
www.allitebooks.com

http://www.allitebooks.org

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

Enterprise Rails

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

Other resources from O’Reilly

Related titles Advanced Rails

Ajax and Rails

Learning Rails

Learning Ruby

Rails Cookbook

Rails: Up and Running

Ruby Cookbook

The Ruby Programming

Language

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.

You’ll also find links to news, events, articles, weblogs, sample

chapters, and code examples.

oreillynet.com is the essential portal for developers interested in

open and emerging technologies, including new platforms, pro-

gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas

that spark revolutionary industries. We specialize in document-

ing the latest tools and systems, translating the innovator’s

knowledge into useful skills for those in the trenches. Visit

conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-

ence library for programmers and IT professionals. Conduct

searches across more than 1,000 books. Subscribers can zero in

on answers to time-critical questions in a matter of seconds.

Read the books on your Bookshelf from cover to cover or sim-

ply flip to the page you need. Try it today for free.

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

Enterprise Rails

Dan Chak

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

Enterprise Rails
by Dan Chak

Copyright © 2009 Dan Chak. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Loranah Dimant
Copyeditor: Colleen Gorman
Proofreader: Loranah Dimant

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
October 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Enterprise Rails, the image of a sturgeon fish on the cover, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

Java™ is a trademark of Sun Microsystems, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51520-1

[M]

1223662105

Download at Boykma.Com

www.allitebooks.com

http://safari.oreilly.com
http://www.allitebooks.org

Table of Contents

Preface . xi

1. The Big Picture . 1
What Is Enterprise? 1
Growing Slowly 3
Understanding All the Pieces 5

Persistence Layer 5
Application Layer 8
Caching Layer 11
Messaging System 16
Web Server 16
Firewall 16

2. Organizing with Plugins . 19
Benefits 20
Writing Your Own Plugins 21

Core Enhancements 22
Custom Extensions 26

Deployment 30
svn:externals 30

3. Organizing with Modules . 31
Files and Directories 32
Module Boundaries for Namespacing 33

ActiveRecord Associations Between Modules 34
Reciprocal Relationships 35
Modules Presage Services 36
Ensuring Proper Load Order 38

Exercises 39
Refactor Steps 39

High-Level Module Refactor 39
Detangling Utility Methods 40

v

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

4. Database As a Fortress . 41
Your Database Is an Application, Too 42

“One Framework to Rule Them All” 42
“No One in My Company Will Ever Write a Bug” 42
“This Rails Application Is the Only Application on Earth” 43

Sit Atop the Shoulders of Giants 43
Choosing the Right RDBMS 44
A Note on Migrations 44
Dispelling Myths 46

Operations and Reporting 47

5. Building a Solid Data Model . 51
Theatre Tickets 51

Starting Simple 52
Constraints 54
Mythbusting 63
Referential Integrity 64
Intro to Indexing 70

6. Refactoring to Third Normal Form . 73
Third Normal Form 73

Timing Is Key 77
Refactoring: Inheritance and Mixins 78
Exercises 82
Refactor Steps 82

7. Domain Data . 85
Dealing with Zip Codes 87
Strategy Pattern with Domain Tables 89
Refactor from Day One 93

8. Composite Keys and Domain Key/Normal Form . 95
Why Composite Natural Keys Matter 97

Spotting Composite Keys 99
Atop the Shoulders of… 101

Migrating to Domain Key/Normal Form 102
Using Composite Keys in Rails 105
Deferrable Foreign Key Constraints 109
Understanding the Trade-offs 111

Exercises 113
Refactor Steps 113

Single Column Refactor 114

vi | Table of Contents

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

Multiple Column Refactor 115

9. Guaranteeing Complex Relationships with Triggers . 117
Constraint Checking with Triggers 117

Anatomy of a PL/pgSQL Function 121

10. Multiple Table Inheritance . 127
The Problem 127
What Is Polymorphism? 129
Inheritance and Persistence 131

Single Table Inheritance 132
Multiple Table Inheritance 133
XOR on Columns 135
Elegant MTI in Rails 137

Factory Classes 143
Exercises 144
Refactor Steps 145

Refactoring STI 145
Refactoring: polymorphic => true 145

11. View-Backed Models . 147
Database Views 148

Creating a View 149
Basing a Model on a View 149
Considerations 150

Insert, Update, Delete 151
References and Constraints 152
Indexing 153

Exercises 153
Refactor Steps 154

12. Materialized Views . 155
Materialized View Principles 156
A View to Materialize 157

Getting into Form 158
The Target Table 160
Refresh and Invalidation Functions 161

Time Dependency 163
Who Pays the Price? 165

Triggered Refreshes and Invalidations 168
Movie Showtimes 169

Hiding the Implementation with the Reconciler View 174
Periodic Refreshes 177

Table of Contents | vii

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

Cache Indexes 178
Results 179
Cascading Caches 180
Exercises 180

13. SOA Primer . 183
What Is SOA? 183
Why SOA? 186

Shared Resources 187
Reduce Database Load 190
Scalability II: Caching Is Tricky 196
Reduce Local Complexity 197
In Summary 200

Exercises 200

14. SOA Considerations . 201
Service Considerations 201

Implementation Details Are Hidden 202
API Is Accessible 204

API Design Best Practices 205
Send Everything You Need 205
Limit Round Trips 207
Look for Opportunities for Parallelization 209
Send as Little as Possible 210

REST Versus XML-RPC Versus SOAP 212
XML-RPC 212
SOAP 214

15. An XML-RPC Service . 217
ActionWebService and Rails 2.0 217
Creating an Abstraction Barrier 218

ActiveRecord As the Physical Model Layer 218
The Object Model Layer 220
Defining the API 225

More Testing 230
The Client Plugin 232

Shared Code 234
The Client Singleton 234
Integration Testing 236

16. Refactoring to Services . 239
An Orders Service 239
Integrating with the MoviesService 251

viii | Table of Contents

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

Other Considerations 253
MoviesService Object Model 254
Putting It All Together 265

17. REST Primer . 267
REST Basics 267

Resources and Verbs 267
Hardware Is Part of the Application 269

Mapping REST to SOA 270
Mapping to CRUD 270
Different Clients, One Interface 272
HTTP+POX 274
Defining a Service Contract 274
REST Clients in Ruby 276
The Way the Web Was Meant to Be Used 277

18. A RESTful Web Service . 279
Scoping the Problem 279

Tools 281
MoviesWebService 284

Resources Server Implementation 285
Actions Server Implementation 288
A Client Implementation 289

19. Caching End to End . 295
Data Layer Caching, Revisited 296

The Snapshot 296
The Refresh Function 297
Invalidation Triggers 297
Indexing 298

Logical Model Caching 298
Considerations 305
Avoiding Rebuilding with Stale Data 308
Cache Indexes 312

Other Caching 313
Query Plan Caching 313
Database Query Caching 314
Rails Query Caching 315
Fragment, Action, and Page Caching 316

Index . 319

Table of Contents | ix

Download at Boykma.Com

Download at Boykma.Com

Preface

It would be quite unusual for a person not trained as a surgeon to walk into a hospital
operating room, ask a nurse for a scalpel, and start cutting. However, anyone—even
those without computer science degrees—can walk into a bookstore, pick up a pro-
gramming book, and start programming that afternoon. To build a website, you once
needed to be adept in a number of languages and technologies: SQL, HTML, JavaScript,
and of course, the language du jour for the application itself. But with Ruby on Rails,
the bar seems to have dropped almost through the floor. You can learn only Rails, and
the development of the database, HTML, and JavaScript layers are waved away by the
Rails magic.

It’s an excellent sales pitch for Rails, but is it true?

As much as we might like it to be, the sad truth is that if your goal is to design high-
performance scalable websites, there is still much to be learned beyond the syntax of a
programming language. Nothing comes for free. Of course, this argument for the need
for thorough training in software engineering principles applies to all languages equally.
But does using Ruby on Rails rather than some other application language and frame-
work significantly reduce the topics you need to master to be a great application
developer?

Sadly, the answer is still no. Throughout the history of web development, the constants
have been SQL, HTML, and JavaScript. It’s the language du jour that keeps changing,
well, seemingly daily. Is it possible that a Johnny-come-lately like Ruby on Rails can
redefine the landscape so definitively that the rest of the stack becomes obsolete?

Rails is redefining the landscape of web development. Ruby is a wonderful program-
ming language, and the Rails framework does dramatically increase productivity. How-
ever, databases, legacy systems, and third parties who don’t share our love of Rails are
a fact of life. Even though Rails does, at times, seem downright magical, it does not
make the rest of the stack obsolete.

xi

Download at Boykma.Com

The Tale of Twitter
Java™, with its long (and constantly improving) track record, is now—along with its
Microsoft twin .NET—the de facto enterprise language. But there was a time when you
could brew a pot of coffee while the Java runtime environment (JRE) booted, and enjoy
each sip of your cup of joe while the hits flipped hither and thither.

So much research has gone into the JRE that it is now blazingly fast. Having shed its
perception as a slow language, a rewrite to Java is often the first recommendation new
management or venture capitalists might suggest when introduced to your project.
Imagine if Java had been perceived the way Ruby on Rails sometimes is today. It would
have been amazing if one poorly designed Java application had convinced all technol-
ogy decision-makers that Java itself was a bad platform for developing applications. In
fact, much of the emphasis on Java’s speed was likely a result of early failures that were
as much due to scaling or design problems as they were speed-related. Now, with Java’s
speed on par with or faster than that of C++, it’s the developer who becomes imme-
diately suspect when an application underperforms, rather than Java itself or the
framework being used.

Twitter has become the whipping boy for Rails’s perceived scalability problems. Twitter
is a new twist on the everyday blogging platform. Unlike a standard blog, posts to
Twitter, or “tweets,” are limited in length. They can be written online in a web browser,
but are more commonly written via SMS text message, or from a variety of third-party
applets. Subscribers, or “followers,” of your Twitter blog can read your tweets in the
traditional way online or via RSS, but more commonly subscribers receive your posts
in realtime via SMS messages to their phone. In essence, Twitter is a messaging service,
brokering many-to-many communication. Although individuals predominantly use it
to keep up-to-date with what their friends are up to, Twitter “streams” have also been
used to spread messages quickly to conference participants, or to share other types of
topic-based messaging with interested parties.

Like many companies before it, Twitter encountered problems when its success ex-
ceeded its expectations. A successful viral marketing company, its site’s user base
quickly jumped into the millions, but the site couldn’t handle them. The result was
slow page load times and, at times, outages.

This type of problem is one of scaling: you’re doing perfectly fine until the demand for
your site suddenly increases. Scaling issues suggest that you’ve achieved some level of
success (what a silver lining!), but it’s the type of problem you’d like to avoid, lest you
become the whipping boy, or worse, lose all of your users to a competitor.

But Ruby on Rails was not the culprit in Twitter’s scaling problems—a fact Twitter
engineers reiterated on many occasions. It was the architecture that was at fault, and
architecture has to do with how you structure data and applications and how they
communicate, not what language the applications are written in.

xii | Preface

Download at Boykma.Com

Because Twitter was the largest, most public Rails site around, its stumbles were
watched carefully, and the steps Twitter took to alleviate its scalability issues were
thoroughly documented online. In one instance, the database was becoming a bottle-
neck. In response, Twitter added a 16 GB caching layer using Memcache to allow them
to scale horizontally. Still, many queries involving complex joins were too slow. In
response, the Twitter team started storing denormalized versions of the data for faster
access. In a another instance, Twitter found its use of DRb, a mechanism for remote
method invocation (RMI), had created a fragile single point of failure. It replaced DRb
with Starling, a distributed messaging queue that gave it looser coupling of message
producers and consumers, and better fault tolerance. After these and other architectural
improvements, Blaine Cook, Twitter’s lead architect, said:

For us, it’s really about scaling horizontally—to that end, Rails and Ruby haven’t been
stumbling blocks, compared to any other language or framework. The performance
boosts associated with a “faster” language would give us a 10–20% improvement, but
thans to architectural changes that Ruby and Rails happily accommodated, Twitter is
10,000% faster than it was in January.

It is of no small significance that Twitter’s engineers chose to absolve Rails of being at
fault for their problems; instead of offloading the blame to an external factor, they chose
to take responsibility for their own design decisions. In fact, this was a wise choice.
Twitter’s engineers knew that reimplementing the same architecture in a different lan-
guage would have led to the same result of site outages and site sluggishness. But online
rumor mills were abuzz with hints that Twitter was planning to dump Ruby and Rails
as a platform. Twitter’s cofounder, Evan Williams, posted a tweet (shown in Fig-
ure P-1) to assure everyone that Twitter had “no plans to abandon RoR.”

Figure P-1. Twitter is sticking with Rails, but rethinking architecture

Preface | xiii

Download at Boykma.Com

Speed Versus Scalability
It is true that Ruby, as a language, does execute software programs more slowly than
some other programming languages. However, this is a red herring in the discussion of
scaling websites, as speed and scalability are not equivalent. If the stuff of websites was
real-time processing of complex data, then Ruby’s speed could be problematic. How-
ever, most websites don’t do much more per request than look up some information
and display it, or otherwise accept some information and store it. The time required to
process this type of task is fast no matter what language you choose.

On the other hand, once you start building up simultaneous requests, these requests
will compete with each other, and requests will begin to appear slow to end users. In
an ideal situation, you would simply add more hardware to restore your site to optimal
performance levels. In fact, in an architecture designed for scaling, you should be able
to add hardware in a linear fashion to handle any number of users imaginable.

This is where speed and scalability get confused. A language may be slow or fast, but
it’s your architecture that is scalable or not. This pertains not just to your code itself—
the algorithms and how you string together your syntax—but also on the edges of your
applications, how they fit together, and the expectations and demands placed on dif-
ferent parts of the system. Are any spots likely to become bottlenecks or single points
of failure? Can each piece improve its own scalability with the addition of hardware,
and if not, can that piece be removed from the critical path of rendering web pages? If
your architecture is not designed for scaling, you may not be able to simply add hard-
ware to scale up for additional users. And while a faster language may buy you some
more time, no language can avoid the scalability issues of a poorly designed architecture
forever.

Unfortunately, architectural problems are so fundamental to how an application is
written that it is nearly impossible to rescue a bad design once it has been implemented.
Band-aid solutions may work for a while, but scalability problems are usually wide-
spread and entrenched. It’s like plugging holes in a leaking dam; eventually the dam
will give beneath the pressure of the water, regardless of how many patches have been
applied. The only way to be confident your scaling efforts will work is to design for
scale from the beginning.

So why wouldn’t developers plan for scaling from the beginning? One reason is that
they don’t know how. Most books in the bookstore, intended for as wide an audience
as possible, frequently don’t get past syntax. In this book, design is a major and repeated
theme. Another reason is that they believe too much up-front design will slow them
down. This may be true, but it certainly becomes less and less so as you get the hang
of it. The final reason is that many leaders in the Rails community itself have advocated
not worrying about scaling until you really, really, really need to. They say it’s an un-
necessary waste of time up front and that Rails scales easily because it’s a share-nothing
architecture. This, of course, is baloney. In the early days, this was good propaganda
to get Rails onto developers’ desktops, but today it is simply hurting Rails’s image as

xiv | Preface

Download at Boykma.Com

an option for enterprise deployment. As Twitter proved, waiting until you really, really,
really need to worry about scaling is too late.

Of course, you don’t always have the choice of starting your project from scratch. You
may be reading this book when you’re well into a project and are looking for tips, or
perhaps even later in the game; you might be trying to save a poorly designed project
that’s already straining under the pressure of load. To help readers in these scenarios,
many chapters contain a section called “Refactor Steps,” intended to give you step-by-
step instructions on how to transition an existing design to the one described in the
chapter.

What to Expect in This Book
If you are new to Rails, the first book to read is Agile Web Development with Rails by
Dave Thomas et al. (Pragmatic Bookshelf). The book you have in your hands, by con-
trast, is not a how-to guide for writing your first Rails application. This should be the
second book you read.

This book deals in larger concepts, the formulas for how pieces fit together. It is not a
compendium of the Rails API or a reference of the Ruby programming language. Books
on these topics exist, and they are good to keep on your bookshelf, but they contain
descriptions of tools rather than a formula for putting those tools together to get your
job done.

This book gives you the tools to develop applications for the enterprise world for web-
sites with global scale. Scaling comes in two forms. The first is the scaling we tradi-
tionally think of in terms of handling thousands, hundreds of thousands, or even
millions of users, typified by Twitter and other large scale websites like Google, Ama-
zon, or ebay. The second type of scaling is a more practical, human-focused concern.
As your business needs change or expand, and as the types of developers in your or-
ganization and their quantities increase, will each developer still have the ability to
contribute to the product in a meaningful way? Can new features be added easily and
in parallel without conflict, or is the application difficult to modify by multiple devel-
opers at once? Will you be able to harness the hard work of the past in building the
future, or will each new bold direction require a rewrite of the entire application?

Scaling of both varieties is facilitated through careful design of your application’s soft-
ware architecture, rather than through the choice of language or platform. It’s a com-
mon misconception that scaling problems will be solved by the materialization of a
faster Ruby interpreter, or by learning a magical set of Ruby incantations that aren’t
described in the beginner books. Certainly, there are good and bad ways to describe
any algorithm, but these are problems solved by those with comprehensive computer
science training, not by the speed of the interpreter. Choosing a bad implementation
for an algorithm will have similarly poor results in Ruby as in Java or Perl or otherwise.

Preface | xv

Download at Boykma.Com

The purpose of the Ruby interpreter and the Rails framework is to give you a tableau
on which to develop your masterpiece. That’s where this book comes in. This book is
about the principles involved in architecting serious web applications. The principles
are universal, regardless of which technology you are using in the application tier. Of
course, as you may have guessed, Ruby and Ruby on Rails will be used to describe all
of these principles.

As it happens, Ruby is a terrific language, with many advanced features not found in
today’s compiled languages. Not only is Ruby feature-rich, but it is also succinct to the
point of marvel. What often takes dozens of lines of code in Java can often be written
in just a few lines in Ruby. Rails, too, is a best-of-breed platform for developing web
applications with little overhead. The commonly touted benchmark is that Ruby on
Rails development proceeds at a clip of 10 times the rate of Java development. Big names
like yellowpages.com (http://yellowpages.com) have invested a lot of time and effort
(and money) into rebuilding their entire sites on Ruby on Rails for the long-term ben-
efits they will reap down the road in having a simpler and more efficient (by metric of
code volume) framework.

However, there is a problem with this benchmark, and with the ethos of many in the
Rails community as it exists today. Because so much effort has been put toward showing
how simple it is to develop with Rails, and how much more productive you can be than
with Java or other alternatives, little effort has been put toward showing Rails devel-
opers how to build applications that can truly stand up to the challenges that their Java
cousins have had to prove themselves worthy against.

This doesn’t mean that a Rails application cannot stand up to the challenges imposed
by constant traffic and large scale. Of course Rails can. However, there has been a dearth
of public examples, and by the same token, there has not been much public discourse
within the Rails community about how to design Rails applications to scale to the same
levels that have been achieved by Java applications.

The secret is that the principles are the same. They were the same even before Java was
de facto. The difference is that in Rails, with Ruby, the principles are so much easier to
achieve once you know what you are doing. Because Ruby is so succinct, describing
how to achieve the goals of good software architecture for the web is almost invisible
when written in Ruby code.

Whether or not the revered “Gang of Four” Designs Patterns by Erich Gamma et al.
(Addison-Wesley) needed to be explicitly retooled and retold for a Ruby audience has
received its share of debate; achieving patterns is trivial in Ruby even though they re-
quired intricate structing of code in Java and C+. Indeed, the singleton pattern is ach-
ieved in Ruby by saying include Singleton. The factory pattern is so simply reproduced
it barely warrants a name.

Most of the effort of architecting in Ruby is not found in tens of thousands of lines of
application code. Instead, it’s in how you use Ruby and Rails to tie together all the other

xvi | Preface

Download at Boykma.Com

http://yellowpages.com
http://yellowpages.com

parts of your application stack: the database, your servers and clients, other services,
and users of your application.

In this book, we begin by putting Rails in the correct context. The purpose of the
original Rails book, Agile Web Development with Rails by Dave Thomas et al. (Prag-
matic Bookshelf), was to sell Rails to the world, so the viewpoint is somewhat myopic.
From its perspective, Rails may as well be the only element in the stack. The database
is obligatory, so magical migrations are created to hand wave it away and ensure you
never need to learn a scrap of DDL; anything else is pejoratively labeled as “legacy” and
ignored. In the real world, databases and legacy systems tend to outlive everything else,
hence the seemingly inescapable term “legacy” itself, so it’s worth paying them their
due.

Topics
This book introduces “architecture” for enterprise web applications, from the ground
up. What are the topics of web architecture, and why aren’t they found in most books
on Rails? In truth, the success or failure of a web application has only partially to do
with what is classically called the application layer. This may come as a surprise to
those who have cut their development teeth on Rails, because the Rails view is that the
application layer is all there is. It turns out that it’s the edges around the application
that can make the biggest difference: databases, caches, and in a service-oriented
architecture (SOA), the constellation of back-end services and front-end websites that
make up the entire application.

First, below your application is the database. A schema stays with you for a very long
time, so how you structure your data determines whether you can guarantee the in-
tegrity of your data, and whether your queries will be fast or slow. How those queries
are written makes a big difference too, meaning you need to understand SQL even if
you are using an object-relational-mapper like ActiveRecord. To write an application
that is fast, you need to know into which queries a set of ActiveRecord statements will
translate so that you can issue your queries in an intelligent way. “It works” usually is
not enough for an enterprise application; as a developer you need to know how it works,
how it should work, and why each way is as it is.

If you plan to avoid the hassles of optimizing a database schema and writing optimized
queries by caching query results or rendered pages, be prepared for difficult times ahead
if you want speed and consistency at the same time. It’s easy to make a cache that
returns old, stale, invalid data. Correctly implementing a cache that is up-to-date in
real-time is no simple task. What goes in the cache should be chosen carefully, as well
as in what format. And the most difficult challenge still remains: when and how to
invalidate or rebuild elements in the cache. Many people naively treat caching as a trivial
problem, but depending on a cache that is out of sync with reality can be far worse than
a slow site. Relying on stale data can lead you to make incorrect decisions, sell products

Preface | xvii

Download at Boykma.Com

you don’t have, double-book a flight, or not sell products you do have because the cache
doesn’t know about them.

Once you have mastered these areas, suddenly the problems are raised an order of
magnitude. It’s the rare website that is powered by a single monolithic application with
a single database. To scale, not only to handle ever more users, but also to handle
application and organizational complexity, SOA is almost always a necessary archi-
tectural evolution. In SOA, many applications are responsible for different slices of the
overall problem. How do you choose how to split up a monolithic application, and
further, how to glue the pieces back together to give a site’s visitors a unified experience?

In this book, we’ll cover these topics in detail. Of course, the application layer itself is
extremely important, so we’ll start there, with the proper way to think about and
structure your application. We’ll see how and when to separate code into logical ele-
ments, called modules. Then we’ll extract code into plugins to be shared by multiple
applications. In many books, these topics are treated as advanced topics; in this book,
they come first so you will actually have an opportunity to use them before you get
entrenched in a design.

After looking within, we’ll look downward to the database layer. We’ll see how to build
a solid foundation for our application with proper data modeling. First, we’ll learn
about referential integrity and database constraints, culminating in writing trigger-
based stored procedures to ensure complex relationships are satisfied. Then, we’ll dis-
cuss rigorous levels of database normalization, including third normal form and domain
key/normal form, which will help us ensure our data’s integrity.

We’ll introduce the concept of domain tables, and how these special tables can be
incorporated naturally in Rails. We’ll see how to base Rails models on database views.
After that, we’ll get our first taste of caching by materializing a database view, increasing
database performance by orders of magnitude.

Next, we’ll look to the sides as we explore service-oriented architecture. An oft-
misunderstood concept, we’ll spend a good deal of time concentrating on theory. Then
we’ll build multiple RPC-based back-end services to be consumed by a thin front-end
client. We’ll build a REST web service, too, but we’ll see how to build any type of REST
service, not just the subset supported by ActiveResource.

Finally, we’ll revisit caching, treating it like the sleeping monster it really can be, giving
you the tools to ensure with certainty that the caches you create can be depended upon
to be accurate.

Throughout the book, a heavy emphasis will be placed on testing, both unit tests within
an application and integration tests when we connect multiple applications together.
In fact, we never create a single view or traditional controller, instead, we exercise the
model classes we write with our tests.

xviii | Preface

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

How This Book Is Organized
In Chapter 1, we start out by taking a tour of an ideal enterprise systems layout, high-
lighting all of the elements that aren’t Rails, as well as noting the various places where
Rails can fit in.

The rest of this book can be divided principally into three major sections. The first deals
with the Rails framework itself. The next few chapters examine Rails itself. While Rails
gives you a Model-View-Controller (MVC) framework to start your projects, there is
much to be desired in terms of structuring and maintaining large applications. Chapters
2 and 3 fill these gaps. First, Chapter 2 dives into plugins, and how they can be used
to improve application clarity, while also encouraging you to write reusable code.
Chapter 3 introduces modules: what they are, and how and when to use them.

The next major section of the book, Chapters 4 through 12, deals with the database.
The database layer has not really been given its due in the Rails community, and Chap-
ter 4 begins by providing an overview of why it is such a critical part of your application.
In Chapter 5, we start building a data model for the example application we’ll work
with throughout this book: a sales website for movie tickets.

Although the schema we’ll design would be sufficient for most Rails books, we’ll see
quickly that it was a naive design. In Chapter 6, we refactor the schema to be in third
normal form (3NF). In Chapter 7, we’ll pick out a special type of table called a domain
table, and we’ll incorporate these tables naturally into a Rails application. In Chap-
ter 8, we’ll expose some more problems with our schema, then tighten it one step further
by moving from third normal form to domain key normal form. In Chapter 9, we’ll get
even more advanced with our introduction of stored procedures and triggers. We’ll use
them to enforce relationships that built-in database constraints cannot handle, giving
you the power to completely lock down your database schema.

Chapters 10 through 12 introduce some new database-related features to Rails devel-
opers. In Chapter 10, you’ll see how to base an ActiveRecord model on a database view.
This is useful for automatic filtering, or for filtering on data that’s not easily available
at the application layer. In Chapter 11, we’ll show how to build support for multiple
table inheritance in Rails. Rails supports single table inheritance, but it is not always
the right tool for the job. In Chapter 12, we’ll get our first taste of caching when we
materialize the view we created in Chapter 10, giving our view a huge boost in
performance.

Chapters 13 through 18 deal with service-oriented architectures and different techni-
ques for connecting systems together. In Chapter 13, we start by defining SOA, as well
as going over the scenarios when it is the right choice to solve a problem. Chapter 14
covers considerations that go into designing a service-oriented architecture, including
guidelines for designing an API. In Chapter 15, we build our first SOA service. In
Chapter 16, we build upon our accomplishments in Chapter 15, connecting two back-
end services together and testing them with the same interface a thin front-end client
would use. Chapter 17 is a critical exploration of REST, helpful for placing it in its

Preface | xix

Download at Boykma.Com

proper context for web services, but not necessarily for service-oriented architectures.
In Chapter 18, we build a RESTful web-service.

Chapter 19 is a culmination of many of the previous chapters. There, we implement a
fully correct service-layer cache to enhance application performance. We also go over
other places where caching can be a dependable way to improve performance.

Who Is This Book For?
The purpose of this book is to provide the background you need to build your bridge:
a large-scale, enterprise website. It is assumed that you’ve already read the manuals of
the tools you need to get the job done, e.g., books on the syntax of Ruby and of Rails.
This book fills in the background that transforms you from a layman who has tools
into an expert ready to make the most of those tools.

This book is geared toward three general types, which we’ll call the Student, the Glass
Ceiling, and the Travelers.

For the Student, this book is full of the theory behind engineering large-scale enterprise
web applications, so if you are embarking upon a class on software engineering for the
Web, this book is for you. This may even be your textbook, and if so, Mazel Tov! You
will learn a lot here.

Our Glass Ceiling audience are those who have read half a dozen manuals about their
tools and toolkits, but still find they don’t have the background to jump to the next
level of web application design. These are the so-called newbies. The tools are beginning
to make sense, but how to use them together effectively may still seem murky. If you
are in this group, this book is for you, too. Soon all the pieces will be dovetailing nicely.

The final group that may benefit from this book are the Travelers. Travelers may have
a lot of experience with other frameworks, but they are wondering how to make it all
go smoothly with Ruby on Rails. For this audience, this book is a great refresher in all
the basic theory behind solid web application design, followed by a hearty dose of how
to integrate all that theory into Rails.

Conventions Used in This Book
This book uses the following typographic conventions:

Constant width

Used for program listings. Also used within paragraphs to refer to program ele-
ments such as namespaces, classes, and method names.

Italic
Used for example URLs, names of directories and files, options, and occasionally
for emphasis.

xx | Preface

Download at Boykma.Com

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Enterprise Rails, by Dan Chak. Copyright
2009 Dan Chak, 978-0-596-51520-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Comments and Questions
We at O’Reilly have tested and verified the information in this book to the best of our
ability, but mistakes and oversights do occur. Please let us know about errors you may
find, as well as your suggestions for future editions, by writing to:

Preface | xxi

Download at Boykma.Com

http://safari.oreilly.com

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a website for this book where examples, errata, and any plans for future edi-
tions are listed. You can access this site at:

http://www.oreilly.com/catalog/9780596515201/

The author has also set up his own site for the book at:

http://enterpriserails.chak.org/

For more information about this book and others, see the O’Reilly website:

http://www.oreilly.com

Acknowledgments
Thank you to the members of my team at CourseAdvisor who put these ideas into
practice in our projects, large and small. You proved that Rails really does scale, both
for traffic and for teamwork. In order of appearance: Courtney Wade, Alistair Israel,
Aries Andrada, Kristof Redei, Nikki Ramirez, Reid Lynch, Sergey Rozum, Arthur
Pyrogovski. Vladimir Bober, and Dimitry Lukyanenko. Thanks also to Derek
Yimoyines for being an early reader of this material and for providing valuable feedback.

Also thank you to my technical reviewers (in alphabetical order) whose critical insights
were most valuable: Hal Abelson, Ben Adida, Jeff Davis, Matt Debergalis, and Brad
Ediger.

xxii | Preface

Download at Boykma.Com

http://www.oreilly.com/catalog/9780596515201/
http://enterpriserails.chak.org/
http://www.oreilly.com

CHAPTER 1

The Big Picture

What Is Enterprise?
You may have heard that big Internet sites like Amazon, eBay, or Google have
thousands—sometimes tens of thousands, or more—of servers powering their web-
sites. If you’re reading this book, you’ve probably already built at least one web appli-
cation of your own, and it probably had only a handful of machines behind it, perhaps
even just one application server and one database. In fact, maybe you had shared host-
ing and only had a fraction of a full server at your disposal.

If you had a great idea for an online business and were given 1,000 servers, what would
you do with them? How would you make the most of them? What operational goals
would you define for reliability and speed, and how would you leverage all of that
hardware to achieve those goals?

Before diving into the pieces of an enterprise system, or discussing how to build one,
a good starting point is to simply define enterprise.

Unfortunately, that is not an easy task. There is no particular set of tools that, if used,
will make your architecture qualify as enterprise, even if the word “enterprise” is in the
product names of the tools you use. The big companies mentioned earlier have built
many of their own tools to support their software stack, but they are definitely still
“enterprise.” Similarly, there is no single configuration of pieces that together spell
enterprise. If you looked at the configuration of Google’s servers and compared their
it to Amazon’s, the two would look quite different. But they are both enterprises none-
theless—it just happens that the two enterprises have different goals, and therefore
need different architectures to reach those goals.

In some sense, a site is enterprise when it feels like it is. All of the Internet behemoths
once started out with a single application server and single database, just like you. It’s
anyone’s best guess when they crossed the blurry line into “enterprise.”

That said, there are certainly some criteria that, when satisfied, do make a site feel like
it’s enterprise. These criteria are topics of this book, and will be referred to again and
again:

1

Download at Boykma.Com

• It’s fast. You can define a service level agreement (SLA) for how long it takes each
component to do its job, which in turn allows you to define an SLA for end-to-end
load times of any given web page.

• It’s always available. You can define an SLA for your minimum uptimes for all
critical components and aim for “four nines”—99.99% uptime.

• It scales linearly. You can scale to hundreds of thousands or even millions of users
by adding additional hardware.

• It’s fault-tolerant. If noncritical components go down, the majority of functionality
stays intact, and your users don’t know the difference.

There are other criteria that make your site feel like it’s enterprise, too, although they
are mainly operational concerns, and aren’t covered in depth this book:

• All source code is in a source control repository.

• All new code goes through a QA cycle before it is deployed.

• There is a deployment procedure, and failed deployments can be rolled back.

• Errors are logged in a central location, and the appropriate personnel are notified
in real-time.

• Logfiles and databases are backed up in a central location.

• Statistics about the website’s operation can be collected and analyzed to determine
which areas need attention.

Implicit in the preceding list is a number of job functions and departments other than
software development. Reading between the lines, you find:

• A database administrator (DBA) who sets up failover databases and ensures back-
ups are available. A DBA can also tune database configuration parameters and
control the physical mapping of data to disks to improve performance. Many also
consult on schema design to ensure optimal performance and data integrity.

• A quality assurance engineer (QA) who tests release candidates before they are put
into production and tracks issues to be fixed by developers.

• An operations or release engineer who manages the releases, creates deployment
plans, and rolls out your new software in the wee hours of the night.

• An information technology engineer (IT) who maintains internal machines that
house backups, logfiles, etc.

Having these people in your organization will push your systems architecture toward
“enterprise.” Similarly, designing your system to be enterprise creates the need for all
of these individuals. In some sense, when your company itself feels like an enterprise,
your software is probably getting to be enterprise, too. When the two are out of step,
you will know it because either half of the engineers will have nothing to do or everyone
will be stepping on each other’s toes.

2 | Chapter 1: The Big Picture

Download at Boykma.Com

Growing Slowly
Every website begins its life with a single developer and a single line of code. Fig-
ure 1-1 shows a simple configuration of a Rails application connected to a database.
You will likely spend quite a bit of time developing your application on this setup before
it’s ready for its first user.

When it’s time to launch, there some issues that ought to be considered. Figure 1-2
shows the same configuration, but with redundancy at the application level, and fail-
over at the database level.

There are two copies of the application so that in the event one machine fails, there is
still another that can handle incoming traffic. Similarly, in the event of a hardware
failure on the database machine, a copy that is a transaction or two behind can be
brought online quickly.

Even if you are barely using any of the resources on either the application or database
machine, redundancy and failover are a very good idea. At this point, neither of these
considerations is aimed at managing load—that comes later. Rather, both are intended
to ensure the availability of your web application. Reprovisioning a machine, config-
uring it, and loading all your software and data from backups can cause quite a bit of
downtime. During that time, your customers will can find your competitors’ sites, and
they are likely to form negative opinions about your site’s reliability as well.

With this configuration, and perhaps even a good deployment strategy, there is plenty
of work within the application and data layers that can be done before you need to add
any additional complexity to your system in the form of encapsulated services or asyn-
chronous processes. Depending on the feature set of your web application, this may
even be as far as you need to go. You are already satisfying a number of the criteria that
define the elusive concept of “enterprise.”

There is, within an enterprise, the need to scale horizontally as well. Only so many
engineers can work in one codebase before no one can work at all. Even if there is only
one chef in the kitchen, there is still only so much space for the sous-chefs.

Rails
application

Database

Figure 1-1. A basic website configuration

Growing Slowly | 3

Download at Boykma.Com

A common way to deal with this human scaling problem is to break up a large appli-
cation into smaller pieces, or services, each responsible for a specific function within
the enterprise. It’s no surprise that the software splits often follow organization boun-
daries so that individual teams can take on full ownership of their pieces of the overall
system.

Each service has its own full stack that mirrors the stack of the traditional website from
Figure 1-2. The difference is that a service is responsible for a small fraction of the duties
that make up the entire website, usually one specific, specialized group of related func-
tionality. It’s possible—and sometimes preferable—to abstract all database access be-
hind services. The front-end website then becomes a consumer of these services and
has no need for a database of its own, as shown in Figure 1-3.

When you add services into the mix, it’s hard to argue your system is not enterprise.

There are a number of other components commonly found in an enterprise setup.
Figure 1-4 shows a generic enterprise configuration. Powering the front-end website
are a number of services. There are also a collection of asynchronous processes that
receive information from services via a messaging queue. In addition to the front-end
website, there is a web services layer aimed at providing external clients with a subset
of the functionality available inside the firewall. There is also redundancy and failover
in all critical places. Finally, each service database feeds a data warehouse, which pow-
ers site reporting and decision support.

Warm
standby

Rails
application

Database

Load
balancer

Figure 1-2. A basic website configuration with failover and redundancy

4 | Chapter 1: The Big Picture

Download at Boykma.Com

Note, of course, that simply replicating this configuration is not enough. Each piece of
the system is an independent, isolated, and encapsulated system in its own right and
deserves thorough and thoughtful design. What goes where and how to implement
each individual unit is as much an art as it is a science.

Understanding All the Pieces
This section gives a brief introduction to each piece of the enterprise system.

Persistence Layer
The persistence layer is where you store your business’s data. As the name implies, data
here sticks around for a long time; it persists until you explicitly change or remove it.
Most frequently, the persistence layer is a Relational Database Management System
(RDBMS).

Warm
standby

Database

Warm
standby

Database

Service Service

Front-end

Load
balancer

Load
balancer

Load
balancer

Figure 1-3. A front-end website backed by services, which in turn are backed by relational databases

Understanding All the Pieces | 5

Download at Boykma.Com

Because protecting your data is critical, the persistence layer should provide certain
guarantees, collectively referred to as ACID: atomicity, consistency, isolation, and du-
rability. Each of these properties plays a different role in maintaining the integrity of
your data:

Atomicity
The ability to group a number of operations together into a single transaction:
either they all succeed, or they all fail. The RDBMS should ensure that a failure
midway through the transaction does not leave the data in an intermediary, invalid
state. For example, a bank account transfer requires debiting funds from one ac-
count and crediting funds in another. If one of the operations fails, the other should
be rolled back as well; otherwise, one account may be debited without making the
corresponding credit in the other account.

Consider the following instructions:

account1.debit(50)
power failure happens here
account2.credit(50)

If the database fails between the two statements, where we have a comment to the
same effect, the user of the ATM system will likely see an error on-screen and expect
no transaction took place. When the database comes back up, though, the bank

Warm
backup

Database
A

Firewall

Decision
supportReports

Front-end
website

Service
A

Warm
backup

Database
B

Warm
backup

Data warehouse

Database
…

Warm
backup

Database
N

Service
B

Service
…

Service
N

Shared
cache

Process 3

Process 2

Process 1

Web
services

Load balancer

Queue or
Enterprise
Service Bus

Figure 1-4. A generic enterprise architecture with redundancy and failover

6 | Chapter 1: The Big Picture

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

customer would be short $50 in account one, and be none the richer in account
two. Atomicity provides the ability to group statements together into single, atomic
units. In Rails, this is accomplished by invoking the method transaction on a model
class. The transaction method accepts a block to be executed as a single, atomic
unit:

Account.transaction do
 account1.debit(50)
 # power failure happens here
 account2.credit(50)
end

Now, if the power goes out where the comment suggests, the database will ignore
the first statement when it boots back up. For all intents and purposes, the first
statement in the transaction never occurred.

Consistency
The guarantee that constraints you define for your data are satisfied before and
after each transaction. Different RDBMS systems may have different allowances
for inconsistency within a transaction. For example, a complex set of bank transfers
may, if executed in the wrong order, allow an account to drop to a balance below
zero. However, if by the end of all the transfers, all balances are positive, the con-
sistency check that all balances are positive has been guaranteed.

Isolation
The guarantee that while a transaction is in process, no other transaction can access
its intermediary—and possibly inconsistent—data. For example, a bank deposit
requires checking an account’s existing balance, adding the deposit amount to this
balance, and then updating the account record with the new balance. If you are
transferring $100 from one account to another, with one statement to debit $100
from the first account, and another statement to add $100 to the second account,
isolation prevents your total balance from ever appearing to be $100 less between
the two statements. Figure 1-5 illustrates this. Without the transaction in thread
1, the output time 3 would have been 0 + 100.

Durability
The guarantee that once your database accepts data and declares your transaction
successful, the data you inserted or modified will persist in the database until you
explicitly remove or modify it again. Similarly, data you deleted will be gone for-
ever. There is no code example to demonstrate durability. It is a property of how
the RDBMS interacts with the operating system and hardware. Short of a disk
failure that actually destroys data, if the database returns control to you after a
statement, you can assume the effects of the statement are permanently stored on
disk, and a reset of the database or some other activity that clears system memory
will not affect this assumption.

Understanding All the Pieces | 7

Download at Boykma.Com

Note that many databases do allow you to relax the durability restriction to increase
speed at the expense of reliability, but doing so is not generally recommended,
unless your data is not very important to you.

thread 1 thread 2

tim
e

2

3

4
 acct2.credit(100)
end

transaction.do

 acct1.debit(100)

1

acct1.bal = acct2.bal = 100
acct1.save && acct2.save
puts "#{acct1.bal} + #{acct2.bal}"
=> 100 + 100

acct1.reload && account2.reload
puts "#{acct1.bal} + #{acct2.bal}"
=> 100 + 100

acct1.reload && account2.reload
puts "#{acct1.bal} + #{acct2.bal}"
=> 0 + 200

5

Figure 1-5. Transactions isolate multiple queries into a single atomic unit

Of course, having a database that is ACID-compliant is not enough to guarantee your
data’s integrity. Armed with this set of guarantees, it is now up to you, the database
designer, to properly set up the database schema to do so. In Chapters 4 through 9, we
will build up a complex schema, and then provably guarantee our data’s integrity.

Application Layer
The application layer represents everything that operates between the data layer and
the outside world. This layer is responsible for interpreting user requests, acting on
them, and returning results, usually in the form of web pages. When you start your first
Rails project by invoking rails {projectname}, what you have created is the application
layer.

Depending on what your application is, the application layer can have different rela-
tionships with the data layer. If, for example, the purpose of your website is to provide
Flash games for visitors to play, the application layer—and most developer effort—will
focus on the games users play. However, the application layer may also facilitate user
login, as well as storage and retrieval of high scores in the database.

More commonly, though, websites present information to users and allow them to act
upon it in some way; for example, online news sites that display articles or movie ticket

8 | Chapter 1: The Big Picture

Download at Boykma.Com

vendor sites that provide movie synopses and show times in theatres nationwide. In
these cases, the application layer is the interface into the data stored in database.

In its simplest form, a single Rails application comprises the whole of the application
layer. When a user requests a web page, an instance of the full application handles the
request. The entry point into the code base is determined by the requested URL, which
translates into a controller class and action method pair. Code executes, usually re-
trieving data from the database, culminating in the rendering of a web page. At this
point, the handling of the request is complete. This is the simplest of architectures (it
was shown in Figure 1-1).

A front-end and services

The configuration above can take you quite far, but it can only take you so far.

As your company grows, the complexity of your business needs may become too large
to be managed well within a single application. The complexity can come either in the
user interface, or in the back-end logic that powers it.

If you operate a blog site that is wildly successful, you may want a variety of different
user interfaces and feature sets based on the target audience. For example, the young-
adult site may have a feature set geared toward building discussion within a social
network, while the adult-targeted site might be devoid of the social aspect altogether,
and instead include spell-checking and other tools to make the content appear more
polished. Or you might even spin off a completely different application that uses the
same underlying content structure, but with a completely different business model. For
example, a website for submitting writing assignments, where students are able to read
and comment on other students’ work, could easily share the same underlying data
structures as the blog sites. Figure 1-6 illustrates.

The first front-end may be the teen-targeted site, the second the adult-targeted site, and
the third the homework-submission site. All three contain only the user-interface and
the workflow logic. They communicate over the network with a single content man-
agement service, which is responsible for storing and retrieving the actual content from
the database and providing the correct content to each site.

The opposite type of complexity is perhaps even more common. As your website grows
in leaps and bounds, with each new feature requiring as much code as the originally
launched website in its entirety, it often becomes beneficial to split up the application
into smaller, more manageable pieces. Each major piece of functionality and the cor-
responding portions of the data layer are carved out into its own service, which pub-
lishes a specific API for its specialized feature set. The front-end, then, consumes these
service APIs, and weaves a user interface around them. Based on the level of complexity
and the need to manage it, services can even consume the APIs of other services as well.

In this configuration, shown in Figure 1-7, the front-end is a very manageable amount
of code, unconcerned with the complex implementations of the services it consumes

Understanding All the Pieces | 9

Download at Boykma.Com

behind the scenes. Each service is also a manageable piece of code as well, unconcerned
with the inner workings of other services or even the front-end itself.

Web-services layer

Services, as in service-oriented architecture, and web services are distinct, but oft-
confused concepts. The former variety live within your firewall (described later in this
chapter) and are the building blocks of your larger application. The latter, web services,
straddle the firewall and provide third parties access to your services. One way to think
of this distinction is that the services have been placed “on the public Web.” Func-
tionally, a service and a web service may be equivalent. Or, the web service may impose
usage restrictions, require authentication or encryption, and so on. Figure 1-8 shows a
web service backed by the same two services as the front-end HTML-based web ap-
plication. Users equipped with a web browser visit the front-end HTML site, while
third-party developers can integrate their own applications with the web service.

This was the briefest introduction to SOA and web services possible. In Chapter 13,
we’ll look much more closely at what a service is, as well as how one fits into a service-
oriented architecture. We’ll also examine a variety of circumstances to see when moving
to SOA makes sense—organizationally or technically. In Chapter 14, we’ll go over best
practices for creating your own services and service APIs, and in Chapters 15 and 16,
we’ll build a service-oriented application using XML-RPC. Chapter 17 will provide an

Front-end

Service

Front-endFront-end

Data layer

Site visitor Site visitor Site visitor

Figure 1-6. An application layer split into a single service and many front-ends

10 | Chapter 1: The Big Picture

Download at Boykma.Com

introduction to building web services RESTfully. In Chapter 18, we’ll build a RESTful
web service.

Caching Layer
All of your data lives in databases in its most up-to-date, accurate form. However, there
are two shortcomings to retrieving a piece of data from the database every time you
need it.

First, it’s hard to scale databases linearly with traffic. What does this mean? Imagine
your database system and application can comfortably support 10 concurrent users’
requests, as in Figure 1-9.

Now imagine the number of requests doubles. If your application adheres to the share-
nothing principal encouraged in Dave Thomas’s Agile Web Development with Rails
(Pragmatic Bookshelf), you can easily add another application server and load balance
the traffic. However, you cannot simply add another database, because the database
itself is still a shared resource. In Figure 1-10, the database is no better off than it would
have been with 20 connections to the same application server. The database still must
deal with 20 requests per second.

The second shortcoming with requesting data from the database each time you need
it is due to the fact that the format of information in the database does not always
exactly match the format of data your application needs; sometimes a transformation

Data layer Data layer Data layer

Service

Front-end

ServiceService

Site visitor

Figure 1-7. An application layer split into a single a single front-end, and many back-end services

Understanding All the Pieces | 11

Download at Boykma.Com

or two is required to get data from a fully normalized format into objects your appli-
cation can work with directly.

This doesn’t mean there’s a problem with your database design. The format you chose
for the database might very well be the format you need to preserve your data’s integrity,
which is extremely important. Unfortunately, it may be costly to transform the data
from the format in the database to the format your application wants it in each time
you need it. This is where caching layers comes in.

There are many different types of, and uses for, caches. Some, such as disk caches and
query plan caches, require little or no effort on your part before you can take advantage
of them. Others you need to implement yourself. These fall into two categories: pre-
built and real-time.

For data that changes infrequently or is published on a schedule, a pre-built cache is
simple to create and can reduce database load dramatically. Every night, or on whatever
schedule you define, all of the data to be cached is read from the database, transformed
into a format that is immediately consumable by your application, and written into a
scalable, redundant caching system. This can be a Memcache cluster or a Berkley
Database (BDB) file that is pushed directly onto the web servers for fastest access
(Figure 1-11).

Real-time caches fall into three main categories. The first and simplest real-time cache
is a physical model cache. In its simplest incarnation, this is simply an in-memory copy

Database Database

Service Service

Front-end Web service

Client
application

Browser client

Firewall

Figure 1-8. A web service backed by service applications

12 | Chapter 1: The Big Picture

Download at Boykma.Com

of the results of select queries, which are cleared whenever the data is updated or de-
leted. When you need a piece of data, you check the cache first before making a database
request. If the data isn’t in the cache, you get it from the database, and then store the
value in the cache for next time. There is a Rails plugin for simple model caching called
cached_model, but often you will have to implement caching logic yourself to get the
most out of it.

RDBMS

Rails app

x10

10 connections

10 requests

Figure 1-9. An application capable of supporting 10 user requests

RDBMS

Rails app

x10

10 connections

20 requests

Rails app

x10

10 connections

Figure 1-10. Double the requests

Understanding All the Pieces | 13

Download at Boykma.Com

The next type of real-time cache is a logical model cache. While you may get quite a bit
of mileage out of a physical model cache, if your application objects are complex, it
may still take quite a bit of processing to construct your objects from the smaller con-
stituent pieces, whether those smaller pieces are in a physical model cache or not.
Caching your logical models post-processed from physical models can give your
application a huge performance boost. However, knowing when to expire logical model
caches can become tricky, as they are often made up of large numbers of records orig-
inating from several different database tables. A real-time logical model cache is
essentially the same as a pre-built cache, but with the added complexity of expiry. For
maximum benefit, a physical model cache should sit underneath and feed the logical
model cache rebuilding process.

Note that both physical and logical model caches must be shared in some way between
all application servers. Because the data in the cache can be invalidated due to actions
on any individual application server, there either needs to be a single shared cache, or
otherwise the individual caches on each application server need to notify each other of
the expiry somehow. The most common way this is implemented in Rails is via
Memcache, with the configuration shown in Figure 1-12.

The final type of real-time cache is a local, user-level cache. In most load-balanced
setups, it’s possible to have “sticky sessions,” which guarantee that a visitor to your
site will have all of her requests handled by the same server. With this in mind and
some understanding of user behavior, you can preload information that’s likely to be
useful to the visitor’s next request and store it in a local in-memory cache on the web
server where it will be needed. This can be information about the user herself, such as

BDB

RDBMS

Rails app

x10

10 connections

10 read
requests

BDB

10 read
requests

Rails app

x10

10 connections

Figure 1-11. BDB file caching system

14 | Chapter 1: The Big Picture

Download at Boykma.Com

her name and any required authentication information. If the last request was a search,
it could be the next few pages of search results. Figure 1-13 shows a user-level cache,
local to each application server, backed by Memcache.

Depending on the nature of your application, as well as where your bottlenecks are,
you may find you need one type of cache, or you may find you need all of them.

RDBMS

Rails app Rails app
Memcache cloud

Figure 1-12. Memcache configuration

RDBMS

Rails app Rails app

Memcache Memcache

Figure 1-13. User-level cache configuration

Understanding All the Pieces | 15

Download at Boykma.Com

Messaging System
A messaging system, such as an Enterprise Service Bus (ESB), allows independent pieces
of your system to operate asynchronously. An event may occur on your front-end web-
site, or perhaps even in the service layer, requiring actions to be taken that do not affect
the results to be presented to the user during his current request. For example, placing
an order on a website requires storing a record of the transaction in the database and
processing credit card validation while the user is still online. But it also may require
additional actions, such as emailing a confirmation note or queuing up the order in the
fulfillment center’s systems. These additional actions take time, so rather than making
the user wait for the processing in each system to complete, your application can send
a single message into the ESB: “User X purchased Y for $Z.” Any external process that
needs this information can listen for the message and operate accordingly when it sees
a message it’s interested in.

Using a messaging system like this, which allows many subscribers to listen for any
given message, enables you to add additional layers of processing to data without hav-
ing to update your main application. This cuts down on the amount of systems that
need to be retested when you add additional functionality. It also cuts down on the
number of issues the application responsible for user flow needs to be aware of. That
application can concentrate on its specific function—user flow—and other parts of
your application can take over and manage other tasks asynchronously.

Web Server
The web server has a relatively simple role in the context of a Rails application. The
purpose of the server is simply to accept connections from clients and pass them along
to the application.

The one subtle point to keep in mind is that users visiting your site are not the only
clients of your application who will interact with the web server. When you break up
your application into separate services with separate front-ends, each piece is a full Rails
application stack, including the web server.

Firewall
The firewall is the barrier of trust. More than protecting against malicious hacking
attempts, the firewall should be an integral part of large systems design. Within the
firewall, you can simplify application logic by assuming access comes from a trusted
source. Except for the most sensitive applications (e.g., controlled government systems
that must protect access to secret information), you can eliminate authentication be-
tween different pieces of your application.

16 | Chapter 1: The Big Picture

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

On the other hand, any piece of the system that accepts requests from outside of the
firewall (your application layer, front-end, or web services) may need to authenticate
the client to ensure that client has the correct level of access to make the request.

Understanding All the Pieces | 17

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 2

Organizing with Plugins

In most Rails books, this chapter comes last. It takes a lot of complicated examples to
show why you need to organize your code at all. Examples at the beginning of books
are simple enough that organizational strategies aren’t necessary. By the end of a book,
if you get that far, it’s often too late for this sort of wisdom to be practical. Most readers,
myself included, are actively programming while reading a new book for useful tips
and insights and want to get to the meat of things right from the start. Unfortunately,
the result of this pattern is that many Rails projects end up poorly organized. By the
time you get to the chapter on code organization, you may already have a functioning
application with millions of users (I hope this is your problem).

In this book, I’m going to break with tradition and present some high-level principles
of code organization before we even write any code. Because of this “backward” pre-
sentation, some of what follows may seem unnecessary, burdensome, or even pur-
poseless. Rest assured, the ideas that follow have none of these properties. They come
from three years of incremental development of a 100% pure Rails website that, as of
this writing, receives approximately two million unique visitors per month.

From this experience, I can tell you honestly that at some point, the amount of code
you have will begin to strangle you. You may have started with a dozen classes, but a
couple years down the road you have hundreds. You start with a simple request-
response architecture, but before you know it, you’re running a dozen asynchronous
processes to manage that website alongside regular user requests; you’re sending
emails, resizing images, or talking to third-party services.

For any new application that I might start today, I would follow these guidelines un-
compromisingly. When followed from the start, organizational principles add no bur-
den. It’s trying to organize a live site’s code jumble where the heavy burden lies. In fact,
working in a well-organized project is like strolling down a manicured path in an en-
chanted forest. The opposite is true of a poorly organized code base; it’s like running
through a jungle. You never know what might pop out at you—oh look, you just tripped
over a rock and a tiger ate you!

19

Download at Boykma.Com

Complex organizational refactorings can be exceedingly difficult late in the game. It’s
easiest if you start down the right path from the beginning, but of course, it’s hindsight,
not foresight, that’s 20/20. At this stage, your applications may not be complex enough
that lack of organization is a critical issue. If that’s the case, feel free to skim this chapter
and then come back to it as you read on. All of the examples in the book will adhere
to the principles laid forth here, so at least a cursory understanding is definitely in your
best interest.

Benefits
Plugins sound like something you get from third parties, or optional add-on features.
While there are a great many plugins available from third parties that you can add to
your application, writing your own plugins is central to your development process. It’s
true that writing and releasing plugins to the public at large will make you famous and
powerful (well, maybe not), but getting in the habit of writing plugins has many benefits
even if you have no plans to distribute them. The following is a short list of the benefits:

• Plugins provide a convenient mechanism to separate architectural enhancements
from business logic. Intertwining these two can be a quick route to bugs.

• Plugins can be tested independently from the rest of your application, giving you
greater confidence in the overall robustness of your code.

• It’s trivial to test plugins against new versions of Rails. Similarly, limiting applica-
tion code to business logic makes applications themselves easier to upgrade when
new Rails versions are released.

• Plugins can be easily shared between multiple applications. In a service-oriented
architecture, where different apps serve different business purposes, code sharing
is a big win.

• If your first business plan fails and you need to scrap your application code, you
can take your plugins with you to your next big idea.

• Releasing plugins may make you famous and powerful.

There are two common themes here, and one overriding principle. The first theme is
the separation of business logic from code aimed at architectural enhancement. This
has great implications for code quality, maintainability, and testing. Think of your
application as layers. There’s the Ruby language itself. On top of that is the Rails
framework. Instead of dumping a behemoth, unorganized “code layer” on top of the
framework, you can gain a lot by splitting that layer in two: architecture enhancements
(plugins) and business logic.

The second theme relates to isolating functionality into manageable chunks. Doing so
lets you test, upgrade, or deploy bits of code without needing to think about all the
other pieces. That can save you a lot of time and hassle when you need to further extend

20 | Chapter 2: Organizing with Plugins

Download at Boykma.Com

or reengineer some crucial chunk of architecture. It’s also a lifesaver when that big
upgrade day comes.

The overriding principle here is organization. The more organized you are from day
one, the better your results will be. There are a number of ways to organize code in
Rails. Using plugins is just one strategy, but it is an extremely powerful one. Fig-
ure 2-1 illustrates.

Writing Your Own Plugins
To create a plugin, type this from your application’s root directory:

./script/generate plugin {plugin-name}

The code generator creates a directory under vendor/plugins with the name you speci-
fied in the command. You should see the output shown in Example 2-1. The minimum
set of files you need to modify is shown in bold.

Example 2-1. Output from generating stub files

ChakBookPro:example chak$./script/generate plugin my_plugin
 create vendor/plugins/my_plugin/lib
 create vendor/plugins/my_plugin/tasks
 create vendor/plugins/my_plugin/test
 create vendor/plugins/my_plugin/README
 create vendor/plugins/my_plugin/MIT-LICENSE
 create vendor/plugins/my_plugin/Rakefile
 create vendor/plugins/my_plugin/init.rb
 create vendor/plugins/my_plugin/install.rb
 create vendor/plugins/my_plugin/uninstall.rb
 create vendor/plugins/my_plugin/lib/my_plugin.rb
 create vendor/plugins/my_plugin/tasks/my_plugin_tasks.rake
 create vendor/plugins/my_plugin/test/my_plugin_test.rb

Application code

Rails

Ruby

Rails

Business logic

Architectural
enhancements

Business logic

plug-
in

plug-
in

plug-
in

plug-
in

plug-
in

plug-
in

plug-
in

plug-
in

Ruby

Rails

Ruby

Figure 2-1. Make your applications manageable by separating application code into business logic
and separate plugins for each architectural enhancement

Writing Your Own Plugins | 21

Download at Boykma.Com

The most important files for 99% of the plugins you will write are in bold.
Unfortunately, the two most important files, init.rb and the plugin code itself, in lib/
my_plugin.rb (substitute your own plugin’s name here), are empty. There is no guid-
ance whatsoever on which to base plugins, the most important part of your architectural
strategy.

In init.rb, the code generator gave us the following:

Include hook code here

In lib/my_plugin.rb, the start we get is similarly useless:

MyPlugin

In fact, all of the files generated are essentially empty. But don’t worry; writing plugins
is easy. The next section gives you some templates to make writing them a snap.

Core Enhancements
Core enhancements are modifications you make to the layers below you, either Ruby
classes or parts of the Rails framework. Ruby has great flexibility in that classes are not
static once they are defined. You can reopen them at any point and stuff in more func-
tionality or modify functionality that already exists.

Keep in mind that power comes with a price: modifying the core can be dangerous. It’s
not a good idea to change behavior of core classes to do unexpected things. Bad mod-
ifications to the core can come back to bite you, and bite you hard. With that in mind,
here’s how you do it.

Initialization template

When your Rails application starts up, the init.rb file of every plugin is loaded. It’s single
purpose is to load the rest of your plugin. Therefore, all you really need is one line that
will load the actual plugin code:

require 'my_plugin.rb'

Of course, you should replace my_plugin.rb with the filename that was generated for
you.

Core plugin template

What do you put in the my_plugin.rb file? Since this is a core enhancement, the
assumption is that we are going to reopen a class and make changes there. Therefore,
you need to know what you’re opening. If we were enhancing the Hash class, our file
would look like this:

class Hash
 # our enhancements go here
end

22 | Chapter 2: Organizing with Plugins

Download at Boykma.Com

It’s that simple. It’s almost too simple, so let’s look at a concrete example.

Suppose we wanted to modify the Hash class so that it could be manipulated with more
object-like syntax. The normal way to access a hash is like so:

>> h = Hash.new
=> {}
>> h['foo'] = 'bar'
=> "bar"
>> h['foo']
=> "bar"
>> h['baz!']
=> nil

Imagine instead we wanted the following syntax to work, too:

>> h = Hash.new
=> {}
>> h.foo = 'bar'
=> "bar"
>> h.foo
=> "bar"
>> h.baz!
=> nil

In effect, we want the values stored within the hash to be accessible just as an object’s
properties are accessed, with dot notation. We could do this by defining the method_miss
ing method within the Hash class. When you call a method that is undefined on an
object, method_missing is called with two parameters. The first is a symbol for the
method you attempted to call. The second is an array of parameters that you tried to
pass.

Our plugin file, my_plugin.rb (actually, we’re going to call the plugin hash_extension,
which would result in a main plugin file called hash_extension.rb), would look like
Example 2-2.

Example 2-2. A core enhancement plugin that lets you access hashes like objects: lib/hash_extension.rb

class Hash
 def method_missing(method, *params)
 method_string = method.to_s
 if method_string.last == "="
 self[method_string[0..-2]] = params.first
 else
 self[method_string]
 end
 end
end

First, we convert the symbol to a string. Then we check to see if the last character of
the string is an equals sign. Are we trying to do an assignment? If so, we invoke the
normal hash assignment syntax using the string, minus the trailing =, as the key.
Otherwise, we return whatever value is in the hash keyed on the method name we used.

Writing Your Own Plugins | 23

Download at Boykma.Com

Testing

The stub test file will be created under your plugin directory in test/my_plugin_test.rb
and will contain the code shown in Example 2-3.

Example 2-3. Auto-generated test stub for a plugin: test/my_plugin_test.rb

require 'test/unit'

class MyPluginTest < Test::Unit::TestCase
 # Replace this with your real tests.
 def test_this_plugin
 flunk
 end
end

As the comment says, you replace the dummy test with your own tests. A test file for
our hash extension plugin is shown in Example 2-4.

Example 2-4. Unit test for the hash_extension plugin: test/hash_extension.rb

require 'test/unit'
require File.expand_path(
 File.join(File.dirname(__FILE__), '../../../../config/environment')
)

class HashExtensionTest < Test::Unit::TestCase
 def setup
 @h = Hash.new
 end

 def test_missing_value
 assert_nil @h.baz!
 end

 def test_assignment
 @h.foo = 'bar'
 assert_equal @h.foo, 'bar'
 end
end

Note the second through fourth lines in this example. We instruct the test code to load
the environment.rb file, which was missing from the generated test code. This line boots
up the Rails environment for us, and loads our plugin (and any plugins on which it
might depend). This change allows us to run our test directly from the command line
with the following command:

ruby vendor/plugins/hash_extension/test/hash_extension_test.rb

24 | Chapter 2: Organizing with Plugins

Download at Boykma.Com

The output should look like this:

Loaded suite vendor/plugins/hash_extension/test/hash_extension_test
Started
..
Finished in 0.000609 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

You can also run your tests with the built in rake command:

rake test:plugins

The problem with this command is that it runs tests for all of your plugins, which may
not be what you want.

Using a core plugin

Using a core plugin is easy. You actually don’t have to do anything at all within your
application for the code to take effect. The init.rb file is automatically loaded when the
application starts, and the core functionality modification is applied straightaway. The
plugin just being there is all that’s necessary.

Why Extend Hash?
A criticism often leveraged against Ruby on Rails is that it’s slow. It’s true that the Ruby
language is slower at some things than other languages used in web development con-
texts. That just means that you as a developer need to be aware of where Ruby and
Rails can eat up valuable processor cycles. Then you can avoid those hot-spots by
choosing less processor-hungry alternatives to some of the great Rails sugar when it
doesn’t provide justifiable benefits.

Once cause of slowness I’ve found is in converting the results of a SQL query into
ActiveRecord objects. A row from an SQL query result set is just a set of key-value pairs;
in other words, a hash. ActiveRecord objects are great in that they come bundled up
with methods that let you traverse object relationships, and they also contain methods
you’ve written into the classes to facilitate custom behavior. But along with all the sugar
that ActiveRecord provides comes a heavy overhead of creating the object itself.

Very often, especially when you’re selecting records to display a web page, all you need
are the key-value pairs. A hash would suffice, and it turns out getting your results out
of the database as hashes is much faster—more than 50% faster than requesting
ActiveRecord objects.

Whereas a regular query that retrieves ActiveRecord objects looks like this:

MyObject.find(:all)

a query that returns hashes looks like this:

MyObject.connection.select_all("select * from my_objects")

True, you resort to SQL here, but in slow pages where you need to eke out that last bit
of render-time performance, the trade-off can be worth it. In a test of retrieving 40

Writing Your Own Plugins | 25

Download at Boykma.Com

thousand objects on a MacBook Pro 2.33 Ghz Intel Core 2 Duo, the ActiveRecord
approach took seven seconds of Ruby time, while the hash method took three.

The other caveat worth noting when replacing ActiveRecord queries with hash queries
is that objects and hashes are accessed differently. You access objects with dot notation:
my_object.foo versus my_object['foo']. But that’s exactly the problem taken care of by
our core hash extension! Using this extension, you can cherry-pick slow ActiveRecord
queries that aren’t using all the “extras” given to you by the ActiveRecord object itself,
and swap out the query to boost performance.

Custom Extensions
Whereas core extensions are intended to modify classes that already exist, custom ex-
tensions allow you to modify the behavior of classes that have yet to be written. It’s
best to think of this type of extension in two separate ways, based on levels of com-
plexity and on how you intend to use it.

The first level is essentially nothing more than making a plugin out of a mixin. A mixin
is a module containing methods that gets “mixed in” to a class with the include key-
word. All of the methods in the module become available to the class. These might be
utility functions or an interface to a remote system.

The second level builds on the first. The plugin still contains a mixin module, but this
mixin defines declarative class methods that further modify a class’s behavior when
they are called. An example of this sort of plugin is the well-known acts_as_list, which
gives an ActiveRecord class list-like properties. When the acts_as_list plugin is added
to your Rails application, it is mixed in to ActiveRecord, giving your classes the ability
to call the method acts_as_list. Upon doing so, that calling class is bestowed with a
number of add-ons and modifications that give it its list-like behavior.

We’ll cover the more complicated case here. We’ll create a mixin that defines a declar-
ative method acts_as_animal, which when applied to a class, creates a noise method
within the class. When we call it, it will print out the appropriate noise. The plugin will
also define a generic animal method that acts identically for any class that acts_as_ani
mal: that is, to poop. The first step is to run:

./script/generate plugin acts_as_animal

Initialization template

The initialization template follows the same pattern as our core extension plugin:

require 'acts_as_animal'

Extension plugin template

The template for our mixin is shown in Example 2-5.

26 | Chapter 2: Organizing with Plugins

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

Example 2-5. Template for an “acts_as” style plugin, which extends the behavior of an existing class
module MyModule
 module ClassMethods
 # class methods and instance method generators go here
 def acts_as_my_module(params)
 class_eval do <<-DELIM
 def some_method
 # remember, string substitution
 # is OK here. e.g., #{params[:foo]}
 end
 DELIM
 end
 end

 module InstanceMethods
 # generic instance methods go here
 end

 def self.included(base)
 base.extend ClassMethods
 base.class_eval do
 include InstanceMethods
 end
 end
end

There are three main sections. The first section defines class methods we want to add
to classes that are extended by this module. These can be generic class methods, or
declarative-style generator methods that are defined based on some parameters passed
in.

Well-known generator methods are the acts_as variety, which add additional instance
methods to the class. The preceding is a boilerplate for defining these sorts of methods.
The trick is to invoke class_eval inside a class method. Inside this class_eval block,
you can define dynamic methods that are based on the parameters passed to the
acts_as method. Inside the method, we pass a string to class_eval so that we can
perform string substitution.

Note that in order to avoid having to escape string delimiters, we use a special, multi-
line string syntax. Text between <<-DELIM ... DELIM is treated as a plain old string. In
this case, our string is Ruby code intended to be evaluated by class_eval.

The second section defines the module InstanceMethods. There we place any generic
instance methods that we want to add to a class that decides to act like our module.

You don’t need to modify the last section at all. Its purpose is to include the other two
sections—one for class methods and one for instance methods—in the correct way.
The method self.included(base) is hook code that runs when the module is actually
included by another class.

Writing Your Own Plugins | 27

Download at Boykma.Com

The first thing we do is extend that class with the class methods we defined. Then,
using class_eval, we include the instance methods module as if we had written that
statement within the class itself.

The extension plugin template expanded for our animal example is shown in Exam-
ple 2-6.

Example 2-6. An acts_as_animal extension plugin based on the template in Example 2-5

module Animal

 def self.included(base)
 base.extend ClassMethods
 base.class_eval do
 include InstanceMethods
 end
 end

 module ClassMethods
 def acts_as_animal(params)
 class_eval <<-STUFF
 def noise
 '#{params[:noise]}!'
 end
 STUFF
 end
 end

 module InstanceMethods
 def generic_animal_thing
 'poop'
 end
 end
end

First, in the InstanceMethods module, we define a method generic_animal_thing, which
when called, should return 'poop'.

Then, in the class level code, we define the method acts_as_animal, which is at the
heart of our plugin. This method invokes class_eval again, to create a custom method
in the class from which it is invoked.

Using a custom extension

Unlike core extensions, which are automatically loaded, to use a custom extension,
you must first include it somewhere using the include keyword. Depending on what
you are trying to extend, you might do this in a model class, a controller, or even
environment.rb. The syntax is simple:

include Animal

The class methods defined will be available in the class that had scope where you placed
this line. The instance methods will be available in all instances of that class.

28 | Chapter 2: Organizing with Plugins

Download at Boykma.Com

Of course, you can also combine the two types of plugins covered here, core and cus-
tom, to add custom generator extensions to core functionality like ActiveRecord. This
is how acts_as_list and other well known ActiveRecord behavior modifications work.
To do so, just reopen the class and issue the include statement.

Testing

To test a custom extension module independently of application code, you must do
two things. First, include the module again. Second, define a class in your test that will
actually do the “acting as.” In Example 2-7, we define a Pig class and create an instance
variable of that type in the setup method. We then test that the pig can make a noise
and do the generic animal thing, that is, poop.

Example 2-7. Unit tests for the acts_as_animal custom extension plugin

require 'test/unit'
require File.expand_path(
 File.join(File.dirname(__FILE__), '../../../../config/environment')
)

include Animal

class Pig
 acts_as_animal :noise => 'oink'
end

class ActsAsAnimalTest < Test::Unit::TestCase
 def setup
 @p = Pig.new
 end

 def test_makes_proper_noise
 assert_equal @p.noise, 'oink!'
 end

 def test_generic_animal_thing
 assert_equal @p.generic_animal_thing, 'poop'
 end
end

We run the tests with:

ruby vendor/plugins/acts_as_animal/test/acts_as_animal_test.rb

And they both pass:

Loaded suite vendor/plugins/acts_as_animal/test/acts_as_animal_test
Started
..
Finished in 0.000307 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

Writing Your Own Plugins | 29

Download at Boykma.Com

Deployment
Creating the plugin is the first step toward componentization of code and achieving
the goals set forth at the beginning of this chapter. However, if you don’t have a way
to share plugins between applications, and you resort to copying the plugin directory
from one project to the next, you aren’t getting the full benefit of a shared library.

There are many methods to share plugins across applications. One is to package the
plugin as a gem, and install it on the systems where you want to use the plugin. If you’re
using subversion, another good method requiring very little setup is to use subversion’s
“externals” property. This technique is covered below.

svn:externals
If you are using subversion to manage your source code, you can put your plugins in
some standard location in your repository and then create an svn:externals reference
in your application’s vendor/plugins directory that references the plugins’ location.

For example, suppose we checked our hash_extension plugin directory into subversion
under the path plugins/acts_as_hash.

In any application that we want to have access to the plugin, we modify the svn:exter
nals property of the vendor/plugins directory. We do this like so:

cd vendor/plugins
svn propedit svn:externals .

This will bring up the editor defined in your EDITOR environment variable. The contents
of the editor session will contain any externals properties already set; in this case,
probably none. The format is:

directoryname [-rev] svnpath

So for our hash_extension plugin, it might look like this:

hash_extension svn://rubyforge.org/var/svn/hash_extension/trunk

After saving and quitting, the following two commands will check out the files and set
up the link in the repository:

svn update
svn commit

30 | Chapter 2: Organizing with Plugins

Download at Boykma.Com

CHAPTER 3

Organizing with Modules

Like most projects, the first Rails website I worked on started with just a handful of
tables and a handful of classes. In those early days, we couldn’t imagine the features or
reports we would need in our third year, which is where we are at the time of this
writing. We only knew what we knew about the business at the current moment.

When you just have a handful of tables to deal with, there doesn’t seem to be much
reason to impose an organizational strategy. At that time, Rails was at version 0.13,
and there weren’t many big Rails sites around whose teams could offer their expert
advice on Day One organization either. Such advice can often only be dispensed in
hindsight, and back then—and even frequently today—most new Rails users were new
to Ruby as well.

So we plodded along, developing our site, and along with it our own 20/20 hindsight.
Today, our hindsight is really good, but the organization of our original core application
is not so good. As of this writing, the models directory of that core application contains
188 classes.

Such a pile of classes is overwhelming for new employees and even some veterans. It
can be quite a challenge to remember where everything is, or what effects a change in
one class might have on the other 187 classes. The advice from the original developer
of a “big Rails site,” in hindsight, is to organize into modules from Day One.

Even in the initial development of our application, at around class number 40, we
sensed something wasn’t right and that some kind of namespacing and organization
was necessary. But even with 40 classes, the instinct to move forward as opposed to
laterally was strong, and it seemed that there wasn’t ever time to refactor. If 40 classes
represents inertia, then 188 is simply far too late to start organizing. An early investment
of time to set up some organization will pay big dividends when your site has grown
an order of magnitude or two in complexity.

31

Download at Boykma.Com

Files and Directories
When you first create your Rails application, a number of directories are created.
Example 3-1 highlights the four we are concerned with in this chapter, namely the
controllers, helpers, and models directories under the app directory.

All but the simplest projects will eventually need to be broken up into modules to
minimize the number of classes a developer needs to be concerned with at any given
time, but the skeleton created by the rails command doesn’t set us up to start working
within modules from Day One.

Example 3-1. Abbreviated output from the rails command to create a new project

bash-3.2$ rails example_app
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 ...

Luckily, even without knowing a single thing about our application, we can start or-
ganizing our model, controller, and helper files into three categories that will pave the
way for a well-organized application down the road: physical, logical and service, and
utility. Not every one of the top-level directories will need each of these subdirectories,
and you may find some will need others as well, but these three are a good start. Below
we’ll see what each directory is for and where it belongs.

The first category, physical, corresponds to the models, controllers, and helpers and
views normally associated with a Rails application. These are the models that descend
from ActiveRecord::Base and correspond directly to physical database tables.

The next category, the pair of logical and service, comes into play when your application
is large or complex enough that it is ready to evolve to an SOA. At this point, you will
define an API for clients that should remain relatively fixed. To prevent your service
API from changing every time you tweak your database design, an abstraction layer
that’s not tied directly to database tables is necessary. Under the models directory, add
a directory logical, where the logical or domain model classes will go. Under control
lers, create a directory called service, which we’ll use later in this book when we break
our application into a service-oriented architecture. Although you won’t have anything
to put in these directories right now, create them anyway. The mere presence of this
hierarchy will remind you that something does go here, and that it’s of a different sort
than what we put in the physical directories.

The third category is for utility scripts intended to be run with script/runner. These are
background processes that send out emails or do various other tasks. Usually they run
on a schedule or are run by hand. These classes don’t have helpers, and the controller
is cron or you, the operator.

32 | Chapter 3: Organizing with Modules

Download at Boykma.Com

You may find that your application has additional categories. You will also no doubt
find the need, within each category, to further subdivide in order to maintain your own
sanity. The main point to understand is that if you don’t lay out a framework for man-
aging different types of classes from the start, you will end up with a mess that is hard
to tame late in the game.

Therefore, it’s strongly recommended that right at the beginning you expand the initial
set of directories created for you under app. Even if you don’t use all of the directories
right away, having them serves as a reminder that files should be organized up front.
In the early days of your application, you will fill only the directories related to your
physical models, but having them preorganized into their own directories makes it
much easier to add other types of classes later.

A proposed generic directory hierarchy that can be used as a starting point is shown in
Example 3-2. Additions from the basic set are in bold. You can pick whatever names
you like for these. The rest of this chapter is devoted to organization within a given top-
level module. The focus will primarily be on the physical models, since that’s the first
part of the application to be written. We’ll also see how interactions from one module
to another are possible. To do so, we’ll present a standard way to write a utility model
that interacts with physical models.

Example 3-2. Directory structure organized from Day One

app/controllers
app/controllers/physical
app/controllers/service
app/helpers
app/helpers/physical
app/models
app/models/physical
app/models/logical
app/views/layouts
app/views/physical

Module Boundaries for Namespacing
Namespaces are a feature of many computer programming languages, and they have
great benefits for large projects, especially those with multiple programmers working
simultaneously. At the simplest level, a namespace is a way to group related classes
together, and at the same time separate those classes from other, unrelated classes.

A project that uses namespaces has three big wins over a project that doesn’t:

• One developer can work on a feature within the confines of one namespace, while
another developer works on a different feature within the confines of its own
namespace. They don’t risk stepping on each other’s toes.

• If it makes sense for the overall project, two classes can have the same name, as
long as they are in different namespaces. For example, a Clothing::Boot can exist

Module Boundaries for Namespacing | 33

Download at Boykma.Com

alongside an Automobile::Boot (as in the trunk of the car) without any problem.
The namespace provides the context, and there are no naming collisions.

• Namespaces can provide an abstraction barrier between large, disparate sets of
code. If documentation is published describing what’s “public” in the namespace,
everything else within it can be changed safely as long as classes in other name-
spaces restrict themselves to using the published API.

Namespaces do for classes what classes do for data and methods.

In Ruby, namespaces are implemented with modules. Around every class in the mod-
ule, or around a set of classes, you specify the start and end of the module:

module MyModule
 class Foo
 end
end

There can now be another class called Foo in another module:

module YourModule
 class Foo
 end
end

From within each module, to access the Foo class, just say Foo. From another module,
you prefix the class name with the module name: ::MyModule::Foo.

ActiveRecord Associations Between Modules
As shown earlier, to place a class within a module, you simply open and close the
module around the class. Within a module, you define relationships between Active-
Record classes no differently than you would when there are no modules at all.

However, because modules provide namespacing and scoping, when crossing a module
boundary, you need to tell ActiveRecord where to look for the class being referenced.
In this book, we will build a movie ticket application that contains information about
movies and also ticket sales. Ticket sales depend on the movies that exist, but not vice
versa. Thus, let’s take a very simple set of classes (they won’t be the final classes we
arrive at later) to illustrate how you define an order in one module to depend on a movie
in another. Example 3-3 shows these two classes and the additional ActiveRecord code
needed to make it work in bold.

34 | Chapter 3: Organizing with Modules

Download at Boykma.Com

Example 3-3. ActiveRecord relationships between modules

models/physical/movies/movie.rb
module Physical
 module Movies
 class Movie < ActiveRecord::Base
 end
 end
end

models/physical/orders/order.rb
module Physical
 module Orders
 class Order < ActiveRecord::Base
 belongs_to :movie,
 :class_name => '::Physical::Movies::Movie'
 end
 end
end

Certainly, it would be more elegant if ActiveRecord’s association methods could take
a separate :module parameter so that the class name itself need not be repeated if it
could be inferred from the name of the association itself, but at the present time
ActiveRecord does not have this support. In a sense, only three years into the explosion
of the Rails phenomenon, we are blazing the trail toward enterprise with each new day.
Expect more features needed for large enterprise systems to emerge as more and more
Rails sites grow to need them.

Reciprocal Relationships
In the previous example, our Orders class knows about Movies, but not vice versa.

Most Rails tutorials encourage you to create cross-dependencies where none exist. In-
deed, if you examine Figure 3-1, you will see the table structure for the Movies and
Orders classes.

ActiveRecord tutorials often encourage you to create the following classes to represent
these tables:

class Movie
 has_many :orders
end

id

name

Movie
id

movie_id

price

Order

Figure 3-1. Two tables with a foreign key reference; is the relationship reciprocal?

Module Boundaries for Namespacing | 35

Download at Boykma.Com

class Order
 has_one :movie
end

Suddenly, between two classes in the application layer, we have a cross-dependency
that did not exist between the tables in the data layer. Defining the interrelationship
provides convenient methods you may wish to use later, such as movie.orders and
order.movie, but if you don’t expect that you will ever need to access the relationship
in both directions—in this case, movie.orders seems like a reporting rather than op-
erational concept—it’s better to leave out the reciprocal relationship definition. When
a developer tries to access the relationship in reverse, he’ll get an error, indicating the
method does not exist, and that moment will provide an opportunity to examine the
design. Either the access was inappropriate and the developer’s goals could be achieved
in another way, or the reverse relationship should be created.

None of this is to say that the vast majority of relationships between classes are or
should be one-way relationships. In fact, the majority in your application probably will
be reciprocal. There will be many more classes than there are modules. The art of design
is to recognize the clusters of one-way relationships that do exist, because doing so
opens up great possibilities down the road, both in terms of decreasing developer co-
ordination overhead, as well as making the application more flexible and open to being
split into separate services where and when appropriate.

Modules Presage Services
These ideas about reciprocal relationships may seem like making a bug fuss about
something rather inconsequential. So why bother? In fact, being careful about class
dependencies can help you identify borders for modules. And modules can provide
guidance for an application split that comes along with a move to a service-oriented
architecture.

For example, imagine if we added a third class, Popcorn, to represent our foray into
selling snacks at the movie theatre. If we were defining reciprocal relationships de ri-
gueur, without much thought to actual needs, we would have a reciprocal relationship
between movies and orders, and another reciprocal relationship between popcorn and
orders.

If we could recognize early on that movies and popcorn are completely unrelated, we
could put them in separate modules from the start. This also necessitates that the
Orders class be in its own separate module as well; certainly it doesn’t belong in one of
the Movies or Popcorn modules.

Figure 3-2 shows our three classes with interdependencies in Frame 1. With the names
of the classes present, it’s easy to gloss over the relationships because you know what
the inherent relationships really are. Frame 2 shows the relationships again, but without
class names. Would you imagine mapping Movies, Popcorn, and Orders onto this

36 | Chapter 3: Organizing with Modules

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

diagram? Frame 3 shows the classes, with only the relationship we want. An order can
be for a movie or for popcorn.

Figure 3-2 then goes on to show the progression we might see in our software over time.
The number of classes around each topic area increases. This is shown in Frame 4,
where we’ve placed a module boundary around each set of classes. For example, the
Movies module might also contain ratings, theatres, and showtimes. The Orders module
might contain classes for credit cards and billing addresses. And the Snacks module
could contain candy, soda, etc. From the start, you want to ensure that the defined
relationships allow you to easily put boundaries around each set. Eventually, these
boundaries can become physical ones—in a service-oriented architecture—rather than
simply suggestions implied by module namespacing. Frame 5 shows the potential set
of services and their interconnections. In effect, we’re back full-circle to Frame 3. Ab-
stractions allow us to keep complex relationships and processes simple to deal with.

Remember that good fences make good neighbors, and so too does modularization
make for good software.

Movie Order Popcorn

Movie Order Popcorn

Movies

Movie

Orders

Order

Food

Popcorn

Movie Service Order Service Food Service

1

2

3

4

5

Figure 3-2. Adding reciprocal relationships that do not really exist

Module Boundaries for Namespacing | 37

Download at Boykma.Com

Ensuring Proper Load Order
Rails does a pretty good job of locating and loading classes when they are first accessed.
As a convention over configuration issue, this means that everything will work fine
unless you are pushing the envelope of convention too far.

There are two scenarios when the auto-loader can become confused. In the simplest
case, it just doesn’t know in which directory to find your files, and, in that case, you
may see an error like the following one:

NameError: uninitialized constant Physical::Movie

For this type of error, you simply need to add the new path to the auto-loader’s list of
directories it searches. In environment.rb, in the Rails::Initializer.run section, add
or modify the following statement to add your new load paths:

config.load_paths += %W(
 #{RAILS_ROOT}/app/models/logical
 #{RAILS_ROOT}/app/controllers/service
)

In the this example, the directories for logical models and service controllers were
added.

The next type of auto-loader problem occurs when you define parts of your class in one
file, and other parts of the class in another file. In Ruby, it’s perfectly acceptable to
reopen classes. You may have some basic class definition that should always be loaded,
and then additional functionality that is loaded only under certain circumstances. Or,
as we’ll see in Chapter 15, you may need to split up your code for some other reason.
When we break our app up into services, we’ll break our logical model classes up into
two components: one shared and one not. Once one piece of code is loaded, the auto-
loader will refuse to load the other part. The errors you see when the auto-loader has
not loaded all parts of your class will be specific to your classes; the class itself will be
defined, but some method or piece of data inside the class will not be.

To deal with this type of issue, you actually need to explicitly load your class files,
disregarding the auto-loader altogether. For us, this will come up for our
models/logical directory. In general, to force loading of an entire directory, the code
snippet in Example 3-4 can be placed in application.rb.

Example 3-4. Code to load an entire directory of files

Dir["#{RAILS_ROOT}/app/models/logical/*.rb"].each { |file|
 require_dependency "logical/#{file[file.rindex('/') + 1...-3]}"
}

Here, the directory logical was used, but it can be replaced with any directory for which
you want to force loading. The code snippet works in the following way:

38 | Chapter 3: Organizing with Modules

Download at Boykma.Com

1. The directory listing of files ending in .rb is placed in an array to be iterated over.

2. For each item in the array, we construct the appropriate name to pass to the
require_dependency method.

3. We construct the name by taking all characters after the last “/” character and up
to the .rb. rindex('/') returns the index of the last slash, and ...-3 means “up to
the third to last character.” Put together, these become a range, which returns a
substring of the filename. For example, app/models/logical/foo.rb becomes foo.

4. The filename is appended back onto the part of the path that is below one of the
load paths, as defined earlier.

5. We then pass this to require_dependency, which loads a class from its expected
location even if the class is already defined.

Exercises
1. Examine the classes in your problem space. Draw a dependency graph and find

clusters of classes that can be broken up into modules.

2. For each module, determine the dependency type: cascading, independent, or
container/contained.

Refactor Steps
Refactoring to modules can be a big process. If you haven’t had modules in mind while
developing your application, your list of classes may be messy. Two “big refactors” are
detailed here. Step one is simply to get your physical classes (those derived from Active
Record::Base) into a single module. Step two is to detangle “utility” functions intended
to be run with script/runner into their own classes, which belong in the Utility module.

High-Level Module Refactor
1. Create the directories physical, logical, and utility under the models directory.

2. Move all of your classes that descend from ActiveRecord::Base (likely all of them)
into the models/physical directory.

3. Wrap each class with the following:

module Physical
 # original code
end

4. Create the directories physical and service under the controllers directory.

5. Move all of your classes that descend from ActionController::Base (likely all of
them) into the controllers/physical directory.

6. For each class, repeat step 3.

Refactor Steps | 39

Download at Boykma.Com

7. Adjust all routes in routes.rb to take the module name into account:

map.connect 'foo/:action/:id', :controller => 'physical/foo'

8. Make analogous changes in your test directory for unit and functional tests.
Remember to repeat step 3 for each set of files.

Detangling Utility Methods
Utility methods are those that you never intend to be run while executing a user request.
They are run exclusively via script/runner, either from the command line or through a
crontab process. Often these methods will be mixed into your ActiveRecord models as
class methods, but they don’t belong there. Many beginning Rails programmers are
surprised that you can create classes that don’t descend from ActiveRecord::Base or
ActionController::Base. You certainly can. Follow these steps to deconvolve utility
methods from other classes:

1. Locate all of your script/runner processes. A good place to start looking is in your
crontab settings.

2. For each method found, create a new file under the models/utility directory named
after the process, e.g., emailer.rb.

3. Structure the file based on the following template:

module Physical
 module Utility
 class Emailer
 def self.run(params)
 # original code goes here
 end
 end
 end
end

4. Anywhere that the original code referenced the original class with self, replace it
with the original class’s name. In this case, it would likely be Email.

5. Wherever you run these scripts, alter the way the process is invoked. So:

./script/runner "Email.send_emails"

becomes:

./script/runner "Physical::Utility::Emailer.run"

40 | Chapter 3: Organizing with Modules

Download at Boykma.Com

CHAPTER 4

Database As a Fortress

If you ask a bunch of CEOs what their company’s greatest asset is, most will tell you
it’s their people. That certainly sounds nice. It may even be true for companies that
don’t deal with data. However, if a CEO who works for a company based around a
website says people are her greatest asset, she is definitely lying. Great people got the
company where it is today, but now that it’s a success, the most important asset is the
data that has accumulated. If Edwards, your super-star coder, gets hit by a bus, it will
take you six to eight weeks to train Henderson or Stevens or Erikson to replace him.
However, if you have a data meltdown—one that creeps in slowly, undetected at first,
until all your precious data is turned to garbage—be prepared to start over from scratch.
Not even your backups can help, because they’re all corrupt, too.

The most important asset of a web-based company is its data. The most obvious type
of data to protect is operational data. If you sell goods online, your site is useless if the
product descriptions don’t match the products. If you run a social networking site, who
will come back if the network links get lost, crossed, or lead to user pages that no longer
exist? What good is an online personal information management tool if your to-do list
items disappear before you get to check them off yourself?

Historical data corruption is another common and insidious problem. Imagine if you
could no longer report on how many units of a particular widget you sold month over
month last year simply because you no longer sell that widget today. Was the item’s
database record deleted when the item was taken off the shelf, and now the historical
data referencing it points to an empty record? Or what if data you think is important
actually isn’t? In your hosted blogs site, are you reporting statistics of total comments
added site-wide, but half of the comments are for entries that have long since been
deleted by the author? Operational data changes with the times, but historical data that
references yesterday’s operational data needs to be accessible and accurate today and
tomorrow, too.

Most web frameworkbooks teach you how to add data to your database, but they don’t
teach you how to protect it. This book picks up where those books left off. This chapter
is intended to help you frame the way you think about databases. Databases are a major
part of your entire architecture, not just a place to store application data. The next four

41

Download at Boykma.Com

chapters show you how to design a solid data model incrementally and how to tightly
integrate it with Rails.

Your Database Is an Application, Too
We tend to think of a web framework as the solution to all problems. Rails especially
tends to abstract other pieces of web architecture away so that Rails itself seems to be
the only piece of the puzzle. This is especially true of how Rails abstracts away the
database. Rails now ships with SQLite as the default database, so you barely have to
think about setting up a database at all. Next, the task of writing DDL has been buried
behind migrations. DML, the bread and butter of SQL queries, are abstracted away
behind ActiveRecord. Finally, the task of maintaining data integrity is left to
ActiveRecord validations.

The problem with abstracting to this degree is that it requires that you make a few
assumptions that are unlikely to be true.

“One Framework to Rule Them All”
There are many frameworks out there besides Rails. There’s PHP/Cake, Drupal,
Django, Struts, Perl/Mason, etc. The list goes on and on. If you’re lucky, you’re re-
writing your legacy PHP or Java application in Rails right now. If so, one problem you
now face while you’re busy implementing the latest JavaScript interface magic is re-
membering all of those special cases and boundary conditions that led to bugs in your
legacy PHP system. It took the previous engineers years to stamp out each pesky soft-
ware bug, and you have to replicate all of this intricate logic again while also rewriting
the interface from scratch so that the new site is 10 times snappier than the old one.
Maybe you are painstakingly meticulous and everything turns out all right. But what
happens in the next iteration when you switch to the yet newer, more whiz-bang
framework? Hopefully your next framework is the next version of Rails, but you get
the idea.

Software is constantly in flux, but the data you collect over the years is not. Wouldn’t
it be nice if you could ensure the integrity of your data without concern for the current
software stack sitting on top?

“No One in My Company Will Ever Write a Bug”
The plain and simple truth is that software has bugs. Your application code will change
much more frequently than your database schema. When you add new columns to a
database table, it’s very easy to forget to add all the appropriate ActiveRecord valida-
tions. It’s also easy to comment out well-intentioned validations but then forget to
uncomment them. Finally, there are lots of scenarios for which no ActiveRecord vali-
dations exist in the first place (referential integrity constraints being the prime

42 | Chapter 4: Database As a Fortress

Download at Boykma.Com

example), so relying solely on ActiveRecord validations to maintain your data’s integ-
rity is simply a recipe for disaster. On the other hand, built-in mechanisms of an RDBMS
can make protecting your data easy and worry-free. Accept that your application will
have bugs, and leave it up to the data layer to be the final gatekeeper of what is allowed
to enter database.

“This Rails Application Is the Only Application on Earth”
The next assumption is that the application you are writing is the only application that
will ever access the data you are storing. Forget about wholesale framework switches
here. As your application grows, you will add myriad scripts that run scheduled main-
tenance tasks to clean up or to summarize data. You will write quick-and-dirty tools
that live outside of your website’s main code base. You will even (probably more fre-
quently than you expect) access the database directly through a database client and
manipulate your data with raw SQL queries.

In all of these scenarios, you are likely to be bypassing your ActiveRecord validations.
Therefore, it’s necessary to rethink the main function of these validations. Since the
scope of the validations is only the application in which they reside, they cannot pos-
sibly be relied upon to protect your data from other rogue programs, or even from a
well-intentioned developer sitting in front of a SQL prompt. The validations do help
generate an interface that gives the user helpful feedback before rejecting bad input.
And that’s the key: validations do not safeguard data. They can be bypassed, turned
off, or easily deleted. Only at the data layer itself can this be accomplished.

Sit Atop the Shoulders of Giants
The field of database technology is large, mature, and there is ongoing academic re-
search on storing, searching, and making sense of data stored in a database. The com-
mercial Oracle database was first introduced in 1979. The first version of PostgreSQL,
the best choice at the time of this writing for an open source RDBMS, appeared in 1989.
An unparalleled amount of research and development has gone into these products,
and best-of-breed choices in this area have not changed every few years they way they
have for web scripting languages and frameworks.

If you treat the database simply as a place to dump your application’s data for later
retrieval, you are shortchanging yourself and your application. When used correctly,
not only will your database safeguard your data from the effects of errant code, but it
will also afford you aggregation, computation, and retrieval speed that you could never
hope to reproduce with even the cleanest or most elegant application code.

It behooves a web application developer to learn not only the ins and outs of the web
framework but also the RDBMS atop which that framework sits. Remember that your
database, which contains your company’s most precious asset—its data—is very likely
to outlive the application you write on top of it.

Sit Atop the Shoulders of Giants | 43

Download at Boykma.Com

Choosing the Right RDBMS
All examples in this book assume the use of PostgreSQL. For those using Oracle or
another database that adheres closely to the SQL standard, the concepts are identical,
although some of the syntax may vary slightly. Many features of the SQL standard are
not implemented in MySQL, so unfortunately a number of the advanced topics are not
possible to implement using MySQL as of version 5.0. For this reason, it’s not recom-
mended for a serious website, although MySQL is undeniably popular.

Why not MySQL? The Rails core team uses ySQL, and it is certainly more popular
within the Rails community than PostgreSQL. This brings up two important questions.
First, if MySQL isn’t as good as PostgreSQL, why is it so popular? And if PostgreSQL
isn’t as popular as MySQL, why is it used for the examples in this book?

MySQL gained popularity for two important reasons. First, although it is open source
and free, a company called MySQL AB got behind it to offer support to enterprise
customers. When the shift from closed to open source software began, having this type
of insurance was key to adoption of open source products. For whatever reason, in the
early days, PostgreSQL did not have the same level of corporate support offerings as
did MySQL—although today there is plenty of support from a variety of vendors.

The second reason for MySQL’s ascension is that it always had much simpler point-
and-click installers on Windows, whereas PostgreSQL remained, for a long time, the
domain of Unix and Linux users. In the PostgreSQL community this made sense, be-
cause databases are hosted on *NIX servers—why would you need point-and-click
Windows installers? It should be a lesson, then, that any barriers you erect to users
using your software will be to your detriment. Of course, many developers and decision
makers worked on Windows, and their inability to easily give PostgreSQL a test run
often pushed them to MySQL.

So MySQL won the popularity contest—why don’t we accept that in this book? It’s for
the same reason that *NIX is the de facto choice for servers, even as Windows dominates
the desktop market. PostgreSQL is simply better at doing the job of being an RDBMS.
In addition to implementing much more of the SQL standard, and more faithfully,
PostgreSQL also has a much better query planner than MySQL. In addition, MySQL
has a variety of strange vestiges from its early days, such as the number value zero being
treated as equal to the absence of a value, NULL. MySQL is also case-insensitive by
default. Idiosyncrasies like this seem small at the outset, but often come back later to
haunt you.

Working with PostgreSQL instills a feeling of safety that MySQL does not. If you
haven’t made the switch yet, it’s worth trying PostgreSQL out as you read this book.

A Note on Migrations
One of the strengths of the ActiveRecord Object Relational Mapping (ORM) library is
that it provides an abstraction layer between the application developer and the database

44 | Chapter 4: Database As a Fortress

Download at Boykma.Com

for the Data Manipulation Language (DML) components of SQL. With some excep-
tions, this abstraction provides a convenient interface to most inserts, updates, and
deletes that your application will need to perform, and you won’t have to worry about
syntax peculiarities specific to a particular database product. In many situations, the
abstraction is fully adequate, and for the exceptional cases, you can always execute
arbitrary SQL to get the job done.

For anyone who has written a database-backed website without an ORM, it’s probably
not the absence of SQL, which is a supremely straightforward language, that makes
ActiveRecord worthwhile. The real benefit of ActiveRecord is the automatic unmar-
shalling of results from SQL queries into Ruby objects, an otherwise tedious, manual
task that can be painstaking and error-prone. The code in Example 4-1 to load a user
record, which you would never write in a Ruby on Rails application, is an approxima-
tion of what life is like without an ORM.

Example 4-1. A dramatization of what accessing a database might look like without object-relational
mapping tools

db_result = ActiveRecord::Base.select_one("
 select first_name, last_name, birthdate, favorite_food
 from users
 where id = #{id}
")
user = User.new
user.id = id
user.first_name = db_result[:first_name]
user.last_name = db_result[:last_name]
user.birthdate = db_result[:birthdate]
user.favorite_food = db_result[:favorite_food]

With ActiveRecord, the same is accomplished with a single statement:

user = User.find(id)

Abstracting DML provides a fantastic reduction in the amount of rote code that must
be written (and rote code that seldom needs special cases, at that). However, one less
successful consequence of the desire to fully abstract the database layer has been an
attempt to abstract the Data Definition Language (DDL).

DDL statements are those that define tables and sequences, create indexes on tables,
and define stored procedures. While DML statements occur throughout an application
with every insert, update, or delete statement, DDL statements generally do not appear
within applications at all. DDL statements, because they define the structure of your
data layer, get executed only once, usually when your application isn’t even running.

Therefore, the attempt to abstract DDL through migrations has not been the boon that
abstracting DML has been. The first reason is the lack of benefit gained from using
migrations rather than writing straight DDL. Whereas abstracting DML provides a
huge savings in the amount of repetitive code that must be written to create objects, as
shown earlier, migrations don’t provide any such benefit.

Sit Atop the Shoulders of Giants | 45

Download at Boykma.Com

The second reason to be wary of migrations is that as of this writing, they support only
a small subset of the DDL language. Just as with DML, you can always mix in some
custom DDL with your Ruby migration code, but in this case, the consequence is that
you’ll be writing much more code altogether, and the result will be much less succinct
than if you had written it all with DDL statements.

Because migrations have had a number of shortcomings, they’re continuously chang-
ing. Rails 2.1 solves the problem caused by multiple developers trying to write migra-
tions at once; pre 2.1, migrations were named in a way that required lots of developer
communication. While it’s likely that migrations will continue to change, it’s not guar-
anteed they will ever be a good replacement for DDL, which, as it happens, was
designed specifically the purpose it serves: data definition.

Therefore, in this book, we forget about migrations and built and manipulate our sche-
mas using plain old SQL DDL statements. Every developer should understand SQL
DDL, and if your organization uses migrations, it shouldn’t be hard to learn the state-
of-the-art in migrations, and implement your DDL that way. The important thing is
understanding what is supposed to be happening beneath the scenes, so you can still
write DDL when you need to. Many operations that are easy with DDL are still—and
some will always be—impossible with migrations. If you rely on migrations and skip
the DDL that migrations don’t support, you’re shortchanging yourself.

Dispelling Myths
There is a camp of web developers who will tell you the topics in the following three
chapters, all of which deal with different types of referential integrity, are unnecessary
overhead. They will tell you that application level checks are sufficient to protect your
data, and that database-level constraints are sure to make your application slow. It
turns out that whenever I meet someone from this camp, it just so happens that they
are die-hard MySQL users. Not surprising, because until recently, MySQL did not
support referential integrity. MySQL, before version 5.0, was not a relational database
management system, but rather simply a database management system. What these
people are actually telling you is that RDBMSs are no better than DBMSs, and when
the idea is framed that way, it becomes clear that this camp simply doesn’t fully
understand why relational databases exist in the first place.

When MySQL came on the scene, it had wild success because it was well-packaged
and easy to install not only on Linux, but on Windows, too. MySQL and PHP swept
the Internet community because they were so easy to set up, and you could be up and
running and writing web pages in just a few hours.* As developers got used to their
tools, they got used to the deficiencies in those tools, too. So the lacking of a feature

* Replace “MySQL and PHP” in this sentence with “Rails.” In the Rails community, we must be careful not
to fall into the same trap of defining as good all of those things that are in Rails and defining as bad all of
those things that are not currently in Rails.

46 | Chapter 4: Database As a Fortress

Download at Boykma.Com

www.allitebooks.com

http://www.allitebooks.org

became a feature in and of itself. I have actually heard very highly paid consultants say,
“MySQL doesn’t support referential integrity because you don’t need it!”

Since enterprise-level applications do need referential integrity, as well as many other
features available in other more mature RDBMSs (e.g., views, transactions, triggers,
isolation, etc.), MySQL has added support for it in version 5.0. Therefore, the argument
that you don’t need it because MySQL doesn’t have it no longer holds water. MySQL
now has it because you need it.

Another myth worth dispelling is that referential integrity is just training wheels that
you should take off when your application is in production. This type of thinking could
not be more backward. Referential integrity constraints certainly do help you find your
application’s bugs, but it’s foolhardy to think you’ll find them all before you decide it’s
time to throw users at the system. This warning holds doubly true when you start
releasing updates once your application is already live. Testing every conceivable use-
case, including full regression testing for each release, is next to impossible. On the
other hand, your users—including Internet bots, both neutral and malicious—will
make your application run the gauntlet. They will find use cases you never imagined.
Production is not the place where you want to find referential integrity bugs. But worse,
production is also not the place where you want referential integrity bugs to go unno-
ticed. Your database constraints and referential integrity checks are the last line of
defense protecting your data before things go awry. If you want to keep your data intact,
you want your constraints to be as complete as they can be.

Operations and Reporting
When you launch your website, it will be the primary (probably the only) consumer of
your database. All of the queries your database handles will be related to making your
app go. If everything goes well, you’ll have lots of users and you’ll start collecting and
generating lots of data about those users and your website’s operation in general.

Around this time, the business development team will start asking you questions. How
many new users join your site each day? Each hour? Is there a geographic distribution
to your user base? What features are heavily used and which go unused? How many
repeat visitors did you have last week, and what was the revenue result of the costly
marketing campaign?

The natural thing to do to answer these questions is to start building reports. You add
a report that breaks down new visitors and repeat visitors by day and hour. You add a
report that shows access by state—perhaps plotting hits on a U.S. and world map. You
add a report that shows revenue events as they relate to different traffic sources—
external links versus unreferred traffic versus links from your email campaign. You add
more and more reports almost as quickly as your business users can request them. Your
business users are delighted. They check the reports frequently to increase their pleas-
ure at how well the website you wrote is functioning. That is, until suddenly, one day,

Operations and Reporting | 47

Download at Boykma.Com

performance plummets. All of the metrics in your reports take a nosedive. The business
users, flustered, take to looking at the reports you’ve generated all day, hoping to make
sense of what went wrong.

What went wrong is that your reports are killing your site. As your site’s popularity
and success increase, so does the amount of data your reports need to process. What
seemed like a reasonably fast query—maybe 10 seconds to give user statistics for the
last month by hour—now takes 30 seconds or maybe even a couple of minutes. And
since your company became so successful, you hired more people who are looking at
those reports. And since each report now takes minutes to generate, your business users
fire off a bunch of simultaneous reports and then go get a cup of coffee. All of this has
the effect of bogging down your site, and locking out the very users to whom you are
trying to serve web pages to.

I call this the Heisenberg Uncertainty Principal of Website Reporting. If you try to report
out of the same database in which you are collecting your data, the simple act of loading
the reports creates abnormal load on your database. That in turn makes your web pages
slow, which causes your users to leave your site frustrated, which causes you to load
more reports to figure out what’s going on, which frustrates yet more users, and so on.
Whenever you look, you impact the system in a negative way.

The solution is simply to not run reporting queries on your production database. But
that is easier said than done.

A common shortcut many people take around building a data warehouse is to create
a slave copy of their database, and run heavy reporting queries there, out of the path
of users. This is not a good idea. To understand why, it’s important to be familiar with
the difference between Online Transaction Processing (OLTP) and Online Analytical
Processing (OLAP).

OLTP comprises the set of queries that store, update, and retrieve data. Examples
would be creating blog entries, then displaying them to website visitors. OLTP queries
are engineered to execute quickly, as there is generally a user waiting for the result of
the query. Speed is realized through a highly normalized schema. Each row contains a
small amount of data and pointers to related data in other tables. Virtually all websites
are OLTP systems.

OLAP queries are geared toward garnering business intelligence out of large quantities
of data. OLAP queries process millions upon millions of records generated by individual
OLTP queries. A sample OLAP query might be one that answers the question, “How
many customers who bought a sale item also bought a nonsale item, broken down by
store location and week?” In addition to ad-hoc queries such as this one, nightly or
quarterly generated reports are OLAP queries, too, and therefore real-time results are
generally not a requirement of an OLAP system.

Because OLTP and OLAP queries are so different, it’s not surprising that a database
design that is well-suited for OLTP may not be well-suited for OLAP, and vice versa.

48 | Chapter 4: Database As a Fortress

Download at Boykma.Com

In fact, as the amount of data in a highly normalized system increases, coupled with
increasing complexity of reporting queries, it’s often the case that reporting queries
start to take seemingly infinite time, or infinite memory, or both.

In OLAP, the goal is not to have quick inserts, updates, and deletes, but rather to filter,
group, and aggregate huge amounts of data based on certain criteria. For this task,
highly normalized schemas result in lots of costly joins on massive amounts of data.
Denormalizing the schema to avoid most, or even all, of the joins can make OLAP
queries complete in a reasonable amount of time.

So a highly normalized database is good for normal site operations, but a denormalized
database is good for reporting. Can these two be reconciled? Unfortunately, no, they
should not be reconciled within the same database. Denormalizing data in an opera-
tional database can quickly lead to bugs (so-called insert, update, and delete anoma-
lies). And staying normalized causes reporting queries to be unreasonably slow, and
downright dangerous if they are executed in the same database as are your OLTP
operational queries.

The proper place to run reporting queries is in a data warehouse. A data warehouse is,
in rough terms, a place where all of your historical data resides, and in a format that is
optimized for complex reporting queries. OLAP systems rely on highly denormalized
data, usually in a star or snowflake normalization pattern, which increases the speed
of processing huge amounts of data by eliminating joins on many tables. Here, incon-
sistencies are not a concern because your star schema data is generated from your DKNF
data, which you bend over backward to keep accurate.

Getting data out of your production database and into a data warehouse is not an easy
task, though, and it’s hard to convince anyone that you need to spend loads of time
building a data warehouse before you have any meaningful data to report on. However,
as soon as your website appears to be doing reasonably well with users, it’s time to
invest some resources in building a data warehouse. And do it before you build lots of
one-off reports that will surely cause the Heisenberg Uncertainty Principle of Website
Reporting to set in.

Therefore, while chaining a slave off your database to run reporting queries (an ex-
tremely common practice in the MySQL world) seems like low hanging fruit, it’s really
not the fruit you want. It’s really kind of like rotten fruit. The fresh, delicious fruit you
want for reporting is a data warehouse.

Unfortunately, building a data warehouse is beyond the scope of this book. There are
many books on the topic, though. A good introduction is The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling by Ralph Kimball (Wiley), but a topic
that does fall squarely in the scope of this book is ensuring that your website scales for
users. And that is the topic of the next several chapters on schema design.

Operations and Reporting | 49

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 5

Building a Solid Data Model

Data modeling is an art form. Based on the previous chapter, we begin with the principle
that the database is not simply a place where information is temporarily dumped but
rather it is the fortress that houses and protects your company’s critical information
assets. You’ve got to design the data layer so that it does its job of protecting your data.

This is accomplished in part by ensuring your schema provides for complete referential
integrity and has appropriate constraint checking. Further, the data layer’s design
should be one that makes future changes and additions easy. Designed incorrectly,
seemingly small changes in business needs, if they require changes to the data layer,
can often become Herculean efforts if the initial design is not flexible, or is crippled by
inconsistencies revealed by the design change. Adhering to domain key/ normal form
(DK/NF) ensures, among other things, that it is easy to add additional layers of com-
plexity on top of your data model without the need to redesign the entire schema. As
it happens, DKNF is also a necessity to get the most protection out of referential in-
tegrity checks.

Theatre Tickets
Over the course of this book, we will build a website for movie ticket sales. In this
chapter, we construct a first pass at the data model. We will start simple with a very
small set of tables and secure those tables with database constraints and referential
integrity checks in the data layer and analogous checks at the application layer. In
Chapter 6, we will expand upon our data model, and refactor it into third normal form
(3NF) to remove redundancy, achieve greater data integrity, and to ensure flexibility
for future needs. In Chapter 8, we will dive into DK/NF to achieve referential integrity
for more complex relationships that emerge. We conclude with advanced considera-
tions in Chapter 9, such as the use of stored procedures and triggers for constraint
checking that exceeds the database’s built-in capabilities.

After we have added all of this structure, layer by layer, we finally have a very solid data
layer atop which we can confidently build an application.

51

Download at Boykma.Com

Starting Simple
The data model in Figure 5-1 shows a tiny subset of tables necessary for our ticket sales
website.

At the heart of the schema is a table that stores basic information about movies, called
movies. Movies have a name, a running length, and a rating. An entry in this table might
be Casablanca, with a running time of 102 minutes, and a rating of PG.

There are also theatres, stored in the theatres table, which in addition to the theatre’s
name, contains the address and phone number of the theatre as well.

Movie showtimes are listed in the movie_showtimes table. Each movie showtime record
stores the movie being shown, the theatre in which it plays, and its start time. Addi-
tionally, there is an auditorium field, which we can use to prevent double-booking a
single auditorium. Example 5-1 shows the DDL for this schema.

Example 5-1. The DDL for our initial move showtimes schema

create sequence movies_id_seq;
create table movies (
 id integer,
 name varchar(256),
 length_minutes integer,
 rating varchar(8),
 primary key (id)

id

name

phone_number

address_line_1

address_line_2

address_city

address_state

address_zip_code

theatres

id

name

length_minutes

rating

movies

id

threatre_id

movie_id

auditorium

start_time

movie_showtimes

Figure 5-1. A simple schema for a movie ticket website

52 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

);

create sequence theatres_id_seq;
create table theatres (
 id integer,
 name varchar(256),
 address_line_1 varchar(256),
 address_line_2 varchar(256),
 address_city varchar(128),
 address_state varchar(2),
 address_zip_code varchar(9),
 phone_number varchar(10),
 primary key (id)
);

create sequence movie_showtimes_id_seq;
create table movie_showtimes (
 id integer,
 movie_id integer,
 theatre_id integer,
 auditorium varchar(16),
 start_time timestamp with time zone,
 primary key (id)
);

This is where most books that focus only on the framework generally stop; their next
step would be to create model classes and a user interface and begin playing around
with a budding site. That’s strategy’s fine for books that are essentially framework
manuals, which don’t have time to spend on issues that do not directly concern the
framework.

This book does not stop here, however. First, because we know a lot more about our
problem domain than we have shown here. For example, this is a ticket sales site, but
we don’t even have a place to store orders yet. Mapping out everything we know up
front will reveal areas for refactoring, or other types of improvements that we can’t see
with just a subset of our overall data model. It doesn’t make much sense to spend time
and effort on application logic when we almost certainly will have to throw most or all
of it away after the next tiny database revision.

The second reason we don’t stop here is because this data model is tragically fragile.
Indeed, this is a data model that represents a dumping ground for data, rather than a
fortress. This is not only a problem from the perspective of our mantra: that an enter-
prise architecture cannot rely on the beneficence of the application layer to maintain
order in the database layer; it is also a problem because our work in the application
layer would be fraught with time wasted hunting for simple bugs that we would rather
the data layer prevented us from creating in the first place. These problems would
debilitate our site and our development process in short order.

It’s a tenet held by the Rails community that development should start with a small
kernel and proceed with many quick iterations, building organically upon that kernel

Theatre Tickets | 53

Download at Boykma.Com

until a perfect, living, breathing application has emerged. I don’t not disagree with the
tenets of agile development, but rather with the size of the starting kernel.

In fact, there are a number of problems with our simple data model already, and they
should be managed before they cause us problems. These problems will be revealed in
this chapter via negative unit tests. We will expect our invalid use of our models to
cause errors, which our tests will check for. However, the tests will pass, making it plain
that it would be foolhardy to place any faith in what we’ve got so far and additional
work must be done to lock down the data layer before it makes sense to proceed.

Even after we have solved the problems described in this chapter, it is still too early to
proceed. Although this simple data model will be locked down, as noted earlier, there
are still many more things wrong with our schema, which will become evident when
we start coding and find ourselves exploring obvious business needs that we could have
foreseen easily. The next few chapters are devoted to eradicating these flaws, with an
ultimate goal of making spotting problems and building solid, flexible data models
second nature.

To the point of kernel size, then, the following principle: at each step,
we should add everything we know we need to the layer we are working
on, and no more. It’s at that point that we can rush off to tackle the layer
above.

To get started, we must first define the classes against which we write our unit tests.
At this point, there are no model-based validations because we are working on the data
layer. We’ll add model validations later in this chapter. We do, however, define the
relationships at this point. See Example 5-2.

Example 5-2. Basic ActiveRecord model classes for the schema defined in Example 5-1

class Movie < ActiveRecord::Base
 has_many :movie_showtimes
end

class Threatre < ActiveRecord::Base
 has_many :movie_showtimes
end

class MovieShowtimes < ActiveRecord::Base
 belongs_to :movie
 belongs_to :theatre
end

Constraints
The first problem with our data model is that there is nothing constraining the values
in any of the table columns except for our own good intentions and, frankly, that is not
enough. Looking at the movies table, the rating column of the table could be anything,

54 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

regardless of whether the value is a valid rating identifier; asdf would be acceptable.
Any of the columns could be null or empty. The movie length could be zero or negative,
which doesn’t make sense for a movie. The schema as-is also supports duplicate entries,
which we know we don’t want.

Example 5-3 shows a set of unit tests that test for all of these conditions. They are
negative tests that try to save invalid data to the databases.

Example 5-3. Unit tests for the Movie class defined in Example 5-2

require File.dirname(__FILE__) + '/../test_helper'
require 'movie'

class MovieTestCase < Test::Unit::TestCase

protected

 def test_for_db_error(error_message, &block)
 begin
 yield
 rescue ActiveRecord::StatementInvalid
 database_threw_error = true
 rescue
 something_else_threw_error = true
 end
 assert !something_else_threw_error, "There is an error in our test code"
 assert database_threw_error && !something_else_threw_error, error_message
 end

public

 def test_db_no_name
 movie = Movie.new(:rating => 'PG', :length_minutes => '10')
 test_for_db_error("Database did not catch null name") do
 movie.save!
 end
 end

 def test_db_empty_name
 movie = Movie.new(:name => '', :rating => 'PG', :length_minutes => '10')
 test_for_db_error("Database did not catch empty name") do
 movie.save!
 end
 end

 def test_db_same_movie
 movie = Movie.new(:name => 'Casablanca', :rating => 'PG',
 :length_minutes => '10')
 movie_dup = movie.clone
 test_for_db_error("Database did not catch duplicate movie") do
 movie.save!
 movie_dup.save!
 end
 end

Theatre Tickets | 55

Download at Boykma.Com

 def test_db_no_rating
 movie = Movie.new(:name => 'Casablanca', :length_minutes => '10')
 test_for_db_error("Database did not catch null rating") do
 movie.save!
 end
 end

 def test_db_invalid_rating
 movie = Movie.new(:name => 'Casablanca', :rating => 'Fred',
 :length_minutes => '10')
 test_for_db_error("Database did not catch invalid rating") do
 movie.save!
 end
 end

 def test_db_no_length
 movie = Movie.new(:name => 'Casablanca', :rating => 'PG')
 test_for_db_error("Database did not catch null movie length") do
 movie.save!
 end
 end

 def test_db_zero_length
 movie = Movie.new(:name => 'Casablanca', :rating => 'PG',
 :length_minutes => '0')
 test_for_db_error("Database did not catch zero length movie") do
 movie.save!
 end
 end

 def test_db_negative_length
 movie = Movie.new(:name => 'Casablanca', :rating => 'PG',
 :length_minutes => '-10')
 test_for_db_error("Database did not catch negative movie length") do
 movie.save!
 end
 end

end

Note that these are all negative unit tests; the tests attempt to do something that should
not work and verify that it was not allowed. Negative unit tests are just as important
as positive tests, if not more so. Often, developers are drawn toward writing unit tests
that test the obvious functionality of a class in the way they intend to use that class five
minutes later. Although those tests are fine, and they may detect a code change that
causes a bug down the road, negative tests that test the boundaries of valid data provide
much more peace of mind. If code is written with a bug that might lead to data cor-
ruption, running negative unit tests ensures that the bug will cause no long-term
damage.

To simplify writing the tests, and to conform to the tenet of Don’t Repeat Yourself
(DRY), a method test_for_db_error was created, which takes a block containing the

56 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

offending negative test code. This method verifies that a database exception is thrown
and not some other type of exception, such as a typo. If there is no exception thrown,
the test fails because we were expecting our error to be caught by the data layer. To be
even more DRY, we’ll move this method to test_helper.rb before our next revision so
that other test cases can utilize the method as well.

Below are the results of running these tests, highly condensed to show only the relevant
information. As we expected, they all fail, indicating there is still work to be done in
the data layer before we start getting any fancier in our application layer. See Exam-
ple 5-4.

Example 5-4. Results from running the tests defined in Example 5-3

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby test/unit/movie_test_case.rb
Loaded suite test/unit/movie_test_case
Started
FFFFFFFF
Finished in 0.059249 seconds.

 1) Failure: test_db_empty_name(MovieTestCase)
Database did not catch empty name.
 2) Failure: test_db_invalid_rating(MovieTestCase)
Database did not catch invalid rating.
 3) Failure: test_db_negative_length(MovieTestCase)
Database did not catch negative movie length.
 4) Failure: test_db_no_length(MovieTestCase)
Database did not catch null movie length.
 5) Failure: test_db_no_name(MovieTestCase)
Database did not catch null name.
 6) Failure: test_db_no_rating(MovieTestCase)
Database did not catch null rating.
 7) Failure: test_db_same_movie(MovieTestCase)
Database did not catch duplicate movie.
 8) Failure: test_db_zero_length(MovieTestCase)
Database did not catch zero length movie.

8 tests, 16 assertions, 8 failures, 0 errors

Example 5-5 shows the movies table reworked to disallow invalid data.

Example 5-5. The movies table DDL from Example 5-1, extended to perform constraint checking

create sequence movies_id_seq;
create table movies (
 id integer not null
 default nextval('movies_id_seq'),
 name varchar(256) not null unique
 check (length(name) > 0),
 length_minutes integer not null
 check (length_minutes > 0),
 rating varchar(8) not null
 check (rating in ('Unrated', 'G', 'PG', 'PG-13', 'R', 'NC-17')),
 primary key (id)
);

Theatre Tickets | 57

Download at Boykma.Com

First, all columns that should not be null (all of them in this case) are marked with not
null.

Next, we’ve add check constraints to each column that takes freeform data. We check
that the length of the name column is at least one character, the running length of the
movie is at least one minute, and that the movie rating is one of six possible valid values:
Unrated, G, PG, PG-13, R, or NC-17.

To ensure there are no duplicate movie entries, we also add the unique keyword to the
name definition. Note that in Postgres, this creates an implicit index on the name col-
umn. The index is used to make the process of checking for uniqueness fast internally
within the database, but it also will speed up any queries where we query movies by
name. Indexing is covered in greater detail later in this chapter.

Finally, the id column has a default added. It’s the same value that Rails would assign
automatically to that column, but this helps if we ever have to add data from the psql
prompt, or if we write advanced application code that bypasses ActiveRecord and uses
raw SQL.

When we run our test cases against our updated schema, all of the tests pass, which is
a good step forward. See Example 5-6.

Example 5-6. Results of running the unit tests defined in Example 5-3 after adding constraint checking
to the movies table

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby test/unit/movie_test_case.rb
Loaded suite test/unit/movie_test_case
Started
........
Finished in 0.0751310000000001 seconds.

8 tests, 16 assertions, 0 failures, 0 errors

Unfortunately, we still have problems to work out. The goal of the tests was for a
database exception to be thrown. However, we never want an exception to be thrown
during normal operation. Exceptions are meant for exceptional situations only, and
bad user input, for example, is not so exceptional. Our model class should detect when
we are about to do something bad and prevent it. For example, when the error is related
to user input, the application should prompt the user for better input.

What we would like, then, is for exactly the same code as we had in our previous set
of tests to run, but rather than throw a database exception during a save call, the model
class should simply refuse to save through to the database and return false.

In the following code, we’ve recast all of the database tests as model tests. In doing so,
we’ve removed the wrapping of the code with test_for_db_error. These are still neg-
ative tests, but we want to assert that the records that would have been invalid did not
get saved. Because save returns false and we want to ensure validations fails, we assert
that !save is true.

58 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

Keep in mind that while the database tests themselves have been removed to save space,
we would certainly want to keep them around in practice. See Example 5-7. These tests
focus on the Model classes themselves complementing the tests of Example 5-3.

Example 5-7. Negative unit tests for the Movie class

require File.dirname(__FILE__) + '/../test_helper'
require 'movie'

class MovieTestCase < Test::Unit::TestCase

 # model constraints tests

 def test_no_name
 movie = Movie.new(:rating => 'PG', :length_minutes => '10')
 assert movie.new_record?, "Model constraints did not catch null name"
 end

 def test_empty_name
 movie = Movie.new(:name => '', :rating => 'PG', :length_minutes => '10')
 assert !movie.save, "Model constraints did not catch empty name"
 end

 def test_same_movie
 movie = Movie.new(:name => 'Casablanca', :rating => 'PG',
 :length_minutes => '10')
 movie_dup = movie.clone
 movie.save
 assert !movie_dup.save, "Model constraints did not catch duplicate movie"
 end

 def test_no_rating
 movie = Movie.new(:name => 'Casablanca', :length_minutes => '10')
 assert !movie.save, "Model constraints did not catch null rating"
 end

 def test_invalid_rating
 movie = Movie.new(:name => 'Casablanca', :rating => 'Fred',
 :length_minutes => '10')
 assert !movie.save, "Model constraints did not catch invalid rating"
 end

 def test_no_length
 movie = Movie.new(:name => 'Casablanca', :rating => 'PG')
 assert !movie.save, "Model constraints did not catch null movie length"
 end

 def test_zero_length
 movie = Movie.new(:name => 'Casablanca', :rating => 'PG',
 :length_minutes => '0')
 assert !movie.save, "Model constraints did not catch zero length movie"
 end

 def test_negative_length
 movie = Movie.new(:name => 'Casablanca', :rating => 'PG', :length_minutes =>

Theatre Tickets | 59

Download at Boykma.Com

'−10')
 assert !movie.save, "Model constraints did not catch negative movie length"
 end

end

The output from running these new tests is shown below, again compressed for brevity.
The eight database tests that test for exceptions continue to pass, but the model tests
fail now because of those very exceptions. At this point, this is what we expect. The
database is doing its job, but the model is not. See Example 5-8.

Example 5-8. The output of running the tests defined in Example 5-7

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby test/unit/movie_test_case.rb
Loaded suite test/unit/movie_test_case
Started
........EEEEEEEE
Finished in 0.050854 seconds.

 1) Error: test_empty_name(MovieTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR: new row for relation
"movies" violates check constraint "movies_name_check"

 2) Error: test_invalid_rating(MovieTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR: new row for relation
 "movies" violates check constraint "movies_rating_check"

 3) Error: test_negative_length(MovieTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR: new row for relation
 "movies" violates check constraint "movies_length_minutes_check"

 4) Error: test_no_length(MovieTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR: null value in column
 "length_minutes" violates not-null constraint

 5) Error: test_no_name(MovieTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR: null value in
 column "name" violates not-null constraint

 6) Error: test_no_rating(MovieTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR: null value in
column "rating" violates not-null constraint

 7) Error: test_same_movie(MovieTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR:
duplicate key violates unique constraint "movies_name_key"

 8) Error: test_zero_length(MovieTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR:
new row for relation "movies" violates check constraint "movies_length_minutes_check"

16 tests, 16 assertions, 0 failures, 8 errors

60 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

Note that the tests did not fail due to an assertion failure, but with a full-on error. That’s
because our data layer is now an active participant in enforcing our rules. Exceptions
were thrown and consequently no records were saved. Without the constraints we
added earlier, the tests would not have failed as a result of database exceptions but due
to logic errors. Our assertions would have failed, but meanwhile invalid data would
have snuck through to the data layer. Try it yourself: remove the database constraints
and run the tests again. How does the output differ?

It’s time now to add model validations that will prevent normal code flow from throw-
ing database exceptions. Example 5-9 is our updated model class for the Movie class.

Example 5-9. The Movie class with model validations

class Movie < ActiveRecord::Base
 validates_presence_of :name, :rating, :length_minutes
 validates_uniqueness_of :name
 validates_length_of :name, :maximum => 256
 validates_numericality_of :length_minutes, :only_integer => true

 has_many :movie_showtimes

 VALID_RATINGS = ['Unrated', 'G', 'PG', 'PG-13', 'R', 'NC-17']

 def validate_length_minutes
 if length_minutes && length_minutes <= 0
 errors.add 'length_minutes',
 'must be greater than zero'
 end
 end

 def validate_rating_type
 if !VALID_RATINGS.include?(rating)
 errors.add 'rating',
 "must be #{VALID_RATINGS[0..-2].join(', ')} or #{VALID_RATINGS[-1]}"
 end
 end

 def validate
 validate_length_minutes
 validate_rating_type
 end
end

Each database constraint has an analogous model validation:

• Each not null constraint is translated into a validates_presence_of validation.

• Our unique constraint appears as a validates_uniqueness_of validation.

• The check constraint on the length of the name column is represented via a
validates_length_of call. It’s important to test upper-length boundaries on all
freeform fields, as failing to do so would result in an exception thrown if a user
enters an extremely long movie name.

Theatre Tickets | 61

Download at Boykma.Com

• Similarly, for length_minutes, we verify that the input is of the correct type for the
physical storage, with validates_numericality_of and the :only_integer flag set
to true.

There are two tests accomplished easily in the data layer for which there aren’t any
analogous built-in Rails validators. For those—validating that the movie length is
greater than zero and the rating is valid—we must write our own custom validators.

Armed with our new model validators, we run our unit tests again. Example 5-10 shows
the results.

Example 5-10. The results of running the unit tests in Example 5-7 against the new model definition
from Example 5-8

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby test/unit/movie_test_case.rb
Loaded suite test/unit/movie_test_case
Started
FFFFFFFF........
Finished in 1.194743 seconds.

 1) Failure: test_db_empty_name(MovieTestCase)
There is an error in our test code.
 2) Failure: test_db_invalid_rating(MovieTestCase)
There is an error in our test code.
 3) Failure: test_db_negative_length(MovieTestCase)
There is an error in our test code.
 4) Failure: test_db_no_length(MovieTestCase)
There is an error in our test code.
 5) Failure: test_db_no_name(MovieTestCase)
There is an error in our test code.
 6) Failure: test_db_no_rating(MovieTestCase)
There is an error in our test code.
 7) Failure: test_db_same_movie(MovieTestCase)
There is an error in our test code.
 8) Failure: test_db_zero_length(MovieTestCase)
There is an error in our test code.

16 tests, 16 assertions, 8 failures, 0 errors

All of the new unit tests pass, but now our old ones fail. This is because our database
tests assume a database exception is thrown to validate the negative test. However, now
our models correctly prevent the exception from ever being reached. We still want to
test the data layer, though, and we still can. Rails provides a mechanism to skip vali-
dation on save. The save method, it happens, is a wrapper around calling the method
save_with_validation with the parameter true. To make the tests run as we expect, we
need to replace the save calls with calls to save_with_validation with the parameter
false, like this:

def test_db_no_name
 movie = Movie.new(:rating => 'PG', :length_minutes => '10')
 test_for_db_error("Database did not catch null name") do
 movie.save_with_validation(false)

62 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

 end
 end

Here’s the output of running the tests with this change:

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby test/unit/movie_test_case.rb
Loaded suite test/unit/movie_test_case
Started
................
Finished in 0.445988 seconds.

16 tests, 24 assertions, 0 failures, 0 errors

Now all tests pass.

Mythbusting
It’s time again to dispel some frequently propagated myths.

The first myth is that database constraints impose an undue burden on the database
and slow down your application. It’s worth pointing out, based on this controlled
example, that the time consumed by checking database constraints in negligible. Add-
ing database constraints contributed only 0.015 seconds to the overall test run.

The next myth is that model validations are all you need and database constraints are
a waste of time. The repeated refrain is You Aren’t Going to Need It (YAGNI). Un-
fortunately, the fact that the Rails API itself provides easy mechanisms to skip valida-
tion, as we did in our second iteration of database unit tests with save_with_valida
tion(false), means you are going to need it. Perhaps as a disciplined developer you
will pledge to avoid using the API this way. However, when your site becomes a success
and you hire a dozen additional developers, will your own discipline be enough?

In addition to save_with_validation(false), there are also more innocuous sounding
API methods that also skip validation, such as update_attribute. See the sidebar, next,
where the API for this method and the related method update_attribute_with_valida
tion_skipping is reproduced.

Rails API Methods That Lack Validation
Here are Rails API methods that skip validation:

update_attribute(name, value)

Updates a single attribute and saves the record. This is especially useful for Boolean
flags on existing records. Note: this method is overwritten by the Validation mod-
ule that’ll make sure that updates made with this method don’t get subjected to
validation checks. Hence, attributes can be updated even if the full object isn’t
valid. [sic]

update_attribute_with_validation_skipping(name, value)

Updates a single attribute and saves the record without going through the normal
validation procedure. This is especially useful for Boolean flags on existing records.

Theatre Tickets | 63

Download at Boykma.Com

The regular update_attribute method in Base is replaced with this when the vali-
dations module is mixed in, which it is by default.

Although the documentation says skipping validation can be useful for toggling a Boo-
lean value, there is nothing about these methods that ensures that’s all you are doing.
The reality of the situation is that the maintainers of the API had a need for a lightweight
mechanism to make updates they were sure would be safe, but now Pandora’s box has
been opened, and along with it the ability to circumvent the safety of model validation
on a whim.

Further, there are many types of constraints that are difficult or impossible to express
or guarantee at the application level but are very simply expressed in the data layer.
Our custom validators for movie length and rating are simple examples, and we will
see more examples in the following chapters. As application-level validators become
more and more complex, it becomes easier for bugs to creep in and prevent them from
fulfilling their purpose. Data layer constraints, on the other hand, are generally very
succinct, and in these cases, simple really does make a difference.

Finally, because model validations are often more verbose than the corresponding
database constraints, it’s easy to omit them, or to lose them during refactorings or
rewrites of application code. Database constraints, on the other hand, do not need to
be constantly declared and maintained in order to function. After they have been speci-
fied once, they become part of the data model and require a deliberate action to remove
them. In the database, there is no such thing as save_with_validation(false).

Referential Integrity
We now have a full set of constraints: physical at the data layer, and also logical at the
application layer. However, we still have a major problem. Although we have references
from the movie_showtimes table to the theatres and movies tables in the form of the
theatre_id and movie_id columns, there is nothing in our data layer to guarantee that
those references are valid, or even present, for that matter. Similarly, although we de-
fined our belongs_to relationships in the MovieShowtime class, there is nothing guaran-
teeing those references are present from the model perspective, either. Our simple data
model lacks referential integrity enforcement.

Now that we have gotten the hang of adding database and model tests, we’ll proceed
at a quicker pace in testing the MovieShowtime class. Example 5-11 shows our test cases.
We define a setup method, which creates a theatre object and a movie object. Most of
our other tests will be concerned with leaving one, the other, or both of these objects
out of the attempts to save a new MovieShowtime object.

We normally would have tests for constraint checking for the presence and length of
the auditorium field, and the presence of the start_time field. However, you’ve gotten
the hang of that now from our experience with the movie test cases, so we’ll leave those
out to save space. See Example 5-11.

64 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

Example 5-11. Unit test cases for the MovieShowtimes class

require File.dirname(__FILE__) + '/../test_helper'

class MovieShowtimeTestCase < Test::Unit::TestCase

 def setup
 @theatre = Theatre.create!(
 :name => 'Ruby Palace',
 :address_line_1 => '123 Broadway',
 :address_city => 'Cambridge',
 :address_state => 'MA',
 :address_zip_code => '02139',
 :phone_number => '5555555555')
 @movie = Movie.create!(
 :name => 'Casablanca',
 :rating => 'PG',
 :length_minutes => '10')
 end

 #
 # model tests - referential integrity
 #

 def test_add_showtime_no_movie
 st = MovieShowtime.new(:theatre => @theatre,
 :auditorium => '1',
 :start_time => Time.now.xmlschema)
 assert !st.save, "Model validation allowed save with no movie"
 end

 def test_add_showtime_no_theatre
 st = MovieShowtime.new(:movie => @movie,
 :auditorium => '1',
 :start_time => Time.now.xmlschema)
 assert !st.save, "Model validation allowed save with no theatre"
 end

 #
 # database tests - referential integrity
 #

 def test_db_add_showtime_no_movie
 test_for_db_error "Database allowed save with no movie." do
 st = MovieShowtime.new(:theatre => @theatre,
 :auditorium => '1',
 :start_time => Time.now.xmlschema)
 st.save_with_validation(false)
 end
 end

 def test_db_add_showtime_no_theatre
 test_for_db_error "Database allowed save with no theatre." do
 st = MovieShowtime.new(:movie => @movie,
 :auditorium => '1',
 :start_time => Time.now.xmlschema)

Theatre Tickets | 65

Download at Boykma.Com

 st.save_with_validation(false)
 end
 end

 def test_db_add_showtime_invalid_references
 test_for_db_error "Database allowed save with invalid references." do
 st = MovieShowtime.new(:movie_id => 12,
 :theatre_id => 99,
 :auditorium => '1')
 st.save_with_validation(false)
 end
 end
end

As expected, because we have neither database constraints nor model validations, all
of our tests fail. See Example 5-12.

Example 5-12. Results of running the unit tests from Example 5-11

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby
test/unit/movie_showtime_test_case.rb
Loaded suite test/unit/movie_showtime_test_case
Started
FFFFF
Finished in 0.112901 seconds.

 1) Failure: test_add_showtime_no_movie(MovieShowtimeTestCase)
Model validation allowed showtime save with no movie.
 2) Failure: test_add_showtime_no_theatre(MovieShowtimeTestCase)
Model validation allowed showtime save with no theatre.
 3) Failure: test_db_add_showtime_invalid_references(MovieShowtimeTestCase)
Database allowed save of movie_showtime with invalid references.
 4) Failure: test_db_add_showtime_no_movie(MovieShowtimeTestCase)
Database allowed save of movie_showtime with no movie.
 5) Failure: test_db_add_showtime_no_theatre(MovieShowtimeTestCase)
Database allowed save of movie_showtime with no theatre.
5 tests, 8 assertions, 5 failures, 0 errors

Example 5-13 shows our updated movie_showtime table, redesigned to catch these
problems at the data layer and prevent invalid data from entering our database.

Example 5-13. movie_showtimes DDL updated with constraint checking

create table movie_showtimes (
 id integer not null
 default nextval('movie_showtimes_id_seq'),
 movie_id integer not null
 references movies(id),
 theatre_id integer not null
 references theatres(id),
 auditorium varchar(16) not null
 check (length(auditorium) > 0),
 start_time timestamp with time zone not null,
 primary key (id)
);

66 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

Here, because for each column we reference only one foreign column at a time, we use
the simplest syntax for a foreign key reference:

column_name type references reftable(refcolumn)

We could also add the reference outside of the table definition. This gives us the added
benefit of being able to name the foreign key reference and also specify compound key
references:

alter table table_name add foreign key (column_name [, ...])
 references reftable [(refcolumn [, ...])];

At the moment, we don’t have any need for compound key references, but we will see
them in Chapter 7.

Example 5-14 shows our updated model class definition, which also enforces the pres-
ence of the appropriate references.

Example 5-14. MovieShowtime class with model validation

class MovieShowtime < ActiveRecord::Base
 belongs_to :movie
 belongs_to :theatre

 validates_presence_of :movie, :theatre
 validates_presence_of :start_time, :auditorium
 validates_presence_of :auditorium

 validates_length_of :auditorium, :maximum => 16
end

Now all of our tests pass. Here are the results:

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby
test/unit/movie_showtime_test_case.rb
Loaded suite test/unit/movie_showtime_test_case
Started
...........
Finished in 0.117669 seconds.

5 tests, 8 assertions, 0 failures, 0 errors

One important point to note about our two sets of tests is that although our model tests
checked for the presence of the foreign key references, they did not check the validity
of those references. Take a closer look at our third test, test_db_add_showtimes_inva
lid_references. We didn’t create an analogous model test because there is no practical
way to make the test pass. A scenario in which this type of bug might turn up would
be if two editors were working with our site at the same time. One editor loads a page
to create a movie showtime, and selects Casablanca. The other editor, meanwhile, de-
letes Casablanca from the movie database. When the first editor submits her
showtime, passing the movie id for Casablanca to the back-end, the record is already
gone and the save of the showtime would cause an error. The way around this possibility

Theatre Tickets | 67

Download at Boykma.Com

requires a hefty performance trade-off: load the record to be referenced first, and pass
the object rather than the id, as in our other tests.

Another problem is that if we call the destroy method on a movie record referenced by
the movie_showtimes table, ActiveRecord is happy to oblige, leaving the associated
movie_showtime record in an invalid state. Luckily, our database foreign key references
are already set up to prevent this from happening. Below are four new tests; the first
two are database tests that attempt to destroy the movie and theatre objects after they
have been referenced by a MovieShowtime object. These tests actually pass because we
are testing that the data layer catches the bugs, and it does. The associated model tests
fail, however. They throw database exceptions, as in the tests shown in Exam-
ple 5-15. Note that without the database constraints, the tests still would not pass but
due to an assertion failure.

Example 5-15. Database unit tests ensuring invalid destroys are not allowed

 #
 # database invalid destroy tests
 #
 def test_db_prevents_invalid_theatre_destroy
 st = MovieShowtime.create!(
 :theatre => @theatre,
 :movie => @movie,
 :auditorium => '1',
 :start_time => Time.now.xmlschema)
 test_for_db_error "Database allowed referenced theatre to be deleted" do
 @theatre.destroy_without_callbacks
 end
 end

 def test_db_prevents_invalid_movie_destroy
 st = MovieShowtime.create!(
 :theatre => @theatre,
 :movie => @movie,
 :auditorium => '1',
 :start_time => Time.now.xmlschema)
 test_for_db_error "Database allowed referenced movie to be deleted" do
 @movie.destroy_without_callbacks
 end
 end

 #
 # model invalid destroy tests
 #
 def test_prevents_invalid_theatre_destroy
 st = MovieShowtime.create!(
 :theatre => @theatre,
 :movie => @movie,
 :auditorium => '1',
 :start_time => Time.now.xmlschema)
 @theatre.destroy
 dependent_showtimes_count =

68 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

 MovieShowtime.find_all_by_theatre_id(@theatre.id).size
 assert dependent_showtimes_count == 0,
 "Model allowed destruction of theatre with dependent objects"
 end

 def test_prevents_invalid_movie_destroy
 st = MovieShowtime.create!(
 :theatre => @theatre,
 :movie => @movie,
 :auditorium => '1',
 :start_time => Time.now.xmlschema)
 @movie.destroy
 dependent_showtimes_count =
 MovieShowtime.find_all_by_movie_id(@movie.id).size
 assert dependent_showtimes_count == 0,
 "Model allowed destruction of movie with dependent objects"
 end

The results of running these tests can be found in Example 5-16.

Example 5-16. Results of running the unit tests in Example 5-15

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby
test/unit/movie_showtime_test_case.rb
Loaded suite test/unit/movie_showtime_test_case
Started
............EE
Finished in 0.144437 seconds.

 1) Error: test_prevents_invalid_movie_destroy(MovieShowtimeTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR: update or
delete on table "movies" violates foreign key constraint
"movie_showtimes_movie_id_fkey"
on table "movie_showtimes"
 2) Error: test_prevents_invalid_theatre_destroy(MovieShowtimeTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR:
update or delete on table "theatres" violates foreign key constraint
"movie_showtimes_theatre_id_fkey" on table "movie_showtimes"

14 tests, 19 assertions, 0 failures, 2 errors
dan-chaks-computer-2:~/web/theatre-tickets chak$

Here we find another situation in which model validations can leave us high and dry.
Rails does provide a mechanism for dealing with these kind of interrelationships.
Whenever we define a model relationship, such as belongs_to, we can define what
should happen to dependent objects when the object in question is destroyed. The
dependent objects can be defined to have the destroy method called on them first with:

has_many :movie_showtimes, :dependent => :destroy

This, in turn, calls destroy on any objects dependent on the original dependent object.
Or, if it’s known that the dependent objects themselves don’t have dependencies, the
model callbacks on the dependent objects can be skipped with:

has_many :movie_showtimes, :dependent => :delete

Theatre Tickets | 69

Download at Boykma.Com

Because we have the option of skipping dependent objects’ callbacks, it’s important to
note that if dependent objects later have bestowed upon them new dependent objects,
we have to remember to commute any existing deletes into destroys.

Sometimes it really is an error to destroy data that has dependent objects, and the
correct response to a deletion attempt is to fail, and fail fast.

Consider a medical records database. If you add a patient record and realize immedi-
ately that you misspelled the patient’s name, or otherwise created the record with some
set of invalid information, it is easiest to just start over. In fact, it might be all right to
delete the record. However, once you’ve added dependent data, such as patient history
or test results, deleting the patient record would not only be a mistake, it would also
be grounds for a lawsuit. If there is a software bug that allows a delete statement to be
issued when there is dependent data, a database constraint is the only surefire way to
ensure that the deletion fails, as it should. In this case, we wouldn’t declare a destroy
or delete dependency because we wouldn’t want that action to propogate; we want it
to throw an exception.

Once we add declarations of what to do to dependent objects upon deletion to the
movie and theatre classes, all tests pass again. See Example 5-17.

Example 5-17. The results of running the unit tests from Example 5-15 after adding model destroy
dependency information

dan-chaks-computer-2:~/web/theatre-tickets chak$ ruby
test/unit/movie_showtime_test_case.rb
Loaded suite test/unit/movie_showtime_test_case
Started
..............
Finished in 0.146988 seconds.

14 tests, 21 assertions, 0 failures, 0 errors

Intro to Indexing
Our simple schema is almost complete. At this point, it is entirely locked down at the
data layer and the model layer. Now, we could begin coding a front-end. However, if
a site built atop this data model has any success whatsoever, it will quickly slow to a
crawl as our tables become pregnant with data and will topple over the minute the site
gets listed on Slashdot. This is due to lack of indexes. Without indexes, every query
must scan the entirety of each table referenced in the query—not a problem when we
have just a few entries in each table. However, if we load all movies ever made into our
movies table, and all of the theatres in the U.S. into the theatres table, and then proceed
to add movie showtimes, the speed (or lack thereof) would be unbearable.

Like all of data modeling, appropriate indexing is an art form. In our simple example,
however, it’s easy to identify a couple rules of thumb.

70 | Chapter 5: Building a Solid Data Model

Download at Boykma.Com

Rule #1: every foreign key reference should be indexed
Queries that ask questions such as, “What are all the movie showtimes for this
movie?” or “What are all the movie showtimes in this theatre?” are sure to be
frequent. In fact, these are exactly the queries generated when traversing Active-
Record associations such as theatre.movie_showtimes or movie.movie_showtimes.

We create the indexes like this:

create index movie_showtimes_movie_id_idx on movie_showtimes(movie_id);
create index movie_showtimes_theatre_id_idx on movie_showtimes(theatre_id);

Rule #2: any column that will appear in any SQL where clause should be indexed
In our example, looking up theatres by zip code or showtimes by their start time
are the most obvious queries and therefore deserve indexes:

create index theatres_zip_idx on theatres(address_zip_code);
create index movie_showtimes_start_time_idx on movie_showtimes(start_time);

The other obvious column we might want to search on is the movie name, but we don’t
need to create an explicit index for it. Recall that when we declared the movie name to
be unique, Postgres created an implicit index for us.

Once you’ve created indexes, you don’t have to do anything special in your application
to use them. If when planning how to execute a query the database decides use of the
index will improve performance, it will use it. If the index won’t help a particular query,
it will be ignored.

Theatre Tickets | 71

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 6

Refactoring to Third Normal Form

We ended the last chapter with a simple set of tables and models that is seemingly
impervious to invalid data. Through careful unit testing of both the data layer and the
models in the application layer, we guaranteed that all references between tables will
be valid and that each individual column can contain only appropriate data.

It’s tempting at this point to leave the realm of data modeling and begin writing a front-
end for the theatre tickets website. We can imagine additional requirements for even
the first version of our site, though, such as saving orders or knowing how many seats
there are for sale in a given auditorium.

As secure as the physical layer we put together seems to be, the design itself is con-
stricting. Features such as those just mentioned will be difficult to add in an elegant
way. In this chapter, we will refactor the data model so that it is more open to future
changes. First, the concept of third normal form (3NF) will be introduced. Applying
3NF will afford us the flexibility to add additional information to pieces of data that
are bound currently, such as auditoriums and movie ratings. We will then add addi-
tional tables we know we will need relating to ticket orders; doing so presents more
opportunities for refactoring.

Third Normal Form
In database theory, there are numerous normalization patterns, most of which are
numbered ordinally: non-first normal form (NF2), first normal form (1NF), second nor-
mal form (2NF), and so on. The study and formalization of normalization patterns has
a set of overriding themes. The first is to guarantee the correctness of data across a
series of insertions, updates, and deletes. The second is to facilitate the process of
querying tables. There’s also a positive by-product: the higher the level of normaliza-
tion, the less repeated data there is in the data model. In addition to saving space,
avoiding repeated data prevents data corruption because updating a value only requires
changing it in single place, rather than meticulously updating it in many places. All of
these properties of normalization tend to make our lives as programmers much easier.

73

Download at Boykma.Com

In this chapter, we will discuss third normal form, which is a sufficient target normal-
ization to make our data model more open to future changes. The principle behind
3NF is that no columns in a table depend on any non-key columns.

Consider the movies table from the previous chapter, shown in Figure 6-1. The id col-
umn is the primary key. Technically, this table is 3NF because no columns depend on
any other column that is not the primary key. However, if we decided to add additional
information about the rating, we would be in trouble.

Figure 6-2 shows the movies table extended to hold a description of the rating. With
this schema, as soon as we have more than one movie with the same rating, we begin
to have duplicated data in the table. Not only are we wasting space, but we now run
the risk of having two movies that are rated R, but have different rating descriptions.
If the descriptions happened to be different, how would we know which one was
correct?

The solution is to normalize the table on the rating column by creating a ratings table,
and referencing that table with a rating_id column in the movies table, as shown in
Figure 6-3. Now there is a single place where the movie description is stored, and we
can see 3NF is satisfied.

In general, good candidates for normalization are columns that fit the following criteria:

• Not part of the primary key

• Not a foreign key reference into another table

id

name

length_minutes

rating

movies

Figure 6-1. The movies table; 3NF not yet violated

id

name

length_minutes

rating

rating_description

movies

Figure 6-2. The movies table; 3NF is violated by the rating_description column

74 | Chapter 6: Refactoring to Third Normal Form

Download at Boykma.Com

• Not intrinsic data, such as a name

• Not a measured value, such as the time or a temperature

We apply the same logic to the auditoriums table, which allows us to add a column to
store the number of seats available in each auditorium. The resulting 3NF data model
is shown in Figure 6-4.

Note that we didn’t stop at adding an auditorium_id column to movie_showtimes. We
also removed the theatre_id column. That’s because theatre_id is actually functionally
dependent on, or bound to, the auditorium_id. We can find the theatre for a showtime
by first traversing the auditorium_id relationship to the auditorium table, and then
traversing the theatre_id relationship to the theatres table.

If we had instead kept the theatre_id column to make the association simpler, as in
Figure 6-5, it would be possible to have a movie_showtimes record that referred directly
to some theatre A, but also referred indirectly, through its auditorium, to some other
theatre B. This would be anomalous and disastrous, so at this stage, we don’t give any
more thought to keeping the theatre_id column around.

But it does seem strange to not be able to tell which theatre a movie plays in within first
examining an auditorium record. In fact, it is strange. We’ll come back to this problem
in this chapter’s exercises and again in Chapter 8.

In any case, now our schema is worlds more flexible. We can easily extend information
about ratings or auditoriums, and we only need to worry about updating a single record
to do so.

id

name

length_minutes

rating_id

movies

id

rating_name

description

ratings

Figure 6-3. The movies table refactored to 3NF by referencing a ratings table

Third Normal Form | 75

Download at Boykma.Com

Here’s the DDL for these new tables:

create sequence ratings_id_seq;
create table ratings (
 id integer not null
 default nextval('ratings_id_seq'),
 name varchar(16) not null unique
 check (length(name) > 0),
 description text,
 primary key (id)
);

create sequence auditoriums_id_seq;
create table auditoriums (
 id integer not null
 default nextval('auditoriums_id_seq'),
 theatre_id integer not null
 references theatres(id),
 auditorium_identifier varchar(64) not null

id

name

length_minutes

rating_id

movies

id

movie_id

auditorium_id

start_time

movie_showtimes

id

name

phone_number

address_line_1

address_line_2

address_city

address_state

address_zip_code

theatres

id

theatre_id

auditorium_identifier

seats_available

auditoriums

id

rating_name

description

ratings

Figure 6-4. movie_showtimes table refactored to reference an auditoriums table and avoid 3NF
violation

76 | Chapter 6: Refactoring to Third Normal Form

Download at Boykma.Com

 check (length(auditorium_identifier) >= 1),
 seats_available integer not null,
 primary key (id),
 unique(theatre_id, auditorium_identifier)
);

create index auditoriums_theatre_id_idx on auditoriums(theatre_id);

Because we aren’t done with all of our refactoring yet, we won’t worry about models
or tests here. Thinking about the unit tests necessary for these tables and what valida-
tions might be necessary are left as exercises for the reader.

id

movie_id

theatre_id

auditorium_id

start_time

movie_showtimes

id

name

phone_number

address_line_1

address_line_2

address_city

address_state

address_zip_code

theatres

id

theatre_id

auditorium_identifier

seats_available

auditoriums

Figure 6-5. The theatre_id column in movie_showtimes is functionally dependent on auditorium_id,
and must be removed

Timing Is Key
We could have created a separate ratings table from the start, when we defined our
schema in the previous chapter, but we didn’t know then that we might want to store
extra information about ratings. Stemming violations of 3NF is something we’d like to
do before the violation occurs. The trick is to notice bound data—the rating was literally
bound to the movie—early in the design phase of the data layer. Once lots of code is
written atop a data model, making changes can be painful. Worse, if your production

Third Normal Form | 77

Download at Boykma.Com

application has collected lots of data and you can’t start from scratch, the effort and
time required to rearrange data within a live database can be prohibitive. Spotting
columns that are likely to need full-fledged tables in the next iteration of feature sets is
a skill that requires experience as well as intuition about the problem at hand.

Often, novice data modelers—even those who know about third normal form—skip
these sorts of normalizations because the immediate benefits are not apparent. The
short-term gain of not having to define a new table, model class, and unit tests seems
irresistible. Skipping normalization for a quick gain is highly discouraged though.
While it is absolutely true that it takes more effort up front to achieve a defensively
normalized schema, the time required to normalize after the fact can easily take 10
times the effort of doing so right away. At that point, it’s often tempting to pick a bad
solution, such as adding a seats_available column to movie_showtimes rather than to
an auditoriums table, where it belongs.

Once a schema goes down a sloppy path, it eventually—and sooner than you might
think—becomes unusable. The application layer becomes riddled with bugs because
the data layer is too permissive. For example, if the application layer must always update
the seats_available column in movie_showtimes, code can creep in that sets it incor-
rectly: perhaps to zero or some random value. Or, possibly worse—those doing data
entry might be expected to enter the value every time they add a new showtime. Sud-
denly the business is experiencing massive problems because the system oversold every
show, or perhaps refused to sell any tickets at all.

Refactoring: Inheritance and Mixins
Since we know our website’s purpose is to sell movie tickets, it makes sense to add
tables to hold sales data before we begin coding up the front-end. Figure 6-6 shows our
first stab at adding tables to store orders and ticket purchases. The orders table holds
each transaction, including the purchaser’s name, address, and credit card information.
The purchased_tickets table is a line item table for each ticket purchased in the trans-
action. Rather than simply providing a column in the orders table to record the number
of tickets purchased, we split up the tables, foreseeing the need to account for tickets
at different prices, such as student or senior discounted tickets, matinees, and so on.

In adding these extra tables, we find a glaring violation of the Don’t Repeat Yourself
(DRY) principle. The violation of DRY occurs in the repetition of address data between
the theatres table and our new orders table. If we kept the schema as is, with the data
duplicated, we would also end up duplicating a lot of other code, including validation
code and display logic for addresses.

Instead of duplicating this structure, we create a separate addresses table. If mimicking
the previous examples, we would create address_id columns in the theatres and
orders tables, and refer to individual addresses that are inserted in the addresses table.

78 | Chapter 6: Refactoring to Third Normal Form

Download at Boykma.Com

We won’t do that here, though. This data is not in violation of 3NF. It is dependent
only on the primary key of the table it is in, not some other column in the table as in
our other examples. The problem we are trying to solve is of repeated code, not repeated
data. In code, we can solve this sort of problem with class inheritance (or in Ruby, with
mixins). The same can be accomplished at the data layer with Postgres’s table inheri-
tance mechanism. We’ll use this feature to solve our current problem. First, we create
the addresses table, without a primary key—the tables that implement addresses func-
tionality already have their own:

create table addresses (
 line_1 varchar(256) not null
 check (length(line_1) > 0),
 line_2 varchar(256),
 city varchar(128) not null
 check (length(city) > 0),
 state varchar(2) not null
 check (length(state) = 2),
 zip_code varchar(9) not null
 references zip_codes(zip),
 phone_number varchar(10) not null

id
name
length_minutes
rating_id

movies

id
movie_id
auditorium_id
start_time

movie_showtimes

id
name
phone_number
address_line_1
address_line_2
address_city
address_state
address_zip_code

theatres

id
theatre_id
auditorium_identifier
seats_available

auditoriums

id
rating_name
description

ratings

id
order_id
purchase_price_cents

purchased_tickets

id
confirmation_code
movie_showtime_id
purchaser_name
billing_line_1
billing_line_2
billing_city
billing_state
billing_zip_code
phone_number
payment_type_id
credit_card_number
expiration_date

orders

Figure 6-6. Theatre tickets data model with orders and purchased_tickets table, but with address
schema repeated in two tables

Refactoring: Inheritance and Mixins | 79

Download at Boykma.Com

 check (length(phone_number) = 10)
);

The addresses table does not correspond directly to a Rails model class. Instead, its
columns are sucked into tables that need it using the inherits keyword:

create table theatres (
 id integer not null
 default nextval('theatres_id_seq'),
 name varchar(256) not null unique,
 primary key (id)
) inherits (addresses);

If we describe the theatres table, it now has all of the properties of the addresses table:

movies_development=# \d theatres
 Table "public.theatres"
 Column | Type
--------------+------------------------
 line_1 | character varying(256)
 line_2 | character varying(256)
 city | character varying(128)
 state | character varying(2)
 zip_code | character varying(9)
 phone_number | character varying(10)
 id | integer
 name | character varying(256)
Inherits: addresses

Because Postgres allows multiple inheritance, we want to allow for the same flexibility
within Rails. Ruby provides for multiple inheritance through the use of mixins, and
Rails takes this one step further with plugins. Below is our plugin for address support,
based on the template from Chapter 3. Example 6-1 shows the file acts_as_ad
dress.rb, in the plugin’s lib/ directory.

Example 6-1. acts_as_address.rb, from our acts_as_address plugin

module Addresses
 module ClassMethods
 def acts_as_address
 class_eval do <<-DELIM
 # define our validators and associations
 validates_presence_of :line_1, :city, :state, :zip_code, :phone_number
 validates_length_of :line_1, :maximum => 256
 validates_length_of :line_2, :maximum => 256
 validates_length_of :city, :maximum => 128
 validates_length_of :state, :maximum => 2
 belongs_to :zip_code, :foreign_key => :zip_code

 # define the find_within_miles proc for all models that contain addresses
 find_within_miles = Proc.new do |zip, miles|
 z = ZipCode.find_by_zip(zip)
 !z ? [] :
 self.class.find(:all,
 :include => :zip_code,
 :conditions => [

80 | Chapter 6: Refactoring to Third Normal Form

Download at Boykma.Com

 "miles_between_lat_long(?, ?,
 zip_codes.latitude, zip_codes.longitude) < ?",
 z.latitude, z.longitude, miles])
 end
 define_method :find_within_miles, find_within_miles
 DELIM
 end
 end

 def self.included(base)
 base.extend ClassMethods
 base.class_eval do
 include InstanceMethods
 end
 end
end

Example 6-2 shows the init.rb file in the plugin’s top-level directory.

Example 6-2. The init.rb file for our acts_as_address plugin

ActiveRecord::Base.class_eval do
 include Addresses
end

Now we can simply say, within the theatre and order classes:

acts_as_address

Our new schema diagram, shown in Figure 6-7, is much cleaner now that we have
normalized the repetitive address information into its own table. Each table that inherits
addresses is much easier to understand as well. In addition, our models that implement
the Addresses module stay clean. In both the database and our application code, if we
need to make changes to the way addresses work, we need only do it in one place.

Are there more opportunities for normalization here? Before reading on, examine the
data model and brainstorm about the business. Put yourself in the shoes of the devel-
oper of this website. What are features you might want that would require dependent
data?

Drawing from my own experience, I would say that there has never been a time where
a zip code was entered in a database that the site in question would not have benefited
from knowing additional information about the zip code. For example, in our appli-
cation, what theatres within 25 miles of 02139 are playing the latest Harry Potter?
Certainly, we can solve this by adding latitude and longitude columns to the thea
tres table, but we risk duplicating data (and therefore creating conflicting data) if we
have multiple theatres in the same area. Further, if we ever want to validate user input,
such as verifying that a city, state, zip code combination is valid, we will need an aux-
iliary table of zip code data.

Let’s leave the refactoring of the zip code table for the next chapter.

Refactoring: Inheritance and Mixins | 81

Download at Boykma.Com

Exercises
1. Based on what you know about the problem domain, for each column in data from

this chapter model, list the ranges of valid and invalid data.

2. Write unit tests for those boundary conditions. Where appropriate, add validations
to make your unit tests pass.

3. Add the theatre_id column back to the movie_showtimes table. Prove to yourself
that you can reproduce the anomalous situation described in this chapter. Is there
any way you can use a database constraint to prevent the anomalies?

Refactor Steps
1. Find a table in which a column takes on one of a set of values, but those values are

not foreign key references into another table, as in Figure 6-8.

2. Create a new table in which the rows represent the set of values from 1 and any
other columns that were dependent on this value, rather than the original table’s
primary key (Figure 6-9).

id
phone_number

theatres

id
name
length_minutes
rating_id

movies

id
threatre_id
movie_id
auditorium_id
start_time

movie_showtimes

id
order_id
purchase_price_cents

purchased_ticketsid
theatre_id
auditorium_identifier

seats_available

auditoriums

id
rating_name
description

ratings

id
confirmation_code
movie_showtime_id
payment_type_id
credit_card_number
expiration_date

orders
name
line_1
line_2
city
state
zip_code

addresses

Figure 6-7. Theatre tickets data model with address information refactored at the schema level, using
database inheritance

82 | Chapter 6: Refactoring to Third Normal Form

Download at Boykma.Com

We can create the table shown earlier with the following SQL statement (note that
it is up to you to account for any data inconsistencies caused by improper
normalization):

insert into colors(name, hex)
select distinct color, hex from my_table;

3. Create a column in the original table for the foreign key reference, then populate
it. After doing so, delete the original columns (Figure 6-10).

alter table my_table add column color_id integer;
update my_table
 set color_id = (
 select id
 from colors
 where m.color = c.name
 and m.hex = c.hex
);
alter table my_table drop column color;
alter table my_table drop column hex;
alter table my_table add constraint my_table_color_id_fkey
 (color_id) references colors(id);
alter table my_table alter color_set not null;

4. Create a model class for the new table. Add association references appropriately.
The new model will have a has_many association to the original model class, and
the original class will have a belongs_to relationship with the new model class.

0xff0000

0x0000ff

0xff0000

hexcolor

red

blue

red

name

accord

prius

jeep

1

2

3

id

Figure 6-8. A table not in third normal form

1

2

id color

red

blue

0xff0000

0x0000ff

hex

Figure 6-9. The color and dependent data from Figure 6-7 extracted to its own table

Refactor Steps | 83

Download at Boykma.Com

color_id

1

2

1

name

accord

prius

jeep

1

2

3

id

Figure 6-10. The table from Figure 6-8, with a foreign key reference to the table

84 | Chapter 6: Refactoring to Third Normal Form

Download at Boykma.Com

CHAPTER 7

Domain Data

Domain tables are a special type of table in data modeling. They contain knowledge
known a priori about the application’s domain, and the contents within these tables
don’t normally change through interaction with the application. In our data model, we
already have an example of a domain table: the ratings table. Regardless of what our
application looks like or how it changes over time, regardless of what data we intend
to store about users, movies, or orders, the set of ratings and their meanings in the
context of the domain of motions pictures is set.

Domain tables are particularly special because at first glance they can seem extraneous.
Since they don’t change frequently, you could encode the data they contain in appli-
cation code rather than directly in the database. In fact, many beginners to data mod-
eling leave out domain tables completely, preferring to store the concepts they encode
in the code itself. However, promoting domain data to fully fledged relational tables
and records provides numerous benefits.

First, domain tables play a key role in helping to maintain referential integrity. If mul-
tiple tables reference ratings, having them defined once in a single table ensures that
all tables reference the same set. If multiple tables have a text column for the movie
rating as our movies table did at the start of Chapter 5, it would be very easy for each
table to store different sets of ratings, perhaps “PG-13” in one table, and “pg13” in
another. It would be extremely difficult for our application to know these are the same
thing. Even if we had check constraints on each table, we’d have to search for and
update each check constraint if the motion picture association added a new rating. That
process is also prone to error or omission, and it’s certainly not very DRY.

The second benefit of domain tables is that they help maintain third normal form and
keep our data model flexible; as with our example earlier, we were able to easily add a
description for each rating without any need to change our software and without sac-
rificing 3NF. Just like with rating information, domain tables often “come from some-
where,” meaning that the information can be researched ahead of time—if not on the
Internet then by interviewing someone familiar with the business behind your appli-
cation. It’s a good idea to put everything you know in the domain table from the very
beginning. What was initially a single column in a table sometimes turns out to be a

85

Download at Boykma.Com

large table full of rich data that can be leveraged in interesting ways as the application
matures.

Perhaps the best thing about domain tables is how well they interface with Rails. A
common convention to deal with the problem of mixing up literals like “PG-13” and
“pg13” is to declare constants for the appropriate values. Of course, having a conven-
tion doesn’t mean people will follow it. Data from domain tables can be treated like
constants, which encourage good convention, but also enforce the use of the conven-
tion because referential integrity requires it.

Let’s take the ratings table as an example. The first thing we do, since this is a domain
table and is unlikely to change, is add insert statements to our schema definition for
each rating type:

insert into ratings(name, description)
 values('G', 'General audiences');
insert into ratings(name, description)
 values('PG', 'Parental guidance suggested');
insert into ratings(name, description)
 values('PG-13', 'Parents strongly cautioned');
insert into ratings(name, description)
 values('R', 'Restricted');
insert into ratings(name, description)
 values('NC-17', 'No one under 17 admitted');
insert into ratings(name, description)
 values('Unrated', 'This movie has not been rated');

We can insert these records directly because we won’t need an interface to manipulate
domain data. Even though the table has an ActiveRecord model, the frequency with
which it changes is likely to be much slower than the frequency with which our appli-
cation goes through complete rewrites.

The next step is to create the constants that convention dictates you create anyway. In
this case, however, rather than the value of constant being set to some arbitrary string
value, such as “PG-13” for the constant PG13, we can set the value to the actual Active-
Record object itself:

class Rating < ActiveRecord::Base
 validates_presence_of :name, :description
 validates_length_of :name, :maximum => 16

 G = Rating.find_by_name('G')
 PG = Rating.find_by_name('PG')
 PG13 = Rating.find_by_name('PG-13')
 R = Rating.find_by_name('R')
 NC17 = Rating.find_by_name('NC-17')
 UNRATED = Rating.find_by_name('Unrated')

end

Now, to assign a rating to a movie, we can use the constant, such as Rating::R or
Rating::PG13. Both of these constants correspond directly to the database record itself

86 | Chapter 7: Domain Data

Download at Boykma.Com

but have the additional flexibility of being a constant. Also, since we initialize these
constants in the model class definition, the database query to get the record is per-
formed only once—the first time the class is loaded:

>> Rating.find(:all).map{|r| r.name}
=> ["PG", "PG-13", "NC-17", "Unrated", "G", "R"]
>> Rating::R
=> #<Rating:0x34e6df0 @attributes={"name"=>"R", "id"=>"10",
"description"=>"Restricted"}>
>> Rating::PG13
=> #<Rating:0x34e7ac0 @attributes={"name"=>"PG-13", "id"=>"3",
"description"=>"Parents strongly cautioned"}>
>> Rating::G.description
=> "General audiences"

And of course, when we want to reference the rating, such as when creating new movies,
we just use the constant. The ActiveRecord object is referenced just as expected, and
the movie record saves normally:

>> m = Movie.new(:name => 'Rocky Horror Picture Show', :length_minutes => 100,
:rating => Rating::R)
=> #<Movie:0x34d41f0 @new_record=true, @attributes={"name"=>"Rocky Horror
Picture Show", "length_minutes"=>100, "rating_id"=>10}, @rating=#<Rating:0x34d832c
@attributes={"name"=>"R", "id"=>"10", "description"=>"Restricted"}>>
>> m.save
=> true

Dealing with Zip Codes
Zip codes, while they may not benefit from having constants defined within the Zip
Code model, will nonetheless benefit from a table of all the valid zip codes (which cer-
tainly are known ahead of time), making validating zip codes a snap. If the zip exists
in the table, it’s valid. Similarly, if the zip does not exist, a database exception will be
thrown before an application-level oversight lets faulty data through.

Generally for a zip code table, the zip code itself should be the primary key, contained
in a varchar column to accommodate zip codes that begin with a zero. In our table,
we’ve decided to name the primary key column zip to keep things clear. Even though
Rails prefers the primary to be called id, we can use the declaration set_primary_key
to inform Rails we’ve chosen a different name. This makes our table definition much
more readable, and more importantly, self-documenting:

create table zip_codes (
 zip varchar(16) not null,
 city varchar(255) not null,
 state_abbreviation varchar(2) not null,
 county varchar(255) not null,
 latitude numeric not null,
 longitude numeric not null,
 primary key(zip)
);

Dealing with Zip Codes | 87

Download at Boykma.Com

Zip code data is available from a variety of sources online, and with some massaging,
can be easily imported into your database. As we discussed earlier, one of the primary
benefits of having a zip code domain table is the ability to do distance calculations to
answer questions such as, “What theatres are playing Casablanca within 10 miles of
my home?” Almost all zip code databases available online provide latitude and longi-
tude coordinates for zip codes. To facilitate calculating the answer to our question
quickly, we create a stored procedure, miles_between_lat_long, which provides a rea-
sonably good approximation of distance with a minimal set of complex calculations
(note that this equation is an approximation only; if your application requires high-
precision distances, you will want to use a better—but likely slower—formula):

create or replace function miles_between_lat_long(
 lat1 numeric, long1 numeric, lat2 numeric, long2 numeric
) returns numeric
language 'plpgsql' as $$
declare
 x numeric = 69.1 * (lat2 - lat1);
 y numeric = 69.1 * (long2 - long1) * cos(lat1/57.3);
begin
 return sqrt(x * x + y * y);
end
$$;

We can then add a method, zips_within_miles to our ZipCode model, which returns all
of the zip code objects within a given distance from the zip in question:

class ZipCode < ActiveRecord::Base
 set_primary_key 'zip'

 def zips_within_miles(miles)
 ZipCode.find(:all,
 :conditions => ["miles_between_lat_long(?, ?,
 zip_codes.latitude, zip_codes.longitude) < ?",
 self.latitude, self.longitude, miles])
 end
end

The following example, using script/console, finds all of the cities within two miles of
Cambridge, Massachusetts:

>> z = ZipCode.find('02139')=> #<ZipCode:0x3463cc0
@attributes={"city"=>"CAMBRIDGE",
"latitude"=>#<BigDecimal:3463d10,'0.42365079E2',12(12)>, "zip"=>"02139",
"county"=>"MIDDLESEX", "state_abbreviation"=>"MA",
"longitude"=>#<BigDecimal:3463ce8,'-0.71104519E2',12(12)>}>
>> z.zips_within_miles(2).collect{|z| z.city}.uniq
=> ["BOSTON", "CHARLESTOWN", "ALLSTON", "BRIGHTON", "CAMBRIDGE",
"BROOKLINE", "BROOKLINE VILLAGE"]

With a variation on the preceding method, we can bestow upon any model that “acts
as addresses” the ability to find instances within a given distance from a particular
latitude-longitude coordinate. We add the following to the ClassMethods section of our
Addresses plugin:

88 | Chapter 7: Domain Data

Download at Boykma.Com

module ClassMethods
 def acts_as_address
 # validation / association code was here...

 # define the find_within_miles proc for all models that contain addresses
 find_within_miles = Proc.new do |zip, miles|
 z = ZipCode.find_by_zip(zip)
 !z ? [] :
 self.class.find(:all,
 :include => :zip_code,
 :conditions => ["miles_between_lat_long(?,
 zip_codes.latitude, zip_codes.longitude) < ?",
 z.latitude, z.longitude, miles])
 end
 self.send(:define_method, 'find_within_miles', find_within_miles)
 end
 end

We can answer our question of which theatres are close by with very natural language:

Theatre.find_within_miles('02139', 10)

Strategy Pattern with Domain Tables
Another use of domain tables, when the number of records is tractable enough to be
represented in code, is to point to collections of methods or data contained in classes,
much as a trigger for the Gang of Four strategy pattern.

We will explore this idea with the payment types found in the orders table. We begin
with the standard domain table refactoring performed earlier. Then, we’ll enhance our
solution by making use of ActiveRecord’s single table inheritance, to achieve the Do-
main Table Strategy Pattern. We start out with our initial cut at the Order class, before
we create the domain table for payment types. It looks very similar to our initial
Ratings class, with an array containing the acceptable payment types to match the
database constraint:

class Order < ActiveRecord::Base
 belongs_to :movie_showtime_id
 validates_uniqueness_of :confirmation_code
 validates_presence_of :confirmation_code,
 :purchaser_name, :payment_type,
 :credit_card_number, :credit_expiration_month, :credit_expiration_year

 PAYMENT_TYPES = ['Visa', 'MasterCard', 'American Express']

 def validate_payment_type
 unless PAYMENT_TYPES.include?(payment_type)
 errors.add('payment_type',
 "must be #{PAYMENT_TYPES[0..-2].join(', ')} or #{PAYMENT_TYPES[-1]}")
 end

 def validate
 validate_payment_type

Strategy Pattern with Domain Tables | 89

Download at Boykma.Com

 end
end

Following the ratings example, we factor out the payment type into its own table,
payment_types, and we insert the appropriate data for our domain of credit card
processing:

create sequence payment_types_id_seq;
create table payment_types(
 id integer not null
 default nextval('payment_types_id_seq'),
 name varchar(128) not null unique
 check (length(name) > 0),
 primary key (id)
);

insert into payment_types (id, name)
 values(nextval('payment_types_id_seq'), 'MasterCard');
insert into payment_types (id, name)
 values(nextval('payment_types_id_seq'), 'Visa');
insert into payment_types (id, name)
 values(nextval('payment_types_id_seq'), 'American Express');

We also create a corresponding class, PaymentType, which contains constants for each
payment type. Just as with the movie ratings, each of these constants contains the actual
database record and can be treated like a real ActiveRecord object in our code:

class PaymentType < ActiveRecord::Base
 has_many :orders

 VISA = PaymentType.find_by_name('Visa')
 MASTER_CARD = PaymentType.find_by_name('MasterCard')
 AMEX = PaymentType.find_by_name('American Express')

 def validate_card_number(card_number, expiry)
 case self
 when VISA
 validate_visa_card_number(name, address, amount)
 when MASTER_CARD
 validate_master_card_number(name, address, amount)
 when AMEX
 validate_amex_card_number(name, address, amount)
 end
 end

 def process_order(name, address, amount)
 case self
 when VISA
 process_visa_order(name, address, amount)
 when MASTER_CARD
 process_mc_order(name, address, amount)
 when AMEX
 process_amex_order(name, address, amount)
 end

90 | Chapter 7: Domain Data

Download at Boykma.Com

 end
end

What’s new here is that we’ve added some methods that must switch on the constant.
Credit card validation is different for each credit card type, and the processing is often
different also. There is likely to be a different processing provider for Visa than for
American Express, and the API to secure the funds is likely to be different as well.

Whenever there are if-then-else or switch statements that switch on a type property
repeated in many of a class’s methods, it’s usually an indication that we need subclasses
to override some common method instead.

The astute reader might point out that we can avoid repetitive if-then-else clauses by
applying some well-thought-out method-naming conventions, and create a dispatch
mechanism. For example:

def process_order(*args)
 self.send("process_#{self.name.tableize}_order", *args)
end

While this will certainly will work, we are still left with three copies of each method in
a single class—a recipe for confusion and bugs. Better is to effect a simple change with
which we can turn our basic domain table into one that invokes Rails single table in-
heritance mechanism to pick the right methods for us. All we need is a type column
that differentiates each record. Here is our payment_types table again, but we’ve re-
named the name column to type, and to make single table inheritance work correctly,
we modify our domain records slightly to insert types that are friendly to the Rails
inflection mechanism (“American Express” is now one word):

create table payment_types(
 id integer not null
 default nextval('payment_types_id_seq'),
 type varchar(128) not null unique
 check (length(type) > 0),
 primary key (id)
);

insert into payment_types (id, type)
 values(nextval('payment_types_id_seq'), 'Visa');
insert into payment_types (id, type)
 values(nextval('payment_types_id_seq'), 'MasterCard');
insert into payment_types (id, type)
 values(nextval('payment_types_id_seq'), 'AmericanExpress');

The model class for PaymentType is now vastly simplified. We no longer have repeated
switch statements. Instead we define stubs that throw an exception if the method is
not overridden in a subclass, and we expect that subclasses will override each method.
Also note that to load our constants, we now say find_by_type rather than
find_by_name:

class PaymentType < ActiveRecord::Base
 has_many :orders

Strategy Pattern with Domain Tables | 91

Download at Boykma.Com

 VISA = PaymentType.find_by_type('Visa')
 MASTER_CARD = PaymentType.find_by_type('MasterCard')
 AMEX = PaymentType.find_by_type('AmericanExpress')

 def validate_card_number(card_number, expiry)
 raise "This method must be redefined in the subclass"
 end

 def process_order(name, address, amount)
 raise "This method must be redefined in the subclass"
 end
end

The following is an example of one of the subclasses. In each one, we place the logic
for the particular type of credit card:

class AmericanExpress < PaymentType
 def validate_card_number(card_number, expiry)
 # implement algorithm for card number validation
 end

 def process_order(name, address, amount)
 # implement credit card processing logic
 end
end

It’s worth noting that now each constant not only points to a different object but also
to an object of a different class. Notice the script/console output below and how it differs
from the same exercise performed for the ratings:

>> PaymentType::VISA
=> #<Visa:0x3509c60 @attributes={"type"=>"Visa", "id"=>"1"}>
>> PaymentType::MASTER_CARD
=> #<MasterCard:0x3502eb0 @attributes={"type"=>"MasterCard", "id"=>"2"}>
>> PaymentType::AMEX
=> #<AmericanExpress:0x34fc0c4 @attributes={"type"=>"AmericanExpress", "id"=>"3"}>

Now within the order class, we can write very elegant and clear statements that delegate
to the appropriate PaymentType subclass. Keep in mind that everything except credit
card validation has been removed from the class definition below, to save space—you
wouldn’t remove them in practice:

class Order < ActiveRecord::Base
 def validate_credit_card_number
 unless self.payment_type.validate_card_number(
 credit_card_number,
 credit_expiration_month,
 credit_expiration_year)
 errors.add('credit_card_number', 'is invalid')
 end

 def validate
 validate_credit_card_number
 end
end

92 | Chapter 7: Domain Data

Download at Boykma.Com

Refactor from Day One
Our final data model, with addresses factored into their own inherited table, and with
ratings, payment types, and zip codes moved into domain tables, is shown in Figure 7-1.

In terms of understandability, design elegance, and therefore maintainability, this is a
much better design than we had at the beginning of this chapter. We haven’t created
any controllers or views yet, but that’s OK—they are consumers of our models, and
making changes to models becomes infinitely more difficult once active code is relying
on them.

The real goal is to be able to spot opportunities for refactoring before design choices
become entrenched in client code and before the design becomes problematic due to
scale or lack of understandability, which leads to bugs. We are taking an intentionally
slow and measured approach to data modeling here to point out patterns of refactoring
that you should learn to spot in your own projects. Of course, we could have started

id
phone_number

theatres

id
name
length_minutes
rating_id

movies

id
threatre_id
movie_id
auditorium_id
start_time

movie_showtimes

id
order_id
purchase_price_cents

purchased_tickets

id
theatre_id
auditorium_identifier
seats_available

auditoriums

id
rating_name
description

ratings

id
confirmation_code
movie_showtime_id
phone_number
payment_type_id
credit_card_number
expiration_date

orders

id
type

payment_types
zip
city
state

zip_codes

name
line_1
line_2
city
state
zip_code

addresses

Figure 7-1. Our data model after creating domain tables for zip codes and payment types

Refactor from Day One | 93

Download at Boykma.Com

with the “right” data model, but then the patterns of how to move from wrong to right
would not have emerged.

Are there other opportunities for refactorings that may save us headaches down the
road?

One possibility might be the credit card information stored in the orders table.
Although it’s not likely to repeat in another table, the binding of the information to the
orders table may not be ideal. Imagine that not long after this site becomes a smashing
success, we want to add member accounts and recall users’ addresses and credit cards
when they log in. Splitting out the credit card information into its own table named
credit_cards will make it a breeze to later add a mapping table users_credit_cards,
which will link the information together. Since the address is actually used for credit
card verification, it’s probably credit_cards that should inherit from addresses, not
orders.

The phone_number column left behind in the theatres table is a good candidate for nor-
malization as well. We may someday want to list multiple phone numbers, perhaps a
local number and a toll-free number. Rather than adding a column each time we think
of a new phone number we’d like to store, a table containing a number_type column,
along with a join table theatres_phone_numbers does the trick much more elegantly.
The credit card service that processes the payments might require a phone number for
verification purposes as well, and we could easily reference the phone number with a
foreign key reference from the credit_cards table.

How far to go in the first round of normalization and refactoring is a matter of judgment.
In this book, we won’t perform the refactorings we just listed, but only because we
won’t run into the problems we listed within this text. (Also, the examples would be-
come monotonous.) However, if we were really building this site, it would behoove us
to normalize as much as we could up front. While correct (and full) normalization can
seem to result in an explosion of tables and therefore an explosion in the amount of
work associated to write models and tests, in practice the up-front work proves minimal
because each table and model class is simpler to write and easier to test. Fewer bugs
tend to creep in, and when they do they are localized to a smaller subset of code, and
are much easier to find.

94 | Chapter 7: Domain Data

Download at Boykma.Com

CHAPTER 8

Composite Keys and Domain Key/
Normal Form

So far we have improved our data model and Rails model layer substantially from the
small set of tables we began with. Specifically, we have:

• Added constraints everywhere

• Enforced referential integrity

• Added basic indexes

• Factored out repeated data model chunks with database inheritance, and created
an analogous Rails plugin to facilitate reuse

• Factored out columns that were teetering on the edge of violating third normal
form into fully fledged tables

• Created domain tables for our domain data, and analogous Rails models and
constants

We have done quite a bit, but our data model is still not enterprise solid. In this chapter,
we will discuss two related topics that can help us get closer to our goal. The first is the
idea of keys made up of multiple columns, otherwise known as composite keys. The
second is a topic that proverbial wars have been fought over, which boils down to
whether primary keys should be simple id columns, as is the Rails default, or the more
complex composite or natural keys, which rely on unique identifying information in
the records themselves.

In Rails, as it comes out of the box, the decision to use id columns has been made for
you. However, composite keys have inherent benefits over simple id keys. In reality,
both conventions have pluses and minuses. In this chapter, we’ll learn the pros and
cons of each convention. We’ll learn how to make composite keys work in Rails through
use of a plugin. Then, we’ll have our cake and eat it too by making both conventions
coexist happily. We’ll gain the benefits of each system without the addition of too much
more work.

95

Download at Boykma.Com

Let’s begin by going over the benefits of an id column system.

The first and most obvious benefit is that it is sitting right there waiting for you to use
it. The Rails associations mechanism—which allows you to define has many, belongs
to, and has and belongs to many relationships—relies on id column primary and foreign
keys. If you are prototyping a quick-and-dirty application, you can get going quickly
without any hassle.

The second benefit is that an id column is an easy handle on a piece of data. For example,
when editing the contents of a record via a web form, all of the values other than the
id itself may be editable. There is no chance of the primary key of the object changing
when it is edited, so logic involved in mutating that object is simple.

Conversely, editing a primary key can be tricky, because records in other tables may
be referencing the primary key that is about to undergo a change. This is the third
benefit: id columns provide a level of indirection to the real data. Because of that indi-
rection, records in tables referencing a table with an id column do not need to be
changed when the referenced record is updated. For example, let’s say the primary key
of our ratings table was not an id column but instead the rating_name column itself.
The column rating_id in the movies table would now have to reference this column
instead of the id column. If we then decided that PG-13 ought to have a rating_name of
“PG13” rather than “PG-13,” we would have to update every movie that referenced the
PG-13 record in our ratings domain table—definitely something we would like to
avoid if we can.

The final benefit is that the primary key for the next row to be added is always close at
hand and is guaranteed to be unique. Either via database sequence, or serial column
type, a built-in mechanism for uniqueness is responsible for generating the next key.

The preceding list seems like a lot of benefits. It’s not so easy to simply list the benefits
of using composite keys because, for one thing, you can’t always use them. They serve
a special purpose in maintaining data integrity. Whereas you can always slap an id
column on a table, there isn’t always a natural composite key available. However, when
there is such a natural composite key present, ignoring it in favor of an independent
single-column key can lead to big trouble.

When people argue that single-column primary keys are better than composite keys
because of the long list of advantages mentioned earlier, they’re missing the reality that
special circumstances call for special measures. Problems arise when a situation re-
quires composite keys but single-column id keys are used instead. The next section will
show how we can pierce a giant hole in our movie showtime database’s schema—which
we thought we had locked down with full referential integrity—simply because we
ignored a composite key.

96 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

Why Composite Natural Keys Matter
The first step in understanding the value of composite keys is knowing how to spot
them. Figure 8-1 shows the auditoriums table along with two related tables, the
theatres and the movie_showtimes tables.

We’ve defined the following references so far, indicated by the interconnecting lines
above:

• movie_showtimes(auditorium_id) references auditoriums(id)

• auditoriums(theatre_id) references theatres(id)

But as we saw in Chapter 6, when we normalized on the auditorium column, we lost a
reference from movie_showtimes to the theatres table. The reference was lost because it
violated 3NF, but its absence is quite a nuisance. Simple queries such as “how many
movies are playing in theatre x today?” become needlessly complex. We’d like to say:

select count(*)
 from movie_showtimes
 where theatre_id = ?

Instead, we need the following query:

select count(*)
 from auditoriums a,
 movie_showtimes ms,
 where ms.auditorium_id = a.id
 and a.theatre_id = ?

id

phone_number

address_id

theatres

id

threatre_id

movie_id

auditorium_id

start_time

movie_showtimes

id

theatre_id

room

seats_available

auditoriums

Figure 8-1. The auditoriums table and two related tables

Why Composite Natural Keys Matter | 97

Download at Boykma.Com

Any query linking theatres to showtimes must go through the auditoriums table, which
feels quite unnatural. It is extremely tempting to add the theatre_id column back to
the movie_showtimes table, as shown in Figure 8-2. We’d then add this reference:

• movie_showtimes(theatre_id) references theatres(id)

Unfortunately, there is now a big referential integrity hole left wide open. Can you see
it?

In this data model, a movie showtime can exist for which the auditorium does not exist
in the theatre the movie is expected to play in. Consider the following data:

movies_development=# select id, name from theatres;
 id | name
----+-------------------
 1 | Steller Theatre
 2 | Old Towne Theatre
(2 rows)

movies_development=# select * from auditoriums;
 id | theatre_id | room | seats_available
----+------------+------+-----------------
 1 | 1 | A | 150
 2 | 2 | B | 150
(2 rows)

movies_development=#
 select id, movie_id, theatre_id, auditorium_id from movie_showtimes;

 id | movie_id | theatre_id | auditorium_id
----+----------+------------+---------------

id

phone_number

address_id

theatres

id

movie_id

auditorium_id

start_time

movie_showtimes

id

theatre_id

room

seats_available

auditoriums

Figure 8-2. The movie_showtimes table with a reference to the theatres table; a violation of 3NF

98 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

 1 | 1 | 1 | 2
(1 row)

Our single movie showtime is playing in the theatre called Stellar Theatre and is show-
ing in auditorium B. Unfortunately, auditorium B happens to be in Old Towne Theatre!
This doesn’t make any sense, yet it’s perfectly valid based on our foreign key references
and Rails associations. Even though we thought we had ensured referential integrity,
we’re actually still allowing for bogus data to enter our system. In script/console, we
can cause nonsense to occur, as shown in Example 8-1.

Example 8-1. A functionally dependent reference can lead to bogus associations

>> t = Theatre.find_by_name('Steller Theatre')
>> puts t.movie_showtimes.first.auditorium.theatre.name
=> "Old Towne Theatre"

The reason this is happening is not because our references are wrong but because our
primary keys are. Though the referential integrity of our data model is satisfied, the
referential integrity of our problem domain is not. id columns do not always provide
enough information to ensure referential integrity for interrelationships between mul-
tiple tables. That’s where composite keys come in.

Spotting Composite Keys
Simply put, a composite key is one that is made up of more than one column. But how
do you determine what a composite key should be? Finding them actually turns out to
be pretty straightforward.

First, let’s examine the properties of a primary key. Actually, there is only one. A pri-
mary key must be unique for all records.

This works in the opposite direction as well. If you have a real-world situation that has
a uniqueness constraint on a set of columns, then in your data model, those columns
are likely to be the right candidate for a composite key.When a primary key is based
on attributes of the data that make it unique from all other data, the key is known as a
natural key.

If we look back to our definition of the auditoriums table, we see that we did, in fact,
have a unique constraint on the columns, (theatre_id, room). Certainly, it does not
make sense for a single theatre to have two auditoriums called A. That would be most
confusing. But this unique set of columns is also a great way to refer to the auditorium
itself. Indeed, referring to an auditorium as “auditorium ‘A’ in theatre #1” is much
more natural than referring to it as “auditorium #47,” a number based solely on a
sequence, which specifies nothing intrinsic about the auditorium itself. The former
provides much more information, and as such, it provides much better guarantees for
our referential integrity constraints.

Why Composite Natural Keys Matter | 99

Download at Boykma.Com

Figure 8-3 reproduces the segment of our data model shown earlier, but we’ve removed
the id column from auditoriums and replaced it with the more natural composite
key. Primary keys are shown in bold.

In order to reference the auditorium from the movie_showtimes table, we need to refer-
ence both parts of the key. Therefore, we now have the following references:

• movie_showtimes(theatre_id) references theatres(id)

• movie_showtimes(theatre_id, room) references auditoriums(theatre_id, room)

• auditoriums(theatre_id) references theatres(id)

The new table definition is shown in Example 8-2.

Example 8-2. New definitions for auditoriums table with a composite key

create table auditoriums (
 room varchar(64) not null
 check (length(room) >= 1),
 theatre_id integer not null
 references theatres(id),
 seats_available integer not null,
 primary key (room, theatre_id)
);

create sequence movie_showtimes_id_seq;
create table movie_showtimes (
 id integer not null
 default nextval('movie_showtimes_id_seq'),
 movie_id integer not null

id

phone_number

address_id

theatres

id

movie_id

theatre_id

room

start_time

movie_showtimes

threatre_id

room

seats_available

auditoriums

Figure 8-3. The auditoriums table with a composite key

100 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

 references movies(id),
 theatre_id integer not null
 references theatres(id),
 room varchar(64) not null,
 start_time timestamp with time zone not null,
 primary key (id),
 foreign key (theatre_id, room)
 references auditoriums(theatre_id, room) initially deferred
);

It is now impossible for the inconsistent state demonstrated above to exist. Because the
theatre_id column in movie_showtimes references both the theatre_id column in
auditoriums and the id column in theatres, the three are guaranteed to be the same.

Atop the Shoulders of…
In Chapter 4, I discussed the idea of standing atop the shoulders of giants. Information
architecture and database normalization techniques are highly developed areas of re-
search. It should be no surprise that scholarly papers dealing with key selection go back
more than 25 years. Here we have a perfect example of where we should not neglect to
sit atop the shoulders of our predecessors.

In 1981, Ronald Fagin of IBM Research Laboratories introduced domain key/normal
form (DK/NF) in his paper “A Normal Form for Relational Databases That Is Based
on Domains and Keys,” published in the journal ACM Transactions on Database Sys-
tems. In his paper, Fagin proved mathematically that a schema design in which keys
are chosen as the smallest set of columns that naturally and uniquely identify a row of
data absolutely prevents anomalies, such as the one we created earlier where a movie
showtime could occur in an auditorium that didn’t exist in the theatre the movie was
set to play in. Sometimes these keys are a single id column, sometimes they are single
columns that have intrinsic, natural meaning, and sometimes they are composite keys
made up of mutiple columns. The overriding point is that there is no one-size-fits-all
solution. Each table must be analyzed on a case-by-case basis to determine how it
contributes to the whole of the schema.

The best relational databases we have today grew out of the research of past decades.
Even a concept that may be taken for granted today, such as the ability to define a
primary key based on multiple columns, is a database feature that grew up out of re-
search such as Fagin’s. While it’s not surprising that over the course of decades scholars
investigated these research areas and their findings made it into the database products
we use today as fundamental features, it is surprising that many of these critical con-
cepts are lacking from the core Ruby on Rails framework.

Many users of Ruby on Rails who are new to schema design take that lack of features
as a cue that the concepts are not relevant or that they can live without them. Many
more, if Rails is their first platform, may never have heard about DK/NF or natural keys

Atop the Shoulders of… | 101

Download at Boykma.Com

and won’t know of the benefits they are giving up by not using them when appropriate.
Now that you know about natural keys, you don’t have to be in this crowd of poor saps.

Migrating to Domain Key/Normal Form
Before we dive into the how of implementation, first let’s get our schema into DK/NF
so that we know what we are going to implement.

Often getting your schema into DK/NF can be an onerous task. However, because our
schema was already properly refactored into third normal form, all that remains is the
judicious selection of keys.

We’ve already handled the auditoriums table, which was an example of a table deserv-
ing of a composite key. Next, we’ll look at tables that have single-column keys. We’ll
further break down the single-column case into two groups: primary key columns that
should be left as monotonically increasing ids (the Rails default), and primary key col-
umns that are candidates to be based on intrinsic, or natural, data. Then, we’ll come
back to the auditoriums table to see how to implement composite primary keys in Rails
using a plugin. Finally, we’ll look at the movie showtimes table, which is also a case of
a table deserving a composite primary key, but we’ll treat it as a special instance. We’ll
explain what heuristics should be used to decide when to not use composite keys, and
instead of using a strict natural key, we’ll introduce the concept of a Rails-DK/NF
hybrid, which gives us the benefits of natural keys, but preserves some of the conven-
iences of Rails id columns.

Single column keys

The tables that hold movies, ratings, payment types, orders, ticket purchase line-items,
and zip codes are examples of tables that have single column primary keys. As it hap-
pens, this is the majority of our tables, and this may be the reason why only single-
column keys are available in Rails by default.

To decide whether a table’s primary key should be a monotonically increasing (and
therefore arbitrary) integer, we check to see if there is a more natural key. As we did
earlier in this chapter, we do this by determining if there are unique constraints in the
table other than the id primary key itself. Figure 8-4 shows all of these tables with the
default Rails id column. Primary keys are in bold, and columns with a uniqueness
constraint are in italics.

Examining these tables, we find that the zip_codes, ratings, and orders tables each
have a single column with a uniqueness constraint apart from the primary key itself:
zip, rating_name, and confirmation_code, respectively. Effectively, this means that there
are two distinct ways to access a row of data, but the distinction is not meaningful.
These columns can be merged into one without any loss of functionality in retrieving
data. Because Rails doesn’t actually care what kind of data is in the id column, and
because you override the primary key’s column name with the set_primary_key

102 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

directive in your models, you also don’t lose any built-in Rails functionality by merging
the columns and choosing more descriptive column names than “id.”

We already saw an example of this in Chapter 7, where we defined the primary key of
the zip_codes table to be the zip column. For zip codes and ratings, which are domain
tables and may never be modified after an initial data load, it’s easy to forego reliance
on the Rails mechanism for choosing new keys. These tables are shown in Figure 8-5,
without the redundancy of two sets of unique columns.

Note that what we are doing here is only appropriate if the primary key is not likely to
change, or at least if changes are infrequent enough that they aren’t normal business
use-cases within our application. For domain data, which—with the exception of zip
codes—has a corresponding constant within the codebase, and for which we have no
plans to build an edit interface, we can be reasonably assured that we are safe on this
point.

For the orders table, the confirmation code also has no valid use case for change, so
we can merge the id and confirmation_code columns. It may seem more difficult to
break with convention, though, because we need to generate a special value before
saving each record. But since we need to generate the confirmation code regardless of
whether it is the primary key, it’s no more difficult. In fact, we can easily generate a

id
phone_number

theatres

id
name
length_minutes
rating_id

movies

id
rating_name
description

ratings

id
confirmation_code
movie_showtime_id
phone_number
payment_type_id
credit_card_number
expiration_date

orders

id
type

payment_types

id
zip
city
state

zip_codes

id
order_id
movie_showtime_id
purchase_price_cents

purchased_tickets

Figure 8-4. The tables with the default Rails id column

rating_name

description

ratings

zip

city

state

zip_codes

Figure 8-5. Domain tables that may never be modified after an initial data load

Atop the Shoulders of… | 103

Download at Boykma.Com

confirmation code in a before_create method in the Order class by hashing the next
value of the sequence that would have filled the id column, as shown below.* Note that
even though we changed the primary key column name to confirmation_code, Rails
still forces us to refer to all single-column primary keys via a column called id at the
application level. Thus when we are setting self.id below, we are actually filling the
confirmation_code column of our table:

class Order < ActiveRecord::Base
 set_primary_key :confirmation_code

 has_many :purchased_tickets, :foreign_key => 'order_confirmation_code'

 def before_create
 next_ordinal_id = Order.connection.select_value(
 "select nextval('orders_id_seq')"
)
 self.id = next_ordinal_id.crypt("CONF_CODE")
 end
end

The following output from script/console shows this code in action. Our primary keys
are now beautiful random strings of text worthy of any confirmation code system:

>> o = Order.create({:movie_showtime_id => 1,
 :purchaser_name => 'Joe Moviegover'})
=> #<Order:0x2553af0>
>> o.id
=> "COtW6pplX6z7o"

Adding dependent objects still works just as we expect:

>> o.purchased_tickets << PurchasedTicket.new(:purchase_price_cents => 650)
=> [#<PurchasedTicket:0x25166c8>
>> o.confirmation_code
=> "COtW6pplX6z7o"

There are other benefits to having the natural key be the primary key, too. Consider
the orders table, and the dependent table purchased_tickets, shown in Figure 8-6. On
the left, we have Rails default id columns. On the right, the orders table has been
updated to use the confirmation_code column as the primary key. Now, the
purchased_tickets table has a order_confirmation_code column rather than an
order_id column to reference the orders table. The added benefit is that if we have a
confirmation number—likely to be provided by a visitor to our site to look up her order
or to print out her tickets at a kiosk—we can select directly from the purchased_tick
ets table. We don’t have to first find the order record in the orders table, and then join
against the purchased_tickets table to get the information we are looking for. When

* Note that nextval is a Postgres-specific command that generates the next value of a sequence. There is a
method, next_sequence_value, which would have done this for us in a database-independent way, but
Postgres support for this function sits in a patch awaiting merge to the Rails core as of this writing (Ticket
#9178). If you’re using Oracle, support is already there.

104 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

we removed the indirection id primary key column, indirection went away along with
it.

The remaining tables, theatres and movies, keep the default id primary key column.

Using Composite Keys in Rails
Although Rails doesn’t have built-in support for composite primary keys, there are two
good methods for getting the benefits they provide. The first method is via a plugin by
Dr. Nic Williams called, naturally, composite_primary_keys. The second is via a hybrid
model—a Rails-DK/NF hybrid—discussed later in this chapter.

Using the composite_primary_keys plugin

The composite_primary_keys plugin is available at http://compositekeys.rubyforge.org.
There you’ll find more extensive documentation on how to use the plugin, but to install
it as a gem, just type the following from the command line:

sudo gem install composite_primary_keys

Then add the following line to the end of your config/environment.rb file:

require 'composite_primary_keys'

Next, in your models, define the composite primary key with the plugin’s pluralized
analog to set_primary_key, set_primary_keys:

id
order_id
movie_showtime_id
purchase_price_cents

purchased_tickets

id
confirmation_code
movie_showtime_id
purchaser_name

orders

id
order_cofirmation_code
purchase_price_cents

purchased_tickets

confirmation_code
movie_showtime_id
purchaser_name

orders

Arbitrary id
primary key

columns

Natural key
primary key

columns

Figure 8-6. The orders table and its dependent purchased_tickets table

Atop the Shoulders of… | 105

Download at Boykma.Com

http://compositekeys.rubyforge.org

class Auditorium < ActiveRecord::Base
 # we do this because Rails inflection fails for this class name
 set_table_name 'auditoriums'
 set_primary_keys :room, :theatre_id

 belongs_to :theatre
 has_many :movie_showtimes, :dependent => :destroy
end

Then, in models that reference the composite key, specify the foreign key as an array
of column names:

class MovieShowtime < ActiveRecord::Base
 belongs_to :movie
 belongs_to :theatre
 belongs_to :auditorium, :foreign_key => [:room, :theatre_id]
end

Working with models that have composite primary keys is straightforward; they behave
just like regular models. Notice below that we don’t need to do anything special when
creating an Auditorium object. Similarly, when we create a MovieShowtime object, we
don’t need to specify the separate pieces of the foreign key. Just passing the object is
enough for the plugin to pull out the appropriate key columns to create the reference:

m = Movie.create!(
 :name => 'Casablanca',
 :length_minutes => 120,
 :rating => Rating::PG13)
t = Theatre.create!(
 :name => 'Kendall Cinema',
 :phone_number => '5555555555')
a = Auditorium.create!(
 :theatre => t,
 :room => '1',
 :seats_available => 100)
ms = MovieShowtime.create!(
 :movie => m,
 :theatre => t,
 :auditorium => a,
 :start_time => Time.new)

Using a DK/NF-Rails hybrid

The next table we’ll investigate is the movie_showtimes table. The combination of
(movie_id, theatre_id, room, start_time) is certainly unique, and therefore it’s a
candidate to be a primary key. In fact, we have a greater constraint on showtimes than
this: a movie cannot begin playing in an auditorium until the previous movie has fin-
ished (we’ll see how to deal with this sort of constraint in the next chapter). But the
decision to make a composite key a primary key is not based solely on whether the key
is unique. The next question we must ask is whether changing the key is a valid use
case or not.

106 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

Are movie times set in stone once tickets have been purchased, or can the times be
changed, patrons be damned? One school of thought would say the answer is yes. Why
shouldn’t a movie showtime be changeable?

On the other hand this may feel like a bait-and-switch operation to those who’ve already
bought tickets, so another school of thought would say no. Once there is a dependent
record—especially a dependent record that has been paid for, such as an order—the
record cannot change. The appropriate course of action would be to mark the original
record as cancelled, create a new one for the new time, and take action to refund the
original ticket purchases. Patrons could then buy tickets to a different showtime if they
so choose. That would certainly be fairer to patrons, and the database would then
accurately reflect the events that transpired as well.

In the interest of a pure DK/NF data model, we would, therefore, define the full set of
columns in the movies_showtimes table as a composite primary key. However, for the
purposes of providing a breadth of examples, we’ll say here that movie times are
changeable. Although it’s not impossible to make changes to a primary key, in practice
it can be a bit more inconvenient to do so than it is for other columns. With
ActiveRecord, it is actually impossible to change a primary key at all unless one resorts
to custom SQL statements. Therefore, for those who are faint of heart when it comes
to custom SQL, for now, we will retain our id column for movie_showtimes, but we’ll
also update the orders table to reference the rest of the columns, in addition to the
standard Rails id column reference of movie_showtime_id (Figure 8-7). This will allow
us the referential integrity benefits of a natural key while also maintaining some of the
benefits of an id primary key: namely, it will be possible within Rails to make changes
to the key without resorting to custom SQL.

Note that in order to add a foreign key reference from one table to another, the target
columns of the constraint must constrained to be unique. This has two purposes. First,
if there was no unique key, we could risk referencing more than one record, which
would not be meaningful (in fact, it would be a bug, although MySQL allows such a
relationship). Second, the unique constraint also adds an implicit index on the columns,
which facilitates a quick internal database check to make sure the reference is valid.

id

movie_id

theatre_id

room

start_time

movie_showtimes
confirmation_code

movie_id

theatre_id

room

start_time

purchaser_name

orders

Figure 8-7. Updating the orders table

Atop the Shoulders of… | 107

Download at Boykma.Com

Without the uniqueness constraint, we get the following error when we try to add the
foreign key constraint:

movies_development=# alter table orders
 add constraint movie_showtimes_movie_theatre_room_start_time_fkey
 foreign key (movie_id, theatre_id, room, start_time)
 references movie_showtimes(movie_id, theatre_id, room, start_time);
ERROR: there is no unique constraint matching given keys for
referenced table "movie_showtimes"

To correct this, we add the unique constraint on the rest of the columns in movie_show
times: movie_id, theatre_id, room, start_time, and everything works fine. The two
tables, movie_showtimes and orders, can be defined compactly as follows:

create sequence movie_showtimes_id_seq;
create table movie_showtimes (
 id integer not null
 default nextval('movie_showtimes_id_seq'),
 movie_id integer not null
 references movies(id),
 theatre_id integer not null
 references theatres(id),
 room varchar(64) not null,
 start_time timestamp with time zone not null,
 primary key (id),
 unique(movie_id, theatre_id, room, start_time),
 foreign key (theatre_id, room)
 references auditoriums(theatre_id, room) initially deferred
);

create sequence orders_id_seq;
create table orders (
 confirmation_code varchar(16) not null
 check (length(confirmation_code) > 0),
 movie_showtime_id integer not null
 references movie_showtimes(id),
 movie_id integer not null,
 theatre_id integer not null,
 room varchar(64) not null,
 start_time timestamp with time zone,
 purchaser_name varchar(128) not null
 check (length(purchaser_name) > 0),
 primary key (confirmation_code),
 foreign key (movie_id, theatre_id, room, start_time)
 references movie_showtimes (movie_id, theatre_id, room, start_time)
) inherits (addresses);

Making assignment easier with method overrides

One of the drawbacks of a hybrid model in which the natural key exists in addition to
an arbitrary id column is that the columns must be assigned explicitly even in places
where the Rails associations would normally do the magic for us. For example, ordi-
narily we would assume we could do the following to create an order object, assuming
we already have a movie_showtime object in the variable ms:

108 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

>> o = Order.create!(
?> :movie_showtime => ms,
?> :purchaser_name => 'Joe Moviegoer')

This won’t work with our hybrid model, however, because the columns movie_id,
theatre_id, room, and start_time need to be specified as well. When not using the
composite_primary_keys plugin, Rails knows only that the second line above implies
the movie_showtime_id column’s value. The rest of the values must be specified man-
ually, as follows:

o = Order.create!(
 :movie_showtime => ms,
 :movie => ms.movie,
 :auditorium => ms.auditorium,
 :start_time => ms.start_time,
 :purchaser_name => 'Joe Moviegoer')

Note that we did get to skip the definition of the theatre because the auditorium com-
posite key takes care of that for us.

We’d rather keep things simple, though. We really want Rails to accept the simpler
syntax that we’d get if we chose to use the composite keys plugin, and with a little extra
magic, we can get assignment to behave the way we expect it to.

In order to make this work, we use the alias method to save the old movie_showtime=
assignment method under a new name, old_movie_showtime=. We then rewrite the
original method to do all the assignments we expected it to do. Finally, we call the old
framework method to be sure our method doesn’t have any unintended side effects.
Here is our method:

class Order < ActiveRecord::Base
 alias :old_movie_showtime= :movie_showtime=
 def movie_showtime=(ms)
 self.movie_id = ms.movie_id
 self.theatre_id = ms.theatre_id
 self.room = ms.room
 self.start_time = ms.start_time
 self.old_movie_showtime=(ms)
 end
end

Deferrable Foreign Key Constraints
Because natural keys are by definition not arbitrary—they are made up of the intrinsic
information that identifies the row—care must be taken when changing that data. For
example, if you sell a ticket for a movie showtime and then try to change the auditorium
that movie is set to play in, you will immediately get a referential integrity violation
exception from the database. The composite foreign key reference in the orders table
will no longer have a corresponding row in the movie_showtimes table.

Atop the Shoulders of… | 109

Download at Boykma.Com

Deferrable constraints allow you to postpone the checking of foreign key relationships
until the end of a transaction. Note that being inside a transaction is the key to deferrable
constraints. You are only granted a short, closed period during which referential in-
tegrity can be violated. The following unit test illustrates how to change part of a key
without violating referential integrity in dependent tables:

def setup
 @m = Movie.create!(
 :name => 'Casablanca',
 :length_minutes => 120,
 :rating => Rating::PG13)
 @t = Theatre.create!(
 :name => 'Kendall Cinema',
 :phone_number => '5555555555')
 @a = Auditorium.create!(
 :theatre => @t,
 :room => '1',
 :seats_available => 100)
 @ms = MovieShowtime.create!(
 :movie => @m,
 :theatre => @t,
 :auditorium => @a,
 :start_time => Time.new)
 @o = Order.create!(
 :movie_showtime => @ms,
 :movie => @m,
 :theatre => @t,
 :auditorium => @a,
 :start_time => @ms.start_time,
 :purchaser_name => 'Joe Moviegoer')
 end

 def test_deferrable_constraints
 MovieShowtime.transaction do
 @ms.start_time = @ms.start_time + 1.hour
 @ms.save!
 Order.update_all(["start_time = ?", @ms.start_time],
 ["movie_showtime_id = ?", @ms.id])
 end
end

Of course, the test fails, since we haven’t yet defined our foreign key reference to be
deferrable:

ChakBookPro:chapter-7-dknf chak$ ruby test/unit/movie_showtime_test_case.rb
Loaded suite test/unit/movie_showtime_test_case
Started
E
Finished in 0.657148 seconds.

 1) Error:
test_deferrable_constraints(MovieShowtimeTestCase):
ActiveRecord::StatementInvalid: PGError: ERROR: update or
delete on table "movie_showtimes" violates foreign key constraint
"orders_movie_id_fkey" on table "orders"

110 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

DETAIL: Key (movie_id,theatre_id,room,start_time)=
(20,20,1,2007-12-16 00:53:49.076398-05) is still referenced from table "orders".
: UPDATE movie_showtimes SET "start_time" = '2007-12-16 01:53:49.076398',
"theatre_id" = 20, "movie_id" = 20, "room" = '1' WHERE "id" = 20

To create a deferrable constraint, simply append the keyword initially deferred when
defining the constraint:

create table orders (
 confirmation_code varchar(16) not null
 check (length(confirmation_code) > 0),
 movie_showtime_id integer not null
 references movie_showtimes(id),
 movie_id integer not null,
 theatre_id integer not null,
 room varchar(64) not null,
 start_time timestamp with time zone,
 purchaser_name varchar(128) not null
 check (length(purchaser_name) > 0),
 primary key (confirmation_code),
 foreign key (movie_id, theatre_id, room, start_time)
 references movie_showtimes (movie_id, theatre_id, room, start_time)
 initially deferred
);

With our initially deferred foreign key, our unit test now passes:

ChakBookPro: chak$ ruby test/unit/movie_showtime_test_case.rb
Loaded suite test/unit/movie_showtime_test_case
Started
.
Finished in 0.093331 seconds.

1 tests, 0 assertions, 0 failures, 0 errors

Deferrable constraints solve the problem of “seldom changing.” They give you cake
and let you eat it, too. You can have true referential integrity, but you also are granted
a window where referential integrity can be compromised—as long as you are using
that window to make appropriate updates in dependent tables.

Note one caveat to this method of testing our deferrable constraint: deferrable con-
straints have meaning only within a transaction. Unit tests are all run within transac-
tions to facilitate cleanup between each test run—all the effects of a unit test are rolled
back before the next test is run. This means that, even if you forget to start and end
your own transaction, the test will appear to pass even though the same code would
throw a database exception elsewhere. This also, unfortunately, makes it impossible
to write a negative unit test for deferrable constraints.

Understanding the Trade-offs
In this chapter, we’ve seen three variations on referential integrity. The first is based on
the Rails default of id column primary keys. Through a rather simple example, we

Atop the Shoulders of… | 111

Download at Boykma.Com

showed that single-column primary keys are not always enough to guarantee that a
problem domain’s referential integrity is maintained. We can easily be given a false
sense of security that our data is protected when we have referential integrity constraints
throughout a data model, but we run into problems when those constraints don’t match
the real-world constraints behind the problem. For those situations, only natural keys
can give our data the protection it deserves.

We then saw two ways to implement natural keys. One method is a strict adherence
to domain key normal form using the composite_primary_keys plugin. The other
method is a hybrid that utilizes both Rails id columns for the primary keys but also
enforces referential integrity with unique constraints and references on natural keys.
The trade-offs between these methods are summarized in Table 8-1.

Table 8-1. Trade-offs of the methods for implementing natural keys

 Rails id columns only Strict DK/NF with composite pri-

mary keys plugin

Rails-DK/NF hybrid

Supported out of the box ✓ ✓
Domain-specific referential integrity ✓ ✓
Natural key can be updated via Rails API N/A ✓
Efficient use of indexes ✓ ✓

Ease of writing code ✓ ✓

The last two metrics, efficient use of indexes and ease of writing code, are worth dis-
cussing in more detail.

Efficient use of indexes

It’s obvious that with the Rails-DK/NF hybrid, we need two sets of indexes and
references as compared with a strict DK/NF data model. First, we need to index and
reference the Rails id columns. We additionally need to place unique constraints on
the natural key and then reference that key as well in dependent tables. This imposes
a cost in our database in terms of both time and space. There is a time cost because
each insert, update, or delete on a referenced table requires that two indexes be updated
and checked. Inserts and updates to dependent tables also require two checks rather
than one to be sure the reference is valid. It’s worth paying this price only if the problem
domain requires that the natural key be mutable. In our movie showtime example, we
argued rather unconvincingly that this might be the case. We also presented a con-
vincing argument that the natural key for showtimes be fixed, and that showtimes
should be cancelled if, for example, the time needed to be changed and orders had
already been placed. In many other real-world problems, it’s similarly unwise to change
natural keys once real-world dependencies are in play, as will often be the case.

Often newcomers to DK/NF are initially wary of leaving the well-understood behind.
If you feel like you really need the security of being able to change natural keys through

112 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

Rails after dependent objects have been created, take a step back and re-examine the
business case for doing so. As natural keys are those that map in some way to real life,
in all but the most bizarre of circumstances, it makes more sense to deactivate old
records and create new ones when this situation arises.

Ease of writing code

One of the major strength of Rails is that much can be said in very few lines of code,
so conventions that reduce programmer efficiency should be anathema to a Rails pro-
grammer. As we saw, using the composite_primary_keys plugin does not require much
in the way of additional code to make it work: just a single line in the class with the
composite key to define it, and an extra parameter when defining associations in de-
pendent classes. After that, coding proceeds as usual. In the Rails-DK/NF hybrid, we
don’t need any special definition for our natural key (other than database indexes and
constraints), but because the relationship doesn’t factor into the association relation-
ship from Rails’s point of view, we must constantly specify all of the natural key col-
umns when creating objects that reference the key. That is, unless we override the
association assignment method to make the assignments for us, but that too, is addi-
tional code to write.

While this is not exactly onerous, it should be considered when choosing to use the
DK/NF-Rails hybrid over a strict natural key model.

Figure 8-8 shows the end product of this chapter’s additions.

Exercises
1. Try to reproduce the anomaly demonstrated in Example 8-1. Convince yourself

that with the correct composite keys, it is impossible.

2. Make a list of real-world queries that are simplified by a composite key reference
from orders to movie_showtimes.

Refactor Steps
1. Examine each table. Are there any non-primary key columns that have a unique

constraint, or which should have a unique constraint?

2. If you found places where you must add a unique constraint, add it:

create unique index concurrently table_name_column_one_column_two_uniq_idx
 on table_name(column_one, column_two, ...);

3. Choose the next steps based on whether your unique constraint is based on one
column or multiple columns.

Refactor Steps | 113

Download at Boykma.Com

Single Column Refactor
1. In the table’s model class, change the primary key column using set_primary_key:

set_primary_key :unique_column

2. In tables that reference this table, add a column to reference the new key:

alter table dependent_table
 add column referenced_table_unique_column coltype;

3. Fill the column with appropriate values:

update dependent_table
 from referenced_table r
 set referenced_table_unique_column = r.unique_col
 where referenced_table_id = r.id;

4. Add the foreign key reference constraint to each dependent table:

alter table dependent_table
 add constraint referenced_table_unique_column_fkey
 (referenced_table_unique_col)
 references referenced_table(unique_col);

id
phone_number

theatres

id
name
length_minutes
rating_id

movies

id
movie_run_id
movie_id
theatre_id
room
start_time

movie_showtimes

id
confirmation_code
purchase_price_cents

purchased_tickets

theatre_id
room
seats_available

auditoriums

id
rating_name
description

ratings

confirmation_code
movie_showtime_id
movie_id
theatre_id
auditorium_id
room
start_time

orders

id
name

payment_typeszip
city
state

zip_codes

name
line_1
line_2
city
state
zip_code

addresses

Figure 8-8. The theatre tickets schema with domain key/normal form and Rails-DK/NF hybrid

114 | Chapter 8: Composite Keys and Domain Key/Normal Form

Download at Boykma.Com

5. Drop the original id column and reference:

alter table referenced_table
 drop column id;
alter table dependent_table
 drop column referenced_table_id;

6. Set the new column as the primary key:

alter table referenced_table
 add primary key(unique_column);

Multiple Column Refactor
1. Install the composite_primary_keys gem:

gem install composite_primary_keys

2. Load the gem in your application. In environment.rb, add the following:

require 'composite_primary_keys'

3. In the table’s model class, change the table’s primary key using set_primary_keys:

set_primary_keys [:col1, :col2, ...]

4. Follow the steps for single column refactor, starting with 2.

Refactor Steps | 115

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 9

Guaranteeing Complex Relationships
with Triggers

In this chapter, we’ll go over an advanced technique for mapping tricky real-world
referential integrity constraints to the data layer. This technique uses database trig-
gers, which allow you to run arbitrary code to check that new data is valid before
inserting or updating rows. We’ll write a stored procedure that ensures an auditorium
isn’t double-booked and create a trigger that runs our procedure whenever a movie
showtime is added or changed. I’ll describe the basic structure of a function in
Postgtres’s procedural language PL/pgSQL, so you can start building your own func-
tions for a variety of uses, and cover the special properties of trigger functions.

Constraint Checking with Triggers
As just noted, stored procedures that can be triggered when certain conditions in the
database are met can allow you to check for and guarantee arbitrarily complex rela-
tionships. A number of times throughout this book, the issue of double-booking an
auditorium has come up. This problem is not easy to avoid with simple foreign key or
check constraints because the problem spans multiple tables. Auditorium bookings are
recorded in the movie_showtimes table, but the length of a movie is recorded in the
movies table (Figure 9-1).

id
movie_id
theatre_id
room
start_time

movie_showtimes

id
name
length_minutes
rating_id

movies

Figure 9-1. Auditorium bookings in movie_showtimes; length of movie in movies

117

Download at Boykma.Com

There are also a number of cases to be considered to determine whether one showtime
overlaps with another. Figure 9-2 shows these cases. The first case, Case 0, is the
throwaway case: the showtimes do not overlap. In Case 1, the movies do overlap: Movie
2 starts after Movie 1, but before Movie 1 finishes. Case 2 is the same case with the
movies reversed: Movie 1 starts after Movie 2, but before Movie 2 finishes. In Case 3,
Movie 2 starts and ends while Movie 1 is playing. Case 4 is the opposite of Case 3:
Movie 1 starts and ends while Movie 2 is playing. Finally, we also want to treat the edge
cases of a movie starting exactly when another movie ends, which may be okay for a
double feature with no intermission. Therefore, if a start time and end time are the
same, it’s OK, but if two start times are the same, it’s not OK.

Examining all of these cases, we find the following statements hold true: if either the
start or end time of one movie is between the start or end time of another movie, then
the movies overlap. That is, unless the start time of one movie is equal to the end time
of the other movie.

Movie 1 Movie 2
Case 0:

not overlapping

Movie 1

Movie 2

Movie 1

Movie 2

Case 1:
overlapping

Case 2:
overlapping

Movie 1

Movie 2

Case 3:
overlapping

Movie 1

Movie 1 Case 4:
overlapping

Movie 1 Movie 2 Case 5:
not overlapping

Movie 2 Movie 1 Case 6:
not overlapping

Figure 9-2. Five cases for checking if two time intervals overlap

118 | Chapter 9: Guaranteeing Complex Relationships with Triggers

Download at Boykma.Com

Rather than attacking this whole problem all at once, we work in stages. We begin by
creating a small function called do_times_overlap, shown in Example 9-1. This method
takes four arguments: start and end times for two intervals, respectively, and evaluates
the expression we came up with earlier. The function also checks for invalid inputs,
which can occur if an end time is before a start time.

Example 9-1. A PL/pgSQL function to determine if two intervals overlap

create or replace function do_times_overlap(
 start_1 timestamp with time zone,
 end_1 timestamp with time zone,
 start_2 timestamp with time zone,
 end_2 timestamp with time zone
) returns boolean as $$
begin
 if end_1 < start_1 then
 raise exception 'First end time is before first start time.';
 end if;
 if end_2 < start_2 then
 raise exception 'Second end time is before second start time.';
 end if;
 if start_1 = end_2 or start_2 = end_1 then
 return false;
 else
 return (start_1 between start_2 and end_2)
 or (end_1 between start_2 and end_2)
 or (start_2 between start_1 and end_1)
 or (end_2 between start_1 and end_1);
 end if;
end
$$ language plpgSQL;

The next order of business is to test this function. Does it work for all of these cases?
Example 9-2 shows our test case class and all our tests, including tests that check that
exceptions are thrown on invalid inputs. It may seem onerous or even wasteful to test
such little pieces of code—indeed, the code to write the tests takes up twice as much
space as the code we are testing—but it’s worth it. In the interest of full disclosure,
neither the PL/pgSQL function nor the set of test cases came out right the first time
through when they were added to this example. It took a few iterations to get it all right,
and writing the tests was instrumental in that process. I could have just tested the
procedure ad-hoc—which is how much code is often tested—but as I changed the code
to cover all cases or improve readability, I was able to quickly rerun the test cases,
guaranteeing that after each change, all scenarios were covered. The result is not only
a more complete test bed but also a correct and more complete function, which accu-
rately accounts for all cases, even those I didn’t think of right away.

Constraint Checking with Triggers | 119

Download at Boykma.Com

Example 9-2. Tests for the do_times_overlap PL/pgSQL function, placed in test/unit/physical/
do_times_overlap_test_case.rb

require File.dirname(__FILE__) + '/../test_helper'

module Physical
 class DoTimesOverlapTestCase < Test::Unit::TestCase

 def setup
 @start_1 = Time.new
 @end_1 = @start_1 + 1.hour

 @before = @start_1 - 15.minutes
 @between = @start_1 + 15.minutes
 @between2 = @start_1 + 30.minutes
 @after = @end_1 + 15.minutes
 @after2 = @end_1 + 30.minutes
 end

 def do_times_overlap?(s1, e1, s2, e2)
 result = ActiveRecord::Base.connection.select_value("
 select do_times_overlap('#{s1}', '#{e1}', '#{s2}', '#{e2}')
 ")
 return (result == "t")
 end

 def test_do_times_overlap
 # case 0 - non-overlapping
 assert !do_times_overlap?(@start_1, @end_1, @after, @after2)
 # case 1 - movie 2 starts in the middle of movie 1
 assert do_times_overlap?(@start_1, @end_1, @between, @after)
 # case 2 - movie 2 ends in the middle of movie 1
 assert do_times_overlap?(@start_1, @end_1, @before, @between)
 # case 3 - movie 2 starts and ends during movie 1
 assert do_times_overlap?(@start_1, @end_1, @between, @between2)
 # case 4 - movie 1 starts adn ends during movie 2
 assert do_times_overlap?(@start_1, @end_1, @before, @after)
 # case 5 - non-overlapping - movie 2 starts right after movie 1
 assert !do_times_overlap?(@start_1, @end_1, @end_1, @after)
 # case 6 - non-overlapping - movie 1 starts right after movie 2
 assert !do_times_overlap?(@start_1, @end_1, @before, @start_1)
 end

 def test_exceptional_cases_caught
 test_for_db_error("Nonsense data was allowed") do
 do_times_overlap?(@end_1, @start_1, @before, @start_1)
 end
 end

 def test_exceptional_cases_caught_2
 test_for_db_error("Nonsense data was allowed") do
 do_times_overlap?(@start_1, @end_1, @after, @before)
 end
 end

120 | Chapter 9: Guaranteeing Complex Relationships with Triggers

Download at Boykma.Com

 end
end

Anatomy of a PL/pgSQL Function
Next, we will write the function that will be triggered on inserts and updates,
check_movie_showtime_overlaps. The actual definition of this function is shown in Ex-
ample 9-3, but we’ll start by going over the structure of a PL/pgSQL function in detail
so that you can apply the lessons of this chapter to your own future, unknown
situations.

Following is the basic structure of a PL/pgSQL stored procedure. Replaceable portions
are in italics, and the rest of the code is common to all procedures:

CREATE FUNCTION myfunc(myparam sometype) RETURNS sometype AS $$
DECLARE
 local_variable sometype := default_value;
BEGIN
 -- procedure body goes here
 RETURN local_variable;
END;
$$ LANGUAGE plpgsql;

Aside from the basic structure, we see that a procedure has a name—our procedure is
called myfunc—which we use to identify and also to execute it.

Procedures can also take parameters in a comma-separated list. Here we have a single
parameter, myparam. Parameters also must have their type specified. Here we have used
sometype as a placeholder for a real Postgres type. In practice, we would specify an
actual type here: integer, varchar, etc.

Special types are available in PL/pgSQL procedures as well, which allow us to deal with
entire rows of data. To specify that a type should have the structure of a particular
table’s row, you say tablename%ROWTYPE. If the structure does not match any particular
table’s row definition—for example, if the row is a result of a query that joins multiple
tables—you can specify the type record, which is a generic container for a set of columns
returned from a query.

We can also add comments to PL/pgSQL procedures. Comments are either SQL style,
beginning with --, or C style:

/* This is a C style PL/pgSQL comment. */

Notice that we end the function by specifying the language. Postgres supports stored
procedures written in a number of languages. Included in the core distribution is lan-
guage support for stored procedures written in Tcl, Perl, and Python, in addition to the
SQL procedural language PL/pgSQL. There are also a number of languages developed
outside the Postgres core, which can be downloaded and set up alongside the built-in
languages. These include PHP, Java, and Ruby. Although writing our procedures in
Ruby is tempting, I don’t do so in this book because PL/pgSQL is the most portable;

Constraint Checking with Triggers | 121

Download at Boykma.Com

it matches Oracle’s PL/SQL rather closely, so you won’t have to do much relearning if
you’re writing your website atop Oracle rather than Postgres.

Regardless of which language you do choose, before you can write a procedure in that
language, you must tell Postgres you are going to use it within your the database. You
do so by issuing the create language command:

create language plpgsql;

You need to create a language only once for each database. A good place to put any
language definitions you might have is at the start of your database install SQL script.

It’s all strings

The entire body of a PL/pgSQL procedure is a string. In our preceding example, the
string is delimited with double dollar signs ($$). We could have used the standard SQL
string delimiter of an apostrophe ('), but then any apostrophes denoting strings within
the procedure body would need to be escaped. This can get ugly, and it’s also an easy
way to write bugs. Therefore, in PL/pgSQL procedures, you can create as many unique
string delimiters as you want, as long as they start and end with a dollar sign. $$, F,
and $FUNCTION$ are all valid delimiters. It’s a good practice to avoid quoting your quotes,
using single apostrophes only for innermost strings. The following shows assignment
of a string containing an apostrophe to a variable:

CREATE FUNCTION myfunc() RETURNS void AS $FUNC$
DECLARE
 book text := $$'Scaling to Enterprise' by Dan Chak$$;
BEGIN
END;
$FUNC$ language plpgsql;

Local variables and assignment

Any local variables used within a PL/pgSQL procedure must be declared in the
declare section. The syntax is:

varname <type> [:= default_value];

Once a variable has been declared, there are two mechanisms for assignment. One
we’ve already seen: you specify := after a variable name. You can follow := with a literal,
or with a SQL select statement. However, you drop the keyword select; it’s implied
when using this syntax:

varname := foo from bar where baz = 1;

The second assignment mechanism is select into. You specify a target variable fol-
lowed by the query:

select into varname foo from bar where baz = 1;

122 | Chapter 9: Guaranteeing Complex Relationships with Triggers

Download at Boykma.Com

The two methods are largely equivalent. The distinction occurs when you are selecting
into a variable of type record or %rowtype; in these situations, you must use the select
into syntax.

Blocks

PL/pgSQL is a block-level language. The structure of a block is:

DECLARE
 -- declarations
BEGIN
 -- code
END;

This looks much like our do_times_overlap method itself, and indeed, entire functions
do comprise a block. You can embed blocks within other blocks if you are writing
complex procedures and want to keep variables local to certain chunks of code.

Trigger-specific features

When writing a procedure that is to be used as a trigger, there are some additional
things to keep in mind. First, such procedures must have trigger as their return type.

Next, in an insert or update operation, a special local variable NEW is available, which
contains the row being inserted or updated. In updates, the variable OLD contains the
original row that is about to be changed.

Triggers: fail safe versus fail fast

The return value of a trigger procedure determines what is ultimately stored in the
database. If NULL is returned, no insert or update occurs. Otherwise, a record of the
same structure as the row to be inserted should be returned, and that will be the record
that is inserted. You can create a new record, or modify NEW in place and return it. These
are ways to fail safe in the presence of some bad data. You know you don’t want to
commit the data to the database, but it’s not critical enough in nature to put a halt to
the application trying to do the inserts.

Most often, if you are using triggers to guarantee referential integrity, you’ll want a hard
stop that lets callers know explicitly that they’re attempting something bad. Usually
that signals a bug in software code that should be fixed. In these cases, you want to fail
fast. To do so, you throw an exception, which will be rethrown to the application layer:

raise exception 'Exception thrown at %', now();

You can customize exception strings with substitutions. Within a string, you insert a
% wherever you want to substitute text, and then add additional parameters for each
substitution. We failed fast in our do_times_overlap function when end times were
before start times. Indeed, this indicates some type of programming error, and we want
to catch this as soon as possible. Otherwise, we will get unpredictable results from our

Constraint Checking with Triggers | 123

Download at Boykma.Com

procedure, and the bug may go undetected for some time, causing user frustration and
compromising our data.

Conditionals

PL/pgSQL supports branching on conditional statements. The most common is an IF-
THEN-ELSE structure, which is nestable. IFs must end with a matching END IF:

IF [conditional] THEN
 -- code
ELSE
 -- code
END IF;

Of course, there are additional conditionals in PL/pgSQL, as well as other control
structures, and other language features in general. For complete documentation, see
http://www.postgresql.org/docs/8.2/static/plpgsql.html. However, what I’ve just ex-
plained is enough to write and fully understand the procedure we’ll write to guarantee
movie showtimes do not overlap, shown in Example 9-3.

Example 9-3. The check_for_movie_showtime_overlaps PL/pgSQL trigger function

create or replace function check_movie_showtime_overlaps()
 returns trigger as F
declare
 new_end_time timestamp with time zone;
 conflicting_showtime record;
begin
 new_end_time := NEW.start_time +
 ((select length_minutes
 from movies
 where id = NEW.movie_id) || ' minutes')::interval;
 select into conflicting_showtime
 ms.*, m.*
 from movie_showtimes ms,
 movies m
 where ms.id != NEW.id
 and ms.theatre_id = NEW.theatre_id
 and ms.room = NEW.room
 and ms.movie_id = m.id
 and do_times_overlap(
 NEW.start_time,
 new_end_time,
 ms.start_time,
 ms.start_time + (m.length_minutes || ' minutes')::interval)
 limit 1;
 if conflicting_showtime is not null then
 raise exception $$This showtime overlaps with another showtime
in the same auditorium: '%' starting at %$$,
 conflicting_showtime.name, conflicting_showtime.start_time;
 else
 return NEW;
 end if;

124 | Chapter 9: Guaranteeing Complex Relationships with Triggers

Download at Boykma.Com

http://www.postgresql.org/docs/8.2/static/plpgsql.html

end
F language plpgsql;

To specify that a procedure should be executed as a trigger, we have to create the trigger
on a particular table. We create a trigger as follows:

create trigger check_movie_showtime_overlaps_iu_trigger
 before insert or update
 on movie_showtimes
 for each row
 execute procedure check_movie_showtime_overlaps();

The final step would be to create unit tests—positive and negative tests and also tests
that check for resilience against bogus inputs—for the movie_showtimes class. By now,
you should be a pro at writing unit tests, so doing so is left as an exercise for the reader.

Constraint Checking with Triggers | 125

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 10

Multiple Table Inheritance

We’ve spent a lot of time on the idea of tweaking your data model until it’s rock solid,
impervious to application-layer bugs or a meddling Martha at the psql prompt. By now,
you should feel like you’re ready to practice referential integrity jujitsu or constraint
kung fu. It may come as a surprise, then, to learn that there is a feature of ActiveRecord,
polymorphic associations, that depends on breaking the referential integrity we’ve
worked so hard to ensure.

Before you get your knickers in a knot, remember that ActiveRecord was primarily
developed against MySQL, at a time when referential integrity was a “feature” that
MySQL did not support. So it’s understandable that some “features” crept into
ActiveRecord and Rails that are not really features at all but actually Sdisasters waiting
to happen.

In this chapter, we’ll examine polymorphic associations, understand the problem they
were intended to solve, and come up with a better solution that allows us to preserve
referential integrity. We’ll continue with our practice of pairing a powerful new pattern
at the application layer with getting the most we can for free out of the data layer,
allowing the two layers to work together side by side.

The Problem
Polymorphic association allows you to define a relationship between two tables without
knowing ahead of time what one of the tables in the relationship is. This allows you to
define “xor” relationships: “A has one of B or C but not both.” Usually, it’s assumed
that B and C are of similar logical types, but just happen to be stored in different tables.

As an example, consider an object model for an employee who must choose between
health plans of different styles, HMOs versus PPOs, as shown in Figure 10-1.

127

Download at Boykma.Com

We see that in our object model, we want to differentiate between pan types. HMOs
and PPOs definitely behave differently. We could still represent this at the data layer
with a single table, using Rails’ built-in single-table inheritance mechanism, but rec-
ognizing that HMOs are evil, the architect of this model chose to keep them separate.

Polymorphic associations to the rescue! Assuming we keep our health plan tables
separate—one for HMOs and one for PPOs—we can define our Employee class like so:

def Employee < ActiveRecord::Base
 belongs_to :health_plan, :polymorphic => true
end

To specify an association is polymorphic, you say :polymorphic => true in an associ-
ation definition. To support this, the employee table must look like this:

create table employees (
 id integer not null
 default nextval('employees_id_seq'),
 name varchar(64) not null,
 health_plan_id integer not null,
 health_plan_type varchar(32) not null
);

This trick is implemented in the data layer with two columns for the association. The
first is the foreign key reference, {foreign_table}_id. The second specifies the table
name of the foreign object: {foreign_table}_type.

This seems great—a veritable panacea to the problem of multiple table inheritance;
unfortunately, the Rails approach to polymorphic associations is at odds with a design
that hopes to enforce referential integrity. Because it’s not known what table
foreign_table_id refers to, it’s not possible to add a foreign key constraint enforcing
the relationship. This opens the design back up to the possibility of orphaned associ-
ations and generally invalid data. In fact, this construct is completely unconstrained at
the application layer. You can assign any object into the health_plan attribute, not just
HMOPlan or PPOPlan objects. What seemed like an elegant solution is suddenly a black
hole for bugs.

In this chapter, we’ll learn a better way to handle this sort of relationship. We’ll start
with a discussion of polymorphism in general. Understanding this important computer
science principle will help us avoid abusing it. Next, we’ll look at two mechanisms

Employee HealthPlan

HMOPlan PPOPlan

1

Figure 10-1. Object model for an employee associated with one of a set of different health plans

128 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

for inheritance: single table inheritance (STI) and multiple table inheritance (MTI). Rails
supports STI out of the box. When you use it, you don’t need a polymorphic associa-
tion. Rails doesn’t, however, support true MTI out of the box, and this is where poly-
morphic associations come into play; they attempt to solve that problem, but not very
well. We’ll see how to make MTI work in Rails, then learn how to make polymorphic
associations work correctly in both the data and application layers in the section “XOR
on Columns,” later in this chapter.

With this technique, the relationship is just as easy to manage from the Rails application
layer as polymorphic associations. We’ll also have the added benefit that the database
is put to work on our behalf to ensure the integrity of our data.

What Is Polymorphism?
Polymorphism is the property in a programming language that allows objects of dif-
ferent types to be substituted for one another in program flow without needing to know
ahead of time what the object’s type is.

Many people would take issue with that definition as overly simplistic. Indeed, most
discussions about polymorphism are much more intricate because they get caught up
in the syntax of a particular language and how you achieve polymorphism, as if it’s an
epic battle. This leads to discussion of the places where you can have polymorphism,
followed by what hoops you must jump through to get polymorphism. In Ruby, poly-
morphism is everywhere, so it’s much simpler.

Yes, polymorphism applies to methods as well as objects. For example, we could define
a method plus, which just applies + to two parameters:

def plus(a, b)
 a + b
end

This method doesn’t care what the types of a and b are. Method signatures are com-
pletely untyped. We also see polymorphism in the + operator itself. As long as it has
meaning for the parameters, the method will work:

>> plus(1, 2)
=> 3
>> plus("hel", "lo")
=> "hello"
>> plus([1], [2])
=> [1, 2]

We can also demonstrate polymorphism at the object level; through inheritance, sub-
classes can take on specialized behavior not found in the base class:

class Animal
 def noise
 raise "Noise not defined for #{self.class}"
 end
end

What Is Polymorphism? | 129

Download at Boykma.Com

class Dog < Animal
 def noise
 "Woof!"
 end
end

class Cat < Animal
 def noise
 "Meow!"
 end
end

We can now iterate over a list of animals printing out their noises:

>> [Cat.new, Dog.new].each{|a| puts a.noise}
Meow!
Woof!

We called the noise method on each object, and the right noise was made for each
animal because the method was overridden in each class definition. In many languages,
as well as in our preceding example, the language feature we used to implement poly-
morphism was inheritance. However, in Ruby, we don’t need to use inheritance to get
this behavior. We could have left the Animal class out altogether, as in the following,
and the output of our puts loop would be identical:

class Dog
 def noise
 "Woof!"
 end
end

class Cat
 def noise
 "Meow!"
 end
end

In Ruby, inheritance is a mechanism for sharing common behavior, but it’s not a pre-
requisite to achieve polymorphism. When we iterate over a list, there is no requirement
that the list members be of the same type or inherit from a common ancestor (truth be
told, all objects in Ruby do inherit from Object). In many other languages, class inher-
itance (or in Java, the use of interfaces) is how you achieve polymorphism with objects.
Not so in Ruby, due to duck typing. In Ruby, you never specify the expected types of
inputs to methods or their return values, nor do you specify the type of objects com-
posing a list, hash, or other structure; as long as an object has the properties a caller
expects it to have, everything just works. The distinction between polymorphism for
methods as opposed to polymorphism for objects is blurred in Ruby. In most languages,
the need for a distinction is borne out of implementation syntax. In Ruby, these syn-
tactical considerations simply don’t exist.

130 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

Inheritance and Persistence
Aside from utility functions, most polymorphism in web programming is related to
inheritance, be it strict class inheritance or implementation of interfaces through mod-
ule includes.

The consideration, then, is how to store these hierarchies of objects in the database.
Should the data be stored in a single table or in multiple tables? And if the latter, how
do we do this in the context of Rails using ActiveRecord? In this chapter, we’ll expand
upon the payment data model we left off with in Chapter 5, reworking it to be more
complete from the perspective of our real-world application. In doing so, we’ll en-
counter a case of STI, which Rails supports by default. We’ll also encounter an example
of MTI.

Since our application is about to get rather complex, we begin by developing a logical
model for the order payment system before we jump to the physical model.* The logical
model is shown in Figure 10-2. We still have an order, which contains multiple tickets.
However, we now split off the payment into its own class. We have three distinct types
of payments: a credit card payment, as we had previously, a Paypal payment, and also
a free promotional payment, which might be granted for entering a valid promotional
code. The CreditCard class is a super class of three accepted card types: AmEx, Visa,
and MasterCard. All credit card payments need address information, so the Credit
Card class also implements the Address interface via a module include.

We have two inheritance hierarchies: one descending from CreditCardPayment and one
descending from Payment. Logically there is no practical difference. The question to ask

* Logical versus physical models are dealt with in depth in Chapter 15.

Order

Ticket

*

Payment

CreditCardPayment PromotionalPayment

AmExPayment

Address

VisaPayment MastercardPayment

PaypalPayment

Figure 10-2. Logical model for the order payment system

Inheritance and Persistence | 131

Download at Boykma.Com

when determining what type of physical inheritance to use (single- or multiple-table)
is whether subclasses actually share any physical data. If all or even most of the data is
shared from one subclass to the next, then single table inheritance is an appropriate
choice. However, if the classes do not have much data in common, then multiple table
inheritance (or even no inheritance at the data layer) is the right choice.

It’s tempting to use single table inheritance for everything because it’s built-in, but that
would be a big mistake. When you use single table inheritance in cases where there is
little data overlap, your data model becomes confusing; many of the columns are not
intended to be filled except under certain circumstances—when the row is of the ap-
propriate subtype. Similarly, the application layer becomes polluted with getter and
setter methods for each physical column in the table; when viewed from the logical
model’s perspective, these columns and their getters and setters aren’t intended to be
there. When you use single table inheritance, the physical model of the data layer bleeds
through to the logical model of the application.

STI also has another drawback: class names get saved to the database to identify the
type of each row, linking code and data in a way that can have unexpected consequences
as your application matures. One constraint you impose upon yourself by using STI is
that your class names become more or less set in stone. If you decide to change them,
you must update all the records that reference the original classes. On a production
database with millions of records and active users, making such a change is practically
impossible. It could take hours, and in the meantime, either your site slows to a crawl
or it simply doesn’t work because STI relationships can’t be figured out.

Single Table Inheritance
We have recast our credit card model from Chapter 4. There we left off with credit
cards implementing a sort of strategy pattern; credit card objects were constants whose
methods could be applied to orders to get a job done, such as processing a payment.
This time we’ll take a different approach. Here, we’ve split off the payment information
from the Order class. Each CreditCardPayment object will contain the data necessary to
process a transaction: the credit card number, expiration information, and any address
data necessary to authorize the transaction.

The object itself can take care of the processing, operating on its own local data. But
there won’t ever be any CreditCardPayment objects; the objects will be instances of one
of the subclasses (MasterCardPayment, VisaPayment, and AmexPayment), which will define
the particular behavior for processing transactions of that type. Because the types of
information supplied by users to process a credit card payment is the same regardless
of the payment type, this is a perfect case for single table inheritance. The physical single
table that holds credit card payments for AmEx, Visa, and MasterCard is shown in
Figure 10-3. The type column changes depending on which card type was chosen,
specifying which class should be used.

132 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

Multiple Table Inheritance
Next we turn our attention to a very different case. We have defined three different
methods for payment—by credit card, by Paypal, or by entering a promotional code—
and we can imagine over time there may be even more payment options. New con-
tenders such as Google Checkout or Amazon’s payment system are likely future
additions. Figure 10-4 shows this segment of our logical model.

id

purchaser_name

phone_number

card_number

expiration_date

credit_card_type_id

purchase_price_cents

completed

type

credit_card_payments

line_1

line_2

city

state

zip_code

addresses

CreditCardPayment

AmExPaymentVisaPayment MastercardPayment

logical

physical

Address

Figure 10-3. Logical and physical models for CreditCardPayment and its subclasses; physical model
uses STI

Address

Payment

CreditCardPayment PromotionalPayment PaypalPayment

Figure 10-4. Logical model for Payment and its subclasses

Inheritance and Persistence | 133

Download at Boykma.Com

The physical models for these three classes is shown in Figure 10-5, along with all of
their attributes. What we find when we look at these three payment subclasses is that
they don’t share much information in common between them. A Paypal payment might
have the user’s email address, as well as some returned authorization information from
Paypal that means the payment was successful. A free ticket purchased via a promo-
tional code might have a foreign key reference to the pertinent promotion (not shown).
And standard credit card payment records will have all the credit card information
necessary to process the transaction, and also any returned authorization information.

While the three subtypes of CreditCardPayment shared much in common, and were
therefore ripe for single table inheritance, these three disparate payment types don’t
share much in common at all. They share the transaction amount, whether the payment
was processed successfully or not, and if we stretch ourselves, the record id as well.
Therefore, we keep these tables separate, but each model class will continue to inherit
from the Payment class, so that we can continue to take advantage of the benefits of
inheritance.

One problem we run in to, though easily solved, is that Rails assumes the table name
associated with a class is based on the first class in the hierarchy to descend from
ActiveRecord::Base. In this case it would be assumed that a table called payments ex-
isted, and that it contained a type column. This assumption is what makes single table
inheritance work. When using multiple table inheritance, we need to tell Rails to use
each subclass’s own table, using the set_table_name directive in each subclass:

class Payment < ActiveRecord::Base
end

class PromotionalPayment < Payment
 set_table_name 'promotional_payments'
end

class CreditCardPayment < Payment
 set_table_name 'credit_card_payments'
end

id
purchaser_name
phone_number
card_number
expiration_date
credit_card_type_id
purchase_price_cents
authorization
completed
type

credit_card_payments

id
promotion_id
purchase_price_cents

promotional_payment

id
email
purchase_price_cents
completed
authorization

paypal_payment

Figure 10-5. Physical model for our three payment types; no inheritance needed in the physical model

134 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

class PaypalPayment < Payment
 set_table_name 'paypal_payments'
end

Our initial goal was to set up a relationship between the orders table and these payment
types without using :polymorphic => true. Instead, we add to the orders table refer-
ences to each of these tables. Example 10-1 shows the orders table with these references,
each of which can support a true database-level constraint, unlike an application-level
polymorphic assocation. Note that unlike most other references we have defined in this
book, promotional_payment_id, credit_card_payment_id, and paypal_payment_id must
all be nullable because only one of them should contain an actual reference at any one
time. The challenge then, is how to make sure only one of the references is not null. We
accomplish this with XOR on columns.

Example 10-1. Orders table with references to each subclass in a multiple table inheritance hierarchy

create table orders (
 confirmation_code varchar(16) not null
 check (length(confirmation_code) > 0),
 movie_showtime_id integer not null
 references movie_showtimes(id),
 movie_id integer not null,
 theatre_id integer not null,
 room varchar(64) not null,
 start_time timestamp with time zone,
 credit_card_payment_id integer
 references credit_card_payments(id),
 promotional_payment_id integer
 references promotional_payments(id),
 paypal_payment_id integer
 references paypal_payments(id),
 primary key (confirmation_code),
 foreign key (movie_id, theatre_id, room, start_time)
 references movie_showtimes (movie_id, theatre_id, room, start_time)
initially deferred
);

XOR on Columns
XOR, pronounced “ex or” is also known as exclusive or. It is a mathematical operator,
meant to be applied to two inputs, which tests that one of the two values is true, but
not both. Table 10-1 is a truth table for XOR.

Table 10-1. Truth table for two-value XOR

A B A XOR B

False False False

True False True

False True True

True True False

Inheritance and Persistence | 135

Download at Boykma.Com

We could write XOR simply in Ruby:

def xor(a, b)
 (a || b) && !(a && b)
end

It would also not be difficult to write this as a database check constraint. If we were
only trying to guarantee the relationship that only one of paypal_payment_id or
promotional_payment_id were not null, forgetting for a moment about credit_card_pay
ment_id, we could create a constraint as follows:

alter table orders add constraint paypal_or_promotional_payment_xor
 check(
 (paypal_payment_id is not null or promotional_payment_id is not null)
 and not
 (paypal_payment_id is not null and promotional_payment_id is not null)
);

However, the situation gets a bit more complicated when we move to a relationship
with more than two columns. Strictly speaking, the mathematical definition of XOR
for more than two values is not exactly what you might expect. Traditionally in math-
ematical contexts, XOR beyond two inputs is true if an odd number of values are true.
For our purposes, we want a real exclusive or, meaning one and only one value is true.
Therefore, for three values, a truly exclusive XOR would look like this in Ruby:

def xor3(a, b, c)
 (a || b || c) &&
 !(a && b) && !(a && c) && !(b && c)
end

As we go up in the number of parameters, the first part of our expression,
(a || b || c), where we check that at least one value is true, expands linearly with the
number of parameters. However, the second half of the expression, where we check
that not more than one value is true, expands mathematically as the number of pa-
rameters choose two, written as shown here:

n
2()

This means that we need to enumerate every pair that exists in the set, and that can be
cumbersome to write. Cumbersome code tends to lead to coding errors, so we’d like
to avoid that.

Instead we note a special property. If we convert values that are not null to 1, and values
that are null to 0, and add these up, the property we want to maintain is true if the sum
of these values is equal to 1.

We can convert an expression that evaluates to true or false to numerical values in the
database using an integer cast. In Postgres, we would write this as:

(expression)::integer

136 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

An expression that evaluates to true is equal to 1 when cast to an integer, and a false
expression evaluates to 0. So for three columns, only one of which should be null, we
can cast the expressions to integers, and add them up. If the sum is equal to 1, then we
know that only one column is not null. We add the following constraint to the
orders table using this technique:

alter table orders add constraint payment_xor check(
 (credit_card_payment_id is not null)::integer +
 (paypal_payment_id is not null)::integer +
 (promotional_payment_id is not null)::integer = 1
);

We now have the referential integrity we desired in the data layer. The next step would
be to write database unit tests, which is left as an exercise. We’ll skip ahead here to our
next goal: easy-to-use polymorphic associations at the application layer, built atop our
solid data model.

Elegant MTI in Rails
The physical data model we are left with now has three physical associations from our
orders table to the various payment tables, shown in Figure 10-6. We would normally
express such a relationship in Rails by creating a belongs_to relationship for each one:

class Order < ActiveRecord::Base
 belongs_to :credit_card_payment
 belongs_to :promotional_payment
 belongs_to :paypal_payment
end

Even though the physical model has three independent connections, application code
is where we want to deal with objects the way our logical model dictates the objects fit
together. Looking back at our logical model in Figure 10-2 (shown earlier), we see that
an Order object has a Payment object. One nice aspect of the built-in polymorphic as-
sociations is that this relationship is created for you automatically; you can assign in-
stances of any payment type directly into a attribute called payment, rather than having
to explicitly assign into the attribute of the correct type, as we would have to do with
three separate belongs_to declarations we wrote above.

Inheritance and Persistence | 137

Download at Boykma.Com

id
purchaser_name
phone_number
card_number
expiration_date
credit_card_type_id
purchase_price_cents
authorization
completed
type

credit_card_payments

id
promotion_id
purchase_price_cents

promotional_payment

id
confi rmation_code
movie_showtime_id
promotional_payment_id
credit_card_payment_id
paypal_payment_id

orders

id
email
purchase_price_cents
completed
authorization

paypal_payment

Figure 10-6. Physical association of the orders table with our three payment types

Luckily, we can get the behavior we want; we just need to create it ourselves. We’ll use
inheritance to accomplish this. The first step is to define our Payment class. It doesn’t
do much. It’s purpose is to collect the subclasses somewhere; even though duck typing
means our payment types don’t have to descend from Payment to act like payments,
we’ll use the inheritance relationship to facilitate our implementation of MTI. The
Payment class, therefore, is simply a shell:

class Payment < ActiveRecord::Base
end

require 'credit_card_payment'
require 'paypal_payment'
require 'promotional_payment'

Note that we also loaded each subclass using the require command. Generally, it’s a
bad idea for a parent class to know about its subclasses, but due to the way Rails loads
code—only when it’s needed—the subclasses may not get loaded in time for our needs
here. We’ll discuss how to get around this problem later in the book.

138 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

Example 10-2 shows how we go about creating an accessor, payment, which gives us
the right object, regardless of which association is actually in use. Note that we could
have written this method in a much simpler way, but we wrote it in a generic fashion
so it could be applied to other classes, or be recast as a plugin, without much change.
Writing it generically also allows us to introduce some advanced features of Ruby and
Rails.

Example 10-2. Polymorphic accessor for multiple table inheritance

class Order < ActiveRecord::Base
 # assocations would go here...

 def payment
 # for a given class, returns the appropriate symbol
 # to pass to the ActiveRecord method reflect_on_association
 def reflection_symbol(klass)
 klass.to_s.split("::").last.underscore.to_sym
 end

 # for all subclasses of the given base class, returns a
 # list of defined associations within the current class
 def association_methods(mti_base_class)
 Object.subclasses_of(mti_base_class).collect{|p|
 assoc = self.class.reflect_on_association(reflection_symbol(p))
 assoc ? assoc.name : nil
 }.compact
 end

 # invoke each association method and return the first
 # that is not null
 association_methods(Payment).collect{|a|
 self.send a
 }.inject do |a, b|
 a || b
 end
 end
end

The above example of our payment accessor is rather complex, so we’ll go through each
piece in turn. If you are unfamiliar with any of the built-in Ruby or Rails methods
introduced here, check the upcoming sidebar.

API Reference
Here are some Ruby methods:

array.collect {|item| block }→an_array
Invokes block once for each element of self. Creates a new array containing the
values returned by the block:

a = ["a", "b", "c", "d"]
 a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
 a #=> ["a", "b", "c", "d"]

Inheritance and Persistence | 139

Download at Boykma.Com

array.compact→an_array
Returns a copy of self with all nil elements removed:

["a", nil, "b", nil, "c", nil].compact
 #=> ["a", "b", "c"]

enum.inject {| memo, obj | block }→an object
Combines the elements of enum by applying the block to an accumulator value
(memo) and each element in turn. At each step, memo is set to the value returned by
the block. The first form lets you supply an initial value for memo. The second form
uses the first element of the collection as the initial value (and skips that element
while iterating).

Sum some numbers
 (5..10).inject {|sum, n| sum + n } #=> 45
 # Multiply some numbers
 (5..10).inject(1) {|product, n| product * n } #=> 151200

And here are some Rails methods:

reflect_on_association(association)→AssociationReflection
Returns the AssociationReflection object for the named association (use the
symbol):

returns the owner AssociationReflection
 Account.reflect_on_association(:owner)
 # returns :has_many
 Invoice.reflect_on_association(:line_items).macro

underscore(camel_cased_word)→String
The reverse of camelize. Makes an underscored form from the expression in the
string. Changes :: to / to convert namespaces to paths:

"ActiveRecord".underscore
 #=> "active_record"
 "ActiveRecord::Errors".underscore
 #=> "active_record/errors"

Object.subclasses_of(*superclasses)→[Class]
Returns an array containing the subclasses of the parameters. The superclasses
themselves are returned as well.

The first point to note is that we can define methods inside other methods. Notice that
within the payment method, we’ve defined two additional helper methods,
reflection_symbol and association_methods. The reason we did this is to limit the
scope of these methods. By defining them within the payment method, which is the only
place we need them, these methods are only accessible within that method, and they
won’t conflict with other methods that may have the same name. The more modules
we mix in or plugins we use, the higher the risk of conflict and the greater the need for
scoping.

Next let’s look at the helper method reflection_symbol. This method would turn a
class variable, such as CreditCardPayment, into the symbol :credit_card_payment. In

140 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

this method, we’ve chained a number of methods together. The single line of code does
quite a lot of things. Let’s break it down:

• Starting with the input class, referred to locally within the method as klass, we cast
the class name to a string with to_s so that we can use string operations.

• We then account for classes that are within modules, e.g., SomeModule::Credit
CardPayment. The split method cuts our string everywhere that the split text is
found, and returns an array, ["SomeModule", "CreditCardPayment"].

• The last method returns the last element of the array, which is the string repre-
sentation of the class name we are interested in, "CreditCardPayment".

• The underscore method transforms camel-case text into lowercase text separated
by underscores everywhere there was a capital letter: "CreditCardPayment" becomes
"credit_card_payment".

• Finally, we turn this back into a symbol, using to_sym. The result
is :credit_card_payment, which is the input expected by the Rails method
reflect_on_association, which we’ll deal with next.

The purpose of the association_methods method is to give us a list of the accessors for
each subclass of the passed-in class, in this case Payment. Based on how we defined our
associations for the three subtypes, we know that the methods are named
credit_card_payment, promotional_payment, and paypal_payment. We could write a
single-use method that returns this list. Instead of writing a single-use method that we
would have to constantly update as we make changes, we instead write a general func-
tion that automatically gives us all the right associations. We don’t want our code to
break if we change the association definitions, or add or remove subclasses.

This method also looks complicated at first glance, but we’ll examine it in detail as well:

• We start with the input, mti_base_class, which is the base class in the polymorphic
association; Payment in this case.

• Rails extends the class Object, which is the base class of all classes in Ruby, with
the method subclasses_of. As its name implies, this method returns all subclasses
of the passed in class. This is the reason we needed to preload the subclasses of
Payment ahead of time; if they aren’t preloaded, this method returns an empty array.
Passing Payment to subclasses_of produces [CreditCardPayment, PromotionalPay
ment, ...]. Note that this list includes all of the subclasses of CreditCardPayment,
too.

• We then utilize the collect method on this array of classes, which allows us to run
a block of code for each element. collect returns a new array where each element
is the result of the code block run against each input element.

• Inside the code block, we run the ActiveRecord method reflect_on_association,
which returns an object containing all the information Rails knows about the given
association. For example, if we had given a custom name to the association, or if

Inheritance and Persistence | 141

Download at Boykma.Com

the foreign key is nonstandard, the information is contained in this return value.
An example return object is shown in Example 10-3.

• We then check to see if there actually was an association defined at all. For example,
the various subclasses of CreditCardPayment are included up to this point, but we
didn’t define an explicit association for each of them; they were included implicitly
in the association with CreditCardPayment itself. If there was an association found,
we call name on the association data, which gives us the name by which we can
access the associated object. Otherwise, we return nil.

• Finally, we call compact on the result, so the nil values are removed. This method
returns [credit_card_payment, promotional_payment, paypal_payment].

Example 10-3. A return value from reflect_on_association

>> Order.reflect_on_association(:credit_card_payment)
=> #<ActiveRecord::Reflection::AssociationReflection:0x24e13d8
@primary_key_name="credit_card_payment_id", @through_reflection=false,
 @active_record=Order,
@options={}, @class_name="CreditCardPayment", @name=:credit_card_payment,
 @macro=:belongs_to>

Finally, we can deal with the remaining code in the payment method, which makes use
of these two helper methods, reflection_symbol and association methods:

• We start with the result of association_methods, which are the accessors for each
association, as explained earlier.

• For each one, we call that method on the current object using send. The result is
the associated object, if there is one, or nil if there isn’t.

• We used collect, so the result is a new array of objects. All should be nil except
for the association that actually exists.

• We could get the non-nil value out in a variety of ways. Above we saw compact,
which would give us the non-nil values. Instead here we introduce inject, which
allows us to apply an operator to the values of an array, two items at a time. Injecting
|| as we do here first applies || to the first two elements in the array. It then applies
|| to the first result and the third element, and so on. In other words:

((a || b) || c) || ...)

Evaluating this expression returns the first non-nil value encountered. This is the
associated payment object that we are looking for.

It’s another tribute to Ruby’s compactness that it took more than two pages to explain
a few lines of code. As you become more familiar with the entirety of the Ruby and
Rails APIs and get comfortable using Ruby’s powerful syntax, you can really say a whole
lot with very little code.

In Example 10-4, we define the complementary method, payment=, which assigns the
argument to the correct association assignment method. We won’t go through it in

142 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

detail; based on the explanation of the payment method, you should be able to under-
stand it.

Example 10-4. Polymorphic assignment for multiple table inheritance

def payment=(p)
 def reflection_symbol(klass)
 klass.to_s.split("::").last.underscore.to_sym
 end

 def reflection_assignment_method(klass)
 Order.reflect_on_association(reflection_symbol(klass.class)).name.to_s + "="
 end

 self.send reflection_assignment_method(p.class), p
end

Factory Classes
Let’s return to the Payment class. It’s a very sad class, completely empty and with next
to no purpose; however, we can give it a purpose by turning it into a factory class,
utilizing another pattern in the famous Gang of Four Design Patterns (Addison-Wesley)
by Erich Gamma et al. and making our MTI solution even more powerful and DRY.

A factory class is a class that has a constructor that returns instances of the correct
subclass based on the inputs. Currently, if we have web forms with a radio selector for
the payment type (Paypal, credit, or promotional), we’d have to write a case statement
in every place we’re processing the input in order to create an instance of the correct
type. Same goes for the credit card type (Visa, American Express, or MasterCard).

Instead, we can localize this logic in the Payment class itself. Any code that needs a new
payment object can pass in the appropriate information to the factory method and out
will come an object of the correct type.

In the following code, we define a constructor, new_payment, for the Payment class:

class Payment < ActiveRecord::Base
 def self.new_payment(payment_type, credit_card_type)
 case type
 when 'paypal'
 PaypalPayment.new
 when 'promotional'
 PromotionalPayment.new
 when 'credit_card'
 CreditCardPayment.new_payment credit_card_type
 end
 end
end

Notice that if the payment is a credit card payment, we defer to a constructor within
the CreditCardPayment class. That constructor might look like this:

Factory Classes | 143

Download at Boykma.Com

class CreditCardPayment < Payment
 # other code ...
 def self.new_payment(credit_card_type)
 case credit_card_type
 when 'american_express'
 AmericanExpress.new
 when 'visa'
 Visa.new
 when 'master_card'
 MasterCard.new
 end
 end
end

Speaking of DRY, these classes are also a good place to keep a list of the allowable
inputs to the constructor that can be used to build the dropdowns or radio button lists
in our views. For example, the following array can be passed to options_for_select to
create a credit card drop-down:

CREDIT_CARD_TYPES_FOR_SELECT = [
 ['visa', 'Visa'],
 ['american_express', 'AmericanExpress'],
 ['master_card', 'MasterCard']
]

We can then create a select box with the appropriate values for our constructor by
calling select_tag and options_for_select like this:

<%= select_tag(
 'credit_card_type',
 options_for_select(CreditCardPayment::CREDIT_CARD_TYPES_FOR_SELECT)
) %>

Exercises
1. Write unit tests for the orer_payment_xor constraint. Ensure that the data layer

prohibits any order with zero or multiple payments but accepts orders with a single
payment.

2. Following the example laid out in this chapter, extend the MTI plugin with a
has_many MTI association method.

3. What other methods are needed to create a complete MTI plugin? How would you
implement them?

144 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

Refactor Steps
These sections break down the refactoring steps for you.

Refactoring STI
1. Examine each STI table in your data model. For each, determine how much data

is really shared between the subclasses.

2. If the answer is “not much,” or if different subclasses call for different constraints
that are difficult to reconcile with each other, proceed with this multiple table
inheritance refactoring.

3. Create a separate table for each class, custom fit to the class’s needs.

4. Maintain the inheritance relationship in the model classes, but explicitly use the
set_table_name directive in each class.

5. In the associated classes, replace built-in association declarations with the MTI-
flavored ones developed in this chapter.

6. Run your tests.

Refactoring: polymorphic => true
1. Make a list of all the referenced types. You can find this list with the following SQL

query, assuming the polymorphic type column is called {foreign_table}_type and
the association exists in a table called widgets:

select distinct foreign_table_type from widgets;

2. For each table referenced, add a column to the table with the polymorphic asso-
ciation (widgets here) that references the target table directly. The column should
be nullable:

alter table widgets
 add constraint specific_foreign_table_fkey
 (id) references specific_foreign_table(id);

3. For each table, set the reference. Keep in mind that your old data may have invalid
references, which you should avoid copying:

update widgets
 set specific_foreign_table_id = foreign_table_id
 where foreign_table_type = 'SpecificForeignTable'
 and exists (
select true
 from specific_foreign_table sft
 where sft.id = foreign_table_id
);

Refactor Steps | 145

Download at Boykma.Com

4. Once steps 2 and 3 have been repeated for all referenced tables, decide what to do
with orphaned references. You may want to update them to a valid state or simply
delete them. To delete them, delete rows where all of the specific foreign key ref-
erences are null:

delete from widets where
 specific_foreign_table_1_id is null and
 specific_foreign_table_2_id is null and
 ...
 specific_foreign_table_n_id is null;

5. Add an XOR constraint to ensure future records will not become orphaned or
invalid:

alter table widgets
 add constraint sft_1_thru_n_xor check (
 (specific_foreign_table_1_id is not null)::integer +
 (specific_foreign_table_2_id is not null)::integer +
 ... +
 (specific_foreign_table_n_id is not null)::integer) = 1);

6. Create a base class based on the original polymorphic association name, and derive
all referenced classes from it.

7. Use the MTI plugin developed in this chapter to create the appropriate associa-
tions in the widget class:

belongs_to_mti :base_class_name

8. Run your tests.

146 | Chapter 10: Multiple Table Inheritance

Download at Boykma.Com

CHAPTER 11

View-Backed Models

Some concepts are extremely easy to explain in words, yet difficult to extract from a
database. For example, on a ticket-purchasing site, it’s pretty obvious that you need a
way to quickly show visitors “current movies in my area.” That is certainly an easy
concept, but let’s examine what it takes to get that kind of information out of our
database.

“Current” means we need to be looking in the movie_showtimes table. We might define
current to mean movies starting within a week.

Knowing the showtime isn’t enough. We need to get the movie information, too. A
showtime without the movie name isn’t very useful. While we’re at it, we probably
need to know the rating and the length of the movie as well.

The request “in my area” means we need to know where the visitor is and where the
movie theatre is. We can use the PL/pgSQL distance procedure
miles_between_lat_long that we wrote in Chapter 6, but to do so we need data from
the theatres table (the zip code) and from the zip_codes table (the latitude and
longitude).

This represents a query with four tables: movie_showtimes, theatres, movies, and
zip_codes. We could write an ActiveRecord query that could get us what we want:

MovieShowtime.find(:all,
 :include => [:movie, :theatre],
 :conditions => "
 movie_showtimes.start_time - now() < '1 week'::interval
 and movie_showtimes.start_time > now()
 "
)

The first problem we notice, as far as ActiveRecord die-hards are concerned, is that
we’ve got some SQL peaking through here. There’s no good way to say “current” in
ActiveRecord parlance. The next problem is that we haven’t accounted for “in my area”
yet. To do that, we need to get to the zip_codes table through the theatres table, but
that’s not supported using the :include syntax. Certainly we don’t want to get all of
the current showtimes and then loop through them in the application layer to find the

147

Download at Boykma.Com

ones that are nearby. There are likely to be far more that aren’t close than those that
are so that would be inexcusably slow.

We can get to the zip code data using the :joins syntax, but this is just another mech-
anism to inject raw SQL through ActiveRecord:

MovieShowtime.find(:all,
 :include => [:movie, :theatre],
 :joins => "join zip_codes on (theatres.zip_code = zip_codes.zip)",
 :conditions => ["
 movie_showtimes.start_time - now() < '1 week'::interval
 and movie_showtimes.start_time > now()
 and miles_between_lat_long(
 zip_codes.latitude, zip_codes.longitude, ?, ?
) < ?
 ", request.latitude, request.longitude, request.miles]
)

It’s getting pretty ugly, and this is with an example just complex enough to prove a
point, yet simple enough to include in this book. A more complex, real-life query might
extend more than half a page. Plainly speaking, this is not what ActiveRecord is good
at. As soon as you have custom SQL in your ActiveRecord queries, you’ve lost one of
the main benefits of ActiveRecord: queries are written to be database-independent.

Complex joins and complex conditions are never going to be easy to abstract away
behind a simple-to-use library. In this case, with ease-of-use comes a loss of function-
ality. If we try to avoid SQL at all costs, using only the most well polished aspects of
ActiveRecord, such as simple finds, and then take care of the joins and conditions in
the application layer, we’re going to pay dearly in performance costs. The database is
optimized for these purposes, and the application layer is not.

We’ve hit upon a moment where SQL really wants to shine through. Here is an op-
portunity to sit upon the shoulders of giants, rather than try to hide the giant.

Luckily, we can restore order in the application layer by creating a view-backed model,
which is the topic of the remainder of this chapter. And what’s more, if we delegate
this complexity to the database, we have further opportunities for performance
enhancements that we wouldn’t have otherwise. That’s the topic of the next chapter:
materialized views.

Database Views
There are two ways to think of a database view. The first way is as a named subquery,
ready to be referenced in other queries. The second way is to think of it as a table that
is defined by an algorithm—in the form of an SQL query—that can, with a few caveats,
be treated like any other table.

Most people think of views by the second definition, but both are correct. In fact, you
should be able to predict what the caveats mentioned in the table definition are by

148 | Chapter 11: View-Backed Models

Download at Boykma.Com

contrasting how a real table and a subquery can and cannot be used. Go ahead and
think about it. The answers will be revealed in the section “Considerations” later in
this chapter.

Creating a View
The syntax for creating a view is simple:

create view name as query;

For current movies, we would create the following view:

create or replace view current_movie_showtimes as
 select m.name,
 m.rating_id,
 m.length_minutes,
 ms.*,
 t.name as theatre_name,
 t.zip_code,
 z.latitude,
 z.longitude
 from movie_showtimes ms
 join movies m on (ms.movie_id = m.id)
 join theatres t on (ms.theatre_id = t.id)
 join zip_codes z on (t.zip_code = z.zip)
 where (ms.start_time - now()) < '1 week'::interval and ms.start_time > now();

Notice that lots of relevant data has been brought into the view from the referenced
tables movies and theatres. The reason this is done is so that getting that information
in the future doesn’t require us to join against those tables for a second time.

It’s also a good idea to select the primary key columns of tables, e.g., movies.id and
theatres.id, so that it is still possible to do an ActiveRecord join later if necessary. In
fact, the view just shown does implicitly select these columns; they are included in
ms.*. Those columns exist in the movie_showtimes table as movie_id and theatre_id.
When we see how to base an ActiveRecord model on a view in the next section, this
will come in handy as it allows us to define associations just like in any other model.
We’ll gain flexibility at no additional cost.

Basing a Model on a View
Basing a model on a view is actually straightforward. The syntax is the same as it would
be for a normal table. For the current_movie_showtimes table, our CurrentMovieShow
time class is defined like this:

class CurrentMovieShowtime < ActiveRecord::Base
 belongs_to :movie
 belongs_to :theatre
 belongs_to :auditorium, :foreign_key => [:room, :theatre_id]
end

Basing a Model on a View | 149

Download at Boykma.Com

We also define the inverse relationships in the related classes. For example, in the
Movie class, we have associations to both the MovieShowtime class as well as the Current
MovieShowtime class:

class Movie < ActiveRecord::Base
 has_many :movie_showtimes, :dependent => :destroy
 has_many :current_movie_showtimes
end

The difference is that the relationship defined with the view cannot have a destroy
dependency defined. You can only modify views by modifying the tables they depend
on, so deleting from them would be meaningless (it would also cause an error).

The rest of the ActiveRecord magic still applies. You can access current showtimes
directly through an association. For example:

cool_movie.current_movie_showtimes

You can also use all of the automatically defined ActiveRecord accessor on the Current
MovieShowtime class itself as well:

CurrentMovieShowtime.find_all_by_theatre_id(@theatre.id)

Our original example of finding “current movies in my area” is now much simpler as
well:

CurrentMovieShowtime.find(:all,
 :conditions => ['
 miles_between_lat_long(
 current_movie_showtimes.lat, current_movie_showtimes.long,
 ?, ?
) < ?
 ', lat, long, miles]
)

Because we defined this query within a class-level method, we can use it when traversing
associations. For example, assuming we have a ZipCode object in the variable zip, we
can find the current showtimes within 10 miles of that zip code with the following
statement:

m.current_movie_showtimes.find_all_within_distance(
 zip.latitude, zip.longitude, 10
)

This results in only a single round trip to the database to get the results. The result
objects are CurrentMovieShowtime objects, which have available all the movie and the-
atre information as attributes, and also further support associations traversal to get at
actual Movie and Theatre objects if needed.

Considerations
Although views are often thought of as “just-in-time” tables, and from Rails’s perspec-
tive when creating models, we can treat views just like tables, views are not tables. I

150 | Chapter 11: View-Backed Models

Download at Boykma.Com

began this section stating that a view should be thought of as a named subquery. Let’s
take a very simple example and imagine that we defined a view, view_of_movies, which
is essentially the same as the movies table itself:

create view view_of_movies as
select * from movies;

The view name, view_of_movies, is now a name for the subquery select * from
movies;. If we wanted to do a simple select of all the records in this view, the query
would look like this:

select *
 from view_of_movies;

But if we expand to show the subquery, we’re actually doing this:

select *
 from (select *
 from movies);

Now it should become clear that many standard table operations won’t work with
views. Some operations that won’t work on views include:

• Inserting

• Deleting

• Updating

• Referencing from another table

• Adding constraints

• Indexing

Although this seems like a long list of things you can’t do, and it is, that’s actually OK.
These aren’t disadvantages of views; they’re just not what views are meant for. The
word “view” itself implies that they are for looking at, not for modifying.*

Let’s examine each of these constraints in turn and see what it means for our Rails
application.

Insert, Update, Delete
Attempting to insert, update, or delete on a view triggers a database error. When you
need to write data, you must do it against table-backed models. This means that view-
backed models are not a replacement for table-backed ones. They must exist in parallel,
and you must use the right one for the right circumstances.

* Note that the SQL standard does define certain scenarios under which you can insert, update, or delete from
views, with the tables backing the views receiving the modifications behind the scenes. Some of these features
are supported by Oracle. Postgres supports a more limited set using “rewrite rules.” MySQL does not have
support for this. Except under extremely rare circumstances, it’s best to assume views are read-only, period,
and move forward from there.

Considerations | 151

Download at Boykma.Com

When you are exclusively reading data, especially when reading data that matches the
criteria imposed by the view’s conditions, you should use the view-backed model. Some
actions are only reads, such as a request that would display “current movies within my
area.”

If you are creating new data, use the table-backed model. An example of a write-only
request might be “buy a ticket.”

Some cases are less obvious. For example, in a request in the administrative interface,
a single request may need to add a showtime, and then immediately return current
movies at a theatre to show back to the administrative user. In this case, it’s clear that
you would use the table-backed MovieShowtime model to add the new showtime. When
you’re requesting data back out, you could use the CurrentMovieShowtime model to
simplify the ActiveRecord query.

A good way to think about it is with these rules of thumb:

• If data is coming in, use a table-backed model.

• If data is going out, use a view-backed model.

These rules are shown in Figure 11-1.

References and Constraints
Views do not support references from other tables, nor do they support constraints.
Using the named subquery model of views, the reasons why should be clear. But you
don’t need either operation.

Controller
(write)

Table-backed
model

View-backed
model

Controller
(read)

Client Client

R
eq

ue
st

R
esponse

Figure 11-1. When to use view- versus table-backed models

152 | Chapter 11: View-Backed Models

Download at Boykma.Com

The purpose of a reference is to ensure that data referenced from one table exists in
another. A view is based on other tables, so the values you reference in a view should
exist in the original table, too. If you are exclusively using a view, you may find that
when you need a new reference, you instinctively think it should be added to the view.
Instead, find the appropriate table the view is based on and reference that table instead.

Constraints are also unnecessary in a view. The purpose of a table constraint is to say
that a row with certain properties is not valid and should not exist in the table. In a
view, you can filter out invalid rows with the conditions of the view query. If you don’t
want rows with the property column_a < column_b, add that to the view’s definition:

create view my_view as
select *
 from some_table
 where column_b >= column_a;

Indexing
The purpose of an index is to precompute the location of rows that meet a certain
criteria in a table. When you select items out of a view, any indexes that exist on the
base tables will still be used if possible. However, if you are computing a column of
new values and want to filter based on that column, you’re out of luck. Because views
are just-in-time, data that did not exist in the base tables cannot benefit from indexes
created on those tables. Each row must be computed and then selected or discarded,
giving you the performance akin to a full-table scan.

Before getting disheartened, remember that without the view, the complicated Active-
Record query has the same (or worse) performance. The original purpose of the view
was to improve clarity in the application layer, not to boost performance. If you find
that the query you turned into a view happens to be your application’s biggest bottle-
neck, there are additional options. The topic of the next chapter, materialized views,
explains how you can, with some database wizardry, attain the benefits of views with
the performance of fully indexed tables.

Exercises
1. Recast a complicated ActiveRecord query as a simpler query on a view-backed

model. Now select the same information out of both, recording the time before
and after. Repeat multiple times with each to eliminate the impact of disk and
database caches. How does performance compare?

2. Using the same complex query and view from above, compare the database plans
for each. In postgres, you can get a query plan with the command explain plan
query.

3. Write a custom ActiveRecord extension plugin, backed_by_view, that when speci-
fied, disables functions that would attempt to write to the view.

Exercises | 153

Download at Boykma.Com

Refactor Steps
1. Locate complicated ActiveRecord queries that are repeated throughout your ap-

plication. They don’t have to be identical; “similar” is a high-enough bar.

2. Write a single SQL query that returns a superset of the data from the queries in the
previous step.

3. Create a database view based on that query. Be sure to choose a name that abides
by ActiveRecord naming conventions. Create a view with:

create view viewname as query;

4. Create a model based on the view. Remember to carry over any associations from
the base tables but omit destroy dependencies.

5. Within associated model classes, add associations for the new view-backed model.
Again, omit destroy dependencies.

6. Replace the complicated ActiveRecord queries from the first step with more concise
queries against the new view-backed model.

7. Run your tests.

154 | Chapter 11: View-Backed Models

Download at Boykma.Com

CHAPTER 12

Materialized Views

When you are not caching anything, every page load incurs the penalty of the queries
required to make up that page. Initially, when you do not have much data and you do
not have many users requesting pages, your application will be snappy. Unfortunately,
with any amount of success, you eventually get hit with three problems seemingly all
at once:

• Your application becomes popular and the traffic you need to handle has grown
by orders of magnitude.

• As you sign new customers, gather data, and even simply exist, the amount of data
in your database grows by orders of magnitude.

• Your application grows in complexity and more queries are required to render any
given page.

Although most people would be envious of these problems (and the business side of
your company would term them “successes”), you nonetheless have to find solutions.

Caching—the act of saving a queried or calculated result for future use—is not as simple
and clear-cut as it sounds. A number of subtle issues surround correct caching, which
go beyond picking a cache key and storing data in the cache behind that key. The first
issue is freshness. Can your cache lag behind the true values of your data, or does it
need to reflect the latest values? Next is correctness. If your goal is to keep the cache
up-to-date, have you accounted for every situation where your cache needs to be in-
validated or rebuilt? How do you know you’ve hit all of these cases? The final caching
issue you must be aware of is the cost amortization of keeping the cache accurate. The
purpose of caching is to reduce database load and speed up requests, but someone still
must has pay the price for cache updates. Either the requestor who invalidates the cache
or the next person to request the invalidated items will pay part or all of the cost.
Choosing the wrong strategy for rebuilding can erase all of the gains that caching was
meant to achieve in the first place.

In Chapter 11, we saw that a database view can be thought of as a named query. Even
though a complex query can be hidden behind a simple view name, whenever you select
from that view, you pay the price of database joins, subselects, filters, and functions

155

Download at Boykma.Com

that may be required to calculate the view results. A materialized view is a cached
representation of a database view, stored in a regular table. Rather than query from the
view with arbitrary complexity, with view materialization, an indexed table can be
queried instead, with O(1) response time.

Chapter 19 contains an overview of caching at all layers of the application. In this
chapter, we’ll look in depth at caching on a single layer where we have already gained
some experience: the database. The principles we will encounter at this layer are the
same as those present at other layers of the application, but the database is the layer
with the best tools for guaranteeing cache correctness. It is also the most mature and
stable layer, so what you learn in this chapter can be applied to other caching problems
for years to come, even as feature sets and APIs change for application layer caching
solutions.

One way to look at database view materialization is that it is like the “wax on, wax off”
exercise in The Karate Kid. It can appear painful and tedious, but when you are ready
for your ultimate caching battle—where the tools may not be as thorough and you need
to rely on your wits—having a nuts-and-bolts knowledge of caching via “wax on, wax
off” practice will help you identify what elements may be missing from other caching
at other layers, so you can be nimble as you come up with your own solutions. As you
read this chapter, think beyond the database layer and identify analogs at the applica-
tion layer to each situation, problem, and technique described.

Before proceeding, I’d like to give credit where credit is due, and pay tribute to Jonathan
Gardner, who laid the groundwork for many who tread these waters in his online article,
“Materialized Views in PostgreSQL.”

Materialized View Principles
A materialized view is a cache-complete copy of your view. This means that every record
in the original view appears in the materialized view. This is unlike an LRU cache, where
items may expire from the cache if they are not used frequently, or if the set of data
being cached exceeds the memory set aside for caching. In a cache-complete imple-
mentation, if an item is not in the cache, the application can assume it does not exist.

In this chapter, we will build a cache-complete materialized view for the
current_movie_showtimes developed in the previous chapter. To create a materialized
view, we put together a number of building blocks, which will be described in detail
throughout this chapter.

The first building block is an initial view to be materialized, which ideally abides by
some guidelines that ease materialization. We’ll go through some slight modifications
to our original view to get it into proper form before we begin.

Next is a target table in which we’ll store the cached copy of the view. Unlike a view,
which acts like a table, this is a full-fledged physical table, which means we can take

156 | Chapter 12: Materialized Views

Download at Boykma.Com

advantage of indexing and other features available only with physical tables. In the
game of performance enhancements, materializing the view is a big win in and of itself,
but adding appropriate indexes hits a home run with the bases loaded.

After we have an initial snapshot in our target table, we’ll need a refresh function that
can update a single record in the materialized view when we detect a change in the base
view. Sometimes we don’t want to refresh right away—we instead want to put the
compute cycles needed to refresh the cache off for the future—and for these cases, we’ll
create an invalidation function that marks a record as stale, but doesn’t actually do the
work of updating it.

We’ll detect changes to the view by adding triggers to the base tables that make up the
view. These triggers will—as the name implies—trigger either a refresh or an invalid-
ation of the rows in our materialized view that are about to become out of sync.

Finally, we’ll add some auxiliary views, including the reconciler view, on top of our
target table to hide the fact that we’ve materialized the view at all. In addition to hiding
our implementation from end users, the reconciler view will ensure that accurate in-
formation is always returned, even if parts of the target table have gone stale or are
marked invalid.

A View to Materialize
First, we need something worth materializing. We’ll start with our view from the pre-
vious chapter, but we’ll make it a bit more complex so that we can explore a variety of
caching techniques. Example 12-1 shows an extended version of our view, which in-
corporates the number of seats available in a theatre as seats_available, and the num-
ber of tickets purchased thus far as tickets_purchased. Since the purpose of this view
is to show movie showtimes for which we can sell tickets, a filter has been added to the
where clause to filter out showtimes that are sold out. Additions to our original view
are shown in bold.

Example 12-1. A slightly more complex version of our original view from Chapter 11

create or replace view current_movie_showtimes as
 select m.name,
 m.rating_id,
 m.length_minutes,
 ms.*,
 t.name as theatre_name,
 t.zip_code,
 z.latitude,
 z.longitude,
 a.seats_available,
 coalesce(ptc.purchased_tickets_count, 0) as purchased_tickets_count
 from movie_showtimes ms
 join movies m on (ms.movie_id = m.id)
 join theatres t on (ms.theatre_id = t.id)
 join zip_codes z on (t.zip_code = z.zip)

A View to Materialize | 157

Download at Boykma.Com

 join auditoriums a on (ms.room = a.room and ms.theatre_id = a.theatre_id)
 left outer join (
 select count(*) as purchased_tickets_count,
 o.movie_showtime_id
 from orders o,
 purchased_tickets pt
 where pt.order_confirmation_code = o.confirmation_code
group by o.movie_showtime_id
) ptc on (ptc.movie_showtime_id = ms.id)
 where (ms.start_time - now()) < '1 week'::interval and ms.start_time > now()
 and a.seats_available > coalesce(ptc.purchased_tickets_count, 0);

Let’s pick apart some finer parts of this query to introduce some database concepts you
may not be familiar with.

First, although normally you join against a table or view, you can also join against a
named query. Indeed, recall from the previous chapter that a view is also nothing more
than a named query. In this example, we’ve created a named query called ptc, for
“purchased tickets count.” It is a single-use named query. Unlike a view, this named
query—ptc—has no meaning outside of this single place it is used; outside of the
current_movie_showtimes view, it is out of scope. Of course, we could also cast ptc as
a full-fledged view of its own with create view, and then we could join directly against
the view. That would make current_movie_showtimes more readable and would also be
a good idea if we wanted to use this subquery elsewhere. For now, we’ll leave it as is
and return to this idea when we talk about cascading materialized views.

Next, we’ve done a left outer join in our join against ptc. Unlike a regular join, which
removes items for which there is no match between the two join tables, in a left outer
join, every row from the table on the left remains regardless of whether there is a
matching row from the table on the right. When there is no match, columns from the
table on the right are filled with null values. In this example, if there are no tickets
purchased for a given showtime, there would be no result row in the ptc subquery.
However, we don’t want to lose the fact that a showtime is current and has tickets
available for purchase just because no one has purchased any tickets yet! That brings
us to the third finer point of this query, coalesce.

The coalesce function takes an arbitrary number of arguments and returns the first one
that is not null. Here, we’re coalescing the number of ticket purchases—which will be
null if none has been purchased yet—with 0, which is the actual value we want output
when there aren’t any tickets sold. So although a left outer join normally returns nulls
when there’s no match in the righthand table, we’re substituting a value that makes
sense for our domain.

Getting into Form
Although it is not technically mandatory to do so, it makes it a bit easier to implement
a materialized view if every row from the view’s main table is present in the view to be
materialized. In order to accomplish this, we recast elements of the where clause into

158 | Chapter 12: Materialized Views

Download at Boykma.Com

Boolean columns in the table itself. Rather than filter out showtimes that aren’t current,
those showtimes will have a false entry in the current column, and movies that are
current will have true. Likewise for sold out shows: they’ll have a true entry in the
sold_out column, and shows with seats available will have a false value there. Exam-
ple 12-2 shows our rewritten view with the new columns in bold.

Example 12-2. where clause recast as Boolean columns to ensure every row from main base table is
always represented

create or replace view movie_showtimes_with_current_and_sold_out_unmaterialized as
 select m.name,
 m.rating_id,
 m.length_minutes,
 ms.*,
 t.name as theatre_name,
 t.zip_code,
 z.latitude,
 z.longitude,
 a.seats_available,
 coalesce(ptc.purchased_tickets_count, 0) as purchased_tickets_count,
 ((ms.start_time - now()) < '1 week'::interval
and ms.start_time > now()) as current,
 (a.seats_available < coalesce(ptc.purchased_tickets_count, 0)) as sold_out
 from movie_showtimes ms
 join movies m on (ms.movie_id = m.id)
 join theatres t on (ms.theatre_id = t.id)
 join zip_codes z on (t.zip_code = z.zip)
 join auditoriums a on (ms.room = a.room and ms.theatre_id = a.theatre_id)
 left outer join (
 select count(*) as purchased_tickets_count,
 o.movie_showtime_id
 from orders o,
 purchased_tickets pt
 where pt.order_confirmation_code = o.confirmation_code
group by o.movie_showtime_id
) ptc on (ptc.movie_showtime_id = ms.id);

Note that in Example 12-2, we renamed the view from current_movie_showtimes to
movie_showtimes_with_current_and_sold_out_unmaterialized. The element of the new
name with_current_and_sold_out refers to the fact that we’ve shifted the where clause
filters into columns on which we can later apply filters. We’ve also added the suffix
_unmaterialized to signify that this is the version of the view that is still just a named
query. In keeping with the idea that the caching implementation should be transparent
to the user, by the end of this chapter, we’ll have a new entity in our database called
current_movie_showtimes. It will look and act just like our original view but will be
orders of magnitude faster.

Another caveat worth mentioning is that the view to be materialized should be capable
of having a primary key. This is another way of saying that there should be a one-to-
one correspondence between the view and its primary base table and the primary base
table needs to have a primary key. We’ve already helped guarantee this in our example

A View to Materialize | 159

Download at Boykma.Com

by moving the where clause filters into columns and having only one row in the view
per record from movie_showtimes. The id column from movie_showtimes will become
the primary key of the materialized view. Figure 12-1 is a reproduction of our schema
diagram from Chapter 8, which you can refer to as we go along.

The Target Table
A materialized view is created by taking an initial snapshot of the data in the unmate-
rialized view. Later we’ll add triggers to monitor all of the tables that make up the view
and update the view whenever there is a change. In this way, our materialized view
always stays up-to-date.

To create the initial materialized view, we execute the following SQL:

create table movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry as
select *,
 false as dirty,
 null::timestamp with time zone as expiry
 from movie_showtimes_with_current_and_sold_out_unmaterialized;

id
phone_number

theatres

id
name
length_minutes
rating_id

movies

id
movie_run_id
movie_id
theatre_id
room
start_time

movie_showtimes

id
confirmation_code
purchase_price_cents

purchased_tickets

theatre_id
room
seats_available

auditoriums

id
rating_name
description

ratings

confirmation_code
movie_showtime_id
movie_id
theatre_id
auditorium_id
room
start_time

orders

id
name

payment_typeszip
city
state

zip_codes

name
line_1
line_2
city
state
zip_code

addresses

Figure 12-1. Schema from Chapter 8, for reference

160 | Chapter 12: Materialized Views

Download at Boykma.Com

This statement creates a new table called movie_showtimes_with_cur

rent_and_sold_out_and_dirty_and_expiry that is prefilled with all of the data from our
view. Two columns have been added: dirty and expiry. The dirty column will be used
to implement deferred refresh via the invalidation trigger. The expiry column will be
used to deal with special cases where we can’t count on a database event to trigger a
refresh. How to use both of these columns will be explained in detail, but for now you
can ignore them and think of the target table as a plain old table that happens to contain
the result of our view. Example 12-3 shows the table described from a psql prompt.

Example 12-3. The physical table definition of our materialized view

movies_development=# \d movie_showtimes_with_current_and_sold_out_with_dirty_and_expiry
 Table "public.movie_showtimes_with_current_and_sold_out"
 Column | Type | Modifiers
-------------------------+--------------------------+-----------
 name | character varying(256) |
 rating_id | character varying(16) |
 length_minutes | integer |
 id | integer |
 movie_id | integer |
 theatre_id | integer |
 room | character varying(64) |
 start_time | timestamp with time zone |
 theatre_name | character varying(256) |
 zip_code | character varying(9) |
 latitude | numeric |
 longitude | numeric |
 seats_available | integer |
 purchased_tickets_count | bigint |
 current | boolean |
 sold_out | boolean |
 dirty | boolean |
 expiry | timestamp with time zone |

Refresh and Invalidation Functions
The next piece of the puzzle is the refresh function. It takes as its argument the primary
key of the materialized view. In this case, that key corresponds to the primary key of
the movie_showtimes table. Whenever we detect that a row in our view is invalid, we
run the refresh function on that row.

Example 12-4 shows our first pass at a refresh function. It accepts an integer parameter,
the primary key of the materialized view. First, it deletes the old row keyed on that id.
Then, it reselects the row with the same id from the unmaterialized view—which is real
time and thus guaranteed to be accurate—and inserts it back into the materialized view.
It also replaces the values in the dirty and expiry columns.

Refresh and Invalidation Functions | 161

Download at Boykma.Com

Example 12-4. A simple refresh function for a materialized view

create or replace function movie_showtimes_refresh_row(
 id integer
) returns void
security definer
language 'plpgsql' as $$
begin
 delete
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry ms
 where ms.id = id;
 insert into movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 select *, false, null
 from movie_showtimes_with_current_and_sold_out_unmaterialized ms
 where ms.id = id;
end
$$;

Remember that the materialized view is just a table. You can modify it, thus invalidating
the contents, and then run the refresh function on the modified rows to test that it sets
them back to the correct values. Example 12-5 shows just that. We first find the movie
name for the showtime with the id of 1, Casablanca. Next, we invalidate that record in
the materialized view by changing the movie name to The Godfather. We check, and
the materialized view indeed did allow us to change the record to an invalid value. We
run our refresh function on that row, and when we select the name again, it has been
restored to Casablanca.

Example 12-5. The refresh function patches an invalid row so that it matches the view

movies_development=# select name
movies_development-# from
movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
movies_development-# where id = 1;
 name

 Casablanca
(1 row)

movies_development=# update
movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
movies_development-# set name = 'The Godfather'
movies_development-# where id = 1;
UPDATE 1

movies_development=# select name
movies_development-# from
movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
movies_development-# where id = 1;
 name

 The Godfather
(1 row)

movies_development=# select movie_showtimes_refresh_row(1);

162 | Chapter 12: Materialized Views

Download at Boykma.Com

 movie_showtimes_refresh_row

(1 row)

movies_development=# select name
movies_development-# from
movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
movies_development-# where id = 1;
 name

 Casablanca
(1 row)

Of course, in this case, we knew that the record was invalid because we invalidated it
ourselves. In practice, it won’t be the materialized view that changes to bring the two
out of sync but the unmaterialized one. We’ll need to detect changes by watching all
of the tables that make up the view with database triggers.

However, there are certain circumstances when observing changes in tables won’t alert
us to a change in our view. Such unobservable changes can arise from mutable functions
being part of the original view definition. For example, if we had a column based on
the random() function, our materialized view would always be out of sync. Such cases
are rare, though. The most common mutable function is now(), which appears in our
view in the definition of the current column. Before we build any triggers, we’ll first
see how to deal with these unobservable, time-based events.

Time Dependency
Although a seemingly random mutable function can be tricky to deal with, dealing with
a time dependency in a view is straightforward.

The problem we are facing is that it is not a change in the contents of any table that
changes the value of the current column in our view but simply the passage of time. In
our original view, we have defined current to mean a showtime is in the future, and
starts within one week. So with all else staying constant in our database, a showtime
that is two weeks away should have a false value in current. After the passage of one
week, it should switch to true. Another week later, back to false.

Because time always marches forward at the same pace, we know in advance the mo-
ment when the Boolean value in our materialized view needs to flip. If the showtime is
far in the future, then current will become true one week before the start time of the
showing. If the showtime is already current, it will become false when the present time
is equal to the start time. And if the showing was in the past, it will never become
current.

With this application-specific knowledge in hand, we can write a function that will tell
us when a row in our materialized view should be considered invalid and in need of a
refresh due to the need to update current. Example 12-6 shows this function. It takes

Refresh and Invalidation Functions | 163

Download at Boykma.Com

an integer parameter referring to the primary key of our view. A local variable
start_time is defined, which will hold the start time of the showtime in question. Then,
within the function body, we select the start time from the view and put it in that
variable. Then we run through the logic explained earlier to determine the moment in
time that our record should be invalidated.

Example 12-6. A function to determine when a time-dependent row should expire

create or replace function movie_showtime_expiry(
 id integer
) returns timestamp with time zone
security definer
language 'plpgsql' as $$
declare
 start_time timestamp with time zone;
begin
 select into start_time ms.start_time
 from movie_showtimes_with_current_and_sold_out_unmaterialized ms
 where id = id;
 if start_time < now() then
 return null;
 else
 if start_time > now() + '7 days'::interval then
 return start_time - '7 days'::interval;
 else
 return start_time;
 end if;
 end if;
end
$$;

Armed with this new method, movie_showtime_expiry, we can construct a better
refresh function that will insert the correct record expiration time into the expiry col-
umn rather than the null placeholder used in Example 12-4 (shown earlier). Exam-
ple 12-7 shows our new function with the new elements in bold. Note that we’ve also
modified the return type of the refresh function to return the expiration time. We’ll
use this later when we come to the reconciler view.

Example 12-7. A refresh function that calculates row expiry based on a showtime id

create or replace function movie_showtimes_refresh_row(
 id integer
) returns timestamp with time zone
security definer
language 'plpgsql' as $$
declare
 expiry timestamp with time zone;
begin
 expiry := movie_showtime_expiry(id);
 delete from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 ms where ms.id = id;
 insert into movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 select *, false, expiry

164 | Chapter 12: Materialized Views

Download at Boykma.Com

 from movie_showtimes_with_current_and_sold_out_unmaterialized ms
 where ms.id = id;
 return expiry;
end
$$;

We have introduced an inefficiency here. Can you see it? Because we want to return
the expiry value—again, why we do this will become apparent later in this chapter—
we have evaluated our costly unmaterialized view twice: first, in the call to movie_show
time_expiry, which selects from the unmaterialized view; second, in the refresh func-
tion itself in the predicate of the select. Since our overarching goal here is to optimize,
we’d rather not do twice what could be done once. Correcting this inefficiency is left
as an exercise for the end of this chapter.

One last problem with time dependency is that our initial snapshot did not contain any
expiration information. It would have helped to have our expiry function ready before
we generated the snapshot, but we can update the entire materialized view with the
following:

select movie_showtimes_refresh_row(id)
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry;

If we had the function available from the start, we could also have created our initial
materialized view with a SQL statement that took the expiry into account:

create table movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry as
select *,
 false as dirty,
 movie_showtimes_refresh_row(id) as expiry
 from movie_showtimes_with_current_and_sold_out_unmaterialized;

Who Pays the Price?
Nothing comes for free. Even if queries against a materialized view are fast (O(1) time)
you still have a price to pay to keep the materialized view accurate. O(1) is nothing to
shout about if the data you are retrieving is stale or invalid, and refreshing can be
expensive. In fact, our refresh function makes it clear that the cost of refreshing is as
expensive as the cost of querying our complex, slow, unmaterialized view. Therefore,
it’s important to minimize the amount of time you spend refreshing and also to refresh
at times that are least likely to be burdensome.

When any table involved in the view definition changes, whether rows are inserted,
updated, or deleted, you may have an event that requires an update to the materialized
view. However, it may not be wise to update the materialized view at the first oppor-
tunity we have to do so.

Figure 12-2 shows three possible times when we can update our materialized view. The
first is at the exact moment when a change to a base table record causes corresponding
records in the materialized view to become invalid. These events are easily detectable
through database triggers, and they are the topic of the next section. The second

Refresh and Invalidation Functions | 165

Download at Boykma.Com

detectable time we can refresh is when a user is making a request to the materialized
view. If we know records are invalid, we can refresh them just before returning data to
the user. The third opportunity for refresh is not detected but is forced through periodic
update of rows known to be invalid. This method alone is not enough to ensure cache
correctness, but in conjunction with the first two methods, it can help reduce the user-
visible lag of refreshing invalid rows.

Before discussing in detail how to decide which refresh scheme is best for which cir-
cumstances, we need to clarify how, in the latter two refresh schemes, you would know
whether a record is invalid or not. We’ve already seen how the expiry column can be
used for this purpose for records with a time dependency. We need an analogous way
to know when rows that we chose not to refresh at the time of invalidation are indeed
invalid. This is where the dirty column, created in our initial snapshot, comes into play.

Example 12-8 shows a new method, movie_showtimes_invalidate_row, which sets the
dirty column of a particular row to true. For triggered events where we decide not to
call the expensive refresh function immediately, we can instead call this method, which
runs in O(1) time. Now our second and third refresh opportunities—just before
returning results to a user and the periodic refresh sweep—can check that a row is either
dirty or has expired, and refresh only those rows.

Example 12-8. A function to mark a materialized view row as invalid

create or replace function movie_showtimes_invalidate_row(
 id integer
) returns void
security definer
language 'plpgsql' as $$
declare
 n_updates integer;
begin
 update movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry ms

id
...

base table

id
...

materialized view

Admin user
invalidation

User
request

Periodic refresh
sweeper

2

1

-3 0 3 6 …

Database

Figure 12-2. Timeline of refresh opportunities

166 | Chapter 12: Materialized Views

Download at Boykma.Com

 set dirty = true
 where ms.id = id;
 return;
end
$$;

There are a number of considerations that go into choosing when to refresh. The first
way of looking at the problem is in terms of who should pay the price. If you can split
your users into two classes, admin users who are making the most changes to data, and
customers, who are viewing that data, then the choice is clear. You’re paying for cus-
tomers and your employees are being paid to do their jobs, so in general the burden of
update should be on the employee’s shoulders.

However, in some cases, the relationships between the tables themselves play a role in
determining whether it’s appropriate to refresh immediately, while the actor is waiting,
or to defer the burden to the viewer or the periodic sweeper. These relationships fall
into three categories: 1:1 (“one to one”), 1:N, and N:1.

1:1 updates

In the first category, 1:1, every row you update in a base table corresponds to a unique
row in the view. The most obvious example is the table from which the view gets its
primary key, in this case movie_showtimes. If you update five records in the movie_show
times table, five records change in the view and thus five records need to be refreshed
or invalidated in the materialized view.

In this case, it usually makes sense to refresh the row in question right away, especially
if only employees have the ability to invalidate the data. The additional time spent by
the employee translates directly into time saved when rendering pages for your users.

1:N updates

For the second category, 1:N, an update of a single row in one of the base tables changes
multiple rows in the view. For example, if we make a change to a movie or theatre, all
of the rows for that movie or theatre change in our view. An update to a single row
could require 100, 1,000, or even more refreshes or invalidations in the materialized
view.

In this case, it’s not obvious whether you should refresh rows immediately or invalidate
them for a deferred refresh. Clearly, refreshing so many rows at once could seem beyond
reasonable, even for someone on payroll. The statement “They don’t pay me enough
for this @!#%!” comes to mind. Factors affecting this decision are the number of rows
likely to be invalidated at once, how many of these invalid rows are likely to be requested
in a single request by a user, and how patient your employees are. If many rows are
invalidated, but visitors request them one by one, it may make sense to have your site’s
visitors pay one row at a time rather than force employees to sit around waiting for a
thousand records from a complex view to be refreshed. In the proceeding discussion

Refresh and Invalidation Functions | 167

Download at Boykma.Com

of the reconciler view, we’ll see how we can limit request-time refreshes to only those
records that are being requested.

N:1 updates

Finally, in N:1 relationships, a number of updates to some base table corresponds to
just a single row in the view. This type of relationship is generally found in aggregate
functions. For example, in our view, each showtime record has a count of the number
of tickets purchased in the tickets_purchased_count column. Whether we add 10 tick-
ets to an order for a given showtime (one row per ticket), delete 10 tickets, or modify
each of those tickets in some way, only one row in the view changes, and therefore only
one record in the materialized view needs to be updated.

In this case, it is cruel and unusual to have the actor, generally your employees, pay the
price of refresh N times when there is only one change to be made to the materialized
view. Because each base table modification results in a trigger firing, if that trigger calls
the complex refresh function, you will pay for the refresh function N times before the
transaction is complete. Clearly, the result of refreshing once after all modifications are
made is the same as refreshing N times, except that the latter case is a waste of time
and more importantly, database resources. Therefore, in this case, the triggers related
to N:1 relationships should invalidate materialized view rows for deferred refresh rather
than perform the refresh in place. The cost to invalidate is negligible, and the heavier
cost of refreshing need happen only once.

Triggered Refreshes and Invalidations
So far we have built a snapshot of our view at a given point in time, and we have created
stored procedures that can be used to invalidate and refresh rows in the materialized
view snapshot. Now it’s time to build triggers that will refresh or invalidate rows
automatically as changes are made to underlying tables.

In general, triggers follow these steps:

1. Determine if any change to the materialized view is necessary, and quit early if not.

2. Determine which rows, by primary key, need to be refreshed or invalidated.

3. Call the refresh or invalidate function on those primary keys.

Writing these triggers can be a tedious process because we need to account for inserts,
updates, and deletes on all tables that make up the view. In this case, nearly all of our
tables—six—are involved in the view in some way. With three functions per table for
each insert, update, and delete, this could mean we need to write 18 trigger functions.
Luckily, with some proper analysis, we can eliminate the need for more than half of
these.

To facilitate this analysis, we create a reference table as shown in Table 12-1. We list
each table involved in the view. For each table, we determine its relationship to the

168 | Chapter 12: Materialized Views

Download at Boykma.Com

view: 1:1, 1:N, or N:1. Then, for each operation on the table, we first determine whether
any action is needed at all, and if so, we choose whether we will refresh immediately,
or defer the refresh by performing an invalidation operation. We’ll examine each table
in turn to see how we came up with the entries in this table.

Table 12-1. A summary of view base tables and how they relate to invalidation or refresh

Table Relationship to view Operation Action needed? Refresh Invalidation

movies 1:N insert

update ✓ ✓

delete

theatres 1:N insert

update ✓ ✓

delete

movie_showtimes 1:1 insert ✓ ✓

update ✓ ✓

delete ✓ ✓

orders N:1 insert

update ✓ ✓
delete

ticket_purchases N:1 insert ✓ ✓
update ✓ ✓
delete ✓ ✓

auditoriums 1:N insert

update

delete

Movie Showtimes
As we’ve already discussed, the movie_showtimes table shares its primary key with the
view, and therefore it has a 1:1 correspondence. When a new showtime record is in-
serted, we need to add that record to the materialized view. When a record is deleted,
we need to delete the record. And when a record is updated, we need to update the
corresponding record.

Example 12-9 shows three functions to handle each case of update, insert, and delete.
There are three new features of PL/pgSQL relating to trigger functions worth noting
here.

First, functions intended to be used in conjunction with table triggers must have a
return type trigger. Second, functions called from triggers can implicitly receive two
parameters: old and new. On an update, both of these are present, and old refers to the

Triggered Refreshes and Invalidations | 169

Download at Boykma.Com

record before the update, and new refers to the record after the update. On an insert,
only new is provided, and on delete, only old. Finally, we have used the keyword
perform in our trigger functions. perform is used when you don’t intend to store the
result of a select statement. In these cases, you replace the keyword select with perform.

Note that in general, updates are a special case. If the record changes in such a way that
the referenced primary key changes, we need to take action on both the old and new
primary key.

Also note that the method names follow a particular pattern. First, we prefix them in
a way that identifies the materialized view they are for: ms_mv_ for “movie showtimes
materialized view.” Then we identify the table this trigger function is for, here
showtime as a shortened version of movie_showtimes. Finally, we append to the function
name an identifier of whether this is the insert, update, or delete trigger with _it, _ut,
or _dt, respectively. This pattern will be followed for all tables and triggers.

Example 12-9. Triggers functions for the movie_showtimes table

create or replace function ms_mv_showtime_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.id = new.id then
 perform movie_showtimes_refresh_row(new.id);
 else
 perform movie_showtimes_refresh_row(old.id);
 perform movie_showtimes_refresh_row(new.id);
 end if;
 return null;
end
$$;

create or replace function ms_mv_showtime_dt() returns trigger
security definer language 'plpgsql' as $$
begin
 perform movie_showtimes_refresh_row(old.id);
 return null;
end
$$;

create or replace function ms_mv_showtime_it() returns trigger
security definer language 'plpgsql' as $$
begin
 perform movie_showtimes_refresh_row(new.id);
 return null;
end
$$;

The naming convention just discussed was intended to help you identify which function
is for which purpose, but from the database’s perspective, these are just arbitrary names.
For each function, we also need to add a corresponding trigger to the table itself so that
the database knows which method to call when each particular event occurs. Exam-
ple 12-10 shows how we add these triggers.

170 | Chapter 12: Materialized Views

Download at Boykma.Com

Example 12-10. Actual trigger declaration for the movie_showtimes table

create trigger ms_mv_showtime_ut after update on movie_showtimes
 for each row execute procedure ms_mv_showtime_ut();

create trigger ms_mv_showtime_dt after delete on movie_showtimes
 for each row execute procedure ms_mv_showtime_dt();

create trigger ms_mv_showtime_it after insert on movie_showtimes
 for each row execute procedure ms_mv_showtime_it();

Movies

The movies table, as noted previously, has a 1:N correspondence with our view. A
change to a single movie affects all of the showtime records associated with that movie.
Our trigger function must select a column of showtime ids for refresh. Because only an
employee could change a movie record, an immediate refresh was chosen rather than
an invalidation, which would make users viewing the site pay for the refresh.

Because a movie has no impact on our view until it has showtimes, we do not need a
trigger on insert or delete of a movie. On insert, there can be no showtime records yet
for that movie. On delete, there can be no records because of the referential integrity
constraint, which guarantees that a showtime reference a valid movie. All of the
movie_showtimes records would have already been deleted or updated to reference a
different movie before a delete on movies could succeed, and the refreshes triggered
after modifications to that table would have cleared all of the records from the mate-
rialized view. Example 12-11 shows the triggers for the movies table.

Example 12-11. Triggers for the movies table

create or replace function ms_mv_movie_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.id = new.id then
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.movie_id = new.id;
 else
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.movie_id = old.id;
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.movie_id = new.id;
 end if;
 return null;
end
$$;

create trigger ms_mv_movie_ut after update on movie_showtimes
 for each row execute procedure ms_mv_movie_ut();

Triggered Refreshes and Invalidations | 171

Download at Boykma.Com

Theatres

Our treatment of the theatres table exactly matches the treatment of movies. The the-
atres table also has a 1:N correspondence, so our trigger function must select a column
of showtime ids for refresh. Just as with the movies table, referential integrity constraints
prevent a theatre from being deleted while showtimes reference it, so we do not need
a delete trigger function. Similarly, when a theatre record is first inserted, it has no
showtimes and therefore cannot impact the view. Our single update trigger function is
defined in Example 12-12.

Example 12-12. Triggers for the theatres table

create or replace function ms_mv_theatre_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.id = new.id then
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.theatre_id = new.id;
 else
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.theatre_id = old.id;
 perform movie_showtimes_refresh_row(ms.id)
 from movie_showtimes ms
 where ms.theatre_id = new.id;
 end if;
 return null;
end
$$;

create or replace trigger ms_mv_theatre_ut after update on theatres
 for each row execute procedure ms_mv_theatre_ut();

Orders

The orders table has an interesting relationship with the materialized view. It does not
directly effect the view at all, but the records in purchased_tickets—which are linked
to the movie_showtimes table through the orders table—do. Therefore, adding or re-
moving an order record has no effect on the view, but a modification to the order that
alters the showtime it is for—and transitively its associated tickets—does have an effect.
Therefore, we need only an update function, and we need only to perform the refreshes
or invalidations if the movie_showtime_id foreign key reference changes. Any other
changes have no affect on the view. In this case, we have chosen to invalidate the row
(see Example 12-13).

Example 12-13. Triggers for the orders table

create or replace function ms_mv_orders_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.movie_showtime_id != new.movie_showtime_id then

172 | Chapter 12: Materialized Views

Download at Boykma.Com

 perform movie_showtimes_invalidate_row(old.movie_showtime_id);
 perform movie_showtimes_invalidate_row(new.movie_showtime_id);
 end if;
 return null;
end
$$;

create trigger ms_mv_orders_ut after update on orders
 for each row execute procedure ms_mv_orders_ut();

Purchased tickets

Ticket purchases impact the purchased_ticket_count column of the view, but only the
presence or absence of any given row is relevant. Therefore, we certainly need an insert
and delete trigger for the purchased_tickets table. We do also need an update trigger,
but it is constrained to take action only if there is a possibility that the tally for the ticket
needs to be moved from one showtime to another. This is only possible if the ticket
purchase is reassociated with a different order, which might be for a different showtime.
Therefore, the update trigger takes action conditionally based on whether the
order_confirmation_code foreign key column undergoes a change.

Because ticket purchases have an N:1 relationship with a showtime in our view (all the
purchases for a showtime are counted and affect a single column in a single record) we
call the invalidation function in our triggers rather than the refresh function. If 10
tickets are purchased, we want to refresh only once, not 10 times, since the end result
is simply to increase the purchased_tickets_count column by 10. Calling the refresh
function 10 times to increment the count one ticket at a time is a waste of time and
resources. Example 12-14 shows the triggers for the purchased_tickets table.

Example 12-14. Triggers for the purchased_tickets table

create or replace function ms_mv_ticket_ut() returns trigger
security definer language 'plpgsql' as $$
begin
 if old.order_confirmation_code != new.order_confirmation_code then
 perform movie_showtimes_invalidate_row(o.movie_showtime_id)
 from orders o
 where o.confirmation_code = new.order_confirmation_code;
 perform movie_showtimes_invalidate_row(o.movie_showtime_id)
 from orders o
 where o.confirmation_code = old.order_confirmation_code;
 end if;
 return null;
end
$$;

create or replace function ms_mv_ticket_dt() returns trigger
security definer language 'plpgsql' as $$
begin
 perform movie_showtimes_invalidate_row(o.movie_showtime_id)
 from orders o
 where o.confirmation_code = old.order_confirmation_code;

Triggered Refreshes and Invalidations | 173

Download at Boykma.Com

 return null;
end
$$;

create or replace function ms_mv_ticket_it() returns trigger
security definer language 'plpgsql' as $$
begin
 perform movie_showtimes_invalidate_row(o.movie_showtime_id)
 from orders o
 where o.confirmation_code = new.order_confirmation_code;
 return null;
end
$$;

create trigger ms_mv_ticket_ut after update on purchased_tickets
 for each row execute procedure ms_mv_ticket_ut();

create trigger ms_mv_ticket_dt after delete on purchased_tickets
 for each row execute procedure ms_mv_ticket_dt();

create trigger ms_mv_ticket_it after insert on purchased_tickets
 for each row execute procedure ms_mv_ticket_it();

Hiding the Implementation with the Reconciler View
Now that we have defined our triggers, we have added yet another way for the mate-
rialized view to decay. The first decay mechanism was the expiry column, which allows
rows to declare when they should be treated as irrelevant. The second mechanism is
the dirty column, which our invalidation function sets to true when certain tables
receive updates.

Slowly but surely, our materialized view will become a minefield full of stale records
we need to avoid if we aim to present accurate data to database clients. Such a table is
by no means a drop-in replacement for the original view. Not only is the materialized
view slowly turning into garbage but also the interface is different. If selecting directly
from this table, a client must be careful to avoid stale or invalid rows. The logic that
was neatly contained within the view’s where clause filters is now contained in columns,
which the client must explicitly filter on.

We will now plug up these holes, first ensuring that the data returned to clients is always
up-to-date. Then we’ll give the original interface provided by the original view back to
the client. We’ll hide the dirty and expiry columns and transform the current and
sold_out columns back into a filter.

We accomplish the first goal of always returning accurate data with the reconciler
view. We give this view the same name as our original, “well-formed” view from Ex-
ample 12-2, but without the suffix _unmaterialized. It is simply called movie_show
times_with_current_and_sold_out. This new view is shown in Example 12-15. It is the

174 | Chapter 12: Materialized Views

Download at Boykma.Com

union of two select statements. The first returns rows from our physical materialized
view table that are neither dirty nor expired.

The second part of this view contains the magic. It returns records that look like data
from the materialized view, complete with a false dirty column, and an accurate expiry
time. Recall when we built our refresh function in Example 12-7 (shown earlier), we
constructed it so that it would return the expiry time of the new row being inserted.
That was not without purpose; we make use of that behavior here to create a complete
yet functional façade for the materialized view, which hides the mixture of accurate,
expired, and dirty rows. When we call the refresh function, it both fills in the expiry
column accurately, but more importantly, it refreshes the expired or dirty row.

This is as close as we get in this book to pure magic. The process of requesting rows from
the reconciler view refreshes the expired rows in the materialized view. The reconciler
view, then, is nearly our end-state view. Although it does have two additional columns
that our original view did not—expiry and dirty—it is essentially a drop-in replace-
ment for the view we started out with in Example 12-2 (shown earlier), as it is always
accurate.

Example 12-15. The reconciler view provides just-in-time cache-correctness

create or replace view movie_showtimes_with_current_and_sold_out as
select *
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 where dirty is false
 and (expiry is null or expiry > now())
 union all
select *,
 false,
 movie_showtimes_refresh_row(w.id)
 from movie_showtimes_with_current_and_sold_out_unmaterialized w
 where id in (select id
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 where dirty is true
 or not(expiry is null or now() <= expiry));

In the reconciler view, we use union all rather than union. A SQL
union returns only unique rows. To do so, the result rows must be first
be sorted, followed by a unique operation to filter out any duplicate
rows. Since we aren’t expecting any duplicate rows, using unique can be
much more efficient if we’re requesting a large number of rows from the
reconciler view at once.

You may have noticed that the way we implemented the reconciler view, with its se-
lection from the unmaterialized view and a call to the refresh function for each invalid
row, actually evaluates the unmaterialized view twice for each invalid row that needs
to be updated. This is unfortunate, but it is still a vast improvement over an evaluation
of the unmaterialized view for every page request. Of course, nothing is impossible,

Hiding the Implementation with the Reconciler View | 175

Download at Boykma.Com

and therefore writing a reconciler view that does not evaluate the unmaterialized view
twice is not impossible. However, such an implementation is beyond the scope of this
book and strays from our purpose here: that is, the fundamentals of materialization
and cache correctness. A more complete materialized view implementation is available
at this book’s website, located at http://enterpriserails.chak.org.

You may also be wondering, when you select from the reconciler view, how many rows
are refreshed? Are all of the expired and invalid rows refreshed, which could be quite
costly, or just the ones that influence the query? In fact, it is the latter. Exam-
ple 12-16 shows a set of SQL queries to illustrate this. First, two rows in the materialized
view are manually set to be dirty. Then, one of those rows is requested from the rec-
onciler view. Finally, the dirty column of both rows is selected directly from the ma-
terialized view. Only the one we selected from the reconciler view has been refreshed,
and it now has a false value in the dirty column.

This property of the reconciler view plays a big role when you’re choosing between
invalidation or refresh for 1:N table relationships. If it’s common for rows to be selected
from the materialized view in small chunks rather than all at once, you can amortize
the full refresh of a 1:N invalidation over a number of future site visitors. Alternatively,
the user who invalidated the rows—often an employee—must pay the price of refresh-
ing N rows all at once.

Example 12-16. When selecting from the reconciler view, you pay only for refreshing the rows you
select

movies_development=#
 update movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 set dirty = true
 where id in (1, 2);
UPDATE 2

movies_development=#
 select *
 from movie_showtimes_with_current_and_sold_out
 where id = 1;
(1 row)

movies_development=#
 select id, dirty
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 where id in (1, 2);
 id | dirty
----+-------
 2 | t
 1 | f
(2 rows)

176 | Chapter 12: Materialized Views

Download at Boykma.Com

http://enterpriserails.chak.org

Periodic Refreshes
In Figure 12-1, I alluded to a periodic refresh activity. Now that we have seen the
reconciler view, such an activity is trivial to implement. That activity is simply the
variation on the bold portion of the reconciler view in Example 12-15. We simply need
to select the refresh function on all of the rows that are expired or dirty. This can run
via a cron job at a given internal to alleviate some of the burden imposed on site visitors
whose requests go through the reconciler view. If the refresh function is called between
an invalidation operation (either explicit or implicit due to an expiration date passing)
and a request, then cron pays rather than the next visitor (see Example 12-17).

Example 12-17. A refresh function to be run periodically

select movie_showtimes_refresh_row(w.id)
 from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry w
where dirty is true
 or not(expiry is null or now() <= expiry));

Completing the circle

Our reconciler view, although it is a nearly identical drop-in replacement for our well-
formed view from Example 12-2, is not the same as the view we began with in Exam-
ple 12-1, current_movie_showtimes.

At this point, it is not hard to create a new view with the same name that has the same
output, but is based on the materialized view. We just request all rows except dirty and
expiry from the reconciler view. We also omit our Boolean columns from the new view
and instead use them as filters. Example 12-18 shows the new definition of our original
view. Now we’ve come full circle.

Example 12-18. A view indistinguishable from our original current_movie_showtimes view but based
on the reconciler view

create view current_movie_showtimes as
 select name,
 rating_id,
 length_minutes,
 id,
 movie_id,
 theatre_id,
 room,
 start_time,
 theatre_name,
 zip_code,
 latitude,
 longitude,
 seats_available,
 purchased_tickets_count
 from movie_showtimes_with_current_and_sold_out
 where current is true and sold_out is false;

Hiding the Implementation with the Reconciler View | 177

Download at Boykma.Com

Figure 12-3 shows the progression of views, tables, and wrapper views we created to
completely hide the implementation of our materialized view from clients.

Cache Indexes
Our materialized view implementation is actually rather useless if we do not add in-
dexes. Although we don’t need to evaluate the complex view query when we query the
materialized view, without indexes, each request would need to run a full table scan to

movie_showtimes_with_current_and_sold_out_unmaterializedmovie_showtimes_with_current_and_sold_out_unmaterialized
current
sold_out

view

current_movie_showtimescurrent_movie_showtimes
view

dirty
expiry

movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
current
sold_out

dirty
expiry

movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
current
sold_out

current_movie_showtimescurrent_movie_showtimes
view

view

Put view into form

Create snapshot table

Add reconciler view

Drop-in replacement wrapper view

Id
en

tic
al

 in
te

rf
ac

es
, o

ne
 b

as
ed

 o
ff

a
m

at
er

ia
liz

ed
 v

er
si

on
 o

f t
he

 o
th

er

Figure 12-3. The progression of views and tables to abstract the materialized view implementation
from clients

178 | Chapter 12: Materialized Views

Download at Boykma.Com

return any results. Indexing makes queries by id or by one of our original filters close
to instantaneous.

There is a minimal set of indexes we need on a materialized view. First, we need to
index the primary key column. It’s fine to do this by creating an explicit primary key.
Next, we need to add indexes on the dirty and expiry columns, since they are part of
the where clause of the reconciler view. Indexing these columns keeps that part of our
implementation fast. Finally, we should index the filters that we recast as columns,
current and sold_out, since it’s likely we’ll be filtering on these columns frequently.
Apart from this set—the primary key, the invalidation implementation columns, and
the filter columns—you can index any columns in your materialized view that your
application will select or filter on. The creation of our primary key and indexes is shown
in Example 12-19.

Example 12-19. A minimal set of indices on a materialized view

alter table movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
 add primary key (id);

create index movie_showtimes_with_current_and_sold_out_dirty_expiry_idx
 on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(dirty, expiry);

create index movie_showtimes_with_current_and_sold_out_current_idx
 on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(current);

create index movie_showtimes_with_current_and_sold_out_sold_out_idx
 on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(sold_out);

Results
The results of using a materialized view rather than an unmaterialized one are quite
impressive. In Example 12-20, a select from both for current, non-sold-out showtimes
is analyzed.

First, the count of records in each table is selected to give you an idea of how much
data we are dealing with. In fact, it is not too much data compared to what a real
production site selling tickets for all theatres and all movies nationally might have in
its database. Our data set likely accounts for a day or at most a week’s worth of accu-
mulated data on a real system.

Next, we select all of the current, non-sold-out showtimes from the unmaterialized
view. On a Dual Core 2.1 Ghz MacBook Pro, the query takes 1.16 seconds. Next we
issue the same select against the materialized view. It takes 0.013 seconds. With this
dataset, selecting from the materialized view is almost 100 times faster. As the dataset
grows, the time required to select from the unmaterialized view increases, while the
time to request from the materialized view remains nearly constant.

Results | 179

Download at Boykma.Com

Example 12-20. Comparison of runtimes on a view versus a materialized view

movies_development=# select (select count(*) from movies) as movies,
 (select count(*) from theatres) as theatres,
 (select count(*) from movie_showtimes) as showtimes,
 (select count(*) from orders) as orders,
 (select count(*) from purchased_tickets) as tickets;
 movies | theatres | showtimes | orders | tickets
--------+----------+-----------+--------+---------
 44 | 6 | 20201 | 218593 | 218591
movies_development=# explain analyze
 select id
 from movie_showtimes_with_current_and_sold_out_unmaterialized
 where current = true
 and sold_out = false;
Total runtime: 1158.617 ms

movies_development=# explain analyze
 select id
 from movie_showtimes_with_current_and_sold_out
 where current = true
 and sold_out = false;
Total runtime: 12.553 ms

Cascading Caches
In Example 12-2, we joined against a named query subselect to create our view. We
noted that this query could also be recast as a full-fledged view in its own right. By
extension, it could also be recast as a materialized view.

If that were the case, we would be cascading two materialized views. The inner mate-
rialized view would be concerned with orders and ticket purchases, and the outer view
would no longer need to watch those tables directly. Instead, the outer materialized
view would maintain triggers on the inner materialized view.

Working this way can reduce the complexity of any given materialized view. It also
speeds up the inner view, for cases where there are other uses for that data. Imple-
menting a cascading materialized view is left as an exercise for the readers.

Exercises
1. Write a stored procedure that verifies a one-to-one correspondence between rows

in the materialized “reconciler” view and the unmaterialized view.

2. Using the stored procedure from Exercise 12-1, write a series of unit tests that
modify records—one at a time as well as simultaneously—and then assert the val-
idity of the reconciler view.

180 | Chapter 12: Materialized Views

Download at Boykma.Com

3. It was noted that our refresh function does extra work to calculate and return the
expiry value. Write a new movie_showtime_expiry stored procedure that takes
start_time as a parameter and returns an expiry value without selecting from the
unmaterialized view.

4. Rewrite the snapshot creation query and the refresh function to use the new pro-
cedure you wrote in Exercise 12-3. Time the snapshot creation and refresh opera-
tions with both methods. Which set is faster and by how much?

5. Following the procedure outlined in this chapter, create a materialized view for
ptc, the named subquery from Example 12-2. Then rewrite the triggers for the main
materialized view to use this new physical table. How do you propagate
invalidations?

Exercises | 181

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 13

SOA Primer

Service-oriented architecture (SOA) is a concept that seems to be almost universally
misunderstood. Especially in the era of Web 2.0 and web services, the definition of true
SOA services has been muddled. I have encountered people who think they have a
service-oriented architecture but don’t. I’ve encountered people who have stumbled
upon a service-oriented architecture in solving an architectural scaling problem but
didn’t know the architecture they had invented had that name. “That’s what all those
people talking about SOA are talking about? That’s easy!” Because SOA is a buzzword,
no one wants to admit that they don’t know what it means.

Many application developers are unfamiliar with true SOA because the need for it enters
late in an application’s lifecycle. It is often only when a company has matured to
enterprise level that the old, tried and true, “monolithic” approach to building websites
can no longer cut it. The single web application and single database of the monolithic
architecture at some point cannot stand up to the demands of the company’s success,
and a wholly new architecture is needed to meet the challenge. Usually that architecture
is SOA.

But what is SOA? When is it useful and what are the advantages? The goal of this and
the following chapters is to lift the veil of confusion surrounding “services” as they
relate to service-oriented architecture. We’ll start with the what. What does a service-
oriented architecture look like? Then we’ll look at the why. What are some common
situations where a SOA solution is appropriate and likely to be successful? Finally, we’ll
look at the who. Who uses SOA and how can it benefit your organization?

We’ll save the how for the next chapters.

What Is SOA?
SOA is a way to design complex applications such that the complexity is more man-
ageable. This is accomplished by splitting out major components into the building
block of SOA, which are individual services.

183

Download at Boykma.Com

Before defining that building block, the services, first let’s look at an analogous archi-
tectural jump that you’re no doubt already familiar with: object-oriented programming
(OOP). OOP , initially introduced in the 1960s and 1970s in Simula 67 and Smalltalk,
swept the software development scene in the mid-1990s with C++, when programs
were getting too large and complex to be maintained in procedural programming lan-
guages such as C. In procedural programming, you have large amounts of data, and
lots of methods that process the data managed by the application. All functions are
globally accessible, as is most data. Organization is imposed through naming conven-
tions; for example, new_movie and delete_movie, rather than the more object-oriented
Movie.new and Movie.delete. Eventually, as program size increases, procedural pro-
grams becomes increasingly fragile. It is especially difficult for multiple programmers
to be working on the same procedural application at the same time because so much
of the program—both methods and data—are more or less global in nature. It’s chal-
lenging for developers to avoid stepping on each other’s toes, as it’s not always clear
where one program module ends and another begins.

Object-oriented programming solved this problem by separating collections of meth-
ods and data through language mechanisms rather than through convention. While
convention can be powerful, it can also be strayed from, while language rules are hard
and fast. In object-oriented programming, lines are drawn between different types of
data and their related methods.

For each type of data, a class—one of the building blocks of OOP—is defined. That
class contains all of the data and data structures particular to that type of data. Also,
any methods that are related to the data are packaged up in the class as well. Various
amounts of the class’s data (often all of it) and methods (often a good deal of them) are
declared to be private, which makes that data and those methods off-limits to the rest
of the program and to developers working in other parts of the application. In this way,
the language itself leads to an architecture within an app, which makes it easier for
developers to organize their work.

What’s left after all of this information-hiding (public methods and data) defines the
API of the class. The API is the contract of the class and also the barrier. It is a contract
because it says, “Provide me with these inputs, and I will provide you with these out-
puts.” It is a barrier because it is the only way—albeit indirectly—to access the class’s
private methods and data. You can only access a class’s data in ways that the public
API allows.

SOA follows a similar jump in the level of organization as did object-oriented pro-
gramming from procedural programming. But Ruby is already an object-oriented lan-
guage, so what is SOA jumping from? In this context, object-oriented programming is
to SOA as procedural programming is to monolithic application design.

Before we go further, monolithic application design must be defined. In fact, it is
everything that has been discussed in this book up to this point. In monolithic appli-
cation design, all of the functionality of a website is contained in the same code base

184 | Chapter 13: SOA Primer

Download at Boykma.Com

and runs in the same process on the web server. Figure 13-1 illustrates this concept. All
of the data is contained in a single database—the monolithic database—or is otherwise
accessible in some way, without restriction, from the monolithic application. This
should sound familiar because this application design is the sole subject of virtually
every Rails programming book in print today.

Now that we know what a monolithic application is, we should define a service—the
building block of SOA. Recall that in object-oriented programming, a class represents
a slice of an overall application represented by a data type and all the methods related
to that data. SOA is analogous: a service is a slice of a website related to a particular
set of functionality and the related data.

The difference between the object-oriented and the service-oriented analogies is how
you access the APIs of different objects or services. In an object-oriented program,
objects pass messages to each other, but the message passing occurs within a single
process on a single machine. In a service-oriented architecture, individual services pass
messages back and forth, but they do so over the network.

So what does a service look like? Actually, it can look like anything. Just like a class in
object-oriented programming is defined by its API, and everything else is hidden behind
a layer of abstraction, so too with a service. What’s behind the API is anyone’s best
guess, and to gain the benefits of modularity, such details should be the service client’s
most remote concern. Of course, there is a template for the structure of a service that
will be adequate for most problems. That architectural template at a very high level is
shown in Figure 13-2.

Hopefully, it is not too shocking that the high-level architecture of a service looks re-
markably similar to that of the monolithic application. Similarly, the code within a class

Monolithic
application

Monolithic
database

Web
requests

Figure 13-1. Simplified view of a monolithic web application

What Is SOA? | 185

Download at Boykma.Com

in object-oriented programming doesn’t look much different from code in functional
programming. In SOA, it’s not the structure of any particular service that matters, but
rather the fact that the application has been organized into a number of simpler, more
understandable components, each separated from the others, and communicating via
well-defined, public APIs.

And, of course, Figure 13-2 presents a drastic over-simplification of a service “tem-
plate.” In Chapter 14, a lower-level template will be provided for a Rails XML-RPC
service based on ActionWebService, the preferred mechanism for most SOA services.
In Chapter 17, REST services will be introduced.

The great news is that if you do follow the service templates described in this book, all
of the concepts already covered remain applicable. The design principles of a mono-
lithic application and of a service within a service-oriented architecture are nearly
identical.

Why SOA?
Many scenarios lead naturally to the need for a service-oriented design. Some scenarios,
like a shared resource, demand it. Other scenarios, like the need for massive scaling,
can be helped by a service-oriented architecture because a SOA design naturally seg-
ments databases. It also reduces local complexity, which can make a caching scheme
easier to implement, further enhancing scalability. The notion of reducing local com-
plexity can be a goal in and of itself, for which SOA is the means. In this section, each
of these scenarios is explored in detail.

Service
application

Service
database

Service
requests

Figure 13-2. Simplified view of requests to a SOA service

186 | Chapter 13: SOA Primer

Download at Boykma.Com

Shared Resources
Imagine that you arebuilding a site that sells widgets. For that site, you’d have a
database full of sales data, both products and orders. Next imagine that you took my
advice in Chapter 4 and did not attempt to report directly out of the sales database.
Instead, you created a separate data warehouse database, which transformed the 3NF
or DK/NF sales and orders tables suited for Online Transaction Processing (OLTP)
into a star schema, which is better-suited for Online Analytical Processing (OLAP).
This setup is shown in Figure 13-3. Each of these databases has a front-end interface
for employees to access the contained data, be it sales data in the sales administration
website or aggregate reports in the reporting website.

There’s an additional wrinkle, though. Each front-end website needs to look up access
control information to validate that the users who are logging in and carrying out ac-
tions are authorized. There are numerous solutions to this problem, each of varying
merit. We’ll look at two candidate solutions that fail our litmus test for “enterprise”
before settling on—and in the process defining—a service-oriented solution.

Synchronized tables

In Figure 13-4, we’ve seemingly solved this problem by reproducing the access control
tables in both the sales and reporting databases. Each website is essentially its own
monolithic application, with direct access to all the data it needs in its own local data-
base. This works for a while, but now new employees need to be added to both data-
bases through each front-end. Similarly, whenever an employee changes her password
on the reporting site, she needs to remember to change her password on the sales site,
too. Keeping two sets of passwords in sync might not seem too onerous, but three sets
of synchronized data gets daunting, and 5 or 10 sets of data for each user to manually
keep in sync is downright ludicrous. This solution doesn’t scale with the business.

Sales
tables

Reporting
tables

3NF to star schema
 transformation

Sales
administration

website

Reporting
website

Sales
database

Reporting
database

Figure 13-3. Two databases in our system

Why SOA? | 187

Download at Boykma.Com

A shared database

Figure 13-5 illustrates another attempt at solving the problem of shared data. This time,
we’ve gotten around the problem of keeping multiple databases in sync with each other.
We’ve moved the access control tables out into a third database, which each site ac-
cesses to authorize users.

This technique is DRY in that we don’t need to repeat user data in each database.
However, at the code level it’s not very DRY at all. Each website needs to duplicate the
logic for authorizing a user and any other logic associated with those tables. If we find
a bug in one site’s authorization implementation, we have to correct the code not only
in that site but in every site that uses the access control database tables.

Similarly, if we make a change to the table structure to improve performance or to allow
for a great new feature, we need to modify every application that authorizes users to
remain compatible with our changes. Again, in our example of two sites, this may not
seem too onerous, but with 10 applications you’re out of luck. Propagating the changes
through software code is difficult enough. In a production environment, you’ll also
have to roll out a very well-planned strategy to avoid needing a site outage to commit
your database changes.

A third problem with this setup is that it makes correct caching impossible. Imagine
that you’ve got tons of traffic coming to your sites, and each request needs to check
authorization data. All that authorization activity is becoming a strain on the database.
Fortunately, the list of authorized users is relatively small, so you decide to cache the
entire users table in Memcache, clearing all users’ entries on appropriate events: when
they change their password, or when an administrator deletes or changes their account
in some meaningful way. Of course, the sales and reporting websites are completely
unrelated code bases, so they don’t share the same Memcache cluster. Having shared
memory between distinct applications is to be avoided under all circumstances, as there
is never any guarantee, express or implied, that one application won’t manipulate that
memory in a way that is counter to the expectations of another application. For

Sales
tables

Access
control
tables

Sales
administration

website

Sales
database

Sales
tables

Access
control
tables

Reporting
website

Sales
database

Figure 13-4. Attempting to solve the access control problem by replicating tables

188 | Chapter 13: SOA Primer

Download at Boykma.Com

example, two applications may choose the same cache key for different types of data,
leading an application to load and display incorrect data, or to fail completely.

Therefore, with shared memory spaces out of the question, maintaining correct caches
between separate applications requires that “appropriate events” for clearing each site’s
user cache must be broadcast somehow from application to application so that a deleted
user is deleted from the perspective of all caches. With our current design, when a user
is locked out of one site, he can continue to access other sites until the bogus
Memcache entries expire due to the course of time. The broadcasting necessary to keep
the caches maintained by completely separate applications in sync would be difficult
to implement and is not worthwhile, as better alternatives exist.

A service-oriented architecture

We finally come to the third and final solution to our problem of sharing user author-
ization information. This one avoids duplication in databases and in code. It abstracts
database changes away from the clients of those tables so that code changes to support
a schema change need to be made only in one place. Finally, this solution does not pose
a problem for maintaining cache correctness, as the previous attempt did. In fact, this
solution is ready-made for horizontal scaling. The solution is—you guessed it—an
access control service.

Figure 13-6 shows the service in the context of our other two applications. It is a com-
plete Rails application, but rather than serve web pages, it accepts service requests from
other applications for a predefined API and returns service responses. In this example,
the service supports a method authorize(), which would return true or false to the
application trying to authorize the user. The makeup of the tables in the access control
database is completely abstracted by this method. We could change the database

Access
control
tables

Sales
administration

website

Sales
database

Reporting
website

Sales
database

Access control
database

Figure 13-5. Attempting to solve the access control problem by splitting common tables off into a new
database

Why SOA? | 189

Download at Boykma.Com

schema completely or even replace it with an LDAP database; so long as the imple-
mentation of the authorize() method within the service is updated, all of our client
applications—here, the sales and reporting sites—can continue to authorize users
without needing to make any changes.

In this example, we have extracted not just the repeated database tables, but also the
repeated application code, all into a single place: the service. The service publishes an
API or a set of methods to which it can respond. In a sense, a service API is just like a
model class in a Rails application, but the methods execute on a remote server.

Reduce Database Load
The database is usually the first bottleneck to show up in a project, and it is also gen-
erally the most persistent. You can add as many application servers as you want, but
you are stuck with a single database server to handle all of your SQL queries.

Luckily, the amount of time spent processing SQL queries can be greatly reduced
through a variety of techniques available to the application developer:

• Analyze slow queries with a query planner. Add indexes to speed up slow queries,
or rewrite the queries to use already existing indexes.

• Recast expensive queries as database views. Then materialize those views for faster
access, as described in the previous chapter.

• Replace database queues with external queues mechanisms such as Amazon’s
Simple Queue Service (SQS).

Access
control
service

Sales
website

Sales
database

Reporting
website

Reporting
database

Access control
database

authorize(...)
change_password(...)
delete(...)
add(...)Service

Service API

Figure 13-6. Solving the access control problem by introducing a service layer

190 | Chapter 13: SOA Primer

Download at Boykma.Com

Unfortunately, database tuning can seem like a constant uphill battle. Every new batch
of code you release is likely to contain new SQL queries. Often, you won’t even ex-
plicitly know what those queries are when you’re releasing them because the SQL will
be hidden behind the abstraction of ActiveRecord magic in Ruby code. Ideally, all of
your database queriesuse indexes; however, new queries may mean new indexes are
necessary. In your development or staging environments, where there’s less data in the
database and less traffic, the queries—while slow—may seem to be an acceptable
speed. You may not feel the pain of missing indexes until the queries are out in pro-
duction and massive amounts of traffic are suddenly getting slammed against a query
that runs too slowly in the context of your production database and all its contained
data.

Similarly, a change in the application may lead users to implement a feature they didn’t
before. A slow culprit query may have been in your application all along, but growing
popularity may cause it to hose your entire site.

Slicing and dicing

One of the biggest benefits of a service-oriented architecture is that it allows you to
bend the rule that says you can have only one database server serving traffic. A service
represents a vertical slice of your site’s functionality, from the database up to the service
API itself. This means that each separable slice of functionality can persist its data in a
separate database on a separate physical machine. If you have two services, such as a
Product Service and an Orders Service, each handling roughly half of the database load,
then by splitting the application into a service-oriented architecture, you can—at the
expense of added hardware—reduce database load by 50%. While some may take issue
here and point out that a second database server may be expensive, whereas making
software faster is free, in practice the cost of hardware pales in comparison to the cost
of a good software developer’s time.

To illustrate this, let’s take the example of the monolithic application we developed in
the first half of this book, shown in Figure 13-7. There are two components, the Rails
application, with code for dealing with movies (our product), and for taking orders for
movie tickets.

There are two good ways to split up this monolithic application. The first step is to
simply slice the database in half, leaving the movie information in one database and
the order information in another. Then model classes relating to orders are moved into
their own new application, the Orders Service. A service API exposes the methods of
those classes. Anywhere that model classes related to orders were referenced in the
original application (now the Movies application), they are now delegated via the serv-
ice API to the orders application. This architecture is shown in Figure 13-8.

The other way to split up a monolithic application like this is to make everything a
service. The movies application and the orders application are both services: a Movie
Service and an Order Service, respectively. Each contains only the logic pertinent to its

Why SOA? | 191

Download at Boykma.Com

own mission: movies and showtimes or orders for some type of product. Gluing the
services together and providing the HTML web interface for customers is a thin front-
end, which has controllers and views but no database. The thin front-end provides the
user experience, but all the hard work is done behind the scenes by the services. This
architecture is shown in Figure 13-9 and is the architecture preferred in this book.

It should be noted that with this architecture, movies and orders are completely de-
coupled. This means that the Order Service can be written to be completely generic
and be reused regardless of what product is being sold. If your company starts selling
video games or music, the Order Service shouldn’t need to be rewritten to support new
types of products.

One anti-pattern that is not a service-oriented architecture but still splits the database,
is shown in Figure 13-10. Here, the tables related to movies have been separated from
the tables related to orders, and each set is placed in a separate database. This does

Monolithic application

Monolithic database

Movies Orders

Movies Orders

Figure 13-7. A monolithic application serving two functions

Monolithic application

Monolithic database

Movies Orders

Movies Orders

Modularized application

Modularized database

Movies

Movies

Orders

Orders

Figure 13-8. A monolithic application split into an application and a service

192 | Chapter 13: SOA Primer

Download at Boykma.Com

solve the initial problem of reducing database load. However, it is an anti-pattern be-
cause a vast many parts of your application stack no longer work as intended.

The first problem is that Rails classes can no longer behave as you would expect them
to. Our monolithic application has a has_many relationship between movie showtimes
in the Movie Service and orders in the Order Service. This is perfectly valid from the
perspective of Rails. However, as soon as you execute any of the following queries, you
hit a wall:

movie_showtime.orders
order.movie_showtimes
Order.find(:all, :include => :movie_showtime)

Second, the databases can no longer maintain referential integrity. While this is true of
the SOA examples in Figures 13-8 and 13-9, the applications have been decoupled and
there can no longer be any expectation of referential integrity between the services (of
course, referential integrity would be maintained within each service). In Figure 13-8,
there is no has_many relationship in Rails between movie showtimes and orders because
neither Rails application knows about both models. An order, in the decoupled Order
Service, would maintain an external foreign key that the thin front-end would know is
related to a movie showtime.

In Figure 13-10, showtimes and orders are represented by models in the same Rails
application, which means the tables backing the models must maintain referential
integrity. However, the split database guarantees that referential integrity cannot be
enforced. In essence, this architecture removes even the possibility of maintaining ref-
erential integrity, although the application can still be written in a way that assumes it.
This is the antithesis of the entire first half of this book.

Monolithic application

Monolithic database

Movies Orders

Movies Orders

Modularized database

Movies

Movies

Orders

Orders

Thin front-end

Figure 13-9. A thin front-end backed by two services in a service-oriented architecture

Why SOA? | 193

Download at Boykma.Com

You may be asking yourself why it is OK to lose referential integrity in the architectures
shown in Figures 13-8 and 13-9, but not in Figure 13-10. The difference is that in Figures
13-8 and 13-9, there can be expectation of referential integrity to begin with. Because
the applications are split along the same lines as the database, there are no database-
related model classes for the tables that exist in the other applications’ database. Each
table’s model classes exist in the service application sitting atop the physical tables.
Within the tables, rather than have traditional foreign keys where there can be an ex-
pectation of a join, we’ll store external foreign keys. These will be understood to exist
in a separate system, and to access the related data, a service call will be required, not
a join or other SQL lookup. However, because we’re dealing with an external system
at the application level, we don’t assume that the data must be present. Instead, the
service can return the equivalent of a 404 Not Found error, and the calling application
should be written to gracefully handle such a scenario. In Chapter 15, when we build
an XML-RPC services that talk to each other, we’ll get a taste for how this works.

The myth of database replication

A common counterargument to SOA as a solution for managing database load is the
contention that databases can be replicated to balance load, just like application serv-
ers. Except in rare read-only situations, nothing could be further from the truth.

Why is this so? First, let’s examine the problem (database load) and the proposed
solution (database replication). Figure 13-11 shows two configurations. On the left, a
single database is connected to two application servers. We find that the database is
heavily loaded, so we attempt to rectify the problem by replicating the database. In
reality, we would want to direct all writes at the master and allow both the master and
the slave to handle reads; in this diagram, for simplicity, we have directed half of the
traffic to the master and half of the traffic to the slave.

Monolithic application

Monolithic database

Movies Orders

Movies Orders

Movies Orders

Monolithic application

Modularized database

Movies Orders

Figure 13-10. A database split anti-pattern

194 | Chapter 13: SOA Primer

Download at Boykma.Com

This looks like it should work. However, there is always a trade-off between speed and
consistency. If you have one or more slave machines that need to maintain the same
data as the master, and you expect query results to be consistent, you will pay a heavy
price in waiting for the databases to get synchronized—including network overhead—
before you can trust any data retrieved from any slave machine.

Figure 13-12 shows the steps required for a write to the master database followed by a
read of the same data from the slave database. With a replicated database, there are
additional network operations to lock the slave database, send the data to be written
over the wire, and then unlock the slave database. This blocks not only the read on the
slave, which cannot return a value until the master has unlocked it. It also blocks the
write on the master. The write cannot be deemed successful until it has been propagated
successfully to all slaves.

Figure 13-13 shows the same scenario but with a single database. Here, there are no
network operations to synchronize databases for writes because there is only a single
database. A read following a write returns immediately after the write is deemed

App

Master

App

Slave

App App

Single
database

Figure 13-11. A database under load from two applications; the load is split by replicating the database

App

Master

App

Slave

1

1 7

4 5

3

2

6

8

2

3

4

5

6

7

8

Write request

Lock slave

Read request

Physical write

Physical write

Commit / unlock slave

Return write success

Return read value

Figure 13-12. Breakdown of a write and read with replication

Why SOA? | 195

Download at Boykma.Com

successful locally. In this scenario, there are two steps between initiating a write and
the write succeeding, and two steps between initiating a read and obtaining the result.
Further, none of these steps requires a network hop. On the other hand, with a repli-
cated database, it takes six steps after the write is initiated for the write to succeed. The
read waits for five steps before returning a result.

So in a situation where writes are frequent, replicating a database can actually slow
your application down rather than speed it up. The load on the database machines may
appear to be lower, but that’s because the machines are sitting around waiting for locks
to be lifted and data to pass over the network. The database in Figure 13-13, while it
appears from CPU and disk metrics to be more heavily taxed, will actually be outper-
forming the replicated database because it is much more efficient. It doesn’t sit around
waiting for others to catch up but rather slogs forward using all the CPU and disk cycles
it can to serve application requests.

Scalability II: Caching Is Tricky
Centralizing the logic for a single “concern” of our application into a single place also
eases our problem of cache correctness and horizontal scaling. To scale horizontally,
we need to ensure that the database is not our bottleneck and that we can handle more
load simply by adding more application servers. To accomplish this, we need to cache
data somewhere.

But caching can be a tricky proposition. Before relying on a cache, we need to be highly
confident that the data in the cache is accurate. A service-oriented architecture can help
us gain that confidence. Because all access to the data in question must arrive through
the service API, we don’t have to look very far to find all the places where the data may
change. This makes it much easier to cache data at the right times and be reasonably
assured that we’re clearing our cache at the right times, too.

While correct caching in a monolithic application is certainly possible, correctness is
harder to guarantee because there’s much more code around that has the potential to

App

Database

App 1

3

1 4 2 5

2

3

4

5

Write request

Read request

Physical write

Return write success

Return read value

Figure 13-13. Breakdown of a write and read without replication

196 | Chapter 13: SOA Primer

Download at Boykma.Com

do something bad and break the cache correctness. In the monolithic application, any
code, at any time, can access and modify the access control tables—or any other tables
in the database, for that matter. You may have spent a lot of time in a monolithic
application, carefully designing an abstraction for authentication that relies on caching
to boost performance, but one day a new programmer comes along and forgets to use
your abstraction. He accesses the database tables directly, and suddenly your carefully
crafted authorization API no longer works as expected. Data has changed underneath
the caching abstraction and the cache no longer matches the actual data. In a service-
oriented architecture, such a catastrophe is impossible because only the authorization
service itself has direct access to the authorization tables. There is a physical separation
of the data belonging to one service from all other services and applications. There is
no opportunity for unrelated code to make modifications to a service’s data.

Just as the monolithic application can be run on multiple servers to balance load, the
service application can run on as many physical machines as necessary to handle the
load of all the client sites that need to authorize users. Each machine would have a
Memcache server contributing to a shared cluster. Whereas we would not allow a
heterogeneous set of applications to participate in the same Memcache cloud to cache
and expire user data, we now have a single code base for authorizing users contained
within the service, so the problem disappears. Figure 13-14 shows a service cluster of
three machines, all running the access control service and a shared Memcache cluster.

Reduce Local Complexity
When your application is designed as a set of services and service consumers, your
organization—i.e., your company or business unit—gains something that is lacking in
a company whose software is monolithic. Your business organization gains team mod-
ularity along the same module splits as your software. This is a good thing because

Access control
service

Access control
service

Access control
service

Access control
database

Memcache

Memcache

Memcache

Figure 13-14. A service can scale horizontally while maintaining a provably correct cache

Why SOA? | 197

Download at Boykma.Com

modularity gives teams autonomy, and autonomy means less need for communication
to get any particular job done. That can spell huge productivity gains for the organi-
zation as a whole.

How is this possible? Consider the example we began the chapter with: a sales site and
a reporting site, both clients of an authentication service. Let’s make this example a bit
more realistic by splitting the sales site into two services: one for product information
and a second for order data.

The services have a plain old HTML interface for administrative uses, accessible only
within the firewall. These admin interfaces use the authentication service to validate
employees and grant them access to the administrative features. The services also have
a “service API,” which a single front-end consumer website consumes, combining the
features of both services to present a unified view of the data to customers. When the
front-end needs to access product data, it contacts the Product Service. To build and
execute an order, it contacts the Orders Service.

All of this is hidden from the site’s visitors, but it is plain as day to those developing
the website. There are five clearly delineated compartments of code:

• Authentication service

• Product service

• Orders service

• Reporting website

• Externally facing consumer website

This translates into five teams of developers. Because the services all have well-defined
APIs, consumers of the services don’t need to talk to the service teams unless the API
is no longer satisfying their needs. Similarly, service teams can work within their code
base without worrying that their changes may result in unknown consequences for
others. As long as the service continues to behave as specified by the published API,
clients of the service can remain blissfully ignorant of any architectural changes going
on within the service. Thus, every team can innovate within their own bubble in a way
they could not when all the source code and database tables were intertwined in a
monolithic application. The same was true in the 1990s with the collective leap from
procedural to object-oriented programming. And we’ve said nothing about the dra-
matic reduction in overhead accrued while resolving source control conflicts in a
monolithic environment where everyone is simultaneously modifying the same files.
Figure 13-15 shows an example of a Rails service split, with admin functionality con-
tained within the service applications.

198 | Chapter 13: SOA Primer

Download at Boykma.Com

Access control
service

Orders
service

Reporting
website

Orders DB

Access control DB

Reporting DB

Product
service

Orders
admin

Product
admin

Product DB

Consumer
website

API requests

consumer

admin user

API requests
HTML
pages

Firewall

Figure 13-15. A likely Rails service split, with admin functionality contained within the service
applications

Why SOA? | 199

Download at Boykma.Com

In Summary
Simply put, a service is a vertical slice of functionality: database, application code, and
caching layer. Within a service, you should follow the same principals of design that
we covered in the first half of this book. Externally, the service-oriented architecture
provides a number of additional benefits:

Understandability
Each service is responsible for a single business function. The amount of code is
minimized to a quantity understandable by a single person.

Isolation
A service’s application code is separated and isolated from all other application
code. Its database is separate from other services’ databases. Only the service ap-
plication itself has direct access to its persistence and caching layers. A service is a
gatekeeper for its data.

Uniform access
A service is accessed through a published API, and likewise, it accesses other serv-
ices through their published APIs. The API is the only interface to access a service’s
data.

Trust
A service lives inside the firewall, and it trusts any client that has physical access
to make service requests.

Scalability
Isolation and uniform access means that cache correctness is much easier to guar-
antee. The number of places where persisted data can change is reduced to the
service code. Thus, the use of caching can be maximized, which reduces demand
for database resources, and in turn allows the application to scale to greater loads
simply by adding more application servers.

Exercises
1. Examine your application for vertical slices of functionality. Which are good can-

didates to be separated out as services? Why?

2. For each candidate service identified, what database tables drive the functionality?

3. For each table, what are the foreign keys in and out of the service? How might you
deal with foreign keys in isolated databases?

200 | Chapter 13: SOA Primer

Download at Boykma.Com

CHAPTER 14

SOA Considerations

A service-oriented architecture (SOA) prescribes very little about service implementa-
tion. The only thing that can be inferred from a design being SOA is that different
concerns are handled by different applications, and those applications pass messages
back and forth. What language a particular application is written in, what messaging
transport applications use to communicate, how the messages are structured, and even
what is in the messages is up to the software architect.

That said, you don’t need to start from scratch determining a byte order for your trans-
port layer each time you write a service. There are a handful of industry-standard ap-
proaches for service-to-service communication that you can take advantage of to get
rolling right away. The two most popular have been XML-RPC and SOAP, and more
recently, REST.

In this chapter, we’ll examine the pros and cons of each approach. However, before
comparing and contrasting REST, XML-RPC, and SOAP—an endeavor that generally
pleases no one and disgruntles everyone—we’ll first go over two sets of properties for
a good service design. In the first set are properties that ensure your service is main-
tainable and interoperable with current and future clients. The second set is guidelines
for keeping a service lean and fast.

Service Considerations
As has been mentioned, a service is accessible only through its API. The service, via
this contract, is the gatekeeper of any data it manages. This leads naturally to two
desirable properties. The first is that the implementation within the service should be
completely abstracted from the clients. The implementation—be it software code,
database table layout, or even physical composition—is free to change as long as the
API’s contract is maintained, without disruption to the client. The second property is
that the service API should be accessible to as many types of clients as possible. Because
the service is the gatekeeper, it should be in a common language that is accessible to
many types of clients. Let’s look at each of these two properties more closely.

201

Download at Boykma.Com

Implementation Details Are Hidden
Just as in object-oriented programming (OOP) the implementation details of a class
are hidden behind its public interface, in a service-oriented architecture the details of
each service should be hidden behind its public service API. Figure 14-1 shows an
example service, which is made up of a number of service machines (“box 1” through
“box N”) and a database. The first level of abstraction belongs to the load balancer. A
load balancer hides the detail that there are a number of servers by creating a virtual IP
(VIP) and spreading traffic among the service boxes to balance load. It should be pos-
sible for any request to be handled by any service box. It should also be possible for
any service box to be shut down (taken “out of service”) without disruption to the
service’s clients. This implies that each service request must be stateless. The ability of
a request to the service to succeed cannot depend on the request being directed to the
same service box as previous requests. If this were the case, any in-process request sets
that are bound to one back-end service server would be aborted if that service box was
taken out of the rotation. On the other hand, if any service box can handle any service
request, a change in the configuration of the service’s hardware will go unnoticed by
clients.

Service
client

Service
box 1

Service
box 1

Service
box N...

Load-balanced
service VIP

Service DB

service abstraction barrier

api calls()

Figure 14-1. Service abstraction barrier

202 | Chapter 14: SOA Considerations

Download at Boykma.Com

This is in contrast to the accepted (but problematic) convention of many user-facing
websites, which maintain a session object for each visitor to the site. The session object
often contains lots of information that is critical to serving subsequent requests to the
user. If the sessions are stored locally on a particular web server, a user’s traffic must
always be directed to that server for the session to be maintained and utilized. This is
commonly supported by load balancers via “sticky sessions,” in which the load balancer
issues a cookie to users on their first request, and then uses that cookie to direct sub-
sequent requests. When that server is shut down for a software upgrade, or is lost due
to a hardware failure, all browsing by users who were being directed to that server by
the load balancer is disrupted.

One way to get around lost session-state on a single server is to store sessions in a shared
location. This, of course, has its own problem because the session store becomes a
single point of failure. In general, this is to be avoided. In Rails 2.0, sessions data can
be stored in cookies maintained by the client’s browser, which removes the burden
from your application servers. For back-end service boxes, the solution is to design an
API in which each request is independent of every other request.

Principle 1

A service should be internally fault-tolerant. This is accomplished by
load balancing and statelessness between requests.

The second abstraction barrier lies with the API itself. The API hides the implementa-
tion details of the application code. The API is truly a contract: a guarantee to clients
that they can communicate with the service in a specific way, and get specific results.
Once the contract is published to clients, via WSDL (Web Service Description Lan-
guage) for XML-RPC or SOAP services, or via WADL (Web Application Description
Language) for REST services, it should never change.* The only acceptable time an API
may change is in a major publicized version. However, even under the condition of a
version change, generally the old version of the API should continue to be supported
for some time to give clients an opportunity to upgrade to the new version without loss
of service. Changing the contract because it makes changes within the service more
convenient is unacceptable once clients are consuming the service API. Changes that
are not backward compatible are guaranteed to break all clients’ implementations.

The psychological way to enforce the immutability of a service API, in some organiza-
tions, is to have software developers write their W*DL files by hand, and then generate
stub application code based on the W*DL. Application developers then fill out the stubs
to instrument the application. A change to the W*DL requires regenerating stubs and
losing large chunks of prewritten code, a strong deterrent. On the other hand, many
frameworks, including Rails, generate WSDL on the fly based on methods written by

* From here on out, except when specifically referring to WSDL or WADL, the notation W*DL will be used,
to denote that either service contract type is applicable.

Service Considerations | 203

Download at Boykma.Com

developers.† This can cause an apparently innocuous change in a method signature to
have a pervasive effect on the interoperability of the service with all of its clients. In
such an environment, where W*DL is generated from code rather than vise versa, de-
velopers must be aware of what changes will affect the service API and be disciplined
to avoid doing so.

Principle 2

The service API, except under major version changes, must not change.
Changes must occur within the application but not be visible to service
clients.

API Is Accessible
For service clients to make use of the service easily, the service API must be accessible.
The first principle of accessibility is that the API is published and documented. Pub-
lished, in this sense, means the API is available in a machine-readable format so that
clients can automatically generate their own interface to the service. They can send
messages to the service and process results without needing to first obtain a custom
client library. As noted, W*DL service description files are the standard way to publish
the service’s API contract. When they are available on the network at a predetermined
and permanent URI, the service API is said to be discoverable.

Principle 3

The service API should be discoverable via a network accessible WSDL
or WADL description file.

Documented means there is some way for developers to understand the API and its
effects. A W*DL file is a complete description of the service, and both formats support
comments mixed into the XML descriptions of the API. Tools exist to transform
machine-readable W*DL files into human-readable documentation that is easier on the
eyes than raw XML.

In a perfect world, all of your services and service clients would be Rails applications.
However, in a real enterprise environment, the clients of a service are likely to be written
in a variety of languages, using a variety of technologies. Your organization may have
legacy applications that are still maintained but aren’t likely to be rewritten in Rails any
time soon. You may inherit applications through a merger or acquisition and have a
need to integrate a .NET- or Java-based application with your own services. Rails is an
excellent framework for web application development, but it may one day be super-
ceded by an even better framework. And finally, some clients may not be web

† Rails does not generate WADL as of version 2.0.

204 | Chapter 14: SOA Considerations

Download at Boykma.Com

applications at all, and in those cases, Rails may not be the right choice for implement-
ing the new clients.

All of this means that, as mentioned earlier, rather than design a communication mech-
anism from the byte-ordering on up, it’s important to use a technology that already has
wide support and easily integrates into a variety of other technologies: Java, .NET,
C++, etc. XML-RPC client libraries are available on nearly every platform, and a grow-
ing number of platforms are beginning to support REST in some way. Various degrees
of SOAP functionality are also available on many platforms.

Principle 4

The service should communicate in an industry-standard way so that
clients written in any language or with any framework can participate.

API Design Best Practices
So far, four principles of service design have been laid out. Now we turn to the API
itself, and define four guidelines for an API design that will ensure your application
maintains a high level of user-perceived speed. The jump from monolithic application
design to service-oriented design is not without trade-offs. In exchange for reduced
local complexity and other benefits of a modular SOA design, you give up locality of
information. Because the overall architecture no longer features a single application
directly connected to a database, overhead is imposed in the form of network messaging
between services. This overhead can either be detrimental to performance or it can be
barely noticeable if the API is designed to minimize overhead.

Four guidelines described below can help keep the overhead in the “barely noticeable”
category. Note that these guidelines may seem contradictory at times. That is why they
are guidelines rather than rules. An appropriate balance must be found between each
of the guidelines, based on the situation at hand.

Send Everything You Need
In object-oriented programming, it’s a best practice to have lots of small methods that
each perform a small function and return a small piece of data. Within an application,
method calls are cheap, so writing small methods that are easily testable is often de-
sirable. In a service-oriented architecture, on the other hand, method calls are processed
remotely within the service, and therefore any call incurs the overhead of the network.
Rather than issuing lots of finely grained method calls, as we might within an object-
oriented program, it can be much more efficient to get all of the data necessary in one
shot.

API Design Best Practices | 205

Download at Boykma.Com

For example, imagine we want to render a page for a movie along with the showtimes
in a particular location. The following calls seem reasonable if the entire application is
running on a single machine:

@movie = Movie.find(params[:id])
@rating = Rating.find(@movie.rating_id)
@showtimes = MovieShowtime.find_all_by_movie_id_and_location(@movie.id, params[:zip],
 :include => :theatre)

In a scenario where each method call incurs network overhead, the preceding would
require at least three network operations. If our network API did not allow theatre
information to be included with a showtime as is possible with ActiveRecord, we would
incur 3 + N network operations, where N is the number of showtimes found for our
movie. The service client code might look something like this (service calls are in bold):

@theatres = Hash.new
@movie = MoviesClient.getMovie(params[:id)
@rating = MoviesClient.getRating(@movie.rating_id)
@showtimes = MoviesClient.getShowtimesByMovieAndLocation(@movie.id, params[:zip))
for showtime in @showtimes do
 if !@theatres[showtime.theatre_id]
 @theatres[showtime.theatre_id] = MoviesClient.getTheatre(showtime.theatre_id)
 end
end

Code styled this way would certainly put the overhead of our service API into the
detrimental rather than barely noticeable category. If we know ahead of time that clients
of our service will frequently request information about movies within a certain loca-
tion, and theatre, movie, and rating details will often be required, we can design the
API to return all of this information within a single request. Rather than have very fine-
grained API methods, we could define a method that given a movie id and a zip code
would return movie information, the rating description, showtimes, and theatre infor-
mation all in one request:

@showtime_data = MoviesClient.getShowtimeData(movie_id, zip)

The @showtime_data variable would then be a hash or struct, as shown in Figure 14-2.
The hash has a :movie field, which contains the rating information, denormalized into
a rating field. The hash also contains a :showtimes field, which is an array, one element
per movie theatre. Within that array, each element has members describing the theatre,
and a member, :showtimes, which is another array, one element per showtime at that
theatre. This data structure, while more complex than each of its component parts as
described in the physical ActiveRecord models of the back-end service, is just what the
average client needs to display movie showtimes to a user. This data structures is there-
fore part of the logical model of our application (Figure 14-3). Logical models are the
topic of the next chapter.

206 | Chapter 14: SOA Considerations

Download at Boykma.Com

API Guideline 1

Design the API with a granularity of data that minimizes the number of
requests a client must make in the common case. The goal is one service
request per client action.

Limit Round Trips
In some cases, we need the result of a first service request in order to build all of the
parameters needed for a second service request. For example, on a shopping website,
after placing an order, we might want to display additional items that the user may be

:showtimes

:movie
:rating
:duration

ShowtimesResult

:showtimes

:theatre_name
:address

TheatreShowtimes

*

:start_time
:auditorium

Showtime
*

Figure 14-2. A result object for the getShowtimeData method, which returns all needed for displaying
showtime information in a single request

processing

processing

request

response

t0

t1

t2

processing

t3

processing

t0

t1

Figure 14-3. Finding the correct grain for the logical model reduces the number of service calls

API Design Best Practices | 207

Download at Boykma.Com

interested in purchasing, based on the purchasing habits of others. It might look some-
thing like this:

order_status = ShoppingService.complete_order(credit_card_info, @items)
if order_status == ShoppingService::ORDER_SUCCESS
 related_items = ShoppingService.get_related_items(@items)
end

While having these two API methods—complete_order and get_related_items—
makes perfect sense, calling them this way incurs the overhead of two service requests
when the order is successfully completed, resulting in slower user-perceived perform-
ance. If we know ahead of time that it will be common for clients to request related
items after completing an order, we can instead alter the return type for
complete_order such that it returns not only a status value, but also an array of related
items if the order is successful. This results in the same amount of processing on the
service side, but the client does not incur the overhead of two round-trips to the service
(Figure 14-4).

Therefore, when designing an API, it’s necessary to think carefully about how it will be
used. You don’t need to foresee every possible use, but today’s common cases are likely
to be tomorrow’s as well. In this example, it wouldn’t make sense to remove get_rela
ted_items from the API. There will certainly be times when it is convenient to call that
service method independently from placing an order. However, if we can guess what
most clients will want to do after placing an order, it makes sense to be proactive and
get the data to the client right away.

processing

processing

request

response

t0

t1

t2

processing

t3

processing

t1

t2

processing

request

response

t0

Figure 14-4. Limiting the number of round-trips reduces overall communication penalty

208 | Chapter 14: SOA Considerations

Download at Boykma.Com

API Guideline 2

Requests should not depend on the results of other requests. Rather
than requiring a client to chain multiple requests to get the data it needs,
guess what is needed and provide it up front.

Look for Opportunities for Parallelization
Even with the first two guidelines in hand, it will often not be possible or even desirable
to get everything needed from a service in a single request. The service may be respon-
sible for retrieving a number of unrelated types of information that would not be logical
to return together. In such cases, it makes sense to make multiple service requests, one
for each distinct type of information. But this doesn’t mean we need to suffer the over-
head of multiple round-trips. If the inputs to one method call do not depend on the
result of another, we don’t need to wait for the first request to return data before making
the second request. Instead, we can dispatch all of the unrelated service calls all at once,
and then wait for them all to return before proceeding.

Figure 14-5 illustrates the time savings that can be realized by dispatching multiple
requests at the same time. Here only two requests are shown, but the benefits increase
with the number of requests that can be parallelized. When the requests are chained,
you pay the price of each request, plus accumulated overhead for each call. When the
requests are dispatched simultaneously, you pay the price of the longest running service
call and overhead for only one network operation.

For example, if we are making one request to the movie service to get showtime data,
and another request to an ads server to get third-party offers to display, we can make
them in parallel. Normally, we would see the following code:

@showtime_data = MoviesClient.getShowtimeData(movie_id, zip)
@advertisements = AdsClient.getAdsByLocation(zip)

t1

t2

processing

t0

processing

t1

t2

processing
processing

request

response

t0

Figure 14-5. With parallelized requests, the cost is the time of the slowest request

API Design Best Practices | 209

Download at Boykma.Com

However, since we know the requests are unrelated, we can dispatch them both at once,
and then wait for the results. The code might look like this:

t1 = Thread.new do
 @showtime_data = MoviesClient.getShowtimeData(movie_id, zip)
end
t2 = Thread.new do
 @advertisements = AdsClient.getAdsByLocation(zip)
end
t1.join
t2.join

API Guideline 3

Where multiple service requests are required, encourage and support
parallelization. Make the cost of communication with a service equal to
the slowest service operation, rather than the sum of all service requests.

Send as Little as Possible
The guidelines just described were not created in a vacuum. I learned guidelines 1
through 3 while working at Amazon.com (http://amazon.com). We had very tight serv-
ice level agreements (SLAs) regarding how long any page could take to load to ensure
that the site would feel as fast as possible. This translated into SLAs for services; to be
included on a page that should take one second to render, the service call might, for
example, need to guarantee delivery of data in 0.25 seconds. These tight requirements
led to service API designs in which round-trips were limited, more than enough infor-
mation was always returned to callers, and parallelization was possible and widespread.
Caching was also key, as it removed the database as a bottleneck and prevented requests
times from suffering as traffic increased.

When I brought the three guidelines I gleaned from my time at Amazon to the Rails
world, I was rudely awakened. At Amazon, we wrote back-end services using C++ and
Java, so the services themselves were very fast. As I have already mentioned, Ruby is
not a fast language. In Chapter 2, we saw that the extensive processing of data can be
extremely costly—even something as simple as instantiation of ActiveRecord objects
where hashes will suffice. There, we shaved 50% off the time of an ActiveRecord query
by preventing the results from being unmarshalled into heavy objects.

It turns out that translating data to and from service calls can be an expensive operation
as well. Request results are commonly sent from server to client as XML data. So first
imagine the overhead incurred translating database results to ActiveRecord objects.
Then add to that the overhead of marshalling those objects into XML. All of this is time
spent in the slowest part of the system—Ruby—and the results can be surprising. We
designed one API method, which followed guideline 1 and returned a very large chunk
of data. On the back-end service, this data was cached, so we cut out database time.
Retrieving the data from the cache was instantaneous. However, due to the sheer size

210 | Chapter 14: SOA Considerations

Download at Boykma.Com

http://amazon.com
http://amazon.com

of the data and the amount of XML processing that was required to generate the service
response, the service request was consistently taking 12 seconds to process.

From that experience, we came up with the fourth and final guideline, illustrated in
Figure 14-6 (which can seem to be in direct conflict with guideline 1).

API Guideline 4

Avoid expensive XML serialization and deserialization costs by sending
as little information as necessary in any given request.

While the guidelines seem to conflict, they actually don’t. Let’s say a movie has show-
times and reviews. Guideline 1 encourages us to use an API that returns all of this data
together because it’s likely it will often be shown together on the same web page. But
it’s unlikely that any web page on our site would contain all of the information about
the movie, all of the showtimes, and all of the reviews in their entirety. That would be
too much information and would be almost universally considered a poorly designed
web page.

Guideline 4 does not restrict what kinds of data we send back, but how much. For
example, if there are hundreds of movie reviews, it’s unlikely that we need them all
when we’re requesting details about the movie itself. Returning five is probably suffi-
cient, as long as there’s another API method that does let us get them all if we want to.
Similarly, when returning related “follow-on” data that’s likely to be useful per guide-
line 1, it’s often a good idea to return this data in an abridged or summarized form. On
the movie’s “gateway page,” which would link to all showtimes and all reviews, the
first few sentences of the first five reviews are probably all that’s needed. Similarly, a
list of local theatres, without actual showtimes, is enough detail. From there, a user
might click a link to see all showtimes or all reviews, or click a “read more” link on a
particular spotlighted review to get the full text of just that review. With this in mind,

processing

t0

t1

processing

t0

t1

to_xml

from_xml from_xml

to_xml

Figure 14-6. Limiting the amount of data to be marshaled to XML can reduce response times
dramatically

API Design Best Practices | 211

Download at Boykma.Com

guidelines 1 and 4 could be restated together as, “Send everything you need, but no
more.”

REST Versus XML-RPC Versus SOAP
We now come to one of the great battles being fought by designers of service-oriented
architectures: which protocol is best? The three main contenders in this arena are
SOAP, XML-RPC, and REST. Even within the Rails community, the answer has not
been consistent. Up to version 2.0, ActionWebService, which makes it easy to make
XML-RPC and RPC-based SOAP services, was included with the core of Rails. In ver-
sion 2.0, it was dropped in favor of ActiveResource, which provides facilities for work-
ing with REST services. XML-RPC, SOAP, and REST all provide a means to an SOA
end; they all facilitate lopping off a vertical slice of an application and providing remote
access over the Internet. And with some allowed deviances from pure REST (or “high
REST,” as some call it), any of these three alternatives can be equally well suited to the
task of representing any given API.

What differentiates the protocols is the ethos of how a remote protocol should behave
and how it should be used. The cultures that have grown around each protocol reflect
different views of how systems should be interconnected. In this book, I will take the
universalist and also universally contrarian view and suggest that there is no single best
protocol and the decision of which to use should be based on the problem at hand.
Each design problem is unique: some problems are more easily solved with a REST
interface, while others are more easily solved with an RPC-style interface.

Although the Rails community is putting its full backing in REST-based approaches,
widespread REST-based services are not yet to be found. Part of this scarcity is related
to a dearth of tools. As tools evolve, REST may in fact be the answer to the question
Which protocol? Until then, we must remind ourselves that in the enterprise practicality
is at least as important as purity.

The remainder of this chapter will explore the difference ethos of the three protocols.
We’ll also explore the scenarios—regarding problem space and audience—when one
protocol can make more sense than another.

XML-RPC
RPC stands for remote procedure call, and XML-RPC is a protocol for making proce-
dure calls remotely, using XML to encode the parameters on the way in and the return
values on the way out. The notion behind XML-RPC is very simple and straightforward.
A service server implements a method. A service client invokes that method, which
results in a network request to the server over HTTP. The server executes the method
and returns the result of the invocation.

212 | Chapter 14: SOA Considerations

Download at Boykma.Com

In XML-RPC, services define an endpoint URL, which clients access to make their re-
quests. The method the client wishes to invoke, as well as any parameters required by
the method, is part of the XML payload of the request, which is an HTTP POST.

Virtually every language has an XML-RPC client library available, which makes XML-
RPC a good choice when clients will be written in disparate or even unknown languages.
In the age of Web 2.0 and rich JavaScript clients, it’s good to know that even JavaScript
applications can consume XML-RPC services.

The ethos behind XML-RPC, as the name implies, is procedural. The methods typically
seen in an XML-RPC API are action-oriented: get_movie(), get_showtimes(),
place_order(), and so on.

Implementing an XML-RPC client in Rails, as well as many other frameworks, is as
easy as falling off a horse. The ActionWebService gem, which was included in the core
of Rails up to version 2.0, makes it trivial to define an XML-RPC service and automat-
ically publish a WSDL file describing the methods available to clients.

Before moving on, it’s worth noting that a major benefit of an XML-RPC-style interface
is the ease with which you can hide implementation details from clients. Normally, this
might be something you would assume as a property of any SOA service, especially
after reading the previous chapter. However, the property of abstraction must be noted
due to the way many Rails-based REST services are being written these days. These
implementations are sacrificing the very desirable property of decoupling that main-
taining a solid service-based abstraction barrier would provide, a significant basic ad-
vantage of SOA.

In XML-RPC, the scope of what the procedures defined as part of the API can do is
limitless. For instance, the API need not have a one-to-one relationship with the phys-
ical data model. It may initially, if your logical model does not differ greatly from the
physical tables, but the API is free to diverge without consequence as you change the
internals of your service but maintain your original API for legacy clients.

In addition to not being tied to a data model in general, an XML-RPC method imple-
mentation need not be tied to a particular table or even a particular row in a table.
Exactly the opposite is true: a method can access whatever it wants, wherever it wants
to (within the convinces of the host language, of course). For example, the following
would be a perfectly acceptable XML-RPC method call, even though it clearly affects
multiple rows in a table on the server:

BankAccountService.transfer_funds(acct_1, acct_2, amt)

Note also that the implementation of this method on the server absolutely requires a
database transaction to ensure that a race condition doesn’t corrupt the account bal-
ances (see Chapter 1 for a refresher on why). The following could be disastrous if
executed on the client without a means of defining a transaction on the database con-
nected to the bank service server:

REST Versus XML-RPC Versus SOAP | 213

Download at Boykma.Com

bal1 = BankAccountService.getBalance(acct_1)
bal2 = BankAccountService.getBalance(acct_2)
BankAccountservice.setBalance(acct_1, bal1 - amt)
BankAccountservice.setBalance(acct_2, bal2 + amt)

It’s important to note this example up front to illustrate how easy it is to define the
kind of API necessary to solve a problem with XML-RPC, which is completely flexible
regarding the methods that can be defined. As we will see in our discussion of REST,
with “pure REST” it can be quite difficult to design an API that allows for a transaction
on the server side, as in our first example shown earlier. Of course, there are solutions
to this problem in the REST world, which I will describe in turn as well.

SOAP
SOAP is an incredibly versatile protocol for building a variety of service-oriented ar-
chitectures, including some architectures not covered in this book. Originally SOAP
stood for Simple Object Access Protocol, but as the breadth of the SOAP specification
ballooned, the W3C dropped the words behind the acronym. Indeed, the number of
layers added atop SOAP are staggering; they include such additional specifications as
WS-Addressing, WS-Security, WS-Polling, WS-Eventing, WS-Enumeration,
WS-Reliable Messaging, and more. This conglomeration of specifications, collectively
known as WS-*, has been affectionately named “WS Deathstar” by SOAP’s numerous
critics.

While SOAP as an idea has great promise, the problem is that it’s difficult to find a
complete implementation of the SOAP standard anywhere on the planet. Microsoft’s
and some of Java’s development environments make it somewhat easy to create SOAP
services that utilize these higher-level parts of the SOAP protocol. However, when you
use these service-builders and the more esoteric parts of the SOAP specification, you’re
limited to other Microsoft and Java clients to consume the services. You don’t ever see
SOAP services of this nature accessible as “web services” for public consumption be-
cause almost no one could actually make use of them.

In my own experience, the designers of SOAP systems fall into two camps. In the first
camp are seasoned and battle-trained software architects. They understand the inac-
cessibility that SOAP engenders, but they don’t care because they are solving a technical
problem internal to their own organization, and they are their own clients. There’s
nothing wrong with these people or their SOAP services; likely you’ll never have to
tangle with either. The second camp doesn’t understand the interoperability problems
they will soon face with non-Microsoft clients, but they end up with a SOAP service
anyway; they hit a pretty button in a Microsoft IDE and the choice is made for them.
With no offense intended to those in the former camp, I find that most SOAP users fall
in the latter.

214 | Chapter 14: SOA Considerations

Download at Boykma.Com

As it happens, the majority of SOAP use out there is simply as a wrapper for performing
remote procedure calls, just like XML-RPC, except at a slightly higher cost. Because
SOAP could be so much more versatile, there is a bit more overhead in the message
envelopes in SOAP than there is with plain old XML-RPC. Indeed, the SOAP client and
server implementations available in Ruby are also based on ActionWebService, and
only RPC-style SOAP functionality is provided. When using ActionWebService, you
don’t really make a choice at all regarding whether you are creating an XML-RPC or a
SOAP-based service. Because only the RPC subset of SOAP is implemented, you’re
making both at once.

To the Rails developer, XML-RPC and SOAP are functionally equivalent, although
XML-RPC might be slightly faster in practice. Because in the end SOAP offers the Rails
developer nothing she isn’t already getting with XML-RPC, SOAP won’t be discussed
any further in this book.

REST Versus XML-RPC Versus SOAP | 215

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 15

An XML-RPC Service

This chapter demonstrates how to build an XML-RPC service in Rails using Action-
WebService. Like the rest of this book, this chapter won’t simply drive through the
mechanics of setting up a service. Building on Chapters 11 and 12, you’ll learn not only
how to make a Rails app communicate with another Rails app—that’s easy—but also
how to build an infrastructure for services that makes your application enterprise-solid.
That involves properly abstracting your database schema—the physical data model—
from your logical model. Enterprise-solid also means knowing where to put all of your
service code so that your application remains coherent. But first, you need to get set
up with ActionWebService, which can be tricky in Rails 2.0.

ActionWebService and Rails 2.0
As noted before, in Rails 2.0, ActionWebService was relegated from the core to plugin
status. As of this writing, simply installing the ActionWebService gem does not work
as expected with the following:

gem install ActionWebService

You may want to try installing the gem like this anyway. The warning signs that the
plugins are still not fully integrated are errors such as “Uninitialized constant Action-
WebService”. If you want to wait until you’ve got some ActionWebService code in place
before hacking up your installation, feel free to come back to this section later. In any
case, rest assured that the following steps will get you going with ActionWebService in
no time. Note that this procedure assumes you have previously frozen your Rails dis-
tribution in vendor/rails by running:

rake rails:freeze:gems

First, from the vendor/rails directory, type:

svn co http://svn.rubyonrails.org/rails/ousted/actionwebservice

This checks out the ActionWebService code, in essence, promoting it back to “core”
status. Next, above the Rails::Initializer code, add the following code, shown in
Example 15-1.

217

Download at Boykma.Com

Example 15-1. First set of modifications to environment.rb needed to get ActionWebService working
in Rails 2.0 and higher

class Rails::Configuration
 attr_accessor :action_web_service
end

Just below, within the Initializer section, add the code in Example 15-2.

Example 15-2. Second set of modifications to environment.rb needed to get ActionWebService
working in Rails 2.0 and higher

Rails::Initializer.run do |config|
 config.frameworks += [:action_web_service]
 config.action_web_service = Rails::OrderedOptions.new
 config.load_paths += %W(
 #{RAILS_ROOT}/app/apis
 #{RAILS_ROOT}/app/controllers/services
 #{RAILS_ROOT}/vendor/rails/ActionWebService/lib
)

Finally, in order to make use of the test scaffolding, which allows you to invoke XML-
RPC requests using your web browser, you’ll need to patch the file ActionWebService/
lib/action_web_service/scaffolding.rb under vendor/rails. Change line 114 from:

content = @template.render :file => default_template

to:

content = @template.render({:file => default_template, :use_full_path => false})

You’re now ready to get started writing your first service.

Creating an Abstraction Barrier
In the first half of this book, we concentrated on third normal form (3NF) and domain
key/normal form (DK/NF). In this chapter, we’ll move away from this normalization
restriction when we create an object model. That may sound surprising, given the em-
phasis placed on normalization at the data layer, but as we’ll see, normalization won’t
help us here.

Before we proceed with creating an object model, we first need to understand what one
is and what it’s not. Therefore, we need to take another look at ActiveRecord, from the
perspective of the application as a whole. Once we’ve done that, we’ll see how an object
model fits into the picture.

ActiveRecord As the Physical Model Layer
Think back to earlier chapters in this book and recall your thoughts as a simple schema
turned into what at first glance may have seemed like an overly complex one. In many
ways, that more intricate data model was easier to deal with because it removed the

218 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

possibility of recording or producing incoherent data, which itself is no picnic to deal
with.

Often developers shy away from highly normalized schemas because the abundance of
tables and relationships seems too distant from the end result they hope to display on
a web page. The data presented to users on web pages is usually not normalized, and
if you work from display to schema, it will seem onerous (or even pointless) to obses-
sively normalize your data.

Such a perspective seems hard to argue against; what’s missing is a key element of data-
driven website design. That element is the object model: the layer of abstraction
above the physical layer. Its job is to make web pages easy to display. It was never
claimed by anyone, anywhere, that a physical model’s purpose is to make web pages
easy to display. The schema of the physical model maintains data integrity in your
database, period. It’s the object, which has yet to be fully explained, that model main-
tains sanity—your sanity—in your presentation layer.

If you were born and bred on Ruby on Rails, you may be wondering why you have not
heard of this distinction before. The reason you have not read about the difference
between physical models and logical models in Rails is that Rails does not distinguish
between them.

In Rails, the mantra is “convention over configuration,” and most tutorials are focused
on showing the quickest way rather than the best or most scalable or maintainable way.
Part of this ethos is an insistence that “magic” is good, especially at the data layer, where
in Rails there is next to zero configuration. Since you don’t have a step in which you
declare the nitty-gritty of your data model, the hope is that you can get started writing
object model code right away in ActiveRecord models. That is the promise. But here
are those words again: object model. Now we’re saying that ActiveRecord isn’t for object
model code but for physical model code. So what does belong in ActiveRecord models,
if not object model code? What are they for?

In fact, there is quite a bit of “configuration” required in Rails on top of your data
model. First, you do still need to tell Rails which tables exist by creating model classes
based on ActiveRecord::Base for each table or view. You do need to define what rela-
tionships exist between those tables with has_one, has_many, belongs_to, and
has_and_belongs_to_many. You also need to define validation for data-passing through
ActiveRecord model classes to prevent invalid data from being saved: e.g.,
validates_uniqueness_of, validates_presence_of, validates_numericality_of.

Once you have put all of this information into your ActiveRecord model classes, what
you have, in essence, is a directory full of database configuration. Convention saves
you the necessity of declaring class names and foreign key column names. Of course,
you are free to specify them, and you need to if you must stray from convention or are
working with a legacy schema. But no matter how you look at it, the reality is that you
have written quite a bit of configuration, it just was written in Ruby rather than in XML
files.

Creating an Abstraction Barrier | 219

Download at Boykma.Com

The normal Rails convention would be to place application logic into ActiveRecord
models, but this blurs—in fact, it removes—the line between the physical and logical
models. This gets to the heart of why inexperienced database schema designers are
uncomfortable with 3NF and DK/NF when viewed from the application layer, where
they are most at home. They ask, “I have to design my UI with this?” Thankfully, the
answer is no.

Before we move on to the object model layer, let’s first review our data model as we
left it in Chapter 8. Figure 15-1 shows the schema, which has a one-to-one relationship
with our ActiveRecord model classes. Review it, as soon we will be layering on top of it.

The Object Model Layer
Between the data layer (represented by ActiveRecord models) and the display layer,
there is an object model layer that represents the problem the way it is natural to think
about it. An object model need not be in 3NF or DKNF. As mentioned, the physical
layer’s purpose is to maintain order at the data layer, whereas the object model’s pur-
pose (based upon the assumption that the physical layer is doing its job) is to

id
phone_number

theatres

id
name
length_minutes
rating_id

movies

id
movie_run_id
movie_id
theatre_id
room
start_time

movie_showtimes

id
confirmation_code
purchase_price_cents

purchased_tickets

theatre_id
room
seats_available

auditoriums

id
rating_name
description

ratings

confirmation_code
movie_showtime_id
movie_id
theatre_id
auditorium_id
room
start_time

orders

id
name

payment_typeszip
city
state

zip_codes

name
line_1
line_2
city
state
zip_code

addresses

Figure 15-1. A review of our DK/NF movie showtimes schema

220 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

maintain sanity at the application layer. In other words, it maintains sanity for the
application developer.

The object model for the movies portion of our schema might look like Figure 15-2. It
is vastly simpler than our physical model, but it still contains all of the necessary in-
formation to:

• Display current movies

• Display details about a particular movie

• Display details about a particular theatre

• Display movies in a given location

• Place an order

Note the many things that we don’t care about here:

• The rating information is repeated in every movie object

• There is nothing to constrain the auditorium of a showtime to any set of actual
auditoriums in a theatre

• There are no “domain” objects to constrain values, such as ratings or zip codes

• There are no foreign keys but rather object-oriented “container” relationships

But at this layer, we don’t need to worry about any of this because the physical
ActiveRecord layer is worrying about it for us.

Think of it this way. First, we created a solid data model, keeping in mind that the
database is a true piece of the application whole. At the physical layer, we were con-
cerned with translating this rock-solid layer into ActiveRecord models that would give
us easy access to our data from Ruby. The next step is to translate ActiveRecord layer
objects into something that is easily accessible for passing through the service and for
building UIs.

id
name
length_minutes
rating
rating_description

Movie

Movie
Theatre
start_time
auditorium

Showtime

id
phone_number

Theatre

Showtime
confirmation_code
[PurchasedTickets]

Order

purchase_price_cents
PurchasedTicket credit_card_number

expiration_date
phone_number

CreditCard

name
line_1
line_2
city
sate
zip_code

Address

Figure 15-2. Movie tickets object model

Creating an Abstraction Barrier | 221

Download at Boykma.Com

When building an XML-RPC service in Rails, we create object model classes based on
ActionWebService::Struct. These classes translate data from ActiveRecord models into
something that can be returned through our service API. Because Ruby is not a strongly
typed language, and many consumers of XML-RPC services are, you need to define the
types for all data members in ActionWebService::Struct classes. You do this with the
member keyword:

member name, :type

The allowable types are:

• int

• string

• base64

• bool

• float

• time

• date

• datetime

And of course, another ActionWebService::Struct class is an acceptable type as well.

For now, let’s focus on the classes related to displaying movies and showtime infor-
mation, and for the moment put orders aside. We can define our classes as in Exam-
ple 15-3.

Example 15-3. Class declarations for the MoviesService object model, lib/movies_service.rb, or in
plugin

module Logical
 class Movie < ActionWebService::Struct
 member :id, :integer
 member :name, :string
 member :length_minutes, :integer
 member :rating_id, :string
 member :rating_description, :string
 end

 class Address < ActionWebService::Struct
 member :line_1, :string
 member :line_2, :string
 member :city, :string
 member :state, :string
 member :zip_code, :string
 end

 class Theatre < ActionWebService::Struct
 member :id, :integer
 member :name, :string
 member :phone_number, :string

222 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

 member :address, Address
 end

 class Showtime < ActionWebService::Struct
 member :movie, Movie
 member :theatre, Theatre
 member :start_time, :datetime
 member :auditorium, :string
 end
end

Here we have declarations of our classes, but no definition of how they work. What
we have in Example 15-3 is very much like a header file in a C++ program. We’ve
defined the structure of our data, but not how it works. This “header file” will have a
special location in our architecture, but for now, if you want to get started following
along, place it in lib/ so that Rails will automatically load it. We’ll move it later, when
we come back to the header file analogy in our discussion of the service plugin. But first,
let’s add some logic to the Movie class so that we can instantiate one based on data fro
ActiveRecord objects. Example 15-4 demonstrates.

Example 15-4. Logical model for a movie, app/models/logical/movie.rb

module Logical
 class Movie < ActionWebService::Struct
 def self.get(physical_movie_id)
 return nil if !(m = Physical::Movie.find_by_id(physical_movie_id)
 Movie.new(:id => m.id,
 :name => m.name,
 :length_minutes => m.length_minutes,
 :rating_id => m.rating.id,
 :rating_description => m.rating.description)
 end
 end
end

This file, movie.rb, gets placed in a new location in our application under the models
directory. Notice that we have placed the class in the module Logical. Just as our
physical models were in a module called Physical and went in the directory app/models/
physical/, this class and other class definitions for our object model classes will go in
app/models/logical/.

You may have noticed that we just defined the class Logical::Movie twice: once in the
file lib/movies_service.rb and again in logical/movie.rb. This is not a problem because
in Ruby you can reopen classes as many times as you like to add more methods or data.
However, while this is fine as a Ruby practice, reopening a model class in this way does
create a problem within the Rails framework. When your code looks for the
Logical::Movie class the first time, it will have already been defined from within the
movies_service.rb file. That prevents the Rails auto-loader from looking for the file in
models/logical/. Rails has already loaded our declarations in the “header” file, but to
make Rails do what we expect and load the definitions as well, we need to explicitly

Creating an Abstraction Barrier | 223

Download at Boykma.Com

instruct Rails to load the logical model class definitions. We do that by adding the
following lines at the bottom of application.rb; this is similar to the method we used to
make Rails play nice with our multiple table inheritance mechanism in Chapter 10:

Dir["#{RAILS_ROOT}/app/models/logical/*.rb"].each { |file|
 require_dependency "logical/#{file[file.rindex('/') + 1...-3]}"
}

You may be wondering why we don’t just put the declaration and definition of each
class in the same file. Hang on to that thought, as this structure will make sense when
we arrive at creating the service plugin.

Before we do that, since we have written a new type of class, let’s do the right thing and
test it. Testing logical models is no different than testing physical models, which we’ve
already done quite a bit of. Example 15-5 shows a simple test that retrieves a
Logical::Movie object and checks through a series of asserts that the logical model
matches the corresponding physical models.

Example 15-5. A unit test for a logical model class

require File.dirname(__FILE__) + '/../../test_helper'

class MovieTestCase < Test::Unit::TestCase

 def test_logical_movie_get
 p = Physical::Movie.create!(
 :name => 'When Harry Met Sally',
 :length_minutes => 120,
 :rating => Physical::Rating::PG13)
 l = Logical::Movie.get(p.id)

 assert l.name == p.name
 assert l.length_minutes == p.length_minutes
 assert l.rating_id == p.rating.id
 assert l.rating_description == p.rating.description
 end

end

As expected, our simple test passes:

chak$ ruby test/unit/logical/movie_test_case.rb
Loaded suite test/unit/logical/movie_test_case
Started
.
Finished in 0.013015 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

The definition of our other object model classes proceeds similarly. Example 15-6
shows the definition of the Logical::Theatre class. Notice how on the way from the
physical to the logical model, we moved the address information from the class itself
into a substructure.

224 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

Example 15-6. Logical model for a theatre, app/models/logical/theatre.rb

module Logical
 class Theatre < ActionWebService::Struct

 def Theatre.get(theatre_id)
 p_t = Physical::Theatre.find(theatre_id)
 a = Logical::Address.new(
 :line_one => p_t.line_1,
 :line_two => p_t.line_2,
 :city => p_t.city,
 :state => p_t.state,
 :zip_code => p_t.zip_code)
 Logical::Theatre.new(
 :id => p_t.id,
 :name => p_t.name,
 :phone_number => p_t.phone_number,
 :address => a)
 end

 end
end

Figure 15-3 shows how the physical and logical models fit together. At the very bottom
is the database, with a 3NF or DK/NF schema. Attached to the database are Active-
Record models. All SQL queries occur at this layer and this layer only. The ActiveRecord
models have two clients. On the right, ActionController classes intended for internal
administrative use access them. On the left, the ActionWebService stack accesses the
ActiveRecord models. First there is a translation layer from physical to logical model
with the ActionWebService::Struct classes. The external-facing API deals in these log-
ical object models. Neither the ActionController classes nor the ActionWebService
classes ever access the database directly; they always go through the ActiveRecord layer.
Each layer sees only the data directly below it. Now that we have a logical model layer,
the next step is to define the ActionWebService API.

Defining the API
There are four components to a Rails service. We’ve already defined part of our logical
model layer—the Movie, Theatre, and Showtime ActionWebService::Struct classes. Now
let’s look at the other three pieces so that we can begin making actual service requests.

The first is the API, which defines which methods are available to clients. Your API files
go in the directory models/apis. You can split up segments of your API into multiple
API files, just as you can split up different actions into multiple ActionController con-
trollers. For now we’ll define a single, simple API called MoviesApi. Our API declaration
is shown in Example 15-7. This API declares two methods (get_movie and get_thea
tre), which allow for retrieval of a Movie or Theatre object by ID.

Creating an Abstraction Barrier | 225

Download at Boykma.Com

Example 15-7. An API definition for MoviesApi, models/apis/movies_api.rb

class MoviesApi < ActionWebService::API::Base
 api_method(:get_movie,
 :expects => [:movie_id => :int],
 :returns => [:movie => Logical::Movie])

 api_method(:get_theatre,
 :expects => [:theatre_id => :int],
 :returns => [:theatre => Logical::Theatre])
end

A few points are worth noting here.

First, we define each API method with the method api_method. It has three parameters.
The first parameter is a symbol defining the method name. The second is an array
defining the parameters the method expects. The third is an array defining the return
value. The method name is required, but the expects and returns parameters can be
omitted if the method takes no parameters, has no result, or both.

Note that each element of the expects and returns arrays is a one-item hash. Although
this is not required—you are free to list only the types—this syntax is recommended,
as it is self-documenting.

Endpoints

M
et

ho
ds

 d
efi

ne
d

in

API o
ne per

se
gm

ent

One per
Rails

 applic
ati

on

ActionController::Base
controller clases

ActionWebService::Base
model classes

Layered Delegated

Direct

Figure 15-3. The pieces of a Rails XML-RPC service application

226 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

The third thing to notice in this code is that when declaring one of our logical model
types as a parameter or return value, we need to provide the module name as well as
the class name. This is because the API class is in global scope.

The second component of our XML-RPC service is the API implementation, which
actually assigns code to each API method. These implementation files, which are
based on ActionWebService::Base, are analogous to regular ActionController controller
files. By default they should be placed in the app/models/services directory. However,
functionally these classes are controllers, so instead we can put them in a more sensible
directory by modifying the Rails load path. We already did this in Example 15-2 (shown
earlier) when we added app/controllers/services to the load path list.

Example 15-8 shows our API definitions for MoviesApi. Note that we must declare
which API we are implementing using the web_service_api method.

Example 15-8. controllers/services/showtimes_service.rb

class MoviesService < ActionWebService::Base
 web_service_api MoviesApi

 def get_movie(movie_id)
 Logical::Movie.get(movie_id)
 end

 def get_theatre(theatre_id)
 Logical::Theatre.get(theatre_id)
 end
end

The third and final component of putting together our XML-RPC service is defining a
controller that passes service requests through to the ActionWebService. The endpoint
URL is still just a URL to Rails, so we need a proxy class that translates requests destined
for an ActionController class into those that can be handled by our service. Exam-
ple 15-9 shows how we define such a class, which is placed in the standard
app/controllers directory.

Example 15-9. controllers/movies_service_controller.rb

class MoviesServiceController < ApplicationController
 web_service_dispatching_mode :layered
 web_service_scaffold :invoke
 web_service :movies_service, MoviesService.new
end

Each line in this class deserves an explanation.

The first line, a call to web_service_dispatching_mode, defines the type of dispatching.
In ActionWebService, three types are supported: :direct, :delegated, and :layered.
We write our Rails code identically for delegated and layered modes, but for direct
mode, we define methods directly in ActionController controller classes, not in a sep-
arate implementation model as in Example 15-8. The second difference is in the number

Creating an Abstraction Barrier | 227

Download at Boykma.Com

of endpoint URLs. For direct and delegated modes, we have a different endpoint URL
for each controller or API model class we define. In layered mode, there’s a single
endpoing URL, and the API intended to be accessed is specified by the client in a pro-
tocol specific way. For XML-RPC, that’s done by prefixing the method name with the
API name and a period. Figure 15-4 summarizes these differences.

In practice, the differences between the modes is not significant. In this book, we’ll use
layered mode. Having a single endpoint URL makes life easier for non-Rails clients,
and separating some logic between controllers and models can give us some additional
flexibility.

The second line contains a call to web_service_scaffold. Like ActionController scaf-
folding (which should never be used outside of testing), this generates a series of web
pages where you can test your web service via a web browser. The parameter defines

Service
database

Direct use of
physical models

ActiveRecord::Base
Physical Models

ActionWebService::Struct
Logical Models

ActionController
admin controllers

ActionWebService
API

Physical to logical
model translation

Thin front-end client
Internal

users

External
users

Firewall

SQL

Figure 15-4. Summary of ActionWebService dispatch modes

228 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

the URL where the scaffolding will be found. In this case, it would be found at http://
localhost/movies_service/invoke.

The third line actually does the work of attaching an API model class to our service.
You can segment your API into as many logical chunks as you want and attach them
all to the service one by one here.

With this much in place, you can now go check out the WSDL file that is automatically
generated by Rails for SOAP clients. It’s also good documentation for clients using
XML-RPC. The WSDL is located at http://localhost/movies_service/wsdl.

We’re also ready to write our first functional test to check that our API method,
get_movie, works as expected. Example 15-10 shows how to write a functional test for
a service method. Note that to make a service call, you use invoke_direct,
invoke_layered, or invoke_delegated. We also need to require test_invoke.rb, which
contains the unit test definitions for these methods.

Example 15-10. Functional test for an ActionWebService service method

require File.dirname(__FILE__) + '/../test_helper'
require 'movies_service_controller'
require 'action_web_service/test_invoke'

class MoviesServiceController; def rescue_action(e) raise e end;
end

class MovieTestCase < Test::Unit::TestCase

 def setup
 @controller = MoviesServiceController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_movie_get
 p = Physical::Movie.create!(
 :name => 'When Harry Met Sally',
 :length_minutes => 120,
 :rating => Physical::Rating::PG13)
 l = invoke_layered :movies, :get_movie, p.id

 assert l.name == p.name
 assert l.length_minutes == p.length_minutes
 assert l.rating_id == p.rating.id
 assert l.rating_description == p.rating.description
 end

end

Creating an Abstraction Barrier | 229

Download at Boykma.Com

http://localhost/movies_service/invoke
http://localhost/movies_service/invoke
http://localhost/movies_service/wsdl

We run our test like any other. Here is the output of our test passing:

chak$ ruby test/functional/movies_api_test_case.rb
Loaded suite test/functional/movies_api_test_case
Started
.
Finished in 0.072195 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

More Testing
Aside from Rails functional testing, we can test our service application in other ways
as well. The first and easiest is to use ActionWebService scaffolding. This is helpful
when we want to see what service request results look like on the fly. Recall in Exam-
ple 15-9 we declared a scaffold at invoke using the web_service_scaffold method. This
defined a set of test web pages accessible at http://localhost/movies_service/invoke. Fig-
ure 15-5 shows the sequence of selecting a service method to invoke, setting up
parameters for invocation, and receiving the response.

Note that if our service is facing the public Internet, we may want to turn this scaffolding
off for production use. If that is the case, we can also test the service via a desktop client.
On the Mac, a free XML-RPC client is available at http://ditchnet.org/xmlrpc/. To test
a service, we define the endpoint URL, the method name, and the parameters. Fig-
ure 15-6 shows the sequence of using the desktop client to test a layered service.

Regardless of how we test, the XML generated for requests and responses is the same.
The beauty of XML-RPC is that we don’t need to worry about what this looks like.
However, for reference, a sample request is shown in Example 15-11 and a sample
response in Example 15-12.

Example 15-11. The XML of an XML-RPC request

<?xml version="1.0" ?>
<methodCall>
 <methodName>movies.GetMovie</methodName>
 <params>
 <param><value><i4>1</i4></value></param>
 </params>
</methodCall>

230 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

http://localhost/movies_service/invoke
http://ditchnet.org/xmlrpc/

Example 15-12. The XML of an XML-RPC response

<?xml version="1.0" ?>
<methodResponse>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>name</name>
 <value><string>Casablanca</string></value>
 </member>
 <member>
 <name>id</name>
 <value><i4>1</i4></value>
 </member>
 <member>
 <name>length_minutes</name>
 <value><i4>120</i4></value></member>
 <member>
 <name>rating_id</name>

1

2

3

Figure 15-5. Testing an ActionWebService service with scaffolding

More Testing | 231

Download at Boykma.Com

 <value><string>PG-13</string></value>
 </member>
 <member>
 <name>rating_description</name>
 <value><string>Parents strongly cautioned</string></value>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodResponse>

The Client Plugin
Accessing an XML-RPC service from another Rails application—presumably a thin
front-end—is, like all things Rails, extremely easy. If we’re within a controller, such as
ApplicationController, the following line is all we need:

web_client_api :movies,
 :xmlrpc,
 "http://localhost:3000/movies_service/api",
 :handler_name => "movies",
 :timeout => 5

If we’re working from a model class, we can create a client by directly instantiating an
instance of ActionWebService::Client::XmlRpc:

movies = ActionWebService::Client::XmlRpc.new(
 MoviesApi, "http://localhost:3000/movies_service/api",
 {:handler_name => 'movies', :timeout => TIMEOUT_SECONDS}
)

In both cases, we then call methods on the local variable movies. In the first example,
the first parameter to web_client_api defines both the local variable name of the client
to be created, as well as which API file to look for, in this case, MoviesApi. In the second
example, each of these is explicit.

Hopefully this seems strange. Why does the client need access to the MoviesApi class
defined on the server? Such a constraint doesn’t seem like it provides the loose coupling
we are after with a service-oriented architecture.

In reality, we don’t need to share any files between the client and server, but doing so
is what allows the Rails client configuration to be so simple. In cases where we have
control over both the client and server, and we are building both with Rails, it’s not
hard to share the API definition class. For non-Rails clients, the API definition class is
clearly not needed, and they can connect in their own language or framework specific
way.

In order to share code between our two applications, server and client, we’ll build a
plugin that for each installs in vendor/plugins.

232 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

The client plugin serves a few purposes. As already noted, it allows us to easily share
code between our service server and clients. If we have multiple service clients, the
plugin also ensures that they have a consistent interface to the service. We’ll create a
wrapper around the simple client instantiation from earlier, which is described below

Figure 15-6. Testing an XML-RPC service with OS X Cocoa XML-RPC client

The Client Plugin | 233

Download at Boykma.Com

as the client singleton. This wrapper, like any wrapper class, gives us the flexibility to
take certain actions before, after, or around any service method invocation, on a per-
method basis, or for every method. Having a shared client that we define once also lets
us test the client apart from other code, and it facilitates integration testing.

As described in Chapter 3, we’ll begin creating our plugin by generating plugin stub
files:

./script/generate plugin movies_service_client

Shared Code
The first steps to writing the client plugin are to move the code needed on both the
server and client side into the plugin and ensure the service itself still works as expected.
Our unit tests will help ensure that nothing breaks as code is moved around.

Two pieces of code get moved into the plugin. First, the API declaration file
movies_api.rb gets put in the plugin lib directory.

Next, the “header” file we created in Example 15-3 gets moved from the application-
level lib directory to our plugin’s lib directory. Armed with the identical definitions of
what data is in each logical model class via this header file, the server and client are free
to reopen the classes locally and add methods appropriate to their role. On the service-
side, as we’ve already seen, the logical model classes in app/models/logical define, at the
very least, how to build the logical objects. Those classes can contain other business
logic as well. On the client-side, we can reopen the classes in the same way and add
convenience methods as we see fit.

We ensure our header class gets loaded, so the following line goes in the init.rb of the
plugin:

require 'movies_service'

We don’t need to explicitly require the API definition class, as the auto-loader finds it
automatically.

At this point, we should rerun our tests to ensure everything is working. Visit the scaf-
folding test web page again and kick the tires.

The Client Singleton
The client singleton is a class that automatically creates a client for our service that
is accessible from anywhere within the application, controllers, and model classes alike.
It also ensures that access from each type of class is consistent, as we would expect it
to be. Example 15-13 shows the shell of our client plugin.

The initialize method instantiates an ActionWebService client and assigns it to a
protected instance variable @client. Rather than call methods on the client object di-
rectly, callers instead invoke the service methods directly against a service client

234 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

instance. We have redefined method_missing at the instance level to forward these re-
quests to the @client object. This allows for an opportunity to modify the arguments
going in or the result going out, or to perform other activities such as logging.

This class is a singleton, which ensures there is only one instance of the class in our
application at any given time. Singleton class instances are normally accessed via
ClassName.instance—in this case, it would be MoviesServiceClient.instance—but
we’ve redefined method_missing at the class level as well to forward requests to the
singleton instance.

Example 15-13. Code for a service client plugin, lib/movies_service_client.rb

require 'singleton'
class MoviesServiceClient
 include Singleton

 def initialize
 # URL and TIMEOUT_SECONDS are defined in
 # config/initializers/movies_service_client_config.rb
 @client = ActionWebService::Client::XmlRpc.new(
 MoviesApi, ENDPOINT_URL, {:handler_name => 'movies', :timeout =>
 TIMEOUT_SECONDS}
)
 end

 def method_missing(method, *args)
 # *args can be modified here, logging can take place, etc.
 result = @client.send(method, *args)
 # the result can be modified here, additional logging can take place, etc.
 result
 end

 # this method allows callers to avoid the dot-instance singleton access pattern
 def self.method_missing(method, *args)
 self.instance.send(method, *args)
 end
end

Note that we have used two constants in Example 15-13 that haven’t been defined
anywhere: ENDPOINT_URL and TIMEOUT_SECONDS. These are configuration parameters that
could be different from one client to the next. For example, the endpoint URL could
change from one environment to the next. Different clients may have different notions
of what is an acceptable time to wait for a service response. In Rails 2.0, configuration
such as this is placed in an initializer, in the config/initializers directory. Exam-
ple 15-14 shows how to define these configuration parameters.

Example 15-14. A service client initializer, config/initializers/movies_service_client_config.rb

class MoviesServiceClient
 ENDPOINT_URL = 'http://localhost:3000/movies_service/api'
 TIMEOUT_SECONDS = 10
end

The Client Plugin | 235

Download at Boykma.Com

Integration Testing
Integration testing is the notion of testing applications via a third-party tool, treating
components like black boxes. Unlike unit testing, which has access to the application
and is testing the public interfaces of the code itself, integration testing tests the public
interface of an application: the service interface.

Integration testing is different from functional tests like the one in Example 15-10
(shown earlier), too. An integration test actually makes a remote service call to a running
service to perform the test; it doesn’t just simulate the request. In fact, integration tests
should be run against a live setup of your entire application stack, including databases
with real data in them. It should be the same environment QA uses for testing the
application.

An integration test also allows us to test how multiple remote components work to-
gether. For example, if a request to one service is expected to make a request to another
service, we can check in an integration test that everything that was supposed to happen
did in fact happen.

Don’t be intimidated by the term “third-party tool.” The third-party tool can be yet
another Rails application. In this case, the entire function of the application is only to
run tests. To get started with our Rails integration test framework, we simply create a
new rails application:

rails integration_test_framework

We ensure ActionWebService is set up correctly, as described in the first section of this
chapter. Then we import our service client plugin into vendor/plugins, and create an
appropriate initializer configuration file like the one in Example 15-14. To get started,
we must also turn off the components of Rails we aren’t using, so we don’t have to set
up, for example, our database.yml file. In environment.rb, we uncomment this line:

config.frameworks -= [:active_record, :active_resource, :action_mailer]

We can now proceed testing our service with the same interface a Rails client would
have, as in Example 15-15.

Example 15-15. Using the service client plugin in an integration test

def test
 m = MoviesServiceClient.get_movie(1)
 assert m.name == 'Casablanca'
 assert m.length_minutes == 120
 assert m.rating_id == 'PG-13'
 assert m.rating_description == 'Parents strongly cautioned'
end

In integration testing, we can be black-box regarding the service application, and white-
box regarding that service’s database schema. We can connect directly to the database
to insert records and ensure that the service returns them in the expected way. This
sort of testing is shown in Example 15-16.

236 | Chapter 15: An XML-RPC Service

Download at Boykma.Com

Example 15-16. An integration test for MoviesService

require File.dirname(__FILE__) + '/../test_helper'

class MovieServiceTestCase < Test::Unit::TestCase

 class Rating < ActiveRecord::Base
 establish_connection(
 :adapter=>"postgresql",
 :database => "movies_development",
 :host => "localhost"
)
 end

 class Movie < ActiveRecord::Base
 establish_connection(
 :adapter=>"postgresql",
 :database => "movies_development",
 :host => "localhost"
)
 end

 def test_movie_get
 r = Rating.find('PG-13')
 p = Movie.create!(
 :name => 'Hedwig and the Angry Inch' + rand(100).to_s,
 :length_minutes => 120,
 :rating_id => r.id)
 m = MoviesServiceClient.get_movie(p.id)
 assert m.name == p.name
 assert m.length_minutes == p.length_minutes
 assert m.rating_id == r.id
 assert m.rating_description == r.description
 p.destroy
 end

end

Note that in this example, we defined just enough of our schema to get the data under
test into the service. We defined the database connection directly in the test, rather
than via database.yml, because our integration testing may one day span multiple
databases, one for each service under test. Since this information is repeated, and likely
to change, it can and should also be moved out into an initializer.

The good news is that our test passes:

chakbookpro:integration_test_framework chak$
ruby test/integration/movies_service_test_case.rb
Loaded suite test/integration/movies_service_test_case
Started
.
Finished in 0.370347 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

The Client Plugin | 237

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 16

Refactoring to Services

In the previous chapter, we created a basic XML-RPC service. All it could do was return
a movie object. However, even with just this simple example behind you, you should
have a solid understanding of what services are for, what considerations should go into
their design, and how to build a simple one. In this chapter, we’ll take all of that foun-
dation and use it to connect three applications together: two back-end services that talk
to each other and our integration test framework, which in this chapter will simulate
a front-end talking to those services.

Figure 16-1 shows what our architecture will look like by the end of this chapter. First,
we’ll build a simple orders service, which allows us to add new products to the product
database and place orders. Then, we’ll integrate our movies service with the new orders
service. Whenever we add a showtime to the system, we’ll register that showtime as a
product in the orders service so that tickets can be sold. We won’t actually create a
front-end application, but we’ll simulate doing so by building new tests in our inte-
gration test framework, which tests services the way a real client would access them.

Our main goal is to learn how to connect systems together in an efficient and natural
way. While Figure 16-1 provides a picture of how these pieces link together, Fig-
ure 16-2 shows a more accurate representation of how we physically lay out such an
architecture in a production environment, complete with redundancy, load balancers,
and database failover.

An Orders Service
We begin with our new orders service. Previously, the tables relating to movie show-
times (movies, theatres, ratings, and the showtimes themselves) were in the same
database as the tables corresponding to ordering (orders, ticket purchases, and a variety
of payment processing tables). Even our simple example quickly grew to a large number
of tables, and in the real world, the count would explode quickly and continuously.

Our orders tables also took on some domain knowledge of the movie-related schema.
The table for order line items was called ticket_purchases because we were selling

239

Download at Boykma.Com

movie tickets. But some day, we might want to use the same system for selling sodas
and popcorn. Tightly coupling the movie-related tables with the order tables can block
future paths or make them more difficult to implement.

If we move our orders-related tables out into their own service database, with a separate
service application that knows nothing about movies, we are more likely to design a
system that will be amenable to future extensions—be it selling sodas, action-hero
figurines, or flight reservations. Developers who are working on the orders service can
also work more adeptly in their own domain, unhindered by unrelated concerns—both
tables and application code—and address their primary focus of improving or extend-
ing the orders service.

Figure 16-3 shows the tables of the orders service, extracted from our original appli-
cation. There are a few changes to note. First, we have added a product table. Because
we don’t have access to any particular product table—in our application our product
was contained within the movie_showtimes table—we need a place to keep track of
products offered by external applications. This table allows a description to be stored,
which can help debug problems. There’s also a column to store a quantity of items
available.

Our purchased_tickets table has also been renamed to make it more generic. It is now
called line_items, which has meaning regardless of what is being sold, and particularly
to developers who are working on the orders service in isolation. The foreign key
pointing to the products table—previously the movie_showtimes table—has also been
moved from the orders table to the line_items table. Whereas in our movies application
it made sense to purchase tickets for one movie at a time in any given order, in a generic
ordering application, it doesn’t make sense to require that each type of item be placed

Movies
service

Orders
serviceAdmin

Movies DB Orders DB

Front-end

Site visitor

Admin user

Figure 16-1. Three applications connected in a service-oriented architecture

240 | Chapter 16: Refactoring to Services

Download at Boykma.Com

in its own order. Instead, an order can have line items for many types of items, and
each line item can have an associated quantity.

Example 16-1 shows the Data Definition Language (DDL) for our new schema. It is
much like the schema we built up in previous chapters; however, because we simplified
the problem, we also simplified the solution. Now that we have a simple products table,
which is domain-independent, our primary key is simply the id column.

Movies
service

Orders
serviceAdmin

MoviesDB OrdersDB

Site visitor

Admin user

Warm
backup

Warm
backup

LB

LB

LBLB

Cache

Cache

Front-end

Figure 16-2. The three applications from Figure 16-1, shown with redundancy, failover, and caching
servers

An Orders Service | 241

Download at Boykma.Com

Example 16-1. The DDL for the OrdersService schema

create language plpgsql;

create sequence products_id_seq;
create table products (
 id integer not null
 default nextval('products_id_seq'),
 description text,
 price_cents integer not null,
 quantity integer not null,
 created_at timestamp with time zone
);

create table zip_codes (
 zip varchar(16) not null,
 city varchar(255) not null,
 state_abbreviation varchar(2) not null,
 county varchar(255) not null,
 latitude numeric not null,
 longitude numeric not null,
 primary key(zip)
);

create table addresses (
 line_1 varchar(256) not null
 check (length(line_1) > 0),
 line_2 varchar(256),

id
description
quantity

products id
product_id
confirmation_code
purchase_price_cents
quantity

line_items

confirmation_code
product_id
credit_card_payment_id
promotional_payment_id
paypal_payment_id

orders

zip
city
state

zip_codes

name
line_1
line_2
city
state
zip_code

addresses

id
promotion_id
created_at

promotional_payments
id
email
auth_response
created_at

paypal_payments
id
card_number
type
expiration_month
expiration_year

credit_card_payments

Figure 16-3. The schema for our orders service

242 | Chapter 16: Refactoring to Services

Download at Boykma.Com

 city varchar(128) not null
 check (length(city) > 0),
 state varchar(2) not null
 check (length(state) = 2),
 zip_code varchar(9) not null
 references zip_codes(zip)
);

-- index on zip code, a common search criteria
create index address_zip_code_idx on addresses(zip_code);

create sequence credit_card_payments_id_seq;
create table credit_card_payments (
 id integer not null
 default nextval('credit_card_payments_id_seq'),
 card_number varchar(16) not null,
 type varchar(32) not null
 check (type in ('AmericanExpress', 'Visa', 'MasterCard')),
 expiration_month integer not null
 check (expiration_month > 0 and expiration_month <= 12),
 expiration_year integer not null
 check (expiration_year > 2008),
 primary key (id)
) inherits (addresses);

create sequence promotional_payment_id_seq;
create table promotional_payments (
 id integer not null
 default nextval('promotional_payment_id_seq'),
 promotion_id varchar(32) not null,
 created_at timestamp with time zone,
 primary key (id)
);

create sequence paypal_payment_id_seq;
create table paypal_payments (
 id integer not null
 default nextval('paypal_payment_id_seq'),
 email varchar(128) not null,
 auth_response text,
 created_at timestamp with time zone,
 primary key (id)
);

create sequence orders_id_seq;
create table orders (
 confirmation_code varchar(16) not null
 check (length(confirmation_code) > 0),
 credit_card_payment_id integer
 references credit_card_payments(id),
 promotional_payment_id integer
 references promotional_payments(id),
 paypal_payment_id integer
 references paypal_payments(id),
 primary key (confirmation_code)

An Orders Service | 243

Download at Boykma.Com

);

alter table orders add constraint payment_xor check(
 (case when credit_card_payment_id is not null then 1 else 0 end +
 case when paypal_payment_id is not null then 1 else 0 end +
 case when promotional_payment_id is not null then 1 else 0 end) = 1
);

create table line_items (
 order_confirmation_code varchar(16) not null
 references orders(confirmation_code),
 product_id integer not null,
 quantity integer
 check (quanitity > 0),
 position integer not null,
 purchase_price_cents integer not null
 check (purchase_price_cents >= 0),
 primary key (order_confirmation_code, position)
);

In our implementation of the OrdersService tables, we have no column to store an id
corresponding to the primary key of a showtime, our purchasable unit. Because our
service is intended to be generic, it assigns its own ids to each product in the products
table. Clients of the OrderService add new products as they need to via the remote API,
and they obtain an id from the OrdersService as a result. They then refer to products
by that id in future calls.

There are may benefits to having clients maintain the foreign key from the product
database, among them:

• Multiple clients can add products of any type to the OrdersService and there will
be no id collisions.

• The OrdersService can remain neutral and does not need changes if new product
types or new clients are added.

Figure 16-4 shows the sequence of how we’ll add products to the OrdersService, as
initiated from an administrative control panel in the MoviesService application. Upon
adding a new showtime, a service call is made to the OrdersService for the
add_product method. The OrdersService creates a new record in the products table and
returns a product_id. The MoviesService writes this value to the movie_showtimes table
so that it knows how to refer to it later when communicating with the OrdersService.
A page is then returned to the administrative user, just as it would have been without
an OrdersService in the picture. To the system’s users, nothing has changed at all.

To facilitate this interaction, we need to define an API for the OrdersService. First we
need to create a plugin, orders_service_shared, as we did in the previous chapter for
the movies service:

./script/generate plugin orders_service_shared

244 | Chapter 16: Refactoring to Services

Download at Boykma.Com

Next we define the API. Example 16-2 shows our orders_api.rb file, which would be
placed in the lib/ directory of the client plugin under vendor/plugins. Although an orders
service could have a large number of callable methods, we’ll define two that suffice
here. The first, add_product, is called from the movies service when a new showtime is
added. It is the API method used in the example in Figure 16-4. The second method,
place_order, is called by a front-end during a user’s checkout process.

Note that in our API for placing an order, we just pass the line items. We don’t need
to create an explicit object for the order itself. It’s implicit in the method name that
what we’re doing is creating an order out of our line items. This is in contrast to a REST
approach, where we would be required to define a resource for an “order” so that we
could access it at a particular RESTful URI and PUT or POST the order there. However,
we clearly don’t need the overhead of such an interface, which would complicate the
processing to be done on both the client and the server. Here, we have an array of line
items, each of which references a product_id, as returned from the add_product API
method, and a quantity. The array itself is the order, and the return value of the method
invocation is an object containing the order confirmation code and a final price.

Example 16-2. {plugin}//lib/orders_api.rb

class OrdersApi < ActionWebService::API::Base

 api_method(:add_product,
 :expects => [{:description => :string},
 {:quantity => :int},
 {:price_cents => :int}],
 :returns => [:product_id => :string])

 api_method(:place_order,
 :expects => [{:items => [Logical::LineItem]},
 {:payment => Logical::Payment}],
 :returns => [Logical::OrderPlaced])
end

MoviesDB

Movies
Service

Orders
Service

Movies
Admin

Add showtime

OrdersDB

Add_product

product_id

11

success

12

13

14

1516

MMid
...attibutes...
product_id

movie_showtimes

id
description
quantity
price_cents

products

Figure 16-4. Adding a product to the OrdersService

An Orders Service | 245

Download at Boykma.Com

The next step is to define the logical model for the OrdersService. Example 16-3 shows
our classes: LineItem, Order, Address, CreditCard, Payment, and OrderPlaced. Interest-
ingly, at this stage we have no need for a Product class. One might be necessary given
a richer API, but at the moment, the context of our methods themselves can make some
logical models unnecessary.

Note that previously our sense of quantity was implicit in the number of rows in the
tickets_purchased table because each order could consist of tickets for at most one
showtime. However, our generic OrdersService allows for more flexible orders made
up of varying products. Therefore, we’ve added a quantity attribute to the LineItem
class. There will be only one line item per product, but more than one of each product
can be purchased and recorded in that line item record.

Note that although the line_items table contains a reference to the orders table, the
relationship is reversed in our logical model. Here, the Order class contains an array of
LineItem objects. It is frequently the case that relationships such as this one are reversed
between the logical and physical models; the former is object-oriented and designed to
be a natural representation of the world, while the latter is designed to eliminate du-
plicate data and maintain referential integrity.

Most of our other classes are fairly straightforward and based closely on the physical
models underlying them. One exception is the OrderPlaced object, which is the result
of calling place_order. It contains the confirmation number, which could be used to
retrieve an order after it has been placed. We have also eliminated the subclasses of
Payment and CreditCard here, opting instead to differentiate the payment and credit
cards types based on class constants. The logical object model gains simplicity, while
the physical model still contains the complexity necessary to actually process the pay-
ments and correctly record the data in the database.

Example 16-3. {plugin}/lib/orders_service.rb

module Logical

 class LineItem < ActionWebService::Struct
 member :product_id, :integer
 member :quantity, :integer
 end

 class Order < ActionWebService::Struct
 member :line_items, [LineItem]
 end

 class Address < ActionWebService::Struct
 member :line_1, :string
 member :line_2, :string
 member :city, :string
 member :state, :string
 member :zip_code, :string
 end

246 | Chapter 16: Refactoring to Services

Download at Boykma.Com

 class CreditCard < ActionWebService::Struct
 AMERICAN_EXPRESS = 'american_express'
 MASTERCARD = 'master_card'
 VISA = 'visa'

 member :type, :string
 member :card_number, :string
 member :expiration_month, :integer
 member :expiration_year, :integer
 end

 class Payment < ActionWebService::Struct
 PAYPAL = 'paypal'
 PROMOTIONAL = 'promotional'
 CREDIT_CARD = 'credit_card'

 member :address, Address
 member :type, :string
 member :credit_card, CreditCard
 end

 class OrderPlaced < ActionWebService::Struct
 member :confirmation, :string
 member :price, :int
 end
end

With the API declared and our objects defined, we can now implement the API. Ex-
ample 16-4 shows the orders_service.rb file, which we place in app/controllers/services/.

First, we declare which API declaration class we are implementing, here OrdersApi from
Example 16-3. Next we define the add_product method. This method just passes pa-
rameters through to the physical model Product class, and returns the resulting product
id.

The place_order method is interesting because the service API does not naturally match
the physical layer data types. An array of line items and an object describing the pay-
ment are passed in. These must be translated into a payment subclass as returned from
the Payment factory constructor method, and an Order object, consisting of LineItem
objects that require looking up Product objects to determine the correct purchase price.

Example 16-4. controllers/services/orders_service.rb

class OrdersService < ActionWebService::Base
 web_service_api OrdersApi

 def add_product(description, quantity, price_cents)
 p = Physical::Product.create!(
 :description => description,
 :quantity => quantity,
 :price_cents => price_cents)
 return p.id
 end

An Orders Service | 247

Download at Boykma.Com

 def place_order(items, payment)
 c = Physical::Payment.new_payment(payment.type, payment.credit_card.type)
 c.card_number = payment.credit_card.card_number
 c.expiration_month = payment.credit_card.expiration_month
 c.expiration_year = payment.credit_card.expiration_year
 line_items = items.collect {|li|
 p = Physical::Product.find(li.product_id)
 Physical::LineItem.new(
 :product => p,
 :quantity => 1,
 :purchase_price_cents => p.price_cents)
 }
 o = Physical::Order.create(:payment => c, :line_items => line_items)
 Logical::OrderPlaced.new(:confirmation => o.confirmation_code,
:price => o.order_total)
 end
end

While this may seem onerous, the translation layer is actually a boon as your site and
business grow. Often, a young designer’s first service API will exactly match the phys-
ical models’ API. Remember that the physical models and data layer are geared toward
ensuring referential integrity and data correctness, but the logical models and service
API are intended to feel natural to clients. If the two are the same, either your physical
models are too natural and likely to be in domain key/normal form, or the service API
is too rigid, reproducing the fine-grained ActiveRecord API through to clients and
pushing too much business logic up through to the client layer.

Even if your logical and physical models are initially very similar, over time they will
diverge, and having a translation layer like the one shown in Example 16-4 gives you a
natural place to translate one to the other. This is crucial if your data model is changing
but you don’t want clients to be aware of the change, or vice versa.

Next, we must define a standard Rails controller intended to pass control along to our
service when a request is made to /orders_service/api. The OrdersServiceController,
which implements this behavior, is shown in Example 16-5. Just as in the previous
chapter, we create a scaffolding for testing, available at /orders_service/invoke.

Example 16-5. app/controllers/orders_service_controller.rb

class OrdersServiceController < ApplicationController
 web_service_dispatching_mode :layered
 web_service_scaffold :invoke

 web_service :orders, OrdersService.new
end

Also similar to our last service, we create a client class that we’ll use to access the
OrdersService from other applications. The client library is shown in Example 16-6. It
requires that a configuration initializer be placed in config/initializers. This file would
take the same form as the initializer file created in the previous chapter for

248 | Chapter 16: Refactoring to Services

Download at Boykma.Com

MoviesService, but it should define the location of the OrdersService API as the constant
OrdersServiceClient::ENDPOINT_URL.

Example 16-6. {plugin}/lib/orders_service_client.rb

require 'singleton'
class OrdersServiceClient
 include Singleton

 def initialize
 # URL and TIMEOUT_SECONDS are defined in
 # config/initializers/orders_service_client_config.rb
 @client = ActionWebService::Client::XmlRpc.new(
 OrdersApi, ENDPOINT_URL,
 {:handler_name => 'orders', :timeout => TIMEOUT_SECONDS}
)
 end

 def self.method_missing(method, *args)
 self.instance.send(method, *args)
 end

 def method_missing(method, *args)
 @client.send(method, *args)
 end
end

In Example 16-7, code from the previous chapter to “help” the Rails auto-loader is
reproduced. This code is necessary for Rails to find our logical model classes, as well
as our service implementation classes. The pertinent lines are in bold:

Example 16-7. application.rb auto-loader overrides

Dir["#{RAILS_ROOT}/app/models/physical/*.rb"].each { |file|
 require_dependency "physical/#{file[file.rindex('/') + 1...-3]}"
}

Dir["#{RAILS_ROOT}/app/models/logical/*.rb"].each { |file|
 require_dependency "logical/#{file[file.rindex('/') + 1...-3]}"
}

Dir["#{RAILS_ROOT}/app/controllers/service/*.rb"].each { |file|
 require_dependency "service/#{file[file.rindex('/') + 1...-3]}"
}

We now have all of the files necessary for our second service, OrdersService. The next
step is to test the two API methods we created. Example 16-8 shows two tests, one for
each method. In the first method, we simply test adding a product using the
add_product API method. After adding the “My test product” product, we assert that
a valid product id was returned.

The second method tests the process of placing an order. First, we add a product for
which we will place an order and then create a line item corresponding to a purchase

An Orders Service | 249

Download at Boykma.Com

it. We create objects for all of the classes necessary to create a payment (an address, a
credit card, and a payment object) and finally we call place_order with our line item
repeated four times. We assert that the order succeeded and the purchase price returned
is what we expected.

Example 16-8. Integration tests for OrdersService

require File.dirname(__FILE__) + '/../test_helper'

class OrdersServiceTestCase < Test::Unit::TestCase

 def test_add_product
 new_id = OrdersServiceClient.add_product(
 "My test product",
 50,
 1000)
 assert new_id
 end

 def test_place_order
 p = OrdersServiceClient.add_product(
 "My test product",
 50,
 1000)
 li = Logical::LineItem.new(
 :product_id => p,
 :quantity => 1
)
 ad = Logical::Address.new(
 :line_1 => '123 Foobar Lane',
 :city => 'Cambridge',
 :state => 'MA',
 :zip_code => '02139'
)
 cc = Logical::CreditCard.new(
 :card_number => '55555555555555',
 :expiration_month => '12',
 :expiration_year => '2015',
 :type => Logical::CreditCard::AMERICAN_EXPRESS
)
 payment = Logical::Payment.new(
 :address => ad,
 :type => Logical::Payment::CREDIT_CARD,
 :credit_card => cc
)
 result = OrdersServiceClient.place_order(
 [li, li, li, li], payment
)
 assert result.confirmation
 assert result.price == 4000
 end

end

250 | Chapter 16: Refactoring to Services

Download at Boykma.Com

The results of our integration tests are shown in Example 16-9. Our tests pass.

Example 16-9. Result of running the OrdersService integration tests

chakbookpro: chak$ ruby test/integration/orders_service_test_case.rb
Loaded suite test/integration/orders_service_test_case
Started
..
Finished in 0.344523 seconds.

2 tests, 3 assertions, 0 failures, 0 errors

Integrating with the MoviesService
Because we’ve ripped our application in two, we need some way to link the data in the
two applications back together. I’ve already alluded to the idea that a MovieShowtime
object is the “product” of the MoviesService, and that the MoviesService needs to obtain
and track product ids returned from the OrdersService. To accomplish this, we need
to add a product_id column to the movie_showtimes table, as shown in Exam-
ple 16-10. Note that the column type is text, rather than integer. Just as OrdersSer
vice strives to maintain independence from its clients, so too should clients add a layer
of abstraction between themselves and the services they consume. Although the prod-
uct ids are integers today, they might not be forever. Since there is no explicit reference
to maintain within the movies database, the schema can be built to be generic enough
to support today’s as well as tomorrow’s needs.

Example 16-10. Modifications to the movie_showtimes table to support an orders service

create table movie_showtimes (
 id integer not null
 default nextval('movie_showtimes_id_seq'),
 movie_id integer not null
 references movies(id),
 theatre_id integer not null
 references theatres(id),
 room varchar(64) not null,
 start_time timestamp with time zone not null,
 primary key (id),
 product_id text,
 unique(movie_id, theatre_id, room, start_time),
 foreign key (theatre_id, room)
 references auditoriums(theatre_id, room) initially deferred
);

We also need to instrument the registration of a product and the retrieval of a product
id whenever a movie showtime is added. Example 16-11 shows how we hook into the
ActiveRecord observer before_save to call the remote add_product method before sav-
ing a showtime, storing the returned product id for later use.

Integrating with the MoviesService | 251

Download at Boykma.Com

Example 16-11. physical/movie.rb

module Physical
 class MovieShowtime < ActiveRecord::Base
 def before_save
 self.product_id = OrdersServiceClient.add_product(
 self.movie.name,
 self.auditorium.seats_available,
 1000)
 end
 end
end

Before moving on, we should test that saving a showtime does in fact register the
showtime as a product and retrieve a product id. Normally, this would seem like a unit
test, but since we must contact a running OrdersService to complete the test, we instead
write it as an integration test within the MoviesService application, in the test/integra
tion directory.

Example 16-12 shows our test. The portion of the test that creates a movie, theatre,
and auditorium so that we can create a showtime is sectioned off in the setup method.
Our test just creates a showtime and asserts that the saved showtime has product_id,
even though none was ever explicitly set in the test.

Example 16-12. Integration test at test/integration/showtime_create_test_case.rb

require File.dirname(__FILE__) + '/../test_helper'

module Physical
 class ShowtimeCreateTestCase < Test::Unit::TestCase

 def setup
 @m = Movie.create!(
 :name => 'Casablanca',
 :length_minutes => 120,
 :rating => Rating::PG13)
 @t = Theatre.create!(
 :name => 'Kendall Cinema',
 :phone_number => '5555555555')
 @a = Auditorium.create!(
 :theatre => @t,
 :room => '1',
 :seats_available => 100)
 end

 def test_getting_product_id
 ms = MovieShowtime.create(
 :movie_id => @m.id,
 :theatre_id => @t.id,
 :room => '1',
 :start_time => Time.new)
 assert ms.product_id
 end

252 | Chapter 16: Refactoring to Services

Download at Boykma.Com

 end
end

Other Considerations
Here we’ve constructed a simple interconnection between two services. Since we have
split our database, it’s no longer possible for the MoviesService to easily determine if a
showtime is sold out. We could deal with this in a number of ways. One possibility
would be to add a quantity_remaining API method to the OrdersService, which could
take as a parameter an array of product ids and return, for each one, the number of
seats left for sale. Although this solution is simple and straightforward, it also requires
two chained service calls to display movie showtimes on our front-end website, which
is contrary to our SOA guidelines. It also requires the call be made every time movie
showtimes are requested. Figure 16-5 shows the steps involved.

Movies
Service

Movies
Admin

Orders
Service

MoviesDB OrdersDB

Thin
front-end

get_showtimes filtered showtimes1 6

findfind 42

quantity remaining?

Result

3

5

Figure 16-5. Chained requests to find available movie showtimes

Another possibility is to create a callback mechanism such that whenever a product
sells out, the OrdersService will make an XML-RPC call back to the product provider,
in this case the MoviesService, to notify it that a product has sold out. To facilitate this,
the MoviesService would need to maintain a sold_out Boolean in the database so that
it could filter out sold out showtimes when servicing requests to the front-end. The
OrdersService would need to know something about the product providers so that it
could make an appropriate callback. Figure 16-6 shows the entire process, with a new
table, providers, containing the callback URLs product provider XML-RPC services.

This push rather than poll interface dramatically cuts down on the number of requests
served over the lifetime of the app. Instead of a quantity_remaining requests for every
page view (steps 3–5 in Figure 16-5), we instead have one sold_out request per sell-out
event, which is rare compared to page views. In Figure 16-6, the place order process is
labeled as times A through D. This is because they do not occur in sequence with the

Integrating with the MoviesService | 253

Download at Boykma.Com

numbered steps. And further, if a product does not sell out as a result of the sale, steps
C and D are skipped. For a product with a quantity of N units available, the sold_out
method will only be called once if the product is sold N times.

Figure 16-7 shows a sales funnel depicting the progressively smaller and smaller num-
bers of users who trigger each successive event. Compared with page views, there must
be fewer purchases. Compared with purchases, the number of sell-out events must also
be smaller. In fact, a real sales funnel would likely be much wider, and have most steps
squashed down in the bottom of the funnel. Although these sorts of metrics are highly
dependent on the business, drop-off rates frequently result in one or two orders of
magnitude of decline in numbers at each step. Business types use this sort of analysis
to predict revenue and make business decisions. You can also use the same analysis to
find the right places in the application to focus optimization efforts.

In a generic product service, where we are servicing multiple product providers, we are
likely to want both mechanisms. Internally, the callback solution is the most elegant,
but for external clients it is challenging to implement due to firewalls, security policies,
and business goals. For the rest of this chapter, we’ll assume that the callback mecha-
nism and the showtimes returned from the MoviesService are, in fact, available.

MoviesService Object Model
We’ve now connected our two back-end services together. As we add showtimes to the
MoviesService, we automatically add the showtimes as products in the ProductsSer

MoviesDB

Movies
Service

Movies
Service

Orders
Service

get_showtimes

OrdersDB

sold_out!

1

2

3
A

id
...attibutes...
product_id
sold_out

movie_showtimes

id
provider_id
description
quantity
price_cents

products

Thin
front-end

find

filtered
showtimes

place_order

B

C

updateD id
name
callback_uri

providers

Figure 16-6. Marking showtimes as sold out via a callback

254 | Chapter 16: Refactoring to Services

Download at Boykma.Com

vice. And we have devised a mechanism for the ProductsService to inform the Movie
sService when a showtime is out of seats.

The last step is to provide an API for our thin, user-facing front-end website to retrieve
movies, theatres, and showtimes for display. But designing an API can be tricky. Before
rushing forward, let’s discuss some of the factors that will affect our design decisions.

In Chapter 15, we defined four best practices for designing an API. The first was “Send
everything you need.” We could interpret this literally, and simply create one service
API method per page type in our application, and have the back-end construct a data
structure containing all needed data, in the perfect format, for every page.

While this would certainly work, it ties the front- and back-ends together a bit too
tightly. The same reasoning we discovered in the discussion of module dependencies
in Chapter 5 applies here as well. If the front-end depends on the back-end services,
and not vice versa, then the back-end services should be as blind to the front-end as
possible. It should be possible to create another, differently behaving front-end site
without resorting to creating an entirely new API on the back-end to support it.

The other extreme would be to create a finely grained API, from which it would be
possible to retrieve all data from the back-end in small pieces and then put it together
in the client in whatever structure we desire. This moves toward the approach taken
by REST web services, where bits of data are moved from service to client, and all
application logic taken place in the client. While this is flexible, it means that each client
must reimplement the business logic. It also implies a large degree of overhead in mak-
ing tens or hundreds of service calls rather than one.

Most good designs are a balancing act, and this one will be no different. We can com-
promise between the two extremes and come up with something in the middle, where
the API is flexible enough so that a handful of methods can be used to generate a variety
of different front-end pages but not so fine-grained that the front-end must do all of
the heavy lifting. We’ll seek to move obvious functionality into the service layer, so that
we do not have to repeatedly implement that functionality in each front-end we might
write. But we won’t go so far as to move all logic into the back-end, leading to an
ultimately thin front-end, but a rigid back-end. We’ll hope that our API satisfies the

Sell-out
events

Sell-out
events

Purchases

Site visitors

Figure 16-7. A sales funnel: progressively fewer users trigger each successive event

MoviesService Object Model | 255

Download at Boykma.Com

80/20 rule: 80% of future desires will be immediately implementable against our API,
and the other 20% are still possible, potentially requiring tweaks to the API.

To come up with our API, we need to imagine the types of pages that will be required
within our front-end. Usually, this is an easy task as the product—the website—will
already have been defined by a product team. As engineers, it’s our team’s job to trans-
late those functional requirements into a technical design, including the so-called non-
functional requirements, which inform the trade-offs we will make when designing a
contract between a back-end service and a front-end website. Although users of our
site and members of the product team will never directly see the API contract, they may
feel it as sluggish or blazing site performance, or in the product team’s case, in follow-
on rollouts occurring quickly or at the speed of molasses.

Let’s play the part of the product team now and define the pages we’ll have on our site.
We’ll have:

• A home page, listing the current movies, filterable by zip code.

• A page for a current movie, listing showtimes in a requested area, by theatre.

• A page for a theatre, listing the movies playing there, with showtimes.

The first page, the home page, could be created with an API called current_movies,
which returns an array of Movie objects.

The second and third pages return similar data—showtimes—but in different group-
ings. The second page is for a single movie, grouped by theatre, whereas the third page
is for a single theatre, grouped by movie. We could certainly take the easy route and
lay out a separate object model for each grouping, or we could come up with a more
generic object model that could satisfy both pages, and hopefully other future needs as
well.

Again, we recognize that the main unit of data we are requesting is the showtime. In
addition to a different grouping, our two page types showing showtimes also filter
differently. So we have two challenges to overcome: first, parameterized filtering; and
second, customizable grouping. Because these are two distinct challenges, we’ll deal
with them separately, and, as it happens, we’ll solve each problem in a unique way.

The first problem, parameterized filtering, is the easier of the two. To define a forward-
looking, generic API, we should provide a way to filter on any data we have: movie,
theatre, or location, and let the client decide how generic or specific of a query to
request. This would allow not only the two pages we have thought up so far to be
created but almost any page focused around movie showtimes.

256 | Chapter 16: Refactoring to Services

Download at Boykma.Com

Our API declaration might look something like this:

api_method(:get_showtimes,
 :expects => [{:zip_code => :string},
 {:theatre_id => [:int]},
 {:movie_id => [:int]}],
 :returns => [:showtimes => Logical::ShowtimesResult])

Here we accept one zip code, an array of theatre ids, and an array of movie ids. We
allow any of the parameters to be empty, in which case, that parameter does not con-
tribute to the filter set.

Now we are left to define the Logical::ShowtimesResult object. How do we structure
this object to be both generic enough for the two pages that we know about today, and
generic enough for the pages of tomorrow that we haven’t heard about yet?

We have a problem here. Not only is it challenging to create such a generic object, but
we also have said time and time again that the purpose of the logical modelis not to be
overly generic, rather it is to be specific to the application domain, hiding highly nor-
malized database implementations from the view of the front-end application devel-
oper. So we want a generic return type to support future needs we don’t know about
yet, and at the same time we want custom, nonspecific return types to ease application
development. Seems like we are in quite a bind.

To solve both problems at once, we’ll use a technique that may seem like out-and-out
trickery. Recall that our service client plugin is a single package of code, which is avail-
able on both the back-end service side and on the front-end client side. So far, our
plugin has only contained descriptions of the service—all implementation resides
within the service code of the back-end application. If we want to find a place to add
code that the back-end does not really know about, but which the front-end believes
is a natural part of the back-end, we can add it in the plugin. In the plugin, we can add
façade columns that were not in the original XML response, as long as those façade
columns can be made up from data that was actually returned in the XML. We can add
entirely new methods to the API, as long as those new methods are composed of existing
methods. We can even create new return types that were not ever returned by the back-
end service.

Since we now know customizing a generic object will be possible, we’ll start by defining
the generic object. Example 16-13 shows our initial additions to the MoviesService
logical model, which will make up our generic ShowtimesReturn object.

First, we define our Showtime object. It contains a Movie, a Theatre, and start_time and
auditorium fields. The first two are objects defined elsewhere in the header file, and the
last two are standard datatypes.

Next, we define a “lighter” version of this object, called ShowtimeLight. This version
returns the same data, but rather than return entire Movie and Theatre objects, it instead
returns the ids of these objects, by which they can be retrieved in some other way.

MoviesService Object Model | 257

Download at Boykma.Com

This then leads to our ShowtimeResult object declaration. This object consists of an
array of ShowtimeLight objects, and separate arrays for the Movie and Theatre objects
referenced by the showtimes. In essence, we have normalized the return value. We
certainly could have returned full-fledged Showtime objects, but this approach has two
benefits:

• The amount of data to be serialized, sent over the network, and deserialized is much
smaller, which will result in faster user-perceived performance.

• Because we have arrays of the Movie and Theatre objects in play, we don’t have to
process the array of Showtime objects to “discover” this information.

Thus, each movie and theatre in the result set will only be serialized to XML once, and
in other places, where those objects would have appeared if full Showtime objects had
been used, their ids will appear instead.

Example 16-13. Additional MoviesService logical model definitions

module Logical
 class Showtime < ActionWebService::Struct
 member :movie, Movie
 member :theatre, Theatre
 member :start_time, :datetime
 member :auditorium, :string
 end

 class ShowtimeLight < ActionWebService::Struct
 member :movie_id, :int
 member :theatre_id, :int
 member :start_time, :datetime
 member :auditorium, :string
 end

 class ShowtimesResult < ActionWebService::Struct
 member :movies, [Movie]
 member :theatres, [Theatre]
 member :showtimes_light, [ShowtimeLight]
 end
end

With these base datatypes out of the way, we can now turn our attention to defining
the custom methods that we’ll layer on top of get_showtimes. Example 16-14 shows
two methods we might like to have in our API, but which we can instead base on the
generic get_showtimes method. Each is tailored to the pages we need to display. The
first, get_movie_showtimes_by_movie_and_location, returns the showtimes results
grouped by theatre. The second, get_movie_showtimes_by_theatre, returns showtimes
grouped by movie. The API declarations for these methods might look something like
what is shown in Example 16-15. In fact, we can add these declarations as comments,
so someone reading the declarations file will know these additional methods exist as
well.

258 | Chapter 16: Refactoring to Services

Download at Boykma.Com

Example 16-14. API wrapper methods in the MoviesService client plugin

class MoviesServiceClient
 def get_movie_showtimes_by_movie_and_location(movie_id, zip_code)
 result = self.get_showtimes(zip_code, [], movie_id)
 result.group_by_theatre
 end

 def get_movie_showtimes_by_theatre(theatre_id)
 result = self.get_showtimes([], theatre_id, '')
 result.group_by_movie
 end
end

From the code in Examples 16-14 and 16-15 it should be clear that we have additional
methods to define and logical models to declare. We need to define the methods
group_by_theatre and group_by_movie in the client code. Each of these will return data
in a new format, as defined by the ShowtimesByTheatre and ShowtimesByMovie logical
model types. We still need to declare them, pending our decision of their structure.

Example 16-15. API declarations for our new methods

commented because these methods are implemented in the client
 # api_method(:get_showtimes_for_theatre,
 # :expects => [{:theatre_id => [:int]}],
 # :returns => [:showtimes => Logical::MovieShowtimes])

 # api_method(:get_showtimes_for_movie_and_location,
 # :expects => [{:zip_code => :string},
 # {:movie_id => [:int]}],
 # :returns => [:showtimes => Logical::TheatreShowtimes])

Example 16-16 shows the two new classes we define to support our two client-side API
methods. The first, MovieShowtimes, contains a Movie object and an array of ShowTime
objects. Note that the get_showtimes_for_theatre method returns an array of these
objects. In essence, an array of these objects simulates a hash structure (although with-
out O(1) random access). We do this because hashes do not have direct support in
ActionWebService. We might have more naturally returned a hash where the keys were
Movie objects and the values were arrays of ShowTime objects, but this does the trick.
This supports our method get_showtimes_for_theatre; each instance of the array con-
tains a Movie object and all of its showtimes.

The TheatreShowtimes class builds on this object; TheatreShowtimes is appropriate when
we expect more than one theatre in our results. In the same way as MovieShowtimes, an
array of these simulates a hash with Theatre objects as the key and an array of Movie
Showtimes as the value. Thus, an array of objects of this type returns showtimes grouped
first by theatre, then by movie. Our API method, get_showtimes_for_movie_and_loca
tion, would return one TheatreShowtimes object per theatre. Each would contain the
appropriate Theatre object and a single MovieShowtimes object; because the movie has
already been constrained, there is only one element in the array.

MoviesService Object Model | 259

Download at Boykma.Com

Example 16-16. Logical model class definitions for client-side use

module Logical
 # showtimes for a movie in a single theatre
 class MovieShowtimes < ActionWebService::Struct
 member :movie, Movie
 member :showtimes, [Showtime]
 end

 # showtimes in a theatre, grouped by movie
 class TheatreShowtimes < ActionWebService::Struct
 member :theatre, Movie
 member :movie_showtimes, [MovieShowtimes]
 end
end

Now that we have a complete understanding of what our API looks like, including the
structure of return types, we can turn to implementation. We’ll start at the bottom and
work our way back up to the API layer.

Example 16-17 shows a new method, get_by_zip_theatre_movie, in the logical
Showtime class. This method accepts a zip code (which can be an empty string), and
arrays of movie and theatre ids, each of which can be empty. If the parameters are not
empty, they are added to the conditions of the find SQL we will execute. Note that we
take care to separate the text of our SQL from the values to be inserted as bind variables.
The helper method bind_for_array helps us accomplish this.

After retrieving the records from the CurrentMovieShowtimes view-backed model class,
we reformat the ActiveRecord data into the structure of our return type, a Showtimes
Result object.

Example 16-17. Logical model method to return a list of current showtimes, by zip, theatre, or movie
combination; all parameters can be empty

module Logical
 class Showtime < ActionWebService::Struct
 def self.get_by_zip_theatre_movie(zip_code, theatre_ids, movie_ids)
 conditions_sql = Array.new
 conditions_vars = Array.new
 if !zip_code.empty?
 conditions_sql << "miles_between_lat_long(
 (select latitude from zip_codes where zip = ?),
 (select longitude from zip_codes where zip = ?),
 latitude, longitude) < 15"
 conditions_vars.concat [zip_code]*2
 end
 if !theatre_ids.empty?
 conditions_sql << "theatre_id in (#{bind_for_array(theatre_ids)})"
 conditions_vars.concat theatre_ids
 end
 if !movie_ids.empty?
 conditions_sql << "movie_id in (#{bind_for_array(movie_ids)})"
 conditions_vars.concat movie_ids
 end

260 | Chapter 16: Refactoring to Services

Download at Boykma.Com

 conditions_sql << "current is true and sold_out is false"
 psts = Physical::MovieShowtimeWithCurrentAndSoldOut.find(:all,
 :select => [:id, :movie_id, :theatre_id, :latitude, :longtitude],
 :include => [:movie, :theatre],
 :conditions => [conditions_sql.join(" and "), *conditions_vars])

 m_hash = Hash.new
 t_hash = Hash.new
 st_array = Array.new
 for pst in psts do
 m_hash[pst.movie_id] ||= Movie.get(pst.movie_id)
 t_hash[pst.theatre_id] ||= Theatre.get(pst.theatre_id)
 st_array << ShowtimeLight.new(
 :movie_id => pst.movie_id,
 :theatre_id => pst.theatre_id,
 :start_time => pst.start_time,
 :auditorium => pst.room

)
 end
 ShowtimesResult.new(
 :movies => m_hash.values,
 :theatres => t_hash.values,
 :showtimes_light => st_array
)
 end

 def self.bind_for_array(array)
 (['?']*array.size).join(",")
 end

 end
end

In the service implementation class shown in Example 16-18, we define the get_show
times method that is part of our external API. This method simply calls the method we
defined in Example 16-17 within the Showtime class. Continuing with the idea of “skinny
controllers, fat models,” we keep the implementation details within the logical model
class rather than the API implementation class, which is really nothing more than a
controller.

Example 16-18. The implementation of get_showtimes

class MoviesService < ActionWebService::Base
 web_service_api MoviesApi

 def get_showtimes(zip_code, theatre_id, movie_id)
 Logical::Showtime.get_by_zip_theatre_movie(zip_code, theatre_id, movie_id)
 end
end

MoviesService Object Model | 261

Download at Boykma.Com

With this much code in place, now we are able to call the get_showtimes API method.
Example 16-19 shows our integration test, written in the integration test framework
application. For this test, we again assume the presence of some test data in our running
service’s database. Therefore, we simply call the method, then verify the structure of
the result. A more rigorous test would first insert the data into the database to ensure
we get back exactly what we put in.

Example 16-19. Integration test for the get_showtimes API method

require File.dirname(__FILE__) + '/../test_helper'
class MovieServiceGetShowtimesTestCase < Test::Unit::TestCase
 def test_get_showtimes
 result = MoviesServiceClient.get_showtimes('02139', [7,12], [17,20,64])
 assert result.class == Logical::ShowtimesResult
 assert result.movies.class == Array
 assert result.theatres.class == Array
 assert result.showtimes_light.class == Array
 assert result.movies.size > 0
 assert result.theatres.size > 0
 assert result.showtimes_light.size > 0
 for movie in result.movies do
 assert movie.class == Logical::Movie
 end
 for theatre in result.theatres do
 assert theatre.class == Logical::Theatre
 end
 for showtime in result.showtimes_light do
 assert showtime.class == Logical::ShowtimeLight
 end
 end
end

The test passes, as shown below. Note that the number of assertions will be different
depending on the test data you have in your database. Also note that the test will fail
until the service call actually returns data:

ChakBookPro: chak$ ruby test/integration/movies_svc_test_case.rb
Loaded suite test/integration/movies_svc_test_case
Started
.
Finished in 1.442291 seconds.

1 tests, 64 assertions, 0 failures, 0 errors

With this method working, we can now write our wrapper methods in the client plugin
on top of it. Although get_showtimes is extremely generic, these wrapper methods are
free to restrict the inputs—and do. While generic methods can be very powerful, they
can also be confusing because the interface is often more complex than it needs to be
for any given task. Our two methods, then, restrict the parameter list only to relevant
data and return the output grouped in the way that makes the most sense for the inputs.

262 | Chapter 16: Refactoring to Services

Download at Boykma.Com

Because the procedure is the same but the code is long, we’ll go through the process of
creating and testing only one of our wrapper methods: get_movie_showtimes_by_thea
tre. It’s the fact that we can have other wrapper methods, and many more as well, that’s
the important takeaway. Example 16-20 shows the implementation of the wrapper
method, within the MoviesServiceClient class.

The get_movie_showtimes_by_theatre method has one function and that is to restrict
the parameter list to a single theatre id. Within the method, the parameter list is re-
expanded and passed to get_movie_showtimes. The result is passed on to
group_by_movie, where the bulk of our implementation takes place.

Recall that the purpose of this method is to retrieve movies for a single theatre, so we
group showtimes within the scope of that theatre by movie. The structure of this
method is analogous to that of the get_by_zip_theatre_movie method within the logical
Showtime class. There, an array of ActiveRecord objects was transformed into a different
logical model structure appropriate for the get_showtimes method. Here, we transform
that result into one more suitable for our new wrapper API method.

Example 16-20. Client plugin wrappers for get_showtimes

class MoviesServiceClient
 def get_movie_showtimes_by_theatre(theatre_id)
 result = self.get_showtimes('', [theatre_id], [])
 group_by_movie(result)
 end

 protected

 # assumes only one theatre, if multiple, not
 # organized by theatre in any way
 def group_by_movie(showtimes_result)
 movies_hash = Hash.new
 theatres_hash = Hash.new
 showtimes_hash = Hash.new
 for movie in showtimes_result.movies do
 movies_hash[movie.id] = movie
 end
 for theatre in showtimes_result.theatres do
 theatres_hash[theatre.id] = theatre
 end
 result = Array.new
 for showtime in showtimes_result.showtimes_light do
 showtimes_hash[showtime.movie_id] ||= Array.new
 showtimes_hash[showtime.movie_id] << Logical::Showtime.new(
 :movie => movies_hash[showtime.movie_id],
 :theatre => theatres_hash[showtime.theatre_id],
 :start_time => showtime.start_time,
 :auditorium => showtime.auditorium
)
 end
 showtimes_hash.collect{|movie_id, showtimes|
 Logical::MovieShowtimes.new(

MoviesService Object Model | 263

Download at Boykma.Com

 :movie => movies_hash[movie_id],
 :showtimes => showtimes
)
 }
 end
end

You should be able to trace this code to see how we transform one structure to another.
Figure 16-8 illustrates the resulting structure. It’s important to note that even though
we appear to be repeating theatre and movie information frequently within our result-
ing data structure, in fact, we are not. Rather than duplicating that data, we are dupli-
cating references to single locations of our data. Over time, we may decide to move
wrapper API methods from the client into the server. However, in doing so, we lose the
ability to duplicate references instead of data. While the benefit of having the method
defined on the server is that non-Rails clients can have access to the same logic through
a single API method name, the trade-off is that the amount of data to be serialized,
transferred, and deserialized increases for all client types.

MovieMovieShowtimes

Showtime Showtime Showtime Showtime ...

MovieMovieShowtimes

Showtime Showtime Showtime Showtime ...

...

Figure 16-8. The MovieShowtimes array result structure

We can now write a test for our wrapper method, which we’ll place in the integration
test framework’s test suite. Example 16-21 shows our unit test. For this test, we again
assume the presence of some test data in our running service’s database, and we only
verify the structure of the result.

264 | Chapter 16: Refactoring to Services

Download at Boykma.Com

Example 16-21. Integration test for the get_movie_showtimes_by_theatre wrapper method

require File.dirname(__FILE__) + '/../test_helper'
class MovieServiceGetShowtimesByTheatreTestCase < Test::Unit::TestCase
 def test_get_showtimes
 result = MoviesServiceClient.get_movie_showtimes_by_theatre(7)
 assert result.class == Array, "Result is not an array"
 assert result.size > 0, "Result is empty"
 for by_movie in result
 assert by_movie.class == Logical::MovieShowtimes,
 "Array elements are not MovieShowtimes"
 assert by_movie.movie.class == Logical::Movie, "movie was not a Movie"
 RAILS_DEFAULT_LOGGER.debug("class is: #{by_movie.showtimes.class}")
 assert by_movie.showtimes.class == Array, "showtimes was not an array"
 assert by_movie.showtimes.size > 0, "showtimes array was empty"
 for showtime in by_movie.showtimes do
 assert showtime.class == Logical::Showtime, "Showtime was not a Showtime"
 end
 end
 end
end

The tests pass:

ChakBookPro:integration_test_framework chak$ ruby
test/integration/movies_service_get_showtimes_by_theatre_test_case.rb
Loaded suite test/integration/movies_service_get_showtimes_by_theatre_test_case
Started
.
Finished in 0.19624 seconds.

1 tests, 15 assertions, 0 failures, 0 errors

Putting It All Together
In this chapter, we created an orders service, in which products could be registered for
purchase, and then subsequently purchased. We also connected a physical model in
the movies service to our new service, so that new showtimes were automatically reg-
istered as purchasable products. We also expanded the API of our movies service API
to support requests that would lead logically to the assembly of pages on a front-end
website. Using our integration test framework, we tested all of these connections.

At this point, everything we need to write a front-end application that can consume
multiple back-end services is in our hands. In fact, our integration test framework is
just such an application.

Putting It All Together | 265

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 17

REST Primer

REST, which stands for Representational State Transfer, is not a protocol. Born out of
a chapter of the Ph.D. dissertation of Roy Fielding, one of the original architects of the
Web, it is more of a description of how the HTTP protocol was meant to be used. REST
has been given a lot of attention recently, especially in the Rails community, which has
thrown its support behind REST with ActiveResource. Rails developers can be expected
to, by and large, use ActiveResource, since it is there. But there are a number of issues
that application developers should be aware of before jumping on the bandwagon.

In this chapter, I’ll introduce “textbook” REST. We’ll then contrast this style of REST
with what most people mean when they say REST or RESTful. Then, we’ll go over some
of the issues you should be aware of when choosing to create REST interfaces. The first
concern is with the way ActiveResource encourages you to create services based off of
database tables; this problem is avoidable but becoming endemic. The next concern is
with integration; because REST is a convention—and one no one agrees upon yet—
integration with external parties can be a challenge compared with the relative ease of
XML-RPC services.

REST Basics
To understand the problems REST faces, and the problems you may face if you adopt
REST for your service architecture, first we must go back to the theory of REST and its
original goals. Only then can we understand the challenges faced in creating REST
services today and come up with the creative solutions to meet those challenges.

Resources and Verbs
Unlike XML-RPC, in which the basic unit is a procedure that acts on data maintained
on the server, REST is about resources. In REST, a resource might be a web page with
the universal resource locator (URL) like http://foo.com/doc.html. With the resource in
place, the next aspect of REST is verbs that act upon the resources. The HTTP speci-
fication defines four verbs that can be performed on a URL. They are depicted in

267

Download at Boykma.Com

http://foo.com/doc.html

Figure 17-1. The first is PUT, which allows the caller to store a web page at the location
specified by the URL. The second is GET, which allows the web page, or resource, to be
retrieved later. The third is POST, which is somewhat open-ended, but in general allows
the resource to be updated in some way, perhaps with a new version. The fourth and
final HTTP verb, DELETE, instructs the server to discard the web page.

In REST, the universe of resources is limitless. The universe of verbs, on the other hand,
is fixed. The REST principles require you to think of your problems in terms of data
elements, and how you might transition the state of each element one by one in order
to accomplish some task. A by-product of the restrictive verb set is that actions must
take place somewhere other than on the server. In general, the actions take place on
the client. To increment a counter stored on a server, you first GET the counter value.
Then you locally increment its value. Finally, you POST back the new value to the server
at the counter’s resource URL.

Why is this a good thing? In part, the verb set and its anticipated uses are a historical
matter. When the Web was born, it was not about commerce, nor were there many

http://foo.com/doc.html

http verb

endpoint url

DELETE

POST

GET

PUT

Figure 17-1. REST and the four HTTP verbs

268 | Chapter 17: REST Primer

Download at Boykma.Com

complex procedural transactions. The Web was largely used for exchanging informa-
tion between different government and academic bodies. When commerce applications
began to appear, those applications weren’t like the ones seen today, such as eBay,
Orbitz, or even Google’s advertising market. Rather, the commerce available in the
early days of the Web was often nothing more than a web page, possibly with a few
images, and a phone number to call to make an actual transaction with a human. The
Web was a collection of content embodied in HTML documents.

Mosaic, the world’s first web browser, adhered to the set of four HTTP verbs. When
you browsed a web page, you could actually edit the text of the page directly in your
browser. If you had the appropriate permissions, you could “save” the page, generating
a POST, which stored the newly edited web page on the server. If you think of the Web
as a participatory marketplace of ideas, as it was certainly in the eyes of its creators,
this interface, plus some basic permissioning, was all that’s needed. No complicated
HTML forms were necessary for editing or uploading new content. Talk about a con-
tent management system!

Sadly, the “REST-ness” of browsers was soon lost as the Web became, for a long time,
more of a spectator sport, where websites were “published” and browsers “watched.”
As a result, today’s breed of browsers support only half of the original HTTP specifi-
cation’s set of verbs: POST and GET. By convention, we now use GET when no server-side
state change is expected (like viewing information about a movie), and POST when new
information is to be recorded somewhere (like when placing an order) or information
is to change in some other way.

Hardware Is Part of the Application
Because there is nothing more to using REST than using the HTTP specification itself,
hardware that understands HTTP can participate in the server architecture transpar-
ently. For example, a caching proxy that understands the HTTP “Expires” header can
distribute a web page to clients for as long as that page is still considered fresh, reducing
load on the back-end server. Figure 17-2 illustrates this behavior. A document must
first be generated by the server and sent through the caching proxy, but then the same
document can be sent directly from the caching proxy for each subsequent request.

It’s REST’s property of many endpoint URLs, one per resource, that facilitates caching
via an intermediary piece of hardware because each URL represents only a single piece
of data. Contrast that with an XML-RPC interface, where a single endpoint URL defines
the entire service, and the methods and arguments—such as getMovie(5)—are passed
along as parameters of a POST request. In the case of XML-RPC, you can’t use a dumb
piece of hardware like a caching proxy to speed up your application. On the other hand,
do you really want to?

The “free” caching behavior of REST is great if you’re serving up lots of static content
but not so good if your data or its availability changes over time. The trade-off here is
that the server has no way of expiring the document before the originally set expiry.

REST Basics | 269

Download at Boykma.Com

Even if the document becomes invalid, the caching proxy continues to serve it until the
natural expiration time passes. In the traditional SOA world, a server-side cache would
be shared among a number of application servers (just like Memcache) and the appli-
cation can flush items from the cache whenever it makes sense to do so. This type of
scheme is described in Chapter 19.

Mapping REST to SOA
With a basic understanding of the underpinnings of REST, we are now ready to discuss
REST in the context of a service-oriented architecture. A good place to start is with a
cautionary note from Roy Fielding himself, who wrote the following in his dissertation:

The REST interface is designed to be efficient for large-grain hypermedia data transfer,
optimizing for the common case of the Web, but resulting in an interface that is not
optimal for other forms of architectural interaction.

REST is great for the types of large-grained content users are accustomed to seeing on
the Web: HTML web pages, PDF documents, images, etc. In fact, you can’t help but
use REST when you request these documents; users of the Web do use REST every day,
whenever they request web pages. What REST isn’t great for is the context for which
it has recently gotten so much attention, namely, mapping REST to database rows.
Indeed, this is how ActiveResource, the Ruby on Rails implementation of REST, is
being marketed: as an easy way to add a web-service interface atop ActiveRecord
CRUD.

Mapping to CRUD
Although it is not generally desirable to do so, the four main HTTP verbs can be mapped
to CRUD, as shown in Table 17-1. A create maps to an HTTP PUT, which translates to
an SQL insert command. A read maps to an HTTP GET, which translates to an SQL
select command. An update maps to an HTTP POST, which translates to an SQL

GET

caching proxy server

http://foo.com/doc.pdfhttp://foo.com/doc.pdf

GET

2
1

3

4

Figure 17-2. REST with a caching proxy

270 | Chapter 17: REST Primer

Download at Boykma.Com

update command. Finally, a delete maps to an HTTP DELETE, which translates to a SQL
delete statement.

Table 17-1. Mapping CRUD to REST and SQL

CRUD REST SQL

Create PUT insert

Read GET select

Update POST update

Delete DELETE delete

It’s tempting to directly map a REST interface atop each database table, moreso since
Rails provides generators to automatically create code that does just that. What’s miss-
ing from REST is the ability to modify more than one record at a time. Although some-
times you may be working with only a single row in a database, more often you need
to update a number of rows. For example, when placing an order for movie tickets, you
may need to insert a row for the order, plus individual rows for each ticket line item in
the order. It is still possible to do accomplish this with CRUD-mapped REST. In order
to do so, treat each row in each table as its own resource. The trade-off is performance.
For an order of n tickets, you need to make n + 1 requests to your REST-based service
for all the inserts. More caution from Fielding:

The disadvantage is that [REST] may decrease network performance by increasing the
repetitive data (per-interaction overhead) sent in a series of requests, since that data
cannot be left on the server in a shared context. In addition, placing the application state
on the client side reduces the server’s control over consistent application behavior, since
the application becomes dependent on the correct implementation of semantics across
multiple client versions.

Worse, you have no transaction support. If an insert or update fails, there is no easy
way to roll back the SQL statements that were already committed one by one in earlier
REST actions. With pure REST, application logic that belongs in the back-end—where
a relational database provides a great many benefits for data integrity—is suddenly
moved to the client. A multistep business process that sensibly can be abstracted with
a single method must be implemented step by step on the client. In these cases, a
resource-based approach can become extremely fragile. Fielding talked about this, too:

…information needs to be moved from the location where it is stored to the location
where it will be used by, in most cases, a human reader. This is unlike many other dis-
tributed processing paradigms, where it is possible, and usually more efficient, to move
the “processing agent” (e.g., mobile code, stored procedure, search expression, etc.) to
the data rather than move the data to the processor.

As with our XML-RPC services, we need to repeat the epiphany that ActiveRecord
classes are database configuration files, and they generally do not map to the structure
or size of objects we would want to work with within our application. Once we make
this leap, then the criticisms just mentioned disappear. Placing an order in our

Mapping REST to SOA | 271

Download at Boykma.Com

XML-RPC service required creating a number of records on the service side. But it only
required a single XML-RPC request. This allowed all of the SQL insert statements to
be wrapped in a transaction. The same would be true of a RESTful interface if the grain
of the objects was large enough. In fact, it should be the same grain as the
Logical::Order class we defined in Chapter 16.

Essentially, this reduces the differences between REST and XML-RPC greatly. The
ActiveRecord models are the same. The logical models are the same. The difference is
whether the object you’re operating on and what operation you want to perform on
that object are encoded in a single token—a method name such as get_movie or
place_order, or split between the method identifier—the URL—and the HTTP verb.
Viewed at this level, it becomes a question of syntax. Even the controllers
(ActionController for RESTful services, and service models for XML-RPC services)
could be essentially identical.

Different Clients, One Interface
The second benefit of REST’s single URL per resource approach is that machine clients,
as well as human clients via web browser, can access a REST service. Although there
are JavaScript XML-RPC implementations, you need to write a JavaScript application
that consumes the service before you can use it directly in your web browser. With
REST, you can point your web browser directly at a resource URL to access it. This is
facilitated by the Accept header. A machine client may specify that it accepts XML
responses only, while a browser client would specify it accepts XHTML.

Unfortunately, REST contends with two problems here. The first is that different clients
have varying levels of support for REST (Figure 17-3). As already noted, browsers sup-
port only POST and GET. So a REST service intended to serve different types of clients
must “dumb it down” for the lowest common denominator, the browser. This is
ActiveRecord’s approach.

REST Service
API

HTML XM
L

HTTP GET, POST

HT
TP
 G
ET
,
PO
ST
,

PU
T,
 D
EL
ET
E

Figure 17-3. Common clients have differing levels of support for REST verbs

272 | Chapter 17: REST Primer

Download at Boykma.Com

Second, there is no single convention for how clients specify a return type, either. While
the Accept header is how return formats should be specified, ActiveRecord has taken
a different tack. In Rails, you specify which return type you want by appending an
extension on the URL. A browser client requests a resource with .html appended, while
a machine client appends .xml.

The REST ideal is to have a single, uniform interface for browser and machine clients,
but it pays to be pragmatic as the designer of a service-oriented architecture or public-
facing web service. There is not really a benefit to tightly coupling the HTML web pages
associated with a user interface and its human-oriented workflow with an API intended
for consumption by programmers utilizing your service. One interface is for manipu-
lating the resources that underlie your application; the other is for creating a user
experience.

Although in your first iteration of your website and service design, you may be able to
construct an API that satisfies both sets of customers—and hopefully without much
sacrifice to either—in your second iteration, you may not be so lucky. When your
company’s product team comes up with a completely new perspective on how infor-
mation should be delivered to visitors to your site, what do you do with the machine
side of the API that thousands of people have come to depend on? Do you force those
clients, whose applications were operating perfectly well based on the old machine API,
and independent of your user interface, to conform to a new API simply because your
user interface has changed? Or do you start supporting what essentially amounts to
two API sets anyway, one for humans and their browsers and one for machine clients?

Rather than whittle at an API until it works for both humans and machines, it is often
sensible to write for each separately from the beginning. When you design this way,
you don’t have to worry about breaking backward compatibility for your machine cli-
ents when you change your user interface. Also, if you forego pursuing the purist ideal
of one interface for multiple client types, you can be truer to the original ideas of REST
where they are attainable. You can design a machine API that uses all four HTTP verbs
where they are appropriate, and your browser-based “API”—a.k.a. website—can
evolve as necessary to suit your ever-changing application and user needs. Remember
that when you write an HTTP interface, you are writing a REST service, even if that
service is not well-suited for machine clients.

One notable exception is a JavaScript client. JavaScript clients operate within your web
browser, and they can make Ajax requests back to your web service. The standard way
that Rails interfaces with Ajax requests is with .rjs templates that render chunks of
HTML to be placed in an existing page—either prepended to, appended to, or replacing
an existing element. Even though this seems RESTful because small pieces of data are
being requested rather than entire web pages, it really is not. The application server is
still very tightly coupled with the HTML user experience and is unlikely to be useful
as a generic interface for other machine clients.

Mapping REST to SOA | 273

Download at Boykma.Com

HTTP+POX
In much of this chapter, I’ve talked about the numerous challenges REST faces in gain-
ing adoption in the enterprise world for service-oriented architecture applications.
These challenges begin with the strictness of the four verbs and the requirement that
resources be transferred to the client for piecemeal processing. Further challenges ensue
with purist REST due to the lack of support for the four-verb set in browsers. Finally,
the lack of established convention for resource URLs and how one specifies content
types (ActiveRecord does not comply) can make REST appear somewhat unpalatable.

However, outside of the Rails world, a variation on strict REST is gaining traction. This
variation doesn’t discount the real need to deal with process-oriented applications
simply because they don’t map to GET, POST, PUT, and DELETE. In fact, with this variation,
you can accomplish anything you could with XML-RPC, but you can forego the added
layer of indirection inherent in XML-RPC layered over HTTP. This variation is known
as REST+POX, where POX stands for plain old XML.

In HTTP+POX, the REST convention I’ve spoken about throughout this chapter is
used where a resource-based approach makes sense. Notably, everything possible with
ActiveResource is in this category. But for other problems, where a process-oriented
approach is required—whether to ensure the server can wrap a procedure within a
database transaction or to accomplish a task without first moving all of the data to the
client for processing—the POX side of the convention takes control.

What is POX in this context? It is simply a method, accessible via a URL, which takes
parameters, and returns a result in XML format. It’s like the page defined in the
action parameter of a web form, but in this context, the parameters passed in can be
complete data structures encoded in XML. In short, it is the same sort of server-side
actions we’ve been developing for years, with the addition of complex data as param-
eters. The “plain old XML” part of HTTP+POX is a way of bringing the procedural
actions hidden behind an endpoint URI in XML-RPC back down to the lower-level
HTTP layer.

Usually, when people say RESTful, this is what they mean.

Defining a Service Contract
Although Fielding described REST many years ago, REST is still in its infancy as a
practical means for building web services. How to best implement a RESTful service is
something that REST proponents still do not agree on.

The popularity of SOAP and XML-RPC were propelled by a rich toolset in a variety of
development environments; the tools made it easy to create and consume web services.
ActionWebService is a great example; it makes child’s play of developing service APIs
that can be shared as a bridge between applications.

274 | Chapter 17: REST Primer

Download at Boykma.Com

Many see REST as a reaction to SOAP. But there has been a tendency to throw away
the baby with the bathwater. In this case, the bathwater is the protocol translation layer
that sits atop HTTP. That’s fine, as it doesn’t provide a large benefit to the end user,
but consumes resources to marshal and unmarshal data. The baby is a rich set of tools
for creating and consuming RESTful services.

Tools all center around the contract that you, as a provider of a service, are expected
to live up to. With SOAP, this contract is the WSDL file, which describes what methods
are available in the web service, what the parameters to those methods are, and what
the return values are.

The contract can be a great thing. It can be used to generate documentation. It can be
read by a human to see what a service is all about. It can be used to generate complete
client code. It can also be used to generate a skeleton of a service implementation.

The problem with a contract is that, like its legal equivalent, it implies some degree of
commitment from the provider. Once you’ve published your service contract, you can’t
change it willy-nilly. That’s good for consumers of the service but can seem restrictive
to the service provider. On the other hand, one of the goals of publishing a service is
to have people use it, so making it easy for clients to use your service by guaranteeing
the APIs won’t change underneath them is in your own best interest, too.

To encourage static APIs, it is a good practice to develop the contract first, then figure
out how you are going to implement it. For SOAP, that means handcoding the WSDL
file. The handwritten file would then be used as input to a program that would generate
stub service code. These stubs contain declarations for each method of the API into
which you insert your own code.

This process makes it a challenge to change the API because you can’t easily regenerate
your stubs once you’ve already filled them in. This discourages frequent API changes;
only a change that is absolutely essential—such as for a critical bug fix—would warrant
the effort of hand-editing generated code. For what otherwise amounts to enhance-
ments and new functionality, the WSDL-first process encourages adding a whole new
API version with a separate WSDL and a separate set of generated methods, leaving
the old version in place, with continued support for existing clients.

But writing WSDL by hand is a terrible chore. It can seem like yet another language to
master. You already know how to declare methods in the language you are using. Why
should you need to declare them yet again in an XML file? Indeed, if the interpreter or
compiler of your application can understand your declarations, can’t those declarations
also be translated automatically into a WSDL XML file for other machines to process?

Mapping REST to SOA | 275

Download at Boykma.Com

The answer is, of course, yes. This is how most of the tools for working with WSDL
work these days, including ActionWebService.* In fact, in ActionWebService, the
WSDL “file” itself is completely ephemeral; it never is written to disk but instead is
served up fresh with each request for it, based on the current definitions of methods.
While this is great for development iterations, it’s not so great once you are trying to
lock down and stick to a published API.

But whether you prefer WSDL first or last, the point is that there are a variety of tools
available to help you get your SOAP or XML-RPC service out the door. So what about
REST? What is the equivalent?

Here we find another problem in the REST community. There are some—mostly those
who tend toward the strict REST, not RESTful, paradigm—who believe there is no
need for SOAP-like tools for communicating to clients how a service works. Since strict
REST is about applying four HTTP verbs on resources, and resources contain links to
other resources, you need only a URL or two defining lists of resources to discover the
entire service.

Strictly speaking, this argument is correct, but it’s overly restrictive. Hopefully, you’ve
already been convinced that it’s not always appropriate to deal in terms of resources
and that the occasional verb-based URL is OK. If you are in this group, then suddenly
you need a way to express to others what verbs are available, what the parameters you
need to pass to those verbs are, and what the resulting return values will be. Suddenly
you need something very much like a WSDL file. Even many in the RESTful—i.e., “it’s
not SOAP”—camp cringe at WSDL-like solutions. Therefore a standard way to de-
scribe RESTful web services has not yet been adopted, and there are also no widely
adopted tools.

There have been a number of efforts toward tool standardization, though, and for REST
to really become an enterprise option, as SOAP and XML-RPC are today, some kind
of description language and toolset will certainly have to be adopted soon.

REST Clients in Ruby
At the moment, ActiveResource is the de facto REST client and server in Rails—so
much so that it has pushed ActionWebService completely out of the core Rails distri-
bution. This is unfortunate because ActiveResource’s style, which differs in some im-
portant ways from Fielding’s REST, is very far from being de facto in the REST world,
much less the SOA or web-services worlds. Yet the choice by the maintainers of Rails
to displace alternatives sends a message to new developers that they should use

* Actually, the WSDL is generated from the API declaration files we placed in the client plugin, not from the
actual controller files that implemented the methods. This is because WSDL has type declarations for strongly
typed languages such as Java. But, in addition to the WSDL file itself, stub controller files could easily be
generated from the API declarations.

276 | Chapter 17: REST Primer

Download at Boykma.Com

ActiveResource as their first—and apparently only—stop for implementing a remote
service.

Of course, there are benefits to using ActiveResource, too. Like many other aspects of
Rails, ActiveResource is a snap to set up and get running with quickly. Because it relies
so heavily on convention, it is trivial to extrude an ActiveRecord model into an Active-
Resource one with its own network API. Similarly, there is next to no configuration to
be done on the client side, either.

ActiveResource can feel much like the original Rails screencast where David Heinemeier
Hansson creates a blogging website in 10 minutes. The screencast was an inspiration
to a number of developers sick of clunky development environments, including myself.
On the other hand, writing a website using scaffolding is, in almost every way, a bad
idea. By design, scaffolding is inflexible; although it’s quick, it’s not very pretty. But it
is great as marketing material.

Indeed, because ActiveResource relies so heavily on convention, it does not automat-
ically create a description of the service for clients, like ActionWebService does with
WSDL. Rails clients know how to use the API for free, and for screencasts that is
enough. But when you’re writing web services and back-end SOA services, you can’t
depend on convention if your clients are not using Rails. There are description lan-
guages that can handle REST services—WADL appears to be the best contender for a
standard—but Rails does not yet generate WADL files automatically.

When you’re not consuming ActiveResource services, you can consume REST services
just as easily in Rails if that service does provide a WADL file. Sam Ruby and Leonard
Richardson have written a Ruby client that parses WADL files and creates a client
library, allowing you to create Ruby interfaces to use a custom-written library or to
compose and parse results by hand. Their client, wadl.rb, can be obtained at http://
www.crummy.com/software/wadl.rb/.

The Way the Web Was Meant to Be Used
REST proponents argue that XML-RPC is an “unnatural” way to use HTTP because
XML-RPC treats HTTP only as a transport protocol. All requests are POST transactions,
and the remainder of the HTTP protocol goes unused. XML-RPC layers its own logic
atop HTTP, delivering everything needed to process the request at the endpoint in the
XML-PRC payload itself. On the other hand, Fielding himself provides us with all the
arguments we need to dissuade ourselves from using REST for an extremely fine-
grained service-oriented architecture. Inasmuch as this chapter may appear to throw
FUD (fear, uncertainty, and doubt) in the direction of REST, so too do REST propo-
nents direct FUD at XML-RPC.

As unnatural as it may seem to layer atop HTTP, in reality, XML-RPC has been serving
enterprise architects well for quite some time. If XML-RPC wasn’t what the architects
of HTTP had in mind, certainly they may be pleased by how far it has come, driven in

Mapping REST to SOA | 277

Download at Boykma.Com

http://www.crummy.com/software/wadl.rb/
http://www.crummy.com/software/wadl.rb/

large part by the flexibility of HTTP itself, which performs extraordinarly well as a
transport protocol for any type of packaged data. Indeed, Fielding will no doubt be
pleased if some version of REST is one day heralded as the de facto mechanism for
implementing SOA, even though that was not his original intent, either.

In the end, the decision is yours to make. If your company has something to gain from
being Web 2.0 buzzword-compliant, then choosing REST may be sensible just for the
press. If your goal is achieving a service architecture behind the firewall, where no
external inspection is taking place, then you’re likely to get more mileage, with less
hassle, out of XML-RPC. In the following chapters, we’ll see how to build both types
of services. We’ll build an XML-RPC back-end service architecture for our movies ap-
plication and a HTTP+POX interface for the public-facing Internet.

For reference, Table 17-2 provides a list of the main remote service protocols and con-
ventions, and the various considerations discussed in this and the previous chapter. In
the next chapter, we’ll start building our first Rails service using XML-RPC.

Table 17-2. Comparison of REST, XML-RPC, and SOAP

 Pure REST HTTP+POX XML-RPC SOAP

API Discovery WADL, ActiveResource WADL WSDL WSDL

Endpoint URLs Many Many 1 1

Messaging Overhead Lowest Low Low High

Rails support Partial Full, with wadl.rb Yes Partial

Representations Many Many XML XML

Client types Web browser, applications Web browser, applications Apps Apps

Supports process-oriented methods No Yes Yes Yes

278 | Chapter 17: REST Primer

Download at Boykma.Com

CHAPTER 18

A RESTful Web Service

In this chapter, we’ll build a RESTful web service on top of the MoviesService and
OrdersService applications. Much like our user-facing public website, this application
glues together the functionality provided by each service into one unified whole. We
broke our monolithic application up into a service-oriented architecture (SOA) to ach-
ieve a number of benefits—scalability, reusability, and understandability of any given
piece—but the collection of services are not on their own useful. They need to be
composed in a meaningful way. In the case of our web service, we’d be providing a
complete, machine-friendly interface for third-party affiliates who might be selling
movie tickets on our behalf.

Scoping the Problem
In defining our problem, we are also implicitly defining what problem isn’t. Specifically,
we are not trying to provide a single interface that can be used by a machine as well as
humans (other than for debugging purposes); our clients are defined to be other com-
puter programs. Using the APIs we designed in Chapters 15 and 16 (or more likely, a
more complete set), we can assume that a coherent website that composes both of our
services and consumes much if not all of our API could and would be built. This concern
—satisfying the need for an accessible machine-friendly API—is handled as a separate
application.

While this may seem counter to what many are led to believe is the great benefit of
RESTful applications—that the same interface can be used by both human and machine
clients—the separation is actually preferable for many reasons. The first reason has
been noted previously: browsers support a reduced set of HTTP verbs, GET and POST,
but not PUT and DELETE. Freeing ourselves of the constraint that the same URLs must
be able to service clients of varying degrees of support for HTTP verbs means your
RESTful application can actually be more RESTful.

The next reason is trust. In our SOA, within the firewall, applications were within the
“trusted zone.” Having access to the API implied being trusted to use the service APIs
without restriction. On one end, our web service is a trusted client of our back-end

279

Download at Boykma.Com

services and is able to access the APIs at will. However, on the public-facing side, you
may not want to allow full, open access to the world at large. You may want to limit
access to a select group of third parties with whom you have business arrangements,
or you may want to require that users first sign up for an account that gives them a
unique, albeit free, authentication key. Doing so will allow you to monitor for abuse
and lock out problematic clients one by one. Figure 18-1 shows a configuration that
allows machine and browser clients to have completely separate interfaces.

But doesn’t the public HTML-based website give free and open access to anyone?
Would authentication restrictions be burdensome and encourage users to jettison the
REST API in favor of parsing the information they need out of the HTML pages that
are likely to be just a subdomain away? While this is a valid concern, most “free” web-
sites have placed CAPTCHA (Completely Automated Public Turing Test to Tell Com-
puters and Humans Apart), or other schemes to validate users, to ward off automated
crawling or spammers (Figure 18-2).

On a site with CAPTCHA, or one that may one day need some kind of spam-proofing,
sharing the same URLs and back-end controllers for human and machine clients can
be quite a challenge. It’s almost a nonsense exercise to devise a mechanism to disallow
machine clients in the same infrastructure that tries to make machine access easy. Be-
cause the needs are different, and probably the logic, too, it makes sense to keep these
as separate sites rather than repeat cumbersome conditional logic based on which rep-
resentation is requested—HTML or XML—throughout an application.

Machine
client

Web service

Back-end
services

Front-end
web site

firewall

trusted
connections

Untrusted:
restricted by

user interface

Untrusted:
restricted by

API, HTTP-AUTH

Browser client

Figure 18-1. Machine and browser clients have different interfaces

280 | Chapter 18: A RESTful Web Service

Download at Boykma.Com

Tools
In this chapter, we’ll look at a RESTful web-service in two ways. First, we’ll write a
client and server using only basic tools for manipulating XML and using HTTP,
ROXML, and Net::HTTP, respectively. Then we’ll create a description of our service
with Web Application Description Language (WADL)—the description language
likely to become the standard for describing RESTful services—and generate a client
for our service automatically using that file.

ROXML

ROXML (the Ruby Object to XML Mapping Library) does exactly what its name sug-
gests. Given a class that has been annotated with ROXML, instances of the class can
be marshaled and unmarshaled to and from XML.

To get started with ROXML, first install the gem:

sudo gem install roxml

Then, load the library in config/environment.rb.

require 'roxml'

In a class, include the ROXML mixin, as shown in Example 18-1. After doing so, three
new class methods are available to annotate the class: xml_attribute, xml_text, and
xml_object.

Example 18-1. A Movie class with ROXML annotation

class Movie
 include ROXML

 xml_attribute :id
 xml_text :name
 xml_text :rating
 xml_text :rating_description
 xml_text :length_minutes
end

Example 18-2 shows the ROXML class being manipulated. Each attribute behaves
identically as if it had been defined with attr_accessor. In fact, the three xml_

Figure 18-2. A CAPTCHA test designed to distinguish human clients from machines

Scoping the Problem | 281

Download at Boykma.Com

annotation methods do set up instance variable accessors that manipulate instances
variables, e.g., @rating.

Example 18-2. Working with the ROXML-annotated class from Example 18-1

m = Movie.new
m.id = 1
m.name = Casablanca
m.rating = 'PG-13'
m.rating_description = 'Parents strongly cautioned'
m.length_minutes = 120
puts m.to_xml

At the end of Example 18-2, the unmarshaled version is printed using to_xml. The
output is shown in Example 18-3. Notice how attribute variables are displayed, em-
bedded within the opening object tag, versus how text variables are displayed.

Example 18-3. XML output from Example 18-2

<movie id="1">
 <name>Casablanca</name>
 <rating>PG-13</rating>
 <rating_description>Parents strongly cautioned</rating_description>
 <length_minutes>120</length_minutes>
</movie>

You can also embed arrays of objects in another object with the xml_object declarator.
Assuming we have created ROXML classes for Theatre and ShowtimeLight—like our
ActionWebService struct classes from Chapter 16—Example 18-4 is then the corollary
to the ShowtimesResult class of our XML-RPC API. The arrays can be accessed like
regular attributes, e.g. showtime_result.movies, and manipulated like regular arrays
with the chevron (<<) operator.

Example 18-4. A ROXML-annotated class with embedded object arrays

class ShowtimesResult
 include ROXML

 xml_object :movies, Movie, ROXML::TAG_ARRAY, "movies"
 xml_object :theatres, Theatre, ROXML::TAG_ARRAY, "theatre"
 xml_object :showtimes, ShowtimeLight, ROXML::TAG_ARRAY, "showtimes"
end

As an example, the code in Example 18-5 would produce the result in Example 18-6.
Note that no theatres or showtimes were added, but sections for each are still present
to denote empty arrays.

Example 18-5. Embedding objects within other objects

m1 = Movie.new
m1.id = 1
m1.name = 'Casablanca'
m1.length_minutes = 120

282 | Chapter 18: A RESTful Web Service

Download at Boykma.Com

m1.rating = 'PG-13'
m1.rating_description = 'Parents strongly cautioned'

m2 = Movie.new
m2.id = 2
m2.name = 'Maltese Falcon'
m2.length_minutes = 120
m2.rating = 'PG-13'
m2.rating_description = 'Parents strongly cautioned'

sr = ShowtimesResult.new
sr.movies << m1
sr.movies << m2

puts sr.to_xml

Example 18-6. Resulting XML from Example 18-5

<showtimesresult>
 <movies>
 <movie id="1">
 <name>Casablanca</name>
 <rating>PG-13</rating>
 <rating_description>Parents strongly cautioned</rating_description>
 <length_minutes>120</length_minutes>
 </movie>
 <movie id="2">
 <name>Maltese Falcon</name>
 <rating>PG-13</rating>
 <rating_description>Parents strongly cautioned</rating_description>
 <length_minutes>120</length_minutes>
 </movie>
 </movies>
 <theatre/>
 <showtimes/>
</showtimesresult>

To marshal XML back into a Ruby object, we use the parse class method:

MovieShowtime.parse(xml_text)

Complete ROXML documentation is available at http://roxml.rubyforge.org.

Net::HTTP

With ROXML, we have a way to move data between Ruby objects and XML repre-
sentations. Now we need a mechanism to transfer those XML representations from one
application to another. For XML-RPC or SOAP, this was taken care of for us under the
covers by ActionWebService. If we were using ActiveResource, we also wouldn’t see
the plumbing of how XML is passed back and forth, but we wouldn’t be able to create
as flexible a web service as we’d like. Therefore, we’ll have to create and parse the HTTP
messages ourselves for now. We’ll do this using the built in Ruby library Net::HTTP.

Scoping the Problem | 283

Download at Boykma.Com

http://roxml.rubyforge.org

The Net::HTTP library has methods for get, post, put, and delete, as well as additional
convenience methods for GET and POST requests, since they are so common. We’ll see
parts of this library in action in the rest of this chapter. Complete documentation for
the Net::HTTP library is available at http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/
index.html.

MoviesWebService
In our web service we will create an interface that is very similar to the back-end service
interface we created in previous chapters. In part, this is to show that mechanisms for
passing messages back and forth are largely interchangeable, and also to show that a
RESTful interface does not need to represent a total paradigm shift if you don’t want
it to.

In fact, if we wanted to provide a RESTful interface in addition to our XML-RPC in-
terface in our back-end service, we could do so using the same ActionWebSer
vice::Struct classes. Example 18-7 shows our Movie class from the XML-RPC service,
now marked up with ROXML. Using the techniques in the rest of this chapter, we could
have provided an identical interface as our XML-RPC API, using RESTful techniques.
In fact, it’s even possible that the RESTful interface could be generated from the same
style of API definition as the XML-RPC API files. Of course, this is not currently sup-
ported, but it is a possible future direction and would certainly ease transition to REST,
should your organization wish to do so.

Example 18-7. An ActionWebService class annotated with ROXML

module Logical
 class Movie < ActionWebService::Struct
 include ROXML

 xml_attribute :id
 xml_text :name
 xml_text :rating_id
 xml_text :rating_description
 xml_text :length_minutes

 member :id, :integer
 member :name, :string
 member :length_minutes, :integer
 member :rating_id, :string
 member :rating_description, :string
 end
end

284 | Chapter 18: A RESTful Web Service

Download at Boykma.Com

http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/index.html
http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/index.html

Resources Server Implementation
In Example 18-1, we created a new class to serve as an XML proxy. Our web service is
also a sort of proxy for our back-end service. In this section, I will just show how to
return the data that our XML-RPC service returned, but in a RESTful way.

However, as we have noted, we are not intending this web service to be consumed by
humans sitting in front of browsers. In fact, for resources—such as movies, theatres,
and showtimes—we could actually have a much truer to REST interface, utilizing all
four HTTP verbs where we need them.

Because ActiveResource takes the other approach—that a web service can be layered
atop the web pages and interface designed for a user—it limits itself to the GET and
POST HTTP verbs. Therefore, for our purposes, the routing available in Rails is not
complete. In addition to routing based on the URL itself, we also would like to route
based on the HTTP verb.

Examples 18-8 and 18-9 let us accomplish this. First, in Example 18-8, an abstract
controller is created, which inherits from ApplicationController. This controller,
AbstractResourceController, “fixes” Rails for properly dealing with all four HTTP
verbs applied to a single resource URL.

Example 18-8. An extension to Rails’ routing to take the HTTP verb into account

class AbstractResourceController < ApplicationController
 protect_from_forgery :only => []

 def http_method_dispatch
 send request.env['REQUEST_METHOD'].downcase
 end

 [:get, :post, :put, :delete].each do |http_method|
 define_method(http_method) {
 # redefine in child classes
 render :text => "Forbidden", :status => "405 Not Allowed"
 end
end

First, we disable Rails 2.0’s forgery protection. This feature requires that any non-GET
request contain an authentication token, which would have been provided in some
form the user retrieved before making their non-GET request. While this is great for
preventing browser-based cross-site attacks, in this case forgery would also mean a
machine trying to access your pages without first requesting a web page intended for
humans. But isn’t this the entire purpose of a web service? Therefore, the first thing we
do is shut this feature off completely for our RESTful resource controllers.

The next method, http_method_dispatch, provides the magic. When a request for a
resource is made, we’ll send that request in to this method. The Rails built-in routing
does not take care of distinguishing between GET, POST, PUT, or DELETE requests, so we’ll
do that here. We extract the HTTP method from the request object’s env hash, and

MoviesWebService | 285

Download at Boykma.Com

downcase it, so that GET becomes get and DELETE becomes delete. Then, using the
send method, we call this method within the controller. In effect, we have reserved the
method names get, put, delete, and post for each resource controllers. Note, of course,
that this assumes that each controller descending from AbstractResourceController is
responsible for one and only one resource.

It’s now up to controllers inheriting from this abstract controller to implement those
methods. For those that don’t implement the complete set, we provide a default
method, which returns a 405 “Method Not Allowed” when the HTTP method is called
on the given resource. Four such methods are created in the loop at the bottom of our
abstract controller, one for each of the HTTP methods.

Next we need to add routes that will pass control to http_method_dispatch to complete
the cycle. The first two routes in Example 18-9 do what we need. Let’s look at the first
route. In this case, the :controller symbol names the resource, e.g., movies. The :id
symbol names the id of the resource, e.g., movies/3. We then pass all requests to movies/
3 to the http_method_dispatch method of the MoviesController class, which should be
a subclass of AbstractResourcesController. That method then further routes the re-
quest to the actions named get, put, post, or delete, depending on the HTTP method
of the request.

The second route is the same, but it allows a format specifier to be passed in the URL.
Normally, in a RESTful interface, the format in which the client wants to receive the
response is specified via the Accept HTTP header. However, when testing from a
browser, which is how many people test their REST interfaces, you often can’t easily
change the header your browser passes. Therefore, Rails will interpret standard exten-
sions that fall on the :format symbol in the same way as mime types passed via the
Accept header.

Example 18-9. Routes to support our HTTP verb dispatch

map.connect ':controller/:id', :action => 'http_method_dispatch'
map.connect ':controller/:id.:format', :action => 'http_method_dispatch'
map.connect ':controller/:id/:action'
map.connect ':controller/:id.:format/:action'

The next two routes in Example 18-9 are also an identical pair, one accounting for a
format specifier on the URL. These routes, rather than pass control to http_method_dis
patch, follow the lead of the URL. For example, use movies/3/edit to retrieve a form to
edit the movie.

Example 18-10 shows our MoviesController class, which inherits from AbstractResour
cesController. Because we can only expose methods that are exposed by our back-end
service, we define just one method, get. Our method requests from the back-end service
the movie passed in via the :id parameter. If no movie is returned from the back-end,
a 404 is returned. Otherwise, if the client can accept XML (as specified either via the
Accept header or by a passed in extension), we return an XML representation of the
movie, as defined by our ROXML Movie class.

286 | Chapter 18: A RESTful Web Service

Download at Boykma.Com

Example 18-10. A subclass of the AbstractResourcesController for Movies

class MoviesController < AbstractResourceController
 def get
 m = MoviesServiceClient.get_movie(params[:id])
 if !m
 render :file => "#{RAILS_ROOT}/public/404.html", :status => "404 Not Found"
 return
 end
 respond_to do |format|
 format.xml {
 m_xml = Movie.new
 m_xml.id = m.id
 m_xml.name = m.name
 m_xml.rating = m.rating_id
 m_xml.rating_description = m.rating_description
 m_xml.length_minutes = m.length_minutes
 render :xml => m_xml.to_xml
 }
 end
 end
end

Example 18-11 shows a series of requests for the movie with an id of 3. The first request
is a GET request. The result has status 200 OK, and the XML describing this movie
follows. The next request is for the HTML version of the file, using the exten-
sion .html to suggest the return type. Because we haven’t defined format.html block in
our get method, the response is 406 Not Acceptable. The next example is the same,
but the representation is requested by passing text/html via the Accept header explic-
itly. In the final example, the HTTP DELETE method is called on our resource URL.
Because we haven’t defined this method in our controller, the default from the
AbstractResourceController is called, which returns a 405.

Example 18-11. How our AbstractResourceController subclass handles a variety of requests for
differing HTTP methods

chak$ curl -D - -X GET http://localhost/movies/3
HTTP/1.1 200 OK

<movie id='3'><name>Casablanca</name><rating>PG-13<
/rating><rating_description>Parents strongly
cautioned</rating_description><length_minutes>120</length_minutes></movie>

chak$ curl -D - -X GET http://localhost/movies/3.html
HTTP/1.1 406 Not Acceptable

chak$ curl -D - -X GET -H "Accept: text/html" http://localhost/movies/3
HTTP/1.1 406 Not Acceptable

chak$ curl -D - -X DELETE http://localhost/movies/3
HTTP/1.1 405 Method Not Allowed

MoviesWebService | 287

Download at Boykma.Com

Actions Server Implementation
Rather than repeat the above for theatres and showtimes, we’ll leave those steps as an
exercise. Instead, we’ll move on creating the action for placing an order. However, in
this case, we’ll take a RESTful approach rather than a strictly REST approach. Of
course, orders can easily be modeled as resources. It would be hard to argue against an
API in which you post an order, and are returned that same order for future modification
could make sense.

However, to stay flexible, let’s assume that our orders, once placed, are not so easily
modifiable. Instead of returning an object representing the order, we’ll instead return
an object representing an order confirmation, as shown in Example 18-12. This corre-
sponds to the OrderPlaced ActionWebService class from Chapter 16. This is not strictly
REST because we will post an order—essentially no differently than a plain old HTTP
form posting to a URL—but we will return as XML a confirmation object. However,
this does fit our definition of RESTful.

Example 18-12. A class ROXML class to describe an order confirmation

class Confirmation
 include ROXML

 xml_text :confirmation_code
 xml_text :price
end

Example 18-13 shows our action for creating a new order. First, we ensure that the
request is a POST, and we disallow all other HTTP methods. Then, much as we did in
our integration test for the order service, we build up the parameters needed for the
OrdersService place_order method. We call this method, which returns a
Logical::OrderPlaced object. We convert this into a Confirmation object, described in
Example 18-12, which can be serialized to XML. We check that the caller is requesting
XML, and if so, we marshal the confirmation object and return it; otherwise, a 405
error will be returned.

Example 18-13. A RESTful action for placing an order

class OrdersController < ActionController::Base
 def create
 if request.env['REQUEST_METHOD'] != 'POST'
 return render :text => "Method not allowed",
 :status => "405 Method Not Allowed"
 end
 li = Logical::LineItem.new(
 :product_id => params[:showtime_product_id],
 :quantity => params[:num_tickets]
)
 ad = Logical::Address.new(
 :line_1 => params[:billing_line_1],
 :line_2 => params[:billing_line_2],
 :city => params[:billing_city],

288 | Chapter 18: A RESTful Web Service

Download at Boykma.Com

 :state => params[:billing_state],
 :zip_code => params[:billing_zip]
)
 cc = Logical::CreditCard.new(
 :card_number => params[:credit_card_number],
 :expiration_month => params[:credit_card_exp_month],
 :expiration_year => params[:credit_card_exp_year],
 :type => params[:credit_card_type]
)
 payment = Logical::Payment.new(
 :address => ad,
 :type => Logical::Payment::CREDIT_CARD,
 :credit_card => cc
)
 result = OrdersServiceClient.place_order(
 [li], payment
)

 respond_to do |format|
 format.xml {
 conf = Confirmation.new
 conf.confirmation_code = result.confirmation
 conf.price = result.price
 render :xml => conf.to_xml
 }
 end
 end
end

To make this action work at the URL /orders/create, we add the following to routes.rb:

map.connect 'orders/:action', :controller => 'orders'

A Client Implementation
We now have a set of server-side methods that can be called: one for retrieving movie
information and another for placing an order with the orders service. It’s now time to
move on to the client implementation. Because RESTful services are still relatively new,
there isn’t one set way to consume them. Although there are clients such as
ActiveResource, because it makes many assumptions about the service itself, so often
people still write custom clients for non-Rails REST services that they wish to consume.

In this chapter, we’ll look at two different ways to consume a REST service. The first
method is highly manual. We’ll actually build URLs and make HTTP requests, and
parse the resulting XML. Then we’ll take a different tack. We’ll create a very simple
WADL file describing the GET method for our Movie resource and automatically generate
a client for our service with the wadl.rb library. For both methods, we’ll add the code
to our integration test application.

For the first method, we create an initializer, shown in Example 18-14, to set up con-
figuration constants that could be useful in our implementation. Here, we just set up

MoviesWebService | 289

Download at Boykma.Com

the base URL of the web service. We could also use this class to set up constants for a
connection timeout, authentication information, or anything else we might need later.

Example 18-14. Basic initializer for a RESTful web service

class MoviesWebServiceClient
 HOST = 'http://localhost'
end

Example 18-15 shows our manual tests of the RESTful order placement method. First,
we create a setup method, which adds a product in the Orders service. This product
represents a movie showtime. In the actual test method, we’ll place an order for this
showtime.

In the test_order_post method, we use the HOST constant set up in the initializer to
construct the URL of our order method. This URL is passed to URI.parse, which will
create a URI object from the URL, suitable for passing to Net::HTTP methods. We
then create a hash containing all of the arguments expected by the order creation web
service method. Then we call Net::HTTP.post_form, passing in the URI object and the
parameters hash. This method takes care of the mechanics of building the HTTP post
and returns an Net::HTTPResponse object and the data returned by the post itself. We
use the XmlSimple library to parse the returned XML. Given an XML data structure
contained in a string, XmlSimple will convert that data structure into a Ruby hash
object, which can then be manipulated directly with Ruby hash syntax. Exam-
ple 18-16 shows what the returned XML from our web service call looks like after being
parsed by XmlSimple. Once we have our resulting hash, we assert that the two expected
fields are present in the XML data.

Example 18-15. An integration test to test placing an order through our web service

require File.dirname(__FILE__) + '/../test_helper'
class OrdersServiceTestCase < Test::Unit::TestCase
 def setup
 @new_id = OrdersServiceClient.add_product(
 "Casablanca 10:00pm",
 50,
 1000)
 assert @new_id
 end

 def test_order_post
 uri = URI.parse("#{MoviesWebServiceClient::HOST}/orders/create")
 post_args = {
 :showtime_product_id => @new_id,
 :num_tickets => 4,
 :billing_line_1 => '123 Testahoma Lane',
 :billing_city => 'Cambridge',
 :billing_state => 'MA',
 :billing_zip => '01239',
 :credit_card_number => '55555555555555',
 :credit_card_exp_month => '12',

290 | Chapter 18: A RESTful Web Service

Download at Boykma.Com

 :credit_card_exp_year => '2015',
 :credit_card_type => 'american_express'
 }

 resp, data = Net::HTTP.post_form(uri, post_args)
 doc = XmlSimple.xml_in(data)
 assert doc['confirmation_code']
 assert doc['price']
 end

 def test_order_get_fails
 get_args = {
 :showtime_product_id => @new_id,
 :num_tickets => 4,
 :billing_line_1 => '123 Testahoma Lane',
 :billing_city => 'Cambridge',
 :billing_state => 'MA',
 :billing_zip => '01239',
 :credit_card_number => '55555555555555',
 :credit_card_exp_month => '12',
 :credit_card_exp_year => '2015',
 :credit_card_type => 'american_express'
 }.collect{|k,v| "#{k}=#{CGI.escape(v.to_s)}"}.join("&")
 uri = URI.parse("#{MoviesWebServiceClient::HOST}/orders/create?#{get_args}")

 resp = Net::HTTP.get_response(uri)
 assert resp.kind_of? Net::HTTPMethodNotAllowed
 end
end

The second test in Example 18-15, test_order_get_fails, starts out the same way as
the previous test. However, rather than post the form, which translates to using the
HTTP POST verb, in this test we make a GET request with the get_response method.
Because the order method makes changes on the server, it should only respond to
POST requests. Therefore, we test that the request is denied and that the response re-
turned is a Net::HTTPMethodNotAllowed object.

Example 18-16. Result of parsing XML with XMLSimple

{"confirmation_code"=>["COB7AgkA8MaIA"], "price"=>["1000"]}

wadl.rb

In the previous examples, we had to handcraft the URLs required for placing an order.
As we saw, the mechanism for passing arguments for a GET request is different than the
one that passes in a POST request. When you are consuming a web service, the mechanics
of how to actually make your service requests are not interesting. Generally speaking,
you want to make requests, get results, and use them.

These days, having a REST web service and being RESTful in general is still somewhat
of a chic thing to do, but it’s not necessarily practical for clients. REST proponents
claim that because REST (strict REST, that is) provides a uniform interface to resources,

MoviesWebService | 291

Download at Boykma.Com

there is no need for special clients to be written. Of course, in the real world, the result
is that for every worthwhile REST service out there, for every language where someone
has an interest in that service, a custom, one-off client has been written. Although the
REST paradigm has many elegant aspects, it turns out that it’s just no fun to handcraft
HTTP requests.

This is where description languages such as WADL come in. For any given REST web
service, a WADL file describes each resource and the methods that can be applied to
it. WADL also supports describing actions that are not resource-based URLs but are
instead URLs representing some action, like our order creation method. A WADL
parser can take that description and create an application language-specific client from
it that abstracts away, for the caller, the mechanics of hand-building HTTP calls of four
varieties. Action or resource-based URLs simply become methods in the client, and
parameters are parameters, whether the underlying HTTP method is a GET, POST, PUT,
or DELETE.

A key observation when discussing service description languages for REST services is
that using one doesn’t imply that any change will be made to your service or the way
you write it. A REST service with or without a WADL description file functions exactly
the same way for those who don’t wish to make use of the WADL file. The difference
is that for those who do, utilizing the service becomes much simpler.

The worry that many people have about service descriptions, whether WSDL or
WADL, has to do with code generation. Code generation itself is actually fairly benign.
In fact, the Rails generators, which generate stub files and methods for your ActiveRe-
cord models and controllers, do about the same level of code generation as would be
expected from WADL-based code-generation. The real fear is that REST advocates do
not want to see REST development begin to resemble SOAP development, as the latter
is, to the REST advocate, anathema. But aside from that politically motivated concern,
there are really no adverse affects to using a WADL file to describe your service, or even
to generate your initial implementation stub code from that WADL, if you write it first.
In fact, contract-first design is a great way to ensure that changes made carelessly do
not have a negative impact on clients of your service.

Example 18-17 shows a very simple WADL file that describes applying the GET HTTP
verb to our movie resource from Example 18-10.

Example 18-17. A simple WADL file describing the GET HTTP verb for the movie resource

<?xml version="1.0" encoding="utf-8"?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://research.sun.com/wadl/2006/10 wadl.xsd"
 xmlns="http://research.sun.com/wadl/2006/10">
 <resources base="http://localhost/">
 <resource path="movies">
 <method name="GET" id="#get">
 <request>
 <param name="id" type="xsd:integer" style="query"/>

292 | Chapter 18: A RESTful Web Service

Download at Boykma.Com

 <param name="format" type="xsd:string" style="query"
 default="xml" fixed="xml"/>
 </request>
 <response>
 <representation mediaType="application/xml" element="movie"/>
 </response>
 </method>
 </resource>
 </resources>
</application>

Example 18-18 shows another test case added to our integration test framework, which
uses the wadl.rb library and the WADL file from Example 18-17 to generate an on-the-
fly web service client. The from_wadl method accepts a string containing WADL XML
description, and returns a client object. Resources can then have their methods applied
to them via method calls to the client, e.g., movies.get. Results from wadl.rb-generated
clients return REXML results. To keep the examples consistent, we’ve converted the
REXML result to an XmlSimple object by first changing the REXML result to a string,
then parsing the string with XmlSimple’s xml_in method. Armed with our XmlSimple
object, we assert that all of the expected fields exist in the result object.

Example 18-18. Integration test using the wadl.rb and the WADL file from the previous example

require File.dirname(__FILE__) + '/../test_helper'
class OrdersServiceTestCase < Test::Unit::TestCase
 def test_get_via_wadl
 wadl = Net::HTTP.get_response(URI.parse "http://localhost/movies.wadl").body

 movies_webservice = WADL::Application.from_wadl(wadl)
 result = movies_webservice.movies.get(:query => {:id => 1})
 doc = XmlSimple.xml_in(result.representation.to_s)
 assert doc['id']
 assert doc['rating']
 assert doc['rating_description']
 assert doc['length_minutes']
 end
end

Example 18-19 shows the result of running the integration test from Example 18-18.
The test and all assertions pass.

Example 18-19. Results of running the WADL-client integration test

Loaded suite test/integration/wadl_test_case
Started
.
Finished in 0.212655 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

I won’t describe the entire WADL specification or show you how to handle the infinite
variety of URL actions one might wish to describe with WADL. This is a topic that

MoviesWebService | 293

Download at Boykma.Com

deserves its own book. Unfortunately, as of this writing, the WADL specification itself
is the only readily available documentation for WADL, when in reality, an entire book
of examples is needed. The specification for WADL, written by Marc Hadley of Sun
Microsystems, can be found at https://wadl.dev.java.net.

REST Describe

Because WADL is not so simple to write, tools are beginning to emerge to facilitate
creating these files. A Ruby tool that allows you to describe REST services similar to
how XML-RPC services are described with ActionWebService seems like it would be
a big win for the REST on Rails community. However, such a tool does not seem to be
emerging and is likely stifled by the exuberance for ActiveRecord.

A tool that has been gaining attention lately is called REST Describe, from Google Code.
This tool, shown in Figure 18-3, examines an existing web service and creates a WADL
description of that service. You use REST Describe by providing a web service URL
and invoking some HTTP method on a remote resource or action. Based on the
parameters and the result, REST Describe attempts to create the XML description,
allowing you to make modifications in places where the tool cannot definitively guess
all aspects of the API—for instance types, required versus optional parameters, RUD,
mapping to, and other tricky spots.

Figure 18-3. Screenshot of REST Describe, from Google Code

294 | Chapter 18: A RESTful Web Service

Download at Boykma.Com

https://wadl.dev.java.net

CHAPTER 19

Caching End to End

The purpose of caching is two-fold: first, to speed up access to a specific resource that,
for whatever reason, might be slower than we desire; and second, to tread lightly on
that resource. These goals go hand in hand. It is a sort of Catch-22; often it is the act
of saturating a resource with requests that can make it slow for future requests.

In Chapter 12, we saw an example of caching at the database layer, in our implemen-
tation of a materialized view. Indeed, we saw dramatic performance improvements, on
the order of 100 to 1,000 times, with even a very small dataset and an unloaded system.
The 99 or 99.9% of time that was spent idle instead of processing our requests was
freed up for other requests, making them faster as well.

Caching seems like a marvelous tool that should be used anywhere and everywhere.
And it should. Caching can be the difference between having a problematic bottleneck
on your hands and having a site or service that hums along without a hitch.

So why do so many caution against what they describe as “premature optimization”
when it comes to caching? If you take Twitter as a cautionary tale, you will agree that
by the time it’s obvious that you need to optimize, it’s already too late. The technorati
will not wait for your upgrades and performance enhancements before they declare you
dead, or worse, irrelevant.

What the worrywarts are really afraid of is that caching is hard. It’s also error-prone.
As we saw in Chapter 12, maintaining the “correctness” of a cache can be quite an
involved process. Worse, if the caching mechanism is not well devised, it can lock you
into a model or convention you had not intended to marry yourself to.

But all of these cautions are actually reasons you should think about caching from the
start. If you have not been thinking about caching, you could be writing something that
is not easily cacheable. What does that code look like? And more importantly, what
does cacheable code look like? Just as the act of writing unit tests can cause your code
to look different—suddenly you must write “testable code,” where each function does
one and only one thing—so too would your code look different if you were writing it
with caching in mind. Indeed, if you write for caching from Day One, caching itself
becomes a much simpler task and far less forbidding. It is a Herculean effort to refactor

295

Download at Boykma.Com

a data model in situ, and so too is it terrifying to transform working code into something
that can be properly cached. Caching really should be thought of from the start.

To help understand the challenges involved with caching, let’s take another look at the
caching we already performed with the database layer, where—as was noted in Chap-
ter 12—caching is somewhat straightforward to implement correctly because the tool-
set is well established. This time, we’ll treat each piece as a generic concept. Then we’ll
examine caching of the logical model layer and see if we can come up with a caching
scheme that is just as powerful and just as correct. We’ll also take a tour of other places
where caching is possible and examine potential pitfalls.

Data Layer Caching, Revisited
In Chapter 12, I described view materialization as the “wax on, wax off” of caching.
As complex as it may have seemed, it was easy compared to what lies ahead. But it was
“correct,” which is a distinction not to be taken lightly. The database—our fortress,
the layer of our application built by the giants before us—has all of the mechanisms
necessary to make correct caching possible. If you didn’t read Chapter 12, or you didn’t
understand it fully, but you plan to cache at other layers, now is a good time to review
that chapter again before we deconstruct it. We’ll now look at each part of our imple-
mentation in turn to understand its function in the greater scheme of cache correctness.

The Snapshot
The snapshot was our original, cache-complete version of our base data, transformed
into the format the client wanted. First, it was complete. If a record was not present in
the cache, then we know that the record did not exist. Requests for invalid data do not
result in load on the bottleneck resource we are trying to conserve. In some cases—
such as when using Memcache—this is not possible. If confronted with an LRU cache,
we must take the hit of having to defer to the original data store when our cache doesn’t
have the requested record, even if it turns out the record does not exist at all.

Second, the data is in the format that the client wants it in after joins and denormali-
zation have been taken into account. If you are going to the trouble of caching, you
should cache data after all of the hard work has been done, not before. We could have
cached all of the base data from the tables that made up our view, but it was the process
of computing the view itself that was time-consuming and challenging.

A good caching scheme requires a way of preparing the preliminary set
of data to be placed in the cache. This is often termed cache warming.
It should also put that data in the cache in the closest possible format
to what the client ultimately wants.

296 | Chapter 19: Caching End to End

Download at Boykma.Com

The Refresh Function
The element to be cached should be thought of as a new, atomic piece of data, with
utility in its own right. We need a way to generate these pieces of data, which often will
not correspond neatly to a database row. We need to know just how big or small this
unit of data is. Our view, which was created by putting a name to a frequently requested
query, defined the element for us; it was a row of the new view. Elsewhere, the process
may not be so obvious, but it is the same in nature.

Although in our materialized view it was the view itself that performed the computation
to produce records for the materialized view, it was in combination with the refresh
function that the data actually made it into our cache after the initial warming produced
by the snapshot.

A complete caching scheme needs a way to recompute elements for the
cache. They should be of a predefined shape and size. Elements built to
replace original elements from the cache-warming process should match
in structure and meaning.

Invalidation Triggers
In our materialized view implementation, we made use of database triggers to catch all
moments when data underneath our cache was changing. Whether it was an insert,
update, or delete, and whether the operation was targeted at a single item or multiple
items, our triggers caught the event and called our refresh function. Triggers were
crucial because without them, we would not have known that our cache was slowly
becoming a stale collection of garbage. The benefit of the triggers’ pervasive visibility
cannot be understated, either; regardless of how the data came to change, the triggers
caught the change.

To build our triggers, we also created a table on paper in which we tabulated, for our
own peace of mind, which tables and which actions on those tables warranted some
kind of action on the cache. This served two purposes. First, it ensured we were not
churning the cache more than necessary, losing some of the performance benefit ach-
ieved through caching. Second, it ensured that we were aware of each and every mo-
ment where a cache invalidation was occurring. True, database triggers are infallible
when it comes to detecting changes in database tables, but they do this only if you are
wise enough to add the trigger in the first place.

A correct caching scheme must be able to detect all changes that would
invalidate the cache and take action at those moments. The cache de-
signer, by extension, must be aware of all of the events that have to be
monitored in order to ensure the cache does not become stale.

Data Layer Caching, Revisited | 297

Download at Boykma.Com

Indexing
In our materialized view implementation, we made short order of adding indexes to
our cache using the create index command. Most often a cache will have some kind
of key that lets you get at the data. In a database table, this would be the primary key
of the table itself, and in a hash-like cache, such as Memcache, the primary key is the
cache key itself.

But you don’t always want a single element at a time. Although querying by the primary
key is sometimes enough, often you want multiple objects at once, or you are looking
for objects that satisfy some other property. Storing objects multiple times under dif-
ferent keys is wasteful, so where such a practice can be avoided, it should be. On the
other hand, searching through the entire cache to find some element by anything other
than the primary key also defeats the purpose of caching.

A good caching scheme may need to support multiple indexes on the
data being cached. That, or it must allow for loose querying against the
primary index to simulate multiple indexes.

Logical Model Caching
Your logical models sit atop the physical models, often transforming them in some way
before returning them as the result of a service request. Later in this chapter, we’ll
discuss how you can cache physical models; however, even with the majority of your
physical models cached, the transformations required to turn them into logical model
objects can be quite costly, too. Rather than recompute your logical model objects on
each request, they too can be cached.

However, because existing tutorials do not treat logical and physical models differently,
Rails websites today are not built with this principle in mind. As a consequence, there
are no plugins currently available for easing logical model caching. Luckily, it’s easy to
accomplish even without a plugin. In this section, you’ll see how to go about building
a complete caching layer on your own.

To implement our caching, we’ll use Memcache. If you’re not already using it, down-
load it, install it, install the memcache-client gem, and add the following to your
environment.rb file:

CACHE = MemCache.new \
 :c_threshold => 10_000,
 :compression => false,
 :debug => false,
 :namespace => RAILS_ENV,
 :readonly => false,
 :urlencode => false

CACHE.servers = '127.0.0.1:11211'

298 | Chapter 19: Caching End to End

Download at Boykma.Com

To help illustrate how our caching scheme will work, we’ll return to the logical model
for the Movie class from Chapter 15, shown in Example 15-3. Just as with our materi-
alized view from Chapter 12, we’d like our interface to cached data to be a drop-in
replacement for our original data. Therefore, the first thing we do is push our original
class out of the way, renaming it with the prefix Uncached so that the cached version
can be accessible via the original name (see Example 19-1).

Example 19-1. Logical model for a movie, app/models/logical/movie.rb

module Logical
 class UncachedMovie < ActionWebService::Struct
 def self.get(physical_movie_id)
 return nil if !(m = Physical::Movie.find_by_id(physical_movie_id)
 Movie.new(:id => m.id,
 :name => m.name,
 :length_minutes => m.length_minutes,
 :rating_id => m.rating.id,
 :rating_description => m.rating.description)
 end
 end
end

Our caching wrapper classes will do most of the work, which is essentially the same
for all wrapper classes we write. Therefore, we’ll start by building a base class,
CachedObject, which will define and handle the common tasks. Example 19-2 shows
this class, which exists within the Logical module. We’ll subclass CachedObject once
for every class cache we plan.

Example 19-2. Our base class for caching wrapper classes, CachedObject

module Logical
 class CachedObject < ActionWebService::Struct

 def self.uncached_class
 eval("Uncached" + self.name.split('::')[-1])
 end

 def self.cache_key(*params)
 return "#{self.name}_#{self::VERSION}_#{params.join('_')}"
 end

 def self.get(*params)
 key = cache_key(params)
 CACHE[key] ||= self.uncached_class.get(params)
 end

 def self.rebuild(*params)
 key = cache_key(params)
 CACHE[key] = self.uncached_class.get(params)
 end

 def self.clear(*params)
 key = cache_key(cache_key_params)

Logical Model Caching | 299

Download at Boykma.Com

 CACHE[key] = nil
 end

 class Sweeper < ActiveRecord::Observer
 #observe ActiveRecord::Base
 end

 end
end

Let’s examine each piece of the CachedObject class, one item at a time.

The first method, uncached_class, defines our naming convention: all of our original
classes are renamed to have a prefix Uncached, and the new caching wrapper classes
take on the old class names. This method first peels off any modules our class might
be in and then adds Uncached to the front of what is left. This method will be used in
most of our other methods.

The next method, cache_key, as its name suggests, builds a key that is unique to the
object being requested. It concatenates the class name of the object being cached, a
version number, and any additional parameters passed in as the primary key to create
a unique identifier.

Note that that idea of a version number is new. Because objects placed in the cache
persist across a software upgrade, we need to be careful to invalidate cached objects if
we change the structure of those objects. For example, if we added a field to the logical
movie class to represent the average reviewer rating, we would need to avoid retrieving
older objects out of the cache that do not have that field. Otherwise, when the new
code tried to manipulate an old object, an error would occur because the field is not
present in the old object retrieved from the cache.

To solve this, we add a VERSION constant to each class, and take care to bump this
number up whenever the structure of the class changes. All of the old cache keys, which
included the old version number, never get requested and slowly get purged from the
cache.

To make this work, we rewrite the Movie class definition in our movies_service.rb file
to look like this:

class Movie < CachedObject
 VERSION = 1
 member :id, :integer
 member :name, :string
 member :length_minutes, :integer
 member :rating_id, :string
 member :rating_description, :string
 end

Note also that we are now defining this class to inherit from CachedObject rather than
directly from ActionWebService::Struct.

300 | Chapter 19: Caching End to End

Download at Boykma.Com

Next, we define a get function. This function has the same purpose as the get function
we defined for Movie, but it first checks to see if the object exists in the cache. If it does,
the get function returns that object. If the object is not found in the cache, get will be
called on the uncached version of this class. The result is stored in the cache under the
appropriate key, and it is also returned to the caller.

The rebuild method is very similar to the get method, but it reloads the uncached
version of the object regardless of whether it exists in the cache or not. It then puts the
newly built item in the cache, regardless of whether it was there before or not. This
method would be used when we detect that an invalidation has occurred and we need
to replace a stale object.

The final method in CachedObject, clear, gives us an easy way to clear an item from the
cache. If passed the same parameters as passed to the get method, this method removes
the cached item from our cache. This is useful when we detect an object has been
deleted.

We also define an inner class type, Sweeper, based off on ActiveRecord::Observer. In
our caching wrapper classes, we’ll subclass this class to watch for events that would
require an invalidation or rebuild, much like our materialized view triggers.

Because we changed the subclass of our class definition to inherit from CachedObject
in the shared “header” file, we need to define in that shared code that CachedObject is
simply subclass of ActionWebService::Struct. We do that by placing the following def-
inition in movies_service.rb:

class CachedObject < ActionWebService::Struct ; end

Just as with our materialized view, we may not always want to rebuild objects as soon
as they are invalidated. In N:1 relationships, this could result in a lot of rebuilding that
essentially goes to waste. Therefore, we’d like a way to push off rebuilds until the end
of a request. We’ll give ourselves this ability by creating a cache manager class,
CacheManager, shown in Example 19-3.

Example 19-3. The logical model cache manager

module Logical
 class CacheManager
 include Singleton

 def initialize
 @@objects_to_rebuild = {}
 end

 def schedule_rebuild(klass, *get_key)
 @@objects_to_rebuild[[klass, get_key]] = true
 end

 def rebuild
 keys = @@objects_to_rebuild.keys.clone
 @@objects_to_rebuild.clear

Logical Model Caching | 301

Download at Boykma.Com

 keys.each {|k, v| k.rebuild(*v)}
 end
 end
end

First, note that this class is a singleton. This means that we’ll access its methods via the
variable CacheManager.instance. The cache manager class initializes a hash, which
stores the keys and classes that have a deferred rebuild. In the event we want to rebuild
an object late, rather than call rebuild on a caching wrapper class directly, we instead
call schedule_rebuild on the CacheManager singleton instance. The schedule_rebuild
function accepts as its parameters the caching wrapper class and the parameters that
would be passed to the rebuild method. The values are added as keys of the
@@objects_to_rebuild hash, rather than concatenated on an array, to ensure that each
value appears only once.

The final method, rebuild, rebuilds each object defined by the cache keys of the
@@objects_to_rebuild hash. It also clears the hash for the next time. Note that we clone
the hash before starting the rebuild process so that we can clear it before we begin
rebuilding. Why we do this will become apparent soon, as we’ll see it will be possible
for rebuilds to trigger other objects to get newly invalidated.

The cache manager’s rebuild method needs to be called explicitly when we’re ready to
rebuild invalidated objects. In the materialized view implementation, this happened
within the reconciler view. At the application layer, we can call this method after each
request has been processed. Example 19-4 shows how to set this up with an after filter.
We also do the work in a thread, so the request response can be returned immediately,
and no user actually has to wait for the rebuild process to finish.

Example 19-4. CacheManager hooks added to application.rb

after_filter do
 Thread.new do
 Logical::CacheManager.instance.rebuild
 end
end

We now have enough infrastructure in place to create our first caching wrapper class.
In Example 19-5, we define the Movie class again, but this time it is the class that man-
ages caching for the UncachedMovie class. Most of the work of this class has already been
taken care of within the base class. All we need to do now is define the Sweeper subclass,
which will monitor the physical layer for changes.

Example 19-5. The caching wrapper for the Logical::Movie class

module Logical
 class Movie < CachedObject
 class MovieSweeper < Sweeper
 observe Physical::Movie, Physical::Rating

 def after_save(obj)

302 | Chapter 19: Caching End to End

Download at Boykma.Com

 if obj.kind_of?(Physical::Movie)
 CacheManager.instance.schedule_rebuild(Movie, obj.id)
 end
 if obj.kind_of?(Physical::Rating)
 Physical::Movie.find_all_by_rating_id(
 obj.id, :select => 'id'
).each do |movie|
 Movie.clear(movie.id)
 end
 end
 end

 def after_destroy(obj)
 if obj.kind_of?(Physical::Movie)
 Movie.clear(obj.id)
 end
 end
 end
 MovieSweeper.instance
 end
end

In Example 19-5, we define the MovieSweeper class, which observes the
Physical::Movie class and the Physical::Rating class. Note that we can observe as
many physical classes as we need, depending on the complexity of our logical model
class.

Next, we define callback methods for after_save and after_destroy. In each, we check
the type of the object being observed, as it can be either a Physical::Movie or
Physical::Rating. We take different steps for each action and each type. In
after_save, we defer a rebuild when a movie object changes, though we could have
rebuilt immediately by calling Movie.rebuild(obj.id) directly. Instead, we call the
CacheManager instance’s schedule_rebuild function. If a rating object changes, many
movies can be affected, so rather than rebuild them, we clear them all. They will be
rebuilt piecemeal in future requests.

In the after_destroy method, we clear the cache of the invalid movie object right away
if it is the movie object that was detected to have changed. We don’t bother doing
anything if a rating was destroyed or saved; our referential integrity guarantees that no
movies can exist for a rating that is just now being inserted or deleted.

We can now test logical model layer caching. Example 19-6 shows these tests. We
create a setup method that creates a new physical layer movie item. Then we clear the
cache of any item that may have been left over from a previous test.

In the first test, test_logical_caching, we retrieve a local movie object through the
Movie class, which now refers to our caching wrapper. We assert that the movie names
are the same. After updating the physical model because we deferred rebuild, initially
the movie names do not match when comparing the physical and logical models. How-
ever, after calling the cache manager’s rebuild function, they once again match.

Logical Model Caching | 303

Download at Boykma.Com

In the second test, test_dependent_obj_invalidation, we are testing that altering a
physical rating object will propagate up through the caching layer of the logical objects
as well. First, we retrieve the cached logical model object for the movie we created in
the setup method. After changing the movie rating description, the physical and already
loaded logical models do not match. However, when we request the logical model
object again, it does match.

Example 19-6. A unit test for the cache manager

require File.dirname(__FILE__) + '/../../test_helper'

class CacheManagerTestCase < Test::Unit::TestCase
 def setup
 @p = Physical::Movie.create!(
 :name => 'When Harry Met Sally',
 :length_minutes => 120,
 :rating => Physical::Rating::PG13)

 # memcache persists between application restarts
 l = Logical::Movie.clear(@p.id)
 end

 def test_logical_caching
 # on the first get, the objects should match
 l = Logical::Movie.get(@p.id)
 assert l.name == @p.name

 # after an update to the physical model, the cached
 # value will not match
 @p.update_attribute(:name, 'new name')
 assert l.name != @p.name

 # after issuing a rebuild, the values will
 # again match
 Logical::CacheManager.instance.rebuild
 l = Logical::Movie.get(@p.id)
 assert l.name == @p.name
 end

 def test_dependent_obj_invalidation
 # initially the descriptions should match
 l = Logical::Movie.get(@p.id)
 assert l.rating_description == Physical::Rating::PG13.description

 # after updating the rating description,
 # the cached value will not match
 Physical::Rating::PG13.update_attribute(:description, 'new desc')
 assert l.rating_description != Physical::Rating::PG13.description

 # invalidation is not deferred, so logical model will pick
 # up changes immediately
 l = Logical::Movie.get(@p.id)
 assert l.rating_description == Physical::Rating::PG13.description

304 | Chapter 19: Caching End to End

Download at Boykma.Com

 end
end

Example 19-7 shows the results of running these two tests. They pass, as we expect.

Example 19-7. Results of running the cache manager unit test

2 tests, 4 assertions, 0 failures, 1 errors
ChakBookPro: chak$ ruby test/unit/logical/cache_manager_test.rb
Loaded suite test/unit/logical/cache_manager_test
Started
..
Finished in 0.033217 seconds.

2 tests, 6 assertions, 0 failures, 0 errors

Considerations
In a high-traffic website, clearing an object rather than rebuilding it can be much more
costly than might be initially expected. For example, if you receive 10 requests for an
object per second, and it takes one second to rebuild that object, then you might pay
up to 10 times for a rebuild if you clear, rather than rebuild. All of the requests between
the clear action and the conclusion of the first rebuild action see a cache miss, so they
kick off additional, unneeded rebuilds. This is shown in Figure 19-1.

rebuild + caching time

time-0.4 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Data request

Data request response

responseCache clearing

Data request response

response

rebuild + caching timeData request response

rebuild + caching timeData request response

rebuild + caching timeData request response

Figure 19-1. Clearing the cache after an invalidation can incur a large penalty in excess rebuilds

Previous to time –0.1, requests are processed quickly because the data requested comes
out of the cache. At time –0.1, some request occurs that causes the cache to be cleared.
The next request, at time 0, does not find the requested data in the cache, so the rebuild
process, which takes 0.4 seconds, begins. The next three requests still do not find the

Logical Model Caching | 305

Download at Boykma.Com

data in the cache, so each one kicks off another (unnecessary) rebuild process. Finally,
at time 0.4, the first rebuild process has completed, so requests starting at this time are
served from the cache. Meanwhile, three rebuild processes are still working away, sap-
ping precious computing resources for no real purpose. In our caching mechanism, this
is what would happen if clear is called on data that still exists, i.e., data that has not
been deleted.

There are two alternatives. One, pictured in Figure 19-2, is to continue to serve the
stale object while the new object is being rebuilt. This method has the benefit of not
wasting any resources in rebuilding the same data multiple times. It also returns data
to the caller quickly, although the data is slightly out-of-date. This is the behavior
implemented in the examples above, where schedule_rebuild is called for data that has
been detected to be invalid. While the data is being rebuilt in the background at the
end of the request, subsequent requests continue to return results based on the original
value stored in the cache.

A third option is a compromise between the first two, and it’s depicted in Fig-
ure 19-3. If the rebuild acquires a read lock on the data, then subsequent requests wait
until the rebuild is complete before returning data. This wait time is always shorter
than the rebuild time itself, and the data returned from all requests will be fresh.

Unfortunately, this option is difficult to implement efficiently using Memcache, which
does not provide native locking support. A lock can be simulated by adding a key to
the cache that means “this data is locked,” and readers would check to see if that key
exists before reading. If it does, they should wait, then poll again until the lock has
disappeared. Code to implement this behavior is shown in Example 19-8. However,
this sort of implementation requires frequent polling to return data quickly after a

time-0.4 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Data request

Data request response (fresh)

Data request response (fresh)

Data request response (stale)

Data request response (stale)

Data request response (stale)

Cache invalidation
+ rebuild

background rebuild
response

response

Figure 19-2. A background rebuild wastes no resources, but temporarily returns stale data

306 | Chapter 19: Caching End to End

Download at Boykma.Com

rebuild is complete; you can save on polling by increasing the granularity of sleeps
between poll attempts. However, this process adds time overhead to get back a result.

Another drawback of this approach is that each get request also incurs an additional
round-trip penalty to ensure that the data being requested is not currently locked.

Example 19-8 shows our CachedObject class, modified to incorporate a locking mech-
anism that prevents a get request from completing until a simultaneous rebuild request
has finished. Note that only the get and rebuild methods, along with new helper
methods, are shown here, although the rest of the methods from Example 19-2 would
still be part of this class. Additions are shown in bold.

Example 19-8. A locking mechanism built upon Memcache, with polling

module Logical
 class CachedObject

 def self.lock_key(key)
 "lock:#{key}"
 end

 def self.locked?(key, timeout_seconds = 10)
 start = CACHE[lock_key(key)]
 start ? Time.new - start < timeout_seconds : false
 end

 def self.with_lock(key, timeout_seconds = 10, &block)
 start = Time.new
 acquired_lock = false
 while (Time.new - start < timeout_seconds) && !acquired_lock
 acquired_lock = !CACHE.add(lock_key(key), Time.new).index("NOT_STORED")
 sleep 0.1 if !acquired_lock
 end
 yield
 CACHE.delete(lock_key(key))
 end

time-0.4 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

lock, rebuild, caching

Data request

Data request wait

wait

wait

Data request

Data request response

response

response

responseInvalidation data request

Data request response

response

Figure 19-3. Locking cached data during a rebuild

Logical Model Caching | 307

Download at Boykma.Com

 def self.get(*params)
 key = cache_key(params)
 sleep 0.1 while locked?(key)
 CACHE[key] ||= self.uncached_class.get(params)
 end

 def self.rebuild(*params)
 key = cache_key(params)
 with_lock(key) do
 CACHE[key] = self.uncached_class.get(params)
 end
 end

 end
end

Since we are simulating native locking by putting a semaphore in the cache, we need a
method to generate a semaphore key unique to each item we might rebuild. The
lock_key method accepts the key created by the cache_key method from Exam-
ple 19-2, which should be unique, and prepends lock:. This utility method will be used
in our other methods.

The next method, locked?, checks the cache for the presence of the semaphore. Since
it’s possible that there was an error in the method doing the locking, or a power outage,
or some other event beyond our control, locked? also takes an optional parameter to
specify a timeout, after which it will return false even if the semaphore exists, giving
the caller permission to take over the lock.

The next method, with_lock, takes a block as a parameter, and only executes that block
once the lock has been acquired, or a timeout has passed. The add method of the
Memcache API will only add an item if it does not already exist. When an item is
successfully added, “STORED” is returned; otherwise “NOT STORED” is returned.
The variable acquired_lock only becomes true when “NOT_STORED” is not found in
the return string.

The get method has been modified so that it blocks while a key is locked. Again, if the
default timeout, set at 10 seconds, passes, locked? will return true and the get will
proceed.

Finally, the rebuild method has been modified so that the get call on the uncached
class is wrapped by the new with_lock method, which ensures that calls to get on the
cached class are blocked until the rebuild process is complete. Of course, this blocks
simultaneous calls to rebuild as well.

Avoiding Rebuilding with Stale Data
If your logical model objects are composed of other logical model objects, rebuilding
invalid items can be tricky. Take the simple example shown in Figure 19-4. Here, a

308 | Chapter 19: Caching End to End

Download at Boykma.Com

solid line indicates a composition, and a dotted line indicates an observer relationship.
The logical Movie class observes the physical Movie class, and will correctly get rebuilt
using the data from the physical class when the physical movie object changes.

However, the logical Showtime class gets its data from the logical Movie class. Yet it also
must observe the physical Movie class to detect an invalidation because there is no easy
way to observe a non-ActiveRecord type class. But there’s a problem here. We have not
provided a mechanism to order rebuilds. We have no way to ensure that the Movie
object gets rebuilt before the Showtime object, and if the Showtime object does get rebuilt
before the Movie object, it will be rebuilt with stale data (Figure 19-4).

Certainly, we can get around this by always relying on physical models for rebuilding
logical ones, but this sacrifices a lot of flexibility, and is also very inelegant. The whole
purpose of the logical models is that they more closely resemble the way we naturally
think about our application’s problem domain, so we’d like to use them as much as
possible.

A better solution, then, is to devise a mechanism to observe logical model rebuilds as
well as physical model invalidations. That way, only the logical Movie class need observe
the physical Movie class, and the Showtime class can observe the logical Movie class. In
general, the rule would be that you rebuild only from objects you observe.

We can accomplish this by creating a pseudoclass called LogicalModelInvalidation that
inherits from ActiveRecord::Base. We’ll never save records of this class, but we’ll pig-
gyback off the built-in ActiveRecord observers to simulate logical model observers.

First, we create a dummy table in the database with the attributes we want our
invalidation pseudoclass to have, as shown in Example 19-9.

Movie

Showtime

Movie

LogicalPhysical

Movie

Showtime

Movie

LogicalPhysical

Observing physical models only Observing physical and logical models

Figure 19-4. Different caching styles for the logical Showtime object

Logical Model Caching | 309

Download at Boykma.Com

Example 19-9. A dummy table with the attributes for the invalidation pseudoclass

create table logical_model_invalidations (
 id integer,
 type text,
 object_id text
);

We need an id column because Rails expects a primary key. However, Rails does not
let you easily set the value of an id primary key column, so we’ll also add an
object_id column to simulate the real primary key of the object being invalidated.
Finally, we have a type column because we will take advantage of Rails single table
inheritance. We’ll subclass this class for every class that can be invalidated.

Then, within the CachedObject class, we define the inner class shown in Example 19-10.

Example 19-10. Inner class within the CachedObject class

module Logical
 class CachedObject < ActionWebService::Struct
 class LogicalModelInvalidation < ActiveRecord::Base
 def validate
 errors.add_to_base("invalid")
 end
 end
 end
end

This is essentially an empty ActiveRecord class, but with one special property: it cannot
be saved. The validate method has been redefined to always fail by adding a dummy
error message whenever it is run. We don’t actually want to save objects of this type;
we just want to gain the functionality that comes for free in ActiveRecord objects in
that they can be observed by sweeper classes. Although instances of this class won’t
ever be saved, the before_validation hook can be observed.

Each caching wrapper class should subclass this class, with the name Invalidation. For
example, in the wrapper Movie logical model class, inside of the class definition itself,
we add the declaration shown in Example 19-11.

Example 19-11. Declaration inside the class definition

module Logical
 class Movie < CachedObject
 class Invalidation < LogicalModelInvalidation; end
 end
end

It’s fine for every class to name this class with the same name because the scoping within
the Logical model, and further within the CachedObject subclass gives us the context
we need to take appropriate action. The Invalidation subclass we created in Exam-
ple 19-11 is actually named Logical::Movie::Invalidation, and other subclasses would
be similarly scoped for their logical model class type.

310 | Chapter 19: Caching End to End

Download at Boykma.Com

It’s actually preferable that the name of the subclass is always the same; this lets us
trigger invalidations programmatically. In Example 19-12, we make use of this when
we upgrade our rebuild and clear methods to trigger an observable logical model in-
validation. The additions are in bold.

Example 19-12. Upgrading the rebuild and clear methods

module Logical
 class CachedObject < ActionWebService::Struct
 def self.rebuild(*params)
 key = cache_key(params)
 with_lock(key) do
 CACHE[key] = self.uncached_class.get(params)
 end
 eval("#{self.name}::Invalidation").create(:object_id => params)
 end

 def self.clear(*params)
 key = cache_key(params)
 CACHE[key] = nil
 eval("#{self.name}::Invalidation").create(:object_id => params)
 end
 end
end

When an object is cleared or rebuilt, an instance of the corresponding Invalidation
class is created. The create method tries to save the object immediately, which calls
validate. Although validate adds an error and the create operation fails, we none-
theless have an observable event to track.

Now, other models can observe logical model invalidations. To observe the logical
Movie class for invalidations, a sweeper would observe Logical::Movie::Invalidation.
An example of what the logical model for the caching wrapper of the Showtime class
might look is shown in Example 19-13.

Example 19-13. A logical model observing another logical model

module Logical
 class Showtime < CachedObject

 class ShowtimeSweeper < Sweeper
 observe Logical::Movie::Invalidation

 def before_validation(obj)
 Physical::MovieShowtime.find_all_by_movie_id(
 obj.object_id, :select => 'id'
).each do |ms|
 Logical::CacheManager.instance.schedule_rebuild(Showtime, ms.id)
 end
 end
 end
 ShowtimeSweeper.instance

Logical Model Caching | 311

Download at Boykma.Com

 class Invalidation < LogicalModelInvalidation; end
 end
end

Based on Example 19-13, we now have implemented a logical model class that is com-
posed of, and observes, another logical model object. We are no longer constrained to
the left side of Figure 19-4, but can be confident that our implementation affords the
cache correctness provided by the scenario on the right side of the figure.

Cache Indexes
In all of our examples of invalidation, it was necessary to go back to the database to
find dependent objects. For example, when a movie was invalidated, we had to query
to get the ids of the showtimes that were for that movie. While doing so is not the worst
thing in the world—ideally, invalidations that require database access are infrequent
compared to reads that do not—this does impose some additional burden on the
database.

It would be ideal if the caching layer itself could maintain indexes that could be used
to find associated objects without resorting to queries in the data layer. Unfortunately,
Memcache does not provide any native indexing support. We could build our own and
store the indexes as regular objects stored in Memcache, but it would be tedious, in-
efficient, and also error-prone. Modifying the index would involve acquiring a lock,
which we have already seen is not Memcache’s forte; it would require transferring the
entire index to the client, modifying it in place, and then setting it back in Memcache.
The various costs of developer and processor time are likely to outweigh the time spent
in the database querying database indexes.

However, it should be noted that Memcache is not the only choice for logical model
caching. SimpleDB, an Amazon web service, is even better-suited than Memcache for
this task. SimpleDB, although it is a database of sorts, is not a relational database, but
rather it is hash-based storage on steroids. Unlike Memcache, which provides simple
key-value pair storage, SimpleDB provides key to key-value pair storage. This allows it
to automatically index your data on all attributes. With SimpleDB, you can easily re-
quest all of the keys for showtimes that correspond to a particular movie.

Although SimpleDB’s users will define what it can do (rare is the tool that is used only
as intended), cache-complete storage atop a relational database is what SimpleDB is
really for. Unlike Memcache, which is LRU only, SimpleDB’s data is persistent, mean-
ing you can create cache-complete copies of your data, and know definitively that if an
item is not in the cache, it is not in the database either.

Of course, it is impractical to use SimpleDB as a cache unless your application is running
on Amazon’s Elastic Compute Cloud (EC2). Accessed from other places, the latency
is likely to outweigh any other benefits.

312 | Chapter 19: Caching End to End

Download at Boykma.Com

A Ruby gem that provides a client interface to SimpleDB is available at http://rightaws
.rubyforge.org.

Other Caching
There are a number of places in an application, both within as well as at the edges, for
caching. Each has its own considerations and difficulties. The rest of this chapter pro-
vides an overview of these locations, and attempts to point out the most worrisome
drawbacks and pitfalls, and what steps may be taken from day one to help get around
them. Unfortunately, at some layers there is little recourse when the infrastructure falls
short of our hopes. We will start at the bottom and work our way up.

Query Plan Caching
Whenever you execute a database query, the database first must come up with a plan
for how to retrieve the data you requested. There may be many ways to go about exe-
cuting your query, based on the number of tables involved in the query and the number
of indexes that may be used.

For large queries, the time spent planning a query generally pales in comparison to the
time spent executing the plan. However, any time spent planning queries is time not
spent doing something else. And as query complexity rises, so too does the planning
time. The number of possible paths to take for N tables joined in a single query is N!,
even before you factor in the different ways to treat those tables due to indexes. Finding
the very best plan could take an eternity. Because of this, Postgres has a cut-off point
for the number of tables after which it will avoid an exhaustive search and instead do
a heuristic search for the best query plan so that planning time does not blow up out
of control.

For simple queries, while the plans may be quick to generate, the time spent in the
query planner begins to take up a larger and larger percentage of the overall time needed
to execute the query.

Luckily, these plans do not need to be created each time a query is executed. While you
may execute millions of queries per day, most of them are slightly different versions of
one another; the structure of the query is the same, but the values in the query change.
If you can make it clear to the database that you have a certain number of “template”
queries, and only the parameters are changing, then the database need only create a
plan once per template. So if you execute one million queries per day, but all of these
queries fall into a pattern of 100 query templates, you can eliminate 999,900 runs
through the query planner by registering these templates.

You don’t have to take special action to register your query templates. However, when
you execute your queries, you do have to separate out the template from the parameters

Other Caching | 313

Download at Boykma.Com

http://rightaws.rubyforge.org
http://rightaws.rubyforge.org

when passing the query to the database. These templated variables are known as bind
variables.

Unfortunately, as of this writing, bind variables present a problem for Rails users. The
Rails framework appears to support bind variables. Indeed, when you write a query,
you can pass a template with question marks denote bind variables. Example 19-14
shows a snippet where we define and then pass bind variables to an ActiveRecord query,
with the segments relating to bind variables in bold.

Example 19-14. Snippets of code from Example 16-17, highlighting usage of bind variables

...
if !zip_code.empty?
 conditions_sql << "miles_between_lat_long(
 (select latitude from zip_codes where zip = ?),
 (select longitude from zip_codes where zip = ?),
 latitude, longitude) < 15"
 conditions_vars.concat [zip_code]*2
end
...
psts = Physical::MovieShowtimeWithCurrentAndSoldOut.find(:all,
 :select => [:id, :movie_id, :theatre_id, :latitude, :longtitude],
 :include => [:movie, :theatre],
 :conditions => [conditions_sql.join(" and "), *conditions_vars])

However, ActiveRecord does not support passing these templates and bind variables
through to the database drivers that actually communicate with your database. This
means that although you are going through the motions of using bind variables, cur-
rently, with Rails, there is no benefit. Even if you have 100 templates for your one
million query executions, currently with Rails, your database actually computes one
million query plans.

Clearly this is a bad thing from a performance perspective, and there are other causes
for concern as well. As of this writing, work is in progress for some database drivers to
make ActiveRecord respect bind variables all the way through to the database. I en-
courage any interested readers to check the status of this work, and to lend a hand if
you can.

Database Query Caching
MySQL has a feature called the query cache, which memorizes the results of each select
query you execute. If you execute some query, and then execute the same query again,
MySQL simply looks up the result from the first run and returns it.

If your application is exclusively read-based, this can give you a large performance boost
when you are evaluating the same queries over and over again. However, since cache
correctness is hard to maintain, as we saw in Chapter 14 in our discussion of materi-
alized views, as well as in this chapter with logical model caching, MySQL does not
attempt to maintain correctness in place within an existing query cache. Instead, to

314 | Chapter 19: Caching End to End

Download at Boykma.Com

keep things as simple as possible, MySQL simply flushes the entire query cache for a
table whenever that table changes in any way, be it via an insert, update, delete, or
any DDL operation that modifies the table.

Certainly, having a query cache like MySQL’s is not generally harmful. In the rare
situation where your application only sees cache misses, the penalty of incurred over-
head to maintain the cache is measured at 13% in the MySQL documentation.

So while the query cache can be extremely helpful in a read-only context, in practice it
does not provide the boost you might expect on an active website. Because of the mod-
est gains a query cache provides in real-world situations, this feature is not found in
most databases, and even in MySQL, it should not be relied up on as your primary
caching mechanism. An architecture that relies on a query cache begs the following
question, which will come up again in the following discussion of the Rails query cache:
Why does your application request the same data over and over again?

If you know you need the same data repeatedly, why isn’t it being cached closer to the
user? Not only is the database the furthest point from the original request, but it is also
the likeliest to become your bottleneck. Even if the queries you execute are fast, avoiding
them altogether is still faster. In this chapter, we’ve already seen how we can avoid most
queries with logical model caching.

Rails Query Caching
In Rails 2.0, an application layer query cache was introduced, which, for the period of
a single request, caches the results of each select query you execute.

This feature is actually quite puzzling. If you don’t have a functional logical model
cache, it makes sense that successive requests might need to access the same data anew
from the database. But it is perplexing why, within a single request, you would need
to request the exact same information twice, rather than store the result in a variable
and reuse the data stored there throughout the request.

Rather than providing any performance gain you could not achieve through good pro-
gramming practice, the Rails query cache actually encourages you to write bad code.
Example 19-15 shows the same process, once without utilizing the cache, and a second
time relying on it.

Example 19-15. Avoiding and using the Rails query cache

avoiding cache, good style
m = Movie.find(5)
if m.rating == Rating::R
 # do something
end
if m.length_minutes > 90
 # do something else
end

Other Caching | 315

Download at Boykma.Com

relying on cache, bad style
if Movie.find(5).rating == Rating::R
 # do something
end
if Movie.find(5).length_minutes > 90
 # do something else
end

Of course, this is a contrived example. The real benefit would be seen if multiple func-
tions took a movie_id argument and proceeded to look the movie up in the database
for each call to the function. But that, too, is bad practice; it’s just harder to see it.

Instead, you can define functions that accept objects as arguments and depend on the
caller to do the database lookup. Example 19-16 shows two versions of the same
method, needs_id_check?, which returns true if the movie rating is R.

Example 19-16. Two versions of the same method, one intended to avoid the Rails query cache

relies on query cache, bad style
def needes_id_check?(movie_id)
 return Movie.find(movie_id).rating == Rating::R
end

avoid cache, good style
def needs_id_check?(movie)
 return movie.rating == Rating::R
end

Of course, the second method is preferable, and outperforms any query cache that can
be build because the object is immediately present—it need not be looked up in a
database or query cache.

Fragment, Action, and Page Caching
Rails has a number of built-in mechanisms for caching the result of page rendering,
either the entire page by URL, an action, or a fragment of a view. These mechanisms
can speed up your page rendering times dramatically, dropping them to nearly zero,
but maintaining cache correctness at the granularity of an entire page is a large
challenge.

If your goal is scaling, and if you have maintained cache correctness at your logical
model layer, you don’t need fragment, action, or page caching. While it is true that they
do improve speed of page rendering, they do not do more for you with respect to scaling
than a cache complete logical model layer would do.

Remember, the definition of scaling is the ability to serve a linear growth of users by
adding hardware linearly. To scale, we need only to ensure that we have no bottlenecks
that cannot be eliminated with additional dollars and hardware. In almost all cases, the
challenge is with squeezing more and more queries through the database layer. How-
ever, if you are cache-complete, you won’t execute database queries to render your

316 | Chapter 19: Caching End to End

Download at Boykma.Com

pages. An increase in requests can be handled by adding more application servers.
Rather than request data from the database, it will be requested from the cache. The
best case scenario for your users would be if you maintained one server per visitor, so
each user feels as if she is the only one browsing your website. Of course, this is not
practical, but it is possible with a complete and shared cache. With this in mind, it
should be understood that adding additional fragment, action, or page caching on top
of these other caches gives you an improvement in speed, not an improvement in your
ability to scale.

Other Caching | 317

Download at Boykma.Com

Download at Boykma.Com

Index

Symbols
1:1 updates, 167
1:N updates, 167
1NF (first normal form), 73
2NF (second normal form), 73
3NF (third normal form), 51, 73–83, 85

abstraction barriers and, 218
:=, using PL/pgSQL variables, 122
<< (chevron) operator, 282
<<-DELIM ... DELIM extension, 27

A
abstraction barriers, creating, 218–230
Accept header, 272
ACID (atomicity, consistency, isolation, and

durability), 6
ActionWebService, 217

Base, 227
Client::XmlRpc, 232
Struct class, 222

ActionWebService::Struct class, 300
ActiveRecord, 34

Base, 39, 134, 219
ORM (Object Relational Mapping), 44
physical model layer and, 218
validations, 42

acts_as method, 27
Agile Web Development with Rails (Thomas,

Dave), 11
Ajax, 273
Amazon web services, 312
API, 203

contract, 184, 201, 204, 256
defining, 225–230

design best practices, 205–212
app directory, 32
app/controllers/services, 227
app/models/services, 227
application layers, 8

object/logical, 220
physical, 218–230
service, 189

ApplicationController, 232
array.collect method, 139
array.compact method, 140
assertion failures, 61
association_methods method, 141
atomicity, 6
attr_accessor, 281
authorize() method, 189

B
base64 type (XML-RPC), 222
BDB (Berkley Database), 12
before_create method, 104
belongs_to relationships, 137
Berkley Database (BDB), 12
bind variables, 314
blocks (PL/pgSQL), 123
bool type (XML-RPC), 222
bugs, 42, 53
business logic, separating from code, 20

C
C programming language, 184
C++ programing language, 184
caches, 155, 295–317

action, 316

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

319

Download at Boykma.Com

avoiding stale data, 308
cascading, 180
complete copies, 156
considerations, 305–308
database query, 314
fragment, 316
indexes, 178
layers, 11–16
logical model, 298–313
page, 316
rails query, 315
real-time, 12
rebuilding, 306
warming, 296

Cake (PHP), 42
CAPTHCHA (Completely Automated Public

Turing Test to Tell Computers
Apart), 280

cascading caches, 180
chevron (<<) operator, 282
classes

core enhancements, 22–26
namespaces, and, 33
private, 184
singleton, 234

class_eval method, 27
client plugins (XML-RPC), 232–237
client singleton, 234
collect method, 139
compact method, 140
composite keys, 95–115

composite_primary_keys plugin, 105, 113
determining, 99
using, 105–109

conditionals (PL/pgSQL), 124
consistency, 7
constraint

deferrable, 109
constraints, 54–63, 152

checking with triggers, 117–125
domain, 95–115, 99
external foreign keys, 193
foreign key, 106, 109–111
foreign keys, 96
not null, 58
unique, 58, 102

contracts (REST), 274–276
controllers directory, 32
core enhancements (plugins), 22–26

custom extensions, 26–30
custom extensions (plugins), 26–30

D
Data Definition Language (DDL), 45
data layer caches, 296
Data Manipulation Language (DML), 45
data models, 51–71
Data Warehouse Toolkit: The Complete Guide

to Dimensional Modeling (Kimball,
Ralph), 49

data warehouses, 49, 187
databases, 41–49

administrators (DBAs), 2
bind variables, 314
exceptions, 58
query caching, 314
replication, 194
shared, 188
triggers, 117–125
tuning, 190–196
views, 148

basing models on, 149
date type (XML-RPC), 222
datetime type (XML-RPC), 222
DBAs (database administrators), 2
DDL (Data Definition Language), 45
decoupling, 213
deferrable constraints, 109–111
DELETE HTTP verb, 268
delete statements, 151
delimiters, using PL/pgSQL, 122
deployment (plugins), 30
directories, 32
discoverable API services, 204
Django, 42
DK/NF (domain key/normal form), 51, 95–

115, 101, 102, 106, 112
abstraction barriers and, 218
migrating to, 102
object model layers and, 220–225

DML (Data Manipulation Language), 45
domain data, 85–94

domain tables with strategy patterns, 89–
93

domain key/normal form (see DK/NF)
Don’t Repeat Yourself (DRY), 56, 78
Drupal, 42
DRY (Don’t Repeat Yourself), 56, 78

320 | Index

Download at Boykma.Com

duck typing, 130
durability, 7

E
EC2 (Elastic Compute Cloud), 312
EDITOR environment variable, 30
endpoint URLs, 213
enterprise, 1
Enterprise Service Bus (ESB), 16
enum.inject method, 140
environment.rb file, 38
ESB (Enterprise Service Bus), 16
exceptions (database), 58
exclusive or (XOR), 135
extension plugin template, 26
external foreign keys, 193, 194

F
factory classes, 143–144
Fagin, Ronald, 101
fail fast triggers, 123
fail safe triggers, 123
failover, 3
Fielding, Roy, 267
firewalls, 16
first normal form (1NF), 73
float type (XML-RPC), 222
foreign key constraints, 106, 109–111
foreign keys constraints, 96
fragment cache, 316
freshness of data (caching), 155
front-end application layer, 9

G
Gang of Four, 143
Gardner, Jonathan, 156
GET HTTP verb, 268

CRUD, mapping to, 271

H
Hansson, David Heinemeier, 277
hardware, 269
Heisenberg Uncertainty Principal of Website

Reporting, 48
helpers directory, 32
“high REST”, 212
HTML, 269
HTTP

XML-RPC and, 277
HTTP verbs, 267–272
HTTP+POX, 274

I
IBM Research Laboratories, 101
id columns/keys, 95
IF-THEN-ELSE structures (PL/pgSQL), 124
include keyword, 26
indexes, 70, 112, 153, 298

cache, 178, 312
databases, 113, 191, 312

information technology engineer (IT), 2
inheritance, 82, 130, 131–143

database, 78
multiple table, 127–146
Ruby, 79
single table, 129, 131, 132

init.rb file, 22, 25
initialization templates

custom extensions and, 26
enhancing core classes, 22

initialize method, 234
inject method, 140
insert statements, 151

anomalies, 49
InstanceMethods module, 27
int type (XML-RPC), 222
integration testing, 236
interfaces

Java, 130
RESTful web services and, 280

invalidation functions, 157, 161–168
triggers, 168–174

isolation, 7
isolation of service-oriented architecture, 200
IT (information technology) engineer, 2

J
JavaScript, 42, 272

XML-RPC libraries, 213

K
Kimball, Ralph, 49

L
left outer joins, 158
load order of classes, 38

Index | 321

Download at Boykma.Com

local complexity, reducing, 197
logical and service category, organizing

modules, 32
logical model caches, 14, 298–313
Logical::Order class, 272

M
Mac OS X, testing XML-RPC services on, 230
Mason (Perl), 42
materialized views, 155–181

invalidation functions, 157, 174
principles, 156
reconciler view, 157, 174–178
refresh function, 161

member keyword, 222
Memcache, 197, 296, 298, 306
memcache-client gem, 298
messaging systems, 16
method overrides, 108
methods, using object-oriented programming,

184
method_missing method, 23
migrations, 42, 44–46
models directory, 31, 32
models/apis directory, 225
modules, 31–40

logical, 32
namespacing, 33
physical, 32
refactoring, 39

monolithic application design, 184
Mosaic web browser, 269
MTI (multiple table inheritance), 127–146,

129, 131, 133
multiple table inheritance (see MTI)
MySQL, 44

N
N:1 updates, 168
namespaces, 33
natural keys, 95

(see also composite keys)
method overrides, 108
spotting composite keys and, 99
trade-offs, understanding, 111

Net::HTTP, 283
NF2 (non-first normal form), 73
*NIX servers, 44

nonfunctional requirements, 256
Normal Form for Relational Databases That is

Based on Domains and Keys (Fagin,
Ronald), 101

not null constraint, 61

O
O(1) time, 156, 165, 166
object model layer, 220–225
object models, 219
Object Relational Mapping (ORM), 44
object-oriented programming, 184
Object.subclasses_of method, 140
observers, 309

before_create, 104
before_save, 251
logical models, 257
physical/logical models, 298

OLAP (Online Analytical Processing), 48
OLTP (Online Transaction Processing), 48
Online Analytical Processing (OLAP), 48
Online Transaction Processing (OLTP), 48
operations, 47–49
Oracle, 43
organization, 19–30

modules and, 31–40
ORM (Object Relational Mapping), 44

P
page caches, 316
parallelization, 209
periodic refreshes, 177
Perl, 42
persistence layers, 5, 131–143
PHP, 42
physical directories, 32
physical inheritance, 132
physical model caches, 12
physical modules, 32
PL/pgSQL, 147

blocks, 123
conditionals, 124
functions, 121
IF-THEN-ELSE structures and, 124
triggers, 124
variables, 122

plugins, 19–30
deployment and, 30

322 | Index

Download at Boykma.Com

writing, 21–30
polymorphic associations, 127
polymorphism, 129
POST HTTP, 271
POST HTTP verb, 268
PostgreSQL, 43
pre-built caches, 12
premature optimization when caching, 295
primary keys, 99, 102

composite, 99
editing, 96
natural, 100
single column keys, 102

private classes, 184
procedural programming, 184
PUT verb, 268

CRUD, mapping to, 271

Q
QA (quality assurance), 2
quality assurance (QA), 2
query caches, 314

MySQL, 314
Rails, 315

query plan caching, 313

R
rails command, 32

application layer and, 8
rails query caching, 315
Rails::Initializer.run, 38
RDBMS (Relational Database Management

System), 5
choosing, 44
MySQL, 44
myths of, 46
PostgreSQL, 44

real-time caches, 12
reciprocal relationships, 35
reconciler views, 157, 174–178
redundancy, 3
refactoring, 93

inheritance and mixins, 78
modules, 39
to services, 239–265

references, 152
referential integrity, 64–70
reflection_symbol method, 140

reflect_on_association method, 140, 141
refresh functions, 157, 161–168, 297

triggers, 168–174
Relational Database Management System (see

RDBMS)
remote procedure call (RPC), 212

(see also XML-RPC)
replication (database), 194
reporting, 47
Representational State Transfer (see REST)
resources

REST, 267
shared, 187

REST, 186, 201, 267–278, 279–294
SOA, mapping to, 270–278
vs. XML-RPC and SOAP, 212–215

REST Describe, 294
Richardson, Leonard, 277
.rjs templates, 273
ROXML (Ruby Object to XML Mapping

Library), 281
RPC (remote procedure call), 212

(see also XML-RPC)
Ruby Object to XML Mapping (ROXML), 281
Ruby on Rails, slowness of, 25, 210
Ruby, Sam, 277

S
scalability of service-oriented architecture, 200
scaling, 316
script/console, 104
script/runner, 32
second normal form (2NF), 73
service level agreement (SLA), 2, 210
service requests, 189
service responses, 189
service-oriented architecture (see SOA)
services, 9

breaking up projects into, 4
monolithic applications and, 185
refactoring, 239

session objects for sites, 203
set_primary_key method, 87, 103
set_primary_key plugin, 105
set_primary_keys plugin, 105
set_table_name directive, 134
shared code, writing client plugins, 234
shared databases, 188
shared resources, 187–190

Index | 323

Download at Boykma.Com

SimpleDB, 312
Simple Object Access Protocol (see SOAP)
Simple Queue Service (SQS), 190
SimpleDB, 312
Simula 67, 184
single column keys, 102
single table inheritance (STI), 129, 131, 132
SLAs (service level agreements), 2, 210
Smalltalk, 184
SOA (service-oriented architecture), 183–200

anti-pattern, 192
considerations, 201–215
database load and, 190–196
local complexity, reducing, 197
REST, mapping, 270–278
service-oriented architectures and, 189
shared database, 188
shared resources and, 187–190

SOAP, 201, 278
vs. XML-RPC and REST, 214

source control repositories, 2, 30
SQLite, 42
SQS (Simple Queue Service), 190
stale data, 308
STI (single table inheritance), 129, 131, 132
sticky sessions, 203
stored procedures, 117
strategy patterns, 89–93, 132
string type (XML-RPC), 222
strings, 122
Struts, 42
svn:externals property, 30
synchronized tables, 187

T
table-backed models, 152
target audiences for websites, 9
Third Normal Form (see 3NF)
third-party plugins, 20
third-party tools, 236
Thomas, Dave, 11
time type (XML-RPC), 222
triggers, 117–125, 157

fail fast, 123
fail safe, 123
invalidation, 297
refreshes and invalidations, 168–174

U
underscore() method, 140
understandability of service-oriented

architecture, 200
uniform access of service-oriented architecture,

200
“Uninitialized constant ActionWebService”

error, 217
unique constraint, 61
unit tests, 54
universal resource locators (URLs), 267
update anomalies, 49, 151
update_attribute() method, lack of validation

and, 63
update_attribute_with_validation_skipping()

method, lack of validation and, 63
URLs (universal resource locators), 267
user-level caches, 14

V
validations, 63
variables (PL/pgSQL), 122
vendor/plugins, 236
vendor/rails, 217
verbs (REST), 267

CRUD, mapping to, 270
VERSION constant, 300
view-backed models, 147–154, 152
views, 148

materialized, 155–181
models, basing on, 149
reconciler, hiding implementation with,

174–178
virtual IPs (VIPs) = VIPs, 202

W
W*DL, 203
WADL, 292
Web Application Description Language (see

WADL)
web frameworks, 41
web servers, 16
web services, 183
web-services layers, 10
where clause, 71

cache indexes and, 179
WSDL, 275

324 | Index

Download at Boykma.Com

X
XHTML, 272
XML, 204

HTTP+POX and, 274
limiting data to be marshaled to, 210

XML-RPC, 186, 201, 217–237, 278
JavaScript and, 213
testing on OS X, 230
types, 222
vs. REST and SOAP, 212

xml_attribute class, 281
xml_object class, 281
xml_text class, 281
XOR (exclusive or), 135

Y
YAGNI (You Aren’t Going to Need It), 63

Z
zip codes, dealing with, 87–89

Index | 325

Download at Boykma.Com

Download at Boykma.Com

About the Author
Dan Chak has varied education in real-world web architecture that gives him a unique
perspective on the challenges of building rock-solid web applications. Dan has worked
at Amazon.com, the world’s biggest online retail store, where seemingly small tech-
nology problems become big ones due to enormous scale. Dan also directed software
development at CourseAdvisor Inc., a Ruby on Rails startup company. A nearly instant
success, CourseAdvisor was acquired by the Washington Post Company in October
2007.

Dan received a B.A. in computer science and engineering from MIT and an M.A. in
media arts and sciences from the MIT Media Lab.

Dan is now investigating the Internet’s next big challenges. Visit his blog at http://blog
.chak.org, and go to http://enterpriserails.chak.org to join the discussion about this
book.

Colophon
The animal on the cover of Enterprise Rails is a sturgeon. Although sturgeon is the
common name for more than 26 species of fish in the Acipenseridae family, it is often
used to identify the two most common generas in the family: Acipenser and Huso.

Among the most ancient of the bony fish, sturgeon first appeared in the fossil record
more than 200 million years ago. They are found from the subtropic waters of North
America all the way to the subarctic waters of Eurasia; their high tolerance for a wide
range of temperatures and salinity (the amount of salt in the water) partially explains
why the species has undergone very little morphological change since its existence was
first recorded. Other reasons they have achieved the informal status of “living fossil”
probably include the lack of predators that hunt them because of their size; and, as
bottom-dwellers feeding in the benthic zone (the ecological region at the lowest level
of water, including the sediment surface and some subsurface layers), they always have
access to a wealth of prey.

Unique-looking fish, sturgeon are covered in bony plates called scutes and have four
barbels—tactile organs that precede their toothless mouths. Their bodies are long, and
they have a flat rostra (Latin for beak; used to describe the snout of an alligator or
dolphin). Having no teeth, sturgeon use their snouts to stir up the ocean bottom and
their barbels to detect the crustaceans and small fish they feed on. Larger sturgeon have
been know to consume whole salmons and even baby seals.

Although sturgeon have to worry about few predators in the sea, their existence is
severely threatened by water pollution and the fisherman who hunt females for their
ovaries, which are prepared and sold as caviar.

Download at Boykma.Com

http://blog.chak.org
http://blog.chak.org
http://enterpriserails.chak.org

The cover image is from Dover Pictorial Archive. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

Download at Boykma.Com

	Table of Contents
	Preface
	The Tale of Twitter
	Speed Versus Scalability
	What to Expect in This Book
	Topics
	How This Book Is Organized
	Who Is This Book For?

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	Comments and Questions
	Acknowledgments

	Chapter 1. The Big Picture
	What Is Enterprise?
	Growing Slowly
	Understanding All the Pieces
	Persistence Layer
	Application Layer
	A front-end and services
	Web-services layer

	Caching Layer
	Messaging System
	Web Server
	Firewall

	Chapter 2. Organizing with Plugins
	Benefits
	Writing Your Own Plugins
	Core Enhancements
	Initialization template
	Core plugin template
	Testing
	Using a core plugin

	Custom Extensions
	Initialization template
	Extension plugin template
	Using a custom extension
	Testing

	Deployment
	svn:externals

	Chapter 3. Organizing with Modules
	Files and Directories
	Module Boundaries for Namespacing
	ActiveRecord Associations Between Modules
	Reciprocal Relationships
	Modules Presage Services
	Ensuring Proper Load Order

	Exercises
	Refactor Steps
	High-Level Module Refactor
	Detangling Utility Methods

	Chapter 4. Database As a Fortress
	Your Database Is an Application, Too
	“One Framework to Rule Them All”
	“No One in My Company Will Ever Write a Bug”
	“This Rails Application Is the Only Application on Earth”

	Sit Atop the Shoulders of Giants
	Choosing the Right RDBMS
	A Note on Migrations
	Dispelling Myths

	Operations and Reporting

	Chapter 5. Building a Solid Data Model
	Theatre Tickets
	Starting Simple
	Constraints
	Mythbusting
	Referential Integrity
	Intro to Indexing

	Chapter 6. Refactoring to Third Normal Form
	Third Normal Form
	Timing Is Key

	Refactoring: Inheritance and Mixins
	Exercises
	Refactor Steps

	Chapter 7. Domain Data
	Dealing with Zip Codes
	Strategy Pattern with Domain Tables
	Refactor from Day One

	Chapter 8. Composite Keys and Domain Key/Normal Form
	Why Composite Natural Keys Matter
	Spotting Composite Keys

	Atop the Shoulders of…
	Migrating to Domain Key/Normal Form
	Single column keys

	Using Composite Keys in Rails
	Using the composite_primary_keys plugin
	Using a DK/NF-Rails hybrid
	Making assignment easier with method overrides

	Deferrable Foreign Key Constraints
	Understanding the Trade-offs
	Efficient use of indexes
	Ease of writing code

	Exercises
	Refactor Steps
	Single Column Refactor
	Multiple Column Refactor

	Chapter 9. Guaranteeing Complex Relationships with Triggers
	Constraint Checking with Triggers
	Anatomy of a PL/pgSQL Function
	It’s all strings
	Local variables and assignment
	Blocks
	Trigger-specific features
	Triggers: fail safe versus fail fast
	Conditionals

	Chapter 10. Multiple Table Inheritance
	The Problem
	What Is Polymorphism?
	Inheritance and Persistence
	Single Table Inheritance
	Multiple Table Inheritance
	XOR on Columns
	Elegant MTI in Rails

	Factory Classes
	Exercises
	Refactor Steps
	Refactoring STI
	Refactoring: polymorphic => true

	Chapter 11. View-Backed Models
	Database Views
	Creating a View

	Basing a Model on a View
	Considerations
	Insert, Update, Delete
	References and Constraints
	Indexing

	Exercises
	Refactor Steps

	Chapter 12. Materialized Views
	Materialized View Principles
	A View to Materialize
	Getting into Form

	The Target Table
	Refresh and Invalidation Functions
	Time Dependency
	Who Pays the Price?
	1:1 updates
	1:N updates
	N:1 updates

	Triggered Refreshes and Invalidations
	Movie Showtimes
	Movies
	Theatres
	Orders
	Purchased tickets

	Hiding the Implementation with the Reconciler View
	Periodic Refreshes
	Completing the circle

	Cache Indexes
	Results
	Cascading Caches
	Exercises

	Chapter 13. SOA Primer
	What Is SOA?
	Why SOA?
	Shared Resources
	Synchronized tables
	A shared database
	A service-oriented architecture

	Reduce Database Load
	Slicing and dicing
	The myth of database replication

	Scalability II: Caching Is Tricky
	Reduce Local Complexity
	In Summary

	Exercises

	Chapter 14. SOA Considerations
	Service Considerations
	Implementation Details Are Hidden
	API Is Accessible

	API Design Best Practices
	Send Everything You Need
	Limit Round Trips
	Look for Opportunities for Parallelization
	Send as Little as Possible

	REST Versus XML-RPC Versus SOAP
	XML-RPC
	SOAP

	Chapter 15. An XML-RPC Service
	ActionWebService and Rails 2.0
	Creating an Abstraction Barrier
	ActiveRecord As the Physical Model Layer
	The Object Model Layer
	Defining the API

	More Testing
	The Client Plugin
	Shared Code
	The Client Singleton
	Integration Testing

	Chapter 16. Refactoring to Services
	An Orders Service
	Integrating with the MoviesService
	Other Considerations

	MoviesService Object Model
	Putting It All Together

	Chapter 17. REST Primer
	REST Basics
	Resources and Verbs
	Hardware Is Part of the Application

	Mapping REST to SOA
	Mapping to CRUD
	Different Clients, One Interface
	HTTP+POX
	Defining a Service Contract
	REST Clients in Ruby
	The Way the Web Was Meant to Be Used

	Chapter 18. A RESTful Web Service
	Scoping the Problem
	Tools
	ROXML
	Net::HTTP

	MoviesWebService
	Resources Server Implementation
	Actions Server Implementation
	A Client Implementation
	wadl.rb
	REST Describe

	Chapter 19. Caching End to End
	Data Layer Caching, Revisited
	The Snapshot
	The Refresh Function
	Invalidation Triggers
	Indexing

	Logical Model Caching
	Considerations
	Avoiding Rebuilding with Stale Data
	Cache Indexes

	Other Caching
	Query Plan Caching
	Database Query Caching
	Rails Query Caching
	Fragment, Action, and Page Caching

	Index

