
www.allitebooks.com

http://www.allitebooks.org

Ext JS Data-driven Application
Design

A step-by-step guide to building a user-friendly database
in Ext JS using data from an existing database

Kazuhiro Kotsutsumi

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Ext JS Data-driven Application Design

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-544-6

www.packtpub.com

Cover Image by Tom Coulton (tom.coulton@xenophy.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Kazuhiro Kotsutsumi

Reviewers
Gagandeep Singh

Adrian Teodorescu

Li Xudong

Acquisition Editor
Joanne Fitzpatrick

Commissioning Editors
Llewellyn Rozario

Deepika Singh

Technical Editors
Rosmy George

Manal Pednekar

Veena Pagare

Project Coordinator
Akash Poojary

Copy Editors
Alisha Aranha

Roshni Banerjee

Mradula Hegde

Gladson Monteiro

Deepa Nambiar

Laxmi Subramanian

Proofreader
Lucy Rowland

Indexer
Hemangini Bari

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Ext JS Data-driven Application Design, by Kazuhiro Kotsutsumi, is a practical hands-on
guide for both intermediate and expert JavaScript developers using Sencha's Ext JS
4.x framework.

This book is aimed at developers who not only want to learn how to develop a
real-life desktop application that can read from and write to a database, but also
want to see how to use the framework's advanced features they might not yet
have heard of.

Kazuhiro begins describing the application development process by leading the
reader through the database structure that the application will be using.

He continues by laying out the application structure using the MCV
(model-view-controller) pattern—decoupling the UI, data, and business-logic—while
detailing how to use Sencha's CLI tool Sencha CMD (Sencha Command) to help in
that process.

He utilizes the framework's power by showing the reader how to use the advanced
feature Ext Direct, describing in detail and with code examples what it is, how to add
it, and how to use it in an application. He also brings in browser history support and
again points out clearly how and why it can be used in an application.

Finally, after describing how to add and read database entries into the application
and back to the server, he finishes his book explaining how to visualize the data in
different charts and importing to or exporting from the database.

By using the carefully described features introduced in this book, you too can use
this great architecture to build your own future applications.

Stefan Stölzle

Sr. Solutions Engineer - Professional Services

Sencha, Inc.

www.sencha.com

www.allitebooks.com

www.sencha.com
http://www.allitebooks.org

About the Author

Kazuhiro Kotsutsumi was born in Sapporo, Japan in 1979. He started using
C/C++ at the age of 14 and proceeded to learn MASM, Delphi, ActionScript, PHP,
C#, Perl, and so on.

After working for a web systems development company while enrolled at college,
he began programming built-in functions for cell phones.

Having worked as a Project Manager and a freelance programmer for one year,
he established his company Xenophy CO., LTD in 2006.

Xenophy has always offered a variety of IT web solutions and has become
synonymous with the promotion and expansion of Sencha in Japan.

Currently, Xenophy is a Sencha Reseller and the official Sencha training partner
in Japan. In September 2013, Xenophy announced the launch of Sencha Official
Training in Japan, a fully localized course with Sencha's official training materials
adapted for the Japanese market.

He has already published two Sencha Ext JS guides in Japanese, including Sencha
EXT JS 4 – A Practical Developing Guide and he recently co-authored a Sencha
Touch guide.

I would like to thank Yuuya Tanaka, Kazuhiro Yasunaga,
Hisashi Nakamura, and Tom Miyagawa Coulton for making
this book possible with their hard work and help.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Gagandeep Singh is a Software Engineer with five years' experience in
distributed systems and data-driven web application development. He has
expertise in Java and JavaScript. He holds a Master's degree in Computer
Science from the University of Florida.

He started his career with Infosys, then moved on to Siemens Research,
and is now working with WalmartLabs.

Adrian Teodorescu is a professional software developer who has been
working with Sencha's frameworks since 2009. He has developed plugins,
extensions, and apps with both Ext JS and Sencha Touch. You can check
out some of his work on his website at www.mzsolutions.eu.

Li Xudong is a frontend developer in Beijing, China. He is skilled in JavaScript,
CSS, HTML, node.js, and Python, and wants to make things better.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Data Structure	 5

The structure of the application – User, Customer, Quotation,
Quotations, Bill, and Bills	 6
The user	 7
The customer	 7
Quotation and Quotations	 8

Quotation	 9
Quotations	 9

Bill and Bills	 10
Bill	 10
Bills	 10

Creating and dealing with the customer structure tables	 11
The User table	 11
The Customer table	 11
The Quotation table	 12
The Bill table	 13

Creating each operation and testing	 13
User authentication	 13
Selecting the user list	 14
Adding users	 14
Updating the user information	 14
Deleting users	 15

The Customers table	 15
The customer information list	 15
Selecting the quotation list	 16
Items	 16

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The Bill table	 16
Summary	 16

Chapter 2: Planning Application Design	 17
Setting up Sencha Cmd and a local development environment	 17

Options	 19
Categories	 19
Commands	 20
Creating a project with Sencha Cmd	 20
Creating a component test	 21
Check how it's working	 22
Making production build	 23
CT in individual views	 24
View component	 26
Adding controllers	 27
Creating views	 30
Navigation	 30

Dashboard	 32
MyAccount	 33
Quotation and bill	 33

Viewport	 33
Creating controllers	 34

Main	 35
Navigation	 35
Dashboard	 37
MyAccount	 38
Quotation and bill	 38

Using Ext.util.History for directly accessing a screen	 39
Adding logic to the controller	 40

Setting up Ext Direct	 43
Creating the Ext Direct router	 44
Creating the Ext Direct module	 45
Applying Ext Direct to the client application	 45
Testing Ext Direct	 46

Summary	 46
Chapter 3: Data Input	 47

Creating the login page	 47
Creating the MyAccount form	 48
Creating the Quotation form	 52

Store	 54
The field and grid components	 55
TopToolbar	 56

Table of Contents

[iii]

Creating the Bill form	 58
Managing dirty and undirty apps	 59

MyAccount	 60
The Quotation form	 65
The Bill form	 71
Implementing the read and write processes using Ext Direct	 72
Reading data	 72

MyAccount	 73
The Quotation form	 75
The Bill form	 77

Writing data and validations	 78
Summary	 79

Chapter 4: List and Search	 81
Creating the Quotation list	 82
Creating the Quotation model	 82
Updating the Quotation view	 83
Implementing the Quotation controller	 88
Loading the grid and implementing toolbar buttons	 91
Managing toolbar buttons depending on the grid selection's status	 96
Using a search trigger field and a relation URL hash	 102
Summary	 103

Chapter 5: Reporting	 105
Creating charts on dashboard	 105

Pie chart for CT	 106
Bar chart for CT	 106
Line chart for CT	 107
Radar chart for CT	 107
Layout to dashboard	 107

Creating a pie chart	 109
Implementing the Direct function	 110
Preparing the store for the pie chart	 111
Creating the View	 111
Implementing the controller	 112

Creating a bar chart	 113
Implementing the Direct function	 114
Preparing the store for the chart	 114
Creating the view	 114
Implementing the controller	 116

Table of Contents

[iv]

Creating a line chart	 117
Implementing the Direct function	 117
Preparing the store for the chart	 117
Creating the view	 117
Implementing the controller	 119

Creating a radar chart	 120
Implementing the Direct function	 120
Preparing the store for the chart	 120
Creating the view	 120
Implementing the controller	 122

Summary	 123
Chapter 6: Data Management	 125

Designing Import and Export	 125
Data format	 125
Creating the Import and Export views in Quotation	 126
Preparing the server side for export	 127
Creating a temporary view for import	 128
Creating the CT view for import	 131
Creating Upload and Show Data in the grid	 136
Executing the Import data	 139

Summary	 141
Index	 143

Preface
Ext JS is a leading JavaScript framework that comes with a wealth of components,
APIs, and extensive documentation that you can harness to build powerful and
interactive desktop applications. By using Ext JS, you also quickly develop rich
desktop web applications that are compatible with all major browsers. This book
will take you step-by-step through building a clear and user-friendly sales database
in Ext JS using information from an existing database.

Rather than just explaining MVC, this book is a hands-on, practical guide that will
take you through the mechanics of building an application. By the end of the book
you will have a working application that is ready to customize. You can also
use the architecture from this book in future projects to simplify controls,
improve maintenance, and expand applications with ease.

You should be able to grasp the idea of the example data structure introduced in
this book. This book has been written on the premise that you are familiar with
JavaScript and have basic operational knowledge of MySQL.

What this book covers
Chapter 1, Data Structure, focuses on preparing the basic foundations of your
database. It will deal with an existing virtual company's data structure and the
making of SQL and tables in MySQL.

Chapter 2, Planning Application Design, develops the environment of the project,
while at the same time introducing Sencha Cmd. You will learn to design a
simple application and optimize Ajax requests in order to use Ext Direct and
Ext.util.History to control the screen with a URL.

Chapter 3, Data Input, discusses making a form to input data, then transmit that
data to a server via Ext Direct. You will also learn to monitor the state of the input
and how Ext Direct will validate it on the server side.

Preface

[2]

Chapter 4, List and Search, speaks mainly about displaying data that we read in
Chapter 3, Data Input. However, users will no doubt want to search the data, so this
chapter will also introduce data searches.

Chapter 5, Reporting, focuses on the implementation of the report displaying it with
four different types of graphs on the dashboard.

Chapter 6, Data Management, focuses on the implementation of data import/export,
done to restore or to keep a backup of the data.

What you need for this book
For using this book, you will need to be familiar with JavaScript and have a basic
operational knowledge of MySQL.

Before you start reading, you need to have the following setup in your system:

•	 The most recent version of Sencha Ext JS with GPL. You can download this
from the Sencha website available at http://www.sencha.com/products/
extjs/download/. This book was made based on Ext JS Version 4.2.2.

•	 Any good code editor.
•	 A web browser, any modern web browser is okay. In this book we are

using Google Chrome, so we suggest that you use Google Chrome as
well, if possible.

Who this book is for
This is a tutorial for intermediates in Sencha Ext JS that explains the process of
building a UI that deals with an existing database.

This book is for anyone who wants to be able to systematically learn how to
construct an application from the first step of implementation.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The Bill table is almost the same as the
Quotation table."

Preface

[3]

A block of code is set as follows:

UPDATE
 users
SET
 email='extkazuhiro@xenophy.com',
 passwd=SHA1(MD5('password')),
 lastname='Kotsutsumi',
 firstname='Kazuhiro',
 modified=NOW()
WHERE
 id=1

Any command-line input or output is written as follows:

The name of the package containing the theme scss for the app
app.theme=ext-theme-classic
↓
The name of the package containing the theme scss for the app
app.theme=ext-theme-neptune

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "By doing
this, you can keep deleting just by continuing to click on the Delete button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Data Structure
This book will take you step-by-step through the process of building a clear
and user-friendly sales management database in Ext JS using information
from an existing database.

This book is intended for intermediate Ext JS developers with operational
knowledge of MySQL and who want to improve their programming skills
and create a higher-level application.

The finished application will give you a working sales management database.
However, the true value of this book is the hands-on process of creating the
application, and the opportunity to easily transfer and incorporate features
introduced in this book in your own future applications.

The standout features we will look at while building this application are as follows:

•	 History-supported back button functionality: We will customize the Ext JS
function to create a lighter method to scroll forwards and backwards while
staying on a single page.

•	 More efficient screen management: We'll learn how simply registering a
screen and naming conventions can help you cut down on the screen change
processes; meaning you can focus more on the implementation behind each
screen. Also, it will be easier to interact with the history just by conforming
to this architecture.

Data Structure

[6]

•	 Communication methods with Ext.Direct: Ext.Direct has a close affinity
with Ext applications which makes for easier connection, easier maintenance,
and removes the need for the client side to change the URL. Also, if you
use Ext.Direct, you can reduce the stress on the server side as it combines
multiple server requests into just one request.

•	 Data display methods with charts: In Ext JS, by simply adjusting the store
and the data structure set to display in a grid, we can display the data
graphically in a chart.

This chapter will give you the basic building blocks of your database. In this chapter
of the book, you will write the SQL code and and create tables in MySQL.

The structure of the application – User,
Customer, Quotation, Quotations, Bill,
and Bills
First, let's look at the structure of the application we're about to build. This is
a sales management application built for the user to register customers,
send quotations for orders, and finally to invoice the customer with a bill.

The user can input data in to the Customer table. The customer can be an
individual or a company, either way, each customer receives a unique ID.

The Quotation table represents the final quotation sent to the customer.
The Quotations table contains the individual items being ordered in
the quotation.

A bill is the final invoice sent to the customer. As with the Quotations table,
the Bills table refers to the individual items ordered by the customer.

Chapter 1

[7]

The user
The user data is a simple structure that is used to log in to a system. It has an e-mail
address, a password, and a name.

Do not delete the user data and physically manage it with a flag. It is connected to
other data structures with joint ownership, recording the date and time when it was
created along with the updated date and time.

When we design a table with a model of MySQL, it looks similar to the following
table. After having carried out MD5, we perform SHA1. Then, we will have 40
characters and can store the password.

The customer
The customer data contains the name and address of the company or client. It lets
the Quotation and Bill tables perform a relation of this data and use the data.
Being the master data, adding to and deleting from the user interface is not available
at this time. However, as you develop the application, you eventually should be able
to edit this data.

www.allitebooks.com

http://www.allitebooks.org

Data Structure

[8]

The following screenshot shows the input fields for registering a customer.
The sections under the Name column are the fields that need to be filled in
for each customer. The Type column refers to the type of data to be entered,
such as words, numbers, and dates. The Key column allows data to be
referenced between different tables.

Quotation and Quotations
The Quotation and Quotations tables have a 1-N relationship.

In Quotation, you can save the basic information of the document, and in
Quotations you can store each item being ordered.

Chapter 1

[9]

Quotation
This following screenshot shows the fields necessary for Quotation. The table
headings are the same as in the Customer table explained previously, so let's fill
this out accordingly.

Quotations
This is the same as before, so let's go ahead and fill this out. The parent refers to the
overall quotation that the Quotations (individual items) table belongs to.

Data Structure

[10]

Bill and Bills
The Bill table is almost the same as the Quotation table. However, the Bill table
can sometimes contain the ID of an associated Quotation table.

Bill
The following screenshot shows the Bill table:

Bills
Similar to Quotations, in Bills you can store each item that is ordered:

Chapter 1

[11]

Creating and dealing with the customer
structure tables
We will be using MySQL, and the database character is set to utf8 and collation
is set to utf8_bin. When SQL describes the details of what we defined previously,
each of these components are as follows.

The User table
The User table we prepared earlier becomes operational when the following code is
executed. It's important to remember to include AUTO_INCREMENT in the id column;
otherwise, you have to input it manually:

SET NAMES utf8;
SET FOREIGN_KEY_CHECKS = 0;

DROP TABLE IF EXISTS 'users';
CREATE TABLE 'users' (
 'id' bigint(20) NOT NULL AUTO_INCREMENT,
 'status' tinyint(1) NOT NULL DEFAULT '1',
 'email' varchar(255) NOT NULL,
 'passwd' char(40) NOT NULL,
 'lastname' varchar(20) NOT NULL,
 'firstname' varchar(20) NOT NULL,
 'modified' datetime DEFAULT NULL,
 'created' datetime NOT NULL,
 PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC;

SET FOREIGN_KEY_CHECKS = 1;

The Customer table
Once the following code is executed, the Customer table becomes operational:

SET NAMES utf8;
SET FOREIGN_KEY_CHECKS = 0;

DROP TABLE IF EXISTS 'customers';
CREATE TABLE 'customers' (
 'id' bigint(20) NOT NULL AUTO_INCREMENT,
 'status' tinyint(1) NOT NULL DEFAULT '1',
 'name' varchar(255) NOT NULL,
 'addr1' varchar(255) NOT NULL,
 'addr2' varchar(255) DEFAULT NULL,
 'city' varchar(50) NOT NULL,

Data Structure

[12]

 'state' varchar(50) NOT NULL,
 'zip' varchar(10) NOT NULL,
 'country' varchar(50) NOT NULL,
 'phone' varchar(50) NOT NULL,
 'fax' varchar(50) DEFAULT NULL,
 'modified' datetime DEFAULT NULL,
 'created' datetime NOT NULL,
 PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC;

SET FOREIGN_KEY_CHECKS = 1;

This is the foundation of creating an initial set of tables that can later be populated
with data.

The Quotation table
This is the corresponding code for the Quotation table. As with the Customer table,
this code snippet will lay the foundation of our table.

SET NAMES utf8;
SET FOREIGN_KEY_CHECKS = 0;

DROP TABLE IF EXISTS 'quotation';
CREATE TABLE 'quotation' (
 'id' bigint(20) NOT NULL AUTO_INCREMENT,
 'status' tinyint(1) NOT NULL DEFAULT '1',
 'customer' bigint(20) NOT NULL,
 'note' text NOT NULL,
 'modified' datetime DEFAULT NULL,
 'created' datetime NOT NULL,
 PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC;

DROP TABLE IF EXISTS 'quotations';
CREATE TABLE 'quotations' (
 'id' bigint(20) NOT NULL AUTO_INCREMENT,
 'status' tinyint(1) NOT NULL DEFAULT '1',
 'parent' bigint(20) NOT NULL,
 'description' varchar(255) NOT NULL,
 'qty' int(11) NOT NULL,
 'price' int(11) NOT NULL,
 'sum' int(11) NOT NULL,
 'modified' datetime DEFAULT NULL,
 'created' datetime NOT NULL,

Chapter 1

[13]

 PRIMARY KEY ('id'),
 KEY 'parent' ('parent')
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC;

SET FOREIGN_KEY_CHECKS = 1;

The Bill table
As with the previous two code snippets, the following code for the Bill table is
very similar to the Quotation table, so this can be found in the source file under
04_bill_table.sql.

These are all the tables we need for this database. Now let's move on to testing after
creating each operation.

Creating each operation and testing
Because we will use PHP in later stages, let's prepare each operation now. Here,
we will insert some temporary data.

Remember to check that the acquisition and update operations are working properly.

User authentication
These are some SQL code you can use to develop your database.

You can look for a user by inputting an e-mail address and password. You can
assume it was successful if the count is 1.

For increased password security, after having carried out MD5 encryption,
you should store the password as a character string of 40 characters after being
put through SHA1.

SELECT
 COUNT(id) as auth
FROM
 users
WHERE
 users.email = 'extkazuhiro@xenophy.com'
AND
 users.passwd = SHA1(MD5('password'))
AND
 users.status = 1;

Data Structure

[14]

Selecting the user list
This is used when you want to collect data for use in a grid. Make note of the fact
that we are not performing the limit operation with PagingToolbar:

SELECT
 users.id,
 users.email,
 users.lastname,
 users.firstname
FROM
 users
WHERE
 users.status = 1;

Adding users
To add a user, put the current time in created and modified:

INSERT INTO users (
 email,
 passwd,
 lastname,
 firstname,
 modified,
 created
) VALUES (
 'someone@xenophy.com',
 SHA1(MD5('password')),
 'Kotsutsumi',
 'Kazuhiro',
 NOW(),
 NOW()
);

Updating the user information
Every time the modified file should be set to NOW() for it to be used as a time stamp.
Other fields should be updated as needed.

UPDATE
 users
SET
 email='extkazuhiro@xenophy.com',
 passwd=SHA1(MD5('password')),
 lastname='Kotsutsumi',

Chapter 1

[15]

 firstname='Kazuhiro',
 modified=NOW()
WHERE
 id=1

Deleting users
Deletion from this system is not a hard purge where the user data is permanently
deleted. Instead we will use a soft purge, where the user data is not displayed
after deletion but remains in the system. Therefore, note that we will use UPDATE,
not DELETE. In the following code, status=9 denotes that the user has been deleted
but not displayed. (status=1 will denote that the user is active).

UPDATE
 users
SET
 status=9
WHERE
 id=1

The Customers table
Although Add, Update, and Delete are necessary operations, we'll come to these in
the later chapter, so we can leave it out at this time.

The customer information list
Here we are preparing the SQL code to pull information about customers later on:

SELECT
 customers.id,
 customers.name,
 customers.addr1,
 customers.addr2,
 customers.city,
 customers.state,
 customers.zip,
 customers.country,
 customers.phone,
 customers.fax
FROM
 customers
WHERE
 customers.status = 1;

Data Structure

[16]

Selecting the quotation list
Next comes the code for selecting the Quotation lists. This is similar to what we saw
for the customer information list. For the code, please refer to the source file under
11_selecting_quotation_list.sql.

Items
The code for items will select the quotation items from the database. This will pick
up items where quotations.status is 1 and quotation.parent is 1:

SELECT quotations.description,
 quotations.qty,
 quotations.price,
 quotations.sum
FROM
 quotations
WHERE
 quotations.'status' = 1
AND
 quotations.parent = 1

As this is similar to Customers, you can again leave out Add, Update, and Delete
for now.

The Bill table
Again let's leave out Add, Update and Delete for now because the Bill table is
similar to what preceded this.

It's straightforward to say that once a quotation has been accepted, a bill is produced.
Therefore, in data structures such as ours, Quotation and Bill are related. The only
difference is that Bill contains the extra Quotation ID to create the relationship
between the two.

Also, remember the customer information list is almost the same as the quotation list.

Summary
In this chapter, we have defined the structure of the database we will use in this book.

You might have your own databases that you want to present in Ext JS. This is just
a sample database that we can build on in the coming chapters.

In the next chapter we will begin the process of building the whole application.
Don't worry, we'll explain each step.

Planning Application Design
In this chapter, we will set up the development environment of the project while
introducing Sencha Cmd.

In this chapter, you will learn to:

•	 Design a simple application
•	 Optimize Ajax requests to use Ext Direct and Ext.util.History to control

the screen with URL

Setting up Sencha Cmd and a local
development environment
By setting up the local development environment with Sencha Cmd, when finally
deploying the application, Sencha Cmd will only pick up the components being
used. This will therefore optimize the final application.

With Sencha Cmd, you can run a native package for Sencha Touch,
including scaffolding and building themes. Let's begin generating your
project using Sencha Cmd.

1.	 Install the latest JAVA Runtime Environment that is available on http://
www.oracle.com/technetwork/java/javase/downloads/index.html
or JRE.

2.	 Install Compass available at http://compass-style.org/.
3.	 Install Sencha Cmd available at http://www.sencha.com/products/

sencha-cmd/download.
4.	 Download Ext JS SDK available at http://www.sencha.com/products/

extjs/download/.
5.	 Extract Ext JS SDK and locate it in a local directory of your choice. For

example, you can create a top-level directory called ext.

www.allitebooks.com

http://www.allitebooks.org

Planning Application Design

[18]

A directory structure will be created as shown in the following screenshot. This time,
we will use Ext JS 4.2.2 GPL.

Chapter 2

[19]

The example is in Mac OS X. After installation, Sencha Cmd is located in the
following path, ~/bin/Sencha/Cmd/4.0.0.203/.

For Windows, Sencha Cmd is located at the following path, C:/Users/(your
username)/bin.

If the path is set correctly, you should be able to execute the following command
under Sencha and the following list of options, categories, and commands should
appear on your screen.

sencha

Sencha Cmd v4.0.0.203

By using a combination of the following definitions within Sencha Cmd, we can use
Sencha Cmd.

For example, to create a project, using the options and categories we can enter,
sencha -sdk [/sdk/path] generate app App [/project/path].

To build a project, we can use categories and commands to enter: sencha app build.

Options
Here are some options you can use:

•	 * --debug, -d - : This sets the log level to higher verbosity
•	 * --plain, -p - : This enables plain logging output (no highlighting)
•	 * --quiet, -q - : This sets the log level to warnings and errors only
•	 * --sdk-path, -s - : This sets the path to the target framework

Categories
Here are some categories you can use:

•	 *app - : Using this, we can performs various application build processes
•	 *compile - : This allows us to compile sources to produce concatenated

output and metadata
•	 *fs - : This is a set of useful utility actions to work with files
•	 *generate - : This generates models, controllers, and so on, or an

entire application
•	 *manifest - : This extracts class metadata

Planning Application Design

[20]

•	 *package - : This packages a Sencha Touch application for native
app stores

•	 *theme - : This builds a set of theme images from a given html page

Commands
Here are some commands you can use:

•	 * ant - : This invokes Ant with helpful properties back to
Sencha Command

•	 * build - : This builds a project from a JSB3 file.
•	 * config - : This loads a config file or sets a configuration property
•	 * help - : This displays help for commands
•	 * js - : This executes arbitrary JavaScript file(s)
•	 * which - : This displays the path to the current version of Sencha Cmd

Creating a project with Sencha Cmd
To begin with, let's generate a project using Sencha Cmd. At first, move the current
directory into the project directory and execute the following command:

sencha -sdk ./ext generate app MyApp ./

The following log should present itself. It's very long, so this is an abridged version,
that is, the start and the end of the log:

[INF] init-properties:
[INF] init-sencha-command:
[INF] init:
.
.
.
[INF] app-refresh:
[INF] -after-generate-app:
[INF] generate-app:

Chapter 2

[21]

Then, a directory is generated as follows:

Let's look at it with a browser; it should be displayed as follows. By all means display
it via a web server.

By executing the command, Sencha Cmd creates a temporary view and controller to
get the whole project up and running quickly. We can make changes or additions to
this to suit our own applications.

Creating a component test
The temporary application was generated in Sencha Cmd. However, you should
not customize this immediately. Before you do, let's make a component test (CT)
to facilitate development. Generally speaking, it tests the source code and the
relationships between the components. The CT shows the source code being tested
in the viewport and in separate test views, without moving the whole source code.
By using a CT, a team of developers can smoothly build an application at the same
time and detect problems early in the development process.

Planning Application Design

[22]

Check how it's working
First, you can check how the automatically generated application works and look at
the details of index.html (source file: 01_check_how_its_working/index.html).

The only CSS file that can be read is ext/packages/ext-theme-neptune/build/
resources/ext-theme-neptune-all-debug.css. As for the JS file, the following
three are read.

•	 ext/ext-dev.js

•	 bootstrap.js

•	 app/app.js

To run app.js, you need ext-dev.js and bootstrap.js. These are necessary
for your application, and other Ext JS files are read dynamically in the Ext Loader.
As shown in the following screenshot, many files are read dynamically in the
Network tab under developer tools in the Google Chrome browser:

Chapter 2

[23]

This time we will use the Ext JS Neptune theme to build the application.

When you make a new application, the default theme ext-theme-classic is used.
Let's change that to ext-theme-neptune.

The target file to modify is as follows:

.sencha/app/sencha.cfg – L32

The name of the package containing the theme scss for the app

app.theme=ext-theme-classic

Change the previous line to the following:

The name of the package containing the theme scss for the app

app.theme=ext-theme-neptune

When you proceed to the next section after making this change, the theme should be
changed. The theme will look like the following screenshot:

Making production build
When you use Ext Loader, it takes a lot of time before a screen is displayed.
It becomes slower as the scale of the application grows and the number of
files increases. This might be too slow for the product.

But have no fear, you already have the solution at hand—build with Sencha
Cmd. First, move the current project into the project directory and execute the
following command:

sencha app build

Planning Application Design

[24]

The following directory is made when you execute the command:

The app.js file generated here is a minified JavaScript file that combines the code
that you write with the Ext JS SDK. Enabling app.js is effective because the code
has already been read and the Ext Loader does not need to read the code again,
improving speed. This app.js file is generated in a compressed state that removes
unnecessary new lines.

The ./build/production/MyApp/ directory was generated and stored. Let's check
the generated production application with a browser.

If you want to debug, it's a very bad idea to compress app.js. Instead, you should
execute the following command for testing:

sencha app build testing

The testing directory is then made in the same directory as production as
shown in the following screenshot. The app.js file made under this directory
is not compressed.

CT in individual views
If you conduct a CT in the normal way, you will have to test all the components at
the same time. However, if we split the CT into individual views, we can test each
component individually in its own HTML.

First, we create a directory called ct and write HTML for the components lists. It is
simply the index.html code in the source file: 03_ct_in_individual_views/ct/
index.html.

Chapter 2

[25]

Here, you will make a header component. First let's create its appearance. You can
make a ct directory for the header components as in the following screenshot:

Create view.html and view.js in the header file. The code is given as follows:

view.html
<html>
<head>
<meta charset="utf-8" />
<title>[View]Header - Component Test</title>
<link rel="stylesheet" href="../../bootstrap.css" type="text/css">
<script language="JavaScript" type="text/javascript" src="../../ext/
ext-all.js"></script>
</head>
<body>
<script type="text/javascript" src="./view.js"></script>
</body>
</html>

view.js
Ext.Loader.setConfig({
 enabled: true,
 paths: {
 MyApp: '../../app/'
 }
});

Ext.onReady(function() {
 Ext.create('MyApp.view.Header', {
 renderTo: Ext.getBody()
 });
});

Planning Application Design

[26]

View component
Let's make the header component MyApp.view.Header. You should make the
Header.js under the app/view directory and create the Header component
(source file: 04_view_component/app/view/Header.js).

Ext.define('MyApp.view.Header', {
 extend: 'MyApp.toolbar.Toolbar',
 alias: 'widget.myapp-header',
 height: 35,
 items: [{
 text: 'MyApp',
 action: 'dashboard'
 }, '->', {
 text: 'MyAccount',
 action: 'myaccount'
 }, {
 text: 'Log Out',
 action: 'logout'
 }]
});

When you create the MyApp.toolbar.Toolbar class, the panel component in
MyApp will work. Therefore, make a panel directory under the app directory
(source file: 04_view_component/app/toolbar/Toolbar.js).

Ext.define('MyApp.toolbar.Toolbar', {
 extend: 'Ext.toolbar.Toolbar'
});

When you display it with a browser, the following screenshot will appear:

At this point, even if you click on the buttons, nothing will happen because you still
need to implement the event handler; but don't worry, we'll get to that.

Chapter 2

[27]

Adding controllers
The appearance has been made. So now, let's add a controller. To do this,
make Abstract.js under the app/controller directory, followed by the
MyApp.controller.Abstract class (source file: 05_adding_controller/app/
controller/Abstract.js).

Ext.define('MyApp.controller.Abstract', {
 extend: 'Ext.app.Controller'
});

Adding controllers is very simple, it merely extends to Ext.app.Controller.
This class will implement all the common features for the controllers, which we
will create from now on. So, let's make a controller for the header. Make Header.js
in the same directory and define it as MyApp.controller.Header. In the following
code, from the MyApp.controller.Abstract class, which we made some time
ago, the init method is implemented (source file: 05_adding_controller/app/
controller/Header.js).

Ext.define('MyApp.controller.Header', {
 extend: 'MyApp.controller.Abstract',
 init: function() {
 var me = this;
 me.control({
 'myapp-header [action=dashboard]': {
 click: function() {
 console.log('dashboard');
 }
 },
 'myapp-header [action=myaccount]': {
 click: function () {
 console.log('myaccount');
 }
 },
 'myapp-header [action=logout]': {
 click: function() {
 console.log('logout');
 }
 }
 });
 }
});

www.allitebooks.com

http://www.allitebooks.org

Planning Application Design

[28]

The following are the component queries from the previous code. These acquire
buttons located in header. With this, you have now finished making the controller.

'myapp-header [action=dashboard]'
'myapp-header [action=myaccount]'
'myapp-header [action=logout]'

A file should be created as shown in the following screenshot:

Let's make the CT operate the controller that you made successfully. In the directory,
where you created view.html and view.js, you should now create app.html and
app.js. The app.html CT is mostly the same as for view.html. You can see the
source code here: 06_app_test/ct/header/app.html.

For app.js, please see the following code (source file: 06_app_test/ct/header/
app.js).

Ext.application({
 autoCreateViewport: false,
 name: 'MyApp',
 appFolder: '../../app',
 controllers: [
 'Header'
],
 launch: function() {
 var panel = Ext.create('MyApp.view.Header', {
 renderTo: Ext.getBody()

Chapter 2

[29]

 });
 Ext.util.Observable.capture(panel, function() {
 console.log(arguments);
 });
 }
});

You should add a link for app.html to index.html in the ct directory. In app.
js, call Ext.application and start the application only for headers. Because the
autoCreateViewport default value is set to true, you should set it to false.
This is because Viewport is unnecessary for this test.

Second, set header to read MyApp.controller.Header in controllers. You should
set the function to launch to create a view. The Ext.util.Observable.capture call
captures the event that is fired in an object set in the first argument.

We can confirm visually that an event reacts when you click on the buttons.

We just made a view without a controller. The reason is if we create a relationship
between the controller and the view at this stage, it would make it very difficult to
test the view.

We made app.html that includes the controller logic. We need the app.html to be
able to test the view and the controller at the same time.

In addition, to avoid incorrect code referring to a direct object, divide each
component and each screen that you can put together in the CT and develop it
in the viewport later.

Now, let's learn to create a component and a CT in sequence.

Planning Application Design

[30]

Creating views
We need to create the appearance of the application. You already made the header.
Let's put the navigation menu for the application on the left of the screen. Locate the
header you made previously on the top of the screen. Name the screen that is in the
center region but to the right. Put the screen in this center region.

The screen is divided into four sections:

•	 Dashboard
•	 MyAccount
•	 Quotation
•	 Bill

Connect these four and make a rough view structure as shown in the
following diagram:

Navigation
Let's make the navigation section. This component extends a tree panel. By using a
tree panel, the procedure to display the menu options can be handled by the server,
rather than inputting menu options manually. The process of dividing the menu
options into groups can be made simpler.

Chapter 2

[31]

A tree store is necessary for a tree panel. So let's make it now (source file:
07_creating_views/app/store/Navigation.js).

Ext.define('MyApp.store.Navigation', {
 extend: 'Ext.data.TreeStore',
 storeId: 'Navigation',
 root: {
 expanded: true,
 children: [{
 text: 'Dashboard',
 leaf: true
 }, {
 text: 'Quotation',
 leaf: true
 }, {
 text: 'Bill',
 leaf: true
 }, {
 text: 'MyAccount',
 leaf: true
 }]
 }
});

Now that a store has been made, you can define the tree panel (source file:
07_creating_views/app/view/Navigation.js).

Ext.define('MyApp.view.Navigation', {
 extend: 'Ext.tree.Panel',
 alias: 'widget.myapp-navigation',
 title: 'Navigation',
 store: 'Navigation',
 rootVisible: false,
 animate: false
});

Now, let's create a CT to check what we made. The code for 07_creating_views/ct/
navigation/view.html is very similar to the previous view.html code, so please
refer to the source file if you want to see this. The following code is for view.js
(source file: 07_creating_views/ct/navigation/view.js):

Ext.onReady(function() {
 Ext.create('MyApp.store.Navigation', {
 storeId: 'Navigation'
 });
 Ext.create('MyApp.view.Navigation', {

 });
});

Planning Application Design

[32]

We previously created a store because it is necessary to display the navigation view.
The Navigation view is displayed like in the following screenshot when we see it in
a browser:

Let's make the remaining components in the same way as follows.

Dashboard
We want to make a panel for dashboards (we will make many similar panels from
now on). Therefore, the application will be made in the MyApp.panel.Screen
abstract class. The MyApp.panel.Screen abstract class is the fundamental mold for
the whole application (source file: 07_creating_views/app/panel/Screen.js).

Ext.define('MyApp.panel.Screen', {
 extend: 'Ext.panel.Panel',
 initComponent: function() {
 var me = this;
 me.callParent(arguments);
 }
});

We were able to create the abstract class. Now, let's create a dashboard class that
inherits from this abstract class (source file: 07_creating_views/app/view/
DashBoard.js).

Ext.define('MyApp.view.DashBoard', {
 extend: 'MyApp.panel.Screen',
 alias: 'widget.myapp-dashboard'
});

Now, prepare the CT to check the appearance. Both 07_creating_views/ct/
dashboard/view.html and 07_creating_views/ct/dashboard/view.js are
similar to ct/header, so please refer to the source files for the code.

Chapter 2

[33]

MyAccount
Let's make the user's personal account page. Let's call this "MyAccount" and create
it in the same way as we created the dashboard. Apart from the alias property and
the title property, it's exactly the same as the dashboard. For the code, please see the
source file: 07_creating_views/app/view/MyAccount.js.

Quotation and bill
Continue to make the quotation and bill in the same way. Again, besides the alias
property and the title property, it's the same as the dashboard. Please see the source
files for the code:

•	 07_creating_views/app/view/Quotation.js

•	 07_creating_views/app/view/Bill.js

Viewport
Let's compose the component that we made so far in the viewport. Revise the file,
which was already generated automatically by Sencha Cmd. Although we can make
a CT by all means, with the viewport, the CT is unnecessary. HTML in itself is the
same as the CT index.

First, it is necessary to revise app/Application.js to use the navigation store
(source file: 08_create_viewport/app/Application.js).

Ext.define('MyApp.Application', {

 stores: [
 'Navigation'
]
});

For the xtype classes that are set in the viewport, it is necessary for the reading of the
source code to have been completed in advance. So we have added the class names
to the application.js file.

To reflect the CSS of the newly added component, we'll build the application once
with Sencha Cmd. This will make sure that the CSS of any new components are
included in sencha app build.

Planning Application Design

[34]

With this, the component style that is being allotted to the bootstrap.css will
be renewed. It is displayed as shown in the following screenshot when we access
index.html, which is under a document route. The files that we made are read
dynamically in the Ext Loader.

Now the views are complete!

Creating controllers
Now, we will create controllers for our data.

Chapter 2

[35]

Main
Usually, each view component has a corresponding controller class with the
same prefix.

But the first controller we have to deal with is the controller called Main.
This controller has already been produced automatically in Sencha Cmd. If we
need more processing or logic for the whole application, we should implement
this class. Usually, the view class and controller class names match, but this is
a special case where they do not because Sencha Cmd generates the Main class.
So, it is best to leave it as is and not change the name.

For the app/controller/Main.js code, please see the source file: 09_create_
controller\app\controller.

Although we've talked a lot about Main, we are not going to use it for the time being.

Navigation
Now, let's add hrefTarget to the data in the navigation store (source file:
09_create_controller/app/store/Navigation.js).

Ext.define('MyApp.store.Navigation', {
 …
 root: {
 children: [{
 text: 'Dashboard',
 hrefTarget: '#!/dashboard',
 leaf: true
 }, {
 text: 'Quotation',
 hrefTarget: '#!/quotation',
 leaf: true
 }, {
 text: 'Bill',
 hrefTarget: '#!/bill',
 leaf: true
 }, {
 text: 'MyAccount',
 hrefTarget: '#!/myaccount',
 leaf: true
 }]
 }
});

Planning Application Design

[36]

Now, make a navigation controller and describe the itemclick event handler and
catch an event when a menu is chosen (source file: 09_create_controller/app/
controller/Navigation.js).

Ext.define('MyApp.controller.Navigation', {
 extend: 'MyApp.controller.Abstract',
 init: function() {
 var me = this;
 me.control({
 'myapp-navigation': {
 itemclick: function(row, model) {
 if (!model.isLeaf()) {
 if (model.isExpanded()) {
 model.collapse();
 } else {
 model.expand();
 }
 } else {
 if (model.data.hrefTarget) {
 console.log('select:' + model.data.
 hrefTarget);
 }
 }
 }
 }
 });
 }
});

Add this to app/Application.js so that it is used when we display it in
the viewport.

Ext.define('MyApp.Application', {

 controllers: [
 'Main',
 'Header',
 'Navigation',
 'DashBoard',
 'MyAccount',
 'Quotation',
 'Bill'
],

});

Chapter 2

[37]

Furthermore, remember that the CT prepares to operate from the controller on its
own. The following code will execute the CT for navigation (source code:
09_create_controller/ct/navigation/app.js).

Ext.application({
 ...
 stores: [
 'Navigation'
],
 controllers: [
 'Navigation'
],
 launch: function() {
 var panel = Ext.create('MyApp.view.Navigation', {
 width: 300,
 height: 600,
 renderTo: Ext.getBody()
 });
 Ext.util.Observable.capture(panel, function() {
 console.log(arguments);
 });
 }
});

When we perform this, a message is displayed by the console when we select any
option from the menu.

Dashboard
Let's continue now and create the controller for dashboard. We do not describe
any special process here, it is just preparation. Just implement the following code
(source file: 09_create_controller/app/controller/DashBoard.js):

Ext.define('MyApp.controller.DashBoard', {
 extend: 'MyApp.controller.Abstract',
 init: function() {
 var me = this;
 me.control({
 });
 }
});

www.allitebooks.com

http://www.allitebooks.org

Planning Application Design

[38]

MyAccount
MyAccount is the same as dashboard, just replace Dashboard with MyAccount.
For the code, please see the source file: 09_create_controller/app/controller/
MyAccount.js.

Quotation and bill
It's the same for the quotation and bill. No special processing, just preparation,
whichare also the same as the dashboard. For the code, please see the source file
at the following locations:

•	 09_create_controller/app/controller/Quotation.js

•	 09_create_controller/app/controller/Bill.js

At this point, you have made many files. As we created them, they filled the
directory as shown in the following screenshot:

Chapter 2

[39]

Using Ext.util.History for directly
accessing a screen
Ext.util.History manages the history. When a page changes, the application
catches this change and then the Ext.util.History fires an event. Using this
feature, we can control actions in our application.. For example, by using Ext.util.
History, every time the application is accessed the dashboard URL is displayed.

Sometimes, when the user inputs an incorrect hash in the URL, the application will
have trouble finding the page. However, with Ext.util.History, it goes to screens
specified by the developer. For example, when we implement Ext.util.History,
the user can access the quotation page directly without abnormal screen behavior.
With Ext.util.History, it also allows us to attach the URL to an e-mail to access
documents directly.

To begin with, you need to make the MyApp.util.History class. You might think
it is an abstract class when you set eyes on it, actually, it is different. MyApp.util.
History is a class used to incorporate URL control in our application using Ext.
util.History. Be careful to not make a mistake here or MyApp.util.History
will not work. The Ext.util.History class is a singleton class and MyApp.util.
History will make a singleton class too. First, let's make the MyApp.util.History
class. It is very simple (source file: 10_util_history/app/util/History.js).

Ext.define('MyApp.util.History', {
 singleton: true,
 uses: ['Ext.util.History'],
 controllers: {},
 init: ... (implement)
 initNavigate: ... (implement)
 navigate: ... (implement)
 parseToken: ... (implement)
 push ... (implement)
 cleanUrl ... (implement)
 back: ... (implement)
 location: ... (implement)
});

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com/support

Planning Application Design

[40]

Let's implement the methods by implementing the following list:

•	 init

•	 initNavigate

•	 navigate

•	 parseToken

•	 push

•	 cleanUrl

•	 back

•	 location

Please implement them as a method of the MyApp.util.History class (source file:
10_util_history/app/util/History.js). The code for the implementation of this
list is too long to include in this text, so please refer to the source file for the code.

When we use MyApp.util.History, we have to call the init method. I will describe
the usage of the init method later. We do not need too much explanation about
these methods, as this will take too long. The important thing to know is that these
methods are important for browser navigation.

Adding logic to the controller
Add MyApp.util.History and a constructor to MyApp.controller.Abstract
(source file: 11_adding_controller/app/controller/Abstract.js).

Ext.define('MyApp.controller.Abstract', {
 extend: 'Ext.app.Controller',
 uses: ['MyApp.util.History'],
 aliasPrefix: 'myapp-',
 constructor: function() {
 var me = this,
 screenName = me.screenName;

 Ext.apply(me, {
 history: MyApp.util.History
 });
 if (screenName) {
 me.history.controllers[screenName] = me;
 me.baseUrl = '#!/' + screenName;
 me.aliasName = me.aliasPrefix + screenName;
 }
 me.callParent(arguments);
 },
 loadIndex: function(url) {

Chapter 2

[41]

 var me = this, url = url || me.baseUrl;
 if (url.substr(0, 2) !== '#!') {
 url = me.baseUrl + '/' + url;
 }
 me.history.push(url, {
 navigate: true,
 callback: function() {
 var self = Ext.ComponentQuery.query(me.aliasName)[0];
 self.fireEvent('myapp-show', self);
 }
 });
 },
 init: function() {
 var me = this, o = {};
 o[me.aliasName] = {
 'myapp-show': me.onShow,
 'myapp-hide': me.onHide
 };
 me.control(o);
 },
 onShow: function() {
 // Nothing todo
 },
 onHide: function() {
 // Nothing todo
 }
});

Set an anonymity function called MyApp.util.History.init, which we made
previously, and initialize it to launch. Specify the screen to use with the sequence
in an argument (source file: 11_adding_controller/app/Application.js).

Ext.define('MyApp.Application', {

 stores: [
 'Navigation'
],

 screens: [
 'dashboard',
 'myaccount',
 'quotation',
 'bill'
],
 launch: function() {
 MyApp.util.History.init({
 screens: this.screens
 });
 }
});

Planning Application Design

[42]

Afterwards, add the screenName property to each class (source file: 11_adding_
controller/app/controller/DashBoard.js).

Ext.define('MyApp.controller.DashBoard', {
 extend: 'MyApp.controller.Abstract',
 screenName: 'dashboard',

});

In the same way as with the dashboard, we'll add a screenName property to
MyAccount, Quotation, and Bill. Check the source file for the code:

•	 11_adding_controller/app/controller/MyAccount.js

•	 11_adding_controller/app/controller/Quotation.js

•	 11_adding_controller/app/controller/Bill.js

Fix the navigation controller. We should change the locale by removing the console
and changing the call to the location method in MyApp.util.History (source file:
11_adding_controller/app/controller/Navigation.js).

Ext.define('MyApp.controller.Navigation', {
 extend: 'MyApp.controller.Abstract',
 init: function() {
 var me = this;
 me.control({
 'myapp-navigation': {
 itemclick: function(row, model) {
 …
 if (model.data.hrefTarget) {
 console.log('select:' + model.data.
 hrefTarget);
 me.history.location(model.data.
 hrefTarget);
 }

});

Finally, if we make a distinction between each view, it becomes easier to acquire that
view. So let's add itemId to each view. First, let's add it to the dashboard (source file:
11_adding_controller/app/view/DashBoard.js).

Ext.define('MyApp.view.DashBoard', {
 …
 itemId: 'screen-dashboard',
 title: 'DashBoard'
});

Chapter 2

[43]

Again, let's add the itemId in the same way for MyAccount, Quotation, and Bill.
Check the following source files for the code:

•	 11_adding_controller/app/view/MyAccount.js

•	 11_adding_controller/app/view/Quotation.js

•	 11_adding_controller/app/view/Bill.js

So to confirm, we should see the URL with the added hash when we click on the
navigation menu after we have set it up with init.

•	 #!/dashboard

•	 #!/quotation

•	 #!/bill

•	 #!/myaccount

Setting up Ext Direct
This is the last in the long list of preparations. Most Sencha Ext JS applications
communicate with a server and acquire data and transmit a message. In that case,
it is very simple and easy to communicate with the Ext.Ajax class.

However, let's use Ext Direct this time. Ext Direct performs by wrapping Ajax
communications, polling, and performing a Remote Procedure Call (RPC).

RPC is the main feature of Ext Direct. However, I will not discuss it in detail here
because of lack of space. If you wish to know the specifics, please visit the Sencha
homepage at http://www.sencha.com/products/extjs/extdirect.

Ext Direct simplifies the communication with the server. As a result, JavaScript code
decreases. Also, in addition to the reading and burden on browsers being reduced,
communication is optimized automatically by a combined request function.

When we simultaneously perform Ajax communication with an initial value via
Ext Direct in an interval of 10 milliseconds, we can combine the requests to the
router into one communication. But for us, it is the same as us communicating
each request separately.

Planning Application Design

[44]

This is still not common knowledge among a lot of developers,
especially those who do not know about the benefits of Ext Direct.
It is a shame because this is such a convenient feature to have in
your application.
It does take a lot of preparation in the beginning. However,
the development of future Sencha Ext JS will become simpler if
we learn it here and keep it prepared and available, like a template.

Creating the Ext Direct router
First we need to make the router and implement it in PHP from here. In fact,
the router is implemented in a sample. We only locate it and use it for it to start.
To begin, copy the PHP from the sample page. You can find the sample page
in your Ext SDK path followed by /examples/direct/. In other words.
it's (Ext SDK path)/examples/direct/.

Create a folder called php in the document route and copy the four files shown in
the previous screenshot. After we have copied the files, it is acceptable to delete
them from this path.

Edit config.php and define the method as the class shown on the server side.
There are so many interfaces in the original, but this time, we will use only one.
So let's delete the others to keep things manageable (source file: 12_setup_ext_
direct/php/config.php).

<?php
$API = array(
 'TestAction' => array(
 'methods' => array(

Chapter 2

[45]

 'doEcho' => array(
 'len' => 1
)
)
)
);

Creating the Ext Direct module
In the same way as we did previously, we'll only use the doEcho method in the
TestAction class. So, let's delete the other methods to keep everything manageable
(source file: 12_setup_ext_direct/php/classes/TestAction.php).

<?php
class TestAction {
 function doEcho($data) {
 return $data;
 }
}

Applying Ext Direct to the client application
Now, set the client application to immediately call TestAction.doEcho from
the client side by adding the following source code in index.html (source file:
12_setup_ext_direct/index.html).

 ...
<!-- </x-compile> -->
<script src="php/api.php"></script>
</head>

Next, call addProvider and set it to use a member shown in the server side in
Application.js (source file: 12_setup_ext_direct/app/Application.js).

Ext.require([
 'Ext.direct.*',
 'Ext.data.proxy.Direct',
 'Ext.form.action.DirectSubmit'
]);

Ext.onReady(function() {
 Ext.direct.Manager.addProvider(Ext.app.REMOTING_API);
});

Ext.define('MyApp.Application', {

Planning Application Design

[46]

Testing Ext Direct
Now we can test it. When a logout button is clicked, call doEcho and confirm
whether it works normally. Then, add the processing to the header controller.

Check the performance with a browser. When we click on the logout button,
the character string message already in the code will be sent to the server side.
We can then check to see if message comes back to the client side. If it comes
back successfully, everything is good! For reference, please check the source
file: 12_setup_ext_direct/app/controller/Header.js.

Summary
Good work! We are now ready to develop the application. It was very long,
but remember, it only takes a long time to complete the initial preparations.

From now on, you can use what you did here in the future. If you go over what we
have just done and understand it for yourself, you can use this as a template for
future projects and it will make the preparation stage go a lot faster and smoother.

When you're ready, continue to the next chapter in which we'll begin to input data
into our database.

Data Input
Welcome back. So, in the previous two chapters we worked on data structures and
we made tables in SQL and MySQL. Then we created the development environment
while getting to grips with Sencha Cmd.

In this chapter, we will:

•	 Learn to make a form to input data
•	 Transmit that data to a server via Ext Direct
•	 Learn about monitoring the state of the input
•	 Learn how to use Ext Direct to validate the MyAccount form on

the server side

Creating the login page
Let's start by creating the login page for this application. Here we will perform a
simple implementation using PHP. We will create login.php and logout.php.
However, we will not go into too much detail about the login logic here because
this book is focused on Ext JS and not PHP.

Create the variable you will input in SQL and then just pull the user information
from the database.

The source code is very long, so please go to the source file to view the login.php
file from the 01_making_the_login folder and logout.php from 01_making_the_
login.

www.allitebooks.com

http://www.allitebooks.org

Data Input

[48]

Store the user data for the session with the key USERINFO. Again, to be able to
perform a login check, change index.html to index.php and run the login check.
Apart from the PHP code at the beginning, it's the same as index.html (source file:
01_making_the_login/index.php):

<?php
session_start();
if(!isset($_SESSION['USERINFO'])) {
 header("Location: ./login.php");
}
?>
<!DOCTYPE HTML>
...
</html>

Creating the MyAccount form
Now, let's build the forms that will deploy to various screens. First comes
MyAccount.

Add the form panel to the temporary panel you built. Don't install the form directly
onto the Screen panel—there is a reason to this. You will make relationships
between the list and the details, so there are times when there are numerous panels
existing inside the screen.

It just so happens that MyAccount only needs one screen. If the number of methods
increases, there is a chance that you will need multiple panels. You might need a
panel to run the input verification. But it's difficult to say for sure at this point.
So, it is necessary to make the screen layout into a card layout which will make it
easier to handle multiple screens.

First, let's specify the screen layout to be a card layout. In the MyAccount.js script
at the bottom of the view directory you made before, create a MyAccount directory
and move into it. The hierarchy of the directory will change, so let's modify the class
name as well (source file: 02_making_the_account_form/app/view/myaccount/
MyAccount.js):

Ext.define('MyApp.view.myaccount.MyAccount', {
extend: 'MyApp.panel.Screen',

Chapter 3

[49]

Let's modify the class name as follows (Source file: 02_making_the_account_form/
app/controller/myaccount/MyAccount.js):

Ext.define('MyApp.controller.myaccount.MyAccount', {
extend: 'MyApp.controller.Abstract',

In the same way, edit the controllers of Quotation, Bill, and Dashboard and views.
By doing this, the application should now be working.

Because the package name has changed, let's modify the Application.js
controller settings accordingly (source file: 02_making_the_account_form/app/
Application.js):

Ext.application({

 controllers: [
 'Main',
 'Header',
 'Navigation',
 'dashboard.Dashboard',
 'myaccount.MyAccount',
 'quotation.Quotation',
 'bill.Bill'
],

Also, the view name has changed, so we have to modify that as well (source file:
02_making_the_account_form/app/view/Viewport.js):

Ext.define('MyApp.view.Viewport', {

 requires:[
 'Ext.panel.Panel',
 'Ext.layout.container.Border',
 'MyApp.view.Header',
 'MyApp.view.Navigation',
 'MyApp.view.dashboard.Dashboard',
 'MyApp.view.myaccount.MyAccount',
 'MyApp.view.quotation.Quotation',
 'MyApp.view.bill.Bill'
],

Data Input

[50]

Now with this, we're free to make the form. To begin with, we want to create the
form panel and put it into MyAccount, but we want to perform a data abstraction of
the form panel. So, at the beginning let's do just that and create a simple inheritance.

In the same way as we created the class for app/panel/Screen.js, we'll create a
class that's inherited from Ext.form.Panel (refer to the source file: 02_making_the_
account_form/app/form/Panel.js).

We have created the inheritance. Let's make the edit panel (source file: 02_making_
the_account_form/app/view/myaccount/Edit.js):

Ext.define('MyApp.view.myaccount.MyAccount', {
 extend: 'MyApp.form.Panel',
 alias : 'widget.myapp-myaccount-edit',
 itemId: 'screen-myaccount-edit',
 initComponent: function() {
 var me = this;
 Ext.apply(me, {
 });
 me.callParent(arguments);
 }
});

Let's perform the implementation inside the form a little later. First, let's embed
this panel (source file: 02_making_the_account_form/app/view/myaccount/
MyAccount.js):

Ext.define('MyApp.view.myaccount.MyAccount', {
 ...
 requires: [
 'MyApp.view.myaccount.Edit'
],
 itemId: 'screen-myaccount',
 title: 'MyAccount',
 layout: 'card',
 items: [{
 xtype: 'myapp-myaccount-edit',
 border: false
 }]
});

Make sure that there are no errors coming from the browser. The appearance does
not change, so it might not be so interesting presently.

At the moment, it looks good on the display, but you might have noticed that a CT
error has arisen. This is because we changed the name earlier. Let's fix this now.

Chapter 3

[51]

The MyAccount class (view and controller) package name has changed, so go
ahead and amend the following class names (check the source file for reference):

02_making_the_account_form/ct/myaccount/view.js

02_making_the_account_form/ct/myaccount/app.js

Along with this, you should also fix the other CT error.

Now, let's start to build the main form. When you define the classes, you can define
them using the configuration options, but let's set it up using Ext.apply inside
initComponent. If we set up the configuration with initComponent, we can set a
more flexible variety of behaviors to the component when we create it.

The following code is really similar to the code that comes out of Sencha Architect
(source file: 02_making_the_account_form/app/view/myaccount/Edit.js):

Ext.define('MyApp.view.myaccount.Edit', {
 ...
 initComponent: function() {
 var me = this;
 // Fields
 Ext.apply(me, {
 bodyPadding: 20,
 defaultType: 'textfield',
 items: [{
 fieldLabel: 'email'
 }, {
 fieldLabel: 'firstname'
 }, {
 fieldLabel: 'lastname'
 }]
 });
 // TopToolbar
 Ext.apply(me, {
 tbar: [{
text: 'Save',
action: 'save'
 }, {
 text: 'Reset',
 action: 'reset'
 }]
 });
 me.callParent(arguments);
 }
});

Data Input

[52]

If you run the preceding code, it will look like the following screenshot:

We make forms in this manner. Try adjusting it for yourself if you think up a more
complex or attractive form. You can find more complex layouts published on Sencha
Ext samples: http://dev.sencha.com/deploy/ext-4.0.0/examples/#sample-13.

At the moment, we see just three fields: email:, firstname, and lastname:. These are
not usually modified often, but as we develop the application, other fields that require
more modification might need to be added. In such occasions, you can add new fields
in myaccount.Edit.

Creating the Quotation form
Let's continue and create forms for Quotation and Bill. In the same way as before,
first set up the card layout in the Screen panel.

In the same way as with view/myaccount/MyAccount.js, in the Quotation class we
will add the Edit and List screens (source file: 03_making_the_quotation_form/
app/view/quotation/Quotation.js):

Ext.define('MyApp.view.quotation.Quotation', {
 ...
 requires: [
 'MyApp.view.quotation.List',
 'MyApp.view.quotation.Edit'
],
 ...
items: [{
 xtype: 'myapp-quotation-list',
 border: false

Chapter 3

[53]

 }, {
 xtype: 'myapp-quotation-edit',
 border: false
 }]
});

Unlike the previous occasion, now two cards exist. These are List and Edit.
You will implement List in a later chapter. Here, let's implement Edit.

The only thing is, if you don't create a class, then requires won't be able to read it.
So, make a List class in the following way (source file: 03_making_the_quotation_
form/app/view/quotation/List.js):

Ext.define('MyApp.view.quotation.List', {
 extend: 'MyApp.form.Panel',
 alias : 'widget.myapp-quotation-list',
 itemId: 'screen-quotation-list',
 initComponent: function() {
 var me = this;
 Ext.apply(me, {
 });
 me.callParent(arguments);
 }
});

Next, let's create Edit. It is a bit of a long process, so let's break it up into sections
and go through each part (source file: 03_making_the_quotation_form/app/view/
quotation/Edit.js):

Ext.define('MyApp.view.quotation.Edit', {
 extend: 'MyApp.form.Panel',
 alias : 'widget.myapp-quotation-edit',
 itemId: 'screen-quotation-edit',
 initComponent: function() {
 ...
 }
});

We have made an empty MyApp.view.quotation.Edit component and from now,
we'll begin to implement the inside of the initComponent method. As we saw
before, this will make the component more flexible.

Let's break this up into Store, field and grid, and TopToolbar. The following
sections give the code that should be inserted into their specific points.

Data Input

[54]

Store
The Store component is where the data will be stored locally in the browser.

Let's create the Store component now. Implement the following code into the
initComponent method inside the MyApp.view.quotation.Edit class (source file:
03_making_the_quotation_form/app/view/quotation/Edit.js):

Ext.applyIf(me, {
 customerStore: Ext.create('Ext.data.Store', {
 fields: ['id', 'name'],
 data : [
 {"id": 0, "name": "Sencha"},
 {"id": 1, "name": "Xenophy"}
]
 }),
 itemStore: Ext.create('Ext.data.Store', {
 storeId:'billItemStore',
 fields:['desc', 'qty', 'price', 'sum'],
 data:{'items':[
 { 'desc': 'Sencha Complete', "qty":"5", "price":"995",
 "sum": 4975 },
 { 'desc': 'Sencha Ext JS + Standard Support', "qty":"5",
 "price":"595", "sum": 2975 }
]},
proxy: {
type: 'memory',
reader: {
type: 'json',
root: 'items'
 }
 }
 })
});

Generate customerStore and itemStore. customerStore is made for the combobox
and itemStore is made for the grid panel. Both stores are temporarily installed.
That is why we're using Ext.applyIf. Let's modify this, so at a later stage you can
acquire the data via Ext Direct.

Chapter 3

[55]

The field and grid components
In this section, we will build the field components (in this case, it means the
combobox along the top of the screen), and the grid panel that will appear below it.

It's a little bit long, but write the following after the previous step when we defined
the Store component (source file: 03_making_the_quotation_form/app/view/
quotation/Edit.js):

Ext.apply(me, {
 bodyPadding: 20,
 items: [{
 padding: '0 0 20 0',
 width: 500,
 xtype: 'combo',
 fieldLabel: 'customer',
 store: me.customerStore,
 editable: false,
 displayField: 'name',
 valueField: 'id'
 }, {
 // Grid Panel
 height: 400,
 padding: '0 0 20 0',
 xtype: 'grid',
 store: me.itemStore,
 plugins: [Ext.create('Ext.grid.plugin.CellEditing')],
 columns: [{
 text: 'Description',
 dataIndex: 'desc',
 flex: 1,
 editor: true
 }, {
 text: 'Qty',
 dataIndex: 'qty',
 editor: {
 xtype: 'numberfield',
 allowBlank: false,
 minValue: 0,
 maxValue: 10000
 }
 }, {
 text: 'Price',
 dataIndex: 'price',

Data Input

[56]

 renderer: Ext.util.Format.usMoney,
 editor: {
 xtype: 'numberfield',
 allowBlank: false,
 minValue: 0,
 maxValue: 10000
 }
 }, {
 text: 'Sum',
 dataIndex: 'sum',
 renderer: Ext.util.Format.usMoney
 }],
 tbar: [{
 text: 'Add Item',
 action: 'add-item'
 }, '-', {
 text: 'Remove Item',
 action: 'remove-item'
 }]
 }, {
 fieldLabel: 'note',
 xtype: 'textarea',
 width: 500j
 }]
});

If you lay out the field, you are laying out the grid panel. The point to remember
here is that the grid panel is set up with the plugin Ext.grid.plugin.
CellEditing. In order to open various cells to edit, we have set up the editor key in
the column settings. The textfield form field is used by default, but you want just
numerical inputs in qty and price, so we are using numberfield for those.

TopToolbar
In this section we will create the Save button that will go on the top toolbar in
our application.

To do this, write the following code after the code we wrote in the previous step to
display the Save button (source file: 03_making_the_quotation_form/app/view/
quotation/Edit.js):

Ext.apply(me, {
 tbar: [{
 text: 'Save',
 action: 'save'
 }]
});

Chapter 3

[57]

We will install the Save button. Now, we want to display this button as quickly as
possible, but at the moment nothing is being displayed. This is because in the card
layout, in the Quotation view's active item, 0 will display the List screen and 1 will
display Edit.

In this state, we can't perform a component test, so first, let's begin by preparing
view_edit.html for the CT (source file: 03_making_the_quotation_form/ct/
quotation/view_edit.html).

Basically, this does not change much in view.html, we're just changing view.js
being read by <script> in view_edit.js.

Now, the Quotation view's package name has not been amended, so you can
correct this now. For the source code, please see the source file: 03_making_the_
quotation_form/ct/quotation/view_edit.js.

When you generate MyApp.view.quotation.Quotation, in the configuration
options add activeItem: 1. By doing this, Edit will be displayed from the start.
Of course the functions have not been implemented, so items will not be added
or automatically calculated.

Here we are adding a new component, so in order to apply the mapping for the
new component to bootstrap.js, let's execute sencha app build. After executing
Sencha app build and the mapping has successfully been applied to bootstrap.js,
the following screen should appear:

www.allitebooks.com

http://www.allitebooks.org

Data Input

[58]

Creating the Bill form
Following on, let's make the form for invoices. The contents of the Bill and
Quotation forms are mostly the same.

This will also need to describe finer details such as payment date. So, regarding the
structure of the database, the ID can be linked so that a quotation can raise an event
for the bill.

Now, let's quickly begin by making the card layout in the same way as for
Quotation (source file: 04_making_the_bill_form/app/view/bill/Bill.js):

Ext.define('MyApp.view.bill.Bill', {
 ...
 title: 'Bill',
 layout: 'card',
 items: [{
 xtype: 'myapp-bill-list',
 border: false
 }, {
 xtype: 'myapp-bill-edit',
 border: false
 }]
});

Next, let's make a temporary empty List component to compensate for what we
wrote previously and avoid receiving an error.

The next class we are going to make is really similar to the dashboard.Dashboard
class. So, please use that as reference while you code and watch out for the following
point (source file: 04_making_the_bill_form/app/view/bill/List.js):

className: MyApp.view.bill.List
extend: MyApp.form.Panel
alias: widget.myapp-bill-list
itemId: screen-bill-list

Also, let's implement the empty initComponent for the same reason as before for the
List component.

Then, at the end, make Edit in the same way as Quotation (source file: 04_making_
the_bill_form/app/view/bill/Edit.js).

Again, this class is very similar to the MyApp.view.quotation.Edit class, which we
previously made.

Chapter 3

[59]

Watch out for the following points and build this class in the same way:

•	 className: MyApp.view.bill.Edit

•	 aliasName: widget.myapp-quotation-edit

•	 itemId: screen-quotation-edit

You have created the view, so now it's time to implement the various controllers.
Instead of having one controller to manage Quotation and Bill that are separated
into List and Edit, it's better to prepare controllers for each one (source file:
04_making_the_bill_form/app/controller/quotation/List.js):

Ext.define('MyApp.controller.quotation.List', {
 extend: 'MyApp.controller.Abstract',
 init: function() {
 var me = this;
 me.control({
 });
 }
});

Let's create the rest of the controllers listed as follows in exactly the same way
(only the class names are different).

•	 (Source file: 04_making_the_bill_form/app/controller/quotation/
Edit.js)

•	 (Source file: 04_making_the_bill_form/app/controller/bill/List.js)
•	 (Source file: 04_making_the_bill_form/app/controller/bill/Edit.js)

In order for the preceding controllers to be read, add a postscript into app/
Application.js (source file: 04_making_the_bill_form/app/Application.js).

It's worth checking now that no errors are being displayed by accessing index.php.

Managing dirty and undirty apps
Naturally, it's good if the saving process happens every time you press the
Save button.

However, if possible, wouldn't you prefer to have the Save button available
only when changes have been made?

Here, we will implement the logic into the controller that will judge whether
or not changes have been made after an input.

Data Input

[60]

MyAccount
First, we will implement a simple form from MyAccount. But, before that, Quotation
and Bill separated the controller, but we didn't make the change in MyAccount!
Let's separate it quickly and add it to app/Application.js.

Using the MyApp.controller.bill.Edit class as reference, let's go ahead and make
the MyApp.controller.myaccount.Edit class.

Apart from the class name, it's exactly the same process (source file: 05_management_
of_dirty_and_undirty_myaccount/app/controller/myaccount/Edit.js).

After you have finished building the previous class, let's add the myaccount.Edit
controller to the controller property of app/Application.js.

Now add it to app.js in the CT directory in the same way (source file: 05_
management_of_dirty_and_undirty_myaccount/ct/myaccount/app.js).

Now, it should be able to run with a controller in CT. First, set up the following event
list to fire during the component test:

•	 myapp-show (displays the component)
•	 myapp-hide (hides the component)
•	 myapp-dirty (fires when information inside the form has been changed)
•	 myapp-undirty (fires when changed information has been recorded or

information has been reverted back to the previous state)
Before anything else, in relation to myapp-show and myapp-hide, we need to pass
the event to the List and Edit classes with MyApp.controller.myaccount.
MyAccount (source file: 05_management_of_dirty_and_undirty_myaccount/app/
controller/myaccount/MyAccount.js):

Ext.define('MyApp.controller.myaccount.MyAccount', {
 extend: 'MyApp.controller.Abstract',
 screenName: 'myaccount',
 refs: [{
 ref: 'editView', selector: 'myapp-myaccount-edit'
 }],
 init: function() {
 var me = this;
 me.control({
 'myapp-myaccount': {
 'myapp-show': me.onShow,
 'myapp-hide': me.onHide
 }
 });
 },

Chapter 3

[61]

 onShow: function() {
 var me = this,
 editView = me.getEditView();
 editView.fireEvent('myapp-show', editView);
 },
 onHide: function() {
 var me = this,
 editView = me.getEditView();
 editView.fireEvent('myapp-hide', editView);
 }
});

The main point is to set up refs and capture the editView. Next, define the
controller for Edit (source file: 05_management_of_dirty_and_undirty_
myaccount/app/controller/myaccount/Edit.js):

Ext.define('MyApp.controller.myaccount.Edit', {
extend: 'MyApp.controller.Abstract',
init: function() {
var me = this;
me.control({
 'myapp-myaccount-edit': {
 'myapp-show': me.onShow,
 'myapp-hide': me.onHide,
 'myapp-dirty': me.onDirty,
 'myapp-undirty': me.onUndirty
 }
 });
 },
 onShow: function() {
 },
 onHide: function() {
 },
 onDirty: function() {
 },
 onUndirty: function() {
 }
});

Next, we need to acquire the field event. Acquire the field with component query
and then set up the event listener (source file: 05_management_of_dirty_and_
undirty_myaccount/app/controller/myaccount/Edit.js):

init: function() {

 Ext.iterate([
 {name: 'email', xtype: 'textfield', fn: me.onChangeField},
 {name: 'firstname', xtype: 'textfield', fn:
 me.onChangeField},

Data Input

[62]

 {name: 'lastname', xtype: 'textfield', fn:
 me.onChangeField}
], function(f) {
 var scope = me, o = {},
 format = Ext.String.format,
 key = format('{0} {1}[name="{2}"]', 'myapp-myaccount-
 edit', f.xtype, f.name);
 o[key] = {
change : { fn: f.fn, scope: scope }
 };
 me.control(o);
 });
 },
 onChangeField: function(field) {
 console.log(field);
 },
 onShow: function() {

Add each name property to the View field (source file: 05_management_of_dirty_
and_undirty_myaccount/app/view/myaccount/Edit.js):

Ext.define('MyApp.view.myaccount.Edit', {

 initComponent: function() {
 var me = this;
 // Fields
 Ext.apply(me, {

 items: [{
 fieldLabel: 'email',
 name: 'email'
 }, {
 fieldLabel: 'firstname',
 name: 'firstname'
 }, {
 fieldLabel: 'lastname',
 name: 'lastname'
 }]
 });

If we input something in text, it is output as a log in the console. We want to define
the similar processing to the other classes, so move the following logic into the
Abstract class and modify it so that it can be called (source file: 05_management_
of_dirty_and_undirty_myaccount/app/controller/Abstract.js):

Ext.define('MyApp.controller.Abstract', {

setChangeFieldEvents: function(fields, xtype, fn, scope) {

Chapter 3

[63]

var me = this,
format = Ext.String.format;
Ext.iterate(fields, function(type, fs) {
if(Ext.isString(fs)) {
fs = [fs];
 }
if(Ext.isArray(fs)) {
Ext.iterate(fs, function(fname) {
var o = {}, key;
key = format('{0} {1}[name="{2}"]', xtype, type, fname);
o[key] = {
change : { fn: fn, scope: scope }
 };
me.control(o);
 });
 }
 });
 },

And let's implement in the same way for Edit.js (source file: 05_management_of_
dirty_and_undirty_myaccount/app/controller/myaccount/Edit.js):

init: function() {

 me.setChangeFieldEvents({
 textfield: [
 'email',
 'firstname',
 'lastname'
]
 },
 'myapp-myaccount-edit',
 me.onChangeField,
 me);
 },
 onChangeField: function(field) {
 console.log(field);
 },

setChangeFieldEvents is made so that we can set up other events besides
textfield. setChangeFieldEvents can also support the times when you want
to use it for other fields such as combobox. The fact that the details of the text were
modified means you could handle it with the implementations made so far.

So next, let's check if the content really did change. This means implementation
inside the method onChangeField is successful.

Data Input

[64]

If the content of the component recorded by the MyApp.controller.myaccount.
Edit controller's init method is modified, the onChangeField method is
implemented (source file: 05_management_of_dirty_and_undirty_myaccount/
app/controller/myaccount/Edit.js).

Use getFieldValues in order to judge whether there were changes to the field.
Ext.Object.getKeys will send back an array. Consequently, with this single line
you can judge whether changes have been made to the content.

If there is a change, myapp-dirty will be fired and if it reverts to its original state,
the myapp-undirty event will be fired.

So, let's add the logic to make the toolbar button available for onDirty and
unavailable for onUndirty to finish the implementation of MyAccount (source
file: 05_management_of_dirty_and_undirty_myaccount/app/controller/
myaccount/Edit.js):

Ext.define('MyApp.controller.myaccount.Edit', {

 onDirty: function() {
 var me = this,
 editView = me.getEditView(),
 btnSave = editView.down('button[action=save]')
 btnSave.enable();
 },
 onUndirty: function() {
 var me = this,
 editView = me.getEditView(),
 btnSave = editView.down('button[action=save]')
 btnSave.disable();
 }
});

Let's add disabled to the Save button settings. During the CT error, onShow does
not work. Also, you should conduct the button's initialization when it is onHide
(source file: 05_management_of_dirty_and_undirty_myaccount/app/view/
myaccount/Edit.js):

Ext.define('MyApp.view.myaccount.Edit', {

 tbar: [{
 text: 'Save',
 action: 'save',
 disabled: true

Finally, if you can muster enough energy, implement it so that when the reset button
is pressed, the reset method is called from Ext.form.Basic.

Chapter 3

[65]

The Quotation form
The Quotation form is mostly the same as Bill and MyAccount, but there is one big
difference—there is a grid inside the form panel.

At first glance, the store that is configured to the grid panel looks as though it
will communicate directly with the server, but this is not the case. To the very
end, this form panel handles fields, so it doesn't handle the grid directly and
there is no need to separate form data sending and grid data sending.

Then how do we solve this? The answer is to hand it a hidden field and make it save
the grid data in the form of JSON. So, the grid store is fine to be left as
a MemoryStore.

First, implement it to the same point as MyAccount. Because Quotation will hold a
list, add to it so that refs can also acquire a list view.

This source code is very similar to the implementation from the previous step of the
following classes:

•	 MyApp.controller.myaccount.MyAccount

•	 MyApp.controller.myaccount.Edit

Try implementing for Quotation remembering what we did with the source code
from the previous classes. Use the following source files for reference if you get stuck:

•	 06_management_of_dirty_and_undirty_quotation/app/controller/
quotation/Quotation.js

•	 06_management_of_dirty_and_undirty_quotation/app/controller/
quotation/Edit.js

In order to check the application you have implemented so far, add a CT to check
Edit (source file: 06_management_of_dirty_and_undirty_quotation/ct/
quotation/app_edit.html).

We'll make this anew in the CT directory subsidiary. The content is mostly the same
as for app.html, but we will change what will be read from app.js to app_edit.js
(source file: 06_management_of_dirty_and_undirty_quotation/ct/quotation/
app_edit.js).

This is also almost the same as app.js on the same tier, but we'll add an Edit
controller to controllers and activeItem:1 to QuotationView controller's
configuration option.

Data Input

[66]

The main points to remember are to add quotation.Edit to the controller and set
activeItem to 1 and display the Edit panel from the beginning. So, like we touched
on initially, take the store data that's configured in grid and make it into JSON,
then create the logic to be stored in the Hidden field. First, we need to lay out
the Hidden field in view (source file: 06_management_of_dirty_and_undirty_
quotation/app/view/quotation/Edit.js):

Ext.define('MyApp.view.quotation.Edit', {

 }, {
 name: 'items',
 xtype: 'hidden'
 }, {
 fieldLabel: 'note',
 name: 'note',
 xtype: 'textarea',
 width: 500
 }]
 });
 // TopToolbar

In this state, the data is fixed and cannot obtain an event that has specifically
changed. Before this, let's implement the addition and deletion of items and
event editing. There are various things we need to do to achieve that.

First is to change the Store component into a class. You just need to take what
is already generated inside view and make it into an external class (source file:
06_management_of_dirty_and_undirty_quotation/app/store/Customer.js):

Ext.define('MyApp.store.Customer',{
 extend: 'Ext.data.Store',
 storeId:'Customer',
 fields: ['id', 'name'],
 data:{'items':[
 {"id": 0, "name": "Sencha"},
 {"id": 1, "name": "Xenophy"}
]},
proxy: {
 type: 'memory',
 reader: {
 type: 'json',
 root: 'items'
 }
 }
});

Chapter 3

[67]

Also, change the following (source file: 06_management_of_dirty_and_undirty_
quotation/app/store/QuotationItem.js):

Ext.define('MyApp.store.QuotationItem',{
 extend: 'Ext.data.Store',
 storeId:'QuotationItem',
 fields:['desc', 'qty', 'price', 'sum'],
 data:{'items':[
]},
proxy: {
 ... // Customer Store
 }
});

In order to use this store class, add the setting to the MyApp.controller.
quotation.Edit class.

We'll add Customer and QuotationItem to the MyApp.controller.quotation.
Edit class's stores property (source file: 06_management_of_dirty_and_undirty_
quotation/app/controller/quotation/Edit.js).

Because we have created MyApp.store.Customer and MyApp.store.QuotationItem
outside of view, we need to adjust the code in view (source file: 06_management_of_
dirty_and_undirty_quotation/app/view/quotation/Edit.js):

Ext.define('MyApp.view.quotation.Edit', {

 (remove store defines!!)

 // Fields & Grid
Ext.apply(me, {
 bodyPadding: 20,
 items: [{

 store: 'Customer',

 }, {
 // Grid Panel

 store: 'QuotationItem',

There is a reason why we externalized store. This is because if we configure the
store class in stores with Ext JS MVC architecture, the getXXXXStore method is
generated and we're then able to access the store component from the controller.
XXXX is the store class name.

Data Input

[68]

Next, we will make modifications to monitor changes to hidden from the controller
and change the initial values to hidden (source file: 06_management_of_dirty_and_
undirty_quotation/app/view/quotation/Edit.js):

name: 'items',
xtype: 'hidden',
value: '[]'

Also, change the following code (source file: 06_management_of_dirty_and_
undirty_quotation/app/controller/quotation/Edit.js):

me.setChangeFieldEvents({
combo: [
 'customer'
],
hidden: [
 'items'
],
textarea: [
 'note'
]
},

Finally, we can implement what operates the grid. First define the event handler for
the button (source file: 06_management_of_dirty_and_undirty_quotation/app/
controller/quotation/Edit.js).

Implement onAddItem and onRemoveItem. Here it will become possible to add items
and delete items on the grid (source file: 06_management_of_dirty_and_undirty_
quotation/app/controller/quotation/Edit.js):

onAddItem: function() {
 var me = this,
 store = me.getQuotationItemStore();
 store.add({ desc: 'New Item', qty: 0, price: 0, sum: 0 });
},
onRemoveItem: function() {
 var me = this,
 store = me.getQuotationItemStore();
 editView = me.getEditView(),
 grid = editView.down('grid'),
 sm = grid.getSelectionModel();
 if(sm.getCount()) {
 var next = false;
 Ext.iterate(sm.getSelection(), function(item) {
 var flg = false;
 store.data.each(function(model) {
 if(flg) {
 next = model;

Chapter 3

[69]

 flg = false;
 }
 if(model.id === item.id) {
 flg = true;
 }
 });
 store.remove(item);
 });
 if(next) {
 sm.select(next);
 } else {
 next = store.getAt(store.data.getCount() - 1);
 if(next) {
 sm.select(next);
 }
 }
 }
},

The adding process is extremely simple, it's just using the Add method from the store
and adding records. However, the deletion process is not just simply deleting.

It has been set so that when deletion occurs, the next item from the one that was
selected comes into being, and that item is selected. By doing this, you can keep
deleting just by continuing to click on the Delete button. You should think of this
as a little bonus feature!

So, now you can add and delete records on the grid. Next, we will implement the
essential part that turns the store data into JSON and stores it in hidden (source
file: 06_management_of_dirty_and_undirty_quotation/app/controller/
quotation/Edit.js):

Ext.define('MyApp.controller.quotation.Edit', {

 init: function() {

 var store = me.getQuotationItemStore(),
 updateGridData;
 updateGridData = function(store) {
 var f = me.getEditView().query('hidden[name=items]')[0],
 out = [];
 store.data.each(function(r) {
 out.push(Ext.clone(r.data));
 });
 f.setValue(Ext.encode(out));
 };
 store.on('update', function(store, r) {
 r.set('sum', r.get('qty')*r.get('price'));
 updateGridData(store);

Data Input

[70]

 });
 store.on('add', function(store, r) {
 updateGridData(store);
 });
 store.on('remove', function(store, r) {
 updateGridData(store);
 });
 },

When the grid data is altered, update, add, and remove occur as a separate events.
You need to define these event handlers. The process is common, so first store the
function object in updateGridData and then use it.

Again implement a bonus function for the update event. When the content is
modified, multiply qty and price and then it will place the value automatically
inside sum. This time it's made so you can't edit sum, it's set to input after calculating
automatically. You can check that it works at ct/quotation/app_edit.html.

Until now we have been defining stores in View. However, because we changed the
stores into class files, you might have noticed that ct/ quotation/view_edit.html
isn't working properly. At the end of Quotation, let's make modifications so that
the CT will work normally (source file: 06_management_of_dirty_and_undirty_
quotation/ct/quotation/view_edit.js):

Ext.onReady(function() {
 Ext.create('MyApp.store.Customer');
 Ext.create('MyApp.store.QuotationItem');
 Ext.create('MyApp.view.quotation.Quotation', {
 activeItem: 1,
 width: 800,
 height: 600,
 renderTo: Ext.getBody()
 });
});

Because there is no controller, the creation of the store component will not occur.
Due to this, if you define and generate it yourself, it will be linked with storeId
and then displayed. Of course, nothing will happen if you press any of the buttons
displayed because there is no controller.

The implementation of Quotation has been longer and more complicated than
anything preceding it. Next is Bill, which is more or less the same implementation.
Please double-check the complex parts as you go.

Chapter 3

[71]

The Bill form
As we know, Bill is pretty much the same as Quotation, but let's continue and
implement Bill. First let's make the BillItem store class.

For Bill, it's only the class name and StoreId that differs from QuotationItem.
The rest is the same, so let's try and code this by ourselves. You can check out the
following source file if you want something to refer to:

07_management_of_dirty_and_undirty_bill/app/store/BillItem.js

Next comes the controller setting. Again, the following implementations are extremely
similar to what came before in Quotation, so think back to MyApp.controller.
quotation.Quotation and MyApp.controller.quotation.Edit and try it for
yourself. If you need help, you can find the source files at the following:

•	 07_management_of_dirty_and_undirty_bill/app/controller/bill/
Bill.js

•	 07_management_of_dirty_and_undirty_bill/app/controller/bill/
Edit.js

Finally, lets modifying view. In the same way, this is very similar to EditView,
so think back to MyApp.view.quotation.Edit and try it for yourself. The following
is the source file if you need some help:

07_management_of_dirty_and_undirty_bill/app/view/bill/Edit.js

Let's modify and add the CT. In the same way as the previous step, in order to
validate the EditView, we will build app.html and view.html afresh for Edit.

What is happening internally is mostly the same, so please refer to the following
source files:

•	 07_management_of_dirty_and_undirty_bill/ct/bill/app_edit.html

•	 07_management_of_dirty_and_undirty_bill/ct/bill/app_edit.js

•	 07_management_of_dirty_and_undirty_bill/ct/bill/view_edit.html

•	 07_management_of_dirty_and_undirty_bill/ct/bill/view_edit.js

Regarding app_edit.js, in order for mutual validation to occur with the controller,
we install a button on the screen and make an event fire.

If no errors come up with CT or in the whole application, move to the next section.

Data Input

[72]

Implementing the read and write
processes using Ext Direct
From here, we will start to implement the processing of data being written and
read concerning the form that we have made this far. We'll be using Ext Direct for
this as well. Before we continue with the following implementation, there are a few
points that you should amend. One of those is to add an ID to a session when you
log in. Let's amend this now (source file: 08_implement_read_and_write_by_ext_
direct/index.php):

....
"SELECT",
" COUNT(id) as auth,",
" users.id,", // <- add
" users.email,",
....

Then, store the session ID:

....
$_SESSION["USERINFO"] = array(
 "id" => $row["id"], // <- add
 "email" => $row["email"],

Next, add session_start to the beginning of the router being used by Ext Direct.
By doing this, you should be able to access the session with the method from each class
(source file: 08_implement_read_and_write_by_ext_direct/php/router.php).

<?php
session_start(); // <-- add
require('config.php');

You have prepared the way, so now let's go ahead and implement the read process
for MyAccount, Quotation, and Bill.

Reading data
Here, we will start to learn about how the various sections of our application will
read data.

Chapter 3

[73]

MyAccount
To begin with, let's start working on MyAccount. Let's create a class for Ext Direct.
Here we will add the source code for a new PHP.

Because the source code is going to be a little long to be added to this text,
please refer to your source file at: 09_reading_data_myaccount/php/classes/
MyAppMyAccount.php.

Implement the readForm method. When a person logs in, it acquires the account
information from the database by using the saved ID as a reference.

I'll hold back from explaining the PHP processing that happens around here.
The main point is the returned associative array key.

The access key is a flag that gives the value true or false indicating whether the
form's acquisition was successful or not. The data for each field is configured as
an associative array in the data key. In order to use this readForm in Ext Direct,
update the REMOTING_API output configurations.

We will add a new class for Direct (source file: 09_reading_data_myaccount/php/
config.php):

 'MyAppMyAccount' =>array(
 'methods' => array(
 'readForm' => array(
 'len' => 0
)
)
)

Now there is just a bit more preparation to be done. The CT of MyAccount is not
preset to use Ext Direct, so we should amend this. First, add api.php to the HTML.
In order to make our database read api.php just before reading app.js, we need to
add the following code (source file: 09_reading_data_myaccount/ct/myaccount/
app.html):

<script src="../../php/api.php"></script>

Next, add the Ext Direct setting to app.js. Let's add the following code after
Ext.Loader.setConfig (source file: 09_reading_data_myaccount/ct/myaccount/
app.js):

Ext.app.REMOTING_API.url = "../../php/router.php";
Ext.direct.Manager.addProvider(Ext.app.REMOTING_API);

Data Input

[74]

The Ext.app.REMOTING_API.url file is being created by api.php that is being
read by app.html. At this point, the URL path is different for the CT, so you should
override this. Now we've finally prepared everything, so let's go on and set up Ext
Direct in the MyAccount form (view).

We'll add an api property to MyApp.ciew.myaccount.Edit (source file: 09_
reading_data_myaccount/app/view/myaccount/Edit.js):

Ext.define('MyApp.view.myaccount.Edit', {

 api: {
 load : 'MyAppMyAccount.readForm',
 submit : 'MyAppMyAccount.writeForm'

Set up the object in the config.php file named API. Specify load and submit inside
that key. Set up the character string for the Ext.Direct function in the same way
in which both load and submit methods specified their class name in the character
string in Ext.create and Ext.define.

Now, because MyAccount wants to read when it is onShow (when it's displayed),
the myapp-show event in the CT doesn't fire. So, let's install this button that will
cause a pseudo-fire event.

In the CT subsidiary directory, because we will add a button that's necessary for
the fake reproduction of myapp-show, we need to add the following code inside the
launch method (source file: 09_reading_data_myaccount/ct/myaccount/app.js):

Ext.widget('button', {
text: 'fire myapp-show',
renderTo: Ext.getBody(),
scope: this,
handler: function() {
 this.getController('myaccount.MyAccount')
 .loadIndex('#!/myaccount');
 }
 });

We can make the myapp-show event mock fire by forcefully implementing a structure
that automatically calls the loadIndex method that we made a while back. So if you
press the button, you can make the event fire. Now, implement the read logic for the
form data in the onShow method.

Finally, we will implement the controller behavior after myapp-show fires (source file:
09_reading_data_myaccount/app/controller/myaccount/Edit.js):

onShow: function(p, owner, params) {
 var me = this,
 editView = me.getEditView(),

Chapter 3

[75]

 form = editView.getForm();

 p.setLoading();
 form.trackResetOnLoad = true;
 form.isLoading = true;
 form.load({
 success: function(form, ret) {
 p.setLoading(false);
 p.fireEvent('myapp-undirty');
 form.isLoading = false;
 }
 });
},

It was a fairly short code. The main point is to acquire the BasicForm object with
getForm and to set trackResetOnLoad to true.

We can use isLoading to judge a situation when other processing happens while it is
asynchronously reading. If we call the load method, the object we configured before
in the API key is executed and the request is sent to the server. PHP acquires the data
from the database and sends it back, and the variable is inserted automatically in the
field. We don't need to go through the process of setting the data we receive into the
field ourselves.

After the MyAccount controller has finished reading the login information, as it's
the latest user information, the myapp-undirty event fires. From then on, the Save
button can now be pressed if there is a modification. Later, we'll implement a part
that will send the data in reverse when the Save button is pressed.

The Quotation form
Now let's implement the read action in for the Quotation form. First, set up the
Ext Direct in the CT.

In the same way as we added to MyAccount, we will add the following code to app_
edit.js (source file: 10_reading_data_quotation/ct/quotation/app_edit.js):

Ext.app.REMOTING_API.url = "../../php/router.php";
Ext.direct.Manager.addProvider(Ext.app.REMOTING_API);

Don't forget to read the API key, so let's set this up now.

In the same way as we did on the HTML side, make it read the api.php file to make
use of Direct. If you need a reminder, see the source file at 10_reading_data_
quotation/ct/quotation/app_edit.html.

Data Input

[76]

Next, we'll do the preparations on the server side. Like you understood up until
now, the process is mostly the same as with MyAccount.

We will add a new API key for Quotation to config.php (source file: 10_reading_
data_quotation/ct/quotation/app_edit.js):

 'MyAppQuotation'=>array(
 'methods'=>array(
 'readForm'=>array(
 'len'=>0
),
 'writeForm'=>array(
 'len'=>1,
 'formHandler'=>true
)
)
),
 'MyAppMyAccount'=>array(

)

Next, implement the class you defined with config.php. We are going to implement
the API key we added to config.php.

For the content, please see the following source file for reference:

10_reading_data_quotation/php/classes/MyAppQuotation.php

Implement the readForm method. With the writeForm method, in the case of
Quotation, if the complex process to judge whether it is an update or a new addition
becomes necessary, in order to judge whether it has an ID or not from the transition
that's listed, it can't be implemented in this chapter, so implement it in the next
chapter. This is the same with Bill.

So, in order to communicate by using the class on the server side, define the setting
in the config API in the form panel.

We will define the API property in the same way as we did for the MyApp.view.
myaccount.Edit class (source file: 10_reading_data_quotation/app/view/
quotation/Edit.js).

Define the myapp-show event handler. This will be quite a long source code.
So, while being careful to look out for the new and edit points inside the onShow
method, try it out by using the following source file for reference:

10_reading_data_quotation/app/controller/quotation/Edit.js

Chapter 3

[77]

The functions have been divided into onEditShow and onNewShow. This time,
only onEditShow method will run. With a later-listed implementation, newly made
processes and the processes that are divided after editing are also implemented.

After it has finished reading, fire myapp-undirty in order to know whether it is in a
clean condition. The button to fire the myapp-show event is already installed in the
CT, so if you press the button, it will signal and begin to read.

Of course it's the processing of the readForm method, so it's only the fixed test data
that will be read. But we can implement the reading from the database with SQL along
with the implementation of writeForm that happens in the next chapter. With the
name specified on the server side, we need to set a name in the field on the client side.
If the name is correctly set up, the data should be inserted automatically.

The Bill form
Finally, implement Bill in the same way as Quotation. Firstly, configure Ext Direct
in the CT.

Like in the previous step, we will add the code necessary for Direct (source file:
11_reading_data_bill/ct/bill/app_edit.js).

Configure it without forgetting about reading the API key. This also repeats the
process of making the HTML read api.php (source file: 11_reading_data_bill/
ct/bill/app_edit.html).

Now prepare the server side. We will add the API class for Direct that's used by the
Bill class (source file: 11_reading_data_bill/php/config.php):

 'MyAppBill'=>array(
 'methods'=>array(
 'readForm'=>array(
 'len'=>0
),
 'writeForm'=>array(
 'len'=>1,
 'formHandler'=>true
)
)
),
 'MyAppQuotation'=>array(

Next, implement the class defined by config.php.

Data Input

[78]

Because the code is very long, please refer to the following source file on this occasion:

11_reading_data_bill/php/classes/MyAppBill.php

Then, configure the direct function in the API config file. Let's define the API
property in the same way as we did for the MyApp.view.quotation.Edit class
(source file: 11_reading_data_bill/app/view/bill/Edit.js).

Finally, implement the event handler myapp-show. This is really similar to the
implementation of MyApp.controller.quotation.Edit, so please try it for
yourself. If you need to, you can refer to the source file at 11_reading_data_bill/
app/view/bill/Edit.js.

Writing data and validations
In regard to the writing process, as I mentioned before, just implement MyAccount
and implement writeForm of MyAccount.

This is also quite long, so please refer to the source file 12_writing_data_and_
validations/php/classes/MyAppMyAccount.php.

The content of the process is simple; however, if you look at the PHP code, it looks
pretty complicated. I'll try to explain it simply.

First, to return the associative array as a return value in the same way as the others,
we have to set success as true and relay to the client that the writing process has
finished normally.

At the beginning, there are places where we set the associative array with a key
called errors, then set a field name key inside and insert a message. This is the
input check on the server side.

If you use Ext Direct, this completes the input check.

Under errors, put in the field name for the error target and just by entering the error
message in there, the server side automatically displays a red frame. If you hover the
mouse over it, the message you set up on the server side is displayed. In other words,
you need zero lines of programming code on the client side for error processing.

Chapter 3

[79]

Normally, you receive the JSON data by communicating through AJAX, but we
need to define the error processing on the client side and the server side. So, I'm sure
we would all prefer to use Ext Direct, which automatically processes this for us.

If you get used to this way of developing, you'll get hooked
and you won't be able to go back.

Again, because you can wholly separate the client side and server side, one engineer
does not need to construct both. Instead, it's possible to progress the work by
completely separating the server side and client side. Once the input check has been
passed, the user information is acquired from the database where the session ID is
being saved.

Finally, set up the success key that displays true when the processing has been
completed. writeForm is an implemented method used when writing form data.
In the member on the server side that writes the form data, you need to set the
formHandler method to true.

Everyone already has formHandler in config.php set to true, but when you
get down to defining your own projects in a similar way, people often encounter
problems when they forget to set the formHandler method to true meaning the
data is not sent.

Set the formHandler method to true.

Summary
Great work so far! This was quite a long chapter, but this was also integral to our
application (yes, all the chapters are integral, but this one more so!).

In this chapter, we started with the login screen and then implemented the Edit
screen that uses forms from each screen. At the end, we learnt about Ext Direct.

In the next chapter, we'll implement the List and Search functions for each screen
that uses Ext Direct. Have a quick coffee break and carry on when you're ready!

List and Search
In previous chapters we looked at preparing the data structure and the basic
Ext JS architecture, and in Chapter 3, Data Input, we looked at inputting data.
However, we couldn't implement the writing of the data from the Quotation
form. This was because we couldn't judge whether it was a new addition or
an editing process due to listing being non-existent.

When you actually construct an application, it is probably most common to build the
list first and then create the form. However, this time we learned to read the form
first and then save it. So, just choose whichever way you find easier to build with.

This chapter is mainly about displaying data that was read in the previous chapter.
However, users will no doubt want to search for data, so we will also learn about
data searches.

In this chapter you will learn how to:

•	 Get data from the database
•	 Apply the acquired data to the store
•	 Connect the store and the grid
•	 Read data to fields
•	 Search the list

List and Search

[82]

Creating the Quotation list
So, let's straightaway start with preparing the CT to create the Quotation list.
We will create view_list.htm and view_list.js (source file: 01_creating_
quotation_list/ct/quotation/view_list.html).

The view_list.html file is a reproduction of other view files, and so inside the
internal reading, change the .js file in the view that's being read to view_list.js
(source file: 01_creating_quotation_list/ct/quotation/view_list.js).

The view_list.js file is also almost similar. It's only a little bit different.

Ext.onReady(function() {
 Ext.create('MyApp.store.Customer');
 Ext.create('MyApp.store.QuotationItem');
 Ext.create('MyApp.store.Quotation');
 Ext.create('MyApp.view.quotation.Quotation', {
 activeItem: 0,
 ...

By now, preparing the CT should have become a straightforward process.

Unlike edit, set the activeItem in the list to 0. If you check how it looks in a
browser, only the Quotation panel will be displayed.

Let's begin to build the inside.

Creating the Quotation model
First, you want to build a store, but let's build a model before that (source file:
02_creating_quotation_model/app/model/Quotation.js).

Let's implement the Quotation model class that has a newly acquired id, customer,
modified and created.

Define the id, customer name, modified date/time, and created date/time
parameters. Then, we'll implement the store that was used in the model in the previous
step (source file: 02_creating_quotation_model/app/store/Quotation.js).

Ext.define('MyApp.store.Quotation', {
 extend: 'Ext.data.Store',
 storeId: 'QuotationList',
 model: 'MyApp.model.Quotation',
 remoteSort: true,
 pageSize: 100,
 proxy: {
 type: 'direct',

Chapter 4

[83]

 directFn: 'MyAppQuotation.getGrid',
 reader: {
 type: 'json',
 root: 'items',
 totalProperty: 'total'
 }
 }
});

Specify MyAppQuotation.getGrid in directFn. This is the method name where
the store is going to acquire the data. Of course, this is a new construction. In other
words, add a method to the PHP class and with what you have experienced so far,
you should easily be able to imagine whether it's necessary to add config.php.

So, first implement the method even though it is empty (source file: 02_creating_
quotation_model/php/classes/MyAppQuotation.php).

There is one argument and for this a search condition will be sent from the store
(source file: 02_creating_quotation_model/php/config.php).

<?php
$API = array(

 'MyAppQuotation'=>array(
 'methods'=>array(

 'getGrid'=>array(
 'len'=>1
)
)
),

);

Updating the Quotation view
You've prepared everything for the grid to be displayed, so let's implement the view
(source file: 03_update_the_quotation_view/app/view/quotation/List.js):

Ext.define('MyApp.view.quotation.List', {
 ...
 initComponent: function() {
 var me = this;
 Ext.apply(me, {
 columns: [{
 text: 'Customer',
 dataIndex: 'customer',
 flex: 1

List and Search

[84]

 }, {
 text: 'Modified',
 dataIndex: 'modified',
 width: 120
 }, {
 text: 'Created',
 dataIndex: 'created',
 width: 120
 }]
 });
 me.callParent(arguments);
 }
});

Here you are only specifying columns. In order to abstract the grid panel, we are
creating the MyApp.grid.Panel class. (source file: 03_update_the_quotation_
view/app/grid/Panel.js).

We will create the MyApp.grid.Panel class that is purely inherited from the Ext.
grid.Panel class.

We have just simply succeeded the Ext.grid.Panel class. That's pretty much what
abstraction is. Now, it should look like the following if you display it:

It has been a while since we saw an image, so we've displayed a column for now;
however, let's start to create the necessary objects for this list.

The next thing to add is the toolbar with buttons. Let's go ahead and add the
following buttons (source file: 03_update_the_quotation_view/app/view/
quotation/List.js):

•	 Add

•	 Edit

•	 Delete

•	 Update

Chapter 4

[85]

This can be implemented using the following code:

Ext.define('MyApp.view.quotation.List', {

 initComponent: function() {
 var me = this;
 Ext.apply(me, {
 tbar: [{
 text: 'Add',
 disabled: true,
 action: 'add'
 }, {
 text : 'Edit',
 disabled : true,
 action : 'edit'
 }, {
 text : 'Remove',
 disabled : true,
 action : 'remove'
 }, '-', {
 text : 'Refresh',
 disabled : true,
 action : 'refresh'
 }]
 });

We have installed the buttons, so now describe the event handler that deals with this
to the controller (source file: 03_update_the_quotation_view/app/controller/
quotation/List.js).

In the control for the MyApp.controller.quotation.List class, use the following
selectors and register each handler with the click event (at the same time we'll
implement each empty handler):

•	 For selector: 'myapp-quotation-list button[action=add]' use
handler: onItemAdd

•	 For selector: 'myapp-quotation-list button[action=edit]' use
handler: onItemEdit

•	 For selector: 'myapp-quotation-list button[action=remove]' use
handler: onItemRemove

•	 For selector: 'myapp-quotation-list button[action=refresh]' use
handler: onStoreRefresh

List and Search

[86]

If you want to check whether the event responds or not, you can set disabled to
false, or reset it and then check the performance. We'll create an implementation
later so that the status of the disable button changes according to whether the list has
been selected or not.

Next, let's implement SearchField for searches. We'll place this in the top
toolbar we created earlier. But before you can do that, you'll need to implement
SearchField. The SearchField is distributed from the beginning as ux, but this
time we'll use this as a reference to construct anew (source file: 03_update_the_
quotation_view/app/form/SearchField.js).

Ext.define('MyApp.form.SearchField', {
 extend: 'Ext.form.field.Trigger',
 alias: 'widget.myapp-searchfield',
 trigger1Cls: Ext.baseCSSPrefix + 'form-clear-trigger',
 trigger2Cls: Ext.baseCSSPrefix + 'form-search-trigger',
 hasSearch : false,
 paramName : 'query',
 initComponent: function() {
 var me = this;
 me.callParent(arguments);
 me.on('specialkey', function(f, e){
 if(e.getKey() == e.ENTER) {
 me.onTrigger2Click();
 }
 });
 },
 afterRender: function() {
 this.callParent();
 this.triggerCell.item(0).setDisplayed(false);
 },
 onTrigger1Click : function() {
 var me = this;
 if(me.hasSearch) {
 me.setValue('');
 me.hasSearch = false;
 me.triggerCell.item(0).setDisplayed(false);
 location.href = me.urlRoot;
 }
 },
 onTrigger2Click : function() {
 var me = this,
 value = me.getValue();
 if(value.length > 0) {
 me.triggerCell.item(0).setDisplayed(true);

Chapter 4

[87]

 location.href = Ext.String.format('{0}q={1}', me.urlRoot,
 value);
 }
 }
});

Next, add the paging toolbar. Install it along with SearchField. Displaying 100 to
1,000 items at a time would be optimal. In order to declare the use of SearchField,
set MyApp.form.SearchField in requires (source file: 03_update_the_quotation_
view/app/view/quotation/List.js).

 initComponent: function() {
 var me = this;
 Ext.apply(me, {
 tbar: [{

 }, '->', {
 xtype : 'myapp-searchfield',
 disabled : true,
 width : 150
 }],
 bbar: {
 xtype : 'pagingtoolbar',
 displayInfo : true
 }

Finally, let's slightly customize the grid. Modify the SelectionModel and then
make the selection possible with a checkbox. We'll install this so it offers a
user interface that lets you delete items collectively. To do this, you'll use Ext.
selection.CheckboxModel (source file: 03_update_the_quotation_view/app/
view/quotation/List.js).

Ext.define('MyApp.view.quotation.List', {

 requires: [
 'MyApp.form.SearchField',
 'Ext.selection.CheckboxModel'
],
 initComponent: function() {
 var me = this;
 Ext.apply(me, {
 selModel: Ext.create('Ext.selection.CheckboxModel')
 });
 Ext.apply(me, {
 tbar: [{
 text: 'Add',

List and Search

[88]

In the same way as with SearchField, define the reading of Ext.selection.
CheckboxModel in requires. Again, regarding the selModel, set the Ext.
selection.CheckboxModel instance. If you finish configuring it all, it should look
like this:

Implementing the Quotation controller
It's starting to look like the real thing! So, now let's implement the part that will
actually read and display the data. First, as usual, start with the implementation
of the CT (source file: 04_implement_quotation_controller/ct/quotation/
view_list.html).

Reproduce app_edit.html and change the .js file that is being read to app_list.js.
Again, be careful because we'll read the api.php file together (source file:
04_implement_quotation_controller/ct/quotation/view_list.js).

...
Ext.application({
 ...
 controllers: [
 'quotation.Quotation',
 'quotation.Edit',
 'quotation.List'
],
 launch: function() {
 var panel = Ext.create('MyApp.view.quotation.Quotation', {
 width: 800,
 height: 600,
 activeItem: 0,
 renderTo: Ext.getBody()

Chapter 4

[89]

 });
 Ext.util.Observable.capture(panel, function() {
 console.log(arguments);
 });
 Ext.widget('button', {
 text: 'fire myapp-show',
 renderTo: Ext.getBody(),
 scope: this,
 handler: function() {
 this.getController('quotation.Quotation')
 .loadIndex('#!/quotation');
 }
 });
 }
});

Be aware that the direct setup is also underway.

Now prepare the button that mock fires the myapp-show event. Of course we will
also add the List controller (source file: 04_implement_quotation_controller/
app/controller/quotation/List.js).

Here, we'll add the myapp-show event to stores, refs, myapp-quotationlist,
and finally we'll implement the onShow method:

Ext.define('MyApp.controller.quotation.List', {
 extend: 'MyApp.controller.Abstract',
 stores: [
 'Quotation'
],
 refs: [{
 ref: 'listView', selector: 'myapp-quotation-list'
 }],
 init: function() {
 var me = this;
 me.control({
 'myapp-quotation-list': {
 'myapp-show': me.onShow
 },
 ...
 },
 onShow: function(p, owner, params) {
 var me = this,
 listView = me.getListView(),
 btnAdd = listView.down('button[action=add]'),
 btnEdit = listView.down('button[action=edit]'),
 btnRemove = listView.down('button[action=remove]'),
 btnRefresh = listView.down('button[action=refresh]'),
 fieldSearch = listView.down('myapp-searchfield'),
 query = params.q;

List and Search

[90]

 btnAdd.disable();
 btnEdit.disable();
 btnRemove.disable();
 btnRefresh.disable();
 if(query) {
 fieldSearch.setValue(query);
 fieldSearch.triggerCell.item(0).setDisplayed(true);
 fieldSearch.hasSearch = true;
 }
 fieldSearch.urlRoot = '#!/quotation/';
 fieldSearch.disable();
 listView.getStore().load({
 params: {
 query: query
 },
 callback: function(records, operation, success) {
 btnAdd.enable();
 btnRefresh.enable();
 fieldSearch.enable();
 }
 });
 },
 ...
});

Add the event handler and then implement the onShow event. Acquire the list view
from the store and call the load method.

In order to acquire the list view and store, make sure that stores and refs are
configured. This time, we will also amend the component side, that is, the view
side (source File: 04_implement_quotation_controller/app/view/quotation/
List.js).

Ext.define('MyApp.view.quotation.List', {

 initComponent: function() {
 var me = this,
 store = me.getStore();
 if(!store) {
 store = Ext.create('MyApp.store.Quotation');
 me.store = store;
 }
 Ext.apply(me, {

Chapter 4

[91]

Set up the store object in the initComponent method. Run the CT and if you press
the button, the store will use the DirectFn method that was set up and transmissions
will occur. Of course the server-side implementation has not happened, so nothing
will be displayed in the list.

Loading the grid and implementing
toolbar buttons
Generally speaking, a grid is not a grid if it can't read data. For the time being,
let's just read the data from the database and display it in the grid (source file:
05_loading_the_grid_and_implementing_toolbar_buttons/php/classes/
MyAppQuotation.php).

Here we'll implement the getGrid method for MyAppQuotation.php that was
returning empty data.

The code for this is a little bit long, so please refer to the
source file to see the code.

If we put any old data in the database it will be displayed. But, because the items
we want to display have increased slightly, we need to amend the JavaScript
source code. Add the two files addr and note to the Quotation model (source
file: 05_loading_the_grid_and_implementing_toolbar_buttons/app/model/
Quotation.js).

Now let's add the two files we added in the previous step to the columns property
in MyApp.view.quotation.List (source file: 05_loading_the_grid_and_
implementing_toolbar_buttons/app/view/quotation/List.js):

 ...
 }, {
 text: 'Address',
 dataIndex: 'addr',
 flex: 1
 }, {
 text: 'Note',
 dataIndex: 'note',
 flex: 1
 }, {
 ...

List and Search

[92]

We have added the addr, modified, and created files. The data is random but
columns are displayed, and the data is read as in the following screenshot:

Next comes the building of registration processes, something we left undone in
Chapter 3, Data Input. In order to do that, first implement the event handler for the
toolbar buttons and then display the Add New and Editing screens (source file:
05_loading_the_grid_and_implementing_toolbar_buttons/app/controller/
quotation/List.js).

Ext.define('MyApp.controller.quotation.List', {

 onItemAdd: function() {
 var me = this,
 listView = me.getListView();
 listView.fireEvent('myapp-add');
 },

Fire the myapp-add event in the list view component (source file: 05_loading_
the_grid_and_implementing_toolbar_buttons/app/controller/quotation/
Quotation.js).

Ext.define('MyApp.controller.quotation.Quotation', {

 init: function() {
 var me = this,
 format = Ext.String.format;
 me.control({
 'myapp-quotation-list': {
 'myapp-add': function() {
 location.href = format('#!/{0}/new',
 me.screenName);

Chapter 4

[93]

 }
 },

Then describe the myapp-add event handler in the MyApp.controller.quotation.
Quotation class. Here, specify the URL in location.href and then move the screen.
Not in a CT, but if you display the whole application in index.php, you should be
able to check the way the screen changes when you click on the Add button.

After clicking on the Add button, you'll see the following screenshot:

Let's implement the add new function. CT is the place to develop it. It will happen
with ct/quotation/app_edit.htm.

List and Search

[94]

First implement the Save button. Acquire the Save button with the component query
as 'myapp-quotation-edit button[action=save]' and set up the click event.
The handler name is onSave.

Let's create it in a way that when the Save button is pressed, the event handler
is registered in the MyApp.controller.quotation.Edit class (source file: 05_
loading_the_grid_and_implementing_toolbar_buttons/app/controller/
quotation/Edit.js).

 me.control({

 'myapp-quotation-edit button[action=save]': {
 'click': me.onSave
 }
 });

We'll also implement the inside of the handler.

 ...
 onSave: function() {
 var me = this,
 p = me.getEditView(),
 form = p.getForm(),
 format = Ext.String.format,
 id;
 p.setLoading();
 form.submit({
 success: function(form, action) {
 if(action.result.newid) {
 p.fireEvent('myapp-list-reload');
 location.href = format('#!/quotation/id={0}',
 action.result.newid);
 return;
 }
 p.setLoading(false);
 form.load({
 params: {
 id: form.getValues()['id']
 },
 success: function(form, ret) {
 p.fireEvent('myapp-loadform', p, ret);
 p.fireEvent('myapp-undirty');
 p.setLoading(false);
 },
 failure: function() {
 p.setLoading(false);
 }
 });
 },

Chapter 4

[95]

 failure: function(form, action) {
 p.setLoading(false);
 }
 });
 },

Call the submit method for the form in onSave and transmit the position to the
server side. Next comes server-side implementation.

The Ext Direct module has already been prepared, and the processing will be
implemented there. You probably remember the method is called writeForm.

Here we'll implement the writeForm method. The code is very long, so again please
refer to the source file (source file: 05_loading_the_grid_and_implementing_
toolbar_buttons/php/classes/MyAppQuotation.php).

With this method the received position is being stored in the Quotation table.
We are already storing certain data in quotations, so write the data in a different
table as well.

In order to guarantee that correct data is written, you need to use Transaction,
so use begin, rollback, and commit. In MySQL, if we use last_insert_id(),
we can acquire the previous ID that we wrote.

Use this and set up the parent for quotations. In CT, even if we perform the
screen transfer process, it will remain as it is when it loads. It should look like
the following URL.

<hostname>/ct/quotation/app_edit.html#!/quotation/id=XX

Now, if we run it in the application, the URL will change in the following way:

<hostname>/#!/quotation/id=XX

With that present status, start reading again. The specific data you used has
disappeared and just one item is being displayed. This is the reason why we
stopped at creating mock data in Chapter 3, Data Input.

We need to expand the readForm method, which is at the root of all of this.
However, before that, in order to have the ID cross over for the readForm
argument, first amend the config.php file.

We will change the argument in the readForm method of the MyAppQuotation class
from 0 to 1 (source file: 05_loading_the_grid_and_implementing_toolbar_
buttons/php/config.php).

List and Search

[96]

Once we have amended the config.php file, we will amend the readForm method
so it can actually receive arguments (source file: 05_loading_the_grid_and_
implementing_toolbar_buttons/php/classes/MyAppQuotation.php).

<?php
class MyAppQuotation {
 public function readForm($id) {

Set the $id argument in the readForm method to identify the target. Now, this time,
do the same at the JavaScript side (source file: 05_loading_the_grid_and_
implementing_toolbar_buttons/app/view/quotation/Edit.js).

Ext.define('MyApp.view.quotation.Edit', {

 paramOrder: ['id'],

With this, the ID can transmit to the server side. Now let's implement the main
readForm method.

This is the implementation of the inside of the readForm method that we amended
the arguments to earlier. Because the source code is very long, please refer to the
source file for the code (source file: 05_loading_the_grid_and_implementing_
toolbar_buttons/php/classes/MyAppQuotation.php).

After you have read the data from the Quotation table with the ID that you set up,
acquire the data from the Quotations table, convert the array into JSON, and save it.

Customer names are dependent on the MyApp.store.Customer data. If you want to
match it with the customer table in the database, please customize it to read the data
via direct to the store. Pretty simple!

Managing toolbar buttons depending on
the grid selection's status
Now reading and writing of the data is complete. There's only the Add function in
the list, so at present we can only add new information. Let's create it so we can click
on the Edit and Remove buttons. After this we can implement the various functions.
This implementation happens in ct/quotation/app_list.html.

Let's control the events when items are selected and deselected in the list.
Also, we'll implement it so when you double-click on an item, it will perform
in the same way as when you click on the Edit button.

Chapter 4

[97]

We'll add the following event handler to the process occurring in the control of
the init method of the MyApp.controller.quotation.List class (source file:
06_management_toolbar_buttons_depend_on_grid_selection_status/app/
controller/quotation/List.js).

 'myapp-quotation-list': {
 'myapp-show': me.onShow,
 'select': me.onSelect,
 'itemdblclick': me.onItemDblClick,
 'deselect': me.onDeselect
 },

The following three are event handlers that will listen to specific events:

•	 select

•	 itemdblclick

•	 deselect

Let's go ahead and implement the various event handlers that will listen to the
preceding three events. Next, we'll implement a handler to the previous step (source
file: 06_management_toolbar_buttons_depend_on_grid_selection_status/app/
controller/quotation/List.js).

onSelect
onSelect: function() {
 var me = this,
 listView = me.getListView(),
 btnEdit = listView.down('button[action=edit]'),
 btnRemove = listView.down('button[action=remove]'),
 sm = listView.getSelectionModel(),
 cnt = sm.getCount();
 if(cnt === 1) {
 btnEdit.enable();
 } else {
 btnEdit.disable();
 }
 if(cnt > 0) {
 btnRemove.enable();
 } else {
 btnRemove.disable();
 }
},

onDeselect
onDeselect: function() {
 var me = this,

List and Search

[98]

 listView = me.getListView(),
 btnEdit = listView.down('button[action=edit]'),
 btnRemove = listView.down('button[action=remove]'),
 sm = listView.getSelectionModel(),
 cnt = sm.getCount();
 if(cnt === 1) {
 btnEdit.enable();
 } else {
 btnEdit.disable();
 }
 if(cnt > 0) {
 btnRemove.enable();
 } else {
 btnRemove.disable();
 }
}

Regarding selections, we'll only have the Edit button available when one item is
selected. We'll make Remove available even when multiple items are selected.
Both the Edit and Remove buttons will be unavailable when no items are selected.

onItemDblClick
onItemDblClick: function(p, record, item, index, e, eOpts) {
 var me = this,
 listView = me.getListView();
 listView.fireEvent('myapp-edit', record.data.id);
},

When double-clicked, the myapp-edit event will fire, and the selected item ID
will be added to the argument.

Now all that remains is to implement the process for when the Edit and
Remove buttons are pressed. The implementation of the Edit button happens
in the following way:

onItemEdit
onItemEdit: function() {
 var me = this,
 listView = me.getListView(),
 sm = listView.getSelectionModel(),
 record = sm.getLastSelected();
 listView.fireEvent('myapp-edit', record.data.id);
},

Chapter 4

[99]

The process is mostly the same as for onItemDblClick; however, the record object
is not passed across by the argument, so acquire the record object that has been
selected from SelectionModel.

So, if you implement the myapp-edit event handler, it's going to start to feel like the
end. The myapp-edit event handler will be implemented by the MyApp.controller.
quotation.Quotation controller (source file: 06_management_toolbar_buttons_
depend_on_grid_selection_status/app/controller/quotation/Quotation.js).

Ext.define('MyApp.controller.quotation.Quotation', {

 init: function() {
 var me = this,
 format = Ext.String.format;
 me.control({
 'myapp-quotation-list': {
 'myapp-add': function() {
 location.href = format('#!/{0}/new',
 me.screenName);
 },
 'myapp-edit': function(itemid) {
 var query = this.requestParams.q;
 if(query) {
 location.href = format('#!/{0}/id={1}/q={2}',
 me.screenName, itemid, query);
 } else {
 location.href = format('#!/{0}/id={1}',
 me.screenName, itemid);
 }
 }
 }
 });

Looking at the requestParams property, we're trying to decide whether or not there
is a query. However, this will be configured in the SearchField, which will be
implemented later.

Change one line of the onShow method implementation in the following way:

me.requestParams = params = o;

With this, if you double-click or if you click on the Edit button, the URL will change.
If you check the whole application, when you click on the Edit button, you can check
the particular screen where data is being read.

List and Search

[100]

Next, implement the Delete button (source file: 06_management_toolbar_buttons_
depend_on_grid_selection_status/app/controller/quotation/List.js).

onItemRemove: function() {
 var me = this,
 listView = me.getListView(),
 sm = listView.getSelectionModel(),
 records = sm.getSelection();
 Ext.MessageBox.confirm(
 'Remove Confirm',
 'May I delete that?',
 function(ret) {
 if(ret === 'yes') {
 listView.fireEvent('myapp-remove', records);
 }
 }
);
},

In terms of structure, it's the same as the Edit button. It fires the myapp-remove
event. In the same way, myapp-remove implements the event handler in MyApp.
controller.quotation.Quotation (source file: 06_management_toolbar_
buttons_depend_on_grid_selection_status/app/controller/quotation/
Quotation.js).

onRemove: function(records) {
 var me = this,
 format = Ext.String.format,
 listView = me.getListView(),
 ids = [];
 if(!Ext.isArray(records)) {
 records = [records];
 }
 Ext.iterate(records, function(r) {
 if(r.get) {
 ids.push(r.get('id'));
 } else {
 ids.push(r);
 }
 });
 listView.mask();
 MyAppQuotation.removeItems(ids, function() {
 me.getController(
 format(
 '{0}.List',
 me.screenName.split('-').join('.')
)
).onStoreRefresh();

Chapter 4

[101]

 listView.unmask();
 });
}

We are calling the direct function called MyAppQuotation.removeItems. We haven't
implemented this method yet. It's for deleting items, so let's do it quickly.

We're going to add a new removeItems (len:1) method to the MyAppQuotation
class (source file: 06_management_toolbar_buttons_depend_on_grid_selection_
status/php/config.php).

Let's implement the method we added previously. The code is very long, so please
refer to the source files (source file: 06_management_toolbar_buttons_depend_on_
grid_selection_status/php/classes/MyAppQuotation.php).

This method is not for physical deletion but for logic deletion after renewing the
status of the UPDATE text. After you have finished with this process, we would call
onStoreRefresh from the client side; however, it still hasn't been implemented so
let's implement it (source file: 06_management_toolbar_buttons_depend_on_grid_
selection_status/app/controller/quotation/List.js).

Ext.define('MyApp.controller.quotation.List', {

 onStoreRefresh: function() { },

This is actually only executing the toolbar renewal process, but it won't run without
the store being configured on the toolbar. So for a final touch, let's set up the store
in the toolbar (source file: 06_management_toolbar_buttons_depend_on_grid_
selection_status/app/view/quotation/List.js).

Ext.define('MyApp.view.quotation.List', {

 initComponent: function() {

 Ext.apply(me, {

 bbar: {
 xtype : 'pagingtoolbar',
 store : store,
 displayInfo : true
 }

Now, it will automatically execute the reload process after the deletion process.
With this we have implemented the process from start to finish. It was a rather
complicated and long journey! For Bill, please implement it in the same way as
with Quotation, as the process to set it up is mostly the same.

List and Search

[102]

Using a search trigger field and a relation
URL hash
Finally, let's implement the SearchField in the top-right corner of the screen.
Actually, it is already implemented on the client side.

When we are calling getGrid with the cond argument, the search criteria is being
transmitted. That is to say, we just need to implement on the server side. Let's amend
this quickly.

This just shows a section that has been amended. To see the whole section of the
source code, please refer to the source files (source file: 07_using_search_trigger_
field_and_relation_url_hash/php/classes/MyAppQuotation.php).

 'ON',
 ' customers.id = quotation.customer',
 'WHERE',
 ' quotation.status = 1'
));
 $query = explode(' ', @$cond->query);
 foreach($query as $q) {
 if($q != '') {
 $sql .= ' ' . implode(" \n ", array(
 'AND (',
 ' customers.name like \'%' . $q . '%\'',
 ' OR',
 ' customers.addr1 like \'%' . $q . '%\'',
 ' OR',
 ' customers.`addr2` like \'%' . $q . '%\'',
 ' OR',
 ' quotation.`note` like \'%' . $q . '%\'',
 ')'
));
 }
 }

With $cond, the following parameters are sent:

•	 query

•	 page

•	 start

•	 limit

Chapter 4

[103]

The character string you inputted in the SearchField is being stored in the query.
Afterwards, you just need to take that character string and add new conditions
to SQL.

We won't implement it here, but by applying page, start, and limit to SQL,
the paging process will start.

Again, to set the display order when you click on the column, the sort functionality
is added and sent. Using that data, if we add ORDER BY, you can adjust the order.

So in order to get closer to the real application, have a go at the implementation.

Summary
Until now we created the data structure, the application architecture,
and implemented data sending and data receiving methods. But currently
we can only see the data in a grid.

It's not hard to imagine a situation where a manager in a company wants to see
this data in a chart for a report or a presentation. So in the next chapter we'll learn
how to design various types of visual charts.

Reporting
In this chapter we will create the report and display it with four different types of
graphs on the dashboard.

You will learn to:

•	 Create a pie chart to display the quotation and bill data
•	 Create a bar chart to display the data of the customer
•	 Create a line chart to display the quotation and bill data by month
•	 Create a radar chart for monetary amounts
•	 Display each chart inside a panel
•	 Layout four panels in the dashboard

Creating charts on dashboard
First create four empty panels and make it so that the component test (CT) can
display them. These panels are for a pie chart, bar chart, line chart, and a radar chart.
This process is very simple and now you should have four empty panels prepared.

To create each chart class as before, we will copy a different view.html and create a
new HTML, modify the title and the JavaScript file.

Reporting

[106]

Pie chart for CT
Let's create the class name with MyApp.view.dashboard.Pie. Please see the
following source files for the code:

•	 01_making_charts_on_dashboard/ct/dashboard/pie_view.html

•	 01_making_charts_on_dashboard/ct/dashboard/pie_view.js

...
Ext.onReady(function() {
 Ext.create('MyApp.view.dashboard.Pie', {
 width: 800,
 height: 600,
 renderTo: Ext.getBody()
 });
});
...

We'll now implement the class specified in the previous code (source file: 01_
making_charts_on_dashboard/app/view/dashboard/Pie.js).

Ext.define('MyApp.view.dashboard.Pie', {
 extend: 'Ext.panel.Panel',
 alias : 'widget.myapp-dashboard-pie',
 title: 'Pie Chart'
});

Bar chart for CT
The content is the same as for the bar chart. Let's create the class name with MyApp.
view.dashboard.Bar. Please see the following source files for the code:

•	 01_making_charts_on_dashboard/ct/dashboard/bar_view.html

•	 01_making_charts_on_dashboard/ct/dashboard/bar_view.js

•	 01_making_charts_on_dashboard/app/view/dashboard/Bar.js

Ext.define('MyApp.view.dashboard.Bar', {
 extend: 'Ext.panel.Panel',
 alias : 'widget.myapp-dashboard-bar',
 title: 'Bar Chart'
});

Chapter 5

[107]

Line chart for CT
The same as with a pie chart and bar chart, let's create the class name with
MyApp.view.dashboard.Line. Please see the following source files for the code:

•	 01_making_charts_on_dashboard/ct/dashboard/line_view.html

•	 01_making_charts_on_dashboard/ct/dashboard/line_view.js

•	 01_making_charts_on_dashboard/app/view/dashboard/Line.js

Ext.define('MyApp.view.dashboard.Line', {
 extend: 'Ext.panel.Panel',
 alias : 'widget.myapp-dashboard-line',
 title: 'Line Chart'
});

Radar chart for CT
In the same way as the other charts, let's create the class name with MyApp.view.
dashboard.Radar. Please see the following source files for the code:

•	 01_making_charts_on_dashboard/ct/dashboard/radar_view.html

•	 01_making_charts_on_dashboard/ct/dashboard/radar_view.js

•	 01_making_charts_on_dashboard/app/view/dashboard/Radar.js

Ext.define('MyApp.view.dashboard.Radar', {
 extend: 'Ext.panel.Panel',
 alias : 'widget.myapp-dashboard-radar',
 title: 'Radar Chart'
});

Layout to dashboard
So, let's arrange these four panels onto the dashboard (source file: 02_layout_to_
dashboard/app/view/dashboard/DashBoard.js).

Ext.define('MyApp.view.dashboard.DashBoard', {

 requires: [
 'MyApp.view.dashboard.Pie',
 'MyApp.view.dashboard.Bar',
 'MyApp.view.dashboard.Line',
 'MyApp.view.dashboard.Radar'
],
 title: 'Dashboard',
 layout: {
 type: 'hbox',

Reporting

[108]

 pack: 'start',
 align: 'stretch'
 },
 items: [{
 xtype: 'container',
 flex: 1,
 padding: '20 10 20 20',
 layout: {
 type: 'vbox',
 pack: 'start',
 align: 'stretch'
 },
 items: [{
 flex: 1,
 padding: '0 0 10 0',
 xtype: 'myapp-dashboard-pie'
 }, {
 flex: 1,
 padding: '10 0 0 0',
 xtype: 'myapp-dashboard-bar'
 }]
 }, {
 xtype: 'container',
 flex: 1,
 padding: '20 20 20 10',
 layout: {
 type: 'vbox',
 pack: 'start',
 align: 'stretch'
 },
 items: [{
 flex: 1,
 padding: '0 0 10 0',
 xtype: 'myapp-dashboard-line'
 }, {
 flex: 1,
 padding: '10 0 0 0',
 xtype: 'myapp-dashboard-radar'
 }]
 }]
});

Now, in the requires parameter on the dashboard panel, set up the four panels you
made earlier. You can specify the xtype in items by doing this.

Next comes the layout part. In the hbox layout divide the top and bottom equally
into two equal areas, then in each area divide the left and right with the vbox layout.

Chapter 5

[109]

An important point is that container is being specified
by the xtype. Having seen a variety of Ext JS code, in this
case a lot of code doesn't specify the xtype. In such a case,
panel will be specified as the initial value.
If you just want to execute the layout, you should specify the
container parameter. If you don't do that and use panel,
an unnecessary DOM will be created just for carrying out the
layout and will badly affect the performance.

Now that you have successfully divided the dashboard into four parts, in order to
adjust the appearance, make the adjustments to the padding. Of course, it's okay to
do this directly with CSS.

In each of the four areas, set up the chart panels with xtype.

Hopefully your database is starting to take shape. Let's continue and implement the
various charts.

Creating a pie chart
First, we made the CT for display purposes, but now let's create the CT to make it run.

We will use the Direct function, so let's prepare that as well. In reality we've done
this already.

Duplicate a different app.html and change the JavaScript file like we have done
before. Please see the source file for the code: 03_making_a_pie_chart/ct/
dashboard/pie_app.html.

Reporting

[110]

Implementing the Direct function
Next, prepare the Direct function to read the data.

First, it's the config.php file that defines the API. Let's gather them together and
implement the four graphs (source file: 04_implement_direct_function/php/
config.php).

 'MyAppDashBoard'=>array(
 'methods'=>array(
 'getPieData'=>array(
 'len'=>0
),
 'getBarData'=>array(
 'len'=>0
),
 'getLineData'=>array(
 'len'=>0
),
 'getRadarData'=>array(
 'len'=>0
)
)

Next, let's create the following methods to acquire data for the various charts:

•	 getPieData

•	 getBarData

•	 getLineData

•	 getRadarData

First, implement the getPieData method for the pie chart. We'll implement the
Direct method to get the data for the pie chart. Please see the actual content for
the source code (source file: 04_implement_direct_function/php/classes/
MyAppDashBoard.php).

This is acquiring valid quotation and bill data items. With the data to be sent back to
the client, set the array in items and set up the various names and data in a key array.
You will now combine the definitions in the next model.

Chapter 5

[111]

Preparing the store for the pie chart
Charts need a store, so let's define the store and model (source file: 05_prepare_
the_store_for_the_pie_chart/app/model/ Pie.js).

We'll create the MyApp.model.Pie class that has the name and data fields. Connect this
with the data you set with the return value of the Direct function. If you increased
the number of fields inside the model you just defined, make sure to amend the return
field values, otherwise it won't be applied to the chart, so be careful. We'll use the
model we made in the previous step and implement the store (source file:
05_prepare_the_store_for_the_pie_chart/app/model/ Pie.js).

Ext.define('MyApp.store.Pie', {
 extend: 'Ext.data.Store',
 storeId: 'DashboardPie',
 model: 'MyApp.model.Pie',
 proxy: {
 type: 'direct',
 directFn: 'MyAppDashboard.getPieData',
 reader: {
 type: 'json',
 root: 'items'
 }
 }
})

Then, define the store using the model we made and set up the Direct function we
made earlier in the proxy.

Creating the View
We have now prepared the presentation data. Now, let's quickly create the view to
display it (source file: 06_making_the_view/app/view/dashboard/Pie.js).

Ext.define('MyApp.view.dashboard.Pie', {
 extend: 'Ext.panel.Panel',
 alias : 'widget.myapp-dashboard-pie',
 title: 'Pie Chart',
 layout: 'fit',
 requires: [
 'Ext.chart.Chart',
 'MyApp.store.Pie'
],
 initComponent: function() {
 var me = this, store;
 store = Ext.create('MyApp.store.Pie');

Reporting

[112]

 Ext.apply(me, {
 items: [{
 xtype: 'chart',
 store: store,
 series: [{
 type: 'pie',
 field: 'data',
 showInLegend: true,
 label: {
 field: 'name',
 display: 'rotate',
 contrast: true,
 font: '18px Arial'
 }
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Implementing the controller
With the previous code, data is not being read by the store and nothing is
being displayed.

In the same way that reading was performed with onShow, let's implement the
controller (source file: 06_making_the_view/app/controller/DashBoard.js):

Ext.define('MyApp.controller.dashboard.DashBoard', {
 extend: 'MyApp.controller.Abstract',
 screenName: 'dashboard',
 init: function() {
 var me = this;
 me.control({
 'myapp-dashboard': {
 'myapp-show': me.onShow,
 'myapp-hide': me.onHide
 }
 });
 },
 onShow: function(p) {
 p.down('myapp-dashboard-pie chart').store.load();
 },
 onHide: function() {
 }
});

Chapter 5

[113]

With the charts we create from now on, as we create them it would be good to
add the reading process to onShow. Let's take a look at our pie chart which appears
as follows:

Creating a bar chart
In the same way as with the pie chart, first prepare the CT. Again in the same way
as creating the pie chart, let's change the JavaScript file and create the bar chart
HTML (source file: 07_making_a_bar_chart/ct/dashboard/bar_app.html).

Apart from the created class name (MyApp.view.dashboard.Bar), the JavaScript
file here is the same as the pie chart (source file: 07_making_a_bar_chart/ct/
dashboard/bar_app.js).

Reporting

[114]

Implementing the Direct function
Now, it's the Direct function. As the definition is already made in config.php, I will
not repeat it here.

Let's go ahead and implement the Direct method (getBarData) to get the data
for the bar chart. Please refer to the source code in the source file if you want to
see the content (source file: 08_implement_direct_function/php/classes/
MyAppDashBoard.php). It will acquire the count for the levels of quotations or bills
created for each client.

Preparing the store for the chart
Next comes the model store in the same way as we did for the pie chart. The name is
the client name; quotation and bill are where the various counts are stored.

We'll now create the MyApp.model.Bar class that has the fields, such as name,
quotation, and bill (source file: 09_prepare_the_store_for_the_pie_chart/
app/model/ Bar.js).

We'll implement the store using the model we made in the previous step. It is the
same way as we did for the pie chart so just see the source file if you need reference.
Be careful as the model name, StoreId, and Direct method titles are different
(source file: 09_prepare_the_store_for_the_pie_chart/app/store/ Bar.js).

Creating the view
Let's go ahead and define the content inside so that we can display it (source file:
10_making_the_view/app/view/dashboard/Bar.js):

Ext.define('MyApp.view.dashboard.Bar', {
 extend: 'Ext.panel.Panel',
 alias : 'widget.myapp-dashboard-bar',
 title: 'Bar Chart',
 layout: 'fit',
 requires: [
 'Ext.chart.Chart',
 'MyApp.store.Bar'
],
 initComponent: function() {
 var me = this, store;
 store = Ext.create('MyApp.store.Bar');
 Ext.apply(me, {
 items: [{
 xtype: 'chart',
 store: store,
 axes: [{

Chapter 5

[115]

 type: 'Numeric',
 position: 'bottom',
 fields: ['quotation', 'bill'],
 title: 'Document Count',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',
 position: 'left',
 fields: ['name'],
 title: 'Customers'
 }],
 series: [{
 type: 'bar',
 axis: 'bottom',
 highlight: true,
 tips: {
 trackMouse: true,
 width: 140,
 height: 28,
 renderer: function(storeItem, item) {
 var tail = '';
 if(storeItem.get(item.yField) > 1) {
 tail = 's';
 }
 this.setTitle([
 storeItem.get('name'),
 ': ',
 storeItem.get(item.yField),
 ' ',
 item.yField,
].join(''));
 }
 },
 label: {
 display: 'insideEnd',
 field: 'quotation',
 renderer: Ext.util.Format.numberRenderer('0'),
 orientation: 'horizontal',
 color: '#333',
 'text-anchor': 'middle'
 },
 xField: 'name',
 yField: ['quotation', 'bill']
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Reporting

[116]

Implementing the controller
Like what we did with onShow, I'll put this implementation in a postscript
(source file: 11_making_the_view/app/controller/DashBoard.js).

 onShow: function(p) {
 p.down('myapp-dashboard-pie chart').store.load();
 p.down('myapp-dashboard-bar chart').store.load();
 },

Let's take a look at our bar chart which appears as follows:

Chapter 5

[117]

Creating a line chart
As before, let's set out by creating the CT. In the same way as for the pie chart,
change the JavaScript file to be read and create the line chart HTML (source file:
12_making_a_line_chart/ct/dashboard/line_app.html).

In this JavaScript file, everything is the same as the pie chart apart from the create
class name: MyApp.view.dashboard.Line (source file: 12_making_a_line_chart/
ct/dashboard/line_app.js).

Implementing the Direct function
In the same way, implement the Direct function. Let's implement the Direct
method (getLineData) to acquire data in the same way as we did for the bar chart.
Please refer to the source file if you want to see the source code (source file: 13_
implement_direct_function/php/classes/ MyAppDashBoard.php).

Preparing the store for the chart
Create the model store in a similar way. We'll create the MyApp.model.Line class
that has the fields name, quotation, and bill (source file: 14_prepare_the_store_
for_the_pie_chart/app/model/ Line.js).

We'll now implement the store using the model we made in the previous step.
The details are the same as in the pie chart. Refer to the following source file for the
code. Again, the model name, StoreId, and Direct method titles have changed so
take note of this (source file: 14_prepare_the_store_for_the_pie_chart/app/
store/ Line.js).

Creating the view
Let's make the quotation and bill variables to display per month. With the Direct
function, at most it can receive output of 12 months, and in case that the data doesn't
exist, the number of months will decrease (source file: 15_making_the_view/app/
view/dashboard/Line.js).

Ext.define('MyApp.view.dashboard.Line', {
 extend: 'Ext.panel.Panel',
 alias : 'widget.myapp-dashboard-line',
 title: 'Line Chart',
 layout: 'fit',
 requires: [
 'MyApp.store.Line'
],
 initComponent: function() {

Reporting

[118]

 var me = this, store;
 store = Ext.create('MyApp.store.Line');
 Ext.apply(me, {
 items: [{
 xtype: 'chart',
 store: store,
 legend: {
 position: 'right'
 },
 axes: [{
 type: 'Numeric',
 minimum: 0,
 position: 'left',
 fields: ['quotation', 'bill'],
 title: 'Documents',
 minorTickSteps: 1
 }, {
 type: 'Category',
 position: 'bottom',
 fields: ['mon'],
 title: 'Month of the Year'
 }],
 series: [{
 type: 'line',
 highlight: {
 size: 7,
 radius: 7
 },
 axis: 'left',
 xField: 'mon',
 yField: 'quotation'
 }, {
 type: 'line',
 highlight: {
 size: 7,
 radius: 7
 },
 axis: 'left',
 xField: 'mon',
 yField: 'bill'
 }]
 }]
 });
 me.callParent(arguments);
 }
});

Chapter 5

[119]

Implementing the controller
As it is the same process, I will add a postscript about the command to read the
controller store (source file: 16_making_the_view/app/controller/DashBoard.js).

 onShow: function(p) {
 p.down('myapp-dashboard-pie chart').store.load();
 p.down('myapp-dashboard-bar chart').store.load();
 p.down('myapp-dashboard-line chart').store.load();
 },

Let's take a look at our line chart which appears as follows:

Reporting

[120]

Creating a radar chart
Now, let's make the final CT.

In the same way as the pie chart, change the JavaScript file to be read and create the
radar chart HTML (source file: 17_making_a_radar_chart/ct/dashboard/radar_
app.html).

Again, everything is the same as the pie chart in this JavaScript file apart from the
create class name: MyApp.view.dashboard.Radar (source file: 17_making_a_radar_
chart/ct/dashboard/radar_app.js).

Implementing the Direct function
As the title says, let's implement the Direct function. As before, we'll implement
the Direct method (getRadarData) to acquire the data for the radar chart.
Please refer to the following source file for details (source file: 18_implement_
direct_function/php/classes/ MyAppDashBoard.php).

You've guessed it, the process is exactly the same as the getLineData. So, there's no
need to implement it unnecessarily, but if you want to display different data on the
radar chart, please amend this method.

Preparing the store for the chart
Let's prepare the store. We'll create the MyApp.model.Radar class that has the name,
quotation, and bill fields (source file: 19_prepare_the_store_for_the_pie_
chart/app/model/ Radar.js).

Again, we'll implement the store with the model we made in the previous step.
The details are the same as for the pie chart, and again be careful because the
model name, StoreId, and Direct method titles are different (source file:
19_prepare_the_store_for_the_pie_chart/app/store/ Radar.js).

Creating the view
Next, we will create the view (source file: 20_making_the_view/app/view/
dashboard/Radar.js):

Ext.define('MyApp.view.dashboard.Radar', {
 extend: 'Ext.panel.Panel',
 alias : 'widget.myapp-dashboard-radar',
 title: 'Radar Chart',
 layout: 'fit',

Chapter 5

[121]

 requires: [
 'MyApp.store.Radar'
],
 initComponent: function() {
 var me = this, store;
 store = Ext.create('MyApp.store.Radar');
 Ext.apply(me, {
 items: [{
 xtype: 'chart',
 store: store,
 insetPadding: 20,
 legend: {
 position: 'right'
 },
 axes: [{
 type: 'Radial',
 position: 'radial',
 label: {
 display: true
 }
 }],
 series: [{
 type: 'radar',
 xField: 'mon',
 yField: 'quotation',
 showInLegend: true,
 showMarkers: true,
 markerConfig: {
 radius: 5,
 size: 5
 },
 style: {
 'stroke-width': 2,
 fill: 'none'
 }
 },{
 type: 'radar',
 xField: 'mon',
 yField: 'bill',
 showInLegend: true,
 showMarkers: true,
 markerConfig: {
 radius: 5,
 size: 5
 },
 style: {
 'stroke-width': 2,
 fill: 'none'
 }

Reporting

[122]

 }]
 }]
 });
 me.callParent(arguments);
 }
});

Implementing the controller
Postscript the store's data reading settings in onShow (source file: 21_making_the_
view/app/controller/DashBoard.js).

 onShow: function(p) {
 p.down('myapp-dashboard-pie chart').store.load();
 p.down('myapp-dashboard-bar chart').store.load();
 p.down('myapp-dashboard-line chart').store.load();
 p.down('myapp-dashboard-radar chart').store.load();
 },

Finally, let's look at our radar chart which appears as follows:

Chapter 5

[123]

In the near future, the chart should look like the previous chart. However, in the
current Ext JS 4.2.2-GPL Version, setting the store to a chart and acquiring the data
from the server causes a bug that distorts the display of the lines and the labels.
The bug has been confirmed as EXTJSIV-7778.

In the case of the previous chart, we managed to display it by taking the exact same
response received from the server and setting it in the store's local data.

Summary
You must agree this is starting to look like an application!

The dashboard is the first screen you see right after logging in. Charts are extremely
effective in order to visually check a large and complicated amount of data. If you
keep adding panels as and when you feel it's needed, you'll increase its practicability.
This sample will become a customizable base for you to use in future projects.

Now, in the next and final chapter we'll move on to data management.

Data Management
With the development we have done already, the application is really taking shape.
We can input and see the data. Now if we customize the content according to the
need, we'll have the finished application we were originally hoping for. In this final
chapter, we will implement the data import/export to restore or backup the data.
This time, the data we refer to is the Quotation and Bill data.

Designing Import and Export
Let's start by thinking about the Quotation table. Because Bill is mostly the same
as Quotation, we'll just implement Quotation here. Try this implementation
with Bill, as well by yourself. First, we'll add an Export and Import button in
the Quotation list, so that it begins to function. Next, we'll make the file start
downloading when the Export button is pressed. We'll add a new panel so that we
can visually check the selected data that we are about to import. So let's go ahead
and create this type of data import and export functions.

Data format
At first, when exporting, let's consider the data format in which it will be downloaded.
This time, we're thinking of outputting in the TSV format instead of CSV or XML.
TSV is easier for the developers to read and it's very simple to generate with JavaScript.
The following list shows the order of output.

Quotation and Quotations are outputted in a single file. In the case of quotation,
the order of output is as follows:

•	 quotation

•	 id

•	 status

•	 customer

Data Management

[126]

•	 note

•	 modified

•	 created

In the case of quotations, the order of output is as follows:

•	 quotations

•	 id

•	 status

•	 parent

•	 description

•	 qty

•	 price

•	 sum

•	 modified

•	 created

For the very first item, enter the table name, this will let you output multiple tables
at the same time.

Creating the Import and Export views
in Quotation
First, we'll add the button feature and modify the code for import and export
(source file: 01_making_the_import_and_export_view_in_quotation/app/view/
quotation/List.js):

Ext.define('MyApp.view.quotation.List', {

 initComponent: function() {

 Ext.apply(me, {
 tbar: [{

 }, '-', {
 text : 'Import',
 action : 'import'
 }, {
 text : 'Export',
 action : 'export'
 }, '-', {

Chapter 6

[127]

You should now see the following form:

Next, implement the button's event handler (source file: 01_making_the_import_
and_export_view_in_quotation/app/controller/quotation/List.js):.

Ext.define('MyApp.controller.quotation.List', {

 init: function() {
 var me = this;
 me.control({

 'myapp-quotation-list button[action=import]': {
 'click': me.onImport
 },
 'myapp-quotation-list button[action=export]': {
 'click': me.onExport
 }
 });
 },
 onImport: function() {
 // import
 },
 onExport: function() {
 // export
 },

Detect the actions for import and export you set up in the button feature, and then
assign onImport and onExport to the various click events. Of course, we will make
onImport and onExport from scratch.

Preparing the server side for export
In order to download the file, we will make the quotation-export.php file. The file
can be installed anywhere, but this time we have positioned it in the document route
where the index.php file is located.

The process to export the Quotation data will be implemented by PHP. It's a long
one, so please refer to the source file for the code (source file: 02_preparing_the_
server_side_for_export/quotation-export.php).

Execute SQL and output it to match the data format we thought up earlier.

Data Management

[128]

In order to change the filename to the second one, the filename that comes after
the quotation will have the year, month, date, hour, minute, and second recorded.
Then, it is downloaded with the .tsv file extension. Please check if you can
download the file by entering the quotation-export.php URL directly.

Next, let's make this URL move when you press down the button we just made.
(source file: 02_preparing_the_server_side_for_export/app/controller/
quotation/List.js):.

onExport: function() {
 location.href='quotation-export.php';
},

Creating a temporary view for import
Next, we will continue by implementing the import process. Like it was explained
earlier, upload the data you will import and then implement it, so that you can
import after you have visually checked it.

Let's make the myapp-import event fire when we press the import button,
and implement it so that the panel shows to confirm the import data.

First, let's implement the listener. When this event happens, the URL will change to
#!/quotation/import (source file: 03_making_a_temporary_view_for_import/
app/controller/quotation/Quotation.js):

Ext.define('MyApp.controller.quotation.Quotation', {

 init: function() {

 me.control({
 'myapp-quotation-list': {

 'myapp-import': function() {
 location.href = '#!/quotation/import';
 }
 }
 });

Next, implement so that the event fires (source file: 03_making_a_temporary_view_
for_import/app/controller/quotation/List.js):

Ext.define('MyApp.controller.quotation.List', {

 init: function() {
 var me = this;
 me.control({

Chapter 6

[129]

 'myapp-quotation-list button[action=import]': {
 'click': me.onImport
 },
 'myapp-quotation-list button[action=export]': {
 'click': me.onExport
 }
 });
 },
 onImport: function() {
 var me = this,
 listView = me.getListView();

 listView.fireEvent('myapp-import');
 },

Implement the contents of the onImport method that we implemented earlier.
From the List view object, fire the myapp-import event with fireEvent.

When this event happens, the URL will be changed. Next, modify onShow so that
the panel for imports shows up (source file: 03_making_a_temporary_view_for_
import/app/controller/quotation/Quotation.js):

....
onShow: function(p) {
 var me = this,
 o = {},
 hash = location.hash,
 layout = p.getLayout(),
 listView = me.getListView(),
 editView = me.getEditView(),
 params;
 params = hash.substr(('#!/' + me.screenName + '/').length);
 if(params === 'new') {
 o.id = params;
 } else {
 if(!params || !Ext.isString(params)) {
 params = '';
 }
 params = params.split('/');
 Ext.iterate(params, function(text) {
 if(!text || !Ext.isString(text)) {
 text = '';
 }
 text = text.split('=');
 o[text[0]] = text[1];
 });

Data Management

[130]

 }
 me.requestParams = params = o;

 if(params.hasOwnProperty('import')) {
 // Show Import
 layout.setActiveItem(2);
 } else if(params.id === 'new' || Number(params.id)) {
 // Show Edit
 layout.setActiveItem(1);
 } else {
 // Show List
 layout.setActiveItem(0);
 }
 // fire event 'myapp-show'
 layout.activeItem.fireEvent('myapp-show', layout.activeItem, p,
 params);
},
....

Parameter analysis is being performed by the process we made earlier. Using this
process, if you have an import property, the import panel will be displayed.

We haven't made the main import panel. Here, we have just made a very simple
panel so that it can be displayed for the time being (source file: 03_making_a_
temporary_view_for_import/app/view/quotation/Import.js):

Ext.define('MyApp.view.quotation.Import', {
 extend: 'MyApp.form.Panel',
 alias : 'widget.myapp-quotation-import',
 itemId: 'screen-quotation-import',
 initComponent: function() {
 var me = this;

 // TopToolbar
 Ext.apply(me, {
 tbar: [{
 text: 'Cancel',
 action: 'cancel'
 }, '-', {
 text: 'Upload',
 action: 'upload'
 }]
 });

 me.callParent(arguments);
 }
});

Chapter 6

[131]

Add this panel (app/view/quotation/Quotation.js) to the screen panel item
(source file: 03_making_a_temporary_view_for_import/app/view/quotation/
Quotation.js).

When you configure an item, you should specify the xtype. To do this, set up the
class name it requires so that dynamic loading can take place.

In this state, execute the whole application. When you press the import button,
the following panel will be displayed:

The import panel is still temporary, and the grid panel we implemented earlier
is still not displayed; but we can check with the onShow event handler that it is
changing properly.

Creating the CT view for import
We haven't created the CT that we usually would have made already. So, let's make
the CT to display the temporary import panel we made earlier (source file:
04_making_the_ct_view_for_import/ct/quotation/view_import.html).

For the HTML, there shouldn't be any problems if we duplicate a different HTML
and amend the JavaScript file to be read in the same way (source file: 04_making_
the_ct_view_for_import/ct/quotation/view_import.js):

...
Ext.onReady(function() {
 Ext.create('MyApp.store.Customer');
 Ext.create('MyApp.store.QuotationItem');
 Ext.create('MyApp.view.quotation.Quotation', {
 activeItem: 2,

Data Management

[132]

 width: 800,
 height: 600,
 renderTo: Ext.getBody()
 });
});

Now, let's prepare a grid for this panel. After the upload is complete, it will receive the
display data from JSON data. So, let's make a store with the memory proxy (source file:
04_making_the_ct_view_for_import/app/store/QuotationImport.js):

Ext.define('MyApp.store.QuotationImport',{
 extend: 'Ext.data.Store',
 storeId:'QuotationImport',
 fields:['id', 'status', 'customer', 'note', 'modified', 'created'],
 data:{'items':[
]},
 proxy: {
 type: 'memory',
 reader: {
 type: 'json',
 root: 'items'
 }
 }
});

Also, use the following code to prepare a grid for this panel (source file: 04_making_
the_ct_view_for_import/app/store/QuotationImportItems.js):

Ext.define('MyApp.store.QuotationImportItems',{
 extend: 'Ext.data.Store',
 storeId:'QuotationImportItems',
 fields:[
 'id',
 'status',
 'parent',
 'description',
 'qty',
 'price',
 'sum',
 'modified',
 'created'
],
 data:{'items':[
]},
 proxy: {
 type: 'memory',
 reader: {
 type: 'json',

Chapter 6

[133]

 root: 'items'
 }
 }
});

The reason we have created two memory proxies is because we will prepare one each
for Quotation and Quotations, and then make two grids. Now, we are going to
use this in Grid; but we will add the following code to make sure that it displays
without any problems in CT (source file: 04_making_the_ct_view_for_import/ct/
quotation/view_import.js).

To make sure that the two stores we made previously can use the view_import
.js script in the CT directory, let's change it so that it can instantiate when it's
initially launched.

Now, we'll quickly make the view. We'll remodel the temporary Import panel
we made earlier (source file: 04_making_the_ct_view_for_import/app/view/
quotation/Import.js):

Ext.define('MyApp.view.quotation.Import', {
 extend: 'MyApp.form.Panel',
 alias : 'widget.myapp-quotation-import',
 itemId: 'screen-quotation-import',
 initComponent: function() {
 var me = this,
 store = Ext.getStore('QuotationImport'),
 itemstore = Ext.getStore('QuotationImportItems');

 // Items
 Ext.apply(me, {
 layout: {
 type: 'border',
 padding: 5
 },
 items: [{
 region: 'north',
 xtype: 'grid',
 itemId: 'quotationgrid',
 split: true,
 title: 'Quotation',
 store: store,
 columns: [{
 text: 'id',
 dataIndex: 'id',
 width: 50
 }, {
 text: 'status',
 dataIndex: 'status',
 width : 50

Data Management

[134]

 }, {
 text: 'customer',
 dataIndex: 'customer'
 }, {
 text: 'note',
 dataIndex: 'note',
 flex: 1
 }, {
 text: 'modified',
 dataIndex: 'modified'
 }, {
 text: 'created',
 dataIndex: 'created'
 }],
 flex:1
 }, {
 region: 'center',
 xtype: 'grid',
 title: 'Quotation Items',
 itemId: 'quotationitemsgrid',
 store: itemstore,
 columns: [{
 text: 'id',
 dataIndex: 'id',
 width: 50
 }, {
 text: 'status',
 dataIndex: 'status',
 width : 50
 }, {
 text: 'parent',
 dataIndex: 'parent',
 width : 50
 }, {
 text: 'description',
 dataIndex: 'description',
 flex: 1
 }, {
 text: 'qty',
 dataIndex: 'qty'
 }, {
 text: 'price',
 dataIndex: 'price'
 }, {
 text: 'sum',
 dataIndex: 'sum'
 }, {
 text: 'modified',

Chapter 6

[135]

 dataIndex: 'modified'
 }, {
 text: 'created',
 dataIndex: 'created'
 }],
 flex:1
 }]
 });

 // TopToolbar
 Ext.apply(me, {
 tbar: [{
 text: 'Cancel',
 action: 'cancel'
 }, '-', {
 text: 'Upload',
 action: 'upload'
 }]
 });

 me.callParent(arguments);
 }
});

As mentioned earlier, we will make two grid panels. This is for Quotation and
Quotations. Again, the layout is a border layout and it specifies flex.

Users who have been using Ext JS for a long time might think this is strange;
but with the current Ext JS, you can specify flex even in a border layout.

So, if you set up flex:1 for both north and center, it will equally arrange the
top and bottom of the form; and with north set up as split:true, the splitter
can be displayed.

Data Management

[136]

If you check the display, it will look like the following:

Creating Upload and Show Data in the grid
This time, upload the data you exported and let's display it in a grid. To do this,
add a controller in app.js. You might have to jog your memory because it has been
a while since the last time! (Source file: 05_making_upload_and_show_data_in_
the_grid/app/Application.js.):

....

Ext.application({

 controllers: [

 'quotation.Import',

],

Chapter 6

[137]

Now, we will make this controller (source file: 05_making_upload_and_show_data_
in_the_grid/app/controller/quotation/Import.js):

Ext.define('MyApp.controller.quotation.Import', {
 extend: 'MyApp.controller.Abstract',
 refs: [{
 ref: 'importView', selector: 'myapp-quotation-import'
 }],
 stores: [
 'QuotationImport',
 'QuotationImportItems'
],
 init: function() {
 var me = this;
 me.control({
 'myapp-quotation-import': {
 'myapp-show': me.onShow,
 'myapp-hide': me.onHide
 },
 'myapp-quotation-import [action=upload]': {
 'change': me.onUploaded
 }
 });
 },
 onShow: function(p, owner, params) {
 },
 onHide: function() {
 },
 onUploaded: function(fb, v) {
 var me = this,
 p = me.getImportView(),
 form = p.getForm(),
 importView = me.getImportView(),
 btnExecute = importView.down('button[action=execute]');

 p.setLoading();
 btnExecute.disable();
 form.submit({
 success: function(form, action) {
 Ext.getStore('QuotationImport').loadData(action.
 result.quotation.items);
 Ext.getStore('QuotationImportItems').loadData(action.
 result.quotations.items);
 p.setLoading(false);
 btnExecute.enable();
 }
 });
 }
});

Data Management

[138]

Then, temporarily change the upload button (that we created previously) to
filefield (source file: 05_making_upload_and_show_data_in_the_grid/app/
view/quotation/Import.js):

Ext.define('MyApp.view.quotation.Import', {
 extend: 'MyApp.form.Panel',
 alias : 'widget.myapp-quotation-import',
 itemId: 'screen-quotation-import',
 api: {
 submit : 'MyAppQuotation.importData'
 },
 paramOrder: ['importfile'],
 initComponent: function() {

 // TopToolbar
 Ext.apply(me, {
 tbar: [{
 text: 'Cancel',
 action: 'cancel'
 }, '-', {
 xtype: 'filefield',
 name: 'importfile',
 buttonText: 'Upload',
 buttonOnly: true,
 hideLabel: true,
 action: 'upload'
 }]
 });

 me.callParent(arguments);
 }
});

Furthermore, add the API key in the config options and specify the Direct function
in submit. This panel is a form panel. Upload the file using the submit method.
Next, make the Direct function that we specified in submit (source file: 05_making_
upload_and_show_data_in_the_grid/php/config.php).

We'll add the following method to the MyAppQuotation class:

 'importData'=>array(
 'len'=>2,
 'formHandler'=>true
)

We'll actually implement the method we added previously. It's too long to include
in this text, so please refer to the source files for the code (source file: 05_making_
upload_and_show_data_in_the_grid/php/classes/MyAppQuotation.php).

Chapter 6

[139]

Return the upload data again with JSON. If you are thinking of building an
application, you should perform an input check because the user can input
whatever information they like with a TSV file.

With the controller you implemented before, use the loadData method and read
the data that was returned from the server side into the MemoryStore method.

Executing the Import data
Once you have displayed the read data in the grid and checked it, you can create
a button to apply it to the database (source file: 06_execute_import_data /app/
view/quotation/Import.js):

Ext.define('MyApp.view.quotation.Import', {

 initComponent: function() {

 // TopToolbar
 Ext.apply(me, {

 }, {
 text: 'Execute',
 disabled: true,
 action: 'execute'
 }]
 });

 me.callParent(arguments);
 }
});

Let's make it so that it is impossible to press the button in the initial state. It will
enable the button once the previous data upload has been complete (source file:
06_execute_import_data /app/controller/quotation/Import.js):

Ext.define('MyApp.controller.quotation.Import', {

 init: function() {
 var me = this;
 me.control({

 'myapp-quotation-import [action=execute]': {
 'click': me.onExecute
 }
 });
 },

Data Management

[140]

 onExecute: function() {
 var data = {
 quotation: [],
 quotations: []
 },
 store = Ext.getStore('QuotationImport'),
 items = Ext.getStore('QuotationImportItems');

 Ext.iterate(store.data.items, function(item) {
 data.quotation.push(Ext.clone(item.data));
 });

 Ext.iterate(items.data.items, function(item) {
 data.quotations.push(Ext.clone(item.data));
 });

 MyAppQuotation.executeImport(data, function() {
 location.href = '#!/quotation';
 });
 }
});

Now, we are calling the executeImport and Direct functions. That's right,
we haven't made it yet. Let's make this and make it possible to receive data from
the client side (source file: 06_execute_import_data /php/config.php):

 'MyAppQuotation'=>array(
 'methods'=>array(

 'executeImport'=>array(
 'len'=>1
)
)
),

We'll implement the method we added to the config.php file. Again, this is too long
to show here, so please refer to the source file (source file: 06_execute_import_data
/php/classes/MyAppQuotation.php).

When the data has been received, empty the inside of the database once with
Truncate and insert the new data. Whether this is a good or bad way to do it
will depend on the system you make.

Furthermore, if you look closely at the code, you'll know that error processing is not at
a high level. If you are intending to make this at a commercial level, you will have to
build up this area. Already, the implementation is complete. But finally, let's change
the URL to #!/quotation to change it to a list display, and then finish.

Chapter 6

[141]

Summary
We have motored through implementing the Export and Import data. There are still
many points to cover, such as input checks and the error checks. But after learning
this flow, I think you now have the base to customize this database in the way that
you want.

Well done! You've made it to the end of the book!

Let's go over what you have achieved:

•	 You made the data structure
•	 You made the application architecture
•	 You made the input and output by using grids and fields on the browser
•	 You developed the application to obtain information using various charts
•	 You made the data export and import management features

Each feature is fundamental to an application of this kind. From now on, if you're
thinking of creating something similar in your next project, please use this sample
application as a base for your application. You only need to change a few points,
and then you should be able to create a customized application very quickly.

Incorporating the architecture from this book into applications you have made,
or are about to make, will simplify control and improve maintenance. It will also
give you have high-level and versatile history management and let you add new
screens with ease.

However, the sample application introduced in this book needed some extra features
for actual real-world use. So we added some things here and there at the end of this
chapter to brush up the application.

A list of the extra edited code files can be found in the sample code folder for this
chapter. Please refer to this to see the final modifications we made to the application.

Also, we have included the comment // update code next to any modifications.
Just search inside the code with that comment, and you should be able to see changes
straight away.

Finally, remember that if you get lost, or if you hit a brick wall in one of your future
projects, just take another look at this application and see if it can offer you some
kind of solution.

I hope that you will be able to create some fantastic applications! Good luck and
happy coding!

Index
A
acquisition and update operations

user authentication 13
user information, updating 14
user list, selecting 14
users, adding 14
users, deleting 15

add new function 93

B
bar chart

controller, implementing 116
creating 113
creating, for CT 106
Direct function, implementing 114
store, preparing 114
view, creating 114

Bill form
creating 58, 59
implementing 71

Bills table 10
Bill table 10, 13, 16
border layout 135

C
charts

bar chart 106
creating, on dashboard 105
line chart 107
radar chart 107

company structure tables
Bill table 13
Customer table 11

Quotation table 12
User table 11

component test (CT) 105
controllers

creating 34
dashboard controller 37
main controller 35
MyAccount controller 38
navigation controller 35-37
quotation and bill 38

customer 7
Customers table

about 15
customer information list 15
items 16
quotation list, selecting 16

Customer table 11

D
dashboard

charts, creating 105
layout 107-109
panels 107

dashboard controller 37
data and validations

writing 78, 79
data input

Bill form 71
Bill form, creating 58
data and validations, writing 78, 79
data, reading 72
dirty and undirty apps, managing 59
login page, creating 47
MyAccount form, creating 48-50

[144]

Quotation form 65
Quotation form, creating 52, 53
read and write processes, implementing

with Ext Direct 72
data management

import and export, designing 125
data reading

MyAccount 73
read action, implementing for

Bill form 77, 78
read action, implementing for

Quotation form 75, 76
readForm method, implementing in

My Account 73, 74
dirty and undirty apps

form, implementing from
MyAccount 60-64

managing 59

E
each operation

creating 13
Ext Direct

applying, to client application 45
creating 45
setting up 43
testing 46
used, for implementing read and write

processes 72
Ext.Direct 6
Ext Direct router

creating 44
Ext JS

data management 125
Ext JS application

Bills table 10
Bill table 10, 16
company structure tables, creating 11
customer 7
Customers table 15
each operation, creating 13
features 5
Quotation 8

Quotations 9
structure 6
user 7

Ext.util.History
about 39
logic, adding to controller 40-43
used, for accessing screen 39, 40

F
formHandler method 79

G
getGrid method 91
grid

loading 91, 92

I
import and export

CT view, creating for import 131-135
data, displaying in grid 136, 138
data format 125
import and export view, creating in Quota-

tion 126, 127
import data, executing 139, 140
server side, preparing for export 127, 128
temporary view, creating for

import 128-131

L
line chart

controller, implementing 119
creating 117
Direct function, implementing 117
store, preparing 117
view, creating 117

loadIndex method 74
local development environment setup,

with Sencha Cmd
about 17
categories 19
commands 20

[145]

component test, creating 21
controllers, adding 27-29
CT, into individual views 24
directory structure 18, 19
navigation section 30-32
options 19
production build, creating 23
project, creating 20, 21
testing 22, 23
View component 26
viewport 33, 34
views, creating 30

login page
creating 47

M
main controller 35
MyAccount controller 38
MyAccount form

creating 48, 50, 52
screen layout, making into card layout 48

myapp-add event handler 93
myapp-edit event 98
myapp-show event handler 76
MyApp.util.History class 39

N
navigation controller 35-37

O
onEditShow method 77
onImport method 129
onShow event handler 131
onShow method implementation 99

P
pie chart

controller, implementing 112, 113
creating 109
creating, for CT 106
Direct function, implementing 110

store, preparing 111
view, creating 111

Q
quotation and bill controller 38
Quotation controller

implementing 88-91
Quotation form

creating 52, 53
field component 55
grid component 55, 56
implementing 65-70
Store component 54
TopToolbar 56, 57

Quotation list
creating 82

Quotation model
creating 82, 83

Quotations table 9
Quotation table 9, 12
Quotation view

updating 84-88

R
radar chart

controller, implementing 122
creating 120
creating, for CT 107
Direct function, implementing 120
store, preparing 120
view, creating 120

read and write processes
implementing, with Ext Direct 72

readForm method 95
implementing 76

Remote Procedure Call (RPC) 43

S
SearchField

implementing 102, 103
Sencha Architect 51

[146]

T
toolbar buttons

implementing 91-96
managing 96-101

TSV format 125

U
user 7
User table 11

W
writeForm method

implementing 76, 95

Thank you for buying
Ext JS Data-driven Application Design

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ext JS 4 Plugin and Extension
Development
ISBN: 978-1-78216-372-5 Paperback: 116 pages

A hands-on development of several Ext JS plugins
and extensions

1.	 Easy-to-follow examples on Ext JS plugins
and extensions

2.	 Step-by-step instructions on developing Ext JS
plugins and extensions

3.	 Provides a walkthrough of several useful Ext JS
libraries and communities

Ext JS 4 First Look
ISBN: 978-1-84951-666-2 Paperback: 340 pages

A practical guide including examples of the new
features in Ext JS 4 and tips to migrate from Ext JS 3

1.	 Migrate your Ext JS 3 applications easily to
Ext JS 4 based on the examples presented in
this guide

2.	 Full of diagrams, illustrations, and step-by-step
instructions to develop real word applications

3.	 Driven by examples and explanations of how
things work

Please check www.PacktPub.com for information on our titles

Learning Ext JS 3.2
ISBN: 978-1-84951-120-9 Paperback: 432 pages

Build dynamic, desktop-style user interfaces for your
data-driven web application using Ext JS

1.	 Learn to build consistent, attractive web
interfaces with the framework components

2.	 Integrate your existing data and web services
with Ext JS data support

3.	 Enhance your JavaScript skills by using Ext's
DOM and AJAX helpers

4.	 Extend Ext JS through custom components

Instant Ext JS Starter
ISBN: 978-1-78216-610-8 Paperback: 56 pages

Find out what Ext JS actually is, what you can do
with it, and why it's so great

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Install and set up the environment with this
quick Starter guide

3.	 Learn the basics of the framework and built-in
utility functions

4.	 Use MVC architecture, components,
and containers

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Data Structure
	The structure of the application – User, Customer, Quotation, Quotations, Bill, and Bills
	The user
	The customer
	Quotation and Quotations
	Quotation
	Quotations

	Bill and Bills
	Bill
	Bills

	Creating and dealing with the customer structure tables
	The User table
	The Customer table
	The Quotation table
	The Bill table

	Creating each operation and testing
	User authentication
	Selecting the user list
	Adding users
	Updating the user information
	Deleting users

	The Customers table
	The customer information list
	Selecting the quotation list
	Items

	The Bill table
	Summary

	Chapter 2: Planning Application Design
	Setting up Sencha Cmd and a local development environment
	Options
	Categories
	Commands
	Creating a project with Sencha Cmd
	Creating a component test
	Check how it's working
	Making production build
	CT in individual views
	View component
	Adding controllers
	Creating views
	Navigation
	Dashboard
	MyAccount
	Quotation and bill

	Viewport

	Creating controllers
	Main
	Navigation
	Dashboard
	MyAccount
	Quotation and bill

	Using Ext.util.History for directly accessing a screen
	Adding logic to the controller

	Setting up Ext Direct
	Creating the Ext Direct router
	Creating the Ext Direct module
	Applying Ext Direct to the client application
	Testing Ext Direct

	Summary

	Chapter 3: Data Input
	Creating the login page
	Creating the MyAccount form
	Creating the Quotation form
	Store
	The field and grid components
	TopToolbar

	Creating the Bill form
	Managing dirty and undirty apps
	MyAccount

	The Quotation form
	The Bill form
	Implementing the read and write processes using Ext Direct
	Reading data
	MyAccount
	The Quotation form
	The Bill form

	Writing data and validations
	Summary

	Chapter 4: List and Search
	Creating the Quotation list
	Creating the Quotation model
	Updating the Quotation view
	Implement the Quotation controller
	Loading the grid and implementing toolbar buttons
	Managing toolbar buttons depending on the grid selection's status
	Using a search trigger field and a relation URL hash
	Summary

	Chapter 5: Reporting
	Creating charts on dashboard
	Pie chart for CT
	Bar chart for CT
	Line chart for CT
	Radar chart for CT
	Layout to dashboard

	Creating a pie chart
	Implementing the Direct function
	Preparing the store for the pie chart
	Creating the View
	Implementing the controller

	Creating a bar chart
	Implementing the Direct function
	Preparing the store for the chart
	Creating the view
	Implementing the controller

	Creating a line chart
	Implementing the Direct function
	Preparing the store for the chart
	Creating the view
	Implementing the controller

	Creating a radar chart
	Implementing the Direct function
	Preparing the store for the chart
	Creating the view
	Implementing the controller

	Summary

	Chapter 6: Data Management
	Designing Import and Export
	Data format
	Creating the Import and Export views
in Quotation
	Preparing the server side for export
	Creating a temporary view for import
	Creating the CT view for import
	Creating Upload and Show Data in the grid
	Executing the Import data

	Summary

	Index

