Architecting for Success

S\

se
Is

1

pri
Ra

=
=
=
[1]

MQ. m
“. i

A_‘
)

Dan Chak

O’REILLY*

.allitebooks.con]

http://www.allitebooks.org

9

Web Development

O’REILLY"

Enterprise Rails

What does it take to develop an enterprise
application with Rails? Enterprise Rails introduces
you to several time-tested software engineering
principles to prepare you for the challenge of
building a high-performance, scalable website with global
reach. Working on an example enterprise project, you'll learn

how to design a solid architecture that ties the many parts of an
enterprise website together, including the database, your servers
and clients, and other services.

With Enterprise Rails, you will:

« Tour an ideal enterprise systems layout and learn how Rails
fits in and which elements don't rely on Rails

* Learn to structure a Rails 2.0 application for complex
websites

* Discover how plugins can support reusable code and
improve application clarity

* Build a solid data model—a fortress—that protects your data
from corruption

+ Base an ActiveRecord model on a database view and build
support for multiple table inheritance

« Explore service-oriented architecture and web services with
XML-RPC and REST

« See how caching can be a dependable way to improve
performance

Building for scale requires more work up front, but you'll have
a flexible website that can be extended easily when your needs
change. Enterprise Rails teaches you how to architect scalable
Rails applications from the ground up.

www.oreilly.com

US $44.99 CAN $44.99
ISBN: 978-0-596-51520-1

IO g

7805967515201

Download at Boykma.Com

vww .allitebooks.cond

Safari

Books Online

“Enterprise Rails is

indispensable for anyone
planning to build enter-
prise web services. It's one
thing to get your service
off the ground with a

JSramework like Rails, but

quiite another to construct
a system that will bold up
at enterprise scale. The
secrel is to make good
architectural choices from
the beginning. Chak shows
you how to make those
choices. Ignore his advice
at your peril.”

—Hal Abelson, Professor
of Computer Science
and Engineering, MIT

Dan Chak’s varied education

in real-world web architecture
gives him a unique perspective
on the challenges of building
rock-solid web applications.
He has worked at Amazon.com,
the world’s biggest online retail
store, and has also directed
software development at
CourscAdvisor Inc., a Ruby on
Rails startup company.

Visit the website for this book at
http://enterpriserails.chak.org/.

**2 Free online edition
for 45 days with
purchase of this book.
Details on last page.

http://www.allitebooks.org

Enterprise Rails

Download at Boykma.Com

vww allitebooks.cond

http://www.allitebooks.org

Other resources from O'Reilly

Related titles

oreilly.com

m“f‘f" ‘REILLY
HADLANETWORK,

Conferences

O'REILLY N_ETWORK
Safari
Bookshelf

Advanced Rails Rails Cookbook™

Ajax and Rails Rails: Up and Running

Learning Rails Ruby Cookbook™

Learning Ruby The Ruby Programming
Language

oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Download at Boykma.Com

vww allitebooks.cond

http://www.allitebooks.org

Enterprise Rails

Dan Chak

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol + Taipei « Tokyo
Download at Boykma.Com

vww allitebooks.cond

http://www.allitebooks.org

Enterprise Rails
by Dan Chak

Copyright © 2009 Dan Chak. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Indexer: Joe Wizda

Production Editor: Loranah Dimant Cover Designer: Karen Montgomery
Copyeditor: Colleen Gorman Interior Designer: David Futato
Proofreader: Loranah Dimant lllustrator: Robert Romano
Printing History:

October 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Enterprise Rails, the image of a sturgeon fish on the cover, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

Java™ is a trademark of Sun Microsystems, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51520-1
(M]
1223662105

Download at Boykma.Com

vww allitebooks.cond

http://safari.oreilly.com
http://www.allitebooks.org

Table of Contents

Prefacecooiiiiii Xi
1. TheBigPicturecoveniriii i i ittt it cie e e enaaes 1
What Is Enterprise? 1
Growing Slowly 3
Understanding All the Pieces 5
Persistence Layer 5
Application Layer 8
Caching Layer 11
Messaging System 16

Web Server 16
Firewall 16

2. OrganizingWithPluginsoovviiiiiiiiiiiiiii it iieieeaennns 19
Benefits 20
Writing Your Own Plugins 21
Core Enhancements 22
Custom Extensions 26
Deployment 30
svn:externals 30

3. OrganizingwithModulesovviiiiiiiiiiiiiiiiiiiirnrnnrnnrnnns 31
Files and Directories 32
Module Boundaries for Namespacing 33
ActiveRecord Associations Between Modules 34
Reciprocal Relationships 35
Modules Presage Services 36
Ensuring Proper Load Order 38
Exercises 39
Refactor Steps 39
High-Level Module Refactor 39
Detangling Utility Methods 40

v

Download at Boykma.Com

vww allitebooks.cond

http://www.allitebooks.org

4., Database ASaFortresso.vvv v vieii ittt iiiineeneeirenrennennennes 41

Your Database Is an Application, Too 42
“One Framework to Rule Them All” 42

“No One in My Company Will Ever Write a Bug” 42

“This Rails Application Is the Only Application on Earth” 43

Sit Atop the Shoulders of Giants 43
Choosing the Right RDBMS 44

A Note on Migrations 44
Dispelling Myths 46
Operations and Reporting 47

5. BuildingaSolidDataModelccovviiiiiiiiiiiiiiiiiiiiiienn 51
Theatre Tickets 51
Starting Simple 52
Constraints 54
Mythbusting 63
Referential Integrity 64

Intro to Indexing 70

6. RefactoringtoThirdNormalFormccoiiiiiiiiiiiiinininn.., 73
Third Normal Form 73
Timing Is Key 77
Refactoring: Inheritance and Mixins 78
Exercises 82
Refactor Steps 82

7. DomainDatacooiiiiiiii i 85
Dealing with Zip Codes 87
Strategy Pattern with Domain Tables 89
Refactor from Day One 93

8. Composite Keys and Domain Key/Normal Formcovvinnnt 95
Why Composite Natural Keys Matter 97
Spotting Composite Keys 99

Atop the Shoulders of... 101
Migrating to Domain Key/Normal Form 102

Using Composite Keys in Rails 105
Deferrable Foreign Key Constraints 109
Understanding the Trade-offs 111
Exercises 113
Refactor Steps 113
Single Column Refactor 114

vi | Table of Contents

Download at Boykma.Com

vww allitebooks.cond

http://www.allitebooks.org

9.

10.

1.

12.

Multiple Column Refactor

Guaranteeing Complex Relationships with Triggers

Constraint Checking with Triggers
Anatomy of a PL/pgSQL Function

Multiple Table Inheritancecoooviiiiiiiat.

The Problem

What Is Polymorphism?

Inheritance and Persistence
Single Table Inheritance
Multiple Table Inheritance
XOR on Columns
Elegant MTI in Rails

Factory Classes

Exercises

Refactor Steps
Refactoring STI
Refactoring: polymorphic => true

View-BackedModelscovvvriviiiiiiiiinnennens

Database Views
Creating a View
Basing a Model on a View
Considerations
Insert, Update, Delete
References and Constraints
Indexing
Exercises
Refactor Steps

Materialized VIeWSvvvvvriiiiiiiiiiiiiiiinennenns

Materialized View Principles

A View to Materialize
Getting into Form

The Target Table

Refresh and Invalidation Functions
Time Dependency
Who Pays the Price?

Triggered Refreshes and Invalidations
Movie Showtimes

Hiding the Implementation with the Reconciler View
Periodic Refreshes

115

............... 117

117
121

............... 127

127
129
131
132
133
135
137
143
144
145
145
145

............... 147

148
149
149
150
151
152
153
153
154

................ 155

156
157
158
160
161
163
165
168
169
174
177

Download at Boykma.Com

vww allitebooks.cond

Table of Contents | vii

http://www.allitebooks.org

Cache Indexes 178

Results 179
Cascading Caches 180
Exercises 180

13, SOAPHMEr «.uutttti i i 183
What Is SOA? 183
Why SOA? 186
Shared Resources 187
Reduce Database Load 190
Scalability II: Caching Is Tricky 196
Reduce Local Complexity 197

In Summary 200
Exercises 200

14. SOA Considerationsoovvviiiiiiiiiiiiiiiiiiiiiiiiiiieeennns 201
Service Considerations 201
Implementation Details Are Hidden 202

API Is Accessible 204

API Design Best Practices 205
Send Everything You Need 205

Limit Round Trips 207

Look for Opportunities for Parallelization 209

Send as Little as Possible 210

REST Versus XML-RPC Versus SOAP 212
XML-RPC 212

SOAP 214

15. AnXML-RPCServiceoovviiiriiiiiiii i 217
ActionWebService and Rails 2.0 217
Creating an Abstraction Barrier 218
ActiveRecord As the Physical Model Layer 218

The Object Model Layer 220
Defining the API 225

More Testing 230

The Client Plugin 232
Shared Code 234

The Client Singleton 234
Integration Testing 236

16. Refactoringto Servicesovviiiiiiiiieiieeieiieeeeneeneennennns 239
An Orders Service 239
Integrating with the MoviesService 251

viii | Table of Contents

Download at Boykma.Com

vww allitebooks.cond

http://www.allitebooks.org

17.

18.

19.

Other Considerations
MoviesService Object Model
Putting It All Together

Y I 111 1= G

REST Basics

Resources and Verbs

Hardware Is Part of the Application
Mapping REST to SOA

Mapping to CRUD

Different Clients, One Interface

HTTP+POX

Defining a Service Contract

REST Clients in Ruby

The Way the Web Was Meant to Be Used

ARESTful Web Serviceoovvvriviininiiininnnn..

Scoping the Problem
Tools
MoviesWebService
Resources Server Implementation
Actions Server Implementation
A Client Implementation

CachingEndtokEndcooiiiiiiiiiiiatl,

Data Layer Caching, Revisited
The Snapshot
The Refresh Function
Invalidation Triggers
Indexing
Logical Model Caching
Considerations
Avoiding Rebuilding with Stale Data
Cache Indexes
Other Caching
Query Plan Caching
Database Query Caching
Rails Query Caching
Fragment, Action, and Page Caching

oo

253
254
265

.................... 267

267
267
269
270
270
272
274
274
276
277

................... 279

279
281
284
285
288
289

.................... 295

296
296
297
297
298
298
305
308
312
313
313
314
315
316

Download at Boykma.Com

Table of Contents | ix

Download at Boykma.Com

Preface

It would be quite unusual for a person not trained as a surgeon to walk into a hospital
operating room, ask a nurse for a scalpel, and start cutting. However, anyone—even
those without computer science degrees—can walk into a bookstore, pick up a pro-
gramming book, and start programming that afternoon. To build a website, you once
needed to be adept in a number of languages and technologies: SQL, HTML, JavaScript,
and of course, the language du jour for the application itself. But with Ruby on Rails,
the bar seems to have dropped almost through the floor. You can learn only Rails, and
the development of the database, HTML, and JavaScript layers are waved away by the
Rails magic.

It’s an excellent sales pitch for Rails, but is it true?

As much as we might like it to be, the sad truth is that if your goal is to design high-
performance scalable websites, there is still much to be learned beyond the syntax of a
programming language. Nothing comes for free. Of course, this argument for the need
for thorough training in software engineering principles applies to all languages equally.
But does using Ruby on Rails rather than some other application language and frame-
work significantly reduce the topics you need to master to be a great application
developer?

Sadly, the answer is still no. Throughout the history of web development, the constants
have been SQL, HTML, and JavaScript. It’s the language du jour that keeps changing,
well, seemingly daily. Is it possible that a Johnny-come-lately like Ruby on Rails can
redefine the landscape so definitively that the rest of the stack becomes obsolete?

Rails is redefining the landscape of web development. Ruby is a wonderful program-
ming language, and the Rails framework does dramatically increase productivity. How-
ever, databases, legacy systems, and third parties who don’t share our love of Rails are
a fact of life. Even though Rails does, at times, seem downright magical, it does not
make the rest of the stack obsolete.

Xi

Download at Boykma.Com

The Tale of Twitter

Java™ with its long (and constantly improving) track record, is now—along with its
Microsoft twin .NET—the de facto enterprise language. But there was a time when you
could brew a pot of coffee while the Java runtime environment (JRE) booted, and enjoy
each sip of your cup of joe while the hits flipped hither and thither.

So much research has gone into the JRE that it is now blazingly fast. Having shed its
perception as a slow language, a rewrite to Java is often the first recommendation new
management or venture capitalists might suggest when introduced to your project.
Imagine if Java had been perceived the way Ruby on Rails sometimes is today. It would
have been amazing if one poorly designed Java application had convinced all technol-
ogy decision-makers that Java itself was a bad platform for developing applications. In
fact, much of the emphasis on Java’s speed was likely a result of early failures that were
as much due to scaling or design problems as they were speed-related. Now, with Java’s
speed on par with or faster than that of C++, it’s the developer who becomes imme-
diately suspect when an application underperforms, rather than Java itself or the
framework being used.

Twitter has become the whipping boy for Rails’s perceived scalability problems. Twitter
is a new twist on the everyday blogging platform. Unlike a standard blog, posts to
Twitter, or “tweets,” are limited in length. They can be written online in a web browser,
but are more commonly written via SMS text message, or from a variety of third-party
applets. Subscribers, or “followers,” of your Twitter blog can read your tweets in the
traditional way online or via RSS, but more commonly subscribers receive your posts
in realtime via SMS messages to their phone. In essence, Twitter is a messaging service,
brokering many-to-many communication. Although individuals predominantly use it
to keep up-to-date with what their friends are up to, Twitter “streams” have also been
used to spread messages quickly to conference participants, or to share other types of
topic-based messaging with interested parties.

Like many companies before it, Twitter encountered problems when its success ex-
ceeded its expectations. A successful viral marketing company, its site’s user base
quickly jumped into the millions, but the site couldn’t handle them. The result was
slow page load times and, at times, outages.

This type of problem is one of scaling: you’re doing perfectly fine until the demand for
your site suddenly increases. Scaling issues suggest that you’ve achieved some level of
success (what a silver lining!), but it’s the type of problem you’d like to avoid, lest you
become the whipping boy, or worse, lose all of your users to a competitor.

But Ruby on Rails was not the culprit in Twitter’s scaling problems—a fact Twitter
engineers reiterated on many occasions. It was the architecture that was at fault, and
architecture has to do with how you structure data and applications and how they
communicate, not what language the applications are written in.

xii | Preface

Download at Boykma.Com

FWIW: Twitter currently has no plans to
abandon RoR. Lots of our code is not in
RoR, already, though. Maybe that's why
people are confused.

03:58 PM May 0L, 2008 from web

R h Evan Williams

Figure P-1. Twitter is sticking with Rails, but rethinking architecture

Because Twitter was the largest, most public Rails site around, its stumbles were
watched carefully, and the steps Twitter took to alleviate its scalability issues were
thoroughly documented online. In one instance, the database was becoming a bottle-
neck. In response, Twitter added a 16 GB caching layer using Memcache to allow them
to scale horizontally. Still, many queries involving complex joins were too slow. In
response, the Twitter team started storing denormalized versions of the data for faster
access. In a another instance, Twitter found its use of DRb, a mechanism for remote
method invocation (RMI), had created a fragile single point of failure. It replaced DRb
with Starling, a distributed messaging queue that gave it looser coupling of message
producers and consumers, and better fault tolerance. After these and other architectural
improvements, Blaine Cook, Twitter’s lead architect, said:

For us, it’s really about scaling horizontally—to that end, Rails and Ruby haven’t been
stumbling blocks, compared to any other language or framework. The performance
boosts associated with a “faster” language would give us a 10-20% improvement, but
thans to architectural changes that Ruby and Rails happily accommodated, Twitter is
10,000% faster than it was in January.

It is of no small significance that Twitter’s engineers chose to absolve Rails of being at
fault for their problems; instead of offloading the blame to an external factor, they chose
to take responsibility for their own design decisions. In fact, this was a wise choice.
Twitter’s engineers knew that reimplementing the same architecture in a different lan-
guage would have led to the same result of site outages and site sluggishness. But online
rumor mills were abuzz with hints that Twitter was planning to dump Ruby and Rails
as a platform. Twitter’s cofounder, Evan Williams, posted a tweet (shown in Fig-
ure P-1) to assure everyone that Twitter had “no plans to abandon RoR.”

Preface | xiii

Download at Boykma.Com

Speed Versus Scalability

It is true that Ruby, as a language, does execute software programs more slowly than
some other programming languages. However, this is a red herring in the discussion of
scaling websites, as speed and scalability are not equivalent. If the stuff of websites was
real-time processing of complex data, then Ruby’s speed could be problematic. How-
ever, most websites don’t do much more per request than look up some information
and display it, or otherwise accept some information and store it. The time required to
process this type of task is fast no matter what language you choose.

On the other hand, once you start building up simultaneous requests, these requests
will compete with each other, and requests will begin to appear slow to end users. In
an ideal situation, you would simply add more hardware to restore your site to optimal
performance levels. In fact, in an architecture designed for scaling, you should be able
to add hardware in a linear fashion to handle any number of users imaginable.

This is where speed and scalability get confused. A language may be slow or fast, but
it’s your architecture that is scalable or not. This pertains not just to your code itself—
the algorithms and how you string together your syntax—but also on the edges of your
applications, how they fit together, and the expectations and demands placed on dif-
ferent parts of the system. Are any spots likely to become bottlenecks or single points
of failure? Can each piece improve its own scalability with the addition of hardware,
and if not, can that piece be removed from the critical path of rendering web pages? If
your architecture is not designed for scaling, you may not be able to simply add hard-
ware to scale up for additional users. And while a faster language may buy you some
more time, no language can avoid the scalability issues of a poorly designed architecture
forever.

Unfortunately, architectural problems are so fundamental to how an application is
written that it is nearly impossible to rescue a bad design once it has been implemented.
Band-aid solutions may work for a while, but scalability problems are usually wide-
spread and entrenched. It’s like plugging holes in a leaking dam; eventually the dam
will give beneath the pressure of the water, regardless of how many patches have been
applied. The only way to be confident your scaling efforts will work is to design for
scale from the beginning.

So why wouldn’t developers plan for scaling from the beginning? One reason is that
they don’t know how. Most books in the bookstore, intended for as wide an audience
as possible, frequently don’t get past syntax. In this book, design is a major and repeated
theme. Another reason is that they believe too much up-front design will slow them
down. This may be true, but it certainly becomes less and less so as you get the hang
of it. The final reason is that many leaders in the Rails community itself have advocated
not worrying about scaling until you really, really, really need to. They say it’s an un-
necessary waste of time up front and that Rails scales easily because it’s a share-nothing
architecture. This, of course, is baloney. In the early days, this was good propaganda
to get Rails onto developers’ desktops, but today it is simply hurting Rails’s image as

xiv | Preface

Download at Boykma.Com

an option for enterprise deployment. As Twitter proved, waiting until you really, really,
really need to worry about scaling is too late.

Of course, you don’t always have the choice of starting your project from scratch. You
may be reading this book when you’re well into a project and are looking for tips, or
perhaps even later in the game; you might be trying to save a poorly designed project
that’s already straining under the pressure of load. To help readers in these scenarios,
many chapters contain a section called “Refactor Steps,” intended to give you step-by-
step instructions on how to transition an existing design to the one described in the
chapter.

What to Expect in This Book

If you are new to Rails, the first book to read is Agile Web Development with Rails by
Dave Thomas et al. (Pragmatic Bookshelf). The book you have in your hands, by con-
trast, is not a how-to guide for writing your first Rails application. This should be the
second book you read.

This book deals in larger concepts, the formulas for how pieces fit together. It is not a
compendium of the Rails API or a reference of the Ruby programming language. Books
on these topics exist, and they are good to keep on your bookshelf, but they contain
descriptions of tools rather than a formula for putting those tools together to get your
job done.

This book gives you the tools to develop applications for the enterprise world for web-
sites with global scale. Scaling comes in two forms. The first is the scaling we tradi-
tionally think of in terms of handling thousands, hundreds of thousands, or even
millions of users, typified by Twitter and other large scale websites like Google, Ama-
zon, or ebay. The second type of scaling is a more practical, human-focused concern.
As your business needs change or expand, and as the types of developers in your or-
ganization and their quantities increase, will each developer still have the ability to
contribute to the product in a meaningful way? Can new features be added easily and
in parallel without conflict, or is the application difficult to modify by multiple devel-
opers at once? Will you be able to harness the hard work of the past in building the
future, or will each new bold direction require a rewrite of the entire application?

Scaling of both varieties is facilitated through careful design of your application’s soft-
ware architecture, rather than through the choice of language or platform. It’s a com-
mon misconception that scaling problems will be solved by the materialization of a
faster Ruby interpreter, or by learning a magical set of Ruby incantations that aren’t
described in the beginner books. Certainly, there are good and bad ways to describe
any algorithm, but these are problems solved by those with comprehensive computer
science training, not by the speed of the interpreter. Choosing a bad implementation
for an algorithm will have similarly poor results in Ruby as in Java or Perl or otherwise.

Preface | xv

Download at Boykma.Com

The purpose of the Ruby interpreter and the Rails framework is to give you a tableau
on which to develop your masterpiece. That’s where this book comes in. This book is
about the principles involved in architecting serious web applications. The principles
are universal, regardless of which technology you are using in the application tier. Of
course, as you may have guessed, Ruby and Ruby on Rails will be used to describe all
of these principles.

As it happens, Ruby is a terrific language, with many advanced features not found in
today’s compiled languages. Not only is Ruby feature-rich, but it is also succinct to the
point of marvel. What often takes dozens of lines of code in Java can often be written
in just a few lines in Ruby. Rails, too, is a best-of-breed platform for developing web
applications with little overhead. The commonly touted benchmark is that Ruby on
Rails development proceeds at a clip of 10 times the rate of Java development. Big names
like yellowpages.com (http://yellowpages.com) have invested a lot of time and effort
(and money) into rebuilding their entire sites on Ruby on Rails for the long-term ben-
efits they will reap down the road in having a simpler and more efficient (by metric of
code volume) framework.

However, there is a problem with this benchmark, and with the ethos of many in the
Rails community as it exists today. Because so much effort has been put toward showing
how simple it is to develop with Rails, and how much more productive you can be than
with Java or other alternatives, little effort has been put toward showing Rails devel-
opers how to build applications that can truly stand up to the challenges that their Java
cousins have had to prove themselves worthy against.

This doesn’t mean that a Rails application cannot stand up to the challenges imposed
by constant traffic and large scale. Of course Rails can. However, there has been a dearth
of public examples, and by the same token, there has not been much public discourse
within the Rails community about how to design Rails applications to scale to the same
levels that have been achieved by Java applications.

The secret is that the principles are the same. They were the same even before Java was
de facto. The difference is that in Rails, with Ruby, the principles are so much easier to
achieve once you know what you are doing. Because Ruby is so succinct, describing
how to achieve the goals of good software architecture for the web is almost invisible
when written in Ruby code.

Whether or not the revered “Gang of Four” Designs Patterns by Erich Gamma et al.
(Addison-Wesley) needed to be explicitly retooled and retold for a Ruby audience has
received its share of debate; achieving patterns is trivial in Ruby even though they re-
quired intricate structing of code in Java and C+. Indeed, the singleton pattern is ach-
ieved in Ruby by saying include Singleton. The factory pattern is so simply reproduced
it barely warrants a name.

Most of the effort of architecting in Ruby is not found in tens of thousands of lines of
application code. Instead, it’s in how you use Ruby and Rails to tie together all the other

xvi | Preface

Download at Boykma.Com

http://yellowpages.com
http://yellowpages.com

parts of your application stack: the database, your servers and clients, other services,
and users of your application.

In this book, we begin by putting Rails in the correct context. The purpose of the
original Rails book, Agile Web Development with Rails by Dave Thomas et al. (Prag-
matic Bookshelf), was to sell Rails to the world, so the viewpoint is somewhat myopic.
From its perspective, Rails may as well be the only element in the stack. The database
is obligatory, so magical migrations are created to hand wave it away and ensure you
never need to learn a scrap of DDL,; anything else is pejoratively labeled as “legacy” and
ignored. In the real world, databases and legacy systems tend to outlive everything else,
hence the seemingly inescapable term “legacy” itself, so it’s worth paying them their
due.

Topics

This book introduces “architecture” for enterprise web applications, from the ground
up. What are the topics of web architecture, and why aren’t they found in most books
on Rails? In truth, the success or failure of a web application has only partially to do
with what is classically called the application layer. This may come as a surprise to
those who have cut their development teeth on Rails, because the Rails view is that the
application layer is all there is. It turns out that it’s the edges around the application
that can make the biggest difference: databases, caches, and in a service-oriented
architecture (SOA), the constellation of back-end services and front-end websites that
make up the entire application.

First, below your application is the database. A schema stays with you for a very long
time, so how you structure your data determines whether you can guarantee the in-
tegrity of your data, and whether your queries will be fast or slow. How those queries
are written makes a big difference too, meaning you need to understand SQL even if
you are using an object-relational-mapper like ActiveRecord. To write an application
that is fast, you need to know into which queries a set of ActiveRecord statements will
translate so that you can issue your queries in an intelligent way. “It works” usually is
not enough for an enterprise application; as a developer you need to know how it works,
how it should work, and why each way is as it is.

If you plan to avoid the hassles of optimizing a database schema and writing optimized
queries by caching query results or rendered pages, be prepared for difficult times ahead
if you want speed and consistency at the same time. It’s easy to make a cache that
returns old, stale, invalid data. Correctly implementing a cache that is up-to-date in
real-time is no simple task. What goes in the cache should be chosen carefully, as well
as in what format. And the most difficult challenge still remains: when and how to
invalidate or rebuild elements in the cache. Many people naively treat caching as a trivial
problem, but depending on a cache that is out of sync with reality can be far worse than
aslow site. Relying on stale data can lead you to make incorrect decisions, sell products

Preface | xvii

Download at Boykma.Com

youdon’t have, double-book a flight, or not sell products you do have because the cache
doesn’t know about them.

Once you have mastered these areas, suddenly the problems are raised an order of
magnitude. It’s the rare website that is powered by a single monolithic application with
a single database. To scale, not only to handle ever more users, but also to handle
application and organizational complexity, SOA is almost always a necessary archi-
tectural evolution. In SOA, many applications are responsible for different slices of the
overall problem. How do you choose how to split up a monolithic application, and
further, how to glue the pieces back together to give a site’s visitors a unified experience?

In this book, we’ll cover these topics in detail. Of course, the application layer itself is
extremely important, so we’ll start there, with the proper way to think about and
structure your application. We’ll see how and when to separate code into logical ele-
ments, called modules. Then we’ll extract code into plugins to be shared by multiple
applications. In many books, these topics are treated as advanced topics; in this book,
they come first so you will actually have an opportunity to use them before you get
entrenched in a design.

After looking within, we’ll look downward to the database layer. We’ll see how to build
a solid foundation for our application with proper data modeling. First, we’ll learn
about referential integrity and database constraints, culminating in writing trigger-
based stored procedures to ensure complex relationships are satisfied. Then, we’ll dis-
cuss rigorous levels of database normalization, including third normal form and domain
key/normal form, which will help us ensure our data’s integrity.

We'll introduce the concept of domain tables, and how these special tables can be
incorporated naturally in Rails. We’ll see how to base Rails models on database views.
After that, we’ll get our first taste of caching by materializing a database view, increasing
database performance by orders of magnitude.

Next, we’ll look to the sides as we explore service-oriented architecture. An oft-
misunderstood concept, we’ll spend a good deal of time concentrating on theory. Then
we’ll build multiple RPC-based back-end services to be consumed by a thin front-end
client. We’ll build a REST web service, too, but we’ll see how to build any type of REST
service, not just the subset supported by ActiveResource.

Finally, we’ll revisit caching, treating it like the sleeping monster it really can be, giving
you the tools to ensure with certainty that the caches you create can be depended upon
to be accurate.

Throughout the book, a heavy emphasis will be placed on testing, both unit tests within
an application and integration tests when we connect multiple applications together.
In fact, we never create a single view or traditional controller, instead, we exercise the
model classes we write with our tests.

xviii | Preface

Download at Boykma.Com

vww allitebooks.cond

http://www.allitebooks.org

How This Book Is Organized

In Chapter 1, we start out by taking a tour of an ideal enterprise systems layout, high-
lighting all of the elements that aren’t Rails, as well as noting the various places where
Rails can fit in.

The rest of this book can be divided principally into three major sections. The first deals
with the Rails framework itself. The next few chapters examine Rails itself. While Rails
gives you a Model-View-Controller (MVC) framework to start your projects, there is
much to be desired in terms of structuring and maintaining large applications. Chapters
2 and 3 fill these gaps. First, Chapter 2 dives into plugins, and how they can be used
to improve application clarity, while also encouraging you to write reusable code.
Chapter 3 introduces modules: what they are, and how and when to use them.

The next major section of the book, Chapters 4 through 12, deals with the database.
The database layer has not really been given its due in the Rails community, and Chap-
ter 4 begins by providing an overview of why it is such a critical part of your application.
In Chapter 5, we start building a data model for the example application we’ll work
with throughout this book: a sales website for movie tickets.

Although the schema we’ll design would be sufficient for most Rails books, we’ll see
quickly that it was a naive design. In Chapter 6, we refactor the schema to be in third
normal form (3NF). In Chapter 7, we’ll pick out a special type of table called a domain
table, and we’ll incorporate these tables naturally into a Rails application. In Chap-
ter 8, we’ll expose some more problems with our schema, then tighten it one step further
by moving from third normal form to domain key normal form. In Chapter 9, we’ll get
even more advanced with our introduction of stored procedures and triggers. We’ll use
them to enforce relationships that built-in database constraints cannot handle, giving
you the power to completely lock down your database schema.

Chapters 10 through 12 introduce some new database-related features to Rails devel-
opers. In Chapter 10, you’ll see how to base an ActiveRecord model on a database view.
This is useful for automatic filtering, or for filtering on data that’s not easily available
at the application layer. In Chapter 11, we’ll show how to build support for multiple
table inheritance in Rails. Rails supports single table inheritance, but it is not always
the right tool for the job. In Chapter 12, we’ll get our first taste of caching when we
materialize the view we created in Chapter 10, giving our view a huge boost in
performance.

Chapters 13 through 18 deal with service-oriented architectures and different techni-
ques for connecting systems together. In Chapter 13, we start by defining SOA, as well
as going over the scenarios when it is the right choice to solve a problem. Chapter 14
covers considerations that go into designing a service-oriented architecture, including
guidelines for designing an API. In Chapter 15, we build our first SOA service. In
Chapter 16, we build upon our accomplishments in Chapter 15, connecting two back-
end services together and testing them with the same interface a thin front-end client
would use. Chapter 17 is a critical exploration of REST, helpful for placing it in its

Preface | xix

Download at Boykma.Com

proper context for web services, but not necessarily for service-oriented architectures.
In Chapter 18, we build a RESTful web-service.

Chapter 19 is a culmination of many of the previous chapters. There, we implement a
fully correct service-layer cache to enhance application performance. We also go over
other places where caching can be a dependable way to improve performance.

Who Is This Book For?

The purpose of this book is to provide the background you need to build your bridge:
a large-scale, enterprise website. It is assumed that you’ve already read the manuals of
the tools you need to get the job done, e.g., books on the syntax of Ruby and of Rails.
This book fills in the background that transforms you from a layman who has tools
into an expert ready to make the most of those tools.

This book is geared toward three general types, which we’ll call the Student, the Glass
Ceiling, and the Travelers.

For the Student, this book is full of the theory behind engineering large-scale enterprise
web applications, so if you are embarking upon a class on software engineering for the
Web, this book is for you. This may even be your textbook, and if so, Mazel Tov! You
will learn a lot here.

Our Glass Ceiling audience are those who have read half a dozen manuals about their
tools and toolkits, but still find they don’t have the background to jump to the next
level of web application design. These are the so-called newbies. The tools are beginning
to make sense, but how to use them together effectively may still seem murky. If you
are in this group, this book is for you, too. Soon all the pieces will be dovetailing nicely.

The final group that may benefit from this book are the Travelers. Travelers may have
a lot of experience with other frameworks, but they are wondering how to make it all
go smoothly with Ruby on Rails. For this audience, this book is a great refresher in all
the basic theory behind solid web application design, followed by a hearty dose of how
to integrate all that theory into Rails.

Conventions Used in This Book

This book uses the following typographic conventions:

Constant width
Used for program listings. Also used within paragraphs to refer to program ele-
ments such as namespaces, classes, and method names.

Italic
Used for example URLs, names of directories and files, options, and occasionally
for emphasis.

xx | Preface

Download at Boykma.Com

W
This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Enterprise Rails, by Dan Chak. Copyright
2009 Dan Chak, 978-0-596-51520-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Saf When you see a Safari® Books Online icon on the cover of your favorite
arari technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Comments and Questions

We at O’Reilly have tested and verified the information in this book to the best of our
ability, but mistakes and oversights do occur. Please let us know about errors you may
find, as well as your suggestions for future editions, by writing to:

Preface | xxi

Download at Boykma.Com

http://safari.oreilly.com

O’Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a website for this book where examples, errata, and any plans for future edi-
tions are listed. You can access this site at:

http://www.oreilly.com/catalog/9780596515201/

The author has also set up his own site for the book at:
http://enterpriserails.chak.org/

For more information about this book and others, see the O’Reilly website:

http://lwww.oreilly.com

Acknowledgments

Thank you to the members of my team at CourseAdvisor who put these ideas into
practice in our projects, large and small. You proved that Rails really does scale, both
for traffic and for teamwork. In order of appearance: Courtney Wade, Alistair Israel,
Aries Andrada, Kristof Redei, Nikki Ramirez, Reid Lynch, Sergey Rozum, Arthur
Pyrogovski. Vladimir Bober, and Dimitry Lukyanenko. Thanks also to Derek
Yimoyines for being an early reader of this material and for providing valuable feedback.

Also thank you to my technical reviewers (in alphabetical order) whose critical insights
were most valuable: Hal Abelson, Ben Adida, Jeff Davis, Matt Debergalis, and Brad
Ediger.

xxii | Preface

Download at Boykma.Com

http://www.oreilly.com/catalog/9780596515201/
http://enterpriserails.chak.org/
http://www.oreilly.com

CHAPTER1
The Big Picture

What Is Enterprise?

You may have heard that big Internet sites like Amazon, eBay, or Google have
thousands—sometimes tens of thousands, or more—of servers powering their web-
sites. If you’re reading this book, you’ve probably already built at least one web appli-
cation of your own, and it probably had only a handful of machines behind it, perhaps
even just one application server and one database. In fact, maybe you had shared host-
ing and only had a fraction of a full server at your disposal.

If you had a great idea for an online business and were given 1,000 servers, what would
you do with them? How would you make the most of them? What operational goals
would you define for reliability and speed, and how would you leverage all of that
hardware to achieve those goals?

Before diving into the pieces of an enterprise system, or discussing how to build one,
a good starting point is to simply define enterprise.

Unfortunately, that is not an easy task. There is no particular set of tools that, if used,
will make your architecture qualify as enterprise, even if the word “enterprise” is in the
product names of the tools you use. The big companies mentioned earlier have built
many of their own tools to support their software stack, but they are definitely still
“enterprise.” Similarly, there is no single configuration of pieces that together spell
enterprise. If you looked at the configuration of Google’s servers and compared their
it to Amazon’s, the two would look quite different. But they are both enterprises none-
theless—it just happens that the two enterprises have different goals, and therefore
need different architectures to reach those goals.

In some sense, a site is enterprise when it feels like it is. All of the Internet behemoths
once started out with a single application server and single database, just like you. It’s
anyone’s best guess when they crossed the blurry line into “enterprise.”

That said, there are certainly some criteria that, when satisfied, do make a site feel like
it’s enterprise. These criteria are topics of this book, and will be referred to again and
again:

Download at Boykma.Com

It’s fast. You can define a service level agreement (SLA) for how long it takes each
component to do its job, which in turn allows you to define an SLA for end-to-end
load times of any given web page.

It’s always available. You can define an SLA for your minimum uptimes for all
critical components and aim for “four nines”—99.99% uptime.

It scales linearly. You can scale to hundreds of thousands or even millions of users
by adding additional hardware.

It’s fault-tolerant. If noncritical components go down, the majority of functionality
stays intact, and your users don’t know the difference.

There are other criteria that make your site feel like it’s enterprise, too, although they
are mainly operational concerns, and aren’t covered in depth this book:

All source code is in a source control repository.
All new code goes through a QA cycle before it is deployed.
There is a deployment procedure, and failed deployments can be rolled back.

Errors are logged in a central location, and the appropriate personnel are notified
in real-time.

Logfiles and databases are backed up in a central location.

Statistics about the website’s operation can be collected and analyzed to determine
which areas need attention.

Implicit in the preceding list is a number of job functions and departments other than
software development. Reading between the lines, you find:

A database administrator (DBA) who sets up failover databases and ensures back-
ups are available. A DBA can also tune database configuration parameters and
control the physical mapping of data to disks to improve performance. Many also
consult on schema design to ensure optimal performance and data integrity.

A quality assurance engineer (QA) who tests release candidates before they are put
into production and tracks issues to be fixed by developers.

An operations or release engineer who manages the releases, creates deployment
plans, and rolls out your new software in the wee hours of the night.

An information technology engineer (IT) who maintains internal machines that
house backups, logfiles, etc.

Having these people in your organization will push your systems architecture toward
“enterprise.” Similarly, designing your system to be enterprise creates the need for all
of these individuals. In some sense, when your company itself feels like an enterprise,
your software is probably getting to be enterprise, too. When the two are out of step,
you will know it because either half of the engineers will have nothing to do or everyone
will be stepping on each other’s toes.

2 | Chapter1: The Big Picture

Download at Boykma.Com

Rails
application

Database

Figure 1-1. A basic website configuration

Growing Slowly

Every website begins its life with a single developer and a single line of code. Fig-
ure 1-1 shows a simple configuration of a Rails application connected to a database.
You will likely spend quite a bit of time developing your application on this setup before
it’s ready for its first user.

When it’s time to launch, there some issues that ought to be considered. Figure 1-2
shows the same configuration, but with redundancy at the application level, and fail-
over at the database level.

There are two copies of the application so that in the event one machine fails, there is
still another that can handle incoming traffic. Similarly, in the event of a hardware
failure on the database machine, a copy that is a transaction or two behind can be
brought online quickly.

Even if you are barely using any of the resources on either the application or database
machine, redundancy and failover are a very good idea. At this point, neither of these
considerations is aimed at managing load—that comes later. Rather, both are intended
to ensure the availability of your web application. Reprovisioning a machine, config-
uring it, and loading all your software and data from backups can cause quite a bit of
downtime. During that time, your customers will can find your competitors’ sites, and
they are likely to form negative opinions about your site’s reliability as well.

With this configuration, and perhaps even a good deployment strategy, there is plenty
of work within the application and data layers that can be done before you need to add
any additional complexity to your system in the form of encapsulated services or asyn-
chronous processes. Depending on the feature set of your web application, this may
even be as far as you need to go. You are already satisfying a number of the criteria that
define the elusive concept of “enterprise.”

There is, within an enterprise, the need to scale horizontally as well. Only so many
engineers can work in one codebase before no one can work at all. Even if there is only
one chef in the kitchen, there is still only so much space for the sous-chefs.

Growing Slowly | 3

Download at Boykma.Com

Load
balancer

Rails
application

Database

Warm
standby

Figure 1-2. A basic website configuration with failover and redundancy

A common way to deal with this human scaling problem is to break up a large appli-
cation into smaller pieces, or services, each responsible for a specific function within
the enterprise. It’s no surprise that the software splits often follow organization boun-
daries so that individual teams can take on full ownership of their pieces of the overall
system.

Each service has its own full stack that mirrors the stack of the traditional website from
Figure 1-2. The difference is that a service is responsible for a small fraction of the duties
that make up the entire website, usually one specific, specialized group of related func-
tionality. It’s possible—and sometimes preferable—to abstract all database access be-
hind services. The front-end website then becomes a consumer of these services and
has no need for a database of its own, as shown in Figure 1-3.

When you add services into the mix, it’s hard to argue your system is not enterprise.

There are a number of other components commonly found in an enterprise setup.
Figure 1-4 shows a generic enterprise configuration. Powering the front-end website
are a number of services. There are also a collection of asynchronous processes that
receive information from services via a messaging queue. In addition to the front-end
website, there is a web services layer aimed at providing external clients with a subset
of the functionality available inside the firewall. There is also redundancy and failover
in all critical places. Finally, each service database feeds a data warehouse, which pow-
ers site reporting and decision support.

4 | Chapter1: TheBig Picture

Download at Boykma.Com

Load
balancer

v

Front-end

]_

:

Load
balancer

Service

Warm
standby

Load
balancer

Service

I'—
Database @
Warm
standby

Figure 1-3. A front-end website backed by services, which in turn are backed by relational databases

Note, of course, that simply replicating this configuration is not enough. Each piece of
the system is an independent, isolated, and encapsulated system in its own right and
deserves thorough and thoughtful design. What goes where and how to implement

each individual unit is as much an art as it is a science.

Understanding All the Pieces

This section gives a brief introduction to each piece of the enterprise system.

Persistence Layer

The persistence layer is where you store your business’s data. As the name implies, data
here sticks around for a long time; it persists until you explicitly change or remove it.
Most frequently, the persistence layer is a Relational Database Management System

(RDBMS).

Understanding All the Pieces | 5

Download at Boykma.Com

---------------------------------- Front-end [f=-| Web =amssssnnnennnnn=== Firewall
website services
! 1 ! |

Load balancer

L]

Queue or S ¢ -
Enterprise —| ervice | Service
Service Bus i A . B |

—p-| Shared
| cache

ety O e ;
_,I Database : Database ; Database } Database }
A - B R N
= O 8 8|0
Warm Warm Warm Warm
backup backup backup backup
| Process 3 !D
Reports Decision
support
Data warehouse

Figure 1-4. A generic enterprise architecture with redundancy and failover

Because protecting your data is critical, the persistence layer should provide certain
guarantees, collectively referred to as ACID: atomicity, consistency, isolation, and du-
rability. Each of these properties plays a different role in maintaining the integrity of
your data:

Atomicity

The ability to group a number of operations together into a single transaction:
either they all succeed, or they all fail. The RDBMS should ensure that a failure
midway through the transaction does not leave the data in an intermediary, invalid
state. For example, a bank account transfer requires debiting funds from one ac-
count and crediting funds in another. If one of the operations fails, the other should
be rolled back as well; otherwise, one account may be debited without making the
corresponding credit in the other account.

Consider the following instructions:

account1.debit(50)
power failure happens here
account2.credit(50)

If the database fails between the two statements, where we have a comment to the
same effect, the user of the ATM system will likely see an error on-screen and expect
no transaction took place. When the database comes back up, though, the bank

6 | Chapter1: The Big Picture

Download at Boykma.Com

vww allitebooks.cond

http://www.allitebooks.org

customer would be short $50 in account one, and be none the richer in account
two. Atomicity provides the ability to group statements together into single, atomic
units. In Rails, thisis accomplished by invoking the method transaction on a model
class. The transaction method accepts a block to be executed as a single, atomic
unit:
Account.transaction do
account1.debit(50)
power failure happens here

account2.credit(50)
end

Now, if the power goes out where the comment suggests, the database will ignore
the first statement when it boots back up. For all intents and purposes, the first
statement in the transaction never occurred.

Consistency
The guarantee that constraints you define for your data are satisfied before and
after each transaction. Different RDBMS systems may have different allowances
forinconsistency within a transaction. For example, a complex set of bank transfers
may, if executed in the wrong order, allow an account to drop to a balance below
zero. However, if by the end of all the transfers, all balances are positive, the con-
sistency check that all balances are positive has been guaranteed.

Isolation

The guarantee that while a transaction is in process, no other transaction can access
its intermediary—and possibly inconsistent—data. For example, a bank deposit
requires checking an account’s existing balance, adding the deposit amount to this
balance, and then updating the account record with the new balance. If you are
transferring $100 from one account to another, with one statement to debit $100
from the first account, and another statement to add $100 to the second account,
isolation prevents your total balance from ever appearing to be $100 less between
the two statements. Figure 1-5 illustrates this. Without the transaction in thread
1, the output time 3 would have been 0 + 100.

Durability

The guarantee that once your database accepts data and declares your transaction
successful, the data you inserted or modified will persist in the database until you
explicitly remove or modify it again. Similarly, data you deleted will be gone for-
ever. There is no code example to demonstrate durability. It is a property of how
the RDBMS interacts with the operating system and hardware. Short of a disk
failure that actually destroys data, if the database returns control to you after a
statement, you can assume the effects of the statement are permanently stored on
disk, and a reset of the database or some other activity that clears system memory
will not affect this assumption.

Understanding All the Pieces | 7

Download at Boykma.Com

Note that many databases do allow you to relax the durability restriction to increase
speed at the expense of reliability, but doing so is not generally recommended,
unless your data is not very important to you.

accti.bal = acct2.bal = 100
o accti.save &8& acct2.save
puts "#{accti.bal} + #{acct2.bal}"
0 transaction.do => 100 + 100
acct1.debit(100)

e accti.reload && account2.reload
puts "#{accti.bal} + #{acct2.bal}"

. => 100 + 100
0 acct2.credit(100)

end

e accti.reload && account2.reload
puts "#{acct1i.bal} + #{acct2.bal}"
=> 0 + 200

Figure 1-5. Transactions isolate multiple queries into a single atomic unit

Of course, having a database that is ACID-compliant is not enough to guarantee your
data’s integrity. Armed with this set of guarantees, it is now up to you, the database
designer, to properly set up the database schema to do so. In Chapters 4 through 9, we
will build up a complex schema, and then provably guarantee our data’s integrity.

Application Layer

The application layer represents everything that operates between the data layer and
the outside world. This layer is responsible for interpreting user requests, acting on
them, and returning results, usually in the form of web pages. When you start your first
Rails project by invoking rails {projectname}, what you have created is the application
layer.

Depending on what your application is, the application layer can have different rela-
tionships with the data layer. If, for example, the purpose of your website is to provide
Flash games for visitors to play, the application layer—and most developer effort—will
focus on the games users play. However, the application layer may also facilitate user
login, as well as storage and retrieval of high scores in the database.

More commonly, though, websites present information to users and allow them to act
upon it in some way; for example, online news sites that display articles or movie ticket

8 | Chapter1: The Big Picture

Download at Boykma.Com

vendor sites that provide movie synopses and show times in theatres nationwide. In
these cases, the application layer is the interface into the data stored in database.

In its simplest form, a single Rails application comprises the whole of the application
layer. When a user requests a web page, an instance of the full application handles the
request. The entry point into the code base is determined by the requested URL, which
translates into a controller class and action method pair. Code executes, usually re-
trieving data from the database, culminating in the rendering of a web page. At this
point, the handling of the request is complete. This is the simplest of architectures (it
was shown in Figure 1-1).

A front-end and services
The configuration above can take you quite far, but it can only take you so far.

As your company grows, the complexity of your business needs may become too large
to be managed well within a single application. The complexity can come either in the
user interface, or in the back-end logic that powers it.

If you operate a blog site that is wildly successful, you may want a variety of different
user interfaces and feature sets based on the target audience. For example, the young-
adult site may have a feature set geared toward building discussion within a social
network, while the adult-targeted site might be devoid of the social aspect altogether,
and instead include spell-checking and other tools to make the content appear more
polished. Or you might even spin off a completely different application that uses the
same underlying content structure, but with a completely different business model. For
example, a website for submitting writing assignments, where students are able to read
and comment on other students’ work, could easily share the same underlying data
structures as the blog sites. Figure 1-6 illustrates.

The first front-end may be the teen-targeted site, the second the adult-targeted site, and
the third the homework-submission site. All three contain only the user-interface and
the workflow logic. They communicate over the network with a single content man-
agement service, which is responsible for storing and retrieving the actual content from
the database and providing the correct content to each site.

The opposite type of complexity is perhaps even more common. As your website grows
in leaps and bounds, with each new feature requiring as much code as the originally
launched website in its entirety, it often becomes beneficial to split up the application
into smaller, more manageable pieces. Each major piece of functionality and the cor-
responding portions of the data layer are carved out into its own service, which pub-
lishes a specific API for its specialized feature set. The front-end, then, consumes these
service APIs, and weaves a user interface around them. Based on the level of complexity
and the need to manage it, services can even consume the APIs of other services as well.

In this configuration, shown in Figure 1-7, the front-end is a very manageable amount
of code, unconcerned with the complex implementations of the services it consumes

Understanding All the Pieces | 9

Download at Boykma.Com

Site visitor Site visitor Site visitor

Front-end Front-end Front-end

Service

Data layer

Figure 1-6. An application layer split into a single service and many front-ends

behind the scenes. Each service is also a manageable piece of code as well, unconcerned
with the inner workings of other services or even the front-end itself.

Web-services layer

Services, as in service-oriented architecture, and web services are distinct, but oft-
confused concepts. The former variety live within your firewall (described later in this
chapter) and are the building blocks of your larger application. The latter, web services,
straddle the firewall and provide third parties access to your services. One way to think
of this distinction is that the services have been placed “on the public Web.” Func-
tionally, a service and a web service may be equivalent. Or, the web service may impose
usage restrictions, require authentication or encryption, and so on. Figure 1-8 shows a
web service backed by the same two services as the front-end HTML-based web ap-
plication. Users equipped with a web browser visit the front-end HTML site, while
third-party developers can integrate their own applications with the web service.

This was the briefest introduction to SOA and web services possible. In Chapter 13,
we’ll look much more closely at what a service is, as well as how one fits into a service-
oriented architecture. We’ll also examine a variety of circumstances to see when moving
to SOA makes sense—organizationally or technically. In Chapter 14, we’ll go over best
practices for creating your own services and service APIs, and in Chapters 15 and 16,
we’ll build a service-oriented application using XML-RPC. Chapter 17 will provide an

10 | Chapter1: The Big Picture

Download at Boykma.Com

Site visitor

Front-end
[
Service Service Service
Data layer Data layer Data layer

Figure 1-7. An application layer split into a single a single front-end, and many back-end services

introduction to building web services RESTfully. In Chapter 18, we’ll build a RESTful
web service.

Caching Layer

All of your data lives in databases in its most up-to-date, accurate form. However, there
are two shortcomings to retrieving a piece of data from the database every time you
need it.

First, it’s hard to scale databases linearly with traffic. What does this mean? Imagine
your database system and application can comfortably support 10 concurrent users’
requests, as in Figure 1-9.

Now imagine the number of requests doubles. If your application adheres to the share-
nothing principal encouraged in Dave Thomas’s Agile Web Development with Rails
(Pragmatic Bookshelf), you can easily add another application server and load balance
the traffic. However, you cannot simply add another database, because the database
itself is still a shared resource. In Figure 1-10, the database is no better off than it would
have been with 20 connections to the same application server. The database still must
deal with 20 requests per second.

The second shortcoming with requesting data from the database each time you need
it is due to the fact that the format of information in the database does not always
exactly match the format of data your application needs; sometimes a transformation

Understanding All the Pieces | 11

Download at Boykma.Com

Browser client

Client
application
\4
Front-end ‘ 1 webservie |
Y. Y
Service Service
Database Database

Figure 1-8. A web service backed by service applications

or two is required to get data from a fully normalized format into objects your appli-
cation can work with directly.

This doesn’t mean there’s a problem with your database design. The format you chose
for the database might very well be the format you need to preserve your data’s integrity,
which is extremely important. Unfortunately, it may be costly to transform the data
from the format in the database to the format your application wants it in each time
you need it. This is where caching layers comes in.

There are many different types of, and uses for, caches. Some, such as disk caches and
query plan caches, require little or no effort on your part before you can take advantage
of them. Others you need to implement yourself. These fall into two categories: pre-
built and real-time.

For data that changes infrequently or is published on a schedule, a pre-built cache is
simple to create and can reduce database load dramatically. Every night, or on whatever
schedule you define, all of the data to be cached is read from the database, transformed
into a format that is immediately consumable by your application, and written into a
scalable, redundant caching system. This can be a Memcache cluster or a Berkley
Database (BDB) file that is pushed directly onto the web servers for fastest access
(Figure 1-11).

Real-time caches fall into three main categories. The first and simplest real-time cache
is a physical model cache. In its simplest incarnation, this is simply an in-memory copy

12 | Chapter1: The Big Picture

Download at Boykma.Com

x10

10 connections

Rails app

10 requests

RDBMS

Figure 1-9. An application capable of supporting 10 user requests

x10 x10
10 connections 10 connections
Rails app Rails app
20 requests
RDBMS

Figure 1-10. Double the requests

of the results of select queries, which are cleared whenever the data is updated or de-
leted. When you need a piece of data, you check the cache first before making a database
request. If the data isn’t in the cache, you get it from the database, and then store the
value in the cache for next time. There is a Rails plugin for simple model caching called
cached_model, but often you will have to implement caching logic yourself to get the

most out of it.

Understanding All the Pieces | 13

Download at Boykma.Com

x10 x10
10 connections 10 connections
‘ ‘770read Rails app | ‘me Rails app
BDB requests BDB requests
RDBMS

Figure 1-11. BDB file caching system

The next type of real-time cache is a logical model cache. While you may get quite a bit
of mileage out of a physical model cache, if your application objects are complex, it
may still take quite a bit of processing to construct your objects from the smaller con-
stituent pieces, whether those smaller pieces are in a physical model cache or not.
Caching your logical models post-processed from physical models can give your
application a huge performance boost. However, knowing when to expire logical model
caches can become tricky, as they are often made up of large numbers of records orig-
inating from several different database tables. A real-time logical model cache is
essentially the same as a pre-built cache, but with the added complexity of expiry. For
maximum benefit, a physical model cache should sit underneath and feed the logical
model cache rebuilding process.

Note that both physical and logical model caches must be shared in some way between
all application servers. Because the data in the cache can be invalidated due to actions
on any individual application server, there either needs to be a single shared cache, or
otherwise the individual caches on each application server need to notify each other of
the expiry somehow. The most common way this is implemented in Rails is via
Memcache, with the configuration shown in Figure 1-12.

The final type of real-time cache is a local, user-level cache. In most load-balanced
setups, it’s possible to have “sticky sessions,” which guarantee that a visitor to your
site will have all of her requests handled by the same server. With this in mind and
some understanding of user behavior, you can preload information that’s likely to be
useful to the visitor’s next request and store it in a local in-memory cache on the web
server where it will be needed. This can be information about the user herself, such as

14 | Chapter1: The Big Picture

Download at Boykma.Com

Rails app - @ @ — Railsapp

Memcache cloud
RDBMS
Figure 1-12. Memcache configuration

Fre======fr--===========-= 1 [ety 1
1 : 1 :
i i i i
[Rails app 1 ! Rails app i
1 1 1 1
i Memcache ! E Memcache 1

RDBMS

Figure 1-13. User-level cache configuration

her name and any required authentication information. If the last request was a search,
it could be the next few pages of search results. Figure 1-13 shows a user-level cache,
local to each application server, backed by Memcache.

Depending on the nature of your application, as well as where your bottlenecks are,
you may find you need one type of cache, or you may find you need all of them.

Understanding All the Pieces | 15

Download at Boykma.Com

Messaging System

A messaging system, such as an Enterprise Service Bus (ESB), allows independent pieces
of your system to operate asynchronously. An event may occur on your front-end web-
site, or perhaps even in the service layer, requiring actions to be taken that do not affect
the results to be presented to the user during his current request. For example, placing
an order on a website requires storing a record of the transaction in the database and
processing credit card validation while the user is still online. But it also may require
additional actions, such as emailing a confirmation note or queuing up the order in the
fulfillment center’s systems. These additional actions take time, so rather than making
the user wait for the processing in each system to complete, your appli