
www.allitebooks.com

http://www.allitebooks.org

Praise for Essential XML

Quick Reference

“I think it is a wonderfully clear and concise summary of a great deal of key XML

material. I expect it to find a well-thumbed home on my bookshelf.”

—Mary Holstege, PhD,

XML Architect, mathling.com, and W3C XML Schema Working Group Member

“This book is a unique collection of reference material on the most relevant XML-

related standards, which takes the important W3C recommendations and puts

them all in context. Something that definitely needs to be on every XML devel-

oper's desk!”

—Alexander Falk,

President and CEO of Altova, Inc. - The XML Spy Company

“Essential XML Quick Reference proves that Aaron Skonnard and Martin Gudgin

can distill the essence of a very large, complicated topic like XML into easy to

understand, bite-sized pieces. It’s an invaluable asset!”

—Brad Wilson,

Principal Software Architect, Quality Software Development

“Essential XML Quick Reference is one of the few printed references I would actu-

ally buy.”

—Don Box,

Series Editor, The DevelopMentor Series

“The full specification is quite verbose. Having the pocket reference makes life

simpler when it comes to the ‘What was the name of that element again?’ or ‘What

were the order of the parameters to that function?’ type questions. When I need a

quick, concise, answer, I don’t want to have to thumb through hundreds of pages

before getting the answer I need. This book is a very welcome, often relied upon,

addition to my developer tool belt.”

—Drew Marsh,

 Senior Architect, Mimeo.com, Inc.

www.allitebooks.com

http://www.allitebooks.org

“I’ve read most of the documents regarding XML on the W3C site; the language

definitions and standardization jargon makes them unapproachable to most devel-

opers. This book makes the concepts make sense by giving concrete examples

showing the different syntax variations. Essential XML Quick Reference is a com-

prehensive reference book that will bridge a gap that hasn’t been filled. Almost

anyone from basic to advanced skills will be able to use this book and I know I will

keep it within arm’s reach at work. It’s a source that I will be able to go to in order

to lookup subtle syntactic information that eludes me.”

—Justin Burtch,

Software Engineer, Integrated Data Systems

www.allitebooks.com

http://www.allitebooks.org

Essential XML

Quick Reference

www.allitebooks.com

http://www.allitebooks.org

Don Box, Essential COM, 0-201-63446-5

Don Box, Aaron Skonnard, and John Lam,

Essential XML: Beyond Markup, 0-201-70914-7

Keith Brown, Programming Windows Security,

0-201-60442-6

Matthew Curland, Advanced Visual Basic 6:

Power Techniques for Everyday Programs,

0-201-70712-8

Doug Dunn, Java™ Rules, 0-201-70916-3

Tim Ewald, Transactional COM+L: Building

Scalable Applications, 0-201-61594-0

Jon Flanders, ASP Internals, 0-201-61618-1

Martin Gudgin, Essential IDL: Interface Design

for COM, 0-201-61595-9

Stuart Halloway, Component Development for

the Java™ Platform, 0-201-75306-5

Joe Hummel, Ted Pattison, Justin Gehtland,

Doug Turnure, and Brian A. Randell, Effective

Visual Basic: How to Improve Your VB/COM+

Applications, 0-201-70476-5

Stanley B. Lippman, C# Primer: A Practical

Approach, 0-201-72955-5

Everett N. McKay and Mike Woodring,

Debugging Windows Programs: Strategies, Tools,

and Techniques for Visual C++ Programmers,

0-201-70238-X

Aaron Skonnard and Martin Gudgin, Essential

XML Quick Reference: A Programmer's

Reference to XML, XPath, XSLT, XML Schema,

SOAP, and More, 0-201-74095-8

Addison-Wesley has joined forces with DevelopMentor, a premiere developer resources

company, to produce a series of technical books written by developers for developers.

DevelopMentor boasts a prestigious technical staff that includes some of the world’s

best-known computer science professionals.

“Works in The DevelopMentor Series are practical and informative sources on

the tools and techniques for applying component-based technologies to real-world,

large-scale distributed systems.”

—Don Box

Watch for future titles in The DevelopMentor Series.

Titles in the Series:

www.allitebooks.com

http://www.allitebooks.org

Essential XML
Quick Reference
A Programmer’s Reference to XML, XPath,
XSLT, XML Schema, SOAP, and More

Aaron Skonnard

Martin Gudgin

Boston • San Francisco • New York • Toronto • Montreal

London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and Addison-Wes-

ley, Inc., was aware of a trademark claim, the designations have been printed in initial capital

letters or in all capitals.

The authors and publisher have taken care in the preparation of this book but make no

expressed or implied warranty of any kind and assume no responsibility for errors or omissions.

No liability is assumed for incidental or consequential damages in connection with or arising

out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For

more information, please contact

Pearson Education Corporate Sales Division

201 W. 103rd Street

Indianapolis, IN 46290

(800) 428-5331

corpsales@pearsoned.com

Visit AW on the Web: www.aw.com/cseng/

Library of Congress Cataloging-in-Publication Data

Skonnard, Aaron

Essential XML Quick Reference : a programmer’s reference to XML, XPath, XSLT,

XML Schema, SOAP, and more / Aaron Skonnard, Martin Gudgin.

p. cm. — (The DevelopMentor series)

ISBN 0-201-74095-8

1. XML (Document markup language) I. Gudgin, Martin. II. Title. III. Series.

QA76.76.H94 S59 2001

005.7'2—d21

2001034105

Copyright © 2002 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior consent of the publisher. Printed in the United

States of America. Published simultaneously in Canada.

0-201-74095-8

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—ML—0504030201

First printing, October 2001

www.allitebooks.com

http://www.allitebooks.org

Aaron’s dedication:

To my son Nathan, for the glimpse of heaven that
you brought to my life

Martin’s dedication:

To Matthew and Sam, with love

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ix

Chapter Contents

1 XML 1.0 and Namespaces 1

2 Document Type Definitions 15

3 XPath 1.0 35

4 XPointer, XInclude, and XML Base 69

5 XSL Transformations 1.0 85

6 SAX 2.0 159

7 DOM Level 2 193

8 XML Schema Datatypes 227

9 XML Schema Structures 287

10 SOAP 1.1 357

www.allitebooks.com

http://www.allitebooks.org

xi

Detailed Contents

List of Acronyms xxi

Preface xxiii

Acknowledgments xxv

1 XML 1.0 and Namespaces 1

1.1 Elements 1

1.2 Elements, namespaces, and namespace declarations 2

1.3 Attributes 5

1.4 Attributes and namespaces 6

1.5 Processing instructions 6

1.6 Comments 7

1.7 Whitespace 8

1.8 Prohibited character literals 9

1.9 CDATA sections 11

1.10 XML declaration 11

1.11 Character references 13

1.12 Well-formed XML 13

1.13 References 14

2 Document Type Definitions 15

2.1 Introduction to DTDs 15

2.2 DOCTYPE 15

2.2.1 Internal declarations 16

2.2.2 External declarations 17

2.2.3 Internal and external declarations 18

2.3 ELEMENT 19

2.4 ATTLIST 21

2.5 ENTITY 24

2.5.1 Internal parameter entities 25

2.5.2 External parameter entities 28

xii Essential XML Quick Reference

2.5.3 Internal general entities 29

2.5.4 External general parsed entities 30

2.5.5 Unparsed entities 30

2.6 NOTATION 31

2.7 INCLUDE and IGNORE 32

2.8 References 33

3 XPath 1.0 35

3.1 Introduction to XPath 35

3.2 Location path expressions 39

3.2.1 Location steps 40

3.2.2 Axis 41

3.2.3 Node test 44

3.2.3.1 Node test by name 44

3.2.3.2 Node test by type 45

3.2.4 Predicate 46

3.2.5 Location path abbreviations 47

3.3 Basic expressions 48

3.3.1 Boolean expressions 48

3.3.2 Equality expressions 48

3.3.3 Relational expressions 51

3.3.4 Numerical expressions 51

3.4 Core Function Library 52

3.4.1 boolean 53

3.4.2 ceiling 54

3.4.3 concat 55

3.4.4 contains 55

3.4.5 count 56

3.4.6 false 56

3.4.7 floor 56

3.4.8 id 57

3.4.9 lang 58

3.4.10 last 58

3.4.11 local-name 59

3.4.12 name 59

3.4.13 namespace-uri 60

3.4.14 normalize-space 60

3.4.15 not 61

Detailed Contents xiii

3.4.16 number 61

3.4.17 position 62

3.4.18 round 62

3.4.19 starts-with 63

3.4.20 string 63

3.4.21 string-length 64

3.4.22 substring 64

3.4.23 substring-after 65

3.4.24 substring-before 65

3.4.25 sum 66

3.4.26 translate 66

3.4.27 true 67

3.5 References 67

4 XPointer, XInclude, and XML Base 69

4.1 XPointer version 1.0 69

4.1.1 Full XPointers 70

4.1.2 Bare names 71

4.1.3 Child sequences 72

4.1.4 XPointer extensions to XPath 72

4.1.5 XPointer node tests 74

4.1.6 XPointer function library 74

4.1.6.1 end-point 74

4.1.6.2 here 75

4.1.6.3 origin 75

4.1.6.4 range 76

4.1.6.5 range-inside 77

4.1.6.6 range-to 77

4.1.6.7 start-point 78

4.1.6.8 string-range 78

4.2 XInclude 79

4.2.1 include 79

4.3 XML Base 81

4.3.1 xml:base 81

4.4 References 82

5 XSL Transformations 1.0 85

5.1 Introduction to XSLT programming 86

xiv Essential XML Quick Reference

5.2 XSLT types and expressions 89

5.3 Patterns 90

5.4 Conflict resolution 91

5.5 Built-in templates 92

5.6 Exemplar-based transformation syntax 94

5.7 Attribute value templates 94

5.8 Whitespace 95

5.9 Element library 96

5.9.1 apply-imports 99

5.9.2 apply-templates 100

5.9.3 attribute 102

5.9.4 attribute-set 104

5.9.5 call-template 106

5.9.6 choose 107

5.9.7 comment 108

5.9.8 copy 109

5.9.9 copy-of 110

5.9.10 decimal-format 111

5.9.11 element 113

5.9.12 fallback 114

5.9.13 for-each 115

5.9.14 if 116

5.9.15 import 117

5.9.16 include 118

5.9.17 key 119

5.9.18 message 121

5.9.19 namespace-alias 122

5.9.20 number 124

5.9.21 otherwise 128

5.9.22 output 128

5.9.23 param 130

5.9.24 preserve-space 132

5.9.25 processing-instruction 133

5.9.26 sort 133

5.9.27 strip-space 135

5.9.28 stylesheet 136

5.9.29 template 136

5.9.30 text 140

Detailed Contents xv

5.9.31 transform (stylesheet) 141

5.9.32 value-of 143

5.9.33 variable 144

5.9.34 when 147

5.9.35 with-param 148

5.10 XSLT function library 148

5.10.1 current 149

5.10.2 document 150

5.10.3 element-available 152

5.10.4 format-number 153

5.10.5 function-available 154

5.10.6 generate-id 155

5.10.7 key 155

5.10.8 system-property 156

5.10.9 unparsed-entity-uri 157

5.11 References 157

6 SAX 2.0 159

6.1 SAX UML quick reference 159

6.2 SAX interfaces and classes 161

6.2.1 Attributes 162

6.2.2 ContentHandler 166

6.2.3 DTDHandler 175

6.2.4 EntityResolver 177

6.2.5 ErrorHandler 179

6.2.6 Locator 181

6.2.7 XMLFilter 183

6.2.8 XMLReader 185

6.3 Features and properties 190

6.4 References 191

7 DOM Level 2 193

7.1 DOM UML 193

7.2 DOM interfaces 193

7.2.1 Attr 195

7.2.2 CDATASection 197

7.2.3 CharacterData 197

7.2.4 Comment 199

xvi Essential XML Quick Reference

7.2.5 Document 199

7.2.6 DocumentFragment 205

7.2.7 DocumentType 205

7.2.8 DOMImplementation 206

7.2.9 Element 207

7.2.10 Entity 211

7.2.11 EntityReference 212

7.2.12 NamedNodeMap 212

7.2.13 Node 215

7.2.14 NodeList 223

7.2.15 Notation 225

7.2.16 ProcessingInstruction 225

7.2.17 Text 226

7.3 References 226

8 XML Schema Datatypes 227

8.1 Datatype grouping 227

8.2 Datatypes 229

8.2.1 anyURI 229

8.2.2 base64Binary 231

8.2.3 boolean 232

8.2.4 byte 232

8.2.5 date 233

8.2.6 dateTime 234

8.2.7 decimal 235

8.2.8 double 236

8.2.9 duration 237

8.2.10 ENTITIES 238

8.2.11 ENTITY 239

8.2.12 float 240

8.2.13 gDay 241

8.2.14 gMonth 242

8.2.15 gMonthDay 242

8.2.16 gYear 243

8.2.17 gYearMonth 244

8.2.18 hexBinary 245

8.2.19 ID 245

8.2.20 IDREF 246

Detailed Contents xvii

8.2.21 IDREFS 246

8.2.22 int 247

8.2.23 integer 248

8.2.24 language 249

8.2.25 long 250

8.2.26 Name 251

8.2.27 NCName 251

8.2.28 negativeInteger 252

8.2.29 NMTOKEN 253

8.2.30 NMTOKENS 253

8.2.31 nonNegativeInteger 254

8.2.32 nonPositiveInteger 255

8.2.33 normalizedString 256

8.2.34 NOTATION 257

8.2.35 positiveInteger 258

8.2.36 QName 259

8.2.37 short 259

8.2.38 string 260

8.2.39 time 261

8.2.40 token 262

8.2.41 unsignedByte 263

8.2.42 unsignedInt 264

8.2.43 unsignedLong 265

8.2.44 unsignedShort 266

8.3 Facets 267

8.3.1 enumeration 267

8.3.2 fractionDigits 268

8.3.3 length 269

8.3.4 maxExclusive 270

8.3.5 maxInclusive 271

8.3.6 maxLength 272

8.3.7 minExclusive 274

8.3.8 minInclusive 275

8.3.9 minLength 276

8.3.10 pattern 277

8.3.11 totalDigits 278

8.3.12 whiteSpace 279

xviii Essential XML Quick Reference

8.4 Language constructs 280

8.4.1 simpleType 281

8.4.2 restriction 282

8.4.3 list 283

8.4.4 union 284

8.5 References 286

9 XML Schema Structures 287

9.1 Schema element groupings 287

9.2 Structures 290

9.2.1 all 291

9.2.2 annotation 293

9.2.3 any 293

9.2.4 anyAttribute 297

9.2.5 appinfo 300

9.2.6 attribute 301

9.2.7 attributeGroup 306

9.2.8 choice 307

9.2.9 complexContent 309

9.2.10 complexType 310

9.2.11 documentation 313

9.2.12 element 314

9.2.13 extension 320

9.2.14 field 324

9.2.15 group 325

9.2.16 import 327

9.2.17 include 329

9.2.18 key 330

9.2.19 keyref 333

9.2.20 notation 333

9.2.21 redefine 335

9.2.22 restriction 337

9.2.23 schema 340

9.2.24 selector 345

9.2.25 sequence 346

9.2.26 simpleContent 348

9.2.27 unique 349

Detailed Contents xix

9.3 XML Schema structures: instance attributes 350

9.3.1 nil 350

9.3.2 noNamespaceSchemaLocation 351

9.3.3 schemaLocation 352

9.3.4 type 353

9.4 References 355

10 SOAP 1.1 357

10.1 Introduction to SOAP messages 357

10.2 Elements in SOAP messages 358

10.2.1 Body 358

10.2.2 Envelope 360

10.2.3 Fault 360

10.2.4 Header 363

10.3 Attributes in SOAP messages 364

10.3.1 actor 364

10.3.2 encodingStyle 365

10.3.3 mustUnderstand 366

10.4 Introduction to SOAP serialization rules 367

10.4.1 Serialization of simple structured data 369

10.4.2 Serialization of structured data with multiple references 371

10.4.3 Dealing with null references in complex data structures 372

10.4.4 Serializing dynamically typed data 374

10.4.5 Arrays 375

10.4.6 Multidimensional arrays 376

10.4.7 Partial transmission of arrays 377

10.4.8 Sparse arrays 378

10.4.9 Jagged arrays 379

10.5 Introduction to the SOAP HTTP binding 381

10.5.1 Content-Type 381

10.5.2 Content-Length 382

10.5.3 SOAPAction 383

10.6 References 383

Index 385

www.allitebooks.com

http://www.allitebooks.org

xxi

List of Acronyms

ASP Active Server Pages

API Application Programming Interface

BOM Byte Order Mark

CR Carriage Return

CSS Cascading Style Sheets

COM Component Object Model

UTC Coordinated Universal Time

DOM Document Object Model

DTD Document Type Definition

XML Extensible Markup Language

XSL Extensible Stylesheet Language

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDL Interface Definition Language

ISO International Standards Organization

IETF Internet Engineering Task Force

JDK Java Development Kit

JSP Java Server Pages

LF Line Feed

MIME Multipurpose Internet Mail Extensions

xxii Essential XML Quick Reference

NCName Non-colonized Name

OMG Object Management Group

QName Qualified Name

RPC Remote Procedure Call

RFC Request For Comments

SAX Simple API for XML

SOAP Simple Object Access Protocol

SQL Strutured Query Language

UTF Unicode Transformation Format

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UCS Universal Character Set

VB Visual Basic

WD Working Draft

W3C World Wide Web Consortium

XInclude XML Inclusions

Infoset XML Information Set

XLink XML Linking Language

XPointer XML Pointer Language

XSLT XSL Transformations

xxiii

Preface

This book is for anyone working with today’s mainstream XML technologies. It

was specifically designed to serve as a handy but thorough quick reference that

answers the most common XML-related technical questions.

It goes beyond the traditional pocket reference design by providing complete cov-

erage of each topic along with plenty of meaningful examples. Each chapter pro-

vides a brief introduction, which is followed by the detailed reference information.

This approach assumes the reader has a basic understanding of the given topic.

The detailed outline (at the beginning), index (in the back), bleeding tabs (along

the side), and the page headers/footers were designed to help readers quickly

find answers to their questions.

xxv

Acknowledgments

Special thanks to all of the reviewers for their thoughtful comments and detailed

work, which has vastly improved this book. In particular, thanks to Mary Holstege,

Mark Fussell, Chris Lovett, Amit Misra, Alexander Falk, Reyes Ponce, Gary

Bushey, Drew Marsh, Brad Wilson, Robert Brunner, Greg Hack, Dan Sullivan,

Scott Bloom, Ranjiv Sharma, Tim Ewald, Stuart Halloway, and Don Box. Another

special thanks to Kristin Erickson, Stephane Thomas, and Patrick Peterson for

their outstanding editorial support throughout the project as well as to the rest of

the production staff at Addison Wesley whose hard work turned our vision into

reality. We couldn’t have done it without you.

We also thank our families and friends who have contributed in countless non-

technical ways. We couldn’t have done it without you either.

1

X
M

LChapter 1

XML 1.0 and Namespaces

XML 1.0 and Namespaces in XML provide a tag-based syntax for structuring data

and applying markups to documents. Documents that conform to XML 1.0 and

Namespaces in XML specifications may be made up of a variety of syntactic con-

structs such as elements, namespace declarations, attributes, processing instruc-

tions, comments, and text. This chapter provides a description of each of the

structural elements in XML along with their syntax.

1.1 Elements

<tagname></tagname>

<tagname/>

<tagname>children</tagname>

Elements typically make up the majority of the content of an XML document.

Every XML document has exactly one top-level element, known as the document

element. Elements have a name and may also have children. These children may

themselves be elements or may be processing instructions, comments, CDATA

sections, or characters. The children of an element are ordered. Elements may

also be annotated with attributes. The attributes of an element are unordered. An

element may also have namespace declarations associated with it. The namespace

declarations of an element are unordered.

Elements are serialized as a pair of tags: an open tag and a close tag. The syntax

for an open tag is the less-than character (<) immediately followed by the name of

the element, also known as the tagname, followed by the greater-than character

(>). The syntax for a close tag is the character sequence </ immediately followed

by the tagname, followed by the greater-than character. The children of an ele-

ment are serialized between the open and close tags of their parent. In cases

when an element has no children, the element is said to be empty. A shorthand

syntax may be used for empty elements consisting of the less-than character

immediately followed by the tagname, followed by the character sequence />.

2 Essential XML Quick Reference

XML does not define any element names; rather, it allows the designer of an XML

document to choose what names will be used. Element names in XML are case

sensitive and must begin with a letter or an underscore (_). The initial character

may be followed by any number of letters, digits, periods (.), hyphens (-), under-

scores, or colons (:). However, because colons are used as part of the syntax for

namespaces in XML, they should not be used except as described by that speci-

fication (see Section 1.2). Element names that begin with the character sequence

xml, or any recapitalization thereof, are reserved by the XML specification for

future use.

Examples

An element with children

An element with a tagname of Person. The element has children with tagnames

of name and age. Both of these child elements have text content.

An empty element

An empty element with a tagname of Paid

Empty element shorthand

An empty element with a tagname of Paid using the shorthand syntax

1.2 Elements, namespaces, and namespace declarations

<prefix:localname xmlns:prefix='namespace URI'/>

<prefix:localname xmlns:prefix='namespace URI'></

prefix:localname/>

<prefix:localname xmlns:prefix='namespace URI'>children</

prefix:localname/>

<Person>

 <name>Martin</name>

 <age>33</age>

</Person>

<Paid></Paid>

<Paid/>

XML 1.0 and Namespaces 3

X
M

L

Because XML allows designers to chose their own tagnames, it is possible that

two or more designers may choose the same tagnames for some or all of their

elements. XML namespaces provide a way to distinguish deterministically

between XML elements that have the same local name but are, in fact, from differ-

ent vocabularies. This is done by associating an element with a namespace. A

namespace acts as a scope for all elements associated with it. Namespaces

themselves also have names. A namespace name is a uniform resource identifier

(URI). Such a URI serves as a unique string and need not be able to be derefer-

enced. The namespace name and the local name of the element together form a

globally unique name known as a qualified name.

Namespace declarations appear inside an element start tag and are used to map

a namespace name to another, typically shorter, string known as a namespace

prefix. The syntax for a namespace declaration is xmlns:prefix='URI'. It is

also possible to map a namespace name to no prefix using a default namespace

declaration. The syntax for a default namespace declaration is xmlns='URI'. In

both cases, the URI may appear in single quotes (') or double quotes ("). Only

one default namespace declaration may appear on an element. Any number of

nondefault namespace declarations may appear on an element, provided they all

have different prefix parts. It is legal, although not particularly useful, to map the

same URI to more than one prefix.

All namespace declarations have a scope—that is, a set of elements to which

they may apply. A namespace declaration is in scope for the element on which it

is declared and all of that element’s descendants. The in-scope mapping of a

given prefix to a namespace name can be overridden by providing a new mapping

for that prefix on a descendant element. The in-scope default namespace can be

overridden by providing a new default namespace declaration on a descendant

element.

The names of all elements in a document that conforms to the Namespaces in the

XML specification are QNames. Syntactically, all QNames have a local name and

an optional prefix. Both the local name and the prefix are NCNames. An NCName

is a name without a colon in it. The syntax for an element with a prefix is the pre-

fix, followed by a colon, followed by the local name. The namespace of an ele-

ment with a given prefix is the namespace specified by the in-scope namespace

declaration for that prefix. It is an error if no such namespace declaration is in

scope. The namespace of unprefixed elements is the namespace specified by the

in-scope default namespace declaration, if any. If no default namespace declara-

tion is in scope, then such elements are not in any namespace. Elements not in

any namespace are known as unqualified elements. The namespace name of

www.allitebooks.com

http://www.allitebooks.org

4 Essential XML Quick Reference

unqualified elements is the empty string "". If a default namespace declaration is

in scope and an unqualified element is required, the default namespace declara-

tion can be masked by providing a namespace declaration of the form

xmlns='' on the element.

Examples

Qualified and unqualified elements

An element with a local name of Person and a prefix of pre that is mapped to

the namespace name urn:example-org:People. The element has children

with local names of name and age. Both of these child elements are unqualified;

that is, they are not in any namespace.

Qualified and unqualified elements using a default namespace declaration

An element with a local name of Person and no prefix. The element is in the

namespace urn:example-org:People by virtue of an in-scope default

namespace declaration for that URI. The element has children with local names of

name and age. Both of these child elements are unqualified; that is, they are not

in any namespace. This example is equivalent to the previous example.

Qualified elements

An element with a local name of Person and a prefix of pre that is mapped to

the namespace URI urn:example-org:People. The element has children

with local names of name and age. Both of these child elements also have a pre-

fix of pre and are in the urn:example-org:People namespace.

<pre:Person xmlns:pre='urn:example-org:People' >

 <name>Martin</name>

 <age>33</age>

</pre:Person>

<Person xmlns='urn:example-org:People' >

 <name xmlns=''>Martin</name>

 <age xmlns=''>33</age>

</Person>

<pre:Person xmlns:pre='urn:example-org:People' >

 <pre:name>Martin</pre:name>

 <pre:age>33</pre:age>

</pre:Person>

XML 1.0 and Namespaces 5

X
M

L

Qualified elements using a default namespace declaration

An element with a local name of Person and no prefix. The element is in the

namespace urn:example-org:People by virtue of an in-scope default

namespace declaration for that URI. The element has children with local names of

name and age. Both of these child elements are also in the urn:example-

org:People namespace. This example is equivalent to the previous example.

1.3 Attributes

name='value'

name="value"

Elements can be annotated with attributes. Attributes can be used to encode

actual data or to provide metadata about an element—that is, provide extra infor-

mation about the content of the element on which they appear. The attributes for

a given element are serialized inside the start tag for that element. Attributes

appear as name/value pairs separated by an equal sign (=). Attribute names have

the same construction rules as element names. Attribute values are textual in

nature and must appear either in single quotes or double quotes. An element may

have any number of attributes, but they must all have different names.

Examples

Data attributes

A person represented using attributes rather than child elements

Metadata attributes

Some elements with metadata attributes

<Person xmlns='urn:example-org:People' >

 <name>Martin</name>

 <age>33</age>

</Person>

<Person name='Martin' age='33' />

<age base='16' units='years' >20</age>

<age base="10" units="years" >32</age>

6 Essential XML Quick Reference

1.4 Attributes and namespaces

prefix:localname='value'

prefix:localname="value"

Attribute names are QNames. The namespace of an attribute with a given prefix is

the namespace specified by the in-scope namespace declaration for that prefix. It

is an error if no such namespace declaration is in scope. Unprefixed attributes

are not in any namespace even if a default namespace declaration is in scope.

Examples

Qualified attributes

An attribute with a local name of base in the namespace urn:example-

org:People:base and an attribute with a local name of units in the

namespace urn:example-org:units

Unqualified attributes

Attributes that are in no namespace, even though a default namespace declara-

tion is in scope

1.5 Processing instructions

<?target data?>

Processing instructions are used to provide information to the application pro-

cessing an XML document. Such information may include instructions on how to

process the document, how to display the document, and so forth. Processing

<Person xmlns='urn:example-org:People'

 xmlns:b='urn:example-org:People:base'

 xmlns:u='urn:example-org:units' >

 <name>Martin</name>

 <age b:base='10' u:units='years' >33</age>

</Person>

<Person xmlns='urn:example-org:People' >

 <name>Martin</name>

 <age base='10' units='years' >33</age>

</Person>

XML 1.0 and Namespaces 7

X
M

L

instructions can appear as children of elements. They can also appear as top-

level constructs (children of the document) either before or after the document

element.

Processing instructions are composed of two parts: the target or name of the

processing instruction and the data or information. The syntax takes the form

<?target data?>. The target follows the same construction rules as for ele-

ment and attribute names. Apart from the termination character sequence (?>),

all markup is ignored in processing instruction content. Processing instructions

defined by organizations other than the World Wide Web Consortium (W3C) may

not have targets that begin with the character sequence xml or any recapitaliza-

tion thereof.

Namespace declarations do not apply to processing instructions. Thus, creating

targets that are guaranteed to be unique is problematic.

Example

Processing instructions

Various processing instructions

1.6 Comments

<!-- comment text -->

XML supports comments that are used to provide information to humans about

the actual XML content. They are not used to encode actual data. Comments can

appear as children of elements. They can also appear as top-level constructs

(children of the document) either before or after the document element.

Comments begin with the character sequence <!-- and end with the character

sequence -->. The text of the comment is serialized between the start and the

end sequences. The character sequence -- may not appear inside a comment.

Other markup characters such as less than, greater than, and ampersand (&),

may appear inside comments but are not treated as markup. Thus, entity refer-

ences that appear inside comments are not expanded.

<?display table-view?>

<?sort alpha-ascending?>

<?textinfo whitespace is allowed ?>

<?elementnames <fred>, <bert>, <harry> ?>

8 Essential XML Quick Reference

Examples

Legal comments

Some syntactically legal comments

Illegal comments

Some syntactically illegal comments

1.7 Whitespace

Whitespace characters in XML are space, tab, carriage return, and line feed char-

acters. XML requires that whitespace be used to separate attributes and

namespace declarations from each other and from the element tagname.

Whitespace is also required between the target and data portion of a processing

instruction and between the text portion of a comment and the closing comment

character sequence (-->) if that text ends with a hyphen (-). XML allows

whitespace inside element content, attribute values, processing instruction data,

and comment text. Whitespace is also allowed between an attribute name and the

equal character and between the equal character and the attribute value. The

same is true for namespace declarations. Whitespace is allowed between the tag-

name of an open or close tag and the ending character sequence for that tag.

Whitespace is not allowed between the opening less-than character and the ele-

ment tagname or between the prefix, colon, and local name of an element or

attribute. Nor is it allowed between the start processing instruction character

sequence <? and the target.

<!-- This is a comment about how to open (<![CDATA[) and

close (]]>) CDATA sections -->

<!-- I really like having elements called <fred> in my

markup languages -->

<!-- Comments can contain all sorts of character literals

including &, <, >, ' and". -->

<!-- If entities are used inside comments (< for

example) they are not expanded. -->

<!-- Comments cannot contain the -- character sequence -->

<!-- Comments cannot end with a hyphen --->

<!-- Comments cannot <!-- be nested --> -->

XML 1.0 and Namespaces 9

X
M

L

Examples

Legal use of whitespace

Whitespace used in various places in an XML document: between the tagname,

namespace declaration, attribute, and closing greater-than character on the top-

level element start tag, between each element, in the character content of the

seats and colour elements, between the tagname and the /> sequence of

the petrol element, between the tagname and the closing greater-than charac-

ter of the end tag for the engine element and the top-level element.

Illegal use of whitespace

Whitespace used incorrectly in various places in an XML document: between pre

and :Vehicle in the start tag of the top-level element, between xmlns: and

pre of the namespace declaration of the top-level element, between the opening

less-than character and seats in the start tag of the child element, and between

</ and seats in the end tag of the child element.

1.8 Prohibited character literals

<

&

>

'

"

<pre:Vehicle xmlns:pre='urn:example-org:Transport'

type='car' >

 <seats> 4 </seats>

 <colour> White </colour>

 <engine>

 <petrol />

 <capacity units='cc' >1598</capacity>

 </engine >

</pre:Vehicle >

<pre :Vehicle xmlns:pre='urn:example-org:Transport'

type='car'>

 < seats>4</ seats>

</pre:Vehicle>

10 Essential XML Quick Reference

Certain characters cause problems when used as element content or inside

attribute values. Specifically, the less-than character cannot appear either as a

child of an element or inside an attribute value because it is interpreted as the

start of an element. The same restrictions apply to the ampersand because it is

used to indicate the start of an entity reference. If the less-than or ampersand

characters need to be encoded as element children or inside an attribute value,

then a character entity must be used. Entities begin with an ampersand and end

with a semicolon (;). Between the two, the name of the entity appears. The entity

for the less-than character is < the entity for the ampersand is &.

The apostrophe (') and quote characters (") may also need to be encoded as

entities when used in attribute values. If the delimiter for the attribute value is the

apostrophe, then the quote character is legal but the apostrophe character is not,

because it would signal the end of the attribute value. If an apostrophe is needed,

the character entity ' must be used. Similarly, if a quote character is

needed in an attribute value that is delimited by quotes, then the character entity

" must be used.

A fifth character reference is also provided for the greater-than character.

Although strictly speaking such characters seldom need to be “escaped,” many

people prefer to “escape” them for consistency with the less-than character.

Examples

Built-in entity in element content

Use of the built-in entity & inside element content

Built-in entity in attribute content

Use of the built-in entity ' inside attribute content

<IceCream>

 <name>Cherry Garcia</name>

 <manufacturer>Ben & Jerry</manufacturer>

</IceCream>

<sayhello word=''Hi'' />

XML 1.0 and Namespaces 11

X
M

L

1.9 CDATA sections

<![CDATA[text content possibly containing literal < or &

characters]]>

CDATA sections can be used to “block escape” literal text when replacing prohib-

ited characters with entity references is undesirable. CDATA sections can appear

inside element content and allow < and & character literals to appear. A CDATA

section begins with the character sequence <![CDATA[and ends with the char-

acter sequence]]>. Between the two character sequences, an XML processor

ignores all markup characters such as <, >, and &. The only markup an XML pro-

cessor recognizes inside a CDATA section is the closing character sequence

]]>. The character sequence that ends a CDATA section]]> must not appear

inside the element content. Instead, the closing greater-than character must be

escaped using the appropriate entity >. CDATA sections cannot be nested.

Example

CDATA section

Use of literal less-than characters in a CDATA section

1.10 The XML declaration

<?xml version='1.0' encoding='character encoding'

standalone='yes|no'?>

XML documents can contain an XML declaration that if present, must be the first

construct in the document. An XML declaration is made up of as many as three

name/value pairs, syntactically identical to attributes. The three attributes are a

mandatory version attribute and optional encoding and standalone

attributes. The order of these attributes within an XML declaration is fixed.

The XML declaration begins with the character sequence <?xml and ends with the

character sequence ?>. Note that although this syntax is identical to that for process-

ing instructions, the XML declaration is not considered to be a processing instruction.

All XML declarations have a version attribute with a value that must be 1.0.

<sometext>

<![CDATA[They're saying "x < y" & that "z > y" so I guess

that means that z > x]]>

</sometext>

12 Essential XML Quick Reference

The character encoding used for the document content can be specified through

the encoding attribute. XML documents are inherently Unicode, even when stored

in a non-Unicode character encoding. The XML recommendation defines several pos-

sible values for the encoding attribute. For example, UTF-8, UTF-16, ISO-10646-

UCS-2, and ISO-10646-UCS-4 all refer to Unicode/ISO-10646 encodings, whereas

ISO-8859-1 and ISO-8859-2 refer to 8-bit Latin character encodings. Encodings for

other character sets including Chinese, Japanese, and Korean characters are

also supported. It is recommended that encodings be referred to using the encod-

ing names registered with the Internet Assigned Numbers Authority (IANA).

All XML processors are required to be able to process documents encoded using

UTF-8 or UTF-16, with or without an XML declaration. The encoding of UTF-8- and

UTF-16-encoded documents is detected using the Unicode byte-order-mark. The XML

declaration is mandatory if the encoding of the document is anything other than

UTF-8 or UTF-16. In practice, this means that documents encoded using US-ASCII

can also omit the XML declaration because US-ASCII overlaps entirely with UTF-8.

Only one encoding can be used for an entire XML document. It is not possible to

“redefine” the encoding part of the way through. If data in different encodings

needs to be represented, then external entities should be used.

If an XML document can be read with no reference to external sources, it is said

to be a stand-alone document. Such documents can be annotated with a stan-

dalone attribute with a value of yes in the XML declaration. If an XML document

requires external sources to be resolved to parse correctly and/or to construct

the entire data tree (for example, a document with references to external general

entities), then it is not a stand-alone document. Such documents may be marked

standalone='no', but because this is the default, such an annotation rarely

appears in XML documents.

Example

XML declarations

<?xml version='1.0' ?>

<?xml version='1.0' encoding='US-ASCII' ?>

<?xml version='1.0' encoding='US-ASCII' standalone='yes' ?>

<?xml version='1.0' encoding='UTF-8' ?>

<?xml version='1.0' encoding='UTF-16' ?>

<?xml version='1.0' encoding='ISO-10646-UCS-2' ?>

<?xml version='1.0' encoding='ISO-8859-1' ?>

<?xml version='1.0' encoding='Shift-JIS' ?>

XML 1.0 and Namespaces 13

X
M

L

1.11 Character references

&#DecimalUnicodeValue;

&#xHexadecimalUnicodeValue;

Many character encodings cannot natively represent the full range of ISO-10646

characters. When an XML document contains characters that cannot be represented

natively in the chosen encoding, then these nonrepresentable characters must be

written as character references. Character references begin with the character

sequence &# followed by the ISO-10646 value of the character to be written in

either decimal or hexadecimal form. If the character value is represented in hexa-

decimal form, then it must be preceded by an x. Character references end with ;.

Character references can only be used for attribute and element content. Nonrep-

resentable characters appearing as part of element or attribute names or as part

of processing instructions or comments cannot be written using character refer-

ences; rather, a more suitable encoding must be used instead.

Example

Character references

Character references appearing in element and attribute content

1.12 Well-formed XML

All XML must be well formed. A well-formed XML document is one in which, in

addition to all the constructs being syntactically correct, there is exactly one top-

level element, all open tags have a corresponding close tag or use the empty element

shorthand syntax, and all tags are correctly nested (that is, close tags do not

overlap). In addition, all the attributes of an element must have different names. If

attributes are namespace qualified then the combination of namespace name and

local name must be different. Similarly, all the namespace declarations of an ele-

ment must be for different prefixes. All namespace prefixes used must have a cor-

responding namespace declaration that is in scope.

<?xml version='1.0' encoding='US-ASCII' ?>

<Personne occupation='étudiant' >

 <nom>Martin</nom>

 <langue>Français</langue>

</Personne>

www.allitebooks.com

http://www.allitebooks.org

14 Essential XML Quick Reference

Examples

Well-formed XML

A well-formed XML document

XML that is not well formed

An XML document that is not well formed because it has two top-level elements,

the and <i> tags inside the age element overlap, the height element has

duplicate unqualified attribute names, the weight element has duplicate quali-

fied attribute names, and the namespace prefix p is not in scope

1.13 References

Extensible Markup Language (XML) 1.0 (Second Edition).

Available at http://www.w3.org/TR/REC-xml. Tim Bray et al. October, 2000.

Namespaces in XML.

Available at http:// www.w3.org/TR/REC-xml/-names. Tim Bray et al. 1998, 2000.

<?xml version='1.0' encoding='UTF-8' ?>

<p:Person xmlns:p='urn:example-org:People' >

 <name>Martin</name>

 <!-- Young and spritely -->

 <age>33</age>

 <height units='inches' >64</height>

</p:Person>

<?xml version='1.0' encoding='UTF-8' ?>

<p:Person>

 <name>Martin</name>

 <age value='33' >A young <i>and</i> spritely

person</age>

 <height units='inches' units='in'>64</height>

 <weight xmlns:x1='urn:example-org:People'

xmlns:x2='urn:example-org:People'

x1:units='stone' x2:units='shekels' >10</weight>

</p:Person>

<p:Person/>

15

D
T
D

Chapter 2

Document Type Definitions

Document type definitions (DTDs) serve two general purposes. They provide the

syntax for describing/constraining the logical structure of a document, and com-

posing a logical document from physical entities. Element/attribute declarations

are used to deal with the former, and entity/notation declarations are used to

accomplish the latter.

2.1 Introduction to DTDs

DTDs contain several types of declarations including DOCTYPE, ENTITY, NOTA-

TION, ELEMENT, and ATTLIST. ENTITY and NOTATION declarations are used

to compose the logical structure of the document, whereas ELEMENT and

ATTLIST declarations are used to describe/constrain the details of the resulting

logical structure (for example, what elements are allowed as children of a person

element, and so on). In addition to these declarations, DTDs may also contain

comments and processing instructions.

The rest of this chapter defines the details of each type of declaration and pro-

vides examples of each.

2.2 DOCTYPE

<!DOCTYPE ... >

The DOCTYPE declaration is the container for all other DTD declarations. It’s

placed at the top of an XML document to associate the given document with a set

of declarations. The name of the DOCTYPE must be the same as the name of the

document’s root element. DOCTYPE is not used in external DTDs, but rather in

XML document instances that contain or reference a DTD.

16 Essential XML Quick Reference

DOCTYPE may contain internal declarations (referred to as the internal DTD sub-

set), may refer to declarations in external files (referred to as the external DTD

subset), or may use a combination of both techniques. Figure 2–1 illustrates the

DOCTYPE syntax for each approach.

The following subsections outline the syntax for each technique.

2.2.1 Internal declarations

<!DOCTYPE name [

 <!-- insert declarations here -->

]>

Description

The simplest way to define a DTD is through internal declarations. In this case, all

declarations are simply placed between the open/close square brackets. The

obvious downside to this approach is that you can’t reuse the declarations across

different XML document instances.

Example

Using internal declarations

Figure 2–1 DOCTYPE syntax.

<!DOCTYPE name [

ext ID

>

must match
document
element

]decls

internal
declarations

PUBLIC

SYSTEM

"publicId"

"systemId"

references external DTD

ext ID

<!DOCTYPE person [

 <!-- internal subset -->

 <!ELEMENT person (name, age)>

 <!ELEMENT name (#PCDATA)>

D
T
D

Document Type Definitions 17

2.2.2 External declarations

<!DOCTYPE name PUBLIC "publicId" "systemId">

<!DOCTYPE name SYSTEM "systemId">

Description

DOCTYPE can also contain a reference to an external resource containing the

declarations. This type of declaration is useful because it allows you to reuse the

declarations in multiple document instances. The DOCTYPE declaration refer-

ences the external resource through public and system identifiers.

A system identifier is a URI that identifies the location of the resource; a public

identifier is a location-independent identifier. Processors can use the public identi-

fier to determine how to retrieve the physical resource if necessary. As an exam-

ple, some processors are built to recognize certain public identifiers to avoid ever

having to dereference their associated system identifiers. This allows processors

to cache a set of well-known entities for better performance.

The PUBLIC token identifies a public identifier followed by a backup system iden-

tifier. If you don’t wish to use a public identifier, simply use the SYSTEM token fol-

lowed by the system identifier.

Examples

Using external declarations (public identifier)

 <!ELEMENT age (#PCDATA)>

]>

<person>

 <name>Billy Bob</name>

 <age>33</age>

</person>

<!-- person.dtd -->

<!ELEMENT person (name, age)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!-- person.xml -->

<!DOCTYPE person PUBLIC

18 Essential XML Quick Reference

Using external declarations (system identifier)

2.2.3 Internal and external declarations

<!DOCTYPE name PUBLIC "publicId" "systemId" [

 <!-- insert declarations here -->

]>

<!DOCTYPE name SYSTEM "systemId" [

 <!-- insert declarations here -->

]>

Description

A DOCTYPE declaration can also use both the internal and external declarations.

This is useful when you’ve decided to use external declarations but you need to

extend them further or override certain external declarations. (Note: only

ENTITY and ATTLIST declarations may be overridden.) See Section 2.5 for an

example of overriding ENTITY declarations.

 "uuid:d2d19398-4be3-4928-a0fc-26d572a19f39"

 "http://www.develop.com/people/person.dtd">

<person>

 <name>Billy Bob</name>

 <age>33</age>

</person>

<!-- person.dtd -->

<!ELEMENT person (name, age)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!-- person.xml -->

<!DOCTYPE person SYSTEM "person.dtd">

<person>

 <name>Billy Bob</name>

 <age>33</age>

</person>

D
T
D

Document Type Definitions 19

Example

Using both internal and external declarations

2.3 ELEMENT

<!ELEMENT name content-model>

An ELEMENT declaration defines an element of the specified name with the spec-

ified content model. The content model defines the element’s allowed children. A

content model can consist of a keyword ANY/EMPTY or a child group definition

enclosed within parentheses. Parentheses may be nested to create additional

groups within groups.

Content model basics

There is also a set of occurrence modifiers that can be used to control how many

times a particular child or group occurs in the content model.

<!-- globals.dtd -->

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!-- person.xml -->

<!DOCTYPE person SYSTEM "globals.dtd" [

 <!ELEMENT person (name, age)>

]>

<person>

 <name>Billy Bob</name>

 <age>33</age>

</person>

Syntax Description

ANY Any child is allowed within the element.

EMPTY No children are allowed within the element.

(#PCDATA) Only text is allowed within the element.

(child1,child2,...) Only the specified children in the order given are

allowed within the element.

(child1|child2|...) Only one of the specified children is allowed within the

element.

20 Essential XML Quick Reference

Occurrence modifiers

A mixed content model is a special declaration that allows a mixture of text and

child elements in any order. Mixed content models must use the following syntax:

<!ELEMENT name (#PCDATA | child1 | child2 | ...)*>

Examples

Element and text content models

Syntax Description

No modifier means the child or child group must appear exactly once at

the specified location (except in a choice content model).

* Annotated child or child group may appear zero or more times at the

specified location.

+ Annotated child or child group may appear one or more times at the

specified location.

? Annotated child or child group may appear zero or one time at the spec-

ified location.

<!-- person.dtd -->

<!ELEMENT person (name, age, children?)>

<!ELEMENT name (fname, (mi|mname)?, lname)?>

<!ELEMENT fname (#PCDATA)>

<!ELEMENT lname (#PCDATA)>

<!ELEMENT mi (#PCDATA)>

<!ELEMENT mname (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT children (person*)>

<!-- person.xml -->

<!DOCTYPE person SYSTEM "person.dtd">

<person>

 <name>

 <fname>Billy</fname>

 <lname>Smith</lname>

 </name>

 <age>43</age>

 <children>

 <person>

 <name/>

 <age>0.1</age>

D
T
D

Document Type Definitions 21

Mixed content model

2.4 ATTLIST

<!ATTLIST eName aName1 aType default

 aName2 aType default ...>

An ATTLIST declaration defines the set of attributes that is allowed on a given

element. Each attribute in the set has a name, type, and default declaration. The

following sections describe attribute types and default declarations.

Attribute types

Attribute types make it possible to constrain the attribute value in different ways.

See the following list of type identifiers for details.

 </person>

 <person>

 <name>

 <fname>Jill</fname>

 <mi>J</mi>

 <lname>Smith</lname>

 </name>

 <age>21</age>

 </person>

 </children>

</person>

<!-- p.dtd -->

<!ELEMENT p (#PCDATA | b | i)*>

<!ELEMENT b (#PCDATA)>

<!ELEMENT i (#PCDATA)>

<!-- p.xml -->

<!DOCTYPE p SYSTEM "p.dtd">

<p>This <i>is</i> an example of <i>mixed</i>

<i>content</i>!</p>

Type Description

CDATA Arbitrary character data

ID A name that is unique within the document

22 Essential XML Quick Reference

Default declarations

After the attribute type, you must specify either a default value for the attribute or

a keyword that specifies whether it is required.

Attribute enumerations

<!ATTLIST eName aName (token1 | token2 | token3 | ...)>

<!ATTLIST eName aName NOTATION (token1 | token2 | token3 |

...)>

It’s also possible to define an attribute as an enumeration of tokens. The tokens

may be of type NMTOKEN or NOTATION. In either case, the attribute value must

be one of the specified enumerated values.

Examples

Using attribute types

IDREF A reference to an ID value in the document

IDREFS A space-delimited list of IDREF values

ENTITY The name of an unparsed entity declared in the DTD

ENTITIES A space-delimited list of ENTITY values

NMTOKEN A valid XML name (see Chapter 1)

NMTOKENS A space-delimited list of NMTOKEN values

Type Description

Declaration Description

"value" Default value for attribute. If the attribute is not explicitly used

on the given element, it will still exist in the logical document

with the specified default value.

#REQUIRED Attribute is required on the given element.

#IMPLIED Attribute is optional on the given element.

#FIXED "value" Attribute always has the specified fixed value. It may be used

on the given element but it must have the specified fixed value.

If the attribute is not explicitly used on the given element, it will

still exist in the logical document with the specified fixed value.

<!-- emp.dtd -->

<!ELEMENT employees (employee*)>

<!ELEMENT employee (#PCDATA)>

D
T
D

Document Type Definitions 23

Using attribute enumerations

<!ATTLIST employee

 name CDATA #REQUIRED

 species NMTOKEN #FIXED "human"

 id ID #REQUIRED

 mgr IDREF #IMPLIED

 manage IDREFS #IMPLIED>

<!-- emp.xml -->

<!DOCTYPE employees SYSTEM "emp.dtd">

<employees>

 <employee name="Billy Bob" id="e100" manage="e101 e102"/>

 <employee name="Jesse Jim" id="e101" mgr="e100"/>

 <employee name="Sarah Sas" id="e102" mgr="e100"

 manage="e103" species="human"/>

 <employee name="Nikki Nak" id="e103" mgr="e102"/>

 <employee name="Peter Pan" id="e104"/>

</employees>

<!-- emp.dtd -->

<!ELEMENT employee (address)>

<!-- NMTOKEN enumeration -->

<!ATTLIST employee

 title (president|vice-pres|secretary|sales)

 #REQUIRED>

<!ELEMENT address (#PCDATA)>

<!-- NOTATION enumeration -->

<!ATTLIST address

 format NOTATION (cs|lf) "cs">

<!NOTATION cs PUBLIC "urn:addresses:comma-separated">

<!NOTATION lf PUBLIC "urn:addresses:line-breaks">

<!-- emp.xml -->

<!DOCTYPE employee SYSTEM "emp.dtd">

<employee title='vice-pres'>

 <!-- notation informs consuming application how to

 process element content -->

 <address format='cs'>1927 N 52 E, Layton, UT, 84041

</address>

</employee>

www.allitebooks.com

http://www.allitebooks.org

24 Essential XML Quick Reference

2.5 ENTITY

<!ENTITY ... >

Entities are the most atomic unit of information in XML. Entities are used to con-

struct logical XML documents (as well as DTDs) from physical resources. An XML

document that contains a DOCTYPE declaration is known as the document entity.

There are several other types of entities, each of which is declared using an

ENTITY declaration. A given entity is either general or parameter, internal or

external, and parsed or unparsed:

General versus parameter entities

Internal versus external entities

Parsed versus unparsed entities

All of these are declared using an ENTITY declaration. Figure 2–2 illustrates how

the syntax varies for each type:

General Entity may only be referenced in an XML document (not the DTD).

Parameter Entity may only be referenced in a DTD (not the XML document).

Internal Entity value defined inline.

External Entity value contained in an external resource.

Parsed Entity value parsed by a processor as XML/DTD content.

Unparsed Entity value not parsed by XML processor.

Figure 2–2 ENTITY syntax.

<!ENTITY
%

name

"value "

ext ID

NDATA nname

>

unparsed (must be
general)

parsed
internal

general

parameter

parsed

PUBLIC

SYSTEM

"publicId"

"systemId"

external

ext ID

D
T
D

Document Type Definitions 25

As you can see from Figure 2–2, unparsed entities are always general and exter-

nal whereas parameter/internal entities are always parsed. In reality, there are

only five distinct entity types (besides the document entity), each of which is

defined in more detail in the following subsections. Note that although the syntax

for external entities only shows using a system identifier, public identifiers may

also be used as shown in Figure 2–2.

Distinct entity types

The previous syntax is for declaring entities. Once an entity has been declared, it

can be used in either the DTD (parameter) or the XML document (general) through

an entity reference. The following table shows the syntax for entity references:

Entity references

2.5.1 Internal parameter entities

<!ENTITY % name "value">

Description

Internal parameter entities are used to parameterize portions of the DTD (for

example, other declarations) or they can contain one or more complete declara-

tions. Internal parameter entities are always parsed. A reference to an internal

parameter entity (%name;) is replaced with the parsed content.

Syntax Description

<!ENTITY % name "value"> Internal parameter

<!ENTITY % name SYSTEM "systemId"> External parameter

<!ENTITY name "value"> Internal general

<!ENTITY name SYSTEM "systemId"> External parsed general

<!ENTITY name SYSTEM "systemId" NDATA nname> Unparsed

Syntax Description

&name; General

%name; Parameter

Name is used as the value of an attribute of type ENTITY or

ENTITIES (see Section 2.4)

Unparsed

26 Essential XML Quick Reference

Parameter entities may not be referenced within other declarations in the internal

subset but they may be used in place of a complete declaration. This does not

apply to the external subset, however, in which parameter entities may also be

referenced within other declarations. Parameter entities may be referenced within

ELEMENT, ATTRIBUTE, NOTATION, and even other ENTITY declarations. It’s

common to override parameter entities defined in the external subset with decla-

rations in the internal subset (see the following example).

When parameter entity references are expanded, they are enlarged by attaching

one leading and trailing space character to the entity value, except when parame-

ter entities are referenced within other entity values. As a result, parameter entity

references may not be used as part of a name (because XML names may not con-

tain whitespace) as shown here:

<!ELEMENT %prefix;:person (child1, child2)> <!-- illegal -->

But they may be used to parameterize a complete name, as shown here:

<!ELEMENT %completeName; (child1, child2)> <!-- legal -->

Examples

Parameter entities in the internal subset

Parameter entities in the external subset

<!DOCTYPE person [

 <!ELEMENT person (name)>

 <!ENTITY % nameDecl "<!ELEMENT name (#PCDATA)>">

 <!-- parameter entity expands to

 complete declaration -->

 %nameDecl;

]>

<person><name>Billy Bob</name></person>

<!-- person.dtd -->

<!ENTITY % person-content "name, age">

<!ELEMENT person (%person-content;)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!-- person1.xml -->

<!DOCTYPE person SYSTEM "person.dtd">

D
T
D

Document Type Definitions 27

This example illustrates how the person element’s content model can be speci-

fied through the person-content parameter entity.

Parameterizing an external DTD with respect to namespace prefixes

<person>

 <name>Billy Bob</name>

 <age>33</age>

</person>

<!-- person2.xml -->

<!DOCTYPE person SYSTEM "person.dtd" [

 <!-- change person's content model -->

 <!ENTITY % person-content "age, name">

]>

<person>

 <age>33</age>

 <name>Billy Bob</name>

</person>

<!-- person.dtd -->

<!ENTITY % prefix "p">

<!ENTITY % personName "%prefix;:person">

<!ENTITY % nameName "%prefix;:name">

<!ENTITY % ageName "%prefix;:age">

<!ENTITY % xmlnsPerson "xmlns:%prefix;">

<!ELEMENT %personName; (%nameName;, %ageName;)>

<!ATTLIST %personName;

 %xmlnsPerson; CDATA #REQUIRED>

<!ELEMENT %nameName; (#PCDATA)>

<!ELEMENT %ageName; (#PCDATA)>

<!-- person1.xml -->

<!DOCTYPE p:person SYSTEM "person.dtd">

<p:person xmlns:p='urn:person:demo'>

 <p:name>Billy Bob</p:name>

 <p:age>33</p:age>

</p:person>

<!-- person2.xml -->

<!DOCTYPE x:person SYSTEM "person.dtd" [

 <!-- override the prefix to be 'x' -->

28 Essential XML Quick Reference

This external DTD was designed for a person document that uses namespace

prefixes. Because the actual namespace prefix used doesn’t matter, it has been

defined as a parameter entity that is then used to construct the other names used

in the DTD. By default, the prefix is expected to be 'p'. However, a given

instance document can override its value by providing a new declaration for the

prefix parameter entity.

2.5.2 External parameter entities

<!ENTITY % name PUBLIC "publicId" "systemId">

<!ENTITY % name SYSTEM "systemId">

Description

External parameter entities are used to include declarations from external

resources. External parameter entities are always parsed. A reference to an

external parameter entity (%name;) is replaced with the parsed content. The

restrictions on where internal parameter entity references are used also apply to

external parameter entity references (see previous section for more details).

Example

Using external parameter entities

 <!ENTITY % prefix "x">

]>

<x:person xmlns:x='urn:person:demo'>

 <x:name>Billy Bob</x:name>

 <x:age>33</x:age>

</x:person>

<!-- person-decls.dtd -->

<!ELEMENT person (name, age)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!-- person.xml -->

<!DOCTYPE person [

 <!ENTITY % decls SYSTEM "person-decls.dtd">

 %decls;

D
T
D

Document Type Definitions 29

This example uses an external parsed entity (decls) to include the set of decla-

rations that are contained in person-decls.dtd.

2.5.3 Internal general entities

<!ENTITY name "value">

Description

Internal general entities always contain parsed XML content. The parsed content

is placed in the logical XML document everywhere it’s referenced (&name;).

Example

Using internal general entities

The resulting logical document could be serialized as follows:

]>

<person>

 <name>Billy Bob</name>

 <age>33</age>

</person>

<!DOCTYPE person [

 <!ENTITY n "<fname>Billy</fname><lname>Smith</lname>">

 <!ENTITY a "<age>33</age>">

]>

<person>

 <name>&n;</name>

 &a;

</person>

<person>

 <name>

 <fname>Billy</fname>

 <lname>Smith</lname>

 </name>

 <age>33</age>

</person>

30 Essential XML Quick Reference

2.5.4 External general parsed entities

<!ENTITY name PUBLIC "publicId" "systemId">

<!ENTITY name SYSTEM "systemId">

Description

External general parsed entities are used the same way as internal general enti-

ties except for the fact that they aren’t defined inline. They always contain parsed

XML content that becomes part of the logical XML document wherever it’s refer-

enced (&name;).

Example

Using external general parsed entities

The result of this example would be the same as the previous example, assuming

that the name.xml and age.xml files contain the same content as the inline

definitions used in the previous example. Notice that name.xml wouldn’t be a

well-formed XML document (although it is a well-formed external entity), but the

resulting document is indeed well-formed.

2.5.5 Unparsed entities

<!ENTITY name PUBLIC "publicId" "systemId" NDATA nname>

<!ENTITY name SYSTEM "systemId" NDATA nname>

Description

Unparsed entities make it possible to attach arbitrary binary resources to an XML

document. Unparsed entities are always general and external. They simply point

<!DOCTYPE person [

 <!ENTITY n SYSTEM "name.xml">

 <!ENTITY a SYSTEM "age.xml">

]>

<person>

 <name>&n;</name>

 &a;

</person>

D
T
D

Document Type Definitions 31

to a resource via the resource’s public or system identifier. It’s up to the consum-

ing application to dereference and process the resource at the appropriate time.

Because unparsed entities can reference any binary resource, applications require

additional information to determine the resource’s type. The notation name (nname)

provides exactly this type of information (see Section 2.6 for more details).

Because unparsed entities don’t contain XML content, they aren’t referenced the

same way as other general entities (&name;), but rather through an attribute of

type ENTITY/ENTITIES.

Example

Using unparsed entities

2.6 NOTATION

<!NOTATION name PUBLIC "publicId">

<!NOTATION name PUBLIC "publicId" "systemId">

<!NOTATION name SYSTEM "systemId">

Notation declarations associate a name with a type identifier, which can be either

a public or a system identifier. The actual type identifiers are application specific,

although it’s common to see MIME types used within public identifiers. Unparsed

entities are associated with notation names to associate type with the referenced

binary resource.

Example

Using NOTATIONs with unparsed entities

<!DOCTYPE person [

 <!ELEMENT person (#PCDATA)>

 <!ATTLIST person photo ENTITY #REQUIRED>

 <!ENTITY imgEntity SYSTEM "aaron.gif" NDATA pic>

 <!NOTATION pic PUBLIC "urn:mime:img/gif">

]>

<person photo='imgEntity'>Aaron</person>

<!DOCTYPE person [

 <!-- person declarations -->

32 Essential XML Quick Reference

2.7 INCLUDE and IGNORE

<![INCLUDE[

 ...

]]>

<![IGNORE[

 ...

]]>

There are two conditional statements, INCLUDE and IGNORE, that may be used

to control what declarations are processed as part of the DTD at a given point in

time. Declarations within INCLUDE blocks are included in the DTD whereas dec-

larations within IGNORE blocks are ignored. When used in conjunction with a

parameter entity, it's possible for instance documents to control what sections of

the DTD are included or ignored (see the following example).

Example

Using INCLUDE and IGNORE

 <!ELEMENT person (#PCDATA)>

 <!ATTLIST person bio ENTITY #REQUIRED>

 <!ENTITY bioEntity SYSTEM "aaron.htm" NDATA html>

 <!NOTATION html PUBLIC "urn:mime:text/html">

]>

<person bio="bioEntity">Aaron</person>

<!-- person.dtd -->

<!ENTITY % v1 'INCLUDE' >

<!ENTITY % v2 'IGNORE' >

<![%v1;[

<!ELEMENT person (fname, lname, age)>

]]>

<![%v2;[

<!ELEMENT person (name, age)>

<!ELEMENT name (fname, lname)>

]]>

<!-- person-v1.xml -->

<!DOCTYPE person SYSTEM "person.dtd">

D
T
D

Document Type Definitions 33

This example allows users to switch easily between person content models by

changing the values of the v1/v2 parameter entities.

2.8 References

Extensible Markup Language (XML) 1.0 (Second Edition) Recommendation.

Available at http://www.w3.org/TR/REC-xml. Tim Bray et al. October 2000.

Tim Bray's Annotated XML 1.0 Specification.

Available at http://www.xml.com/axml/testaxml.htm.

XML Information Set.

Available at http://www.w3.org/TR/xml-infoset.

<person>

 <fname>Billy</fname>

 <lname>Bob</lname>

 <age>33</age>

</person>

<!-- person-v2.xml -->

<DOCTYPE person SYSTEM "person.dtd" [

 <!-- toggle values for v2 content model -->

 <!ENTITY % v1 'IGNORE'>

 <!ENTITY % v2 'INCLUDE'>

]>

<person>

 <name>

 <fname>Billy</fname>

 <lname>Bob</lname>

 </name>

 <age>33</age>

</person>

www.allitebooks.com

http://www.allitebooks.org

35

X
P

a
th

Chapter 3

XPath 1.0

The XML Path Language version 1.0 (XPath) defines the W3C-sanctioned syntax

for addressing parts of an XML document. XPath expressions are evaluated

against a document’s logical tree structure to identify a set of nodes (for example,

elements, attributes, text, and so on).

This layer of abstraction shields developers from the complexity of a document’s

physical structure and greatly simplifies processing. After a brief introduction, this

chapter presents the syntax for building XPath expressions.

3.1 Introduction to XPath

XPath defines a tree model against which all expressions are evaluated. The

XPath tree model codifies the logical structure of an XML document, which has

since been formally defined as the XML Information Set (Infoset). Figure 3–1 illus-

trates the XPath tree model.

Most XPath expressions identify a set of nodes in the tree. For example, the fol-

lowing XPath expression identifies the two price elements:

/invoice/item/price

This type of expression is called a location path. Location path expressions look

like file system paths only they navigate through the XPath tree model to identify

a set of nodes (known as a node-set).

Because XPath is an abstract language, it can be used in many environments. It’s

heavily used throughout XSL Transformations (XSLT) to identify nodes in the input

document (see Chapter 5 for details). It’s also used in most Document Object Model

(DOM) implementations for richer querying capabilities. The following JavaScript

illustrates how XPath can be used with Microsoft’s MSXML 3.0 DOM implementation:

36 Essential XML Quick Reference

var nl = doc.selectNodes("/invoice/item/price");

for (i=0; i<nl.length; i++) {

 ... // process price element here

}

This code could be rewritten in a variety of languages using a variety of XML pro-

cessors. XPath is even used in some of today’s modern data access technologies

to expose the underlying data store as XML to consumers. Remember that XPath

expressions simply define how to traverse a logical XML structure to identify a

node-set, but where the logical structure actually comes from is an implemen-

tation detail.

Figure 3–1 XPath tree model.

<invoice id='123'>

 <item>
 <sku>100</sku>

 <price>9.95</price>

 </item>

 <item>

 <sku>101</sku>
 <price>29.95</price>

 </item>

</invoice>

physical document

logical structure

(Infoset)

invoice

item

root

sku price

101 29.95

item

sku price

100 9.95

id='123'

XPath 1.0 37

X
P

a
th

By default, XPath traverses the tree in document order. Document order is the

order in which the nodes would appear in a serialized XML document, as illus-

trated in Figure 3–2. In some cases, however, it’s necessary to traverse nodes in

reverse document order, which is simply the reverse of the order shown in Figure

3–2 (more on this later).

In addition to node-sets, XPath supports three other data types: booleans,

numbers, and strings. XPath defines how node-sets are both coerced and

compared with each of these types.

Figure 3–2 Document order.

<invoice id='123'>
 <item>

 <sku>100</sku>

 <price>9.95</price>

 </item>

 <item>
 <sku>101</sku>
 <price>29.95</price>

 </item>

</invoice>

physical document

document

order

2

9

1

10 12

11 13

4

5 7

6 8

3

38 Essential XML Quick Reference

XPath type system

Every XPath expression yields an object of one of these types. One can explicitly

coerce an object to another type through the boolean(), number(), or

string() function. Objects are also implicitly coerced when necessary (for

example, when you pass a node-set to a function that expects a string).

To convert/compare node-sets to objects of other types, nodes from XPath’s

tree model need to be mapped back to a string. XPath defines how to evaluate

a node’s string-value for this purpose.

Node string-value

Figure 3–3 illustrates the string-value of each node in the sample invoice doc-

ument shown earlier.

Mapping nodes back to strings makes it easy to convert/compare them with

other objects. It also makes it possible to build a wide variety of other expressions.

The following summarizes the types of expressions supported by XPath. The

operators used to build these expressions are shown in order of increasing prece-

dence (top to bottom, left to right). As usual, parentheses may be used to control

precedence explicitly.

Data type Description

node-set A collection of nodes without duplicates

boolean true or false

number A floating point number (see IEEE 754 standard)

string A sequence of UCS characters

Node type String-value

Root Concatenation of all descendant text nodes

Element Concatenation of all descendant text nodes

Attribute Normalized attribute value

Text Character data

Processing instruction Character data following the processing instruction target

Comment Character data within comment delimiters

Namespace Namespace URI

XPath 1.0 39

X
P

a
th

XPath expressions and operators

The rest of this chapter covers the details of each expression type along with

XPath’s function library.

3.2 Location path expressions

/step/step/step/... | step/step/...

A location path expression yields a node-set. Location paths can be absolute

or relative. Absolute location paths begin with a forward slash (/) whereas relative

location paths do not. A location path consists of one or more location steps,

each separated by a forward slash.

XPath defines two terms—context node-set and context node—to help describe

how the location path evaluation process works. The context node-set is

Figure 3–3 Node string-values.

Expression type Operators

Location paths /, //, |

Boolean expressions or, and

Equality expressions =, !=

Relational expressions <=, <, >=, >

Numerical expressions +, –, div, mod, *, – (unary)

invoice

item

root

sku price

101 29.95

item

sku price

100 9.95

id='123'

'1009.9510129.95'

'1009.9510129.95''123'

'1009.95' '10129.95'

'100'

'100'

'29.95'

'29.95'

'101'

'101''9.95'

'9.95'

40 Essential XML Quick Reference

defined as the current set of nodes that has been identified up to a given point in

the expression. The context node is defined as the current node being processed.

The location steps are evaluated in order (left to right) one at a time. Each loca-

tion step is evaluated against the nodes in the context node-set. If the location

path is absolute, the original context node-set consists of the root node; other-

wise, it consists of the current context node (what this means depends on where

the expression is being used).

The first location step is then evaluated with each node in the context node-set

serving as the context node. The resulting node-sets are then “unioned” into a

new node-set, which becomes the context node-set for the next step. This

process continues for each location step in the path. The node-set produced

by the final location step is the result of the expression.

Location paths may be “unioned” together through the | operator. The combina-

tion of the two node-sets excluding duplicates is the result of the union.

Examples

3.2.1 Location steps

axis::node-test[predicate1][predicate2][...]

Description

A location step identifies a new node-set relative to the context node-set.

The location step is evaluated against each node in the context node-set, and

the union of the resulting node-sets becomes the context node-set for the

next step. Location steps consist of an axis identifier, a node test, and zero or

more predicates (see Figure 3–4). For more information on axes, node tests, and

predicates, see the following sections.

/invoice/item Identifies the child item elements of the root invoice
element.

item/sku Identifies the child sku elements of the context node’s
child item elements.

sku | price | desc Identifies the context node’s child sku, price, and
desc elements.

XPath 1.0 41

X
P

a
th

3.2.2 Axis

Description

XPath defines several axes, each of which identifies a set of nodes relative to the

context node.

Axis descriptions

Figure 3–4 Location step syntax.

child::item[1]/child::sku[.>100][1]/child::text()

location step location step

axis node test (by name) predicates

location step

node test (by type)

Axis Description

self Identifies the context node.

child Default axis. Identifies the children of the context node.
When the axis is omitted, the child is assumed.

parent Identifies the parent of the context node.

descendant Identifies the descendants of the context node. A descen-
dant is a child, a grandchild, a great-grandchild, and so
on. Warning: descendant typically requires the proces-
sor to search the entire tree below the context node.

descendant-or-self Identifies the context node and the descendant axis.

ancestor Identifies the ancestors of the context node. The ances-
tors of the context node consist of the parent, the grand-
parent, the great-grandparent, and so on.

ancestor-or-self Identifies the context node and the ancestor axis.

following Identifies all nodes that are after the context node in doc-
ument order, excluding descendants, attributes, and
namespace nodes (for example, all start tags that come
after the context node’s end tag). Warning: following
typically requires the processor to search the entire docu-
ment after the context node (excluding descendants).

following-sibling Identifies the siblings of the context node from the follow-
ing axis.

42 Essential XML Quick Reference

Each axis has a direction and a principal node type. The direction of an axis is

either forward or reverse. Forward axes traverse nodes in document order

whereas reverse axes traverse nodes in reverse document order. The axis direc-

tion is significant when locating nodes by position. For example, the first child ele-

ment is the first child element in document order. The first ancestor element, how-

ever, is the first ancestor element in reverse document order, which is the

ancestor element nearest the context node.

When identifying nodes by name or the * wildcard, only nodes of the axis’ princi-

pal node type are considered. For example, child::foo identifies the child

foo elements whereas attribute::foo identifies the attribute nodes named

foo. Likewise, the expression child::* only identifies the child element nodes

(child text, comment, or processing instruction nodes are not identified).

Axis direction and principle node type

preceding Identifies all nodes that are before the context node in
document order, excluding ancestors, attributes, and
namespace nodes (for example, all end tags that come
before the context node’s start tag). Warning: preced-
ing typically requires the processor to search the entire
document before the context node (excluding ancestors).

preceding-sibling Identifies the siblings of the context node from the pre-
ceding axis.

attribute Identifies the attributes of the context node.

namespace Identifies the namespace nodes of the context node.

Axis Description

Axis Direction Principle node type

self Not applicable Element

child Forward Element

parent Not applicable Element

descendant Forward Element

descendant-or-self Forward Element

ancestor Reverse Element

ancestor-or-self Reverse Element

following Forward Element

following-sibling Forward Element

preceding Reverse Element

XPath 1.0 43

X
P

a
th

Figure 3–5 illustrates the group of nodes identified by each axis, assuming E is

the context node.

preceding-sibling Reverse Element

attribute Not applicable Attribute

namespace Not applicable Namespace

Figure 3–5 XPath axes.

Axis Direction Principle node type

A

B

F

IEC J

H K L

M

N

G

Axis

self

parent

child

descendant

descendant-or-self

ancestor

ancestor-or-self

preceding

preceding-sibling

following

following-sibling

Nodes (relative to E)

E

B

F,H

F,G,H

E,F,G,H

B,A,root

E,B,A,root

D,C

C

I,J,K,L,M,N

I,J

root

D

www.allitebooks.com

http://www.allitebooks.org

44 Essential XML Quick Reference

Examples

3.2.3 Node test

Description

Nodes tests are used to identify nodes within an axis. If a node test evaluates to

true for a given node, it remains in the node-set; otherwise, it’s removed. Node

tests can be performed by name or by type.

3.2.3.1 Node test by name

When performing name tests, all nodes that are not of the specified axis’ principal

node type are automatically discarded. Then the names of the remaining nodes

are compared with the QName (prefix:local name) specified in the location step.

The QName is expanded to a namespace name (local name + namespace URI),

which is then compared with the namespace name of each node in question. If the

namespace names match, the node remains in the set; otherwise, it’s discarded.

In order for an XPath processor to expand a QName into a namespace name, it

needs access to namespace bindings. Hence, XPath processors need to provide

a mechanism for establishing namespace bindings that will be used while evaluat-

ing expressions. In XSLT, this can be accomplished through a standard XML 1.0

namespace declaration (in the XSLT document). In the DOM, however, extra imple-

mentation-specific configuration is required. The following line of code illustrates

the approach taken by Microsoft’s MSXML version 3.0 DOM implementation:

doc.setProperty("SelectionNamespaces",

 "xmlns:i='urn: example:ns1' xmlns:x='urn: example:n2'

 xmlns:x='urn:invoice:ids'");

/child::invoice/child::customer Identifies the child customer elements
of the root invoice element.

child::item/attribute::id Identifies the id attribute of each of the
context node’s child item elements.

preceding::sku Identifies the sku elements that come
before the context node.

XPath 1.0 45

X
P

a
th

Every XPath processor should provide an equivalent mechanism for establishing

namespace bindings. The prefixes used in node tests can then be resolved

against these bindings when the processor compares names.

Name tests that do not include a prefix (for example, child::foo) identify

nodes that belong to no namespace (default namespaces never come into play).

The name wildcard (*) can also be used to identify all nodes of the axis’ principal

node type. This wildcard can also be used in conjunction with a namespace prefix

(for example, child::f:*) to identify all nodes (of the axis’ principal node type)

from a given namespace.

Examples

3.2.3.2 Node test by type

A node test by type is true if the node in question is of the type specified. XPath

defines several node type identifiers for use in node tests.

Name test Description

QName true for all nodes that have the specified expanded namespace
name and are of the axis’ principal node type

* true for all nodes of the axis’ principal node type

child::i:item Assuming i is mapped to urn:exam-
ple-org:invoices for these exam-
ples, this step identifies the child item
elements in the urn:example-
org:invoices namespace.

child::i:* Identifies all child elements from the
urn:example-org:invoices
namespace.

/child::sku Identifies the child sku elements that
belong to no namespace.

/child::i:invoice/attribute::id Identifies the id attribute (from no
namespace) of the root invoice ele-
ment from the urn:example-
org:invoices namespace.

/descendant::price Identifies all price elements in the
document from no namespace.

46 Essential XML Quick Reference

Examples

3.2.4 Predicate

Description

Predicates are placed inside square brackets [...] at the end of a location step

(see location step syntax described earlier). A predicate filters a node-set to pro-

duce a new node-set. For each node in the node-set to be filtered, the predicate

expression is evaluated with that node as the context node and the result is

coerced to a boolean. If the result is true, the node remains in the node-set; oth-

erwise, it’s removed. The predicate expression can be any basic expression (see

Section 3.3 on basic expressions).

Examples

Type identifier Description

text() Identifies text nodes.

comment() Identifies comment nodes.

processing-instruction(target?) Identifies processing instruction nodes
that match the (optionally) specified
target string.

node() Identifies all nodes in an axis regard-
less of type.

child::text() Identifies the child text nodes.

/child::invoice/child::comment() Identifies the child comment nodes of
the root invoice element.

/child::invoice/child::node() Identifies all child nodes (regardless of
type) of the root invoice element.

/child::processing-

instruction('xsl-stylesheet')
Identifies the root node’s child pro-
cessing instruction node with a target
of 'xsl-stylesheet'.

child::item[position()=1] Returns the first child item ele-
ment (same as item[1]; see the
following section).

XPath 1.0 47

X
P

a
th

3.2.5 Location path abbreviations

Description

XPath defines several abbreviations that can be used when building location path

expressions. This facilitates building compact expressions that can be used in URI

fragment identifiers (for example, XPointer) and XML attribute values (for exam-

ple, XLink). The syntactical constructs that may be abbreviated are as follows,

along with their corresponding abbreviation.

Examples

child::invoice[child::item][2] Returns the second child
invoice element that has at
least one child item element.

descendant::sku[attribute::id > 100] Identifies the descendant sku ele-
ments that have an id attribute
greater than 100.

Verbose form Abbreviation

child:: omitted

attribute:: @

self::node() .

parent::node() ..

/descendant-or-

self::node()/
//

[position()=number] [number]

/child::reviews/child::review /reviews/review

child::review/attribute::id review/@id

self::node()/descendant-or-self::node()/

child::book

.//book

parent::node()/child::review[position()=1] ../review[1]

48 Essential XML Quick Reference

3.3 Basic expressions

In addition to location path expressions, there are several other basic expression

constructs including boolean, equality, relational, and numerical. These expres-

sions may be used in any situation in which the resulting object isn’t required to be

a node-set. They are commonly used within XPath predicates as well as vari-

ous XSLT constructs (for example, if/when statements). The details of these

expression types are described in the following subsections.

3.3.1 Boolean expressions

Operators: or, and

XPath supports standard and/or boolean expressions. Each operand is evalu-

ated and coerced to a boolean (as if by calling the boolean function) before

evaluation.

Examples

3.3.2 Equality expressions

Operators: =, !=

Equality expressions test two objects for equality. When one of the objects is a

node-set, the definition of equality is far from intuitive. Two node-sets are

equal if there is at least one node in each node-set with string-values that are

equal. But at the same time, two node-sets are unequal if there is at least one

node in each node-set with string-values that are unequal. This makes it possible

/invoice/item or

/invoice/foo
Returns true (assuming there are at least child item
elements under the root invoice element).

item[sku and price] Identifies the child item elements that have both sku
and price child elements.

item[(sku < 100) or

(price > 50.0)]
Identifies the child item elements that have either a
price child element with a value less than 100 or a
sku child element with a value greater than 50.

XPath 1.0 49

X
P

a
th

(and actually quite common) to have two objects that are both equal and unequal

at the same time (assuming one is a node-set). The following summarizes how

node-set equality is determined for each object type:

Node-set equality/inequality

Examples

Type Description

node-set Two node-sets are equal if there is at least one node in each node-
set with string-values that are equal. Two node-sets are unequal if
there is at least one node in each node-set with string-values that are
unequal.

number A node-set equals a number if it contains a node with a string-value
converted to a number that matches the number in question. A node-
set is not equal to a number if it contains a node with a string-value
converted to a number that does not equal the number in question.

string A node-set equals a string if it contains a node with a string-value
that matches the string in question. A node-set is not equal to a
string if it contains a node with a string-value that does not equal the
string in question.

boolean A node-set equals a boolean if the result of converting the node-
set to a boolean is the same as the boolean value in question. A
node-set does not equal a boolean if the result of converting the
node-set to a boolean is not the same as the boolean value in
question.

price = 3.95 true if there is at least one child price ele-
ment with a string-value that equals 3.95.

price != 3.95 true if there is at least one child price ele-
ment with a string-value that does not equal
3.95.

not(price = 3.95) true if there is not a single child price ele-
ment with a string value that equals 3.95.

not(price != 3.95) true if all child price elements have a
string-value equal to 3.95.

/descendant::invoice[@id =

100]
Identifies all invoice elements that have an
id attribute equal to 100.

50 Essential XML Quick Reference

If neither of the objects is a node-set and the operands are of different types,

implicit coercions happen according to type precedence. Objects of lower type

precedence are always coerced into an object of the other type before evaluating

equality.

Examples

sku != preceding::sku Returns true if there is at least one child
sku element with a string-value that does
not equal that of one of the preceding sku
elements. (Note: This is not the same as
not(sku = preceding::sku). See next
example.)

not(sku = preceding::sku) Returns true if there is not a single child sku
element with a string-value that equals that
of one of the preceding sku elements.
(Note: This is not the same as sku !=
preceding::sku. See previous example.)

/descendant::sku[not(. =

preceding::sku)]
Identifies the descendant sku elements with
string-values that do not equal those of one of
the preceding sku elements. This expression
only identifies the first sku with a given value;
all other sku elements with the same value
are excluded from the result node-set (like
doing a SELECT DISTINCT in SQL). Note:
Using != does not return the same result (see
previous examples).

Equality type precedence (not involving node-sets) Type

1 (highest) boolean

2 number

3 string

true() = "foo" true (foo coerced to true)

true() != 1.32 false (1.32 coerced to true)

"1.2" = 1.2 true (1.2 coerced to 1.2)

XPath 1.0 51

X
P

a
th

3.3.3 Relational expressions

Operators: <=, <, >=, >

Relational expressions make it possible to compare two objects. Relational

expressions are evaluated by converting both operands to numbers, which are

then compared. If one of the operands is a node-set, the numerical value of

each node in the set is compared against the other operand as described for

equality expressions. In this case, the comparison is true if there is at least one

node in the node-set with a numerical value that makes the comparison true.

Examples

3.3.4 Numerical expressions

Operators: +, -, div, mod, *, - (unary)

Numerical expressions make it possible to perform basic arithmetic operations

on numbers. Each operand is evaluated and coerced to a number (as if by calling

the number function) before evaluation. The operators shown above are listed in

order of increasing precedence, left to right.

price <= 100 true if there is at least one child price
element with a numerical value that is
less than or equal to 100.

/descendant::item[price <= 100] Identifies all item elements that have a
child price element with a numerical
value that is less than or equal to 100.

price > preceding::price true if there is a child price element
with a numerical value that is greater
than one of the preceding price
elements.

/descendant::item[price >

preceding::price]
Identifies all item elements for which
the numerical value of one child price
element is greater than at least one of
the preceding price elements.

52 Essential XML Quick Reference

Examples

3.4 Core Function Library

XPath defines a core function library that all implementations are required to sup-

port. There are three functions available for explicitly converting between the

XPath data types: string(), number(), and boolean(). (Note: You cannot

coerce a string, number, or boolean to a node-set.) If a function expects

an argument of a specific type and an object of a different type is used, it’s implic-

itly coerced to the expected type as if by calling the appropriate coercion

function.

All of the functions in the core library belong to no namespace, so their names

don’t require a namespace prefix. XPath implementations may augment the core

library with proprietary extension functions. When this is the case, the extension

function names must be qualified with a namespace prefix. The following summa-

rizes the functions in the core function library.

2 + 3.5 * 2 9.0

5 div 2.0 - '1.0' 1.5

5 mod -2 1

-5 mod 2 -1

item[(price mod 2) = 0] Identifies the child item elements that have an
even price.

Node-set function Description

id Identifies nodes by ID.

lang Checks the context node for the specified
language.

last Returns the size of the context node-set.

local-name Returns the local name of a node.

name Returns the QName of a node.

namespace-uri Returns the namespace URI of a node.

position Returns the index of the context node in the con-
text node-set.

XPath 1.0 53

X
P

a
th

Each function is described in the following subsections in alphabetical order.

3.4.1 boolean

boolean boolean(object)

Description

boolean converts its argument into a boolean. The conversion details depend

on the type of argument object.

Boolean function Description

boolean Converts an object to a boolean.

false Returns false.

not Returns the logical not of the argument.

true Returns true.

Number function Description

ceiling Rounds up to the next integer.

count Returns the number of nodes in a node-set.

floor Rounds down to the next integer.

number Converts an object to a number.

round Rounds to the nearest integer.

sum Totals of a list of numbers.

String function Description

concat Concatenates multiple strings.

contains Determines if a string contains a substring.

normalize-space Strips leading/trailing whitespace from a string.

starts-with Determines if a string starts with a substring.

string Converts an object to a string.

string-length Returns the length of a string.

substring Returns a substring identified by position.

substring-after Returns the substring after a specified string.

substring-before Returns the substring before a specified string.

translate Translates letters in a string.

54 Essential XML Quick Reference

Examples

3.4.2 ceiling

number ceiling(number)

Description

ceiling returns the smallest integer that is not less than the argument.

Examples

Type Description

node-set Returns true if the node-set is nonempty; false otherwise.

string Returns true if the string length is nonzero; false otherwise.

number Returns true if the number is nonzero (not negative zero, positive
zero, or NaN [not a number]).

other Is converted to a boolean in a way that is dependent on that type.

boolean(*/item) Returns true if there is at least one grandchild
item element; false otherwise.

boolean(string(customer)) Returns true if the string-value of the first child
customer element is nonempty.

boolean(sum(price)) Returns true if the sum of the child price ele-
ments is nonzero.

ceiling(43.6) 44

ceiling('43.6') 44

ceiling(-2.5) -2

ceiling(sum(price)

div count(price))
Returns the rounded-up average price of the child
price elements.

ceiling(item/price) Returns the rounded-up price of the first child item
element.

XPath 1.0 55

X
P

a
th

3.4.3 concat

string concat(string, string, string*)

Description

concat returns the concatenation of its arguments.

Examples

3.4.4 contains

boolean contains(string, string)

Description

contains returns true if the first string contains the second string.

Examples

concat('hello',' world') 'hello world'

concat('number(not(', false(), '()))

= ', 1)

'number(not(false())) = 1'

concat(fname, ' ', mi, '. ', lname) Returns 'Fred' 'B' and 'Smith',
assuming the child fname, mi, and
lname elements contain 'Fred',
'B', and 'Smith', respectively.

contains('network', 'two') true.

contains(title, 'XML') true if the first child title element
contains 'XML'; false otherwise.

contains(price, 5) true if the first child price element
contains the number 5; false other-
wise.

contains('so true!!!', true()) true (true() is coerced to true).

56 Essential XML Quick Reference

3.4.5 count

number count(node-set)

Description

count returns the number of nodes in the argument node-set.

Examples

3.4.6 false

boolean false()

Description

Returns false.

Examples

3.4.7 floor

number floor(number)

Description

floor returns the largest integer that is not greater than the argument.

count(item) Returns the number of child item ele-
ments.

count(descendant::* | text()) Returns the total number of descendant
elements and child text nodes.

invoice[count(item) > 3] Returns the child invoice elements that
have more than three child item ele-
ments.

false() false

string(false()) 'false'

number(false()) 0

XPath 1.0 57

X
P

a
th

Examples

3.4.8 id

node-set id(object)

Description

id returns a node-set that is identified through unique IDs (requires DTD or

schema that leverages unique ID types). The exact behavior of id depends on the

type of argument object.

Examples

floor(43.6) 43

floor('43.6') 43

floor(-2.5) -3

floor(item/price) Returns the rounded-down price of the first child
item element.

Type Description

node-set The id function is applied to the string-value of each
node in the argument node-set. The union of the result-
ing node-sets is returned.

other The argument is first converted to a string, which is
then split into a whitespace-separated list of tokens.
The resulting node-set contains the element nodes that
have a unique ID equal to one of the tokens in the list.

id('isbn-0201709147') Returns the element with a unique ID of
isbn-0201709147.

id('isbn-0201709147 isbn-

0201604426 isbn-0201379368')
Returns the three elements with the speci-
fied unique IDs.

id(book/@similarBooks) Returns the elements that are referred to by
the child book’s similarBook attribute
(for example, <book similarBooks='b1
b2'/>).

58 Essential XML Quick Reference

3.4.9 lang

boolean lang(string)

Description

lang returns a boolean indicating whether the language specified by the argu-

ment string is the same as (or a sublanguage of) the language of the context

node, which is specified via the xml:lang attribute. If the context node has no

xml:lang attribute, it inherits the language of the nearest ancestor element that

does have the xml:lang attribute. If no ancestor has an xml:lang attribute,

false is returned. The language string comparisons are case insensitive and they

ignore language suffixes identified by '-'.

Examples

3.4.10 last

number last()

Description

last returns a number equal to the size of the context node-set.

Examples

lang('en') Returns true if the language of the context node is 'en'
or a sublanguage of 'en' (for example, 'en-us').

desc[lang('en')] Returns all child desc elements that have a language of
'en' or is a sublanguage of 'en' (for example, 'en-us').

invoice/item[last() > 3] Returns the child item elements of the
child invoice elements that have
more than three child item elements.

invoice/item[last()=position()] Returns the last item element of each
child invoice element.

XPath 1.0 59

X
P

a
th

3.4.11 local-name

string local-name(node-set?)

Description

local-name returns the local name of the node in the argument node-set

that is first in document order. If the argument node-set is empty or has no

local name, an empty string is returned. If the argument is omitted, it defaults

to a node-set with the context node as its only member.

Examples

3.4.12 name

string name(node-set?)

Description

name returns the QName of the node in the argument node-set that is first in

document order. If the argument node-set is empty or has no local name, an

empty string is returned. If the argument is omitted, it defaults to a node-set

with the context node as its only member.

Examples

local-name(..) Returns the local name of the context node’s parent.

descendant::*[local-

name()='price']
Returns all descendant elements that have a local
name of 'price'.

name(*) Returns the QName of the first child element.

descendant::*[name()

= 'dm:author'
Returns all descendant elements that have a QName
of 'dm:author'.

60 Essential XML Quick Reference

3.4.13 namespace-uri

string namespace-uri(node-set?)

Description

namespace-uri returns the namespace URI of the node in the argument

node-set that is first in document order. If the argument node-set is empty

or has no namespace URI, an empty string is returned. If the argument is omit-

ted, it defaults to a node-set with the context node as its only member.

Examples

3.4.14 normalize-space

string normalize-space(string?)

Description

normalize-space returns the argument string with whitespace normalized.

Normalization consists of stripping all leading/trailing whitespace as well as

replacing embedded whitespace sequences with a single space character.

Whitespace characters are defined as spaces, tabs, CR, and LF. If the argument

is omitted, it defaults to the string-value of the context node.

Examples

namespace-uri(../..) Returns the namespace URI
of the context node’s grand-
parent.

descendant::*[local-name() = 'price' and

namespace- uri() = 'urn:invoices']
Returns all descendant
elements that have a local
name of 'price' and a
namespace URI of
'urn:invoices.'

normalize-space(' hello world ') 'hello world'

normalize-space(desc) Returns the normalized string-value
of the first child desc element.

normalize-space() Returns the normalized string-value
of the context node.

XPath 1.0 61

X
P

a
th

3.4.15 not

boolean not(boolean)

Description

not returns true if the argument is false; false otherwise.

Examples

3.4.16 number

number number(object?)

Description

number converts its argument into a number. The conversion details depend on

the type of argument object.

Examples

not(true()) false

not(price) Returns false if the context node has
child price elements; true otherwise.

item/price[not(position() =

last())]
Returns the price elements that are not
the last child of their parent item element.

Type Description

node-set The node-set is first converted to a string (per the string
function); then the resulting string is converted to a
number according to the rules for string (see next entry).

string Converted to an IEEE 754 floating point number (see the IEEE
754 standard for more details). If the argument string does
not represent a number, NaN is returned.

boolean true is converted to 1, false to zero.

other Converted to a number in a way that is dependent on that
type.

number('33.3') 33.3

number(true()) 1

62 Essential XML Quick Reference

3.4.17 position

number position()

Description

position returns the index of the context node in the context node-set (1

based).

Examples

3.4.18 round

number round(number)

Description

round returns the integer that is closest to the argument number. If two num-

bers match this criterion, the bigger number (closest to positive infinity) is

returned. If the argument is less than zero but greater than or equal to -0.5, neg-

ative zero is returned. If the argument is not a number (NaN), positive infinity, neg-

ative infinity, positive zero, or negative zero, it simply returns the same value

passed in.

Examples

number('xml') NaN

number(price) Returns the numerical value of the string-value of the first
child price element.

item[position()=1] Returns the first child item element.

price[position()=last()] Returns the last child price element.

round(1.5) 2

round(10 div 3) 3

round(price) Returns the rounded-off value of the first child price element.

XPath 1.0 63

X
P

a
th

3.4.19 starts-with

boolean starts-with(string, string)

Description

starts-with returns true if the first string starts with the second string.

Examples

3.4.20 string

string string(object?)

Description

string converts its argument into a string. The conversion details depend on

the type of argument object. If the argument is omitted, it defaults to a node-

set with the context node as its only member.

starts-with('$12.05', '$') Returns true.

starts-with(title, 'Essential') Returns true if the first child title
element starts with 'Essential';
false otherwise.

starts-with(price, 5) Returns true if the first child price
element starts with the number 5;
false otherwise.

starts-with('true/false', true()) Returns true.

Type Description

node-set The string-value of the node in the node-set that is first in document
order. If the node-set is empty, an empty string is returned.

boolean true is converted to the string 'true' and false is converted to
'false'.

number The number is represented in decimal form preceded with a minus
symbol (-) if the number is negative. A decimal point is not included
for integer values. If the number is NaN, the string 'NaN' is
returned. If the number is positive or negative zero, the string '0'
is returned. If the number is positive infinity, the string 'Infinity'
is returned. If the number is negative infinity, the string
'-Infinity' is returned.

other Is converted to a string in a way that is dependent on that type.

64 Essential XML Quick Reference

Examples

3.4.21 string-length

number string-length(string?)

Description

string-length returns the number of characters in the string. If the argument

is omitted, it defaults to the string-value of the context node.

Examples

3.4.22 substring

string substring(string, number, number?)

Description

substring returns the substring of the first argument starting at the 1-based

position specified by the second argument with the length specified by the third

argument. If the third argument is omitted, it returns the substring starting at the

position specified by the second argument to the end of the string.

Examples

string(true()) 'true'

string(-100.23) '-100.23'

string(/foo/bar) Returns the string-value of the root foo element’s first child
bar element.

string-length('XML') 3

string-length(customer) Returns the length of the string-value of the first
child customer element.

substring('goodbye',4,2) 'db'

substring('goodbye',5) 'bye'

XPath 1.0 65

X
P

a
th

3.4.23 substring-after

string substring-after(string, string)

Description

substring-after returns the substring of the first string that follows the

first occurrence of the second string. If the first string doesn’t contain the

second string, an empty string is returned.

Examples

3.4.24 substring-before

string substring-before(string, string)

Description

substring-before returns the substring of the first string that precedes

the first occurrence of the string string. If the first string doesn’t contain the

second string, an empty string is returned.

Examples

concat(substring(lastname,

1,6),'.gif')
Returns a file name, which is the concatenation
of the first six letters of the lastname child ele-
ment with '.gif' (for example, 'skonna.gif').

substring-after('dm:invoice', ':') 'invoice'

substring-after('1972-10-30', '-') '10-30'

substring-after(filename, '.') Returns the filename element’s
file extension (for example, .gif).

substring-before('dm:invoice', ':') 'dm'

substring-before('1972-10-30', '-') '1972'

substring-before(filename, '.') Returns the filename element’s
value excluding the extension.

66 Essential XML Quick Reference

3.4.25 sum

number sum(node-set)

Description

sum converts the string-value of each node in the argument node-set to a num-

ber and then calculates the total.

Examples

3.4.26 translate

string translate(string, string, string)

Description

translate returns the first argument string with occurrences of the charac-

ters in the second argument string replaced by the character at the corre-

sponding position in the third argument string. If there is a character in the sec-

ond argument string that doesn’t have a replacement character in the

corresponding position of the third argument string (because the second argu-

ment string is longer), all occurrences of that character are removed.

Examples

sum example Description

sum(/items/i) Returns 9.0, assuming the following XML document:
<items> <i>1.0</i><i>3.0</i><i>5.0</i>

</items>.

sum(/items/i) div

count(items/i)
Returns 3.0, (assuming the previous document).

translate('10-30-1972', '-', '/') '10/30/1972'

translate('skonnard', 'kosadrn', 'oxb') 'box'

XPath 1.0 67

X
P

a
th

3.4.27 true

boolean true()

Description

Returns true.

Examples

3.5 References

XML Path Language (XPath) Version 1.0 Recommendation.

Available at http://www.w3.org/TR/xpath.

IEEE 754.

http://standards.ieee.org/reading/ieee/stdpublic/description/busarch/754-

1985_deschtml

true() true

string(true()) 'true'

number(true()) 1

69

X
P

o
in

te
r

Chapter 4

XPointer, XInclude,

and XML Base

The XML Pointer Language (XPointer) version 1.0 defines syntax for using frag-

ment identifiers with XML resources. This makes it possible to extend XPath to

support interdocument (as opposed to just intradocument) addressing. XPointer

also provides a more flexible syntax for addressing portions of an XML document

that are not addressable in XPath (for example, points and ranges).

XML Inclusions (XInclude) version 1.0 defines the syntax for general-purpose XML-

based inclusions. XInclude functionality is similar to that provided by external enti-

ties or #include in C++. The difference is that XInclude works at the Infoset

level rather than during preprocessing. XInclude leverages URI references as well

as XPointer fragments to identify resources for inclusion.

When multiple XML resources are used to build a logical XML document, ques-

tions arise when resolving relative URIs. XML Base defines this process along with

a syntax for explicitly controlling the base URI of elements in a document.

The rest of this chapter presents the syntax for these three specifications:

XPointer, XInclude, and XML Base. At the time of writing, these three specifica-

tions were still under development at the W3C. See Section 4.4 for the version of

each specification used in this chapter.

4.1 XPointer version 1.0

An XPointer expression is attached to a URI reference as a fragment identifier.

The context of an XPointer expression is always initialized to the root node of the

identified XML resource. XPointer provides three types of expressions: full XPoint-

ers, bare names, and child sequences.

70 Essential XML Quick Reference

4.1.1 Full XPointers

uri-reference#scheme(expression)scheme(expression)...

Description

Full XPointers consist of one or more XPointer parts, optionally separated by

whitespace (see Figure 4–1).

Each XPointer part starts with a scheme name and is followed by a scheme-

specific expression. When the scheme is xpointer, the contained expression is

based on XPath with XPointer-specific extensions. When the scheme is xmlns,

the contained expression contains a namespace declaration. There are no other

schemes defined at this time, but this is an extensibility point for the future.

XPointer expressions are evaluated from left to right in order. Evaluation stops

once a fragment part successfully identifies a portion of the resource. If a frag-

ment part fails or does not identify anything, the next fragment part is evaluated,

and so on. If the processor doesn’t recognize the scheme or if there is something

about the expression that causes it to fail, the processor moves on to the next

fragment part.

Scheme name Description

xpointer(xptr-expr) XPointer expression provides access to nodes in an

XML document as well as arbitrary non-node locations

(based on XPath).

xmlns(prefix=nsURI) Expression defines a namespace declaration in scope

for the fragment parts to the right. In the event that

more than one xmlns part to the left of an xpointer

part specifies the same prefix, the rightmost one of

these is used for that xpointer part.

Figure 4–1 Full XPointer example.

chapter.xml#xmlns(d=urn:dm:books)xpointer(//d:concept)

uri fragment part fragment part

scheme expression

XPointer, XInclude, and XML Base 71

Examples

Simple full XPointer expression

Identifies the concept elements in xslt.xml that belong to no namespace

and that have an id attribute equal to 'template'.

Full XPointer expression with namespaces

Identifies the concept elements in xslt.xml that belong to the urn:exam-

ple:dm2 namespace and that have an id attribute from the urn:ids-r-us

namespace equal to 'template'.

Full XPointer expression with multiple XPointer parts

Identifies the concept elements in xslt.xml that have an attribute of type ID

equal to 'template'. If the DTD/schema isn’t available, the first fragment part

fails and the second is evaluated, which simply identifies all elements with an id

attribute equal to 'template'.

4.1.2 Bare names

uri-reference#bare-name

Description

An XPointer bare name is simply an abbreviation for the following full XPointer

expression that leverages the XPath id function: xpointer(id(bare-name)).

Example

Equivalent expressions

xslt.xml#xpointer(/descendant::concept[@id='template'])

xslt.xml#xmlns(d=urn:example:dm1)xmlns(d=urn:example:dm2)

 xmlns(x=urn:ids-r-us)xpointer(//

d:concept[@x:id='template'])

xslt.xml#xpointer(id('template'))xpointer(//

*[@id='template'])

xslt.xml#xpointer(id('prod1'))

xslt.xml#prod1

X
P

o
in

te
r

72 Essential XML Quick Reference

These expressions are equivalent. The first is a full XPointer expression whereas

the second is an XPointer bare name.

4.1.3 Child sequences

uri-reference#(bare-name | /1)/n/n/n/n...

Description

A child sequence is a simplified addressing syntax that locates an element by

stepwise navigation using a sequence of integers separated by forward slashes

(/). Each integer n locates the nth child element of the previously located ele-

ment. This is equivalent to an XPath location step of the form *[n]. The first item

in the child sequence can be either a bare name (see previous section) or the

string '/1', which identifies the document element.

Example

Equivalent expressions

All of these expressions are equivalent. The first is a full XPointer expression that

uses XPath. The second is the equivalent XPointer child sequence. The third

expression uses a bare name to identify the seventh child of the second child of

the document element by ID followed by a relative child sequence.

4.1.4 XPointer extensions to XPath

Description

In XPath, location path expressions produce node-sets. XPointer, on the other

hand, is capable of identifying portions of a document that cannot be modeled

with XPath node-sets. As a result, XPointer generalizes XPath’s notion of node

and node-set with location and location-set. XPointer locations consist of

points, ranges, and XPath nodes. XPointer location-sets are a collection of

locations.

xslt.xml#xpointer(/*[1]/*[2]/*[7]/*[3]/*[2])

xslt.xml#/1/2/7/3/2

xslt.xml#section7/3/2

XPointer, XInclude, and XML Base 73

Definitions

point

A point location identifies a container node along with an index to its child data. If

the node can have children (for example, element nodes), the index refers to a

position within the child node’s collection (called a node-point). If the node cannot

have children (for example, text nodes), the index refers to an offset within the

node’s character data (called a character-point). The following describes how var-

ious XPath-isms are evaluated for a point location:

range

A range location consists of two points: a start point and an end point. Everything

within these two points (in document order) is part of the range location. The fol-

lowing describes how various XPath-isms are evaluated for a range location:

Concept Description

expanded name None

string-value Empty

axes The child, descendant, attribute, and namespace axes

are empty. The self axis contains the point itself whereas the

parent axis contains the node-point’s container node. The

ancestor axis contains the node-point’s container node and its

ancestors. A node-point’s siblings are the children of the con-

tainer node that are before or after the node-point while a char-

acter point doesn’t have any siblings.

Concept Description

expanded name None

string-value If the points are both character-points and the container nodes

of the points are the same, then the string-value consists of the

characters between the two points. Otherwise, the string-value

consists of the characters that are in text nodes between the

two points.

axes The axes of a range location are the axes of its start point.

X
P

o
in

te
r

74 Essential XML Quick Reference

4.1.5 XPointer node tests

Description

XPointer extends the XPath node type identifiers (to account for point and range

locations) for performing node tests by type.

Example

Identifying the points in a range

4.1.6 XPointer function library

Description

XPointer adds several functions to the XPath core function library that must be

supported by XPointer implementations. These additional functions support work-

ing with point and range locations in XPointer expressions. Like the XPath func-

tions, the XPointer functions don’t belong to a namespace, so their names don’t

need to be qualified with a namespace prefix. XPointer processors may extend

this library by using namespace-qualified function names.

4.1.6.1 end-point

location-set end-point(location-set)

Description

For each location in the argument location-set, end-point adds a location of

type point to the resulting location-set. The end point of a location is evaluated

according to location type as follows:

Node test (by type) Description

point() Identifies locations of type point.

range() Identifies locations of type range.

xpointer(range(//intro)/point)())

Type Description

point Same as the point

range The end point of the range

XPointer, XInclude, and XML Base 75

Example

Identifying the end point of a range

4.1.6.2 here

location-set here()

Description

The here function returns a location-set with a single location, which represents

the node that contains the XPointer expression being evaluated.

Examples

Identifying the element containing the expression

Identifying an ancestor of the containing element

4.1.6.3 origin

location-set origin()

Description

The origin function enables addressing relative to out-of-line links such as defined

in XLink. This allows XPointers to be used in applications to express relative loca-

tions when links do not reside directly at one of their end points. The function

attribute, namespace Error

root, element The container node is the same as the node in ques-

tion. The index is the number of child nodes.

text, comment,

processing instruction
The container node is the same as the node in

question. The index is the length of the node’s

string-value.

Type Description

xpointer(end-point(id('section1')/range-to(//summary)))

xpointer(here())

xpointer(here()/ancestor::chapter[1])

X
P

o
in

te
r

76 Essential XML Quick Reference

returns a location-set with a single member, which locates the element from which

a user or program initiated traversal of the link.

Examples

Identifying the origin element that linked to this document

Identifying the descendants of the origin element

4.1.6.4 range

location-set range(location-set)

Description

The range function returns ranges representing the covering range of the loca-

tions in the argument location-set. The covering range of a location is deter-

mined based on location type as follows:

xpointer(origin())

xpointer(origin()/descendant::node())

Type Description

range Identical to the range

attribute/namespace The container node of the start point and the end point

of the covering range is the attribute or namespace

location, the index of the start point of the covering

range is zero, and the index of the end point of the cov-

ering range is the length of the string-value of the

attribute or namespace location.

root node The container node of the start point and the end point

of the covering range is the root node, the index of the

start point of the covering range is zero, and the index

of the end point of the covering range is the number of

children of the root location.

point The start and end points of the covering range are the

point itself.

other The container node of the start point and the end point

of the covering range is the parent of the location, the

index of the start point of the covering range is the num-

ber of preceding sibling nodes of the location, and the

index of the end point is one greater than the index of

the starting point.

XPointer, XInclude, and XML Base 77

Examples

Identifying the covering range of each intro element

Identifying the covering range of each id attribute

4.1.6.5 range-inside

location-set range-inside(location-set)

Description

The range-inside function returns ranges covering the contents of the loca-

tions in the argument location-set.

Examples

Identifying ranges that span the children of each intro element

Identifying ranges that span the text within the intro elements

4.1.6.6 range-to

location-set range-to(expression)

Description

range-to returns a location-set consisting of zero or more ranges. The start

point of each range is that of the context location whereas the end point is that of

the location found by evaluating the expression with respect to the context

location.

Examples

Identifying a range between two points

xpointer(range(//intro))

xpointer(range(//intro/@id))

xpointer(range-inside(//intro))

xpointer(range-inside(//intro/text()))

xpointer(id('section1')/range-to(id('section2'))

X
P

o
in

te
r

78 Essential XML Quick Reference

Identifying a set of ranges

Identifies a set of ranges, where each range starts from an intro element to its

first child section element.

4.1.6.7 start-point

location-set start-point(location-set)

Description

For each location in the argument location-set, start-point adds a location of

type point to the resulting location-set. The start point of a location is evaluated

according to location type as follows:

Example

Identifying the start point of a range

4.1.6.8 string-range

location-set string-range(location-set, string, number?,

number?)

Description

For each location in the location-set argument, string-range returns a

set of string ranges within the location’s string-value. The string-value of the loca-

tion is searched for substrings that match the string argument, and the result-

ing location-set will contain a range location for each nonoverlapping match,

beginning with the offset (relative to the start of the match) specified by the third

argument (default = 1) and spanning the number of characters specified by the

fourth argument (default is the length of the matched string).

xpointer(//intro/range-to(section[1])

Type Description

point Same as the point

range The start point of the range

attribute, namespace Error

root, element, text,

comment, processing

instruction

The container node is the same as the node in ques-

tion. The index is zero.

xpointer(start-point(//intro/range-to(section[1])))

XPointer, XInclude, and XML Base 79

Examples

Identifying the third occurrence of 'Infoset' in intro elements

Identifying a set of string ranges

Identifies a set of string ranges spanning the substring 'fos' within all occur-

rences of 'Infoset' in intro elements.

4.2 XInclude

XInclude provides an alternative to external general entities that uses normal XML

syntax and that works at the Infoset level, not the serialized entity level. XInclude

is the moral equivalent of the EntityReference node type from the DOM, because

it exists solely as a placeholder for the content that it references. An XInclude-

aware processor will silently replace the XInclude reference with the content that

it references. This is similar to the way entity references are expanded, the differ-

ence being that XInclude processing occurs after parsing, not during parsing.

As an example, if elements in the included document belong to no namespace,

they will still belong to no namespace even if the including document has a default

namespace declaration on the root element. Again, XInclude defines how to

merge the Infosets of both documents after parsing has taken place.

The XInclude namespace only consists of a single element, include, which can

be used in conjunction with any other namespace.

Namespace

http://www.w3.org/1999/XML/xinclude

4.2.1 include

<xinc:include href='url reference' parse='xml|text'

 xmlns:xinc='http://www.w3.org/1999/XML/xinclude'/>

xpointer(string-range(//intro,'Infoset')[3])

xpointer(string-range(//intro, 'Infoset', 3, 2))

X
In

c
lu

d
e

80 Essential XML Quick Reference

Description

A placeholder element for the resource referenced by the href attribute. The

parse attribute specifies the type of resource.

Attributes

Example

Using XInclude to merge documents

Syntax Description

href='URI reference' The href attribute contains a URI reference to the

included content.

parse='(xml|text)' The attribute is an enumerated value of either xml

(default) or text, indicating how the referenced data

is to be included. xml causes the referenced data to

be interpreted as XML (à la parsed entities), and the

referenced Infoset is merged at this location. text

indicates that the referenced data should be included

as a single text node.

<!-- intro.txt -->

The XML Pointer Language (XPointer) 1.0 defines

syntax for using fragment identifiers with XML

resources.

<!-- xptr-refs.xml -->

<references>

 <reference>

 <desc>XML Pointer Language Version 1.0</desc>

 <uri>http://www.w3.org/TR/xptr</uri>

 </reference>

</references>

<!-- chapter.xml -->

<chapter xmlns='http://www.develop.com/exmlref'

 xmlns:xinc='http://www.w3.org/1999/XML/xinclude'>

 <title><xinc:include href='

 xptr-refs.xml#xpointer(//desc/text())'/></title>

 <intro>

 <xinc:include href='intro.txt' parse='text'/>

 </intro>

 <xinc:include href='xptr-refs.xml'/>

</chapter>

XPointer, XInclude, and XML Base 81

The logical resulting document could be serialized as follows:

4.3 XML Base

When multiple XML resources are used to build a logical XML document (for exam-

ple, via external entities, XInclude, and so on), questions arise about how to

resolve relative URIs. XML Base defines this process along with a syntax for

explicitly controlling the base URI of elements in a document.

By default, relative URIs found in a document are resolved relative to the original

entity’s base URI. For example, an entity located at http://www.develop.com/

exmlref/xptr.xml will have a base URI of http://www.develop.com/

exmlref/. All relative URIs found in that entity will be resolved relative to its

base URI. Because this may not always be desirable, XML Base provides the

xml:base attribute for explicitly overriding the base URI of any element in a

document.

4.3.1 xml:base

xml:base='URI reference'

Description

The xml:base attribute allows an element to override the base URI of an element

explicitly and all descendant elements. The value of this attribute is interpreted as

<chapter xmlns='http://www.develop.com/exmlref'>

 <title>XML Pointer Language Version 1.0</title>

 <intro>

The XML Pointer Language (XPointer) 1.0 defines

syntax for using fragment identifiers with XML

resources.

 </intro>

 <references xmlns=''>

 <reference>

 <desc>XML Pointer Language Version 1.0</desc>

 <uri>http://www.w3.org/TR/xptr</uri>

 </reference>

 </references>

</chapter>

X
M

L
 B

a
se

82 Essential XML Quick Reference

a URI reference as defined in IETF RFC 2396 (http://www.ietf.org/rfc/

rfc2396.txt). In namespace-aware XML processors, the xml prefix is auto-

matically bound to http://www.w3.org/XML/1998/namespace. If the

xml:base value is itself a relative URI, it’s also resolved with respect to the cur-

rent in-scope base URI (either explicitly set through an ancestor xml:base

attribute or inherited from the owner entity).

Example

Using XML Base to modify an element’s base URI

The three relative URIs used in this document are resolved to

4.4 References

XML Pointer Language (XPointer) Version 1.0. Last-Call Working Draft 8 Jan-

uary 2001.

Available at http://www.ietf.org/rfc/rfc2396.txt

http://www.w3.org/TR/2001/WD-xptr-20010108 and

http://www.w3.org/TR/xptr (current version).

XML Inclusions (XInclude) Version 1.0. Working draft 26 October 2000.

Available at http://www.w3.org/TR/2000/WD-xinclude-20001026 and

http://www.w3.org/TR/xinclude (current version).

<chapter xml:base='http://www.develop.com/xml/'>

 <title>XSLT</title>

 <sections xml:base='/exmlref/refs/'>

 <xinc:include href='xslt.xml'/>

 <xinc:include

href='xpath.xml#xpointer(id("section123"))'

 xml:base='http://www.w3.org/TR/'/>

 </sections>

 <xinc:include href='exml.xml#xpointer(//xslt-summary)'/>

</chapter>

http://www.develop.com/exmlref/refs/xslt.xml

http://www.w3.org/TR/xpath.xml#xpointer(id(section123))

http://www.develop.com/xml/exml.xml#xpointer(//xslt-

summary)

XPointer, XInclude, and XML Base 83

XML Base. Proposed Recommendation 20 December 2000.

Available at http://www.w3.org/TR/2000/PR-xmlbase-20001220 and

http://www.w3.org/TR/xmlbase (current version).

For more information of IETF RFC 2396, please visit http://www.ietf.org/rfc/

rfc2396.txt

X
M

L
 B

a
se

85

X
S
LT

Chapter 5

XSL Transformations 1.0

XSL Transformations (XSLT) version 1.0 defines an XML-based programming lan-

guage for transforming XML documents into other text formats. The most com-

mon use of XSLT today is for transforming one type of XML document into

another type of XML document, which helps alleviate schema incompatibilities

(see Figure 5–1).

It’s also common to use XSLT for transforming XML documents into HTML or

some other presentation-oriented format (for example, see Formatting Objects in

XSL). In addition to these scenarios, XSLT can be used to transform XML docu-

ments into any other type of text format (for example, comma-separated formats,

C++/Java source files, COBOL records, and so on).

Figure 5–1 Transforming between different versions of employee documents.

<v1:emp xmlns:v1='urn:employee:v1'>

 <fname>Bob</fname>

 <lname>Smith</lname>

 <age>45</age>

 <position>Instructor</position>

</v1:emp>

<v2:employee xmlns:v2='urn:employee:v2'>

 <name>Bob Smith</name>

 <title>Instructor</title>

</v2:employee>

86 Essential XML Quick Reference

5.1 Introduction to XSLT programming

XSLT offers three distinct programming models: exemplar-based, procedural, and

declarative. The first and simplest programming model is exemplar-based. This

model allows you to take an XML document template and fill it in with XSLT pro-

gramming constructs that produce dynamic content at the appropriate locations.

For more information on this programming model, see Section 5.6.

Sample exemplar-based transformation

XSLT also makes it possible to separate and generalize transformation logic into

reusable templates. Templates in XSLT can be called like functions in procedural

programming languages. The action of a template is to output a portion of the

result docunent. See the sections on template and call-template for

more details.

Sample procedural transformation

<!-- exemplar document -->

<v2:employee

 xmlns:v1='urn:employee:v1'

 xmlns:v2='urn:employee:v2'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 xsl:version='1.0'>

 <name><xsl:value-of select="concat(/v1:emp/fname,

 ' ', /v1:emp/lname)"/></name>

 <title><xsl:value-of select='/v1:emp/position'/></title>

</v2:employee>

<xsl:transform

 xmlns:v1='urn:employee:v1'

 xmlns:v2='urn:employee:v2'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 version='1.0'>

 <!-- outputs name element -->

 <xsl:template name="outputName">

 <name><xsl:value-of

 select="concat(v1:emp/fname, ' ', v1:emp/lname)"/></

name>

 </xsl:template>

XSL Transformations 1.0 87

X
S
LT

And finally, XSLT offers a powerful and flexible declarative programming model

(similar to that of Prolog, Lisp, and Scheme). The declarative model is based on

associating templates with patterns (or rules) relative to the input document.

When the processor begins executing the transformation, it looks for the template

with a pattern that matches the root of the input tree (for example, this is how the

first template was called in the previous example). Then, inside that template, you

indicate which nodes you would like the processor to continue processing through

the apply-templates/apply-imports elements. After a call to apply-

templates/apply-imports, the processor identifies and executes the template

that best matches each specified node. This continues until the processor reaches

a template that doesn’t explicitly call apply-templates/apply-imports.

XSLT defines several built-in templates that exist as part of every program unless

they’re explicitly overridden. The built-in templates have a profound effect on the

programming model. For the root node and element nodes, the built-in template

calls apply-templates to continue processing all child nodes. For attribute

and text nodes, the built-in template simply outputs the node’s value. For all other

node types, the built-in template does nothing. See Section 5.5 for more details.

The declarative model allows developers to partition transformation logic into

modules that are automatically associated with a portion of the input tree. The

developer doesn’t have to worry about when or how the template is called.

Instead the developer simply declares that a given template should be called for

a particular node, and the processor figures out when and how to do it. With this

 <!-- outputs title element -->

 <xsl:template name="outputTitle">

 <title><xsl:value-of select='v1:emp/position'/></

title>

 </xsl:template>

 <!-- root template: main entry point -->

 <xsl:template match="/">

 <v2:employee>

 <xsl:call-template name="outputName"/>

 <xsl:call-template name="outputTitle"/>

 </v2:employee>

 </xsl:template>

</xsl:transform>

88 Essential XML Quick Reference

approach, it’s possible to build programs that transform extremely complex input

documents in a straightforward fashion. For more details on this approach, see

the template, apply-templates, and apply-imports sections.

Sample declarative transformation

Although exemplar-based transformations only allow XML output (or well-formed

HTML), the last two approaches make it possible to output XML, HTML, or

straight text. See the output element for more details on how this works. The

last two approaches also make it possible to partition transformations into multi-

ple source files. The include/import elements can be used to combine XSLT

files into one logical program.

<xsl:transform

 xmlns:v1='urn:employee:v1'

 xmlns:v2='urn:employee:v2'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 version='1.0'>

 <!-- override built-in template for

 text/attributes -->

 <xsl:template match="text()|@*"/>

 <!-- template for position elements -->

 <xsl:template match="position">

 <title><xsl:value-of select='.'/></title>

 </xsl:template>

 <!-- template for fname elements -->

 <xsl:template match="fname">

 <name><xsl:value-of select="

 concat(., ' ',

 following-sibling::lname)"/></name>

 </xsl:template>

 <!-- template for v1:emp elements -->

 <xsl:template match="v1:emp">

 <v2:employee>

 <xsl:apply-templates select="*"/>

 </v2:employee>

 </xsl:template>

</xsl:transform>

XSL Transformations 1.0 89

X
S
LT

Regardless of which approach you choose, XSLT offers several programming

constructs that can be used to write sophisticated transformations. Some of

these programming constructs are quite familiar and intuitive (for example, condi-

tionals, loop statements, and so on), whereas others are specific to XSLT (for

example, value-of, element, attribute, and so on).

5.2 XSLT types and expressions

XSLT leverages XPath for identifying nodes from the input document (select

attribute), specifying conditions (if/when statements), and generating text in

the result docunent (value-of). XSLT also defines several new data types and

expressions that are used to define the various XSLT constructs throughout the

rest of this chapter.

XSLT data types

XSLT expressions

Type Description

char A single UCS character

QName A qualified name (prefix:local_name). The prefix is
expanded into a URI using the in-scope namespace
declarations.

QNames A whitespace-separated list of QName values

token A string that doesn’t contain whitespace

tokens A whitespace-separated list of token values

uri-reference A valid URI reference

template A template defines a portion of the result docunent. It
can contain literal output (elements/text) as well as
XSLT elements that are instructions for creating
dynamic output.

Type Description

expression A generic XPath expression

node-set-expression An XPath expression that yields a node-set

boolean-expression An XPath expression with a result that is converted to a
boolean (as if by calling the boolean function)

number-expression An XPath expression with a result that is converted to a
number (as if by calling the number function)

90 Essential XML Quick Reference

These type/expression names are used when presenting the syntax for each of

the XSLT constructs presented in this chapter. For example, the following repre-

sents the syntax of the attribute element:

<xsl:attribute

 name = { qname }

 namespace = { uri-reference }>

 <!-- Content: template -->

</xsl:attribute>

The previous tables describe what QName, URI reference, and template mean in

this context. See Chapter 3 for more details on XPath data types and expressions.

5.3 Patterns

A pattern is a restricted XPath location path (see previous section) that identifies

a set of nodes. A pattern identifies an is-a relationship rather than a has-a relation-

ship. For example, the pattern child::foo identifies nodes that are child foo

elements rather than nodes that have child foo elements. Patterns are primarily

used to associate templates with nodes in the source document (see tem-

plate). Patterns are also used to define keys (see key) and numbering details

(see number).

A node matches a pattern when the pattern expression evaluated against the

node (or any of the node’s ancestor nodes) identifies the node itself.

string-expression An XPath expression with a result that is converted to a
string (as if by calling the string function)

pattern A sequence of XPath location paths separated by |.
Location paths used in patterns may only use the
child and attribute (@) axis identifiers, but they
may use the // abbreviation for /descendant-
or-self::node()/. There are no restrictions on
what’s used in the node test or predicate portion of a
location path. The id and key functions may also be
used as a complete pattern. For more details on pattern
matching see Section 5.3.

Type Description

XSL Transformations 1.0 91

X
S
LT

Examples

As you can see from these examples, it’s possible for a node to match more than

one pattern. XSLT provides a set of conflict resolution rules to define what hap-

pens when this occurs (described next).

5.4 Conflict resolution

When a node matches more than one pattern, the following conflict resolution

rules are used to determine which template to use:

• All templates with a lower import precedence are eliminated from consider-

ation (see import element).

• Of the remaining templates, the one with the highest priority matches. A prior-

ity may be explicitly assigned to a template via the priority attribute; oth-

erwise, its default priority is automatically calculated (listed next).

Pattern example Description

* Matches any element node.

v1:* Matches any element from the namespace
associated with the v1 prefix.

@* Matches any attribute node.

text() Matches any text node.

node() Matches any node except for the root node (the
root node is not a child of another node).

fname Matches any fname element that belongs to no
namespace.

child::fname Matches any fname element that belongs to no
namespace.

fname | lname | @id Matches any fname/lname element or id
attribute that belong to no namespace.

fname/text() Matches any text node that is a child of an
fname element (belonging to no namespace).

emp//text() Matches any text node that is a descendant of
an emp element.

v1:emp[@id='e101']/fname Matches any fname element (from no
namespace) that is a child of the emp element
with an id attribute equal to e101, from the
namespace associated with the v1 prefix.

92 Essential XML Quick Reference

• If there are multiple templates remaining of equal priority, the XSLT processor

may either signal an error or choose the last one in the document.

Default priorities

5.5 Built-in templates

XSLT defines several templates that are built into every transformation. These

built-in templates provide default functionality for each node type (as described

next). Built-in templates have the lowest possible priority and can be overridden.

Pattern type Default priority Examples

Node test by type -0.50 *

node()

comment()

text()

processing-instruction()

child::*

child::text()

@*

@node()

attribute::node()

Namespace wildcard -0.25 v1:*

child::v1:*

attribute::v1:*

QName 0.00 fname

child::fname

v1:emp

child::v1:emp

@id

attribute::id

@v1:id

Processing instruc-
tion tests by literal

0.00 processing-instruction(

'xsl-stylesheet')

Everything else 0.50 v1:emp/fname

v1:emp[@id]

fname[contains(., 'Aaron')]

//fname

//node()

Multiple patterns
(pattern1 | pattern2)

Treated as distinct
templates, with pri-
orities that are calcu-
lated independently.

v1:emp | fname

node() | @* | *

XSL Transformations 1.0 93

X
S
LT

Built-in template descriptions for each node type

Built-in template syntax

<xsl:template match="*|/">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="text()|@*">

 <xsl:value-of select="."/>

</xsl:template>

<xsl:template match="processing-instruction()|comment()"/>

In addition to these built-in templates, there is also a set of built-in templates for

each mode used in the document (see template for more details):

<xsl:template match="*|/" mode="m">

 <xsl:apply-templates mode="m"/>

</xsl:template>

These built-in templates can be explicitly overridden to change this default behavior.

Example

Overriding built-in templates

This example overrides the built-in templates for the root, element, attribute, and

text nodes to do nothing by default.

Node type Description

Root Calls apply-templates on child nodes.

Element Calls apply-templates on child nodes.

Attribute Outputs the attribute value using value-of.

Text Outputs the text node using value-of.

Processing Instruction Does nothing.

Comment Does nothing.

Namespace Does nothing.

<!-- overrides built-in templates -->

<xsl:template match="*|/"/>

<xsl:template match="text()|@*"/>

94 Essential XML Quick Reference

5.6 Exemplar-based transformation syntax

An exemplar-based transformation must

• be a well-formed XML document

• specify the XSLT version number on the root element

(xsl:version='1.0')

An exemplar-based transformation is equivalent to having a single (root) template

that contains the entire exemplar document as a literal result element. Because of

this, top-level elements may not be used within exemplars. This approach is very

similar to the ASP/JSP model, as illustrated by the following example.

Sample exemplar-based transformation

5.7 Attribute value templates

In many situations, it’s convenient to assign the value of an attribute dynamically

(see attribute). For example, consider the following typical example that uses

attribute to generate an id attribute on the new employee element:

<!-- exemplar document -->

<html xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 xsl:version='1.0' xmlns:v1='urn:employee:v1'>

 <body>

 <h1><xsl:value-of select="concat(/v1:emp/fname,

 ' ', /v1:emp/lname)"/></h1>

 <h2><xsl:value-of select='/v1:emp/position'/></h2>

 </body>

</html>

<xsl:template match="v1:emp">

 <employee>

 <xsl:attribute name="id">

 <xsl:value-of select="lname"/>-<xsl:value-of

select="@empid"/>

 </xsl:attribute>

 </employee>

</xsl:template>

XSL Transformations 1.0 95

X
S
LT

To simplify this process, XSLT provides attribute value templates that make it pos-

sible to embed value-of expressions within attribute values. To use attribute

value templates, enclose the XPath expression that you would have used with

value-of inside curly braces { } inside the attribute value. Notice how much

this simplifies the previous example:

Besides using attribute value templates with literal result elements, they also may

be used with some of the attributes on certain XSLT elements. The following

example illustrates how one could generate an attribute with a name that was

determined dynamically by a value in the source document:

Curly braces are not recognized recursively inside expressions. Also, curly

braces are not recognized inside attributes of XSLT elements (as shown previ-

ously) unless an attribute has been defined to accept attribute value templates.

When the syntax is presented for the various XSLT elements throughout this chap-

ter, only those attributes that have curly braces surrounding the type identifier

accept attribute value templates.

5.8 Whitespace

In XML, whitespace characters consist of space (#x20), tab (#x9), carriage return (#xD),

and new line (#xA). Before an XSLT processor executes a transformation against a

given source document, whitespace-only text nodes are stripped from both documents.

A whitespace-only text node only contains whitespace characters. If a text node

contains a single non-whitespace character, it’s always preserved. It’s possible to

<xsl:template match="v1:emp">

 <employee id="{lname}-{@empid}"/>

</xsl:template>

<xsl:template match="v1:emp">

 <employee>

 <xsl:attribute name="{//id-label}">

 <xsl:value-of select="lname"/>-<xsl:value-of

select="@empid"/>

 </xsl:attribute>

 </employee>

</xsl:template>

96 Essential XML Quick Reference

force the preservation of whitespace-only text nodes. The following rules describe

when whitespace-only text nodes are preserved for both the transformation and

the source documents:

Preserved in transformation document

• Whitespace within text elements (all others are always stripped)

Preserved in source document

• Whitespace-only text nodes with a parent element’s name that is in the set of

whitespace-preserving element names (see preserve-space and strip-

space)

• Whitespace-only text nodes that have an xml:space value of preserve

(current in-scope value, either declared on the parent element or some ancestor)

5.9 Element library

Namespace

http://www.w3.org/1999/XSL/Transform

The following groups the XSLT elements by functional category. The last category

lists the elements that may be used as direct children of transform/

stylesheet, otherwise known as top-level elements. All other elements (that

are not top level) must be used within one of the top-level elements. For more

information on any individual element, see the corresponding section.

Structural element Description

import Includes the specified transformation with lower prece-
dence.

include Includes the specified transformation.

param Declares a parameter and binds it to a default value
(used with template or transform).

template Defines a new template rule with the specified pattern
and/or name, optional mode, and optional priority.

transform

(stylesheet)
Is the topmost element in an XSLT document.

variable Binds a name to a value (like param without a default
value).

XSL Transformations 1.0 97

X
S
LT

Flow-control element Description

apply-imports Facilitates overriding templates by processing the cur-
rent node using only imported template rules.

apply-templates Instructs the processor to process each node in the
identified node-set.

call-template Invokes a template by name.

for-each Loops through the identified node-set, instantiating
the template with each node acting as the current node.

sort Sorts the current node list before processing (used with
for-each and apply-templates).

with-param Passes the specified parameter to the target template
(used with call-template and apply-templates).

Generative element Description

attribute Generates an attribute in the result docunent.

comment Generates a comment in the result docunent.

copy Copies the current node (without attributes or child
nodes) to the result document.

copy-of Copies the specified object (and each node’s subtree)
to the result document.

element Generates an element in the result document.

processing-instruc-

tion
Generates a processing instruction in the result
document.

text Generates the literal text in the result document.

value-of Generates a text node from an expression in the result
document.

Conditional element Description

choose Selects one template from a number of alternatives
(defined by when and otherwise).

if Defines a conditional template.

otherwise Defines the default template for a choose instruction.

when Defines a conditional template for a choose instruction.

98 Essential XML Quick Reference

Declaration element Description

attribute-set Defines a named set of attributes that can be reused
across multiple elements.

decimal-format Declares a decimal format (used by format-number).

namespace-alias Declares that one namespace URI is an alias for another
while processing the transformation.

output Declares how the author of the stylesheet would like the
result docunent serialized.

preserve-space Defines the elements in the source document for which
whitespace-only text nodes should be preserved.

strip-space Defines the elements that should be removed from the
list of whitespace-preserving elements (defined by
preserve-space).

Miscellaneous element Description

fallback Defines a fallback template that will be called when the
containing XSLT instruction isn’t recognized.

key Declares a new key (used with key function).

message Outputs a message in a processor-dependent fashion
and potentially terminates the program.

number Inserts a formatted number into the result docunent.

Top-level element Description

attribute-set Defines a named set of attributes that can be reused
across multiple elements.

decimal-format Declares a decimal format (used by format-number).

import Includes the specified transformation with lower
precedence.

include Includes the specified transformation.

key Declares a new key (used with key function).

namespace-alias Declares that one namespace URI is an alias for another
while processing the transformation.

output Declares how the author of the stylesheet would like the
result docunent serialized.

param Declares a parameter and binds it to a default value
(used with template or transform).

preserve-space Defines the elements in the source document for which
whitespace-only text nodes should be preserved.

XSL Transformations 1.0 99

X
S
LT

The XSLT programming language is defined in terms of XML elements and

attributes. Each of the elements belongs to the XSLT namespace. Attributes are

always optional unless stated otherwise.

The syntax for each element/attribute references XSLT-specific type/expression

names. For example, the following is the syntax for attribute:

<xsl:attribute

 name = { qname }

 namespace = { uri-reference }>

 <!-- Content: template -->

</xsl:attribute>

See Section 5.2 for more details on what qname, uri-reference, and

template mean in this context. The { } notation identifies that these attributes

also accept attribute value templates (see Section 5.7).

5.9.1 apply-imports

<xsl:apply-imports />

Description

apply-imports facilitates overriding templates. It instructs the processor to

process the current node using only imported template rules (see import for

details on importing template rules). The node is processed in the same mode as

the current template rule (the current template rule is the template that was most

recently matched, except for inside of a for-each element where the current

template is always null). It is an error if xsl:apply-imports is instantiated

when the current template rule is null.

strip-space Defines the elements that should be removed from the
list of whitespace-preserving elements (defined by
preserve-space).

template Defines a new template rule with the specified pattern
and/or name, optional mode, and optional priority.

variable Binds a name to a value (like param without a default
value).

Top-level element Description

100 Essential XML Quick Reference

Example

Using apply-imports

This example consists of two files: employee.xsl and employeeDetails.xsl.

employeeDetails.xsl imports employee.xsl and overrides the employee

template. Inside the derived employee template, we first call apply-imports

to execute the behavior of the base template in employee.xsl (this is similar

to calling a method in a base class from a derived class). In this case, we’re

extending the behavior of the base template also to output the employee’s title.

5.9.2 apply-templates

<xsl:apply-templates

 select = node-set-expression

 mode = qname>

 <!-- Content: (xsl:sort | xsl:with-param)* -->

</xsl:apply-templates>

Description

Instructs the processor to process each node in the node-set identified by the

select attribute. For each node in the identified node-set, the processor

identifies the template rule that best matches the node and instantiates the tem-

plate with that node as the current node (see Sections 5.3 and 5.4). The identified

<!-- employee.xsl -->

...

<xsl:template match="employee">

 Name: <xsl:value-of select="name"/>

</xsl:template>

...

<!-- employeeDetails.xsl -->

...

<xsl:import href="employee.xsl"/>

<xsl:template match="employee">

 <xsl:apply-imports/>

 Title: <xsl:value-of select="title"/>

</xsl:template>

...

XSL Transformations 1.0 101

X
S
LT

nodes are traversed in document order unless apply-templates contains

child sort elements to reorder the node-set before processing (see sort).

If a mode attribute is also supplied, only templates that have the same mode

attribute are candidates to match (see template for more details). Modes make

it possible to have two templates with the same pattern that produce different

results. Remember that there are also built-in templates for each mode specified

in the transformation (see Section 5.5 for more details).

Parameters may be passed to templates through child with-param elements

(see param and with-param for more details).

Attributes

Example

Using apply-templates

Name Default Description

select node() A node-set expression that identifies the node-set
to be processed.

mode "" A qualified name that identifies the particular mode
against which to match.

<xsl:transform

 xmlns:v1='urn:employee:v1'

 xmlns:v2='urn:employee:v2'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 version='1.0'>

 <!-- override built-in template for text/atts -->

 <xsl:template match="text()|@*"/>

 <!-- template for dependent elements -->

 <xsl:template match="dependent">

 <dep><xsl:value-of select='.'/></dep>

 </xsl:template>

 <!-- template for v1:emp elements -->

 <xsl:template match="v1:emp">

 <name><xsl:value-of

 select="concat(fname, ' ', lname)"/></name>

102 Essential XML Quick Reference

In this example, the first call to apply-templates occurs in the root template

(match='/'). Because the select attribute was omitted, it defaults to process-

ing all the child nodes of the current context node—in this case, the root node.

Assuming that v1:emp is the root element, the v1:emp template will be the next

one to match. Inside the v1:emp template, the call to apply-templates

selects the child dependents elements. Because there isn't a template that

matches dependents, the built-in template for elements kicks in, which simply

calls apply-templates again selecting all of dependents child nodes (see

Section 5.5 for more details).

Assuming that the dependents element has child dependent elements, each

of those will then be processed by the dependent template. If there were any

additional elements under dependents, they would be recursively processed by

the built-in template for elements until reaching the child text nodes. This example

overrides the built-in template for text nodes to do nothing (this ensures that the

text won’t be output for any unhandled elements).

5.9.3 attribute

<xsl:attribute

 name = { qname }

 namespace = { uri-reference }>

 <!-- Content: template -->

</xsl:attribute>

Description

attribute generates an attribute in the result docunent with the specified

name and namespace identifier. The new attribute is associated with the element

 <xsl:apply-templates select="dependents"/>

 </xsl:template>

 <!-- root template, main entry point -->

 <xsl:template match="/">

 <v2:employee>

 <xsl:apply-templates/>

 </v2:employee>

 </xsl:template>

</xsl:transform>

XSL Transformations 1.0 103

X
S
LT

containing the attribute instruction, whether that was generated through a lit-

eral resulting element or the element instruction. The content of the

attribute becomes the value of the new attribute.

Instead of using attribute, one could also use attribute value templates to

accomplish the same goal, unless of course you needed to specify the name of

the attribute dynamically. To provide for that, notice that both the name and

namespace attributes accept attribute value templates (see Section 5.7).

Attributes

Examples

Generating attributes

This template generates the following element:

Name Default Description

name (required) The qualified name of the new attribute

namespace "" The namespace identifier of the new attribute

...

<xsl:template match="/">

 <employee>

 <xsl:attribute name="i:id"

 namespace="urn:ids-r-us:format-x">

 <xsl:value-of select="concat(*/lname, '-', */fname)"/>

 </xsl:attribute>

 <name>

 <xsl:attribute name="first">

 <xsl:value-of select="*/fname"/>

 </xsl:attribute>

 <xsl:attribute name="last">

 <xsl:value-of select="*/lname"/>

 </xsl:attribute>

 </name>

 </employee>

</xsl:template>

...

<employee i:id='Bob-Billy'

 xmlns:i='urn:ids-r-us:format-x'>

104 Essential XML Quick Reference

Generating attributes with attribute value templates

This example generates the same document as the previous example.

Dynamically specifying attribute names

This example generates an attribute with a dynamic name, the value of the

fnameLabel element in the source document.

5.9.4 attribute-set

<xsl:attribute-set

 name = qname

 use-attribute-sets = qnames>

 <!-- Content: xsl:attribute* -->

</xsl:attribute-set>

 <name first='Billy' last='Bob'/>

</employee>

...

<xsl:template match="/">

 <employee i:id="{concat(*/lname,'-',*/fname)}"

 xmlns:i="urn:ids-r-us:format-x">

 <name first="{*/fname}" last="{*/lname}"/>

 </employee>

</xsl:template>

...

...

<xsl:template match="/">

 <employee>

 <name>

 <xsl:attribute name="{labels/fnameLabel}"

 <xsl:value-of select="*/fname"/>

 </xsl:attribute>

 ...

 </name>

 </employee>

</xsl:template>

XSL Transformations 1.0 105

X
S
LT

Description

attribute-set defines a named set of attributes that can be reused across

multiple elements. The content of attribute-set consists of zero or more

attribute elements that specify the attributes in the set. The contained

attribute templates are instantiated each time the attribute-set is used on

an element, using the same current node that was used to instantiate the element

itself. attribute-sets are used by element through the use-

attribute-sets attribute (see element for more details). They may also be

used on literal resulting elements through the xsl:use-attribute-sets

global attribute.

Attributes

Example

Using attribute-set

Name Default Description

name (required) The name of the attribute-set

use-attribute-sets "" A whitespace-separated list of other
attribute-set names that are to be
added to the beginning of this new set

...

<xsl:attribute-set name="nameAtts">

 <xsl:attribute name="first">

 <xsl:value-of select="fname"/>

 </xsl:attribute>

 <xsl:attribute name="last">

 <xsl:value-of select="lname"/>

 </xsl:attribute>

</xsl:attribute-set>

<xsl:template match="/">

 <employees>

 <xsl:for-each select="//emp">

 <xsl:element name="employee"

 use-attribute-sets="nameAtts">

 <xsl:attribute="mi">

 <xsl:value-of select="middle"/>

 </xsl:attribute>

 </xsl:element>

106 Essential XML Quick Reference

This example defines an attribute-set named nameAtts, which is then

used on the employee elements generated below. The employee element also

defines the mi attribute inline. (Note: Inline attribute definitions can override

attributes in attribute-sets.)

5.9.5 call-template

<xsl:call-template

 name = qname>

 <!-- Content: xsl:with-param* -->

</xsl:call-template>

Description

call-template invokes a template by name. The name attribute specifies the

QName of the template to call. The template with the same expanded name is

invoked by the processor (see template for more details on naming templates).

call-template may contain with-param elements for passing the

expected parameters into the template. Invoking templates by name doesn’t

affect the context in any way (for example, the current node and node list are the

same within the called template).

Attribute

Example

Using call-template

 </xsl:for-each>

 </employees>

</xsl:template>

...

Name Default Description

name (required) The qualified name of the template to invoke

...

<!-- outputs employee info -->

<xsl:template name="outputEmpInfo">

 <xsl:param name="empNode"/>

 <xsl:param name="getTitle" select="false()"/>

XSL Transformations 1.0 107

X
S
LT

This example invokes the outputEmpInfo element by name and passes in two

parameters, empNode (the employee node to output) and getTitle (a boolean

value indicating whether to output the employee’s title).

5.9.6 choose

<xsl:choose>

 <!-- Content: (xsl:when+, xsl:otherwise?) -->

</xsl:choose>

Description

choose selects exactly one template from a number of alternatives (similar to a

switch statement in C++/Java or a Select statement in Visual Basic). The content

of choose consists of a sequence of when elements followed by an optional

otherwise element (default case). Each when element has a single test

attribute, which specifies an XPath expression. Each of the when elements is

tested in turn, by evaluating the expression and converting the resulting object to

a boolean. The content of the first when element with a test that is true is

instantiated. If no when is true, the content of the otherwise element is

instantiated.

 <name><xsl:value-of select="concat($empNode/fname, ' ',

 $empNode/lname)"/></name>

 <xsl:if test="$getTitle">

 <title><xsl:value-of select='$empNode/title'/></title>

 </xsl:if>

</xsl:template>

<!-- root template: main entry point -->

<xsl:template match="/">

 <employee>

 <xsl:call-template name="outputEmpInfo">

 <xsl:with-param name="empNode"

 select="//emp[@id='e102']"/>

 <xsl:with-param name="getTitle" select="true()"/>

 </xsl:call-template>

 </employee>

</xsl:template>

...

108 Essential XML Quick Reference

Example

Using choose

This example illustrates how to use a choose element to select from a number

of different conditions.

5.9.7 comment

<xsl:comment>

 <!-- Content: template -->

</xsl:comment>

Description

Generates a comment in the result docunent. The content of the comment

instruction becomes the content of the new comment in the result docunent.

...

<xsl:template match="/">

 <employees>

 <xsl:for-each select="//emp">

 <xsl:choose>

 <xsl:when test="@dept = 'sales'">

 <salesRep><xsl:apply-templates/></salesRep>

 </xsl:when>

 <xsl:when test="@dept = 'dev'">

 <programmer><xsl:apply-templates/></programmer>

 </xsl:when>

 <xsl:otherwise>

 <employee><xsl:apply-templates/></employee>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </employees>

</xsl:template>

...

XSL Transformations 1.0 109

X
S
LT

Example

Using comment

This example produces a comment that would look something like this in the

result document:

<!--new employee file: Bob-->

5.9.8 copy

<xsl:copy

 use-attribute-sets = qnames>

 <!-- Content: template -->

</xsl:copy>

Description

copy copies the current node to the result docunent along with all associated

namespace nodes, but without attributes or other child nodes. The content of the

copy instruction is a template for the attributes and children of the newly created

node (in the result docunent). The use-attribute-sets attribute may also

be used to add a set of attributes automatically to newly created element nodes

(see attribute-set).

Attributes

...

<xsl:template match="/">

 <xsl:comment>

 new employee file: <xsl:value-of select="*/fname"/>

 </xsl:comment>

 ...

</xsl:template>

...

Name Default Description

use-attribute-sets "" A whitespace-separated list of
attribute-set names

110 Essential XML Quick Reference

Example

Using copy to write an identity transformation

This example illustrates how to use copy to write the identity transformation. The

identity template copies each node it encounters from the source document into

the result docunent without changes. This would be useful if you wanted to leave

the entire document unchanged, except for a few specific elements that needed

alterations. Using this template in conjunction with more specific templates

makes this possible. This example has a template for lname elements, which

simply changes the element name to lastName. Besides this change, every-

thing else is copied as is to the result docunent.

5.9.9 copy-of

<xsl:copy-of

 select = expression />

Description

Copies the result of the specified expression to the result document. If the expres-

sion yields a result tree fragment (see variable), the entire result tree fragment

is copied directly to the result document. If the expression yields a node-set,

each node is copied to the result document in document order (along with all

namespace, attribute, and child nodes). If the expression yields an object of any

other type, the object is converted to a string, which is then copied to the result

document.

...

<xsl:template match="lname">

 <lastName><xsl:apply-templates/></lastName>

</xsl:template>

<!-- the identity transformation -->

<xsl:template match="node()|@*">

 <xsl:copy>

 <xsl:apply-templates select="node()|@*"/>

 </xsl:copy>

</xsl:template>

...

XSL Transformations 1.0 111

X
S
LT

Attribute

Example

Using copy-of to copy a set of nodes

This example copies all the employee elements from the source document that

have an eom attribute into the result document.

5.9.10 decimal-format

<xsl:decimal-format

 name = qname

 decimal-separator = char

 grouping-separator = char

 infinity = string

 minus-sign = char

 NaN = string

 percent = char

 per-mille = char

 zero-digit = char

 digit = char

 pattern-separator = char />

Description

decimal-format declares a decimal format that controls the interpretation of

a format string used by the format-number function. If there is a name

attribute, then the element declares a named decimal format; otherwise, it

declares the default decimal format for the transformation.

Name Default Description

select (required) A generic XPath expression

...

<xsl:template match="/">

 <employeesOfTheMonth>

 <xsl:copy-of select="//employee[@eom]"/>

 </employeesOfTheMonth>

</xsl:template>

...

112 Essential XML Quick Reference

A decimal format controls how the XSLT processor converts a decimal number to

a string. It specifies what characters in the format string and the resulting output

string represent the decimal sign (.), grouping separator (,), percent sign (%),

and per-mille sign (‰). It also specifies what strings represent NaN and infinity in

the output string. In addition, the format string controls where a number must

appear (zero digit) and where a number may appear (digit). The following summa-

rizes the meaning of each format string construct.

Attributes

Example

Using decimal-format

Name Default Description

name "" The qualified name of the decimal format;
if no name, it becomes the default decimal
format

decimal-separator . The character used for the decimal sign

grouping-separator , The character used as the grouping
separator

infinity Infinity The string used to represent infinity

minus-sign - The character used as the minus sign

NaN NaN The string used to represent the NaN value

percent % The character used as the percent sign

per-mille ‰ The character used as a per-mille sign

zero-digit 0 The character used as the digit zero

digit # The character used for a digit in the for-
mat string

pattern-separator ; The character used to separate positive
and negative subpatterns in a pattern

...

<xsl:decimal-format

 decimal-separator = ","

 grouping-separator = "."

 NaN = "Invalid number"

 infinity = "Out of Bounds"/>

<xsl:template match="/">

 <!-- root template -->

XSL Transformations 1.0 113

X
S
LT

This example illustrates how to declare a default decimal format that modifies the

decimal and grouping separators as well as the string representations for NaN

and infinity. The following shows the result of this transformation:

5.9.11 element

<xsl:element

 name = { qname }

 namespace = { uri-reference }

 use-attribute-sets = qnames>

 <!-- Content: template -->

</xsl:element>

Description

Generates an element in the result document with the specified name,

namespace identifier, and set of attribute-sets. Both the name and

namespace attributes accept attribute value templates, making it possible to

assign element names dynamic values. The content of the element instruction

becomes the content of the new element.

 <numbers>

 <number><xsl:value-of

 select="format-number('29895.9','#.##0,00')"/></number>

 <number><xsl:value-of

 select="format-number('10000000','#.##0,##')"/></

number>

 <number><xsl:value-of

 select="format-number('foo','#.##0,00')"/></number>

 <number><xsl:value-of

 select="format-number(1 div 0,'#.##0,00')"/></number>

 </numbers>

</xsl:template>

...

<numbers>

 <number>29.895,90</number>

 <number>10.000.000</number>

 <number>Invalid number</number>

 <number>Out of Bounds</number>

</numbers>

114 Essential XML Quick Reference

Attributes

Example

Using element to generate elements dynamically

This example dynamically generates the v2:employees element. Then it iter-

ates through all the source document’s emp elements, generating a new element

called employee for each one that contains the concatenation of emp's child

fname and lname elements.

5.9.12 fallback

<xsl:fallback>

 <!-- Content: template -->

</xsl:fallback>

Description

Defines a fallback template that will be called when the containing XSLT

instruction isn’t recognized by the XSLT processor.

Name Default Description

name (required) The qualified name of the new element

namespace "" The namespace identifier of the new
element

use-attribute-sets "" A whitespace-separated list of
attribute-set names that are to
be added to this element (see
attribute-set for more details)

...

<xsl:template match="/">

 <xsl:element name="v2:employees"

namespace="urn:employee:v2">

 <xsl:for-each select="//emp">

 <xsl:element name="employee">

 <xsl:value-of select="concat(fname, ' ', lname)"/>

 </xsl:element>

 </xsl:for-each>

 </xsl:element>

</xsl:template>

...

XSL Transformations 1.0 115

X
S
LT

Example

Using fallback

This example attempts to use an XSLT 1.1 working draft (WD) instruction, docu-

ment, which creates multiple output files. If this stylesheet is used with an XSLT

1.0 processor, the document element would fail and the contained fallback

would be instantiated, which in this case calls an alternate template.

5.9.13 for-each

<xsl:for-each

 select = node-set-expression>

 <!-- Content: (xsl:sort*, template) -->

</xsl:for-each>

Description

for-each loops through the specified node-set, instantiating the contained

template with each node as the current node. The nodes are traversed in docu-

ment order by default, unless for-each contains child sort elements that reor-

der the node-set (see sort).

Attribute

...

<xsl:template match="/">

 <xsl:document href="managers.xml">

 <managers>

 <xsl:apply-templates select="//emp[@manage]"/>

 </managers>

 <xsl:fallback>

 <xsl:call-template name="copyManagersInternally"/>

 </xsl:fallback>

 </xsl:document>

 <xsl:apply-templates/>

</xsl:template>

...

Name Default Description

select (required) An XPath expression that must yield a node-set

116 Essential XML Quick Reference

Example

Looping through a node-set

This example loops through all emp elements in the document, sorted by the

lname child element in alphabetical order. For each one, it outputs an

employee element, which contains the concatenation of the fname and lname

string values (separated by a space character).

5.9.14 if

<xsl:if

 test = boolean-expression>

 <!-- Content: template -->

</xsl:if>

Description

Defines a conditional template that’s instantiated when the test expression eval-

uates to true. Use choose for if/else semantics.

Attribute

...

<xsl:template match="/">

 <xsl:for-each select="//emp">

 <xsl:sort select="lname"/>

 <employee>

 <xsl:value-of select="concat(fname,' ',lname)"/>

 </employee>

 </xsl:for-each>

</xsl:template>

...

Name Default Description

test (required) An XPath expression with a result that is coerced to a
boolean (as if by calling the boolean function)

XSL Transformations 1.0 117

X
S
LT

Example

Using if to test conditions

This fragment uses the if element to test whether the context node’s dept

attribute has a value of sales. If it does, it outputs the salesRep element.

5.9.15 import

<xsl:import

 href = uri-reference />

Description

import includes the transformation identified by the href attribute in the cur-

rent transformation and gives the imported templates lower precedence in terms

of conflict resolution (see Section 5.4). import elements must precede all other

children of the stylesheet/transform element including include ele-

ments. It’s also possible to override imported templates through the apply-

imports element (see apply-imports). Use include to include templates

without affecting their precedence (see include).

Attribute

Example

Using import to override templates

...

<xsl:if test="@dept = 'sales'">

 <salesRep><xsl:apply-templates/></salesRep>

<xsl:if>

...

Name Default Description

href (required) The URI reference of the transformation to import

<!-- employee.xsl -->

...

<xsl:template match="employee">

 Name: <xsl:value-of select="name"/>

</xsl:template>

...

118 Essential XML Quick Reference

This example consists of two files: employee.xsl and employeeDetails.xsl.

employeeDetails.xsl imports employee.xsl and overrides the employee

template. Inside of the derived employee template, we first call apply-

imports to execute the behavior of the base template in employee.xsl (this

is similar to calling a method in a base class from a derived class). In this case, we’re

extending the behavior of the base template to output the employee’s title as well.

5.9.16 include

<xsl:include

 href = uri-reference />

Description

include includes the transformation identified by the href attribute in the cur-

rent transformation. include is different than import in that it has no effect on

the precedence of the included templates (see import). include must be a

top-level element.

Attribute

Example

Using include

<!-- employeeDetails.xsl -->

..

<xsl:import href="employee.xsl"/>

<xsl:template match="employee">

 <xsl:apply-imports/>

 Title: <xsl:value-of select="title"/>

</xsl:template>

...

Name Default Description

href (required) The URI reference of the transformation to import

<!-- employee.xsl -->

...

<xsl:template match="employee">

XSL Transformations 1.0 119

X
S
LT

This example consists of two distinct files. employeeDetails.xsl includes

employee.xsl. All of the templates within the former are now also available in

the latter. include has no effect on the conflict resolution rules.

5.9.17 key

<xsl:key

 name = qname

 match = pattern

 use = expression />

Description

key declares a new key with the specified name for the nodes that match the

specified pattern. An XSLT key is analogous to an attribute of type ID except it

doesn’t require a DTD. A key is given a name so it can be referred to later by the

key function. The match attribute identifies the nodes to which the key applies.

The use attribute contains an XPath expression that is evaluated relative to the

nodes identified by the match pattern to produce the key value. See the key

function for more details.

Attributes

 Name: <xsl:value-of select="name"/>

</xsl:template>

...

<!-- employeeDetails.xsl -->

...

<xsl:include href="employee.xsl"/>

<!-- employee template available here -->

<xsl:template match="/">

 <xsl:apply-templates select="//employee"/>

</xsl:template>

...

Name Default Description

name (required) The qualified name of the key

match (required) A pattern that identifies the nodes to which the key
applies

120 Essential XML Quick Reference

Example

Using key to process cross-references

The following example illustrates how to use keys to take advantage of cross-ref-

erences in the source document that aren’t of type ID/IDREF. If this transforma-

tion were used against the following example document:

use (required) An XPath expression that is evaluated relative to the
nodes identified by the match attribute to produce
the key value

Name Default Description

...

<xsl:key name="employeeId" match="employees/employee"

use="@id"/>

<xsl:template match="courses/course">

 <h2><xsl:value-of select="name"/></h2>

 <h3>Instructors</h3>

<xsl:for-each select="key('employeeId', ./instructors/*)">

 <xsl:value-of select="."/>

</xsl:for-each>

</xsl:template>

<xsl:template match="text()|@*"/>

...

<courses>

 <course>

 <name>Essential XML</name>

 <instructors>

 <instructor>e103</instructor>

 </instructors>

 </course>

 <course>

 <name>Guerrilla XML</name>

 <instructors>

 <instructor>e101</instructor>

XSL Transformations 1.0 121

X
S
LT

it would produce the following output:

5.9.18 message

<xsl:message

 terminate = "yes" | "no">

 <!-- Content: template -->

</xsl:message>

 <instructor>e102</instructor>

 <instructor>e103</instructor>

 </instructors>

 </course>

 <employees>

 <employee id='e101'>

 <name>Martin Gudgin</name>

 </employee>

 <employee id='e102'>

 <name>Don Box</name>

 </employee>

 <employee id='e103'>

 <name>Aaron Skonnard</name>

 </employee>

 </employees>

</courses>

<h2>Essential XML</h2>

<h3>Instructors</h3>

 Aaron Skonnard

<h2>Guerrilla XML</h2>

<h3>Instructors</h3>

 Martin Gudgin

 Don Box

 Aaron Skonnard

122 Essential XML Quick Reference

Description

Outputs a message in a processor-dependent fashion and potentially terminates

the program.

Attribute

Example

Using message

This example attempts to use an XSLT 1.1 (WD) element, which fails with all XSLT

1.0 processors. When this stylesheet is used with an XSLT 1.0 processor, the

fallback template is instantiated, which outputs a message and instructs the

processor to terminate processing.

5.9.19 namespace-alias

<xsl:namespace-alias

 stylesheet-prefix = prefix | "#default"

 result-prefix = prefix | "#default" />

Name Default Description

terminate "no" Specifies whether the processor should terminate
processing after sending the message.

...

<xsl:template match="/">

 <xsl:document href="managers.xml">

 <managers>

 <xsl:apply-templates select="//emp[@manage]"/>

 </managers>

 <xsl:fallback>

 <xsl:message terminate="yes">XSLT 1.1 document

element not supported </xsl:message>

 </xsl:fallback>

 </xsl:document>

 <xsl:apply-templates/>

</xsl:template>

...

XSL Transformations 1.0 123

X
S
LT

Description

namespace-alias declares that one namespace URI is an alias for another

while processing the transformation. In the result docunent, the namespace URI

associated with the alias prefix is replaced with the namespace URI associated

with the result prefix. Use #default to refer to the default namespace as

opposed to an explicit prefix. namespace-alias greatly facilitates writing

transformations that output elements from the XSLT namespace.

Attributes

Example

Using namespace-alias

This example outputs XSLT 1.0 elements. To avoid confusing the XSLT processor,

the namespace-alias element is used to define a namespace alias while pro-

cessing the document. The namespace alias is swapped with the real namespace

in the result docunent as shown here:

Name Default Description

stylesheet-prefix "" The prefix of the alias namespace

result-prefix "" The prefix of the original namespace (the one
being aliased)

<xsl:transform

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 xmlns:a='urn:this-is-an-alias'

 version='1.0'>

 <xsl:namespace-alias stylesheet-prefix="a"

 result-prefix="xsl"/>

 <xsl:template match="/">

 <!-- output XSLT elements using namespace alias -->

 <a:transform version='1.0'>

 <a:template match="/">

 ...

 <a:template>

 </a:transform>

 </xsl:template>

</xsl:transform>

124 Essential XML Quick Reference

5.9.20 number

<xsl:number

 level = "single" | "multiple" | "any"

 count = pattern

 from = pattern

 value = number-expression

 format = { string }

 lang = { nmtoken }

 letter-value = { "alphabetic" | "traditional" }

 grouping-separator = { char }

 grouping-size = { number } />

Description

number inserts a formatted number into the result docunent. The value

attribute contains an XPath expression with a result that is coerced to a number

(as if by calling the number function) and is inserted into the result docunent.

If the value attribute isn’t specified, the current position is inserted into the

result docunent. The level, count, and from attributes determine how the

current node’s position is evaluated. The count attribute determines what nodes

are to be counted. The from attribute determines from where to start counting

(how far to go back in the tree) whereas the level attribute determines how

many levels in the tree should be considered.

The remaining attributes (format, lang, letter-value, grouping-

separator, and grouping-size) determine how the resulting number is con-

verted into a string. See the following for more details.

<a:transform

 xmlns:a='http://www.w3.org/1999/XSL/Transform'

 version='1.0'>

 <a:template match="/">

 ...

 <a:template>

</a:transform>

XSL Transformations 1.0 125

X
S
LT

Attributes

Name Default Description

level "single" Specifies what levels of the source tree should
be considered during the counting process (see
below for more details).

count the pattern
that matches
the current
node’s type and
name (if any)

A pattern that specifies what nodes should be
counted at the specified levels (see level
attribute below).

from / A pattern that specifies where counting starts.

value position (based
on other
attributes)

An XPath expression with a result that is coerced
to a number. If not specified, the value is evalu-
ated as the current node’s position with respect
to the level, count, and from attributes.

format 1 Specifies the format to use for numbering (see
below for more details).

lang determined
from system
environment

Specifies which language’s alphabet to use when
numbering with an alphabetical sequence (same
value space as xml:lang).

letter-

value
(none) Disambiguates between different numbering

schemes for a given language. In English, the a
format token identifies an alphabetical sequence
(for example, a, b, c, ..., aa, ab, ac,
...) whereas the i format token identifies a
numerical-alphabetical sequence (for example,
i, ii, iii, iv, ...). In some languages
both numbering schemes start with the same
letter. In these cases, a letter-value of
alphabetic identifies the alphabetical
sequence whereas a letter-value of
traditional identifies the other form.

grouping-

separator
(none) Specifies the separator used as a grouping sep-

arator in decimal numbering sequences (for
example, 1,000,000).

grouping-

size
(none) Specifies the size of the grouping (for example,

3 in the grouping-separator example).

126 Essential XML Quick Reference

level

Specifies what levels of the source tree should be considered during the counting

process

format

The format attribute is split into a sequence of tokens in which each token is

either a format token (alphanumerical) or a separator token (nonalphanumerical).

Format tokens specify the format to be used for each number in the list. Separator

tokens are used to join numbers in the list (for example, 1.1.1). The nth format token

will be used to format the nth number in the list. If there are more numbers than

format tokens, then the last format token will be used to format the remaining

numbers. 1 is the default format token whereas . is the default separator token.

If the first and last characters in the format string are nonalphanumerical, they are

included in the final output string as is, surrounding the generated number (for

example, [1.1.1]). The following illustrates the types of sequences generated

by the different format tokens.

Value Description

single Counts the siblings that precede the target node (same as XPath
preceding-sibling axis). If the current node matches the count
pattern or count is not specified, it is the target node. Otherwise, the
target node is the first ancestor to match the count pattern. The first
ancestor node (of the current node) that matches the from pattern iden-
tifies the start node, where counting begins. Only those nodes that
come after the start node up to the current node are considered in the
count.

any Counts the nodes, identified by the count pattern, that come before the
current node in document order (same as the union of XPath’s
preceding and ancestor-or-self axes). The first node (which
comes before the current node) that matches the from pattern identi-
fies the start node, where counting begins. Only those nodes that come
after the start node up to the current node are considered in the count.

multiple Produces a sequence of numbers, each of which is produced in the
same way as a single level count (for example, 1.1.1, 1.1.2,
1.2.1, and so on). The count of the outermost ancestor that matches
the count pattern becomes the first number in the sequence. The
count of the next outermost ancestor that matches the count pattern
becomes the second number in the sequence, and so on. The count of
the innermost ancestor that matches the count pattern becomes the
last number in the sequence. The count of each ancestor is determined
like a single level count.

XSL Transformations 1.0 127

X
S
LT

Example

Using number

Assuming a source document that contains a list of course elements, each of

which contains a list of instructor elements (see key for an example), this exam-

ple would produce the following output:

Token Sequence

1 1, 2, 3, 4, ..., 10, 11, 12, ..., 20, 21, ...

01 01, 02, 03, 04, ..., 10, 11, 12, ..., 100, 101, ...

A A, B, C, D, ..., Z, AA, AB, AC, ...

a a, b, c, d, ..., z, aa, ab, ac, ...

I I, II, III, IV, V, VI, ..., X, XI, ...

i i, ii, iii, iv, v, vi, ..., x, xi, ...

...

<xsl:template match="instructor">

 <xsl:number level="multiple"

 count="course|instructor" format="1-a)"/>

 <xsl:text> </xsl:text><xsl:value-of select="."/>

</xsl:template>

<xsl:template match="course">

 <xsl:number level="single" format="1)"/>

 <xsl:text> </xsl:text><xsl:value-of select="name"/>

 <xsl:apply-templates select="instructors"/>

</xsl:template>

...

1) Essential XML

 1-a) Aaron Skonnard

 1-b) Martin Gudgin

2) Guerrilla XML

 2-a) Aaron Skonnard

 2-b) Martin Gudgin

 2-c) Don Box

 ...

128 Essential XML Quick Reference

5.9.21 otherwise

<xsl:otherwise>

 <!-- Content: template -->

</xsl:otherwise>

Description

Defines the default template within a choose instruction. See choose for more

details and an example.

5.9.22 output

<xsl:output

 method = "xml" | "html" | "text" | qname

 version = nmtoken

 encoding = string

 omit-xml-declaration = "yes" | "no"

 standalone = "yes" | "no"

 doctype-public = string

 doctype-system = string

 cdata-section-elements = qnames

 indent = "yes" | "no"

 media-type = string />

Description

Declares how the author of the stylesheet would like the result docunent serial-

ized, although processors are not required to follow these instructions.

XSL Transformations 1.0 129

X
S
LT

Attributes

Name Default Description

method html if root element
of result document is
'html' (case insensi-
tive), otherwise xml

Indicates the output method for the
result docunent. XML, HTML, and text
are the only widely supported output
methods, although others may be
specified through a qualified name. The
XML output method always outputs
well-formed XML. The HTML output
method makes several adjustments to
produce friendlier HTML documents
(for example, empty elements don’t
have end tags, script/style tags are
not escaped, and so on). And the text
output method simply outputs all of the
result docunent’s text nodes without
modification.

version XML:1.0, HTML:4.0 Specifies the version of the output
method.

encoding XML:UTF-8/UTF-16,
text: system dep.

Specifies the preferred character
encoding that the XSLT processor
should use to encode sequences of
characters as sequences of bytes.

omit-xml-

declaration
XML:no Specifies whether the XSLT processor

should output an XML declaration.

standalone (none) Specifies whether the XSLT processor
should output a stand-alone DTD.

doctype-public (none) Specifies the public identifier to be
used in the DTD.

doctype-system (none) Specifies the system identifier to be
used in the DTD.

cdata-section-

elements
(none) Specifies a list of the names of ele-

ments with text node children that
should be output using CDATA sections.

indent XML:no, HTML:yes Specifies whether the XSLT processor
may add additional whitespace when
outputting the result tree.

media-type XML:text/xml,
HTML:text/html,
text:text/plain

Specifies the media type (MIME
content-type) of the result tree.

130 Essential XML Quick Reference

Example

Using output to control serialization details

This example specifies that the output document should be serialized using XML

1.0 syntax without an XML declaration using the ISO-8859-1 character encoding.

In addition, it specifies that pretty printing/indenting should be used and that all

codefrag/syntax elements should be enclosed in CDATA sections.

5.9.23 param

<xsl:param

 name = qname

 select = expression>

 <!-- Content: template -->

</xsl:param>

Description

param declares a parameter with the specified qualified name and default value.

The syntax for referring to parameters is $name. Parameters behave just like

variables (see variable for more details) except for the fact that parameters

may also have default values. Parameters may be declared globally for the entire

transformation or locally within a template. Parameters are passed to templates

via the with-param element. Parameters are passed to transformations in a

processor-specific fashion.

As with variables, a parameter’s default value can be set either through the

select attribute or through the param element’s content; otherwise, the

<xsl:transform

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 version='1.0'>

 <xsl:output method="xml"

 version="1.0"

 omit-xml-declaration="yes"

 indents="yes"

 encoding="iso-8859-1"

 cdata-section-elements="codefrag syntax"/>

 ...

</xsl:transform>

XSL Transformations 1.0 131

X
S
LT

parameter’s default value is the empty string. When a parameter’s default value is

specified through the select attribute, the value is the result of the XPath

expression (either a node-set, boolean, number, or string) and the

content of the element must be empty. When the parameter’s default value is

specified through the element’s content, the value is a result tree fragment (see

variable for more details).

Attributes

Example

Parameterizing templates and transformation documents

Name Default Description

name (required) The name of the parameter

select "" An XPath expression

...

<!-- global parameter -->

<xsl:param name="dept" select="string('manager')"/>

<!-- outputs employee info -->

<xsl:template name="outputEmpInfo">

 <!-- local parameters -->

 <xsl:param name="empNode"/>

 <xsl:param name="getTitle" select="false()"/>

 <name><xsl:value-of

 select="concat($empNode/fname, ' ', $empNode/lname)"/>

</name>

 <xsl:if test="$getTitle">

 <title><xsl:value-of select='$empNode/title'/></title>

 </xsl:if>

</xsl:template>

<!-- root template: main entry point -->

<xsl:template match="/">

 <employee>

 <xsl:call-template name="outputEmpInfo">

 <xsl:with-param name="empNode"

 select="//emp[@dept = $dept]"/>

 <xsl:with-param name="getTitle" select="true()"/>

</xsl:call-template>

132 Essential XML Quick Reference

This example declares a global parameter, dept, and two parameters local to

the outputEmpInfo template.

5.9.24 preserve-space

<xsl:preserve-space

 elements = tokens />

Description

Defines the elements in the source document, for which whitespace-only text

nodes should be preserved (see Section 5.8 for more details). The elements

attribute contains a whitespace-separated list of name tests (for example,

QNames, *, and so on) that identify the set of whitespace-preserving elements for

the source document. The strip-space element can be used in conjunction

with this element to preserve all whitespace for all elements except for a few

specified by name (see strip-space).

Attribute

Example

Using preserve-space

This example preserves space within all code elements in the source document.

 </employee>

</xsl:template>

...

Name Default Description

elements "" A whitespace-separated list of name tests (QNames, *,
and so on)

<xsl:transform version='1.0'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

 <xsl:preserve-space elements="code"/>

 ...

</xsl:transform>

XSL Transformations 1.0 133

X
S
LT

5.9.25 processing-instruction

<xsl:processing-instruction

 name = { ncname }>

 <!-- Content: template -->

</xsl:processing-instruction>

Description

Generates a processing instruction with the specified name (target) in the result

docunent. The content of the processing-instruction instruction

becomes the content of the new processing instruction (everything after the tar-

get) in the result docunent.

Attribute

Example

Generating processing instructions in the result docunent

This example generates a processing instruction that would look something like

this in the result document: <?xsl-stylesheet type='text/xsl' href=

'employee.xsl'?>, depending on the value of the stylesheet parameter.

5.9.26 sort

<xsl:sort

 select = string-expression

 lang = { nmtoken }

Name Default Description

name (required) The target of the processing instruction

...

<xsl:param name="stylesheet" select="'employee.xsl'"/>

<xsl:template match="/">

 <xsl:processing-instruction name="xsl-stylesheet">

 type='text/xsl'

 href='<xsl:value-of select="$stylesheet"/>'

 </xsl:processing-instruction>

 ...

</xsl:template>

...

134 Essential XML Quick Reference

 data-type = { "text" | "number" | qname }

 order = { "ascending" | "descending" }

 case-order = { "upper-first" | "lower-first" } />

Description

sort is used as a child of for-each and apply-templates to sort the cur-

rent node list before processing. The first sort child specifies the primary sort

key; the second sort child specifies the secondary sort key, and so on. The

select attribute takes an XPath expression that is evaluated against each node

in the current node list. The results are coerced to strings, as if by calling the

string function, and the resulting strings become the sort keys.

Attributes

Example

Using sort to sort node-sets

Name Default Description

select "." An XPath expression that identifies the sort key

lang (system

default)
Specifies the language of the sort key (same
value space as xml:lang attribute).

data-type "text" Specifies the data type of the sort key. "text"
indicates that the sort key should be sorted in a
manner that makes sense for the specified lan-
guage. "number" indicates that the sort key val-
ues should be coerced to numbers and then
sorted according to numerical value. If the value
is a qualified name, the qualified name identifies
an application-specific data type for the sort key.

order "ascending" Specifies whether the sort key should be sorted in
ascending or descending order.

case-order (language

dependent)
Specifies that uppercase letters should be sorted
before lowercase, or vice versa.

...

<xsl:template match="/">

 <xsl:for-each select="//emp">

 <xsl:sort select="age" lang="en" data-type="number"

 order="descending"/>

 <xsl:sort select="lname" lang="en" data-type="text"

 order="ascending" case-order="upper-first"/>

XSL Transformations 1.0 135

X
S
LT

This example sorts the for-each node list (all emp elements) first by age

(descending) and then by lname (ascending).

5.9.27 strip-space

<xsl:strip-space

 elements = tokens />

Description

Defines the elements in the source document that should be removed from the

list of whitespace-preserving elements (defined by preserve-space). The

elements attribute contains a whitespace-separated list of name tests (for

example, QNames, *, and so on).

Attribute

Example

Using strip-space

This example preserves space within all elements except for name and title

elements.

 <employee>

 <xsl:value-of select="concat(fname,' ',lname)"/>

 </employee>

 </xsl:for-each>

</xsl:template>

...

Name Default Description

elements "" A whitespace-separated list of name tests (QNames, *,
and so on)

<xsl:transform version='1.0'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

 <xsl:preserve-space elements="*"/>

 <xsl:strip-space elements="name title"/>

 ...

</xsl:transform>

136 Essential XML Quick Reference

5.9.28 stylesheet

Description

stylesheet is a (less appropriate) alias for the transform element. The

transform and stylesheet elements may be used interchangeably in XSLT

documents. See transform for details.

5.9.29 template

<xsl:template

 match = pattern

 name = qname

 priority = number

 mode = qname>

 <!-- Content: (xsl:param*, template) -->

</xsl:template>

Description

template defines a new template rule with the specified pattern and/or name.

Patterns facilitate a declarative programming model whereas named templates

facilitate a procedural programming model (see Section 5.1). The match

attribute specifies the template’s pattern (see Section 5.3) and the name attribute

specifies the template’s name.

When the name attribute is used, you can explicitly call the template from another

template, in a procedural fashion (see call-template for more details). When

the match attribute is used, the supplied pattern identifies the source nodes to

which the template rule applies. When the processor begins executing the trans-

formation, it looks for the template with a pattern that matches the root of the

input tree. Then, inside that template, you indicate which nodes you would like the

processor to continue processing through the apply-templates/apply-

imports elements. After a call to apply-templates/apply-imports, the

processor identifies and executes the template that best matches each specified

node, according to their associated patterns. This continues until the processor

reaches a template that doesn’t explicitly call apply-templates/apply-

imports. For more details on this approach, see Sections 5.1, 5.3, and 5.5.

If a particular mode matches more than one template rule, the processor follows

the well-defined conflict resolution rules to choose the best match (see Section

XSL Transformations 1.0 137

X
S
LT

5.4). In general, the template with the highest priority is considered the best

match. The priority attribute may be used to set the template’s priority value

explicitly. Otherwise, it’s automatically calculated by the XSLT processor (see Sec-

tion 5.4 for more details).

The content of template defines a portion of the result docunent. It can contain

literal output (elements, text, and so on) as well as other XSLT elements that are

instructions for dynamically generating portions of the result docunent.

Templates may accept parameters as defined by the child param elements. This

makes it possible to generalize the functionality of a given template to facilitate

reusability. The with-param element can be used with either call-template

or apply-templates to pass parameters into a template. Templates may also

be assigned a mode. Modes make it possible to have multiple template rule defi-

nitions for a single pattern. To execute a template of a particular mode, you spec-

ify the mode you wish to use in the call to apply-templates.

Attributes

Examples

Sample procedural transformation

Name Default Description

match (none) Specifies a pattern that identifies the nodes to which
this template applies.

name (none) Specifies the qualified name of the template.

priority See rules in
Section 5.4

Specifies a numerical value specifying the template’s
priority (for conflict resolution).

mode (none) Specifies the template’s mode.

<xsl:transform

 xmlns:v1='urn:employee:v1'

 xmlns:v2='urn:employee:v2'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 version='1.0'>

 <!-- outputs name element -->

 <xsl:template name="outputName">

 <name><xsl:value-of

 select="concat(v1:emp/fname, ' ', v1:emp/lname)"/>

</name>

138 Essential XML Quick Reference

This example illustrates how to define three templates. As you can see, this exam-

ple uses the procedural approach by naming the templates and explicitly calling

them through call-template.

Sample declarative transformation

 </xsl:template>

 <!-- outputs title element -->

 <xsl:template name="outputTitle">

 <title><xsl:value-of select='v1:emp/position'/></

title>

 </xsl:template>

 <!-- root template: main entry point -->

 <xsl:template match="/">

 <v2:employee>

 <xsl:call-template name="outputName"/>

 <xsl:call-template name="outputTitle"/>

 </v2:employee>

 </xsl:template>

</xsl:transform>

<xsl:transform

 xmlns:v1='urn:employee:v1'

 xmlns:v2='urn:employee:v2'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 version='1.0'>

 <!-- override built-in template for

 text/attributes -->

 <xsl:template match="text()|@*"/>

 <!-- template for position elements -->

 <xsl:template match="position">

 <title><xsl:value-of select='.'/></title>

 </xsl:template>

 <!-- template for fname elements -->

 <xsl:template match="fname">

XSL Transformations 1.0 139

X
S
LT

This example illustrates how to define three template rules for different types of

nodes in the source document. As you can see, this template leverages the

declarative approach by assigning each template a match attribute and using

apply-templates.

Sample using modes/priority

 <name><xsl:value-of select="

 concat(., ' ',

 following-sibling::lname)"/></name>

 </xsl:template>

 <!-- template for v1:emp elements -->

 <xsl:template match="v1:emp">

 <v2:employee>

 <xsl:apply-templates select="*"/>

 </v2:employee>

 </xsl:template>

</xsl:transform>

...

<xsl:param name="outputFormat" select="'xml'"/>

<!-- other templates omitted -->

<!-- toHTML mode templates -->

<xsl:template match="v1:emp" mode="toHTML">

 <html>

 <body>

 <h1><xsl:value-of

 select="concat(fname, ' ', lname)"/></h1>

 <xsl:apply-templates select="position" mode="toHTML"/>

 </body>

 </html>

</xsl:template>

<xsl:template match="position" mode="toHTML">

 <h2><xsl:value-of select='.'/></h2>

</xsl:template>

140 Essential XML Quick Reference

This transformation is capable of processing v1:emp elements in different

modes. The default mode (no mode) outputs the employee information in a differ-

ent XML format (as illustrated in the previous example). The toHTML mode out-

puts employee information as an HTML document. Note that to use the toHTML

mode, it has to be specified when calling apply-templates.

5.9.30 text

<xsl:text

 disable-output-escaping = "yes" | "no">

 <!-- Content: #PCDATA -->

</xsl:text>

Description

text generates the contained literal text in the result docunent including

whitespace. The disable-output-escaping attribute controls whether

unsafe XML characters are escaped in the result docunent.

Attribute

<xsl:template match="text()|@*" mode="toHTML"/>

<!-- root template, main entry point -->

<xsl:template match="/">

 <xsl:choose>

 <xsl:when test="$outputFormat = 'html'">

 <xsl:apply-templates select="v1:emp" mode="toHTML">

 </xsl:when>

 <xsl:otherwise>

 <xsl:apply-templates select="v1:emp">

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

...

Name Default Description

disable-output-

escaping

"no" Enables/disables the escaping of unsafe XML
characters in the result document.

XSL Transformations 1.0 141

X
S
LT

Example

Using text to output whitespace

This transformation uses text to preserve whitespace and to output unsafe XML

characters. It produces the following result docunent:

5.9.31 transform (stylesheet)

<xsl:transform

 id = id

 extension-element-prefixes = tokens

 exclude-result-prefixes = tokens

 version = number>

 <!-- Content: (xsl:import*, top-level-elements) -->

</xsl:transform>

<xsl:stylesheet

 id = id

 extension-element-prefixes = tokens

 exclude-result-prefixes = tokens

 version = number>

 <!-- Content: (xsl:import*, top-level-elements) -->

</xsl:stylesheet>

Description

transform is the root of every XSLT document unless the transformation uses

the exemplar-based syntax (see Exemplar-based transformations). stylesheet

...

<xsl:template match="/">

 <xsl:text disable-output-escaping="yes">

 if (age < maxAge)

 processEmployee();

</xsl:text>

</xsl:template>

...

 if (age < maxAge)

 processEmployee();

142 Essential XML Quick Reference

is a synonym for transform. transform must have a version attribute that

specifies the version of XSLT required by the transformation. For this version of

XSLT, the value should be 1.0. The id attribute makes it possible to give the trans-

formation a unique ID to facilitate embedding XSLT transformations within other

types of XML documents. All other XSLT elements are nested within transform.

Attributes

Example

Writing a transformation

This example illustrates how to begin writing an XSLT transformation.

Name Default Description

id "" Specifies a unique identifier for the transformation
element.

extension-

element-

prefixes

"" Specifies a whitespace-separated list of name-
space prefixes used for extension (non-XSLT) ele-
ments. The namespace bound to each of the pre-
fixes is designated as an extension namespace
and therefore will not be treated as literal output.
It is an error if there is no namespace bound to
the prefix on the element bearing the element. The
default namespace may be designated as an
extension namespace by including #default in
the list of namespace prefixes.

exclude-

result-

prefixes

"" Specifies a whitespace-separated list of namespace
prefixes that indicate which namespaces should
be excluded from the result docunent. It is an
error if there is no namespace bound to the prefix
on the element bearing the exclude-result-
prefixes or xsl:exclude-result-prefixes
attribute. The default namespace may be desig-
nated as an excluded namespace by including
#default in the list of namespace prefixes.

version (required) Specifies the version of XSLT required by this
transformation.

<xsl:transform version='1.0'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

 <!-- XSLT instructions go here -->

<xsl:transform>

XSL Transformations 1.0 143

X
S
LT

5.9.32 value-of

<xsl:value-of

 select = string-expression

 disable-output-escaping = "yes" | "no" />

Description

value-of generates a text node in the result docunent from the select

expression. The result of the XPath expression is coerced to a string, as if by call-

ing the string function. The disable-output-escaping attribute can be

used to control how unsafe XML characters are handled in the result docunent

(see text for more details).

Attributes

Example

Using value-of

This example uses value-of to generate three text nodes in the output, one in

the first, last, and fullname elements respectively.

Name Default Description

select (required) Specifies an XPath expression with a result that is
coerced to a string.

disable-

output-

escaping

"no" Enables/disables the escaping of unsafe XML charac-
ters in the result docunent.

...

<xsl:template match="/">

 <employee>

 <first><xsl:value-of select="*/fname"/></first>

 <last><xsl:value-of select="*/lname"/></last>

 <fullname><xsl:value-of

 select="concat(*/fname, ' ', */lname)"/></fullname>

 </employee>

</xsl:template>

...

144 Essential XML Quick Reference

5.9.33 variable

<xsl:variable

 name = qname

 select = expression>

 <!-- Content: template -->

</xsl:variable>

Description

variable binds a qualified name to a value. The syntax for referring to variables

is $name. The value to which a variable is bound can be an object of any of the

types that can be returned by XPath expressions (node-set, boolean, number,

string). This is accomplished through the select attribute:

<!-- emps variable bound to a node-set -->

<xsl:variable name="emps" select="//employee"/>

Instead of using the select attribute, variables can also be initialized from the

element’s content. This approach introduces an additional data type known as a

result tree fragment, to which variables may also be bound:

<!-- emps variable bound to a result tree fragment -->

<xsl:variable name="emps">

 <employee>Aaron</employee>

 <employee>Martin</employee>

 <employee>Don</employee>

</xsl:variable>

A result tree fragment represents a portion of the result tree and is treated equiv-

alently to a node-set that contains just a single root node, which contains each

of the elements that make up the document fragment. The operations permitted

on a result tree fragment are a subset of those permitted on a node-set. Only

operations that are permitted on XPath strings are also allowed on result tree

fragments. The /, //, and [] operators are not allowed on result tree fragments.

When result tree fragments are operated on, they are treated just like the equiva-

lent node-set. Expressions can only return result tree fragments when referenc-

ing variables (or parameters) of type result tree fragment.

Result tree fragments are often the source of confusion. The following conditional

appears to return false, when it really returns true:

XSL Transformations 1.0 145

X
S
LT

<xsl:variable name="index">0</xsl:variable>

<xsl:if test="$index">...</xsl:if>

The reason for this is that when $index is evaluated, it’s coerced to a bool-

ean, which in this case returns true because the result tree fragment isn’t

empty (the coercion works the same as for node-sets). To avoid this, you

would use one of the following alternatives:

<xsl:variable name="index">0</xsl:variable>

<xsl:if test="number($index)">...</xsl:if>

or

<xsl:variable name="index" select="0"/>

<xsl:if test="$index">...</xsl:if>

If a variable’s value is not specified through either the select attribute or the ele-

ment’s content, the value is automatically assigned to the empty string. XSLT

parameters are just like variables, as described here; plus they provide the notion

of default values (see param).

Variables are primarily used to cache the results of expressions for later use. Vari-

ables are also the only way to return values from templates (see the following

examples).

Attributes

Examples

Using variables to cache expression results

Name Default Description

name (required) Specifies the variable’s qualified name.

select "" Specifies an XPath expression with a result that
becomes the value of the variable.

...

<xsl:template match="/">

 <xsl:variable name="emps" select="//emp"/>

 <xsl:variable name="aaron" select="$emps[@id='e102']"/>

 <xsl:variable name="fullname"

 select="concat($aaron/fname,' ',$aaron/lname)"/>

146 Essential XML Quick Reference

This example stores the results of several expressions in variables for later use.

Returning values from templates

This example illustrates how to use a variable to return a value from a template.

Notice that the call-template instruction is contained within a variable

element. Because of this, anything that is output within the add template is added

to the result tree fragment for the sum variable.

Using variables with recursive templates

 <employee>

 <fullname><xsl:value-of select="$fullname"/></

fullname>

 <title><xsl:value-of select="$aaron/title"/></title>

 </employee>

</xsl:template>

...

...

<xsl:template name="add">

 <xsl:param name="x"/>

 <xsl:param name="y"/>

 <xsl:value-of select="$x+$y"/>

</xsl:template>

<xsl:template match="/">

 <xsl:variable name="sum">

 <xsl:call-template name="add">

 <xsl:with-param name="x" select="30"/>

 <xsl:with-param name="y" select="70"/>

 </xsl:call-template>

 </xsl:variable>

 <sum><xsl:value-of select="$sum"/></sum>

</xsl:template>

...

...

<xsl:template name="totalSalaries">

 <xsl:param name="empList"/>

 <xsl:choose>

XSL Transformations 1.0 147

X
S
LT

This example illustrates how to call a template recursively to total a list of

employee salaries.

5.9.34 when

<xsl:when

 test = boolean-expression>

 <!-- Content: template -->

</xsl:when>

Description

Defines a conditional template that is used within the choose element. See

choose for more details and an example.

 <xsl:when test="$empList">

 <xsl:variable name="first" select="$empList[1]"/>

 <xsl:variable name="total">

 <xsl:call-template name="totalSalaries">

 <xsl:with-param name="empList"

 select="$empList[postion()!=1]"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:value-of select="$first/salary + $total"/>

 </xsl:when>

 <xsl:otherwise>0</xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:template match="/">

 <xsl:variable name="salaries">

 <xsl:call-template name="totalSalaries">

 <xsl:with-param name="empList" select="//emp"/>

 </xsl:call-template>

 </xsl:variable>

 Total Salaries: <xsl:value-of select="$salaries"/>

</xsl:template>

...

148 Essential XML Quick Reference

Attribute

5.9.35 with-param

<xsl:with-param

 name = qname

 select = expression>

 <!-- Content: template -->

</xsl:with-param>

Description

Passes the specified parameter to the target template (used with call-template

and apply-templates). The value of the parameter is set in the same way as

parameters and variables (see variable/param). The value can be set

through the select attribute (any XPath object) or the content of the with-

param element (result tree fragment). Otherwise, the default value is the empty

string. See call-template for an example.

Attributes

5.10 XSLT function library

XSLT supports the entire XPath function library as well as several XSLT-specific

functions that all implementations are required to support. If a function expects an

argument of a specific type and an object of a different type is used, it’s implicitly

coerced as if by calling the appropriate coercion function (string(), num-

ber(), or boolean()).

All of the XSLT function names belong to no namespace, which means their

names don’t require a namespace prefix. XSLT implementations may augment

Name Default Description

test (required) Specifies an XPath expression that is evaluated as a
boolean.

Name Default Description

name (required) Specifies the qualified name of the parameter.

select "" Specifies a generic XPath expression that yields an
object of any type.

XSL Transformations 1.0 149

X
S
LT

this core library with implementation-specific extension functions. When this is the

case, the extension function names must be qualified with a namespace prefix.

Each function is described next.

XSLT functions

5.10.1 current

node-set current()

Description

current returns a node-set that has the current node as its only member.

XSLT defines the notion of a current node to facilitate working with for-each

and apply-templates. When using either of these, the current node is

defined as the node currently being processed. For expressions that don’t occur

within other expressions, this is always the same as the context node (see Chap-

ter 3 for more details on context node). For example, the following two value-

of expressions return the same value:

Name Description

current Returns the current node.

document Facilitates processing multiple input documents.

element-available Returns true if the processor supports the specified
element.

format-number Converts the argument number to a string according to
the specified decimal format.

function-available Returns true if the processor supports the specified
function.

generate-id Returns a string that uniquely identifies the first node
in the argument node-set.

key Returns the nodes that have the specified key value.

system-property Returns the value of the specified system property.

unparsed-entity-uri Returns the URI of the unparsed entity with the specified
name.

<xsl:for-each select="fname">

 <xsl:value-of select="current()"/>

</xsl:for-each>

150 Essential XML Quick Reference

When expressions appear within other expressions (for example, predicates), the

current node is typically different than the context node. In the following example,

the employeeOfTheMonth element is the current node whereas the

employee element is the context node within the predicate expression:

Had it used . instead of current() in the predicate, eid would have been

treated as an attribute of employee instead of employeeOfTheMonth. With-

out the current function, one would have to bind the current node to a variable

before evaluating the XPath expression as follows:

5.10.2 document

node-set document(object, node-set?)

Description

document makes it possible to process multiple input documents. The object

argument is treated as a URI reference (or a set of URI references) relative to the

base URI of the first node in the optional node-set argument. When the

object argument identifies a single document, the resulting node-set con-

tains that document’s root node. When the object argument identifies multiple

documents, the resulting node-set contains the union of the root nodes, one

from each document.

Fragment identifiers may also be used in the supplied URI references to identify

subsets of the specified documents (other than the root node). See Chapter 4 for

<xsl:for-each select="fname">

 <xsl:value-of select="."/>

</xsl:for-each>

<xsl:for-each select="employeeOfTheMonth">

 <xsl:value-of select="//employee[@id = current()/@eid]"/>

</xsl:for-each>

<xsl:for-each select="employeeOfTheMonth">

 <xsl:variable name="eom" select="."/>

 <xsl:value-of select="//employee[@id = $eom/@eid]"/>

</xsl:for-each>

XSL Transformations 1.0 151

X
S
LT

more details on this approach. The following describes exactly how this function

behaves for each type of object argument.

Examples

Using with apply-templates

This example instructs the processor to apply-templates to the root node of

the aaron.xml document.

Using with for-each

Type Description

node-set Returns the union of the node-sets that result from calling the docu-
ment function again with each node in the argument node-set.

other The argument is coerced to a string and the string is treated as a URI
reference. The document identified by the URI reference is retrieved
and the root node of the document is returned in the resulting
node-set.

document example Description

document('aaron.xml') Returns the root node of aaron.xml.

document(concat(employee/

fname, '.xml'))
Returns the root node of the file identified
by the result of the concat function.

document(./fileName, /*) Returns the union of the node-sets
returned by calling the document function
with the value of each fileName child ele-
ment. If any of the URI references are rela-
tive, they’re resolved against the base URI
of the input document’s root element node.

document('aaron.xml#xpointer(

//dependent)')
Returns a node-set that contains all of the
dependent elements within aaron.xml.

...

<xsl:template match="employeeRecords">

 <xsl:apply-templates

 select="document('aaron.xml')"/>

</xsl:template>

...

...

<xsl:template match="employeeRecords">

152 Essential XML Quick Reference

This example iterates through the root node of each document identified by the

child fileName elements.

Using with variable

This example selects the root node from aaron.xml into the aaronsDoc vari-

able. Then it iterates through each of the descendant dependent elements from

that same document.

5.10.3 element-available

boolean element-available(string)

Description

element-available returns true if and only if the specified name is the

name of an element that the processor supports. The argument string is evalu-

ated as a QName. If the QName’s expanded name has a namespace URI equal to

the XSLT namespace URI, then it refers to an element defined by XSLT. Otherwise,

it refers to a processor-specific extension element. If the expanded name has a

null namespace URI, the element-available function returns false.

 <xsl:for-each

 select="document(./fileName)">

 <!-- process each root node here -->

 </xsl:for-each>

</xsl:template>

...

...

<xsl:template match="employeeRecords">

 <xsl:variable name='aaronsDoc'

 select="document('aaron.xml')"/>

 <xsl:for-each select="$aaronsDoc//dependents">

 <!-- process dependent elements here -->

 </xsl:for-each>

</xsl:template>

...

XSL Transformations 1.0 153

X
S
LT

Examples

Testing for an XSLT element

This example tests to see if the XSLT processor supports the xsl:message ele-

ment before using it.

Testing for a processor-specific element

This example tests to see if the processor supports the Saxon-specific output

element before attempting to use it.

5.10.4 format-number

string format-number(number, string, string?)

Description

Converts the number argument to a string according to the format string speci-

fied by the second argument and the decimal format named by the third argument

...

<xsl:if test="element-available('xsl:message')">

<xsl:message>Error transforming employee/name</xsl:message>

</xsl:if>

...

<xsl:transform version='1.0'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 xmlns:saxon='http://icl.com/saxon'

 extension-element-prefixes="saxon">

 <xsl:template match="/">

 <xsl:if test="element-available('saxon:output')">

 <xsl:for-each select="//employee">

 <saxon:output file="{./fname}.xml">

 <xsl:copy-of select="."/>

 </saxon:output>

 </xsl:for-each>

 </xsl:if>

 </xsl:template>

<xsl:transform>

154 Essential XML Quick Reference

(or the default decimal format if there is no third argument). Decimal formats are

defined by the decimal-format element (see decimal-format for details).

The syntax of the format string is defined by the JDK 1.1 DecimalFormat class

(see the JDK 1.1 documentation for more details). See the decimal-format

element for an example.

5.10.5 function-available

boolean function-available(string)

Description

function-available returns true if and only if the specified name is the

name of a function that the processor supports. The argument string is evaluated

as a QName. If the QName’s expanded name has a null namespace URI, it refers

to a function defined by XPath or XSLT. Otherwise, it refers to a processor-specific

extension function.

Examples

Testing for an XSLT function

This example tests to see if the XSLT processor supports the document function

before using it.

Testing for a processor-specific function

...

<xsl:if test="function-available('document')">

 <xsl:apply-templates select="document('aaron.xml')"/>

</xsl:if>

...

<xsl:transform version='1.0'

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

 xmlns:saxon='http://icl.com/saxon'>

 <xsl:param name="expr"/>

 <xsl:template match="/">

 <xsl:if test="function-available('saxon:evaluate')">

 <xsl:apply-templates select="saxon:evaluate($expr)"/>

 </xsl:if>

XSL Transformations 1.0 155

X
S
LT

This example tests to see if the processor supports the Saxon-specific evalu-

ate function before attempting to use it.

5.10.6 generate-id

string generate-id(node-set?)

Description

generate-id returns a string that uniquely identifies the first node in the argu-

ment node-set. Implementations are always required to generate the same

identifier for the same node. If the argument node-set is empty, the empty

string is returned. If the argument is omitted, it defaults to the context node.

Examples

5.10.7 key

node-set key(string, object)

Description

Returns a node-set containing the nodes that have the specified key value. The

first argument is the qualified name of the key (see key element) whereas the

second argument is the key value. If the second argument is a node-set, the

result is the union of node-sets that results from applying the key function to

each node in the argument node-set using the node’s string-value as the second

 </xsl:template>

<xsl:transform>

generate-id example Description

generate-id() Generates a unique ID for the
context node.

generate-id(employee) Generates a unique ID for the
first child employee element.

generate-id(document('aaron.xml')) Generates a unique ID for the
root node of aaron.xml.

generate-id(document('aaron.xml')) =

generate-id(document('aaron.xml'))
Returns true.

156 Essential XML Quick Reference

parameter. If the second argument is not a node-set, the argument is coerced

to a string (as if by calling the string function), which is treated as the key

value. The following describes how the second argument is treated based on

object type. See the key element for an example.

5.10.8 system-property

object system-property(string)

Description

system-property returns the value of the argument system property. The

argument string is evaluated as a QName, which is used to identify the system

property by namespace-qualified name. If the system property doesn’t exist, an

empty string is returned. Implementations must provide the following system

properties, which are all in the XSLT namespace:

Examples

Type Description

node-set The result is the union of the node-sets that results from applying the
key function to each node in the argument node-set using the
node’s string-value as the second parameter.

other Coerced to a string (as if by calling the string function).

System property Description

version Specifies a number that identifies the version of XSLT imple-
mented by the processor (1.0).

vendor Specifies a string identifying the vendor of the XSLT
processor.

vendor-url Specifies a string containing the vendor’s URL.

system-property example Description

system-property('xsl:version') 1.0

system-property('xsl:vendor') Microsoft, Apache Software
Foundation, and so on

system-property('xsl:vendor-url') http://www.microsoft.com,
http://xml.apache.org/xalan,
and so on

XSL Transformations 1.0 157

X
S
LT

5.10.9 unparsed-entity-uri

string unparsed-entity-uri(string)

Description

unparsed-entity-uri returns the URI of the unparsed entity with the speci-

fied name in the same document as the context node, or an empty string if it

doesn’t exist.

Example

5.11 References

XSL Transformations 1.0 Recommendation.

Available at http://www.w3.org/TR/1999/REC-xslt-19991116. James Clark, editor,

1999.

XML Path Language.

Available at http://www.w3.org/TR/1999/REC-xpath-19991116. James Clark, Steve

DeRoy, editors, 1999.

JDK 1.1 Documentation.

Available at http://www.java.sun.com/products/jdk/1.1/docs

unparsed-entity-uri example Description

unparsed-entity-uri('aaronsImage') Returns the URI of the unparsed
enity named aaronsImage.

159

S
A

X

Chapter 6

SAX 2.0

The Simple API for XML (SAX) 2.0 is a set of abstract programmatic interfaces

that project an XML document onto a stream of well-known method calls. SAX pro-

vides a streaming model that can be used to both process XML documents as

well as produce (or write) XML documents. Because SAX offers a streaming

model, it’s often preferred over the DOM when performance is an issue.

One implements the SAX interfaces to process XML documents. And one calls

into the SAX interfaces to produce XML documents. Because most developers

need to both process and produce XML documents in a given application, they

often find themselves on both sides of the SAX interfaces (for example, imple-

menting versus calling).

SAX was designed for the Java programming language by a group of developers

on the XML-DEV mailing list and has since become widely supported throughout

the industry. Today there are numerous SAX 2.0 implementations available for a

wide range of programming languages and platforms. As an example, Microsoft

introduced support for SAX 2.0 in MSXML 3.0, which can be used from both C++

and VB.

This SAX reference presents the SAX 2.0 core interface definitions for both Java

and Visual Basic (VB). The interfaces are presented in alphabetical order. When

describing interface members, both the Java and VB names will be given, in that

order, when not identical. For all sample code, assume that the appropriate Java

import statement or VB type library reference has been provided.

6.1 SAX UML quick reference

The UML diagram in Figure 6–1 provides a quick reference for the core and auxil-

iary interfaces/classes as well as their relationships to one another.

+
s
ta

rt
D

o
c
u

m
e

n
t(

)

+
e

n
d

D
o

c
u

m
e

n
t(

)

+
s
ta

rt
P

re
fi
x
M

a
p

p
in

g
()

+
e

n
d

P
re

fi
x
M

a
p

p
in

g
()

+
s
ta

rt
E

le
m

e
n

t(
)

+
e

n
d

E
le

m
e

n
t(

)

+
c
h

a
ra

c
te

rs
()

+
ig

n
o

ra
b
le

W
h

it
e

s
p

a
c
e

()

+
p

ro
c
e

s
s
in

g
In

s
tr

u
c
ti
o

n
()

+
s
k
ip

p
e

d
E

n
ti
ty

()

+
s
e

tD
o

c
u

m
e

n
tL

o
c
a

to
r(

)

«
in

te
rf

a
c
e

»

C
o

n
te

n
tH

a
n

d
le

r

+
n

o
ta

ti
o

n
D

e
c
l(
)

+
u

n
p

a
rs

e
d

E
n

ti
ty

D
e

c
l(
)

«
in

te
rf

a
c
e

»

D
T

D
H

a
n

d
le

r

+
s
ta

rt
D

T
D

()

+
e

n
d

D
T

D
()

+
s
ta

rt
E

n
ti
ty

()

+
e

n
d

E
n

ti
ty

()

+
s
ta

rt
C

D
A
T
A

()

+
e

n
d

C
D

A
T
A

()

+
c
o

m
m

e
n

t(
)

«
in

te
rf

a
c
e

»

L
e
x

ic
a

lH
a

n
d

le
r

+
e

le
m

e
n

tD
e

c
l(
)

+
a

tt
ri

b
u

te
D

e
c
l(
)

+
in

te
rn

a
lE

n
ti
ty

D
e

c
l(
)

+
e
x
te

rn
a

lE
n

ti
ty

D
e

c
l(
)

«
in

te
rf

a
c
e

»

D
e

c
lH

a
n

d
le

r

+
w

a
rn

in
g

()

+
e

rr
o

r(
)

+
fa

ta
lE

rr
o

r(
)

«
in

te
rf

a
c
e

»

E
rr

o
rH

a
n

d
le

r

+
re

s
o

lv
e

E
n

ti
ty

()

«
in

te
rf

a
c
e

»

E
n

ti
ty

R
e

s
o

lv
e

r

+
g

e
tV

a
lu

e
()

+
g

e
tU

R
I(

)

+
g

e
tL

o
c
a

lN
a

m
e

()

+
g

e
tR

a
w

N
a

m
e

()

+
g

e
tT

y
p

e
()

+
g

e
tL

e
n

g
th

()

«
in

te
rf

a
c
e

»

A
tt

ri
b

u
te

s

+
g

e
tP

ro
p

e
rt

y
()

+
g

e
tF

e
a

tu
re

()

+
g

e
tC

o
n

te
n

tH
a

n
d

le
r(

)

+
g

e
tE

n
ti
ty

R
e

s
o

lv
e

r(
)

+
g

e
tE

rr
o

rH
a

n
d

le
r(

)

+
g

e
tD

T
D

H
a

n
d

le
r(

)

+
s
e

tP
ro

p
e

rt
y
()

+
s
e

tF
e

a
tu

re
()

+
s
e

tC
o

n
te

n
tH

a
n

d
le

r(
)

+
s
e

tE
n

ti
ty

R
e

s
o

lv
e

r(
)

+
s
e

tE
rr

o
rH

a
n

d
le

r(
)

+
s
e

tD
T

D
H

a
n

d
le

r(
)

+
p

a
rs

e
()«
in

te
rf

a
c
e

»

X
M

L
R

e
a

d
e

r

+
g

e
tP

a
re

n
t(

)

+
s
e

tP
a

re
n

t(
)

«
in

te
rf

a
c
e

»

X
M

L
F

il
te

r

+
g

e
tS

y
s
te

m
Id

()

+
g

e
tP

u
b
lic

Id
()

+
g

e
tI

n
p

u
tS

tr
e

a
m

()

+
g

e
tC

h
a

ra
c
te

rS
tr

e
a

m
()

+
s
e

tS
y
s
te

m
Id

()

+
s
e

tP
u

b
lic

Id
()

+
s
e

tI
n

p
u

tS
tr

e
a

m
()

+
s
e

tC
h

a
ra

c
te

rS
tr

e
a

m
()

In
p

u
tS

o
u

rc
e

+
g

e
tS

y
s
te

m
Id

()

+
g

e
tP

u
b
lic

Id
()

+
g

e
tL

in
e

N
u

m
b

e
r(

)

+
g

e
tC

o
lu

m
n

N
u

m
b

e
r(

)

«
in

te
rf

a
c
e

»

L
o

c
a

to
r

160

F
ig

u
re

 6
–
1

S
A

X
 2

.0
 U

M
L
.

SAX 2.0 161

S
A

X

6.2 SAX interfaces and classes

The SAX API is divided into the following four areas: core interfaces, core

classes, extended interfaces, and helper classes. The core interfaces and

classes facilitate working with the core information contained in an XML docu-

ment. The extended interfaces model aspects of a document with which most

developers aren’t concerned (for example, lexical details, DTD declarations, com-

ments, and so on). And finally, the helper classes consist of several convenience

classes as well as default implementations of certain core interfaces.

Most SAX developers find themselves working with the core interfaces 95 per-

cent of the time. Because the extended interfaces are rarely used and the core/

helper classes differ between SAX implementations, this chapter focuses strictly

on the SAX 2.0 core interfaces. The following provides a quick description of

each interface/class defined by SAX 2.0. For more details on the core interfaces,

see the following sections. Otherwise refer to the SAX documentation (see Sec-

tion 6.4).

Core interface Description

Attributes Models the attributes of an element.

ContentHandler Models the core information in an XML docu-

ment as an ordered sequence of method calls

(primary SAX interface).

DTDHandler Models notations and unparsed entities.

EntityResolver Allows implementations to provide custom reso-

lution of external entities.

ErrorHandler Models well-formed errors, validation errors,

and warnings.

Locator Models the current location in the underlying

document (for example, line number, column

number, and so on).

XMLFilter Provides pipeline-style processing by allowing

multiple ContentHandler implementations to

be chained together.

XMLReader Models the XML parser (or other type of XML

producer) by providing methods for registering

handlers (for example, a ContentHandler

implementation), parser configuration methods

(properties/features), and parse methods.

162 Essential XML Quick Reference

6.2.1 Attributes

The Attributes interface models the attributes of an element (passed as a

parameter to ContentHandler::startElement). Attributes are exposed

as an unordered property bag that can be traversed by name or position.

Core class Description

InputSource Models a native input/output stream.

SAXException Models a generic SAX exception.

SAXNotRecognizedException Models an exception that occurs when a given

feature/property isn’t recognized.

SAXNotSupportedException Models an exception that occurs when a given

feature/property is recognized but isn’t

supported.

SAXParseException Models a parser exception.

Extended interface Description

DeclHandler Models DTD declarations.

LexicalHandler Models lexical information such as comments

and CDATA section boundaries.

Helper class Description

AttributesImpl Convenience implementation of the Attributes

interface.

DefaultHandler Default implementation of the core interfaces

(just stubbed): ContentHandler,

ErrorHandler, EntityResolver, and

DTDHandler.

LocatorImpl Is the convenience implementation of the

Locator interface.

NamespaceSupport Helper class for managing in-scope

namespaces, for dealing with QNames in

attribute/element content.

XMLFilterImpl Is the convenience implementation of the

XMLFilter interface.

XMLReaderFactory Is the class factory for implementations of

XMLReader.

SAX 2.0 163

S
A

X

Java definition

package org.xml.sax;

public interface Attributes {

 int getLength();

 String getURI(int index);

 String getLocalName(int index);

 String getQName(int index);

 int getIndex(String qName);

 int getIndex(String uri, String localPart);

 String getValue (String uri, String localName);

 String getValue (int index);

 String getValue (String qName);

 String getType(String uri, String localName);

 String getType(int index);

 String getType(String qName);

}

VB definition

' IVBSAXAttributes Members

Property length As Long

Function getURI(nIndex As Long) As String

Function getLocalName(nIndex As Long) As String

Function getQName(nIndex As Long) As String

Function getIndexFromQName(strQName As String) As Long

Function getIndexFromName(strURI As String, strLocalName _

 As String) As Long

Function getValueFromName(strURI As String, strLocalName _

 As String) As String

Function getValue(nIndex As Long) As String

Function getValueFromQName(strQName As String) As String

Function getTypeFromName(strURI As String, strLocalName _

 As String) As String

Function getType(nIndex As Long) As String

Function getTypeFromQName(strQName As String) As String

Member Description

getLength

length
Returns the number of attributes in the list.

getURI Retrieves an attribute’s namespace URI by index.

getLocalName Retrieves an attribute’s local name by index.

164 Essential XML Quick Reference

Examples

Accessing attributes by name and index

These examples access the value of the id attribute by namespace name and

QName; then they access the index of the id attribute by QName. Then they walk

through the collection of attributes by index, accessing the local name, QName,

value, and type of each one individually. Note: The order in which the attributes

appear is insignificant and processor specific.

Java

getQName Retrieves an attribute’s QName by index.

getIndex

getIndexFromQName
Retrieves an attribute’s index by QName.

getIndex

getIndexFromName
Retrieves an attribute’s index by namespace name.

getValue

getValueFromName
Retrieves an attribute’s value by namespace name.

getValue Retrieves an attribute’s value by index.

getValue

getValueFromQName
Retrieves an attribute’s value by QName.

getType

getTypeFromName
Retrieves an attribute’s type by namespace name.

getType Retrieves an attribute’s type by index.

getType

getTypeFromQName
Retrieves an attribute’s type by QName.

Member Description

public void startElement(String namespaceURI, String

 localName, String QName, Attributes atts)

{

 // accessing an attribute by namespace name

 String value;

 value = atts.getValue("urn:dm:employees", "id");

 if (!value.equals(""))

 {

 ... // process employee id attribute

 }

 // accessing an attribute by QName

 value = atts.getValue("d:id");

SAX 2.0 165

S
A

X

VB

 // get attribute index by QName

 int index;

 index = atts.getIndex("d:id");

 // traverse attributes by index

 int i;

 String local, QName, type;

 for (i = 0; i<atts.getLength(); i++)

 {

 local = atts.getLocalName(i);

 qName = atts.getQName(i);

 value = atts.getValue(i);

 type = atts.getType(i);

 ... // process attribute here

 }

}

Private Sub IVBSAXContentHandler_startElement(_

 strNamespaceURI As String, strLocalName As String, _

 strQName As String, ByVal oAttributes As _

 IVBSAXAttributes)

 ' accessing an attribute by namespace name

 Dim strAttValue As String

 strAttValue = oAttributes.getValueFromName(_

 "urn:dm:employees", "id")

 If (strAttValue <> "") Then

 ... ' process employee id attribute

 End If

 ' accessing an attribute by QName

 strAttValue = oAttributes.getValueFromQName("d:id")

 ' get attribute index by QName

 Dim index As Integer

 index = oAttributes.getIndexFromName("d:id")

 ' traverse attributes by index

 Dim i As Integer

166 Essential XML Quick Reference

6.2.2 ContentHandler

ContentHandler is the primary SAX interface. ContentHandler models

the core information of an XML document as an ordered sequence of method

calls. The remaining document information is modeled by the DTDHandler,

DeclHandler, and LexicalHandler interfaces.

You implement ContentHandler to process XML documents. And you call into

ContentHandler to produce XML documents. Because most developers need

to both process and produce XML documents in a given application, they often

find themselves on both sides of ContentHandler (for example, implementing

versus calling).

Java definition

package org.xml.sax;

public interface ContentHandler {

 void startDocument() throws SAXException;

 void endDocument() throws SAXException;

 void startElement(String namespaceURI, String localName,

 String qName, Attributes atts) throws SAXException;

 void endElement(String namespaceURI, String localName,

 String qName) throws SAXException;

 void startPrefixMapping(String prefix, String uri)

 throws SAXException;

 void endPrefixMapping(String prefix) throws SAXException;

 void characters(char ch[], int start, int length)

 throws SAXException;

 void ignorableWhitespace(char ch[], int start, int length)

 Dim strLocal As String, strQName As String

 Dim strType As String

 For i = 0 To oAttributes.length - 1

 strLocal = oAttributes.getLocalName(i)

 strQName = oAttributes.getQName(i)

 strAttValue = oAttributes.getValue(i)

 strType = oAttributes.getType(i)

 ... ' process attribute here

 Next

End Sub

SAX 2.0 167

S
A

X

 throws SAXException;

 void processingInstruction(String target, String data)

 throws SAXException;

 void skippedEntity(String name) throws SAXException;

 void setDocumentLocator(Locator locator)

 throws SAXException;

}

VB definition

' IVBSAXContentHandler Members

Sub startDocument()

Sub endDocument()

Sub startElement(strNamespaceURI As String, strLocalName As _

 String, strQName As String, oAttributes As _

 IVBSAXAttributes)

Sub endElement(strNamespaceURI As String, _

 strLocalName As String, strQName As String)

Sub startPrefixMapping(strPrefix As String, strURI As String)

Sub endPrefixMapping(strPrefix As String)

Sub characters(strChars As String)

Sub ignorableWhitespace(strChars As String)

Sub processingInstruction(strTarget As String, strData As _

 String)

Sub skippedEntity(strName As String)

Property documentLocator As IVBSAXLocator

Member Description

startDocument Models the beginning of a document. Every method

call that comes after startDocument and before

endDocument models a part of the document’s con-

tent (for example, a child or descendant).

endDocument Models the end of a document. Signals that there is

no more document content left to process (for exam-

ple, no more children or descendants).

startElement Models the beginning of an element. Every method

call that comes after startElement and before

endElement models a part of the element’s content.

Each element has a namespace identifier, a local

name, a qualified name (QName: the raw name from

the source document including the prefix if any), and

a collection of attributes.

168 Essential XML Quick Reference

Examples

Using ContentHandler to generate a document

The following examples generate a simple XML document using ContentHandler.

The generated document could be serialized as follows:

endElement Models the end of the element’s content. Signals that

there is no more element content left to process.

startPrefixMapping Models a namespace declaration entering scope. A

namespace declaration consists of a prefix and the

associated namespace identifier. The prefix of ''

represents a default namespace declaration. This

prefix is considered in scope within any subsequent

method call until endPrefixMapping.

endPrefixMapping Models a namespace declaration leaving scope. The

specified prefix is no longer considered in scope

within subsequent method calls.

characters Models character data in element content. In Java/

C++, a character array is used (for buffering pur-

poses) along with a start position and the number to

read. In VB, the characters are sent in a normal VB

String.

ignorableWhitespace Models ignorable whitespace in element content. In

Java/C++, a character array is used (for buffering

purposes) along with a start position and the number

to read. In VB, the whitespace is sent in a normal VB

String. Only called for whitespace in element-only

content models when DTD/Schema is present.

processingInstruction Models a processing instruction. A processing

instruction consists of a target and the target-specific

data. The target is the string that comes after <? until

the first whitespace character. The data is everything

after that first whitespace character.

skippedEntity Models an entity that was skipped by the XML parser.

This can occur with nonvalidating processors that

don’t expand external entities.

setDocumentLocator

documentLocator
Supplies context information about the caller. A

ContentHandler implementation can cache the

locator object reference for future use (for example,

determine the line and column number of the caller).

Member Description

SAX 2.0 169

S
A

X

Java

<?xsl-stylesheet type='text/xsl' href='inv.xsl'?>

<d:employee xmlns:d='urn:schemas-develop-com:staff'

 id='ss-102-22-3323'>

 <name>Keith Brown</name>

 <title>Dark Prince</title>

</d:employee>

void genEmployeeDocument(ContentHandler handler)

 throws SAXException {

 handler.startDocument();

 handler.processingInstruction("xsl-stylesheet",

 "type='text/xsl' href='inv.xsl'");

 handler.startPrefixMapping("d",

 "urn:schemas-develop-com:staff");

 Attributes a =

 new AttributesImpl();

 a.addAttribute("", "id", "id", "ID", "ss-102-22-3323");

 handler.startElement("urn:schemas-develop-com:staff",

 "employee", "d:employee", a);

 a.clear();

 handler.startElement("", "name", "name", a);

 String ch = "Keith Brown";

 handler.characters(ch.toCharArray(), 0, ch.length()-1);

 handler.endElement("", "name", "name");

 handler.startElement("", "title", "title", a);

 ch = "Dark Prince";

 handler.characters(ch.toCharArray(), 0, ch.length()-1);

 handler.endElement("", "title", "title");

 handler.endElement("urn:schemas-develop-com:staff",

 "employee", "d:employee");

 handler.endPrefixMapping("d",

 "urn:schemas-develop-com:staff");

 handler.endDocument();

}

170 Essential XML Quick Reference

VB

Implementing ContentHandler to process a document

The following examples process an XML document, similar to the one shown in

the previous example, by loading its information into an application-specific class

(Employee). This requires implementing a finite state machine that keeps track

of the document position.

Java

Public Sub genEmployeeDocument(handler as

IVBSAXContentHandler)

 Dim a As New SAXAttributes

 handler.startDocument

 handler.processingInstruction "xsl-stylesheet", _

 "type='text/xsl' href='inv.xsl'"

 handler.startPrefixMapping "d", _

 "urn:schemas-develop-com:staff"

 a.addAttribute "", "id", "id", "ID", "ss-102-22-3323"

 handler.startElement "urn:schemas-develop-com:staff",_

 "employee", "d:employee", a

 a.clear

 handler.startElement "", "name", "name", a

 Dim ch as String

 ch = "Keith Brown"

 handler.characters ch

 handler.endElement "", "name", "name"

 handler.startElement "", "title", "title"

 ch = "Dark Prince"

 handler.characters ch

 handler.endElement "", "title", "title"

 handler.endElement "urn:schemas-develop-com:staff", _

 "employee", "d:employee"

 handler.endPrefixMapping "d", _

 "urn:schemas-develop-com:staff"

 handler.endDocument

End Sub

public class EmployeeHandler implements ContentHandler

{

 Stack m_elementContext;

SAX 2.0 171

S
A

X

 Employee m_emp;

 String m_data;

 // state machine constants

 private final int STATE_EMPLOYEE = 1;

 private final int STATE_NAME = 2;

 private final int STATE_TITLE = 3;

 public void startDocument()

 {

 m_elementContext = new Stack();

 m_emp = null;

 m_data = "";

 }

 public void startElement(String uri, String localName,

 String qName, Attributes atts)

 {

 if (uri.equals("urn:schemas-develop-com:staff") &&

 localName.equals("employee"))

 {

 m_emp = new Employee();

 m_elementContext.push(new Integer(STATE_EMPLOYEE));

 }

 else if (localName.equals("name"))

 {

 m_elementContext.push(new Integer(STATE_NAME));

 }

 else if (localName.equals("title"))

 {

 m_elementContext.push(new Integer(STATE_TITLE));

 }

 }

 public void endElement(String uri, String localName,

 String qName)

 {

 if (uri.equals("urn:schemas-develop-com:staff") &&

 localName.equals("employee")) ;

 else if (localName.equals("name"))

 if (m_emp) m_emp.name = m_data;

172 Essential XML Quick Reference

 else if (localName.equals("title"))

 if (m_emp) m_emp.title = m_data;

 else return;

 m_elementContext.pop();

 m_data = "";

 }

 public void characters(char[] ch, int start, int len)

 {

 if (m_emp != null &&

 !m_elementContext.isEmpty())

 {

 Integer context = (Integer)m_elementContext.peek();

 switch (context.intValue())

 {

 case STATE_NAME:

 case STATE_TITLE:

 m_data += new String(ch, start, len);

 break;

 case STATE_EMPLOYEE:

 default:

 break;

 }

 }

 }

 public void endDocument()

 {

 if (m_emp != null)

 ... // process Employee instance here

 }

 ... // other methods omitted for clarity

}

SAX 2.0 173

S
A

X

VB

Implements IVBSAXContentHandler

Dim m_elementContext as Stack

Dim m_emp as Employee

Dim m_data as String

Private Enum EmployeeStates

 STATE_EMPLOYEE = 1

 STATE_NAME

 STATE_TITLE

End Enum

Private Sub IVBSAXContentHandler_startDocument()

 Set m_elementContext = New Stack

 Set m_emp = Nothing

 m_data = ""

End Sub

Private Sub IVBSAXContentHandler_startElement(_

 strNamespaceURI As String, strLocalName As String, _

 strQName As String, ByVal oAttributes As _

 IVBSAXAttributes)

 Select Case strLocalName

 Case "employee"

 If strNamespaceURI = _

 "urn:schemas-develop-com:staff" Then

 set m_emp = New Employee

 m_elementContent.push STATE_EMPLOYEE

 End If

 Case "name"

 m_elementContent.push STATE_NAME

 Case "title"

 m_elementContent.push STATE_TITLE

 End Select

End Sub

Private Sub IVBSAXContentHandler_endElement(_

 strNamespaceURI As String, strLocalName As String, _

 strQName As String)

174 Essential XML Quick Reference

 Select Case strLocalName

 Case "employee"

 If strNamespaceURI <> _

 "urn:schemas-develop-com:staff" Then

 Exit Sub

 End If

 Case "name"

 m_emp.name = m_data

 Case "title"

 m_emp.title = m_data

 Case Else

 Exit Sub

 End Select

 m_elementContext.pop

 m_data = ""

End Sub

Private Sub IVBSAXContentHandler_characters(_

 strChars As String)

 If Not m_emp Is Nothing And Not _

 m_elementContext.IsEmpty Then

 Dim state as EmployeeStates

 state = m_elementContext.peek

 Select Case state

 Case STATE_NAME, STATE_TITLE

 m_data = m_data & strChars

 End Select

 End If

End Sub

Private Sub IVBSAXContentHandler_endDocument()

 If Not m_emp Is Nothing Then

 ... ' process Employee instance here

 End If

End Sub

... ' other methods omitted for clarity

SAX 2.0 175

S
A

X

6.2.3 DTDHandler

DTDHandler models the notations and unparsed entities in an XML document.

Java definition

package org.xml.sax;

public interface DTDHandler {

notationDecl(String name, String publicId, String systemId);

void unparsedEntityDecl(String name, String publicId,

 String systemId, String notationName) throws SAXException;

}

VB definition

' IVBSAXDTDHandler Members

Sub notationDecl(strName As String, strPublicId As String, _

 strSystemId As String)

Sub unparsedEntityDecl(strName As String, strPublicId As _

 String, strSystemId As String, strNotationName As String)

Examples

Processing an unparsed entity

This example processes unparsed entities based on the media type, which is

identified through the associated notation.

Java

Member Description

notationDecl Models a notation declaration. The notation name is

used in unparsed entity declarations to declare the

resource type. The type identifier is the corresponding

public/system identifier.

unparsedEntityDecl Models an unparsed entity declaration. The name is

used to refer to the unparsed entity within the XML doc-

ument. The public/system identifiers specify the loca-

tion of the resource whereas the notation name identi-

fies the resource type.

public Class EmployeeHandler implements DTDHandler,

 ContentHandler

{

176 Essential XML Quick Reference

VB

 // ContentHandler methods omitted for clarity

 public void notationDecl(String name, String publicId,

 String systemId)

 {

 CacheNotationInfoForLater(name, publicId, systemId);

 }

 public void unparsedEntityDecl(String name, String

publicId,

 String systemId, String notationName)

 {

 String nId = GetNotationId(notationName);

 if (nId.equals("urn:mime:img/gif"))

 LaunchImageAppAndProcess(publicId, systemId);

 else if (nId.equals("urn:dm:video-presentation"))

 LaunchMediaPlayer(publicId, systemId);

 else

 ThrowUnknownMediaTypeError();

 }

}

Implements DTDHandler

Implements ContentHandler

' ContentHandler methods omitted for clarity

Private Sub IVBSAXDTDHandler_notationDecl(strName As _

 String, strPublicId As String, strSystemId As String)

 CacheNotationInfoForLater strName, strPublicId, _

strSystemId

End Sub

Private Sub IVBSAXDTDHandler_unparsedEntityDecl(strName _

 As String, strPublicId As String, strSystemId As _

 String, strNotationName As String)

 String nId = GetNotationId(notationName)

 Select Case nId

 Case "urn:mime:img/gif"

SAX 2.0 177

S
A

X

6.2.4 EntityResolver

EntityResolver is an interface that allows implementations to provide custom

resolution of external entities. When an implementation supports EntityResolver,

the SAX parser will call its resolveEntity method before resolving the public/

system identifier. This gives the implementation a chance to provide its own

InputSource that represents the given resource.

Java definition

package org.xml.sax;

public interface EntityResolver {

InputSource resolveEntity(String publicId, String systemId)

 throws SAXException, java.io.IOException;

}

VB definition

' IVBSAXEntityResolver Members

Function resolveEntity(strPublicId As String, strSystemId _

 As String)

Examples

Custom resolution of external entities

This example attempts to retrieve the specified external entity from an in-memory

cache of frequently accessed entities. If it’s found in the cache, the cached

 LaunchImageAppAndProcess publicId, systemId

 Case "urn:dm:video-presentation"

 LaunchMediaPlayer publicId, systemId

 Case Else

 ThrowUnknownMediaTypeError

 End Select

End Sub

Member Description

resolveEntity Returns an InputSource object representing the entity or

null to indicate systemId should be used as the URI.

178 Essential XML Quick Reference

resource is simply wrapped in an InputSource instance and returned to the

processor. Otherwise, the method returns null, signaling the processor to use

the systemId for resolution.

Java

VB

public class EmployeeHandler implements EntityResolver,

 ContentHandler

{

 // ContentHandler methods omitted for clarity

 public InputSource resolveEntity(String pId, String

sysId)

 {

 InputSource res =

 RetrieveResourceFromInMemoryCache(res, pId, sysId))

 return res;

 }

}

Implements EntityResolver

Implements ContentHandler

' ContentHandler methods omitted for clarity

' NOTE: at the time of publication, resolveEntity was not

 called by the MSXML 3.0 parser

Private Function IVBSAXEntityResolver_resolveEntity(_

 strPublicId As String, strSystemId As String) As Variant

 Set IVBSAXEntityResolver_resolveEntity = _

 RetrieveResourceFromInMemoryCache(pId, sysId))

End Function

SAX 2.0 179

S
A

X

6.2.5 ErrorHandler

ErrorHandler models well-formed errors, validation errors, and warnings. The

consumer of a ContentHandler implementation uses this interface to abort

the stream of method invocations resulting from a caller-side error. Typically the

SAX parser uses this to notify the ContentHandler implementation that some-

thing is wrong with the document's byte stream.

Java definition

package org.xml.sax;

public interface ErrorHandler {

void warning(SAXParseException exception)

 throws SAXException;

void error(SAXParseException exception)

 throws SAXException;

void fatalError(SAXParseException exception)

 throws SAXException;

}

VB definition

' IVBSAXErrorHandler Members

Sub ignorableWarning(oLocator As IVBSAXLocator, _

 strErrorMessage As String, nErrorCode As Long)

Sub error(oLocator As IVBSAXLocator, strErrorMessage _

 As String, nErrorCode As Long)

Sub fatalError(oLocator As IVBSAXLocator, strErrorMessage _

 As String, nErrorCode As Long)

Member Description

warning

ignorableWarning
Models exceptional conditions that are less serious than

errors or fatal errors.

error Models an XML 1.0 nonfatal error. According to the XML

1.0 Recommendation, nonfatal errors are typically viola-

tions of validity constraints imposed by element and

attribute list declarations (3.2.1) and XML version mis-

matches (2.8).

fatalError Models an XML 1.0 fatal error. According to the XML 1.0

Recommendation, fatal errors are either violations of

XML’s well-formed rules (1.2), encountering an unrecog-

nized character encoding (4.3.3), or certain illegal uses of

entity or character references (4.4.4).

180 Essential XML Quick Reference

Examples

Handling errors

This example illustrates how to handle errors in the document byte stream sent to

the ContentHandler implementation.

Java

VB

public class EmployeeHandler implements ErrorHandler,

 ContentHandler

{

 // ContentHandler methods omitted for clarity

 public void error(SAXParseException e)

 throws SAXException

 {

 logErrorAndBail(e);

 }

 public void fatalError(SAXParseException p1)

 throws SAXException

 {

 logErrorAndBail(e);

 }

 public void warning(SAXParseException p1)

 throws SAXException

 {

 logWarningAndContinue(e);

 }

}

Implements IVBSAXErrorHandler

Implements IVBSAXContentHandler

' ContentHandler methods omitted for clarity

Private Sub IVBSAXErrorHandler_error(ByVal oLocator As _

 IVBSAXLocator, strErrorMessage As String, _

 ByVal nErrorCode As Long)

SAX 2.0 181

S
A

X

6.2.6 Locator

Because SAX is commonly used to interface with XML parsers, it is occasionally

useful for a ContentHandler implementation to discover to which part of the

underlying document the current method corresponds. To support this function-

ally, SAX defines the Locator interface, which is typically implemented by SAX-

aware parsers to allow implementations of ContentHandler to discover

exactly where the current method corresponds in the underlying document.

A reference to a Locator object is sent to the ContentHandler implementa-

tion through the setDocumentLocator method before processing begins.

Java definition

package org.xml.sax;

public interface Locator {

String getPublicId();

String getSystemId();

int getLineNumber();

int getColumnNumber();

}

 LogErrorAndBail oLocator, strErrorMessage, nErrorCode

End Sub

Private Sub IVBSAXErrorHandler_fatalError(ByVal oLocator _

 As IVBSAXLocator, strErrorMessage As String, _

 ByVal nErrorCode As Long)

 LogErrorAndBail oLocator, strErrorMessage, nErrorCode

End Sub

Private Sub IVBSAXErrorHandler_ignorableWarning(ByVal _

 oLocator As IVBSAXLocator, strErrorMessage As _

 String, ByVal nErrorCode As Long)

 LogWarningAndContinue oLocator, strErrorMessage, _

 nErrorCode

End Sub

182 Essential XML Quick Reference

VB definition

' IVBSAXLocator Members

Property publicId As String

Property systemId As String

Property lineNumber As Long

Property columnNumber As Long

Examples

Using the Locator interface

Java

Member Description

getPublicId

publicId
Returns the public identifier of the entity (document or exter-

nal parsed) that is currently being processed.

getSystemId

systemId
Returns the system identifier of the entity (document or

external parsed) that is currently being processed.

getLineNumber

lineNumber
Returns the 1-based line number where the serialization of

the information item being processed ends.

getColumnNumber

columnNumber
Returns the 1-based column number where the serialization

of the information item being processed ends.

public class EmployeeHandler implements ContentHandler

{

 Locator m_loc;

 public void setDocumentLocator(Locator loc)

 {

 m_loc = loc;

 }

 public void startElement(String uri, String localName,

 String qName, Attributes atts)

 {

 Console.out.println(m_loc.getLineNumber())

 Console.out.println(m_loc.getColumnNumber());

 Console.out.println(m_loc.getSystemId());

 Console.out.println(m_loc.getPublicId());

 }

 ... // other methods omitted for clarity

}

SAX 2.0 183

S
A

X

VB

6.2.7 XMLFilter

Most SAX interfaces are amenable to pipeline-style processing, where an implemen-

tation of, say, ContentHandler can intercept certain information items it recog-

nizes but pass along unrecognized information items to a downstream processor

that also implements ContentHandler. SAX makes this model concrete via its

XMLFilter interface. XMLFilter extends the XMLReader interface by add-

ing two methods—one to discover the upstream XMLReader implementation

and one to set it.

Java definition

package org.xml.sax;

public interface XMLFilter extends XMLReader {

XMLReader getParent();

void setParent(XMLReader parent);

}

Implements ContentHandler

Dim m_loc as IVBSAXLocator

Private Property Set

IVBSAXContentHandler_documentLocator(_

 ByVal loc As IVBSAXLocator)

 set m_loc = loc

End Property

Private Sub IVBSAXContentHandler_startElement(_

 strNamespaceURI As String, strLocalName As String, _

 strQName As String, ByVal oAttributes As _

 IVBSAXAttributes)

 Debug.Print m_loc.lineNumber

 Debug.Print m_loc.columnNumber

 Debug.Print m_systemId

 Debug.Print m_publicId

End Sub

... ' other methods omitted for clarity

184 Essential XML Quick Reference

VB definition

' IVBSAXXMLFilter Members

Property parent As SAXXMLReader

Examples

Using an SAX filter for XInclude processing

This example uses an XMLReader to parse an XML document from disk as well as a

ContentHandler implementation that serializes the stream of method calls back

out to an XML 1.0 byte stream. It also uses a filter, which sits between the reader and

the serializer, for processing XInclude-based inclusions within the document. The filter

adds XInclude functionality without affecting either of the existing components.

Java

Member Description

getParent

parent
Returns the upstream XMLReader implementation.

setParent

parent
Sets the upstream XMLReader implementation.

public void ProcessFileForXInclude(String file)

{

 // implements XMLFilter, ContentHandler, etc.

 ' and provides XInclude functionality

 MyXIncludeFilter f = new MyXIncludeFilter();

 XMLFilter xf = f;

 XMLReader rf = f;

 ' XMLReader implementation - parses XML 1.0 document

 XMLReader r = new

org.apache.xerces.parsers.SAXParser();

 ' implementation of ContentHandler that serializes a

 ' file back out to XML 1.0

 Serializer ser = new Serializer();

 ser.setOutputStream("c:\temp\out.xml");

 xf.setParent(r);

 rf.setContentHandler(ser);

 rf.parse(file);

}

SAX 2.0 185

S
A

X

VB

6.2.8 XMLReader

SAX defines the XMLReader interface to tie together many of the other SAX inter-

faces. This interface is implemented by SAX parsers but could also be implemented

by other applications that produce XML document streams. The XMLReader

interface has three groups of methods: handler registration methods, configura-

tion methods (properties/features), and parse methods.

Java definition

package org.xml.sax;

public interface XMLReader {

 void setContentHandler(ContentHandler handler);

 ContentHandler getContentHandler();

 void setDTDHandler(DTDHandler handler);

Public Sub ProcessFileForXInclude(file as String)

 ' implements IVBSAXXMLFilter, IVBSAXContentHandler, etc.

 ' and provides XInclude functionality

 Dim f As New MyXIncludeFilter

 Dim xf As IVBSAXXMLFilter

 Dim rf as IVBSAXXMLReader

 ' XMLReader implementation - parses XML 1.0 document

 Dim r As New SAXXMLReader30

 ' implementation of ContentHandler that serializes a

 ' file back out to XML 1.0

 Dim ser As New Serializer

 ser.setOutputStream "c:\temp\out.xml"

 Set xf = f

 Set xf.parent = r

 Set rf = f

 Set rf.contentHandler = ser

 rf.parseURL file

End Sub

186 Essential XML Quick Reference

 DTDHandler getDTDHandler();

 void setEntityResolver(EntityResolver handler);

 EntityResolver getEntityResolver();

 void setErrorHandler(ErrorHandler handler);

 ErrorHandler getErrorHandler();

 void setProperty(String name, Object value)

 throws SAXNotRecognizedException,

 SAXNotSupportedException;

 Object getProperty(String name) throws

 SAXNotRecognizedException, SAXNotSupportedException;

 void setFeature(String name, boolean value) throws

 SAXNotRecognizedException, SAXNotSupportedException;

 boolean getFeature(String name) throws

 SAXNotRecognizedException, SAXNotSupportedException;

 void parse(String systemId) throws SAXException,

 java.io.IOException;

 void parse(InputSource source) throws SAXException,

 java.io.IOException;

}

VB definition

' IVBSAXXMLReader Members

Property contentHandler As IVBSAXContentHandler

Property dtdHandler As IVBSAXDTDHandler

Property entityResolver As IVBSAXEntityResolver

Property errorHandler As IVBSAXErrorHandler

Sub putProperty(strName As String, varValue)

Function getProperty(strName As String)

Sub putFeature(strName As String, fValue As Boolean)

Function getFeature(strName As String) As Boolean

Sub parseURL(strURL As String)

Sub parse(varInput)

Property baseURL As String

Property secureBaseURL As String

Member Description

setContentHandler

contentHandler
Registers a ContentHandler implementation with the

reader.

getContentHandler

contentHandler
Returns the current ContentHandler implementation or

null if one hasn’t yet been registered.

SAX 2.0 187

S
A

X

Examples

Using XMLReader to parse a document

This example instantiates a SAX parser that implements XMLReader as well as a

receiver object that implements ContentHandler, ErrorHandler, DTDHandler,

EntityResolver, and LexicalHandler. The individual handlers are registered

with the reader through the appropriate “set” (for example, setContentHandler)

method calls. Notice, however, that the LexicalHandler implementation must

be registered through a call to setProperty because it’s not considered part

of core SAX but rather an extension interface. This example also enables the

namespace-prefixes property, which allows namespace declarations to

appear as attributes in the document stream. Finally, once the XMLReader has

been completely configured, parse is used to begin parsing the specified file.

setDTDHandler

dtdHandler
Registers a DTDHandler implementation with the reader.

getDTDHandler

dtdHandler
Returns the current DTDHandler implementation or

null if one hasn’t yet been registered.

setEntityResolver

entityResolver
Registers an EntityResolver implementation with the

reader.

getEntityResolver

entityResolver
Returns the current EntityResolver implementation or

null if one hasn’t yet been registered.

setErrorHandler

errorHandler
Registers an ErrorHandler implementation with the

reader.

getErrorHandler

errorHandler
Returns the current ErrorHandler implementation or null if

one hasn’t yet been registered.

setProperty

putProperty
Sets the value of a property (object).

getProperty Returns the specified property’s value (object).

setFeature

putFeature
Sets the state of a feature (true/false).

getFeature Returns the specified feature’s state (true/false).

parse

parseURL
Instructs an XMLReader implementation to parse the

XML document specified by the system identifier.

parse Instructs an XMLReader implementation to parse the

XML document specified by the InputSource.

Member Description

188 Essential XML Quick Reference

Java

public void processEmployeeDocument()

{

 // instantiate Xerces-J SAX parser

 XMLReader reader =

 new org.apache.xerces.parsers.SAXParser();

 // EmployeeHandler implements ContentHandler,

 // ErrorHandler, DTDHandler, and EntityResolver

 ContentHandler handler = new EmployeeHandler();

 // register handlers with XMLReader

 reader.setContentHandler(handler);

 reader.setErrorHandler(handler);

 reader.setDTDHandler(handler);

 reader.setEntityResolver(handler);

 try

 {

 // register LexicalHandler implementation

 reader.setProperty(

 "http://xml.org/sax/properties/lexical-handler",

 handler);

 reader.setFeature(

 "http://xml.org/sax/features/namespaces",

 true);

 reader.setFeature(

 "http://xml.org/sax/features/namespace-

 prefixes", true);

 // start parsing

 reader.parse("file://c:\temp\employee.xml");

 }

 catch(Exception e)

 {

 ... // handle errors here

 }

}

SAX 2.0 189

S
A

X

VB

Public Sub processEmployeeDocument()

 On Error Goto HandleError

 ' instantiate MSXML 3.0 SAX parser

 Dim reader as New SAXXMLReader

 ' EmployeeHandler implements ContentHandler,

 ' ErrorHandler, DTDHandler, & EntityResolver

 Dim handler as New EmployeeHandler

 ' register handlers with XMLReader

 set reader.contentHandler = handler

 set reader.errorHandler = handler

 set reader.dtdHandler = handler

 set reader.entityResolver = handler

 ' register LexicalHandler implementation

 reader.putProperty _

 "http://xml.org/sax/properties/lexical-handler",_

 handler

 reader.putFeature _

 "http://xml.org/sax/features/namespaces",_

 true

 reader.putFeature _

 "http://xml.org/sax/features/namespace-prefixes",_

 true

 reader.parseURL "file://c:\temp\employee.xml"

 Exit Sub

HandleError:

 ... ' handle errors here

End Sub

190 Essential XML Quick Reference

6.3 Features and properties

XMLReader has four configuration methods: two that deal with properties and two

that deal with features. Properties are uniquely named values that can be associated

with an XMLReader instance. Features can be viewed as configuration-specific

boolean properties that are used to turn specific processing features on or off.

SAX predefines a set of well-known properties and features. These properties and

features are as follows. SAX implementations may add custom features and prop-

erties that have implementation-specific URI-based names.

Features

The full feature name should be prefixed with http://xml.org/sax/fea-

tures/ (for example, http://xml.org/sax/features/namespaces).

Properties

The full property name should be prefixed with http://xml.org/sax/prop-

erties/ (for example, http://xml.org/sax/properties/dom-node).

Name Description

namespaces Performs namespace processing.

namespace-prefixes Reports the original prefixed names and attributes used

for namespace declarations.

string-interning Internalizes all element names, prefixes, attribute names,

namespace identifiers, and local names using

java.lang.String.intern.

external-general-

entities
Includes external general (text) entities.

external-parameter-

entities
Includes external parameter entities and the external DTD

subset.

validation Reports all validation errors (implies external-general-

entities and external-parameter-entities).

Name Description

dom-node Returns the DOM node currently being visited, if SAX is

being used as a DOM iterator. If the parser recognizes

and supports this property but is not currently visiting a

DOM node, returns null. [Read Only]

SAX 2.0 191

S
A

X

6.4 References

For more information about Simple API for XML,

please go to http://www.megginson.com/SAX/index.html.

xml-string Returns the string of characters associated with the

current event. If the parser recognizes and supports

this property but is not currently parsing text, it should

return null. [Read Only]

lexical-handler An optional extension handler for lexical events (for

example, comments).

decl-handler An optional extension handler for DTD-related events

other than notations and unparsed entities.

Name Description

193

D
O

M

Chapter 7

DOM Level 2

The Document Object Model is a set of abstract programmatic interfaces that

project the Infoset of an XML document onto a tree of nodes. The DOM is defined

as a set of Object Management Group (OMG) Interface Definition Language (IDL)

interface definitions along with a set of Java language bindings and a set of

ECMAScript (JavaScript, JScript) language bindings. Various other language bind-

ings have been inferred from the IDL; however, this reference covers the Java and

VB language bindings.

Level 1 of the DOM was standardized prior to namespaces or the Infoset and

requires proprietary extensions to be useful for modern XML applications. For

that reason, this chapter ignores DOM Level 1 and uses the term DOM as a syn-

onym for DOM Level 2.

7.1 DOM UML

Figure 7–1 is a quick-reference UML diagram representing the core DOM level 2

interfaces.

7.2 DOM interfaces

The DOM interfaces are listed in alphabetical order with a brief description, Java

and VB interface definitions, and a table of members. The members table gives

the name of the method or property and a short description. In cases when two

names appear in the name column, the first is the Java name and the second is

the VB name. In many cases, examples are also provided.

194 Essential XML Quick Reference

+
g
e
tN

o
d
e
N

a
m

e
()

+
g
e
tN

o
d
e
V

a
lu

e
()

+
s
e
tN

o
d
e
V

a
lu

e
()

+
g
e
tN

o
d
e
T
y
p
e
()

+
g
e
tP

a
re

n
tN

o
d
e
()

+
g
e
tC

h
ild

N
o
d
e
s
()

+
g
e
tF

ir
s
tC

h
ild

()

+
g
e
tL

a
s
tC

h
ild

()

+
g
e
tP

re
v
io

u
s
S

ib
lin

g
()

+
g
e
tN

e
x
tS

ib
lin

g
()

+
g
e
tA

tt
ri

b
u
te

s
()

+
g
e
tO

w
n
e
rD

o
c
u
m

e
n
t(

)

+
in

s
e
rt

B
e
fo

re
()

+
re

p
la

c
e
C

h
ild

()

+
re

m
o
ve

C
h
ild

()

+
a
p
p
e
n
d
C

h
ild

()

+
h
a
s
C

h
ild

N
o
d
e
s
()

+
c
lo

n
e
N

o
d
e
()

+
n
o
rm

a
liz

e
()

+
is

S
u
p
p
o
rt

e
d
()

+
g
e
tN

a
m

e
s
p
a
c
e
U

R
I(

)

+
g
e
tP

re
fi
x
()

+
s
e
tP

re
fi
x
()

+
g
e
tL

o
c
a
lN

a
m

e
()

+
h
a
s
A

tt
ri

b
u
te

s
()

«
in

te
rf

a
c
e
»

N
o

d
e

+
h
a
s
F

e
a
tu

re
()

+
c
re

a
te

D
o
c
u
m

e
n
tT

y
p
e
()

+
c
re

a
te

D
o
c
u
m

e
n
t(

)

«
in

te
rf

a
c
e
»

D
O

M
Im

p
le

m
e
n

ta
ti

o
n

«
in

te
rf

a
c
e
»

D
o

c
u

m
e
n

tF
ra

g
m

e
n

t

+
g
e
tD

o
c
T
y
p
e
()

+
g
e
tI
m

p
le

m
e
n
ta

ti
o
n
()

+
g
e
tD

o
c
u
m

e
n
tE

le
m

e
n
t(

)

+
c
re

a
te

E
le

m
e
n
t(

)

+
c
re

a
te

D
o
c
u
m

e
n
tF

ra
g
m

e
n
t(

)

+
c
re

a
te

T
e
x
tN

o
d
e
()

+
c
re

a
te

C
o
m

m
e
n
t(

)

+
c
re

a
te

C
D

A
T
A

S
e
c
ti
o
n
()

+
c
re

a
te

P
ro

c
e
s
s
in

g
In

s
tr

u
c
ti
o
n
()

+
c
re

a
te

A
tt
ri

b
u
te

()

+
c
re

a
te

E
n
ti
ty

R
e
fe

re
n
c
e
()

+
g
e
tE

le
m

e
n
ts

B
y
T
a
g
N

a
m

e
()

+
im

p
o
rt

N
o
d
e
()

+
c
re

a
te

E
le

m
e
n
tN

S
()

+
c
re

a
te

A
tt
ri

b
u
te

N
S

()

+
g
e
tE

le
m

e
n
ts

B
y
T
a
g
N

a
m

e
N

S
()

+
g
e
tE

le
m

e
n
tB

y
Id

()

«
in

te
rf

a
c
e
»

D
o

c
u

m
e
n

t

+
it
e
m

()

+
g
e
tL

e
n
g
th

()

«
in

te
rf

a
c
e
»

N
o

d
e
L

is
t

+
g
e
tN

a
m

e
d
It
e
m

()

+
s
e
tN

a
m

e
d
It
e
m

()

+
re

m
o
ve

N
a
m

e
d
It
e
m

()

+
it
e
m

()

+
g
e
tL

e
n
g
th

()

+
g
e
tN

a
m

e
d
It
e
m

N
S

()

+
s
e
tN

a
m

e
d
It
e
m

N
S

()

+
re

m
o
ve

N
a
m

e
d
It
e
m

N
S

()

«
in

te
rf

a
c
e
»

N
a
m

e
d

N
o

d
e
M

a
p

+
g
e
tD

a
ta

()

+
s
e
tD

a
ta

()

+
g
e
tL

e
n
g
th

()

+
s
u
b
s
tr

in
g
D

a
ta

()

+
a
p
p
e
n
d
D

a
ta

()

+
in

s
e
rt

D
a
ta

()

+
d
e
le

te
D

a
ta

()

+
re

p
la

c
e
D

a
ta

()

«
in

te
rf

a
c
e
»

C
h

a
ra

c
te

rD
a
ta

+
g
e
tN

a
m

e
()

+
g
e
tS

p
e
c
if
ie

d
()

+
g
e
tV

a
lu

e
()

+
s
e
tV

a
lu

e
()

+
g
e
tO

w
n
e
rE

le
m

e
n
t(

)

«
in

te
rf

a
c
e
»

A
tt

r

+
g
e
tT

a
g
N

a
m

e
()

+
g
e
tA

tt
ri

b
u
te

()

+
s
e
tA

tt
ri

b
u
te

()

+
re

m
o
ve

A
tt
ri

b
u
te

()

+
g
e
tA

tt
ri

b
u
te

N
o
d
e
()

+
s
e
tA

tt
ri

b
u
te

N
o
d
e
()

+
re

m
o
ve

A
tt
ri

b
u
te

N
o
d
e
()

+
g
e
tE

le
m

e
n
ts

B
y
T
a
g
N

a
m

e
()

+
g
e
tA

tt
ri

b
u
te

N
S

()

+
s
e
tA

tt
ri

b
u
te

N
S

()

+
re

m
o
ve

A
tt
ri

b
u
te

N
S

()

+
g
e
tA

tt
ri

b
u
te

N
o
d
e
N

S
()

+
s
e
tA

tt
ri

b
u
te

N
o
d
e
N

S
()

+
g
e
tE

le
m

e
n
ts

B
y
T
a
g
N

a
m

e
N

S
()

+
h
a
s
A

tt
ri

b
u
te

()

+
h
a
s
A

tt
ri

b
u
te

N
S

()

«
in

te
rf

a
c
e
»

E
le

m
e
n

t

+
s
p
lit

T
e
x
t(

)

«
in

te
rf

a
c
e
»

T
e
x
t

«
in

te
rf

a
c
e
»

C
o

m
m

e
n

t

«
in

te
rf

a
c
e
»

C
D

A
T
A

S
e
c
ti

o
n

+
g
e
tN

a
m

e
()

+
g
e
tE

n
ti
ti
e
s
()

+
g
e
tN

o
ta

ti
o
n
s
()

+
g
e
tP

u
b
lic

Id
()

+
g
e
tS

y
s
te

m
Id

()

+
g
e
tI
n
te

rn
a
lS

u
b
s
e
t(

)

«
in

te
rf

a
c
e
»

D
o

c
u

m
e
n

tT
y
p

e

+
g
e
tP

u
b
lic

Id
()

+
g
e
tS

y
s
te

m
Id

()

«
in

te
rf

a
c
e
»

N
o

ta
ti

o
n

+
g
e
tP

u
b
lic

Id
()

+
g
e
tS

y
s
te

m
Id

()

+
g
e
tN

o
ta

ti
o
n
N

a
m

e
()

«
in

te
rf

a
c
e
»

E
n

ti
ty

«
in

te
rf

a
c
e
»

E
n

ti
ty

R
e
fe

re
n

c
e

+
g
e
tT

a
rg

e
t(

)

+
g
e
tD

a
ta

()

+
s
e
tD

a
ta

()

«
in

te
rf

a
c
e
»

P
ro

c
e
s
s
in

g
In

s
tr

u
c
ti

o
n

«
e
x
c
e
p
ti
o
n
»

D
O

M
E

x
c
e
p
ti
o
n

F
ig

u
re

 7
–
1

D
O

M
 l
e
v
e
l
2

 i
n
te

rf
a
c
e
 h

ie
ra

rc
h
y.

DOM Level 2 195

D
O

M

7.2.1 Attr

The Attr interface models an attribute in an XML document providing access to

the various properties of the attribute. Despite extending the Node interface,

attribute nodes are not considered part of the DOM tree.

Java definition

package org.w3c.dom;

public interface Attr extends Node {

 public String getName();

 public boolean getSpecified();

 public String getValue();

 public void setValue(String value) throws DOMException;

 public Element getOwnerElement();

}

VB definition

'IXMLDOMAttribute

Property name As String 'readonly

Property value As Variant

Member Description

getName

name
Returns the QName of the attribute.

getSpecified Returns true if the attribute was specified in the original

document. Returns false if the attribute is present

because of a default value in a DTD.

getValue

value
Retrieves an attribute’s value.

setValue

value
Sets the value of an attribute.

getOwnerElement Returns a reference to the Element node that owns the

attribute or null if the attribute is currently unowned. An

example of an unowned attribute node would be one that

had just been created but not yet attached to a particular

element.

196 Essential XML Quick Reference

Examples

Accessing the name and value of an attribute

These examples check the name of an attribute, retrieve the value, and finally

return the owner element. In addition, the Java example checks whether the

attribute was specified or defaulted in by the DTD.

Java

VB

Element ProcessAttributeAndReturnOwnerElement (Attr att)

{

 if (att.getName().equals ("id"))

 {

 // Retrieve attribute value

 String value = att.getValue();

 // Process employee id

 // ...

 }

 if (att.getSpecified() == true)

 {

 // attribute was specified in instance document

 // rather than being defaulted in from a DTD

 }

 return att.getOwnerElement();

}

Sub ProcessAttribute (att As IXMLDOMAttribute)

 If att.name = "id" Then

 ' Retrieve attribute value

 Dim value As String

 value = att.value

 ' Process employee id

 ' ...

 End If

End Sub

DOM Level 2 197

D
O

M

7.2.2 CDATASection

The CDATASection interface is a signature interface (it adds no further methods

to org.w3c.dom.Text). It is used to denote a text node in the tree that was

either read from a CDATA section or should be written as a CDATA section, or both.

7.2.3 CharacterData

There are no CharacterData nodes in a DOM tree. Rather, the CharacterData

interface provides a base interface for the org.w3c.dom.Text and

org.w3c.dom.Comment node types. It provides methods for retrieving and

manipulating the character data in these nodes.

Java definition

package org.w3c.dom;

public interface CharacterData extends Node {

 public String getData() throws DOMException;

 public void setData(String data) throws DOMException;

 public int getLength();

 public String substringData(int offset, int count)

 throws DOMException;

 public void appendData(String arg) throws DOMException;

 public void insertData(int offset, String arg)

 throws DOMException;

 public void deleteData(int offset, int count)

 throws DOMException;

 public void replaceData(int offset, int count,

 String arg) throws DOMException;

}

VB definition

' IXMLDOMCharacterData

Property data As String

Property length As Long ' read-only

Function substringData (offset As Long, count As Long) _

As String

Sub appendData (data As String)

Sub insertData (offset As Long, data As String)

Sub deleteData (offset As Long, count As Long)

198 Essential XML Quick Reference

Sub replaceData (offset As Long, count As Long, data _

As String)

Examples

Using the CharacterData interface

These examples show setting, appending, inserting, deleting, and replacing text

in a CharacterData node. The text that the CharacterData node contains

after each operation is shown in the following comment. In addition a call to the

substringData method is shown along with the returned text.

Java

Member Description

getData

data
Returns the character data associated with the node.

setData

data
Replaces any existing character data with the string provided.

getLength

length
Returns the number of characters in the character data.

substringData Returns a range of data from the available character data.

appendData Appends the provided string to the end of the current character

data.

insertData Inserts the provided string at the specified offset.

deleteData Deletes a range of character data.

replaceData Replaces a range of characters with the provided string.

replaceData can be thought of as a call to deleteData fol-

lowed by a call to insertData.

String PopulateCharacterDataNode (CharacterData cd) {

 cd.setData ("A man"); // 'A man'

 cd.appendData (" a plan"); // 'A man a plan'

 cd.appendData (" panama"); // 'A man a plan panama'

 cd.insertData (12, " a canal");

 // 'A man a plan a canal panama'

 cd.deleteData (12, 4); // 'A man a plananal panama'

 cd.replaceData (12, 4, " a canal");

 // 'A man a plan a canal panama'

 String sub = cd.substringData (6, 6); // 'a plan'

DOM Level 2 199

D
O

M

VB

7.2.4 Comment

The Comment interface is a signature interface (it adds no further methods to

org.w3c.dom.CharacterData). It is used to denote a comment node in the

tree.

7.2.5 Document

The Document interface represents the root of a DOM tree. It also acts as a fac-

tory for other node types. When working with XML that includes namespace infor-

mation, the methods with names that end with NS should be used instead of the

methods without that suffix.

 return cd.getData();

}

Function PopulateCharacterDataNode (ByRef cd As

IXMLDOMCharacterData) As String

 cd.data = "A man" ' "A man" '

 cd.appendData " a plan" ' "A man a plan" '

 cd.appendData " panama" ' "A man a plan panama" '

 cd.insertData 12, " a canal" _

' "A man a plan a canal panama" '

 cd.deleteData 12, 4 _

' "A man a plananal panama" '

 cd.replaceData 12, 4, " a canal" _

' "A man a plan a canal panama" '

 Dim sub As String

 sub = cd.substringData (6, 6,) ' "a plan" '

 PopulateCharacterDataNode = cd.data

End Function

200 Essential XML Quick Reference

Java definition

package org.w3c.dom;

public interface Document extends Node {

 public DocumentType getDoctype();

 public DOMImplementation getImplementation();

 public Element getDocumentElement();

 public Element createElement(String tagName)

 throws DOMException;

 public DocumentFragment createDocumentFragment();

 public Text createTextNode(String data);

 public Comment createComment(String data);

 public CDATASection createCDATASection(String data)

 throws DOMException;

 public ProcessingInstruction

 createProcessingInstruction(String target, String data)

 throws DOMException;

 public Attr createAttribute(String name)

 throws DOMException;

 public EntityReference createEntityReference

 (String name) throws DOMException;

 public NodeList getElementsByTagName(String tagname);

 public Node importNode(Node importedNode, boolean deep)

 throws DOMException;

 public Element createElementNS(String namespaceURI,

 String qualifiedName) throws DOMException;

 public Attr createAttributeNS(String namespaceURI,

 String qualifiedName) throws DOMException;

 public NodeList getElementsByTagNameNS(String

 namespaceURI, String localName);

 public Element getElementById(String elementId);

}

VB definition

' IXMLDOMDocument

Property docType As IXMLDOMDocumentType ' read-only

Property implementation As IXMLDOMImplementation ' read-only

Property documentElement As IXMLDOMElement

Function createElement (tagName As String) _

As IXMLDOMElement

Function createDocumentFragment() As IXMLDOMDocumentFragment

Function createTextNode (data As String) As IXMLDOMText

DOM Level 2 201

D
O

M

Function createComment (data As String) As IXMLDOMComment

Function createCDATASection (data As String) _

As IXMLDOMCDATASection

Function createProcessingInstruction (target As String, _

data As String) As IXMLDOMProcessingInstruction

Function createAttribute (name As String) _

As IXMLDOMAttribute

Function createEntityReference (name As String) _

As IXMLDOMEntityReference

Function getElementsByTagName (tagName As String) _

As IXMLDOMNodeList

Function createNode (Type As Variant, name As String, _

namespaceURI As String) As IXMLDOMNode

Function nodeFromID (idString As String) As IXMLDOMNode

Function load (xmlSource As Variant) As Boolean

Property readyState As Long ' read-only

Property parseError As IXMLDOMParseError ' read-only

Property url As String ' read-only

Property async As Boolean

Sub abort()

Function loadXML (bstrXML As String) As Boolean

Sub save (destination As Variant)

Property validateOnParse As Boolean

Property resolveExternals As Boolean

Property preserveWhiteSpace As Boolean

Property onreadystatechange As Variant ' write-only

Property ondataavailable As Variant ' write-only

Property ontransformnode As Variant ' write-only

Member Description

getDocType

docType
Returns the DTD for this document or null if no

Document Type Declaration is available.

getImplementation

implementation
Returns the DOMImplementation that deals

with this document.

getDocumentElement

documentElement
Returns the element child of the Document

node.

createElement Creates and returns an element node with the

provided name. The localName, prefix, and

namespaceURI properties of the element node

will be null.

createDocumentFragment Creates an empty DocumentFragment node.

202 Essential XML Quick Reference

createTextNode Creates a Text node containing the provided

string.

createComment Creates a Comment node containing the pro-

vided string.

createCDATASection Creates a CDATASection node containing

the provided string.

createProcessingInstruction Creates a ProcessingInstruction node

with the provided target and data.

createAttribute Creates an Attribute node with the pro-

vided name. The localName, prefix, and

namespaceURI properties of the Attribute

node will be null.

createEntityReference Creates an EntityReference node with the

provided name. If the name corresponds to a

known Entity in the DTD, then the descen-

dants of the createEntityReference node

correspond to those specified by the entity

declaration, otherwise the created node has

no descendants.

getElementsByTagName Returns a list of all Elements in the document

with a nodeName property that matches the

provided name. The string value “*” matches

all Elements. The Elements are returned in

document order. Use of this method should be

avoided when working with XML containing

namespace information because the results

are implementation dependent.

importNode Creates a copy of a node created in another

document such that the copy can be used in

the importing document. For Attribute nodes,

any Text node children are also copied. For

DocumentFragment nodes, if deep was set to

true, then all descendant nodes are also cop-

ied. Otherwise, an empty DocumentFragment

node is created. For Element nodes, any spec-

ified Attribute nodes are copied. Defaulted

Attribute nodes are not copied. If deep is

set to true then all descendant nodes are

also copied. For EntityReference nodes

only the entity reference is copied. If the

importing document provides a definition for

an entity with the same name as the imported

entity, then the value of that entity

Member Description

DOM Level 2 203

D
O

M

Examples

Creating elements, attributes, and text nodes

These examples show creating a namespace qualified element, a namespace

qualified attribute, and associated text node and retrieving a list of nodes. The

element is appended to the document element. The Visual Basic example uses

createNode rather than createElementNS/createAttributeNS and

getElementsByTagName rather than getElementsByTagNameNS as

MSXML does not support the “NS” methods of the Document interface.

definition is assigned to the new node. For

ProcessingInstruction nodes a straight

copy is created. For Text, CDATASection,

and Comment nodes a straight copy is cre-

ated. importNode is undefined or not useful

for Notation, Entity, DocumentType, and

Document nodes.

createElementNS Creates a namespace-qualified Element node

with the specified QName. At serialization

time, the relevant namespace declaration will

be written out. This method supersedes

createElement.

createAttributeNS Creates a namespace-qualified Attribute

node with the specified QName. At serializa-

tion time, the relevant namespace declaration

will be written out. This method supersedes

createAttribute.

getElementsByTagNameNS Returns a list of all Elements in the document

with namespaceURI and localName proper-

ties that match the provided parameters. The

string value “*” matches all Elements. The

Elements are returned in document order.

getElementById

nodeFromID
Returns the Element whose ID attribute

matches the supplied string. Note that the ID

attribute is the one whose type is ID, not the

one (if any) whose name is ID. The DOM imple-

mentation needs a DTD or schema to deter-

mine the type of an attribute. If no Element

with the specified ID can be found, or the

implementation does not know which

attributes are of type ID, then the method

returns null.

Member Description

204 Essential XML Quick Reference

Java

VB

NodeList addElementAndGetList (Document doc) {

 Element docelt = doc.getDocumentElement();

 Element e = doc.createElementNS

("urn:develop-com:employees", "employee");

 docelt.appendChild (e);

 Attr a = doc.createAttributeNS (null, "id");

 Text t = doc.createTextNode ("5");

 a.appendChild (t);

 e.setAttributeNodeNS (a);

 return doc.getElementsByTagNameNS

("urn:develop-com:employees", "employee");

}

Function addElementAndGetList (doc As IXMLDOMDocument) _

As IXMLDOMNodeList

 Dim docelt As IXMLDOMElement

 Set docelt = doc.documentElement

 Dim e As IXMLDOMElement

 Set e = doc.createNode(NODE_ELEMENT, "employee", _

"urn:develop-com:employees")

 docelt.appendChild e

 Dim a As IXMLDOMAttribute

 Set a = doc.createNode(NODE_ATTRIBUTE, "id", "")

 Dim t As IXMLDOMText

 Set t = doc.createTextNode("5")

 a.appendChild t

 e.setAttributeNode a

 set addELementAndGetList = _

doc.getElementsByTagName ("employee")

End Function

DOM Level 2 205

D
O

M

7.2.6 DocumentFragment

The DocumentFragment interface is a signature interface (it adds no further

methods to org.w3c.dom.Node). It is used to denote a DocumentFragment

node. The descendants of a DocumentFragment node need not conform to the

structure rules laid down in the XML Infoset. For example, a DocumentFragment

may have multiple element children. When a DocumentFragment is inserted into

a DOM tree, the children are inserted rather than the DocumentFragment node.

7.2.7 DocumentType

The DocumentType interface provides access to the Entity and Notation

collections of the document along with certain aspects of the internal and external

subsets of the DTD. Both the Entity and Notation collections are read-only.

Java definition

package org.w3c.dom;

public interface DocumentType extends Node {

 public String getName();

 public NamedNodeMap getEntities();

 public NamedNodeMap getNotations();

 public String getPublicId();

 public String getSystemId();

 public String getInternalSubset();

}

VB definition

' IXMLDOMDocumentType

Property name As String ' read-only

Property entities As IXMLDOMNamedNodeMap ' read-only

Property notations As IXMLDOMNamedNodeMap ' read-only

Member Description

getName

name
Returns the name of the DTD. This is the name that

immediately follows the DOCTYPE keyword and corre-

sponds to the name of the document element.

206 Essential XML Quick Reference

7.2.8 DOMImplementation

A bootstrapping interface typically used for creating the initial Document node of

a DOM tree. DOMImplementation also allows a given DOM implementation to be

interrogated with regard to supported features.

Java definition

package org.w3c.dom;

public interface DOMImplementation {

 public boolean hasFeature(String feature, String

version);

 public DocumentType createDocumentType(String

qualifiedName, String publicId, String systemId) throws

DOMException;

 public Document createDocument(String namespaceURI,

String qualifiedName, DocumentType doctype) throws

DOMException;

}

VB definition

' IXMLDOMImplementation

Function hasFeature (feature As String, version As String)

As Boolean

getEntities

entities
Returns a read-only collection containing general entities

declared in the internal or external subset of the DTD.

All nodes in the returned map implement the Entity

interface.

getNotations

notations
Returns read-only collection notations declared in the

internal or external subset of the DTD. All nodes in the

returned map implement the Notation interface.

getPublicId Returns the public identifier of the external subset of the

DTD.

getPublicId Returns the system identifier of the external subset of

the DTD.

getInternalSubset Returns the internal subset of the DTD as a string.

Member Description

DOM Level 2 207

D
O

M

Examples

Creating the document element

This example shows creating a DocumentType node, the Document node, and

the document element. The resulting XML document could be serialized as follows:

<!DOCTYPE e:employees SYSTEM "employees.dtd" >

<e:employees xmlns:e='urn:develop-com:employees' />

Java

7.2.9 Element

The Element interface provides methods for access to and modification of the

attributes of an element along with methods for retrieving some of the properties

of the element. When working with XML that includes namespace information, the

Member Description

hasFeature Returns true if the DOM implementation supports the

specified version of the specified feature; false other-

wise. Defined features include Core, XML, HTML, Views,

StyleSheets, CSS, CSS2, Events, UIEvents, MouseEvents,

MutationEvents, HTMLEvents, Range, and Traversal.

Other specifications may define new features. Feature

names are case sensitive. For DOM level 2, the version

string for all features is “2.0.”

createDocumentType Creates an empty DocumentType node with the speci-

fied name and public and system IDs. Because the nota-

tion and entity collections are read-only, the resulting

DocumentType node is not very useful.

createDocument Creates a Document node of the specified

DocumentType along with the document Element.

Document CreateDocument (DOMImplementation dom) {

 DocumentType dt = dom.createDocumentType ("e:employees",

null, "employees.dtd");

 Document doc = dom.createDocument ("urn:develop-

com:employees", "e:employees", dt);

 return doc;

}

208 Essential XML Quick Reference

methods with names that end with NS should be used instead of the methods

without that suffix.

Java definition

package org.w3c.dom;

public interface Element extends Node {

 public String getTagName();

 public String getAttribute(String name);

 public void setAttribute(String name, String value)

throws DOMException;

 public void removeAttribute(String name) throws

DOMException;

 public Attr getAttributeNode(String name);

 public Attr setAttributeNode(Attr newAttr) throws

DOMException;

 public Attr removeAttributeNode(Attr oldAttr) throws

DOMException;

 public NodeList getElementsByTagName(String name);

 public String getAttributeNS(String namespaceURI,

String localName);

 public void setAttributeNS(String namespaceURI, String

qualifiedName, String value) throws DOMException;

 public void removeAttributeNS(String namespaceURI,

String localName) throws DOMException;

 public Attr getAttributeNodeNS(String namespaceURI,

String localName);

 public Attr setAttributeNodeNS(Attr newAttr) throws

DOMException;

 public NodeList getElementsByTagNameNS(String

namespaceURI, String localName);

 public boolean hasAttribute(String name);

 public boolean hasAttributeNS(String namespaceURI,

String localName);

}

VB definition

' IXMLDOMElement

Property tagName As String ' read-only

Function getAttribute (ByRef name As String) As Variant

Sub setAttribute (ByRef name As String, ByRef value As _

Variant)

DOM Level 2 209

D
O

M

Sub removeAttribute (ByRef name As String)

Function getAttributeNode (ByRef name As String) As _

IXMLDOMAttribute

Function setAttributeNode (ByRef DOMAttribute As _

IXMLDOMAttribute) As IXMLDOMAttribute

Function removeAttributeNode (ByRef DOMAttribute As _

IXMLDOMAttribute) As IXMLDOMAttribute

Function getElementsByTagName (ByRef tagName As String) _

As IXMLDOMNodeList

Sub normalize()

Member Description

getTagName Returns the nodeName property of the element.

The value of this property is the same as that of

the nodeName property of the org.w3c.dom.Node

interface. Use of this method should be avoided when

working with XML containing namespace information

because the results are implementation dependent.

getAttribute Returns the value of the attribute with a name that

matches the supplied parameter. When two attributes

share the same nodeName (but have different

namespace URIs), the value returned is undefined.

This method has been superseded by

getAttributeNS.

setAttribute Creates a new Attribute node with the specified

name and value or overwrites an existing attribute

with the specified name. This method has been super-

seded by setAttributeNS.

removeAttribute Removes the attribute with the specified name. This

method has been superseded by

removeAttributeNS.

getAttributeNode Returns the Attribute node with a name that

matches the supplied parameter. When two attributes

share the same nodeName (but have different

namespace URIs) the value returned is undefined. This

method has been superseded by

getAttributeNodeNS.

setAttributeNode Attaches the provided attribute to the element. If an

attribute already exists on the element that has the

same name as the attribute being added, then the old

attribute is returned. Otherwise, the return value is

null. This method has been superseded by

setAttributeNodeNS.

210 Essential XML Quick Reference

Examples

Add an attribute to an element

These examples check for the existence of a named attribute and, if the attribute

does not exist, add such an attribute. The VB example uses a QName rather than

a namespace name/local name pair because of the lack of support for NS meth-

ods in MSXML. Similarly, createNode is used rather than setAttributeNS.

removeAttributeNode Removes the specified attribute node. The removed

attribute is returned to the caller.

getElementsByTagName Returns a list of all descendant Elements of this

Element node with a nodeName property that

matches the provided name. The string value “*”

matches all Elements. The Elements are returned

in document order.

getAttributeNS Returns the value of the attribute with the local name

and namespace URI that match the supplied

parameters.

setAttributeNS Creates a new Attribute node with the specified

namespace URI, QName, and value or overwrites an

existing attribute with the specified namespace URI

and QName.

removeAttributeNS Removes the attribute with the specified namespace

URI and local name.

getAttributeNodeNS Returns the Attribute node with the namespace

URI and local name that matche the supplied

parameters.

getElementsByTagNameNS Returns a list of all descendant Elements of this

Element node with a namespaceURI and

localName properties that match the provided

parameters. The string value “*” matches all

Elements. The Elements are returned in

document order.

hasAttribute Returns true if an attribute with the specified name

exists. When two attributes share the same node-

Name (but have different namespace URIs), the value

returned is undefined. This method has been super-

seded by hasAttributeNS.

hasAttributeNS Returns true if an attribute with the specified

namespace URI and local name exists; otherwise,

returns false.

Member Description

DOM Level 2 211

D
O

M

Java

VB

7.2.10 Entity

The Entity interface represents an internal or external entity in an XML docu-

ment.

Java definition

package org.w3c.dom;

public interface Entity extends Node {

 public String getPublicId();

 public String getSystemId();

 public String getNotationName();

}

VB definition

' IXMLDOMEntity

Property publicId As Variant ' read-only

Property systemId As Variant ' read-only

void AttachAttributes (Element e) {

 if (!e.hasAttributeNS ("urn:example-

 org:weightsandmeasures", "units"))

 e.setAttributeNS ("urn:example-

 org:weightsandmeasures", "p:units", "inches");

}

Sub AttachAttributes (ByRef e As IXMLDOMElement)

 If e.getAttributeNode ("p:units") Is Nothing Then

 Dim doc As IXMLDOMDocument

 Set doc = e.ownerDocument

 Dim a As IXMLDOMAttribute

 Set a = doc.createNode (NODE_ATTRIBUTE, "p:units", _

 "urn:example-org:weightsandmeasures")

 a.value = "inches"

 e.setAttributeNode a

 End If

End Sub

212 Essential XML Quick Reference

Property notationName As String ' read-only

7.2.11 EntityReference

The EntityReference interface is a signature interface (it adds no further

methods to org.w3c.dom.Node). It is used to denote a node in the tree that is a

reference to a general entity. The nodeName property contains the name of the

entity to which this node is a reference.

7.2.12 NamedNodeMap

The NamedNodeMap interface models a set of named but unordered nodes in

the DOM tree. Such nodes include Attribute nodes and Entity nodes.

Java definition

package org.w3c.dom;

public interface NamedNodeMap {

 public Node getNamedItem(String name);

 public Node setNamedItem(Node arg) throws DOMException;

 public Node removeNamedItem(String name) throws

 DOMException;

Member Description

getPublicId

publicId
Returns the public identifier of the entity, if any; otherwise,

returns null.

getSystemId

systemId
Returns the system identifier of the entity, if any; otherwise,

returns null.

getNotationName

notationName
Returns the notation name associated with an unparsed

entity. If the entity is not an unparsed entity, then this

method returns null.

DOM Level 2 213

D
O

M

 public Node item(int index);

 public int getLength();

 public Node getNamedItemNS(String namespaceURI,

 String localName);

 public Node setNamedItemNS(Node arg) throws

 DOMException;

 public Node removeNamedItemNS(String namespaceURI,

String localName) throws DOMException;

}

VB definition

' IXMLDOMNamedNodeMap

Function getNamedItem (ByVal name As String) As IXMLDOMNode

Function setNamedItem (ByRef newItem As IXMLDOMNode) As _

IXMLDOMNode

Function removeNamedItem (ByVal name As String) As _

IXMLDOMNode

Property item (ByVal index As Long) As IXMLDOMNode

' read-only

Property length As Long ' read-only

Function getQualifiedItem (ByVal baseName As String, _

ByVal namespaceURI As String) As IXMLDOMNode

Function removeQualifiedItem (ByVal baseName As String, _

ByVal namespaceURI As String) As IXMLDOMNode

Function nextNode() As IXMLDOMNode

Function reset()

Property _newEnum As IUnknown ' read-only

Member Description

getNamedItem Retrieves the node with the nodeName property that

matches the specified name.

setNamedItem Adds the specified node to the map. If a node with the

same nodeName property as the added node exists in

the map, the existing item is replaced. In this case the

replaced node is returned; otherwise, null is returned.

removeNamedItem Removes from the map the node with the nodeName

property that matches the specified name. The

removed node is returned.

214 Essential XML Quick Reference

Examples

Adding an attribute to a NamedNodeMap

These examples show adding an Attribute node to the attributes collection of

an element. Note that the Java example also creates a namespace declaration as

an attribute in the http://www.w3.org/2000/xmlns/ namespace. MSXML

automatically puts in namespace declarations as needed.

Java

item Returns the node at the specified index. Returns null if

the index specified equals or exceeds the number of

nodes in the map.

getLength

length
Returns the number of nodes in the map.

getNamedItemNS

getQualifiedItem
Returns the node in the map with the specified

namespaceURI and localName properties.

setNamedItemNS Adds the specified node to the map. If a node with the

same namespaceURI and localName properties as

the added node exists in the map, the existing node is

replaced. In this case, the replaced node is returned;

otherwise, null is returned.

removeNamedItemNS

removeQualifiedItem
Removes from the map the node with namespaceURI

and localName properties that match the specified

namespaceURI and Localname.

Member Description

void AddAttribute (Element e) {

 NamedNodeMap map = e.getAttributes();

 // Create units attribute in urn:example-org namespace

and add to map

 Attr a = doc.createAttributeNS ("urn:example-org",

 "pre:units");

 a.setValue ("inches");

 map.setNamedItemNS (a);

 // Create namespace declaration for urn:example-

org:measurements and add to map

 a = doc.createAttributeNS (

 "http://www.w3.org/2000/xmlns/", "xmlns:pre");

 a.setValue ("urn:example-org");

DOM Level 2 215

D
O

M

VB

7.2.13 Node

The Node interface is the base interface for all other interfaces in the DOM and

provides access to generic node properties, traversal methods, and tree modifi-

cation methods.

Java definition

package org.w3c.dom;

public interface Node {

 // NodeType

 public static final short ELEMENT_NODE = 1;

 public static final short ATTRIBUTE_NODE = 2;

 public static final short TEXT_NODE = 3;

 public static final short CDATA_SECTION_NODE = 4;

 public static final short ENTITY_REFERENCE_NODE = 5;

 public static final short ENTITY_NODE = 6;

 public static final short PROCESSING_INSTRUCTION_

 NODE = 7;

 public static final short COMMENT_NODE = 8;

 map.setNamedItemNS (a);

}

Sub AddAttribute (e As IXMLDOMElement)

 Dim map As IXMLDOMNamedNodeMap

 Set map = e.Attributes

 ' Create units attribute in urn:example-org:measurements

namespace and add to map

 Dim a As IXMLDOMAttribute

 Set a = doc.createNode(NODE_ATTRIBUTE, "pre:units", _

"urn:example-org")

 a.value = "inches"

 map.setNamedItem a

End Sub

216 Essential XML Quick Reference

 public static final short DOCUMENT_NODE = 9;

 public static final short DOCUMENT_TYPE_NODE = 10;

 public static final short DOCUMENT_FRAGMENT_NODE = 11;

 public static final short NOTATION_NODE = 12;

 public String getNodeName();

 public String getNodeValue() throws DOMException;

 public void setNodeValue(String nodeValue)

 throws DOMException;

 public short getNodeType();

 public Node getParentNode();

 public NodeList getChildNodes();

 public Node getFirstChild();

 public Node getLastChild();

 public Node getPreviousSibling();

 public Node getNextSibling();

 public NamedNodeMap getAttributes();

 public Document getOwnerDocument();

 public Node insertBefore(Node newChild, Node refChild)

 throws DOMException;

 public Node replaceChild(Node newChild, Node oldChild)

 throws DOMException;

 public Node removeChild(Node oldChild)

 throws DOMException;

 public Node appendChild(Node newChild)

 throws DOMException;

 public boolean hasChildNodes();

 public Node cloneNode(boolean deep);

 public void normalize();

 public boolean isSupported(String feature, String

 version);

 public String getNamespaceURI();

 public String getPrefix();

 public void setPrefix(String prefix)

 throws DOMException;

 public String getLocalName();

 public boolean hasAttributes();

}

DOM Level 2 217

D
O

M

VB definition

' IXMLDOMNode

Property nodeName As String ' read-only

Property nodeValue As String

Property nodeType As DOMNodeType ' read-only

Property parentNode As IXMLDOMNode ' read-only

Property childList As IXMLDOMNodeList ' read-only

Property firstChild As IXMLDOMNode ' read-only

Property lastChild As IXMLDOMNode ' read-only

Property previousSibling As IXMLDOMNode ' read-only

Property nextSibling As IXMLDOMNode ' read-only

Property attributes As IXMLDOMNamedNodeMap ' read-only

Function insertBefore (ByRef newChild As IXMLDOMNode, _

ByRef refChild As Variant) As IXMLDOMNode

Function replaceChild (ByRef newChild As IXMLDOMNode, _

ByRef oldChild As IXMLDOMNode) As IXMLDOMNode

Function removeChild (ByRef childNode As IXMLDOMNode) _

As IXMLDOMNode

Function appendChild (ByRef newChild As IXMLDOMNode) _

As IXMLDOMNode

Function hasChildNodes() As Boolean

Property ownerDocument As IXMLDOMDocument

Function cloneNode (ByVal deep As Boolean) As IXMLDOMNode

Property nodeTypeString As String ' read-only

Property text As String

Property specified As Boolean ' read-only

Property definition As IXMLDOMNode ' read-only

Property nodeTypeValue As Variant

Property dataType As String

Property xml As String ' read-only

Function transformNode (ByRef stylesheet As IXMLDOMNode) _

As String

Function selectNodes (ByVal queryString As String) As _

IXMLDOMNodeList

Function selectSingleNode (ByVal queryString As String) _

As IXMLDOMNode

Property parsed As Boolean ' read-only

Property namespaceURI As String ' read-only

Property prefix As String ' read-only

Property baseName As String ' read-only

Function transformNodeToObject (ByRef stylesheet As _

IXMLDOMNode) As Variant

218 Essential XML Quick Reference

Member Description

getNodeName

nodeName
Retrieves the name of the node. For Element and

Attribute nodes, the name is the QName. For

ProcessingInstruction nodes, the name is the tar-

get portion of the processing instruction. For Entity

and EntityReference nodes, the name is the entity

name. For Notation nodes, the name is the notation

name. For Document nodes, the name is “#document”.

For Comment nodes, the name is “#comment”. For

Text nodes, the name is “#text”. For CDATASection

nodes, the name is “#cdata”. For DocumentFragment

nodes the name is #document-fragment. For

DocumentType nodes the name is the tagname of

the document element.

getNodeValue

nodeValue
Retrieves the value of the node. For Attribute,

CDATA, Comment, and Text nodes the value is the text

of the node. For ProcessingInstruction nodes,

the value is the data portion of the processing instruc-

tion. For all other node types the value is null.

setNodeValue

nodeValue
Sets the value of the node. Only Attribute, Comment,

CDATASection, ProcessingInstruction, and

Text nodes can have their node value set.

getNodeType

nodeType
Retrieves the type of the node.

getParentNode

parentNode
Retrieves the parent node. For Attribute, Document

and DocumentFragment nodes this property is null.

getChildNodes

childList
Retrieves an ordered collection containing the children

of the node. Only Attribute, Document,

DocumentFragment, Element, and Entity nodes

can have children.

getFirstChild

firstChild
Retrieves the first child of the node.

getLastChild

lastChild
Retrieves the last child of the node.

getPreviousSibling

previousSibling
Retrieves the previous node in the tree whose parent is

the same as that of the current node.

getNextSibling

nextSibling
Retrieves the next node in the tree whose parent is the

same as that of the current node.

getAttributes

attributes
Retrieves an unordered collection containing the

attributes of the node. Only element nodes can have

attributes.

getOwnerDocument

ownerDocument
Retrieves the owning document node.

DOM Level 2 219

D
O

M

Examples

Traversing the tree

These examples show traversing a DOM tree depth first using the firstChild

and nextSibling properties of the Node interface.

insertBefore Inserts a node into the children collection of the current

node, immediately before the provided reference node.

Returns the new node.

replaceChild Replaces a node in the children collection of the current

node. Returns the replaced node.

removeChild Removes a node from the children collection of the cur-

rent node. Returns the removed node.

appendChild Appends a node to the children collection of the current

node. Returns the appended node.

hasChildNodes Returns true if the node has children; otherwise,

returns false.

cloneNode Creates and returns a copy of the current node. If the

deep parameter is set to true, descendants are also

copied.

normalize Converts adjacent text node children into single text

nodes.

isSupported Returns true if the specified feature and version are

supported; otherwise, returns false. Defined features

include Core, XML, HTML, Views, StyleSheets, CSS,

CSS2, Events, UIEvents, MouseEvents, MutationEvents,

HTMLEvents, Range, and Traversal. Other specifica-

tions may define new features. Feature names are case

sensitive. For DOM level 2, the version string for all fea-

tures is “2.0.”

getNamespaceURI Returns the namespace URI of the node. Only element

and attribute nodes have namespace URIs.

getPrefix Returns the namespace prefix of the node. Only element

and attribute nodes have namespace prefixes.

setPrefix Sets the namespace prefix of the node. Only element

and attribute nodes have namespace prefixes.

getLocalName Returns the localname of the node. Only element and

attribute nodes have local names.

hasAttributes Returns true if the node has attributes; otherwise,

returns false.

Member Description

220 Essential XML Quick Reference

Java

VB

void TraverseTree (Node n) {

 // Process node ...

 // Recursively process first child...

 Node p = n.getFirstChild();

 if (p != null)

 TraverseTree (p);

 // ... and siblings

 p = n.getNextSibling();

 if (p != null)

 TraverseTree (p);

}

Sub TraverseTree (n As IXMLDOMNode)

 ' Process node ...

 ' Recursively process first child...

 Dim p As IXMLDOMNode

 Set p = n.firstChild

 If Not p Is Nothing Then

 TraverseTree p

 End If

 ' ... and siblings

 Set p = n.nextSibling

 If Not p Is Nothing Then

 TraverseTree p

 End If

End Sub

DOM Level 2 221

D
O

M

Adding nodes to the tree

These examples show removing, creating, and adding several nodes to a DOM tree

using a combination of removeChild, appendChild, and insertBefore.

Note that the Java example has to add explicitly an attribute representing the

namespace declaration whereas MSXML automatically inserts it. The resulting

tree could be serialized as follows:

<e:employees xmlns:e='urn:develop-com:employees'>

 <e:employee>Aaron</e:employee>

 <e:employee>Don</e:employee>

</e:employees>

Java

void CreateNodes (Document doc) {

 Element emps, emp1, emp2;

 Text t;

 // Remove current document element

 doc.removeChild (doc.getDocumentElement());

 // Create document element

 emps = doc.createElementNS ("urn:develop-com:employees",

"e:employees");

 doc.appendChild (emps);

 // Create namespace declaration for urn:develop-

com:employees and add to document element

 emps.setAttributeNS ("http://www.w3.org/2000/xmlns/",

"xmlns:e", "urn:develop-com:employees");

 // Create first child element and append

 emp1 = doc.createElementNS ("urn:develop-com:employees",

"e:employee");

 t = doc.createTextNode ("Don");

 emp1.appendChild (t);

 emps.appendChild (emp1);

 // Create second child element and insert before first

222 Essential XML Quick Reference

VB

 emp2 = doc.createElementNS ("urn:develop-com:employees",

"e:employee");

 t = doc.createTextNode ("Aaron");

 emp2.appendChild (t);

 emps.insertBefore (emp2, emp1);

}

Sub CreateNodes (doc As IXMLDOMDocument)

 Dim emps As IXMLDOMElement

 Dim emp1 As IXMLDOMElement

 Dim emp2 As IXMLDOMElement

 Dim t As IXMLDOMText

 ' Remove current document element

 doc.removeChild doc.documentElement

 ' Create document element

 Set emps = doc.createNode (NODE_ELEMENT, _

"e:employees", "urn:develop-com:employees")

 doc.appendChild emps

 ' Create first child element and append

 Set emp1 = doc.createNode (NODE_ELEMENT, _

"e:employee", "urn:develop-com:employees")

 Set t = doc.createTextNode ("Don")

 emp1.appendChild t

 emps.appendChild emp1

 ' Create second child element and insert before first

 Set emp2 = doc.createNode (NODE_ELEMENT, _

"e:employee", "urn:develop-com:employees")

 Set t = doc.createTextNode ("Aaron")

 emp2.appendChild t

 emps.insertBefore emp2, emp1

End Sub

DOM Level 2 223

D
O

M

7.2.14 NodeList

The NodeList interface is used to model an ordered collection of nodes.

Java definition

package org.w3c.dom;

public interface NodeList {

 public Node item(int index);

 public int getLength();

}

VB definition

' IXMLDOMNodeList

Property item As IXMLDOMNode ' read-only

Property length As Long ' read-only

Function nextNode() As IXMLDOMNode

Sub reset()

Property _newEnum As IUnknown ' read-only

Examples

Traversing the tree

These examples show a method, TraverseTree, traversing a DOM tree depth

first using the NodeList interface retrieved from the childNodes collection.

Java

Member Description

item Returns the node at the specified index. Indices are zero based.

getLength Returns the number of nodes in the collection.

void TraverseTree (Node n) {

 // Process node ...

 // Recursively process children

 NodeList nl = n.getChildNodes();

 for(int i=0;i<nl.getLength();i++)

 TraverseTree (nl.item (i));

}

224 Essential XML Quick Reference

VB

Sub TraverseTree (n As IXMLDOMNode)

 ' Process node ...

 ' Recursively process children

 Dim nl As IXMLDOMNodeList

 Set nl = n.childNodes

 Dim i As Integer

 For i = 0 To nl.length - 1

 TraverseTree nl.Item (i)

 Next i

End Sub

Sub TraverseTreeForEach (n As IXMLDOMNode)

 ' Process node ...

 ' Recursively process children

 Dim nl As IXMLDOMNodeList

 Set nl = n.childNodes

 Dim x As IXMLDOMNode

 If nl.length > 0 Then

 For Each x In nl

 TraverseTreeForEach x

 Next x

 End If

End Sub

Sub TraverseTreeNextNode (n As IXMLDOMNode)

 ' Process node ...

 ' Recursively process children

 Dim nl As IXMLDOMNodeList

 Set nl = n.childNodes

 Dim x As IXMLDOMNode

 Set x = nl.nextNode

 While Not x Is Nothing

 TraverseTreeNextNode x

 Set x = nl.nextNode

 Wend

End Sub

DOM Level 2 225

D
O

M

7.2.15 Notation

The Notation interface models a notation declaration in a DTD.

Java definition

package org.w3c.dom;

public interface Notation extends Node {

 public String getPublicId();

 public String getSystemId();

}

VB definition

' IXMLDOMNotation

Property publicId As Varint ' read-only

Property systemId As Variant ' read-only

7.2.16 ProcessingInstruction

The ProcessingInstruction interface models processing instructions.

Java definition

package org.w3c.dom;

public interface ProcessingInstruction extends Node {

 public String getTarget();

 public String getData();

 public void setData(String data) throws DOMException;

}

VB definition

' IXMLDOMProcessingInstruction

Property target As String ' read-only

Property data As String

Member Description

getPublicId Returns the public identifier of the notation.

getSystemId Returns the system identifier of the notation.

226 Essential XML Quick Reference

7.2.17 Text

The Text interface models text nodes.

Java definition

package org.w3c.dom;

public interface Text extends CharacterData {

 public Text splitText(int offset) throws DOMException;

}

VB definition

' IXMLDOMText

Function splitText (ByVal offset As Long) As IXMLDOMText

7.3 References

LeHors, Arnaud, et al., editors. Document Object Model (DOM) Level 2 Core

Specification.

Available at http://www.w3.org/TR/DOM-Level-2-Core/. 1999

Member Description

getTarget Returns the target of the processing instruction.

getData Returns the data of the processing instruction.

setData Sets the data of the processing instruction to the specified string.

Member Description

splitText Splits the text node into two adjacent text nodes.

227

S
c
h
e
m

a
 I

Chapter 8

XML Schema Datatypes

XML Schema provides a set of built-in datatypes. Some of these types are primi-

tives, described in the specification, whereas others are derived types described

in a schema. Both primitive and derived types are available to schema authors to

use as is or to derive new types from.

This chapter provides a reference for the parts of the schema language related to

defining simple types. For reasons of brevity, not all examples are full schemas. In

all examples, the xs namespace prefix is mapped to the namespace name of the

XML Schema language, http://www.w3.org/2001/XMLSchema, even if no

such namespace declaration appears in the example. Similarly, the tns namespace

prefix is mapped to the same namespace name as the targetNamespace

attribute of the schema element even if that element is not shown.

8.1 Datatype grouping

The following group the built-in datatypes according to various criteria.

Numeric types

Type Description

decimal An arbitrary-precision decimal number

integer An arbitrary-length integer

negativeInteger An arbitrary-length negative integer

nonNegativeInteger An arbitrary-length integer with a value of zero or more

positiveInteger An arbitrary-length positive integer

nonPositiveInteger An arbitrary-length integer with a value of zero or less

long A 64-bit signed integer

int A 32-bit signed integer

short A 16-bit signed integer

byte An 8-bit signed integer

228 Essential XML Quick Reference

Date and time types

XML 1.0 types

unsignedLong A 64-bit unsigned integer

unsignedShort A 16-bit unsigned integer

unsignedInt A 32-bit unsigned integer

unsignedByte An 8-bit unsigned number

float A single-precision floating point number

double A double-precision floating point number

Type Description

Type Description

date A Gregorian calendar date

dateTime An instant in time

duration A duration in time

gDay A Gregorian day-long monthly recurring period

gMonth A Gregorian month

gMonthDay A Gregorian day-long annually recurring period

gYear A Gregorian calendar year

gYearMonth A Gregorian month-long annually recurring period

time An instant in time

Type Description

ID An XML 1.0 ID

IDREF An XML 1.0 IDREF

IDREFS A list of XML 1.0 IDREF instances

ENTITY An XML 1.0 ENTITY

ENTITIES A list of XML 1.0 ENTITY instances

NMTOKEN An XML 1.0 NMTOKEN

NMTOKENS A list of XML 1.0 NMTOKEN instances

NOTATION An XML 1.0 NOTATION

XML Schema Datatypes 229

S
c
h
e
m

a
 I

Name and string types

8.2 Datatypes

Datatypes in the XML Schema specification are defined in terms of a value space,

the set of values the type can hold, and a lexical space; in other words, how those

values are represented as characters in XML. Some datatypes have multiple lexical

representations whereas others only have one. Types that have multiple lexical repre-

sentations also have a canonical representation of the lexical space for use in sit-

uations in which canonicalization is important, such as digital signature scenarios.

In this section the built-in datatypes are listed in alphabetical order, each with a

description, a base type (if the type is a derived type), whether the type is atomic

or list based, notes about the value and lexical spaces of the type, canonical rep-

resentation, list of facets that are applicable to the type, built-in types that are

derived from the type, and examples.

Figure 8–1 shows the type hierarchy for the built-in types derived from decimal

while Figure 8–2 shows the built-in types derived from string. Built-in types not

shown in either figure do not serve as the base type for any other built-in type and

are derived from anySimpleType—an abstract type that serves as the root of

the simple type hierarchy.

8.2.1 anyURI

The anyURI datatype represents a URI reference according to RFC 2396 and

RFC 2732. (See References at the end of the chapter.)

Value space: Any absolute or relative URI reference including those with a

fragment identifier.

Type Description

string A general string type

normalizedString A string with normalized whitespace

token A string with normalized whitespace and with preceding

and trailing whitespace removed

QName An XML Name

Name An XML Name

NCName An XML noncolonized name

230 Essential XML Quick Reference

Figure 8–1 Type hierarchy for numerical types.

Figure 8–2 Type hierarchy for string types.

decimal

integer

byte

short

int

long nonNegativeInteger

unsignedInt

unsignedByte

unsignedShort

unsignedLong positiveInteger

nonPositiveInteger

negativeInteger

string

normalizedString

NMTOKENS

NMTOKEN

token

Name

IDREF

IDREFS

NCName

language

ENTITIES

ID ENTITY

XML Schema Datatypes 231

S
c
h
e
m

a
 I

Lexical space: The set of strings matching the URI reference production of

RFC 2396, as amended by RFC 2732.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Examples

Absolute URI references

Various absolute URI references as element and attribute content

Relative URI references

Various relative URI references as element and attribute content

8.2.2 base64Binary

The base64Binary datatype represents base64-encoded binary data.

Value space: Any finite sequence of binary octets.

Lexical space: Any finite sequence of binary octets encoded according to

the Base64 Content-Transfer-Encoding per RFC 2045.

Applicable facets: enumeration, length, maxLength, minLength,

pattern and whiteSpace.

Example

base64 encoded data

<uri>http://example.org/People/people.xml#xpointer(//

Person[@name='Martin'])</uri>

<uri>uuid:f6cbe76a-cf75-4ce2-af2b-214e64acca75</uri>

<uri>urn:com-develop-demos</uri>

<music src='/music/Bowie/fashion.mp3' />

<uri>People/people.xml#xpointer(//

Person[@name='Martin'])</uri>

<data>AQIDBQcJCw0REwAA</data>

232 Essential XML Quick Reference

A prime number sequence for the numbers 1, 2, 3, 5, 7, 9, 11, 13, 17, and 19

encoded in base64.

8.2.3 boolean

The boolean datatype represents two-value logic.

Value space: true, false.

Lexical space: true, false, 1, 0 (where 1 and 0 correspond to true and false

respectively).

Canonical representation: true, false.

Applicable facets: pattern and whiteSpace.

Examples

An attribute

A boolean attribute set to true.

An element

A boolean element set to false.

8.2.4 byte

The byte datatype represents the range of integer values that can be stored in

an 8-bit signed field.

Base type: short.

Value space: +127 to –128.

Lexical space: A finite sequence of decimal digits with an optional leading

sign character (+ or –). The default sign is positive. Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

<row inserted='true' />

<checked>0</checked>

XML Schema Datatypes 233

S
c
h
e
m

a
 I

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Examples

byte values

Various byte values as element content.

Canonical byte values

Canonical representation of the byte values in the preceding example.

8.2.5 date

The date datatype represents a Gregorian calendar date.

Value space: Any date.

Lexical space: CCYY-MM-DD where CC, YY, MM, and DD correspond to the

century, year, month, and day respectively. Additional digits may appear to

the left of CC to indicate years greater than 9999. An optional following Z indi-

cates that the date is specified in Coordinated Universal Time. Alternatively, a

time zone may be indicated by providing a following + or – sign followed by

the offset from UTC as hh:mm where hh and mm correspond to hours and

minutes respectively. The mm and the preceding colon may be omitted if the

minutes are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

<num>+12</num>

<num>-127</num>

<num>0000056</num>

<num>0</num>

<num>12</num>

<num>-127</num>

<num>56</num>

<num>0</num>

234 Essential XML Quick Reference

Examples

A date

February 13th 2001

A date with negative time zone modifier

February 13th 2001, Eastern Standard Time

A date with positive time zone modifier

February 13th 2001, Central European Time

8.2.6 dateTime

The dateTime datatype represents an instant in time as a combination of Grego-

rian date and time-of-day values.

Value space: Any instant in time as a combination of Gregorian date and

time-of-day values.

Lexical space: CCYY-MM-DDThh:mm:ss.sss where T is the date/time

separator and CC, YY, MM, DD, hh, mm, and ss.sss correspond to the cen-

tury, year, month, day, hour, minute, and second (with fractions) respectively.

Additional digits may appear to the left of CC to indicate years greater than

9999. A preceding – sign is allowed. An optional following Z indicates the

dateTime is specified in Coordinated Universal Time. Alternatively, a time

zone may be indicated by providing a following + or – sign followed by the off-

set from UTC as hh:mm where hh and mm correspond to hours and minutes

respectively. The mm and the preceding colon may be omitted if the minutes

are zero.

Canonical representation: The time zone must be omitted or must be UTC

(as indicated by the following Z).

<date>2001-02-13</date>

<date>2001-02-13-05:00</date>

<date>2001-02-13+01:00</date>

XML Schema Datatypes 235

S
c
h
e
m

a
 I

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Examples

An instant in time

10:20pm on February 13th 2001

An instant in time with negative time zone modifier

5:20pm on February 13th 2001, Eastern Standard Time

An instant in time with positive time zone modifier

11:20pm on February 13th 2001, Central European Time

8.2.7 decimal

The decimal datatype represents arbitrary precision decimal numbers.

Value space: The infinite set of all decimal numbers.

Lexical space: A finite sequence of decimal digits with a period as the deci-

mal point indicator and an optional leading sign character (+ or –). The default

sign is positive. Leading and trailing zeros may appear. If the digits following

the decimal point are all zero, those digits and the decimal point may be omitted.

Canonical representation: The decimal point is required and there must be

at least one digit to the left and to the right of the decimal point. Otherwise,

preceding or trailing zeros are prohibited, as is the preceding + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived type: integer.

<instant>2001-02-13T22:20:00</instant>

<instant>2001-02-13T17:20:00-05:00</instant>

<instant>2001-02-13T23:20:00+01:00</instant>

236 Essential XML Quick Reference

Examples

decimal values

Various decimal values as element content

Canonical decimal values

Canonical representation of the decimal values in the previous example.

8.2.8 double

The double datatype represents IEEE double-precision 64-bit floating point num-

bers (IEEE 754-1985).

Value space: +253 x 2970 to –253 x 2970. Smallest representable value is ±1

x 2–1075. Other values in value space are, in value order, NaN, positive infinity,

positive zero, negative zero, negative infinity.

Lexical space: A decimal mantissa optionally followed by ‘E’ or ‘e’ followed

by an integer exponent. The lexical representation of the mantissa follows the

rules for the decimal datatype. The lexical representation of the exponent

follows the rules for the integer datatype. The other values in the value

space are represented as NaN, INF, 0, -0, -INF.

Canonical representation: In the mantissa the decimal point is required and

there must be exactly one digit to the left and at least one digit to the right of

<num>123456</num>

<num>1.23456</num>

<num>+12.3456</num>

<num>0000123456.0000</num>

<num>0012.345600</num>

<num>-123456</num>

<num>0</num>

<num>123456.0</num>

<num>1.23456</num>

<num>12.3456</num>

<num>123456.0</num>

<num>12.3456</num>

<num>-123456.0</num>

<num>0.0</num>

XML Schema Datatypes 237

S
c
h
e
m

a
 I

the decimal point. Otherwise, preceding and trailing zeros are prohibited in

the mantissa, as is the preceding + sign. The exponent, if any, must be indi-

cated by 'E'.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Examples

double values

Various double values as element content

Canonical double values

Canonical representation of the double values in the previous example

8.2.9 duration

The duration datatype represents a duration of time in Gregorian years,

months, days, hours, minutes, and seconds according to ISO 8601. (See Refer-

ence section at end of chapter.)

Value space: Any duration of time per ISO 8601.

Lexical space: PnYnMnDTnHnMnS according to ISO 8601. T is the date/

time separator and nY, nM, nD, nH, nM, and nS correspond to the number of

<num>123456</num>

<num>1.23456E5</num>

<num>+12.3456E72</num>

<num>0000123456.0000</num>

<num>0012.345600e-10</num>

<num>-123456E-5</num>

<num>0</num>

<num>1.23456E5</num>

<num>1.23456E5</num>

<num>1.23456E73</num>

<num>1.23456E5</num>

<num>1.23456E-9</num>

<num>-1.23456</num>

<num>0</num>

238 Essential XML Quick Reference

years, months, days, hours, minutes, and seconds respectively. The lowest

order unit may use an arbitrary decimal for n whereas all higher order units

must use an arbitrary integer for n. Any unit that has zero as its value may be

omitted. If hour, minute, and seconds are omitted, the time separator, T,

must be omitted. The P and at least one unit must always be present.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Examples

A duration with days as the smallest unit

One year, two months, four days

A duration with hours as the largest unit

One hour, two minutes, four seconds

A duration with various units

One month, two days, five minutes

8.2.10 ENTITIES

The ENTITIES datatype represents the XML 1.0 ENTITIES type, a list of ENTITY

names separated by whitespace. This type should only be used for attribute val-

ues. A given ENTITY value in the list must match the name of an unparsed entity

declared elsewhere in the XML document.

Base type: ENTITY

Derived by: list

<duration>P1Y2M4D</duration>

<duration>P1Y2M4DT0H0M0S</duration>

<duration>P0Y0M0DT1H2M4S</duration>

<duration>PT1H2M4S</duration>

<duration>P1M2DT5M</duration>

<duration>P0Y1M2DT0H5M0S</duration>

XML Schema Datatypes 239

S
c
h
e
m

a
 I

Value space: The set of finite, nonzero-length sequences of ENTITY values

that have been used in an XML document.

Lexical space: The set of whitespace-separated lists of ENTITY values that

have been used in an XML document.

Applicable facets: enumeration, length, maxLength, minLength,

and whiteSpace.

Example

ENTITIES attributes

ENTITIES attributes on various elements

8.2.11 ENTITY

The ENTITY datatype represents an XML 1.0 ENTITY type. This type should only

be used for attribute values. A given ENTITY value must match the name of an

unparsed entity declared elsewhere in the XML document.

Base type: NCName.

Value space: All strings that match the NCName production of Namespaces

in XML and have been declared as an unparsed entity elsewhere in the XML

document.

Lexical space: All strings that match the NCName production of

namespaces in XML.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Derived type: ENTITIES.

<reference sound='bgsound fgsound' />

<reference pic='mymugshot carpic flower' />

<reference data='mystuff yourstuff somestuff' />

240 Essential XML Quick Reference

Example

ENTITY attributes

ENTITY attributes that refer to unparsed entities

8.2.12 float

The float datatype represents IEEE single-precision 32-bit floating point num-

bers (IEEE 754-1985).

Value space: +224 x 2104 to –224 x 2104. Smallest representable value is ±1

x 2–149. Other values in value space are in value order, NaN, positive infinity,

positive zero, negative zero, negative infinity.

Lexical space: A decimal mantissa optionally followed by 'E' or 'e' followed

by an integer exponent. The lexical representation of the mantissa follows the

rules for the decimal datatype. The lexical representation of the exponent

follows the rules for the integer datatype. The other values in the value

space are represented as NaN, INF, 0, -0, -INF.

Canonical representation: In the mantissa the decimal point is required and

there must be exactly one digit to the left and at least one digit to the right of

the decimal point. Otherwise, preceding and trailing zeros are prohibited in

the mantissa, as is the preceding + sign. The exponent, if any, must be indi-

cated by 'E'.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Examples

float values

<reference sound='bgsound' />

<reference pic='mymugshot' />

<reference data='mystuff' />

<num>123456</num>

<num>1.23456E5</num>

<num>+12.3456E4</num>

<num>0000123456.0000</num>

<num>0012.345600e-10</num>

XML Schema Datatypes 241

S
c
h
e
m

a
 I

Various float values as element content

Canonical float values

Canonical representation of the float values in the preceding example

8.2.13 gDay

The gDay datatype represents a Gregorian day that recurs, specifically a one-

day-long, monthly recurring period.

Value space: Any day-long, monthly recurring period.

Lexical space: –––DD where DD corresponds to the day. An optional follow-

ing Z indicates the gDay is specified in Coordinated Universal Time. Alterna-

tively a time zone may be indicated by providing a following + or – sign fol-

lowed by the offset from UTC as hh:mm where hh and mm correspond to

hours and minutes respectively. The mm and the preceding colon may be omit-

ted if the minutes are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Example

A recurring Gregorian day

13th of every month

<num>-123456E-5</num>

<num>0</num>

<num>1.23456E5</num>

<num>1.23456E5</num>

<num>1.23456E5</num>

<num>1.23456E5</num>

<num>1.23456E-9</num>

<num>-1.23456</num>

<num>0</num>

<day>---13</day>

242 Essential XML Quick Reference

8.2.14 gMonth

The gMonth datatype represents a Gregorian month that recurs every year.

Value space: Any month-long, annually recurring period.

Lexical space: ––MM–– where MM corresponds to the month. An optional

following Z indicates the gMonth is specified in Coordinated Universal Time.

Alternatively a time zone may be indicated by providing a following + or – sign

followed by the offset from UTC as hh:mm where hh and mm correspond to

hours and minutes respectively. The mm and the preceding colon may be omit-

ted if the minutes are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Examples

A recurring Gregorian month

February

A recurring Gregorian month with a negative time zone modifier

February, Eastern Standard Time

A recurring Gregorian month with a positive time zone modifier

February, Central European Time

8.2.15 gMonthDay

The gMonthDay datatype represents a Gregorian date that recurs, specifically,

a day of the year.

Value space: Any day-long, annually recurring period.

<monthDay>--02--</monthDay>

<monthDay>--02---05:00</monthDay>

<monthDay>--02--+01:00</monthDay>

XML Schema Datatypes 243

S
c
h
e
m

a
 I

Lexical space: ––MM–DD where MM and DD correspond to the month and

day respectively. An optional following Z indicates that the gMonthDay is

specified in Coordinated Universal Time. Alternatively a time zone may be indi-

cated by providing a following + or – sign followed by the offset from UTC as

hh:mm where hh and mm correspond to hours and minutes respectively. The

mm and the preceding colon may be omitted if the minutes are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Examples

A recurring Gregorian date

February 13th

A recurring Gregorian date with a negative time zone modifier

February 13th, Eastern Standard Time

A recurring Gregorian date with a positive time zone modifier

February 13th, Central European Time

8.2.16 gYear

The gYear datatype represents a Gregorian calendar year.

Value space: Any Gregorian calendar year.

Lexical space: CCYY where CC and YY correspond to the century and year

respectively. Additional digits may appear to the left of CC to indicate years

greater than 9999. A preceding – sign is allowed.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

<monthDay>--02-13</monthDay>

<monthDay>--02-13-05:00</monthDay>

<monthDay>--02-13+01:00</monthDay>

244 Essential XML Quick Reference

Example

A Gregorian year

The year 2001.

8.2.17 gYearMonth

The gYearMonth datatype represents a particular Gregorian month in a particu-

lar Gregorian year.

Value space: Gregorian calendar months; any month-long nonrecurring period.

Lexical space: CCYY–MM where CC, YY, and MM correspond to century,

year, and month respectively. An optional following Z indicates that the

gYearMonth is specified in Coordinated Universal Time. Alternatively, a time

zone may be indicated by providing a following + or – sign followed by the off-

set from UTC as hh:mm where hh and mm correspond to hours and minutes

respectively. The mm and the preceding colon may be omitted if the minutes

are zero.

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Examples

A Gregorian calendar month

February 2001

A Gregorian calendar month with a negative time zone modifier

February 2001, Eastern Standard Time

A Gregorian calendar month with a positive time zone modifier

February 2001, Central European Time

<year>2001</year>

<month>2001-02</month>

<month>2001-02-05:00</month>

<month>2001-02+01:00</month>

XML Schema Datatypes 245

S
c
h
e
m

a
 I

8.2.18 hexBinary

The hexBinary datatype represents hex-encoded binary data.

Value space: Any finite sequence of binary octets.

Lexical space: Any finite sequence of binary octets where each octet is

encoded using two hexadecimal digits.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Example

Hex-encoded data

A prime number sequence for the numbers 1, 2, 3, 5, 7, 9, 11, 13, 17, and 19.

8.2.19 ID

The ID datatype represents the XML 1.0 ID type. This type should only be used

for attribute values. A given ID value can only appear once in a given XML

document.

Base type: NCName.

Value space: All strings that match the NCName production of namespaces

in XML.

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Example

ID attributes

ID attributes on various elements

<data>0102030507090B0D1113</data>

<name id='id1' />

<name id='apple' />

<name id='x1' />

246 Essential XML Quick Reference

8.2.20 IDREF

The IDREF datatype represents an XML 1.0 IDREF type. This type should only be

used for attribute values. A given IDREF value must match an ID value elsewhere

in the XML document.

Base type: NCName

Value space: All strings that match the NCName production of namespaces

in XML.

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Derived type: IDREFS.

Examples

IDREF attributes

IDREF attributes on various elements

8.2.21 IDREFS

The IDREFS datatype represents the XML 1.0 IDREFS type—a list of ID values

separated by whitespace. This type should only be used for attribute values. A

given token in an IDREFS value must match an ID value elsewhere in the XML

document.

Base type: IDREF.

Value space: Set of finite, nonzero-length sequences of ID values that have

been used in an XML document.

Lexical space: The set of whitespace-separated lists of ID values that have

been used in an XML document.

Applicable facets: enumeration, length, maxLength, minLength,

and whiteSpace.

<reference ref='id1' />

<reference ref='x1' />

<reference ref='apple' />

XML Schema Datatypes 247

S
c
h
e
m

a
 I

Example

IDREFS attributes

IDREFS attributes on various elements

8.2.22 int

The int datatype represents the range of integer values that can be stored in a

32-bit signed field.

Base type: long.

Value space: +2,147,483,647 to –2,147,483,648.

Lexical space: A finite sequence of decimal digits with an optional leading

sign character (+ or –). The default sign is positive. Leading zeros may

appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived type: short.

Examples

int values

Various int values as element content

<references ref='id1 id3 id5 ' />

<references ref='x1 x2 x3' />

<references ref='apple orange pear' />

<num>1234567890</num>

<num>42</num>

<num>+12</num>

<num>-273</num>

<num>0000056</num>

<num>0</num>

248 Essential XML Quick Reference

Canonical int values

Canonical representation of the int values in the preceding example

8.2.23 integer

The integer datatype represents arbitrary integer values.

Base type: decimal.

Value space: The infinite set of all integers.

Lexical space: A finite sequence of decimal digits with an optional leading

sign character (+ or –). The default sign is positive. Leading zeros may

appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived types: long, nonNegativeInteger, and nonPositiveInteger.

Examples

integer values

Various integer values as element content

<num>1234567890</num>

<num>42</num>

<num>12</num>

<num>-273</num>

<num>56</num>

<num>0</num>

<num>123456</num>

<num>42</num>

<num>+12</num>

<num>-273</num>

<num>0000056</num>

<num>0</num>

XML Schema Datatypes 249

S
c
h
e
m

a
 I

Canonical integer values

Canonical representation of the integer values in the previous example

8.2.24 language

The language datatype represents natural language identifiers according to

RFC 1766.

Base type: token.

Value space: The set of all strings that are language identifiers according to

Section 2.12 of XML 1.0 Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Example

language identifier attributes

Several language identifiers in attribute values

<num>123456</num>

<num>42</num>

<num>12</num>

<num>-273</num>

<num>56</num>

<num>0</num>

<text xml:lang='en'>a man a plan a canal panama</text>

<text xml:lang='en-GB'>Do me a favour!</text>

<text xml:lang='en-US'>Do me a favor</text>

<town xml:lang='de'>Unterschleißheim</town>

<language xml:lang='fr'>Français</language>

<language xml:lang='es'>Español</language>

250 Essential XML Quick Reference

8.2.25 long

The long datatype represents the range of integer values that can be stored in a

64-bit signed field.

Base type: integer.

Value space: +9,223,372,036,854,775,807 to

–9,223,372,036,854,775,808.

Lexical space: A finite sequence of decimal digits with an optional leading

sign character (+ or –). The default sign is positive. Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived type: int.

Examples

long values

Various long values as element content

Canonical long values

Canonical representation of the long values in the previous example

<num>1000000000000</num>

<num>1234567890</num>

<num>42</num>

<num>+12</num>

<num>-273</num>

<num>0000056</num>

<num>0</num>

<num>1000000000000</num>

<num>1234567890</num>

<num>42</num>

<num>12</num>

<num>-273</num>

<num>56</num>

<num>0</num>

XML Schema Datatypes 251

S
c
h
e
m

a
 I

8.2.26 Name

The Name datatype represents XML Names, typically used for names of elements

and attributes.

Base type: token.

Value space: The set of all strings that match the Name production in XML

1.0 Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Derived type: NCName.

Example

XML Names

Various XML Names as attribute values

8.2.27 NCName

The NCName datatype represents XML noncolonized names, typically used for

the local names of namespace-qualified elements and attributes; that is, the part

after the prefix and the colon.

Base type: Name.

Value space: The set of all strings that match NCName production in XML

1.0 Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

<name val='Person'/>

<name val='age'/>

<name val='height.units'/>

<name val='_uuidof'/>

<name val='www.develop.com'/>

<name val='Chumley-Warner'/>

252 Essential XML Quick Reference

Derived types: ENTITY, ID, and IDREF.

Example

XML NCNames

Various XML NCNames as attribute values

8.2.28 negativeInteger

The negativeInteger datatype represents integer values of –1 or less.

Base type: nonPositiveInteger.

Value space: The infinite set of all integers with values of –1 or less.

Lexical space: A finite sequence of decimal digits with a preceding minus

sign character (-). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived type: negativeInteger.

Examples

negativeInteger values

Various negativeInteger values as element content

<name val='Person'/>

<name val='age'/>

<name val='height.units'/>

<name val='_uuidof'/>

<name val='www.develop.com'/>

<name val='Chumley-Warner'/>

<num>-42</num>

<num>-273</num>

<num>-0000056</num>

XML Schema Datatypes 253

S
c
h
e
m

a
 I

Canonical negativeInteger values

Canonical representation of the negativeInteger values in the preceding

example

8.2.29 NMTOKEN

The NMTOKEN datatype represents the XML 1.0 NMTOKEN type. This type should

only be used for attribute values.

Base type: token.

Value space: The set of strings that match NMTOKEN production in XML 1.0

Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Derived type: NMTOKENS.

Example

NMTOKEN attributes

NMTOKEN as attribute values

8.2.30 NMTOKENS

The NMTOKENS datatype represents the XML 1.0 NMTOKENS type, a list of

NMTOKEN values separated by whitespace. This type should only be used for

attribute values.

<num>-42</num>

<num>-273</num>

<num>-56</num>

<stuff name='hayley' />

<stuff name='porsche' />

<stuff name='.com' />

<stuff name='Name_With_Underscores' />

254 Essential XML Quick Reference

Base type: NMTOKEN.

Derived by: List.

Value space: The set of finite, nonzero-length sequences of NMTOKEN values

Lexical space: The set of whitespace-separated lists of NMTOKEN values.

Applicable facets: enumeration, length, maxLength, minLength,

and whiteSpace.

Example

NMTOKENS attributes

NMTOKENS as attribute values

8.2.31 nonNegativeInteger

The nonNegativeInteger datatype represents the integer values zero or

more.

Base type: integer.

Value space: The infinite set of all integers with values of zero or more.

Lexical space: A finite sequence of decimal digits with an optional preceding

plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived types: positiveInteger and unsignedLong.

<stuff name='hayley barbara sarah' />

<stuff name='porsche bmw audi volkswagen' />

<stuff name='.com .net .org .edu' />

<stuff name='Name_With_Underscores Another_Name' />

XML Schema Datatypes 255

S
c
h
e
m

a
 I

Examples

nonNegativeInteger values

Various nonNegativeInteger values as element content

Canonical nonNegativeInteger values

Canonical representation of the nonNegativeInteger values in the preceding

example

8.2.32 nonPositiveInteger

The nonPositiveInteger datatype represents the integer values zero or

lower.

Base type: integer.

Value space: The infinite set of all integers with values of zero or less.

Lexical space: A finite sequence of decimal digits with a preceding minus

sign character (-). If the digits are all zeros then the preceding sign character

may be omitted. Leading zeros may appear.

Canonical representation: Leading zeros are prohibited. The preceding

minus sign is mandatory in all cases.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern, total-

Digits, and whiteSpace.

Derived type: negativeInteger.

<num>42</num>

<num>+273</num>

<num>0000056</num>

<num>0</num>

<num>0000</num>

<num>42</num>

<num>273</num>

<num>56</num>

<num>0</num>

<num>0</num>

256 Essential XML Quick Reference

Examples

nonPositiveInteger values

Various nonPositiveInteger values as element content

Canonical nonPositiveInteger values

Canonical representation of the nonPositiveInteger values in the preceding

example

8.2.33 normalizedString

The normalizedString datatype represents strings that have been normal-

ized with respect to whitespace; that is, all carriage return (#xD), line feed (#xA),

and tab (#x9) characters have been converted to space (#x20) characters.

Base type: string.

Value space: The set of strings that do not contain carriage return (#xD),

line feed (#xA), or tab (#x9) characters.

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Derived type: token.

Examples

A normalized string with preceding and trailing whitespace

<num>-42</num>

<num>-273</num>

<num>-0000056</num>

<num>0</num>

<num>-42</num>

<num>-273</num>

<num>-56</num>

<num>-0</num>

<speech> Now is the winter of our discontent </speech>

XML Schema Datatypes 257

S
c
h
e
m

a
 I

A string where a carriage return and two tab characters between “winter” and “of”

have been converted into three spaces (see the corresponding example under

the string and token datatypes).

A normalized string

A string in which a tab character between each item in the list has been replaced

with a space. (See the corresponding example under the string datatype).

8.2.34 NOTATION

The NOTATION datatype represents the XML 1.0 NOTATION type. This type can-

not be used directly but must be derived from using the enumeration facet to list

all the names of NOTATIONs declared in the current scheme. Types derived from

NOTATION should only be used for attribute values.

Value space: The set of QNames.

Lexical space: The set of NOTATION names declared in the current schema.

Applicable facets: enumeration, length, maxExclusive, maxIn-

clusive, maxLength, minExclusive, minInclusive, minLength,

pattern, and whiteSpace.

Example

A type derived from NOTATION

<cities>London Paris Munich</cities>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='http://example.org/Pictures'

 xmlns:tns='http://example.org/Pictures' >

 <xs:notation name='jpg' public='image/jpeg'

system='display.exe' />

 <xs:notation name='png' public='image/png'

system='display.exe' />

 <xs:notation name='gif' public='image/gif'

system='display.exe' />

 <xs:simpleType name='myNotations'>

 <xs:restriction base='xs:NOTATION'>

258 Essential XML Quick Reference

A schema containing NOTATION declarations and a simple type derived from the

NOTATION type

8.2.35 positiveInteger

The positiveInteger datatype represents integer values of 1 or more.

Base type: nonNegativeInteger.

Value space: The infinite set of all integers with values of 1 or more.

Lexical space: A finite sequence of decimal digits with an optional preceding

plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Examples

positiveInteger values

Various positiveInteger values as element content

 <xs:enumeration value='jpg' />

 <xs:enumeration value='png' />

 <xs:enumeration value='gif' />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name='picture' >

 <xs:attribute name='width' type='xs:short' />

 <xs:attribute name='height' type='xs:short' />

 <xs:attribute name='format' type='xs:myNotations' />

 </xs:complexType>

</xs:schema>

<num>42</num>

<num>+273</num>

<num>0000056</num>

XML Schema Datatypes 259

S
c
h
e
m

a
 I

Canonical positiveInteger values

Canonical representation of the positiveInteger values in the preceding

example

8.2.36 QName

The QName datatype represents qualified names in XML according to Namespace

in XML.

Value space: The set of pairs of a namespace name and a local name where

a namespace name is a URI reference and a local name is an NCName.

Lexical space: The set of strings that match QName production in

Namespace in XML.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Example

QName attributes

Example QNames as attribute values

8.2.37 short

The short datatype represents the range of integer values that can be stored in

a 16-bit signed field.

Base type: int.

Value space: +32,767 to –32,768.

Lexical space: A finite sequence of decimal digits with an optional leading

sign character (+ or –). The default sign is positive. Leading zeros may appear.

<num>42</num>

<num>273</num>

<num>56</num>

<elem attr='p:syntax' />

<elem attr='xsd:schema' />

260 Essential XML Quick Reference

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived type: byte.

Examples

short values

Various short values as element content

Canonical short values

Canonical representation of the short values in the preceding example

8.2.38 string

The string datatype represents Unicode character strings (strictly finite

sequences of ISO-10646 character values that match the Char production speci-

fied in XML 1.0 Recommendation [second edition]).

Value space: All finite-length sequences of ISO-10646 characters as speci-

fied by the Char production in XML 1.0 Recommendation (second edition).

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength and

whiteSpace.

Derived type: normalizedString.

<num>4242</num>

<num>+12</num>

<num>-273</num>

<num>0000056</num>

<num>0</num>

<num>4242</num>

<num>12</num>

<num>-273</num>

<num>56</num>

<num>0</num>

XML Schema Datatypes 261

S
c
h
e
m

a
 I

Examples

Elements containing strings

Element containing strings. The strings are made up of various Unicode characters.

Attributes containing strings

Attributes containing strings. The strings are made up of various Unicode characters.

A string with various whitespace characters

A string containing carriage return, line feed, and tab characters along with preceding

and trailing spaces (see the corresponding examples under the normalizedString

and token datatypes).

A string with tab characters

A string containing tab characters (see the corresponding example under the

normalizedString datatype).

8.2.39 time

The time datatype represents an instant in time that recurs each day.

Value space: Any zero-duration daily instant in time.

Lexical space: hh:mm:ss.sss where hh, mm, and ss.sss correspond

to the hour, minute, and second (with fractions) respectively. An optional following

<greeting>Hello World!</greeting>

<price>$9.95</price>

<price>£9.95</price>

<town>Unterschleißheim</town>

<language>Français</language>

<language>Español</language>

<root name='Martin' language='Français'

town='Unterschleißheim' />

<speech> Now is the winter

 of our discontent </speech>

<cities>London Paris Munich</cities>

262 Essential XML Quick Reference

Z indicates the time is specified in Coordinated Universal Time. Alternatively a

time zone may be indicated by providing a following + or – sign followed by

the offset from UTC as hh:mm where hh and mm correspond to hours and

minutes respectively. The mm and the preceding colon may be omitted if the

minutes are zero.

Canonical representation: The time zone must be omitted or must be UTC

(as indicated by the following Z).

Applicable facets: enumeration, maxExclusive, maxInclusive,

minExclusive, minInclusive, pattern, and whiteSpace.

Examples

A time

10:20 PM

A time with a negative time zone modifier

5:20 PM, Eastern Standard Time

A time with a positive time zone modifier

11:20 PM, Central European Time

8.2.40 token

The token datatype represents “tokenized” strings. These are strings in which

all preceding or trailing space (#x20) characters have been removed, all carriage

return (#xD), line feed (#xA), and tab (#x9) characters have been converted to

space characters, and all sequences of two or more space characters have been

converted to a single space character.

Base type: normalizedString.

Value space: The set of strings that do not contain carriage return (#xD),

line feed (#xA) or tab (#x9) characters.

<time>22:20:00</time>

<time>17:20:00-05:00</time>

<time>23:20:00+01:00</time>

XML Schema Datatypes 263

S
c
h
e
m

a
 I

Lexical space: As value space.

Applicable facets: enumeration, length, maxLength, minLength,

pattern, and whiteSpace.

Derived types: language, Name, and NMTOKEN.

Example

A token value

A string in which preceding and trailing whitespaces have been removed, and mul-

tiple whitespace characters between “winter” and “of” have been converted to a

single space. (See the corresponding examples under the string and

normalizedString datatypes.)

8.2.41 unsignedByte

The unsignedByte datatype represents the range of integer values that can be

stored in an 8-bit unsigned field.

Base type: unsignedShort.

Value space: +255 to zero.

Lexical space: A finite sequence of decimal digits with an optional leading

plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Examples

unsignedByte values

Various unsignedByte values as element content

<speech>Now is the winter of our discontent</speech>

<num>255</num>

<num>+12</num>

<num>0000056</num>

<num>0</num>

264 Essential XML Quick Reference

Canonical unsignedByte values

Canonical representation of the unsignedByte values in the preceding example

8.2.42 unsignedInt

The unsignedInt datatype represents the range of integer values that can be

stored in a 32-bit unsigned field.

Base type: unsignedLong.

Value space: +4,294,967,295 to zero.

Lexical space: A finite sequence of decimal digits with an optional leading

plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived type: unsignedShort.

Examples

unsignedInt values

Various unsignedInt values as element content

Canonical unsignedInt values

<num>255</num>

<num>12</num>

<num>56</num>

<num>0</num>

<num>1234567890</num>

<num>42</num>

<num>+12</num>

<num>0000056</num>

<num>0</num>

<num>1234567890</num>

<num>42</num>

XML Schema Datatypes 265

S
c
h
e
m

a
 I

Canonical representation of the unsignedInt values in the preceding example

8.2.43 unsignedLong

The unsignedLong datatype represents the range of integer values that can be

stored in a 64-bit unsigned field.

Base type: nonNegativeInteger.

Value space: 18,446,744,073,709,551,615 to zero.

Lexical space: A finite sequence of decimal digits with an optional leading

plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived type: unsignedInt.

Examples

long values

Various unsignedLong values as element content

Canonical long values

<num>12</num>

<num>56</num>

<num>0</num>

<num>1000000000000</num>

<num>1234567890</num>

<num>42</num>

<num>+12</num>

<num>0000056</num>

<num>0</num>

<num>1000000000000</num>

<num>1234567890</num>

<num>42</num>

266 Essential XML Quick Reference

Canonical representation of the unsignedLong values in the preceding example

8.2.44 unsignedShort

The unsignedShort datatype represents the range of integer values that can

be stored in a 16-bit unsigned field.

Base type: unsignedInt.

Value space: +65,535 to zero.

Lexical space: A finite sequence of decimal digits with an optional leading

plus sign character (+). Leading zeros may appear.

Canonical representation: Leading zeros are prohibited, as is the preced-

ing + sign.

Applicable facets: enumeration, fractionDigits, maxExclusive,

maxInclusive, minExclusive, minInclusive, pattern,

totalDigits, and whiteSpace.

Derived type: unsignedByte.

Examples

unsignedShort values

Various unsignedShort values as element content

Canonical unsignedShort values

Canonical representation of the unsignedShort values in the preceding example

<num>12</num>

<num>56</num>

<num>0</num>

<num>4242</num>

<num>+12</num>

<num>0000056</num>

<num>0</num>

<num>4242</num>

<num>12</num>

<num>56</num>

<num>0</num>

XML Schema Datatypes 267

S
c
h
e
m

a
 I

8.3 Facets

Facets are used to restrict the set of values a datatype can contain, thus allowing

types with different value ranges to be derived from other types. The new value

range must be equal to or narrower than the value range of the base type. It is not

possible to expand the value space of a type using facets.

Multiple facets can be specified in a single type definition, in which case the value

space of the type is constrained by all the facets listed. Any values appearing in

the instance must conform to all the listed facets.

There are 12 facet elements, all of which share a common syntax. They each

have a mandatory value attribute that specifies the value for the facet. Although

this attribute is of type xs:string, the value must typically be a valid value of

the type to which the facet is applied. For example, if a minExclusive facet is

being used to constrain the decimal datatype then the value must be numerical.

Facets also have an optional fixed attribute of type boolean. If the value of

this attribute is true, then the facet cannot be respecified in a derived type.

Lastly, facets have an optional id attribute of type ID that is for application use.

In this section the facets are listed in alphabetical order, each with a description,

valid values for the value attribute, a list of datatypes to which the facet applies,

and examples.

8.3.1 enumeration

<xs:enumeration value='string' fixed='boolean' id='ID' />

Defines a fixed value that the type must match. Multiple enumeration facets

can be used to specify multiple legal values. Thus, multiple enumeration fac-

ets have a cumulative effect, allowing multiple possible values.

Values: Any value that matches the type of the base type

Applies to: anyURI, base64Binary, byte, date, dateTime, decimal,

double, duration, ENTITIES, ENTITY, float, gDay, gMonth,

gMonthDay, gYear, gYearMonth, hexBinary, ID, IDREF, IDREFS,

int, integer, language, long, Name, NCName, negativeInteger,

NMTOKEN, NMTOKENS, nonNegativeInteger, nonPositiveInteger,

normalizedString, NOTATION, positiveInteger, QName, short,

268 Essential XML Quick Reference

string, time, token, unsignedByte, unsignedInt, unsignedLong,

and unsignedShort

Examples

An enumerated string type

An enumerated string type allowing three values: small, medium, and large

An enumerated integer type

An enumerated integer type allowing prime numbers less than 15

8.3.2 fractionDigits

<xs:fractionDigits value='positiveInteger' fixed='boolean'

 id='ID' />

Specifies the maximum number of decimal digits to the right of the decimal point

for types derived from number. If totalDigits and fractionDigits fac-

ets both appear, the value of the fractionDigits facet must be less than or

equal to the value of the totalDigits facet.

<xs:simpleType name='sizes'>

 <xs:restriction base='xs:string' >

 <xs:enumeration value='small' />

 <xs:enumeration value='medium' />

 <xs:enumeration value='large' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='smallprimes' >

 <xs:restriction base='xs:integer' >

 <xs:enumeration value='2' />

 <xs:enumeration value='3' />

 <xs:enumeration value='5' />

 <xs:enumeration value='7' />

 <xs:enumeration value='11' />

 <xs:enumeration value='13' />

 </xs:restriction>

</xs:simpleType>

XML Schema Datatypes 269

S
c
h
e
m

a
 I

Values: positiveInteger

Applies to: byte, decimal, int, integer, long, negativeInteger,

nonNegativeInteger, nonPositiveInteger, positiveInteger,

short, unsignedByte, unsignedInt, unsignedLong, and

unsignedShort

Example

A decimal type

A decimal type with at most five digits to the right of the decimal point

8.3.3 length

<xs:length value='nonNegativeInteger' fixed='boolean'

 id='ID' />

Defines the number of characters in a string-based type, the number of octets in

a binary-based type, or the number of items in a list-based type. The length

facet may not appear with either the minLength or maxLength facets.

Values: nonNegativeInteger

Applies to: anyURI, base64Binary, ENTITIES, ENTITY, hexBinary,

ID, IDREF, IDREFS, language, Name, NCName, NMTOKEN, NMTOKENS,

normalizedString, NOTATION, QName, string, and token

Examples

Fixed-length types

<xs:simpleType name='frac5' >

 <xs:restriction base='xs:decimal' >

 <xs:fractionDigits value='5' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='String10' >

 <xs:restriction base='xs:string' >

 <xs:length value='10' />

 </xs:restriction>

</xs:simpleType>

270 Essential XML Quick Reference

Two types, both with a fixed number of characters

A fixed-length list type

A type based on a built-in list type with a fixed number of list items

A fixed-length list type

A list of ten doubles based on restriction of an anonymous list of doubles

8.3.4 maxExclusive

<xs:maxExclusive value='number' fixed='boolean' id='ID' />

Specifies an exclusive upper bound on the value space of the type. The value spec-

ified by the facet is not part of the value space of the new type. The maxExclusive

facet may not be combined with the maxInclusive facet. If the maxExclusive

facet appears with either the minInclusive or minExclusive facets, then

the value of the maxExclusive facet must be greater than or equal to the value

of the minInclusive or minExclusive facet.

<xs:simpleType name='uri50' >

 <xs:restriction base='xs:anyURI' >

 <xs:length value='50' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='idrefs10' >

 <xs:restriction base='xs:IDREFS' >

 <xs:length value='10' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='double10' >

 <xs:restriction>

 <xs:simpleType>

 <xs:list itemType='xs:double' />

 </xs:simpleType>

 <xs:length value='10' />

 </xs:restriction>

</xs:simpleType>

XML Schema Datatypes 271

S
c
h
e
m

a
 I

Values: A value in the value space of the base type

Applies to: byte, date, dateTime, decimal, double, duration,

float, gDay, gMonth, gMonthDay, gYear, gYearMonth, int,

integer, long, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, short, time,

unsignedByte, unsignedInt, unsignedLong and unsignedShort

Examples

A numerical type with an exclusive upper bound

A numerical type with an exclusive upper bound of 1,000. Values up to but not

including 1,000 are in the value space

A gMonth type with an exclusive upper bound

A gMonth type with an upper bound of October, specified as an exclusive upper

bound for November; that is, November is not in the value space

8.3.5 maxInclusive

<xs:maxInclusive value='number' fixed='boolean' id='ID' />

Specifies an inclusive upper bound on the value space of the type. The value

specified by the facet is part of the value space of the new type. The

maxInclusive facet may not be combined with the maxExclusive facet. If

the maxInclusive facet appears with either the minInclusive or

minExclusive facets, then the value of the maxInclusive facet must be

<xs:simpleType name='notquiteagrand' >

 <xs:restriction base='xs:decimal' >

 <xs:maxExclusive value='1000' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='notNovemberOrDecember' >

 <xs:restriction base='xs:gMonth' >

 <xs:maxExclusive value='--11--' />

 </xs:restriction>

</xs:simpleType>

272 Essential XML Quick Reference

greater than or equal to the value of the minInclusive or minExclusive

facet.

Values: A value in the value space of the base type

Applies to: byte, date, dateTime, decimal, double, duration,

float, gDay, gMonth, gMonthDay, gYear, gYearMonth, int,

integer, long, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, short, time,

unsignedByte, unsignedInt, unsignedLong, and

unsignedShort

Examples

A numerical type with an inclusive upper bound

A numerical type with an inclusive upper bound of 999.99. Values of up to and

including 999.99 are in the value space.

A gMonth type with an inclusive upper bound

A gMonth type with an upper bound of ten (October)

8.3.6 maxLength

<xs:maxLength value='nonNegativeInteger' fixed='boolean'

 id='ID' />

Defines the maximum number of characters in a string-based type, the maximum

number of octets in a binary-based type, or the maximum number of items in a

list-based type. The maxLength facet may not be combined with the length

<xs:simpleType name='notquiteagrand' >

 <xs:restriction base='xs:decimal' >

 <xs:maxInclusive value='999.99' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='notNovemberOrDecember' >

 <xs:restriction base='xs:gMonth' >

 <xs:maxInclusive value='--10--' />

 </xs:restriction>

</xs:simpleType>

XML Schema Datatypes 273

S
c
h
e
m

a
 I

facet. If both maxLength and minLength facets appear, the value of

maxLength must be greater than or equal to the value of minLength.

Values: nonNegativeInteger

Applies to: anyURI, base64Binary, ENTITIES, ENTITY, hexBinary,

ID, IDREF, IDREFS, language, Name, NCName, NMTOKEN, NMTOKENS,

normalizedString, NOTATION, QName, string, and token

Examples

Length-restricted types

Two types, both with a maximum number of characters

A length-restricted list type

A type based on a built-in list type with a maximum number of list items

A length-restricted list type

<xs:simpleType name='String10orless' >

 <xs:restriction base='xs:string' >

 <xs:maxLength value='10' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='uri50orless' >

 <xs:restriction base='xs:anyURI' >

 <xs:maxLength value='50' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='idrefs10orless' >

 <xs:restriction base='xs:IDREFS' >

 <xs:maxLength value='10' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='double10orless' >

 <xs:restriction>

 <xs:simpleType>

 <xs:list itemType='xs:double' />

 </xs:simpleType>

 <xs:maxLength value='10' />

274 Essential XML Quick Reference

A list of at most ten doubles based on restriction of an anonymous list of doubles

8.3.7 minExclusive

<xs:minExclusive value='number' fixed='boolean' id='ID' />

Specifies an exclusive lower bound on the value space of the type. The value

specified by the facet is not part of the value space of the new type. The

minExclusive facet may not be combined with the minInclusive facet. If

the minExclusive facet appears with either the maxInclusive or

maxExclusive facets, then the value of the minExclusive facet must be

less than or equal to the value of the maxInclusive or maxExclusive facet.

Values: A value in the value space of the base type

Applies to: byte, date, dateTime, decimal, double, duration, float,

gDay, gMonth, gMonthDay, gYear, gYearMonth, int, integer, long,

negativeInteger, nonNegativeInteger, nonPositiveInteger,

positiveInteger, short, time, unsignedByte, unsignedInt,

unsignedLong, and unsignedShort

Examples

A numerical type with an exclusive lower bound

A numerical type with an exclusive lower bound of 1,000. Values more than 1,000

are in the value space.

A gMonth type with an exclusive lower bound

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='morethanagrand' >

 <xs:restriction base='xs:decimal' >

 <xs:minExclusive value='1000.00' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='H2' >

 <xs:restriction base='xs:gMonth' >

XML Schema Datatypes 275

S
c
h
e
m

a
 I

A gMonth type representing months in the second half of the year

8.3.8 minInclusive

<xs:minInclusive value='number' fixed='boolean' id='ID' />

Specifies an inclusive lower bound on the value space of the type. The value spec-

ified by the facet is part of the value space of the new type. The minInclusive

facet may not be combined with the minExclusive facet. If the minInclusive

facet appears with either the maxInclusive or maxExclusive facets, then

the value of the minInclusive facet must be less than or equal to the value of

the maxInclusive or maxExclusive facet.

Values: A value in the value space of the base type

Applies to: byte, date, dateTime, decimal, double, duration, float,

gDay, gMonth, gMonthDay, gYear, gYearMonth, int, integer, long,

negativeInteger, nonNegativeInteger, nonPositiveInteger,

positiveInteger, short, time, unsignedByte, unsignedInt,

unsignedLong, and unsignedShort

Examples

A numerical type with an inclusive lower bound

A numerical type with an inclusive lower bound of 1,000. Values of 1,000 and

more are in the value space.

A gMonth type with an inclusive lower bound

 <xs:minExclusive value='--06--' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='atleastagrand' >

 <xs:restriction base='xs:decimal' >

 <xs:minInclusive value='1000.00' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='H2' >

 <xs:restriction base='xs:gMonth' >

276 Essential XML Quick Reference

A gMonth type representing months in the second half of the year

8.3.9 minLength

<xs:minLength value='nonNegativeInteger' fixed='boolean'

 id='ID' />

Defines the minimum number of characters in a string-based type, the minimum

number of octets in a binary-based type, or the minimum number of items in a list-

based type. The minLength facet may not be combined with the maxLength

facet. If both minLength and maxLength facets appear, the value of min-

Length must be less than or equal to the value of maxLength.

Values: nonNegativeInteger

Applies to: anyURI, base64Binary, ENTITIES, ENTITY, hexBinary,

ID, IDREF, IDREFS, language, Name, NCName, NMTOKEN, NMTOKENS,

normalizedString, NOTATION, QName, string, and token

Examples

Length-restricted types

Two types, both with a minimum number of characters

 <xs:minInclusive value='--07--' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='String10ormore' >

 <xs:restriction base='xs:string' >

 <xs:minLength value='10' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='uri50ormore' >

 <xs:restriction base='xs:anyURI' >

 <xs:minLength value='50' />

 </xs:restriction>

</xs:simpleType>

XML Schema Datatypes 277

S
c
h
e
m

a
 I

A length-restricted list type

A type based on a built-in list type with a minimum number of list items

A length-restricted list type

A list of at least ten doubles based on restriction of an anonymous list of doubles

8.3.10 pattern

<xs:pattern value='string' fixed='boolean' id='ID' />

Defines a pattern that the type must match based on a regular expression.

Values: A regular expression

Applies to: anyURI, base64Binary, boolean, byte, date, dateTime,

decimal, double, duration, ENTITIES, ENTITY, float, gDay,

gMonth, gMonthDay, gYear, gYearMonth, hexBinary, ID, IDREF,

IDREFS, int, integer, language, long, Name, NCName,

negativeInteger, NMTOKEN, NMTOKENS, nonNegativeInteger,

nonPositiveInteger, normalizedString, NOTATION,

positiveInteger, QName, short, string, time, token,

unsignedByte, unsignedInt, unsignedLong, and

unsignedShort

<xs:simpleType name='idrefs10ormore' >

 <xs:restriction base='xs:IDREFS' >

 <xs:minLength value='10' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='double10ormore' >

 <xs:restriction>

 <xs:simpleType>

 <xs:list itemType='xs:double' />

 </xs:simpleType>

 <xs:minLength value='10' />

 </xs:restriction>

</xs:simpleType>

278 Essential XML Quick Reference

Examples

A patterned string type

A string type that requires two uppercase characters between A and Z fol-

lowed by four decimal digits

A patterned numerical type

A numerical type that requires four decimal digits on both sides of the decimal

point

A patterned string type

A string type that requires any number of decimal digits followed by the degree

character

8.3.11 totalDigits

<xs:totalDigits value='positiveInteger' fixed='boolean'

 id='ID' />

Specifies the maximum number of decimal digits for types derived from number.

If totalDigits and fractionDigits facets both appear, the value of the

<xs:simpleType name='code' >

 <xs:restriction base='string' >

 <xs:pattern value='[A-Z]{2}\d{4}' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='fourbyfour' >

 <xs:restriction base='xs:decimal' >

 <xs:pattern value='\d{4}\.\d{4}' />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name='temperature' >

 <xs:restriction base='xs:string' >

 <xs:pattern value='\d+\u00B0' />

 </xs:restriction>

</xs:simpleType>

XML Schema Datatypes 279

S
c
h
e
m

a
 I

totalDigits facet must be greater than or equal to the value of the

fractionDigits> facet.

Values: positiveInteger

Applies to: byte, decimal, int, integer, long, negativeInteger,

nonNegativeInteger, nonPositiveInteger, positiveInteger,

short, unsignedByte, unsignedInt, unsignedLong, and

unsignedShort

Example

A numerical type

A numerical type with at most 10 digits

8.3.12 whiteSpace

<xs:whiteSpace value='preserve|replace|collapse'

 fixed='boolean' id='ID' />

Defines rules for whiteSpace normalization. A value of preserve specifies that

whitespace should be left unchanged. A value of replace specifies that all

occurrences of carriage return (#xD), line feed (#xA), and tab (#x9) characters

be converted to space (#x20) characters. A value of collapse specifies that all

preceding or trailing space (#x20) characters be removed; all carriage return

(#xD), line feed (#xA), and tab (#x9) characters be converted to space charac-

ters; and all sequences of two or more space characters be converted to a single

space character.

Although strictly speaking the whiteSpace facet can be applied to any datatype

for list types and restricted datatypes with a base that is other than string or

normalizedString the whiteSpace facet has a value of collapse and

may not be changed. For types derived from string any of the three possible

values may be used. For types derived from normalizedString, either

replace or collapse may be used. Because of these limitations on the use of

<xs:simpleType name='dig10' >

 <xs:restriction base='xs:decimal' >

 <xs:totalDigits value='10' />

 </xs:restriction>

</xs:simpleType>

280 Essential XML Quick Reference

the facet it is not generally used in schema documents because any derived type

that required particular whitespace normalization would be derived from string,

normalizedString, or token as appropriate.

Values: preserve, replace, or collapse

Applies to: anyURI, base64Binary, byte, date, dateTime, decimal,

double, duration, ENTITIES, ENTITY, float, gDay, gMonth,

gMonthDay, gYear, gYearMonth, hexBinary, ID, IDREF, IDREFS,

int, integer, language, long, Name, NCName, negativeInteger,

NMTOKEN, NMTOKENS, nonNegativeInteger, nonPositiveInteger,

normalizedString, NOTATION, positiveInteger, QName, short,

string, time, token, unsignedByte, unsignedInt,

unsignedLong, and unsignedShort

8.4 Language constructs

The XML Schema language provides support for defining simple datatypes based

on existing simple datatypes. New types can be defined to be a restriction of a

type, a list of a type, or a union of two or more types.

In this section the language constructs for defining simple types—the simpleType,

restriction, list, and union elements—are listed each with syntax,

description, list of attributes, list of children, and, in the case of the latter three,

examples. The syntax shows the attributes the elements can have along with their

type. It also lists the names of the valid children of the element. More detail on

attributes and children can be found in the attribute and children tables respec-

tively. Each entry in the attributes table shows the name, type, default value, and

description of the attribute. The description includes details on possible values

and occurrence constraints with respect to other attributes or element children.

Qualified attributes from namespaces other than http://www.w3.org/

2001/XMLSchema may also appear on all four elements. Each entry in the chil-

dren table gives the name of valid children in the order they must appear. When

there is a choice between two or more elements, the set of such elements is

listed as a single entry. Whether an element or set of elements is optional or man-

datory and how many times the element or an element from a set can occur are

also detailed.

XML Schema Datatypes 281

S
c
h
e
m

a
 I

8.4.1 simpleType

<xs:simpleType id='ID' final='list of token' name='NCName' >

 <!-- annotation list restriction union -->

</xs:simpleType>

The simpleType element is used to define new types based on existing simple

types. Simple type definitions appearing as children of a schema element are

named types available for use elsewhere in the schema and in other schemas.

Simple types may also appear as the children of element or attribute declarations

or of other simple type definitions, in which case they are anonymous types local

to the context in which they appear.

Attributes

Name Type Default Description

id ID None An attribute for application use

final List of

token

None Specifies which derivation mechanisms

are prohibited for type definitions that ref-

erence this type as their base type. The

setting specified by this attribute over-

rides any schemawide default specified by

a finalDefault attribute on the

schema element.

Value Description

restriction Simple types derived by restriction may

not use this type as their base type.

list Simple types derived by list may not use

this type as their item type.

union Simple types derived by union may not

use this type as part of their member

types list.

#all All of the above

name NCName None The local part of the name of the type. No

two complex or simple types in the same

namespace may have the same local

name.

282 Essential XML Quick Reference

Child elements

8.4.2 restriction

<xs:restriction id='ID' base='QName' >

 <!-- annotation enumeration fractionDigits length

 maxExclusive maxInclusive maxLength minExclusive

 minInclusive minLength pattern simpleType

 totalDigits whiteSpace -->

</xs:restriction>

The restriction element appears as a child of the simpleType element

and denotes that the simple type is a restriction of some other simple type; that

is, it has a narrower set of legal values than the base type. The simple type on

which the restricted type is based may be referred to using the base attribute or

provided as an inline anonymous type in a simpleType child element.

Attributes

Child elements

Name Occurrence

annotation Optional, once

list or restriction or union Mandatory, once

Name Type Default Description

id ID None An attribute for application use

base QName None Specifies the base type from which the new type

is derived. The base type must be a simple type

and may be in the same schema document as the

derived type, or it may be in a different schema

document, potentially in a different namespace.

Name Occurrence

annotation Optional, once

simpleType Optional, once

enumeration or fractionDigits or length or

maxExclusive or maxInclusive or maxLength or

minExclusive or minInclusive or minLength or pattern

or totalDigits or whiteSpace

Optional, unlimited

XML Schema Datatypes 283

S
c
h
e
m

a
 I

Example

Simple type restriction

A simple type, Celcius, derived by restriction from the built-in decimal type

8.4.3 list

<xs:list id='ID' itemType='QName'>

 <!-- annotation simpleType -->

</xs:list>

The list element appears as a child of the simpleType element and denotes

that the simple type is a whitespace-delimited list of some other, atomic simple

type. The simple type on which the list is based may be referred to using the

itemType attribute or may be provided as an inline anonymous type in a

simpleType child element.

Attributes

Child elements

<xs:simpleType name='Celcius' >

 <xs:restriction base='xs:decimal'>

 <xs:minExclusive value='-273' />

 </xs:restriction>

</xs:simpleType>

Name Type Default Description

id ID None An attribute for application use

itemType QName None The simple type on which the list is based.

The list element must either have this

attribute or a simpleType child element.

Name Occurrence

annotation Optional, once

simpleType Optional, once

284 Essential XML Quick Reference

Examples

A list type

A list type based on a built-in simple type

A list type

A list type based on an anonymous inline type

8.4.4 union

<xs:union id='ID' memberTypes='List of QName' >

 <!-- annotation simpleType -->

</xs:union>

The union element appears as a child of the simpleType element and

denotes that the simple type is a union of two or more other simple types. The

simple types on which the union is based may be referred to using the

memberTypes attribute and/or may be provided as inline anonymous types in

simpleType child elements.

<xs:simpleType name='listOfNumbers' >

 <xs:list itemType='xs:decimal' />

</xs:simpleType>

<xs:simpleType name='listOfQuarks' >

 <xs:list>

 <xs:simpleType>

 <xs:restriction base='xs:string' >

 <xs:enumeration value='up' />

 <xs:enumeration value='down' />

 <xs:enumeration value='strange' />

 <xs:enumeration value='beauty' />

 <xs:enumeration value='truth' />

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

</xs:simpleType>

XML Schema Datatypes 285

S
c
h
e
m

a
 I

Attributes

Child elements

Examples

A numerical union

A union based on the built-in types byte, short, int, and long

A numerical/string union

Name Type Default Description

id ID None An attribute for application use

memberTypes List of

QName
None A list of simple types on which the

union is based. The ordering of types

in the list is important because the val-

ues of elements or attributes of the

union type will be compared against

each of the types in the list in turn,

then against any simpleType children.

The first type that the value matches

against will be the type of the value.

Name Occurrence

annotation Optional, once

simpleType Optional, unlimited

<xs:simpleType name='numbers' >

 <xs:union memberTypes='xs:byte xs:short xs:int xs:long' />

</xs:simpleType>

<xs:simpleType name='sizes' >

 <xs:union>

 <xs:simpleType>

 <xs:restriction base='xs:integer' >

 <xs:minInclusive value='1' />

 <xs:maxInclusive value='10' />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base='xs:string' >

 <xs:enumeration value='small' />

286 Essential XML Quick Reference

A union of the integers one through ten and the strings 'small', 'medium',

and 'large' created using two anonymous inline types

8.5 References

Biron, Paul V., Ashok, Malhotra, XML Schema Part 2: Datatypes.

http://www.w3.org./TR/xmlschema-2, 2001

Fallside, David C., XML Schema Part 0: Primer.

http://www.w3.org/TR/xmlschema-0, 2001

For more information on RFC 2396, please see

http://www.ietf.org/rfc/rfc2396.txt

For more information on RFC 2732, please see

http://www.ietf.org/rfc/rfc2732.txt

For more information on IEEE 754-1985, please see

http://standards.ieee.org/reading/ieee/stdpublic/description/busarch/754-

1985_desc.html

For more information on ISO 8601, please see

www.iso.ch/markete/8601.pdf

For more information on RFC 1766, please see

http://www.ietf.org/rfc/rfc1766.txt

 <xs:enumeration value='medium' />

 <xs:enumeration value='large' />

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

</xs:simpleType>

287

S
c
h
e
m

a
 I
I

Chapter 9

XML Schema Structures

XML Schema provides a language for describing types in XML. The language is

itself expressed in XML and includes facilities for defining structured and textual

types, including types derived from other types. Structured types are used to

describe elements that have child elements or attributes associated with them.

Textual types are used for elements with text-only content and for attribute values.

The language provides facilities for binding types to elements and, in the case of

textual types, attributes.

This chapter provides a reference for all the parts of the Schema language

related to defining complex (structured) types, including extensions and restric-

tions, model groups, wildcards, element and attribute declarations, and annota-

tions. Parts of the language related to simple types can be found in Chapter 8.

9.1 Schema element groupings

Top-level elements

Elements appearing at the top level of a schema document; that is, as children of

a schema element

Element name Description

annotation Annotation containing human- or machine-readable information

attribute A global attribute declaration

attributeGroup A named attribute group definition

complexType A complex type definition

element A global element declaration

group A named model group definition

import Brings in components in a different namespace

include Brings in components in the same namespace

notation A notation declaration

288 Essential XML Quick Reference

Particles

Elements that can have minOccurs and maxOccurs attributes. Such elements

always appear as part of a complex type definition or as part of a named model

group. Elements appearing at the top level of a schema never have minOccurs

or maxOccurs attributes.

Elements related to constructing a schema from multiple documents
and/or namespaces

Elements related to identity constraints

redefine Redefines components in the same namespace

simpleType A simple type definition

Element name Description

Element name Description

all A model group that allows elements in any order

any An element wildcard

choice A model group that allows one of the particles contained

within it

element An element declaration or reference

group A reference to a named model group

sequence A model group that allows particles in a fixed order

Element name Description

import Brings in components in a different namespace.

include Brings in components in the same namespace.

redefine Redefines components in the same namespace.

Element name Description

field A field in a uniqueness or key constraint

key A key constraint

keyref A reference to a key constraint

selector A selector in a uniqueness or key constraint

unique A uniqueness constraint

XML Schema Structures 289

S
c
h
e
m

a
 I
I

Elements related to attributes

Elements that have a name attribute

Named constructs can be referred to by QName from other schema constructs.

Elements that appear as part of complex type definitions

Element name Description

anyAttribute An attribute wildcard

attribute An attribute declaration or reference

attributeGroup A named attribute group or reference to a named attribute

group

Element name Description

attribute An attribute declaration

attributeGroup A named attribute group definition

complexType A complex type definition

element An element declaration

group A named model group definition

key A key constraint

keyref A reference to a key constraint

notation A notation declaration

simpleType A simple type defintion

unique A uniqueness constraint

Element name Description

all A model group that allows elements in any order

annotation Annotation containing human- or machine-readable information

any An element wildcard

anyAttribute An attribute wildcard

appinfo Machine-readable information

attribute A local attribute declaration or reference

attributeGroup A reference to a named attribute group

choice A model group that allows one of the particles contained

within it

complexContent A complex type derived from another complex type

documentation Human-readable information

element A local element declaration or reference

290 Essential XML Quick Reference

9.2 Structures

In this section the XML Schema language constructs are listed in alphabetical

order with syntax, description, list of attributes, list of children, and examples.

The syntax shows the attributes the element can have along with their type. It also

lists the names of the valid children of the element. More detail on attributes and

children can be found in the attribute and children tables respectively. Each entry

in the attributes table shows the name, type, default value, and description of the

attribute. The description includes details on possible values and occurrence con-

straints with respect to other attributes or element children. The names of

required attributes appear in bold in both the syntax section and the attribute

table. Qualified attributes from namespaces other than http://www.w3.org/

2001/XMLSchema may also appear on all schema elements. Each entry in the

children table gives the name of valid children in the order they must appear.

When there is a choice between two or more elements, the set of such elements

is listed as a single entry. Whether an element or set of elements is optional or

mandatory and how many times the element or an element from a set can occur

is also detailed. All elements in the Schema language for use in schema docu-

ments are in the http://www.w3.org/2001/XMLSchema namespace.

For reasons of brevity, not all examples are full schemas. In all prose and exam-

ples, the xs namespace prefix is mapped to the namespace name of the XML

Schema language http://www.w3.org/2001/XMLSchema, even if no such

namespace declaration appears in the example. Similarly, the xsi namespace pre-

fix is mapped to the namespace name of the XML Schema Instance namespace

http://www.w3.org/2001/XMLSchema-instance. The tns namespace

prefix is mapped to the same namespace name as the targetNamespace

attribute of the schema element even if that element is not shown.

extension A complex type that is an extension of another type

group A reference to a named model group

restriction A complex type that is a restriction of another type

sequence A model group that allows particles in a fixed order

simpleContent A complex type derived from a simple type

Element name Description

XML Schema Structures 291

S
c
h
e
m

a
 I
I

9.2.1 all

<xs:all id='ID' maxOccurs='nonNegativeInteger'

 minOccurs='nonNegativeInteger' >

 <!-- annotation element -->

</xs:all>

The all element is used to denote a model group in which the elements defined

by the element declarations inside the all element may appear in any order in an

instance document. Any child element declaration of the all element can only

have the values zero or 1 for its minOccurs attribute and a value of 1 for its

maxOccurs attribute. The all element can appear as part of a complex type

definition or as part of a named model group. However, it must always be the

outer model group of the content of a complex type. It cannot be nested inside a

sequence or choice element either directly or through use of group

references.

Attributes

Name Type Default Description

id ID None An attribute for application

use.

maxOccurs nonNegativeInteger 1 Specifies the maximum

number of times the all

group can appear. This

attribute may only have

the value 1. If the all ele-

ment is a child of a top-

level group element then

this attribute may not

occur.

minOccurs nonNegativeInteger 1 Specifies the minimum

number of times the all

group can appear. This

attribute may only have

zero or 1 as its value. If

the all element is a child

of a top-level group ele-

ment then this attribute

may not occur.

292 Essential XML Quick Reference

Child elements

Examples

An all group in a complex type

Elements of type Bag must contain child makeup and purse elements and,

optionally, a hairbrush element. These children can appear in any order.

An all group in a named model group

Any complex type that references this model group would have the same content

model as described for the previous example.

Name Occurrence

annotation Optional, once

element Optional, unlimited

<xs:complexType name='Bag' >

 <xs:all>

 <xs:element name='hairbrush' minOccurs='0' />

 <xs:element name='makeup' />

 <xs:element name='purse' />

 </xs:all>

</xs:complexType>

<xs:group name='Bag' >

 <xs:all>

 <xs:element name='hairbrush' minOccurs='0'/>

 <xs:element name='makeup' />

 <xs:element name='purse' />

 </xs:all>

</xs:group>

XML Schema Structures 293

S
c
h
e
m

a
 I
I

9.2.2 annotation

<xs:annotation id='ID' >

 <!-- appinfo documentation -->

</xs:annotation>

The annotation element provides a place for schema documents to be anno-

tated with human-readable or machine-readable information through the docu-

mentation and appinfo elements respectively.

Attribute

Child element

Example

See the appinfo and documentation entries for examples.

9.2.3 any

<xs:any id='ID' maxOccurs='union'

 minOccurs='nonNegativeInteger'

 namespace='special' processContents='NMTOKEN' >

 <!-- annotation -->

</xs:any>

The any element is used to denote an element wildcard in a model group. In an

instance document the wildcard is replaced by any element that matches the

namespace constraint specified by the namespace attribute. This allows the con-

struction of open content models for complex types, allowing additional elements

to appear that were not specified as part of the type definition. In addition, this

element provides control of whether the additional elements should be validated

or not.

Name Type Default Description

id ID None An attribute for application use

Name Occurrence

appinfo or documentation Optional, unlimited

294 Essential XML Quick Reference

Attributes

Name Type Default Description

id ID None An attribute for application use.

maxOccurs union 1 Specifies the maximum number

of times elements that satisfy

this wildcard may appear in the

instance document in this

context. The value of this

attribute may be any

nonNegativeInteger or the

string unbounded.

minOccurs nonNegative-

 Integer
1 Specifies the minimum number

of times elements that satisfy

this wildcard must appear in the

instance document in this con-

text.

namespace special ##any Specifies which namespace or

namespaces elements that sat-

isfy this wildcard in the instance

document must be drawn from.

It is also possible to specify that

replacement elements may be

unqualified (in no namespace).

The value of this attribute is

either the string ##any, the

string ##other, or a list of

namespace URIs, and/or the

string ##targetNamespace

and/or the string ##local.

Value Description

##any Elements from any namespace

including the target namespace

of the schema document and

unqualified elements (elements

in no namespace) may appear in

place of the wildcard.

##other Elements that are qualified but

are not in the target namespace

of the schema document may

appear in place of the wildcard.

Unqualified element may not

appear in place of the wildcard.

XML Schema Structures 295

S
c
h
e
m

a
 I
I

Child elements

Examples

A complex type containing a wildcard allowing any element

##target-

Namespace
Elements in the target

namespace of the schema docu-

ment may appear in place of the

wildcard.

##local Unqualified elements (elements

in no namespace) may appear in

place of the wildcard.

namespace URI Elements from the namespace

may appear in place of the wild-

card.

process-

 Contents

NMTOKEN strict Specifies whether a schema pro-

cessor should find schema infor-

mation and validate the ele-

ments appearing in place of the

wildcard.

Value Description

lax The schema processor should

validate the elements appearing

in place of the wildcard if

schema information for those

elements is available.

skip The schema processor should

not validate the elements

appearing in place of the wild-

card.

strict The schema processor must val-

idate the elements appearing in

place of the wildcard.

Name Type Default Description

Name Occurrence

annotation Optional, once

<xs:complexType name='OpenPerson' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:any namespace='##any' />

296 Essential XML Quick Reference

Elements of type OpenPerson must have a child name element followed by any

qualified or unqualified element. This element must be validated.

A complex type containing a wildcard allowing elements in the target namespace

Elements of type OpenPerson must have a child name element followed by an

element qualified by the target namespace. This element must be validated.

A complex type containing a wildcard allowing unqualified elements

Elements of type OpenPerson must have a child name element followed by an

unqualified element. This element must not be validated.

A complex type containing a wildcard allowing qualified elements from namespaces

other than the target namespace of the schema

 </xs:sequence>

</xs:complexType>

<xs:complexType name='OpenPerson' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:any namespace='##targetNamespace' />

 </xs:sequence>

</xs:complexType>

<xs:complexType name='OpenPerson' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:any namespace='##local'

 processContents='skip' />

 </xs:sequence>

</xs:complexType>

<xs:complexType name='OpenPerson' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:any namespace='##other' />

 </xs:sequence>

</xs:complexType>

XML Schema Structures 297

S
c
h
e
m

a
 I
I

Elements of type OpenPerson must have a child name element followed by a

qualified element from a namespace other than the target namespace of the

schema. This element must be validated.

A complex type containing two wildcards

Elements of type AjarPerson must have a child element that is either in one of

the two namespaces listed or an unqualified element, followed by a name ele-

ment, followed by any number of qualified elements in namespaces other than the

target namespace. Elements appearing in place of either wildcard may be vali-

dated if schema information for them is available.

9.2.4 anyAttribute

<xs:anyAttribute id='ID' namespace='special'

 processContents='NMTOKEN' >

 <!-- annotation -->

</xs:anyAttribute>

The anyAttribute element is used to denote an attribute wildcard for a com-

plex type. In an instance document the wildcard is replaced by any number of

attributes that match the namespace constraint specified by the namespace

attribute. This allows additional attributes to appear that were not specified as

part of the type definition.

<xs:complexType name='AjarPerson' >

 <xs:sequence>

 <xs:any namespace='http://example.org/People/extras

 http://example.org/Notes ##local'

 processContents='lax' />

 <xs:element name='name' />

 <xs:any maxOccurs='unbounded' namespace='##other'

 processContents='lax' />

 </xs:sequence>

</xs:complexType>

298 Essential XML Quick Reference

Attributes

Name Type Default Description

id ID None An attribute for application use.

namespace special ##any Specifies which namespace or

namespaces attributes that replace this

wildcard in the instance document must

be drawn from. It is also possible to

specify that replacement attributes may

be unqualified (in no namespace). This

value of this attribute is either the string

##any, the string ##other, or a list of

namespace URIs, and/or the string

##targetNamespace and/or the

string ##local.

Value Description

##any Attributes from any namespace including

the target namespace of the schema

document and unqualified elements (ele-

ments in no namespace) may appear.

##other Attributes that are qualified but are not in

the target namespace of the schema

document may appear.

##target-

Namespace
Attributes in the target namespace of the

schema document may appear.

##local Unqualified attributes may appear.

namespace URI Attributes from the namespace may

appear.

process-
 Contents

NMTOKEN strict Specifies whether a schema processor

should find schema information and vali-

date the attributes appearing in place of

the wildcard.

Value Description

lax The schema processor should validate

the attributes appearing in place of the

wildcard if schema information is available.

skip The schema processor should not vali-

date the attributes appearing in place of

the wildcard.

strict The schema processor must validate the

attributes appearing in place of the

wildcard.

XML Schema Structures 299

S
c
h
e
m

a
 I
I

Child element

Examples

An attribute wildcard allowing any attribute

Elements of type OpenPerson must have a name attribute. In addition,

attributes from any namespace or unqualified attributes may appear. Any addi-

tional attributes must be validated.

An attribute wildcard allowing attributes in the target namespace

Elements of type OpenPerson must have a name attribute. In addition, qualified

attributes from the target namespace of the schema may appear. Any additional

attributes must be validated.

An attribute wildcard allowing unqualified attributes

Elements of type OpenPerson must have a name attribute. In addition, unquali-

fied attributes may appear. Any additional attributes must be validated.

Name Occurrence

annotation Optional, once

<xs:complexType name='OpenPerson' >

 <xs:attribute name='name' use='required' />

 <xs:anyAttribute namespace='##any' />

</xs:complexType>

<xs:complexType name='OpenPerson' >

 <xs:attribute name='name' use='required' />

 <xs:anyAttribute namespace='##targetNamespace' />

</xs:complexType>

<xs:complexType name='OpenPerson' >

 <xs:attribute name='name' use='required' />

 <xs:anyAttribute namespace='##local' />

</xs:complexType>

300 Essential XML Quick Reference

An attribute wildcard allowing attributes from namespaces other than the target

namespace

Elements of type OpenPerson must have a name attribute. In addition, qualified

attributes from namespaces other than the target namespace of the schema may

appear. Any additional attributes are not validated.

An attribute wildcard allowing attributes from multiple namespaces

Elements of type AjarPerson must have a name attribute. In addition, qualified

attributes from any of the namespaces listed may appear. Any additional

attributes may be validated if schema information for them is available.

9.2.5 appinfo

<xs:appinfo source='anyURI' >

 <!-- Any qualified or unqualified element -->

</xs:appinfo>

The appinfo element denotes a machine-readable annotation to a schema. The

machine-readable portion may be contained within the appinfo element as child

elements or may be referenced from the URI reference provided by the source

attribute, or both. The appinfo element provides a mechanism for application-

level processors to augment schema processing with other processing tasks or

information.

<xs:complexType name='OpenPerson' >

 <xs:attribute name='name' use='required' />

 <xs:anyAttribute namespace='##other'

processContents='skip' />

</xs:complexType>

<xs:complexType name='AjarPerson' >

 <xs:attribute name='name' use='required' />

 <xs:anyAttribute namespace='http://example.org/People/

extras http://example.org/Notes http://example.org/

Annotations'

 processContents='lax' />

</xs:complexType>

XML Schema Structures 301

S
c
h
e
m

a
 I
I

Attribute

Child element

Example

Use of appinfo

A complex type annotated with machine-readable information

9.2.6 attribute

<xs:attribute default='string' fixed='string'

 form='NMTOKEN' id='ID' name='NCName'

 ref='QName' type='QName' use='NMTOKEN' >

 <!-- annotation simpleType -->

</xs:attribute>

The attribute element either denotes an attribute declaration, defining a

named attribute and associating that attribute with a type, or it is a reference to

such an attribute declaration. Attribute declarations appearing as children of a

schema element are known as global attribute declarations and can be

referenced from elsewhere in the schema or from other schemas. Attribute

Name Type Default Description

source anyURI None An attribute for supplementing the information

provided in the appinfo element

Name Occurrence

Any qualified or unqualified element Optional, unlimited

<xs:complexType name='Person' >

 <xs:annotation>

 <xs:appinfo source='http://www.apps.com/myapp'

 xmlns:app='urn:apps-com:myapps' >

 <app:process name='personprocess.exe' />

 </xs:appinfo>

 </xs:annotation>

 <xs:sequence>

 <xs:element name='name' />

 </xs:sequence>

</xs:complexType>

302 Essential XML Quick Reference

declarations appearing as part of a complex type definition, either directly or

through an attribute group reference, are known as local attribute declarations.

Such attribute declarations are local to the type in which they appear. Global

attribute declarations describe attributes that are always part of the target namespace

of the schema. Local attribute declarations describe attributes that may be part

of the target namespace of the schema, depending on the values of the form attribute

on the attribute declaration and the value of the attributeFormDefault

attribute on the schema element.

Attributes

Name Type Default Description

default string None Specifies a default value for an

attribute declaration with a use

attribute that has the value

optional. The default and

fixed attributes are mutually

exclusive.

fixed string None Specifies a fixed value for an attribute

declaration with a use attribute that

has the value required or

optional. The fixed and

default attributes are mutually

exclusive.

form NMTOKEN None Specifies whether a local attribute

declaration is qualified (in the target

namespace for the schema) or

unqualified (in no namespace). The

value of this attribute overrides any

schemawide default specified by an

attributeFormDefault attribute

on the schema element. This

attribute may not appear on a global

attribute declaration.

Value Description

qualified The local name of the attribute is

qualified by the target namespace of

the schema.

unqualified The attribute is unqualified.

id ID None An attribute for application use.

XML Schema Structures 303

S
c
h
e
m

a
 I
I

name NCName None Specifies the local name of the

attribute being declared. The name

and ref attributes are mutually

exclusive

ref QName None Specifies a reference to a global

attribute declaration. The referenced

attribute declaration may be in the

same schema document as the ref-

erencing attribute declaration or it

may be in a different schema docu-

ment, potentially in a different

namespace. This attribute may not

appear on a global attribute declara-

tion. The ref and name attributes

are mutually exclusive.

type QName None Specifies the type of the attribute

being declared. This attribute is a

reference to a simple type: either a

built-in simple type or one defined in

a schema. If the type and ref

attributes are absent and the

attribute declaration does not have a

simpleType element as one of its

children, then the attribute is of the

type anySimpleType in the

namespace http://www.w3.org/

2001/XMLSchema. If a simple-

Type child element is present, then

the attribute is of the type defined by

that anonymous simple type definition.

use NMTOKEN optional Specifies whether the attribute is

optional, required, or prohibited.

Value Description

optional The attribute may appear in the

instance document.

prohibited The attribute must not appear in the

instance document.

required The attribute must appear in the

instance document.

Name Type Default Description

304 Essential XML Quick Reference

Child elements

Examples

A global attribute declaration and an attribute reference

A global attribute declaration describing an attribute with a local name of units,

a namespace name of urn:example-org:Utilities, and an attribute ref-

erence to that global attribute declaration. The attribute reference makes the

attribute required in the instance document. The type of the attribute is the built-in

string type. Elements of type HeightVector must have a height element.

They must also have a units attribute in the urn:examples-org:Utili-

ties namespace.

A local attribute declaration as part of a complex type

Name Occurrence

annotation Optional, once

simpleType Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Utilities'

 xmlns:tns='urn:example-org:Utilities' >

 <xs:attribute name='units' type='xs:string' />

 <xs:complexType name='HeightVector' >

 <xs:sequence>

 <xs:element name='height' type='xs:double' />

 </xs:sequence>

 <xs:attribute ref='tns:units' use='required' />

 </xs:complexType>

</xs:schema>

<xs:complexType name='Rowset'>

 <xs:sequence>

 <xs:element name='row' maxOccurs='unbounded' />

 </xs:sequence>

 <xs:attribute name='sortorder' type='xs:string'

use='optional' default='ascending' />

</xs:complexType>

XML Schema Structures 305

S
c
h
e
m

a
 I
I

An attribute declaration describing an attribute with a local name of sortorder,

which is based on the built-in string type, is optional in the instance and has a

default value. Elements of type Rowset must have one or more row elements.

They may also have a sortorder attribute. If such an attribute is not present,

then one will be added with a value of ascending.

An attribute reference with a fixed value

An attribute reference to the lang attribute in the namespace http://

www.w3.org/XML/1998/namespace from within a complex type in the

namespace urn:example-org:People. The attribute reference specifies a

fixed value for the lang attribute in this context. Elements of type PersonName

must have a givenName element followed by a familyName element. They

may also have a lang attribute in the http://www.w3.org/XML/1998/

namespace namespace. If such an attribute appears, it must have the value

EN-UK. If such an attribute does not appear, then one will be added with a value

of EN-UK.

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:import namespace='http://www.w3.org/XML/1998/

 namespace' />

 <xs:complexType name='PersonName'>

 <xs:sequence>

 <xs:element name='givenName' />

 <xs:element name='familyName' />

 </xs:sequence>

 <xs:attribute ref='xml:lang' use='optional'

 fixed='EN-UK' />

 </xs:complexType>

</xs:schema>

306 Essential XML Quick Reference

9.2.7 attributeGroup

<xs:attributeGroup id='ID' name='NCName' ref='QName' >

 <!-- annotation anyAttribute attribute

 attributeGroup -->

</xs:attributeGroup>

The attributeGroup element either denotes an attribute group definition,

defining a named group of attribute declarations, other named attribute groups,

and attribute wildcards, or it is a reference to such a group. The former appear as

children of a schema element whereas the latter appear inside complex type def-

initions and other attribute group definitions. Attribute groups provide a convenient

mechanism for using the same set of attributes in multiple complex type definitions.

Attributes

Child elements

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local name of the attribute group

being defined. This attribute can only appear if

the attributeGroup element is a child of a

schema element.

ref QName None Specifies a reference to a named attribute

group. The referenced attribute group may be in

the same schema document as the referencing

element declaration or it may be in a different

schema document, potentially in a different

namespace. This attribute can only appear if the

attributeGroup element is not a child of a

schema element.

Name Occurrence

annotation Optional, once

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

XML Schema Structures 307

S
c
h
e
m

a
 I
I

Example

A named attribute group and reference to that group from within a complex type

Elements of type Picture must have a width attribute and a height

attribute.

9.2.8 choice

<xs:choice id='ID' maxOccurs='union'

 minOccurs='nonNegativeInteger' >

 <!-- annotation any choice element

 group sequence -->

</xs:choice>

The choice element denotes a model group in which one of the particles con-

tained within the choice may appear in the instance document. The choice ele-

ment can appear as part of a complex type definition or as part of a named model

group. In both cases it may appear as the first child of the construct or as a more

deeply nested descendant.

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Pictures'

 xmlns:tns='urn:example-org:Pictures' >

 <xs:attributeGroup name='WidthAndHeight'>

 <xs:attribute name='width' use='required' />

 <xs:attribute name='height' use='required' />

 </xs:attributeGroup>

 <xs:complexType name='Picture' >

 <xs:attributeGroup ref='tns:WidthAndHeight' />

 </xs:complexType>

</xs:schema>

308 Essential XML Quick Reference

Attributes

Child elements

Examples

A choice group as part of a complex type

Name Type Default Description

id ID An attribute for applica-

tion use.

maxOccurs Union 1 Specifies the maximum

number of times a parti-

cle from the choice may

appear in the context the

choice appears in. The

value of this attribute

may be any nonNega-

tiveInteger or the

string unbounded. If the

choice element is a

child of a top-level

group element then this

attribute may not occur.

minOccurs nonNegativeInteger 1 Specifies the minimum

number of times a parti-

cle from the choice must

appear in the context the

choice appears in. If the

choice element is a

child of a top-level

group element then this

attribute may not occur.

Name Occurrence

annotation Optional, once

element or group or choice or sequence or any Optional, unlimited

<xs:complexType name='MaleOrFemalePerson' >

 <xs:sequence>

 <xs:element name='name' type='xs:string' />

 <xs:choice>

 <xs:element name='boybits' />

 <xs:element name='girlbits' />

XML Schema Structures 309

S
c
h
e
m

a
 I
I

Elements of type MaleOrFemalePerson must have a name element followed

by either a boybits element or a girlbits element.

9.2.9 complexContent

<xs:complexContent id='ID' mixed='boolean' >

 <!-- annotation extension restriction -->

</xs:complexContent>

The complexContent element appears as a child of the complexType ele-

ment and indicates that the complex type is being explicitly derived from some

other complex type. The complexContent element must have either an

extension or a restriction element child according to whether the base

type is being extended or restricted.

Attributes

Child elements

Example

See the extension and restriction entries for examples.

 </xs:choice>

 </xs:sequence>

</xs:complexType>

Name Type Default Description

id ID An attribute for application use.

mixed boolean false If set to true, this attribute specifies that the

content model of the complex type may con-

tain text and element children. By default, the

content model of a complex type derived from

another complex type may not contain text

children; that is, it may only contain elements.

This is also the case for complex types with

no explicit base.

Name Occurrence

annotation Optional, once

extension or restriction Mandatory, once

310 Essential XML Quick Reference

9.2.10 complexType

<xs:complexType abstract='boolean' block='token'

 final='token' id='ID' mixed='boolean'

 name='NCName' >

 <!-- all annotation anyAttribute attribute

 attributeGroup choice complexContent

 group sequence simpleContent -->

</xs:complexType>

The complexType element is used to define structured types. Complex types

may have element content with or without attributes, text and element (mixed)

content with or without attributes, or text content with attributes. Complex type

definitions appearing as children of a schema element are named types and can

be referenced from elsewhere in the schema and from other schemas. Complex

types appearing as the children of element declarations define anonymous types

local to the element declaration in which they appear. The complexType ele-

ment has two possible content models as shown by the following two child ele-

ment tables. The first set of children applies to complex types that have no

explicit base type whereas the second applies to complex types derived from an

explicit type. Complex types with no explicit base type are always restrictions of

the anyType in the http://www.w3.org/2001/XMLSchema namespace.

Attributes

Name Type Default Description

abstract boolean false Specifies whether the type is

abstract. An abstract type may not

appear in an instance document;

rather, a derived type must appear

in its place either through use of

xsi:type or substitution groups.

block token None Specifies what substitution mecha-

nisms are prohibited for this type.

The value of this attribute overrides

any schemawide default specified

by a blockDefault attribute on

the schema element.

Value Description

extension Types derived by extension may not

appear in place of this type.

XML Schema Structures 311

S
c
h
e
m

a
 I
I

restriction Types derived by restriction may

not appear in place of this type.

#all Both of the above

final token None Specifies which derivation mecha-

nisms are prohibited for type

definitions that reference this

type as their base type. The value

of this attribute overrides any

schemawide default specified by a

finalDefault attribute on the

schema element.

Value Description

extension This type cannot be extended.

Types derived by extension may not

use this type as their base type.

restriction This type cannot be restricted.

Types derived by restriction may

not use this type as their base type.

#all Both of the above

id ID None An attribute for application use.

mixed boolean false If set to true, this attribute speci-

fies that the content model of the

complex type may contain text and

element children. If set to false,

the content model of a complex

type derived from another complex

type may not contain text children;

that is, it may only contain ele-

ments. This is also the case for

complex types with no explicit base.

name NCName None Specifies the local part of the name

of the type. No two complex or

simple types in the same schema

may have the same local name.

This attribute is required if the

complexType element is a child

of a schema element. If the

complexType element is a child of

an element element, then this

attribute must not appear.

Name Type Default Description

312 Essential XML Quick Reference

Child elements

Examples

A complex type definition with no explicit base type containing only element

declarations

Elements of type Person must have child name and height elements, in that

order.

An anonymous complex type definition appearing inside a global element declaration

The Person element must have child name and height elements, in that order.

Name Occurrence

annotation Optional, once

group or all or choice or sequence Optional, once

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

Name Occurrence

annotation Optional, once

simpleContent or complexContent Mandatory, once

<xs:complexType name='Person' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:element name='height' />

 </xs:sequence>

</xs:complexType>

<xs:element name='Person' >

 <xs:complexType>

 <xs:sequence>

 <xs:element name='name' />

 <xs:element name='height' />

 </xs:sequence>

 </xs:complexType>

</xs:element>

XML Schema Structures 313

S
c
h
e
m

a
 I
I

A complex type that cannot be derived either by restriction or extension

The Person type cannot be used as the base type for any other type.

For examples of complex types derived from simple types, see the simpleCon-

tent entry. For examples of types derived by extension or restriction, see the

extension and restriction entries.

9.2.11 documentation

<xs:documentation source='anyURI' xml:lang='language' >

 <!-- Any qualified or unqualified element -->

</xs:documentation>

The documentation element contains a human-readable annotation to a

schema. The human-readable portion may be contained within the documenta-

tion element as child elements or may be referenced from the URI reference

provided by the source attribute, or both.

Attributes

Child element

<xs:complexType name='Person' final='#all' >

 <xs:sequence>

 <xs:element name='name' type='xs:string' />

 <xs:element name='height' type='xs:double' />

 </xs:sequence>

</xs:complexType>

Name Type Default Description

source anyURI None Specifies an attribute for supplementing

the information provided in the

documentation element.

xml:lang language None The lang attribute from the http://

www.w3.org/XML/1998/namespace

namespace specifies the human-readable

language in which the information in the

documentation element is written.

Name Occurrence

Any qualified or unqualified element Optional, unlimited

314 Essential XML Quick Reference

Example

Use of documentation

A schema annotated with human readable information

9.2.12 element

<xs:element abstract='boolean' block='token'

 default='string' final='token'

 fixed='string' form='NMTOKEN' id='ID'

 maxOccurs='union'

 minOccurs='nonNegativeInteger' name='NCName'

 nillable='boolean' ref='QName'

 substitutionGroup='QName' type='QName' >

 <!-- annotation complexType key keyref

 simpleType unique -->

</xs:element>

The element element either denotes an element declaration, defining a named

element and associating that element with a type, or it is a reference to such a

declaration. Element declarations appearing as children of a schema element

are known as global element declarations and can be referenced from else-

where in the schema or from other schemas. Element declarations appearing as

part of complex type definitions, either directly or through a group reference, are

known as local element declarations. Such element declarations are local to

the type in which they appear. Global element declarations describe elements that

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:annotation>

 <xs:documentation xml:lang='UK-ENG' >

 This schema is an example in a book. The colour of the

book cover is green.

 </xs:documentation>

 </xs:annotation>

</xs:schema>

XML Schema Structures 315

S
c
h
e
m

a
 I
I

are always part of the target namespace of the schema. Local element declara-

tions describe elements that may be part of the target namespace of the schema

depending on the values of the form attribute on the element declaration and the

value of the elementFormDefault attribute on the schema element.

Attributes

Name Type Default Description

abstract boolean false Specifies whether the element

being declared is abstract. An

abstract element may not appear in

an instance document; rather, an

element in this element’s substitu-

tion group must appear instead.

block token Specifies what substitution mecha-

nisms are prohibited for the element

being declared. The value of this

attribute can be a list of one or more

of extension, restriction,

and substitution or #all. The

value of this attribute overrides any

schemawide default specified by a

blockDefault attribute on the

schema element.

Value Description

extension Types derived by extension may

not appear in place of this element

either through use of xsi:type or

substitution groups.

restriction Types derived by restriction may

not appear in place of this element

either through use of xsi:type or

substitution groups.

substitution Elements in the substitution group

for this element may not appear in

place of this element.

#all All of the above

default string None Specifies a default value for an ele-

ment whose type is a simple type

or a complex type derived from a

simple type. The default and

fixed attributes are mutually

exclusive.

316 Essential XML Quick Reference

final token None Specifies which derivation mecha-

nisms are prohibited for element

declarations that are part of a sub-

stitution group with this element

declaration as the head. The value

of this attribute overrides any sche-

mawide default specified by a

finalDefault attribute on the

schema element.

Value Description

extension Elements in the substitution group

of this element may not be of a

type derived by extension, either

directly or indirectly, from the type

of this element.

restriction Elements in the substitution group

of this element may not be of a

type derived by restriction, either

directly or indirectly, from the type

of this element.

#all Both of the above

fixed string None Specifies a fixed value for an element

with a type that is a simple type or

a complex type derived from a sim-

ple type. The fixed and default

attributes are mutually exclusive.

form NMTOKEN None Specifies whether a local element

declaration is qualified (in the target

Namespace for the schema) or

unqualified (in no namespace). The

value of this attribute overrides any

schemawide default specified by an

elementFormDefault attribute

on the schema element. This

attribute may not appear on a glo-

bal element declaration.

Value Description

qualified The local name of the element is

qualified by the target namespace

of the schema.

unqualified The element is unqualified.

Name Type Default Description

XML Schema Structures 317

S
c
h
e
m

a
 I
I

id ID None An attribute for application use.

maxOccurs Union 1 Specifies the maximum number of

times this element may appear in

the context in which the declaration

appears. The value of this attribute

may be any nonNegativeInteger

or the string unbounded. This

attribute may not appear on a glo-

bal element declaration.

minOccurs nonNegative-

Integer

1 Specifies the minimum number of

times this element must appear in

the context in which the declaration

appears. This attribute may not

appear on a global element

declaration.

name NCName None Specifies the local part of the name

of the element being declared. The

name and ref attributes are mutu-

ally exclusive.

nillable boolean false If this attribute is set to true, then

the element may have no content,

provided it is annotated in the

instance document with an xsi:nil

attribute with a value of true.

ref QName None Specifies a reference to a global

element declaration. The refer-

enced element declaration may be

in the same schema document as

the referencing element declaration

or it may be in a different schema

document, potentially in a different

namespace. This attribute may not

appear on a global element decla-

ration. The ref and name

attributes are mutually exclusive.

Name Type Default Description

318 Essential XML Quick Reference

Child elements

Examples

A global element declaration

substitution-

 Group
QName None Specifies the element that serves

as the head of the substitution

group to which this element decla-

ration belongs. This attribute can

only appear on a global element

declaration. The referenced ele-

ment declaration may be in the

same schema document as the ref-

erencing element declaration or it

may be in a different schema docu-

ment, potentially in a different

namespace.

type QName None Specifies the type of the element

being declared. This attribute is a

reference to a simple type or a

complex type. If the type and ref

attributes are both absent, then the

element declaration may have a

simpleType element or a

complexType element as one of

its children, in which case the type

of the element is that anonymous

inline type. If no such children are

present, then the type of the element

is the anyType in the namespace

http://www.w3.org/2001/

XMLSchema.

Name Type Default Description

Name Occurrence

annotation Optional, once

simpleType or complexType Optional, once

key or keyref or unique Optional, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People' >

XML Schema Structures 319

S
c
h
e
m

a
 I
I

A global element declaration for an element with a local name of description

and a namespace name of urn:example-org:People. This element is

based on the built-in string type.

A global element declaration and several local element declarations

A global element declaration for an element with a local name of person and a

namespace name of urn:example-org:People. This element is based on

the Person complex type in the same namespace that has several local element

declarations. A document conforming to this schema would have a document ele-

ment with a local name of person in the urn:example-org:People

namespace. That element would have unqualified name and height children, in

that order. The name element would contain a string and the height element

would contain a double-precision floating point number.

A global element declaration and a reference to the declaration

 <xs:element name='description' type='xs:string' />

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:element name='Person' type='tns:Person' />

 <xs:complexType name='person' >

 <xs:sequence>

 <xs:element name='name' type='xs:string' />

 <xs:element name='height' type='xs:double' />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Utilities'

 xmlns:tns='urn:example-org:Utilities' >

 <xs:element name='height' type='xs:double' />

320 Essential XML Quick Reference

A global element declaration for an element with a local name of height and a

namespace name of urn:example-org:Utilities and a reference to that

global element declaration. The element is based on the built-in double type.

Elements of type HeightVector must have a child element with a local name

of height in the namespace urn:example-org:Utilities.

9.2.13 extension

<xs:extension base='QName' id='ID' >

 <!-- all annotation anyAttribute attribute

 attributeGroup choice group sequence

 -->

</xs:extension>

The extension element appears as part of a complex type definition and indi-

cates that the complex type is being derived by extension from some base type.

The base type may be either a simple type or a complex type. If the base type is

a simple type, then the extended type may only add attributes. If the base type is

a complex type, the extended type may add extra elements and/or attributes.

When extra elements are added, these logically appear after the elements of the

base type, the resulting content model being the content model of the base type

followed by the content model of the derived type with both parts treated as if

they were wrapped in a sequence element. Complex types with all as their

top-level compositor cannot be extended by adding particles. Only attributes can

be added to such types. Similarly, an all group can only be used to extend a

type that has an empty content model.

 <xs:complexType name='HeightVector' >

 <xs:sequence>

 <xs:element ref='tns:height' />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

XML Schema Structures 321

S
c
h
e
m

a
 I
I

Attributes

Child elements

Examples

Extending a base type with a sequence compositor with another sequence

Name Type Default Description

base QName None Specifies the base type from which the new type

is derived. If the parent of the extension

element is a simpleContent element, then

this attribute must refer to a simple type. If

the parent of the extension element is a

complexContent element, then this attribute

must refer to a complex type. The base type

may be in the same schema document as the

derived type or it may be in a different schema

document, potentially in a different namespace.

id ID None An attribute for application use.

Name Occurrence

annotation Optional, once

all or choice or group or sequence Optional, once

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='http://example.org/People'

 xmlns:tns='http://example.org/People' >

 <xs:complexType name='Person' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:element name='height' />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name='Employee' >

 <xs:complexContent>

 <xs:extension base='tns:Person' >

 <xs:sequence>

 <xs:element name='salary' />

322 Essential XML Quick Reference

Both types have sequence as their top-level model group. Elements of type

Employee must have name, height, and salary children, in that order. They may

also have an employeeNumber attribute.

Extending a base type with a sequence compositor with a choice

The base type has sequence as its top-level model group whereas the derived

type has choice. Elements of type MaleFemalePerson must have name and

height children, in that order, followed by either a boybits element or a

girlbits element.

 </xs:sequence>

 <xs:attribute name='employeeNumber' />

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='http://example.org/People'

 xmlns:tns='http://example.org/People' >

 <xs:complexType name='Person' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:element name='height' />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name='MaleFemalePerson' >

 <xs:complexContent>

 <xs:extension base='tns:Person' >

 <xs:choice>

 <xs:element name='boybits' />

 <xs:element name='girlbits' />

 </xs:choice>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

XML Schema Structures 323

S
c
h
e
m

a
 I
I

Extending a base type with an all compositor

The base type has an all compositor. The extended type adds an attribute to

the base type. Elements of type Employee must have name and height children,

in any order. They may also have an employeeNumber attribute.

Extending a simple type

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='http://example.org/People'

 xmlns:tns='http://example.org/People' >

 <xs:complexType name='Person' >

 <xs:all>

 <xs:element name='name' />

 <xs:element name='height' />

 </xs:all>

 </xs:complexType>

 <xs:complexType name='Employee' >

 <xs:complexContent>

 <xs:extension base='tns:Person' >

 <xs:attribute name='employeeNumber' />

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='http://example.org/People'

 xmlns:tns='http://example.org/People' >

 <xs:complexType name='Person' >

 <xs:simpleContent>

 <xs:extension base='xs:string'>

 <xs:attribute name='height' />

 </xs:extension>

 </xs:complexType>

</xs:schema>

324 Essential XML Quick Reference

The extended type adds an attribute to the base type of string. Elements of

type Employee may have a string of any length as their content. They may also

have a height attribute.

9.2.14 field

<xs:field id='ID' xpath='string' >

 <!-- annotation -->

</xs:field>

The field element identifies, via an XPath expression, an element or attribute

relative to a context specified by a selector element. The element or attribute

specified is part of a uniqueness or key constraint.

Attributes

Name Type Default Description

id ID None An attribute for application use.

xpath string None Specifies the element or attribute for the

field. This is always relative to the selector.

This attribute uses a subset of XPath that

allows forms shown in the following table

where x, y, and z are element names that

may be qualified or unqualified, and a is an

attribute name that may be qualified or

unqualified. The axis identifier child:: may

appear in front of x, y, and z, and the axis

identifier attribute:: may appear in

place of the @ symbol.

XPath Description

. The selector itself

x Child element

x/y Grandchild element

x/y/z Great-grandchild element, and so on

.//y Descendant element

@a Attribute

x/@a Attribute of child element

XML Schema Structures 325

S
c
h
e
m

a
 I
I

Note that the // notation can only appear immediately after the initial .; it cannot

appear anywhere else in an expression.

Child element

Example

See the key and unique entries for examples.

9.2.15 group

<xs:group id='ID' maxOccurs='union'

 minOccurs='nonNegativeInteger' name='NCName'

 ref='QName' >

 <!-- all annotation choice sequence -->

</xs:group>

The group element either denotes a model group definition, defining a named

group of particles, or it is a reference to such a group. The former appear as chil-

dren of a schema element whereas the latter appear inside complex type defini-

tions and other model group definitions. Named model groups provide a conve-

nient mechanism for using the same set of particles in multiple complex type

definitions.

x/y/@a Attribute of grandchild element

x/y/z/@a Attribute of great-grandchild element, and

so on

.//y/@a Attribute of descendant element

e | e* Any combination of the above expressions

Name Type Default Description

Name Occurrence

annotation Optional, once

326 Essential XML Quick Reference

Attributes

Child elements

Example

A named model group

Name Type Default Description

id ID None An attribute for application use.

maxOccurs Union 1 Specifies the maximum number of times

the particles in a referenced model group

can appear in the referencing context.

The value of this attribute may be any

nonNegativeInteger or the string

unbounded. This attribute may not appear

on a model group definition.

minOccurs nonNegative

 Integer
1 Specifies the minimum number of times the

particles in a referenced model group must

appear in the referencing context. This

attribute may not appear on a model group

definition.

name NCName None The local part of the name of the model

group being defined. This attribute may only

appear on a model group definition.

ref QName None A reference to a named model group. The

referenced model group may be in the same

schema document as the referencing group

element or it may be in a different schema

document, potentially in a different

namespace. This attribute may not appear

on a model group definition.

Name Occurrence

annotation Optional, once

all or choice or sequence Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:group name='HeightAndWeightElems' >

 <xs:sequence>

 <xs:element name='height' />

XML Schema Structures 327

S
c
h
e
m

a
 I
I

Elements of type Person must have name, height, and weight children, in that order.

9.2.16 import

<xs:import id='ID' namespace='anyURI'

 schemaLocation='anyURI' >

 <!-- annotation -->

</xs:import>

The import element is used to bring schema constructs such as element decla-

rations, complex and simple type definitions, and so forth in an external schema

into the importing schema document. The target namespace of the imported

schema must be different from the target namespace of the importing schema

document. The imported schema may have no target namespace. In the latter

case, the constructs in the imported schema document are available to be refer-

enced through unqualified names. Such constructs do not become part of the tar-

get namespace of the importing schema document.

Attributes

 <xs:element name='weight' />

 </xs:sequence>

 </xs:group>

 <xs:complexType name='Person' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:group ref='tns:HeightAndWeightElems' />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Name Type Default Description

id ID None An attribute for application use.

namespace anyURI None Specifies the namespace URI of the

schema being imported. If this

attribute is missing, then the

schema being imported describes

constructs that are unqualified.

328 Essential XML Quick Reference

Child element

Example

Use of import

A schema document for the namespace urn:example-org:Base that imports

another schema for the namespace http://www.w3.org/XML/1998/

namespace. The import element does not specify a schemaLocation

attribute. The schema processor will locate a schema for the http://

www.w3.org/XML/1998/namespace by some out-of-band technique.

schemaLocation anyURI None Identifies the location of the schema

to be imported. This attribute is just

a hint. A schema processor may

ignore the value of this attribute and

retrieve a schema for the name-

space specified by the namespace

attribute by other means.

Name Type Default Description

Name Occurrence

annotation Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Base'

 xmlns:tns='urn:example-org:Base' >

 <xs:import namespace='http://www.w3.org/XML/1998/

namespace' />

 <xs:complexType name='PersonName'>

 <xs:sequence>

 <xs:element name='givenName' />

 <xs:element name='familyName' />

 </xs:sequence>

 <xs:attribute ref='xml:lang' use='fixed' value='EN-UK'

/>

 </xs:complexType>

</xs:schema>

XML Schema Structures 329

S
c
h
e
m

a
 I
I

Use of import

A schema document for the namespace urn:example-org:People that imports

another schema for the namespace urn:example-org:Base, as defined in

the previous example. The import element specifies a schemaLocation

attribute which the schema processor may or may not use to locate a schema for

the urn:example-org:Base namespace. The PersonName type in the

urn:example-org:Base namespace is used as the type of the name ele-

ment in the type definition for Person.

9.2.17 include

<xs:include id='ID' schemaLocation='anyURI' >

 <!-- annotation -->

</xs:include>

The include element is used to bring schema constructs such as element declara-

tions, complex and simple type definitions, etc. in an external schema document

into the including schema document. The target namespace of the included schema

document must match the target namespace of the including schema or it must be

empty (the included schema document describes constructs in no namespace). If

the included schema document describes constructs in no namespace then those

constructs become part of the target namespace of the including schema document.

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People'

 xmlns:b='urn:example-org:Base' >

 <xs:import namespace='urn:example-org:Base'

 schemaLocation='http://example.org/schemas/

 base.xsd' />

 <xs:complexType name='Person'>

 <xs:sequence>

 <xs:element name='name' type='b:PersonName' />

 <xs:element name='height' />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

330 Essential XML Quick Reference

Attributes

Child element

Example

Use of include

A schema document that includes another schema containing base types. Types,

global element and attribute declarations, and attribute and model group definitions

in PeopleBase.xsd are available for use in the including schema document.

9.2.18 key

<xs:key id='ID' name='NCName' >

 <!-- annotation field selector -->

</xs:key>

The key element defines a named key made up of one or more element and/or

attribute fields. A key requires that the combination of fields must be unique. Any

element declaration referenced through a field child of a key element must not

Name Type Default Description

id ID None An attribute for application use.

schemaLocation anyURI None Identifies the location of the schema

document to be included.

Name Occurrence

annotation Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:include

schemaLocation='http://example.org/schemas/

PeopleBase.xsd' />

 <!-- element declarations, type definitions etc. go here

-->

</xs:schema>

XML Schema Structures 331

S
c
h
e
m

a
 I
I

have a nillable attribute with a value of true. A key can be referenced, via its

name, using the refer attribute of a keyref element, creating a referential

constraint on the content of an instance document.

Attributes

Child elements

Example

A key constraint

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local part of the name of the key

constraint.

Name Occurrence

annotation Optional, once

selector Mandatory, once

field Mandatory, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Orders'

 xmlns:tns='urn:example-org:Orders' >

 <xs:complexType name='Customer' >

 <xs:sequence>

 <xs:element name='id' type='xs:short' />

 <xs:element name='name' type='xs:string' />

 <xs:element name='creditlimit' type='xs:short' />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name='WidgetOrder' >

 <xs:sequence>

 <xs:element name='id' type='xs:short' />

 <xs:element name='numwidgets' type='xs:short' />

 <xs:element name='customerid' type='xs:short' />

 </xs:sequence>

 </xs:complexType>

 <xs:element name='customersandorders' >

332 Essential XML Quick Reference

The key element selects customer children of the customersandorders ele-

ment through the xpath attribute of the selector element. The xpath attribute

of the field element then specifies that the id children of those customer ele-

ments must be unique; that is, no two customer elements can have the same

value for their id child. The key also has a name, CustomerID, so that it can be

refered to from a keyref element.

The keyref element selects order children of the customersandorders ele-

ment through the xpath attribute of the selector element. The refer

attribute references the CustomerID key described earlier, and the xpath

attribute of the field element then specifies that the customerid children of the

order elements identified by the selector must have a corresponding value in

the id elements identified by the key.

 <xs:complexType>

 <xs:sequence>

 <xs:element name='customer' type='tns:Customer'

 minOccurs='1' maxOccurs='unbounded' />

 <xs:element name='order' type='tns:WidgetOrder'

 minOccurs='1' maxOccurs='unbounded' />

 </xs:sequence>

 </xs:complexType>

 <xs:key name='CustomerID' >

 <xs:selector xpath='customer' />

 <xs:field xpath='id' />

 </xs:key>

 <xs:keyref name='OrderToCustomer'

 refer='tns:CustomerID' >

 <xs:selector xpath='order' />

 <xs:field xpath='customerid' />

 </xs:keyref>

 </xs:element>

</xs:schema>

XML Schema Structures 333

S
c
h
e
m

a
 I
I

9.2.19 keyref

<xs:keyref id='ID' name='NCName' refer='QName' >

 <!-- annotation field selector -->

</xs:keyref>

The keyref element defines a referential constraint made up of element and/or

attribute fields that refer to a key that is similarly made up of element and/or

attribute fields. The fields that make up the referential constraint are compared, in

order, with the fields of the key to which the referential constraint refers.

Attributes

Child elements

Example

See the key entry for an example.

9.2.20 notation

<xs:notation id='ID' name='NCName' public='token'

 system='anyURI' >

 <!-- annotation -->

</xs:notation>

The notation element denotes a notation declaration associating a name with

a public identifier and optionally a system identifier. Notation declarations are typ-

ically used to deal with out-of-band binary data.

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local part of the name of the

keyref constraint.

refer QName None Specifies the QName of the key to which this

keyref refers.

Name Occurrence

annotation Optional, once

selector Mandatory, once

field Mandatory, unlimited

334 Essential XML Quick Reference

Attributes

Child element

Example

Use of notation

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local name of the notation being

declared.

public token None Specifies the public identifier for the notation.

The syntax for public identifiers is defined in

ISO-8879.

system anyURI None Specifies a system identifier for the notation,

often an executable capable of dealing with

resources of this notation type.

Name Occurrence

annotation Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Pictures'

 xmlns:tns='urn:example-org:Pictures' >

 <xs:notation name='jpg' public='image/jpeg'

system='display.exe' />

 <xs:notation name='png' public='image/png' />

 <xs:notation name='gif' public='image/gif'

system='display.exe' />

 <xs:simpleType name='myGraphicsFormats'>

 <xs:restriction base='xs:NOTATION'>

 <xs:enumeration value='jpg' />

 <xs:enumeration value='png' />

 <xs:enumeration value='gif' />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name='picture' >

 <xs:attribute name='width' />

 <xs:attribute name='height' />

XML Schema Structures 335

S
c
h
e
m

a
 I
I

A schema with notations for several graphic formats and a complex type containing

a format attribute of type NOTATION. This attribute would have a QName value

of tns:jpg, tns:png, or tns:gif in the instance document where the tns

prefix was mapped to the urn:example-org:Pictures namespace URI.

9.2.21 redefine

<xs:redefine id='ID' schemaLocation='anyURI' >

 <!-- annotation attributeGroup complexType group

 simpleType -->

</xs:redefine>

The redefine element is used to bring schema constructs such as element

declarations, complex and simple type definitions, and so forth, in an external

schema into a schema document and to redefine certain complex types, simple

types, named model groups, and named attribute groups in the schema being

brought in. Such redefinitions appear inside the redefine element and must be

in terms of the type or group itself. That is to say, complex types and simple

types must name themselves as the base type, and named model and attribute

groups must contain exactly one reference to themselves. The redefined types

and named groups effectively overwrite the definitions in the original schema

such that any references to those types and model groups now reference the

redefined versions. The target namespace of the redefined schema must match

the target namespace of the including schema or it must be empty. If the target

namespace of the redefined schema is empty, then the constructs in that schema

become part of the target namespace of the redefining schema document.

Attributes

 <xs:attribute name='format'

 type='tns:myGraphicsFormats' />

 </xs:complexType>

</xs:schema>

Name Type Default Description

id ID None An attribute for application use.

schemaLocation anyURI None Identifies the location of the schema

document to be redefined.

336 Essential XML Quick Reference

Child elements

Example

Use of redefine

Name Occurrence

annotation Optional, once

simpleType or complexType or group or

 attributeGroup

Optional, unlimited

<!-- person.v1.xsd -->

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People' >

 <xs:complexType name='Person' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:element name='height' />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

<!-- person.v2.xsd -->

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:import namespace='http://www.w3.org/XML/1998/

namespace' />

 <xs:redefine schemaLocation='person.v1.xsd' >

 <xs:complexType name='Person' >

 <xs:complexContent>

 <xs:extension base='tns:Person' >

 <xs:attribute ref='xml:lang' use='required' />

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:redefine>

</xs:schema>

XML Schema Structures 337

S
c
h
e
m

a
 I
I

An example showing two schema documents, both with a targetNamespace

attribute of urn:example-org:People. The second document, person.v2.xsd,

uses redefine to add an xml:lang attribute to the Person type defined in

person.v1.xsd.

9.2.22 restriction

<xs:restriction base='QName' id='ID' >

 <!-- all annotation anyAttribute attribute

 attributeGroup choice enumeration fractionDigits

 group length maxExclusive maxInclusive

 maxLength minExclusive minInclusive minLength

 pattern sequence simpleType totalDigits

 whitespace -->

</xs:restriction>

The restriction element appears as part of a complex type definition and

indicates that the complex type is being derived by restriction from a base type.

The base type must be a complex type. If the base type has no particles, only text

and/or attributes, then the derived type can specify a tighter value space for the

text content using facets. The valid children for such use of the restriction

element are shown in the first table under Child elements.

If the base type contains any particles, then the derived type may specify tighter

occurrence constraints for those particles and/or narrower value spaces for the

simple types used by elements in those particles. The derived type must list all

the particles of the base type and the particles of the base type’s ancestors. The

derived type must be a valid instance of the base type; that is, it cannot remove

any particles that were mandatory in the base type. The valid children for such use

of the restriction element are shown in the second table under Child elements.

In both cases, if the base type contains attributes, then the derived type may

specify tighter occurrence constraints for those attributes and/or narrower value

spaces for the types of those attributes. The derived type cannot remove

attributes that were required in the base type.

338 Essential XML Quick Reference

Attributes

Child elements

Child elements

Examples

Restriction of a complex type containing elements and attributes

Name Type Default Description

base QName None Specifies the base type from which the new type

is derived. The base type must be a complex

type. The type referred to may be in the same

namespace as the derived type, a different

namespace from the derived type, or may be

unqualified (that is, in no namespace).

id ID None An attribute for application use.

Name Occurrence

annotation Optional, once

simpleType Optional, once

minExclusive or minInclusive or maxExclusive or

maxInclusive or totalDigits or fractionDigits or

length or minLength or maxLength or enumeration or

pattern or whiteSpace

Optional, unlimited

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

Name Occurrence

annotation Optional, once

all or choice or group or sequence Optional, once

attribute or attributeGroup Optional, unlimited

anyAttribute Optional, once

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:complexType name='MaleFemalePerson' >

 <xs:sequence>

 <xs:element name='name' />

XML Schema Structures 339

S
c
h
e
m

a
 I
I

The base type is restricted by removing an element and an attribute. Elements of

type MaleFemalePerson must have a name followed by an optional weight

child. They may also have a sex attribute. Elements of type WeightlessHer-

maphroditePerson must have a name child only. They must not have a weight

child or a sex attribute.

Restriction of a complex type containing text and attributes

 <xs:element name='weight' minOccurs='0' />

 </xs:sequence>

 <xs:attribute name='sex' />

 </xs:complexType>

 <xs:complexType name='WeightlessHermaphroditePerson' >

 <xs:complexContent>

 <xs:restriction base='tns:MaleFemalePerson' >

 <xs:sequence>

 <xs:element name='name' />

 </xs:sequence>

 <xs:attribute name='sex' use='prohibited' />

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:complexType name='MaleFemalePerson' >

 <xs:simpleContent>

 <xs:extension base='string'>

 <xs:attribute name='sex' />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name='WeightlessHermaphroditePerson' >

 <xs:simpleContent>

 <xs:restriction base='tns:MaleFemalePerson' >

340 Essential XML Quick Reference

The base type is restricted by removing an attribute and applying facets to the

simple type base. Elements of type MaleFemalePerson contain a string of any

length and may also have a sex attribute. Elements of type WeightlessHer-

maphroditePerson must contain a string of at least ten characters and no

more than 100 characters and must not have a sex attribute.

9.2.23 schema

<xs:schema attributeFormDefault='NMTOKEN'

 blockDefault='list of token'

 elementFormDefault='NMTOKEN'

 finalDefault='token' id='ID'

 targetNamespace='anyURI' version='string'

 xml:lang='language' >

 <!-- annotation attribute attributeGroup complexType

 element group import include notation redefine

 simpleType -->

</xs:schema>

The schema element is always the top-level element of any XML Schema docu-

ment. All type definitions, elements, declarations, and other constructs appear as

descendants of the schema element. All the types, elements, attributes, and

other items defined within a schema are either part of one particular namespace,

as specified by the targetNamespace attribute, or are part of no namespace.

 <xs:minLength value='10' />

 <xs:maxLength value='100' />

 <xs:attribute name='sex' use='prohibited' />

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

XML Schema Structures 341

S
c
h
e
m

a
 I
I

Attributes

Name Type Default Description

attributeForm

 Default
NMTOKEN Unqualified Specifies whether local attribute dec-

larations are qualified (in the target-

Namespace for the schema) or

unqualified by default. This setting

specified by this attribute can be over-

ridden on a per-attribute declaration

basis by the form attribute.

blockDefault list of

 token

Empty list Specifies what substitution mecha-

nisms are prohibited for elements.

The setting specified by this attribute

can be overridden on a per-type dec-

laration basis by using the block

attribute.

Value Description

extension Types derived by extension may not

appear in place of a particular ele-

ment either through the use of

xsi:type or substitution groups.

restriction Types derived by restriction may not

appear in place of a particular ele-

ment either through use of xsi:type

or substitution groups.

substitution Elements in the substitution group for

a particular element may not appear

in place of that element.

#all All of the above

elementForm

 Default
NMTOKEN unqualified Specifies whether local element dec-

larations are qualified (in the tar-

getNamespace for the schema) or

unqualified by default. This set-

ting specified by this attribute can be

overridden on a per-element declara-

tion basis by the form attribute.

finalDefault token Empty list Specifies what derivation mechanisms

are prohibited for type definitions

defined in the schema document. The

setting specified by this attribute can

be overridden on a per-type definition

basis by using the final attribute.

342 Essential XML Quick Reference

Value Description

extension Types cannot be extended by default.

restriction Types cannot be restricted by default.

#all Both of the above

id ID Specifies an attribute for application

use.

target-

 Namespace
anyURI None Specifies the namespace that this

schema document describes. All glo-

bal element and attribute declarations

along with all complex and simple

type definitions, model group defini-

tions and attribute group definitions,

and uniqueness and key constraint

defintions are part of the target

namespace for a schema document.

If this attribute is not present, then all

schema constructs contained in the

schema document describe con-

structs in no namespace. A schema

document for a given namespace

forms part of an overall schema that

can be used to validate instance docu-

ments containing elements and/or

attributes in that namespace. A

schema document with no target

namespace can be used to validate

instance documents containing ele-

ments or attributes in no namespace.

It can also become part of a schema

with a target namespace through the

include and/or redefine

mechanisms.

version string None Specifies an attribute for application

use.

xml:lang language None The lang attribute from the http://

www.w3.org/XML/1998/

namespace namespace denotes the

human-readable language in which the

schema element is written.

Name Type Default Description

XML Schema Structures 343

S
c
h
e
m

a
 I
I

Child elements

Examples

A schema document

A schema document describing contructs in the namespace urn:example-

org:People. Note the namespace declaration for urn:example-org:Peo-

ple. This is needed because various attributes in the schema language are of

type QName, and it is common in a schema construct to want to refer to another

schema construct. Having a namespace declaration for the target namespace

makes this possible. The schema document uses default values for the ele-

mentFormDefault and attributeFormDefault attributes; therefore,

local element declarations and local attribute declarations are not in the target

namespace for the schema; that is, they are unqualified.

A schema document with no target namespace

Name Occurrence

annotation or include or import or redefine Optional, unlimited

annotation or attribute or attributeGroup or

complexType or element or group or notation or

simpleType

Optional, unlimited

annotation Optional, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:t='urn:example-org:People' >

 <!-- type definitions, element attribute declarations

etc. appear here -->

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' >

 <!-- type definitions, element attribute declarations

etc. appear here -->

</xs:schema>

344 Essential XML Quick Reference

A schema document describing constructs in no namespace. The schema docu-

ment uses default values for the elementFormDefault and attribute-

FormDefault attributes.

A schema document with qualified local element declarations

A schema document describing constructs in the namespace urn:example-

org:Vehicles. Local element declarations are, by default, in the target

namespace for the schema (urn:example-org:Vehicles); that is, they are

qualified.

A schema document with several nondefault attribute values

A schema document describing constructs in the namespace urn:example-

org:Utilities. Complex types defined in this schema cannot, by default, be

derived from either a extension or restriction as specified by the finalDefault

attribute. Also, element substitution using substitution groups is disallowed by

default as specified by the blockDefault attribute.

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Vehicles'

 xmlns:tns='urn:example-org:Vehicles'

 elementFormDefault='qualified' >

 <!-- type definitions, element attribute declarations

etc. appear here -->

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Utilities'

 xmlns:tns='urn:example-org:Utilities'

 finalDefault='#all'

 blockDefault='substitution' >

 <!-- type definitions, element attribute declarations

etc. appear here -->

</xs:schema>

XML Schema Structures 345

S
c
h
e
m

a
 I
I

9.2.24 selector

<xs:selector id='ID' xpath='string' >

 <!-- annotation -->

</xs:selector>

The selector element identifies, via an XPath expression, an element relative

to a context. The selected element provides the context for subsequent field

elements.

Attributes

Child element

Example

See the key and unique entries for examples.

Name Type Default Description

id ID None An attribute for application use.

xpath string None Specifies the element or attribute for the selec-

tor. This is always relative to the current con-

text, typically an element declaration. This

attribute uses a subset of XPath that allows the

following forms, where x and y are element

names that may be qualified or unqualified, and

a is an attribute name that may be qualified or

unqualified.

XPath Description

. The element itself

x Child element

x/y Grandchild element

x/y/z Great-grandchild element, and so on

.//y Descendant element

e | e* Any combination of the above expressions

Name Occurrence

annotation Optional, once

346 Essential XML Quick Reference

9.2.25 sequence

<xs:sequence id='ID' maxOccurs='union'

 minOccurs='nonNegativeInteger' >

 <!-- annotation any choice element

 group sequence -->

</xs:sequence>

The sequence element is used to denote a model group in which all the parti-

cles contained within the sequence must appear in the instance document in the

order listed, or, if they are optional, be missing in the instance document. The

sequence element can appear as part of a complex type definition or as part of

a named model group. In both cases it may appear as the first child of the con-

struct or as a more deeply nested descendant.

Attributes

Name Type Default Description

id ID An attribute for application

use.

maxOccurs Union 1 Specifies the maximum

number of times particles

in the sequence group can

appear in the context in

which the sequence

appears. The value of this

attribute may be any

nonNegativeInteger

or the string unbounded.

If the sequence element

is a child of a top-level

group element, then this

attribute may not occur.

minOccurs nonNegativeInteger 1 Specifies the minimum

number of times the parti-

cles in the sequence

group must appear in the

context in which the

sequence appears. If the

sequence element is a

child of a top-level group

element, then this

attribute may not occur.

XML Schema Structures 347

S
c
h
e
m

a
 I
I

Child elements

Examples

A sequence group as part of a complex type

Elements of type Person must have name and height children, in that order.

A repeating sequence and sequence as part of a named model group definition

Name Occurrence

annotation Optional, once

element or choice or group or sequence or any Optional, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:element name='Person' type='tns:Person' />

 <xs:complexType name='Person' >

 <xs:sequence>

 <xs:element name='name' />

 <xs:element name='height' />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:group name='GroceryElems' >

 <xs:sequence>

 <xs:element name='productname' />

 <xs:element name='price' />

 </xs:sequence>

 </xs:group>

 <xs:complexType name='Groceries' >

 <xs:sequence>

 <xs:group ref='tns:GroceryElems' />

348 Essential XML Quick Reference

Elements of type Groceries must have producename and price children, in that

order, followed by between one and fifty pairs of state and taxable elements,

in that order.

9.2.26 simpleContent

<xs:simpleContent id='ID' >

 <!-- annotation extension restriction -->

</xs:simpleContent>

The simpleContent element appears as a child of the complexType ele-

ment and indicates that the complex type is being explicitly derived from a simple

type. The simpleContent element must have either an extension or a

restriction element child according to whether the base type is being

extended or restricted.

Attribute

Child elements

Example

See the extension and restriction entries for examples.

 <xs:sequence minOccurs='1' maxOccurs='50' >

 <xs:element name='state' />

 <xs:element name='taxable' />

 </xs:sequence>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Name Type Default Description

id ID None An attribute for application use.

Name Occurrence

annotation Optional, once

extension or restriction Mandatory, once

XML Schema Structures 349

S
c
h
e
m

a
 I
I

9.2.27 unique

<xs:unique id='ID' name='NCName' >

 <!-- annotation field selector -->

</xs:unique>

The unique element is used to denote that an attribute or element value, or a

combination thereof, must be unique within a particular context. The unique ele-

ment appears inside an element declaration that provides the initial context. The

context is then specified further by a selector. The field element is used to

specify uniqueness constraints relative to the context specifed by the selector

element.

Attributes

Child elements

Example

An element-based uniqueness constraint

Name Type Default Description

id ID None An attribute for application use.

name NCName None Specifies the local part of the name of the

uniqueness constraint.

Name Occurrence

annotation Optional, once

selector Mandatory, once

field Mandatory, unlimited

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:Groceries'

 xmlns:tns='urn:example-org:Groceries' >

 <xs:complexType name='Grocery' >

 <xs:sequence>

 <xs:element name='produce' type='xs:string' />

 <xs:sequence minOccurs='1' maxOccurs='50' >

 <xs:element name='state' type='xs:string' />

 <xs:element name='taxable' type='xs:boolean' />

 </xs:sequence>

350 Essential XML Quick Reference

A uniqueness constraint that specifies that the state element children of a

grocery element must have unique values.

9.3 XML Schema structures: instance attributes

The XML Schema language defines four attributes for use in XML instance docu-

ments (rather than schema documents). These attributes are all in the http://

www.w3.org/2001/XMLSchema-instance namespace. This section lists

the attributes in alphabetical order with syntax, a description, and examples. In all

cases the xsi namespace prefix is mapped to the http://www.w3.org/

2001/XMLSchema-instance namespace URI.

9.3.1 nil

xsi:nil='boolean'

The nil attribute is a boolean that when set to true marks an element as hav-

ing missing content. Such an element must be empty and the element declaration

in the schema must have been annotated with a nillable attribute with a value

of true.

Example

Use of nil

 </xs:sequence>

 </xs:complexType>

 <xs:element name='grocery' type='tns:Grocery' >

 <xs:unique name='stateConstraint' >

 <xs:selector xpath='state' />

 <xs:field xpath='.' />

 </xs:unique>

 </xs:element>

</xs:schema>

<!-- person.xsd -->

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

XML Schema Structures 351

S
c
h
e
m

a
 I
I

A schema document, person.xsd, and an instance document, person.xml.

The schema contains a type Person that has name and height element decla-

rations; the latter being annotated with a nillable attribute with a value of

true. It also contains an element declaration mapping the element person to

the Person type. The instance contains a person element in the urn:example-

org:People namespace with child name and height elements. An xsi:nil

attribute is present on the height element and that element has no content.

9.3.2 noNamespaceSchemaLocation

xsi:noNamespaceSchemaLocation='anyURI'

The noNamespaceSchemaLocation attribute provides a way of associating a

schema document that has no target namespace with an instance document. The

value of the attribute is a location that contains a schema containing unqualified

schema constructs; that is, constructs in “no namespace.” This attribute is

needed because the schemaLocation attribute provides no way of specifying

locations for schemas with no target namespace. The information in a

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:complexType name='Person' >

 <xs:sequence>

 <xs:element name='name' type='xs:string' />

 <xs:element name='height' type='xs:double'

nillable='true' />

 </xs:sequence>

 </xs:complexType>

 <xs:element name='person' type='tns:Person' />

</xs:schema>

<!-- person.xml -->

<p:person xmlns:p='urn:example-org:People' >

 <name>Martin</name>

 <height xmlns:xsi='http://www.w3.org/2001/XMLSchema-

instance' xsi:nil = 'true' />

</p:person>

352 Essential XML Quick Reference

noNamespaceSchemaLocation attribute is only a hint to a processor. The

processor is not required to use the information. It may locate schemas in any

way it wishes.

Example

Use of noNamespaceSchemaLocation

A noNamespaceSchemaLocation attribute on an instance document contain-

ing unqualified elements

9.3.3 schemaLocation

xsi:schemaLocation='list of anyURI'

The schemaLocation attribute provides a way of associating schema docu-

ments that have a target namespace with an instance document. The attribute is

a list of pairs of URI references separated by whitespace. The first URI reference

in each pair is a namespace name whereas the second is the location of a

schema that describes that namespace. Multiple pairs of URI references can be

listed, each with a different namespace name part. It is also legal to list the same

namespace multiple times, thus providing multiple potential locations for a pro-

cessor to locate a schema. The information in a schemaLocation attribute is

only a hint to a processor. The processor is not required to use the information. It

may locate schemas in any way it wishes.

Example

Use of schemaLocation

<person xmlns:xsi='http://www.w3.org/2001/XMLSchema-

instance'

 xsi:noNamespaceSchemaLocation='http://example.org/

schemas/person.xsd'>

 <name>Martin</name>

 <height>64</height>

</person>

<p:Person xmlns:p='http://example.org/People'

 xmlns:v='http://example.org/Vehicles'

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-

 instance'

XML Schema Structures 353

S
c
h
e
m

a
 I
I

A schemaLocation attribute providing location information for several schema

documents

9.3.4 type

xsi:type='QName'

The type attribute specifies the type of an element. The value of the attribute is

a QName that refers to a type defined in a schema. This attribute allows an ele-

ment to assert that it is of a particular type even though there may not be an ele-

ment declaration in the schema binding that element to that type. It is also used

when derived complex types are used in instance documents in place of the

expected base type. In the latter case, the schema processor will ensure that the

type specified in the type attribute is derived from the type specified in the ele-

ment declaration in the schema.

Example

Use of type

 xsi:schemaLocation='http://example.org/People

 http://example.org/schemas/people.xsd

 http://example.org/Vehicles http://

 example.org/schemas/vehicles.xsd

 http://example.org/People http:

 //example.org/schemas/people.xsd' >

 <name>Martin</name>

 <age>33</age>

 <height>64</height>

 <v:Vehicle>

 <colour>White></colour>

 <wheels>4</wheels>

 <seats>5</seats>

 </v:Vehicle>

</p:Person>

<!-- person.xsd -->

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'

 targetNamespace='urn:example-org:People'

 xmlns:tns='urn:example-org:People' >

 <xs:element name='person' type='tns:Person' />

354 Essential XML Quick Reference

A schema document, person.xsd, and an instance document, person.xml.

The schema document contains a base type Person, derived type Employee,

and an element declaration person. The instance shows the use of the

xsi:type attribute to assert that the person element in the urn:example-

org:People namespace is of type Employee in the same namespace.

 <xs:complexType name='Person' >

 <xs:sequence>

 <xs:element name='name' type='xs:string' />

 <xs:element name='height' type='xs:double' />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name='Employee' >

 <xs:complexContent>

 <xs:extension base='tns:Person' >

 <xs:sequence>

 <xs:element name='salary' type='xs:double' />

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

<!-- person.xml -->

<p:Person xmlns:p='urn:example-org:People'

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-

 instance'

 xsi:type='p:Employee' >

 <name>Martin</name>

 <height>64</height>

 <salary>2.50</salary>

</p:Person>

XML Schema Structures 355

S
c
h
e
m

a
 I
I

9.4 References

Thompson, Henry S., et al. XML Schema Part 1: Structures.

 Available at http://www.w3.org/TR/xmlschema-1. 2001.

Fallside, David C. XML Schema Part Zero: Primer.

Available at http://www.w3.org/TR/xmlschema-0. 2001.

357

S
O

A
P

Chapter 10

SOAP 1.1

The Simple Object Access Protocol (SOAP) is an XML messaging specification

that describes a message format along with a set of serialization rules for

datatypes including structured types and arrays. In addition, it describes how to

use the Hypertext Transfer Protocol (HTTP) as a transport for such messages.

SOAP messages are effectively service requests sent to some end point on a net-

work. That end point may be implemented in any number of ways—Remote Pro-

tocol Call (RPC) server, Component Object Model (COM) object, Java servlet, Perl

script—and may be running on any platform. Thus, SOAP is about interoperability

between applications running on potentially disparate platforms using various

implementation technologies in various programming languages.

10.1 Introduction to SOAP messages

SOAP messages are transmitted between applications and may pass through a

number of intermediaries as they travel from the initial sender to the ultimate

recipient. SOAP messages are comprised of an Envelope element, with an

optional Header and a mandatory Body child element. All three elements are in

the namespace http://schemas.xmlsoap.org/soap/envelope/. The

Envelope identifies the XML as being a SOAP message and must be the root

element of the message. The Body element contains the message payload. The

Header element provides an extension hook that allows SOAP to be extended in

arbitrary ways. The following sections describe these elements, attributes that

SOAP defines, the data encoding rules SOAP specifies, and the HTTP binding.

Example

Skeleton SOAP message

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

358 Essential XML Quick Reference

10.2 Elements in SOAP messages

SOAP defines four elements in the namespace http://schemas.xmlsoap.org/

soap/envelope/. These elements are listed in the following sections in alpha-

betical order, with a description and details of child elements. All four elements

can be annotated with any number of namespace-qualified attributes. Example

SOAP request and response messages are shown for reference.

10.2.1 Body

<soap:Body

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <!-- message payload goes here -->

</soap:Body>

The Body element contains the message payload. In the case of a request mes-

sage the payload of the message is processed by the receiver of the message

and is typically a request to perform some service and, optionally, to return some

results. In the case of a response message the payload is typically the results of

some previous request or a fault.

Child elements

One or more namespace-qualified elements that are not in the http://

schemas.xmlsoap.org/soap/envelope/ namespace or, if a fault occurred,

a Fault element in the http://schemas.xmlsoap.org/soap/envelope/

namespace

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Header>

 <!-- extensions go here -->

 </soap:Header>

 <soap:Body>

 <!-- message payload goes here -->

 </soap:Body>

</soap:Envelope>

SOAP 1.1 359

S
O

A
P

Examples

A SOAP request

An example request message showing the Envelope and Body elements

A SOAP response

A message generated in response to the request message in the request example

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <m:Subtract

 xmlns:m="http://example.org/Calculator/Points">

 <pt1>

 <x>10</x>

 <y>20</y>

 </pt1>

 <pt2>

 <x>100</x>

 <y>200</y>

 </pt2>

 </m:Subtract>

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <method:SubtractResponse

 xmlns:method="http://example.org/Calculator/Points">

 <ptret>

 <x>-90</x>

 <y>-180</y>

 </ptret>

 </method:SubtractResponse>

 </soap:Body>

</soap:Envelope>

360 Essential XML Quick Reference

10.2.2 Envelope

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

>

 <!-- header and body go here -->

</soap:Envelope>

The Envelope element is the root element for all SOAP messages, identifying

the XML as a SOAP message.

Child elements

An optional Header element and a mandatory Body element. Both elements are

in the http://schemas.xmlsoap.org/soap/envelope/ namespace.

10.2.3 Fault

<soap:Fault

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

>

 <!-- detail goes here -->

</soap:Fault>

The Fault element indicates that an error occurred while processing a SOAP

request. This element only appears in response messages.

Child elements

A faultcode element followed by a faultstring element followed by an

optional faultactor element and an optional detail element. Each of these

children is described in the following:

SOAP 1.1 361

S
O

A
P

Name Syntax Description

faultcode <faultcode xmlns=''>
QName</faultcode>

The faultcode element is of type QName

and indicates what fault occurred. Several

existing categories of fault code are defined,

all in the http://schemas.xmlsoap.org/

soap/envelope/ namespace.

VersionMismatch indicates that the recipi-

ent of a message did not recognize the

namespace name of the Envelope element.

MustUnderstand indicates that the recipient

of an element child of the Header element

had a soap:mustUnderstand attribute but

that element was not understood by the recip-

ient. Client indicates the SOAP message

did not contain all the required information in

order for the recipient to process it. This

could mean that something was missing from

inside the Body element. Equally, an expected

extension inside the Header element could

have been missing. In either case, the sender

should not resend the message without cor-

recting the problem. Server indicates that

the recipient of the message was unable to

process the message because of some

server-side problem. The message contents

were not at fault; rather, some resource was

unavailable or some processing logic failed

for a reason other than an error in the mes-

sage. The sender may legitimately resend the

message at a later time. All these fault codes

may be followed by a period and a further

string providing more detailed information

about the error; for example,

Client.InvalidParameter.

faultstring <faultstring

xmlns=''>string

</faultstring>

The faultstring element is of type

string and provides a human-readable

description of whatever fault occurred.

362 Essential XML Quick Reference

Example

A SOAP fault

faultactor <faultactor

xmlns=''>

uriReference

</faultactor>

The faultactor element is of type

uriReference and indicates the source of

the fault. This may be the ultimate recipient of

the request message, in which case the ele-

ment is optional. Alternatively, the source of

the fault may be an intermediary somewhere

in the path the message took to get from the

sender to the ultimate recipient. In this case

the element must be present.

detail <detail xmlns=''>

any number of elements

in any namespace

</detail>

The detail element is used to carry applica-

tion-specific error information and may be

annotated with any number of attributes from

any namespace, and may have any number of

namespace-qualified element children. The

detail element must be present if the fault

is the result of the recipient being unable to

process the Body element. The detail ele-

ment is not used to provide error information

in the case of the recipient being unable to

process an element child of the Header ele-

ment. In such cases, error information is

placed inside the Header element.

Name Syntax Description

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Client.InvalidRequest</faultcode>

 <faultstring>Invalid Request: Divide operation not

 supported</faultstring>

 <faultactor>http://marting.develop.com/soap/

 calcxslt.asp</faultactor>

 <detail>

 <m:MethodError

 xmlns:m='uuid:361C5CDE-FC66-4B17-A2C1-

 EB221DEFFD66'>

 <request>Divide</request>

SOAP 1.1 363

S
O

A
P

An example of a fault in which the request message contained an invalid operation

request

10.2.4 Header

<soap:Header

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

>

 <!-- extensions go here -->

</soap:Header>

The Header element namespace serves as a container for extensions to SOAP.

No extensions are defined by the specification, but user-defined extension ser-

vices such as transaction support, locale information, authentication, digital sig-

natures, and so forth could all be implemented by placing some information inside

the Header element. Children of the Header element may be annotated with the

mustUnderstand and/or actor attributes.

Child elements

Any number of namespace-qualified elements that are not in the http://

schemas.xmlsoap.org/soap/envelope/ namespace

Example

A SOAP Header

 <reason>Operation not supported</reason>

 </m:MethodError>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Header>

 <x:Locale

 xmlns:x='http://example.org/Extensions/Locale'>

 <language>en</language>

364 Essential XML Quick Reference

An example extension for locale information requesting that the recipient of the

message send any responses localized for the specified locale; in this case, UK

English.

10.3 Attributes in SOAP messages

SOAP defines three attributes in the namespace http://schemas.xml-

soap.org/soap/envelope/. These attributes are listed in the following sec-

tions in alphabetical order with a description and examples.

10.3.1 actor

soap:actor='anyURI'

The actor attribute is used to annotate an extension element. It specifies a URI

identifying the intermediary for which the annotated extension element is

intended. If the value of the attribute is the URI http://schemas.xml-

soap.org/soap/actor/next, then the extension is intended for the next

intermediary in the chain, which in the case of the initial sender will be the first

one. If the attribute is not present, then the extension element is intended for the

ultimate recipient of the message.

Examples

Use of the actor attribute

 <sublang>uk</sublang>

 </x:Locale>

 </soap:Header>

 <soap:Body>

 <!-- message payload goes here -->

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Header>

SOAP 1.1 365

S
O

A
P

An extension element intended for a specific intermediary in the chain

Use of the actor attribute to target the first intermediary

An example extension intended for the first intermediary in the chain

10.3.2 encodingStyle

soap:encodingStyle='list of anyURI'

The encodingStyle attribute indicates to the recipient of a SOAP message

which serialization format was used to encode a given element and its descendants.

This attribute may appear on any element. Descendant elements may override

 <x:x

 xmlns:x='http://example.org/Extensions/'

 soap:actor='http://example.org/Nodes/Fireball/XL5'>

 <!-- extension detail goes here -->

 </x:x>

 </soap:Header>

 <soap:Body>

 <!-- message payload goes here -->

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Header>

 <x:x

xmlns:x='http://example.org/Extensions/'

soap:actor='http://schemas.xmlsoap.org/soap/actor/next'>

 <!-- extension detail goes here -->

 </x:x>

 </soap:Header>

 <soap:Body>

 <!-- message payload goes here -->

 </soap:Body>

</soap:Envelope>

366 Essential XML Quick Reference

the value of an encodingStyle attribute specified on an ancestor. Elements

that use the encoding style described in Section 5 of the SOAP specification

should use the URI http://schemas.xmlsoap.org/soapencoding/ as

the value of this attribute. Several URIs may be provided, in which case the URIs

identifying the more specific encoding rules should appear before those identify-

ing less specific encoding rules.

Example

Use of encodingStyle attribute

A message that uses the encoding rules described in Section 5 of the SOAP

specification

10.3.3 mustUnderstand

soap:mustUnderstand='boolean'

The mustUnderstand attribute indicates to the recipient of a SOAP message

whether processing of an extension element is mandatory. If the attribute has the

value 1, then the recipient must recognize the extension element and process it

accordingly. If the recipient does not recognize the element, it must report a fault.

If the attribute has the value 0 (the default), then processing of the extension ele-

ment is optional.

Examples

Use of mustUnderstand attribute

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <!-- header and body go here -->

</soap:Envelope>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Header>

 <x:x

SOAP 1.1 367

S
O

A
P

A mandatory extension as specified by the mustUnderstand attribute with a

value of 1.

An optional extension

An optional extension as specified by the mustUnderstand attribute with a

value of 0.

10.4 Introduction to SOAP serialization rules

SOAP defines a set of serialization rules for encoding datatypes in XML. All data

is serialized as elements rather than attributes. Attributes are only used for struc-

tural metadata; for example, when references are needed. For simple types such

as strings, numbers, dates, and so forth, the datatypes defined in XML Schema

 xmlns:x='http://example.org/Extensions/'

 soap:mustUnderstand='1' >

 <!-- extension detail goes here -->

 </x:x>

 </soap:Header>

 <soap:Body>

 <!-- message payload goes here -->

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Header>

 <x:x

 xmlns:x='http://example.org/Extensions/'

 soap:mustUnderstand='0' >

 <!-- extension detail goes here -->

 </x:x>

 </soap:Header>

 <soap:Body>

 <!-- message payload goes here -->

 </soap:Body>

</soap:Envelope>

368 Essential XML Quick Reference

Part II—Datatypes are used. For types such as classes or structures, each field

in the type is serialized using an element with the same name as the field. For

array types, each array element is typically serialized using an element with the

same name as the type, although other element names may be used. In both

cases, if the field being serialized is itself a structure or an array, then nested ele-

ments are used. The top-level element in both the structure case and the array

case is namespace qualified. Descendant elements should be unqualified.

The serialization rules apply to children of the Header element as well as chil-

dren of the Body element. Such children are serialized types just like any other

type. A request and any associated response are also treated as types, and are

serialized according to the same rules.

Examples

Serialization of a structured Java or VB type

package example.org.People;

// Java class definition

class Person

{

 String name;

 float age;

 short height;

}

// VB Type definition

Public Type Person

 name As String

 age As Single

 height As Integer

End Type

<p:Person

 xmlns:p='urn:example-org:people'>

 <name>Martin</name>

 <age>33</age>

 <height>64</height>

</p:Person>

SOAP 1.1 369

S
O

A
P

Serialization of a Java or VB array

10.4.1 Serialization of simple structured data

Serializing data structures, when each field is referred to exactly once, is straight-

forward. Each field is serialized as an embedded element, a descendant element

of the Body element, not as an immediate child. Such an element is called a single-

reference accessor, and it provides access to the data in the field at a single loca-

tion in the message. The element name used to contain the data is the same as

the field name used in the programmatic type.

package example.org.Num;

// Java class definition

class Numbers

{

 long[5] data;

}

// VB Type definition

Public Type Numbers

 data(5) As Long

End Type

<p:Numbers

 xmlns:p='urn:example-org:num'>

 <data enc:arrayType='xsd:long[5]'

xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'>

 <enc:long>2</enc:long>

 <enc:long>3</enc:long>

 <enc:long>5</enc:long>

 <enc:long>7</enc:long>

 <enc:long>9</enc:long>

 </data>

</p:Numbers>

370 Essential XML Quick Reference

Example

Serializing structured data

package example.org.People;

// Java class definitions

class PersonName

{

 String givenName;

 String familyName;

}

class Person

{

 PersonName name;

 float age;

 short height;

 public static void AddPerson (Person person);

}

// VB Type definitions

Public Type PersonName

 givenName As String

 familyName As String

End Type

Public Type Person

 name As PersonName

 age As Single

 height As Integer

End Type

Public Sub AddPerson (ByRef person As Person)

End Sub

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <p:AddPerson

SOAP 1.1 371

S
O

A
P

Java and VB definitions for a method call taking a structured type representing a

Person as a single parameter, followed by the SOAP message representing a

request to execute such a method.

10.4.2 Serialization of structured data with multiple references

In cases when a field in a data structure is referred to in several places in that

data structure (for example, in a doubly linked list), then the field is serialized as

an independent element, an immediate child element of Body, and must have an

id attribute of type ID. Such elements are called multireference accessors. They

provide access to the data in the field from multiple locations in the message.

Each reference to the field in the data structure is serialized as an empty element

with an href attribute of type IDREF, where the value of the attribute contains

the identifier specified in the id attribute on the multireference accessor pre-

ceded by a fragment identifier, #.

Example

Multireference accessors

 xmlns:p='urn:example-org:people'>

 <person>

 <name>

 <givenName>Martin</givenName>

 <familyName>Gudgin</familyName>

 </name>

 <age>33</age>

 <height>64</height>

 </person>

 </p:AddPerson>

 </soap:Body>

</soap:Envelope>

package example.org.People;

// Java class definition

class PersonName

{

 String givenName;

 String familyName;

}

372 Essential XML Quick Reference

Java definition for a method call taking two parameters both of type Person, fol-

lowed by the SOAP message representing a request to execute such a method

where both parameters refer to the same instance of Person.

10.4.3 Dealing with null references in complex data structures

In certain cases when reference types exist in a programmatic data structure

there is a need to represent a null reference. Such references are modeled in

class Person

{

 PersonName name;

 float age;

 short height;

 public static boolean Compare (Person p1, Person p2);

}

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body xmlns:p='urn:example-org:people'>

 <p:Compare>

 <p1 href='#pid1' />

 <p2 href='#pid1' />

 </p:Compare>

 <p:Person id='pid1' >

 <name>

 <givenName>Martin</givenName>

 <familyName>Gudgin</familyName>

 </name>

 <age>33</age>

 <height>64</height>

 </p:Person>

 </soap:Body>

</soap:Envelope>

SOAP 1.1 373

S
O

A
P

SOAP messages using the nil attribute in the http://www.w3.org/2001/

XMLSchema-instance namespace. Setting the value of the attribute to 1 indi-

cates that the accessor on which it appears represents a null reference.

Example

Null references

package example.org.Nodes;

// Java class definition

class Node

{

 String val;

 Node next;

 public static long ListLength (Node node);

}

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <next xmlns:xsi='http://www.w3.org/2001/XMLSchema'

 -instance xsi:nil='1' />

 <soap:Body >

 <n:ListLength xmlns:n='urn:example-org:nodes'>

 <node>

 <val>New York</val>

 <next>

 <val>Paris</val>

 <next>

 <val>London</val>

 </next>

 </next>

 </node>

 </n:ListLength>

 </soap:Body>

</soap:Envelope>

374 Essential XML Quick Reference

Java class definition for a simple linked list. The end of the list is indicated by a

null reference in the next field. A list of three items is passed in the request

message.

10.4.4 Serializing dynamically typed data

SOAP provides for serialization of dynamically typed data; that is, data typed at

run-time, through a polymorphic accessor. Such accessors look like normal

accessors apart from the presence of a type in the http://www.w3.org/

2001/XMLSchema-instance' namespace. This attribute indicates the type

the accessor actually holds. The value of this attribute may well vary from mes-

sage to message.

Example

Dynamically typed date

package example.org.Poly;

// Java definitions

class Poly

{

 public static void Execute (Object param);

}

' Visual Basic Definition

Public Sub Execute (param As Variant)

End Sub

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <p:Execute

 xmlns:p='urn:example-org:poly'

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema' >

 <param xsi:type='xsd:long' >2000</param>

SOAP 1.1 375

S
O

A
P

Java and VB definitions for a method call taking a dynamically typed parameter

followed by several SOAP messages representing a request to execute such a

method. The first SOAP message passes a parameter of type long whereas the

second passes a parameter of type Person.

10.4.5 Arrays

SOAP provides comprehensive array support. Single and multidimensional arrays

are supported, along with sparse and jagged arrays and partial transmission.

Arrays in SOAP are always of type Array in the http://schemas.xml-

soap.org/soap/encoding/ namespace, or a type derived by restriction

from that type. If they are of the Array type, they are encoded using an Array

element also in the http://schemas.xmlsoap.org/soap/encoding/

namespace. If they are of a derived type, then any element name may be used. In

 </p:Execute>

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <p:Execute

 xmlns:p='urn:example-org:poly'

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

 xmlns:pre='urn:example-org:people'>

 <param xsi:type='pre:Person' >

 <name>

 <givenName>Martin</givenName>

 <familyName>Gudgin</familyName>

 </name>

 <age>33</age>

 <height>64</height>

 </param>

 </p:Execute>

 </soap:Body>

</soap:Envelope>

376 Essential XML Quick Reference

either case, an arrayType attribute in the http://schemas.xmlsoap.org/

soap/encoding/ namespace is mandatory. The type of this attribute is string,

but it in fact indicates the type of the array along with dimension information.

Each dimension appears in square brackets after the QName for the type, sepa-

rated by commas. Each array item is serialized as an element. The name of this

element can be the type name or some arbitrary name.

Example

Simple array example

A response message containing an array of five long values. Note the value of

the arrayType attribute indicating the size of the array.

10.4.6 Multidimensional arrays

Multidimensional arrays can be encoded by specifying multiple dimensions sepa-

rated by commas inside the square brackets in the arrayType attribute. Any

number of dimensions may be specified.

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <m:MethodResponse

 xmlns:m='urn:example-org:someuri' >

 <enc:Array

 xmlns:enc='http://schemas.xmlsoap.org/soap encoding/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 enc:arrayType='xsd:long[5]' >

 <enc:long>2</enc:long>

 <enc:long>3</enc:long>

 <enc:long>5</enc:long>

 <enc:long>7</enc:long>

 <enc:long>9</enc:long>

 </enc:Array>

 </m:MethodResponse>

 </soap:Body>

</soap:Envelope>

SOAP 1.1 377

S
O

A
P

Example

Multidimensional array example

A request message containing a two-dimensional array of strings. Note the value

of the arrayType attribute indicating the type and dimensions of the array.

10.4.7 Partial transmission of arrays

In certain scenarios an array of a certain size may need to be transmitted, but

only a subset of the items needs to be sent. For such arrays the array element

is annotated with an offset attribute in the http://schemas.xml-

soap.org/soap/encoding/ namespace. The value of the offset attribute

indicates the zero-based offset of the first element. The value appears in square

brackets. Listed items are assumed to appear at contiguous locations in the

array. Items may be omitted from the end of the array.

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <m:Method

 xmlns:m='urn:example-org:some-uri' >

 <enc:Array

 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 enc:arrayType='xsd:string[2,3]' >

 <item>row 1 column 1</item>

 <item>row 1 column 2</item>

 <item>row 1 column 3</item>

 <item>row 2 column 1</item>

 <item>row 2 column 2</item>

 <item>row 2 column 3</item>

 </enc:Array>

 </m:Method>

 </soap:Body>

</soap:Envelope>

378 Essential XML Quick Reference

Example

Partial array tranmission

A request message that transmits the third, fourth, and fifth items in a nine-item array

10.4.8 Sparse arrays

Sparse arrays, those in which noncontiguous items need to be transmitted, are

also supported. Each serialized array item is annotated with a position

attribute in the http://schemas.xmlsoap.org/soap/encoding/ namespace.

The value of the position attribute is a zero-based offset of the position of the

item in the array, enclosed in square brackets.

Example

Sparse arrays

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <m:Method xmlns:m='urn:example-org:someuri' >

 <enc:Array

 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 enc:arrayType='xsd:string[9]'

 enc:offset='[2]'>

 <item>Earth</item>

 <item>Mars</item>

 <item>Jupiter</item>

 </enc:Array>

 </m:Method>

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

SOAP 1.1 379

S
O

A
P

A request message that transmits the second, fourth, and eighth items in a nine-

item array

10.4.9 Jagged arrays

SOAP supports jagged arrays, also known as arrays of arrays. The arrayType

attribute contains a type that includes empty square brackets, as many as neces-

sary to indicate how many dimensions each array has, followed by the dimen-

sions of the array of arrays in square brackets as normal. The inner array ele-

ments are also annotated with the appropriate arrayType attribute.

Examples

Jagged arrays with single-reference accessors

 <m:Method xmlns:m='urn:example-org:someuri' >

 <enc:Array

 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 enc:arrayType='xsd:string[9]' >

 <item enc:position='[1]'>Venus</item>

 <item enc:position='[3]'>Mars</item>

 <item enc:position='[7]'>Neptune</item>

 </enc:Array>

 </m:Method>

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body>

 <enc:Array

 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 enc:arrayType='xsd:string[][2]' >

 <enc:Array enc:arrayType='xsd:string[2]'>

 <item>Mercury</item>

 <item>Venus</item>

380 Essential XML Quick Reference

A request message that transmits an array of arrays of strings. Each array is

encoded using a single-reference accessor.

Jagged arrays with multireference accessors

 </enc:Array>

 <enc:Array enc:arrayType='xsd:string[6]'>

 <item>Mars</item>

 <item>Jupiter</item>

 <item>Saturn</item>

 <item>Uranus</item>

 <item>Neptune</item>

 <item>Pluto</item>

 </enc:Array>

 </enc:Array>

 </m:Method>

 </soap:Body>

</soap:Envelope>

<soap:Envelope

 xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/

 encoding/'>

 <soap:Body

 xmlns:enc='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema' >

 <m:Method xmlns:m='urn:some-uri' >

 <enc:Array enc:arrayType='xsd:string[][2]' >

 <item href='#id1' />

 <item href='#id2' />

 </enc:Array>

 </m:Method>

 <enc:Array id='id1' enc:arrayType='xsd:string[2]'>

 <item>Mercury</item>

 <item>Venus</item>

 </enc:Array>

 <enc:Array id='id2'

 enc:arrayType='xsd:string[6]'>

 <item>Mars</item>

 <item>Jupiter</item>

SOAP 1.1 381

S
O

A
P

A request message that transmits an array of arrays of strings. Each array is

encoded using a multireference accessor.

10.5 Introduction to the SOAP HTTP binding

SOAP defines a binding to the HTTP protocol. This binding describes the relation-

ship between parts of the SOAP request message and various HTTP headers. All

SOAP requests use the HTTP POST method and specify at least three HTTP head-

ers: Content-Type, Content-Length, and a custom header SOAPAction.

The actual SOAP message is passed as the body of the request or response.

10.5.1 Content-Type

Content-Type: text/xml; charset=character encoding

The Content-Type header for SOAP requests and responses specifies the

MIME type for the message and is always text/xml. It may also specify the

character encoding used for the XML body of the HTTP request or response. This

follows the text/xml part of the header values.

Example

Use of Content-Type

An example Content-Type header in an HTTP request

 <item>Saturn</item>

 <item>Uranus</item>

 <item>Neptune</item>

 <item>Pluto</item>

 </enc:Array>

 </soap:Body>

</soap:Envelope>

POST /endpoint.pl HTTP/1.1

Content-Type: text/xml

382 Essential XML Quick Reference

10.5.2 Content-Length

The Content-Length header for SOAP requests and responses is set to the

number of bytes in the body of the request or response.

Examples

Use of Content-Length

An example Content-Length header in an HTTP request. The request is

encoding using an 8-bit encoding format.

Use of Content-Length with charset

An example Content-Length header in an HTTP request. The request is

encoding using a 16-bit encoding format.

POST /endpoint.pl HTTP/1.1

Content-Type: text/xml

Content-Length: 167

SOAPAction: urn:example-org:demos#Method

<s:Envelope

 xmlns:s='http://schemas.xmlsoap.org/soap/envelope/' >

 <s:Body>

 <m:Method xmlns:m='urn:example-org:demos' />

 </s:Body>

</s:Envelope>

POST /endpoint.pl HTTP/1.1

Content-Type: text/xml; charset=UTF-16

Content-Length: 167

SOAPAction: urn:example-org:demos#Method

<s:Envelope

 xmlns:s='http://schemas.xmlsoap.org/soap/envelope/' >

 <s:Body>

 <m:Method xmlns:m='urn:example-org:demos' />

 </s:Body>

</s:Envelope>

SOAP 1.1 383

S
O

A
P

10.5.3 SOAPAction

The SOAPAction header indicates to the HTTP server that the request is a SOAP

request. The value of the header is a URI. Beyond that, its value is undefined.

Example

Use of SOAPAction

An example SOAPAction header in an HTTP request. The string preceding the #

is the namespace name of the first child of the Body element whereas the string

following the # is the local name of that element.

10.6 References

For more on SOAP specification, please visit

http://www.w3.org/TR/SOAP/

POST /endpoint.pl HTTP/1.1

Content-Type: text/xml; charset=UTF-16

Content-Length: 167

SOAPAction: urn:example-org:demos#Method

<s:Envelope

 xmlns:s='http://schemas.xmlsoap.org/soap/envelope/' >

 <s:Body>

 <m:Method xmlns:m='urn:example-org:demos' />

 </s:Body>

</s:Envelope>

385

Index

!=, 39, 48–49
," 3, 10
&, 10
', 3, 10
*, 20, 39, 45, 51
+, 20, 51
-, 2, 39, 51
-->, 7, 8
., 2
/, 39
//, 39
/>, 1
:, 2
;, 10
< 1, 10, 11, 39, 51
<!--, 7
<![CDATA[, 11
</, 1
<=, 39, 51
<?xml, 11
=, 5, 39, 48–49
>, 1, 10, 39, 51
>=, 39, 51
?, 20
?>, 7, 11
[...], 46
]]>, 11
_, 2
|, 39, 40

A
Absolute location paths, 39
Absolute URI references, 231
abstract attribute, 310, 315
Accessors

multireference, 371–372, 380–381
polymorphic, 374
single-reference, 369, 379–380

actor attribute, 364–365
Aliasing of URI, 123

all element, 288, 289, 291–292, 323
&, 9–10
ancestor axis, 41, 42
ancestor-or-self axis, 41, 42
and, 39, 48
annotation element, 287, 289, 293
any attribute, 19, 126
anyAttribute element, 289, 297–300
any element, 288, 289, 293–297
anyURI type, 229–231
', 9–10
appendChild (Node/IXMLDOMNode

member), 219
appendData (CharacterData/

IXMLDOMCharacterData member), 198
appinfo element, 289, 300–301
apply-imports element, 97, 99–100, 136
apply-templates element, 97, 100–102,

134, 136
document used with, 151

Arrays, 368, 375–381
jagged (arrays of arrays), 379–381
multidimensional, 376–377
partial transmission of, 377–378
sparse, 378–379

arrayType attribute, 376, 379
attribute type, 21–22
ATTLIST, 18, 21–23
Attribute(s), 1, 5–6, 13

from, 125
abstract, 310, 315
accessing name and value of, 196
any, 19, 126
arrayType, 376, 379
attributeForm, 341
base, 282, 321, 338, 339
block, 310–311, 315
blockDefault, 341
case-order, 134
cdata-section-elements, 129

continued

386 Essential XML Quick Reference

count, 125
data, 5
data-type, 134
decimal-separator, 112
default, 302, 315
digit, 112
disable-output-escaping, 140, 143
doctype-public, 129
doctype-system, 129
elementForm, 341
elements, 132, 135
encoding, 11, 12, 129
exclude-result-prefixes, 142
extension-element-prefixes, 142
final, 281, 311, 316
finalDefault, 341–342
#FIXED, 22
fixed, 302, 316
form, 302, 316
format, 125, 126–127
grouping-separator, 112, 125
grouping-size, 125
href, 80, 117, 118
id, 142, 281, 282, 283, 285, 291, 293, 294,

298, 302, 306, 308, 309, 311, 317, 321,
324, 326, 327, 330, 331, 333, 334,
335, 338, 342, 345, 346, 348, 349

#IMPLIED, 22
indent, 129
infinity, 112
instance, 350–354

nil, 350–351
noNamespaceSchemaLocation,

351–352
schemaLocation, 352–353
type, 353–354

itemType, 283
lang, 125, 134
letter-value, 125
level, 125
match, 119, 136, 137
maxOccurs, 291, 294, 308, 317, 326, 346
media-type, 129
memberTypes, 285
metadata, 5
method, 129
minOccurs, 291, 294, 308, 317, 326, 346
minus-sign, 112
mixed, 309, 311
mode, 101, 137, 139–140
multiple, 126

name, 103, 105, 106, 112, 114, 119, 131,
133, 136, 137, 144, 145, 148, 281,
303, 306, 311, 317, 326, 331, 333,
334, 349

namespace, 103, 114, 294–295, 298, 327
namespaces and, 6
NaN, 112
nil, 373
nillable, 317
offset, 377
omit-xml-declaration, 129
order, 134
parse, 80
pattern-separator, 112
percent, 112
per-mille, 112
position, 378
priority, 137, 139–140
process, 295, 298
public, 334
qualified, 6
ref, 303, 306, 317, 326
refer, 333
#REQUIRED, 22
result-prefix, 123
schemaLocation, 328, 330, 335
select, 101, 131, 134, 143, 144, 145, 148
single, 126
in SOAP 1.1, 364–367

actor, 364–365
encodingStyle, 365–366
mustUnderstand, 366–367

source, 301, 313
standalone, 11, 129
string value, 38
stylesheet-prefix, 123
substitution, 318
system, 334
target, 342
terminate, 122
test, 148
type, 303, 318
unqualified, 6
use, 120, 303
use-attribute-sets, 105, 109, 114
value, 22, 125
version, 11, 129, 142, 342
xml:lang, 313, 342
xpath, 324–325, 345
zero-digit, 112

attribute axis, 42, 43

Index 387

Attribute declaration(s)
global, 301–302, 304
local, 302, 304–305

attribute element (XSLT), 97, 102–104
attribute element (XML Schema), 287, 289,

301–305
Attribute enumerations, 22–23
attributeForm attribute, 341
attributeGroup element, 287, 289, 306–307
attribute-set element, 98, 104–106
AttributesImpl class, 162
attributes interface, 160, 161, 162–166
attributes (Node/IXMLDOMNode member), 218
Attribute string value, 38
attribute type, 21–22

built-in template descriptions for, 93
location-set range based on, 76

Attribute value templates, 94–95, 103, 104
Attr interface, 194, 195–196
Axis/axes, 41–44

ancestor, 41, 42
ancestor-or-self, 41, 42
attribute, 42, 43
child, 41, 42
descendant, 41, 42
descendant-or-self, 41, 42
following, 41, 42
following-sibling, 41, 42
namespace, 42, 43
parent, 41, 42
of point location, 73
preceding, 42
preceding-sibling, 42, 43
of range location, 73
self, 41, 42

Axis identifier, 40

B
Bare names, 69, 71–72
base64Binary type, 231–232
base attribute, 282, 321, 338, 339
block attribute, 310–311, 315
blockDefault attribute, 341
Block escape, 11
boolean-expression expression, 89
Boolean expressions, 37, 38, 39, 48, 49, 54, 58
boolean function, 53–54
boolean type, 50, 63, 232
byte type, 227, 232–234

C
call-template element, 97, 106–107
call-template instruction, 146
Carriage return character, 8, 95
case-order attribute, 134
Case sensitivity, 2
cdata-section-elements, 129
CDATASection interface, 197
CDATA type, 11, 21
ceiling function, 53, 55
CharacterData interface, 197–199
Character-point, 73
Character references, 13
characters (ContentHandler/

IVBSAXContentHandler member), 167
char type, 89
child axis, 41, 42
childList (IXMLDOMNode member), 218
Children

content model definition of, 19
of documents, 7
of elements, 1, 7

all, 312, 326, 338
annotation, 282, 283, 285, 292, 299,

304, 306, 309, 312, 318, 325, 326,
328, 330, 331, 333, 334, 336, 338,
343, 345, 347, 348, 349

any, 347
anyAttribute, 306, 312, 338
appinfo, 293
attribute, 306, 312, 338, 343
attributeGroup, 306, 312, 336, 338,

343
choice, 312, 326, 338, 347
complexContent, 312
complexType, 318, 336, 343
documentation, 293
element, 292, 343, 347
enumeration, 282, 338
extension, 309, 348
field, 331, 333, 349
fractionDigits, 282, 338
group, 312, 336, 338, 343, 347
import, 343
include, 343
key, 318
keyref, 318
length, 282, 338
list, 282

continued

388 Essential XML Quick Reference

maxExclusive, 282, 338
maxInclusive, 282, 338
maxLength, 282, 338
minExclusive, 282, 338
minInclusive, 282, 338
minLength, 282, 338
notation, 343
pattern, 282, 338
qualified, 313
redefine, 343
restriction, 282, 309, 348
selector, 331, 333, 349
sequence, 312, 326, 338, 347
simpleContent, 312
simpleType, 282, 283, 285, 304, 318,

336, 338, 343
totalDigits, 282, 338
union, 282
unique, 318
unqualified, 313
whitespace, 282
whiteSpace, 338

serialization rules applied to, 368
Child sequences, 69, 72
choice element, 288, 289, 307–309
choose element, 97, 107–108, 116
Classes, 368

AttributesImpl, 162
DefaultHandler, 162
InputSource, 160, 162
LocatorImpl, 162
NamespaceSupport, 162
SAXException, 162
SAXNotRecognizedException, 162
SAXNotSupportedException, 162
SAXParseException, 162
XMLFilterImpl, 162
XMLReaderFactory, 162

cloneNode (Node/IXMLDOMNode member), 219
Close tag, 1, 13
Coercion function, 148
comment element, 97, 108–109

string value, 38
comment() identifier, 46
Comment interface, 199
Comments, 7–8
complexContent element, 289, 309
complexType element, 287, 289, 310–313
concat function, 53, 55
Conditional template, 116
Conflict resolution in XSLT, 91–92
contains function, 53, 55

contentHandler (IVBSAXXMLReader property),
186

ContentHandler interface, 160, 161, 166–174
Content-Length header, 382–383
Content model, 19
Content-Type header, 381–382
Context node, 39–40
Context node-set, 39–40
copy element, 97, 109–110
copy-of element, 97, 110–111
count attribute, 125
count function, 53, 56
createAttribute (Document/IXMLDOMDocument

member), 202
createAttributeNS (Document member), 203
createCDATASection (Document/

IXMLDOMDocument member), 202
createComment (Document/IXMLDOMDocument

member), 202
createDocumentFragment (Document/

IXMLDOMDocument member), 201
createDocument (DOMImplementation

member), 207
createDocumentType (DOMImplementation

member), 207
createElement (Document/IXMLDOMDocument

member), 201
createElementNS (Document member), 203
createEntityReference

(IXMLDOMDocument member), 202
createProcessingInstruction (Document/

IXMLDOMDocument member), 202
createTextNode (Document/

IXMLDOMDocument member), 202
Cross-references, key to process, 120–121
Curly braces, 95
current function, 149–150

D
data (IXMLDOMCharacterData property), 198
data (IXMLDOMProcessingInstruction member), 226
Data attributes, 5
data-type attribute, 134
Datatypes. See also Schema datatypes

XPath, 37–38
XSLT, 89–90

Date and time datatypes (XML Schema)
date, 233–234
dateTime, 228, 234–235
duration, 228, 237–238
gDay, 228, 241
gMonth, 228, 242

Index 389

gMonthDay, 228, 242–243
gYear, 228, 243–244
gYearMonth, 228, 244
time, 228, 261–262

decimal-format element, 98, 111–113
decimal-separator attribute, 112
decimal type, 227, 235–236
DecimalUnicodeValue, 13
Declaration(s)

attribute
global, 301–302, 304
local, 302, 304–305

element, 19–21
global, 312, 314–315, 318–320
local, 314–315, 319, 344

namespace, 2–5, 13
scope of, 3

XML, 11–12
Declarative transformation, 87–88, 136, 138–139
DeclHandler interface, 160, 162
decl-handler (SAX property), 191
default attribute, 302, 315
DefaultHandler class, 162
deleteData (CharacterData/

IXMLDOMCharacterData member), 198
descendant axis, 41, 42
descendant-or-self axis, 41, 42
detail element, 362
digit attribute, 112
disable-output-escaping attribute, 140, 143
div operator, 39, 51
DOCTYPE, 15–19, 24

external, 16, 17–19
internal, 16–17, 18–19
syntax, 16

docType (IXMLDOMDocument property), 201
doctype-public attribute, 129
doctype-system attribute, 129
Document(s)

children of, 7
stand-alone, 12

documentation element, 289, 313–314
documentElement (IXMLDOMDocument

property), 201
Document element. See Element(s)
Document entity, 24
DocumentFragment interface, 205
document function, 149, 150–152
Document interface, 194, 199–204
documentLocator (IVBSAXContentHandler

property), 167
Document Object Model. See DOM Level 2

Document order, 37
Document type definitions (DTDs), 15–33

ATTLIST, 18, 21–23
DOCTYPE, 15–19, 24

external, 16, 17–19
internal, 16–17, 18–19
syntax, 16

ELEMENT, 19–21
ENTITY, 18, 24–31

general vs. parameter, 24, 25, 29, 30
internal vs. external, 24, 25–30
parsed vs. unparsed, 24, 25, 30–31
syntax, 24

INCLUDE and IGNORE, 32–33
NOTATION, 31–32

DocumentType interface, 205–206
DOMImplementation interface, 194, 206–207
DOM Level 2, 35, 193–226

interfaces, 193–226
Attr, 194, 195–196
CDATASection, 197
CharacterData, 197–199
Comment, 199
Document, 194, 199–204
DocumentFragment, 205
DocumentType, 205–206
DOMImplementation, 194, 206–207
Element, 194, 207–211
Entity, 211–212
EntityReference, 212
NamedNodeMap, 212–215
Node, 215–222
NodeList, 223–225
Notation, 225
ProcessingInstruction, 194, 225–226

UML quick reference, 193, 194
dom-node (SAX property), 190
double type, 228, 236–237
DTDHandler interface, 160, 161, 175–177
dtdHandler (IVBSAXXMLReader property), 187
DTDs. See Document type definitions (DTDs)
duration datatype, 228, 237–238

E
Element(s), 1–5

if, 97, 116–117
annotated with attributes, 5–6
apply-imports, 97, 99–100, 136
apply-templates, 97, 100–102, 136

document used with, 151
associating with namespace, 3
attribute, 97, 102–104

continued

390 Essential XML Quick Reference

attribute-set, 98, 104–106
attributes of. See Attribute(s)
call-template, 97, 106–107
child

all, 312, 326, 338
annotation, 282, 283, 285, 292, 299,

304, 306, 309, 312, 318, 325, 326,
328, 330, 331, 333, 334, 336, 338,
343, 345, 347, 348, 349

any, 347
anyAttribute, 306, 312, 338
appinfo, 293
attribute, 306, 312, 338, 343
attributeGroup, 306, 312, 336, 338, 343
choice, 312, 326, 338, 347
complexContent, 312
complexType, 318, 336, 343
documentation, 293
element, 292, 343, 347
enumeration, 282, 338
extension, 309, 348
field, 331, 333, 349
fractionDigits, 282, 338
group, 312, 336, 338, 343, 347
import, 343
include, 343
key, 318
keyref, 318
length, 282, 338
list, 282
maxExclusive, 282, 338
maxInclusive, 282, 338
maxLength, 282, 338
minExclusive, 282, 338
minInclusive, 282, 338
minLength, 282, 338
notation, 343
pattern, 282, 338
qualified, 313
redefine, 343
restriction, 282, 309, 348
selector, 331, 333, 349
sequence, 312, 326, 338, 347
simpleContent, 312
simpleType, 282, 283, 285, 304, 318,

336, 338, 343
totalDigits, 282, 338
union, 282
unique, 318
unqualified, 313
whitespace, 282
whiteSpace, 338

children of, 7
choose, 97, 107–108, 116
comment, 97, 108–109
copy, 97, 109–110
copy-of, 97, 110–111
decimal-format, 98, 111–113
detail, 362
element, 97, 113–114
fallback, 98, 114–115
faultactor, 362
faultcode, 360–361
faultstring, 361
for-each, 97, 115–116
import, 96, 98, 117–118
include, 96, 98, 118–119
key, 98, 119–121
message, 98, 121–122
namespace-alias, 98, 122–124
namespace declarations of, 1
number, 98, 124–128
otherwise, 97, 128
output, 98, 128–130
param, 96, 130–132, 137
preserve-space, 98, 132, 135
processing-instruction, 97, 133

string value, 38
qualified, 4–5
in SOAP 1.1, 358–364

Body, 358–359
Envelope, 360
Fault, 360–363
Header, 363–364

sort, 97, 133–135
string value, 38
strip-space, 98, 99, 132, 135
template, 96, 99, 136–140
testing for, 153
text, 97, 140–141
transform, 136
transform (stylesheet), 96, 136,

141–142
unqualified, 3–4
value-of, 97, 143
variable, 96, 99, 144–147
when, 97, 147–148
with-param, 97, 148

element-available function, 149,
152–153

ELEMENT declaration, 19–21
global, 312, 314–315, 318–320
local, 314–315, 319, 344

element element (XSLT), 97, 113–114

Index 391

element element (XML Schema), 287, 288, 289,
314–320

elementForm attribute, 341
Element interface, 194, 207–211
elements attribute, 132, 135
element type

built-in template descriptions for, 93
location-set start-point based on, 78

EMPTY, 19
Empty string, 4
encoding attribute, 11, 12, 129
encodingStyle attribute, 365–366
endDocument (ContentHandler/

IVBSAXContentHandler member), 167
end-point function, 74–75
endPrefixMapping (ContentHandler/

IVBSAXContentHandler member), 167
ENTITIES type, 22
entities (IXMLDOMDocumentType property), 206
Entity(ies), 18, 24–31

document, 24
general vs. parameter, 24, 25, 29, 30
internal vs. external, 24, 25–30
parsed vs. unparsed, 24, 25, 30–31
syntax, 24

Entity interface, 211–212
EntityReference interface, 212
EntityResolver interface, 160, 161,

177–178
entityResolver (IVBSAXXMLReader property),

187
ENTITY type, 22
enumeration facet, 267–268
Equality expressions, 39, 48–50
Equality types, precedence of, 50
ErrorHandler interface, 160, 161, 178–181
errorHandler (IVBSAXXMLReader property), 187
error (ErrorHandler/IVBSAXErrorHandler

member), 179
exclude-result-prefixes attribute, 142
Exemplar-based transformations, 86, 88
expression expression, 89
Expressions

XPath, 38–39
basic, 48–52
location path, 39–47

XSLT, 89–90
extension-element-prefixes attribute, 142
extension element, 290, 320
External DTD subset, 16, 17–19
external-general-entities (SAX feature),

190

external-parameter-entities (SAX
feature), 190

F
Facets, 267–280

enumeration, 267–268
fractionDigits, 268–269
length, 269–270
maxExclusive, 270–271
maxInclusive, 271–272
maxLength, 272–274
minExclusive, 274–275
minInclusive, 275–276
minLength, 276–277
pattern, 277–278
totalDigits, 278–279
whiteSpace, 279–280

fallback element, 98, 114–115
false function, 56
fatalError (ErrorHandler/IVBSAXErrorHandler

member), 179
faultactor element, 362
faultcode element, 360–361
faultstring element, 361
Features, SAX, 190–191
field element, 288, 324–325
final attribute, 281, 311, 316
finalDefault attribute, 341–342
firstChild (IXMLDOMNode property), 218
#FIXED attribute, 22
fixed attribute, 302, 316
float type, 228, 240–241
floor function, 53, 56–57
following axis, 41, 42
following-sibling axis, 41, 42
for-each element, 97, 115–116, 134

document used with, 151–152
format attribute, 125, 126–127
format-number function, 111, 149, 153–154
form attribute, 302, 316
fractionDigits facet, 268–269
Fragment identifier, 69
from attribute, 125
Full XPointers, 70–71
Function(s)

boolean, 53–54
ceiling, 53, 55
coercion, 148
concat, 53, 55
contains, 53, 55
count, 53, 56
current, 149–150

continued

392 Essential XML Quick Reference

document, 149, 150–152
element-available, 149, 152–153
end-point, 74–75
false, 56
floor, 53, 56–57
format-number, 111, 149, 153–154
function-available, 149, 154–155
generate-id, 149, 155
here, 75
id, 52, 57
key, 149, 155–156
lang, 52, 58
last, 52, 58
local-name, 52, 59
name, 52, 59
namespace-uri, 52, 60
normalize-space, 53, 60
not, 53, 61
number, 37, 38, 49, 53, 54, 61–62
origin, 75–76
position, 52, 62
range, 76–77
range-inside, 77
range-to, 77–78
round, 53, 62
start-point, 78,
starts-with, 53, 63
string, 37, 38, 49, 53, 54, 63–64
string-length, 53, 64
substring, 53, 64–65
substring-after, 53, 65
substring-before, 53, 65
sum, 53, 66
system-property, 149, 156
translate, 53, 66
true, 67
unparsed-entity-uri, 149, 157

function-available function, 149, 154–155

G
gDay datatype, 228, 241
General entities, 24, 25, 29, 30
generate-id function, 149, 155
getAttribute (Element/IXMLDOMElement

member), 209
getAttributeNode (Element/

IXMLDOMElement member), 209
getAttributeNodeNS (Element/

IXMLDOMElement member), 210
getAttributeNS (Element/IXMLDOMElement

member), 210

getAttributes (Node/IXMLDOMNode
member), 218

getChildNodes (Node/IXMLDOMNode
member), 218

getContentHandler (XMLReader member), 186
getData (CharacterData member), 198
getData (IXMLDOMProcessingInstruction

member), 226
getDocType (Document member), 201
getDocumentElement (Document member), 201
getDocumentLocator (ContentHandler

member), 167
getDTDHandler (XMLReader member), 187
getElementById (Document member), 203
getElementsByTagName (Document/

IXMLDOMDocument member), 202
getElementsByTagName (Element/

IXMLDOMElement member), 210
getElementsByTagNameNS (Document

member), 203
getElementsByTagNameNS (Element

member), 210
getEntities (DocumentType member), 206
getEntityResolver (XMLReader member), 187
getErrorHandler (XMLReader member), 187
getFeature (XMLReader/IVBSAXXMLReader

member), 187
getFirstChild (Node member), 218
getImplementation (Document member), 201
getIndexFromName (IVBSAXAttributes

member), 164
getIndexFromQName (IVBSAXAttributes

member), 164
getInternalSubset (Document member), 206
getLastChild (Node member), 218
getLength (NodeList member), 223
getLength (Attributes member), 163
getLength (CharacterData member), 198
getLocalName (Attributes member), 163
getLocalName (Node member), 219
getNamedItem (NamedNodeMap/

IXMLDOMNamedNodeMap member), 213
getNamedItemNS (NamedNodeMap member), 214
getName (DocumentType member), 205
getName (Attribute member), 195
getNamespaceURI (Node member), 219
getNextSibling (Node member), 218
getNodeName (Node member), 218
getNodeType (Node member), 218
getNodeValue (Node member), 218
getNotationName (Entity member), 212

Index 393

getNotations (DocumentType member), 206
getOwnerDocument (Node member), 218
getOwnerElement (Attribute member), 195
getParentNode (Node member), 218
getPrefix (Node member), 219
getPreviousSibling (Node member), 218
getProperty (XMLReader/IVBSAXXMLReader

member), 187
getPublicId (DocumentType member), 206
getPublicId (Notation member), 225
getPublicId (Entity member), 212
getQName (Attributes/IVBSAXAttributes member),

164
getQualifiedItem (IXMLDOMNamedNodeMap

member), 214
getSpecified (Attribute member), 195
getSystemId (DocumentType member), 206
getSystemId (Notation member), 225
getSystemId (Entity member), 212
getTagName (Element member), 209
getTarget (ProcessingInstruction member), 226
getTypeFromName (IVBSAXAttributes member),

164
getTypeFromQName (IVBSAXAttributes

member), 164
getType (Attributes/IVBSAXAttributes member),

164
getURI (Attributes/IVBSAXAttributes member), 163
getValueFromName (IVBSAXAttributes

member), 164
getValueFromQName (IVBSAXAttributes

member), 164
getValue (Attributes/IVBSAXAttributes member),

164
getValue (Attr member), 195
Global attribute declaration, 301–302, 304
Global element declaration, 312, 314–315,

318–320
gMonth datatype, 228, 242
gMonthDay datatype, 228, 242–243
grouping-separator attribute, 112, 125
grouping-size attribute, 125
group element, 287, 288, 289, 290, 325–327
>, 9–10
gYear datatype, 228, 243–244
gYearMonth datatype, 228, 244

H
hasAttribute (Element member), 210
hasAttributeNS (Element member), 210
hasAttributes (Node member), 219

hasChildNodes (Node/IXMLDOMNode
member), 219

hasFeature (DOMImplementation/
IXMLDOMImplementation member), 207

here function, 75
hexBinary type, 245
href attribute, 80, 117, 118
Hypertext Transfer Protocol (http), 357

I
id attribute, 142, 281, 282, 283, 285, 291, 293,

294, 298, 302, 306, 308, 309, 311, 317,
321, 324, 326, 327, 330, 331, 333, 334,
335, 338, 342, 345, 346, 348, 349

id function, 52, 57
IDREFS type, 22
IDREF type, 22
ID type, 21
if element, 97, 116–117
ignorableWarning (IVBSAXErrorHandler

member), 179
ignorableWhitespace (ContentHandler/

IVBSAXContentHandler member), 167
IGNORE, 32–33
implementation (IXMLDOMDocument

property), 201
#IMPLIED attribute, 22
import element (XSLT), 96, 98, 117–118
import element (XML Schema), 287, 288,

327–329
importNode (Document member), 202–203
INCLUDE, 32–33
include element (XSLT), 96, 98, 118–119
include element (XML Schema), 287, 288,

329–330
include namespace, 79
indent attribute, 129
infinity attribute, 112
InputSource class, 160, 162
insertBefore (Node/IXMLDOMNode member),

219
insertData (CharacterData/

IXMLDOMCharacterData member), 198
Instance attributes, 350–354

nil, 350–351
noNamespaceSchemaLocation, 351–352
schemaLocation, 352–353
type, 353–354

integer type, 227, 248–249
Interfaces, DOM

Attr, 195–196
continued

394 Essential XML Quick Reference

CDATASection, 197
CharacterData, 197–199
Comment, 199
Document, 199–204
DocumentFragment, 205
DocumentType, 205–206
DOMImplementation, 206–207
Element, 207–211
Entity, 211–212
EntityReference, 212
NamedNodeMap, 212–215
Node, 215–222
NodeList, 223–224
Notation, 225
ProcessingInstruction, 225–226
Text, 226

Interfaces, SAX
Attributes, 160, 161, 162–166
ContentHandler, 160, 161, 166–174
DeclHandler, 160, 162
DTDHandler, 160, 161, 175–177
EntityResolver, 160, 161, 177–178
ErrorHandler, 160, 161, 178–181
LexicalHandler, 160, 162
Locator, 160, 161, 181–183
XMLFilter, 160, 161, 183–185
XMLReader, 160, 161, 185–189

Internal DTD subset, 16–17, 18–19
int type, 227, 247–248
ISO–10646 characters, 12, 13
isSupported (Node member), 219
item (NamedNodeMap/

IXMLDOMNamedNodeMap member), 214
item (NodeList/IXMLDOMNodeList member), 223
itemType attribute, 283

J
Jagged arrays (arrays of arrays), 379–381
Java

Attributes in, 163, 164–165
Attr in, 195, 196
CharacterData in, 197, 198
ContentHandler in, 166–167, 169,

170–172, 179, 180
Document in, 200, 204
DocumentType in, 205
DOMImplementation in, 206, 207
DTDHandler in, 175–176
Element in, 208, 211
Entity in, 211
EntityReference in, 212
EntityResolver in, 177, 178

Locator in, 181, 182
NameNodeMap in, 212–213, 214–215
Node in, 215–216, 220, 221–222
NodeList in, 223
Notation in, 225
ProcessingInstruction in, 225
serialization of array, 369
serialization of structured type, 368
Text in, 226
XMLFilter in, 183, 184
XMLReader in, 185–186, 188

K
key element, 98, 119–121
key function, 149, 155–156
keyref element, 288, 289, 332, 333
key element, 288, 289, 330–332

L
lang attribute, 125, 134
lang function, 52, 58
Language constructs, 280–286

list, 283–284
restriction, 282–283
simpleType, 281–282
union, 284–286

language type, 249
lastChild (IXMLDOMNode property), 218
last function, 52, 58
length facet, 269–270
length (IVBSAXAttributes property), 163
length (IXMLDOMCharacterData property), 198
letter-value attribute, 125
level attribute, 125
LexicalHandler interface, 160, 162
lexical-handler (SAX property), 191
Lexical space, 229
Line feed character, 8
list, 283–284
Literals, prohibited character, 9–10
Local attribute declaration, 302, 304–305
Local element declarations, 314–315, 319, 344
local-name function, 52, 59
Location path, 35, 39
Location path expressions, 39–47

axis, 41–44
example of, 40
location path abbreviations, 47
location steps, 40–41
node test, 44–46, 54, 57
predicates, 46–47

LocatorImpl class, 162

Index 395

Locator interface, 160, 161, 181–183
long type, 227, 250
Loops, for-each, 97, 115–116
<, 9–10

M
match attribute, 119, 136, 137
maxExclusive facet, 270–271
maxInclusive facet, 271–272
maxLength facet, 272–274
maxOccurs attribute, 291, 294, 308, 317, 326,

346
media-type attribute, 129
memberTypes attribute, 285
message element, 98, 121–122
Metadata attributes, 5
method attribute, 129
MIME types, 31
minExclusive facet, 274–275
minInclusive facet, 275–276
minLength facet, 276–277
minOccurs attribute, 291, 294, 308, 317, 326,

346
minus-sign attribute, 112
mixed attribute, 309, 311
mod operator, 39, 51
mode attribute, 101, 137, 139–140
Multidimensional arrays, 376–377
multiple attribute, 126
Multireference accessors, 371–372, 380–381
mustUnderstand attribute, 366–367

N
Name, node test by, 44–45
Name and string datatypes

hierarchy of, 23
Name, 229, 251
NCName, 229, 251–252
normalizedString, 229, 256–257
QName, 229, 259
string, 229, 260–261
token, 229, 262–263

name attribute, 103, 105, 106, 112, 114, 119,
131, 133, 136, 137, 144, 145, 148, 281,
303, 306, 311, 317, 326, 331, 333, 334,
349

name (IXMLDOMAttribute member), 195
name (IXMLDOMDocumentType property), 205
NamedNodeMap interface, 212–215
name function, 52, 59
Namespace(s), 1–14

associating element with, 3

attributes and, 6
string value, 38
XInclude, 79

namespace-alias element, 98, 122–124
namespace attribute, 103, 114, 294–295, 298,

327
namespace axis, 42, 43
Namespace declarations, 1, 2–5, 13

scope of, 3
Namespace prefix, 3, 13
namespace-prefixes (SAX feature), 190
namespaces (SAX feature), 190
NamespaceSupport class, 162
namespace type

location-set range based on, 76
location-set start-point based on, 78

namespace-uri function, 52, 60
namespaceURI (IXMLDOMNode property), 217
Name wildcard, 45
NaN attribute, 112
NCNames, 3
negativeInteger type, 227, 252–253
New line character, 95
nextSibling (IXMLDOMNode property), 218
nil attribute, 350–351, 373
nillable attribute, 317
NMTOKENS type, 22
NMTOKEN type, 22
nodeFromID (IXMLDOMDocument member), 203
node() identifier, 46
Node interface, 215–222
NodeList interface, 223–225
nodeName (IXMLDOMNode property), 218
Node-point, 73
Node-set(s), 35, 36, 38, 72

equality/inequality, 49
looping through, 116
sorting, 134–135
union of, 155–156

node-set-expression expression, 89
node-set type, 63, 150, 151
Node string-value, 38
Node test, 40, 44–46, 54, 57

by name, 44–45
by type, 45–46
in XPointer, 74

nodeType (IXMLDOMNode property), 218
nodeValue (IXMLDOMNode property), 218
noNamespaceSchemaLocation attribute,

351–352
nonNegativeInteger type, 227, 254–255
nonPositiveInteger type, 227, 255–256

396 Essential XML Quick Reference

normalize (Node member), 219
normalize-space function, 53, 60
NOTATION (DTD), 31–32
Notation interface, 225
notation element, 287, 289, 333–335
NOTATION type, 22not function, 53, 61
notationName (IXMLDOMEntity property),

212notations (IXMLDOMDocumentType
property), 206

number element, 98, 124–128
number-expression expression, 89
number function, 37, 38, 49, 53, 54, 61–62
number type, 50, 63
Numerical expressions, 39, 51–52
Numeric datatypes (XML Schema)

byte, 227, 232–234
decimal, 227, 235–236
double, 228, 236–237
float, 228, 240–241
hierarchy of, 230
int, 227, 247–248
integer, 227, 248–249
long, 227, 250
negativeInteger, 227, 252–253
nonNegativeInteger, 227, 254–255
nonPositiveInteger, 227, 255–256
positiveInteger, 227, 258–259
short, 227, 259–260
unsignedByte, 228, 263–264
unsignedInt, 228, 264–265
unsignedLong, 228, 265–266
unsignedShort, 228, 266

O
Occurrence modifiers, 19–20
offset attribute, 377
omit-xml-declaration attribute, 129
Open tag, 1, 13
or, 39, 48
order attribute, 134
origin function, 75–76
other type, 54, 57, 63, 151, 156

location-set range based on, 76
otherwise element, 97, 128
output element, 98, 128–130
ownerDocument (IXMLDOMNode property), 218

P
param element, 96, 130–132, 137
Parameter entities, 24, 25
parent axis, 41, 42

parentNode (IXMLDOMNode property), 218
parse attribute, 80
Parsed entities, 24, 25, 30
parse (XMLReader/IVBSAXXMLReader member),

187
parseURL (IVBSAXXMLReader member), 187
pattern expression, 90
pattern facet, 277–278
Patterns, 90–91
pattern-separator attribute, 112
#PCDATA, 19
percent attribute, 112
per-mille attribute, 112
Point location, 73, 74
point type

location-set range based on, 76
location-set start-point based on, 78

Polymorphic accessor, 374
position attribute, 378
position function, 52, 62
positiveInteger type, 227, 258–259
Precedence of equality types, 50
preceding axis, 42
preceding-sibling axis, 42, 43
Predicates, 40, 46–47
Prefix, namespace, 3, 13
prefix (IXMLDOMNode property), 219
preserve-space element, 98, 132, 135
previousSibling (IXMLDOMNode property), 218
priority attribute, 137, 139–140
Procedural programming model, 136
Procedural transformation, 86–87, 137–138
process attribute, 295, 298
Processing instruction element, 97, 133

string value, 38
processing-instruction() identifier, 46
ProcessingInstruction interface, 194,

225–226
processingInstruction (ContentHandler/

IVBSAXContentHandler member), 167
processing instruction type, location-set

start-point based on, 78
Processor-specific element, testing for, 153
Prohibited character literals, 9–10
Properties, SAX, 190–191
Property(ies)

vendor, 156
vendor-url, 156
version, 156

public attribute, 334
Public identifier, 17–18

Index 397

publicId (IXMLDOMEntity property), 212
publicId (IXMLDOMNotation property),

225PUBLIC token, 17
putFeature (IVBSAXXMLReader member), 187
putProperty (IVBSAXXMLReader member), 187

Q
QNames type, 89
QName test, 45
QName type, 3, 89
Qualified attributes, 6
Qualified elements, 4–5
Qualified name, 3
", 9–10

R
range function, 76–77
range-inside function, 77
range location, 73, 74
range-to function, 77–78
range type, location-set start-point based on, 78
Recursive templates, 146–147
redefine element, 288, 335–337
ref attribute, 303, 306, 317, 326
refer attribute, 333
References, character, 13
Relational expressions, 39, 51
Relative URIs, 81, 231
removeAttribute (Element/IXMLDOMElement

member), 209
removeAttributeNode (Element/

IXMLDOMElement member), 210
removeAttributeNS (Element member), 210
removeChild (Node/IXMLDOMNode member),

219
removeNamedItem (NamedNodeMap/

IXMLDOMNamedNodeMap member), 213
removeNamedItemNS (NamedNodeMap

member), 214
removeQualifiedItem

(IXMLDOMNamedNodeMap member), 214
replaceChild (Node/IXMLDOMNode member),

219
replaceData (CharacterData/

IXMLDOMCharacterData member), 198
#REQUIRED attribute, 22
resolveEntity (EntityResolver/

IVBSAXEntityResolver member), 177
restriction, 282–283, 290, 337–340
Result tree fragment, 144–145
result-prefix attribute, 123

Reverse document order, 37
Root,

string value, 38
built-in template descriptions for, 93
location-set start-point based on, 78

round function, 53, 62

S
SAX 2.0, 159–191

SAX interfaces and classes, 161–190
Attributes, 160, 161, 162–166
AttributesImpl, 162
ContentHandler, 160, 161, 166–174
DeclHandler, 160, 162
DefaultHandler, 162
DTDHandler, 160, 161, 175–177
EntityResolver, 160, 161, 177–178
ErrorHandler, 160, 161, 178–181
InputSource, 160, 162
LexicalHandler, 160, 162
Locator, 160, 161, 181–183
LocatorImpl, 162
NamespaceSupport, 162
SAXException, 162
SAXNotRecognizedException, 162
SAXNotSupportedException, 162
SAXParseException, 162
XMLFilter, 160, 161, 183–185
XMLFilterImpl, 162
XMLReader, 160, 161, 185–189
XMLReaderFactory, 162

features and properties, 190–191
UML quick reference, 159–160

SAXException class, 162
SAXNotRecognizedException class, 162
SAXNotSupportedException class, 162
SAXParseException class, 162
Schema datatypes, 227–286

anyURI, 229–231
base64Binary, 231–232
boolean, 232
date and time

date, 233–234
dateTime, 228, 234–235
duration, 228, 237–238
gDay, 228, 241
gMonth, 228, 242
gMouthDay, 228, 242–243
gYear, 228, 243–244
gYearMonth, 228, 244
time, 228, 261–262

398 Essential XML Quick Reference

facets, 267–280
enumeration, 267–268
fractionDigits, 268–269
length, 269–270
maxExclusive, 270–271
maxInclusive, 271–272
maxLength, 272–274
minExclusive, 274–275
minInclusive, 275–276
minLength, 276–277
pattern, 277–278
totalDigits, 278–279
whiteSpace, 279–280

grouping of, 227–229
hexBinary, 245
language, 249
language constructs, 280–286

list, 283–284
restriction, 282–283
simpleType, 281–282
union, 284–286

name and string
hierarchy of, 23
Name, 229, 251
NcName, 229, 251–252
normalizedString, 229, 256–257
QName, 229, 259
string, 229, 260–261
token, 229, 262–263

numeric
byte, 227, 232–234
decimal, 227, 235–236
double, 228, 236–237
float, 228, 240–241
hierarchy of, 230
int, 227, 247–248
integer, 227, 248–249
long, 227, 250
negativeInteger, 227, 252–253
nonNegativeInteger, 227, 254–255
nonPositiveInteger, 227, 255–256
positiveInteger, 227, 258–259
short, 227, 259–260
unsignedByte, 228, 263–264
unsignedInt, 228, 264–265
unsignedLong, 228, 265–266
unsignedShort, 228, 266

XML 1.0
ENTITIES, 228, 238–239
ENTITY, 228, 239–240
ID, 228, 245
IDREF, 228, 246

IDREFS, 228, 246–247
NMTOKEN, 228, 253
NMTOKENS, 228, 253–254
NOTATION, 228, 257–258

schemaLocation attribute, 328, 330, 335,
352–353

schema element, 340–344
Schema elements, 287–355

all, 288, 289, 291–292, 323
annotation, 287, 289, 293
any, 288, 289, 293–297
anyAttribute, 289, 297–300
appinfo, 289, 300–301
attribute, 287, 289, 301–305
attributeGroup, 287, 289, 306–307
choice, 288, 289, 307–309
complexContent, 289, 309
complexType, 287, 289, 310–313
documentation, 289, 313–314
element, 287, 288, 289, 314–320
element groupings, 287–290
extension, 290, 320
field, 288, 324–325
group, 287, 288, 289, 290, 325–327
import, 287, 288, 327–329
include, 287, 288, 329–330
instance attributes, 350–354

nil, 350–351
noNamespaceSchemaLocation,

351–352
schemaLocation, 352–353
type, 353–354

key, 288, 289, 330–332
keyref, 288, 289, 332, 333
notation, 287, 289, 333–335
redefine, 288, 335–337
restriction, 290, 337–340
schema, 340–344
selector, 288, 345
sequence, 288, 290, 346–348
simpleContent, 290, 348
simpleType, 288, 289
unique, 288, 289, 349–350

select attribute, 101, 131, 134, 143, 144, 145,
148

selector element, 288, 345
self axis, 41, 42
sequence compositor, 321–322
sequence element, 288, 290, 346–348
Serialization details, controlling, 130
Serialization rules, SOAP, 367–381

dynamically typed data, 374–375

Index 399

null references in complex data structure,
372–374

simple structured data, 369–371
structured data with multiple references,

371–372
setAttribute (Element/IXMLDOMElement

member), 209
setAttributeNode (Element/

IXMLDOMElement member), 209
setAttributeNS (Element member), 210
setContentHandler (XMLReader member), 186
setData (CharacterData/

IXMLDOMCharacterData member), 198
setData (ProcessingInstruction member), 226
setDocumentLocator (ContentHandler

member), 167
setDTDHandler (XMLReader member), 187
setEntityResolver (XMLReader member),

187
setErrorHandler (XMLReader member), 187
setFeature (XMLReader member), 187
setNamedItem (NamedNodeMap/

IXMLDOMNamedNodeMap member), 213
setNamedItemNS (NamedNodeMap member),

214
setNodeValue (Node member), 218
setPrefix (Node member), 219
setProperty (XMLReader member), 187
setValue value (Attr member), 195
short type, 227, 259–260
Simple API for XML. See SAX 2.0
simpleContent element, 290, 348
Simple Object Access Protocol. See SOAP 1.1
simpleType, 281–282, 288, 289
single attribute, 126
Single-reference accessor, 369, 379–380
skippedEntity (ContentHandler/

IVBSAXContentHandler member), 167
SOAP 1.1, 357–383

arrays, 368, 375–381
jagged (arrays of arrays), 379–381
multidimensional, 376–377
partial transmission of, 377–378
sparse, 378–379

attributes in, 364–367
actor, 364–365
encodingStyle, 365–366
mustUnderstand, 366–367

elements in, 358–364
Body, 358–359
Envelope, 360
Fault, 360–363

Header, 363–364
HTTP binding, 381–383
introduction to, 357–358
serialization rules, 367–381

dynamically typed data, 374–375
null references in complex data structures,

372–374
simple structured data, 369–371
structured data with multiple references,

371–372
SOAPAction header, 383
source attribute, 301, 313
Space character, 8, 95
Sparse arrays, 378–379
splitText (Text/IXMLDOMText member), 226
standalone attribute, 11, 129
Stand-alone document, 12
startDocument (ContentHandler/

IVBSAXContentHandler member), 167
startElement (ContentHandler/

IVBSAXContentHandler member), 167
start-point function, 78
startPrefixMapping (ContentHandler/

IVBSAXContentHandler member), 167
starts-with function, 53, 63
String

decimal number converted to, 111–113
empty, 4

string-expression expression, 90
string function, 37, 38, 49, 53, 54, 63–64
string-interning (SAX feature), 190
string-length function, 53, 64
string-range function, 78–79
String type, 50
strip-space element, 98, 99, 132, 135
Structured types, 310
Structures, 368
stylesheet-prefix attribute, 123
stylesheet (transform) element, 96, 136,

141–142
substitution attribute, 318
substring-after function, 53, 65
substring-before function, 53, 65
substringData (CharacterData/

IXMLDOMCharacterData member), 198
substring function, 53, 64–65
sum function, 53, 66
system attribute, 334
System identifier, 17, 18
systemId (IXMLDOMDocumentType property),

206
systemId (IXMLDOMEntity property), 212

400 Essential XML Quick Reference

systemId (IXMLDOMNotation property), 225
system-property function, 149, 156
SYSTEM token, 17

T
Tab character, 8, 95
Tagname, 1
tagName (IXMLDOMElement property), 209
Tags, 1, 13
target attribute, 342
target (IXMLDOMProcessingInstruction

property), 226
Template(s), 86–87. See also XSL Transformations

(XSLT) 1.0
attribute value, 94–95, 103, 104
built-in, 92–93
conditional, 116
overriding, 99
recursive, 146–147
returning values from, 146

template element, 96, 99, 136–140
template type, 89
terminate attribute, 122
Termination, program, 122
test attribute, 148
text element, 97, 140–141

string value, 38
Text() identifier, 46
text type

built-in template descriptions for, 93
location-set start-point based on, 78

Time datatypes. See Date and time datatypes
Tokens, attribute as an enumeration of, 22
tokens type, 89
token type, 89
totalDigits facet, 278–279
transform (stylesheet) element, 96, 136,

141–142
translate function, 53, 66
Tree model, 35, 36
true function, 53, 67
Type(s). See also Datatypes

attribute, 21–22, 78
built-in template descriptions for, 93
location-set range based on, 76

boolean, 50, 63, 232
CDATA, 11, 21
char, 89
ENTITIES, 22
ENTITY, 22
ID, 21
IDREF, 22

IDREFS, 22
NMTOKEN, 22
NMTOKENS, 22
node-set, 63, 150, 151
node test by, 45–46
NOTATION, 22
number, 50, 63
other, 54, 57, 63, 76, 151, 156
QName, 3, 89
QNames, 89
String, 50
template, 89
token, 89
tokens, 89
uri-reference, 89

type attribute, 303, 318, 353–354
Type identifier, 31

U
Unicode, 12
Uniform resource identifier (URI), 3
union element, 284–286
Union of node-sets, 155–156
unique element, 288, 289, 349–350
Unparsed entities, 24, 25, 30–31
unparsed-entity-uri function, 149, 157
Unqualified attributes, 6
Unqualified elements, 3–4
unsignedByte type, 228, 263–264
unsignedInt type, 228, 264–265
unsignedLong type, 228, 265–266
unsignedShort type, 228, 266
URI references

absolute, 231
relative, 231

uri-reference type, 89
URIs

aliasing of, 123
relative, 81

use attribute, 120, 303
use-attribute-sets attribute, 105, 109,

114
UTF–8, 12
UTF–16, 12

V
validation (SAX feature), 190
value attribute, 22, 125
value (IXMLDOMAttribute property), 195
value-of element, 97, 143
Value space, 229
variable element, 96, 99, 144–147

Index 401

VB
IVBSAXAttributes in, 163, 165–166
IXMLDOMAttribute in, 195, 196
IXMLDOMCharacterData in, 197–198, 199
IVBSAXContentHandler in, 167, 170,

173–174, 179, 180–181
IXMLDOMDocument in, 200–203, 204
IXMLDOMDocumentType in, 205–206
IXMLDOMImplementation in, 206–207
IVBSAXDTHandler in, 175, 176–177
IXMLDOMElement in, 208–210, 211
IXMLDOMEntity in, 211–212
IXMLDOMEntityReference in, 212
IVBSAXEntityResolver in, 177, 178
IVBSAXLocator in, 182, 183
IXMLDOMNameNodeMap in, 213–214, 215
IXMLDOMNode in, 217–219, 220, 222
IXMLDOMNodeList in, 223–224
IXMLDOMNotation in, 225
IXMLDOMProcessingInstruction in,

225–226
serialization of array, 369
serialization of structured type, 368
IXMLDOMText in, 226
IVBSAXXMLFilter in, 184, 185
SAXXMLReader in, 186–187, 189

vendor property, 156
vendor-url property, 156
version attribute, 11, 129, 142, 342
version property, 156

W
warning (ErrorHandler member), 179
Well-formed XML, 13–14
when element, 97, 147–148
Whitespace, 8–9
whiteSpace, 279–280
Whitespace

text to output, 141
XSLT and, 95–96

whiteSpace facet, 279–280
White-space-only text nodes, 132
Whitespace-preserving elements, 135
Wildcards, 45, 296–297, 299–300
with-param element, 97, 148

X
xHexadecimalUnicodeValue, 13
XInclude, 69, 79–81
xml:lang attribute, 313, 342
XML 1.0, 1–14

attributes in, 5–6

CDATA sections, 11
character references, 13
comments in, 7–8
elements in, 1–5
processing instructions, 6–7
prohibited character literals, 9–10
datatypes

ENTITIES, 228, 238–239
ENTITY, 228, 239–240
ID, 228, 245
IDREF, 228, 246
IDREFS, 228, 246–247
NMTOKEN, 228, 253
NMTOKENS, 228, 253–254
NOTATION, 228, 257–258

well-formed, 13–14
whitespace characters in, 8–9
XML declaration, 11–12

XML Base, 81–82
XMLFilterImpl class, 162
XMLFilter interface, 160, 161, 183–185
xmlns, 70
XMLReaderFactory class, 162
XMLReader interface, 160, 161, 185–189
xml-string (SAX property), 191
XPath, 35–67

basic expressions, 48–52
boolean, 37, 38, 48, 49, 54, 58
equality, 48–50
numerical, 51–52
relational, 51

core function library, 52–67
boolean, 53–54
ceiling, 54
concat, 55
contains, 55
count, 56
false, 56
floor, 56–57
id, 57
lang, 58
last, 58
local-name, 59
name, 59
namespace-uri, 60
normalize-space, 60
not, 61
number, 37, 38, 49, 53, 54, 61–62
position, 62
round, 62
starts-with, 63
string, 37, 38, 49, 53, 54, 63–64

continued

402 Essential XML Quick Reference

string-length, 64
substring, 64–65
substring-after, 65
substring-before, 65
sum, 66
translate, 66
true, 67

data types supported by, 37–38
expressions supported by, 38–39
location path expressions, 39–47

axis, 41–44
example of, 40
location path abbreviations, 47
location steps, 40–41
node test, 44–46, 54, 57
predicates, 46–47

operators, 39
xpath attribute, 324–325, 345
xpointer, 70
XPointer 1.0, 69–79

bare names, 71–72
child sequences, 72
extensions to XPath, 72–74
full, 70–71
function library, 74–79

end-point, 74–75
here, 75
origin, 75–76
range, 76–77
range-inside, 77
range-to, 77–78
start-point, 78
string-range, 78–79

node tests, 74
XPointers, 69
XSL Transformations (XSLT) 1.0, 35, 85–157

conflict resolution in, 91–92
data types and expressions, 89–90
element library, 96–148

if, 97, 116–117
apply-imports, 97, 99–100
apply-templates, 97, 100–102
attribute, 97, 102–104
attribute-set, 98, 104–106
call-template, 97, 106–107
choose, 97, 107–108, 116
comment, 97, 108–109

copy, 97, 109–110
copy-of, 97, 110–111
decimal-format, 98, 111–113
element, 97, 113–114
fallback, 98, 114–115
for-each, 97, 115–116
import, 96, 98, 117–118
include, 96, 98, 118–119
key, 98, 119–121
message, 98, 121–122
namespace-alias, 98, 122–124
number, 98, 124–128
otherwise, 97, 128
output, 98, 128–130
param, 96, 130–132
preserve-space, 98, 132
processing-instruction, 97, 133
sort, 97, 133–135
strip-space, 98, 99, 135
template, 96, 99, 136–140
text, 97, 140–141
transform (stylesheet), 96, 136,

141–142
value-of, 97, 143
variable, 96, 99, 144–147
when, 97, 147–148
with-param, 97, 148

exemplar-based syntax, 94
function library, 148–157

current, 149–150
document, 149, 150–152
element-available, 149, 152–153
format-number, 149, 153–154
function-available, 149, 154–155
generate-id, 149, 155
key, 149, 155–156
system-property, 149, 156
unparsed-entity-uri, 149, 157

patterns, 90–91
programming in, 86–89
templates

attribute value, 94–95, 103, 104
built-in, 92–93

whitespace characters and, 95–96

Z
zero-digit attribute, 112

los angeles • boston • london • portland, OR

HELPING DEVELOPERS WITH TRAINING,

SOFTWARE, PUBLICATIONS, AND

CONFERENCES.

COM+ • VB.NET • XML • Java

ASP.NET • OLE DB • J2EE • C++

.NET • C# • COM+ • XML

Web Services • EJB • CLR • C#

ABOUT DEVELOPMENTOR

DevelopMentor is a distinct educational resource

providing advanced technical information through

training, publications, conferences, and software.

DevelopMentor is comprised of passionate

developers who offer insight and leadership in

areas such as .NET, XML, JAVA, and COM. The

DevelopMentor Technical Staff have authored over

24 technical books and are regular contributors to

MSDN, Java Pro, Visual Basic Programmer’s

Journal, and other publications. DevelopMentor

training facilities are located in Los Angeles,

Boston, London, and Portland.

>
FOR MORE INFORMATION:

develop.com

IN THE US

800.699.1932

WITHIN THE UK

0800.056.22.65

WITHIN EUROPE

+44.1242.525.108

develop.com

Solutions

from experts

you know

and trust.

www.informit.com

www.informit.com

OPERATING SYSTEMS

WEB DEVELOPMENT

PROGRAMMING

NETWORKING

CERTIFICATION

AND MORE…

Expert Access.

Free Content.

Free, indepth articles and

supplements

Master the skills you need,

when you need them

Choose from industry leading

books, ebooks, and training

products

Achieve industry certification

and advance your career

Get answers when you

need them from live

experts or InformIT’s

comprehensive library

Visit

and get great content

from

Books Expert Q&AFree Library Training News Downloads

Addison-Wesley and InformIT

are trademarks of Pearson plc /

Copyright©2000 pearson

Articles

	Cover
	Chapter Contents
	Detailed Contents
	List of Acronyms
	Preface
	Chapter 1

XML 1.0 and Namespaces
	Chapter 2

Document Type Definitions
	Chapter 3

 XPath 1.0
	Chapter 4

 XPointer, XInclude,

and XML Base
	Chapter 5

XSL Transformations 1.0
	Chapter 6

SAX 2.0
	Chapter 7

DOM Level 2
	Chapter 8

XML Schema Datatypes
	Chapter 9

 XML Schema Structures
	Chapter 10

 SOAP 1.1
	Index

