 1000 1.8 1.6
1 800 1.6 0.9
2 600 1.3 0.4
3 400 1 0.17
4 150 0.75 0.08

Convex model P = 1.55 × 10−6

(
f

106

)3

+ 60 mW

generated tasks varied from 5–10 million cycles from a uniform distribution. We
used 150 real-world application task graphs based on LU decomposition algo-
rithm in our experiments. For the real-wold application graph, the same number
of task graphs, ranging from 100 to 500 tasks, with three schedulers and five sets
of processors was investigated.
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17.6.2 Results

The simulation results of normalized energy consumption for all DAGs
(Figs. 17.7 and 17.8) are shown in Table 17.2. This table clearly denotes
the superior performance of MFS-DVFS scheduling compared to the other
approaches in all cases. Figure 17.8 shows the significance of all algorithms,
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Figure 17.7 The normalized energy consumption on the number of tasks: (a) the typical
list scheduler, (b) the list scheduler with longest processing time (LPT) first, and (c) the
list scheduler with shortest processing time (SPT) first.
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Figure 17.8 The normalized energy consumption of MFS-DVFS and other algorithms
on the number of tasks for two real-world applications: (a) LU decomposition and (b)
Gauss–Jordan method.
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TABLE 17.2 The Energy Saving Percentage of MFS-DVFS and Other Algorithms
on 1800 Random and Real Task Graphs

Random Gauss–Jordan LU Decomposition,
Experiment Tasks, % Method, % %

RDVFS 13.00 0.1 24.8
MMF-DVFS 13.50 0.11 25.5
MVFS-DVFS 14.40 0.11 27.0
Optimum continuous frequency 14.84 0.14 27.81

Processor 1

Processor 2

Processor 3

Time

(a) (b)

T1
T1 T2 T3

T5T4

T6

T4 T6

T5T2

T3

C14 C46

C56

C14 C24C15 C35

C56C46

C15
C24

C25

C35

Figure 17.9 Gauss–Jordan task graph: (a) a sample scheduling of a three-level
Gauss–Jordan task graph on three processors and (b) a Gauss–Jordan DAG for three
levels. The communication costs (Cij ) are equal to 10 time units for all i and j .

including MFS-DVFS, in saving energy in LU decomposition, while these
algorithms have less effect on performance in the case of Gauss–Jordan tasks.
For a deeper examination of this behavior, a sample three-level Gauss–Jordan
application job scheduling on three processors is shown in Figure 17.9. As
explained earlier, since there is no idle time among the tasks in Gauss–Jordan
graph applications, none of these algorithms can efficiently reduce energy
consumption.

An interesting issue for further investigation is the relationship between energy
consumption and the number of processors in our experiments. Increasing the
number of processors expedites the processing time and consequently reduces
the makespan; however, as a drawback, it also increases the system slack time.
Figure 17.10 addresses this issue and illustrates the percentage of overall energy
saving of the system on the number of processors for random and LU decom-
position task graphs. The graphs in this figure reveal the fact that increasing the
number of processors results in saving more energy.

The major limitation on most DVFS-based algorithms working with one fre-
quency (such as the RDVFS algorithm) is that the frequency combinations are
fixed. Those algorithms work better when the processor can run at any arbitrary
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Figure 17.10 The comparison between the percentages of energy savings in MFS-DVFS
with other algorithms on the number of processors: (a) 1500 randomly generated task
graphs and (b) 300 LU decomposition task graphs.

set of frequencies. However, owing to technological constraints, the number of
valid frequencies is limited so that these algorithms have to choose the most
appropriate frequency among a set of frequencies defined by DVFS. According
to the fixed number of tick cycles for a task (constraint 1 in Equation 17.8), the
relation among t

(k)
RD, f

(k)
RD , fN , and t

(k)
OS for task A(k) is

t
(k)
RD = f

(k)
RD

fN

t
(k)
OS .
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It is shown that although t
(k)
RD is a continuous variable, it cannot accept all

values; therefore, the slack time of tasks cannot be minimized. However, in
MFS-DVFS algorithm, the relation between those variables is

f
(k)
RD t

(k)
RD = f1t

(k)
1RD

+ f2t
(k)
2RD

+ · · · + fNt
(k)
NRD

,

which is one equation with more than one variable
(
t
(k)
1RD

, · · · , t (k)
N

)
and might

have many eligible results; thus, the appropriate values of these variables, with
regard to the task conditions, can minimize the slack time and/or reduce energy
consumption.

An overhead with MFS-DVFS and MMF-DVFS is the transition time of
switching from one frequency to another. An almost true assumption is that
the overhead of transition times is relatively much less than the execution times
of tasks; therefore the transition times overhead can be neglected in the calcula-
tion. In our experiments, the tasks with T at least 20 times more than transition
time is considered for the MFS-DVFS algorithm.

17.7 CONCLUSION

Since most traditional static task scheduling algorithms for HPCS do not consider
power management, we addressed the energy issue with task scheduling and
presented the MFS-DVFS algorithm. Our algorithm adopted the DVFS technique,
a recent advance in processor design, to reduce energy consumption.

In this chapter, we studied the existing DVFS-based approaches to cover idle
time, particularly, using a linear combination of more than one frequency to
reduce energy consumption of processors. First, we noticed the energy model in
DVS-enabled processors. Then, we formulated our algorithm (MFS-DVFS) as an
optimization problem of all frequencies for each task and then solved it to find
the suitable time portions. Simulation results of 1500 randomly generated task
graphs and 300 real-world application task graphs showed the effectiveness of
the MFS-DVFS algorithm compared with other algorithms.
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CHAPTER 18

THE PARAMOUNTCY OF
RECONFIGURABLE COMPUTING

REINER HARTENSTEIN

18.1 INTRODUCTION

In reconfigurable computing (RC), for example, by field-programmable gate
array (FPGA), practically everything, which is running on traditional comput-
ing platforms, can be implemented. For instance, recently, the historical Cray
1 supercomputer has been reproduced as cycle-accurate and binary-compatible
using a single Xilinx Spartan-3E 1600 development board running at 33 MHz
(the original Cray ran at 80 MHz) [1]. RC [2, 3] is the paramount issue for con-
tinuing the progress of computing performance and for the survival of worldwide
computing infrastructures. Section 18.2 stresses that worldwide, all our computer-
based infrastructures are extremely important [4] for avoiding a massive crisis of
the global and local economy. Section 18.3.1 warns of the future unaffordability
of the electricity consumption of all the computers worldwide, visible and embed-
ded, and briefs that low power circuit design [5–8] and other traditional “green
computing” [9–11], although important and welcome, are by far not sufficient
to guarantee affordability and not at all sufficient to support further progress for
future applications of high performance computing (HPC). Thousands of books
have been published about world economy, energy, CO2, climate, survival on
the globe, water, food, health, etc. Hundreds of them are about peak oil. I have
listed just a few of them (12-89).

In contrast to the still dominant von Neumann (vN) machine, RC [90–92],
the second RAM-based machine paradigm, introduced in Section 18.4, offers
a drastic reduction of the electric energy budget and speedup factors by up to
several orders of magnitude compared to using the vN paradigm, now beginning
to lose its dominance [93, 94]. Sections 18.5.3 and 18.5.6 stress the urgency
of moving RC from niche to mainstream and urge that we need a worldwide
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mass movement of a larger format than that of the VLSI design revolution of
around 1980, where only an urgently needed designer population has been miss-
ing [95–107]. This time a properly qualified programmer population is missing.
But we need to push the envelope into two different directions. The VLSI design
revolution has been the most effective project in the modern history of comput-
ing, but we need even more today. A dual-rail effort (Section 18.5.4) is needed
for simultaneously developing the scene toward parallel programming for many-
core architecture and for structural programming of RC, as well as heterogeneous
systems including the cooperation of both paradigms.

Currently, the dominance of the basic computing paradigm is gradually wear-
ing off (Section 18.4), with the growth of the area of RC applications bringing
profound changes to the practice of scientific computing, cyber physical systems
(CPS), and ubiquitous embedded systems, as well as new promises of disrup-
tive new horizons for affordable very HPC. Owing to RC, the desktop personal
supercomputer is also near [106]. To obtain the payoff from RC, we need a new
understanding of computing and supercomputing, as well as of the use of acceler-
ators (Section 18.5.7). For bridging the translational gap, the software/configware
(SC) chasm, we need to think outside the box [4].

18.2 WHY COMPUTERS ARE IMPORTANT

Computers are very important to all of us. Computers are used by many millions
of people around the world. Typical orders of magnitude in the computer appli-
cation landscape are hundreds of applications, consisting of tens of thousands of
programs, with millions of lines of code, having been developed by the expendi-
ture of thousands of man-years investment volumes up to billions of dollars [4].
We must maintain these important infrastructures. Wiki “Answers pages” tell us
why computers running this legacy software are indispensable in the world [108].
The computer is an electronic device used in almost every field even where it
is most unexpected [109]. Now, we cannot imagine a world without computers.
These days, computers are the tools for engineers and scientists and also they
are used by many millions of people around the world.

The computer has become very important nowadays because it is accurate,
is fast, and can accomplish many tasks easily. Otherwise, to complete many
tasks manually much more time is required (Fig. 18.1). It can do very big cal-
culations in just a fraction of a second. Moreover, it can store huge amount of
data. We also get information on many different aspects using Internet on our
computer. But there are more reasons why computers are important. Many more
different kinds of local or even worldwide infrastructures will be controlled by
networks of computers [109]. Here, computer crashes or software crashes may
cause widespread disasters by domino effects [83–89]. In his novel, Hermann
Maurer depicts the worldwide total chaos caused by a network crash in the year
2080, where millions of people die and the life of billions is threatened [84, 85].
A thrilling novel? Yes, but also a textbook about possible solutions.
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Figure 18.1 Lufthansa reservation anno 1960. Reproduced with permission from [110].

Banks. Banks use computers to keep record of all transactions and other
calculations. Computers provide speed, convenience, and security. Com-
munication is another important aspect that has become very easy through
Internet and e-mail. Computer communicates by telephone lines and wire-
less. Through e-mail, we can send messages to anybody in any part of the
world in just a second, while if we write letter, it will reach in some days.
So the Internet has made the Earth a global village and above all saves
time. This would not be possible without computers. Internet helps to find
information on every topic. It is the easiest and fastest way of research.
Computer network makes the user capable of accessing remote programs
and databases of the same or different organizations. Without computers
we also would not have any automated teller machines (ATMs).

Business. Computers have now become an integral part of corporate life. They
can do business transactions very easily and accurately and keep the record
of all the profit and loss. Today, computers can be found in every store,
supermarkets, restaurants, offices, etc., where special software is used in
the computers to calculate the huge bills within seconds. One can buy and
sell things online, bills and taxes can be paid online, and also the future of
business can be predicted using artificial intelligence software. It also plays
a very important role in the stock markets.

Business Information Systems. For the economy, business information sys-
tems are as essential as materials, energy, and traffic. Without business
information systems, the economy would be extremely ineffective and inef-
ficient. Business information systems are essential for globalization. Their
significance for each enterprise include improving the productivity of the
business processes (= rationalization), mastering complexity and volume,
and making information available fast and everywhere, for any operations,
for decisions, as well as strategically, for entrepreneurial planning on the
creation of new business opportunities, that is, by e-business. If automobile
manufacturers would not have PPC (product planning and control) systems,
cars could not be manufactured in the desired wide variety. It would be
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like at the early times of Henry Ford, who said, “Cars can be delivered in
any color, provided it is black.”

Biological and Medical Science. Diagnostics of diseases can be performed
and also treatments can be proposed with the help of computer. Many
machines use computers that allow the doctor to view the different organs
of our body, such as lungs, heart, kidneys. There is a special software that
helps the doctor during the surgery.

Education. Today, the computer has become an important part of education
because we are using computers in every field and without the knowledge
of computer we cannot get a job and perform well in it. So computers can
secure better job prospects. Knowledge about computer is must these days.

Media. Almost every type of editing and audiovisual compositions can be
made using software especially made for this purpose. Some software can
even make three-dimensional figures such as those used in cartoon films.
Special effects for action and science fiction movies are also created on
computer.

Travel and Ticketing. Computers do all the work of plane and train reservation.
They show the data for vacant and reserved seats and also save the record
for reservation. Let us imagine, Lufthansa would handle reservations like
in 1960 (Fig. 18.1). Today, they could not handle their flight operations by
this method.

Weather Predictions. Weather predictions by experts are made possible using
supercomputers, which is another important application.

Sports. It is also used for umpiring decisions. Many times, the umpire has to
go for the decision of a third umpire where the recording is seen again on
computer and finally the umpire reaches to an accurate and a fair decision.
Simulation software allows the sportsman to practice and improve his skills.

Car Safety. Here, the ultimate goal is a zero-fatality vehicle. Auto companies
use computers for crash simulations to figure out how to build safer cars.
GM, Ford, Honda, Mercedes-Benz, and other companies use this technol-
ogy [111]. For computer simulations, such as one vehicle crashing into
another, carmakers have the supercomputing power in-house. It has been
publicly demonstrated that even a complex simulation of a full crash test
with 1 million elements can take just 5 min to render using a cluster of
Intel Xeon 5500 processors [111]. The latest HPC technology has enabled
GM to move to an interactive design process for the entire vehicle and
run a simulation with up to 4 million elements. American Honda has more
than 3000 processors devoted to crash analysis [111]. Mercedes-Benz is
now running approximately 5000 crash simulations for every new vehicle
design. More sophisticated technology should help make much safer cars
a reality in the not too distant future [111].

Other HPC Applications. HPC is pervasive enough so that it is used today not
just by government and university researchers but also to design products
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ranging from cars and planes to golf clubs, microwave ovens, animated
films, potato chips, diapers, and many other products.

CPS. CPS are computers or computer networks ready for real-time response,
directly coupled to biological organisms or systems, to sensor networks, to
organizations, or to technical networks. Figure 18.2 lists some CPS appli-
cation examples.

Daily Life. Computers are used almost everywhere. Washing machines,
microwave oven, and many other products use software. Moreover, we can
store all the information about our important work, appointment schedules,
and list of contacts. Computers play a very important role in our lives. We
cannot imagine the world without computers. This technology is advancing
at both industry and home. It is creating new mass markets by a variety
of wireless smart portable devices [113]. It is necessary for everyone to
have some basic computing knowledge. Otherwise, one cannot get a job,
as computers have invaded almost all the fields.

Survival Risk of Mainframe Software. Tracing their roots back to IBM Sys-
tem/360 from the 1960s, mainframes became popular in banking, insurance,
and other industries. Quite a number of companies still use older main-
frames with 3270 terminal emulator and Disk Operating System (DOS)
[114]. Representing cutting-edge technology when the oldest baby boomers
were still teenagers, mainframe survival is in danger because of recruiting
problems.

Risks of Domino Effects. The computer-based worldwide interconnectedness
of all areas of life is highly risky. For instance, public power supply infras-
tructures are computer-controlled by intelligent networks, so that any local
malfunction can trigger cross-border blackouts, causing widespread break-
downs: employees do not reach their workplace, subcontracted supply does
not reach the assembly line, perishable goods do not reach their destina-
tion and/or cannot be cooled, etc. All our communication infrastructures

•  Blackout-free electricity generation and distribution,
•  Extreme-yield agriculture,
•  Safe and rapid evacution in response to natural or  
    man-made disasters,
•  Perpetual life assistants for busy, senior/disabled people, 
•  Location-independent acccss to world-class medicine,
•  Near-zero automotive traffic fatalities, minimal injuries,
   and significantly reduced traffic congestion and delays,
•  Reduce testing and integration time and costs of complex
   CPS systems (e.g., avionics) by 1–2 orders of magnitude,
•  Energy-aware building and cities,
•  Physical critical infrastructure that calls for preventive
   maintenance,
•  Self-correcting cyber physical system for “one-off”
   applications,
•  Disaster response: Large-scale emergency evacuation,
•  Assistive devices.

Figure 18.2 Some grand challenge examples for CPS. Reproduced with permission
from [112].
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are also highly vulnerable. For instance, blackouts have a lot of follow-up
problems: phones and even cell phones do not work. Owing to the highly
complex global interconnectedness, a minor bug may cause a huge disaster
by chains of reactions. The World Economic Forum (WEF) has come to
the conclusion [83] that by a wide variety of reasons, such risks have a
very high probability (Fig. 18.3). Our computer-controlled economic and
technical infrastructures have reached such an enormous complexity that
we can hardly estimate all possible domino effects.

18.2.1 Computing for a Sustainable Environment

Computing for the future of the planet is more and more important for us because
computing (computers, communications, applications) will make a major and
crucial contribution to ensuring a sustainable future for the society and the planet.
The “Power Down for the Planet” challenge is a national competition to fight
global warming by pledging to reduce the amount of energy used by computers
on campus and elsewhere. Also, computers are important because computing for
a sustainable environment is essential for preserving our civilization and avoiding
its collapse [12, 89].

The goal of green computing is simple [115]: reducing the use of harmful
materials, maximizing energy efficiency, and promoting recyclability. Green
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computing [116] is the science of efficient and effective designing, manufactur-
ing, usage, disposal, and recycling of computers and computer-related products
(servers, networks, peripherals, etc.); it also includes creating technologies
to help reduce harmful impact on the environment and to preserve natural
resources. Wasting energy is costly and leads to a climate change from burning
coal and oil.

With the major goal to minimize the carbon footprint of computing [117],
“Green IT” consists of three parts: (i) designing products that are less pollut-
ing, less energy consuming, and easier to recycle; (ii) building more efficient
data centers; and (iii) working on innovative projects that will enable, via IT
contributions, the building of a more sustainable world. Green IT supports the
smart measurement of the energy consumption of houses, public buildings, and
other facilities, in order to be able to optimize the use of energy (smart meters)
[118]. Green IT also supports education of the data center operators on enhanced
energy optimization (green data centers [9–11]): use of telecommunication and
teleconference to reduce travel requirements, installation of Web sites offering
better information on carpooling or public transport possibilities to reduce traf-
fic on our roads, and optimization of road traffic and transport logistics. Andy
Hopper even sees four levels [119] at which innovation-driven developments in
computing are effective:

1. Simulation and modeling are important tools that will help predict global
warming and its effects. Much more powerful computing systems are
required to make the predictions better, more accurate, and relevant.

2. The amount of infrastructure making up the digital world is continuing to
grow rapidly and starting to consume significant energy resources.

3. Computing will play a key part in optimizing the use of resources in the
physical world.

4. We are experiencing a shift to the digital world in our daily lives as wit-
nessed by the wide-scale adoption of the World Wide Web.

Let me add a fifth level:

5. To help generate momentum and achieve these goals, it is important that a
coordinated set of challenging international projects are investigated.

The WEF proposed to enable existing institutions to unleash public value by
IT networking, catalyzing initiatives and unleashing human capital in the world
[120]. Klaus Schwab said, “Our existing global institutions require extensive
rewiring to confront contemporary challenges in an effective, inclusive and sus-
tainable way.” Organizations such as the UN, GATT, G8, and G20 are becoming
increasingly inept at fixing what ails the world: goals of economic growth, cli-
mate protection, poverty eradication, conflict avoidance, human security, and
promotion of shared values. The topics are the three R’s: Rethink, Redesign,
and Rebuild [120].



472 THE PARAMOUNTCY OF RECONFIGURABLE COMPUTING

The forum’s “Global Redesign Initiative” report notes [121] “how the digital
world has brought about cross-border integration by new technologies enabling
virtual interaction have created a world that is much more complex and more
bottom-up than top-down.” The world has become economically, politically,
and environmentally more interdependent, without a new set of international
bureaucracies piled on the existing ones. It has been argued for a global sys-
tem with graphic visualization tools to measure success, for a complete redesign
the global legal system, for a global vaccine protocol, global intellectual prop-
erty (IP) system, global risk management, etc. This means taking a Wikinomics
approach—embracing more agile structures enabled by global networks for new
kinds of collaboration such that there is no new set of international bureaucracies
piled on the existing ones.

Governments need to launch a new paradigm to involve the citizens of the
world through mass collaboration by a new medium of communications includ-
ing tools such as digital brainstorms and town hall meetings: decision-making
initiatives such as citizen juries and deliberative polling, execution tools such as
policy wikis, and social networks within government and evaluation programs.
This initiative demonstrates how important is it to reinvent computing and is the
growth of IT and the Internet for broad engineering issues ensuring sustainability
issues of the world such as smart energy production and distribution, intelli-
gent water management, strengthening welfare, dealing with aging and young
population, and mitigating risks [122].

18.3 PERFORMANCE PROGRESS STALLED

Disruptive architectural developments in industry stall further progress of IT
with respect to energy inefficiency and performance improvements. Unaf-
fordable operation cost by excessive power consumption is a massive future
survival problem for existing cyber infrastructures, which we must not
surrender. Because of the inevitable many-core architecture, contemporary
computer systems are in an all-dominant programmability crisis. The progress
of performance is massively stalled because of this “programming wall” caused
by lacking scalability of parallelism and an ubiquitous programmer productivity
gap [123–125]. Later, this chapter shows that reconfigurability is the silver
bullet to obtain much better energy efficiency and performance by the upcoming
heterogeneous methodology of HPRC (high performance reconfigurable
computing). We also believe in the need for a massive campaign for migration
of software to configware. Also, because of the multicore parallelism dilemma,
we anyway need to reinvent programmer education [126]. The impact is a
fascinating challenge to reach new horizons of research in computer science
(CS). We need a new generation of talented innovative scientists and engineers
to start the second history of computing. This chapter discusses its new world
model.
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18.3.1 Unaffordable Energy Consumption of Computing

The future of our worldwide total computing ecosystem is facing a mind-blowing
and growing electricity consumption, together with a trend toward growing cost
and shrinking availability of energy sources. Electricity consumption by the Inter-
net alone causes more greenhouse gas emission than the worldwide air traffic.
Will the Internet break [83–85, 127]? Consumer broadband connections in North
America, Mexico, and Western Europe have reached 155 million by the end of
2007 and are predicted to reach 228 million by 2011. The Internet is being
stressed more than ever with new technologies and larger e-mails, and the trend
will accelerate. An explosion in services integrating video and software will
intensify by the increasing popularity of games and the massive use of video
on demand, high definition video, and pay-TV to the living room, as well as by
newer services by mobile phone companies and multiple connected PCs [128] and
devices using connections [127]. The Internet service providers should be able
to assess how much more bandwidth will be required and how much headroom
they have.

It has been predicted that by the year 2030, if current trends continue, world-
wide electricity consumption by ICT infrastructures will grow by a factor of 30
[129], reaching much more than the current total electricity consumption of the
entire world for everything, not just for computing. The trends are illustrated
by an expanding wireless Internet and by a growing number of Internet users,
as well as with tendencies toward more video on demand, high definition TV
over the Internet, and shipping electronic books and efforts toward more cloud
computing [130] and many other services. Other estimations claim that already
now the greenhouse gas emission from power plants generating the electricity
needed to run the Internet is higher than that of the total worldwide air traffic.
There are more predictions [131, 132].

Already for today’s petascale (1015 calculations/s) supercomputer systems with
the annual power and cooling cost exceeding the acquisition cost of servers, the
power consumption has become the leading design constraint [133]. Extrapolating
from today’s petascale systems to future exascale machines (1018 calculations/s,
a processing capability close to that of the human brain [134]), the overall power
consumption is estimated to be on the order of 10 GW [133, 134], twice the
power budget of New York City with a population of 16 million (an earlier esti-
mation for one system is 120 MW [135]). The electricity bill is a key issue for
Google, Microsoft, Yahoo, and Amazon with their huge data farms at Columbia
River [136] (Fig. 18.4). That is why Google recently submitted an application
asking the Federal Energy Regulatory Commission for the authority to sell elec-
tricity [137] and has a patent for water-based data centers, using the ocean to
provide cooling and power (using the motion of ocean surface waves to cre-
ate electricity; Fig. 18.5) [138]. In the near future, the electricity bill of most
facilities of Google will be substantially higher than the value of its equipment
[139]. In 2005, Google’s electricity bill was about US$50 million higher than
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Figure 18.4 Google server farm at the Columbia River, © Melanie Conner/The New York Times/Redux/laif.
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Figure 18.5 Pelamis Wave Power: electricity by the sea. Courtesy of Pelamis Wave
Power [142].

the value of its equipment. Meanwhile, the cost of a data center is determined
solely by the monthly power bill, not by the cost of hardware or maintenance
[140]. Google’s employee L. A. Barroso said [141], “The possibility of com-
puter equipment power consumption spiraling out of control could have serious
consequences for the overall affordability of computing.”

Rapidly growing energy prices are predicted since the oil production has
reached its peak by the year 2009 [143–145]. At present, 80% of the crude
oil is coming from decline fields (Fig. 18.6). However, the demand is growing
because of the developing standard of living in China, India, Brazil, Mexico,
and newly industrializing countries. The World Energy Council estimates that
the demand will double until the year 2050 [146]. We need at least “six more
Saudi Arabias for the demand predicted already for 2030” (Fatih Birol, Chief
Economist, IEA [147]). I believe that these predictions do not yet consider the
rapidly growing electricity consumption of computers. So, maybe we will need
10 more Saudi Arabias. About 50% of the shrinking oil reserves are under water
[148]. In consequence of the Gulf of Mexico oil spill, not all deepwater explo-
rations will be allowed, insurance rates rise, and the crude oil prices will go
further up (Fig. 18.7). Transitions from carbon fuels to renewables cannot com-
pletely fill the gap within at least two decades. This will cause a massive future
survival problem for running cyber infrastructures, which we must not surren-
der because this is an important global economy issue. Or, should we dig more
coal [149]? It makes sense, to measure computing performance not just by MIPS
(million instructions per second), but by MIPS/watt or FLOPS/watt [150].

18.3.2 Crashing into the Programming Wall

For 40 years, semiconductor technology has followed Moore’s law. Until about
2004, we obtained better performance by just waiting for the next-generation
microprocessor with higher clock speed. Because of this free ride on Gordon
Moore’s law, the improvement of software performance has been the successful
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job of hardware designers. This development ended when the microprocessor
industry changed strategy from a single CPU on a chip to many-core by increas-
ing the number of on-chip processor cores instead of growing clock frequency.
The “golden” CMOS era is gone [124]. Technology scaling does not deliver any-
more significant performance speedup, and the increasing power density poses
severe limitations. High performance is no more the job of hardware designers.
We hit the “programming wall” since high performance now requires rare paral-
lel programming skills [124, 151]. Great challenges for RC provide the answer
[124, 125].

This “programming wall” [152] we know from supercomputing is not new.
The dead supercomputer society list [153] demonstrates that almost all much
earlier supercomputing projects and start-ups failed since parallel programming
was required, which crashed into the parallel programming wall. This list is not
even complete. More dead projects are listed elsewhere [154]. Even today, the
vast majority of HPC or supercomputing applications was originally written for
a single processor with direct access to main memory. But the first petascale
supercomputers use more than 100,000 processor cores each, and distributed
memory. Three real-world applications have broken the petaflop barrier (1015
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calculations/s) (Jaguar at ORNL) [152]. A slightly larger number has surpassed
100 teraflops (100 × 1012 calculations/s), mostly on IBM and Cray [152]. The
scene hopes that dozens of applications are inherently parallel enough to be
laboriously decomposed, sliced, and diced for mapping onto such highly parallel
computers. But a large number of applications are only modestly scalable. More
than 50% of the codes do not scale beyond eight cores, only about 6% can exploit
more than 128 PE, still a tiny fraction of 100,000 or more available cores [152].

A very important issue is saving energy [155, 156]. But multicore processors
tend to have tuned-down speeds. Down from 3 to 4 GHz (single-core), each core
meanwhile runs at about half that speed. Some HPC or supercomputing sites
report that some of their applications were running more slowly on their newest
HPC system [152]. The x86-based Intel or AMD processors are dominant (in
2009), constituting almost 70% of the market. But multiplied collective peak
performance comes without corresponding increases in network-on-chip (NoC)
bandwidth, making it difficult to move data into and out of each core fast enough
to keep the cores busy [152, 157]. We have to rethink Amdahl’s law. Adding
accelerators via a slow PCI bus adds to the problem. Both hardware and software
advances are urgently needed.

We see that massive hardware parallelism from skyrocketing core counts is
racing ahead of programming paradigms and programmer productivity. This par-
allel performance “wall” will reshape the nature of HPC code design and system
usage [124]. The evolutionary path is not addressing the fundamental problems.
A large number of HPC applications will need revolutionary changes to be funda-
mentally rethought and rewritten within the next 5–10 years by serious algorithm
development. We have seen examples of mathematical models and algorithms that
broke when pushed beyond. There are not enough people with the right kind of
brainpower [158, 159]. Universities should produce more.

Semiconductor technology has followed Moore’s aw throughout four decades.
But continuing that pattern will require a breakthrough in energy-efficient design.
With a very high probability, we will be forced to seek an entirely new paradigm
[160]. This crisis and its key issues such as software scalability, memory, IO,
storage bandwidth, and system resiliency stem from the fact that processing power
is outpacing the capabilities of all the surrounding technologies.

In parallel computing, the realized real application performance is bad and
getting worse [161]. Parallel computer programs are difficult to write: perfor-
mance is affected by data dependencies, race conditions, synchronization, and
parallel slowdown. The “parallel programming problem” has been addressed by
HPC for more than 25 years with disappointing results. The more formal way
based on languages did not really help [162], neither did more than hundreds of
parallel programming languages (Table 18.1) nor the several hundred hardware
description languages [163–166], which are also capable of expressing paral-
lelism (Table 18.2). There are too many new prophets declaring another new
route out of the wilderness of software development and maintenance since at
least the invention of COBOL (Common Business Oriented Language) in 1959.
Only a much too small number of specialized developers are halfway skilled
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480 THE PARAMOUNTCY OF RECONFIGURABLE COMPUTING

TABLE 18.2 Some Hardware Description Languagesa

ABL CoreFire Impulse Ruby
ABEL CoWareC Impulse C SA-C
AccelChip CUPL JHDL Scheme
AHDL C2H KARL SML
AHPL C2Verilog Lava Haskell SPARK
BDL Dime-C Lola SpecC
Bluespec DSS MDL Streams-C
BluespecLs ELLA Meta-HDL SysGen
Brass Erlang Mitrion-C Systems-C
Bach C F# MyHDL System-Studio
BDL Forge NAPA-C System TCS
CDL HDCaml Ocapi Transmogrifier-C
CASH Handel-C OpenVera LystemVerilog
Catapult-C HardwareC PALASM Trident Compiler
Carte-C Hardware Join Java PAL Verilog
CHiMPS Hardw Verif Lan Property Spec Lan Verilog-AMS
Cocentric Haskell Ptolemy II VHDL
Cones HML RC Toolbox VHDL-AMS
Confluence HVL RHDL Viva
ConvergenSC Hydra RTcode

aReferences 163–166.

to write parallel code. Given this shortage of parallel programmers, we need to
accept, however, that informal approaches are not working.

It has been proposed that to succeed with parallel programming in the multi-
core era, we must adopt a systematic approach obtained by an insight into how
programmers think [170]. I do not agree. The thinking of programmers is far from
being uniform. One expert predicts that shared memory computing will ultimately
run out of steam. Another expert claims that distributed memory is good because
it is efficient, scalable, and future-proof for increasingly distributed and nonuni-
form future hardware. A third one says that shared memory is good because it
is compatible with existing sequential code and does not require retraining of
developers. A fourth one means that if you extrapolate current trends, a decade
from now we will be die-stacking cores and memory in NUMA (non-cache-
coherent, nonuniform memory architecture) architecture with thousands of cores.
A fifth one says that it is obvious that stream processing applications (e.g., DSP
and graphics) generally do not need globally shared memory. I believe that pro-
grammers have to be taught how to think. They have to be taught how to “think
parallel,” find concurrent tasks in a program, synchronize for programming free
from deadlock and race conditions, schedule tasks at the right granularity onto
the processors of a parallel machine, and solve the data locality problem for cor-
rectly associating data with tasks. Too many sequential-only textual languages
are around (Table 18.3), which are not helpful to support locality awareness that
is urgently needed to understand parallelism and its bottlenecks.
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Thousands of existing programming languages (only a subset is listed in
Table 18.3) demonstrate the tradition that there is a wide variety of opinions and
proposals around, pointing toward too many different directions to go. (There are
even hundreds of esoteric languages [172, 173].) It is like seeking a needle in
the haystack [151, 174]. It is also part of the vN syndrome [175]. For instance
(no direction at all), with multicore systems becoming ubiquitous, there is some
naive hope that “if you build it, they will come” [176] (good ideas or skilled pro-
grammers). Parallel programming has developed along informal, empirical lines.
For instance, parallel global address space (PGAS) programming languages have
existed for over a decade and could be far more productive than the message
passing interface (MPI) still dominating HPC programming today. But only a
few HPC users are ready to learn a new language that would also require rewrit-
ing HPC applications that could contain tens or hundreds of thousands of lines
of code. Are we as humans multicore capable at all [177]? There is a school
of thought telling us that humans are simply not built to comprehend multicore
programming since our thought processes are inherently serial [177]. But this
is not true. We are able to succeed in goal-oriented activities with respect to
maps, schematics, networks, graphs, and all kinds games and sporting. Perhaps,
a whole new programming paradigm is required that uses, for example, symbols,
flowcharts, or other schematics [177].

What are the right models (or abstractions) to program for performance porta-
bility to all important parallel platforms? We should focus less on fashionable
topics such as TM (transactional memory) and multithreading, which is consid-
ered harmful [178]. To be ready for discussions, also controversial discussions,
we have to face several issues, such as migrating code from a uniprocessor to
SMP (symmetric multiprocessor) models. We should be aware of several typical
problems [179]: why going multicore could make applications run slower, what
are the sources of race conditions, and what strategies to use for migrating a
uniprocessor code to a multicore environment.

It is a disaster response that DARPA (Defense Advanced Research Projects
Agency) selected Sandia Labs to launch the Ubiquitous High Performance Com-
puting (UHPC) program [160] to design new supercomputer prototypes (com-
pleted by 2018?) to overcome current limiting factors, such as power consumption
and architectural and programming complexity, by developing for scalability and
entirely new computer architecture and programming models. The aim is to revo-
lutionize the entire field of computing for fundamentally enabling a new model of
computation by producing a highly dependable more energy-efficient computer
that delivers 100–1000 times more performance and is easier to program than cur-
rent systems. There are more such organizations; for example, the HPC Advisory
Council (HPCAC) creates local Centers of Excellence worldwide for education,
enhancing the HPC knowledge-base and exploring future solutions [180].

We cannot afford to relinquish RC. It may provide a method to effectively
circumvent the programming wall. We will also urgently need this technology
to cope with threatening unaffordable operation cost by excessive power con-
sumption of the entirety of all vN computers worldwide. We need to migrate
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many application packages from software to configware. A sufficiently large
programmer population qualified for reconfigurable platforms does not exist.

This is a challenge to reinvent computing for providing the qualifications
needed not only for RC but also to cope with the many-core programming cri-
sis. Intel’s cancellation of the Tejas and Jayhawk processors indicated in May
2004 the end of frequency scaling’s dominance to improve performance. “Mul-
ticore computers shift the burden of performance from hardware designers to
software developers [181].” This crisis requires the migration of many soft-
ware packages from monoprocessors to many-core platforms. A sufficiently large
programmer population qualified for parallel programming does not exist. This
results in a huge challenge of providing new educational approaches to create a
dual-paradigm-savvy programmer population qualified for heterogeneous systems
including both parallel software and configware. To deal efficiently with FPGAs,
we also need robust and fast implementations of adequate configware compil-
ers, for example, automated by formal techniques based on rewriting [182, 183].
But new compilers alone are not sufficient. Programmers should also be taught
time to space mapping. One source said, “Intrinsic dimensionality rooted scaling
laws to favor reconfigurable spatial computing over temporal computing” (N. N.,
Stone Ridge Technologies). It is highly important that the spatial character of RC
introduces locality awareness into the mind of students learning programming.

Time to space mapping dates back to the early 1970s and even the late 1960s,
years before the first hardware description languages came up [166, 184]. “The
decision box (in the flow chart) turns into a demultiplexer. This is so simple! Why
did it take 30 years to find out? [185].” Owing to notorious hardware/software
gap, CS education was ignored for another 40 years, how simple this is. The
impact is an encouraging challenge to reach new horizons of new CS research.
We need new generations of talented innovative scientists and engineers to start
the second history of computing. But this is less difficult than it looks like at
first glance. “The biggest payoff will come from Putting Old Ideas into Practice
(POIP) and teaching people how to apply them properly [186].”

18.4 THE TAIL IS WAGGING THE DOG (ACCELERATORS)

Invented by Ted Hoff in 1969, the introduction of the first microprocessor has
been a revolution. The EE types in digital design have been well qualified using
integrated circuits with gates and flip-flops inside to construct controllers. Just
having been hired as employee No. 12 at Intel, Ted Hoff’s idea to replace the
wide variety of circuits by a GP (general purpose) circuit using principles known
from mainframes was not welcomed. The crew with complete EE background
thought this strange guy from Stanford with CS background is completely crazy.
But Federico Faggin, who joined Intel about a year later, supported Ted’s idea. In
1971, marketing of the 4004 microprocessor was started. Even to the customers
of Intel, the idea of a programmable controller appeared strange. Replacing the
soldering iron by a keyboard: is this not really crazy? To be able to sell this first
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TABLE 18.4 Computer System Model of the Mainframe Era

Resources Sequencer

Computer Machine Model Program Programming State
of the Mainframe Era Property Source Property Source Register

instruction set 
processor“CPU”

Hardwired — Programmable Software Program
(instruction counter

stream)

TABLE 18.5 The Postmainframe Machine

Resources Sequencer

CPU/Accelerator
Symbiosis

Program
Source

State
RegisterProperty Property

1. Hardwired
acceleratorsASICs

Instruction set
processor

CPU

Hardwired Hardwired — —

2.

Program
Source

—

Hardwired — Progra-
mmable

Software
(instruction

stream)

Program
counter

microprocessor, Intel was forced to give courses to about 100,000 people. But
finally, Intel succeeded as we all know.

Using machine principles from the 1940s and after a dozen technology gen-
erations, the microprocessor meanwhile has become a Methusela, although some
people still call it GP (Table 18.4). However, it cannot move forward without
using crutches. Throughput requirements have grown faster than clock speed, so
that the computer having this processor inside is even unable to drive its own
display. This already happened in the 1990s or earlier. A growing variety of
hardwired accelerators then came along with each PC, laptop, or other kinds
computers, called ASIC s (application-specific integrated circuits). The tail is
wagging the dog (Table 18.5). A variety of methods are available to provide
massive speedup, including minimizing communication efforts and eliminating
the need to store and communicate intermediate results, for example, by merging
many simple operations into mega functions. ASIC accelerators not only provide
speedups but also result in massive energy saving. A more recent example is
an ASIC designed for the modern HD H.264 video encoding standard. Here,
the 2.8-GHz Pentium 4 is 500 times worse in energy [187, 188]. Also a four
processor Tensilica-based CMP is 500 times worse [187, 188].

18.4.1 Hardwired Accelerators

According to the state of the art in the 1990s, an accelerator typically was a
non-vN accelerator (Table 18.5) [189]. But a good ROI (return on investment)
with such ASICs used as accelerators was and is possible with a very high
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Figure 18.8 An example to illustrate data stream [191] machine principles.

production volume. Along with the continuing progress by Gordon Moore’s law
to shrinking feature sizes, the general expenses such as design cost, mask making,
and preparing a production charge have been exploding. Meanwhile, the cost of
a fab line has exceeded several billion US dollars (Fig. 18.8). Year by year, the
ratio between ASIC design starts and FPGA design starts went backward [190]
(Fig. 18.9).

For this reason, we now have to distinguish two kinds of such accelerators
(rows 1 and 3 in Table 18.6): ASICs made from hardwired logic and configured
onto FPGAs. These two kinds are distinguished by the binding time of their
functionality: (i) before fabrication for fixed logic or hardwired logic devices
(HWD) and (ii) after fabrication for (field-) programmable logic devices (PLDs).
The term field programmable indicates that by reconfiguration the functionality
can be changed also at the user’s site by receiving new configuration code, from
some memory or even over the Internet.

18.4.2 Programmable Accelerators

ASICs used as accelerators have massively lost market shares in favor of recon-
figurable accelerators. Now, FPGA projects outnumber ASIC projects by >30 to
1 (Fig. 18.9) or even by 50 to 1 due to another estimation [192]. FPGAs [193]
are structurally programmed from “configware” sources, which is fundamen-
tally different from the instruction-stream-based “software” sources (Table 18.6).
FPGAs come with a different operating system world organizing data streams
and swapping configware for partially and dynamically reconfigurable platforms
[194, 195]. FPGAs are supposed to be in 70% of all embedded systems [184].
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Figure 18.9 Fab line total cost (technology + R&D + revenue requirements). Source:
International Business Strategies, Inc.

TABLE 18.6 Contemporary (Heterogeneous) Computer System Machine Model

Hardwired — —

Progra-
mmable

Software
(instruction

stream)

Program
counter

Progra-
mmable

Flowware
(data

streams)

Data
counter(s)

Progra-
mmable

Flowware
(data

streams)

Data
counter(s)

Program
Source

State
RegisterProperty

SequencerResources

Contemporary Computer
System Machine Model

Program
SourceProperty

—

—

Configware
(configuration

code)

Hardwired
(complex)

Hardwired
(ALU)

Programmable
(complex)

Hardwired
(complex)

—

Hardwired
accelerators

Instruction set
processor

Reconfigurable
accelerators

Flowware-programmable
accelerators like BEE126

1.

2.

3.

4.

Introduced in 1984, the fastest growing segment of the semiconductor indus-
try for about two decades, and now a US$4-billion world market (almost 30%
increase from last year; Peter Clarke from iSuppli estimates 43%), FPGAs are a
well-proven technology that is rapidly heading for mainstream and also used in
supercomputing by Cray, Silicon Graphics, and others [90, 196–198]. Estima-
tions of the number of designers actively involved in FPGA design range from
about 100,000 to over 500,000 engineers worldwide.

The partition between hardware and software can be moved throughout the
design cycle. Low level hardware complexity is reduced or removed from design
decisions. Many decisions can be removed from the early design process allowing
a designer to focus on creating a product’s unique functionality to serve a vari-
ety of marketing strategies [199]. Complex processor-based embedded systems
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can be created and changed easily. Here, a key issue is the high level product
development approach implementing as much functionality as possible outside
the hardware domain. The software and configware can be easily updated dur-
ing and after the design process [199]: a powerful flexible way to define product
functionality, allowing a product’s competitive IP and the crucial user experience
to be defined almost entirely in the reprogrammable domain [200]. Defining soft
elements of the design can be updated at any time, even after the product has
been deployed in the field. Systems on a Chip (SoC) can draw various benefits
such as adaptability and efficient acceleration of computer-intensive tasks from
the inclusion of dynamically reconfigurable platforms as a system component.
Dynamic reconfiguration capabilities of current reconfigurable devices create an
additional dimension in the temporal domain. During the design space explo-
ration phase, overheads associated with reconfiguration and hardware/software
interfacing need to be evaluated carefully in order to harvest the full potential of
dynamic reconfiguration.

Using schematic or flowchart graphical design interfaces, IP blocks, software
routines, and I/O systems can be quickly combined to explore and develop inno-
vative product functionality without the need for low level engineering [199].
The pool of design data, also library parts, holds a single model of each block
that incorporates all its elements. This model and IP cores can be simply dropped
into the design, using a high level graphic-based capture system, regardless of
their level of design abstraction. We can do much more than just programming
the onboard FPGA [199]. By intelligent communication between hardware plat-
form and the high level design software, the system could directly interact with
all parts of the development board. Peripherals can then be swapped on the fly
by automatically reconfiguring interface layers and configuration files. So the
complete development system, including the physical hardware, acts as the one
design environment. Hardware could conceivably become the final product in
some circumstances.

The FPGA industry sprouted [201] (Table 18.7) from programmable read-
only memory (PROM, invented in 1956), field-programmable read-only memory
(FPROM), or one-time programmable nonvolatile memory (OTP NVM), and
PLDs, where the setting of each bit is locked by a fuse or antifuse. Such PROMs

TABLE 18.7 Twin-Paradigm Fundamental Terminology

State Register

# Source Controlled by Machine Paradigm Type Location

1 Software Instruction
streams

von Neumann Program
counter

In CPU

2 Configware Configuration
memory

Reconfigurable
data paths

None Hidden

3 Flowware Reconfigurable
address
generator

Data stream
machine

Data counter In asM
memory
block
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are used to store its program patterns permanently, programmable after fabri-
cation, in contrast to ROM. Programmable more often than just once [201],
first floating-gate UV erasable PLD came from General Electric in 1971. In
1973, National Semiconductor and in 1975, Signetics had introduced the mask-
programmable PLA, and the so-called FPLAs (field-programmable logic arrays)
came up in the early 1980s [201], also featuring very area-efficient layout similar
as known from ePROM memory. Instead of just bits, coded forms of canonical
Boolean expression patterns could be stored by PLAs or FPLAs.

Very high speedup could be obtained by matching hundreds of Boolean expres-
sions within a single clock cycle instead of computing them sequentially. Together
with a reconfigurable address generator [202], this brought a speedup of up to
15,000 [203–206] for a grid-based design rule checker in the early 1980s itself.
Via the multiproject chip organization of the E.I.S. project, an FPLA (which was
called DPLA) has been manufactured on a multiproject chip, with the capacity of
256 first FPGAs just appearing on the market (by Xilinx in 1984). In the early to
mid-1980s, the multiuniversity E.I.S. project has been the German contribution
to the Mead & Conway VLSI design revolution [95–105].

It is not only the particular acronyms FPLA and FPGA that are confusing
(Table 18.8; Fig. 18.21). What is here the difference between “logic” and “gate”?
“Logic” elements are very small with fixed interconnect: FPLAs have very dense
layout such as memory. A “Gate” (CLB (configurable logic block)) needs more
space. But FPGAs are more flexible by CLBs and routable wiring fabrics to
interconnect CLBs (Fig. 18.10). In contrast to FPLAs, CLBs in FPGAs allow,
for instance, to select 1 of the 16 logic functions (Fig. 18.11) from simple LUTs
(lookup tables, Fig. 18.11).

TABLE 18.8 Confusing Terms: Not to be Used

Term Once Introduced for

Dataflow Indeterministic exotic machines
Firmware Nested von Neumann machines
Microcode
Microprogram
Software or “soft” No use other than for instruction streams

3% ASIC

97% FPGA
2009,

Dataquest

Figure 18.10 LUT example [207].
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Figure 18.11 FPGA to ASIC design start ratio.

Beyond such fine-grained reconfigurability, the progress of Moore’s law leads
to higher abstraction levels with “coarse-grained reconfigurability” featuring
also CFBs (configurable function blocks), which may be adders, multipliers,
and/or many other functions [208–210]. The next step is mixed-grained
“platform FPGAs,” which also include one or several microprocessors, such
as the PowerPC in earlier platform FPGAs from Xilinx (also see Section
18.5.3.3). However, the FPGA technology is worse than microprocessors:
slower clock speed and massive reconfigurability overhead. Orders of magnitude
higher performance with a worse technology: The Reconfigurable Computing
Paradox (Section 18.5.2). Software engineering (SE) platforms are so massively
inefficient, so Prof. C. V. Ramamoorthy from UC Berkeley has coined the term
The von Neumann Syndrome.

18.5 RECONFIGURABLE COMPUTING

Reconfigurable computing prospects are on the rise [211]. However, FPGAs are
the standard gear in high performance streaming appliances such as multimedia,
medical imaging, routers, market data feeds, and military systems. The attrac-
tiveness of FPGAs is that they can be rapidly custom configured to run specific
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application workload efficiently. If a different workload needs to be run, the
FPGA can be reconfigured accordingly. Switching the configurations takes just
milliseconds. Accelerating real-life applications using FPGAs has really shown
unprecedented levels of speed and savings in cost and energy for many applica-
tions [212]. But hardware acceleration, in general, has become the hot paradigm
in computing, also with the top supercomputer systems in the world reaching
the PetaFLOPS mark using hardware accelerators. Many high performance RC
systems have been produced by top supercomputer manufacturers.

Again our common computer system model has changed [91] (Table 18.6,
rows 1–3): accelerators have become programmable [213]. In contrast to an
instruction set processor (CPU), which is programmed only by software, an
RC platform needs two program sources (Table 18.6, row 3), namely, “con-
figware” and “flowware,” both not at all instruction stream based (configware
is neither procedural nor imperative). Flowware has been derived from the data
stream defined for systolic arrays [214, 215] already in the late 1970s. The term
flowware makes sense to avoid confusion with a variety of data stream defini-
tions. Flowware may also be used without configware for hardwired machines
(Table 18.6, row 3), for example, BEE [92]. The term flowware avoids confusion
rather than the term dataflow [216].

We now have to interface to each other two different programming paradigms:
for programming the instruction set processors by traditional “software” and for
programming the accelerators by configware, still ignored by SE. It is the dilemma
of obsolete programmer qualifications. FPGAs require an unconventional pro-
gramming model to configure the chip’s logic elements and data paths before
runtime. Some tools at least provide a halfway protection to the developer from
hardware design issues or even explicit parallel programming, making the sorting
out of CPU and FPGA code mappings the responsibility of the compiler and run-
time system. We should characterize this niche and the progress of HPRC, as well
as the associated challenges, and we should characterize the systemic productiv-
ity problem [123, 197]. We have to devise an orchestrated multilevel research
agenda that is needed to move forward and identify the potential practical next
steps for the community [212].

A growing trend is the use of FPGAs in embedded systems: ERC (embed-
ded reconfigurable computing). FPGAs are supposed to be used in 70% of all
embedded systems [217]. Originally, there has been a feeling that FPGAs are too
slow, power-hungry, and expensive for many embedded applications, but this has
changed. With low power and a wide range of small packages, particular FPGAs
can be found in the latest handheld portable devices, including smartphones,
eBooks, cameras, medical devices, industrial scanners, and military radios. Xil-
inx’s first attempt at this was an FPGA with a processor inside. This time around,
it is a processor with an FPGA grafted on. That is not just semantic hairsplitting:
it is the big difference between these chips and the old ones. The new chips will
boot up and run just like normal microprocessors, meaning no FPGA configu-
ration is required at all [177]: FPGAs leap ahead. But embedded designers do
not like FPGAs with CPUs inside [218]. FPGAs in this context have been very
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much seen as a hardware engineer’s domain, with the softies allowed in to play
at some late stage [219]. Xilinx preannounced a new family of devices “going
beyond the FPGA,” which they called EPP (extensible programming platform).

This EPP has a hardwired area with a top-end twin-core ARM Cortex-A9M
processor unit and with a NEON multimedia processor, memory interfacing,
peripherals, and a programmable fabric [219]. Instead of communicating across
an FPGA, the two processors are connected by 2500 wires, providing much
capacity for an AMBA-AXI bus and other communication protocols. Xilinx was
stressing that this approach recognizes the increasingly dominant role of software
in systems and is pushing EPPs as a way to first define the system in software
and then carry out software and hardware design in parallel.

The totally changed concept of EPP makes these device more like heteroge-
neous SoC, allowing to have significant benefits for high performance applica-
tions such as wireless communication, automotive driver assistance, intelligent
video surveillance. An EPP is an SoC with an embedded FPGA (eFPGA) that
boots like a processor and acts as a processor [220]. Instead of a classical FPGA,
an EPP is really a full-fledged processor. EPPs make the processor the center of
the device with the programmable fabric as an extra. And this, argues Xilinx,
now puts the software engineer first with the hardies following behind. In EPPs,
the FPGA logic and the CPU will be programmable separately. The FPGA con-
figuration will be handled by the processor(s) directly, not by a serial ROM. In
other words, you have to tell the FPGA you want it configured. That is very
un-FPGA-like [218] and not EPP-like. The approach of using both a processor
and programmable fabric allows design to start at high level and the system to
be implemented as software [219]. EPPs are a result of the new research topic
NoC [221], which is a new paradigm for designing the on-chip hardware com-
munication architecture based on a communication fabric, also including on-chip
routers. NoC CAD tool flows also support mapping applications into NoC.

Apart from ERC, we have another RC scene: HPRC [196–198]). This is the
combination of supercomputing and the use of reconfigurable platforms. Well
known is the CHREC project [222] in the United States, which is heavily funded
by the NSF. HPRC is a relatively new area, but has attracted a lot of interest in
recent years, so that this entire new phrase has been coined to describe it [223].
HPRC uses FPGAs as accelerators for supercomputers [222]. HPC vendors such
as Cray and SILICON Graphics are already supplying machines with ready-
fitted FPGAs or have FPGAs in their product road maps. An example is the
Cray XD1 incorporating Xilinx Virtex-II Pro FPGAs for application acceleration
[224]. What are the benefits of using FPGAs in HPC? Also here, the first and most
obvious answer is performance. HPC is renowned as that area of computing where
current machine performance is never enough, leading us toward the dominance
of heterogeneous systems. A problem yet to be solved is programmer productivity
[196–198]. Programmers cannot work with hardware description languages like
FPGA experts [124]. We have to bridge this gap. It is an educational challenge
that programmers with this needed mix of skills are missing.
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There is yet another embedded system scene, called CPS [112], where
real-time behavior is a key issue. The major obstacle to use multicores for
real-time applications is that we may not predict and provide any guarantee
on real-time properties of embedded software on such platforms. Also, the
way of handling the on-chip shared resources such as L2 cache may have a
significant impact on the timing predictability. An interesting project proposes
to use cache space isolation techniques to avoid cache contention for hard
real-time tasks running on multicores with shared caches [225]. Dynamic
reconfiguration capabilities of current reconfigurable devices can create an
additional dimension in the temporal domain [183, 194, 226, 227]. During the
design space exploration phase, overheads associated with reconfiguration and
hardware/software interfacing need to be evaluated carefully in order to harvest
the full potential of dynamic reconfiguration [228].

But there is also an area of concern. Both FPGA giants (Xilinx and Altera)
are hitting 28 nm at the end of 2010. With reduced feature size of integrated
circuits, transistors become less reliable. Transistors will be defective at manu-
facture time, also by process variations, and more of them will degrade and fail
over the expected lifetime of a chip. Also an increasing number of soft errors
will occur. The failure rate is growing. Causing major degradation, such fail-
ures are based on the physical mechanisms such as electromigration (EM), hot
carrier degradation (HCD), and time-dependent dielectric breakdown (TDDB)
[229]. Usually, manufacturers keep their failure rate statistics secret. However,
with feature sizes of 20 nm and below the failure rate is a major problem (dark
silicon [124]), so that fault tolerance methods should be applied [230]. Such
fault tolerance techniques can be implemented on FPGAs by rerouting methods
[231]. However, the fault detection required here is a nontrivial problem. The
learning capabilities of artificial neural networks (ANNs) would be a welcome
capability to organize such fault detection methods. ANNs could be seen as a
future innovation for RC by enabling self-healing reconfigurable platforms based
on self-learning [232–239]. But a very important component is still missing,
requested by ANN pioneer Karl Steinbuch [232–235] already in 1960, which is
capable of nondestructively storing the results of ANN learning processes: the
memristor [240].

Having a joint development agreement with Hewlett-Packard, South Korea’s
Hynix Semiconductor Inc. is going to develop new materials and process integra-
tion technology to implement the memristor technology in its research and devel-
opment laboratory. Being analog components, memristors are fundamentally dis-
tinguished from other nonvolatile computer memory (NVRAM) based on future
technologies such as FeRAM or FRAM (ferroelectric RAM), MRAM (magne-
toresistive RAM), PRAM (phase-change RAM), and RRAM or ReRAM (resistive
RAM), which are digital. FRAM, MRAM, PRAM, and ReRAM are other next-
generation NVRAM technologies with low power consumption because of their
superior scaling characteristics and small cell size, having the potential to replace
flash memory, DRAM, or even a hard drive. Maybe, even memristors could
replace DRAMS and flash and hard disks, perhaps, as well as CDs and DVDs.
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The small size of such memory elements would also be an important means to
cope with the memory wall [241] because the total size of multicore on-chip
memory capacity could be dramatically increased. Menta, founded in 2007 at
Montpellier, France, and focusing on domain-specific eFPGAs, has announced
to use MRAM instead of flash memory for configuration code to obtain archi-
tectural benefits for partial/dynamic reconfiguration as well as ease of fabrication
with standard CMOS processes. Fujitsu just introduced an 8-bit microcontroller
with embedded FRAM.

18.5.1 Speedup Factors by FPGAs

Energy efficiency of FPGAs is not new (Fig. 18.12). From CPU software to
FPGA configware migrations, for a variety of application areas, speedup factors
from almost 10 to up to more than 3 orders of magnitude have been published
(Fig. 18.13) by a number of papers [242]. For example, most bioinformatics
applications, image recognition (but not rendering), encryption/decryption, and
FFT (fast Fourier transform)-based applications are ideally suited to FPGA sili-
con. More recently, for instance, a factor of 3000 has been obtained in 3D image
processing for computer tomography. Biology showed speedup factors [243] up
to 8723 (Smith–Waterman pattern matching, Table 18.9) [90, 244].; multime-
dia reports up to 6000 (real-time face detection). Cryptology reports for DES
(Data Encryption Standard) breaking a speedup factor of 28514 (Table 18.9)
[88]. Some of these speedup studies report energy-saving factors, like 3439 for
the DES breaker example [90]. The same performance requires drastically less
equipment. For instance, only one rack or half a rack and no air-conditioning,
instead of a hangar full of racks. The energy-saving factors reported by these
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TABLE 18.9 Recent Speedup and Power-Save Data from Software to Configware
Migrationa

SGI Altix 4700 w. RC Speedup Save Factor
100 RASC vs Beowulf Cluster Factor Power Cost Size

DNA and protein sequencing 8723 779 22 253
DES breaking 28,514 3439 96 1116

aReferences 90, 246.

studies tend to be roughly 10% of the speedup factor: the golden bullet for
saving energy.

Dozens of papers [242] have been published on speedups obtained by migrat-
ing applications from software running on a CPU to configware for programming
FPGAs [247]. Fig 18.13 shows a few speedup factors picked up from literature,
reporting a factor of 7.6 in accelerating radiosity calculations [248], a factor of 10
for FFT, and a speedup factor of 35 in traffic simulations [249]. A speedup factor
of 304 is reported for an R/T spectrum analyzer [250]. For digital signal process-
ing and wireless communication, as well as image processing and multimedia,
speedups were of 2 to almost 4 orders of magnitude [251, 252]. In the DSP area
for MAC operations, a speedup factor of 100 has been reported compared to the
fastest DSP on the market (2004) [253]. Already in 1997, comparde to the fastest
DSP, a speedup between 7 and 46 has been obtained [254]. In multimedia, we
find factors ranging from 60 to 90 in video rate stereovision [255], from 60 to 90
in real-time face detection [256], and of 457 for hyperspectral image compression
[257]. In communication technology, we find a speedup of 750 for UAV radar
electronics [258]. For acceleration of H.264 video encoding, a speedup factor of
“only” 43.6 has been published [259]. For cryptography, speedups of 3>5 orders
of magnitude have been obtained. For a commercially available Lanman/NTLM
Key Recovery Server [260], a speedup of 50–70 is reported. Another cryptology
application reports a factor of 1305. More recently, for DES breaking, a speedup
by ×28514 has been reported [261] (Table 18.9).
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For bioinformatics applications [182, 262], speedups have been obtained by
2–4 orders of magnitude. Compared to software implementations, sensational
speedup factors have been reported for software to FPGA migrations. Speedups
of up to 30 have been shown in protein identification [263] and of 133 [264]
and up to 500,306 in genome analysis. The Smith–Waterman algorithm, used for
protein and gene sequence alignment, is basically string matching that requires
a lot of computational power [182]. Another study has demonstrated speedups
of 100× using Xilinx Virtex-4 hardware matched against a 2.2-GHz Opteron
[265]. A speedup by 288 has been obtained with Smith–Waterman algorithm at
the National Cancer Institute [266]. More recently, a speedup higher by more
than an order of magnitude has also been obtained [267]. The CHREC project
[222] reports running Smith–Waterman algorithm on a Novo-G supercomputer,
a cluster of 24 Linux servers, each housing four Altera Stratix-III E260 FPGAs.
According to this CHREC study, a four-FPGA node ran 2665 times faster than
a single 2.4-GHz Opteron core [268].

Another Smith–Waterman DNA sequencing application that would take 2.5
years on one 2.2-GHz Opteron is reported to take only 6 weeks for 150 Opterons
running in parallel. Using 150 FPGAs on NRL’s Cray XD1 (speedup by 43)
is reported to further reduce this time to 24 h, which means a total speedup
of 7350× over a single Opteron [269]. These are just a few examples from a
wide range of publications [262–267, 270, 271], reporting substantial speedups
by FPGAs. For the Smith–Waterman algorithm, the performance per dollar and
per watt has been compared among FPGA, GPU (graphics processor), a cell
processor, and a general purpose processor (GPP; Table 18.10) [220].

Software to configware migration and software to hardware migration depend
on the same principles since both are time to structure mappings. The difference
is binding time: before fabrication (hardware) or after fabrication time (config-
ware). An example is the migration [3] of the well-known O(n2) running time
bubble sort algorithm [273] fully based on memory-cycle-hungry CPU instruc-
tion streams, also for reading and storing the data. We map the inner loop into a
bidirectional pipeline register array (Fig. 18.14) [3]. But this solution comes with

TABLE 18.10 Normalized Performance at Smith–Waterman Algorithma

Performance per Dollar Performance per Watt

Performance Normalized Performance Normalized
(MCUPS) Performance (MCUPS) Performance

Platform per Dollar per Dollar per Watt per Watt

FPGA 0.34 4.6 508 584
GPU 0.14 1.9 22 25
Cell BE 0.17 2.3 27 31
GPP 0.07 1.0 0.87 1

Abbreviation: MCUPS, mega cell updates per second.
aReference 272.
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Figure 18.14 Speedup factors from software to configware migration.

access conflicts that are removed by splitting the operation into two phases. How-
ever, this solution wastes resources since at any time, only 50% of the conditional
swap units are busy. For optimization, we change the algorithm into the shuffle
sort algorithm [274, 275] having only half as many conditional swap units. For
avoiding the break bubbling up, we move the contents of the k register pipeline
up and down, each time by a single step. That is why we call it shuffle sort .

The algorithmic complexity turns from O(n2) to O(n). In a similar manner,
other well-known algorithmic methods can be transformed to explore parallelism
and locality, such as in dynamic programming as presented in Reference 182.
Needing no CPU instructions brings additional massive speedup. Since software
is usually stored outside CPU on-chip memory, the memory wall [241] and
overhead phenomena typical to software cause performance by additional orders
of magnitude worse than that of the migrated version.

18.5.2 The Reconfigurable Computing Paradox

Technologically, FPGAs are much less efficient than microprocessors [177, 276].
The clock speed is substantially lower. The routable reconfigurable wiring fabrics
cause a massive wiring area overhead. There is also another massive overhead:
reconfigurability overhead, where of the 200 transistors, maybe about 5 or less
than 1 of them (Fig. 9 in Reference 276 serve the application, whereas the rest
are used for reconfigurability (Fig. 18.10). Often, there is also routing congestion,
so that not all CLBs can be used, causing further degradation of efficiency. Why
does software to configware migration yield such massive improvements in speed
and power consumption, although FPGAs are a much worse technology? It is
the vN paradigm’s fault.

Why does software to configware migration yield such massive improvements
in speed and power consumption, although FPGAs are such a much worse tech-
nology? Measuring the gap between FPGAs and ASICs yields 30–40× area,
12–14× power, and 3–5× speed [277]. This means that for FPGAs, the product
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of area, time, and power is about 3 orders of magnitude higher than that for
ASICs [124]. FPGAs have an enormous wiring overhead, and massive recon-
figurability overhead (from a 100 transistors, maybe about 5 or less serve the
application, whereas the rest provide the reconfigurability), and have a much
slower clock speed than a CPU. Routing congestion may even further degrade
FPGA efficiency. Because of a rapid increase in the number of on-chip devices,
currently, in the range of billions of transistors, as well as the large number of
metal layers, resources get “cheaper,” and thus, the area cost of reconfigurable
hardware is not anymore a limiting factor [124]. Owing to power limitations
with future technologies, not all resources can be active at the same time. Such
resources can then be used to offer reconfigurability and flexibility on a chip, also
targeting fault tolerance. The consequence is that RC can fill, at least partially,
the above gap.

RC has the potential to completely fill the above gap. Why? It is a paradigm
issue: instruction streams versus data streams. To answer, it is the vN syndrome
[175] that looks a bit unfair. It is the typical environment that is so inefficient
so that the much better processor technology is left behind the leading edge by
orders of magnitude. It is an SE issue that multiple levels of overhead lead to code
sizes that hit the memory wall [241]. Nathan’s law says that software is a gas that
fills any available storage space (on-chip memory, extra semiconductor memory
located outside the processor chip), as well as hard disks, and even the Internet.
Here, the memory wall is a technology issue, not directly the paradigm’s fault.

The question is why technologically much worse FPGAs are by orders of
magnitude more efficient than vN-based microprocessors. It is a handicap of the
vN paradigm, that computing by instruction streams is highly memory limited.
It is handicap of the vN-type parallelism, that internode communication reduces
computational efficiency. In RC, the magnitude of parallelism overcomes the
clock frequency limitations. RC massively accelerates tasks by data streaming.
RC minimizes memory size and memory bandwidth by data streams instead of
instruction streams. Data stream computations across a long array (before storing
results in memory) can achieve by orders of magnitude improved use of memory
[247]. All this explains why RC performance and power consumption is by orders
of magnitude more efficient than vN.

Let us also look into history. Prototyped in 1884, the Hollerith tabulator was
the first electrical computer ready for mass production. Punchcard-driven it has
been data-stream-driven RC. Since integrated circuits and transistors did not yet
exist, the LUT was configured manually by banana plug wiring. About 60 years
later, the vN-type ENIAC computer came up [278, 279], consuming electrical
power of 200 kW and requiring a hangar full of equipment (see pictures in
Reference 278, whereas the Hollerith machine had just the size of about two
refrigerators (note: 60 years earlier). Just for computing a few ballistic tables,
this gigantic difference of efficiency foreshadowed that vN becoming fashion-
able turned out to become the most dramatic misinvestment of many hundreds
of billions of dollars. This disruptive about-turn to vN, the most disastrous deci-
sion in the history of computing, was the overture of all the problems of the
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vN syndrome, such as the never-ending software crisis approaching its fiftieth
anniversary. “In an environment which has represented the absence of the need
to think as the highest virtue this is a decided disadvantage” (Daniel Slotnick,
1967) [280].

Even today, based on modern microelectronics technology, already the prin-
ciples of vN hardware are massively inefficient. Just about 5% of the hardware,
the ALU, is doing the processing, whereas the other 95% hardware is overhead
(Fig. 18.15) [187]. But orders of magnitude more inefficiency is caused by
multiple overhead phenomena in the software required to follow this machine
paradigm. The flood created by much more than a thousand programming lan-
guages having been developed (a subset listed in Table 18.3) seems to exhibit
more a symptom of a lack of direction than of cleverness. Another symptom
of chaos is replacing languages of high abstraction level, such as Pascal, by
the assembler-like language C. The term software crisis is almost 50 years
old. This term was coined by Prof. F. L. Bauer from TU Munich when, he
was its general chair, he opened the first NATO Software Engineering Confer-
ence 1968 in Garmisch, Germany. Since then, literature, panels, and keynote
addresses investigating the variety of overhead phenomena have been increasing
[175, 176, 241].

The vN paradigm was criticized also by celebrities [281–284]. Peter Newman
had appeared each month for 15 years on the critical “computers at risk” back
pages of Communications of the ACM [285]. Nathan’s law (by Nathan Myhrvold,
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a former CTO of Microsoft) said that software is a gas, which fills any available
storage space: on-chip memory, extra semiconductor memory located outside the
processor chip, as well as hard disks. It even fills the Internet. Niklaus Wirth’s
pre-many-core interpretation of Moore’s law is “software is slowing faster than
hardware is accelerating” [283]. Why, how often, and to what extent software
fails is meanwhile its own subject era [281–287].

Why is vN paradigm so inefficient? It is not only the typical environment
that is so inefficient, that the much better processor technology is left behind
the leading edge by orders of magnitude. We can identify two different reasons:
algorithmic complexity caused by the vN paradigm and architectural issues [287].
There is a number of attempts to explain at least particular symptoms of this
syndrome (Fig. 18.10) [187, 188]. The most well-known architectural problem
is the memory wall (Fig. 18.16) [284]. It is also an architecture-related SE issue
that multiple levels of overhead lead to massive code sizes, which hit the memory
wall [288]. The “memory wall” means that the time to access RAM outside the
processor chip is currently slightly more than a factor of 1000, which is shorter
than that to access on-chip memory [288]. This difference is growing by 50%
every year.

The memory wall is really not fully the paradigm’s fault. Smart cell phone
architecture show embedded software approaches to cope with memory band-
width problems. But instruction sequencing overhead is a consequence of the vN
paradigm. After a full migration to static RC, an application uses zero instructions
at runtime and is run by data streams only. But by migration, also the amount
of data streams may be minimized by changing the algorithm. Here, an illustra-
tion example for reducing the algorithmic complexity is given by the migration
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of the well-known O(n2) complexity bubble sort algorithm away from vN. The
algorithmic complexity turns from O(n2) into O(n)3. In a similar manner, other
well-known algorithmic methods can be transformed to explore parallelism and
locality, such as in dynamic programming as presented in Reference 227. The
combination of these effects leads to massive speedup and massive saving of
energy (Section 18.5.4).

Why does the migration from instruction streams to data streams lead to such
massive speedup? How data are moved is also a key issue. CPUs usually move
data between memory blocks and require instruction streams to carry it out (first
row of Table 18.7). The movement of data is evoked by execution of instructions
due to the vN paradigm. Also the execution of operations inside a CPU requires
reading and decoding of instructions. On a reconfigurable platform, however,
which can be modeled as a pipe network, data are moved directly from DPU to
DPU. This means that operation execution inside a DPU (not having a program
counter) is “transport triggered” (second row of Table 18.7). It is triggered via
handshake by the arrival of the data item, not needing an instruction to call it. Not
looking at dynamically reconfigurable systems (only for advanced courses [227]),
we see that reconfigurable fabrics do not perform any instruction sequencing at
runtime.

Of course, the data entering or leaving such an array (Fig. 18.8) have to
be stored in memory. The data stream machine paradigm uses autosequencing
memory (asM) blocks. Each asM has a reconfigurable address generator and data
counter inside, so that no instruction streams are needed for address computation.
All these data streams can be programmed via data-imperative languages [289],
being a kind of sisters of classical imperative programming languages.

18.5.3 Saving Energy by Reconfigurable Computing

Recently, not only speedup but also energy-saving factors have been reported,
roughly 1 order of magnitude lower than the speedup. Most recently, for DES
breaking (a crypto application), 28,500 (speedup) versus 3439 (saving energy)
and for DNA sequencing, 8723 (speedup) versus 779 (saving energy) (Table 18.9)
[261]. This paper also reports factors for saving equipment cost (up to ×96) and
reducing equipment size (up to 1116; Table 18.9). A hangar full of equipment
is not needed when FPGAs are used in scientific computing. The pervasiveness
of FPGAs is not limited to embedded systems, it is also spread over practi-
cally all areas of scientific computing, where high performance is required and
access to a supercomputing center is not available or not affordable. The desktop
supercomputer is near.

This chapter introduces the highly promising and important future roles of RC,
emphasizes that it is a critical survival issue for computing-supported infrastruc-
ture worldwide, and stresses the urgency of moving RC from niche to mainstream.
It urges acceptance of the massive challenge of reinventing computing, away from
its currently obsolete CPU-processor-centric Aristotelian CS world model, over
to a twin-paradigm Copernican model supporting energy-efficient heterogeneous
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systems by including the massive use of RC. This chapter also gives a flavor of
the fundamentals of RC and the massive impact on the efficiency of computing
it promises. Furthermore, the chapter outlines the educational barriers we have
to surmount and the urgent need for major funding on a global scale to run a
worldwide mass movement, of a dimension at least as far reaching as the Mead
& Conway VLSI design revolution in the early 1980s [95–105]. The scenarios
are similar: around 1980, an urgently needed designer population was missing.
Now, a properly qualified programmer population is not available. This time the
problem is more difficult, requiring a twin-paradigm approach for programming
heterogeneous systems including both many-core processors and reconfigurable
accelerators.

The idea of saving energy by RC is not new [245, 254]. It is the silver bullet
to massively reduce the energy consumption of computing, by up to several
orders of magnitude. RC is extremely important for the survival of the world
economy. It has been reported more than a decade ago that for a given feature
size, microprocessors using traditional compilers have been up to 500 times
more power-hungry than a pure hardware mapping of an algorithm in silicon
(Fig. 18.13) [245]. Speedup factors up to more than 4 orders of magnitude were
reported from software to FPGA migrations (Fig. 18.13 [246, 248–252, 254–262,
290, 291]). The energy-saving factor is about 10% of the speedup factor, that is,
still up to more than 3 orders of magnitude. A partial paradigm shift migrating
only a part of the software into configware promises to save electricity by orders
of magnitude.

18.5.3.1 Traditional green computing. Green computing (compare Section
18.2.1) uses conservative methods to save energy by more efficient modules,
circuits, and components. For example, LED flat-panel displays need much less
power than LCD-based plasma displays that need 150–500 W or more. Also
much more power-efficient power supply modules are possible. The potential
to save power is substantially less than an order of magnitude, maybe a factor
of about 3 or 4. A special scene within green computing is low power circuit
design, now also called low power system on-chip design (LPSoCD). Its most
important conference series are about 30 years old: the PATMOS (oldest) and
the ISLPED conference series [116]– [154, 156, 157, 160]–[160, 315] a brand
new conference is the e-Energy [293, 316].

Several aspects are known for LPSoCD, such as leakage power, clock gating,
active body bias (ABB), adaptive voltage scaling (AVS), dynamic voltage scaling
(DVS), multiple supply voltages (MSVs), multithreshold CMOS (MTCMOS),
power gating (PG), and power gating with retention (RPG) [140, 317]. However,
the order of magnitude of the benefit to be expected from this subarea LPSoCD
is rather low. By MSV, in using three Vdds, the power reduction ratio at best is
about 0.4 [140]. LPSoCD is a matter of ASIC design, for example, of hardwired
accelerator design. Only 3% of all design starts are ASIC designs (Fig. 18.9)
with a trend leading further down. But in fact, low power design is also used
for developing better power-efficient FPGAs to the benefit of RC. But we need
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a much higher potential of saving energy because “Energy cost may overtake
IT equipment cost in the near future” [108]. “Green Computing has become
an industrywide issue: incremental improvements are on track. . . But we may
ultimately need revolutionary new solutions.” [318] Let me correct this statement,
“we will ultimately also need revolutionary solutions” (such as RC), since we
need much higher efficiency [319].

18.5.3.2 The role of graphics processors. Accelerator use of general pur-
pose graphics processing units (GPGPUs [304]) is a big fashion, so that there
seems to be a perception that there is a battle between FPGAs and GPGPUs for
GP HPC acceleration, with regard to speedup and power efficiency. However, the
very busy hype on the accelerator use of GPGPU seems to be overexaggerated
[306]. Depending on the class of algorithms, speedup factors just between ×1 and
up to ×3 are reported, compared to “normal” x86-based many-core architecture
use [305–307]. Since a compute-capable discrete GPU can draw much more than
200 W, other authors call this massive power draw a serious roadblock to the
adoption, not only in embedded systems but also for data centers [308]. FPGAs
from a new Xilinx 28-nm high performance, low power process developed by
Xilinx and TSMC and optimized for high performance and low power are much
better-off than GPUs (Table 18.10) [220].

NVIDIA hardware has the advantage of ECC memory support, local cache,
asynchronous transfers, and a generally more sophisticated architecture geared
for GP computing [311]. But AMD’s offerings have the advantage of better
performance per watt, at least for the 150-W FireStream 9350 product [311].
A recent paper on GPU-accelerated software packet router says, “We believe
that the increased power consumption is tolerable, considering the performance
improvement from GPUs.” [309] But finally, it turns out that the GPU remains
a specialized processor, so that we still need the traditional CPU after all. Intel
is coming up with both on the same microchip [313].

NVIDIA needs Intel more than Intel needs the GPU designer [152]. The truth
is that the NVIDIA Tesla boards use Intel Xeon chips to demonstrate the per-
formance gains of a CPU/GPU combination. So the question is “why bother
attacking the devil, if you have to dance with it?” [152] GPUs can be used for
traditional graphics, advanced visualization, and floating point/vector processing.
The rise of GPGPU computing will inexorably push graphics-flavored logic onto
the CPU die [310] by the two big x86 chip vendors, AMD with their Fusion APU
(accelerated processing unit) processors, maybe for early 2011 [311]. CPUs and
GPUs will share the same silicon real estate. When manufactured below 32 nm,
the earliest CPU-GPU server chips may come by 2012, or 2013. Maybe, GPGPUs
as a kind of alternative many-core architecture are adding to the programming
challenge [152]. NVIDIA’s CUDA programming environment has become a pre-
mier software platform for GPGPU development, whereas AMD is sticking with
the open standard OpenCL sometimes considered less capable and less mature
[311]. But NVIDIA has the only conformant, publically available, production
OpenCL GPU drivers. But in contrast to GPGPUs, socketed FPGAs can connect
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to an x86 CPU without host intervention, directly over the high performance
native processor bus, like Intel’s Front Side Bus (FSB), with PGA expansion
modules by companies such as XtremeData, DRC Computer, and Nallatech and
using compilers from tool makers such as Mitrionics, Celoxica, and Impulse
Accelerated Technologies compiling C (or C-like) code into an FPGA logic.
At the Intel Developer Forum in September 2010, Xilinx showcased the Intel®
QuickPath Interconnect (Intel® QPI) technology for enabling the integration of
FPGAs in HPC applications.

18.5.3.3 Wintel versus ARM. Most of the referenced CPU to FPGA migra-
tion speedup reporting papers (Section 18.5.1) have compared FPGAs with earlier
Wintel processors, as well as with older types of FPGAs that are less power effi-
cient. Are those data still useful? Are ARM processors more power efficient than
x86? ARM processors are often powered by a small battery when being used
extensively in consumer electronics, including PDAs, tablets, mobile phones,
digital media and music players, handheld game consoles, calculators, and com-
puter peripherals such as hard drives, printers, and routers. About 98% of the
mobile phones sold in 2007 use at least one ARM processor. ARM licensed
about 1.6 billion cores in 2005 [312]. In 2005, about 1 billion ARM cores went
into mobile phones. Until January 2008, over 10 billion ARM cores have been
built, and iSuppli predicts that 5 billion a year will ship in 2011. Cortex pro-
cessors (ARMv7) now provide faster and more power-efficient options than all
those previous-generation processors. Cortex-A targets applications processors,
as needed by smartphones that previously used ARM9 or ARM11. Cortex-R tar-
gets real-time applications, and Cortex-M targets microcontrollers. “M” stands for
an improved multiplier and a faster adder. In 2009, some manufacturers intro-
duced netbooks based on ARM architecture CPUs in direct competition with
netbooks based on Intel Atom. The new ARM Cortex seems to be more energy
efficient than Intel Atom (but only in terms of GHz/W), but is only a simple
32-bit reduced instruction set computer (RISC), whereas Intel has a powerful
64-bit CISC architecture. The relative simplicity of ARM processors made them
suitable for low power applications. This has made them dominant in the mobile
and embedded electronics market as relatively low cost and small microproces-
sors and microcontrollers. How much will this affect the CPU to FPGA speedup
and power-save comparison figures?

Current Intel x86 processors can deliver up to 3.6 GHz while consuming up
to 130 W, or at the low end, 1.8 GHz at 40 W. The ARM line of chips has been
reported to deliver 1 GHz at 700 mW [320] (down by ×50 in terms of GHz/W)
and can reach up to 2 GHz while still consuming less than a watt (down by
×75 in terms of GHz/W). So the power savings seem to be substantial. But the
situation is far from being that simple. Maybe more reasonable conclusions can
be obtained by benchmarking, after ending the controversial discussion on which
benchmark to use. However, benchmarks are not real life. But, we also have
extremely power-efficient FPGAs (e.g., IGLOO [321]) that are also useful for
battery-powered handheld devices. The evaluation of power-saving figures from
software to configware migration is not as simple as it has been.
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Intel started challenging ARM with its Atom processor by moving down-
market and toward smartphones, and also by buying a unit of Infineon [322]. We
see an emerging competition between ARM and x86 microprocessors [315]. Led
by the Intel Atom, x86 chips are quickly migrating downward into embedded,
low power environments, while ARM CPUs are beginning to flood upward into
the more sophisticated and demanding market spaces currently dominated by x86
processors. Now, Intel is working on an x86-based ultramobile personal computer
(UMPC) to “offer leading performance while reducing the footprint and power
consumption” (Jon Jadersten), trying to invade ARM’s traditional domain: low
power handhelds. Intel has produced three “platforms” called McCaslin, Menlow ,
and Moorestown . Menlow consists of a Silverthorne 45-nm processor, a support
chip called Poulsbo for controlling I/O and graphics, and a communications
module that can be either Wi-Fi or WiMax capable. Moorestown combines the
functionality of at least McCaslin and Menlow, reducing idle power consumption
by an order of magnitude. Intel has also begun talks on mobile Internet devices
(MIDs), a kind of more powerful iPhones. But this does not mean that FPGAs
are not going to win. There are also indications that Apple plans to go FPGA
[323]. Is Intel planning to buy an FPGA vendor? If not, I would not understand.

Microsoft is largely a x86 vendor, which means that most of these ARM imple-
mentations do not run a version of Windows, but run a version of Linux instead.
Intel spends a lot of R&D for x86 on process and architecture. One example is
the cost of verification with making over 1000 instructions work flawlessly, with
predecoded logic, complex instruction caches, and many other techniques. Its
versatility both in software and hardware made the x86 what it is. ARM versus
x86 is basically an RISC versus a CISC debate. ARM has significant limitations
and not yet the potential to replace x86 on the market. Does ARM not even
reach the performance of 14-year-old Pentium? [324] What ARM brings to the
table is very low power requirements for a given level of processor performance.
ARM is fine when optimized for web browsing, writing, and watching video if
you have the right video acceleration. For running something more, it will be
too slow. To accelerate nonstandard codecs, it does not have enough instructions
(such as extra multimedia ones) for playing such kind of video. Everything is
getting compressed now for data saving. But ARM chips could hardly handle
heavy compressed files such as WinRAR. Even the video subsystem of ARM
Cortex-A8 is limited and memory is a slow 32-bit, DDR2 200 MHz. It needs
faster RAM and more RAM. The double-precision floating-point throughput of
ARM Cortex-A8 is also poor. In summary, FPGA superiority is not threatened.

I opine that with all the improvements ARM cores still have a weaker archi-
tecture than the first Intel Core (Banias) and Athlon (not 64) [324]. Where the
ARM platform historically falls short is in multitasking, software breadth, and
consistency between versions, especially the last one, where x86 remains rela-
tively constant so that a piece of software can generally run on x86 products that
are over a decade old. Each version of ARM generally requires a platform rewrite
and this will make software offerings like application stores rather interesting to
manage over the long term. Hardware virtualization, at least for the short term,
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will be difficult, because there is not a lot of extra performance overhead to run a
virtual machine on ARM yet. The upcoming/next-generation Cortex-A class pro-
cessor code-named “Eagle,” for quad-core symmetric multiprocessing, intends to
help redefine the smartphone landscape again. Will it be successful? So we do
not yet need to declare our dramatic CPU to FPGA comparison figures (Section
18.5.1) for being obsolete.

Why does energy efficiency matter to ROI and the environment? Intel x86
chips have gained dominance in data centers. But because of the need to add
so many more servers to meet our rising demand for computing, power consid-
erations begin to determine the calculation. Cooling makes up nearly half the
capital expenditure and almost two-thirds of the operation expense. However,
for an Atom to ARM conversion, huge masses of software have to be rewritten,
which means to port programs such as Windows. But even if the x86 domina-
tion ends, a transition to lower power server chips would take many years, if
happening at all. FPGAs are still very far from being obsolete.

Meanwhile, much more power-efficient FPGAs are available. The exploding
market for handheld smart devices creates pressure for low power. This has
radically altered electronics design choices and decisions upstream. Expensive
ASICs or custom ICs simply do not work in markets where cost is a factor, but
the ability to hit tight market windows and adapt to changing technology stan-
dards is paramount. This paradigm shift requires FPGAs, which offer both low
power capability and system design flexibility to meet time-to-market demands
and changing user requirements and standards. For instance, GE Intelligent Plat-
forms is developing a range of digital receiver, digital transceiver and FPGA
processor products based on the Virtex-6 and 7 series FPGA families from Xil-
inx for applications such as software defined radio, signals intelligence, tactical
communications, and radar [272], requiring more raw processing performance,
greater capacity, higher speed I/O, and lower power consumption. An example is
the power consumed by the FPGA of a converter design [299]. The comparison
between low power FPGAs and low power CPUs is still massively in favor of
the FPGAs as reported in Section 18.5.1. For instance, some authors reported
a 103 mW FPGA [299]. With three new product families (Virtex-7, Kintex-7,
Artix-7) fabricated by TSMC’s 28-nm high-k metal gate (HKMG), high perfor-
mance, low power (HPL) process technology, Xilinx has substantially improved
power and performance, capacity, and price [300].

Being claimed to be the industry’s lowest power and widest range of small
packages, Actel’s flash-based IGLOO FPGAs can be found in the latest handheld
portable devices [321]. It has been designed for a wide array of handheld devices,
including smartphones, eBooks, cameras, medical devices, industrial scanners,
and military radios. Actel also offers a low power 15,000-gate IGLOO FPGA
for 99 cents with a power consumption of only 5 μW, advertised as “more than
200x less static power than competitive FPGA offerings” [325]. Also Xilinx
came up with much more power-efficient FPGAs. Our observation is that lower
power consumption of current and future microprocessors stands against newer
FPGAs also featuring much less power and much higher performance [9, 326].
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The conclusion is that the role of migrations from software to RC as the silver
bullet to massively save energy is not really affected, even in case that this bullet
would be slightly slower (what has not yet been proved).

18.5.4 Reconfigurable Computing is the Silver Bullet

Since not offering improvements by orders of magnitude, traditional green com-
puting (Section 18.5.3.1) is not threatening the paramount role of RC. The
publication of speedups from software to configware migration started around
1995 (Fig. 18.13). Many of the published papers (Section 18.5.1) have com-
pared FPGAs with earlier Wintel processors, as well as mostly with old types of
FPGAs that are less power efficient. Although to publish saving energy by RC
(Section 18.5.3) started a decade later, we may have a second look. But, we also
have extremely power-efficient FPGAs (e.g., IGLOO [321]), which are also used
for battery-powered handheld devices. The evaluation of power-saving figures
from software to configware migration is not as simple as it has been.

Also, microprocessors are going low power (Section 18.5.4.1). Intel has begun
talks on MIDs, a kind of more powerful iPhones. This does not mean that
FPGAs are not going to win. There are indications that Apple plans to go FPGA
[323]. I would understand if Intel is planning to buy an FPGA vendor. The
upcoming/next-generation Cortex-A class processor “Eagle,” intends to redefine
the smartphone landscape again. However, we do not yet need to declare our
dramatic CPU to FPGA comparison figures (Section 18.5.1) for being obsolete.
Much more power-efficient FPGAs are also available. This has radically altered
electronics design choices and decisions upstream. Expensive ASICs or custom
ICs simply do not work in handheld smart devices markets where cost is a factor.
The conclusion is that the role of migrations from software to RC as the silver
bullet to massively save energy is not really affected, even when this bullet is
slightly slower (what has not yet been proved). The very high energy consumption
(Section 18.3.1) also urges us to revolutionize the fundamentals of programmer
education. The conclusion is that also because of the programming wall (Section
18.3.2), we cannot avoid the need to reinvent computing. Since a lot of software
has to be rewritten anyway for many-core (Section 18.5.6.1), a major migration
campaign really makes sense (Section 18.5.6).

18.5.4.1 A new world model of computing. ASICs used as accelerators
have massively lost market shares in favor of reconfigurable accelerators. Now,
FPGA projects outnumber ASIC projects by 30 to 1 (Fig. 18.9 [327]), or even by
50 to 1 due to another estimation [192]. FPGAs are structurally programmed from
“configware” sources, which are fundamentally different from the instruction-
stream-based “software” sources (Table 18.6). FPGAs come with a different
operating system world organizing data streams and swapping configware for
partially and dynamically reconfigurable platform [195]. Introduced in 1984 and
now a US$5-billion world market. Modern successors of FPGAs (Fig. 18.17)
reach the market like EPPs. Also used for HPRC in supercomputing by Cray and
Silicon Graphics, well-proven technology is rapidly heading mainstream.
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Figure 18.17 Interconnect fabrics example of a routable GA (gray line): example of one
routed wire connecting two CLBs.

The traditional CPU-centric world model of the CS world is obsolete. It resem-
bles the old Aristotelian geocentric world model. Its instruction-stream-based
software-only tunnel view perspective hides structural and data stream aspects,
thus massively threatening the progression of system performance, where we
have to confront a dramatic capability gap. We need a generalized view, compa-
rable to the Copernican world model not being geocentric. We need a model that
also includes structures and data streams and supports time to space mapping,
since scaling laws favor reconfigurable spatial computing over temporal com-
puting. Exercising time to space mapping, also by programming data streams
and by software to configware migration, provides important skills, for example,
locality awareness, understanding and designing efficient many-core architecture
and their memory organization being essential to cope with bottlenecks caused
by bandwidth problems.

This new direction has not yet drawn the attention of the curriculum plan-
ner within the embedded systems scene. For CS, this is the opportunity of the
century for heading toward new horizons and to preserve the affordability of its
electricity consumption. This should be a wake-up call to CS curriculum devel-
opment. Each of the many different application domains has only a limited view
of computing and takes it more as a mere technique than as a science on its
own. This fragmentation makes it very difficult to bridge the cultural and practi-
cal gaps since there are so many different actors and departments involved. We
need the new CS world model to avoid the capability gap caused by that frag-
mentation. CS should take the full responsibility to merge RC with CS curricula
for providing RC education from its roots. CS has the right perspective for a
transdisciplinary unification in dealing with problems, which are shared across
many different application domains. This new direction would also be helpful to
reverse the current downtrend of CS enrollment.

Not only for the definition of the term “Reconfigurable Computing” (RC) it
makes sense, to use a clear terminology—not only to improve education about
how to reinvent computing. It is a sluttish use of terms if “soft” or “software”
is used for everything, which is not hardware. The term software should be used
only for instruction streams and their codes. However, we generalize the term
programming (Fig. 18.18) such that procedural programming (in time domain)
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Figure 18.18 All but the ALU is overhead: x20 efficiency [187].

creates sequential code, like instruction streams (software) or data streams, which
we call flowware, and “structural programming” (programming in space) cre-
ates “structural code,” which we call configware since it can be used for the
configuration of FPGAs or other reconfigurable platforms (Table 18.7).

This established terminology reveals (Table 18.8) that a software to config-
ware migration means a paradigm shift, away from the traditional programmer’s
CPU-centric world model of computing, resembling the geocentric Aristotelian
world model. To reinvent computing, we need a multiparadigm hetero system
world model of computing science (Fig. 18.18), which models the coexistence
of and the communication between (i) the traditional imperative software pro-
gramming language mind-set with the CPUs running by software (instruction
streams), (ii) the reconfigurable modules to be structurally programmed by con-
figware, and (iii) an imperative data stream programming language mind-set with
[289] data stream machines programmed by flowware for generating and accept-
ing data streams (Table 18.7 also contains the data counter inside a reconfigurable
address generator). We obtain an almost fully symmetric methodology: the only
asymmetry is intraloop parallelism, possible for data streams, but not for instruc-
tion streams (Table 18.11). The semantic difference of these machine paradigms
is the state register: the program counter (located with the ALU) for running
the instruction streams in executing software, and the data counter(s) (located in
memory block(s) [218, 274]) for running data streams in executing flowware.

Figure 18.18 illustrates this triple-paradigm “Copernican” world model replac-
ing the vN-only-centric obsolete “Aristotelian” narrow tunnel view perspective of
classical SE, which hides almost everything that is not instruction stream based.
(The term supersystolic in Figure 18.8 stands for the generalization [172, 173,
191, 295–297] of the systolic array [214, 215]; nonlinear and nonuniform pipes
are allowed, such as spiral, zigzag, and any excessively irregular shapes.) This
generalized model will help us to come up with a new horizon of programmer
education [328, 329] that masters overcoming the hardware/software chasm, hav-
ing been a typical misconception of the ending first history of computing. The
impact is a fascinating challenge to reach new horizons of research and devel-
opment in CS. We need a new generation of talented innovative scientists and
engineers to begin the second history of computing, not only for the survival of
our important computer-based cyber infrastructure but also for developing and
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TABLE 18.11 Software Languages versus Flowware Languages (Imperative
Language Twins)a

# Language Features Software Languages Flowware Languages

1 Sequencing managed
by

Read next instruction, goto
(instruction address),
jump (to instruction
address), instruction loop,
and nesting, escapes
instruction stream
branching

Read next data item, goto
(data address), jump (to
data address), data loop,
and nesting, escapes data
stream branching

2 Parallelism No parallel loops Yes, parallel loops (by
multiple data counters)

3 Data manipulation Yes No (hardwired or synthesis
from configware
language)

4 State register Single program counter (in
CPU)

One or more data counter(s)
(in asM memory)

5 Instruction fetch Memory cycle overhead No memory cycle overhead
6 Address computation Massive memory cycle

overhead (depending on
application)

Reconfigurable address
generator(s) in asM: no
memory cycle overhead

aReference 278.

integrating exciting new innovative products for the transforming post-PC era
global information and communication markets [289]. Masses of highly qual-
ified new kinds of jobs must be created to meet the fascinating challenges of
reinventing computing sciences, following the wide horizon of the new world
model.

18.5.5 The Twin-Paradigm Approach to Tear Down the Wall

By going from hardwired accelerators to programmable (reconfigurable) accel-
erators, the traditional hardware/software chasm within CS education is turning
into new horizons of SC interfacing. Mainstream academic SE education is crip-
pling itself by ignoring that we now live in a twin-programming-paradigm world.
Mainstream education also ignores the many-core programming crisis [330]. Why
does SE still ignore this highly potent silver bullet candidate? Why? NIH effect?
Not invented here?

Our contemporary model (Table 18.6, rows 1–3) now includes two procedural
programming paradigms: software to schedule instruction streams and flowware
to schedule data streams. This twin-paradigm model is a dichotomy and supports
interlacing both machine paradigms. The ISP (CPU) model is the vN machine
paradigm for sequencing by program counter. But flowware is based on sequenc-
ing by data counters. This counterpart and twin brother of the vN paradigm is
the data stream machine paradigm.
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Most primitives of a software language and a flowware language are mainly
the same (Table 18.11). The only difference is the semantics: a software language
deals with sequencing a program counter. A flowware language programs one or
more data counters (generalized DMA, (direct memory access)) for sequencing
data streams. This is the only asymmetry: just a single program counter (located
in the CPU). But data stream machines may have several data counters running
in parallel (located in asM data memory, generalized of DMA). Two exceptions
make flowware languages more simple than software: (i) no data manipulation
since being set up by reconfiguration via configware and (ii) parallelism inside
loops, a data stream machine may have several data counters.

Since accelerators have become programmable, the traditional hard-
ware/software chasm has become extremely intolerable. The supercomputing
scene is on the way to learn that, via a vN strategy, the exascale computer will
become unaffordable. We are forced to completely reinvent computing [331].
We need a generalization of SE by program engineering covering both time
and space domains by including three paradigms: software, flowware [332], and
configware [333] (Table 18.6; Fig. 18.19).

We need to rearrange undergraduate courses [334], following the advice of
David Parnas [186]: “The biggest payoff will not come from new research but
from putting old ideas into practice and teaching people how to apply them prop-
erly.” Examples are two old simple rules of thumb: (i) loops turn into pipelines
(the year 1979 and later [335]) and (ii) decision box turns into demultiplexer
[336]. In the 1970s, when hardware description languages came up, a celebrity
said “A decision box turns into a demultiplexer. This is so simple. Why did it
take 30 years to find out?” [336]. It is the tunnel view perspective of SE. Also,
the flowware paradigm is based on the data stream definition published in the
late 1970s. We all need to extend our horizon to rediscover old stuff.

Programming education requires an interlacing twin-paradigm approach. Two
dichotomies alleviate dual-rail teaching:

Instruction
streams

Data streams

Supersystolic
arrays and
structures

SE

PE

FE

CE

Figure 18.19 New CS world model. PE, program engineering; FE, flowware engineer-
ing; CE, configware engineering.
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1. The machine paradigm dichotomy (vN versus data stream machine [49,
337, 338]).

2. The relativity dichotomy (time domain versus space domain, helps under-
stand parallelization).

We are still affected by the “software crisis,” although this term has been
coined in 1968 [339]. Wikipedia says, “The software crisis was a term used
in the early days of software engineering, before it was a well-established sub-
ject.” [340] I disagree. In my opinion, SE is not yet a well-established subject.
The software crisis has been and still is manifested by software that is difficult
to maintain, very inefficient, of low quality, not meeting requirements, and by
projects running overbudget and/or overtime, being unmanageable or canceled.
Only about a decade ago, Niklaus Wirth’s law says, “Software gets faster slower
than hardware gets faster” [283] (apropos “slower faster”: sometimes, should
there not be even a comma between “slower” and “faster”?). It is widely agreed
that here no “silver bullet” has yet been found. The software crisis is still far
from being tamed. Dijkstra explained its causes [341] by the overall complex-
ity made possible by growing processor performance, that is, by Moore’s law.
More recently, Microsoft’s Nathan Myhrvold even argues that Nathan’s law is
driving Moore’s law by the demand software creates, like a gas that fills its
container. Let me even go further: this gas is not only filling growing memory
microchips (Moore’s law) but also growing disc space by Kryder’s law [342],
leaving Moore’s law behind at a snail’s pace. This gas is also filling the Internet
with its communication bandwidth capacity for growing numbers of surfers and
of e-mails growing in size; video on demand, Internet radio and TV, voice over
IP; and growing numbers of smart mobile phones and Blackberries and what else
is using it and its server farms [136] and cloud computing space [130] (whose
law is this?).

The software crisis has become worse by the parallel programming wall now
having become more dramatic by the many-core dilemma beginning around 2004.
Now, the programming model is different. Software reuse and task partitioning
have become more difficult [343]. We encounter multiple challenges [331], such
as shared resource contentions, how to implement timing behavior [331] and to
control timing precision and safety requirements [344], as well as to achieve
simultaneously both low power and high performance. It is questionable whether
a larger number of slower processors are more efficient. We need to construct new
timing models describing all possible timed traces of bus and memory requests
[345]. We have to cope with a wide classification variety of hardware architec-
ture [346]: multithreading, homogeneous versus heterogeneous [347], message
passing, shared memory, UMA (uniform memory architecture) or NUMA, SMP
versus AMP (asymmetric multiprocessor), etc. The impact of very high energy
consumption by all computers worldwide offers a higher success potential than
most other energy and climate policy issues. Future unaffordability of our total
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TABLE 18.12 Similar Scenario: SE Revolution versus Mead & Conway VLSI
Design Revolutiona

# Scene Problem Interactions Claims Solution

1 M & C
revolution

VLSI designer
population
missing

Semiconductor
technology
vs computer
science

Technology
claimed it is
their job (but
could not
follow
Moore’s law)

Separating: create
VLSI design
education scene

2 Proposed SE
revolution

Innovative
programmer
population
missing

SE vs RC SE claims, it is
not their job

Merging: include
RC into SE
education

aReferences 95–105.

computer operating cost is looming. The further predominance of the vN pro-
gramming paradigm is intolerable. We urgently need to motivate opinion leaders
in SE and curriculum recommendation task forces.

18.5.6 A Mass Movement Needed as Soon as Possible

The scenario resembles the VLSI design revolution, the most effective project
in the history of modern CS (row 1, Table 18.12). Originally, the semiconductor
technology experts claimed that they master circuit design with the left hand.
The Moore curve approaching 1000 transistors per chip turned this into a design
crisis with a missing qualified designer population. VLSI design education has
been founded as a separate discipline outside technology, supported by a new
textbook, especially written for people without technology background [101].
Within 3 years, these courses have been introduced by more than a hundred
universities worldwide.

We now have a similar scenario (row 2, Table 18.12). Is this not a strong
motivation for the SE scene? No, not yet. In contrast to the VLSI revolution,
the SE community claims that RC is not their job, and the solution is merging
instead of separating (last 2 columns of Table 18.12). We again need such inno-
vative education efforts: professors back to school. We need a worldwide mass
movement qualifying most programmers for twin-paradigm programming, ready
for a worldwide changeover of many applications, what will create a lot of jobs
for at least a decade. But in contrast to the VLSI design revolution, we have to
merge two so far separate disciplines: software-based CPU programming method-
ology with flowware and configware-based RC. New horizons in saving massive
amounts of energy and very HPC will be opened up by this generalization of SE.

Until today, masses of IBM 360 compatible software packages are still run-
ning. Since most of the programmers (the baby boom generation) who wrote that
stuff are retired, a bunch of universities is starting courses on “mainframe pro-
gramming” for their (hopefully) successors. We see the massive inertial effects of
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legacy software. What are the consequences of planning major software to con-
figware migration campaigns to save energy by reducing the energy consumption
of all our IT infrastructure? We will need much effort in selecting the candidates
for migration.

18.5.6.1 Legacy software from the mainframe age. This section discusses
why massive software to configware migration makes sense. What are the reasons
why a migration from microprocessors to FPGAs makes sense, although FPGAs
seem to be massively less effective from a technological point of view. The
explanation for this paradox is the unbelievable inefficiency of software based
on the vN paradigm.

Origins of legacy software may reach back by almost half a century, like
that of mainframe software. IBM and CA Technologies (Islandia, NY, USA,
maker of mainframe software) are hard-pressed to replace the aging corps of
baby boomers who support their still-indispensable mainframe business [114]
(SW still compatible with IBM 360 mainframes). IBM commands 85% of the
mainframe market with some 10,000 mainframes used by 4000–5000 customers
around the globe [114]. Some companies still employ an older mainframe with
a screen known as a 3270 terminal emulator, which evokes the decades-old
DOS, that predated Microsoft (MSFT) Windows [111]. The roots of modern
mainframes can be traced back to the introduction of IBM System/360 in the mid-
1960s, when the oldest baby boomers were still teenagers. With their ability to
reliably process millions of instructions per second, mainframes became popular
in banking, insurance, and other industries that required high power computing.
For that era’s CS students, the mainframe represented cutting-edge technology.

For IBM, mainframes are a high margin business, generating additional soft-
ware and service revenues. Margins for mainframes are about 70%, compared
with 46% for the company’s margins as a whole [114]. The resulting worker
shortage poses a threat to IBM. If unresolved, the lack of engineers adept at
designing, programming, and repairing mainframes could curb demand for one of
IBM’s most profitable products by alternatives including Hewlett-Packard (HPQ)
or Dell (DELL) servers to run networks, Web operations, and a growing range
of the computing tasks once entrusted to mainframes.

Teaching such mainframe skills is out of vogue at many universities. Many
engineers capable of tinkering with the refrigerator-sized machines are nearing
retirement. “This inescapable demographics will be trouble for the platform”
[114]. So IBM has created a curriculum designed to encourage the teaching
of mainframe skills and distributed it to institutions of higher learning in 61
countries and began distributing its System z Academic Initiative to 24 colleges
and universities in 2003. The number swelled to 700 this year and is expected
to reach 1000 institutions by the end of 2011 [114]. Aside from training new
mainframe workers, CA Technologies aims to keep existing mainframe experts
in place longer. It offers flexible work schedules such as 3-day-work weeks.
The company will even consider letting seasoned engineers take summers off.
CA Technologies hires about 40–50 people a year and also encourages retiring
workers to mentor younger ones.
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18.5.7 How to Reinvent Computing

The key issue is the CS education dilemma. To save massive amounts of energy,
we need a worldwide changeover of many applications, from vN machines to
FPGAs. This may take more than a decade and will also create a lot of jobs.
However, FPGAs are still a niche technology since we have yet to train and
qualify a sufficiently large population of programmers for FPGA programming.
Advanced training of such programmers needs support everywhere, at regional,
national, and global levels. This section emphasizes that RC is a critical sur-
vival issue for computing-supported infrastructure worldwide and stresses the
urgency of moving RC from niche to mainstream. It urges acceptance of the
massive challenge of reinventing computing, away from its currently obsolete
CPU-processor-centric Aristotelian CS world model to a twin-paradigm Coper-
nican model. A massive software to configware migration campaign is needed.
This warrants clever planning to optimize the effort to obtain the expected results,
and which software packets should be migrated first should be known. All this
requires massive R&D and education efforts, taking many years. Lobbying for
the massive funding should be started immediately. We should address politicians
at all levels: community level, state level, national level, and the EU level.

To explain all this to politicians is very difficult. Since politicians always watch
the sentiment of their voter population, we efficiently have to teach the public,
which is a challenge. Without a strong tailwind from the media, lobbying seems
to be almost without success. All this has to be completed as soon as possible, as
long as we can still afford such a campaign. To succeed with such a challenging
educational campaign, the foundation of a consortium is needed for running an
at least Europe-wide project.

Before going to reinvent computing, let us have a look at the current scenario.
The rate of ASIC-to-FPGA conversions continues to escalate. But methodology
and tool flow questions impact the bottom line. Successful switching from ASICs
to FPGAs depends very much on the tools, practices, and processes chosen for the
FPGA development work. With high quality tools and complete, well-integrated
solutions of vendor-independent ESL, IP reuse, verification, synthesis, and PCB
flow, designers need not learn a new tool set for every FPGA vendor’s products
and a company does not lose its freedom of FPGA vendor choice. This frees to
pragmatically select the device that best fits the project needs, without concern
for prior tool usage. For PCB development, it is necessary to carefully consider
whether the process is predictable and well integrated, is consistent from project
to project, and offers the flexibility to move to another FPGA vendor.

The remarkable phenomenon of Electronics IP providers exists not only for
ASICs but also for configware onto FPGAs. First IP providers have been founded
in the 1990s, and some of them have been acquired by others: Altium, Ansoft,
ANSYS, ARM, Artisan, Cadence, CEVA, Logic Vision, Magma, Mentor Graph-
ics, MIPS, Monolithic, Mosys, Nassda, Sinplicity, Synopsys, Parthus, Rambus,
Verisity, VirageLogic, and Total. MIPS was founded in 1984 but turned to the IP
business later on and since 1998 was officially called “MIPS Technologies.” The
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IP ecosystem is also for FPGAs that are still RTL (register transfer language)-
dominated because most FPGA vendors use RTL flow, so porting the design to
another FPGA is not extremely complicated like it is in microprocessors where
legacy code plays a high role for market dominance. The inherently parallel RTL
application is mapped automatically parallelized by CAD tools; however, it is
not necessarily free of bugs such as issues of nanosecond real-time response
times or data throughput requirements. The required visibility is not provided by
traditional debug/trace tools. So it is not always easier to port IPs both for ASICs
and FPGAs, as both use RTL. All this is still one of the major difficulties for
many-core solutions. Merging both worlds is really a challenge.

FPGAs are also used everywhere for high performance in scientific comput-
ing, where this is really a new computing culture and not at all a variety of
hardware design. Instead of H/S codesign we have here SC codesign, which is
really a computing issue. This major new direction of developments in science
will determine how academic computing will look in 2015 or even earlier. The
instruction-stream-based mind-set will loose its monopoly-like dominance and
the CPU will quit its central role to be more of an auxiliary clerk and also for
software compatibility issues.

An introduction to RC (91, 212, 213, 218, 219, 221–244, 247–271, 273–289,
246, 290, 291, 299–303) should regard the background to be expected from the
reader. This chapter mainly addresses a bit IT-savvy people in the public and
its mass media, as well as “software engineers.” Here an introduction is difficult
since in both communities, people typically know nothing or almost nothing
about RC. To move RC from its niche market into mainstream, massive funding
is needed for R&D and to reinvent programming education. To yield the attention
of media and the politicians, we need a highly effective campaign by mass media.

Up to 32 cores per chip have already been preannounced. Already six, eight,
or more CPUs mostly connect to each other instead of getting work done [340].
Transitioning from single core to multicore can certainly be a difficult design
challenge. What issues are encountered when moving from single core to mul-
ticore? Before multicore, programmers had it easy. The same old software runs
on the new chips much faster, just by a free ride on Moore’s curve. How-
ever, software designed for single core may run slower on a multicore machine.
Computer games and some telecommunications and compression/decompression
applications are relatively easy to parallelize.

But complex applications that involve a great deal of data are not
easy to parallelize. Often the algorithm has to be changed and the application
has to be recoded. Parallel applications require highly sophisticated debugging
tools to cope with new kinds of bugs introduced by the parallelism. To take
advantage of the additional cores, most applications have to be rewritten,
unfortunately also introducing new types of bugs [340]. Programmers are not
trained to think toward parallel processing. For the required style of parallel
programming, a sufficiently large qualified programmer population is far from
existing.
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The following list outlines the educational barriers we have to surmount and
the urgent need for major funding on a global scale to run a worldwide mass
movement, of a dimension as far reaching as the Mead & Conway style of
microelectronics revolution in the early 1980s.

1. A mass migration from software to configware for the benefits of saving
massive amounts of energy, much higher performance, and gaining high
flexibility.

2. From time to time, only a smaller part of legacy software can be migrated.
For optimization, we need to develop a migration priority list to identify
the most promising candidates.

3. In the future, we also will have to decide whether to also use neurocom-
puting [4, 228, 239, 348, 349]. To overcome the limits derived by the
increasing complexity and the associated workload to maintain such com-
plex infrastructure, one possibility is to adopt self-adaptive and autonomic
computing systems. A self-adaptive and autonomic computing system is a
system able to configure, heal, optimize, and protect itself without the need
for human intervention.

4. Another obstacle is that a qualified programmer population needed for
such a mass movement campaign is missing and should be available at
least throughout the beginning of this decade.

Programmers have to be prepared for the migration of their software. In any
case, the result will mostly be hetero systems, where programmers with an
instruction-stream-based sequential-only mind-set are not qualified. Educating,
or reeducating, programmers is mandatory. Or even to keep one’s head above
water. And as quick as possible, we have to reinvent courses at academia and
all other kinds of schools and have to upgrade our highly obsolete curriculum
plans and recommendations. We have to take care of a massive programmer
productivity decline for the following four reasons:

1. To cope with the many-core crisis where more parallel programming qual-
ifications are a must.

2. To resolve the extreme shortage of programmers qualified for RC.
3. To program hetero systems (like modern FPGAs featuring all the following

three: reconfigurable fabrics, hardwired blocks, and CPUs), requiring twin-
paradigm programming skills.

4. To determine if the upcoming memristor technology [131] the area of neu-
rocomputing (4, 221, 224, 228, 239–245, 247–271, 273–279, 281–289,
246, 290, 291, 301–324, 350, 325, 326, 340, 348, 349, 351) could lead us
in the future to hetero systems requiring triple-paradigm skills.

In consequence, we need innovative undergraduate programming courses [352]
that also teach a sense of locality. Such a sense of locality needed for classical
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parallel programming is already coming along in RC, with time to space mapping
required to structurally map an application to the data stream side of the twin-
paradigm approach. This means that teaching the structural programming of RC
also exercises the sense of locality needed for traditional parallel programming.
The extension of the nonsequential part of education should be optimized not to
scare away undergraduate students. Twin-paradigm laboratory courses should be
MathWorks supported and model based, mainly at the abstraction level of pipe
networks.

vN scales up cost, performance, power, cooling, and reliability concerns [280].
Bill Dally summarizes [353], performance = parallelism/efficiency = locality,
high performance requires parallelism of operations given by RC platforms.
Efficiency is possible by optimum locality of data and program code since the
movement of data and instruction streams is the reason of bottlenecks by resource
contention and bandwidth limitations. These locality problems are the reason that
programming embedded systems and supercomputers have become a very com-
plex and difficult area of research and development. In heterocomputing systems,
RC is a very important accelerator of locality and parallelism.

That is why RC should urgently become mainstream. Several reasons have
prevented RC from truly becoming mainstream [354]. The execution model is
inherently different from the traditional sequential paradigm, where we can reason
about state transition sequences much better than in a hardware or a concurrent
execution model. As a consequence, the development and validation of tools is
substantially a traditional hardware mind-set. For software developers, it is always
this mythical chip that got added by the hardware designer onto the board. The
problem we have to solve is how to teach programming FPGAs to programmers?
What new models, languages, and tools?

The key issue is programmer productivity. It is a handicap of vN-oriented tex-
tual programming languages that layers of abstraction hide critical sources and
limit efficient programming for parallel execution by lacking locality awareness.
We need to reinvent the tool flow for programming both many-core and RC. Bet-
ter tools are also urgently needed since acceleration by RC also requires more
programming effort because an in-depth application study is required. Tools are
still limited and above all fairly bridled. This means programmers must master
the details of not only software development but also hardware design. Such a
set of skills is also not taught as part of major electrical engineering courses
severely constraining the pool of engineering with the “right” mind-set for pro-
gramming RC to a selected few. Moreover, the recent evolution of FPGAs and
to some extent coarse-grain RC architecture make programmer and performance
portability a little less difficult at best.

We need to model and program real-time and embedded applications [346].
What model and language should we use for hetero systems development? The
language inflation does not motivate to invent a new language (Tables 18.1–18.3).
We should investigate primitives and models available in existing languages with
programming of multicore and the efforts on the way to address them. Currently,
popular in the many-core side are also open solutions such as OpenMP [355]
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and several tools from Intel to help programmers exploit its multicore proces-
sors. Since also exploiting locality of reference, the partitioned global address
space (PGAS), a parallel programming model, seems to be attractive for solving
twin-paradigm problems. The PGAS model is the basis of Unified Parallel C,
Co-array Fortran, Titanium, Fortress, Chapel, and X10. A candidate could be the
programming language X10 developed by IBM, which is designed for parallel
programming using the partitioned global address space (PGAS) model [356].
X10, also exploiting locality of reference, uses the concept of parent and child
relationships for activities and supports user-defined primitive structure types,
globally distributed arrays, and structured and unstructured parallelism. We defi-
nitely should look at SPEAR (221, 224, 230–245, 247–271, 273–289, 246, 290,
291, 301–324, 350, 325, 326, 329–345, 347–349, 351, 352, 354, 357–364),
a tool set developed for hetero systems within the framework of the MOR-
PHEUS project [226] funded by the European Union. What about UML? We
should investigate whether UML offers interesting features [346]. What can we
learn from OpenCL and other languages [365]? What about functional languages
(Table 18.13) or dataflow languages (Table 18.14)?

Lowering the barrier of access of RC to the average programmers is one
of the objectives of the REFLECT project [213] by retaining the “traditional”
imperative programming mind-set in a high level language (HLL) environment
such as MATLAB [366] and relying on the concepts of aspects to provide a
clean mechanism (at source code level) for the advanced user to provide key

TABLE 18.13 Some Functional Languagesa

Alice Curl J Mathematica Opal Scala

APL Curry Joy Miranda OPS5 Scheme
CAL Dylan Kite ML Poplog Spreadsheets
Charitya Erlang Lisp Standard ML Q Tea
Cleana F# Little b Mythryl R
Clojure Haskella Logo Nemerle REFAL
Common Lisp Hop Lush Ocam Russell

aPurely functional.

TABLE 18.14 Some Dataflow Languagesa

AviSynth G Max/Msp Prograph SISAL vvvv

BMDFM JMax Microsoft Pure Data SPACE- VHDL
Clojure LabVIEW Monk Quartz Composer AREVAs Verilog
DUP LAU MoPL Tersus XEE
Fastflow Lily VPL Show and Tell VBIS X10
Hartmann pipelines Lucid OpenWire Simulink VEE VBIS

Lustre OZ SAC VisSim

aReference 350.
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information for a compilation and synthesis tool to do a good job in mapping the
computation to hardware. The approach should be by no means fully automatic
[354]. Instead, we have the programmer involved but controlling the high level
aspects of the mapping while the tools take care of the low level, error-prone
steps. We may learn a lot from all this.

There has been no lack of effort in this area. But the silver bullet has not yet
been completed. But we see it coming up from the highly promising new horizon:
a model-based twin-paradigm methodology to master hetero of all three: sin-
gle core, multicore, and reconfigurable computing. Let me propose the acronym
RC2RC (reconfigurable computing to reinvent computing), or R2R. We need to
rewrite textbooks for R2R (RT4R2R), and all our friends should become rein-
vent computing evangelists (RCEs) (or R2R evangelists (R2RE)). A qualified
programmer population for hetero systems does not exist. We should kick off a
worldwide mass movement by learning from the Mead & Conway VLSI design
revolution, which started around 1980, since a designer population did not exist
[95, 105].

Within an increasingly complex value chain (Fig. 18.20), we are hit by the
impact of vertical disintegration (Fig. 18.21). Currently, we see here at IP core
level the challenging battle between FPGAs and MPSoC-like platforms which
results in a battle between software programming and RTL programming (RTL
programming using hardware languages such as VHDL or Verilog) [124]. We
must extend the “traditional” imperative programming mind-set (for software)
by a twin-paradigm imperative mind also including an imperative data stream
programming methodology (for “flowware”; for terminology, see Table 18.11)
[289]. We obtain an almost fully symmetric methodology: the only asymmetry
is intraloop parallelism, possible for data streams but not for instruction streams
(Table 18.11). The semantic difference of these machine paradigms is the state
register: the program counter (located with the ALU) for running the instruction
streams in executing software, and data counter(s) (located in memory block(s)
[204, 274]) for running data streams in executing flowware. Using schematic
or flowchart graphical design interfaces, IP blocks, software routines, and I/O
systems can be quickly combined to explore and develop innovative product
functionality without the need for low level engineering (Section 18.4.2) [199].

We can do more than just programming the onboard FPGA [199]. By intel-
ligent communication between hardware platform and the high level design
software, the system could directly interact with all parts of the development
board. Peripherals can then be swapped on the fly by automatically reconfiguring
interface layers and configuration files. So the complete development system,
including the physical hardware, acts as the one design environment. Hardware
could conceivably become the final product.

Recently, the drag-and-drop LabVIEW graphical programming environment
[367, 368] came up as an FPGA development environment [369]. Unlike tex-
tual hardware description languages, it is inherently parallel. LabVIEW 2010 has
some interesting features for FPGA specialists including extended IP input, fast
cycle-accurate simulation, new compilation options, and a new route to system
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integration [369]. This environment now provides much closer coupling with the
Xilinx Core Generator tool for loading code into FPGAs mounted in a range
of boards [369]. It is possible to return to the LabVIEW screen to create the
system surrounding the FPGA, adding IO and other peripherals. The features
of this product are good examples to provide ideas for what we need for par-
allel programming both, many-core and RC platforms and hetero systems of
both. We need a well-designed graphic user interface showing the architecture
of the NoC and beyond providing the visualization of locality to identify critical
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locations with possible bottlenecks by shared resource contention and bandwidth
limitations.

The sequential-only oriented Turing-only world has perished. We need to rec-
ognize that we are now living in the world of hetero computing. Getting familiar
with LabVIEW may give us some inspirations about the direction to go. Also
the call for papers of the 4th Workshop on Programmability Issues for Heteroge-
neous Multicores (MULTIPROG-2011) is very helpful by listing what we really
need in this world to solve the programmability crisis [370]. For discovering and
understanding parallelism, performance, bottlenecks, dependency problems, and
debugging, we need understandability tools, discovery tools, locality awareness
tools, and benchmarking tools.

Usually, it is very difficult to understand the code generated by compiler
optimizations and other compiler techniques. We urgently need visualization of
locality. Maybe, other understandability tools could also be helpful here. We
urgently need a much better understanding of memory system architecture, NoC
architecture, and, entire many-core SoC architecture and their routes of code and
data. We need more knowledge about what architectural support do we need for
compilers and programming models. Textual language extensions tend to be not
very helpful, since being sequential-only-based, textual descriptions are typically
very difficult for understanding parallelism. I opine that model-driven understand-
ability tools based on real-time graphics should be the way to go. Inspirations
from LabVIEW and Simulink [366] and their user interfaces may be useful.

18.6 CONCLUSIONS

This chapter has emphasized that RC is a critical survival issue for computing-
supported infrastructure worldwide and has stressed the urgency of moving RC
from niche to mainstream. It is a critical issue for two reasons. One problem is
the trouble with multicore: chipmakers are designing microprocessors that most
programmers cannot program [167]. RC is a key part of the solution to cope with
the parallel programming wall. The other problem is the dramatically high energy
consumption by vN computing, caused by the vN syndrome. A mass migration of
applications from software to configware for running RC platforms is needed. For
both problems, the qualified programmer population does not exist. Although pro-
viding some remarks about the multicore dilemma and proposals for its solution,
this chapter mainly covered the side of RC. But we cannot completely separate
these problem areas from each other, since the same programmer population
has to be retrained to be qualified for programming hetero systems including
both paradigms: parallel data streams coming with reconfigurable platforms and
parallel instruction streams.

FPGAs have a relatively low technology maturity and small user base com-
pared to software. This will change. Large parts of FPGA solution development is
spent on learning specific FPGA board APIs and debugging in hardware FPGAs
Achilles’ heel is in their long development time, since relatively low level HDLs
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such as VHDL or Verilog are still dominant. Other directions of development
try to work with C language sources, such as Stone Ridge Technologies with its
FPGA board and the development kit with the Impulse C tool set from Impulse
Accelerated Technologies. A product review [371] reports that software develop-
ers write HLL algorithms that rapidly compile to optimized RTL runtime language
targeting Stone Ridge’s RDX-11 FPGA board and development kit. They report
that for designs with significant nonsequential logic, the speed improvements can
be 10–100× and that compared to hand-coded RTL, the design entry takes only
two-thirds the time and the iterations, one-eighth the time. We have to check this
and need to reinvent major parts of this area.

We urgently need a worldwide mass movement of R&D and education to be
more massively funded and supported than the Mead & Conway VLSI design
revolution in the early 1980s, which so far has been the most effective project in
the history of modern computing science [95–99]. This chapter urges to accept
the massive challenge of reinventing computing, away from its currently obsolete
CPU-processor-centric Aristotelian CS world model, to a twin-paradigm Coper-
nican model. A massive software to configware migration campaign is needed.
First this requires clever planning to optimize all its aspects. We also need to
develop plans deciding which software packets need to be migrated and which
of them should be migrated first. All this requires many years, probably a decade
of massive R&D and education efforts. We cannot afford to hesitate. Lobbying
for the massive funding should be started right now. We should address politi-
cians at all levels: community level, state level, national level, and the EU level.
To explain all this to politicians is very difficult. Since politicians always watch
the sentiment of their voter population, we efficiently have to teach the public,
which is a dramatic challenge. How do we effectively reach as many as possible
people by the media? Scientific studies point toward embedding into amusing or
entertaining stories, presentation inside docusoaps, soap operas, reality shows, or
infotainment formats [372]. Without the support by a strong tailwind from the
media, lobbying does not seem to have any chance. All this has to be completed
as soon as possible and as soon as we can still afford such massive activities.
To succeed with such a challenging educational campaign, the foundation of a
powerful consortium to be funded at all levels is needed for running an at least
Europe-wide project.

LIST OF ABBREVIATIONS

ALU Arithmetic/Logic Unit
AMP Asymmetric Multiprocessor
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction Set Processor
asM Autosequencing Memory
ASMP Asymmetric Multiprocessor
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CABAC Context-Adaptive Binary Arithmetic Coding
ccNUMA Cache Coherent NUMA
CE Computer Engineering
CS Computer Science
CHREC NSF Center for High Performance Reconfigurable Computing
CLB Configurable Logic Block
CMP Chip Multiprocessor
CoMA Cache Only Memory Access
CPU Central Processing Unit
DEPS Dynamic Energy/Performance Scaling
DNA Deoxyribonucleic Acid
DPA Data Path Array
DPU Data Path Unit
DSM Distributed Shared Memory
DSP Digital Signal Processing
DVFS Dynamic Voltage/Frequency Scaling
EDA Electronics Design Automation
eASIC partly FPGAstyle ASIC
ePLA e-Programmable LA
EPP Extensible Programmable Platform
ePROM e-programmable PROM
ERC Electrical Rules Checker
ESL Electronic System-Level Design
EU European Union
FDMP Function-Distributed MP
FIR Finite Impulse Response
FME Flash Media Encoder
FP Field Programmable
FPGA Field-Programmable GA
FPL Field-Programmable Logic
FPLA Field-Programmable PLA
FPU Floating Point Unit
FRAM Ferroelectric RAM
GA (routable) Gate Array
HPC High Performance Computing
HPRC High Performance RC
HWD Hardwired Device
ICT Information and Communication Technology
IEA International Energy Agency
IME Integer Motion Estimation
IP Intellectual Property
IT Information Technology
LA (compact) Logic Array
LCMP Loosely Coupled MP
LUT Lookup Table
MA Memory Architecture
MAC Multiply/Accumulate Unit
MIPS Million Instructions per Second
MoPL Map-Oriented PL
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MP Multiprocessor
MRAM Magnetoresistive RAM
NoRMA No Remote Memory Access
NUMA Nonuniform MA
PC Personal Computer
PL Programming Language
PLA Programmable LA
PLD Programmable Logic Device
PROM Programmable ROM
PU Processing Unit
r reconfigurable or FP
RAM Random Access Memory
RC Reconfigurable Computing
rDPA Reconfigurable DPA
rDPU Reconfigurable DPU
rE reconfigurable Element
ROI Return on Investment
ROM Read-Only Memory
RTL Register Transfer Language
R&D Research and Development
SCTP Stream Control Transmission Protocol
SE Software Engineering
SMP Symmetric Multiprocessor
STM Software Transactional Memory
TDP Thermal Design Power
TM Transactional Memory
UMA Uniform MA
VLSI Very Large-Scale Integrated
vN von Neumann
WCET Worst-Case Execution Time
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35. Simmons MR. Wenn der Wüste das öl ausgeht: Der kommende ölschock in Saudi-
Arabien-Chancen und Risiken . FinanzBuch Verlag; 2006.

36. Campbell CJ, Liesenborghs F, Schindler J, Zittel W, Roth H. ölwechsel!: Das Ende
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CHAPTER 19

WORKLOAD CLUSTERING FOR
INCREASING ENERGY SAVINGS
ON EMBEDDED MPSoCs

OZCAN OZTURK, MAHMUT KANDEMIR, and SRI HARI KRISHNA
NARAYANAN

19.1 INTRODUCTION

We can roughly divide the efforts on energy savings in embedded multiprocessor
system-on-a-chip (MPSoC) architecture into two categories. In the first category
are the studies that employ processor voltage/frequency scaling. The basic idea
is to scale down voltage/frequency of a processor if its current workload is
less than the workload of other processors. In comparison, the studies in the
second category shut down unused processors (i.e., put them into low power
states along with their private memory components) during the execution of the
current computation. Both these techniques, that is, voltage scaling and processor
shutdown, can be applied at the software level (e.g., directed by an optimizing
compiler) or hardware level (e.g., based on a past history-based workload/idleness
detection algorithm). It is also conceivable to combine these two techniques under
a unified optimizer.

Each of these techniques has its advantages and drawbacks. For example, a
processor shutdown-based scheme may not be applicable if there is no unused
processor (note that this does not mean that the workload of all the processors in
the MPSoC are similar). Similarly, the effectiveness of a voltage-scaling-based
scheme is limited by the number of voltage/frequency levels supported by the
underlying hardware. In general, exploiting processor/memory shutdown saves
more energy when it is applicable (as it reduces leakage energy significantly)
or when we have only a couple of voltage/frequency levels to use. If this is
not the case, then voltage scaling can be effective (and in some cases, it is the
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only choice). On the basis of this discussion, one can expect a unified scheme
to be successful. However, we want to reiterate that if there is no unused (idle)
processor in the current workload assignment, such a unified scheme simply
reduces to a voltage-scaling-based approach.

Our goal in this chapter is to explore a workload (job) clustering scheme
that combines voltage scaling with processor shutdown.1 The uniqueness of the
proposed unified approach is that it maximizes the opportunities for processor
shutdown by carefully assigning workload to processors. It achieves this by clus-
tering the original workload of processors in as few processors as possible. In
this chapter, we discuss the technical details of this approach to energy saving
in embedded MPSoCs. The proposed approach is based on ILP (integer linear
programing); that is, it determines the optimal workload clustering across the
processors by formulating the problem using ILP and solving it using a linear
solver. In order to check whether this approach brings any energy benefits over
pure voltage scaling, pure processor shutdown, or a simple unified scheme, we
implemented four different approaches within our linear solver and tested them
using a set of eight array/loop-intensive embedded applications. Our simulation-
based analysis reveals that the proposed ILP-based approach (i) is very effective
in reducing the energy consumptions of the applications tested and (ii) generates
much better energy savings than all the alternate schemes tested (including one
that combines voltage/frequency scaling and processor shutdown).

19.2 EMBEDDED MPSoC ARCHITECTURE, EXECUTION MODEL,
AND RELATED WORK

The chip multiprocessor we consider in this work is a shared-memory archi-
tecture, that is, the entire address space is accessible by all processors. Each
processor has a private L1 cache, and the shared memory is assumed to be off-
chip. Optionally, we may include a (shared) L2 cache as well. Note that several
architecture from academia and industry fit in with this description [1–4]. We
keep the subsequent discussion simple using a shared bus as the interconnect
(although one could use fancier/higher bandwidth interconnects as well). We
also use the MESI protocol (the choice is orthogonal to the focus of this chapter)
to keep the caches coherent across the CPUs. We assume that voltage level and
frequency of each processor in this architecture can be set independent of the
others and also that processors can be placed into low power modes indepen-
dently. This chapter focuses on a single-issue, five-stage (instruction fetch (IF),
instruction decode/operand fetch (ID), execution (EXE), memory access (MEM),
and write-back (WB) stages) pipelined datapath for each on-chip processor.

Our application execution model in this embedded MPSoC can be summarized
as follows. We focus on array-based embedded applications that are constructed
from loop nests. Typically, each loop nest in such an application is small but

1In this chapter, we use the terms processor showdown and low power mode interchangeably.
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executes a large number of iterations and accesses/manipulates large data sets
(typically multidimensional arrays of signals). We employ a loop-nest-based
application parallelization strategy. More specifically, each loop nest is paral-
lelized independent of the others. In this context, parallelizing a loop nest means
distributing its iterations across processors and allowing processors to execute
their portions parallelly. For example, a loop with 1000 iterations can be paral-
lelized across 10 processors by allocating 100 iterations to each processor.

There are many proposals for power management of a processor capable of
dynamic voltage scaling. Most of them are at the operating system level and are
either task based [5] or interval based [6]. While some proposals aim at reduc-
ing energy without compromising performance, a recent study by Grunwald et
al [7] observed noticeable performance loss for some interval-based algorithms
using actual measurements. Most of the existing compiler-based studies, such as
Reference 8, target single-processor architecture. In comparison, our work tar-
gets at a chip multiprocessor-based environment and combines voltage scaling
and processor shutdown. Wu et al. [9] present and analyze a voltage/frequency
scaling scheme, but they do not consider processor shutdown. Kadayif et al. [10]
employs processor a shutdown-based mechanism but does not consider volt-
age/frequency scaling. In our experimental evaluation, we compare our approach
to pure voltage/frequency scaling and also to pure processor shutdown.

19.3 OUR APPROACH

19.3.1 Overview

Figure 19.1 compares four different alternate schemes that save energy in an
embedded MPSoC architecture. It is assumed, for illustrative purposes, that the
architecture has six processors. Figure 19.1a shows the workloads of the proces-
sors (i.e., the jobs assigned to them) in a given loop nest. These are assumed to
be the loads either estimated by the compiler or calculated through profiling and
are for a single nest. Figure 19.1b and 19.1c show the scenarios with approaches
based on pure voltage/frequency scaling and pure processor shutdown, respec-
tively. In (b), four out of our six processors take advantage of voltage scaling
(note that P5 is not used in the computation at all). In (c), on the other hand,
we can place only one processor (P5) in the low power mode. A combination of
these two approaches is depicted in Figure 19.1d. Basically, this version com-
bines the benefits of voltage/frequency scaling and processor shutdown. Finally,
the result that can be obtained by the ILP approach proposed in this chapter is
illustrated in Figure 19.1e. Note that what our approach essentially does is to
cluster the total amount of computational load in as fewer processors as possible
so that the number of unused processors is maximized. In this particular case,
the original load of three processors (P2, P3, and P4) is combined and assigned
to processor P2. As a result, processors P3 and P4 can be also placed in the
low power mode (along with their private memory components) to maximize
energy savings, in addition to P5. The next section gives the technical details
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Figure 19.1 Comparison of different energy-saving approaches for a six-processor archi-
tecture. Arrows indicate how the workloads (jobs) are clustered by our approach.

of this approach. When there are opportunities, our approach can also use volt-
age/frequency scaling for the clustered jobs. It is important to point out that the
benefits from our approach can be expected to be even more significant when
the number of voltage/frequency levels is small. In such a case, an approach
based on pure voltage/frequency scaling cannot stretch the execution time of a
processor to fill the available slack completely.

However, we first need to clarify two important issues. Someone may ask at
this point “why has the application (corresponding to the scenario in Figure 19.1a)
not been parallelized at the first place as shown in Figure 19.1e?” There are
several reasons for this. First, most current code parallelizers do not consider
any energy optimizations. Therefore, there is really little reason for calculating
the workload of individual processors and thus little opportunity for workload
clustering. Second, the conventional parallelizing compilers try to use as many
processors as possible for executing a given computation unless there exists a
compelling reason to do otherwise (e.g., the excessive synchronization costs).
Third, in many cases, trying to cluster computation in very few processors can
have an impact on execution cycles. Since most parallelizing compilers do not
predict or quantify this impact, they do not attempt such clustering, being on the
conservative side.

The second issue is that it is possible that the scenario depicted in Figure 19.1e
has poor data locality as compared to scenarios in Figure 19.1b, 19.1c, and 19.1d.
This is because conventional code parallelizers generally try to achieve good
data locality by ensuring that each processor mostly uses the same set of data
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elements as much as possible (i.e., high data reuse). As a result, the scenario
in Figure 19.1e can lead to an increase in data cache misses, which in turn
increases overall energy consumption. This overhead should also be factored in
our clustering approach to ensure a fair comparison.

The main contribution of the ILP approach proposed in this chapter is to
obtain, for each loop nest in an application, the result shown in Figure 19.1e,
given the initial scenario (workload assignment) shown in Figure 19.1a, and thus
reduce energy consumption.

19.3.2 Technical Details and Problem Formulation

This section elaborates on the ILP model used to represent the problem. In our
problem, there exist a set of jobs (workloads) that have to be executed on a
set of available processors in the embedded MPSoC such that the total energy
spent by the system is minimal and the execution of the jobs is completed within
a specified time limit, Tmax.2 The processors can run different jobs at different
voltage and frequency levels, which affects energy consumption. The energy
expended by each processor is the sum of the dynamic energy as well as the
leakage energy expended while running. The rest of this section describes the
ILP model in detail.

19.3.2.1 System and job model. We assume that the jobs are members of
the set J consisting of Jmax elements and the processors belong to the set P in
which there are Pmax elements. The processors can run at Vnum discrete set of
voltage/frequency levels (as supported by the architecture). It is assumed that
only one job can run on a processor at anytime and that once a job starts running
on a processor, it runs uninterrupted to completion. However, a processor can
be assigned to run more than one job, as a result of workload clustering. The
duration for which the job occupies the processor is dependent on the supply
voltage/frequency as well as the frequency at which the processor is running that
particular job. The time (latency) each job takes up at different voltage levels is
specified in the array Job_Length(j, v). Similarly, the dynamic energy spent by
each job at different voltage levels varies and is captured by Job_Dynamic(j, v).3

Total_Energy is the sum of the energies spent by all jobs on all processors due
to their running as well as the leakage energy consumed by the processors. This
is the metric whose value we want to minimize.

2In this chapter, we do not assume a specific code (loop nest) parallelization strategy. Rather, we
assume that each loop nest is parallelized using one of the known techniques. For each loop nest,
Tmax is determined by the processor with the largest workload. This is to ensure that our workload
clustering does not have a negative impact on execution times.
3Here, j represents a job (workload) and v represents a voltage (frequency) level. In our implemen-
tation, the entries ofJob_Length(j, v) and Job_Dynamic(j, v) are filled using profiling. All energy
estimations are performed using Wattch [11] under the 70-nm process technology. The increase in
data cache misses as a result of clustering is captured during our profiling.
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TABLE 19.1 Notation Used in Our Model

Notation Explanation

Job_Dynamic(j, v) Dynamic energy for running job (workload) j at voltage v
Job_Length(j, v) Time taken to run job j at voltage v
X(p, j, v) Value is 1 if job j runs on processor p at voltage v
J Set of jobs
P Set of processors
T _max Time deadline before which all jobs must finish
J_max Total number of jobs to be executed
P _max Total number of processors available
V _num Total number of voltage (and frequency) levels available
Total_Energy Total energy consumption of the system (to be minimized)
Leakage_Value Leakage energy spent by a processor if it is not

shut down

19.3.2.2 Mathematical programing model. The constraints specified be-
low give the mathematical representation of our model. We use 0-1 ILP. This
ILP formulation is executed for each loop nest separately. Table 19.1 gives the
notation used in our formulation.

Job Assignment Constraints. The 0-1 variable X(p, j, v) determines whether
processor p runs job j at voltage/frequency level v . One job runs completely on
one processor, and all jobs are scheduled to run only once. This is specified as
follows:

∀ p ∈ P ∀j ∈ J ∀v ∈ V X(p, j, v) ∈ {0|1}, (19.1)

∀ j ∈ J

Pmax−1∑
p=0

Vnum−1∑
v=0

X(p, j, v) = 1. (19.2)

Constraint 19.1 expresses the term X(j, p, v) as a binary variable; a processor
either runs the job or it does not. Constraint 19.2 states that each job can be run
only on one processor and that all jobs are assigned to some processors (i.e., no
job is left unassigned). Notice that we want to determine the value of X(p, j, v)

for all p, j , and v .

Deadline Constraints. Jobs are assigned to processors as long as they can meet
the time deadline that is specified. Constraint 19.3 expresses this:

∀p ∈ P

Jmax−1∑
j=0

Vnum−1∑
v=0

X(p, j, v) ∗ Job_Length(j, v) ≤ Tmax. (19.3)

Note that Tmax is determined, for each loop nest, by the longest (largest) workload.
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Clustering and Processor Shutdown Constraints. Multiple jobs are run on
the same processor not only if the number of jobs, Jmax, exceeds the number of
processor, Pmax, but also if such an arrangement reduces the overall energy spent
by the system. In case a processor is not assigned any job, because of clustering
of jobs, because Jmax < Pmax, or because of both these reasons, then it is shut
down. Such a processor does not consume any dynamic energy, as it has no jobs
running on it and it does not consume any leakage energy since it is shut down
(except for some small amount of leakage in memory components). Constraint
19.4 is introduced to capture processor shutdown:

∀p ∈ P, ∀j ∈ J,∀v ∈ V Busy(p) ≥ X(p, j, v). (19.4)

For a particular processor p, Busy(p) is necessarily 1 if any of the values in
X(p, j, v) is 1. Through this constraint, the value of Busy(p) is not explicitly
expressed if all values in X(p, j, v) are 0. However, a value of 1 in Busy(p)

adds leakage to the overall energy. As the objective of the ILP-based model is to
reduce energy, Busy(p) will be assigned to be 0 if all values in X(p, j, v) are 0.4

Leakage and Dynamic Energy Calculation. The following expressions capture
the leakage energy and dynamic energy spent by the system as the sum of the
leakage and dynamic energies, respectively, spent by each processor. The total
amount of dynamic energy spent by a processor is the sum of the dynamic
energies spent for each job that is run on that processor. This is captured by
expression 19.5:

D_Energy =
Pmax−1∑

p=0

Jmax−1∑
j=0

Vnum−1∑
v=0

X(p, j, v) ∗ Job_Energy(j, v). (19.5)

Expression (19.6) calculates the leakage energy spent. As mentioned earlier, if
Busy(p) is 1, then leakage is spent by processor p.

L_Energy = Leakage_Value ∗
Pmax−1∑

p=0

∗Busy(p). (19.6)

Objective Function. The objective function, which is the total energy spent by
the system, is the sum of the leakage and dynamic energies. This is the objective
function that our approach tries to minimize:

TotaL_Energy = D_Energy + L_Energy. (19.7)

The constraints and expressions mentioned in this section are sufficient to express
our problem within ILP. We next look at the additional constraints that can be
used in order to handle two special cases.

4To preserve data in memory components, a shutdown processor consumes some leakage [12].
Our experiments are performed based on this principle. However, in our presentation of the ILP
formulation, we assume no leakage consumption in the shutdown state for ease of presentation.
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Additional Constraints. If two or more jobs run on the same processor, the
order in which they are executed may be important and this can be found out
by the following constraints. The term Seq(p, j1, j2) is defined as being 1 if j1
and j2 both run on processor p and j1 precedes j2 in execution. Constraint 19.8
specifies Seq(p, j1, j2) as being binary, and constraint 19.9 specifies that two
jobs cannot both precede each other:

∀p ∈ P,∀j1 ∈ J,∀j2 ∈ J |j1 �= j2

Seq(p, j1, j2) ∈ {0|1}, (19.8)

∀p ∈ P,∀j1 ∈ J,∀j2 ∈ J |j1 �= j2Seq(p, j1, j2) +
Seq(p, j2, j1) ≤ . (19.9)

Constraint 19.10 links X(j, p, v) and Seq(p, j1, j2) by stating that two processors
need be sequenced only if they are executed on the same processor:

∀ p ∈ P,∀j1 ∈ J,∀j2 ∈ J |j1 �= j2Seq(p, j1, j2) ≥

[1 − Seq(p, j2, j1)] ∗
(

Vnum−1∑
v1=0

X(j1, p, v1)

+
Vnum−1∑
v2=0

X(j2, p, v2) − 1

)
. (19.10)

Finally, constraint 19.11 states the transitive nature of sequenced jobs. That is,
if job j1 precedes j2 and j2 precedes j3 then job j1 necessarily precedes job j3.

∀p ∈ P,∀j1 ∈ J,∀j2 ∈ J∀j3 ∈ J |j1 �= j2 �= j3,

Seq(p, j1, j3) ≥ Seq(p, j1, j2) + Seq(p, j2, j3) − 1. (19.11)

Voltage/Frequency Scaling without Clustering. To model classical volt-
age/frequency scaling within our ILP formulation, an input value Assign(j, p)

should specify the processor on which each job runs. Furthermore, by connecting
this value to that of X(j, p, v), all jobs are forced to run on the assigned
processors alone. This connection can be captured by the following constraint:

∀p ∈ P,∀j ∈ J

Vnum−1∑
v=0

X(p, j, v) = Assign(p, j). (19.12)
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Clustering without Voltage/Frequency Scaling. To model job clustering with-
out voltage and frequency scaling, we need to constrain the choice of available
voltage frequency levels to either each processor individually or all processors.
In the case of constraining the voltage levels of all processors to one value, con-
straint 19.13 can be used to ensure that no jobs are assigned voltage levels other
than the one specified.

∀p ∈ P,∀j ∈ J,∀v ∈ V − {v′} X(p, j, v) = 0. (19.13)

To constrain each individual processor to an independent voltage level, constraint
19.14 can be used:

∀p ∈ P,∀j ∈ J,∀v ∈ V − {v′
p} X(p, j, v) = 0. (19.14)

Here, v′ and v′
p are the universal and individual (for processor p) voltage levels,

respectively. These constraints simply limit the voltage levels to be used. In this
case, the decision to cluster jobs together on a processor is made by our solver
and depends on whether it results in a lowered overall energy consumption.

19.3.2.3 Example. This section presents an example and demonstrates how
the ILP method and the heuristic method operate in practice. Table 19.2 shows
the constant parameters for the system. There are four jobs (workloads) to be run
on four processors. Each job can be run at five different voltage/frequency levels,
and the deadline for the completion of the jobs is 6 time units. These values are
selected for illustrative purpose only.

Array Job_Dynamic(j, v) provides the dynamic energy spent in running each
job at different voltage/frequency levels and is assumed to be obtained (through
profiling) as follows:

Job_Dynamic =

⎛
⎜⎜⎝

1 2 3 4 5
2 4 6 8 10
2 3 5 6 8
3 6 9 12 15

⎞
⎟⎟⎠ .

TABLE 19.2 Constant Parameters Used in the
Example

Constant Value

Tmax 6 time units
Jmax 4
Pmax 4
Vnum 5
Leakage_Value 5 energy units
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Array Job_Length(j, v) provides the execution time (latency) of each job at
different voltage/frequency levels and is assumed to be as follows:

Job_Length =

⎛
⎜⎜⎝

6 5 4 3 2
12 10 8 6 4
9 7 3 2 1

24 15 12 9 6

⎞
⎟⎟⎠ .

X(p, j, v) values returned by our ILP solver are presented in Table 19.3. From
this table, it can be gathered that there are two jobs executed on processor 0, one
job each is executed on processors 2 and 3, and no job is executed on processor
1. All jobs finish on or before the specified deadline. The total dynamic energy
spent is 32 units, which is calculated as follows:

D_Energy = X(0, 0, 3) ∗ Job_Dynamic(0, 3) + X(0, 2, 2) ∗ Job_Dynamic(2, 2)

+ X(0, 1, 3) ∗ Job_Dynamic(1, 3) + X(0, 3, 4) ∗ Job_Dynamic(3, 4)

= 1 ∗ 4 + 1 ∗ 5 + 1 ∗ 8 + 1 ∗ 15 = 32.

Since three processors are used, 15 energy units are spent as leakage. This cal-
culation can be given by

L_Energy = 3 ∗ Leakage_Value = 3 ∗ 5 = 15.

As a result, the total energy spent is the sum of the dynamic and leakage energies
spent by all processors. Therefore, we have

Total_Energy = D_Energy + L_Energy = 32 + 15 = 47.

Our heuristic approach, on the other hand, proceeds as follows. In the primary
phase, all jobs are assigned greedily to a processor in which they can complete
within the time limit, Tmax (6 units). Job 0 is assigned to processor 0 at voltage
level 4. Thus, it occupies 2 units of time on processor 0. Job 1 requires 4 time units
to finish its execution. Hence, it is assigned to processor 0 since processor 0 has
4 time units free. Now, processor 0 is completely assigned, whereas processors

TABLE 19.3 X(p, j, v) Values Determined by the ILP Approach

X(p, j, v) Interpretation

X(0, 0, 3) Processor 0 runs job 0 at voltage level 3
X(0, 2, 2) Processor 0 runs job 2 at voltage level 2
X(2, 3, 4) Processor 2 runs job 3 at voltage level 4
X(3, 1, 3) Processor 3 runs job 1 at voltage level 3
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1, 2, and 3 are free. Job 2 takes 1 time unit to run and is assigned to processor 1.
Job 3 takes 6 time units to execute. As processors 0 and 1 do not require 6 units
of available execution time, job 3 is assigned to processor 2. This completes the
first phase of the heuristic algorithm.

In the second phase, each processor is examined in turn and one job is chosen
from each processor with a slack for voltage/frequency scaling. Processor 0 has
no available free time, so no job on it can be scaled. Processor 1 has only job
2 running on it. This job can be scaled from level 4 to level 2. This increases
its execution time by 2 units but reduces its energy consumption from 8 to 5
units. Processor 2 has no slack, and hence, job 3, which is running on it, cannot
be scaled. X(p, j, v) values returned by our heuristic approach are shown in
Table 19.4. The dynamic energy spent with this heuristic approach is calculated
as follows:

D_Energy = X(0, 0, 4) ∗ Job_Dynamic(0, 4)

+X(0, 1, 4) ∗ Job_Dynamic(1, 4) + X(0, 2, 2) ∗ Job_Dynamic(2, 2)

+X(0, 3, 4) ∗ Job_Dynamic(3, 4)

= 1 ∗ 5 + 1 ∗ 10 + 1 ∗ 5 + 1 ∗ 15 = 35.

As three processors are used, 15 energy units are spent as leakage. This calcula-
tion is shown below.

L_Energy = 3 ∗ Leakage_Value = 3 ∗ 5 = 15.

As before, the total energy spent is the sum of the dynamic and leakage energies
spent. This can be computed as follows:

Total_Energy = D_Energy + L_Energy = 35 + 15 = 50.

In this example, the ILP method saves 3 energy units over the heuristic method.
This example also demonstrates that the ILP approach can be used as an upper
bound to test the quality of the solutions returned by heuristics.

TABLE 19.4 X(p, j, v) Values Determined by the Heuristic Approach

X(p, j, v) Interpretation Scaled

X(0, 0, 4) Processor 0 runs job 0 at voltage level 4 No
X(0, 1, 4) Processor 0 runs job 1 at voltage level 4 No
X(1, 2, 2) Processor 1 runs job 2 at voltage level 2 Yes
X(2, 3, 4) Processor 2 runs job 3 at voltage level 4 No
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19.4 EXPERIMENTAL EVALUATION

We present only energy results in this section. The reason is that none of the
techniques evaluated increases original execution cycles (i.e., we do not exceed
Tmax in any loop nest). Specifically, for each loop nest, the processor with the
largest workload sets the limit for voltage/frequency scaling and processor shut-
down. The ILP solver used in our experiments is lp_solve [13]. We observed
that the ILP solution times with the application codes in our experimental suite
varied between 56.7 s and 13.2 min. Considering the large energy savings, these
solution times are within tolerable limits.

All the experimental results are obtained using the SIMICS simulation plat-
form [14]. Specifically, we embedded in the SIMICS platform timing and energy
models that help us simulate the behavior of the following four schemes: VS
(pure voltage/frequency scaling-based approach), SD (pure processor shutdown-
based approach), VS+SD (a unified approach that combines VS and SD), and
CLUSTERING (the ILP-based approach proposed in this chapter). The default
simulation parameters used in our experiments are listed in Table 19.5. In the
last three schemes, when a processor is unused in the current loop nest, it is shut
down and its L1 instruction and data caches are placed in the low power mode.
The specific low power mode used in this chapter is from Reference 12.

TABLE 19.5 The Default Simulation Parameters

Simulation Parameter Value

Processor speed 400 MHz
Number of processors 8
Lowest/highest voltage levels 0.8 V/1.4 V
Number of voltage levels 4

8 KB
Instruction cache Two-way associative

32-B blocks
8 KB

Data cache Two-way associative
32-B blocks

Memory 32 MB (banked)
Off-chip memory access latency 100 cycles
Bus arbitration delay 5 cycles
Replacement policy Strict LRU
Cache dynamic energy consumption 0.6 nJ
Memory dynamic energy consumption 1.17 nJ
Leakage energy consumption for 32 B
Normal operation 4.49 pJ
Shutdown state 0.92 pJ
Resynchronization time for shutdown state 30 ms
Resynchronization time for voltage scaling 5 ms
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We used eight array/loop-intensive applications for evaluating the four
approaches mentioned earlier: 3D, DFE, LU, SPLAT, MGRID, WAVE5,
SPARSE, and XSEL. 3D is an image-based modeling application that simplifies
the task of building 3D models and scenes. DFE is a digital image filtering and
enhancement code. LU is an LU decomposition program. SPLAT is a volume
rendering application that is used in multiresolution volume visualization
through hierarchical wavelet splitting. MGRID and WAVE5 are C versions of
two Spec95FP applications. SPARSE is an image processing code that performs
sparse matrix operations, and finally, XSEL is an image rendering code. These C
programs are written in such a fashion that they can operate on inputs of different
sizes. We first ran these applications through our simulator without any voltage
scaling or processor shutdown. This version of an application is referred to as the
base version or the base execution in the remainder of this chapter. The energy
consumptions (which include energies spent in processors, caches, interconnects,
and off-chip memory) under the base execution are 272.1, 388.3, 197.9, 208.4,
571.0, 466.2, 292.2, and 401.5 mJ for 3D, DFE, LU, SPLAT, MGRID, WAVE5,
SPARSE, and XSEL, respectively. The energy results presented in this section
are given as normalized values with respect to this base execution.

To calculate the dynamic energy consumptions for caches and memory, we
used the Cacti tool [15]. We approximated the leakage energy consumption by
assuming that the leakage energy per cycle for 4-KB Static Random Access Mem-
ory (SRAM) is equal to the dynamic energy consumed per access to a 32-B data
from the same SRAM. Note that this assumption tries to capture the anticipated
importance of leakage energy in the future, as leakage becomes the dominant
part of energy consumption for 0.10-? (and below) technologies for the typical
internal junction temperatures in a chip. In the shutdown state, a processor and
its caches consume only a small percentage of their original (per cycle) leakage
energy. However, when a processor and its data and instruction caches in the
shutdown state are needed, they need to be reactivated (resynchronized). This
resynchronization costs extra execution cycles as well as extra energy consump-
tion as noted in Reference 12, and all these costs are captured in our simulations
and included in all our results.

Our first set of results, the normalized energy consumptions with the different
schemes, are presented in Figure 19.2. Each group of bars in this graph cor-
respond to an application, and the last group of bars gives the average results
across all eight applications. The energy savings achieved by the VS scheme is
not very large (6.55% on average). There are two main reasons for this. The
first one is the inherent characteristics of some applications. More specifically,
when there are no long idle periods, VS is not applicable. The second reason
is the limited number of voltage/frequency levels used in the default configura-
tion (Table 19.5). In comparison, the SD scheme behaves in a different manner.
While it is not applicable in some cases (e.g., in applications DFE, MGRID,
SPARSE, and XSEL), the energy savings it brings is significant in cases where it
is applicable. VS + SD simply combines the benefits of the VS and SD schemes,
reducing to VS when SD is not applicable. The average energy savings (across
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Figure 19.2 Normalized energy consumptions.

all eight applications) achieved by SD and VS + SD are 7.36% and 13.52%,
respectively. The highest energy savings is obtained by our ILP-based approach,
which is 22.65% on average. These results clearly show the potential benefits of
our ILP-based workload clustering approach.

To better illustrate where our energy benefits are coming from, we give in
Figure 19.3 the percentage of time each processor spends in the active and
idle states for procedure mx3-raw.c, one of the 13 subprograms in application
MGRID. We see from this graph that our ILP-based approach is able to increase
the number of idle processors. We observed similar trends with most of the other
procedures in our applications. These results explain the energy benefits observed
in Figure 19.2.

Our second set of results, given in Figure 19.4, looks at the behavior of our
approach and VS + SD when the number of available voltage/frequency lev-
els is varied. Each point on the x -axis corresponds to a different number of
voltage/frequency levels and INF means an infinite number of levels (i.e., mim-
icking a continuous voltage/frequency scaling scenario). All other simulation
parameters are as shown in Table 19.5. One can make three observations from
these results. First, both the approaches take advantage of increased number of
voltage/frequency levels. This in a sense should be expected because more volt-
age/frequency levels means finer granular management of idle periods. Second,
for all the voltage/frequency levels tried, our approach generates better results
than the VS + SD scheme. This is a direct impact of workload clustering. Third,
the gap between the case where we have eight voltage/frequency levels and con-
tinuous scaling (INF) is not great, meaning that we may not need to go beyond
eight levels at all.
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Our last set of results investigates the influence of the number of processors
on our energy savings. They are given in Figure 19.5. As before, the remaining
simulation parameters are set to their default values given in Table 19.5. Our first
observation is that the VS scheme does not scale very well. The main reason for
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this is the limited number of available voltage/frequency levels in our default
configuration. In contrast, the SD version generates really good results as we
increase the number of processors. This is due to the fact that the loop paral-
lelizer is not able to take advantage of the increased number of processors, and
consequently, many processors remain idle, thereby increasing the opportunities
for SD. As expected, the VS + SD version combines the benefits of VS and SD.
The highest savings is observed with our clustering-based approach since it is
able to take advantage of additional processors by putting them in the low power
mode (if the loop parallelizer is not able to utilize them).

19.5 CONCLUSIONS

This chapter proposes a workload clustering scheme for embedded MPSoCs
that combines voltage scaling with processor shutdown. The uniqueness of the
proposed unified approach is that it maximizes the use of processor shutdown
by clustering workloads (jobs) in as few processors as possible. We tested this
approach along with three alternate schemes using a simulation-based platform
and eight embedded applications. Our experiments show that this clustering
approach is very effective in reducing energy consumption and generates better
results than the three alternative schemes evaluated. Our results also show that the
savings brought by this approach increases as the number of voltage/frequency
levels or the number of processors is increased.
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CHAPTER 20

ENERGY-EFFICIENT INTERNET
INFRASTRUCTURE

WEIRONG JIANG and VIKTOR K. PRASANNA

20.1 INTRODUCTION

Internet is built as a packet switching network. The kernel function of Internet
infrastructure, including routers and switches, is to forward the packets that are
received from one subnet to another subnet. The packet forwarding is accom-
plished by using the header information extracted from a packet to look up the
forwarding table maintained in the routers/switches. Owing to rapid growth of
network traffic, packet forwarding has long been a performance bottleneck in
Internet infrastructure.

Figure 20.1 shows the block diagram of a modern Internet router. A router
contains two main architectural components: a routing engine and a packet
forwarding engine. The routing engine on the control plane processes routing
protocols, receives inputs from network administrators, and produces the for-
warding table. The packet forwarding engine on the data plane receives packets,
matches the header information of the packet against the forwarding table to
identify the corresponding action, and applies the action for the packet. The
routing and forwarding engines perform their tasks independently, although they
constantly communicate through high throughput links [1].

The core function of network routers is IP lookup, where the destination
IP address of each packet is matched against the entries in the routing table.
Each routing entry consists of a prefix and its corresponding next-hop interface.
Table 20.1 shows a sample routing table where we assume 8-bit IP addresses.
A prefix in the routing table represents a subset of IP addresses that share the
same prefix, and the prefix length is denoted by the number following the slash.
The nature of IP lookup is longest prefix matching (LPM) [2]. In other words, an
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Figure 20.1 Block diagram of the router system architecture.

TABLE 20.1 Example IP Lookup Table

Prefix/Length Next-Hop Interface

00000000/1 P1
01000000/3 P4
10000000/2 P2
11000000/3 P6
11000000/2 P5

IP address may match multiple prefixes, but only the longest matching prefix is
used to retrieve the next-hop information. For example, a packet with destination
IP address 11010010 will match the prefixes 110* and 11* in Table 20.1. But
110* becomes the longest matching prefix. Therefore, that packet is forwarded
to the corresponding next-hop interface, P6.

20.1.1 Performance Challenges

As the Internet becomes even more pervasive, performance of the network infras-
tructure that supports this universal connectivity becomes critical with respect to
throughput and power. Traditionally, performance has been achieved by increas-
ing the maximum network throughput to handle bursty traffic.

The harsh truth about the power–throughput relationship of today’s network
infrastructures is that power efficiency is often sacrificed in order to obtain higher
throughput through brute-force expansion. A single high-end core router that
switches 640 Gbps full-duplex network traffic can consume over 10 kW of power
[3, 4], whereas a high-end service gateway capable of 10–45 Gbps routing and



INTRODUCTION 569

10 Gb/s

1 Tb/s

100 Tb/s

1985 1990 1995 2000 2005 2010 2015

Year

x2 every

18 months

Historic
trend

Router capacity
Shortfall

30x

Single rack
growth Power density limits

20 kW
6 kW
2 kW
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firewall throughput can take 1–5 kW of power [5, 6]. Both the large amount of
total energy and the high power density cause serious problems for the industry
and the environment through the operation and maintenance of these network
equipments.

• The historical trend (Fig. 20.2) shows that the capacity of backbone routers
had doubled every 18 months until 5 years ago. At present, terabit routers
with 10–15 kW are at the limit due to the power density. As a result, a 30-
fold shortfall in capacity will be seen by 2015 as compared to the historical
trend for single rack routers [7].

• The high power density imposes a strenuous burden on the cooling of the
network equipment. According to [8], a hardware component that consumes
50–100 W/ft2 can require 1.3× to 2.3× more power for its cooling. In other
words, every wattage that is saved from the critical operation of the network
equipment reduces up to 3.3 W of total power dissipation.

• The high power and cooling also implies high monetary investments and
energy costs. This fact is especially true for network infrastructures where
the equipment (nodes) often need to be placed strategically near the center
of metropolitan areas. At 500 W/ft2, it will cost $5000/ft2, or $250 million
in total, to equip a 50,000 ft2 facility as a data center [9].

Some recent investigations [7, 10] show that power dissipation has become
the major limiting factor for next-generation routers and predict that expensive
liquid cooling may be needed in future routers. Packet forwarding has been
a major performance bottleneck for network infrastructure [11]. Power/energy
consumption by forwarding engines has become an increasingly critical concern
[12, 13]. Recent analysis by researchers from Bell labs [7] reveals that almost
two-thirds of power dissipation inside a core router is due to IP forwarding
engines.
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20.1.2 Existing Packet Forwarding Approaches

20.1.2.1 Software approaches. The nature of IP lookup is LPM. The most
common data structure in algorithmic solutions for performing LPM is some
form of trie [2]. A trie is a binary tree, where a prefix is represented by a node.
The value of the prefix corresponds to the path from the root of the tree to the
node representing the prefix. The branching decisions are made based on the
consecutive bits in the prefix. If only 1 bit is used to make branching decision at
a time, then a trie is called a unibit trie. The prefix set in Figure 20.3a corresponds
to the unibit trie in Figure 20.3b. For example, the prefix “010*” corresponds
to the path that starts at the root and ends in node P3: first a left turn (0), then
a right turn (1), and finally, a turn to the left (0). Each trie node contains two
fields: the represented prefix and the pointer to the child nodes. By using the
optimization called leaf-pushing [14], each node needs only one field: either the
pointer to the next-hop address or the pointer to the child nodes. Figure 20.3c
shows the leaf-pushed unibit trie that is derived from Figure 20.3b.

Given a leaf-pushed unibit trie, IP lookup is performed by traversing the
trie according to the bits in the IP address. When a leaf is reached, the prefix
associated with the leaf is the longest matched prefix for that IP address. The
corresponding next-hop information of that prefix is then retrieved. The time to
look up a unibit trie is equal to the prefix length. The use of multiple bits in
one scan can increase the search speed. Such a trie is called a multibit trie. The
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Figure 20.3 (a) Prefix set, (b) unibit trie, (c) leaf-pushed trie, and (d) multibit trie.
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number of bits scanned at a time is called the stride. Figure 20.3d shows the
multibit trie for the prefix entries in Figure 20.3a. The root node uses a stride
of 3, while the node that contains P3 uses a stride of 2. Multibit tries that use
a larger stride usually result in a much larger memory requirement, while some
optimization schemes have been proposed for memory compression [11, 15].

The well-known tree bitmap algorithm [11] uses a pair of bit maps for each
node in a multibit trie. One bit map represents the children that are actually
present, and the other represents the next-hop information that is associated with
the given node. Children of a node are stored in consecutive memory locations,
which allows each node to use just a single child pointer. Similarly, another
single pointer is used to reference the next-hop information that is associated
with a node. This representation allows every node in the multibit trie to occupy
a small amount of memory.

20.1.2.2 Hardware approaches. With the advances in optical networking
technology, link rates in Internet infrastructure are being pushed from OC-768 (40
Gbps) to even higher rates [16]. Such high rates demand that IP lookup in routers
must be performed in hardware. For instance, 40 Gbps links require a throughput
of 8 ns per lookup for a minimum size (40 bytes) packet. Such throughput is
impossible using existing software-based solutions [2, 17]. Most hardware-based
solutions for high speed IP lookup fall into two main categories: TCAM (ternary
content addressable memory)-based and DRAM/SRAM (dynamic random access
memory/static random access memory)-based solutions. Although TCAM-based
engines can retrieve IP lookup results in just one clock cycle, their throughput is
limited by the relatively low speed of TCAMs. They are expensive and offer little
flexibility for adapting to new addressing and routing protocols [18]. As shown in
Table 20.2, SRAM outperforms TCAM with respect to speed, density, and power
consumption. However, traditional SRAM-based solutions, most of which can be
regarded as some form of tree traversal, need multiple clock cycles to complete
a lookup. For example, trie [2], a treelike data structure representing a collection
of prefixes, is widely used in SRAM-based solutions. It needs multiple memory
accesses to search a trie to find the longest matched prefix for an IP packet.

20.2 SRAM-BASED PIPELINED IP LOOKUP ARCHITECTURES:
ALTERNATIVE TO TCAMs

Several researchers have explored pipelining in order to significantly improve
the throughput of SRAM-based IP lookup engines. Taking trie-based solutions

TABLE 20.2 Comparison of TCAM and SRAM Technologies

TCAM (18 Mb chip) SRAM (18 Mb chip)

Maximum clock rate (MHz) 250 [19] 450 [20, 21]
Cell size (# of transistors per bit) [22] 16 6
Power consumption (W) 12∼15 [23] ≈0.1 [24]
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as an example, a simple pipelining approach is to map each trie level onto a
pipeline stage with its own memory and processing logic. One IP lookup can
be performed every clock cycle. However, this approach results in unbalanced
trie node distribution over the pipeline stages. Memory imbalancing has been
identified as a dominant issue for pipelined architectures [25, 26]. In an unbal-
anced pipeline, the “fattest” stage, which stores the largest number of trie nodes,
becomes a bottleneck. It adversely affects the overall performance of the pipeline
for the following reasons: First, it needs more time to access the larger local mem-
ory. This leads to reduction in the global clock rate. Second, a fat stage results
in many updates, due to the proportional relationship between the number of
updates and the number of trie nodes stored in that stage. Particularly during
the update process caused by intensive route insertion, the fattest stage can also
result in memory overflow. Furthermore, since it is unclear at hardware design
time which stage will be the fattest, memory with the maximum size must be
allocated for each stage. This results in memory wastage.

Basu and Narlikar [26] and Kim and Sahni [27] both reduce the memory
imbalance by using variable strides to minimize the largest trie level. However,
even with their schemes, the size of the memory of different stages can have
a large variation. As an improvement on [27], Lu and Sahni [28] propose a
tree-packing heuristic to further balance the memory, but it does not solve the
fundamental problem of how to retrieve one node’s descendants that are not allo-
cated in the following stage. Furthermore, a variable stride multibit trie is difficult
for hardware implementation especially if incremental updating is needed [26].

Baboescu et al. [29] propose a ring pipeline architecture for trie-based IP
lookup. The memory stages are configured in a circular, multipoint access
pipeline, so that lookups can be initiated at any stage. The trie is split into many
small subtries of equal size. These subtries are then mapped to different stages
to create a balanced pipeline. Some subtries have to wrap around if their roots
are mapped to the last several stages. Although all IP packets enter the pipeline
from the first stage, their lookup processes may be activated at different stages.
Hence, all the IP lookup packets must traverse the pipeline twice to complete
the trie traversal. The throughput is thus 0.5 lookups per clock cycle. Kumar
et al. [30] extended the circular pipeline with a new architecture called the
Circular, Adaptive and Monotonic Pipeline (CAMP). It has multiple entrance
and exit points, so that the throughput can be increased at the cost of output
disorder and delay variation. It uses several request queues to manage access
conflicts between the new request and the one from the preceding stage. Its
worst-case throughput is less than 1 lookups per clock cycle while maintaining
balanced memory across pipeline stages.

Owing to the nonlinear structure, neither the ring pipeline nor the CAMP can
under worst cases maintain a throughput of one lookup per clock cycle. Also,
neither of them properly supports the write bubble proposed in Reference 26
for the incremental route update. Jiang et al. [31, 32] propose a fine-grained
node-to-stage mapping scheme for linear pipeline architectures. It is based on
the heuristic that allows any two nodes on the same level of a trie to be mapped
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Figure 20.4 Mapping the unibit trie (shown in Figure 20.3b) onto the linear pipeline
[31, 32].

onto different stages of a pipeline. Balanced memory distribution across pipeline
stages is achieved while a high throughput of one packet per clock cycle is
sustained. The linear pipeline architecture supports incremental route updates
without disrupting the ongoing IP lookup operations. Figure 20.4 shows the
mapping result for the unibit trie in Figure 20.3b using the fine-grained mapping
scheme. To allow two nodes on the same trie level to be mapped to different
stages, each node stored in the local memory of a pipeline stage has two fields.
One is the memory address of its child node in the pipeline stage where the
child node is stored. The other is the distance to the pipeline stage where the
child node is stored. When a packet is passed through the pipeline, the distance
value is decremented by 1 when it goes through a stage. When the distance value
becomes 0, the child node’s address is used to access the memory in that stage.

20.3 DATA STRUCTURE OPTIMIZATION FOR POWER EFFICIENCY

Although SRAM-based pipeline architectures have been proposed as a promising
alternative to power-hungry TCAMs for IP lookup engines in next-generation
routers [32, 33], they may still suffer from high power/ energy consumption, due
to the large number of memory accesses for each IP lookup [34]. The overall
power consumption for each IP lookup in SRAM-based engines can be expressed
as in Equation 20.1:

Poweroverall =
H∑

i=1

[Pm(Si, · · ·) + Pl(i)]. (20.1)

Here, H denotes the number of memory accesses, Pm(.) the function of the power
dissipation of a memory access (which usually has a positive correlation with the
memory size), Si the size of the i th memory that is being accessed, and Pl(i) the
power consumption of the logic that is associated with the i th memory access.
Since the logic dissipates much less power than the memories in the memory-
dominant architectures [30, 35], the main focus of our work is on reducing the
power consumption of the memory accesses. Note that the power consumption
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of a single memory is affected by many other factors, such as the fabrication
technology and sub-bank organization, which are beyond the scope of our work.

Since the energy consumption for each memory access is the product of the
power consumption and the memory access time, the energy consumption per
IP lookup is identical to its power consumption times the clock period. In this
chapter, power if not specified, refers to the power/energy consumption per IP
lookup.

20.3.1 Problem Formulation

Little work has been done on data structure optimization for power-efficient
SRAM-based IP lookup engines. In this section, we focus on fixed-stride multi-
bit tries where all nodes at the same level have the same stride. Fixed-stride
multibit tries are attractive for hardware implementation due to their ease for
route update [11].

We use the following notations. Let W denote the maximum prefix length.
W = 32 for IPv4. Let S = {s0, s1, · · · , sk−1} denote the sequence of strides for
building a k -level multibit trie. Let |S| denote the number of strides in S (|S| = k).∑k−1

0 si = W . Considering the hardware implementation for tree-bitmap-coded
multibit tries, we cap the length of strides at si < Bs, i = 0, 1, · · · , k − 1, where
Bs is a predefined parameter, called the stride bound .

20.3.1.1 Non-pipelined and pipelined engines. An SRAM-based non-
pipelined IP lookup engine stores the entire trie in a single memory. Any IP
lookup may need to access the memory multiple times. Hence, the worst-case
power consumption of a SRAM-based non-pipelined IP lookup engine can be
modeled by Equation 20.2, where Powermemory and Powerlogic denote the power
consumption of the memory and the logic, respectively:

Power = (Powermemory + Powerlogic) · k. (20.2)

The logic dissipates much less power than the memories in the memory-intensive
architectures [30, 36, 37]. For example, [37] shows that the memory dissipates
almost an order of magnitude higher power than the logic in field-programmable
gate array (FPGA) implementation of a pipelined IP lookup engine. Thus, we do
not consider the power consumption of the logic. The optimal stride problem can
be formulated as

min
k=1,2,···,W

min
S(k)

Pm(M(S(k))) · k, (20.3)

where M(S) denotes the memory requirement of the multibit trie built using S .
Pm(M) is the power function of the SRAM of size M .

For a SRAM-based pipelined IP lookup engine, its worst-case power con-
sumption can be modeled by Equation 20.4, where H denotes the pipeline depth,
that is, the number of pipeline stages. Powermemory(i) and Powerlogic(i) denote
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the power consumption of the memory and the logic in the i th stage, respectively:

Power =
H∑

i=1

[
Powermemory(i) + Powerlogic(i)

]
. (20.4)

Similar to the non-pipelined engine, we omit the power consumption of the logic.
Also, assuming that the memory distribution across the pipeline stage is balanced,
the optimal stride problem can be formulated as

min
S

{[
Pm

(
M(S)

H

)]
· max (|S|,H)

}
, (20.5)

where M(S) denotes the memory requirement of the multibit trie built using
S . Pm(M) is the power function of the SRAM of the size M . The number of
memory accesses is determined by the |S| and H . When H < |S|, multiple clock
cycles are needed to access a stage. To achieve high throughput, we let H ≥ |S|.

Since |S| = k ≤ W , we can rewrite Equation 20.5 to be

min
k=1,2,···,W

min
S(k)

[
Pm

(
M(S(k))

H

)]
· H. (20.6)

To solve Equations 20.3 and 20.6, we can first fix k and find the optimal S(k)

so that the power consumption is minimized for the given k . Then, we compare
the power consumption for different k ’s to obtain the overall optimal S .

20.3.1.2 Power function of SRAM. Before we solve the above optimization
problem, we need to figure out the power function of the SRAM with respect to its
size M : Pm(M). There is some published work on comprehensive power models
of SRAM [38–40]. But these detailed “white box” models do not show the
direct relationship between the power consumption and the memory size. We use
CACTI tool [40] to evaluate both the dynamic and the static power consumption
of SRAMs of different sizes and then obtain the function parameters through
curve fitting (“black box” modeling).

According to [38, 39], when the word width is constant, both the high-level
dynamic and static power consumption of SRAMs can be approximately repre-
sented in the form of

P(M) = A · MB, (20.7)

where M is the memory size and A and B are the parameters whose values are
different for dynamic and static power.

We vary the SRAM size from 256 bytes to 8 Mbytes while keeping the
word width to be 8 bytes and obtain their power consumption using CACTI
tool [40]. After curve fitting, we obtain Adynamic = 2.07 × 10−4, Bdynamic = 0.50,
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Figure 20.5 Power versus SRAM size.

Astatic = 1.57 × 10−6, and Bstatic = 0.95. The results from both CACTI and curve
fitting are shown in Figure 20.5.

Hence, Pm(M) = AdynamicM
Bdynamic +AstaticM

Bstatic ≈ 10−6(207M0.5 + 1.6M).
Then, Equations 20.3 and 20.6 become Equations 20.8 and 20.9, respectively:

min
k=1,2,···,W

min
S(k)

(207M(S(k))0.5 + 1.6M(S(k))) · k, (20.8)

min
k=1,2,...,W

min
S(k)

(207M(S(k))0.5H 0.5 + 1.6M(S(k))). (20.9)

For a given k , when M(S(k)) is minimized, the power consumption is also
minimized. Thus, the above problems can be reduced to finding the optimal
stride so that the memory requirements are minimized.

20.3.2 Special Case: Uniform Stride

In the original tree bitmap paper [11], the authors suggest using the same stride
for all the nodes except for the root node. We call such a special fixed-stride
multibit trie a multibit trie with uniform stride. The stride used by the root, s0, is
called the initial stride. Given k , we can find the optimal S by exhaustive search
over different initial strides. In each iteration, si =

⌈
W−s0
k−1

⌉
, i = 1, 2, . . . , k − 1.

20.3.3 Dynamic Programming

Srinivasan and Varghese [14] have developed a dynamic-programming-based
solution to minimize the memory requirement of a k -level multibit trie. Sahni and
Kim [41] made further improvement to reduce the complexity of the algorithms.
However, those algorithms focused on the naive implementation of multibit tries,
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without considering the tree bitmap coding technique [11], for compressing the
memory requirement of multibit tries.

Similar to [14] and [41], we use the following notations:

• O denotes the unibit trie for the given set of prefixes.
• nNode(i ) denotes the number of nodes at the i th level of O .
• nPrefix (i,j ) denotes the total number of prefixes contained between the i th

and the j th levels of O .
• T (j, r), r ≤ j + 1, denotes the cost (the memory requirement) of the best

way to cover levels 0 through j of O using exactly r expansion levels.

The dynamic programming recurrence for T is

T (j, r) =
j−1
min

m=max (r−2,j−Bs)
{T (m, r − 1) +

nNode(m + 1) · 2Bs · 2/32 + (20.10)

nNode(j + 1) + nPrefix(m + 1, j)} ,

T (j, 1) = 2j+1. (20.11)

Note that all the strides except the initial one are capped by the stride bound
(Bs). In hardware implementation, the length of the bitmaps is determined by
Bs . Algorithm FixedStride(W,k ), as shown in Figure 20.6, computes T (W −
1, k), which is the minimum memory requirement to build a k -level tree-bitmap-
coded multibit trie. The complexity of algorithm FixedStride(W,k ) is O(k · W ·
Bs). After obtaining T (W − 1, k), we can follow the track of the corresponding
M(∗, ∗) to find the optimal S in O(k) time.

20.3.4 Performance Evaluation

We used 17 real-life backbone routing tables from the Routing Information
Service (RIS) [42]. Their characteristics are shown in Table 20.3. Note that the
routing tables rrc08 and rrc09 are much smaller than others, since the collection
of these two data sets ended on September 2004 and February 2004, respectively
[42].

We conducted the experiments for both non-pipelined and pipelined archi-
tectures. We evaluated the impacts of different architecture parameters on the
power-optimal design of the data structure. The architecture parameters include
the stride type, the stride bound, and the pipeline depth. For fixed-stride tree-
bitmap-coded multibit tries, two stride types are considered. The first uses uniform
strides, as described in Section 20.3.2. The second uses optimal strides, whose
value is capped by Bs , as discussed in Section 20.3.3.
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Input: O
Output: T (W − 1, k), S(k)

1: // Compute T (W − 1, k)

2: for j = 0 to W − 1 do
3: T (j, 1) = 2j+1

4: end for
5: for r = 2 to k do
6: for j = r − 1 to W − 1 do
7: minCost = MaxV alue

8: for m = max (r − 2, j − Bs) to j − 1 do
9: cost = T (m, r − 1) + nNode(m + 1) · 2B

s · 2 + nNode(j + 1) +
nP ref ix(m + 1, j)

10: if cost < minCost then
11: T (j, r) = minCost

12: M(j, r) = m

13: end if
14: end for
15: end for
16: end for
17: // Compute S(k) = {si}, i = 0, 1, · · · , k − 1
18: m = W − 1
19: for r = k to 1 do
20: sr−1 = m − M(m, r)

21: m = M(m, r)

22: end for

Figure 20.6 Algorithm: FixedStride(W,k ).

20.3.4.1 Results for non-pipelined architecture. First, we set Bs = 4 and
examined the results for the non-pipelined architecture using uniform and optimal
strides. The results are shown in Figure 20.7. In both cases, the power was
minimized when k = 5 and S = 16, 4, 4, 4, 4.

Then we varied the stride bound (Bs). Figure 20.8 shows the results by
using two different stride bounds: Bs = 2 and Bs = 6 for the architecture that
uses optimal stride. For Bs = 2, the power was minimized when k = 9 and
S = 16, 2, 2, 2, 2, 2, 2, 2, 2. For Bs = 6, the minimal power was achieved when
k = 4 and S = 17, 5, 5, 5.

20.3.4.2 Results for pipelined architecture. Figure 20.9 shows the power
consumption of the pipelined architecture using the two stride types. The pipeline
depth (h) was set to be equal to k . The stride bound Bs was 4. Both cases achieved
the optimal power performance when k = 6 and S = 13, 4, 4, 4, 4, 3.

Figure 20.10 shows the results by using different stride bounds for the optimal
stride. We set h = k. For Bs = 2, the power was minimized when k = 9 and
S = 16, 2, 2, 2, 2, 2, 2, 2, 2. For Bs = 6, the minimal power was achieved when
k = 5 and S = 16, 4, 4, 4, 4.
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TABLE 20.3 Representative Routing Tables
(Snapshot on April 4, 2009)

Number of Prefixes
Routing Table Number of Prefixes w/Length < 16

rrc00 300365 2366(0.79%)
rrc01 282852 2349(0.83%)
rrc02 272504 2135(0.78%)
rrc03 285149 2354(0.83%)
rrc04 294231 2381(0.81%)
rrc05 284283 2379(0.84%)
rrc06 283835 2337(0.82%)
rrc07 280786 2347(0.84%)
rrc08 83556 495(0.59%)
rrc09 132786 991(0.75%)
rrc10 283573 2347(0.83%)
rrc11 282761 2350(0.83%)
rrc12 284469 2350(0.83%)
rrc13 289849 2355(0.81%)
rrc14 278750 2302(0.83%)
rrc15 299211 2372(0.79%)
rrc16 288218 2356(0.82%)
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Figure 20.7 Power results of the non-pipelined architecture using (a) the uniform stride
and (b) the optimal stride (Bs = 4).

We also conducted experiments using different pipeline depths. Both cases
achieved the minimal power consumption when k = 6 and S = 13, 4, 4, 4, 4, 3.
These are the same as the results for h = k (Fig. 20.9b). This means that the
pipeline depth has little impact on determining the optimal strides for pipelined
architectures.
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Figure 20.8 Power results of the non-pipelined architecture using (a) optimal stride
Bs = 2 and (b) optimal stride Bs = 6.
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Figure 20.9 Power results of the pipelined architecture using (a) the uniform stride and
(b) the optimal stride (Bs = 4).

20.4 ARCHITECTURAL OPTIMIZATION TO REDUCE DYNAMIC
POWER DISSIPATION

This section exploits several characteristics of Internet traffic and of the pipeline
architecture, to reduce the dynamic power consumption of SRAM-based IP for-
warding engines. First, as observed in Reference 43, Internet traffic contains a
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Figure 20.10 Power results of the pipelined architecture using (a) Bs = 2 and (b) Bs = 6.

large amount of locality, where most packets belong to few flows. By caching the
recently forwarded IP addresses, the number of memory accesses can be reduced
so that power consumption is lowered. Unlike previous caching schemes, most
of which need an external cache to be attached to the main forwarding engine,
we integrate the caching function into the pipeline architecture itself. As a result,
we do away with complicated cache replacement hardware and eliminate the
power consumption of the “hot” cache [44]. Second, since the traffic rate varies
from time to time, we freeze the logic when no packet is input. We propose a
local clocking scheme in which each stage is driven by an independent clock
and is activated only under certain conditions. The local clocking scheme can
also improve the caching performance. Third, we note that different packets may
access different stages of the pipeline, which leads to a varying access frequency
onto different stages. Thus we propose a fine-grained memory enabling scheme
to make the memory in a stage sleep when the incoming packet is not access-
ing it. Our simulation results show that the proposed schemes can reduce the
power consumption by up to 15-fold. We prototype our design on a commercial
FPGA device and show that the logic usage is low while the backbone throughput
requirement (40 Gbps) is met.

20.4.1 Analysis and Motivation

We obtained four backbone Internet traffic traces from the Cooperative Associ-
ation for Internet Data Analysis (CAIDA) [45]. The trace information is shown
in Table 20.4, in which the numbers in the parenthesis are the ratio of the num-
ber of unique destination IP addresses to the total number of packets in each
trace.
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TABLE 20.4 Real-Life IP Header Traces

Trace Date Number of packets Number of unique IPs

equinix-chicago-A 20090219 460448 31923(6.93%)
equinix-chicago-B 20090219 2811616 182119 (6.48%)
equinix-sanjose-A 20080717 3473762 233643 (6.73%)
equinix-sanjose-B 20080717 2200188 115358 (5.24%)

20.4.1.1 Traffic locality. According to Table 20.4, regardless of the length
of the packet trace, the number of unique destination IP addresses is always
much smaller than that of the packets. These results coincide with those of
previous work on Internet traffic characterization [46]. Owing to TCP burst,
some destination IP addresses can be connected very frequently in a short time
span. Hence, caching has been used effectively in exploiting such traffic locality
to either improve the IP forwarding speed [46] or help balance the load among
multiple forwarding engines [43]. This chapter uses the caching scheme to reduce
the number of memory accesses so that the power consumption can be lowered.

20.4.1.2 Traffic rate variation. We analyze the traffic rate in terms of the
number of packets at different times. The results for the four traces are shown in
Figure 20.11, in which the X -axis indicates the time intervals and the Y -axis the
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Figure 20.11 Traffic rate variation over time.
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number of packets within each time interval. As observed in other papers [47],
the traffic rate varies from time to time. Although the router capacity is designed
for the maximum traffic rate, power consumption of the IP forwarding engine
can be reduced by exploiting such traffic rate variation in real life.

20.4.1.3 Access frequency on different stages. The unique feature of
the SRAM-based pipelined IP forwarding engine is that different stages contain
different sets of trie nodes. Given various input traffic, the access frequency to
different stages can vary significantly. For example, we used a backbone routing
table from the RIS [42] to generate a trie, mapped the trie onto a 25-stage pipeline,
and measured the total number of memory accesses on each stage for the four
input traffic traces. The results are shown in Figure 20.12, in which the access
frequency of each stage is calculated by dividing the number of memory accesses
on each stage by that on the first stage. The first stage is always accessed by
all packets, while the last few stages are seldom accessed. According to this
observation, we should disable the memory access in some stages when the
packet is not accessing the memory in that stage.

20.4.2 Architecture-Specific Techniques

We propose a caching-enabled SRAM-based pipeline architecture for power-
efficient IP forwarding, as shown in Figure 20.13. Let H denote the pipeline
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Figure 20.12 Access frequency on each stage.
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Figure 20.13 Pipeline with (a) inherent caching and (b) local clocking.

depth, that is, the number of stages in the pipeline. These H stages store the
mapped trie nodes. Every time the architecture receives a packet, the incoming
packet compares its destination IP address with the packets that are already in
the pipeline. It will be considered as a “cache hit” if there is a match, even
though the packet has not retrieved the next-hop information yet. To preserve
the packet order, the packet that is having a cache hit still goes through the
pipeline. However, no memory access is needed for this packet, so that the
power consumption for this packet is reduced.

20.4.2.1 Inherent caching. Most existing caching schemes need to add an
external cache to the forwarding engine. However, the cache itself can be power
intensive [44] and also needs extra logic to support cache replacement. The
relatively long pipeline delay can also result in low cache hit rates in traditional
caching schemes [43]. Our architecture implements the caching function without
appending extra caches. As shown in Figure 20.13a, the pipeline itself acts as a
fully associative cache, where the existing packets in all the stages are matched
with the arriving packet. If the arriving packet (denoted as Pktnew) matches a
previous packet (denoted as Pktexist) that is already existing in the pipeline, Pktnew
has a cache hit even though Pktexist has not retrieved its next-hop information.
Then Pktnew will go through the pipeline with the cache hit signal set to “1.”
On the other hand, Pktnew does not obtain the next-hop information until Pktexist
exits the pipeline.

As shown in Figure 20.13a, the packet exiting the pipeline will forward its
IP address and its retrieved next-hop information to all the previous stages. The
packets in the previous stages compare with the forwarded IP address. The packet
matching the forwarded IP address will take the forwarded next-hop information
as its own and carry the retrieved next-hop information along when traversing
the rest of the pipeline.

20.4.2.2 Local clocking. Most of the existing pipelined IP lookup engines
are driven by a global clock. The logic in a stage is active even when there
is no packet to be processed. This results in unnecessary power consumption.
Furthermore, since the pipeline keeps forwarding the packets from one stage
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to the next stage at the highest clock frequency, the pipeline will contain few
packets if the traffic rate is low. Since the pipeline is built as a cache that is
dynamic and sensitive to input traffic, few packets in the pipeline indicates a
small number of cached entries, which results in a low cache hit rate.

To address this issue, we propose a local clocking scheme in which each stage
is driven by an individual clock. Only the following constraint must be met to
prevent any packet loss:

Constraint 1: If the clock of the previous stage is active and there is a packet
in the current stage, the clock of the current stage must be active.

Hence, we design the local clocking as shown in Figure 20.13b where “Clk”
represents the clock signal. The clock of a stage will not be active until the stage
contains a valid packet and its preceding stage is forwarding some data to the
current stage. To prevent clock skew, some delay logic is added in the data path
of the clock signal of the previous stage. In a real implementation, we do not
use the AND gate, which may result in glitches. Instead, we use clock buffer
primitives provided by Xilinx design tools [48].

20.4.2.3 Fine-grained memory enabling. As discussed earlier, the access
frequency to different stages within the pipeline varies. Current pipelined IP for-
warding engines keep all memories active for all the packets, which results in
unnecessary power consumption. Our fine-grained memory enabling scheme is
achieved by gating the clock signal with the read enable signal for the memory in
each stage. The read enable signal becomes active only when the packet goes to
access the memory in the current stage. In other words, the read enable signal will
remain inactive in any of the following four cases: no packet is arriving, the dis-
tance value of the arriving packet is larger than 0, the packet has already retrieved
its next-hop information, or the cache hit signal carried by the packet is set to “1.”

20.4.3 Performance Evaluation

We prototyped our design (denoted “Proposed”) and the baseline pipeline
(denoted “Baseline”) that did not integrate the proposed schemes, respectively,
on FPGA using Xilinx ISE 10.1 development tools. The target device was
Xilinx Virtex-5 XC5VFX200T with −2 speed grade. Table 20.5 shows the
post place and route results where “Both” denotes both designs1. Although our
design used more logic resource than the baseline, the design consumed still
a small amount of the overall on-chip logic resources. Both designs achieved
a clock frequency of 125 MHz while using the same amount of BlockRAMs.
Such a clock frequency results in a throughput of 40 Gbps for minimum size
(40 bytes) packets, which meets the current backbone network rate.

The dynamic power consumption of a pipelined IP lookup engine can be
modeled as Equation (20.12), where p denotes the packet to be looked up,

1Owing to the limitation of the size of on-chip memory, both designs supported 70K prefixes, which
is one-fourth of the current largest backbone routing table. However, our architecture can be extended
by using external SRAMs.
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TABLE 20.5 Resource Utilization

Design Used Available Utilization

Number of slices Baseline 569 30,720 1.85%
Proposed 748 30,720 2.43%

Number of bonded IOBs Both 73 960 7%
Number of block RAMs Both 295 456 64%
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Figure 20.14 Profiling of dynamic power consumption in a pipelined IP lookup engine.

H the pipeline depth, N(p) the number of packets, and Powermemory(i, p) and
Powerlogic(i, p) denote the power consumption of the memory and of the logic
in the i th stage by p, respectively:

Power =
∑

p

∑H
i=1 [Powermemory(i, p) + Powerlogic(i, p)]

N(p)
. (20.12)

We profiled the power consumption of the memory and of the logic based on
our FPGA implementation results. Using the XPower Analyzer tool provided by
Xilinx, we obtained the power consumption for the baseline and our design, as
shown in Figure 20.14. As we expected, the power consumption by memory
dominated the overall power dissipation of the pipelined IP lookup engine.

Based on the profile data of the power consumption in the architecture, we
developed a cycle-accurate simulator for our pipelined IP lookup engine. We
conducted the experiments using the four real-life backbone traffic traces given
in Table 20.4 and evaluated the overall power consumption.

First, we examined the impact of the fine-grained memory enabling scheme.
We disabled both inherent caching and local clocking and then ran the simu-
lation under two different conditions: (i) without fine-grained memory enabling
(denoted as “wo/FME”) and (ii) with fine-grained memory enabling (denoted as
“w/FME”). Figure 20.15 compares the results, where the results of (ii) are set to
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Figure 20.15 Power reduction with fine-grained memory enabling.

be the baseline and the results of (i) are divided by those of (ii). According to
Figure 20.15, fine-grained memory enabling can achieve up to 12-fold reduction
in power consumption.

Second, we evaluated the impact of the inherent caching and local clocking
schemes. We enabled the fine-grained memory enabling scheme and then ran the
simulation under three different conditions: (i) without either inherent caching
or local clocking (denoted as “Baseline”), (ii) with inherent caching but without
local clocking (denoted as “Cache only”), and (iii) with both schemes (denoted as
“Cache + LC”). The results are shown in Figure 20.16 where the results without
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Figure 20.16 Power reduction with inherent caching and local clocking.
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both schemes are set as the baseline. Without local clocking, the reduction in
power consumption using caching was very little, because of the low cache hit
rate (e.g., 1.65% for equinix-chicago-B). Local clocking improved the cache hit
rate (e.g., the cache hit rate for equinix-chicago-B increased to 45.9%), which
resulted in higher reduction in power consumption.

Overall, when all the three proposed schemes were enabled, the architecture
achieved 6.3-, 15.2-, 8.1-, and 7.8-fold reduction in power consumption, for the
four traffic traces, respectively.

20.5 RELATED WORK

Reducing the power consumption of network routers has been a topic of signif-
icant interest [10, 13, 49]. Most of the existing work focuses on system- and
network-level optimizations.

Chabarek et al. [10] enumerate the power demands of two widely used Cisco
routers. The authors further use mixed integer optimization techniques to deter-
mine the optimal configuration at each router in their sample network for a given
traffic matrix. Nedevschi et al. [49] assume that the underlying hardware in net-
work equipment supports sleeping and dynamic voltages and frequency scaling.
The authors propose to shape the traffic into small bursts at edge routers to
facilitate sleeping and rate adaptation.

Power-efficient IP lookup engines have been studied from various aspects.
However, to the best of our knowledge, little work has been done on pipelined
SRAM-based IP lookup engines. Some TCAM-based solutions [23, 34] propose
various schemes to partition a routing table into several blocks and perform IP
lookup on one of the blocks. Similar ideas can be applied for SRAM-based
multipipeline architectures [50]. Those partitioning-based solutions for power-
efficient SRAM-based IP lookup engines do not consider either the underlying
data structure or the traffic characteristics and are orthogonal to the solutions
proposed in this chapter.

Kaxiras and Keramidas [51] propose an SRAM-based approach called IPStash
for power-efficient IP lookup. IPStash replaces the full associativity of TCAMs
with set associative SRAMs to reduce power consumption. However, the set
associativity depends on the routing table size and thus may not be scalable. For
large routing tables, the set associativity is still large, which results in low clock
rate and high power consumption.

Traffic rate variation has been exploited in some recent papers for reducing
power consumption in multicore-processor-based IP lookup engines. In Reference
52, clock gating is used to turn off the clock of unneeded processing engines of
multicore network processors to save dynamic power when there is a low traf-
fic workload. In Reference 53, a more aggressive approach of turning off these
processing engines is used to reduce both dynamic and static power consump-
tion. Dynamic frequency and voltage scaling are used in References 47 and 54,
respectively, to reduce the power consumption of the processing engines. How-
ever, those schemes still consume large power in the worst case when the traffic
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rate is consistently high. Some of those schemes require large buffers to store
the input packets so that they can determine or predict the traffic rate. But the
large packet buffers result in high power consumption. Also, these schemes do
not consider the latency for the state transition, which can result in packet loss
in case of bursty traffic.

20.6 SUMMARY

Power (energy) consumption has emerged as a new challenge in the design of
packet forwarding engines for next-generation Internet infrastructure. Although
TCAMs are widely used for high speed packet forwarding, they suffer from high
power consumption. We propose mapping state-of-the-art algorithmic solutions
onto parallel architectures that are based on low-power memory such as SRAM.

We exploited data structure optimization to reduce the power consumption.
We formulated the problems by revisiting the conventional time–space trade-off
in multibit tries. To minimize the worst-case power consumption for a given
architecture, a dynamic programming framework was developed to determine
the optimal strides for constructing tree bitmap coded multibit tries. Simulation
using real-life backbone routing tables showed that careful design of the data
structure, with awareness of the underlying architecture, could achieve dramatic
reduction in power consumption. Different architectures could result in different
optimal data structures with respect to power efficiency.

We proposed several novel architecture-specific techniques to reduce the
dynamic power dissipation in SRAM-based pipelined IP lookup engines.
First, the pipeline was built as an inherent cache that exploited effectively
the traffic locality with minimum overhead. Second, a local clocking scheme
was proposed to exploit the traffic rate variation and to improve the caching
performance. Third, a fine-grained memory enabling scheme was used to
eliminate unnecessary memory accesses for the input packets. Simulation using
real-life traffic traces showed that our solution achieved up to 15-fold reduction
in dynamic power dissipation.
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CHAPTER 21

DEMAND RESPONSE IN THE SMART
GRID: A DISTRIBUTED COMPUTING
PERSPECTIVE

CHEN WANG and MARTIN DE GROOT

21.1 INTRODUCTION

The advance in information technologies in the recent years provides new oppor-
tunities for the modernization of traditional power grids. The term Smart Grid
is often used to name the effort of integrating the Internet with power deliv-
ery infrastructure and enabling a variety of services on the integrated networks.
The driving force behind the Smart Grid comes from various directions, mainly
including reducing greenhouse gas emissions (environmental factor), enhancing
reliability and energy independence (political factor, especially in the United
States), and improving electric grid efficiency (economic factor). The goal of the
move is to transform the business model of the entire electrical power industry
[1].

The Demand Response and Smart Grid Coalition (DRSG) defines Smart Grid
as follows [2]:

“The Smart Grid is the concept of having all supply and demand resources dynam-
ically managed via a combination of data, communications and controls, whereby
the operation of the grid for reasons of economics, security, reliability, emissions,
etc., can be optimized in real time.”

The National Institute of Standards and Technology (NIST) in the United
States gives a conceptual model for the Smart Grid as shown in Figure 21.1
[3]. Traditional power grids deliver electricity from points of generation to con-
sumers along the dashed lines. Between the two ends are the power transmission
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Figure 21.1 NIST Smart Grid conceptual model.

systems and power distribution systems. The former deliver electricity from
power generators to the distribution substations, while the latter deliver elec-
tricity from distribution stations to consumers. Information flows shown in solid
lines effectively form a new grid on top of the traditional power grid. The flow of
information can create a new electricity market that enables value-added services
to be established for the good of power generators, distributors, and consumers.

Demand response (DR) is an application area with growing importance in
existing power grids. It is a prime example of a value-added service that can
benefit greatly from Smart Grid technologies.

“Demand Response is a tariff or program established to motivate changes in electric
use by end-use customers in response to changes in the price of electricity over
time, or to give incentive payments designed to induce lower electricity use at times
of high market prices or when grid reliability is jeopardized.” [4]

In the electricity market, DR can benefit both suppliers and consumers. It may
improve the reliability of power transmission and distribution networks by offer-
ing methods to reduce electricity demand during peak time. On the other hand,
it helps consumers to cut energy cost by encouraging changes that may result in
reduced energy use when the electricity network is stressed. Traditional DR is
often implemented through a manual process and targets large energy consumers.
Typically, a producer or power grid operator offers a few predefined DR pro-
grams to consumers who are willing to participate. These programs are designed
to reduce energy use by shutting down devices of participating consumers. A
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consumer may sign up to participate in a DR program and agree on a contract
with the producer or operator. The consumer often receives payment by reducing
its energy use when asked to do so (via predefined DR events) according to the
contract. The manual process often requires staff to first receive e-mails, phone
calls, or pager signals and then requires them to act on DR events to execute
their DR strategies [5].

DR can be automated with the support of Smart Grid technologies. With an
infrastructure that can meter consumption and pass the metering data and control
information over IP networks in real time, it is possible to exploit more complex
and effective DR strategies. First, the existing DR processes and protocols can be
implemented using computer systems. A lot of work has been done in this area
in recent years. Second, the information flow in the emerging Smart Grid links
various related parties in the electricity market to form a distributed computing
system, and these parties can collaborate with each other to deliver interesting
DR schemes. In this chapter, we review techniques and protocols to implement
existing DR programs. We particularly focus on characteristics of the Smart-Grid-
based distributed system that can potentially produce effective DR schemes.

The remainder of the chapter is organized as follows: Section 21.2 reviews
the existing DR practices and the Smart Grid technologies that have impact on
the future of DR, Section 21.3 discusses automating DR in a distributed system
context and shows how the distributed algorithms can be applied to this new
field, and Section 21.4 summarizes the chapter.

21.2 DEMAND RESPONSE

There is an increasing amount of academic work on DR in recent years. Caves
et al. [6] point out that the disconnection between retail consumption decisions
and wholesale cost is a problem in the current electricity market. They further
indicate that a very modest amount of DR would easily reduce the price spikes
significantly. Kirschen [7] also shows that enhancing the ability of the demand
side to respond to price signals can benefit not only end users but also the
whole electricity market. However, due to concerns over the cost of installing
necessary equipment and managing a manual DR process, the number of end
users participating in DR programs is small. Kirschen [7] suggests end users could
take advantage of a new type of contract with retailers to broaden participation in
the market. In this section, we first review the existing practice in detail and then
discuss automated DR technologies that can be used to implement DR strategies.

21.2.1 Existing Demand Response Programs

We use the DR programs of the New York Independent System Operator
(NYISO) as an example to describe how DR works in existing power grids. The
NYISO is a company with a mission to manage the efficient flow of power,
as well as administrating and monitoring the wholesale electricity markets in
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New York. There are other operators around the world with similar responsibility,
for example, the New England ISO (http://www.iso-ne.com), the California ISO
(http://www.caiso.com) in the United States, and the AEMO (http://www.aemo.
com.au) in Australia.

In New York, peak hourly electricity demand can be 80% higher than the
average hourly demand [8]. This large variation in demand is a great challenge
to the reliability of the power grid in this region. NYISO offers the following
three types of DR programs to pay consumers for curtailing their energy use
during the high demand period of the power grid. Each of the three programs
requires the participants to be able to provide a minimal reduction amount when
needed.

• Day-Ahead Demand Response Program (DADRP). The DADRP allows con-
sumers to bid load reduction in the wholesale electricity market. A generator
offers payment for a certain amount of load reduction on a day-ahead basis.
The participants of this program submit bids that include the hours they are
willing to reduce electricity use in the next day, the amount of reduction,
and the required compensation from the market. A load reduction bid from a
participant is accepted if it is less expensive than the offer of the generator.
Once the bid is accepted, the market operator notifies the participant of the
scheduled load reduction. During the period of scheduled reduction, the con-
sumption of the participant is metered. The difference between the metered
load and a baseline calculated from normal energy use by this participant
during the corresponding period is the basis for calculating the actual pay-
ment to the participant. If the participant fails to meet the amount of the
scheduled load reduction, it will be charged at the higher of the day-ahead
price or the spot market price for the shortfall.

• Emergency Demand Response Program (EDRP). Unlike DADRP, the EDRP
is a voluntary program. In EDRP, when electricity supply could be jeopar-
dized, participants of this program are expected, but not obliged to reduce
their consumption or transfer load for a given period. The program provider
usually gives notice 1 day before an expected emergency event and is able
to confirm that participants are needed 2 h before the event. Similar to
DADRP, the difference between the metered load and a baseline calculated
based on the normal energy use of a participant during the time frame of
the event is used to calculate the payment to the participant. In contrast to
DADRP, there is no penalty for zero reduction as a participant is not obliged
to reduce load during the event.

• Special Case Resource Program (ICAP). The ICAP allows a participant to
have a relatively long-term contract with the program provider. The partic-
ipant receives payment for an agreement to provide load reduction capacity
during times when electricity supply could be jeopardized. Participants are
notified and confirmed in advance of any anticipated need for curtailment of
the capacity specified in their contracts. The metered load of the consumer
during the event is compared with the reduction capacity promised. If the
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promised capacity is not delivered, the long-term contractual payment is
reduced. The contracted load reduction capacity can be sold in the whole-
sale capacity market, and the actual payment to a participant is determined
by the price in the market.

These DR programs are mainly designed to improve reliability of the power
grid. Among the three programs, the DADRP leaves more room for consumers to
optimize their own economic benefit through the bidding process in comparison
with the EDRP and ICAP.

In addition to the above-mentioned programs, NYISO has a Demand-Side
Ancillary Service Program (DSASP). This program is to establish an instanta-
neous and continuous two-way communication channel to enable remote mea-
surement of electricity consumption. The metering data is transmitted every 6 s
to NYISO and incorporated to system operations.

On the generator and market operator side, the Security Constrained Unit
Commitment (SCUC) program [9–11] is a widely used method for making DR
schedules. The objective of SCUC is to find a unit time schedule, for example,
an hourly schedule, for generation, reserve, and price sensitive load in order to
satisfy generation and reserve requirements, transmission constraints, and other
operational constraints without compromising the reliability of the power grid.
The reserve capacity used in SCUC can come from DR participants. Therefore,
the output of SCUC contains DR schedules, which will be dispatched via various
DR programs offered by market operators.

These programs are effective in reducing peak electricity use. The NYISO
data show that the peak load on August 2, 2006, was reduced by 1000 MW
through a combination of the three DR programs [8]. DR is now considered an
essential component of a properly functioning electricity market.

These programs, particularly EDRP and ICAP, are not invoked frequently to
fulfill the potential of DR. One reason is that in the existing electricity market
a big share of electricity is sold through forward contracts or the day-ahead
market. There are also inadequate communication channels between generators
and consumers to exchange supply and demand changes in a timely manner.
Another reason is that many small consumers cannot directly participate in these
programs due to their inability to receive and act on requests to control loads in
a timely manner to meet the minimum response requirements.

Smart Grid technologies may potentially fill the capacity gap and become the
game changer to fulfill the potential of DR. In the following, we discuss efforts
to establish additional links between generators and consumers that can be used
to implement more effective DR schemes under the context of the Smart Grid.

21.2.2 Demand Response Supported by the Smart Grid

The Smart Grid offers new opportunities for improving traditional DR programs.
Energy Storage and Advanced Metering Infrastructure (AMI) are two important
technologies that can potentially automate DR programs and seamlessly inte-
grate them as part of daily activity in electricity markets. In particular, these
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technologies can extend DR out to small consumers, such as small businesses
and residential users, to help them achieve cost savings while simultaneously
improving the reliability of power grids.

Energy storage plays an increasingly important role in the electricity market. It
has various forms, for example, energy storage devices (ES), power-electronics-
connected distributed energy resources (DERs), hybrid generation-storage sys-
tems (ES-DER), and plug-in electric vehicles (PEVs). The deployment of energy
storage will give consumers and generators the flexibility needed to deal with
demand and price spikes in the market. One can imagine that energy storage
plays a role similar to a content delivery network that caches high demand Web
sites and shares the load across multiple servers.

AMI is a set of hardware, software, and communication technologies that
enable measurement, collection, and analysis of energy use. AMI also makes it
possible for a remote service to interact with consumers regarding their energy
use. “Smart metering” [12] and domestic energy management devices [13] are
two examples of technologies that are available for consumers to collect their
energy consumption data in real time. As an initial step toward the Smart Grid,
these technologies can draw consumers’ attention to their energy consumption and
raise their awareness of any patterns or cost implications. Raising awareness of
consumers is an important part of reducing their energy use during peak demand.
A report [14] shows that 5–15% energy saving can be achieved if the metering
data also includes clearly understood reference points for improving billing. With
the help of on-line energy monitoring tools such as Google PowerMeter [15, 16],
consumers can easily track the energy use of smart meter-connected appliances
over time. The metering data can be then used by consumers to manage their
budget, predict future energy use, and identify changes that can be made to
save energy and cut cost. As an example, Google PowerMeter also provides
consumers the capability of forming a community to work together on energy-
saving strategies. The number of utilities and devices that work with such Web
services is steadily increasing.

Furthermore, a large amount of work on “smart house” technologies [17] and
home energy management (HEM) [18] will enrich functionality of this kind of
Web services. Energy management consultancy and delegation can be provided
in the form of Web services as well, and a cost-effective service-oriented plat-
form can be formed for small-energy consumers to better manage their energy
use. Potentially, these technologies will allow a trusted party to remotely manage
the energy use of consumers by aggregating their DR capacity and executing
DR strategies using the combined capacity based on a range of service agree-
ments. In Reference 19, we treated efficient energy management as a service and
gave a three-tier architecture to enable this service to automate energy manage-
ment for small businesses and residential consumers. The consumers can define
access control policies for an energy service provider (ESP) to execute agreed
DR programs on their behalf.

The diversity of smart metering technologies and service models built on the
metering data may create interoperability issues. For the purpose of amplifying
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the benefit of DR to the large scale, there is a need to standardize DR-related
data representation and data exchange protocols. The Open Automated Demand
Response Communication Specification , or OpenADR [20], is an example of
such a DR standardization effort. The development of OpenADR started in 2002
following the California electricity crisis. Work was carried out by the Demand
Response Research Center (DRRC), which is managed by the Lawrence Berkeley
National Laboratory. OpenADR is now a standard of the OASIS (Organization
for the Advancement of Structured Information Standards). OpenADR defines
the data model of DR signals exchanged between a utility (or an independent
system operator such as NYISO) and consumers. The DR programs running
inside the control systems on the consumer side can act upon the arrival of these
signals without human intervention. At the core of OpenADR is the abstraction of
the DR event delivery infrastructure called Demand Response Automation Server
(DRAS ). DRAS defines the following interfaces:

• Utility and ISO Operator Interface. It is the interface for a utility or an
ISO to set up a DR program, which includes configuring a predefined DR
program and dynamic pricing in the DRAS as well as adding DR clients of
this utility or ISO. A DR program defines DR event launching endpoints. It
also maps the program to events and client feedback signals.

• DRAS Client Interface. It is the interface that defines how a DR event is
passed to the automated control system in the facility of a consumer par-
ticipating in the DR program. It also defines an interface for the client to
report back to the DRAS how the facility responds to the event.

• Participant Operator Interface. It is the management interface for DR par-
ticipants to configure the way they are involved in the DR program. A
participant can be either a facility manager or an aggregator. An aggregator
is a party that manages a set of facilities and provides a single interface for
the utility or ISO of these facilities.

The setup and execution process of a simple DR program includes the follow-
ing steps:

1. A utility or ISO sets up the DR program in its internal information system
and then configures the program in the DRAS. The configuration includes
signing up facility managers to allow them to access the DRAS as clients.

2. The facility manager configures the DRAS client side and its Energy Man-
agement and Control System (EMCS) to enable shedding or shifting load
according to possible DR events.

3. When a condition is satisfied, the information system inside a utility or ISO
initiates a DR event. A notifier submits the event to the DRAS. The event
contains information such as the program type, event time, geographic
location of the event, and customer list.

4. The DRAS sends the event to all DRAS clients in the program, and the
latter in turn send instructions to their internal EMCS to shed or shift load.
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5. The DRAS client of a facility sends back the load status to the DRAS to
notify the utility or ISO of its response to the DR event.

6. The utility or ISO measures the actual usage in the facility and settles
payment with the facility.

These steps may vary for different DR programs; for example, in a DR pro-
gram that allows demand bidding, a facility manager needs to set up bidding
information in its DRAS client and add a step to receive the bidding result from
the DRAS.

In general, OpenADR attempts to automate traditional DR programs by defin-
ing a set of protocols that connect information systems running inside utilities and
EMCSs running in the consumer sites. OpenADR can be seen as a transitional
standard, as it is targeted at using Smart Grid technologies to transform existing
DR programs. Once the supply side and the demand side in the electricity mar-
ket are linked more closely through the growing use of information technologies,
there are more opportunities to exploit than just transforming existing practices. In
fact, the Smart Grid paradigm is gradually turning DR into a computing problem
in a distributed system. We discuss this scenario in the next section.

21.3 DEMAND RESPONSE AS A DISTRIBUTED SYSTEM

As the use of information technologies rapidly grows in the electrical power
industry, people start to realize that many tasks in this domain can be leveraged
to run as Web services. Some even argue that applications such as DR may even
take advantage of cloud computing to augment the capacity of utilities [21].
As mentioned in the previous section, existing DR programs are designed by
utilities or ISOs. These programs are not activated often partially because the
demand side does not have sufficient information to cooperate with the supply
side or to make DR decisions in their own interests. This situation may change
when consumers understand their own consumption better and have access to
price signals along with other market information. It is possible that consumers
themselves can initiate DR purely for their own benefit. Independent rational
adjustment of energy use patterns on the consumer side can also make the whole
market better off. In this section, we discuss how the DR can be improved in a
well-connected distributed computing system.

21.3.1 An Overlay Network for Demand Response

Parties involved in DR can be seen as an overlay network on top of the power
grid. As shown in Figure 21.2, the suppliers and consumers are linked through a
two-level network:

• Links on the top level connect distributed generators, distributed storage,
ISOs, market operators, large energy consumers, and ESPs. The information
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Figure 21.2 The energy service network. ESI, energy surface interface.

exchanged between these players includes dynamic pricing information
and DR events. This scenario is similar to the present electricity market
practice as captured by OpenADR except that a generic ESP replaces the
aggregator role.

• Links on the bottom level connect ESPs and small or medium con-
sumers. The information exchanged between them includes metering
data, remote management instructions, and feedback, as well as other
service-specific data. An ESP plays the aggregator’s role for small or
medium consumers as in the current DR practice. It also plays the
delegator’s role to manage energy use for its customers. Moreover, it
provides metering data storage, analysis, and electricity use prediction
services.

The overlay network mainly supports two DR use cases. In the first case, a
player on the top level requests DR for the purpose of power grid reliability. We
call this scenario event-driven DR. In the second case, an ESP balances the load
of its consumers to avoid demand spikes for the purpose of cutting cost for its
customers. We call this scenario cost-driven DR.
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21.3.2 Event Driven Demand Response

Event-driven DR is initiated by the parties on the supply side. A party on the
top level of Figure 21.2 is concerned about the reliability of the power grid
or its power generation facility, which can be damaged by demand spikes and
load variability. Demand spikes and load variability can be significantly higher
when charging facilities are widely deployed for PHEVs (plug-in hybrid electric
vehicles) or PEVs [21]. Therefore, party the would like to pay for a certain
amount of load shed from its consumers in exchange for the stability of power
generation or transmission. Willingness can be represented as a DR event in the
following format:

(requester, load, price, {participant}),

in which requester is the party that initiates DR activity, load is the minimal
amount of electricity use the party requests its consumers to shed, price is the
unit price the party would like to pay for the load reduction, and {participant} is a
set of consumers or ESPs who can shed consumption or aggregate a set of small
consumers for load shedding in order to help the requester achieve reliability.
The base price for load shedding is calculated according to the network reliability
analysis from the supplier’s perspective. The event is then propagated to the
targeted participants in the list. Once receiving the event, big consumers often
perform curtailment according to prenegotiated contracts. An ESP also contracts
with the requester. The contract is reached based on the aggregated load shed
capability at a given time frame from the consumers who subscribe to the ESP.
On receiving the event, the service provider optimizes load shedding among these
consumers.

The method for optimizing the schedule of load curtailment among a set of
participants is similar on both the supplier and the ESP level. They differ on
the constraints. We use a simple example of scheduling load reduction on the
ESP level to illustrate this. Table 21.1 shows the baseline energy use of three
consumers C1, C2, and C3 at time t . We assume that these consumers subscribe
to the same ESP and are flexible about load shedding as long as the unit price is
acceptable. The price may differ between consumers and so can the amount of
load shed. The price function of a consumer is agreed with its ESP during the
contract negotiating process.

Suppose that the ESP receives a DR event requesting load shedding of 35 MW
for time t at an average unit price no more than $300. The task of the provider is

TABLE 21.1 Consumer Energy Use

Consumer Baseline Energy Use (MW)

C1 20
C2 30
C3 35
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to schedule the load shed among C1, C2, and C3 at a minimal cost. The minimal
cost reflects the overall willingness of all consumers to reduce their load. The
cost can be calculated as below:

minimize
∑

C fC(lC) · lC,

subject to
∑

C lC ≥ L,∑
C fC ≤ P,

where fC is the price function of load shed for consumer C, lC is the amount
of load shed from C, and L is the total load shed requested in the incoming DR
event. We assume the unit price for the load shed is a function of the amount
of curtailment delivered by C, which can be modeled by quadratic equations
[22]. We assume the following cost functions for C1, C2, and C3 in this simple
example:

fC1
(l) = 2l2 + (1 − 0.6)l,

fC2
(l) = l2 + 2(1 − 0.8)l,

fC3
(l) = 3l2 + (1 − 0.3)l.

The cost functions are illustrated in Figure 21.3.
By solving this nonlinear optimization problem, we get the optimal schedule

for load shed as shown in Table 21.2. It produces the minimized overall cost for
the DR activity at $8411.352.
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Figure 21.3 Demand shed versus payment for different consumers.
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TABLE 21.2 The Optimal Load Shed

Consumer Load Shed (MW) Unit Price

C1 15.221 243.848
C2 10.916 240.517
C3 8.863 241.857

As shown in the example, event-driven DR consists of the following compo-
nents:

• computer-processable contract that describes the cost function;
• price and other constraints of a consumer;
• protocol for reaching such a contract and a DR event system;
• market mechanism to set the price and schedule the curtailment.

21.3.3 Cost Driven Demand Response

With the increase in the deployment of smart meters, consumers, particularly,
small consumers, will be increasingly aware of the price of the electricity they
purchase. The awareness will further make pricing an important means to trig-
ger change in consumers’ demand. It is likely that dynamic and market-based
electricity pricing will become the norm in future retail contracts. In such a price-
driven market, demand can be adjusted to respond to certain market and power
grid conditions without the need for a party to explicitly create DR events to
stimulate demand changes. It is in each consumer’s interest to respond to price
signals and reduce energy cost. Dynamic price information also gives consumers
visibility of the overall market demand and power grid conditions. They can
therefore make local adjustments to respond to the price change. In this sce-
nario, the chance that a DR program as described in Section 21.2 is activated
will be further reduced. An operator will reduce its responsibility to monitoring
consumption through smart metering infrastructure and to regulating the market.
In this section, we discuss the mechanisms for cost-driven DR.

We consider that the pricing of electricity over a given time interval is based
on the supply and demand ratio. We denote the size of the minimal time interval
as s. By dividing a given time frame into a sequence of contiguous time inter-
vals denoted by T =< t1, t2, . . . , tn >, we have a vector of prices, denoted by
< p1, p2, . . . , pn >, for these intervals. The electricity price in each interval is
determined by the overall demand and the electricity generation capacity during
this interval, which can be represented as [23]

pi = α

(
Di

CAPi

)c−1

, 1 ≤ i ≤ n, (21.1)

in which Di is the total demand, CAPi is the generation capacity of the market
during time interval ti , and α and c are two free variables.
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We assume that the pricing of a group of consumers can be isolated to those
consumers outside the group. This can be achieved through subscribing to the
same ESP who is able to purchase a certain amount of electricity ahead for
time frame T in the upper layer market and cover the purchase cost through
resale in the retail market. The retail price, therefore, reflects the supply and
demand among the group of subscribers. The ESP can adjust supply using energy
storage and local generation capacity it controls. With this setting, it is possible
for consumers to form groups through ESPs for managing and optimizing their
energy use.

Each consumer may exhibit a range of patterns in electricity use. The energy
consumption profile of a set of consumers U = {u1, u2, . . . , ul} can be repre-
sented using the following matrix M:

M = {(ui, {(pj , {(tk, rk)}nk=1)}mj=1)}li=1, (21.2)

where pj is the electricity use pattern of a consumer ui , m is the maximum
number of different patterns of a consumer, and rk is the energy consumption
rate during time interval tk .

Let us consider that a consumer has a dominant electricity use pattern, which
is used by the consumer most often according to the historical data collected
through metering. Other patterns the same consumer exhibits occasionally
can be derived from the dominant pattern via one of the following two
methods.

• Demand Shift . The time intervals of consumption in the dominant pattern
are shifted and gaps with zero consumption can be inserted between these
intervals.

• Demand Reduction . The consumption rate in a time interval is reduced,
but the reduced consumption may stretch to other time intervals. This
applies to users who have access to local generation or energy storage with
limited capacity or to the use of appliances such as air conditioners that
can preheat or precool rooms and work on reduced capacity during peak
hours.

Table 21.3 shows an example of M, in which each row represents different
energy consumption patterns during T =< t1, t2, t3, t4 >.

Under the pricing model given in Equation 21.1, the overall cost is minimal
when the load normalized by the capacity of an interval is evenly distributed
among the given sequence of time intervals [19]. Finding an optimal solution for
distributing the load is an NP-hard problem, as it requires computing the cost of
all the combinations of different user consumption patterns. In the following, we
describe an approximation algorithm for this problem.
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TABLE 21.3 Sample Electricity Consumption Profiles

Consumer Use Pattern t1 t2 t3 t4

u1 1 1 kW — — —
2 — 1 kW — —
3 — — 1 kW —
4 — — — 1 kW

u2 1 — 2 kW — —
2 — — 2 kW —
3 — — — 2 kW
4 1 kW 1 kW — —
5 2 kW — — —

u3 1 1 kW 1 kW — —
2 — 1 kW 1 kW —
3 — — 1 kW 1 kW

Algorithm 21.1: The Scheduling Algorithm

Input: User energy consumption profile M,
capacity in given time intervals:CAP = {ci}|tn−1

i=t0
Output: A schedule S for the energy consumption of the

user set
{

L = {li}|tn−1
i=t0

is a demand vector with initial value 0;
normalize the consumption rates with C (r ′

i = ri
ci
);

M′ <- the normalized consumption profile;
sort patterns in M′ in ascending order with comparator
PatternComp;

for each pattern p

{
if p.u has not been scheduled
{

schedule the demand vector of p, denoted by p.r

to minimize Maxi∈T (li + p.ri);
for each time interval i ∈ T

li += p.ri;
mark p.u as scheduled and add p to S;

}
}
return S;

}

int PatternComp(p1, p2)
/* returns -1 if p1 < p2; 1 if p1 >p2; 0 if p1 = p2 */
{

mp1 = MAXT (p1.rk);
mp2 = MAXT (p2.rk);
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if mp1 >mp2

return 1;
if mp1 < mp2

return -1;
/* if equal, compare the overlap degrees with other
patterns */

T 1 = {tk|p1.rk > 0};

T 2 = {tk|p2.rk > 0};

fp1 =
∑

p∈M,p.u�=p1.u

∑
T 1 p.rk

|T 1| ;

fp2 =
∑

p∈M,p.u�=p2.u

∑
T 2 p.rk

|T 2| ;

/* the pattern with higher overlapped consumption rate
is bigger */

if fp1 >fp2

return 1;
if fp1 < fp2

return -1;
return 0;

}

The algorithm gives priority to the patterns with small peak consumption
rates in an attempt to keep the overall peak load low. It also attempts to schedule
demands to different time intervals to avoid a demand spike in some “congested”
time intervals. This is achieved by a scoring function in PatternComp. When two
patterns have the same peak consumption rate, the demand of the pattern that
overlaps other patterns to a greater extent scores higher.

As an example, the overall consumption of consumers with profiles given in
Table 21.3 is shown in Figure 21.4(a). We assume the dominant pattern of a
consumer is the first row in the consumer’s pattern list, that is, p1 in the profile
table. Algorithm 21.1 produces a schedule as shown in Figure 21.4(b). Pattern 4
of u1, denoted by pu1,4, is scheduled first because it has the smallest overlapping
consumption (3 kW) compared to pu1,1 (4 kW), pu1,2 (5 kW), and pu1,3(4 kW).
Similarly, pu2,4 is scheduled because it has the smallest overlapping consumption
(2.5 kW) compared to pu3,1 (4 kW), pu3,2 (3.5 kW), and pu3,3 (3 kW). We can
see that the peak demand during T is reduced from 3 kW in time interval t2
to 2 kW in time interval t4 after scheduling. The overall cost saving can be
significant depending on the parameter settings of Equation 21.1; for example,
when the capacity is 4 kW in a time interval, α = 3.0, and c = 5.0, the initial
overall cost is 3.22, while the overall cost after scheduling is only 0.41.

From the example, we can see that the potential cost saving is a strong
incentive for consumers to participate in DR activities. The coordination of
consumption patterns may result in a lower price. Unlike event-driven DR,
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Figure 21.4 A scheduling example. (a) Initial consumption. (b) Optimized consumption.

the marginal benefit of a certain load distribution on T is estimated from the
consumer’s perspective, not triggered by DR events generated by a market oper-
ator. However, as one may notice, the algorithm assumes that each consumption
pattern has the same benefit for the consumer and a consumer is not sensitive
to the difference in consumption patterns. It is apparently not the case under
many circumstances because shifting the time of energy use and shedding load
may cause inconvenience or other loss for a consumer. When each pattern has
different benefit for each consumer, a mechanism is needed to redistribute the
overall cost saving achieved through the DR activities. Consumers who are will-
ing to adopt patterns that have lower benefit to them should be compensated by
the mechanism. In another words, a redistribution mechanism should encourage
consumers to make changes for the social benefit.

In order to do so, there needs to be a method to measure the cost of pat-
tern change. This can be done through the negotiation between consumers and
ESPs in a manner similar to the DR contract negotiation in the event-driven
DR scenario. Potentially, this requires a market for participants to trade their DR
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capacities. A simpler way to measure the cost of pattern change is to measure the
distance between two patterns and use the distance to calculate the value of the
pattern change. We consider a consumer’s dominant pattern brings the consumer
the maximum benefit from energy use during T . The farther another pattern
of the consumer is from the dominant pattern in distance, the bigger benefit
loss the pattern change may cause to the consumer. As a result, a larger portion
of the social benefit should be paid back to the consumer. How to measure the
distance of two patterns remains an open problem. Wang and de Groot [24] give a
method that treats patterns as time series and uses dynamic time warping (DTW)
as a metric to compare two patterns.

In general, cost-driven DR enables consumers to optimize their energy use
simply by coordinating consumption patterns. With the potential wide adoption of
energy storage and local generation devices, this model is promising to maximize
the benefit of DR.

21.3.4 A Decentralized Demand Response Framework

Recently, electricity markets have started to move to open DR programs for a
broad range of consumers through proxies. For example, to increase participation,
the California Independent System Operator (CAISO) allows DR aggregators, or
curtailment service providers, to bid DR on behalf of retail consumers directly in
the ISO energy markets [25]. The move promises a flexible DR framework in the
future. From the perspective of the link structure of the electricity infrastructure,
the existing topology of power grids reveals certain small-world property as
shown in Reference 26. This property matches many link patterns in decentralized
information systems such as the Web, which indicates that there is an opportunity
to exploit a decentralized model to organize DR systems with good scalability. As
the electricity market gradually lowers its barriers and opens to more and more
consumers, it is likely that the future DR framework will become decentralized.
The role of aggregating proxies is also likely to be virtualized through well-
designed computing algorithms and communication protocols. Consumers may
even form a fully decentralized system to implement DR for their own benefit.

The scenario is shown in Figure 21.5, in which all parties in the DR market
are linked through an energy service network that delivers DR events. An energy
service network can be seen as an overlay network on top of the Internet. The
overlay can be organized in a structured [27], an unstructured [28], or a hybrid
[29] manner. The network has a standard access interface for participating par-
ties to identify themselves as well as to send and receive data. Each party has a
DR membership engine. The membership engine is used by a user node to look
up other user nodes to work together for delivering DR. The engine also facili-
tates the coordination of a group of users by passing events related to their DR
activities. With the membership engine, a virtual coordinator can be created via
customized membership protocols. Each party also has a DR processing engine.
A DR processing engine determines how to process an event from the underlying
energy service network. A user may specify rules to customize its response to
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Figure 21.5 The decentralized energy service network.

DR events. This framework removes the upstream layer and establishes direct
connection between suppliers and consumers. The decentralized DR framework
can handle an increasing number of DR participants and create new types of DR
programs via the self-organized coordination among consumers. This framework
also provides underlying mechanisms for consumers to efficiently manage their
consumption to deliver both event-driven and cost-driven DRs.

21.3.5 Accountability of Coordination Decision Making

As electricity is a product with special importance in people’s daily life, it is
essential to ensure that the flexibility introduced by the Smart Grid does not
affect the reliability of power grids or cause damage to users. To achieve this,
the coordination protocols of automated DR should be carefully designed so that
decisions carried out by the systems should be made accountable. A natural step
toward solving this problem is to extend DR contracts to cover accountability and
to deploy auditing services inside DR systems. These services are responsible
for monitoring a subnet and detecting anomalies according to a set of agreed
contracts.

We use a simple example to explain this point. Nowadays, some smart meters
enable a service provider to remotely switch on or off the circuits connected to the
meters. An ESP is, therefore, capable of managing the energy use for a consumer
remotely. If a consumer signs a contract and delegates the energy management to
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the service provider, the consumer may benefit from reduced energy bills while
the ESP may have the flexibility to produce better schedules. However, currently
there is no mechanism to justify the decisions the service provider makes on
behalf of its users. Ensuring security alone cannot address this problem. There is
a need for supporting accountability in such a market.

We discussed in [30] how to use an external party to maintain a state machine
for a service consumer and a service provider to make their interactions account-
able according to a contract. Under the DR context, an external party can play a
role in collecting market information and sampling anonymized meter readings
and then validating the control commands sent from a service provider or coor-
dinator based on this data. In the example mentioned above, a consumer node
keeps a log recording its interactions with the corresponding service provider.
A minimal set of information can be extracted from the log and transmitted to
an auditing service. By aggregating such information from a set of consumers
linked to the service provider or coordinator, the auditing service will be able to
detect anomalies when problems occur. With such a special type of services, the
market can be enhanced with the ability to hold a party responsible for its actions.
Furthermore, complex monitoring and auditing mechanisms can be developed to
detect the danger of catastrophic failure in the whole Smart Grid.

21.4 SUMMARY

In this chapter, we reviewed existing DR practices and the impact of Smart Grid
technologies on DR. We classified automated DR into two categories: one is
mainly driven by DR events and the other by cost reduction. Event-driven DR is
initiated by suppliers or market operators, while the cost-driven approach is pre-
dominantly initiated by consumers. We discussed the framework that supports the
two approaches. In both cases, distributed computing principles play an impor-
tant role. We argued that the whole DR system may evolve into a decentralized
one to allow consumers to gain more control over their consumption. We also
briefly discussed how to support accountability in a flexible DR framework. With
a market with appropriate policies to guide the energy use behaviors of rational
consumers, it is possible that the self-organized DR will gradually dominate the
market and supplier-driven DR will be required only occasionally.
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CHAPTER 22

RESOURCE MANAGEMENT FOR
DISTRIBUTED MOBILE COMPUTING

JONG-KOOK KIM

22.1 INTRODUCTION

A distributed mobile computing (DMC) environment can be a combination of
an ad hoc mobile network and a cellular network with a heterogeneous mix-
ture of mobile devices. As an ad hoc network has the flexibility of dynamically
reorganizing the network and allowing peer-to-peer communication, a distributed
computing environment that focuses on ad hoc mobile network is an area of
research that is interesting and will be needed as more mobile devices are
being utilized by many users. A DMC environment can be viewed as a het-
erogeneous computing (HC) environment consisting of mobile battery-powered
computing devices that communicate using wireless connections, where HC is
the coordinated use of various resources with different capabilities to satisfy the
requirements of varying task/application mixtures. An ad hoc network environ-
ment enables users to communicate and share computational load and results
with other users in the system in a peer-to-peer fashion to coordinate efforts to
complete tasks or accomplish a mission (an example is shown in Figure 22.1).
Examples of applications of DMC may include wildfire fighting, disaster man-
agement, military situations [1], and personal mobile clouds.

When the devices are wireless and mobile, the limited battery capacity
becomes a constraint and power or energy management becomes a critical
issue to prolong the overall system’s longevity and to complete more tasks or
applications. The battery capacity can also be heterogeneous for homogeneous
devices because of battery lifetime, usage, and/or recharging. The heterogeneity
of the resources and tasks in this DMC system can be exploited to maximize
the performance or the cost-effectiveness of the system [2–5]. An important
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Figure 22.1 An example of the DMC environment illustrating different devices and
battery states.

research problem is how to manage resources to prolong the system longevity
and to complete as many tasks as possible. The function of resource management
can be divided into the allocation of tasks onto machines and the ordering of task
execution in a machine. The combination of both activities is called mapping or
resource allocation . Usually, a resource management system (RMS) takes care
of allocating resources of a certain system. The power management and mobility
aspects further complicate the resource management problem.

There are two different types of mapping. Static mapping is performed when
tasks are mapped in an off-line planning phase, for example, planning the sched-
ule for a set of production jobs. Dynamic mapping is performed when the tasks
are mapped in an on-line fashion, for example, when tasks arrive at unpredictable
intervals and are mapped as they arrive (the workload is not known a priori). In
both cases, the mapping problem has been shown, in general, to be NP-complete
[6–8]. Thus, the development of heuristic techniques to find near-optimal solu-
tions for the problem is an active research area [2, 3, 9–18].

In this research, the dynamic mapping of tasks onto devices is studied because
the DMC system has many dynamic changes; that is, new tasks are requested
without prior knowledge and devices are mobile so information about the system
is time-varying in a manner that is not known a priori. Therefore, a method for
dynamically mapping tasks onto the “best” device is needed. For the efficient
use of the available overall system energy, it may be best for certain tasks to be
executed on a remote, rather than the local, device. The reasons are (i) limited
energy remaining on the local device, (ii) a remote device can execute the task
using less energy, and (iii) a remote device can complete the task by its deadline.
As described in Reference 15, dynamic mapping heuristics can be grouped into
two categories, immediate and batch mode. Each time a mapping is performed,
immediate mode heuristics only consider the new task for mapping, whereas
batch mode may consider the new task and tasks awaiting execution, thus having
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more information about the task mixture before mapping. Both types of heuristics
are considered in this work.

The power management for the computation is accomplished using dynamic
voltage scaling (DVS) [19]. DVS is based on exploiting the relationship between
the CPU supply voltage of a device and the power usage (e.g., ARM7D [20]
and Crusoe [21]). The relationship between power and energy is that energy
consumed is power multiplied by the amount of time power is used. The rela-
tionship between power and voltage is a strictly increasing convex function and
is frequently represented by a polynomial of at least second degree [22]. Most
processors that support DVS use discrete levels. The DVS technique allows
the reduction of a CPU’s energy usage (through CPU voltage (clock frequency)
reduction) at the expense of increasing the task execution time. The DVS mecha-
nism in this research will be managed by the system administrator or the resource
manager and is transparent to the user. For the environment in Section 22.3, where
mobility and a multihop environment is considered, the power management for
the communication of data is accomplished by using the variable-range transmis-
sion power control (VTPC) [23] technique. Using this method, the communication
power can be decreased or increased according to the distance between the source
device and destination device.

In the ad hoc DMC environment modeled, the devices are wireless and can
communicate with each other (e.g., peer-to-peer communication). An example
scenario can be a wildfire-fighting situation in a remote forest area, where the
firefighters are equipped with mobile devices that will form an ad hoc network.
For the environment in Section 22.2.2, devices are assumed to be close enough
to allow a single-hop ad hoc network, whereas the environment in Section 22.3
is a generalized version where multihop communications are considered. Using a
device, a user can request a program (task) to be executed, receive data, and send
data. A device performing computation may receive input data from other devices
or external sources. The resulting output will be sent back to the task requester.

The motivation and challenges of a DMC environment include (i) dynami-
cally mapping tasks onto wireless devices while managing power using DVS
and VTPC, (ii) considering the mobility of devices, (iii) prolonging the sys-
tem longevity while completing as many tasks as possible, and (iv) designing an
energy-aware protocol to assist efficient overall system-level energy consumption.

The next section presents a single-hop energy-constrained environment with-
out mobility being considered. Section 22.3 generalizes this environment to a
multihop environment. In Section 22.4, future work for the DMC environment
is discussed.

22.2 SINGLE-HOP ENERGY-CONSTRAINED ENVIRONMENT

22.2.1 System Model

The research in this section is based on our work in Reference 24. In the environ-
ment for this portion of our research, the devices are wireless with varying limited
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battery capacity (energy) and can communicate with each other (e.g., peer-to-peer
communication). The devices in this research are assumed to be close enough to
allow a single-hop ad hoc network. The batteries for these devices are assumed
to be recharged after a certain amount of time. For example, in the firefighting
scenario it is typical for firefighters to have a scheduled break for food and rest
after a shift so that they can recharge their batteries at that time. The effect of
mobility of the devices in this environment is negligible such that all the devices
can communicate directly to each other (i.e., the devices are maintaining a single-
hop network). The single-hop ad hoc grid environment is controlled by an RMS
to maximize the goal stated toward the end of the next paragraph. The users
are allowed one battery for the operation of a given device for an interval of
time. The devices use DVS for power management. The number and value of
the discrete voltage levels may vary among the devices.

The users send task requests to the RMS. Once a task request is received,
the RMS assigns a device and sends a task execution command (Fig. 22.2). If
input data is required, the data is communicated directly to the executing device
from the source. A source could be other wireless devices or outside sources
(e.g., a weather station). The result of the task execution (e.g., a wind direction
estimate) is sent back to the task requester device, if the task was not executed on
that device (task requester device). Tasks have different priority levels (i.e., high,
medium, or low) and a deadline. It is assumed that the system is oversubscribed,
and therefore, there is not enough total energy and/or time to complete all tasks
by their individual deadlines. The primary goal of this research is to complete
as many high priority tasks by their deadlines as possible during a given interval
of time (i.e., 8 h). The secondary performance goal is to maximize the sum of
the weighted priorities of medium- and low-priority tasks completed by their
deadlines during that interval of time. This sum builds on the flexible integrated
system capability (FISC) measure in Reference 25. The important objective of
an RMS is to complete as many tasks as possible while taking the system-
level energy into consideration. The reason for the primary goal is because, in
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Figure 22.2 An example of a single-hop ad hoc grid heterogeneous computing environ-
ment.
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this environment, high-priority-level tasks are considered to be infinitely more
important than medium- and low-priority tasks and need to be completed. For
the secondary goal, it is still beneficial to complete as many tasks as possible, but
because tasks have different priorities (value), the goal considers this difference.

In terms of designing resource management heuristics that will generate robust
resource allocations [26], the three robustness questions from Reference 27 need
to be considered for this environment. The first question is what behavior of the
system makes it robust? Here, we say the system is operating in a robust way if
it can execute all the high priority tasks. The second question is what uncertainty
is the system robust against? In this study, it is the uncertainty of which and
when tasks of different priorities will arrive. The third question is quantitatively,
how robust is the system? If we strictly enforce the robustness requirement of
completing all the high priority tasks, then the robustness metric that can be
used to compare two different resource allocations that complete all the high
priority tasks is the value of the medium- and low-priority tasks it can complete
in addition to the high priority tasks. If neither resource allocation can complete
all the high priority tasks or meet the strict requirement, the one that completes
a greater percentage of the high priority tasks is better. Alternatively, in the
situation where the system is so oversubscribed that none of the heuristics used
can complete all the high priority tasks, the robust requirement can be relaxed
so that a given prespecified percentage (<100) of the high priority tasks can be
completed.

The communication of inputs and results is assumed to be done directly from
device to device (i.e., a single-hop ad hoc network) using the IEEE 802.11b
standard (a popular wireless standard). In this research, only one device receives
or sends data at any instant in time. This scheme is desirable when a certain
quality of service must be met for the tasks. If other communications are allowed
while a task is still communicating, then the communication time for that task is
no longer guaranteed, which complicates the quantification of the communication
time. A time-division-multiplexed communication scheme may be considered in
future work.

In this environment, it is assumed that the types of devices that may connect
to the system are known. In addition, there is a predetermined set of tasks that a
user can request. However, it is not known a priori exactly which tasks will be
requested and when they will be requested. In an example military scenario, there
are predetermined types of wireless devices allowed to connect to the military
system. In this environment, there is a set of tasks that may be requested for exe-
cution (e.g., target determination and troop deployment decisions). A requested
task is executed on an assigned device and the information is sent back to the task
requester. Because it is assumed that all the devices and the tasks are known, the
task execution times on those devices are assumed to be known to the RMS. The
estimated execution times of each task on each machine is assumed to be known
based on user-supplied information, experiential data, experiments, task profiling
and analytical benchmarking, or other techniques [4, 28–31]. Determination of
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the execution times is a separate research problem, and the assumption of such
information is a common practice in mapping research [29, 30, 32–33].

It is assumed that all devices are equipped with all programs required and only
input data is needed to execute a task and send back results. Thus, the time to
communicate a task request to the RMS and to send a task execution command
to a device is assumed to be negligible. We make the simplifying assumption that
the RMS is located on a dedicated machine that has unlimited power and that
the devices are within transmission range of the RMS (the relaxation of these
assumptions may be considered in future work).

22.2.2 Related Work

There has been much research on power-constrained (power-aware) resource
management in uniprocessors [34–37]. The research in Reference 34 presents (i)
a static scheduling solution of periodic tasks on a processor assuming the worst-
case scenario, (ii) a dynamic reclaiming algorithm for tasks that complete before
their worst-case scenario, and (iii) an adaptive speed adjustment mechanism to
anticipate the probable early completion of future task executions. A power min-
imizing approach for variable-voltage systems is developed in Reference 35,
where tasks are periodic and independent. The method described in Reference
36 assumes a dynamic preemptive environment where periodic independent tasks
arrive and leave a system. In Reference 37, a formal analysis of the minimum
energy scheduling problem is provided for a single processor and a model that
assumes a task with an arrival time and deadline. The difference between these
studies and our research is that our energy-constrained ad hoc grid environment
considers multiple heterogeneous devices and nonperiodic independent tasks with
priorities and deadlines that need input and/or output communicated. The fact
that our environment has heterogeneous multiple devices adds new issues to the
resource allocation problem.

Some research projects have explored a multiprocessor environment with static
resource management [38–41]. In Reference 38, a genetic algorithm is used to
synthesize distributed heterogeneous embedded systems. Using a static schedule
derived from a list scheduling scheme, the study in Reference 39 does static
and dynamic power management. The work in Reference 40 describes a linear
programing method that statically schedules periodic tasks on heterogeneous pro-
cessing elements. The research in Reference 41 assumes homogeneous processors
and frame-based tasks. In static mapping, information of all tasks is known and
the execution time of the heuristic itself is not a constraint. The difference is that
our research explores a dynamic environment where the arrival time of a task is
not known before its arrival and the task mapping time must be fast.

The research in Reference 42 statically schedules periodic tasks onto homo-
geneous processing elements first using the tool in Reference 38 and then slots
are created in this static schedule to accommodate aperiodic tasks with hard
deadlines. They assume that the minimum interval between two hard aperiodic
tasks is larger than the lowest common multiple period of all periodic tasks.
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Then an on-line scheduler modifies the system to minimize the response times
for aperiodic tasks with soft deadlines. The static schedule is unchanged, and
the soft aperiodic tasks are run when there is unused time. In our research, all
the devices are heterogeneous and all tasks are aperiodic with hard deadlines.
Because all tasks are aperiodic, slots are not created among task periods, that is,
the RMS approaches are quite different. Furthermore, our research considers the
case where not all tasks with hard deadlines can complete and does not assume
a minimum interval between the arrivals of two tasks.

The research in Reference 43 tries to send tasks to another device to be com-
puted. It uses a distributed economic-based subcontracting protocol to determine
which device to use, and its goal is to find a device that can execute tasks to save
energy. A cost is associated with devices that are willing to execute a task for
other devices. The device that wants to move one of its tasks to another device
bargains with those willing devices. The underlying model of our work differs
in that the environment in our research assumes that all devices are capable of
DVS and tasks have deadlines and priorities.

References 44 and 45 study static RMSs for minimizing energy consumption
for a heterogeneous ad hoc grid. The differences are that in our research, the
heuristics operate dynamically, each device supports DVS, tasks have priorities,
and it is assumed that not all tasks are completed before their hard deadlines.

22.2.3 Heuristic Descriptions

22.2.3.1 Mapping event. A dynamic mapping approach is designed to assign
resources to new tasks faster than the anticipated average arrival rate of the tasks.
Therefore, the heuristics that are developed have a limit on the time each com-
putation of a new mapping can take. A mapping event occurs when a new task
arrives. For immediate mode heuristics, at any mapping event, only the new
task is considered for mapping onto devices. For batch mode heuristics, at any
mapping event, the new task and the tasks in the device queues still awaiting exe-
cution are considered together for device assignment, that is, previously mapped
but unexecuted tasks can be remapped . The exception is that the first task in
each machine’s wait queue (this task is not the task that is currently executing)
is not considered for remapping. The reason for this is to reduce the chance of
a device becoming idle if during a mapping event the currently executing task
finishes. While it is still possible that a device may become idle, it is highly
unlikely for the assumptions in this research (mean execution times of tasks and
mean execution times of mapping events described in Sections 22.2.4 and 22.2.5,
respectively). These tasks that are considered for remapping are called mappable
tasks . If a task arrives while a mapping event is in progress, the current mapping
event is not disturbed. When the current mapping event is completed, the next
mapping event starts and includes any tasks that have arrived.

22.2.3.2 Scheduling communications. The following are the same for all
heuristic approaches. All communications are scheduled as early as possible. If
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there are previous communications scheduled, then current ones are inserted in
the gaps between the ones already scheduled if it is possible to fit the entire com-
munication within the gap, or else they are put at the end of the communication
scheduling queue. Communications from different sources can be scheduled in
different gaps.

22.2.3.3 Opportunistic load balancing and minimum energy greedy
heuristics. The immediate mode opportunistic load balancing (OLB) heuristic
is a common method for scheduling tasks. At a mapping event, among the devices
that can execute the new task without violating its deadline and have enough
energy to complete the task, the heuristic selects the device that will be ready
(i.e., executes all the tasks already in its queue) first to map the new task. This
is a simplistic method that ignores the relationship between the needs of the task
to be assigned and the capability of the devices in the ad hoc grid. At a mapping
event, the immediate mode minimum energy greedy (MEG) heuristic selects the
device that can complete the task by its deadline and execute the task using a
minimum amount of energy. This is a scheme that ignores other tasks that are
already in the system. For both heuristics, if no device can complete the task
by its deadline, the task is deleted from the system. The energy consumed status
andthe device availability status (system status) are updated at every mapping
event.

22.2.3.4 ME-MC heuristic. The immediate mode minimum energy minimum
completion (ME-MC) time heuristic is based on the general concept of the switch-
ing algorithm (SA) in Reference 15. The basic idea behind this heuristic is to
first try to map tasks onto their “best” machine according to some metric. But
when the load on the system becomes unbalanced, the strategy is changed to
balance the load. When the load is balanced then the scheme is changed back
to the “best” machine method. For this method, a load balance ratio is used to
determine whether the system is load balanced.

In this study, two different load balance ratios are calculated. One is for the
high priority tasks and the other is for the medium- and low-priority tasks. The
reason for the two different load balance ratios is that when high priority tasks
arrive they are inserted behind the last high priority task and in front of all
medium- and low-priority tasks or at the front of a device’s wait queue. The
primary load balance ratio is the ratio of the earliest device availability time
over all the devices in the suite to the latest device availability time. For this
ratio, the device availability times are determined using the last high priority
task in each queue. If there are no high priority tasks in a device queue, then the
device available time is the completion time of the task that is running if it is the
only task on the device. If there are other tasks on the device, then the device
available time is the completion time of the first waiting task. The secondary load
balance ratio is same as the primary load balance ratio except that it is calculated
with all tasks. For both the load balance ratios, a common high threshold and low
threshold are established by experimentation (high threshold > low threshold).
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Initially, the system maps new tasks onto the minimum energy consumption
device using the slowest speed level. If the task that arrived is a high priority task
and there are no devices that can complete the high priority task by its deadline,
then the speed level of the devices is increased starting from device 0 using
the method described below to test if there are devices that can complete the
high priority task with a speed level increase. When increasing a device’s speed
level, the total number of speed levels of a device is taken into consideration.
For example, assume a device 1 that has 16 speed levels and a device 2 that has
4 speed levels. If device 1 increased its speed levels at least four times, only
then device 2 is considered for speed level increase. Only the speed level for the
device finally selected for mapping is increased. Once the speed level of a device
is increased to a faster level, the device will not try to execute tasks at a lower
speed level later. All tasks mapped earlier will be completed faster than when
the speed level was lower (before the speed level is increased), thus guaranteeing
that tasks mapped earlier are completed by their deadline. At any mapping event,
the speed level is increased at most two times. This is to avoid increasing the
speed level to accommodate the current task while not leaving enough energy
for future use.

The SA heuristic can be summarized by the following procedure. The total
energy consumed is equal to the total CPU energy used plus the energy used
for communication (details of CPU and communication energy are discussed in
Section 22.2.4).

(1) Determine the priority level of the new task.
(2) Calculate the primary (or secondary) load balance ratio.
(3) If the primary (or secondary) load balance ratio is greater than the high

threshold, then the current method is to use the minimum energy consumption
device to map the new task.
If the primary (or secondary) load balance ratio is less than the low threshold,
then the current method is to use the minimum completion time (MCT) device
to map the new task.
If low threshold is less than or equal to primary (or secondary) load balance
ratio that is less than or equal to high threshold, then the current method is
the one used at the previous mapping event to map the new task.

(4) If the task is a medium- or low-priority task, assuming that it will be mapped
at the end of a device queue, determine all devices that can complete the task
by its deadline.

if the task cannot be completed on any device, it is deleted from the system
else, select a device using the current method, map the task to this device,
and schedule all communications using the method in Section 22.2.3.2.

(5) Initialize “iteration” to the number of speed level changes on the device
where the speed level was changed the most.
If the task is a high priority task, assuming that it will be mapped (inserted)
after the last high priority task in a device queue, determine all devices that
can complete the task by its deadline.



624 RESOURCE MANAGEMENT FOR DISTRIBUTED MOBILE COMPUTING

do until a device is selected for mapping or iteration is increased twice.
if the task cannot be completed before its deadline on any device, increase
the speed level (note that when trying to increase a device’s speed level,
the total number of speed levels of a device is taken into consideration).

for each device, increase one speed level if the (maximum number of
speed levels over all devices)/(total number of levels on the device) ≤
iteration and test if the device can complete the task.
iteration = iteration + 1 else, select a device using the current method
and map the task to this device.

if the task cannot be completed on any device, return all device’s speed
level to the level before this task arrived and drop the task, or else return all
unselected devices’ speed levels to the level before this task arrived.

(6) Check all devices as follows. If there is enough energy on a device to con-
tinually execute at the highest speed level and transmit data for the rest of
the remaining time (until the end of the 8-h period), then the speed level for
that device is increased to the highest speed level.

(7) Update the system status.

22.2.3.5 ME-ME heuristic. The batch mode minimum energy minimum
energy (ME-ME) heuristic is based on the general concept of the Min-Min
(greedy) idea in Reference 8. The Min-Min type heuristic performed very
well in previous studies of different environments [11, 15]. The basic idea
of a Min-Min type heuristic is to find the “best” device for all tasks that are
considered and then among these task/device pairs to select the “best” pair to
map first. To determine which device or which task/device pair is the best, a
fitness value is used. The fitness value of a task on a given device for this study
is (i) the energy consumed for high priority tasks and (ii) the energy consumed
multiplied by the weighted priority divided by the execution time of the task for
medium- and low-priority tasks. The energy consumed is equal to the energy
used by the CPU plus the energy used for communication. This method also
starts the simulation using the slowest speed level of devices to map tasks.

The ME-ME procedure starts at a mapping event, and it is assumed that none
of the mappable tasks are mapped, that is, they are not in any device queue.

(1) First, all high priority tasks and then the rest of the tasks are considered.
(2) All high priority tasks in the mappable task list are checked to see if they

can be completed by their deadline.
(3) If there are some tasks that cannot be completed on any device then the

speed level is increased or the task is dropped using the method detailed in
step 5 of Section 22.2.3.4.

(4) For each high priority task in the mappable task list, find the device that
gives the task its minimum fitness value (the first “ME”) among the devices
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that can complete the task by its deadline using the current speed level and
ignoring other tasks in the mappable task list.

(5) Among all the task/device pairs found from above, find the pair that gives the
minimum fitness value (the second “ME”), map the task to the device, and
remove the task from the mappable task list. Input or results communication
is scheduled using the method in Section 22.2.3.2.

(6) Update the system status.
(7) Carry out steps 2–6 until all high priority tasks are mapped, and then do the

same for medium- and low-priority tasks but the speed level should not be
increased.

(8) Check all devices as follows. If there is enough energy on a device to con-
tinually execute at the highest speed level and transmit data for the rest of
the remaining time (until the end of the 8-h period), then the speed level for
that device is increased to the highest level.

(9) Update the system status.

22.2.3.6 CRME heuristic. The batch mode contention-resolved minimum
energy (CRME) heuristic is based on the general concept of the Sufferage idea
in Reference 15. The CRME heuristic applies the same fitness value calculation
used in the ME-ME heuristic (Section 22.2.3.5) but when deciding which task to
map, the task that “suffers” most, if not mapped to its “first choice machine,” is
selected.

The CRME procedure starts at a mapping event. When the mapping event
begins, it is assumed that none of the mappable tasks are mapped, that is, they
are not in any device queue.

(1) All high priority tasks are considered first, then the other tasks are consid-
ered.

(2) All high priority tasks in the mappable task list are checked if they can be
completed by their deadline.

(3) If there are some tasks that cannot be completed on any device then the
speed level is increased or the task is dropped using the method detailed
within step 5 of Section 22.2.3.4.

(4) For each task in the mappable task list, find the device that gives the task its
minimum fitness value among the devices that can complete the task by its
deadline using the current speed level, ignoring other tasks in the task list.

(5) If there is contention among any of the high priority tasks (i.e., two or more
high priority tasks have the same minimum fitness value device), select the
task that will suffer the most (the task with the largest difference of fitness
value between the best and the second best devices) to map onto the device
selected. Or else, map all the high priority tasks.
All communications are scheduled using the method in Section 22.2.3.2.

(6) Remove the above-mapped task(s) from the mappable task list.
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(7) Update the device availability and energy consumed status.
(8) Repeat steps 2–7 until all high priority tasks are mapped, and do the same

for the medium- or low-priority tasks but the speed level should not be
increased.

(9) Check all devices as follows. If there is enough energy on a device to
continually execute at the highest speed level and transmit data for the rest
of the remaining time (until the end of the 8-h period), then the speed level
for that device is increased to the highest speed level.

(10) Update the system status.

22.2.3.7 Originator and random. The immediate mode originator heuristic
executes the task on the device that originated the task. This heuristic is run
to compare to the performance of heuristics that utilizes other devices in the
system. The immediate mode random heuristic maps the new task on a randomly
selected device when the new task arrives. This heuristic is run to compare to the
performance of the guided heuristics. The following is for both heuristics. The
method in Section 22.2.3.2 is used for communication scheduling. If the selected
device cannot complete the task by its deadline or there is not enough energy
to complete the task, the task is deleted from the system. The energy consumed
status is updated at every mapping event.

22.2.3.8 Upper bound. Two upper bound (UB) methods are presented in this
section. Each time the environment is simulated, the overall UB is determined
by selecting the tighter bound of the two methods.

The first UB (UB1) uses the arrival time of tasks, priority of tasks, the deadline
of the tasks, and the time interval between the arrivals of tasks based on the
UB in Reference 14. The bound ignores the communication and the energy
consumed. The tasks that have arrived before or at the mapping event are called
selectable tasks . At any mapping event, only the selectable tasks are considered
for the calculation of the UB. Let ETC(i, j) be the estimated time to complete
(ETC) of task i on device j , and let Qi be equal to the priority weighting
of task i divided by the minimum ETC(i, j) over all machines. The scheme
starts by initializing all the tasks’ remaining ETC values, rETC(i, j), to the
minimum ETC(i, j) over all devices. The UB1 follows the procedure described
below.

(1) At a mapping event, determine the total aggregate computation time (TACT )
until the next task arrives. That is, TACT is equal to the time interval between
arrival times of the new task and the next task multiplied by the number of
machines.

(2) Selectable tasks with rETC(i, j)> 0 are put in a task list.
(3) Sort high priority tasks in the task list using minimum ETC values. Then the

medium- and low-priority tasks are sorted together based on Qi .
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(4) If there are high priority tasks in the task list, select the high priority task
a that has the minimum ETC value else, select the medium- or low-priority
task a with the highest Qa from the task list.

(5) If TACT < rETC(a, j)

if the selected task is high priority,
subtract TACT from rETC(a, j )

if the selected task is medium or low priority
add (Qa × TACT) to the secondary metric
subtract TACT from rETC(a, j)

done (i.e., TACT = 0)
if TACT ≥ rETC(i, j)

if the selected task is high priority
add one to the primary metric (i.e., the number of high priority tasks
completed)
subtract rETC(a, j) from TACT (this becomes the new TACT),
rETC(a, j) = 0

if the selected task is medium or low priority
add (Qa × TACT) to the secondary metric (i.e., the sum of the weighted
priorities of medium- and low-priority tasks)
subtract rETC(a, j) from TACT (this becomes the new TACT),
rETC(a, j) = 0

(6) Repeat steps 4 and 5 until TACT is equal to 0 or there are no selectable tasks
with rETC(a, j)> 0.

(7) Repeat steps 1–6 until the end of the simulation.

The second UB (UB2) uses the energy consumed information of tasks. The
total energy available is the sum of all devices’ maximum energy available. The
energy consumed is the energy used by the CPU plus the energy used for com-
munication. The UB2 starts by determining the minimum energy consumed over
all devices for each task. Then the high priority tasks are ordered in the task
list using minimum energy consumed, and then the medium- and low-priority
tasks are ordered using the minimum energy consumed divided by the weighted
priority. Using this order, the number of tasks completed is computed by adding
the energy consumed by the tasks until the sum exceeds the total energy avail-
able. While two methods were attempted, UB1 was always tighter than UB2 for
the cases considered here. This is despite the fact that, in general, UB1 is an
unreachable loose bound for this environment.

The UB calculation explicitly considers all the high priority tasks first for
completion and then if the system has resources left they are used for the medium-
and low-priority tasks. Recall that the primary goal of this research is to complete
as many high priority tasks as possible. Therefore, the UB for the medium- and
low-priority tasks completed is shown (in the results) only when a heuristic can
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achieve the UB on the high priority task. Only then it is valid to compare the
medium- and low-priority tasks completed against the UB calculated.

22.2.4 Simulation Model

A total of 10 types of wireless computing devices and 50 task types are used
in the simulated system. Because the devices and the tasks are known, the ETC
each of the tasks on each of these different devices is known. In each simulation
of a system, eight devices are picked with equal probability. The arrival of tasks
is simulated by mean intertask arrival times using a Poisson distribution. Three
scenarios with mean intertask arrival times of 10, 8, and 6 s are considered. The
mean intertask arrival times are given to loosely generate more and more tasks
for the system to handle. At the beginning, the system can handle most of the
tasks, and later, where there are a lot of tasks, the system could only complete
a percentage of the tasks. The system is simulated for 480 min (i.e., 8-h work
time), with eight bursty periods of 10 minutes that do not overlap with each
other. The bursty periods have faster arrival rates (mean is twice as fast as the
rate of the normal period).

A 10 × 50 ETC matrix of the 50 types of tasks on 10 types of devices tak-
ing heterogeneity into consideration is generated using the gamma distribution
method described in Reference 46, with a COV of 0.9 for task heterogeneity
and 0.6 for device heterogeneity. Two means, 60 and 600 s, are used for the
ETC matrix. The mean execution time is chosen to represent applications such
as downloading files (such as maps or weather reports) and generating strategies.
When a task is determined to arrive, 1 of the 50 task types is selected with equal
probability. A trial is defined as one such simulation of the HC system (one
10 × 50 ET matrix). For each of the six scenarios (three mean intertask arrival
time multiplied by two mean execution times), 50 trials are run for all heuristics.

Each task is assigned a priority level of high, medium, or low, with equal
likelihood. The levels of medium and low are given a weighting of four and
one, respectively. The weighting is to calculate the performance of the value of
medium- and low-priority tasks completed by their deadlines (secondary goal) if
the number of high priority tasks completed by their deadlines (primary goal) is
comparable for some heuristics.

For each device, the maximum battery capacity, the maximum CPU energy
consumption rate, and the number of discrete levels for DVS are given. The
discrete levels for DVS correspond to the speed at which the CPU is run and
are defined as speed levels . The environment assumes the IEEE 802.11b stan-
dard for wireless communication. It is assumed that the data communication and
the task computation or execution can be done simultaneously. On the basis of
the two types of wireless devices (a laptop and a handheld device), the energy
consumption rates are determined. These two devices can be selected with equal
probability. The maximum CPU energy consumption rates are determined using
a uniform distribution with a range of 0.1–0.3 for laptops or 0.01–0.03 for hand-
held devices. The reason for the two ranges is that the CPU energy consumption
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rate of a laptop is about 10 times higher than that of a handheld device (based on
sample devices from the Dell Web site). On the basis of the sample communica-
tion adapters (e.g., Linksys) for the two types of devices, the transmission energy
consumption rate is 0.6 (about three times the CPU energy consumption rate of
a laptop) or 0.2 (about one-third of the transmission energy consumption rate
of a laptop) for the laptops or the handheld devices, respectively. The reception
energy consumption rate and the idle (communication) energy consumption rate
are assumed to be 65% and 25% of the transmission power consumption rate,
respectively. For the simulation study, the maximum battery capacity (energy)
of device j , BC(j), is set to the maximum CPU energy consumption rate plus
the transmission energy consumption rate, multiplied by the maximum operation
time. The maximum operation time is determined using a uniform distribution
with a range of 1–2 h. This means that if the CPU is used at the maximum
speed level and the device is always transmitting then the battery capacity is
only enough to operate the device for 1–2 h.

To simplify DVS, this research assumes that each voltage level of a processor
corresponds to a clock cycle speed level for the processor. Each device can have
2, 4, 8, or 16 discrete speed levels with equal probability. After the number of
levels is decided, the relative speed of each level is determined. The lowest speed
level of a device is assumed to be one-third of the maximum speed level (e.g., if
the maximum speed level is 1.2 GHz, the lowest speed level will be 400 MHz).
We make the simplifying assumption that task execution time varies linearly
with the discrete speed level. It is assumed that the voltage switching is done
dynamically and that the overhead associated with the switching is negligible
(20–150 μs). The power consumption as a function of speed (voltage) levels
is assumed to be a quadratic function. For the example with four speed levels
assume that the maximum energy consumption rate is α = 0.16. Using a simple
equation, maximum energy consumption rate = α× (relative speed of a speed
level to the maximum speed level)2, where α is 0.16. The relative speed of
the slowest speed level is 1/3 of the maximum speed level, next will be 5/9
and 7/9 of the maximum speed level (linear). Using these fractions, the energy
consumption rates for each speed level are calculated. In this example, the energy
consumption rates would be 0.16 × 1/9, 0.16 × 25/81, 0.16 × 49/81, and 0.16
from the slowest speed level to the fastest (maximum) speed level. When the
CPU of the device is idle, the CPU energy consumption rate is assumed to be
1/12 of the maximum energy consumption rate.

The eight devices are assumed to transmit and receive at the speed of 1 Mbps.
When tasks need to communicate input or output, it is assumed that only one
communication is allowed at a time. If multiple tasks need input data at a moment
in time, only one task at a time may receive its input data (no broadcasting, only
point-to-point transfer). For simulation purposes, the size of the input data was
calculated using 10 kB as the mean and a COV of 0.7, with the maximum size
being 1 MB. The size of the result (output) was calculated using 10 kB as the
mean and a COV of 0.7, with the maximum size being 10 MB. A task may
receive input from all other devices and from one outside source (e.g., a weather
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station for forecast reports). The maximum total number of inputs a task may
need would be eight. The average number of input sources was 2.5 (the number
of input sources was calculated using a normal distribution with mean 2.5 and a
minimum of zero and maximum of eight sources).

In a real system, the hard deadline of a task may be set by the user that
requested the task, the task designer, or the system operator/administrator. This
research assumes that when the task arrives, the deadline of the task is given.
For our simulation studies, the deadline of task i was equal to the sum of its
arrival time, the overall mean execution time of all tasks, two times the median
execution time of task i on all devices, the expected communication time (input
and result), and the expected communication wait time (= the mean number of
input receptions (2.5) multiplied by 7 and by the mean input communication time
plus 7 multiplied by the mean result communication time).

22.2.5 Results

The simulation results for the different mean execution times and mean intertask
arrival times are shown. For the random, originator, and OLB heuristics, two
different DVS usages were studied. One is to use the fastest speed level for the
high priority tasks while using the slowest speed level for the medium- and low-
priority tasks. Thus, the speed level used of any given device depends on the
task priority. The other is to use the median speed level for all tasks. The median
speed level of a device would be the (total number of levels of a device)/2.
Therefore, if there are 16 discrete speed levels for a device starting from level
1 being the slowest, then the median speed level would be level 8. Preliminary
tests show that the performance of heuristics using the first method is better than
that using the second method. The first method is used for all figures.

Figure 22.3 shows the performance of the heuristics when the mean task
execution is 60 s. The 95% confidence interval of the performance is shown
in the figure. Because the confidence intervals of ME-ME and CRME heuristics
overlap, these two heuristics are considered to perform comparably. The ME-MC
heuristic was a close third. The average running times, in seconds per mapping
event, of random, originator, OLB, MEG, ME-MC, ME-ME, and CRME are
0.00001, 0.00001, 0.00004, 0.00005, 0.0015, 0.28, and 0.34, respectively.

Figure 22.4a shows the performance while increasing the mean task arrival
rates (decreasing mean intertask arrival times). As the mean task arrival rates
increase, the number of tasks in the system also increases and the percentage of
high priority tasks completed decreases. The average number of tasks per trial
was 3373, 4185, and 5688 for mean intertask arrival times of 10, 8, and 6 s,
respectively. This average includes tasks with a mean execution time of 600 s.

Figure 22.5 shows the results when the mean task execution time is increased
to 600 s. Overall, the performance degraded. Because of the longer mean execu-
tion time, the tasks are more likely to be dropped. The 95% confidence interval of
the performance is shown in the figure. Because the confidence intervals of ME-
ME and CRME heuristics overlap, these two heuristics are considered to perform
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Figure 22.3 The simulation results using the mean execution time of 60 s and mean
intertask arrival of 10 s for (a) and (b), 8 s for (c) and (d), and 6 s for (e) and (f). (a),
(c), and (e) show the percentage of high priority tasks completed. (b), (d), and (f) show
the value of medium- and low-priority tasks completed.
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Figure 22.4 The percentage of high priority tasks completed is shown. The mean exe-
cution time of (a) 60 s and (b) 600 s and mean intertask arrival times of 10, 8, and 6 s
are used. The results for random and originator are colocated in (b).

comparably. Figure 22.4b shows the performance while increasing the mean task
arrival rates (decreasing mean intertask arrival times). Similar to Figure 22.4a,
when the mean task arrival rates increase, the number of tasks in the system
increases and the percentage of high priority tasks completed decreases.

As it gets more difficult to complete high priority tasks (as there are more tasks
in the system due to increased task arrival rate or as the mean task execution
times are increased), the batch mode heuristics ME-ME and CRME perform
better than the rest of the heuristics (Fig. 22.5). While remapping, the batch
mode heuristics (ME-ME and CRME) consider all mappable tasks in the system
and the order in which the tasks are mapped can be different from the previous
mapping event. Therefore, the tasks can be assigned to another machine that is
better suited or they can be rescheduled. The ME-MC only considers the new
task that arrived, and once the task is mapped, it is neither moved to another
device nor rescheduled. Also, MC-ME can only increase the speed level for one
device per mapping event.

The ME-MC, ME-ME, and CRME heuristics explicitly consider the high pri-
ority tasks first (in the batch for ME-ME and CRME heuristics) to complete.
The rest of the heuristics run the high priority tasks using the fastest speed level,
giving the high priority tasks a higher chance of completing. Table 22.1 compares
the heuristics described in this research.
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Figure 22.5 The simulation results using the mean execution time of 600 s and mean
intertask arrival of 10 s for (a) and (b), 8 s for (c) and (d), and 6 s for (e) and (f). (a),
(c), and (e) show the percentage of high priority tasks completed. (b), (d), and (f) show
the value of medium- and low-priority tasks completed.
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TABLE 22.1 Summary of the Heuristic Methods Used in this Research

Name Mode Key Idea TC Perf. Best

Random I Random 1 Bad
Originator I Task requester

completes own
tasks

1 Bad

OLB I Locate the first
available device

O(M) Not good

MEG I Locate the device that
uses the minimum
energy

O(M) Okay

ME-MC I Switch between two
methods to locate
the suitable device

O(M) Good When there is a
tighter constrain on
time

ME-ME B Two-phase greedy O(N2) Good As more tasks are in
the system

CRME B Determine the task
that will suffer
most if not given
the preference

O(N2) Good As more tasks are in
the system

TC, time complexity.
The mode, key idea, TC, overall performance (Perf.), and when a method performs the best are briefly
described. I and B for the mode column are the immediate mode and batch mode, respectively. M
and N for the TC calculation is the number of machines and number of tasks, respectively.

22.2.6 Summary

An ad hoc grid HC environment was modeled and simulated. Seven dynamic
heuristics were designed, developed, and evaluated using the HC environment.
The environment includes randomly arriving tasks with priorities and a deadline,
as well as devices with limited battery capacity that use DVS for power manage-
ment. In this scenario, a resource manager needs to exploit the heterogeneity of
the tasks and resources while managing energy. The primary goal of this study
was to complete as many high priority tasks as possible, under the constraint of
available system energy, during a given interval of time. The secondary goal was
to complete as many medium- and low-priority tasks as possible to maximize
the sum of the weighted priorities of medium- and low-priority tasks completed
by their deadlines with the same constraints as the primary goal. A mathematical
UB was derived.

The batch mode ME-ME and contention-resolved minimum energy heuristics
were the best and they performed comparably. However, they required signifi-
cantly more time than the immediate mode heuristics. In cases where the mean
task execution times are short, the immediate mode ME-MC time heuristic may
be preferable because it is very fast and can perform nearly comparably to the
two best heuristics in some scenarios.
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Figure 22.6 An example of a multihop distributed mobile computing environment.

22.3 MULTIHOP DISTRIBUTED MOBILE COMPUTING
ENVIRONMENT

22.3.1 The Multihop System Model

The environment considered in this section is a multihop DMC system, where
the devices are mobile and communicate with each other by wireless means.
The difference between this section and the previous section is that as devices
are mobile, the communication between devices can disconnect and a new path
or device may be needed for communication and/or computation. For this envi-
ronment, the DVS [19] method is used for computation power management and
the VTPC [23] technique is used for communication power/energy management.
The number and value of discrete voltage levels can be different for all devices,
but the number and value of VTPC power levels for all devices are the same.
The DVS and VTPC mechanisms in this research may be managed by the system
administrator or the resource manager and are transparent to the user. All devices
have their own RMS for distributed resource management. It is assumed that the
RMS knows all the devices’ information and the tasks’ execution times on the
devices that it can connect. The estimated execution times of each task on each
device is assumed to be known based on user-supplied information, experiential
data, task profiling, and analytical benchmarking, or other techniques [28, 31].
Devices have different mobility capability and battery capacity. It is assumed
that the batteries for these devices may be recharged after a certain amount of
time. Using a device, a user can request a program (task) to be executed, receive
data, and send data. A device executing a task may receive input data from other
devices. The output result after completing a given task will be sent back to the
task requester, as shown in Figure 22.6.
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All tasks have a deadline, the arrival of tasks is unknown, that is, when and
where the task is requested is not known a priori, execution times of tasks are
assumed to be known only when the task is requested, and execution times
of tasks can be different and have affinity to different machines. The detailed
operation procedure of the DMC is as follows:

1. Tasks are requested by various users (i.e., source or src) from their own
devices.

2. The RMS on the task requester device decides on a destination device that
can complete the task while considering some or all combinations of the
energy consumption, task deadline, expected task completion time (includes
wait time, communication time, and processing time), and execution times
of tasks. The task execution command plus relevant data is sent to the
destination device (©1 in Figure 22.6).

3. If the requested task needs input information from another device (i.e. input
device), an input request is sent to that device (©2 in Figure 22.6). Inputs
are sent to the destination device, and the task starts when all inputs arrive
(©3 in Figure 22.6).

4. After the task execution is completed (tn → tn + 1 in Figure 22.6), the
destination device sends back the results to the source device (©4 in
Figure 22.6).

The goal of this DMC system is to complete as many tasks as possible by their
deadline. A mapping event occurs when a new task is requested to be executed
in the DMC system. The role of the RMS would be to assign the tasks that
are requested to maximize the goal. Therefore, for this example DMC system,
simple and fast heuristics are designed and/or enhanced from previous researches
to analyze which methods may be best for certain scenarios.

22.3.2 Energy-Aware Routing Protocol

22.3.2.1 Overview. In order to intelligently utilize the heterogeneous DMC
system considered, a routing protocol that takes energy into consideration is
needed because of the energy constraint on the system. A power-aware routing
scheme has been demonstrated [47] using the distance to the destination, and
the consumed energy of a node was considered separately in the route selection.
Geographical and energy-aware routing, proposed in Reference 48, consider both
the distance to the destination and the consumed energy of a node. The protocol
that considers the remaining energy (RE) of the node and transmission power was
proposed in Reference 49. In Reference 50, a protocol is studied that considers the
data transmission power of source node and data reception/transmission power of
the intermediate routing node. For the example DMC system described here, two
energy-aware protocols are introduced that are modified from the destination-
sequenced distance vector (DSDV) method that will provide a better routing
of data for an energy-aware DMC environment. The reason for using and the
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advantage of the DSDV protocol is that DSDV makes routing tables through
periodic routing update, and therefore, the path information between two devices
is already available as soon as there is a task request. In the DMC environment
described, the routing information must be known before the decision to execute
task on a device is made because when a decision is being made, the energy
consumption of the device (i.e., processing energy and communication energy)
must be taken into consideration as well. The estimated communication energy
consumption will be determined by the route that will be taken between nodes.
Unlike the existing researches, our protocol makes a routing table that includes the
current state and estimated future states of the intermediate device(s). The energy-
aware protocol is an extended and enhanced version of the DSDV protocol and
is described in detail in Sections 22.3.2.3 and 22.3.2.4. Several simple heuristics
that allocate tasks onto resources are used to compare the performance of the
two protocols against the original DSDV protocol. The performance goal will be
the same as in Section 22.3.1, which is to complete as many tasks as possible
before their deadline.

22.3.2.2 DSDV. As described in Reference 51, the DSDV [52] protocol is
a proactive routing algorithm based on the idea of the classical Bellman–Ford
routing algorithm with certain improvements. Each node maintains the routing
table with all possible destinations within the network, and the number of required
hops to reach the destination is also maintained in the table. For table consistency,
the routing information is propagated to update the routing table periodically.

22.3.2.3 DSDV remaining energy. The main idea for the DSDV remaining
energy (DSDV-RE) is that when it updates the routing table, among the same
shortest distance routes from a source to a destination, it chooses the path with
the intermediate nodes with more RE than others (Fig. 22.7); that is, if the
DSDV update results in the same number of hops (metric) for a certain route
then the path with the intermediate node(s) that has more RE is chosen for the
data transmission. In this research, we constrain the algorithm to consider paths
with less than three hops, but this restriction can be extended without the loss of
generality.

22.3.2.4 DSDV-energy consumption per remaining energy. The main
idea of the DSDV-energy consumption per remaining energy (DSDV-CR) is that
when the protocol updates the routing table, among the same shortest distance
routes from a source to a destination, if there is a path with an idle intermediate
node, it chooses that path (Fig. 22.8a and b). If there is no path where the
intermediate node(s) is idle, that is, all possible intermediate nodes are executing
other tasks, the path with the total minimum energy consumption per remaining
energy (CR) is selected for data communication (Fig. 22.8c). CR is the total
energy consumption (ET), which is the energy that will be consumed to complete
all tasks allocated for the device divided by the current RE.
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Figure 22.7 An example of how DSDV-RE will choose routes is shown.
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Figure 22.8 Examples of the routes that DSDV-CR chooses.

22.3.3 Heuristic Description

22.3.3.1 Random. In the random heuristic, a task is assigned to a randomly
selected device among the selectable devices. The DVS level for a task on a
device is the highest level that can complete the task by its deadline. The random
heuristic is used as a baseline to compare other heuristics.

22.3.3.2 Estimated minimum total energy (EMTE). The estimated mini-
mum total energy (EMTE) heuristic assigns the requested task on the device that
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consumes the minimum estimated total energy (i.e., communication and computa-
tion energy) to try to extend the lifetime of the overall system while completing as
many tasks as possible. The estimated total energy consumption is derived from
the estimated coordinates of the devices using the current speed and direction of
the selectable devices for communication and the estimated execution time of the
task for computation. The DVS level for a task on a device is the lowest level
that can complete the task by its deadline. The procedure is as follows:

1. At a mapping event, the estimated total energy consumption (i.e., the com-
munication energy plus the computation energy) of all selectable devices
is calculated. The communication energy is calculated using the estimated
distance between the two devices, and computation energy is obtained using
the lowest DVS level to complete by the task’s deadline.

2. The task will be allocated to the device that can complete the task by its
deadline while using the minimum total energy.

22.3.3.3 K-percent-speed (KPS) and k-percent-energy (KPE). The
K-percent-speed (KPS) and K-percent-energy (KPE) heuristics are extended
from the K-percent best heuristic [15]. When the number of selectable devices is
M and m is the number of K-percent devices among M , the KPS heuristic selects
the minimum total energy device (communication and computation energy) from
the m minimum execution time (MET) devices. But the KPE heuristic choo-
ses the MET device among the m minimum total energy consumption devices.
In this chapter, the value of K is selected as 0.5 empirically and the DVS level
for a task on a device is the lowest level that can complete the task by its
deadline. The procedure is as follows:

1. When a mapping event occurs, the total execution time (for KPS) or the esti-
mated total energy consumption (for KPE) is determined for all selectable
devices and m minimum total execution time or total energy consumption
devices are determined.

2. Then, among the m number of devices, the requested task is assigned to the
device that has the minimum energy consumption (for KPS) or the MET
(for KPE).

22.3.3.4 Energy ratio and distance (ERD). The energy ratio and distance
(ERD) heuristic uses energy ratio and distance to assign the requested task onto
a device. The energy ratio is the estimated total energy usage divided by the RE
on a device. The estimated total energy is calculated using the method described
in Section 22.3.3.2. Then, the ratio is multiplied by the distance (in meters). The
intuition behind this method is that the device that is nearest and has a low energy
ratio will be picked for execution of the task using less energy and extending the
lifetime of the system. The procedure is as follows:
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1. At a mapping event, the energy ratio multiplied by the current distance (V )

from the source to the destination device is calculated for all selectable
devices.

2. The device with the minimum V is selected to execute the task.

22.3.3.5 ETC and distance (ETCD). The estimated time to complete and
distance (ETCD) heuristic is similar to the ERD method. However, the ETCD
heuristic uses the ETC data instead of estimated total energy consumption. The
ETCD heuristic regards a task’s ETC as directly related to the computation energy
and distance as the communication energy. The DVS level for a task on a device
is always the highest level. The procedure is as follows:

1. At a mapping event, the ETC multiplied by the distance (W) for all
selectable devices is calculated.

2. The device with the minimum W is selected to execute the task.

22.3.3.6 Minimum execution time (MET). The MET heuristic executes the
task on the device that has the minimum ETC [15]. The advantage of this method
is that a task is sent to the fastest device for the task. In the MET heuristic,
communication among devices (communication energy) is not considered. The
highest DVS level is used for all devices.

22.3.3.7 Minimum completion time (MCT) and minimum completion
time with DVS (MCT-DVS). The MCT heuristic assigns the task to the device
that has the MCT [15]. Unlike the MET heuristic, the MCT considers both
computation time and communication time. The communication time is the time
to send the task to the destination device plus the time to receive the results.
The DVS level used for a task on a device is the highest level for MCT and the
lowest DVS level that can complete the task by its deadline for the MCT-DVS
method. The procedure is as follows:

1. For all selectable devices, the total time to complete on the device using
the highest DVS level for the MCT heuristic and the lowest possible DVS
level for the MCT-DVS heuristic are calculated.

2. The device that has the MCT is chosen to execute the task.

22.3.3.8 Switching algorithm (SA). The SA heuristic is used in Reference
15 and it is redesigned for this environment. As described in Reference 15, the
MET heuristic can potentially create load imbalance across devices by assigning
many more tasks to some devices than to others, whereas the MCT heuristic
tries to balance the load by assigning tasks for earliest completion time. The SA
heuristic uses the MCT and MET heuristics in a cyclic fashion depending on the
load distribution across the devices. The purpose is to have a heuristic with the
desirable properties of both the MCT and the MET methods. The procedure is
as follows:
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1. Let the maximum (latest) ready time over all selectable devices be rmax
and the minimum (earliest) ready time be rmin.

2. Then, the load balance index (LBI) across the devices is given by LBI =
rmin/rmax. The parameter LBI can have any value in the interval [0, 1]. If
LBI is 1.0, then the load is evenly balanced across the devices. If LBI is 0,
then at least one device has not yet been assigned a task. Threshold values,
Th, for the ratio LBI is chosen to be 0.6 empirically.

3. The SA heuristic begins mapping tasks using the MCT heuristic and also
when the value of LBI is smaller than Th. If the value of LBI is bigger
than Th, the SA uses the MET method to map the task.

22.3.4 Simulation Model

This research introduces and evaluates the heuristic methods to efficiently sched-
ule tasks, allocate resources for tasks, and save energy for future use for the
underlying environment. To evaluate the heuristics for this research, the energy-
aware DMC simulator [24] called EArDruM is used, which is based on the
network simulator 2 (NS-2) [53].

For the simulation, six types of wireless devices are used (Table 22.2) and
each device has three different number of voltage levels of 2, 4, and 8. Therefore,
there will be 18 different types of devices that may be introduced in the DMC
system. The maximum battery capacity (energy) of each device is set to the
maximum CPU energy consumption level plus the maximum transmission energy
consumption level, multiplied by the maximum operation time. The maximum
operation time is determined using a gamma distribution with a mean of 2 h. This
means that if the CPU and wireless module use the maximum (highest) level,
then the battery capacity is only enough to operate the device for 2 h on average.
The mobility of the devices is random in the sense that the direction, duration,
and speed are randomly determined using a uniform distribution (from NS-2). To
determine whether the device can send the results back to the task requester, a
simple method of estimated time multiplied by the current speed and the current
direction is used to estimate the position of the destination device.

TABLE 22.2 Parameter Setting in the Simulations

Simulation Parameter Value

Network area 1500 × 1500 m
Maximum transmission range 500 m
Data/header packet size 1000/40 B
Simulation time 28,800 s
Data rate 1 Mbps
Maximum speed of device 6 m/s
Traffic model application/FTP
Ad hoc routing protocol DSDV
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To simplify DVS, this research assumes that each voltage level of a processor
corresponds to a clock cycle speed level for the processor and that the task
execution time varies proportional to the speed level. Each device can have 2,
4, or 8 discrete speed levels with equal probability. The active power shown in
Reference 54 is used for the maximum power used for the highest speed level for
each device type. After the number of levels is decided for all tasks, the relative
speed of each level is determined. The lowest speed level of a device is assumed
to be one-third of the maximum speed level (e.g., if the maximum speed level is
624 MHz, then the lowest speed level will be 208 MHz). The rest of the levels
are determined dividing the gap between the maximum and lowest speed level
equally according to the number of levels in each device (linearly). The power
usage at each of the levels for all devices is determined using the simplified
relationship of power being proportional to the square of voltage, the number of
levels, and the voltage and active power in Reference 54. It is assumed that the
voltage switching is done dynamically and that the overhead associated with the
switching is negligible (20–150 μs).

In each simulation of a system, 20, 30, 40, and 50 devices (nodes) among
the 18 types are picked with equal probability. The arrival (request) of tasks is
simulated by using a Poisson distribution with a mean intertask arrival time of 6 s.

For all tasks, the ETC values of the 18 types of devices taking heterogeneity
into consideration is randomly generated using the gamma distribution method
described in Reference 46. The mean execution time of 200 s is used for the
ETC matrix. The mean execution time is chosen to represent applications such
as processing data (such as maps or weather reports) and generating strategies.
The size of the task and output (result to the source) data was calculated using
100 kB as the mean and a COV of 0.7 using gamma distribution. The size of the
input and the other communication data was calculated using 10 kB as the mean
and a COV of 0.7 using gamma distribution.

This research assumes that when the task is requested for or arrives into the
system, the deadline of the task is given. For the simulation studies, the deadline
of task i was equal to the sum of its arrival time, the overall mean execution time
of all tasks, the median execution time of task i on all devices, and the expected
communication time of sending the task and receiving the result, multiplied by
a constant to allow for the waiting of other tasks in the system that are already
being executed or queued for execution.

The IEEE 802.11b standard is applied for wireless communication and com-
munication power consumption value is based on the specification in References
57 and 58. On the basis of the two-ray ground reflection model [53] in NS-
2, whenever communication occurs, the transmission power and the discrete
transmission power level are determined according to the transmission range
(for 10, 50, 100, 150, 200, 250, 350, and 500 m) using VTPC.

A trial is defined as one such simulation of the system. For each of the eight
scenarios (one mean intertask arrival time × two mean execution times × four
different number of devices), 30 trials are run for 28,800 s (i.e., 8 h) for each
heuristic. More details are shown in Table 22.2.
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22.3.5 Results

22.3.5.1 Distributed resource management. The experimental evaluation
of the 10 heuristics is performed in this research. The 6 of the 10 heuristics
(random, EMTE, KPS, KPE, ERD, MCT-DVS) apply DVS, and the rest of them
(ETCD, MET, MCT, SA) do not use the DVS technique. The graphs in the
Figure 22.9 show the percentage of tasks completed that is averaged from 30
trials.

Figure 22.9a shows the performance of the heuristics when the mean task
arrival time is 6 s and the mean task execution time is 200 s. The results show
that the heuristics that do not use the energy information and that the DVS
technique tends to perform better than the heuristics that do use the technique.
However, the percentage of dead devices for heuristics shown in Figure 22.9b
indicates that the percentage for heuristics using the DVS technique is lower
than the percentage for the heuristics that do not. This allows us to speculate that
although the heuristics that use the DVS do not perform well in our simulation,
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intertask arrival of 6 s for (a) and (b).
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if the simulation time is extended, the system will be alive longer, thus having a
chance to do better in terms of completing more tasks by their deadline.

When the system is scarce, that is, the number of participating devices is small,
the probability of the destination device moving out of range, thus failing to send
back the results, becomes greater. Therefore, the distance between devices can
become an important factor when trying to send the requested task and receive the
results. When there are 20 devices in the system, the ETCD heuristic performs the
best because it explicitly uses the distance in the decision process. The MET and
MCT heuristics did well overall, this is because although they do not explicitly
use distance, both heuristics use the time information and the highest DVS level to
complete tasks as quickly as possible before the intended destination device goes
out of range. As the SA method uses MET and MCT, SA performs comparably
to both MET and MCT. The MCT-DVS method that uses the lowest DVS level
to complete a given task before the deadline does poorly than the original MCT
method. This may be because in some cases, the DVS level chosen and the
device’s mobility cause the task to fail.

22.3.5.2 Energy-aware protocol. The multihop DMC environment is tested
using the two energy-aware routing methods, and the performance is compared
against the original DSDV method. Four simple heuristics are used for the com-
parison: the random, EMTE, KPS, and KPE methods. The mean intertask arrival
time is 6 s (using a gamma distribution) for all the results obtained in this chapter.
Figures 22.10 and 22.11 show the percentage of tasks completed using the mean
task execution time of 100 and 200 s (using a gamma distribution), respectively.
The number of devices in the system is increased from 20 to 50 to 100, and the
results are shown. Each scenario was simulated for 30 runs, and the average is
shown in the figures. The random method was always the worst in all the sce-
narios. The energy-considered heuristics (ME, KPS, and KPE) are better than the
random method, but their performances are comparable among themselves. The
DSDV, DSDV-RE, and DSDV-CR protocols show similar performance for 20
and 50 nodes in Figure 22.10. However, when there are 100 nodes in the system,
there is a difference in the percentage of tasks completed. Both DSDV-RE and
DSDV-CR perform better than DSDV, and in Figure 22.10d, the performance
of DSDV-CR is increased by 37% of the performance of DSDV. Similarly, in
Figure 22.11, all the protocols perform similarly for 20-node and 50-node sys-
tems. However, as shown in Figure 22.11d, the performance of DSDV-CR is
increased by 33% of the performance of DSDV. This implies that the RE infor-
mation plus the estimated future energy usage is a valuable information that can
be used to enhance the original routing protocol.

22.3.6 Summary

In Section 22.3.1, a distributed resource management scheme, for example, DMC
environment, was modeled and simulated. The devices in the system are heteroge-
neous in the sense that they have different computation speed, battery capacity,
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Figure 22.10 Percentage of tasks completed for intertask arrival time of 6 s and mean
task execution time of 100 s for varying number of nodes in the system.

DVS levels, and mobility. The tasks are heterogeneous, arrive randomly, and
have deadlines. A total of 10 dynamic heuristics were designed and evaluated
for the system. As the resource management is decentralized, all devices have
a decision-making module for intelligent resource allocation. The main goal of
this research is to complete as many tasks as possible, under the constraint of
available system energy and during a given interval of time. There are many
challenges that a resource manager faces in this environment and one of them
is the mobility of devices compared to Section 22.2. In all scenarios, the MET
and MCT methods perform the best. In the example of DMC environment, it
may be best when a task is assigned to the device that can complete the task as
soon as possible. One of the reasons could be that as devices move, they can be
disconnected from each other resulting in the failure to complete a given task
(i.e., cannot send the results back to the task requester). When a task is completed
as fast as possible, the penalty incurred because of the devices’ mobility may be
minimized. However, as the two methods always use the highest DVS level, they
use more energy than the methods that consider lower DVS levels. This means
that the system has a higher probability of lasting longer if there is no constraint
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Figure 22.11 Percentage of tasks completed for intertask arrival time of 6 s and mean
task execution time of 200 s for varying number of nodes in the system.

on the simulation time and thus may complete more tasks while the system that
uses MET and MCT may run out of overall energy at an earlier time.

In Section 22.3.2, an attempt to increase the performance of the overall DMC
system is made by enhancing one of the widely used routing protocol that is
also one of the default protocols in NS-2. The original DSDV protocol was
compared with an enhanced energy-aware routing protocol. As it is important
for the DMC system to save energy because there is a constraint on energy
for all mobile devices, it is imperative that the routing protocol also provides
assistance in the efficient use of the system-wide energy. The routing protocol
introduced in this chapter uses explicit energy information such as RE of nodes
and energy consumption per remaining energy (CR) of nodes to determine the
route for nodes such that the DMC system can use the information to make
an intelligent decision on where and when the task is sent and executed. The
performance of the protocol that uses the CR information is shown to increase the
performance of a resource allocation method by 30–38% than the original DSDV
protocol.
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22.4 FUTURE WORK

There can be many possible directions for future research based on this study.
With asynchronous battery recharging as opposed to the synchronous recharging
model described in this chapter (which assumes all team members begin a mission
together), the problem of completing tasks while efficiently using the system
energy will be the same, but the complexity of the heuristics will increase and
the metric will need to be adapted for individual dynamic changes of available
battery energy. Another aspect of future work would be to include the option of
decreasing the speed of a processor at a later time for the research in Section 22.2.
In addition, we can consider relaxing the assumption that the RMS is executed
on a device with unlimited energy.

Other challenges for DMC include (i) comparison and evaluation of dis-
tributed resource management and centralized resource management and different
environments, (ii) enhanced decision-making methods for such different environ-
ments, (iii) use of different underlying topology that was used for the routing
protocol, (iv) analysis and enhancement of other protocols that can be used in
the DMC environment, (v) an improved method of estimating the mobility or
the position of the devices, and (vi) applying or adapting the DMC environ-
ment model to other similar systems such as mobile cloud computing or personal
mobile cloud computing.
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CHAPTER 23

AN ENERGY-AWARE FRAMEWORK
FOR MOBILE DATA MINING

CARMELA COMITO, DOMENICO TALIA, and PAOLO TRUNFIO

23.1 INTRODUCTION

An increasing number of cell-phone and PDA-based data-intensive applications
have been recently developed. Examples include cell-phone-based systems for
body health monitoring, vehicle monitoring, and wireless security systems. Mon-
itoring data in small embedded devices for smart appliances and onboard moni-
toring using nanoscale devices are examples of such applications that we may see
in the near future. Support for advanced data analysis and mining is necessary
for such applications.

Data mining in such mobile/embedded devices faces various challenges
because of several reasons such as (i) low bandwidth networks, (ii) relatively
small storage space, (iii) limited availability of battery power, (iv) slower
processors, and (v) small displays to visualize the results. We need to design
algorithms and systems that can perform data analysis by optimally utilizing the
limited resources.

A key aspect to be addressed to enable effective and reliable data mining over
mobile devices is ensuring energy efficiency, as most mobile devices are battery
power operated and lack a constant source of power. Most commercially available
mobile computing devices such as PDA’s and mobile phones have battery power,
which would last for only a few hours. Therefore, the next generation of data
mining applications for such embedded and mobile devices must be designed to
minimize the energy consumption. Software power utilization and minimization
have been studied in various contexts [1–5], but to the best of our knowledge,
only very few studies have been devoted to energy requirements for data mining
algorithms [6].

Energy-Efficient Distributed Computing Systems, First Edition.
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This chapter proposes a general architecture for pervasive data mining over
mobile devices focusing on energy efficiency. In the proposed architecture, a
mobile device can play the role of data producer, data analyzer, client of remote
data miners, or a combination of these. As such, we envision an architecture
in which there are several distributed mobile devices and stationary servers
where the mobile devices can run some steps of the data mining task, or some
lightweight data mining algorithms.

We characterize the energy consumption in the system by introducing a new
energy model paying particular attention to the energy communication costs.

Moreover, to efficiently manage resources and allow mobile-to-mobile collab-
orations, we clustered the network organizing the devices into local groups. The
main design principles of our clustering scheme are to allow self-configuration
and adaptation of the network and prolong its lifetime by distributing energy
consumption among clusters. In such a way, mobile devices cooperate in a
peer-to-peer style to perform a data mining process, tackling the problem of
energy capacity and processing power limitations. Whenever a resource-limited
computing device (client) in such a cooperative environment has a set of tasks
(or subtasks) to be executed (which may have dependencies and communica-
tion requirements among themselves), it uses all available resources in nearby
computing devices (servers).

The remainder of the chapter is organized as follows. Section 23.2 presents the
overall architecture of the proposed framework. The software components inside
each mobile device are described in Section 23.3. Section 23.4 details the energy
characterization and the proposed cost model. The introduced energy-efficient
clustering scheme is illustrated in Section 23.5. Finally, Section 23.6 concludes
the chapter.

23.2 SYSTEM ARCHITECTURE

The system presented here is designed to enable mobile-to-mobile data mining
(M2M DM) applications having energy efficiency as the primary goal. In the
following, we present the overall architecture of the system.

A typical M2M-DM scenario includes stationary nodes (e.g., computer
servers) and mobile devices (e.g., mobile phones, PDAs). Stationary nodes can
act as server nodes for executing the data mining tasks submitted by mobile
clients. On the other hand, the possibility of performing data mining over a
mobile device may include several application scenarios in which a mobile
device can play the role of data producer, data analyzer, client of remote data
miners, sever, or a combination of these. More specifically, we can envision
five basic scenarios for mobile data mining.

1. The mobile device is used as a terminal for ubiquitous access to a remote
server that provides some data mining services. In this scenario, the server
analyzes data stored in a local or a distributed database and delivers the
results of the data mining task to the mobile device for its visualization.
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2. Data generated in a mobile context are gathered through a mobile device
and sent in a stream to one or more remote server(s) to be stored in a
local database. Data can be periodically analyzed using specific data mining
algorithms and the results used for making decisions about a given purpose.

3. Mobile devices are used to perform local data mining analysis. Owing to
the limited computing power and memory/storage space of today’s mobile
devices, it is not possible to perform heavyweight data mining tasks on such
devices. However, some steps of a data mining task (e.g., data selection
and preprocessing) or very simple mining tasks on small data sets can be
executed on mobile devices.

4. The mobile device acts as a data mining server for other mobile clients. As
stated earlier, data analysis provided by a mobile device may include either
lightweight data mining algorithms or some steps of the whole process.

5. A mobile device acts as a gateway for other mobile devices. In this case,
even if the mobile gateway itself does not provide processing, it plays the
fundamental role of linking poorly connected devices to a remote process-
ing node.

The system architecture, depicted in Figure 23.1, has been designed to allow
on-demand collaborations among mobile nodes. Examples of mobile-to-mobile
collaborations regard several areas such as disaster relief, construction manage-
ment, and health care. In order to promote and easy collaborations when two or
more mobile users, who are members of the same organization or simply col-
laborate, meet each other, we let them group into clusters referred to as mobile
groups . Consequently, the M2M-DM architecture includes some stationary nodes
and a number of mobile groups.

Cluster formation is an important issue to be addressed. Clusters may be
formed based on many criteria such as communication range, number and type
of mobile devices, and their geographical location. In particular, we group the
mobile devices on the basis of their transmission range. More precisely, when two
or more coworkers standing within a given area meet, their mobile devices will
discover each other and create an ad hoc network in order to form a cluster. Each
cluster has a node referred to as the cluster head , which acts as the coordinator
for the cluster, manages the other nodes within the cluster, and interacts with the
other local groups in the network.

Figure 23.1 shows the interactions among the different components of the
architecture. Stationary nodes are connected through the Internet and can interact
with the other nodes (including the mobile ones) to execute a data mining task.
Mobile nodes within a group interact through ad hoc connections (e.g., Wi-Fi,
Bluetooth) that we refer to as M2M connections , represented by dotted arrows in
Figure 23.1. Interactions among mobile groups (cluster-to-cluster connections)
take place through ad hoc connections among the cluster heads of the groups
and are represented by dotted–dashed arrows. Mobile groups are connected to
stationary nodes through their cluster head (mobile-to-stationary connections) by
exploiting an Internet connection (e.g., Wi-Fi, WiMAX). All types of interactions
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Figure 23.1 The M2M-DM architecture. The arrows denote remote service calls.

take place either to ask for a data mining request or to cooperate in order to
collaboratively execute a data mining task.

In the M2M-DM architecture, both stationary and mobile nodes provide a
specialized set of services, as detailed below. Stationary nodes provide three
groups of functionalities:

• Knowledge discovery helps to execute or support the different steps of
the knowledge discovery process (preprocessing, data mining, visualization,
etc.).

• Data management allows to store and retrieve data (e.g., data generated by
either mobile devices or third-party data providers).

• Coordination allows mobile devices to organize themselves into groups and
manage computations cooperatively (e.g., registration services, discovery
services).

Mobile devices provide the following groups of functionalities:

• M2M knowledge discovery helps to execute knowledge discovery tasks that
can be executed on limited resources, such as preprocessing, visualization,
or lightweight data mining processes.

• M2M resource management allows to monitor the local resources (e.g.,
memory, CPU load, battery status) to establish whether the device is able
to execute a data mining task.
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• M2M coordination enables mobile devices to organize themselves into local
groups on a temporary basis for on-purpose knowledge discovery applica-
tions.

• M2M interaction allows interactions among nodes inside or outside the
group. The interactions with nodes external to the group are realized through
the cluster head that acts as a gateway toward the outside of the group.

23.3 MOBILE DEVICE COMPONENTS

Mobile nodes include a set of software components that cooperatively perform the
functionalities introduced in the previous section. As shown in Figure 23.2, each
node includes four software components: resource information service (RIS ),
M2M coordination service (MCS ), energy-aware scheduler (EAS ), and knowl-
edge discovery service (KDS ).

The RIS is responsible for collecting information about all the resources inside
a mobile node and the context in which an application is running in order to adapt
its execution. To this aim, the RIS is composed of two modules implementing
the above-cited features:

• Resource Monitoring Module. It informs the system about the mobile device
resources’ measurement, such as the available memory, CPU utilization,

Resource information service (RIS)

Resource monitoring

Resource evaluator

Energy-aware scheduler (EAS) M2M coordination service (MCS)

Knowledge discovery service (KDS)

Data collection
service
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mining service
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management service
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Mapper

Scheduling process
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Figure 23.2 Software components inside each mobile device.
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battery consumption, battery level, remaining time to fill memory, and net-
work connectivity performance.

• Resource Evaluator Module. This module acts as a resource measurement
receiver from both local and environmental resources. It then takes some
actions on the basis of the received measures, that is, choosing the most
suitable configuration for the data mining task. Moreover, the module is
responsible for starting the data mining task with the appropriate parameters.

The MCS is responsible for coordination among mobile devices and includes
two modules:

• Mobile-to-Mobile Management Module. It includes mechanisms aiming at
the coordination of the nodes within a group, such as cluster formation and
maintenance, joining of a new node to a group, cluster-head election, and
cooperative data mining task execution.

• Cluster-to-Cluster Management Module. It provides mechanisms allowing
mobile devices to organize themselves into clusters, such as cluster-to-cluster
interactions to the end of a data mining task allocation, and coordination to
collaboratively execute a data mining task.

The EAS is the component responsible for task assignment among local
groups. It implements a scheduling strategy aimed at prolonging network lifetime
by distributing energy consumption among local groups. In such an approach,
whenever a resource-limited computing device (client) has a set of tasks to be
executed, it uses the energy resources in nearby computing devices (servers) and
an efficient task assignment is found in such a way that the total consumed energy
is minimized. The scheduler interacts with the RIS through its resource moni-
toring and resource evaluator modules. Moreover, the scheduler is also tightly
related to the KDS component, as it is actually the scheduler that activates the
data mining process. The EAS includes three modules:

• Cost Estimator Module. This module exploits information about availabil-
ity, performance, and cost of resources collected by the RIS component. It
deals with the actual calculation of the estimation functions on the basis
of the perceived status of resources with respect to time, energy, and load
constraints.

• Mapper Module. This module schedules the tasks. It embeds a scheduling
algorithm, and a matchmaker that takes into account resource characteristics
incorporates interdependencies among resource groups or types, and compu-
tational and I/O cost evaluations to map the available resource units to newly
scheduled tasks according to a prespecified mapping objective function.

• Scheduling Process Module. This module guides the scheduling activity.
It receives jobs, requests the corresponding schedules to the mapper, and
orders the execution of scheduled tasks.
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The KDS is responsible for the execution of the knowledge discovery task
over a mobile device. It includes two modules:

• Data Collection Module. This module provides access or stores mechanisms
for data to be processed or generated as a result of a data mining process.
Typically, only a limited amount of data can be stored on a mobile device.
Therefore, this module manages the interaction with a stationary node that
will act as a storage node or as a source for data.

• Lightweight Data Mining Module. It is responsible for managing the exe-
cution of a data mining task on the mobile device, where it is possible. If
the mobile resources are not (or no more) sufficient to carry out the whole
computation, this module can delegate the process to another node(s). As
an example, this may happen when the resource measures indicate that
the device cannot achieve the required accuracy according to the incom-
ing data rate. In such a case, the node sends a request to a data mining
server (either stationary or mobile) to continue the current process with the
specified accuracy.

23.4 ENERGY MODEL

Mobile nodes are battery powered [7], which makes energy a critical concern.
Thus, the main aim of a mobile ad hoc network (MANET) is to conservatively
consume the energy to increase the lifetime of the network. One of the possible
approaches to effectively manage a MANET is to cluster the network to distribute
the load evenly throughout the whole network and to schedule the jobs among
the cluster.

The power consumed by mobile devices during the execution of an application
is defined as the rate at which energy is consumed. Although the terms power and
energy are sometimes used interchangeably in the literature, we are concerned
usually with energy efficiency, as batteries have a finite supply of energy. The
instantaneous power consumed by a process can be defined as

P(t) = V (t) × I (t), (23.1)

where V (t) is the supply voltage, I (t) is the current, and t stands for the
time index. On the other hand, energy consumption over an interval t1 − t2 is
defined as

E =
∫ t2

t1

P(t)dt, (23.2)

Therefore, a technique that reduces power consumption will save energy only if
it does not increase the execution time by a factor that exceeds the gains from
the power reduction.

Energy consumption of mobile devices depends on the computation and the
communication loads. We define Ei as the rate of energy consumption of node i
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in the time interval δt , which is the sum of all energy consumption for commu-
nication, ETi , and computation, ECi , of all the assigned tasks to node i within
the time interval δt :

Ei = ECi + ETi . (23.3)

Our approach is to estimate the energy consumption for computation and to
analytically evaluate the energy consumed for communication. This issue is the
main aim of this section.

As our study focuses on energy-efficient execution of data mining applications
in a mobile context, the computation load mainly concerns execution of data
mining tasks. We aim to identify the energy consumption characteristics of some
commonly used statistical and data mining tasks running onboard a mobile device.
Thus, we characterize a data mining algorithm in terms of the energy consumed
over a specific mobile device and for a given data set. In doing that, we also
consider the results in Reference 6, where the performance of specific data mining
algorithms from the energy consumption perspective is experimentally quantified.

Some definitions are introduced to support the proposed energy model.

Definition 23.1 If we denote the residual energy available at node i at time t

as REi (t), the residual life of node i at time t , RLi (t), is defined as follows:

RLi (t) = REi (t)/Ei. (23.4)

Definition 23.2 The transmission range of node i , denoted as TRi , transmitting
with power level Pi , is the maximum distance from node i where connectivity
with another node exists.

Definition 23.3 The reachability power is the transmission power level at which
a destination node j is reachable from a source node i and is denoted as RPij .
Obviously, the transmission power level of a node i has to be greater or equal
to the power necessary to reach a given destination node j , that is, Pi ≥ RPij .

According to Reference 8, we assume a commonly used wireless propagation
model where the received signal power attenuates proportionally to TR−α , where
TR is the transmission range and α is the loss constant, typically between 2
and 4 depending on the wireless medium. On the basis of this model, we can
introduce the definition of a wireless link. A wireless link exists between two
mobile devices if the transmitting node transmits with sufficiently high power
such that the signal-to-interference-plus-noise ratio (SINR) at the receiving node
is greater than a given threshold value δ. The threshold value δ is chosen to
achieve a desired bit error rate for the given modulation scheme and data rate.
The power required to support a wireless link at a given data rate between node
i and node j is given by the following equation:

RPij � rα
ij , (23.5)
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where rij is the distance between nodes i and j , with rij≤ TRi . Thus, node i can
reach node j if and only if node i transmits at a power Pi greater than or equal
to rα

ij , Pi ≥ rα
ij .

On the basis of the above formula, we can introduce the definitions of wireless
link and node neighbors as follows.

Definition 23.4 A wireless link exists between the two nodes i and j if the
transmitting node i transmits with a power greater or equal to rα

ij , Pi ≥ rα
ij . In

other words, a link among every pair of nodes (i, j) exists if the distance among
them is lower than the transmission range of the transmitting node i , rij ≤ TRi .

Definition 23.5 The neighbors of a node i are the nodes falling in its transmis-
sion range TRi . As such, a wireless link can be established between the node i
and each of its neighbors. The number of active wireless links of a node i is the
denoted as the degree of node i.

From the above definitions, it is evident that the connectivity of the network
depends on the transmission range of nodes.

In particular, each connection link has a cost that is proportional to the power
necessary to sustain the communication as expressed in Equation 23.5. However,
the energy consumed by a node for communication also depends on the state
of the node. Considering the network interface of a mobile device, this can
be in four states: (i) transmit mode; (ii) receive mode; (iii) idle mode, this is
the default mode for ad hoc network and in such a state a node can transmit
or receive; and (iv) sleep mode, which is characterized by really low power
consumption. In this state, the interface can neither transmit nor receive until it
is woken up and it changes state. Energy consumption does not always reflect
active communication in the network. Experimental results reveal that the energy
consumption of mobile devices in an idle state is only slightly smaller than that in
a transmitting or receiving state as evidenced from the study in Reference 9. This
because in MANETs nodes must always be ready to receive traffic from neighbors
due to the absence of base station nodes. Thus, a network interface operating in
ad hoc mode can not be in a sleep mode, but it has to continuously listen to the
wireless channel, thus consuming a constant idle energy power. Therefore, every
node overhears every packet transmission occurring in its transmission range,
thus consuming energy uselessly. Hence, the idle energy consumption is referred
to as overhearing .

Overhearing heavily affects the energy consumption of the mobile device. In
particular, owing to overhearing, a new cost in the computation of per-packet
energy consumption is introduced and it is the cost for discarding overheard
packets. Therefore, to model the energy consumed for communication, the costs
to send, receive, and discard a packet must be included. Consequently, the energy
consumed by a node i for communication can be defined by the following
equation:

ETi = Esendi
+ Ereceivei

+ Ediscardi
. (23.6)
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The overall cost of a packet transmission is the sum of the costs due to the
sending of the node and its reception. Potential receivers of a packet are the
destination node(s) and the nodes overhearing the packet. A packet may be sent
as broadcast or point-to-point traffic. The former is received by all hosts within the
transmission range of the sender; the latter is discarded by nondestination hosts.
It is important to note that the costs of receiving and discarding are multiplied
by the number of hosts that receive or discard the traffic.

The cost, Esendij
, for a node i to send a point-to-point packet to a node j is

modeled as a linear function as described by the following equation:

Esendij =RPij ∗(Tlatency+MSGsize/BWij ), (23.7)

where Tlatency is the network latency time, MSGsize is the size of the message
exchanged among nodes i and j , and BWij is the bandwidth connecting the two
nodes. Thus, in the equation, both cost items are a function of the power level
necessary to sustain a link between the source and the destination node. Note
that in the point-to-point transmission, referring to the IEEE 802.11 network
interface, it is necessary to take into account the MAC protocol interactions. The
transmitting node sends a request-to-send (RTS) control message to identify the
destination node that in turn replies with a clear-to-send (CTS) message. The
transmitting node, after having received the CTS message, sends the data and
awaits an ACK from the destination. These control messages introduce a small
further overhead compared to the broadcast transmission.

The cost for such messages is same and it is represented by Equation 23.7,
except for the message size.

Furthermore, the MAC protocol control messages favor the overhearing, as
detailed in the following section (Eq. 23.14).

In case broadcast transmission is used to send the packet, it requires a power
level necessary to reach the most faraway node (denoted as jmax) among the
ones within the sender transmission range, and the Equation 23.7 changes as

Ebroadi
= RPijmax

∗ (Tlatency + MSGsize/BWijmax
). (23.8)

The aggregate energy cost of node i for sending packets (communicating
whether data or just synchronization messages) is the sum of the costs on all
communication links having i (let us say k1) as transmitting node for point-to-
point transmissions or the broadcast cost otherwise. That is

Esendi
=

⎧⎪⎪⎨
⎪⎪⎩

k1∑
j=1

Esendij
if point-to-point

Ebroadi
otherwise

(23.9)

According to Reference 9, in general, the cost for a node i to receive a packet
can be described by the following equation:

Eri
= Erv

∗ MSGsize + Erf
. (23.10)
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In the above equation, there is a fixed reception cost component associated
with device state changes and channel acquisition overhead and an incremental
component that is proportional to the size of the packet. The incremental cost
of receiving data once the data channel is acquired is expected to be the same
for both broadcast and point-to-point traffic. The fixed cost in the point-to-point
transmission other than the channel access cost also includes the costs associated
with the above-described MAC control messages. Consequently, Equation 23.10
is rewritten as two different equations depending on whether the point-to-point
or broadcast transmission is used:

Erppi
= Erv

∗ MSGsize + Erppf
, (23.11)

Erbroadi
= Erv

∗ MSGsize + Erbroadf
. (23.12)

The aggregate energy cost of a node i for receiving, Ereceivei
, is the sum of

all the costs on all communication links (let us say k) having i as the receiving
node. If npp are the contemporary point-to-point active receiving links of node i
and nbroad are the contemporary broadcast active receiving links of node i , the
overall receiving cost of node i is defined through the following equation:

Ereceivei
= npp ∗ Erppi

+ nbroad ∗ Erbroadi
. (23.13)

As said before, a network interface overhears all traffic sent and received
by nearby nodes. Thus, it is important to consider the energy consumed during
the processing of point-to-point traffic due to the discarding of the packets by
the nonrecipients of those packets. Nondestination nodes within the transmission
range of either the transmitting or receiving nodes overhear the traffic. In par-
ticular, nodes within the range of the transmitting node but not in the range of
the destination overhear only the sender packets. Conversely, nodes within the
range of the destination but not in that of the sender overhear only the packets
sent by the destination node. Referring to the IEEE 802.11 MAC protocol, this
means that nodes in the range of the sender overhear both the RTS message
and the actual data packet, whereas nodes in range of the destination overhear
the CTS and ACK messages. The cost of discarding is comparable to that of
receiving, and thus, it can be expressed through Equation 23.10 with proper
coefficients:

Edi
= Edv

∗ MSGsize + Edf
. (23.14)

Thus, if the number of contemporary discardings is ndisc, the overall cost for
discarding of a node i is

Ediscardi
= ndisc ∗ Edi

. (23.15)
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23.5 CLUSTERING SCHEME

In a wireless MANET, which changes its topology dynamically, efficient resource
allocation, energy management, and routing can be achieved through adaptive
clustering of the mobile nodes.

In a clustering scheme, the mobile nodes are divided into virtual groups.
Generally, devices geographically adjacent are allocated into the same cluster.
Under a cluster structure, mobile nodes may be assigned a different function,
such as cluster head or cluster member . A cluster head normally serves as a local
coordinator for its cluster, performing intracluster transmission arrangement, data
forwarding, and so on.

A cluster member is usually called an ordinary node, which is a non-cluster-
head node without any intercluster links.

Clustering in the M2M architecture allows to achieve scalability. However,
constructing and maintaining a cluster structure introduces a significant overhead
to the network management costs. Thus, the clustering cost represents a key
issue to validate the effectiveness and scalability enhancement of the clustering
structure. The main items contributing to these costs are due to:

• forming and maintaining the clustering structure in a highly dynamic envi-
ronment;

• reconfiguration cost to keep the network connected due to nodes mobility;
• energy drain.

In a dynamic network, explicit message exchanges among mobile nodes are
necessary. To maintain the clustering structure, when the network topology
changes, the clustering-related information exchange increases, consuming
considerable bandwidth and mobile nodes energy. Owing to the dynamic nature
of the mobile nodes, cluster head affiliation and reaffiliations impact the stability
of the network, and hence, reconfigurations of clusters are necessary. This is
an important issue since frequent cluster head changes seriously affect the
performance of clustering scheme. Consequently, the choice of cluster heads
is of crucial importance. Choosing cluster heads is an NP-hard problem [10].
Existing solutions to this problem are based on greedy heuristic approaches,
without retaining the stability of the network topology [10].

In some clustering schemes, the cluster structure has to be completely rebuilt
over the whole network when some local events take place, for example, the
movement or death of a mobile node, resulting in some cluster-head reelections
(reclustering) [11]. This is called the ripple effect of reclustering: the reelec-
tion of one cluster head may affect the structure of many clusters and cause
the cluster-head reelection over the network. Thus, the ripple effect of recluster-
ing may greatly affect the performance of the clustering scheme. Furthermore,
most schemes assume that mobile nodes are static when cluster formation is in
progress because a mobile node can decide to become a cluster head only after it
exchanges some specific information with its neighbors and assures that it holds
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some specific attribute in its neighborhood. With a frozen period of motion, each
mobile node can obtain accurate information from neighboring nodes, and the
initial cluster structure can be formed with some specific characteristics. How-
ever, this assumption may not be applicable in an actual scenario, where mobile
nodes may move all the time.

Hence, the required explicit control message exchange, the ripple effect of
reclustering, and the stationary assumption for cluster formation are the main
costs of a cluster-based MANET.

In the literature, there are several approaches to cluster MANETs. The cluster-
ing schemes can be classified according to different criteria. For example, depend-
ing on whether a cluster head is required, clustering protocols can be classified
as cluster-head-based clustering [12–20] and non-cluster-head-based clustering
[21, 22]. Or, on the basis of the hop distance between node pairs in a cluster, clus-
tering schemes can be divided into one-hop clustering and multihop clustering.
Aside from such physical parameters, clustering schemes can also be differenti-
ated based on some criterion related to the clustering design principles. According
to this criterion, the proposed clustering schemes for MANETs can be grouped
into six categories. (i) Dominating set (DS)-based clustering [12, 23] tries to find
a DS for a MANET so that the number of mobile nodes that participate in route
search or routing table maintenance can be reduced. (ii) Low maintenance cluster-
ing schemes [13, 22] aim at providing stable cluster architecture for upper-layer
protocols with little cluster maintenance cost. By limiting reclustering situations
or minimizing explicit control messages for clustering, the cluster structure can be
maintained well without excessive consumption of network resources for cluster
maintenance. (iii) Mobility-aware clustering [14, 15, 21] takes the mobility behav-
ior of mobile nodes into consideration. This is because the mobile nodes’ move-
ment is the main cause of changes to the network topology. By grouping mobile
nodes with similar speed into the same cluster, the intracluster links can be greatly
tightened and the cluster structure can be correspondingly stabilized in the face of
moving mobile nodes. (iv) Energy-efficient clustering [16–18] manages to use the
battery energy of mobile nodes more wisely in a MANET. By eliminating unnec-
essary energy consumption of mobile nodes or by balancing energy consumption
among different mobile nodes, the network lifetime can be remarkably prolonged.
(v) Load-balancing clustering schemes [16–19] attempt to limit the number of
mobile nodes in each cluster to a specified range so that clusters are of similar
size. Thus, the network loads can be more evenly distributed in each cluster. (vi)
Combined-metrics-based clustering [20] usually considers multiple metrics, such
as node degree, cluster size, mobility speed, and battery energy, in cluster con-
figuration, especially in cluster-head decisions. With the consideration of more
parameters, cluster heads can be more properly chosen without giving bias to
mobile nodes with specific attributes. Also, the weighting factor for each param-
eter can be adaptively adjusted in response to different application scenarios.

In the next section, we present our clustering approach. The main design
principles of our clustering scheme are to allow self-configuration and adaptation
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of the network and prolong its lifetime by distributing energy consumption among
clusters. More precisely, we cluster the network with three primary goals in mind:

• prolonging network lifetime by distributing energy consumption among local
groups;

• minimizing the total transmission power aggregated over all nodes involved
in the computation;

• using adaptive network topology to reduce energy consumption.

23.5.1 Clustering the M2M Architecture

Architecture for wireless systems should be able to dynamically adapt itself with
the changing network configurations. For MANETs, since the position of each
node changes over time, the clustering protocol must be able to dynamically
update its links in order to maintain strong connectivity. A network protocol that
achieves this is said to be self-reconfiguring. A major focus of this chapter is the
design of a self-reconfiguring network protocol that consumes the least amount
of energy possible.

Accordingly, our clustering scheme is based on a fully distributed cluster
formation algorithm where nodes make autonomous decisions, and no global
communication is needed to set up the clusters but only local decisions are made
autonomously by each node. This means that the proposed M2M architecture
is self-organized into mobile clusters. More precisely, the clustering formation
scheme we propose makes it possible that when mobile devices meet, that is, they
are within the same transmission range, they can form a mobile group. The self-
organization nature of the clustering scheme adopted distributes the responsibility
among the different mobile nodes. In such a way, there is no node in charge of
the overall organization; each individual node interacts directly with the other
one in its transmission range in a peer-to-peer fashion.

In the design of the clustering scheme, we made the following assumptions: (i)
the number of mobile nodes in the network changes as nodes change dynamically
their position, (ii) a given node can belong to only one cluster at a given time,
and (iii) there are no fixed cluster-head nodes in the cluster formation process.

As said before, choosing cluster heads optimally is an NP-hard problem [10].
As this topic is not the focus of our work, we just make a discussion on how
such an issue could be handled. The number of cluster heads depends on many
factors such as the number of nodes in network, their physical location, the
transmission power, and the energy level. Each cluster head will cover an area
that is determined by its transmission range. However, the size of each local
group is restricted by the ability of the current cluster head of the group to
manage the nodes in the group. Thus, the total number of nodes per unit area
should be restricted so that the cluster head in that area can manage all the nodes.
If a certain zone becomes densely populated because of migration of nodes from
other zones, then the cluster head might not be able to handle all the traffic
generated by the nodes. In our approach, we aim to elect the minimum number
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of cluster heads that can support all the nodes in the system, satisfying constraints
relative to the number of nodes a cluster head can manage. In other words, we
limit the degree of the cluster heads to be lower of a given threshold that can be
determined on the basis of the energy and processing capacity of the node.

It is evident that choosing cluster heads is a key operation in clustering for-
mation and evolution processes. Any node in the network can become a cluster
head if it has the necessary functionality, such as processing and transmission
power. However, a node to be considered a candidate for cluster head also has
to satisfy constraints relative to energy and location of nodes. Thus, the cluster-
ing formation algorithm proposed takes into account both location and energy
metrics as described in the following section.

Clusters are formed by grouping nodes within the same transmission range
because correlation is strongest among data signals from nodes located close
to each other. Furthermore, the battery power can be efficiently used within a
certain transmission range: a node will consume less power to communicate with
closer-distance nodes. On the basis of this design assumption, the transmission
power level of a node is an important parameter to take into account in the choice
of cluster heads. Another important parameter is the number of neighbors of a
node, that is, its degree. The higher the number of neighbors of a node, the greater
the likelihood of being elected cluster head. However, owing to processing and
power restrictions, each node is able to efficiently manage a number of neighbors
bound by its current load.

In a dynamic network, node mobility plays a key role in terms of energy deple-
tion due to clustering formation and maintenance. Thus, the clustering structure
should be maintained as much stable as possible avoiding frequent cluster head
changes that would require reaffiliation of nodes and cluster-head reelection.
Therefore, a node with lower mobility has a higher chance of being a cluster
head. According to Reference 20, we estimate node mobility by taking the aver-
age of the distances covered by it in the last t period of times. In particular, we
take the average of last t distances covered by the node. This gives a prediction
of node mobility characteristics. Thus, we introduce the mobility parameter M

as described by the following equation:

Mi(t) = 1/t

t∑
j=1

√
(xj − xj−1)

2 + (yj − yj−1)
2, (23.16)

where the values (xj , yj ) and (xj−1, yj−1) are the coordinates of node i at time
j and j − 1.

As the main objective of our work is to maximally extend the life of all the
nodes in the network, we aim to balance the load proportional to the available
energy of each node.

In our approach, load balancing depends on the number of neighbors a cluster
head can nominally efficiently handle, but rather, this value is determined by
the current load of the node. As such, each topological and scheduling decision
is made by balancing the intra- and intercluster energy loads. In particular, to
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balance the energy load over all the nodes in the network, each time a new task
is submitted to be executed, it will be scheduled in such a way that the total con-
sumed energy is minimized. We do not give any details about and insights into
the energy-aware scheduling in MANETs, as such a topic is not the focus of this
work. We just want to highlight here that in order to obtain an energy-efficient
management of the network, it is not possible to, aside from specific schedul-
ing solutions and algorithms, address the energy issue in a cooperative mobile
environment such as the M2M architecture. In such an approach, whenever a
resource-limited computing device has a task to be executed, it uses the energy
resources in nearby computing devices with the overall aim to maximally extend
network lifetime.

According to the above discussion, we introduce a combined weighted metric
that takes into account the following node parameters: degree (DG), mobility
(M), residual life (RL), and transmission power (P ). Depending on specific
applications, any or all of these parameters can be used in the metric to elect the
cluster heads. Thus, to establish whether a node i can be elected a cluster head,
the cluster-head selection function (CHS), CHSi (t), is defined. Such a function
is described by the following equation:

CHSi (t) = αRLi(t) + βMi(t) + γPi(t) + δDGi (t), (23.17)

where α, β, γ , and δ are the weights corresponding to the above-cited perfor-
mance parameters.

Using the proposed weighted approach, in the following we describe the clus-
tering formation process. This process can be divided in two phases: (i) network
setup and (ii) network evolution.

As said before, our objective is to let nodes within the same transmission range
to organize into local groups. Beacons could be used to determine the presence
of neighbor nodes. During the initial cluster set up, a node with higher value
of the CHS function among its one-hop neighbors is elected as the cluster head
and its one-hop not-already-affiliated neighbors become the members of the just
formed cluster. These nodes are then excluded while selecting the next higher
weighted nodes. In case of equality in the node weights, the node with higher
energy level is preferred as the cluster head. This process is repeated till all the
nodes are assigned with their role as either a head or a member of the cluster.

The network evolution process can be outlined as follows. A mobile node
i that has to join the network should establish whether it can join an already
existing cluster or it has to create a new one. To this aim, the node i sends an
announcement message to check the presence of any nodes within its transmission
range. Two things could happen:

• The node does not receive a reply. In such a case, it will form a new group
and will elect itself the cluster head of the group.

• The node receives one or more replies. If node i has more than a group
within its transmission range, it will receive more responses. In such a case,
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the node will join the group that will allow to extend the network lifetime as
well as achieve load balancing. This means that it will join the local group
that maximizes the life of the whole network:

Max

N∑
j=1

αj RLLGj
(t), (23.18)

where RLLGj
denotes the residual life of local group LGj and N is the

number of groups in the network. In particular, the residual life of each
local group is described by the following equation:

RLLGi
=

NLGi∑
j=1

αj RLj (t), (23.19)

where NLGj
is the number of nodes within the local group LGj , RLi is the

residual life of node i in the group, and the generic parameter αj takes into
account the importance of the node i in the local group.
To balance the load among the clusters, the degree of the cluster heads is
also evaluated during the joining phase. In particular, in the choice of the
group to join, the node i will choose, among the ones with the lower residual
life, the group having the cluster head with the minimum degree.

The clustering evolution phase may require cluster-head reelections. This may
happen because of different reasons. The main difference in the cluster-head
reelection process is whether a reaffiliation is needed. It is often the case that
cluster-head reelection affects only nodes within a cluster without causing any
reaffiliations but only changing the cluster-head role from a node to another of the
same cluster. In some other cases, reaffiliations are necessary. More precisely, the
cluster-head reelection process takes place if one of the following events occur:

• Cluster-head node location changes as nodes move. When a mobile device
i that is already in the network is moving out of the range of the group
to which it belongs, it becomes thus unreachable to the other nodes in the
group. In such a case, a reaffilitation is needed—the node i can join another
cluster following the cluster formation algorithm described above.

• To expand the life of a group. Periodically, it could be necessary to perform
a rotation of the cluster-head role in the group in such a way to expand
the group lifetime. This reduces the number of reaffiliations, thus lowering
the cluster maintenance cost. Particularly, a periodic check over the current
cluster head could be performed (i) to evenly distribute the load among the
nodes within a cluster, (ii) to avoid decrease in the cluster-head life under
a given threshold, and (iii) because at a certain point, another node in the
cluster has a value of the CHS function better than that of the cluster head.
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• Cluster head drains out of battery power . In such a case, reaffiliation is also
necessary when none of the other nodes in the cluster is able to act as cluster
head. Thus, a reorganization of the nodes in the cluster is necessary.

• A new node joins the system . Also in such a case one or more reaffiliations
may be necessary.

In the case where no reaffilitaion is needed, the overhead introduced by the
reelection process is clearly low compared to the reaffiliation case.

23.6 CONCLUSION

The development of software frameworks for running data mining tasks on coop-
erating mobile devices will allow to exploit such devices for novel data analysis
applications. Handling the energy efficiency issue is a significant contribution for
making mobile devices effective platforms for supporting complex applications
in nomadic scenarios.

The architecture presented in this chapter is a first step toward the implemen-
tation of a framework for energy-efficient mobile-to-mobile data mining. We are
currently working in four main directions:

1. defining a formal energy model for a mobile data mining scenario;
2. defining an energy-aware adaptive distributed clustering scheme based on

a combined weighted metric, wherein a node with lower mobility and
greater residual life is assigned higher weight so that cluster stability can
be improved;

3. defining a scheduling strategy that takes into account the energy require-
ments of algorithms and the energy capability of the devices;

4. implementing a prototype of the system, starting from the implementation
of the software components devoted to cluster formation, energy measure-
ments, and scheduling.
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CHAPTER 24

ENERGY AWARENESS AND
EFFICIENCY IN WIRELESS SENSOR
NETWORKS: FROM PHYSICAL DEVICES
TO THE COMMUNICATION LINK

FLÁVIA C. DELICATO and PAULO F. PIRES

24.1 INTRODUCTION

Wireless sensor networks (WSNs) represent a new domain of distributed com-
puting that has attracted great research interest over the last years. A WSN is
composed of a large number of tiny battery-operated devices equipped with one
or more sensing units, processor, memory, and wireless radio. The main goal
of WSNs is to collect data about physical phenomena and deliver them to user
applications through one or more exit points called sink nodes . Sink nodes are
powerful devices, often a personal computer, that are in charge of gathering all
the sensor-collected data, further processing them, and making them available to
external networks such as the Internet. Sensor nodes act in a collaborative way to
accomplish sensing tasks providing data with scale and both spatial and temporal
resolutions very difficult (or even impossible) to achieve using other monitoring
techniques. The WSN capability of extracting environmental information from
a large geographic area, sometimes in inhospitable and/or remote places, in a
timely and accurate manner, has the potential to bring about a radical change
in the way we interact with the environment. Therefore, WSNs currently repre-
sent the most promising technology to fully connect the physical realm with the
digital world.

There is a wide range of applications that can benefit from the use of WSNs,
such as structural monitoring [1]; habitat [2], wildlife [3], and environmental
monitoring [4]; machine condition monitoring [5]; surveillance systems [6]; med-
ical monitoring [7]; and location tracking [8]. To enable the practical usage of
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WSNs, there are currently several state-of-the-art sensor node platforms available
on the market, for instance, Intel Telos [9], Sun SPOT [10], and the Mica fam-
ily [11], which target different application requirements. Research on WSNs has
progressed dramatically in the past decade. The hardware, particularly the radio
technology, is quickly improving, leading to cheaper, faster, smaller, and longer-
lasting nodes [12]. Although cost and size considerations imply that the resources
available to individual nodes are severely limited, recent advances in technology
lead us to believe that limited processor and memory are temporary constraints
in WSNs that tend to disappear with fast developing fabrication techniques [13].
The energy constraint, on the other hand, remains as a critical issue that needs
to be tackled so that WSNs can be widely used.

WSN nodes are endowed with limited power supply, usually provided by
a nonrechargeable battery. A key feature of such networks is their capacity to
operate unattended for large periods of time; this is a critical requirement in
many application domains, such as habitat monitoring, in which the target area
needs to be kept undisturbed to allow the proper data acquisition. Considering
that WSNs often have hundreds or thousands of sensors and that they should
work unattended, once the node battery is depleted, battery or node replacement
is nondesirable or even unfeasible. One possible way to minimize this drawback
is using strategies for harvesting energy from the environment [14]. However,
the energy obtained from natural sources is often unreliable and unstable along
the time. Therefore, it is crucial that WSNs are aware of their own energy and
cleverly handle its consumption in order to maximize their operational lifetime.
To extend the WSN lifetime, the energy efficiency needs to be tackled in a
holistic approach, encompassing all levels of the whole network, from individual
components of the sensor node hardware to energy-efficient protocols that govern
the network operation.

The lifetime of a WSN can be measured by the time elapsed before all (or
a significant portion of) nodes have been drained out of their battery power or
the network no longer meets the requirements of connectivity, coverage, or any
other application-specific parameter of quality, which directly affects the network
usefulness.

Current techniques for improving energy efficiency include conventional
low power hardware designs [15, 16], which focus on the energy consumption
in circuit and architecture level of the single node [17], and energy-efficient
strategies and protocols [18–20], which act in the network-wide level, in
different layers of the WSN stack, such as routing, scheduling, and medium
access control (MAC). At the node level, since a large amount of energy is
consumed by node components (CPU, radio, etc.) even if they are idle, power
management schemes can be used to switch-off node components that are not
temporarily needed. Moreover, techniques of dynamic reconfiguration such as
dynamic modulation scaling (DMS) (used to reconfigure modulation schemes in
communication), dynamic voltage scaling (DVS) (used to reconfigure voltages
and operating frequency of processors), and adaptive sampling rate (used to
change the sampling rate of sensors) enable reconfiguration of the sensor
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network hardware at runtime to adapt to external dynamics, providing a novel
approach to design energy-efficient WSNs [21].

In this chapter, we present a comprehensive survey on several aspects of
energy awareness and efficiency in WSNs. Our goal is not to give an in-depth
explanation on existent techniques and solutions but instead to provide a broad
“map” compiling and organizing all the knowledge developed in this field over
the last years. Such survey is organized using a knowledge representation tool
called Concept Maps [22]. Such representation is widely used as a learning tool.
However, its use as a tool for capturing the knowledge of experts is growing
at a fast rate [23]. Since the research in the field of energy-aware WSNs has
already created a large body of knowledge that is not fully organized yet, we
believe that the construction of concept maps can be very useful not only to
organize the already consolidated knowledge but also to promote the creative
thinking on such knowledge bringing about new categorizations, relationships,
and/or propositions.

A concept map is a top-down diagram showing the relationships between con-
cepts, including cross-connections among concepts, and their instances. Concepts
are usually enclosed in circles or boxes, and relationships between concepts are
indicated by a connecting line linking two concepts. Words on the connecting
lines, referred to as linking words or linking phrases , specify the relationship
between the two concepts. According to Novak and Cañas [23], concepts are
defined as a “perceived regularity in events or objects, or records of events or
objects, designated by a label .” Propositions are statements about some object
or event in the universe, either naturally occurring or constructed. Propositions
contain two or more concepts connected using linking words or phrases to form
a meaningful statement.

One characteristic of concept maps is that the concepts are represented in
a hierarchical fashion with the most inclusive, most general concepts at the
top of the map and the more specific, less general concepts arranged hierar-
chically below. The hierarchical structure for a particular domain of knowledge
also depends on the context in which that knowledge is being applied or con-
sidered. Therefore, it is advisable to build concept maps with reference to some
particular question we seek to answer, which is often called a focus question . The
concept map may pertain to some situation or event that we are trying to under-
stand through the organization of knowledge in the form of a concept map, thus
providing the context for the concept map. In this chapter, the central question is
“How to wisely manage energy in a WSN in order to extend its lifetime?” The hier-
archical organization of concept maps fits well with the way energy awareness is
tackled in WSNs since the existent strategies spread over different levels (from
the entire network to individual node components) and can be suitably described
in a top-down fashion. Another important characteristic of concept maps is the
inclusion of cross-links. These are relationships or links between concepts in dif-
ferent segments or domains of the concept map, or between concepts in different
maps. Cross-links help to see how a concept in one domain of knowledge repre-
sented on the map is related to a concept in another domain shown on the map.
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In the creation of new knowledge, cross-links often represent creative leaps on
the part of the knowledge producer.

The use of a hierarchical structure and the presence of cross-links are features
of concept maps that are important in the facilitation of creative thinking. A
final feature that may be added to concept maps consists in specific examples of
events or objects that help to clarify the meaning of a given concept.

In the next sections, we start by describing the network and node models
we are assuming in this survey. Then, using concept maps as a guide and an
organizational scheme, we depict the main current strategies and approaches
for enabling energy awareness and management in a WSN, organized in three
different levels: (i) the level of individual nodes, (ii) the level representing the
communicating neighboring nodes, and (iii) the level of the entire network. In
the following, we discuss current solutions for the first two levels. Solutions for
the third level are addressed in Chapter 11 of this book.

24.2 WSN AND POWER DISSIPATION MODELS

Before describing the concept maps and their constituent concepts created to
represent the strategies to promote energy awareness and efficiency in WSNs, we
first need to present the generic network and node architecture we are assuming in
this survey, as well as the sources of power dissipation related to each component
of a WSN node. This section encompasses such issues.

24.2.1 Network and Node Architecture

To keep a unique notation along the chapter, we illustrate the network and node
architecture considered in this work by using a concept map as well (Fig. 24.1).
Regarding the WSN components, we assume a network composed of one or more
sink nodes (sometimes referred to as base station) and a (possibly huge) number
of sensor nodes deployed over a large geographic area (called sensing field or
target area). Data are collected from the sensing field and transferred from sensor
nodes to the sink through a multihop communication protocol. The sink node is
a powerful (not constrained) device, often a personal computer, which acts as an
interface between the WSN and client applications, frequently through external
networks such as the Internet.

Regarding individual sensor nodes, we consider that each sensor is composed
of software and hardware components. Sensor hardware has four main compo-
nents: (i) a sensing subsystem including one or more sensors (with associated
analog-to-digital converters (ADCs)) for data acquisition, (ii) a processing sub-
system including a microcontroller and memory for local data processing, (iii)
a communication subsystem for wireless data communication, and (iv) a power
supply subsystem.

The sensing subsystem is responsible for monitoring the environment and
is composed of a sensing device and an ADC. The sensing device produces



677

WSN

Sink nodes

Target area

Power

Power supply
subsystem

is generated by

composed of
provides

consumes

Sensors

Consists of

e.g.

Software

Mica mote

encompasses

Sensing
subsystem

Communication
subsystem

composed of composed of

Radio
transceiver

Antena

Application layer

Network layer

Transport layerPhysical

MAC

classified as

Protocols

Algorithms Operating system

are installed

e.g.

e.g.e.g.

Accelerometer

composed of

Chipcon
CC1000 MCU

StrongARM CPU I/O

type of

ROM RAM

Memory

can be installed
in the radio

of types

Flash storage

can have

Sensing
device

Sensor
type

ADC
Discrete

components

deployed in

is a

Hardware devices

Processing
subsystem

DC-DC
converter

Battery

generates

is used in

composed of has
In-network processing

CM application layer CM network layer

Constant voltage

External networks

connects

composed of

Figure 24.1 WSN model concept map.



678 ENERGY AWARENESS AND EFFICIENCY IN WIRELESS SENSOR NETWORKS

a measurable response, codified as a continual analog signal, to a change in
the physical phenomenon being monitored, translating such changes to electrical
signals. The continual analog signal sensed by the sensors is digitized by the
ADC and sent to controllers for further processing. There is a diversity of sensors
that measure environmental parameters such as pressure, movement, temperature,
light intensity, sound, magnetic fields, acceleration, and image. Such sensors
can be classified into the passive and active. Passive sensors sense the physical
environment without emitting energy (or radiation) into the environment, but
they only detect the energy that is naturally available, for example, temperature
sensors. Active sensors, on the other hand, actively probe the environment by
emitting some kind of energy (microwave, sound, light, etc.) in order to detect
the changes that occur on the transmitted energy; for example, in sonar sensors,
a speaker (piezoelectric transducer) is used to emit a short burst of sound (ping)
that is reflected by objects in front of the device and returned to the detector,
another piezoelectric transducer. That means it emits and detects energy at the
same time.

The processing subsystem provides in-network processing capacity to the sen-
sors and is composed of a microcontroller unit (MCU). The sensor’s capability
of performing in-network processing is used by algorithms and protocols from
different layers in the WSN stack. In the concept map showed in Figure 24.1,
we can see a cross-link in the concept representing the in-network processing.
Such cross-link denotes the relationship between this concept in the domain of
the WSN components and this same concept representing the usage of such fea-
ture, for instance, by concepts from the application and the network layers. The
concept maps representing these layers are included in Chapter 11, since they
are issues from the network-wide level.

The sensor MCU is a small computer on a single integrated circuit containing
a processor core, storage medium (both ROM and RAM memories), ADCs, and
programmable input/output peripherals. The MCU is responsible for controlling
sensors, data and program storage, and executing communication protocols and
signal processing algorithms on the gathered sensor data. The tight integration
and low power consumption of MCUs makes them ideal for use in embedded
systems such as WSN sensor nodes. Examples of MCUs are Intel StrongARM
microprocessor, Cypress M8C, JENNIC JN5148, and Atmel AVR [24].

The communication subsystem is responsible for delivering data or control
messages to neighboring nodes and is typically composed of a radio transceiver,
an antenna, and a set of discrete components used to configure its features, such
as the signal intensity and sensibility. Transceivers provide the functionality of
both transmitter and receiver combined into a single device. In general, the radio
transceiver can operate according to four different operational modes: receiving,
transmitting, idle, and sleeping [25]. Current generation transceivers have a built-
in microprocessor that performs communication-specific operations. Examples of
radio transceivers are the RF Monolithics TR1000 [26], the Chipcon CC1000
[27], and the Semtech SX1211 [28].
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The power supply subsystem is composed of the battery and the DC-DC
converter (Fig. 24.2). The battery supplies power to the whole sensor node and
hence plays a vital role in determining the sensor node lifetime. Batteries are the
most commonly used energy storage medium in WSNs. There are several promi-
nent types of commonly available battery technologies: alkaline, lithium, nickel
metal hydride, and, more recently, the lithium iron disulfide (Li/FeS2) batteries,
which offer the advantages of extended operating temperatures, capacity, and
shelf life [29]. In order to avoid issues associated with varying battery voltages,
the power supply subsystems rely on the DC-DC converter, which take as input
varying input voltages and produce a stable, constant output voltage. Standard
regulators require the input voltage be greater than the desired output voltage.
Boost converters can output voltages that are higher than the input voltage [29].
There are two factors that affect battery life that are widely exploited in many
energy-saving techniques for WSNs. The first factor that affects battery lifetime
is the rated capacity factor [30]. Every battery has a rated current capacity spec-
ified by the manufacturer. Drawing higher current than the rated value leads to a
significant reduction in battery life. Depending on the battery type, the minimum
required current consumption of sensor nodes often exceeds the rated current
capacity, leading to suboptimal battery lifetime. The second factor that affects
battery lifetime is the relaxation factor. The effect of high discharge rates can be
minimized through battery relaxation, that is, the cutoff or significant reduction
of the discharge of the battery current. This phenomenon enables the battery
to recover a portion of its lost capacity. Battery lifetime can be significantly
increased if the system is operated such that the current drawn from the battery
is frequently reduced to very low values or is completely shut off [31].

Software components encompass the sensor operating system (OS), protocols
from the different layers of the WSN stack (application, transport, network, MAC,
and physical), and algorithms. All the software components are installed in the
MCU memory of the processing subsystem. The protocols from the MAC and
physical layers can be alternatively installed in the MCU memory of the radio
component.

24.2.2 Sources of Power Dissipation in WSNs

The first step in designing energy-aware and energy-efficient WSNs involves ana-
lyzing the power dissipation characteristics of a sensor node. Systematic power
analysis of a sensor node is crucial to identify potential energy bottlenecks in
the system, which can then be the target of strategies for managing the energy
consumption. Of course, the actual energy consumption depends on the specific
node hardware. For instance, in Reference 30, it is shown that the power char-
acteristics of a mote-class node are quite different from those of a stargate node.
However, the following remarks generally hold [30].

• The communication subsystem has much higher energy consumption than
the processing subsystem. It has been shown that transmitting 1 B may
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consume as much as executing a few thousand instructions [32]. Therefore,
communication should be traded for computation whenever it is possible.

• The radio energy consumption is of the same order in the reception, trans-
mission, and idle states, while the power consumption drops of at least one
order of magnitude in the sleep state. Therefore, the radio should be put to
sleep (or turned off) whenever it is possible.

• Depending on the specific application, the sensing subsystem might be
another significant source of energy consumption, even greater than the
communication subsystem [33].

On the basis of the node architecture presented in Section 24.2.1, and consider-
ing the above overall statements about the behavior of energy WSN consumption,
now we can describe the sources of power dissipation in each node component.
We can divide the power consumption in WSNs into three domains: radio com-
munication, sensing, and data processing (Fig. 24.3).

The communication subsystem is the primary energy consumer from all these
three domains. Modern transceivers used in WSNs [29] consume between 15
and 300 mW of power when sending and receiving. There are several factors
that affect the power consumption characteristics of a radio transceiver, includ-
ing the radio duty cycle, modulation scheme, data sending rate (bit rate), and
transmission distance. The transmission distance dictates the required transmis-
sion power. The farther a signal must travel, more energy has to be used. The
relationship between power output and distance traveled is a polynomial with an
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exponent of between 3 and 4 [34]. The radio operational duty cycle (see more on
this subject in Section 24.3.1.1) defines the period of time the radio is active and
transmitting or receiving data. An important observation is that transceivers con-
sume approximately the same amount of energy when in receiving or idle mode
and that the energy spent in the receiving mode can be of the same order of that in
transmitting mode for low power short distance transmissions. The actual power
emitted out of the antenna only accounts for a small fraction of the transceiver’s
energy consumption. A significant fraction goes to internal operation. Because
of this, the overall costs of radio communication can easily be dominated by the
receiver power consumption. Therefore, it is better to completely shut down the
transceiver rather than leave it in the idle mode when it is not transmitting or
receiving data. Before and after a transmission/reception, time and energy must
be spent to configure and power up the transceiver. So, it is important to amortize
the start-up power over more transmitted bits to reduce the power cost per bit of
transmissions. One way to decrease the operational duty cycle of the transceiver
is by sending multiple bits per symbol. This can be achieved by modulation
schemes such as the M-ary modulation [35]. Using M-ary modulation, however,
will increase the circuit complexity and power consumption of the radio. In addi-
tion, when M-ary modulation is used, the efficiency of the power amplifier is
also reduced. This implies that more power will be needed to obtain reasonable
levels of transmit output power. A discussion on the use of different modulation
schemes for purposes of energy savings is presented in Section 24.3.1.3.

There are several sources of power consumption in the sensing subsystem,
including (i) signal sampling and conversion of physical signals to electrical
ones, (ii) signal conditioning, and (iii) analog to digital conversion [30]. Another
factor that influences the energy consumption is the type of sensor. In general,
passive sensors consume negligible power relative to other WSN subsystems.
However, active sensors can consume a significant amount of power. Analyzing
the power consumption of a sensor, one important factor is how quickly a sensor
can be activated, sampled, and deactivated [29]. In most cases, sensors are capable
of producing thousands of samples per second. However, the application often
requires only a few samples per minute. Therefore, the data sampling rate needs
to be tuned so that application requirements are met while energy is not wasted.
Besides satisfying the application sampling rate, it is also essential that the sensor
is able to enter and exit a low power state quickly. The power consumption of a
sensor is equally dependent on the amount of time it takes to read the sensor as
it is to the current consumption. For example, if a sensor takes 100 ms to turn on
and generate a reading and it consumes just 1 mA at 3 V, it will cost 300 μJ per
sample. This is the same amount of energy as a sensor that consumes 1000 mA
of current at 3 V but takes just 100μs to turn on and sample [29]. Moreover,
the energy spent with sensing is affected by the complexity of the monitored
phenomenon and of the detection process, both being related to the behavior
of the environment. Finally, similarly to the radio, the sensing subsystem can
also exploit duty cycle mechanisms so that it can remain active only when is
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necessary to sample data and then soon switching to a power save mode, thus
saving energy.

The power consumption of microcontrollers varies greatly according to their
processing capabilities. Therefore, the choice of a microcontroller should be
dictated by the application requirements to achieve a close match between the
performance level offered by the processor and the one demanded by the appli-
cation. Another significant energy-related feature of microcontrollers is the sleep
mode power consumption. The CPU is a major contributor to the power consump-
tion of sensors’ idle mode. During idle periods, the CPU will stop execution and
enter in a low power sleep state [29], making use of duty cycle mechanisms. The
processor only needs to maintain its memory and maintain time synchronization
so it can properly wake-up when necessary. Moreover, the power consumption
levels of the various modes, the transition costs, and the amount of time spent
by the MCU in each mode all have a significant bearing on the total energy
consumption (battery lifetime) of the sensor node.

24.3 STRATEGIES FOR ENERGY OPTIMIZATION

In order to effectively reduce the overall power consumption in a WSN and to
prolong its lifetime, several strategies need to be used, often simultaneously, at
different levels of the network architecture. Akyildiz et al. [18] described the
WSN protocol stack as being composed of five protocol layers, consisting of
the traditional OSI-ISO protocol stack, and three management planes: power,
mobility, and task management. The management planes are orthogonal to the
protocol layers, and in our survey, we particularly address the power management
plane that is in charge of managing how the available power is used by the
network nodes. This component, included in the concept map in Figure 24.4 as
the concept power management and awareness , defines a set of policies to guide
the behavior of the whole network aiming at minimizing the energy consumption
at different levels. Such policies have to consider the generic requirements of any
network, such as guaranteeing the connectivity, as well as requirements of the
different target applications, and exploiting their specific features. For instance,
in event-driven applications, the WSN can be set to spend most of the time in a
power-saving mode until the occurrence of an event of interest.

The power-saving policies in a WSN act at different levels: (i) the level
of individual node, called intranode in our map; (ii) the level representing the
communication link between neighboring (often one-hop distant) nodes, called
internode; and (iii) the level of the entire network, that we called network wide.
It is important to mention that the intra- and internode levels have a trade-off
relation that should be exploited for the purpose of energy saving. Since the com-
munication is the most energy-costly operation in WSNs, it is frequently better
to perform as much in-network processing as possible in the sensor data (e.g., by
applying some data aggregation operation within the node) in order to decrease
the number of transmitted messages, thus trading transmission for processing
energy.
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The next sections explain in detail the policies belonging to the first two levels.
The network-wide level is addressed in Chapter 11.

24.3.1 Intranode Level

Recent advances in the design of ultralow power processors and circuits have
enabled the development of ultralow power processors for WSNs [36]. The design
of optimized low power processors can contribute to the energy saving in a WSN
since it is the core of the system. However, the energy efficiency achieved by
the use of techniques for designing low power systems based on fixed hardware
platforms is limited, and more significant gains can be obtained by combining
such hardware techniques with dynamic power management policies. In this
sense, intranode policies for power management are the first step toward an
energy-aware and energy-efficient WSN. Such policies encompass hardware and
software optimization techniques that exploit the knowledge and behavior of
individual sensor nodes.

Most intranode policies are implemented in the node OS, although some of
them are implemented at the MAC layer or as algorithms on top of such a layer.
We identified four main different enabling techniques to implement the policies
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at the intranode level (Fig. 24.5): (i) duty cycling, (ii) adaptive sensing, (iii)
DVS, and (iv) OS task scheduling. They are described in details in the following
sections.

24.3.1.1 Duty cycling. The term duty cycle is defined as the fraction of time
a node is active during its lifetime (Fig. 24.5). One commonly used power man-
agement policy is based on turning off hardware components when they are not
needed and waking them up whenever necessary, establishing a small duty cycle
for the nodes based on events occurring in the monitored environment. Thus,
techniques based on duty cycling rely on the fact that active nodes do not need
to maintain their radios, processor, and sensing devices continuously on. When-
ever there is no interesting activity in the WSN, the nodes can switch off their
sensing and processor and put their radio in a low power sleep mode, thus alter-
nating between sleep and wake-up periods. Although the duty cycling technique
operates at the level of the individual node, it is exploited by strategies and pro-
tocols for energy saving at both the internode and the network-wide levels. Such
feature is highlighted in the concept maps by the presence of cross-links, relating
the duty cycling concept in the map that represents the intranode policies to this
same concept in the maps representing the internode and the data link policies
(Chapter 11).

There are several useful operation modes for a WSN node, depending on the
number of the states of each individual node component, that is, microprocessor,
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memory, sensing subsystem, and radio transceiver. Different states are charac-
terized by different amounts of power consumption, and state transitions have a
nonnegligible power and time overhead. Policies defining a duty cycling scheme
actuate by changing such states, and they can be separately defined for each
individual component of the sensor node. From the basic sensor node architecture
considered in this chapter, there are three subsystems that can be put into differ-
ent low power states: the sensing, the communication (radio), and the processing
subsystem. However, there are combinations of component states that produce
nonuseful operation modes for the sensor node. For instance, it does not make
sense to activate the sensing device while keeping the processor turned off, since
the environmental data needs to be processed after collected. On the other hand,
the sensing subsystem can be put to sleep while the processor is in an active state
to perform data fusion operations over data received from neighboring nodes.

Besides considering only operation modes that are useful, there are other
concerns to be addressed to define duty cycling policies. First, since it is hard to
predict when an event of interest will occur in the future, it is a challenging issue
to schedule the activation and deactivation of components so that they are active
exactly when they are requested and inactive in the remaining time. Moreover,
since the time for start-up components is nonnegligible, operation in a power-
saving mode is energy efficient only if the time spent in that mode is greater than
a given threshold. It is also important to consider the state of computation when
turning components on/off to save energy. The state of the computation represents
the state of the application and its restrictions in a given instant of time, which
can have a direct influence on decisions taken by a power manager. The start-
up delay should also be considered regarding the data accuracy required by the
application, since if a sensor takes too long to wake up, such QoS parameter could
not be met. Finally, it is also important to consider the state of the neighboring
nodes in terms of their radio operation because if a node wakes up to send a
message and there is no neighbor to receive it, this could generate a packet lost,
thus resulting in energy waste.

Therefore, the core issue in duty-cycling-based policies is deciding the state
transition policy of nodes [37], taking into account the current execution states
and application requirements. Although duty cycle techniques can be defined
without relying on network-wide aspects such as topology or connectivity,
since sensor nodes perform collaborative tasks, they need to coordinate their
sleep/wake-up periods. Thus, a sleep/wake-up scheduling algorithm is an
integral part of any duty cycling policy. It is typically a distributed algorithm
(thus we included it in both our intra- and internode maps) that controls which
and when sensor node components transition from active to sleep and then
back. It allows neighboring nodes to be active at the same time, thus enabling
the exchange of packets even when nodes operate with a low duty cycle. The
need for taking into account information from different levels in a WSN system
(application, radio subsystem, and the node hardware) denotes the cross-layer
[38] characteristic of duty cycle policies. Therefore, if further aspects from
the network level are considered along with intra- and internode levels, in a
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cross-layer and integrated approach, more significant gains in energy savings
can be achieved.

To enable duty cycle of hardware components, the OS needs to provide a set
of primitives to power on and off the sensors [39]. The companion sleep/wake-up
scheduling algorithm can be implemented within the MAC protocol or as a
protocol on top of the MAC layer. The latter approach allows optimizing func-
tions of medium access based on the specific sleep/wake-up pattern used. On
the other hand, independent sleep/wake-up algorithms allow higher flexibility, as
they can be tailored to the application requirements and, in principle, be used
with any MAC protocol.

In most WSNs, wireless communication is the major source of energy con-
sumption during system operation, thus significant savings can be achieved by
an efficient policy of duty cycling applied to the radio subsystem. However, the
assumption that data acquisition consumes significantly less energy than data
transmission does not hold in several practical applications of WSNs where the
power consumption of the sensing activity may be comparable or even greater
than that of the radio [33]. So, recent research efforts have being focusing on
proposals to optimize the operation of sensing devices as well. The following
sections detail approaches for power management based on duty cycling of the
radio and the sensing device.

Duty cycling and sleep/wake-up algorithms for the radio subsystem. The
most effective policy for energy saving is putting the radio transceiver in the
(low power) sleep mode whenever communication is not required [39]. Ideally,
the radio should be switched off as soon as there is no data to send/receive
and then switched on as soon as a new data packet becomes ready. In this
way nodes alternate between active and sleep periods depending on the current
network activity. So, sleep/wake-up algorithms for the radio subsystem need to
be concerned with the generation of sensing data by the own node as well as
with incoming packets generated by neighboring nodes.

As discussed, sleep/wake-up algorithms can be implemented integrated on the
MAC protocol or as independent protocols on top of this layer (i.e., at the network
or the application layer). We discuss energy-efficient MAC protocols in Chapter
11, so in this section, we focus on independent sleep/wake-up algorithms for
the radio subsystem. Such algorithms can be further subdivided into three main
categories [40]: on-demand, scheduled rendezvous, and asynchronous schemes
(Fig. 24.6).

On-demand algorithms use the most intuitive approach to power manage-
ment based on sleep/wake-up. The basic idea is that a node should wake up only
when another node wants to communicate with it. This approach can significantly
minimize energy consumption, being particularly suitable for event-driven WSN
applications with a very low duty cycle (e.g., fire detection, surveillance of
machine failures). In such scenarios, sensor nodes remain most of the time in a
monitoring state, only passively sensing the environment, until the detection of
an event of interest that then triggers the nodes’ transition to a data transmission
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state. From the three considered categories, on-demand algorithms can poten-
tially achieve the maximum energy saving, since nodes keep active only for the
minimum time required for communication while ensuring a low latency as the
target node wakes up immediately when it detects a waiting message.

The main problem associated with on-demand algorithms is how to inform
the sleeping node that a node needs to communicate with it. The implementation
of such schemes typically requires two different channels: a data channel and
a wake-up channel. Although it would be possible to use a single radio with
two different channels, existent proposals [41, 42] rely on two different radios
in order to prevent deferring the transmission of signal on the wake-up channel
if a packet transmission is in progress on the other channel, thus reducing the
wake-up latency [39]. So, the on-demand approach has the practical drawback
of the additional cost for the second radio. Another drawback is the possible
mismatch between the coverage of the two radios.

An alternative solution is the use of a scheduled rendezvous approach . The
basic idea behind such schemes is that each node should wake up at the same time
as its neighbors. Typically, nodes wake up periodically according to a wake-up
schedule and remain active for a short time interval to communicate with their
neighbors. After this time, they go to sleep until the next rendezvous time. The
main advantage of such schemes is that when a node is awake it is guaranteed
that all its neighbors are awake as well. This allows sending broadcast messages
to all neighbors [40]. As a drawback, scheduled rendezvous schemes require that
nodes are synchronized in order to wake up at the same time. Clock synchroniza-
tion in WSN has been the focus of extensive research. The reader can refer to
References 43 and 44 for detailed surveys on time synchronization techniques.
In the following, we assume that nodes are synchronized using some existent
synchronization protocol.

Proposals of scheduled rendezvous protocols differ in the way nodes sleep and
wake up during their lifetime. The simplest way is using a fully synchronized pat-
tern [45], in which all nodes in the network wake up at the same time according
to a periodic pattern. Owing to its simplicity, this scheme is used in several prac-
tical implementations including TinyDB [46] and TASK [47]. Although simple,
this scheme allows a low duty cycle provided that the active time is significantly
smaller than the wake-up period. A further improvement can be achieved by
allowing nodes to switch off their radio when no activity is detected for at least

Radio duty cycling

is a

Duty cycling

classified as

Asynchronous On demand
Scheduled
rendezvous

Figure 24.6 Concept map representing the radio duty cycling taxonomy.
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a time-out value [48]. The main drawback of fully synchronized approaches is
that all nodes become active at the same time after a long sleep period and thus
try to transmit simultaneously (generally, these schemes assume that an underly-
ing contention-based MAC protocol is used for data transfer), generating a high
number of collisions. In addition, such a scheme is not very flexible since the
size of wake-up and active periods is fixed and does not adapt to variations in
the traffic pattern and/or network topology.

Some sleep/wake-up schemes take advantage of the internal network organiza-
tion (controlled by routing protocols) by specifying active times of different nodes
according to their position in the routing tree. Although the routing tree can suffer
frequent changes, both for purposes of load balance and because of the presence
of faulty nodes, under the assumption that nodes are static, it remains stable for a
reasonable amount of time [49] so that sleep/wake-up algorithms can exploit its
features. In the staggered wake-up pattern [45], nodes located at different levels
of the data-gathering tree wake up at different times. The active parts of different
levels of the tree are arranged in such way that the fraction of active period a node
uses to receive packets from its children is adjacent to the fraction it uses to send
packets to its parent, thus minimizing the energy dissipation while transitioning
from sleep to active mode [39]. The staggered wake-up pattern is also called the
backward staggered pattern [45], as it optimizes packet latency in the backward
direction, that is, from leaf nodes to the root. Such direction is the common pat-
tern of data flow in WSNs, where data is generated by multiple sources (sensor
nodes) and sent to typically one sink node. The (backward) staggered scheme
was first proposed in the framework of TinyDB [46] and TAG [50].

According to Anastasi et al. [39], in comparison with the fully synchronized
approach, the staggered scheme has several advantages. First, since nodes at
different levels of the data-routing tree wake up at different times, at a given
time, only a (small) subset of nodes in the network will be active. Thus, the
number of collisions is potentially lower. For the same reason, the active period
of each node can be significantly shortened with respect to the fully synchronized
scheme, thus resulting in higher energy savings. On the other hand, the staggered
scheme has some drawbacks in common with the fully synchronized scheme. One
of them is that such a scheme has limited flexibility due to the fixed duration
of the active and wake-up periods. The active period is often the same for all
nodes in the network, and ideally, it should be as low as possible not only
for energy saving but also for minimizing the latency experienced by packets
to reach the root node. In addition, since nodes located at different levels of
the data-gathering tree manage different amounts of data, active periods should
be sized on an individual basis. Finally, even assuming static nodes, topology
changes and variations in the traffic patterns are still possible. The active period
of nodes should thus adapt dynamically to such variations.

Motivated by the aforementioned drawbacks of adopting a fixed duration for
wake-up periods, an adaptive and low latency staggered scheme is proposed in
References 50 and 51. By setting the length of the active period to the minimum
value consistently with the current network activity, this adaptive scheme not
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only minimizes the energy consumption but also provides lower average packet
latency in comparison to a fixed staggered scheme. In addition, by allowing
different lengths of the active period for nodes belonging to the same level,
but associated with different parents, it also reduces the number of collisions.
Additional approaches for scheduled rendezvous sleep/wake-up algorithms can
be found in Reference 39.

The third type of sleep/wake-up algorithms is the asynchronous algorithms .
These algorithms allow each node to wake up independent of the others by
guaranteeing that neighbors always have overlapped active periods within a
specified number of cycles. This goal is achieved by properties implied in the
sleep/wake-up scheme, thus no explicit information exchange is needed among
nodes. Asynchronous wake-up schemes have been explored in the context of ad
hoc networks [52, 53] and several existent approaches can be successfully used
in WSNs.

As a final remark, while power-saving policies based on radio duty cycling
can provide significant energy gains, it is important to consider that sensor nodes
communicate using short data packets. The shorter the packets, the higher the
dominance of start-up energy [18]. Hence, such policies need to be carefully used
to get the maximum lifetime of a sensor node. In fact, if, for instance, the radio
is blindly turned off during each idling slot, over a period of time, we might end
up expending more energy than if the radio had been left on.

Duty cycling of sensing devices. Duty cycling technique applied to the sensing
device consists of waking up the sensorial system only for the time needed to
acquire a new set of samples and powering it off immediately after. This strat-
egy allows energy savings provided that the dynamics of the phenomenon to
be monitored are time invariant and known in advance [33]. Such hypotheses
hold mainly for periodical monitoring applications. For periodic sensing appli-
cations, the (fixed) sampling rate is computed a priori, based on partial available
information about the process to be monitored and assuming that the process
dynamics are stationary. In this case, all the sensors in the WSN can be config-
ured to wake up according to the defined sensing intervals, acquire the data with
the defined rate, and then go to sleep until the next interval. For event-driven
applications, in which the monitored phenomenon has an unpredictable behav-
ior, the duty cycle technique still can be used, but in a very application-specific
way and coordinated with a topology control scheme (see more in Chapter 11).
In this case, some nodes can be configured to be in a sleep mode for a given
time interval, provided the WSN assures a degree of sensing coverage enough to
enable the detection of an event of interest. There are event-driven applications
with less astringent time requirements; for instance, in an application for flooding
detection, a delay of 2 min in detecting a potential flooding is not critical. Other
applications, as for instance intrusion detection, are time critical, and any delay
in the event detection cannot be tolerated. So, besides the coverage degree, the
specific time requirements of the application need to be considered when defining
a policy for duty cycle in event-driven scenarios.
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To enable duty cycle of sensing devices, the OS needs to provide a set of
primitives to power on and off the sensors. Such primitives would be used by
the power management policies. Moreover, several aspects must be considered to
ensure an effective handling of the duty cycle policy, failing which might result
in invalid acquired data and/or energy dissipation larger than that associated with
the always-on mode.

Each sensor is characterized by a set of functional characteristics, for example,
wake-up latency and break-even cycle, that affect the energy management of the
sensor. The wake-up latency is the time required by the sensor to generate a cor-
rect value once activated. Clearly, if the sensor reading is performed before the
wake-up latency has elapsed, the acquired data is not valid. The break-even cycle
is defined as the rate at which the power consumption of a node with a power
management policy is equal to that of not-power-managed node. Such value is
in inverse proportion to the power consumption overhead introduced by the non-
ideal on/off sensor transition and represents the highest sampling rate for which
applying a power management is worth. Moreover, the break-even cycle is not
fixed since the energy consumed by the sensor during normal operations and in
on–off transitions depends on the supply voltage, which changes over time [54].
Therefore, in order to achieve an effective sensor-specific energy management,
the OS drivers should be designed by using, at least, information about wake-up
latency and break-even cycle [54].

24.3.1.2 Adaptive sensing. As aforementioned, in periodic monitoring appli-
cations, the sensor sampling rate can be predefined according to a previous overall
knowledge of the behavior of the monitored phenomenon. As a consequence, and
to assure the accuracy required by the application, such rate is often larger than
necessary (oversampling), resulting in energy wasting. A better approach would
be to adopt an adaptive sensing strategy in which sensors would sample the envi-
ronment using a rate dynamically adapted, according to the actual and current
dynamics of the monitored phenomenon. By reducing the number of samples
generated by the sensors, an efficient sensing strategy also reduces the amount of
data to be processed and possibly transmitted by sensors, thus generating further
energy savings. Adaptive sensing and sensor duty cycling are complementary
approaches that can be used in combination to reduce the energy consumed by a
sensor. The concept map in Figure 24.7 shows a taxonomy for current adaptive
sensing strategies proposed in Reference 33.

Hierarchical sensing assumes that multiple sensing devices are installed on
sensor nodes, each presenting its own accuracy and power dissipation and observ-
ing the same event. In most cases, simple and energy-efficient sensors are used
to provide coarser readings or trigger an event. Advanced, more complex sensors
give more accurate readings of the physical property at the cost of greater energy
consumption. The idea behind hierarchical sensing techniques is to dynamically
select which of the available sensors must be activated by trading off accuracy
for energy conservation [33]. An example of hierarchical sensing applied to fire
emergency management is presented in Reference 55. In this example, the WSN
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field is equipped with static sensors that monitor the environment. When the
static nodes detect an anomaly in a given area, for instance, the occurrence of
high temperatures, they inform such event to the base station. As a consequence,
the base station sends a mobile sensor unit, equipped with more sophisticated
sensors, to investigate the event. After collecting the necessary data, the mobile
sensor unit returns to the base station and reports the acquired data.

A different hierarchical sensing approach for object detection is presented in
Reference 56. Sensors are equipped with CMOS (complementary metal-oxide
semiconductor) camera modules that are configured to provide low resolution
images to reduce energy consumption. If potential targets are detected by image
processing, the cameras are reconfigured to a fine-grained, high quality mode and
object detection is performed by images collected by the reconfigured cameras.
After this process, the cameras are configured back to the power-saving low
resolution operation.

Adaptive sampling strategies dynamically adapt the sampling rate based on
spatial and/or temporal correlations between the sensed data. Spatial correlation
tries to reduce the energy-sensing consumption exploring the fact that measure-
ments taken by sensor nodes that are spatially close to each other do not differ
significantly. On the other hand, temporal correlations are based on the idea that
if the monitored phenomenon evolves slowly with time so that subsequent sam-
ples do not differ very much, it is possible to reduce the sampling rate without
any loss of relevant information. Both correlations can be combined to further
reduce the number of samples to be acquired. Examples of spatial correlation
are described in References 57 and 58. Dai-Hua and Wei-Hsin [58] explored
spatial correlation to reduce the number of nodes used to send data to the sink. A
spatial Correlation-Based Collaborative MAC (CC-MAC) protocol is proposed
to regulate access and prevent redundant transmissions from close sensors. An
iterative node selection algorithm, which runs at the sink node, computes a cor-
relation radius based on the maximum distortion tolerable by the application.
This information is then broadcasted to sensor nodes during the network setup.
During the operational phase, the CC-MAC protocol prevents the transmission
of redundant information by selecting a single node within an area determined
by the correlation radius to transmit its data to the sink. Examples of tempo-
ral correlation are described in References 59 and 60. The approach described
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Figure 24.7 Concept map representing the strategies for adaptive sensing.
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in Reference 60 dynamically adjusts the sampling rate collectively. Sensors are
allowed to autonomously adjust the sampling rate depending on the (estimated)
data stream characteristics, provided such sampling rate is within a specified
range. If the desired modification in the sampling rate is more than that allowed
by the range, a new sampling interval is requested from the sink. The estimation
of the future values of a stream is computed using a Kalman filter based on the
previously gathered data. Large prediction errors denote unexpected behavior of
the streaming data or an interesting event. The sampling interval is adjusted based
on the prediction error. At the sink node, new sampling intervals are allocated
to the requesting sensors based on the available bandwidth, network contention,
and streaming source priority [60]. Since the computational load is high, the
algorithm is executed at the base station and the new estimated sampling rates
are sent to each sensor node. It is important to note that when using adaptive
sampling, data losses introduced by the sensor network cannot be tolerated, and
100% reliability is required in the communication from sensor nodes to the sink.
This can be achieved by using retransmissions of missed data, forward error cor-
rection (FEC), and multipath routing techniques. All these techniques increase
the percentage of data correctly delivered to the sink at the cost of additional
energy consumed by the radio [33].

Model-based active sensing uses forecasting models to build an abstraction
of the sensed phenomenon. The forecasting model is built with an initial set of
sampled data. Then, the model is used to predict the data instead of performing a
continuous sampling in the field. Therefore, the energy dissipated for data sensing
and transmission is saved. To verify the accuracy of the model, actual data needs
to be sensed from time to time. Whenever the requested data accuracy is not
satisfied, the model is updated to meet the new dynamics of the observed phe-
nomenon. The effectiveness of this approach is bound by both the accuracy of the
model and the nature of the observed phenomenon. Examples of model-based
active sensing are presented in References 60–62. The approach described in
Reference 62 uses a limited-window linear regression model to forecast samples.
Whenever the predicted value falls outside the confidence interval, the sampling
frequency is increased up to a predefined maximum value while the model is
updated. If the prediction lies within the confidence interval, the sampling fre-
quency is decreased by a given factor, unless a minimum predefined frequency
is reached. The proposal described in Reference 62 also encompasses a routing
protocol that makes decisions integrating both sensing and communication tasks
in order to save further energy. According to the protocol, sensors that are not
forwarding data can perform additional sampling, and routes in which data is
sampled with lower frequency are preferred to routes in which nodes spend more
energy for sampling.

24.3.1.3 Dynamic voltage scale (DVS). While shutdown techniques can
save energy by turning off idle components, additional savings can be achieved
by optimizing the sensor node performance in the active state [63, 64]. DVS is
a technique that enables intelligent trade-offs between energy consumption and
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operational fidelity [65]. The DVS technique aims at adjusting the voltage and the
operating frequency of the node CPU based on its computational load and taking
into account the instantaneous processing requirements defined by the quality of
service requested by the application. Most microprocessor-based systems have
a time-varying computational load, and hence, peak system performance is not
always required. DVS exploits this fact by dynamically adapting the processor’s
supply voltage and operating frequency to just meet the instantaneous process-
ing requirement, thus trading off unutilized performance for energy savings.
DVS-based power management, when applicable, has been shown to have signif-
icantly higher energy efficiency compared to shutdown-based power management
because of the convex nature of the energy–speed curve [66].

The utilization of DVS technique requires consideration of time constraints
because the changes in operating frequency interfered with the computation time
given a fixed computation workload [21]. Hence, a scheduling algorithm is usu-
ally accompanied with DVS technique to guarantee the time constraint, especially
in real-time applications. Researchers have worked on scheduling algorithms for
using DVS in different applications. In References 67 and 68, real-time schedul-
ing of computation tasks for a sensor node was proposed to reduce energy
consumption in computing stochastic computational tasks. In Reference 5, DVS
was used to achieve an energy-efficient WSN for dynamic system monitoring
of large-scale and capital-intensive machines. Several modern processors such as
Intel StrongARM and Intel PXA271 (used in the Imote2 sensor node) support
scaling of voltage and frequency to provide energy efficiency to the system.

24.3.1.4 OS task scheduling. The OS is ideally suitable to implement power
management policies, since it has global knowledge of the performance and
fidelity requirements of all the applications, and can directly control the under-
lying hardware resources, fine tuning the available performance-energy controls.
At the core of the OS is a task scheduler, which is responsible for scheduling a
given set of tasks to run on the system while ensuring that timing constraints are
satisfied. System lifetime can be considerably increased by incorporating energy
awareness into the task scheduling process [69, 70].

The energy-aware real-time scheduling algorithm proposed in Reference 69
exploits two observations about the operating scenario of wireless systems to
provide an adaptive power versus fidelity trade-off. The first observation is that
these systems are inherently designed to operate resiliently in the presence of
varying fidelity in the form of data losses and errors over wireless links. This
ability to adapt to changing fidelity is used to trade-off against energy. Sec-
ond, these systems exhibit significant correlated variations in computation and
communication processing load because of the underlying time-varying physical
phenomena. This observation is exploited to proactively manage energy resources
by predicting processing requirements. The voltage is set according to predicted
computation requirements of individual task instances, and adaptive feedback
control is used to keep the system fidelity (e.g., timing violations) within the
application specifications.
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24.3.2 Internode Level

The internode level policies actuate on the communication link between neighbor-
ing nodes, and they are based on three main techniques (Fig. 24.8): (i) adapting
the transmission power of radios, (ii) DMS, and (iii) optimizations at the link
layer. Besides these techniques, sleep/wake-up algorithms, which are a compan-
ion of duty cycle polices and were already explained in Section 24.3.1.1 are also
included in this level.

24.3.2.1 Transmission power control. In a wireless channel, the electro-
magnetic wave propagation can be modeled as a power law function that depends
on the distance between the transmitter and receiver. Independent of which propa-
gation model is used (e.g., free space model, two-ray ground, shadowing [71]), the
received power decreases with the distance. Considering that a primary require-
ment of all networks is to have connectivity among the participating nodes, the
level of connectivity in wireless networks depends on the transmission power of
the nodes. If the transmit power is too small, the network might be disconnected
(i.e., there may be multiple disconnected clusters of nodes instead of a single over-
all connected network). However, as we mentioned in Section 24.2.2, the energy
spent in radio transmissions is proportional to the distance (and the transmission
power). Therefore, transmitting at excessively high power is inefficient in terms of
energy. Moreover, it is inefficient because of the mutual interference in the shared
radio channel [72]. Thus, it is intuitively clear that the optimal transmit power is
the minimum power sufficient to guarantee network connectivity [73–75].

To provide system designers with the ability to dynamically control the
transmission power, the radio hardware of most sensor platforms provides
a register to specify the transmission power level at runtime. For instance,
the CC2420 radio in Crossbow MicaZ motes provides 32 transmission levels
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ranging from -25 to 0 dBm output, while the SensiumTMplatform supports 8
levels ranging from -23 to -7 dBm output. So, it is feasible and desirable to
specify the minimum transmission power level that achieves both the required
connectivity and communication reliability while saving power and increasing
the system lifetime [76]. Power control refers to techniques that adapt the
transmission power level to optimize a single wireless transmission. Algorithms
for transmission power control (known as TPC ) have been proposed to make
the communication between transmitter and receiver at the needed minimum
power, prolonging the network lifetime. The research in this area is not new
since this issue was extensively addressed in the context of wireless networks
(mobile and ad hoc). Recent works have investigated this issue in the specific
context of WSNs.

Several solutions for TPC in multihop wireless networks use a single transmis-
sion power for the whole network [77], thus not fully exploiting the capacity of
setting the transmission power provided by the radio hardware to reduce energy
consumption. Other works assume that each node chooses a single transmission
power for all its neighbors [78], while others assume that nodes use different
transmission powers for different neighbors [79]. However, in spite of being a
more complex solution, to achieve the maximum possible power savings, the
ideal solution is to adjust the transmission power of a node on a link-by-link
basis. Indeed, Gomez and Campbell [80] analyzed the benefits of TPC in wire-
less multihop networks and showed that per-link range adjustments outperform
global range transmission adjustments by 50% in terms of power savings. These
results indicate that such approach is the most suitable for WSNs.

Lin et al. [76] proposed ATPC, an adaptive TPC algorithm for WSNs. ATPC
achieves good values for the average energy consumption in transmission when
compared with other approaches. The algorithm is based on dynamically adjust-
ing the transmission power through on-demand feedback packets. Such packets
report information about the current quality of the link and are used to build a
model for each neighbor of a given node. ATPC tunes the transmission power
according to changes in the quality of monitored links. One drawback of this
proposal is its high memory consumption. Another proposal that considers a per-
link TPC is presented in Reference 81, where two TPC protocols for WSNs are
proposed, which can be embedded into any existing MAC protocol. The first one
(called Hybrid ) calculates the ideal transmission power using a closed control
loop that iterates over the available transmission powers in order to maintain a
target link quality. The second one (called AEWMA) determines the ideal trans-
mission power based on the reception power, transmission power, and average
noise. Experimental evaluation showed that the proposed algorithms were able
to decrease the energy consumption by up to 57% in comparison with B-MAC
the standard MAC protocol of the Mica 2 platform, thus illustrating in terms of
energy the improvements such TPC techniques can achieve.

24.3.2.2 Dynamic modulation scaling. As we have seen in Section
24.3.2.1, the radio technology used in the wireless link between sensor
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nodes plays an important role in the energy management of WSNs. At this
level, DMS is another emerging hardware technique that has been used in
a similar way as DVS to reduce energy consumption, in this case, trading
energy with transmission delay and communication fidelity. DMS technique
consists of dynamically adapting the modulation level of the radio to match the
instantaneous traffic load, as part of the radio power management. The concept
of changing modulation level on the fly to save the communication energy was
first proposed by Schurgers et al. in 2001 [82].

Multilevel (M-ary) modulation is the key aspect of DMS [83]. In an M-ary
modulation, M is the number of levels or symbols used for modulation pur-
pose such that M = 2b, where b indicates the number of bits per symbol and
is known as the constellation size. For transmitting a data packet of size S, the
total transmission time is determined by the used symbol rate RS and the mod-
ulation level. The symbol rate RS specifies the number of symbols transmitted
per unit time, while the modulation level denotes the number of bits that defines
a symbol, thus the multiplication of RS and b gives the actual data rate used
to compute the transmission time. As the constellation size b increases, power
consumed by hardware as well as output power increases. So, for a particu-
lar transmission system, the value of b should be optimized for each specific
symbol rate. The energy consumption in data transmission is proportional to the
transmission data rate. Increasing the constellation size b increases the energy
consumed for transmission; however, more number of bits is transmitted per
symbol, thus increasing the data rate and as a consequence resulting in fast trans-
mission and reduced delay. This is the trade-off that algorithms for DMS need
to manage.

Significant research has been done on scheduling algorithms for DMS to
provide significant energy savings while meeting the required time constraints.
Several works have analyzed DMS along with other techniques for energy effi-
ciency at the MAC or the network levels [63, 84, 85]. Yu e al. [63] provided
algorithmic solutions to the problem of scheduling packet transmission for data
gathering in WSNs by exploring modulation scaling. In Reference 85, a control
scheme was proposed using modulation scaling to minimize energy consumption
while ensuring application requirements. Yeh [21] investigated reconfiguration
techniques that enable the WSN hardware to adapt its energy consumption to
external dynamics through the integrated use of DVS, DMS, and additional tech-
niques at the network-wide level. Since DVS and DMS techniques trade energy
savings against the computation and communication time, respectively, the author
claims that when only limited time is available for the sensor node, it becomes
critical to allocate the time resource for minimizing the total energy consumption.
Therefore, a time allocation mechanism, called dynamic time allocation (DTA),
was also developed in order to determine the optimal share of computation time
and transmission time subject to the time constraint. The use of DVS, DMS, and
DTA, along with an efficient scheme for node activation, achieved an energy
reduction of up to 50%, thus demonstrating the potential of such techniques to
prolong the WSN lifetime.
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24.3.2.3 Link layer optimizations. Strategies for achieving energy efficiency
at the level of the data link layer encompass both the solutions that address the
network as a whole and the solutions that act in a link-by-link base. The first
type is classified in the network-wide category according to our concept map.
Such strategies include solutions for managing the network logic topology, by
selectively activating subsets of nodes while putting others to sleep, and efficient
algorithms for the MAC sublayer; they are described in Chapter 11. However, in
this section, we briefly discuss some strategies that actuate at the level of the link
layer but are more concerned with the communicating link between neighboring
nodes, instead of considering the whole network. In this sense, mechanisms for
data reliability, including techniques for error detection and correction, can be
exploited for purposes of energy savings. Even when not explicitly aiming at
increasing the WSN energy efficiency, link layer techniques play an indirect
role in reducing energy consumption. The use of a good error control scheme
minimizes the number of times a packet is retransmitted, thus reducing the power
consumed at both the transmitter and the receiver.

Energy-efficient error control. Several WSN applications, for instance, medical,
surveillance, and target tracking applications, require data to be transmitted with
high reliability. There are several challenges involved in achieving reliability on
WSNs. First of all, wireless communication channels are typically characterized
by high error rates. Channels in WSNs are often unreliable, with high probability
of introducing bursts of errors, and are susceptible to further problems such as
the hidden terminal problems and dynamic changes in connectivity. Moreover,
the wireless channel is nonstationary, and the channel bit error rate (BER) varies
over time.

A second challenge concerns the fact that a same WSN can be used (sometime
simultaneously) for several applications, demanding different types of sensor data
and with different QoS requirements. The last challenge is the fact that sensor
node resources are severely restricted. WSN nodes have limited power source,
computational power, and memory space, and thus, the algorithm to achieve
reliability should not be computationally or storage intensive [86].

To deal with the typically high error rate and to increase the apparent quality of
a wireless communication channel, the two commonly used techniques in the data
link layer are automatic repeat request (ARQ) and FEC. FEC uses error correcting
codes to combat bit errors by adding redundant bits to information packets before
they are transmitted [87]. This redundancy is used by the receiver to detect and
correct errors. On the other hand, ARQ provides only error detection capability
and makes no attempt to correct any erroneous packets received, instead it is
requested that the packets received in error be retransmitted.

FEC and ARQ are two basic categories of error control techniques. The advan-
tages of ARQ are its relative simplicity, reasonable throughput levels, and no
overhead in a nonerror scenario. Its main disadvantages are the retransmitting
costs in terms of huge delays and energy whenever an error occurs. Considering
the high probability of errors in WSNs and also the fact that packet transmission
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is one of the most energy-costly operations performed by a sensor node, retrans-
mitting packets has to be done as few times as possible. The main advantage of
FEC is that since there are no retransmissions, there are no time delays in the
message flows (or only a bound small delay, considering the encoding and decod-
ing operations) [86]. A disadvantage is that the postdecoding error rate rapidly
increases with increasing channel error rate. In order to obtain high system reli-
ability, several error patterns must be corrected, thus requiring a powerful code,
making the codec hard to implement and imposing a high transmission over-
head. When the error correcting code is not strong enough to correct the error
and recover the data, packets can get lost. In order to overcome their individual
drawbacks, the combination of these two basic classes of error control schemes,
called hybrid ARQ schemes , has been developed [87].

ARQ, FEC, and other mechanisms to detect and correct errors in the data link
layer are typically static. Moreover, most reliability protocols use a single loss
recovery algorithm for all nodes and applications in the network [88]. Although
such a static and uniform approach for dealing with errors is very straightforward,
it has several drawbacks, mainly when applied in wireless network environments.
For instance, in a static FEC scheme, in order to guarantee a given QoS require-
ment, the worst case needs to be considered for the characteristics of a channel.
As a consequence, FEC techniques are associated with unnecessary overhead
that reduces throughput when the error rate in the channel is above the worst
case. According to Ahn et al. [89], the deterministic selection of the appropriate
FEC code size degrades the performance by mismatching the FEC strength to
the underlying channel BER. When the channel BER widely varies, which is
the case in WSNs, the amount of FEC codes should be dynamically adapted for
further performance improvement.

Regarding the uniformity treatment, nodes and applications in a WSN may
have diversified features, constraints, and requirements, thus a more flexible
approach to deal with errors is needed to optimize the energy efficiency.

Therefore, in the context of energy-efficient WSNs, techniques for error detec-
tion and correction must be adaptive to the changing conditions of the wireless
medium as well as to the different requirements of applications and character-
istics of individual nodes. Moreover, mechanisms such as FEC and ARQ have
inherent overheads (due to either retransmissions or the increase in the packet
size), so they need to be carefully used in order to really achieve gains in energy
saving. Trade-offs should be exploited whenever possible. In the case of FEC,
for instance, the so-called coding gain can be traded off to improve the BER at
a given transmission energy or to increase energy efficiency for a given BER.

Ahn et al. [89] initially analyzed the traffic behavior in the WSN wireless
channel and arrived at some important conclusions about the error rates. The
performed measurements showed that average BER per second (ABERPS) or
average BER per minute (ABERPM) fluctuate continually from 0 to 10−3, even
though ABERPS changes more abruptly than ABERPM. The traffic analysis also
indicates that the ABERPM at a given time differs from the next ABERPM only
by 30% in maximum. According to the authors, these two observations imply
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that once a dynamic FEC algorithm dynamically chooses the appropriate FEC
code size, matching to the slowly varying channel status, it can significantly
improve the performance over these wireless channels. So they proposed the
adaptive FEC code control (AFECCC) algorithm that adjusts the FEC code size
based on the channel status. The proposed algorithm uses the arrival of acknowl-
edgment packets as an indicator of the channel state. Using such indicator, the
algorithm selects from different, predefined, discrete number of FEC levels. The
stay time on each level before dropping to the lower one is dynamically decided
in proportion to its previous success rate. The more frequently AFECCC adopts a
level, the longer it stays at this level. They performed experiments modeling the
wireless channels by a two-state Markov chain and using packet traces collected
from real sensor networks. The results of the performed simulations confirmed
that the proposed algorithm performs better (in terms of throughput) than any
static FEC algorithms and two dynamic hybrid ARQ/FEC algorithms: the link
adaptation incremental redundancy (LA-IR) II and the retrace recursive LA-IR
(described in Reference 90). On the basis of the total transmission overhead over
the entire BER range, the authors believe that AFECCC is more energy efficient
than the static FEC and LA-IR algorithms, even though it executes around some
tens of instructions per packet. However, they did not directly measure the energy
consumption in their experiments.

The work by Agarwal et al. [86] directly addresses the energy efficiency in
the proposed approach for error control in WSNs. Moreover, the different types
of sensing data handled by such networks were taken into account. An adaptive
and universal codec (encoder/decoder) was presented, which can process the
information on various kinds of sensed data. Also, adaptive coding schemes that
involve different codes are used to take advantage of the variations in the wireless
channel conditions. The proposed FEC scheme is called Adaptive Universal FEC
(AuFEC) and it is based on the Reed–Solomon codec. The authors adopt a
hardware/software codesign methodology to efficiently implement the codec. The
results of the implementation of the proposed system on wireless motes showed
that up to 56% of power savings could be achieved with less than 4% overhead
of the running system costs. Therefore, their proposal effectively contributes to
increasing the energy efficiency in a WSN.

Meer et al. [91] present a solution for error control in WSN that adopts a
very interesting and holistic approach. Indeed, such solution could fit better in
the classification of network-wide solutions (Chapter 11), but we retain it here
since its goal is the same as the other works presented in this section. The pro-
posed scheme is classified as an adaptive error control (AEC), since they use
different hybrid ARQ schemes, based on a set of variables gathered from the
environment. In their proposal, they exploit several intrinsic and specific features
of WSNs to make energy-efficient decisions about the error control technique to
be used. More specifically, they adopt a data-centric approach and consider three
features of WSN to assign each packet a value that denotes its importance in the
networks. Such features are the multihop data routing, the in-network data aggre-
gation, and the data redundancy, typical of WSNs. By adopting a data-centric
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approach, each node can decide for itself which error control scheme to apply,
based on the content of a data packet (and its assignee “value”). Meer et al.
[91] described a way of determining the importance of a packet (a scheme called
packet importance valuation (PIV)) and also a way to decide when to apply
which error control scheme. Regarding the value assigned to each packet, the
first parameter to consider is that when using a multihop routing, a packet gets
more important if it has traversed more nodes (hops) in its path toward the sink
node. Therefore, it should receive different error control treatment along the path.
The amount of energy spent in error control should compensate for the amount
of energy wasted if the packet gets lost. Regarding data aggregation, the impor-
tance value of a packet carrying data that already suffered aggregation should
be increased in detriment of packets containing individual (raw) data. Finally,
regarding the data redundancy (a feature that they addressed as the N-out-of-K
Principle), the authors claim that since several neighboring sensors often monitor
a common phenomenon, the lost of some packets will not compromise the final
reliability of data delivered to the application. According to the authors, it is
intuitive that a packet containing information that N other sensors are also mea-
suring and reporting is less important than a packet from a sensor with only N /2
other sensors measuring the same variable. Therefore, the importance of a packet
should be increased when there are fewer other sensors available measuring the
same environmental variables. Using the proposed approach, nodes can apply a
severe error control scheme to packets that contain important information, that
is, packets that have aggregated data, packets that already traversed a number of
nodes, which means that a certain amount of energy was already invested, while
packets that contain less vital information will have a simpler form of error con-
trol. They performed a set of experiments, in different conditions, and the results
showed that for scenarios with high error rate (22.5%), which are most frequent
in WSNs, the proposal performed much better than using only an ARQ scheme.
Where the only-ARQ setting consumed about 17000 energy units in the single
bit error situation, the PIV consumed around 7000 energy units, which is less
than half the energy used for only-ARQ. The conclusion of their work is that
only-ARQ has a very high reliability but consumes a lot of energy, whereas not
using error control does not use a lot of energy but cannot guarantee a reasonable
high level of reliability. The solutions provided by the use of PIV are somewhere
halfway. They guarantee a more reasonable level of reliability while consuming
less energy than only-ARQ.

24.4 FINAL REMARKS

The importance of managing energy in a clever way is the most crucial issue
in the WSNs domain. In this chapter, we presented and discussed several of
the current techniques for managing the energy efficiency and awareness in such
environment. It was not our goal to exhaust the theme since the range of possible
solutions is huge and encompasses distinct layers of software as well as compo-
nents of hardware, involving knowledge from different expertise. New solutions
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are arising and existent ones are being enhanced every moment. So, we hope to
have achieved the main purpose of organizing the various approaches in a didac-
tic way, thus providing an initial road map to understand the field and perform
further investigations.
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CHAPTER 25

NETWORK-WIDE STRATEGIES FOR
ENERGY EFFICIENCY IN WIRELESS
SENSOR NETWORKS

FLÁVIA C. DELICATO and PAULO F. PIRES

25.1 INTRODUCTION

Wireless sensor networks (WSNs) are distributed systems composed of hundreds
to thousands of low cost, battery-powered, and reduced-size devices, endowed
with processing, sensing, and wireless communication capabilities. One major
reason for the increasing interest in WSNs in the past few years is their poten-
tial pervading in application areas for which traditional networks are unsuitable.
Instead of a deployment scenario in which few powerful sensing devices are
linked by either wired connections or single-hop wireless connections, WSN
nodes consist of multiple microsensors able of communicating and self-organizing
in order to compose a wireless ad hoc network for meeting application demands.
The topic of WSNs can be considered as one of the truly multidisciplinary
research efforts, bringing together researchers from a wide range of fields: from
chemists who develop the sensors to engineers focusing on wireless platforms
and hardware components to computer scientists who develop the software ser-
vices to biologists, oceanographers, and physicians (to name a few) involved in
the myriad of applications that can benefit from using such networks.

However, several challenges remain to be overcome before WSNs can be
widely employed and can reach their full potential. One major challenge is the
highly limited energy capacity of the sensor nodes. Such a severe constraint
requires the adoption of strategies for energy awareness and efficiency through-
out the whole network, from the design of individual components of the node
hardware to the entire protocol stack, including the application layer.
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As we mentioned in Chapter 1, to effectively reduce the overall power con-
sumption in a WSN and to extend its lifetime, several strategies need to be
employed, often simultaneously, at different levels of the network architecture.
Therefore, power-saving policies in a WSN act at different levels: (i) the level of
individual node, called intranode; (ii) the level representing the communication
link between neighboring (often one-hop distant) nodes, called internode; and
(iii) the level of the entire network, which we called network wide. In Chapter
1, we addressed the solutions for energy efficiency from the standpoint of indi-
vidual nodes and communicating neighboring nodes. In this chapter, we present
a comprehensive survey on the third level, the network-wide aspects of energy
management in WSNs. Policies for energy efficiency at such level (Fig. 25.1)
exploit the knowledge on the WSN behavior as a whole in order to achieve
more significant energy savings than only considering individual or neighbor-
ing nodes. These policies are implemented as software programs that actuate
at the different protocol layers of the WSN stack. Therefore, in this chapter,
we describe solutions in the following layers of the WSN stack: (i) data link,
(ii) network, (iii) transport, and (iv) application layers. Solutions belonging to
the physical layer basically operate on individual nodes, for instance, address-
ing modulation scaling and power control. Therefore, they were discussed in
Chapter 1.

Energy-aware software solutions include the development of energy-efficient
communication protocols and also exploit cross-layer [1] interactions involving
different layers of the protocol stack. The cross-layer behavior is present in several
solutions discussed in this survey that encompass more than a single protocol
layer, often crossing through nonadjacent layers. In the context of the cross-layer
paradigm, a crucial issue in WSNs is the participation of the application layer
to guide decisions of all the other layers. Several works, such as References 2
and 3, highlighted the close relationship between application requirements and
the WSN performance and demonstrated that application-specific optimizations
may increase the WSN overall performance, mainly with regard to the energy
consumption.

Network wide

Implemented by

Data link
layer

Transport
layer

Network
layer

Application
layer

Figure 25.1 Concept map representing network-wide energy optimization policy.
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Regarding the WSN components, in our survey, we assume a network com-
posed of one or more sink nodes (sometimes referred to as base station) and a
(possibly huge) number of sensor nodes deployed over a large geographic area
(called sensing field or target area). Data are collected from the sensing field and
transferred from sensor nodes to the sink nodes through a multihop communica-
tion protocol. Regarding individual sensor nodes, we consider that each sensor
is composed of software and hardware components. Sensor hardware has four
main components: (i) a sensing subsystem including one or more sensors (with
associated analog-to-digital converters) for data acquisition, (ii) a processing sub-
system including a microcontroller and memory for local data processing, (iii)
a communication subsystem for wireless data communication, and (iv) a power
supply subsystem.

In the same way as presented in Chapter 1, this survey is also organized using
a knowledge representation tool called Concept Maps [4]. A concept map is a
top-down diagram showing the relationships between concepts, including cross-
connections among concepts, and their instances. The concepts in such maps are
represented hierarchically with the most inclusive, most general concepts at the
top of the map and the more specific, less general concepts arranged below. In this
chapter, the same central question addressed in Chapter 1 is being posed: “How
to wisely manage energy in a WSN in order to extend its lifetime?” However,
in this chapter, we discuss the answers to such questions from the standpoint of
the entire WSN.

25.2 DATA LINK LAYER

The data link layer is responsible, among other things, for the multiplexing of
data streams, medium access, and error control, ensuring reliable point-to-point
and point-to-multipoint connections in a communication network [5]. Power man-
agement in this layer can be achieved through the use of protocols for topology
control and through energy-efficient MAC protocols (Fig. 25.2).

MAC
protocols

controls classified as exploits

encompasses

Radio
operation Scheduled

e.g.

TDMA based

Contention based
Duty

cycling
Network data
redundancy

Network
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Homogeneous
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QoS parameters Coverage Connectivity

based on

Node selection

Medium access
control

Data streams
multiplexing

has functionassures

Data link
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exploits
classified as

responsible for

Error
controlConectivityTopology control

protocols

Figure 25.2 Concept map representing data link layer energy-saving policies.
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25.2.1 Topology Control Protocols

An important design feature of WSNs that can be useful for extending network
lifetime is their typical high density of nodes. On one hand, this feature increases
robustness against node failures and decreases energy costs by favoring multiple
hop communications. On the other hand, this very same characteristic leads [6] to
a large redundancy in sensor-collected data. Topology control protocols exploit
the latter aspect by dynamically selecting a reduced set of sensors to remain
active in the execution of a sensing task, thus adapting the network logical topol-
ogy based on the application requirements. Besides the turning off of redundant
nodes, the network topology is also affected by changes in the transmission
power of nodes. Since it is, in general, more energy efficient to transmit packets
over several short hops than a single long hop, dynamically reducing transmis-
sion power can provide overall energy savings. Therefore, there are protocols for
topology control that exploit this feature. For instance, in Reference 7, a coopera-
tive, lightweight, and fully distributed approach is proposed to adaptively tune the
transmission power of sensors in order to match local connectivity constraints.

Topology control and duty cycling (Chapter 20) are complementary techniques
that implement duty cycling with different granularity: while topology control
protocols save energy by activating a subset of nodes from the entire WSN to
remain active, duty cycling policies achieve further gains by minimizing the
operational time of active nodes.

Several criteria, including QoS parameters specific to the target application,
can be used to decide which nodes and when to activate [8]. However, in spite
of the adopted criteria, any solution for topology control needs to guarantee at
least the WSN connectivity and preferably the sensing coverage as well. Since
the goal of a WSN is to monitor some geographic area, it has to maintain a full
sensing coverage respecting a certain spatial precision, even when it operates
in power-save mode. Besides, a successful node selection scheme must also
provide satisfactory connectivity so that active nodes can report collected data to
the application (through the sink node).

In the past years, several researchers have been investigating the problem
of topology control in WSNs, most of them with the aim of achieving high
levels of energy efficiency. Detailed surveys on topology control in wireless ad
hoc network and WSN are available in References 9–11. In the following, we
review some of the main proposals for topology control in WSNs.

Existent topology control protocols can be classified according to different
parameters. One of the classifications reported in the literature is based on
constraints over the range assignment [10]. According to such criterion of classi-
fication, protocols for topology control can be homogeneous or nonhomogeneous
[11]. Homogeneous approaches assume a common transmission power level for
all the nodes in the WSN, and the main goal is often to find the minimum power
level, the so-called critical transmitting range (CTR), such that the resulting net-
work graph has specific properties in terms of connectivity. The computation of
CTR considers the statistics of node distribution and mobility and is based on
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the use of either graph theory [12] or probabilistic approaches [13]. Nonhomo-
geneous approaches assume that nodes are able to choose different transmitting
ranges provided they do not exceed the maximum range.

Another parameter that can be used for purposes of classification is the net-
work property that the protocols aim to assure. The majority of works considered
coverage and/or connectivity guarantees as the unique requirement. For instance,
in References 14 and 15, techniques of linear programming are used to select
the minimum set of active nodes able to maintain the complete sensing cov-
erage of the network. Other protocols, such as SPAN [16], GAF (geographical
adaptive fidelity) [17], and AFECA (adaptive fidelity energy-conserving algo-
rithm) [18], guarantee network connectivity, but they do not address sensing
coverage. SPAN [16] guarantees the connectivity requirement in WSNs by adap-
tively electing a suitable number of “coordinators” of all nodes in the network.
Coordinators stay awake continuously and perform multihop routing, while the
remainder nodes stay in sleeping mode, periodically checking if they need to
wake up and become a coordinator. Both GAF and AFECA protocols address
the requirement of routing fidelity along with the network connectivity.

ASCENT (adaptive self-configuring sensor networks topology) [19] and OTC
(optimized topology control) [20] guarantee network connectivity by additionally
promoting load balance among nodes in a WSN. In ASCENT, a node decides
whether to join the active network topology or continue to sleep based on infor-
mation about neighbor density and packet loss that are measured locally by the
node. A node may reduce its duty cycle if it detects high data losses due to
collisions. ASCENT has the potential for significant reduction of packet loss
rate, thus increasing energy savings. Moreover, it encompasses a load balance
policy that allows nodes to switch state from time to time in order to ensure all
nodes share the task of providing global connectivity equally, thus distributing
the energy load. OTC is a novel topology control algorithm that increases net-
work lifetime while maintaining connectivity, guaranteeing multihop reachability
from any source to any destination, and providing a reasonable throughput. In
order to ensure connectivity, OTC uses the two-hop neighborhood information to
sequentially select a subset of nodes to be active among all nodes in the neigh-
borhood. Moreover, to ensure fairness and an even distribution of the energy
consumption, the role of active nodes is periodically rotated.

In Reference 19, a solution is provided to meet both coverage and connectivity
requirements. However, none of the aforementioned protocols seek for a balance
between the quality of data generated for the application and the energy con-
sumption of the network. The works described in References 22 and 23 tackled
the problem of maximizing the lifetime of a WSN while guaranteeing a minimum
level of quality at the application level. In those works, the problems of node
selection and data routing are jointly addressed and solved as a problem of gen-
eralized maximum flow. Those works presented both an optimal and a heuristic
solution with a totally centralized approach, based on global information.
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Delicato et al. [24] proposed a different approach in which the selection of
nodes to be active aims to extend the network lifetime while meeting application-
specific QoS requirements. They formalized the problem of node selection as a
knapsack problem and adopted a greedy heuristic for solving it. The proposed
solution tries to maximize residual energy and relevance from the application
point of view of the active nodes while assuring both connectivity and sensing
coverage. Moreover, different from approaches based on computational inten-
sive techniques of linear programming, which are restricted to run off-line, such
approach is light enough to be executed on-line and inside the network.

As a final remark, it is important to mention that topology control was tradi-
tionally used in wireless networks as a technique to reduce radio interference. By
minimizing interference in WSNs, data corruption and the consequent need for
retransmissions can be minimized, thus achieving further energy savings [10].

25.2.2 Energy-Efficient MAC Protocols

Medium access control (MAC) protocols specify how nodes share the communi-
cation channel and directly controls the activities of radio units. Since the radio
is the most power-consuming component of a typical WSN node, an energy-
efficient MAC protocol can significantly contribute to extend the overall network
lifetime [25]. Energy-efficient MAC protocols should consider a set of reasons
that make sensor battery to drain quickly [26–27] thus wasting energy. The main
relevant sources of energy waste at the MAC level are listed in the following.

• Packet Collisions . They are the major source of energy waste. When two
packets are transmitted at the same time and collide, they become corrupted
and must be discarded, requiring their retransmission thus increasing the
energy consumption.

• Overhearing . It denotes the reception of packets by nodes that are not their
destination. Overhearing unnecessary traffic can be a dominant factor of
energy waste, especially in heavy traffic load environments and dense net-
works.

• Idle Listening . Since a node does not know when the data traffic is generated
from other nodes, its transceiver continuously remains in the receiving mode
even when there is no data traffic. This feature is commonly named as idle
listening . It is thus desirable to completely shut down the radio rather than
only put it in the idle mode. However, frequent switching between modes,
especially switching from sleep to active mode, leads to more energy being
spent than when leaving the radio transceiver unit in idle mode because of
nonnegligible consumption of the radio start-up.

• Control Packet Overhead . Sending, receiving, and listening for control pack-
ets consume energy. Since control packets do not directly convey useful
application data, they reduce the effective network throughput. Energy-
efficient MAC protocols should minimize the number of control packets
required in data transmission.
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• Overemitting . This is caused by the transmission of a message when the
destination node is in sleep mode or not ready to receive. This results in
energy waste and needs to be avoided to improve energy efficiency.

• Traffic Fluctuations . WSNs usually generate traffic that fluctuates in place
and time, resulting in peak loads that may generate network congestion that
consequently increases the probability of collisions. Therefore, time and
energy are wasted on waiting in the random back-off procedure.

• Packet Size. Choosing the appropriate packet size is also an important issue
from the energy point of view. As the packet size gets smaller, the transition
energy becomes dominant to the energy consumed during receiving and
transmitting of packets.

Therefore, energy-efficient MAC protocols save energy by controlling the
radio in order to avoid or minimize idle listening, collisions/retransmissions,
unwanted overhearing, and overemitting. As previously discussed, the most com-
mon and effective way to conserve energy is to turn the sensor node radio
transceiver and processor units into a low power sleep state when these resources
are not needed. Since WSN MAC protocols are in control of the radio operation,
they can be used in combination with duty cycling techniques to achieve signif-
icant energy gains. Indeed, most of WSN MAC protocols implement a low duty
cycle scheme for power management.

MAC protocols have been extensively studied in wireless networks in general
and more recently in WSNs. Most WSN MAC protocols have similarities in their
effort to reduce energy consumption. According to the mechanism adopted for
collision avoidance (CA), MAC protocols can be broadly divided into two groups:
scheduled and contention based [29]. Scheduled MAC protocols avoid interfer-
ence among communications by scheduling nodes onto different subchannels that
are divided by time, frequency, or orthogonal codes. Since these subchannels do
not interfere with each other, MAC protocols in this group are largely colli-
sion free. Organizing sensor nodes according to a common schedule provides
the capability to reduce message retransmission, idle listening, and overhearing,
thus achieving high energy efficiency. One commonly used scheduled protocol
is based on the TDMA technique [30].

Rather than divide the channel into subchannels and preallocate transmissions,
in MAC protocols based on contention nodes compete for a shared channel,
resulting in probabilistic coordination. A contention mechanism is used to decide
which node is allowed to access the channel at any moment. Contention-based
protocols have several advantages compared to scheduled protocols. First, since
the channel is allocated on an on-demand basis, such protocols scale better and
accommodate easily to changes in the network topology. Second, they do not
require strict time synchronization like, for instance, TDMA-based protocols.
Third, they, in general, have a lower delay and potentially higher throughput
at lower traffic loads, which is often the case in WSNs. However, they have
a serious drawback for use in WSNs: they are potentially very inefficient in
energy, suffering from all the sources of energy waste discussed in the beginning
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of this section. Traditional contention-based MAC protocols require all nodes to
continuously listen to the channel due to unpredictable packet transmission by
its neighboring nodes, hence introducing the problem of idle listening. Collisions
can occur during the contention period. Therefore, in order to be adopted in
WSNs, such class of protocol should make extensive use of low duty cycle to
conserve energy and employ additional CA or collision detection methods to deal
with the possibilities of collision. Classical examples of contention-based MAC
protocols include ALOHA [31] and carrier sense multiple access (CSMA) [32].

25.2.2.1 Scheduled MAC protocols in WSNs. Although there are other
techniques adopted by scheduled MAC protocols, we focus on TDMA since it
is the most popular in WSNs. In TDMA-based MAC protocols [33–38], time is
divided into (periodic) frames and each frame consists of a number of slots. Every
node is assigned to one or more time slots per frame, according to a scheduling
algorithm, and uses such slots for transmitting/receiving packets to/from other
nodes. Scheduled protocols such as TDMA are potentially attractive for WSNs
because of their energy efficiency, including other advantages. First, since slots
are preallocated to individual nodes, such protocols are collision free; there is
no energy wasted on collisions due to channel contention. Second, TDMA natu-
rally supports low duty cycle operation. A node only needs to turn on its radio
during the slot that it is assigned to transmit or receive. Finally, overhearing
can be easily avoided by turning off the radio during the slots of other nodes.
However, the advantages arising from the scheduling-based approaches come at
the cost of building and maintaining the schedule and requiring fine-grained time
synchronization among nodes to align slot boundaries. Moreover, since only one
sensor node is allowed to use a time slot, any unused time generates a waste of
resource. In addition, TDMA-based MAC protocols have limited scalability and
are not flexible to changes in the network, which are two disadvantages that limit
their use in WSNs since such networks are typically dynamic and composed of
a large number of nodes.

In EMAC protocols [37], besides the time being divided into time slots , each
time slot is further divided in three sections: the communication request (CR),
the traffic control (TC), and the data sections. A node can assign only one slot
to itself and is said to control this slot. In the CR section, other nodes can issue
requests to the node that is controlling the current time slot. Communication in
this section is not guaranteed collision free. Nodes that do not have a request
for the current slot owner will keep their transceiver in a low power state during
the entire CR section. The controller of a time slot will always transmit a TC
message in the time slot. When a time slot is not controlled by any node, all nodes
will remain in sleep state during that slot. The time slot controller also indicates
in its TC message what communication will take place in the data section. If a
node is neither addressed in the TC section nor its request was approved, then
it can remain in a power-save mode during the entire data section. After the TC
section, the actual data transfer takes place.

Another example of TDMA-based protocol is LMAC (lightweight medium
access control) [38], which was conceived based on the ideas of EMAC but
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with further improvements, achieving higher energy efficiency. Unlike traditional
TDMA-based systems, the time slots in LMAC are not divided among the net-
work nodes by a central manager. Instead, a distributed algorithm is used. The
main goal of the protocol is to minimize the number of transceiver switches, to
make the sleep interval for sensor nodes adaptive to the amount of data traffic,
and to limit the complexity of implementation. It employs the same approach of
EMAC in which a node is only allowed to transmit a single message per frame.
During its time slot, a node will always transmit a message that consists of two
parts: control message and a data unit. The control message has a fixed size and
is used for several purposes, such as to maintain synchronization between the
nodes. If a node is addressed in a control message, it will listen to the data unit,
which might not fill the entire remainder of the time slot. Both transmitter and
receiver(s) turn off their transceivers after the message transfer has completed. A
short time-out interval ensures that nodes do not waste energy for idle listening
in time slots that are not controlled by any node.

25.2.2.2 Contention-based MAC protocols. In spite of the aforementioned
problems, contention-based protocols are the most popular class of MAC proto-
cols for WSNs [26, 39]. To improve the energy consumption of these protocols,
duty cycling is performed by tightly integrating channel access functionalities
with a sleep/wake-up scheme. These protocols are based on the CSMA tech-
nique, whose central idea is listening to the medium to detect if it is busy
before transmitting. However, in multihop wireless networks, CSMA alone is
not suitable due to the hidden terminal problem [40]. CSMA/CA, adopted by the
wireless LAN standard [41], uses a RTS-CTS handshake to reduce the costs of
collisions generated by the hidden terminal problem. On the basis of CSMA/CA,
Karn [42] proposed MACA (multiple access with collision avoidance), which
added a duration field in both RTS and CTS packets indicating the amount of
data to be transmitted, so that other nodes know how long they should back
off. Some protocols for wireless networks based on CSMA/CA can be used
in WSNs [43, 44], whereas others were specifically designed to WSNs, for
instance, S-MAC (sensor MAC) [26] protocol that executes a variant of MACA.
Other protocols use different techniques, always focusing on avoiding the prob-
lems of collision, overhearing, and idle listening, while keeping nodes in a low
duty cycle.

A well-known WSN MAC protocol that makes use of carrier sense and RTS-
CTS is S-MAC [26]. It adopts a periodic sleep/listen schedule based on locally
managed node synchronization. Every node can establish its own schedule or
follow the schedule of a neighbor through a random distributed algorithm. Neigh-
boring nodes using the same schedule form a virtual cluster . If two neighboring
nodes reside in two different virtual clusters, they wake up at listen periods of
both clusters, acting as a bridge. The channel access time is divided into two
parts. In the listen period, nodes exchange sync and RTS/CTS packets for CA.
In the remaining period, the actual data transfer is performed. The sender and
the destination nodes are kept awake to communicate to each other. Nodes not
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involved with the communication process can sleep until the next listen period.
To avoid high latencies, S-MAC uses an adaptive listening scheme. A node over-
hearing its neighbor’s transmissions wakes up at the end of the transmission for
a short period of time. If the node is the next hop of the transmitter, the neighbor
can send the packet to it without waiting for the next schedule.

One very popular contention-based MAC protocol is B-MAC (Berkeley MAC)
[39], which is deployed along with the TinyOS operating system [45]. To achieve
a low duty cycle, B-MAC uses an asynchronous sleep/wake scheme based on
periodic listening called low power listening (LPL). Nodes periodically wake up
to check the channel for activity. After waking up, nodes remain active for a
wake-up time in order to properly detect eventual ongoing transmissions. While
the wake-up time is fixed, the check interval can be specified by the application.
One drawback of B-MAC is that it does not include a mechanism to avoid or
minimize the hidden terminal problem.

Besides scheduled and contention-based protocols, we can identify a class of
hybrid MAC protocols [46]. Hybrid protocols adapt the protocol behavior to the
level of contention in the network. They behave as a contention-based protocol
when the level of contention is low and switch to a TDMA scheme when the
level of contention is high. The greatest advantage of hybrid MAC protocols
comes from their easy and fast adaptability to traffic conditions, which can save
a large amount of energy, but this advantage comes at the cost of the protocol
complexity, which limits its range of applications.

As we discussed, most of the overheads that produce the sources of energy
waste are incurred by MAC protocols based on contention techniques. In sched-
uled protocols such as TDMA, problems such as overhearing and collision do
not occur, since each node knows a priori exactly in which slots it should trans-
mit and receive. However, these advantages come at the cost of increasing the
complexity of the protocol, which leads to reduced flexibility to handle traffic
fluctuations and changes in the network topology, besides resulting in a larger
control packet overhead. We could also observe that the main source of energy
gains for MAC protocols is adopting duty cycle techniques. TDMA-based proto-
cols are especially useful for power conservation since a node can sleep between
its assigned time slots, waking up in time to receive and transmit messages.
However, as it is often the case, there is a trade-off to be handled: MAC proto-
cols that give nodes high duty cycle can respond to traffic and network changes
more quickly but consume energy at a higher rate. On the other hand, a lower
duty cycle MAC protocol can save energy, but low activity levels put a limit
on the protocol’s complexity, the potential network capacity, and the message
latency. Periodic sleep may result in high latency, especially for multihop rout-
ing algorithms, since all immediate nodes have their own sleep schedules. The
latency caused by periodic sleeping is called sleep delay [26]. Adaptive listening
technique can be used to improve the sleep delay and thus the overall latency.
In such technique, the node that overhears its neighbor’s transmissions wakes up
for a short time at the end of the transmission. Hence, if the node is the next-hop
node, its neighbor could pass data immediately.



NETWORK LAYER 719

25.3 NETWORK LAYER

The policies for achieving energy awareness and efficiency at the network
layer (Fig. 25.3) are basically implemented as routing protocols, either as
part of the routing algorithm itself or as constraints to be used in the routing
strategies.

The main task of a WSN is to forward the sensed data gathered by sensor
nodes to one or more sink nodes. One simplistic approach to accomplish this task
is the direct data transmission. In this case, each node directly sends its sensing
data to the sink. However, if the sink is far from the sensing area (a common sit-
uation in WSNs), the nodes will prematurely die because of the excessive energy
consumption for delivering data over such large distances. Therefore, a prefer-
able approach is to forward data from source nodes to the sink through multiple,
intermediary nodes, using a multihop communication paradigm. In this context,
the goal of routing protocols is to select a path to deliver data from sources (sen-
sor nodes) to destination (one or more sink nodes). Ad hoc routing techniques
already proposed in the literature do not usually fit the specific requirements of
WSNs. Among the specific features of WSNs that distinguish them from other
networks, the following affect the design of routing protocols.

1. Sensor nodes are very resource constrained; however, all the nodes in a
WSN have both communication and computation capacities, thus each node
can act as a router and at the same time perform some kind of processing
in the data before forwarding them; such in-network processing is one way
of achieving energy efficiency.
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2. Considering the typically high number of nodes in a WSN, it is not fea-
sible to adopt a scheme of global addressing such as the classical Internet
Protocol (IP) address. Instead, sensor nodes are commonly identified only
by a local address. Several early works [47] have suggested the use of
data-centric, attribute-based schemes for addressing WSNs, instead of tra-
ditional address-centric schemes such as IP. In the data-centric approach,
nodes are addressed by attributes, such as their geographical location or the
type of data they provide, or by their interest in some type of sensing data.
Routing protocols should exploit such features by building routing paths
from nodes identified as sources (nodes that provide a given type of data)
toward nodes identified as sinks (nodes that are interested in a certain type
of data).

3. The typical pattern of data traffic in WSNs is many to one since data
generated from several sensors distributed over multiple regions flow to
only one (or a small number of) sink node.

4. Sensor-generated data are characterized by a high level of redundancy since
the network is often dense and different neighbor sensors are prone to
monitor the same physical phenomena. Such redundancy can be exploited
by in-network processing, trading communication for computation in order
to save energy.

From these features, we can see that there is a need for routing protocols,
tailored to the WSN environment, that take into account all of its idiosyncrasies.
There are different policies that can be adopted by routing protocols for pur-
poses of energy savings. Some policies exploit characteristics of the WSNs, such
as the in-networking processing, high density of nodes, and many-to-one com-
munication pattern, to improve the energy efficiency in the strategies for data
forwarding, while others explicitly use information about node’s current energy
to make routing decisions. In the latter policies, the routing itself is energy aware,
denoting the cases of WSN routing protocols that aim at selecting a path that
minimize the overall energy consumption and thus extend the network lifetime.
To allow an increase in the WSN lifetime, such protocols need to take into
account additional parameters beyond the hop count commonly used in conven-
tional networks. Moreover, they have to consider the even distribution of traffic
throughout the network in order to avoid overloading the sensors in a given path.
The many-to-one communication paradigm is preferably used to accommodate
the typical traffic pattern in WSNs, and such paradigm often results in nonuni-
form energy drainage in the network. Overloading a set of sensors located in
the more frequently used path can cause their premature death, thus producing a
fragmentation in the WSN and preventing the delivery of sensor-generated data
to the sink.

Several routing protocols have been specifically designed for WSNs with focus
on energy efficiency. Most such protocols are based on localized algorithms [48]
and on the multihop, data-centric communication [49, 50], besides exploiting
some application-specific knowledge in the data forwarding process. Localized
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algorithm is a special kind of distributed algorithm in which nodes participat-
ing in a distributed processing interact only with nodes localized in a restricted
neighborhood, while the system as a whole meets a global goal. Localized algo-
rithms are potentially attractive because they reduce redundancy and save energy,
as well as only a subset of nodes in the network is invoked for a specific task.
Moreover, since the energy spent in transmission is proportional to the distance,
neighboring interactions are intrinsically energy efficient.

One feature exploited by WSN routing protocols for purposes of energy effi-
ciency is the in-network capability of nodes, which allows to trade communication
with processing. In this sense, routing trees generated by routing protocols are
also used as aggregation trees, providing points in which data collected by nodes
positioned as leaves in the tree are gathered and submitted to some fusion process
so that only the resulting processed data is forwarded to upper levels in the tree
(and can be further processed). Therefore, information related to the data fusion
process, such as the aggregation degree and the aggregation delay, should be take
into account by the routing protocols. Data fusion is an important strategy for
energy efficiency in WSNs, and it is detailed more in Section 25.5.2.

There are several classifications for WSN routing protocols, each one empha-
sizing a different aspect of their behavior. Regarding the logical topology of the
network, which directly influences the strategy adopted for data forwarding, rout-
ing protocols can be classified as flat or hierarchical (clustered), besides those
that are based on direct transmission. As we previously mentioned, data trans-
mission directly from source to sink nodes is very energy inefficient, mainly in
large WSNs. Therefore, the multihop approach is the most suitable for WSNs.
Since the required transmission power increases as the square of the distance
between source and destination, multiple short message transmission hops require
less power than one long hop. Flat and hierarchical protocols adopt a multi-
hop approach and therefore are more energy efficient. Section 25.3.1 describes
examples of flat and hierarchical WSN routing protocols.

Finally, the characteristics of the application running on the top of the net-
work should be taken into account by energy-efficient routing protocols. WSN
applications can be divided in two main classes according to the periodicity
of data communication: event driven and periodical monitoring. In event-driven
WSN applications, data is sent whenever an event of interest occurs. In period-
ical monitoring applications, all nodes in a target area send their generated data
to the sink at each predefined time interval. In order to increase energy saving,
routing protocols are usually implemented to support one single class of appli-
cation. In periodical monitoring networks, routes are periodically reconstructed,
while in event-driven networks routes are built on-demand, whenever an event
occurs, since the cost of constant updates is prohibitive in this scenario. Examples
of WSN routing protocols suitable for event-driven applications are SPIN [51],
TTDD [51], and directed diffusion [47, 53, 54], while a typical example of proto-
col suitable to periodical applications is LEACH (low energy adaptive clustering
hierarchy) [55–57].
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To illustrate one of the event-driven protocols, the work presented in Reference
54 recently proposed routing protocol for flat networks, with a focus on prolong-
ing the WSN lifetime. This protocol uses the metrics received signal strength and
the available energy to identify an energy-efficient path that minimizes packet
collisions and increases the network lifetime. Therefore, it is one example of an
energy-aware protocol since the information of current node energy drives the
decisions on route formation. A node is selected to forward the data based on
its residual energy level and signal strength. Ideally, the greater the energy in
the node and the farther the node from the previous one, it is more likely to
be selected as the next hop. The nodes that are not selected to forward data are
put in a sleep state in order to conserve energy. The results of the simulations
reported in Reference 54 showed that the protocol performs well in terms of both
network lifetime and packet delivery ratio.

25.3.1 Flat and Hierarchical Protocols

In flat protocols, all sensor nodes of the network are considered “equal” in terms
of routing. When a node has data to send, it must find a route, which consists of
multiple hops (intermediate nodes), to the sink. A drawback of these protocols is
that, normally, the probability of participating in the process of data transmission
is higher for the nodes around the sink than for nodes far away from it. Therefore,
nodes close to the sink tend to have their energy depleted faster, thus preventing
the delivery of data to the application. Therefore, such approach can limit the
global operational lifetime of the network.

Directed diffusion [47, 53] was one of the first protocols specifically designed
for WSNs. It adopts a flat topology, a data-centric approach and exploits the
in-network capability of WSN nodes to save energy. In directed diffusion, indi-
vidual nodes reduce the sampled waveform generated by a target into a relatively
coarse-grained “event” description. Such description contains a set of attributes.
Applications that request data send out interests through some sink in the net-
work. These interests are also represented as a set of attributes. If the attributes
of source-node-generated data match these interests, a gradient is set up within
the network and data will be pulled toward the sinks. Intermediate nodes are
capable of caching and modifying data, thus reducing redundancy and saving
energy. Directed diffusion is a protocol more suitable for event-driven applica-
tions. It also provides a more energy-efficient variation called geographic and
energy-aware routing protocol [58], which helps to define a closed geographic
region for propagating interests that improves performance by avoiding the inter-
est messages to flood the entire network. Other examples of flat protocols are
EAR (energy-aware routing) [59] and rumor routing [60].

For large-scale networks and for achieving higher energy efficiency related
to data transmission, a technique that can be adopted by routing protocols is
the clustering of the network, generating a hierarchical logical topology. Rout-
ing protocols that adopt a cluster-based approach divide the whole set of nodes
(according to some criterion, often the geographical proximity) into partitions
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controlled by an elected leader node, often called cluster head (CH ). Therefore,
nodes in such type of networks play different hierarchical roles: each node is
either a cluster member (low level in the hierarchy) or a CH. The highest level
in the hierarchy is played by the sink node. Such approaches make use of some
algorithm for cluster formation and require the coordination among nodes within
a cluster. After gathering data sent by all its cluster members, the CH can perform
some processing in such data (e.g., a fusion) and send it to the sink node. The
communication inside the cluster is often accomplished by adopting a TDMA
schedule. Since the distance among cluster members and the respective CHs is,
in general, smaller than the distance between these sensors and the sink, sensors
in a cluster save transmission energy. In order to not overload the CH, a periodic
rotation of the leader among the sensors in a cluster is often adopted.

Clustering can also be beneficial for purposes of energy saving because it
favors data fusion procedures. Cluster members can collaborate about recent
data measurements and determine how much information should be transmitted
to the user application. By averaging data values collected within the cluster,
the algorithm can trade data resolution for transmission power. Also for energy
saving, in areas where there are a redundant number of sensors, a clustering
algorithm can be used to select which nodes better represent data samples for the
region and which ones can be put in a power-save mode.

One of the first hierarchical, cluster-based protocols for WSN was LEACH
[55–57]. LEACH is a self-organizing, adaptive protocol that uses randomization
to distribute the energy load evenly among all the sensors in the network. In this
protocol, the process of cluster formation is distributed among sensors. Any sen-
sor may become a leader with probability X. The CH generates a TDMA schedule
and transmits it in broadcast for all sensors in the cluster. After some time, each
sensor enters again in the phase of cluster formation, and this cycle is repeated
until the complete exhaustion of the energy source of all sensors in the WSN.
Since LEACH algorithm randomly rotates the high energy role of CH, its func-
tions are shared equally among the various sensors and battery power is expended
equally among them. In addition, LEACH performs local data fusion to compress
the amount of data sent from the clusters to the base station, further reducing
energy dissipation and enhancing system lifetime. LEACH is a protocol suitable
for periodical applications that assume the network always has data to send.

In LEACH, the CH selection is probabilistic, depending only on the number of
times a node has been CH, and the residual energy of nodes is not considered in
the cluster formation process. This adoption of probability for becoming a CH is
based on the assumption that all nodes start with an equal amount of energy and
that all nodes have data to send during each frame. Therefore, in spite of being
energy efficient, LEACH in its original version is not considered an energy-aware
protocol. Heinzelman et al. [57] proposed some changes in the original LEACH
algorithm, and in this new version, the node with the higher energy should have
the larger probability to become the CH. The authors argue that if instead of
being homogeneous in energy, the nodes have different amounts of energy (or an
event-driven application is used instead of periodical monitoring), those nodes
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with more energy should be CHs more often than the nodes with less energy,
in order to ensure that all nodes die at approximately the same time. This can
be achieved by setting the probability of becoming a CH as a function of a
node’s energy level relative to the aggregate energy remaining in the network,
rather than as a function of the number of times the node has been CH, as in the
original LEACH algorithm. In such approach, each node must have an estimate
of the total energy of all nodes in the network to compute the probability of it
becoming a CH. As a result, each node will not be able to make a decision to
become a CH if only its local information is known. Therefore, this protocol is
not based on a localized algorithm, and as a drawback, its scalability can be poor.

Other hierarchical protocols also make explicit use of the information of
node energy in the decisions involved in cluster formation and CH election.
For instance, CODA (congestion detection and avoidance) [61] is an example
of energy-aware cluster-based protocol that is aimed at addressing the unbalance
of energy depletion caused by different distances from the sink by dividing the
whole network into a few groups based on the node’s distance to the sink node
and the routing strategy. Each group has its own number of clusters and member
nodes, and the number of clusters is differentiated in terms of the distance to
the sink; the farther the distance, the more clusters are formed. CODA achieved
better performance in terms of network lifetime and dissipated energy than those
protocols that apply the same probability for the number of clusters to the whole
network, such as LEACH. However, the CODA algorithm relies on global infor-
mation of node position and therefore does not scale well. Younis and Fahmy
[62] proposed HEED, a hybrid, energy-efficient, distributed clustering algorithm
that periodically selects the CH from a cluster according to both the node resid-
ual energy and a secondary parameter, such as node proximity to its neighbors
or node density. HEED is a localized algorithm, so it incurs low message over-
head, and it achieves fairly uniform CH distribution across the network. Its main
drawback is that it requires multiple broadcasting for cluster formation and thus
consumes energy in this phase.

Chan and Perrig [63] proposed an unequal clustering size model for network
organization, which can lead to more uniform energy dissipation among CH
nodes, thus increasing network lifetime. Ye et al. [64] presented EECS (energy-
efficient clustering scheme), a clustering algorithm that achieves an even CH
distribution with no iteration and introduces a weighted function for the ordinary
node (non-CH) to make a decision about the best cluster to join to. In EECS,
CHs are the nodes with more residual energy and selected in a distributed manner
through localized radio communication.

However, the approach of considering the absolute value of node residual
energy as the major criterion to elect a CH can lead to an unbalance in the
overall energy consumption, and thus, at a long term, such solutions may per-
form poor for the goal of prolonging the network lifetime. According to Liu et al.
[65], such approaches do not help balancing the energy load for the proper nodes,
especially in circumstances of highly energy heterogeneous nodes, and in these
cases, such behavior may cause the problem of quickly exhausting some nodes.
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In order to solve such drawback, the authors presented a novel distributed and
energy-efficient hierarchical clustering scheme, called EAP (extensible authen-
tication protocol ). In EAP, a node with a high ratio of residual energy to the
average residual energy of all the neighbor nodes in its cluster range will have a
large probability to become the CH. This can better handle heterogeneous energy
circumstances than existing clustering algorithms, which elect the CH only based
on a node’s own residual energy. According to the results of the performed eval-
uations, EAP significantly outperforms LEACH and HEED in terms of both
network lifetime and the amount of data gathered.

Other examples of hierarchical protocols are TEEN [66], APTEEN [67], HPAR
[68], ICA [69], and STALK [70].

25.4 TRANSPORT LAYER

The transport layer helps to maintain the flow in WSNs and to guarantee end-to-
end reliability and QoS. It provides mechanisms (i) to mitigate congestion that
arises from the variance of injected traffic within the network, (ii) to recover
packet loss due to congestion and queue overflow, (iii) to provide fairness in
bandwidth allocation, and (iv) to order delivery of packets, in case packets are
fragmented at the transmitter end [71, 72]. De facto transport control protocols
of wired networks such as TCP (transport control protocol) [73] and UDP (user
datagram protocol) [74] are not suitable to WSNs due to the unique characteristics
of such environment [72]. One main reason is that in WSNs several new factors
can result in congestion, such as the typical convergent nature of upstream traffic
and the limited wireless bandwidth. The upstream traffic is the primary traffic
direction in WSN and denotes a many-to-one type of communication from the
sensor nodes to the sink. The control messages occasionally sent by sink nodes
generate traffic in the opposite direction, named downstream traffic, for the pur-
poses of query and control. Another reason why transport protocols for wired
networks are not suitable for WSN is that wireless channel introduces packet
loss due to the typically high bit error rate, which not only affects reliability of
data but also wastes energy. As a consequence, transport protocols specifically
tailored for WSNs are required, and the two major problems that such protocols
need to cope with are congestion and packet loss [75]. Both problems have a
direct impact on the overall energy efficiency of a WSN. Since the requirements
of fairness and packet ordering, as well as of responsibility of transport protocols,
are not directly related to energy, they are not addressed in this chapter.

Typically, WSN transport layer protocols mitigate congestion using three
mechanisms (Fig. 25.4): congestion detection, congestion notification, and trans-
mission rate adjustment [76]. Congestion can be detected by monitoring queue
length [77, 78], packet service time [79], or the ratio of packet service time over
packet interarrival time at intermediate nodes [80]. In the case of WSNs that
use a CSMA-based MAC protocol, channel loading can also be measured and
used as an indication of congestion [78]. The congestion occurrence must be
propagated from the congested node to the upstream sensor nodes (closer to the
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sink) or the source nodes that contribute to congestion. Existent WSN transport
protocols propagate such information using two approaches: explicit congestion
notification and implicit congestion notification. The former uses special con-
trol messages to notify the involved sensor nodes of congestion, such as the
suppression messages adopted in Reference 78. The latter approach piggybacks
congestion information in ordinary data packets. By receiving or overhearing
such packets, sensor nodes can access the piggybacked information. To mitigate
congestion, a sensor node can adjust its transmission rate on receiving the conges-
tion information. Depending on the available information, simple schemes such
as additive increase multiplicative decrease (AIMD) [78, 81] or more elaborated
ones such as those described in References 79 and 80 can be used to accurately
adjust the transmission rate.

Regarding the packet loss, there are several factors that contribute for it in
WSNs. Among the main reasons, in wireless environments, congestion, bit error,
node failure, wrong or outdated routing information, and energy depletion can
cause packet loss, leading to loss of reliability and energy inefficiency. Packet
loss can be mitigated by increasing the data-sending rate of source nodes or
introducing retransmission-based loss recovery. However, the former approach
is not energy efficient compared to the latter. The loss recovery method is more
active and energy efficient to address WSN reliability [76]. WSN transport layer
protocols commonly address loss recovery by two different approaches: end to
end and hop by hop. In the end-to-end approach, the end points (destination or
source nodes) are responsible for loss detection and notification [71]. To enforce
end-to-end loss recovery, a sender node generally uses a closed-loop feedback
scheme where it waits for the reply message from the destination end point.
On the other hand, hop-by-hop loss recovery uses an open-loop nonfeedback
process. Each approach has its own advantages and limitations. End-to-end reli-
ability approaches are simple and robust, but they produce more in-network
traffic. On the other hand, hop-by-hop approaches quickly suppress the spots of
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congestion with fewer number of in-network control packets, thus saving con-
siderable amount of sensor energy. However, the drawback is that hop-by-hop
loss recovery cannot assure message delivery in the presence of frequent network
topology changes because of node relocation, addition, and failures. Since less
ongoing packets can result in saved energy, the trade-off between end-to-end
and hop-by-hop approaches is an important design factor that influences WSN
lifetime.

In the past years, several works were published describing new transport pro-
tocols tailored to WSNs. The surveys presented in References 76 and 82 contain
a comprehensive list and analysis of current WSN transport protocols. Next, we
briefly describe transport protocols specifically designed with focus on energy
efficiency.

ESRT (event-to-sink reliable transport) [81, 83] aims at providing reliability
and congestion control in an energy-efficient way. The notion of reliability is
defined with respect to the number of data packets originated by any event that
are reliably received at the sink node. The sink node runs the ESRT algorithm
to decide whether the event is being reliably detected or not. To do this, the
sink node tracks the event reporting frequency (f ) of the successfully received
packets originated by a particular event within a time interval and matches it
with the required reliability metric. ESRT tries to operate on the optimum point
where any event is reliably reported to the sink without causing congestion to
the network. ESRT assumes that the sink node has a high power radio and can
reach all the sensor nodes in a single broadcast message. The sink broadcasts the
newly calculated value of f to the whole sensor network. On receiving the event
reporting frequency, each sensor node calculates its event reporting duration and
checks the buffer level at the end of each reporting interval to guess any possible
congestion. Whenever a sensor node faces congestion, it sets a congestion enabled
bit of the event report packet. When these packets arrive at the sink node, it gets
an overall view of the congestion level of the network. ESRT conserves energy
by controlling the value of f .

SenTCP [84] is an energy-efficient congestion control protocol intended for
upstream traffic flow. SenTCP measures the degree of congestion in every inter-
mediate sensor node using the values of (i) average local packet-servicing time,
(ii) local packet interarrival time, and (iii) the buffer occupancy. SenTCP uses a
hop-by-hop congestion control in which each intermediate sensor issues a feed-
back signal to its neighbors, in the event of congestion, which carries the local
congestion degree and the buffer occupancy ratio. The feedback signal is used for
the neighboring sensor nodes to adjust their local data-sending rate. The hop-by-
hop feedback control regulates congestion quickly and reduces packet dropping,
which in turn conserves energy and increases the throughput. SenTCP always
uses the shortest path to forward data. Therefore, this protocol minimizes the
average node energy consumption. However, the overall network lifetime can be
compromised since the nodes on the shortest path will be used until their power
is exhausted [85].
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Different from SenTCP, in Reference 86 is presented a framework that miti-
gates congestion by creating alternative paths to avoid the congested paths instead
of reducing the data-sending rate. The creation of alternative paths involves sev-
eral nodes that are not in the initial shortest path from sources to the sink. The
use of these nodes leads to a balanced energy consumption, avoiding the power
depletion of nodes on the shortest path, thus prolonging WSN lifetime [86, 87].

Priority-based congestion control protocol (PCCP) [80] is a hop-by-hop
upstream congestion control protocol for WSNs. PCCP provides a different
throughput to each sensor node in a multihop WSN by attaching a weighted
fairness value to each node. PCCP offers a different degree of priority indexes
such that a sensor node with a higher priority index and also sensor nodes that
inject more traffic receive more bandwidth. PCCP further defines the priority
index for both self-generating traffic and transit traffic. PCCP infers the degree
of congestion through packet interarrival time and packet service time and then
imposes hop-by-hop congestion control depending on the measured congestion
degree and the priority index. PCCP uses implicit congestion notification to
avoid transmission of additional control messages and therefore helps improve
the energy efficiency. Congestion information is piggybacked in the header of
data packets. PCCP allows the application layer to dynamically override the
priority index of any sensor node(s) of any particular region, whenever it is
needed.

Asymmetric reliable transport (ART) [88] provides bidirectional end-to-end
reliability and upstream congestion control in WSNs. ART uses an energy-aware
algorithm that selects a subset of sensor nodes called essential nodes (E-nodes),
which can cover the whole area to be sensed in an energy-efficient way. ART
forms a subnetwork consisting of those E-nodes, and only those E-nodes take part
in reliable data transfer to the upstream and downstream nodes. The algorithm
takes into account the remaining battery power in the sensors so that sensors
running low on battery have a smaller chance of being essential. This gives
flexibility for balancing the available energy in the network among all sensors,
thus providing a longer network lifetime. ART has three important features [71]:
(i) non-E-nodes do not face end-to-end communication overhead, (ii) ART uses a
distributed energy-aware congestion control, and (iii) less number of nodes takes
part in loss recovery. ART provides a reliability guarantee in both downstream
and upstream flows. For reliable query propagation (downstream flow), it adopts
two measures. The first measure is connectionless and reactive where the sink
node simply sends the query fragments without worrying about any loss. It is the
responsibility of the receiving E-nodes to detect a query fragment loss by taking a
look at the sequence order; then, as a recovery measure, it sends back an NACK
(negative acknowledgment) to the sink node. The second measure resembles
connection-oriented communication where the sink node proactively handles the
loss detection using the time-out mechanism. A time-out event without getting
any ACK (positive acknowledgment) for a particular query fragment makes the
sink resend the fragment. End-to-end event reliability is assumed to be achieved
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if the first message containing the event information, which is sent by the E-
nodes, is reliably received by the sink. For event reliability—used in applications
that require only successful event detection, but not successful transmission of
all packets [81]—E-nodes are responsible for detecting the event-message loss
and recovering it. Each E-node enables a control bit to notify the sink that this
message portrays the first event message, which enforces the sink to reply back
with an ACK.

Rosberg et al. [89] proposed a hybrid system that combines a modified ver-
sion of the ESRT protocol [81, 83] with the implicit and explicit automatic repeat
request (ieARQ) protocol [89]. This hybrid system adaptively switches between
ESRT and ieARQ to achieve energy efficiency under a statistical reliability con-
straint. The ESRT protocol starts at the source sensor node where data is sampled.
After Hsw hops, the algorithm proceeds with ieARQ. Hsw is a dynamic hop thresh-
old that depends on the path length and link error rate. The ieARQ adapts the
maximum number of retransmissions in each hop based on the channel error esti-
mations in order to reach a predetermined statistical reliability threshold. Rosberg
et al. 90 defined statistical reliability with level β as a QoS level where during
every predetermined time window, a predetermined amount of random sensed
data is delivered to the sink node from every source, each with a probability of
at least β. Therefore, reliability is actually determined by the required quality
of the aggregated sensed data delivered to the sink, rather than the reliability of
individual data sample. Thus, the proposed hybrid algorithm allows WSN users
to control the balance between energy efficiency and data reliability.

25.5 APPLICATION LAYER

This layer encompasses algorithms that require internode collaboration and
exploit intranode level policies for energy management, thus often presenting
a cross-layer behavior. We identify two different types of algorithms in this
layer (Fig. 25.5): algorithms for task allocation and algorithms of data fusion
and/or aggregation. Both types exploit the in-network processing capability of
sensor nodes. Task allocation, also known as task scheduling algorithms , aims
at partitioning the application in smaller tasks and allocating them to different
sensor nodes, trying to parallelize their execution in an energy-efficient way
(minimizing the communication cost). Data fusion and aggregation algorithms
exploit the inherent redundancy in the sensor-generated data in order to minimize
data transmissions, thus trading computation for communication costs.

25.5.1 Task Scheduling

WSNs can be considered as application-oriented networks, in the sense that in
order to operate properly and to achieve their maximum usefulness, such networks
need to be optimized to the specific goals of the target application. Application
requirements are often described as high level missions such as “detect fires,”
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“monitor temperature in a given area,” and “report the presence of an intruder,”
[91]. Such high level descriptions need to be translated to low level tasks to be
executed by sensor nodes. This translation and the distribution of the required
work over the network nodes should be preferably transparent to the application
that is built on top of the WSN. In this section, we address power management
techniques used in the context of distributing application tasks over the WSN.

Most WSN applications require distributed signal and collaborative data pro-
cessing. Therefore, techniques for performing energy-aware distributed process-
ing have attracted interest of recent investigations. Such techniques exploit the
WSN capacity of performing in-network processing and focus on the problem
of distributing the processing in an energy-efficient way. To enable collaborative
in-network processing, the following problems must be solved:

• assigning tasks to sensors;
• determining the execution sequence of tasks;
• scheduling communication between sensors.

In the field of high performance computing, the first problem is referred to
as task mapping and the second one as task scheduling [92]. In this context, the
problem of task scheduling and mapping in WSN assumes that an application can
be divided into a number of interdependent tasks and deals with the distribution
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of such tasks to the WSN nodes. Different allocation of these tasks on the net-
work nodes consumes different amounts of energy. Therefore, the main general
goal of a task scheduler in this environment is to find a scheduling (or alloca-
tion) that maximizes the network lifetime, with additional constraints related to
the application requirements (e.g., time). Since energy consumption in WSNs is
mainly related to wireless communication, most of the works on task schedul-
ing for WSNs propose algorithms to allocate tasks so that communication cost
is minimized. One major difference from conventional scheduling algorithms is
that such works focus on meeting hard time deadlines. Instead, in WSN, the main
constraint is not time, but energy, so existent solutions consider that time require-
ment is of least importance, preceded by energy consumption, battery awareness,
availability, and other application-specific parameters.

Several works have been investigating this topic in the past years, assum-
ing different characteristics for the network (as multihop/single hop, homo-
geneous/heterogeneous) as well as using different approaches to represent the
structure of the WSN application and to formulate the scheduling problem. The
most commonly used approach to model WSN applications consists of consid-
ering a application as a set of communicating tasks and representing them as a
directed acyclic graph (DAG) [93]. Therefore, the problem of task scheduling
is reduced to a graph problem and solutions from this context are sought. In
this section, we review some works in this area classified by their assumption
regarding the heterogeneity of the WSN nodes.

Examples of works that consider a WSN composed of homogeneous nodes
are References 92, 94–96. In EcoMapS, Tian et al. [92] modeled tasks and their
dependencies as a DAG and considered a cluster-based network topology where
each cluster has a star topology, with the CH in the middle. The CH is responsible
for assigning the tasks in each cluster, as well as for mediating communication.
The proposed algorithm is based on the list scheduling technique [97], in which
tasks are ordered in a list so that each task is set after its predecessors and
the most critical path is put first. Then the minimum schedule length subject to
energy constraints is sought.

Yu and Prasanna [94] also represented the application as a DAG and pro-
posed an energy-balanced task allocation. They consider a single-hop cluster
of sensor nodes connected through multiple wireless channels and enabled with
dynamic voltage scaling (DVS). Therefore, in their work the task allocation prob-
lem consists, besides assigning tasks to sensors and scheduling computation and
communication activities, of assigning the most suitable voltage settings for exe-
cuting each task. They consider an epoch-based scenario [98], where an instance
of the application is executed during the beginning of each epoch and must be
completed before the end of the epoch. Their general goal is to find an allocation
so that the lifetime of the cluster is maximized. The proposed algorithm aims at
minimizing the maximal energy dissipation among all sensor nodes during each
epoch, subject to the latency, exclusive access, and task placement constraints.
Two important differentials of such work are (i) the idea of energy-balanced task
allocation, so their algorithm takes into account the fact that the remaining energy
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can vary among sensor nodes and (ii) the fact that they consider the time and
energy costs of both the computation and communication activities (most works
consider only the communication cost). An integer linear programming (ILP)
formulation of the problem is initially presented, and then, since the time com-
plexity of the ILP formulation is large, a polynomial time three-phase heuristic
is also proposed.

Tian et al. [95] proposed a localized and cross-layer task mapping and schedul-
ing solution (called RT-MapS ) for DVS-enabled WSNs. They assumed deadline-
constrained applications executed in a single-hop cluster of a homogeneous WSN.
In order to better represent the broadcast feature of wireless communication,
they proposed to extend DAG representation of applications as a hypergraph,
thus adopting a novel high level application model, referred to as Hyper-DAG .
The design objective of RT-MapS is to minimize energy consumption subject to
application deadline constraints. In RT-MapS, communication and computation
are jointly scheduled in two phases: (i) task mapping and scheduling and (ii)
DVS phase. In the first phase, two low complexity task mapping and schedul-
ing algorithms, CNPT [99] and Min-Min algorithm [100], are implemented and
extended in order to incorporate their proposed communication scheduling algo-
rithm. The DVS technique is implemented in the DVS phase to further reduce
energy consumptions.

Tian and Ekici [96] extended the proposal presented in Reference 95 for mul-
tihop WSNs. They proposed an application-independent solution, called multihop
task mapping and scheduling (MTMS ), to provide the in-network computation
capacity required by real-time applications in WSNs. Applications are represented
as Hyper-DAG, and the proposed algorithm MTMS aims to guarantee application
deadlines with minimum energy consumption. MTMS not only maps and sched-
ules computation tasks to sensors in parallel in order to accelerate execution but
also addresses communication scheduling among sensors to exchange interme-
diate results in a multihop cluster of nodes. Besides, to further optimize energy
consumption, the authors also presented an algorithm for DVS. Similar to RT-
MapS, MTMS consists of two phases: a task mapping and scheduling phase and
a DVS phase. In the first phase, computation tasks are assigned to sensors, their
execution sequence is decided, and communications between sensors are sched-
uled based on the communication dependency constraints. For the first phase,
the authors proposed the algorithm called task schedule search engine (TSSE ),
an extension of the Min-Min algorithm [100]. The goal of the TSSE algorithm
is to minimize energy consumption subject to deadline constraints. The original
Min-Min algorithm is designed for traditional parallel processing without con-
sidering wireless communication scheduling. To solve this problem, the authors
developed a new multihop communication scheduling algorithm based on the
proposed Hyper-DAG representation of tasks and multihop channel model. The
communication scheduling algorithm is then used by the TSSE algorithm during
task scheduling to meet the communication dependency constraints. Schedules
generated by the modified Min-Min algorithm are further optimized with the
DVS algorithm.



APPLICATION LAYER 733

Examples of proposals that consider heterogeneous WSNs are References 91,
101, and 102, all of them making use of DAG to represent the WSN applica-
tion. Park and Srivastava [102] presented an energy-efficient task assignment and
migration framework for WSNs. In their proposal, the task assignment problem
is addressed as an optimization problem. Therefore, a cost function is proposed
encompassing energy consumption, latency, and additional constraints, and the
goal is to minimize such cost function. The simulated annealing method [103] is
used to solve the task transformation and assignment problem.

Voinescu et al. [91] proposed a scheduling algorithm for single-hop, hetero-
geneous WSNs, with a focus on maximizing network lifetime while satisfying
some allocation constraints such as energy constraint, compatibility of tasks to
a given node or topology, and the purpose of the network. They considered that
the task to be scheduled is the smallest indivisible part of an application and
can be classified into sensing tasks, actuating tasks, computation tasks, etc. The
proposed scheduler uses some basic information for each task: its importance, an
affinity to a certain type of node (a smoke-sensing task can only be assigned to
wireless nodes that have a smoke sensor), a frequency with which to run (if the
task is repeatable), and dependencies. The scheduler chooses which assignment
is best for purposes of energy consumption. The authors model the tasks and
their dependencies as a DAG where the edges represent data dependencies, and
with assigned costs being the maximal number of bits transmitted between the
tasks. Therefore, the scheduling problem is reduced to a known graph problem,
called the min k-cut problem , for which a polynomial algorithm has been found
in 1988 [104].

25.5.2 Data Aggregation and Data Fusion in WSNs

Data aggregation in WSNs (Fig. 25.6) consists of combining data generated by
different sensor nodes with the purposes of augmenting the perception on the
monitored phenomenon, eliminating spurious data, and decreasing the amount
of redundant transmissions, thus saving energy [105]. Great redundancy is com-
monly present in WSNs due to the high density of nodes and the fact that they
are often monitoring a common phenomenon, therefore producing data strongly
correlated. On one hand, minimizing such redundancy using techniques for data
aggregation is a very effective way to reduce energy consumption [53, 106]. On
the other hand, individual readings of sensors may be inaccurate and of low sig-
nificance for the client application. Inaccuracies of sensor measurements can be
generated by different sources, such as strong variations or interferences in the
monitored environment and intrinsic imprecision on sensor calibrations. More-
over, the sensing capability of an individual sensor is restricted to a limited spatial
region called as the sensing range. In order to produce useful information and
meet the requirement of sensing coverage of each application, data from several
sensors need to be used. In this context, the combination of data arising from
different sources to provide suitable temporal and spatial coverage to the appli-
cation is an important task in WSNs. Data aggregation techniques can be used as
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an effective way to accomplish such task, processing data from multiple sensors
in order to filter noise measurements and thus providing more accurate interpre-
tation of data generated by a large number of sensors. Therefore, in WSNs, data
can be aggregated with two goals: improve the accuracy and save energy.

There are different definitions for data aggregation. According to Cohen et al.
[107], “data aggregation comprises the collection of raw data from pervasive
data sources, the flexible, programmable composition of the raw data into less
voluminous refined data, and the timely delivery of the refined data to data con-
sumers.” In the context of WSNs, such a term is often used as a synonym for
data fusion [108, 109]. In spite of being possible to consider both terms as syn-
onyms, often data fusion encompasses more sophisticated techniques to combine
data from multiple sources, with the main goal of improving the accuracy of the
generated data. Indeed, although several techniques of data fusion are used to
save energy, some methods applied to fuse data can be quite complex, and the
required processing may consume more energy than the simple forwarding of raw
data. On the other hand, data aggregation always aims at reducing the amount of
data to be transmitted. As van Renesse [109] defines, “aggregation is the ability
to summarize,” which means that the amount of data is reduced, thus saving
energy. In this sense, data aggregation can be considered as a subset of data
fusion techniques that exploit the in-networking capacity of WSN nodes to filter
out redundancies and save transmission energy. The idea is to take advantage of
the node computation capacity and perform the desired fusion algorithm while
data is routed toward the sink node. Krishnamachari et al. [110] argued that the
adoption of data aggregation shifts the focus from address-centric approaches of
establishing routes between pairs of nodes to a data-centric approach of finding
routes from multiple sources to a destination that allows and promotes the in-
network consolidation of data. One of the first works to exploit the in-network
data aggregation was directed diffusion protocol [47, 53]. In such a protocol,
nodes coordinate to establish data-centric gradients for data forwarding and to
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perform distributed sensing of an environmental phenomenon. Significant energy
saving is achieved when intermediate nodes in the routes provided by the gradi-
ents aggregate responses to queries issued by applications.

Since our subject in this chapter is on strategies for energy efficiency, we
focus mainly on data aggregation techniques (Section 25.5.2.2). Nevertheless, in
Section 25.5.2.1, we briefly discuss some uses of data fusion to achieve energy
savings in WSNs.

25.5.2.1 Approaches of data fusion for energy efficiency. Like data
aggregation, there are different definitions for data fusion as well. According to
Hall and Llinas [111], it can be defined as “a process dealing with the automatic
detection, association, correlation, estimation, and combination of data and infor-
mation from multiple sources.” Data fusion techniques use the observations of
events from multiple sensors as the input and integrate the information in order to
achieve increased accuracies and new inferences that could not be achieved using
a single source of data [111]. In WSNs, data fusion can be used for improving
data accuracy and saving energy.

As we previously mentioned, data aggregation can be classified as a type
of data fusion technique. Such classification takes into account the purpose or
goal with which the technique is applied. Other classifications for data fusion
techniques exist, considering different criteria such as the data abstraction level,
type of data, parameters, and mathematical foundation [112]. Within the criterion
based on the purpose, besides data aggregation, other purposes for which data
fusion is commonly used are inference and estimation. Both techniques can be
used to achieve energy efficiency in WSNs.

Inference methods are applied in the context of using data fusion for decision-
making processes. A decision is taken based on the knowledge of the per-
ceived situation. Decision-making paradigms include Bayesian decision making,
Dempster–Shafer inference, fuzzy logic, and semantic information fusion. Fuzzy
logic has been successfully applied in different ways with the aim of optimizing
the energy consumption in WSNs. Several works use fuzzy logic for decisions
related to the routing strategy. For instance, Gupta et al. [113] applied fuzzy
reasoning to select the best CHs in a clustered WSN, taking into account the
node density, energy level, and node centrality with respect to the whole cluster.
Also, for the purpose of energy-efficient routing, Srinivasan et al. [114] proposed
the use of a fuzzy controller at each node that, at the time of route discovery,
makes a decision to send back or continue processing the data packets based on
(i) the interests (query) received, (ii) the type of data being sensed, and (iii) an
estimate of the node battery power level.

Semantic information fusion is essentially an in-network inference process
in which raw sensor data is processed so that nodes exchange only the result-
ing semantic interpretations [112]. The semantic abstraction allows a WSN to
optimize its resource utilization when collecting, storing, and processing data.
Semantic information fusion usually comprises two phases: knowledge base
construction and pattern matching (inference). The first phase (usually off-line)



736 NETWORK-WIDE STRATEGIES FOR ENERGY EFFICIENCY

aggregates the most appropriate knowledge abstractions into semantic informa-
tion, which is then used in the second phase (on-line), a pattern matching phase,
for fusing relevant attributes and providing a semantic interpretation of sensor
data [115–117].

Estimation methods were inherited from control theory and use the laws of
probability to compute a process state vector from a measurement vector or a
sequence of measurement vectors [118]. Examples of estimation methods are
maximum likelihood, least squares, and Kalman filters. In WSNs, estimation
methods can be used to save energy instead of always transmitting the whole
data stream from source nodes to the sink node. A prediction scheme can be used
in both the sources and sink, and only when the estimated value differs from the
actual value by more than a predefined error, data needs to be transmitted to the
sink. The work described in Reference 119 adopts a dual prediction scheme based
on least-squares filters to achieve this goal. Using the proposed least mean square
(LMS) adaptive algorithm on a publicly available, real-world (office environment)
temperature data set, the authors achieved up to 92% reduction in communication
while maintaining a minimal accuracy of 0.5◦C. In Reference 120, a dual Kalman
filter approach was proposed with the same goal: both source and sink nodes
predict the sensed value so that the source node sends data only when it knows
the sink prediction is incorrect.

25.5.2.2 Data aggregation strategies. Kulik et al. [51] defined data aggre-
gation as a technique used to overcome two problems: implosion and overlap.
In the former, data sensed by one node is duplicated in the network due to the
data routing strategy (e.g., flooding). The overlap problem happens when two
different nodes disseminate the same data. This might occur whenever the net-
work density is high, and therefore, the sensor nodes are redundant, meaning that
they sense the same property in the same place. In both cases, the redundancy
generated for different reasons might have its negative impact (e.g., waste of
energy and bandwidth) reduced using data aggregation techniques.

Data aggregation can be a simple operation of duplicate suppression or it can
encompass more sophisticated operations. Duplicate suppression is the straightest
approach that consists of, whenever multiple sources send the same data, inter-
mediate nodes and will forward only one of them [56]. Such simple approach
eliminates redundancy by discarding duplicate data. The use of maximum or min-
imum function is also possible. However, the most common techniques of data
aggregation are the summarization functions, commonly used by query languages
(e.g., SQL) to retrieve summarized data in database systems. Madden et al. [121]
discussed the implementation of five basic aggregation operations, that is, count,
min, max, sum, and average, based on the TinyOS platform and demonstrated
that such generic approach for aggregation leads to significant energy savings.
Such database approach for data aggregation was successfully adopted in several
works. Madden et al. [122] proposed TinyDB, a distributed query processor that
offers simple extensions to SQL to control data acquisition and allows the user to
specify temporal and event-based aggregates in WSNs. TinyDB includes a mech-
anism for user-defined, SQL-like aggregates and a metadata management system
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that supports optimizations over them. TinyDB has many of the features of a
traditional query processor (e.g., the ability to select, join, project, and aggregate
data), but it also incorporates a number of other features designed to minimize
power consumption via acquisitional techniques. According to the authors, these
techniques can provide orders of magnitude improvements in power consumption
and increased accuracy of query results over nonacquisitional systems that do not
actively control when and where data is collected.

Madden et al. [98] argued that since aggregation is so central to WSN applica-
tions, it must be provided as a core service by the system software. Instead of a
set of extensible APIs (application programming interfaces) programmed in low
level languages such as C, the authors believe that an aggregation service, con-
sisting of a generic, easily invoked high level programming abstraction, should
be provided by sensor platforms. Such approach enables users of WSNs, who
often are not network experts, to focus on their application logic, unburdening
them of dealing with specificities of the underlying embedded OS and hardware.
To achieve their goal, they developed Tiny AGgregation (TAG), a generic aggre-
gation service for networks of TinyOS motes. TAG provides a simple, declarative
interface for data collection and aggregation, inspired by selection and aggrega-
tion facilities in database query languages. Besides, TAG distributes and executes
aggregation queries in the WSN in a time- and power-efficient way. They adopted
an SQL-style query syntax but extended the five basic aggregation functions to
incorporate more complex operations.

Another aggregation function that can be identified in WSNs is packaging
[2]. Packaging groups several observations in one single packet, with the goal of
avoiding the overhead of the MAC protocol when sending several packets.

Data aggregation can also include complex techniques based on mathematical
and statistical methods, which allow combining data with different meanings.
However, these methods are more often part of the broader range of data fusion
techniques (Section 25.5.2.1).

The use of data aggregation in WSNs and its impact on energy consumption
have been the subject of extensive investigation. Several works already demon-
strated its overall benefits, while others discussed the challenges, such as the
establishment of efficient aggregation trees and the involved trade-offs (as latency
and data accuracy). Regarding the overall advantages, Kulik et al. [51] proposed
the SPIN protocol that performs traffic reduction for information dissemination
by using metadata negotiations between sensors in order to avoid redundant
and/or unnecessary data propagation through the network. Krishnamachari and
colleagues [110] described the impact of source-destination placement on the
energy costs and the delay associated with data aggregation. They also investi-
gated the complexity of optimal data aggregation. Intanagonwiwat et al. [123]
evaluated the impact (latency and robustness) of a greedy aggregation algorithm
in high density networks. The proposed greedy aggregation approach improves
path sharing and achieves significant energy savings when the network has high
node densities, in comparison with the opportunistic approach.
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Depending on the network organization, in-network data aggregation may
occur in different ways, according to the logical topology and routing strategy.
In hierarchical networks, usually a two-hop communication takes place. One hop
for the cluster members to reach the CH, and another hop for CHs to reach the
sink node. In this type of communication, data aggregation is performed by CHs
that send the results to the sink. An example of hierarchical solutions for WSNs
where CHs perform data aggregation is LEACH [55, 113, 124–127].

In flat networks, data aggregation should be executed by every node that takes
part in the routing process. Some proposals assume performing the aggregation in
an opportunistic way by intermediate nodes along the multihop path from sources
to sink nodes, while others consider building an aggregation tree. Examples of
multihop communication with in-network aggregation include Pegasis [128] and
the directed diffusion family of algorithms [47, 49, 53]. In Pegasis [128], sensors
form chains so that each node transmits and receives from a nearby neighbor.
Gathered data moves from node to node, gets aggregated, and is eventually
transmitted to the sink. Nodes take turns to transmit so that the average energy
spent by each node is reduced. Another example is Reference 129, where the
authors addressed the problem of finding an efficient schedule that specifies the
way in which data should be collected and aggregated from all source nodes
and transmitted to the sink. Given the location of the sensors and the sink, they
provided a near-optimal maximum lifetime data aggregation (MLDA) algorithm
to find a data gathering schedule that maximizes the time until the first sensor
has its energy depleted. The proposed algorithm significantly outperforms existing
data gathering protocols in terms of system lifetime.

However, most existent proposals are based on the build of an aggregation
tree. Since there is a strong dependence between the aggregation tree and the
routing tree, several approaches integrate aggregation functions as part of the
routing protocol or strategies. Other works assume the building of trees explic-
itly for purposes of aggregation, independent of the underlying data routing. In
both cases, the building of an optimal aggregation tree is a critical issue in the
aggregation process. Such tree needs to be built using as few nodes and resources
as possible to guarantee the aggregation and (in some cases) delivery of data gen-
erated by source nodes. Finding an optimal routing tree, connecting sources to
sinks, is shown to be an NP-complete problem very similar to the Steiner tree
[50]. Several heuristics have been proposed for this problem. Krishnamachari
et al. [110] provided theoretical results regarding the NP-completeness related
to the formation of an optimal aggregation tree. They evaluated three heuristics
for this purpose: the centered-at-nearest-source (CNS) tree, the shortest-path tree
(SPT), and the greedy incremental tree (GIT). In the CNS tree, each source sends
its data directly to the source closest to the sink; in the SPT, each source sends its
data to the sink along the shortest path between both nodes; and in the GIT, the
routing tree starts with the shortest path between the sink and the nearest source,
and at each step after that, the source closest to the current tree is included in
the tree. SPT is the most popular scheme because of its low complexity and
short delay. However, the achieved energy savings with SPT significantly varies
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with the change in the network topology. Krishnamachari et al. [110] showed
that the GIT heuristic is the best of the three. However, its distributed version,
described in Reference 130, requires a lot of communication and memory usage
because every node needs to know its shortest paths to the other nodes in the
network. Motivated by that inefficient energy cost, Nakamura et al. [131] pro-
posed the InFRA heuristic, which finds the shortest paths that maximize data
aggregation, and has an O(1)-approximation ratio. Ding et al. [132] proposed a
tree-based routing algorithm based on nodes’ residual energy, so that nodes with
more energy are likely to perform data aggregation and routing. Once the tree is
built, leaf nodes are turned off to save energy.

Besides proposals for data aggregation based on flat and hierarchical network
topologies, there are works that assume a hybrid approach, in which there are
multiple hops connecting source nodes to their CH and/or multiple hops con-
necting CHs to the sink node(s). In such a scenario, both flat and hierarchical
in-network aggregation can be combined. The aforementioned strategy proposed
by Nakamura et al. [131] illustrates a routing algorithm for hybrid networks
performing in-network data aggregation.

Besides the network topology, there are other important parameters, as well as
trade-offs, to be considered in data aggregation strategies. One important factor
is the degree of spatial correlation of data monitored by nodes in close proxim-
ity. The higher the degree, the better the benefits that can be achieved by data
aggregations. Alhtough most works assume that neighboring nodes always report
similar data, there are cases in which such assumption does not hold. Rocha et al.
[133] discussed the issue of neighboring nodes that are not semantically corre-
lated and the need for building clusters based on the semantical similarity of
nodes in order to achieve a more efficient data aggregation and thus save energy.

Two other important parameters to be considered are the aggregation degree
and the aggregation delay. The former denotes the ratio between the number
of received messages and the number of forwarded messages, in a given
node performing aggregation. Aggregation delay is the delay generated by
the time interval an aggregator node needs to wait for data messages to be
aggregated before transmitting the resultant aggregated data packet. Higher
values for aggregation degree and aggregation delay imply an overall higher
aggregation (a larger number of messages being aggregated), thus increasing the
energy savings. However, there is an important trade-off to be managed here.
High values for aggregation degree can compromise the data accuracy, while
high values of aggregation delay can compromise the latency. For applications
that require original and accurate measurements, the summarization provided
by data aggregation operations may represent an accuracy loss [106]. In fact,
although many applications might be interested only in summarized data, we
cannot always assert whether or not the summarized data is more accurate than
the original data set [112]. Therefore, aggregation degree and delay parameters
need to be carefully tuned taking into account both the requirements of energy
efficiency and the application QoS, finding a balance between these two
conflicting goals. Two important works tackling this issue are Reference 106,
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where the authors have discussed the trade-off between energy consumption
and accuracy when aggregation functions are used to summarize data from
a WSN, and Reference 134, where the authors have discussed the trade-offs
between energy consumption and transmission delay in the presence of data
aggregation. Another work [135] analyzed the trade-offs among communication
delay, energy consumption, and data accuracy of the partial data aggregation
technique and discussed the obtained results.

Another very interesting work is Reference 136, in which the authors explic-
itly took into account the cost of processing data aggregation and evaluated the
trade-off between reducing the energy consumption and preserving information
integrity in the aggregation process. According to the authors, although most
aggregation strategies discussed in the literature do not consider the cost of pro-
cessing, there are occasions when the aggregation process is more costly than the
direct forward of data without employing aggregation. The greater the number
of packets aggregated, the better the benefit of using aggregation with respect
to not using it. Aggregation, however, cannot be increased indefinitely without
the loss of important information. Motivated by this finding, they developed and
analyzed an energy consumption model, performed an entropy estimation for this
model, and identified a set of conditions under which aggregation can be less
costly than nonaggregation. They claim that the provided results can be used
by network designers to further investigate the conditions when aggregation can
increase the system performance and to design WSN protocols that are capable
of increasing both the network lifetime and the fidelity of the generated data.

25.6 FINAL REMARKS

In this chapter, we discussed strategies for energy management in WSNs that
deal with the whole network, exploiting the specificities of each layer while
addressing their relationships and dependencies.

It is important to mention that for reasons of lack of space, we did not explic-
itly describe solutions for cross-layer design in WSNs, an approach that directly
addresses the issue of energy saving. Cross-layer design may be defined as “the
breaking of OSI hierarchical layers in communication networks” [1] or “pro-
tocol design by the violation of reference layered communication architecture
is cross-layer design with respect to the particular layered architecture” [137].
The breaking of OSI hierarchical layers or the violation of reference architec-
ture includes merging of layers, creating new interfaces, or providing additional
interdependencies between any two layers [138]. Therefore, the central idea of
a cross-layer design in WSNs is, instead of following a strictly layered design,
in which protocols in one layer only directly interact whit the subjacent ones, to
allow the control and exchange of information over two or more layers in order
to achieve significant improvements in the energy performance by exploiting
the interactions between these various layers. For resource-constrained systems
such as WSNs, optimization across all layers provides huge improvements in
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the energy efficiency, thus it is important to exploit such feature in the design
of protocols and frameworks for WSNs. Cross-layer issues mainly focus on
two aspects: (i) the protocol design and (ii) the framework design along with
implementation-related issues. For further information on the former aspect, the
reader can refer to Reference 139, in which the authors have presented a compre-
hensive review of the state of art of cross-layer protocols. For the latter aspect, the
readers can refer to Reference 140, in which the current proposals for cross-layer
frameworks are described and analyzed.
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CHAPTER 26

ENERGY MANAGEMENT IN
HETEROGENEOUS WIRELESS
HEALTH CARE NETWORKS

NIMA NIKZAD, PRITI AGHERA, PIERO ZAPPI, and TAJANA S. ROSING

26.1 INTRODUCTION

In recent years, there has been a significant and growing interest in wireless
health monitoring systems. Today’s mobile phones are putting considerable pro-
cessing power in the pockets and purses of people everywhere. Combined with
ever-shrinking and affordable sensors that can communicate with mobile phones,
the vision of large-scale sensor networks that keep people informed about their
personal health and their environment is becoming a reality. This data can be
rapidly communicated and shared with a patient’s doctor to allow the monitor-
ing of health conditions without requiring the user to be directly observed by a
medical professional.

Most such systems are made up of a collection of body-worn sensors; sen-
sors in the environment; a device, such as a mobile phone, that aggregates the
data from these sensors; and a back-end server (BE) where the data can be
stored for future study and observation by the user or a trained professional.
Given the mobile and wireless nature of the sensors and the local aggregator
(LA), it is no surprise that battery life is a major concern for such systems.
The collection, filtering, processing, location tagging, and reporting of this health
data can put significant strain on the battery life of a user’s mobile phone and
sensors.

A typical wireless health monitoring system collects a variety of readings from
sensors on or around a user’s body. While some of the data that is collected,
such as heart rate and blood pressure information, may be relevant only to the
collecting user, some data may be relevant to other nearby people. An example of
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such data may be air quality or humidity information, which is collected from the
surrounding environment and does not contain any personal information about
the collecting user. Two nearby users may sense, filter, process, and forward the
same exact environmental health information. However, if the BE that collects
these readings knows where the measurements were taken and what users are
in the vicinity, an opportunity exists to reduce the number of redundant sensor
readings from that environment.

Regardless of whether a system is monitoring personal or environmental health
information, it will be responsible for collecting sensor readings, performing
data fusion and feature extraction to identify events of interest, and forwarding
this information over a wireless network to a BE for long-term storage and
future study. Given the heterogeneous nature of a wireless health monitoring
system, different components of the system offer vastly different processing and
communication capabilities. While some tasks such as the collection of readings
from the environment must occur on sensors, tasks such as feature extraction,
depending on the computational requirements of the processing, could be done on
the sensor node, at the LA that collects readings from multiple sensors, or could
be handled by the BE before the data is stored. When tasks in a wireless health
system are handled, they can have a drastic effect on the energy consumption
and lifetime of a system.

Two methods of improving the energy efficiency of a wireless health moni-
toring system are explored in this work. First, location information is utilized to
identify users that are expected to collect redundant environmental sensor read-
ings. The BE generates predictions for what a user would report based on what
its neighbors report, and based on the amount of available battery life for each
user and each of other users near it, the rate at which any individual user col-
lects sensor readings can be drastically reduced, resulting in significant energy
savings. Second, when a health monitoring system collects and processes sen-
sor data, the choice of where it does processing in the system has a drastic
effect on the computational and communication energy costs of the entire sys-
tem. Given a task graph of all jobs to be completed in such a system, tasks can
be dynamically and efficiently distributed among sensors, the LA, and the BE
to minimize energy consumption and improve system lifetime. Significant power
savings can be obtained in a wireless health monitoring system by controlling
the rate at which data is collected in a system and controlling where that data is
processed.

The rest of the chapter is organized as follows. The system model, describing
the different components that make up a wireless health monitoring system,
including a method of describing the hierarchy and flow of tasks in a health
monitoring system, is introduced first. The following section presents a method of
minimizing redundant environmental sensor readings to save energy by utilizing
location information, followed by a way of dynamically assigning those tasks in
a system to minimize energy consumption and extend battery life. Results and
analysis of the introduced approaches are presented in the results section, which
is followed by a conclusion.
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26.2 SYSTEM MODEL

The typical wireless health monitoring system (Fig. 26.1) has three main com-
ponents: sensors, a LA, and a BE. One or more sensors carried by a user along
with one LA (such as a cellular phone) form a body area network (BAN). The
function of these sensors is to monitor a user’s health and to detect specific events
on the user’s body or in the surrounding environment (e.g., low blood pressure,
carbon monoxide exposure, heart rate). Sensors may be built directly into the
LA or may communicate with it wirelessly, forwarding raw or processed sensor
readings. The LA collects data from the sensors in the BAN and may process it
further before sending to a centralized BE. Wireless communication between sen-
sors and the LA is often handled over a Bluetooth or ZigBee connection, while
communication between the LA and BE is handled over WLAN and WWAN.
The BE may do additional processing on the data it receives before storing it in a
database to be used for tracking a user’s health history or to do further analysis in
the future. In a heterogeneous architecture such as this, devices differ widely in
their processing and communication abilities, as well as in their available energy
budget. While sensors and the LA are battery powered in such a system, limiting
their processing power and the amount of data they can reasonably report, the
BE is assumed to have no energy or processing constraints.

The BE consists of a sophisticated infrastructure that offers storage capabilities
for user data as well as redundancy to deal with any failures in the infrastructure.
It maintains a complete history of sensor readings and event detections for each
participating user. In addition to providing valuable information to users regarding
their health, this data can be shared with a user’s doctor to help monitor effects of
a treatment or to diagnose a condition. Data collected about a user’s environment
is also valuable to other users in the area, providing a way of predicting the
conditions a user was exposed to when they lack the proper sensors to monitor
the environment directly.

26.2.1 Health Monitoring Task Model

Tasks of a wireless health care system can be modeled as a directed acyclic graph
(DAG) G = (T , C), where node set T represents the set of n sensing/processing

Local
aggregator

Cellular
network

Backend
server

WLAN

ZigBee/
bluetooth

ZigBee

Bluetooth
Sensors

Figure 26.1 Wireless health care system architecture.
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tasks, T : i = 1, 2, . . . n and C is the set of edges that represent communication
tasks between nodes, C : i = 1, 2, . . . n. Cij ∈ C represents a precedence relation
between tasks Ti, Tj ∈ T , and the data produced by task Ti should be communi-
cated to Tj before Tj can start its processing. The weights Wij on edge Cij ∈ C

represent the amount of data that needs to be transmitted from task Ti to Tj .
Tasks that do not have any predecessors are called source tasks , and tasks that
do not have successors are called sink tasks .

In such a system, body-worn sensors are represented as source tasks, gener-
ating the data used in the rest of the system. Sink tasks represent logging of
the processed data on the BE. Given a DAG representing the tasks and flow of
data in a wireless health care system, the goal is to minimize the total energy
consumed by each battery in the system until the system dies and increase system
battery life, defined as the shortest battery life of all devices in the system.

The tasks of the DAG are further characterized by the set of variables and
constants provided in Table 26.1. These variables together define communication
and computation energy cost of task i on resource r . For example, ERir defines
energy consumed by task i to receive its input data on resource r in terms of
resource r’s receive power PRr , its average receive data rate μRr , and time to
receive task i’s input data from its predecessor task j given by

(
wji

μRr

)
. The

TABLE 26.1 Variables and Constants

EBr Battery capacity of resource r
PRr Power consumed by the receiver of resource r
PTr Power consumed by the transmitter of resource r
PEr Power consumed in the execution of a task by resource r
tir Execution time of task i on resource r
wij Weight of the edge from task i to task j
bir bir ∈ {0, 1}s.t.bir = 1 if task i is assigned to resource r
μRr Average data rate of the receiver on resource r
μTr Average data rate of the transmitter on resource r
predij predij ∈ {0, 1}s.t.predij = 1 if task j is a predecessor of task i
sucij sucij ∈ {0, 1}s.t.sucij = 1 if task j is a successor of task i
ERir Energy consumed by a resource r to receive input data for task i

=
n∑

j=1
{predij ∗ (1 − bjr ) ∗ PRr ∗ (wji/μRr )}

ETir Energy consumed by a resource r to transmit input data for task i

=
n∑

j=1
{sucij ∗ (1 − bjr ) ∗ PTr ∗ (wij /μTr )}

Er Total energy consumed by a resource r

=
n∑

j=1
{bir (ERir + PEr ∗ tir + ETir )}

si Start time of task i
τi End time of task i
di Deadline of task i
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Figure 26.2 Example task graph.

receiving energy cost of a task is nonzero only when the task’s predecessor is
bound to a different resource than the resource the current task is bound to. The
total energy Er consumed by a resource r , is the sum of computation energy
of all tasks assigned on r , energy to receive input of these assigned tasks, and
transmission energy to transmit the output of these tasks to its successor on other
resources.

A sample task graph for activity detection is presented in Figure 26.2. Three
accelerometers (Acc1, Acc2, and Acc3) are placed on a user’s hand, waist, and
leg to determine whether the user is sitting, walking, or running. These three
sensing tasks represent source tasks in the graph. The successors of these sens-
ing tasks (Activity-Count1, 2, 3) are responsible for feature extraction from the
accelerometer data. ACC-Correlation is responsible for identifying a user’s state
based on the three predecessor tasks’ outputs, while Activity-Log is a sink task
bound to the BE that is responsible for the logging of changes in a user’s state.
Each of the tasks in a task graph has a start time si , an end time τi and a dead-
line di associated with it. To maintain the task precedence, the start time of a
successor should be greater than the end time of its predecessor. Thus, in this
task graph sActivity Count1 > τACC1.

The defined system and task models are an important part of the next two
sections, especially in Section 26.4.2, where a mincut of the task graph is used
to find efficient partitions of the tasks between the system components. In the
collaborative sensing approach, presented next, the focus is primarily on the BE
and LA components, which are responsible for identifying nearby, redundant
readings and controlling the rate of environmental sensing.

26.3 COLLABORATIVE DISTRIBUTED ENVIRONMENTAL SENSING

In a wireless health monitoring system, some of the data collected by a user
node, such as their heart rate, is relevant only to that individual. That data must
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be collected by each user node and is never shared with other users. However,
environmental data collected in a health monitoring system is relevant not only
to the individual who senses and reports the information but also to any other
users in the area. Examples of such data may be temperature, humidity, and air
quality readings. The sensing, filtering, location tagging, and reporting of this
environmental data can be extremely expensive from an energy perspective, a
major problem in any battery-powered mobile system. While having multiple
nearby users contribute sensor readings for the same environmental conditions
may be valuable for ensuring the accuracy and quality of the data, these redundant
sensor readings put significant strain on the system battery life. As the BE receives
this data from user nodes in the environment, it may identify users that are near
one another and providing similar data. The BE may utilize this information to
create predictions for environmental sensor readings in an area, thus the rate at
which any individual user node must sense this data can be significantly reduced
proportional to its remaining battery life and the battery life of neighboring user
nodes.

However, maintaining and communicating to user nodes a detailed sensing
schedule that would ensure that one user in an area is reporting data for any
given time period is prohibitively expensive because highly mobile users do not
have the same neighbors for long. Instead, it is desirable to duty cycle sensors at
a rate derived from current conditions and the number and state of nodes in close
proximity of a user. A simple rate would be significantly easier to communicate
to a user and would only be updated when conditions had changed enough and
may be tuned to control the trade-off between energy consumption and accuracy
in the system (Fig. 26.3).

Our approach consists of two main steps. The first is to identify users located
near one another in the environment and to group them together based on their
location information, as users located near one another are likely to provide the
same or similar sensor readings about their environment. Second, after the groups
of users have been identified, the sensing rate for each user is calculated. This

Sensing rate

Pollution

Sensor GPS

Mobile phone

Back-end
server

Exposure readings and location

Figure 26.3 An overview of the steps of the embedded software algorithm.
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rate is based on the mobility of the user, its the distance from other users, and
the amount of energy available at the user node relative to neighboring users.
The calculated sensing rate for each user significantly reduces the number of
redundant environmental sensor readings and is updated as conditions change.

26.3.1 Node Neighborhood and Localization Rate

Identifying users in the environment that are located near one another is critical
for collaborative environmental sensing to be successful. To make this possible,
each user node provides occasional updates on their position to the BE, utilizing
localization techniques made available by sensors either worn on the body or
built into the LA, such as GPS. This localization of the user is an expensive
process for a BAN, so the rate at which these updates are made and reported to
the BE should be minimized without sacrificing too much in accuracy. The set
of users considered near a particular user is considered that user’s neighborhood
(Fig. 26.4).

Each time a user node i provides its latest position, the server updates its
map of user locations and recomputes the reporting user node’s neighborhood
of nodes, Ni . Each node is the center of its own neighborhood. All other user
nodes within range R of node i are considered to be in the same general area and
provide correlated environmental sensor readings. This neighborhood information
is strictly maintained on the BE, ensuring that no user node is aware of the number
of other users around them or their identities. In addition to these benefits in
privacy, this frees the mobile devices in the network from maintaining a large
table of other user locations and computing their nearest neighbors, which is a
concern on the BE.

The rate at which nodes provide updates on their position, lrate, is based on the
mobility of the user. If a user node is found to be highly mobile, its localization
rate may be increased to ensure its set of neighboring nodes is accurate, while a
user that is found to move very little or not at all may reduce its localization rate,

R
A

C

D

B

Figure 26.4 An example of a possible node neighborhood, centered around node A.
Nodes B, C, and D are considered members of node A’s neighborhood, as they fall
within the distance R of the node.
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significantly reducing the number of expensive GPS readings that must be taken.
By utilizing sensors such as accelerometers, location updates may be disabled
completely until significant movement is detected; however, for the remainder
of this work, we assume that such information is not available and make use of
time-out-based location updates.

lrate =

⎧⎪⎪⎨
⎪⎪⎩

�l

l̂
(�l ≥ l̂)

�l + l̂

2l̂
(�l < l̂),

(26.1)

where �l is the amount of change in position between the most recent and
previous localization measurements and l̂ is the distance between localization
attempts as required by the application and environmental condition being mon-
itored. Given a user node’s current position and velocity (based on the last two
location updates), a prediction for how long it would take a user to travel l̂ can
be computed and used to schedule the next localization attempt. If the environ-
mental condition being tracked is known to change slowly and gradually, a large
l̂ value may be used. If the condition changes suddenly and often or if the system
would simply require more data from a region, a smaller value of l̂ may be used.
In this work, we assume that l̂ is equal to the radius of the neighborhood, R,
such that a user provides an updated location when it is predicted to leave its
own neighborhood.

26.3.2 Energy Ratio and Sensing Rate

Once a user node’s set of neighboring nodes has been computed, the environ-
mental sensing duty cycle rate, srate, may be computed for each of its sensors.
Each time a user node i reports its latest positional information to the BE, it also
reports its residual energy ei . A user node’s residual energy ei is used along with
the total energy of all nodes in Ni , designated as Ei , to compute its individual
srate.

Ei =
∑
j∈Ni

ej · f (dj ), (26.2)

srate = ei

Ei

, (26.3)

where dj is the distance between node i and a node j found in Ni and f (dj ) is
a correlation function of the distance between the two nodes. The effect of this
function is to scale the amount of energy a node in Ni contributes to Ei based
on how far it is from node i. This function will be dependent on the type of
environmental condition being tracked and how close user nodes would have to
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be to provide similar readings. Some possible functions are

f (d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − d

R
(Linear)

e
−

d2

R2 (Gaussian)

c (Constant).

(26.4)

The goal is to give greater weight to nodes that are closer to the center of
the neighborhood, as they are likely more correlated than further nodes. How
correlated these nodes should be is dependent on the environmental condition
being tracked and the requirements of the application.

26.3.3 Duty Cycling and Prediction

Environmental sensor readings and localization data is usually provided by a
user node on a regular period, tB. When a node receives an updated sensing or
localization rate from the BE, a new period is calculated on the user node:

tS = tB

srate
, (26.5)

tL = tB

lrate
, (26.6)

where tS is the new sensing period and tL is the new localization period.
These periods are then used to control the rate of sensing and how often

localization updates are made. Each environmental sensor carried by a user or
built into a user’s phone has its own tS, so that sensors that are popular in an area
may be duty cycled to reduce power consumption, while underrepresented sensors
continue to report readings at their normal or slightly reduced rate. Likewise, a
large enough tL allows the GPS on an LA to be duty cycled. This duty cycling of
the GPS provides especially significant power savings, as localization attempts are
extremely expensive. Some GPS devices require being powered for a minimum
amount of time after a reading (usually about 30 s) and also require enough
time to acquire a signal from the GPS satellites (usually about 10 s). When tL is
greater than this combined time, duty cycling of the GPS module is possible. In
general, duty cycling the sensing and localization of a health monitoring system
reduces the amount of processing that must be done in the system and the total
amount of data to be forwarded over the wireless channel to the LA and BE.

Each time a user node i provides an environmental sensor reading to the BE,
the reported data is used to create predictions for each user node in Ni . The same
correlation function f (dj ) used to weight energy contributions can also be used to
determine how much weight to give to a neighboring user node’s sensor reading in
another node’s prediction calculation. For each period tB where a sensor reading
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is not provided by a user node, the weighted average of neighboring nodes during
that period may be used as a prediction to fill in the gap in sensor reading history.

By utilizing these predictions, a user is able to maintain a complete history of
environmental data while significantly reducing the number of required sensor
readings. While the above approach is useful for reducing the number of readings
a system may have to make, a great deal of data must still be collected and
processed in the system. Given that some tasks must be completed, an opportunity
exists to exploit the heterogeneity of the system and distribute processing tasks
among the different components of the system to minimize power consumption
and extend battery life. The next section describes how a health task graph can be
utilized to assign the sensing and processing tasks within a system to minimize
processing and communication power consumption.

26.4 TASK ASSIGNMENT IN A BODY AREA NETWORK

Wireless health care systems, such as the one described above, are hierarchical
and heterogeneous in nature, with components having different energy and pro-
cessing capabilities. Such a system is responsible for multiple tasks, such as the
sensing and processing the health information and communicating it to the BE.
Some of these tasks, such as feature extraction from the sensor data, may be
completed on the sensor node, LA, or BE. By dynamically adjusting where these
tasks are completed in the system, it is possible to minimize energy consumption
and improve system battery life.

It is possible to derive an optimal task assignment with the use of integer
linear programing (ILP)-based solutions, which is described in the next section.
Given the computationally expensive nature of ILPs, two dynamic graph-based
partitioning algorithms are presented in Section 26.4.2, which are computationally
efficient and are able to adapt in real time to changing system conditions.

26.4.1 Optimal Task Assignment

With the use of ILP, it is possible to compute the optimal task assignment for two
main objectives (i) ILPGreen —minimizing system energy consumption and (ii)
ILPLife —maximizing system lifetime. These static solutions act as a baseline to
compare against to measure the performance of the dynamic solutions that are
presented in the following section.

ILPGreen computes the most efficient task allocation that minimizes the total
energy consumption of the system, as shown in Table 26.2. The structure of the
task graph used for computing the ILP solution is similar to the DAG described
before, but it includes explicit communication tasks between two dependent sens-
ing and processing tasks to simplify the ILP formulation. An example of such a
graph transformation is shown in Figure 26.5.

ILPGreen assigns tasks with the aim of reducing total energy consumption
without considering the battery capacity of each system component and the rate
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Task1

Task1

Task2

Original task graph

Task graph for ILP
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Figure 26.5 Task graph transformation for ILP.

TABLE 26.2 ILP Objective and Constraints

ILPGreen: = min

(
m−1∑
r=1

Er

)
Minimize system energy

ILPLife: = mini

{
maxr

Er,i

Batr

}
where r =

1, 2, . . . m − 1

Maximize system life

(a) ∀i,
m∑

r=1
bi,r = 1 Total allocation constraint: Each task is

assigned to one and only one resource
(b) Er ≤ BatEr

Battery capacity constraint
(c) (bjm + bjm−1) = 1 if (bim =

1 ∧ predij = 1)

Resource allocation constraint 1:
Predecessor tasks of a task mapped to
the back end are mapped to either the
back end or the local aggregator

(d) (bjm−1) +
m−2∑
k=1

bjk) = 1 if (bim−1 =
1 ∧ predij = 1)

Resource allocation constraint 2:
Predecessor tasks of a task mapped to
the local aggregator are mapped to
either the local aggregator or a sensor

(e) bjk = 1 where k =
1, 2, . . . m − 2 if (bik = 1 ∧ predij = 1)

Resource allocation constraint 3:
Predecessor tasks of a task mapped to
a sensor are mapped to the sensor

(f) si ≥ max(0, τj )∀j , where predij = 1 Start time constraint: The starting time
for tasks must be greater than the
finishing time of all its predecessor
tasks

(g) τi = si +
m∑

r=1
{bir ∗ (tir +

n∑
j=1

predij ∗
(1 − bjr ) + sucij ∗ (1 − bjr ))}

Finishing time constraint: The finishing
time of a task is the start time plus the
time it takes to receive, execute, and
send the data for the task
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at which the battery is depleted. It is possible that the task assignment generated
by ILPGreen may assign tasks to resources with critically low battery levels,
resulting in a shorter system lifetime. Therefore, it may be desirable to instead
have the entire system function as long as possible.

ILPLife is an alternative solution with the goal of maximizing the system
lifetime using a min-max formulation on the rate of energy drain relative to
the available battery capacity at each component in the system. ILPLife has the
same constraints and variables as ILPGreen but computes a solution aimed at
maximizing system life, as shown in Table 26.2. The approach of maximizing the
battery lifetime is based on the desire to balance the energy consumption of all
resources such that each resource consumes approximately the same percentage
of its remaining energy. The resource with the highest ratio between consumption
rate and remaining energy will deplete its energy source first.

A complete formulation of ILPGreen and ILPLife, with goals and constraints,
is presented in Table 26.2. Among the resources r , resource m denotes the BE
and resource m-1 denotes the LA. Solutions are found by each ILP for bir , the
mapping of tasks i to resources r . Er represents the total energy consumed by
a resource after tasks have been assigned to it. For ILPGreen , the goal is to
minimize the sum of energy consumed by all resources other than the BE. The
goal for ILPLife is to minimize the maximum percentage of energy consumed
among mobile resources. In Table 26.2, Er/EBr represents the percentage of
energy consumed by a resource.

An open-source ILP solver called lp–solve [1] was used to obtain the optimal
task assignment for each task set. An issue with computing the optimal solution
with an ILP is that as the number of tasks in the task set increases, execution time
of lp − solve increases exponentially. An ideal system should be able to adapt
the task assignment to changing conditions during runtime, such as changes in
the wireless channel due to a user mobility, changes in terrain, changes in task
execution time, and the addition of tasks due to event-based monitoring. Such
changes may have drastic effects on the communication and computation costs
in the system. An ideal location to compute the task assignment for the system
would be on the LA, as it is in a centralized location in the system and could
react more quickly to changing conditions than the BE could. However, running
an ILP-based solution on a mobile device is not efficient, as the ILP computation
took over 100 s for a set of 20 tasks when run on a desktop computer. To address
this issue, more efficient and dynamic solutions were developed to better suit the
needs of a wireless health monitoring system.

26.4.2 Dynamic Task Assignment

Two fast, dynamic, and energy-efficient task assignment algorithms were devel-
oped for use in a wireless health system. DynAGreen (Dynamic task Assignment
for a Greener solution) was developed with the objective of minimizing the total
energy consumption of the system. This was later extended into DynAGreenLife
to balance both system energy consumption and system lifetime. These algo-
rithms are designed to run periodically on the LA, monitoring changes in the
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communication channel, system workload, and remaining battery life to compute
the best task assignment for the desired objective.

26.4.2.1 DynAGreen algorithm. The DynAGreen algorithm is designed to
minimize the energy consumption of a wireless health care monitoring system.
Stone’s method [2] has been adopted to find an assignment of tasks to the sys-
tem components. A hierarchical flow graph partitioning technique is used to
partition tasks between different components. Figure 26.6 provides an outline of
the DynAGreen algorithm.

The hierarchical partitioning is applied in two steps. First, a flow graph is
constructed from the set of tasks and is partitioned between an infinite energy
BE and a supernode BAN, consisting of the set of sensors and LA. Weights on
the edges of the graph represent communication and computation costs, and par-
titioning is completed using a maxflow-mincut algorithm. The minimum weight
cutset represents a split of tasks between the BE and BAN that minimizes energy
consumption. The maxflow-mincut algorithm proposed in Reference 3 was imple-
mented to compute this split of tasks. The following are the details of each step
of the algorithm.

1. Computation energy cost parameters (ECPUa, ECPUi ) and communication
energy cost parameters (Etx, Eidle, Erx) for all resources are initial-
ized/updated. Here, ECPUa(r) and ECPUi (r) represent energy consumed

Start

Yes

8. Change
in system
parameter
or timeout?

7: Assign the tasks in
Sensors-LA partition to

sensors and LA respectively

6: Find minimum weight
cutset to partition the flow
graph into Sensors and LA

1: Initialize/Update system
parameters ECPUi, ECPUa, Etx,

Erx and Eidle for each r 

2: Create new flow graph
G’ = (T’, E’) for BAN-BE

partitioning

5: Create new flow graph
G” = (T”, E”) for Sensors-LA

partitioning

3: Find minimum weight
cutset to partition the flow
graph into BAN and BE

4: Assign the tasks in BE
partition to backend server

Figure 26.6 DynAGreen algorithm.
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by a CPU in active and idle states, respectively, and Etx , Eidle, and Erx

represent energy consumed by the radio during the transmit, receive,
and idle states, respectively. In the first run of the algorithm, they are
initialized with default values, and in subsequent runs, they are updated
based on the radio interface monitoring.

2. Tasks are partitioned between BAN and BE such that total computation
energy cost of performing tasks in the BAN partition and communication
energy cost of sending output of those tasks to BE are minimized. To
achieve this objective, we transform the given task graph into a flow graph,
with communication and computation energy cost as flow values, BAN as
a source node and BE as a sink node such that the minimum weight cutset
represents the total computation and communication energy cost for the
partition. Following is a formal description of this transformation:
• A flow graph G′ = (T ′, E′) from given task graph G = (T ,E) is created

by adding BAN and LA nodes to T and adding EBAN and EBE edge
sets to E. Formally, T ′ = T ∪ {BAN,BE} and E′ = E ∪ EBAN ∪ EBE.
BAN node collectively represents sensors and LA. EBAN and EBE are
added to represent computation energy cost of the tasks on BE and BAN,
respectively, while edges in E represent communication energy cost.

• EBAN is a set of edges from BAN to the each node t in T . The weight
of the edge (BAN, t) is equal to the computational cost of task t on BE
and is defined by w(BAN, t) in Table 26.3. The rationale behind this
weight assignment is if a mincut includes edge (BAN, t) then it means
that t is in the BE partition and the computational cost of performing
this task on BE is added to the weight of the cutset. We consider BE to
have unlimited energy source, and hence, the computation energy cost of
performing a task on BE is set to 0 in Table 26.3. If a task t is bound to
a sensor or the LA node, the minimum weight cutset should not include
the edge (BAN, t). This is achieved by setting the weight of the edge
(BAN, t) to ∞ as per Table 26.3.

• EBE is a set of edges from each node t in T to BE with weight of edge
(t, BE) equal to the computational cost of task t on LA as defined by
w(t, BE) in Table 26.3, where ECPU(t, LA) is the computation energy
cost of running task t on LA. This weight assignment has similar rationale

TABLE 26.3 Weights of Edges in BAN-BE Partition

Edge Value Condition

w(BAN, t) 0 If task t is not bound to sensor or LA
∞ If task t is bound to sensor or LA

w(t, BE) ECPU(t, LA) If task t is not bound
0 If task t is bound to sensor or LA
∞ If task t is bound to BE

wwan(tp, ts) Eradio(tp, LA) Where radio = LA’s WAN radio
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to the (BAN, t) weight assignment. If a mincut includes edge (t, BE) then
it means that t is in BAN partition and computation cost of performing
this task on BAN is added to the weight of the cutset. Note that in
Table 26.3, LA parameters are used to calculate computation energy cost
as BAN is represented by the LA during this stage of the algorithm. We
enforce this edge to be part of the minimum weight cutset by setting its
weight to 0 as per Table 26.3 if the task is bound to a sensor or LA.
Similarly we enforce that this edge is not part of minimum weight cutset
by setting its weight to ∞ if the task is bound to BE.

• Edge (tp, ts) in E represents the intertask communication link between the
predecessor task tp and its successor task ts. The weight of edge (tp, ts)

is equal to the communication cost of sending tp’s output from LA to
BE and is defined by wwan(tp, ts) in Table 26.3, where Eradio(tp, LA) is
the communication energy consumed by task tp on resource LA. Note
that system parameters of the LA are used to compute communication
energy cost of BAN.

3. The minimum weight cutset is found to partition the constructed flow graph
into BAN and BE partitions. In Reference 2, Stone proves that such a
minimum weight cutset provides an optimal task assignment for a two-
processor system. By using their findings, it can be said that the resulting
BAN-BE task partition minimizes the energy cost.

4. Since the minimum energy cost partition between the BAN and BE has
been computed, tasks in the BE partition are assigned to BE, while tasks
in the BAN partition need to be assigned on to sensors and the LA in
subsequent steps of the algorithm. TBAN ⊆ T is defined as a set of tasks in
the BAN partition and EBAN ⊆ E as a set of edges among tasks in TBAN.

5. All the sensors are collectively represented by a single source node, Sen-
sors , and the LA is represented by a single sink node, LA, in the Sensors-LA
flow graph. As per our system model, all tasks are traced back to one or
more sensing tasks by following their predecessor chain. These sensing
tasks are preassigned to sensors or the LA. A processing task that receives
its input from more than one sensor cannot be assigned to a sensor, as
the system model does not allow sensors to communicate with each other
directly. Such a task has to be assigned on to the LA or BE. By assign-
ing appropriate weights on the edges in a flow graph, it can be ensured
that such tasks cannot be in the sensors partition. This also implies that
if a task is in the sensors partition, it should receive its input from only
one sensor and we can find that sensor by tracking the given task’s pre-
decessors. So this way, even though the Sensors node in the flow graph
represents multiple sensors, after finding mincut, we can assign tasks in
Sensors partition to the appropriate sensor. Similar to BAN-BE partitioning,
we partition tasks between Sensors and LA such that the total computation
and communication energy cost of the system is minimum. To achieve this
objective, the Sensors-LA flow graph is created from the remaining tasks,
with communication and computation energy cost as flow values such that
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the minimum weight cutset represents the total of computation and commu-
nication energy cost for the partition. The following is a formal description
of this transformation:
• A new flow graph G′′ is created for the Sensors-LA partition using all

tasks in the BAN partition and then adding Sensors, LA and a set of
proxy tasks. For all the tasks in TBAN whose successors are assigned
on BE, new task nodes are created, which are bound to LA and act
as transmission tasks to BE and are represented by set Tproxy. These
proxy tasks are added to represent the communication energy cost of
forwarding output of a predecessor task from a sensor to the LA so that
it can be forwarded further to BE. Edges of this new graph consist of
the following edge sets: EBAN representing communication energy cost,
ELA representing the computation cost of LA, ESensors representing the
computation energy cost of sensors, and Eproxy representing the proxy
task assignment on the LA. Formally, this new flow graph is defined as
G′′ = (T ′′, E′′), where T ′′ = (TBAN ∪ Tproxy ∪ {Sensors,LA}) and E′′ =
(EBAN ∪ ESensors ∪ ELA ∪ Eproxy).

• ESensors is the set of edges from the Sensors node to each node t in TBAN ∪
Tproxy, with its weight equal to the computational cost of running task t on
LA and it is defined by w(Sensors, t) in Table 26.4. The rationale behind
this weight assignment is that if a mincut includes edge (Sensors, t) then
it suggests that t is in the LA partition and computation cost of performing
this task on LA is added to the weight of the cutset. If a task t is bound
to a sensor, it must be ensured that the minimum weight cutset does not
include edge (Sensors, t). This objective is achieved by setting the weight
of the edge (Sensors, t) to ∞ as per Table 26.4. Similarly, if a task t is
bound to LA, inclusion of this edge is guaranteed in the minimum weight
cutset by setting w(Sensors, t) to 0.

• ELA is the set of edges from each node t in TBAN ∪ Tproxy to LA with
its weight equal to the computational cost of running task t on Sensors
and is defined by w(t, LA) in Table 26.4, where ECPU(t, Sensor) is the
computation energy cost of running task t on a sensor. As noted earlier, if
a task receives its input from multiple sensors, it can only be assigned on

TABLE 26.4 Weights of Edges in Sensor-LA Partition

Edge Value Condition

w(Sensors, t) ECPU(t, LA) If task t is not bound
0 If task t is bound to LA
∞ If task t is bound to a sensor

w(t, LA) ECPU(t, Sensor) If task t is not bound
0 If task t is bound to a sensor
∞ If task t is bound to LA

wBAN(tp, ts) Eradio(tp, Sensor) Where radio = source sensor’s radio
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LA and hence is considered bounded on LA. Any task t bounded to LA
has w(t, LA) set to ∞ to ensure that this edge does not become part of
minimum weight cutset. If a task t is bound to a sensor, the w(t, LA) is
set to 0, ensuring that edge (t, LA) is part of the minimum weight cutset.
For a task t that is not bound to a sensor or the LA, we find the sensor
generating its input (by traversing through the task’s predecessors chain
to find the root task and its associated sensor) and we use that sensor’s
CPU parameters for setting computation energy cost of the edge.

• Eproxy is the set of edges (tp, ts) where tp ∈ TBAN and ts ∈ Tproxy, and
EBAN is the set of edges (tp, ts) where tp, ts ∈ TBAN. The weight for edge
(tp, ts) ∈ EBAN ∪ Eproxy is the communication cost of transmitting tp’s
output from its source Sensors to LA and is given by wBAN(tp, ts) in
Table 26.4, where Eradio(tp, Sensor) is the communication energy con-
sumed by task tp on resource Sensor.

6. We find the minimum weight cutset to partition the constructed flow graph
into Sensors and LA partition. This Sensors-LA task partition results in a
task assignment that has minimum energy cost.

7. Tasks in the Sensor partition are assigned to respective sensors, and tasks
in the LA partition are assigned to LA. Even though Sensors node in
flow graph represents multiple sensors, after finding mincut, tasks can be
assigned in the Sensors partition to the appropriate sensor.

8. To detect the changes in system characteristics, communication cost param-
eters such as the transmission power and time spent in various states
(receive, transmit, idle, sleep) by the radio on each resource are measured
and updated. This measurement is done over LCM (least common multi-
ple) of the period of all tasks in the task graph. One should go back to
step 1 when a significant change (30%) in communication cost parameters
is detected.

To provide an example of the described algorithm in action, the task set
initially introduced in Figure 26.2 is processed to find an assignment of its tasks to
minimize energy consumption. The first step is to calculate the BAN-BE partition,
as shown in Figure 26.7. Notice that two new nodes, BAN and BE, are added to
the original graph. All edges from the BAN to tasks have a computational cost of
running tasks on the BE as their weight, defined in Table 26.3. The computational
cost of running the task on the BE is considered to be 0, as battery life is not
affected by the computation. If a task must be bound to a particular sensor, the
weight of its edge from BAN is ∞, ensuring it is not a part of the mincut.

The weights of edges between tasks represent the communication costs of
having the two tasks running on different components in the system. The LA’s
wide area network radio energy parameters are used for communication cost
calculations, as a trade-off is being found between computing a given task on
BAN and or forwarding the data to be processed on the BE. The given mincut
in Figure 26.7 provides a split of tasks between the BAN and BE that minimizes
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Figure 26.7 BAN-BE partition.

the energy consumption. The next step is then to determine the split of tasks
between sensors and the LA.

The second step is to calculate the Sensors-LA partition, as shown in
Figure 26.8. As before, new nodes are introduced into the graph, this time a
Sensor node and an LA node. In this example graph, ACC Correlation Proxy
was also added because its successor is assigned on the BE. This is to factor in
the cost of transmitting its predecessor’s output to LA in case its predecessor
is assigned to a sensor. Since the system model does not allow for intersensor
communication, tasks with multiple sources of input may not be assigned to a
sensor device and must hence be assigned to the LA. An example of such a task
in the graph shown would be ACC Correlation . This constraint also requires that
any tasks in a chain in the Sensors part of the cut must be assigned to the same
sensor node, as part of the chain may not be completed on a different sensor.

26.4.2.2 DynAGreenLife algorithm. The DynAGreenLife algorithm is de-
signed to optimize for both system energy consumption and lifetime. It is a
variation of the DynAGreen algorithm and differs primarily in how it handles the
Sensors-LA partitioning. In BAN-BE partitioning, the BAN is always prioritized,
and therefore, the differential battery charges of sensors and the LA do not make
any difference on the partitioning process. However, for the Sensors-LA partition,
DynAGreenLife considers the available battery life of the sensors and the LA in
addition to the computational and communication costs to determine the weights
used in the flow graph. When a sensor’s battery level is relatively low compared
to its LA, the weight of the edges from that sensor to tasks is increased. This in
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Figure 26.8 Sensor-LA partition.

turn increases the likelihood of the cutset assigning the tasks to the LA, even if
it may be more efficient to process the task on the sensor node. In cases such
as this, where a component may have significantly less battery life than other
components in the system, making changes to the task assignment that increases
the total energy consumption of the system may improve system lifetime by
delaying the time until the first device failure. This change in the algorithm
results in a balance between system energy and system life optimization.

The actual DynAGreenLife algorithm follows the same steps as DynAGreen ,
as described earlier, except for step 5. While energy cost calculations and parti-
tioning of tasks between the BAN and the BE are handled the same as before, the
graph used for Sensor-LA partitioning is created with different weights. These
edge weights are computed by first calculating the weights for DynAGreen and
multiplying those weights by a factor that is dependent on the relative battery
charge of the sensor and the LA. Equations 26.7–26.9 define weights of edges
in the flow graph, utilizing definitions of weights in Table 26.4:

w′(Sensors, t) = w(Sensors, t) ∗ Ebat(s) + Ebat(LA)

Ebat(LA)
, (26.7)

w′(t, LA) = w(t, LA) ∗ Ebat(s) + Ebat(LA)

Ebat(s)
, (26.8)
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w′
BAN(tp, ts) = wBAN(tp, ts) ∗ Ebat(s) + Ebat(LA)

Ebat(LA)
. (26.9)

When using the same task set in Figure 26.2 as used in the previous example,
DynAGreen and DynAGreenLife generate the same BAN-BE flow graph and
partition. The two algorithms differ in their output, however, when comput-
ing the Sensors-LA partitioning, as seen in Figure 26.9. In the given example,
the LA has critical battery levels and multiplies a factor Ebat(s)+Ebat(LA)

Ebat(LA)
to the

weight of the edges from Sensors to task nodes, as well as the edges between
tasks, while the edges from tasks to LA are multiplied by Ebat(s)+Ebat(LA)

Ebat(s)
. As

Ebat(s)+Ebat(LA)

Ebat(LA)
> Ebat(s)+Ebat(LA)

Ebat(s)
, it is likely that the partition created by the mincut

will place more tasks on the sensor nodes.
As evidenced by Figure 26.10, the execution time of DynAGreenLife is very

similar to that of DynAGreen , suggesting that both approaches are computation-
ally efficient and suitable for dynamic task assignments. The computational time
of the ILP-based solution (on the order of seconds) is significantly higher than
that of the dynamic algorithms (order of milliseconds). ILPGreen’s execution
time increases exponentially with the number of tasks in the task graph. Because
of this low computational overhead compared to ILPGreen, the DynAGreen and
DynAGreenLife approaches enable frequent execution to address dynamically
changing system parameters and can be computed on a mobile LA.
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26.5 RESULTS

Each of the above algorithms for both collaborative sensing and dynamic task
assignment were implemented in the QualNet network simulator and run under
a variety of scenarios and settings. In the section below, the experimental setup
and results for each set of experiments are discussed.

26.5.1 Collaborative Sensing

The neighborhood and duty cycling approaches detailed earlier were implemented
within the QualNet network simulator. Simulations were run with varying neigh-
borhood sizes of R = [25 m, 50 m, 75 m, 100 m, 150 m, 200 m], as well as
for different correlation functions. The three functions provided in Equation 26.4
were implemented and used. Furthermore, a simple model that would represent a
standard sensing and reporting model where readings are taken at regular inter-
vals has been implemented as a baseline. A total of 1000 nodes were randomly
distributed over a 1-km×1-km free space area and they then followed a ran-
dom walk around the region at speeds up to 2 m/s to simulate walking. Each
node connected to the same BE that maintained client information and reported
back updated sensing and localization rates. Measurements were taken to see the
effects of increasing the neighborhood range on the total amount of data being
reported to the BE as well as the amount of error introduced by estimating sensor
values based on the readings of one’s neighborhood.

For use in the simulations, a model was created to generate possible distribu-
tions of pollution data in a region as an example of the type of environmental
data that may be tracked. The model approximates values of measured carbon
monoxide levels throughout San Diego county on a moderate quality day, where
measurements between 0 and 10 ppm are expected. The EPA standard for safe
outdoor carbon monoxide exposure is 9 ppm [4].
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The gas sensor node is modeled after the MiCS-5121 metal oxide semiconduc-
tor carbon monoxide gas sensor from e2v [5]. Sensors such as this make use of a
heating element inside them, which can have a significant impact on power con-
sumption. For the experiments, power consumption was estimated to be 90 mW
during a 20-s heating period and 10 mW during a 10-s sampling period when
the heating element is turned off. This also implies that sensor readings cannot
be taken more often than once every 30 s.

A GPS module takes several seconds, approximated to be 10 s here, to acquire
a signal and determine its location and continues to power itself for some set
time, usually 30 s, after the reading. The power consumption during these active
periods was measured by Kjaergaard et al. [6] to be approximately 324 mW.
When the GPS and gas sensor modules are both shut off, there is a baseline
power consumption of 62 mW.

A detailed report of mobile phone network throughput and power consumption
is given by Diaz Zayas and Gomez [7]. From their results, we model the power
consumption of the radio while idle to be 420 mW and during active periods
to be 1300 mW, with a download rate of 25.29 kbps and an upload rate of
0.69 kbps on a UMTS network. Each update of either gas sensor readings or of
the latest location and energy information from a mobile node is 128 B, requiring
approximately 0.1855 s to send. Updates from the server are of the same size
and complete in approximately 0.005 s.

The baseline to which the results of the simulations are compared to is based
on an environmental monitoring system with no energy management or duty
cycling policies implemented. The system collects a gas sensor and GPS reading
every 30 s (the period of the gas sensor) and transmits it to the BE. In this baseline
system, each sensor node has an average power consumption of 0.838 W during
simulations.

26.5.1.1 Results. The correlation functions presented in Equation 26.4 were
implemented to relate user contributions, and we measured the impact of parame-
ter R on the power consumption of the system and the amount of error introduced
into predictions. Figure 26.11 compares the performance of these three functions.
The error is presented as the percentage difference between a user’s stored expo-
sure history, made up of measurements and predictions, and the actual levels
a user was exposed during the simulation. As the neighborhood size increases,
nodes send fewer localization and exposure updates and include further and fur-
ther away samples in their prediction calculations. The constant model, which puts
equal weight on all nodes in a neighborhood regardless of distance, offers slightly
better power consumption than the other models as it takes fewer exposure read-
ings. However, this comes at a significant cost in terms of error, especially at
larger neighborhood sizes. Such a model would only be useful when the expo-
sure levels are expected to be the same throughout the region, for example, in
the case of pollutants such as ozone. Correlation functions based on a linear or
Gaussian approach provide similar power savings and significantly reduce the
amount of error in the predictions. Eventually, the power savings converge at
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Comparison of correlation function performance
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Figure 26.11 Comparison of the error versus energy trade-off when nodes are mobile
for the three implemented correlation functions.

larger neighborhood sizes, as the system approaches the minimum threshold for
localization updates and the average number of sensor readings by any individual
node begins to approach zero. The power savings when using large neighborhood
sizes are arguably not worth the additional error introduced into predictions and
could have even higher error rates if users begin moving rapidly in between long
localization attempts.

There is a clear trade-off between the amount of power consumed and the
amount of error in the system, with diminishing power savings at higher neigh-
borhood sizes (Fig. 26.12). During runtime, a node could dynamically change its
neighborhood size to provide better accuracy when battery levels are the highest
and to grow its neighborhood size as battery levels begin to reach critical levels
to minimize the applications impact on the remaining battery life.

Figures 26.13 and 26.14 compare the performance of the system in cases
where the nodes remain stationary and are moving at walking pace randomly
around the region. Our simulations showed average exposure errors ranging from
0.06% (stationary nodes, 25 m neighborhood size) to 15.6% (mobile, 200 m).
Much of the variance found in the error measurements, as seen in Figure 26.13,
can be explained by users falling in the same neighborhood spatially but being
on the border between regions of high and low pollution levels. The mobile
cases have even great variance in their error, as the neighborhood created for
a node at its last localization update is no longer accurate because users move
around between updates. This suggests that while the average prediction values
are accurate and have small error over a large time frame, individual points
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Error versus power consumption
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Stationary versus Mobile: Power consumption
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Figure 26.14 Power consumption, relative to the baseline, when using the Gaussian
correlation function in deployments of stationary and mobile nodes for a variety of neigh-
borhood sizes.

may offer large errors, and intelligent filtering and postprocessing methods
should be implemented on the back end to minimize the impact of these
readings.

Figure 26.14 shows that the stationary case also presents the best in power
savings, showing reductions in power consumption between 32.5% and 37.1%
when using the Gaussian correlation function, as it rapidly reduces the number
of expensive localization attempts as the system recognizes that the user has not
been mobile in between attempts. With larger neighborhood sizes, the mobile case
begins to approach these savings as well, with reductions in power consumption
between 12.1% and 33.6%. Consumption can be further reduced through the use
of the constant and linear correlation functions, but at the expense of additional
error. These power savings could also be increased by exploring the use of
additional sensors, such as accelerometers on a user’s mobile phone, to detect
movement and trigger location updates only when necessary, as suggested in
other works such as Reference 8.

If the baseline algorithm is changed such that readings are taken every 60
s instead of the original 30-s rate, the GPS and gas sensors can occasionally
be turned off, dropping the baseline power consumption down to 0.668 W. The
range of savings from our algorithm with the Gaussian correlation function drops
to between 8.4% and 21.1% in the mobile scenario, as the baseline is closer to
the minimum power consumption limit of the system. While longer duty cycles
may improve power consumption, it comes at the expense of fewer samples
and location updates, which can drive up error rates for highly mobile users.
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Our approach is most effective in applications requiring frequent updates and
becomes less effective in cases where sensor readings are collected from users
relatively rarely, such as once an hour.

26.5.2 Dynamic Task Assignment

In this section, the dynamic task assignment techniques are evaluated in terms
of their effect on both the system battery life and energy consumption. Results
for different wireless health care system task sets are presented, and the per-
formance of the DynAGreen and DynAGreenLife algorithms are compared with
the static solution generated by ILPGreen and ILPLife under various conditions.
The abilities of the algorithms to adapt to changing system conditions are also
demonstrated. It is shown that the DynAGreenLife algorithm balances both sys-
tem life and system energy effectively, significantly outperforming the static ILP
solutions when faced with changing conditions.

Three main task graphs were used for the experiments, which are described in
Table 26.5. Each task has an arrival rate, number of instructions to be executed,
and number of output bytes. There is also a deadline associated with each task,
which is assumed to be equal to the period of the task for simplicity. Tasks
in Table 26.6 mainly represent tasks in preventive health care systems such as
PALMS [9]. QualNet provides accurate wireless channel models, a variety of
wireless protocols along with their energy models, battery models, and mobility
model. A simple model was added for computational energy consumption, and
it used CPU current loads provided in the MicaZ and Intel XScale processor
specifications. The complete list of parameters used in these simulations are
provided in Table 26.5.

Sensor nodes are modeled as MicaZ nodes with ZigBee(802.15.4) radios. The
LA is modeled as a UMTS-UE (User Equipment, i.e., Handset) with an additional
ZigBee radio interface and CPU speed of 400 MHz. QualNet provides an energy
model for the MicaZ node and specified a constant transmit power of 3 dBm. For
UMTS, a generic energy model was configured and specified—10 dBm as the
minimum transmit power and 30 dBm as maximum transmit power. The UMTS

TABLE 26.5 Experimental Workload

Task Graph No. of sensors No. of tasks Application

HR + Activity 2 6 ECG sensor detects heart rate per
minute. While accelerometer keeps
track of activity.

Activity detect 3 8 Detects a person’s activity using
three accelerometers.

All vital 5 20 Logs all vital signs such as heart rate,
blood pressure, and activity in
addition to location.
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TABLE 26.6 Simulator Parameters

Components Characteristics Value

ZigBee radio Propagation channel frequency 905 MHz
Propagation pathloss model Two-ray
PHY 802.15.4-TX Power 3.0 dBm

UMTS radio Propagation channel frequency 2.4 GHz
Propagation pathloss model Two-ray
PHY UMTS MAX TX Power 30.0 dBm
PHY UMTS MIN TX Power −10.0 dBm
Power amplifier inefficiency factor 6.5
Transmit power consumption 100.0 mW
Receive power consumption 130.0 mW
Idle power consumption 120.0 mW
Sleep power consumption 0.0 mW
Supply voltage 3.0 V

Sensor CPU Active current 50 mA
Frequency 8 MHz
Voltage 3.0 V

LA CPU Active current 308.33 mA
Frequency 400 MHz
Voltage 3.0 V

protocol uses a dynamic power control algorithm and sets the radio transmit
power depending on channel condition. A 2.4-GHz carrier frequency was used
for UMTS and 905-MHz carrier frequency for ZigBee.

The handset is connected to the BE via the UMTS network and with sen-
sors via the ZigBee radio. Tasks assigned to the resources send data to the next
resource over UDP if any of its successor tasks are not assigned on the same
resource. Logic for periodic task execution, data transmissions, radio link parame-
ter measurement and reporting, task assignment control messaging, and execution
of the dynamic algorithms at the application layer was implemented. An ILP was
created for each task graph, and an open-source ILP solver called lp-solve [1]
was used to get the optimal task assignments for each of them.

26.5.2.1 Performance in static conditions. In the initial set of experiments,
it was assumed that static system parameters such as the arrival rate of tasks,
computational complexity, and wireless channel conditions remain constant. Bat-
tery energy was set to 100 mA h for sensors and 300 mA h for cell phones
to reduce experiment runtime. The respective system lifetimes achieved by each
task assignment generated by the ILPs and dynamic algorithms were noted and
compared against the state-of-the-art strategy of streaming all data to the BE for
processing (All-On-BE).
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Figure 26.15 Percentage improvement in system battery life achieved in static conditions
compared to All-On-BE.

In static conditions, each ILP came up with the same task assignment for our
given task graphs. In Figure 26.15, the percentage improvement in system battery
life is shown, based on the task assignments as determined by both ILPs with
respect to All-On-BE strategy. For the all-vital task graph, which has a higher
number of processing tasks, both of the ILPs perform approximately 60% better
than All-On-BE. On average, the ILP solutions improve system battery life by
37%. These results show that task assignment can significantly impact the system
lifetime. Dynamic algorithms were also executed and it was observed that the
proposed dynamic algorithms performed within 0.001% of the ILP solutions,
returning results very close to the optimal solution.

Experiments also measured the average energy consumed by each of the task
assignments in the above set of experiments. Figure 26.16 shows the percentage
energy savings achieved by each ILP and dynamic solution compared to the
All-On-BE strategy. All dynamic algorithms gained up to 42% energy savings,
which is similar to that gained by the optimal assignment given by ILPGreen
and ILPLife.

The ILPs, DynAGreen , and DynAGreenLife algorithms, each of which have
different objectives, perform similarly. One key reason for this is that it is
assumed that sensors and cell phones are fully charged at the start of the experi-
ment. In general, this is not always true, as sensors and cell phones have different
battery consumption rates. Unlike a sensor battery, which often has a single
function, a cell phone battery is consumed rapidly as it performs other tasks in
addition to health monitoring tasks. In addition, cell phones are charged more
often compared to sensors.

Consider a situation where the cell phone has critically low battery while the
sensors are almost fully charged. If an algorithm such as ILPGreen or DynA-
Green is used, the actual energy level of these components is not taken into
consideration, as it purely optimizes for minimizing energy consumption in the
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Figure 26.16 Percentage reduction in energy consumption achieved in static conditions
compared to All-On-BE.

system. It will merely focus on ensuring that the distribution of tasks among the
various components (sensors, cell phone, back end) is such that the total energy
is minimized regardless of the remaining battery charge of the different devices.

Figure 26.17 shows the battery life improvement as obtained by the ILPs
and the DynA family of algorithms compared to a typical All-On-BE strategy.
It is evident from these experiments that task assignment techniques make a
huge difference of up to 140% in battery life compared to following a simplistic
approach of performing all processing on BE as shown in Figure 26.17. The
results also show that ILPLife and DynAGreenLife achieve a higher system life
than ILPGreen and DynAGreen . This is because the task partitions in ILPGreen
and DynAGreen are purely focused on a green partitioning of the tasks without
taking any consideration of the available battery charge of the system devices.
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On-BE when run in static conditions.



780 ENERGY MANAGEMENT IN HETEROGENEOUS WIRELESS HEALTH CARE NETWORKS

It can also be observed that ILPLife has a lower system life compared to DynA-
GreenLife. This is due to the fact that DynAGreenLife periodically performs task
repartitioning so that the task allocation changes to better optimize for system
life. Although the goal is to attempt a graceful reduction in energy consumption
proportionately across devices to increase system life, task allocation to devices
is discrete in nature with tasks having different fixed values resulting in allocation
and hence an energy reduction that is not exactly proportionate across devices
relative to their battery levels. Depending on the tasks assigned, some nodes may
deplete their energy more than desired. Hence, a periodic repartitioning is neces-
sary. However, due to the cost of executing an ILP, only a static initial allocation
based on the ILP is utilized. Thus, the DynA algorithms have a better chance
at producing a longer system life because of their lower cost of execution and
periodic task repartitioning.

When it comes to system battery life, DynAGreenLife outperforms DynAGreen
by up to 43%. On the other hand, DynAGreen is a “greener” solution as it
outperforms DynAGreenLife in terms of total energy consumption.

26.5.2.2 Dynamic adaptability. In the following set of experiments, changes
to various runtime characteristics were simulated and used to demonstrate the
capability of DynAGreenLife to change the task assignments on the fly to optimize
system life (Fig. 26.18) and system energy (Fig. 26.19) with varying system
characteristics. In all the following sections, it is assumed that the battery level
is at 300 mA for each sensor and that the cell phone has critically low battery
level of 100 mA. Improvements in system energy are shown using the dynamic
task assignment given by DynAGreenLife with respect to the static assignment
obtained by ILPGreen during initial setup. This emphasizes the fact that dynamic
task assignment is necessary for an energy-efficient solution in wireless health
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Figure 26.18 Comparison of system battery lifetime achieved by dynamic algorithms
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Figure 26.19 Comparison of system energy achieved by dynamic algorithms when run
in static conditions.

care systems. The low execution time (milliseconds) for the proposed dynamic
algorithm makes it a viable technique for dynamic adaptation.

To detect the changes in system characteristics, various radio link parameters
are measured such as transmit power and time spent in various states (receive,
transmit, idle, sleep) by radio on each resource (Table 26.7). This measurement is
done over a period in which tasks execution is repeated. The LCM of the period
of all tasks is used for this. This window gives a reproducible workload on each
resource so that comparison of the various costs over different windows is fair.
For the experimental task sets, this window period is around 1 min. Filtering is
used to smooth out an unusual spike in measurement. The dynamic algorithm
is run to recompute task assignment only if the change in system parameters
is more than 30% compared to the last run of algorithm. This threshold can
be changed for different system implementation. Such a threshold helps reduce
the frequency of algorithm execution and also avoids oscillations in assignment.
This threshold was selected empirically for the simulation environment, and it is
envisioned that designers of a particular system would set these parameters based

TABLE 26.7 Percentage Improvement in System Life in Case of Change in
Wireless Channel Conditions

Percentage of System Life Improvement
Achieved by DynAGreenLife Relative to

Algorithm Task Graph ILP -Green ILP -Life-Far ILP -Life-Near

DynAGreenLife HR + Activity, % 23.79 23.79 68.68
Activity detection, % 24.88 −6.53 37.47
All vital, % 22.14 22.14 4.28
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on observed task assignment oscillations and control the frequency of algorithm
execution.

To demonstrate the dynamic adaptability of DynAGreenLife, an urban scenario
with random mobility, multiple base stations, and large terrain area was simulated
in experiments. In this scenario, the dynamic algorithms adapt quickly to changing
system parameters and this results in better performance compared to the statically
computed optimal solution obtained using ILPs.

The experimental scenario was expanded to include a larger terrain with mul-
tiple base stations and random mobility of the user to demonstrate that the
algorithms can handle real-life urban situations and perform better than the ILP-
based solutions. Near the edge of the cell, handoffs may occur from one base
station to another. At the edge, the link conditions are typically unfavorable
regardless of the base station that the device may be communicating with along
with the handoffs. After a handoff, if the user is closer to the center of the new
base station that it is communicating with, different task assignments may be
chosen depending on the communication costs and the associated energy effi-
ciency. To study the impact of such varying link conditions, experiments with
random mobility with multiple serving base stations were simulated.

For the experimental study, a 4900-m×4900-m terrain with four base stations
(node B) was used in the QualNet simulator, as shown in Figure 26.20. During
the simulation, the user moves randomly in this terrain in any direction with
one of the three speed ranges determined by us to simulate user moving in a
car, in a bike, and by walking. The user pauses for a predefined duration (15 or
45 min). This experiment is used to demonstrate how quickly the DynAGreenLife
algorithm can adapt to changes in link conditions and also whether it makes sense
to recompute the assignment when conditions are changing rapidly.

For this set of experiment, only the DynAGreenLife algorithm is considered, as
it balances both system life and system energy and should be used as a practical
solution to energy-efficient task assignment problem. Table 26.8 compares the

Figure 26.20 Simulation terrain.
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TABLE 26.8 Percentage Improvement in System Life of DynAGreenLife in Case
of Random Mobility in the Urban Scenario

Task Graph: HR + Activity

Percentage of Improvement in Life Relative to

Speed Pause Duration, min ILP -Far ILP -Near All-On-BE

Car 15 24.17 3.15 47.19
Car 45 5.90 3.39 18.68
Bike 15 15.87 6.17 26.84
Bike 45 8.36 8.36 18.70
Walk 15 9.58 3.62 19.67
Walk 45 23.42 5.78 47.46

Task Graph: Activity Detection

Percentage of Improvement in Life Relative to

Speed Pause Duration, min ILP -Far ILP -Near All-On-BE

Car 15 67.81 17.23 67.81
Car 45 47.88 6.84 47.88
Bike 15 34.53 9.71 34.53
Bike 45 87.98 5.7 87.98
Walk 15 43.15 6.12 43.15
Walk 45 32.51 12.09 32.51

Task Graph: All Vital

Percentage of Improvement in Life Relative to

Speed Pause Duration, min ILP -Far ILP -Near All-On-BE

Car 15 21.36 2.3 70.07
Car 45 12.06 3.9 42.34
Bike 15 22.44 2.45 45.93
Bike 45 8.64 3.48 42.8
Walk 15 14.18 8.28 46.73
Walk 45 34.88 7.36 56.59

system life given by the DynAGreenLife algorithm to ILPLife-Far, ILPLife-Near,
and All-On-BE. ILPLife-Far is the assignment obtained by ILPLife using higher
communication cost assuming the user is away from the base station, and ILPLife-
Near is the assignment computed by ILPLife assuming the user is closer to the
base station. Improvements due to the dynamic adaptability of the algorithm
depends on how different the system parameters are from the initial condition
used for ILP solution. These two variations are used to cover ILP solution with
best and worst communication cost between cell phone and base station.

As explained earlier, link condition is monitored every 1 min (which is
the LCM of all task periods) and DynAGreenLife is run when the change in
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communication cost is 30% more than the last run of the algorithm. It is observed
that while a person is moving in a car, it is possible to achieve up to 68%
improvement in system life and 25% on an average compared to ILPLife-Far
and up to 18% improvement compared to ILP -Near. Similarly, in case of a per-
son who is on a bike or walking, higher improvements are observed compared to
ILPLife-Far. A user location trace for these experiments indicates that the user
remains closer to the base station most of the time, and hence, improvements
over ILPLife-Near are not as significant as the improvement over ILPLife-Far.

Looking at the results in Table 26.8, one would suggest a simple heuristic tech-
nique is to switch between the task assignments provided by ILPLife-Near and
ILPLife-Far depending on a user’s proximity to a base station. Such a solution,
labeled as ILP-Flipflop in Figure 26.21 would not handle other additional changes
in the system, such as changes in workload, addition of new tasks in the task
set, and channel conditions between worst and best. To demonstrate this, experi-
ments were run with the same random mobility described in the previous section
but with an additional change in execution time of processing tasks every hour.
Changes in execution time represent a practical scenario in which a processing
task might be asked to produce better quality result by doing more processing.
Figure 26.21 shows the result of such experiments for all three task sets.

It is observed that in this scenario, the DynAGreenLife algorithm is up to
30% and on an average 21% better than the ILP-Flipflop technique described
above. It is also observed that the improvements are even more evident when
the user is mobile.

26.6 CONCLUSION

Two complimentary methods of improving the energy efficiency of a wireless
health monitoring system were explored in this work. First, location information
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Figure 26.21 Percentage improvement in system lifetime achieved by DynAGreenLife
relative to ILP-Flipflop in presence of multiple changing conditions.
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was utilized to identify users that are expected to collect redundant environmental
sensor readings. The BE-generated predictions for what a user would report based
on what its neighbors reported, and based on the amount of available battery life
for each user and each of other user near it, the rate at which any individual
user collects sensor readings was drastically reduced. By reducing the number of
localization attempts, sensor readings, and reports to the BE we are able to reduce
power consumption up to 37.1% at an average error between 0.06% and 15.6%
when using a Gaussian function to determine the expected correlation between
neighboring users.

Second, when a health monitoring system collects and processes sensor data,
the choice of where it does processing in the system has a drastic effect on the
computational and communication energy costs of the entire system. Given a
task graph of all jobs to be completed in such a system, tasks were dynami-
cally and efficiently distributed among sensors, the LA, and the BE to minimize
energy consumption and improve system lifetime. Compared to the all-on-back-
end strategy, the presented algorithms achieved 1.4 times longer system lifetimes.
In the case where system conditions changed during use, the presented dynamic
solutions outperformed their ILP counterparts by up to 88%.

Using these two complimentary approaches, significant power savings can
be obtained in a wireless health monitoring system, significantly increasing the
battery and system life.
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power capping, 351–3

control-theoretic approaches for, 352
heat monitoring, 352
thermal management techniques, 352

power consumption model, in
multiprocessor computers, 5–6

CMOS circuits, 5
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strong NP-hardness, 14

problem decomposition, in multiprocessor
computers, 9–10

power supplying, 10
precedence constraining, 9
system partitioning, 9
task scheduling, 9

process identifier (PID), 46
processing element (PE), 190–191
processing subsystem, 676, 678
processor frequency, 70
processor models, in multiprocessor
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ripple effect of reclustering, 664
rotations per minute (RPM), 362
Round-Robin scheduler (RR), 234
Routing Information Service (RIS), 577
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sensors-LA flow graph, 765–7
SenTCP congestion control protocol, 727
sequential tasks, 7
server cluster design, 273
server energy efficiency (SEE), 271
server power usage efficiency (SPUE), 271
service flow controller (SFC), 114, 118–19

Block, 118
GenF, 118
Xfer, 118
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683
power management plane, 683
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available battery technologies, 679
network and node architecture, 676–9
sensor hardware, 676

power dissipation sources in WSNs,
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individual entry
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