Extending

SSIS wi_th NET
Scripting

A Toolkit for SQL Server Integration Services

APPLY .NET TO A WIDE ARRAY OF
PROBLEMS WHEN SCRIPTING ETL
SOLUTIONS THROUGH SSIS

Joost van Rossum and Régis Baccaro

Apress:

http://www.allitebooks.org

Extending SSIS with
.NET Scripting

Joost van Rossum
Régis Baccaro

APIess®

[vww allitebooks.cond

http://www.allitebooks.org

Extending SSIS with .NET Scripting
Copyright © 2015 by Joost van Rossum and Régis Baccaro

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0639-3
ISBN-13 (electronic): 978-1-4842-0638-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jonathan Gennick

Development Editor: Douglas Pundick

Technical Reviewer: John Welch

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano

Copy Editor: Kim Burton-Weisman

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code/.

[vww allitebooks.cond

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the Authors........ccmmmmmmme s ———————————— Xix
About the Technical REVIEWETcsvcsssssmssssssssssssmssssssssmsssssssssssssssssssssssssssnsassnsass Xxi
Acknowledgments........ccccuuiisnmmmnmmmmmmmssssssssssnnnmsessssssssssssnnnessssssssssnnnnnnsssssssssnnnnnns XXiii
INtroducCtioncuiiseemmsssnnmssssnmsssnnmsssnnmsssnnssssnnnsssnnnsssannsssannessannessannnsssnnnsssnnnnssnnnnssnnns XXV
Part I: Getting Started.........ccccccviinineecmnnnnnnsse s ————- 1
Chapter 1: Getting Started with SSIS and Scriptingccccccimnnneennnnnssssnmnmssssnn. 3
Chapter 2: Script Task vs. Script Component............cccccunnemmmmnnssnnnmmsssssnmsnssnns 31
Chapter 3: .NET Fundamentalscccccurrmssssssmsmmmmmmsmsssssssssssssssssssssssssssssssssnssssnns 55
Part Il: Script Tasks ...uccuuusseeemsmmmmmsssssssnssnnsmmsssssssssnsssssssssssssssnnnssnssssns 67
Chapter 4: Script Taskccuseemmmmsssnmnmmmsssssnmmmssssssmmssssssnnmsssssssssssssssssssssssnsssssssnnnnss 69
Chapter 5: File PropertieS....ccccuussesemmmmmmsssssssssssssnsmssssssssssssssnsssssssssssssssnnssssssssnns 115
Chapter 6: Working Through the Internet and the Webc.cccccivnineennnnsssnnnnn 145
Chapter 7: Working with Web Services and XMLccoccccmmnsssnnnnmmssssnnnssssssnnns 175
Chapter 8: Advanced Solutions with Script TaskK.......ccccusseemmmssssssnmsssssnsnssssssnnns 195
Part lIl: Script Component.........ccouneeemmmmmnmmmmssssssnnmmmmsssssssnnmmns 217
Chapter 9: Script Component Foundation...........ccusemmmnnnsmmnmnnssssmmmsssssnmssssnnns 219
Chapter 10: Script Component AS SOUICEcccurrssssnsnssssssnsnssssssnssssssssnsnsssssnnnnss 243
Chapter 11: Script Component Transformationccccuvsemrrnssssnsnnnnsssssnsnssssnnns 267
Chapter 12: Script Component As Destinationcccuvneemmmmnnnnmnmsssssssnnnmmn. 295
iii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

Chapter 13: Regular EXPresSionsccuseesmmssssssnmssssssssssssssssssssssssssssssssnsssssssnnnns 311
Chapter 14: Script Component Reflectionccucemmnnneemmmnnssssnmnssssssnssssssnns 327
Chapter 15: Web ServiCes.....ccciuummmmmmmmsssmmmmmsssssnsssnnnnss 349
Part IV: Custom Tasks and Components........cccevvvmmsmssssssssssssssssssssnns 383
Chapter 16: Create a Custom Taskccccvvussummmmmssssnsnmmssssssnmnsssssssssssssssssssssnnnns 385
Chapter 17: Create Custom Transformationccccnmsnsmmnnnssssssnnnssssnnssssssnnns 411
Part V: Scripting from .NET Applications........ccoussssmsssssssssssssssssssnnns 431
Chapter 18: Package Creationcccuscemmmnsssmnmmnssssssnmmssssssnmsssssssssssssssnsssssssnnnns 433
Chapter 19: Package Execution from .NETcccccrcmmmmmsssmnnmmssssssssssssssnsssssssnnnes 449
INA@X..ceiiiisnnnnnsssnnnnmssssnnnsnssssnnsnsssssnnnnsssssnnnssssssnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnssns 467
iv

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AUthOrS........cocsmismmmisrne s —————————_—_— Xix
About the Technical REVIEWETccussmsssmsssmssmsssmsssmsssssmsssmsssssssssssssssssssssssnssssssnns XXi
AcknowledgmEents.......ccceeersssssssmsnnnnsmmsssssssssssssssssssssssssssnsnnssssssssssssnnnnnnsnsssssssnnnnnns XXiii
INtroduction ..o ——————_—_———_— XXV

Part I: Getting Started..........cccccmmmmmmmmmmmmm s —————.

Chapter 1: Getting Started with SSIS and Scriptingccccinnneemmmnnnensnmnnssnn. 3
Performing a Basic Action with SSIS Built-in Components...........ccccvvrvrvrrnvnsessensennennn 3
WRAL IS SSIS? ... e e e e e e e e s 3
0oL 00 =T 0L 00 4
CONLIOl FIOW TASKS.....cucueuercereeeeseeseeeseeeeesesesesesesesesesesesesessssesssssssssssesesssssssssssssssssssssssssssssssssssneas 5
Data FIOW COMPONENTS.......ccceeereererererrereerereeseraesesessssessesessesessesassessesessesessssessessssessenesssssssessssessesesssnssaes 7
Example 1: Load .csv File into DAtabasecccccvevercerersererererereresesessersesessesessesessesassessssessssessesansens 11
Performing an Action with a Combination of SSIS Built-in Components............ccccuu..... 18
Example 2: Find Files in a Folder and Load Them into the Database with Built-in Components.......... 19
.NET Scripting Makes Life EQSIercccvvrrerrerrerseniersssesses s ses s sessssssssnssnssnas 25
Example 3: Find the Latest Modified .CSV File ... 26
SSIS Versions and .NET Library LIimitations ..o sessenns 30
Programming Language: C# or VB.NETccccoerriernnniennscne s sss e ssesessessssesnens 30
111 1] 1P SRS 30
Chapter 2: Script Task vs. Script Component............cccennnemnnmnsssssnmmmsssssmsmsssnns 31
Introduction to SCHPL TASKcccceeererererere e sn e sn e snenn e 33
L T T Lo LT o TS 33
Edit SCHPE TASKeeiuectierirerine sttt st e b s b e b s e e s e b e ne st s ae e nan s 33

\%

[vww allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

L1]) 34
LTS 1 T SRRSO 36
Introduction to Script COmPONENt ..o 37
L Ul - OO 37
SCHPL COMPONENL.........coieeee e s b e e e s e s A e b se R se e e e b e e pe e nais 38
When to Use a Script Task/Componentccocvvriervnnnsnnessessesses s e sessessessssenns 43
BUIlAING COUEcereeeecereriect e n s n e s sn e s sn s snenn s 43
Debugging in Visual STUI0........cccceeeeerececccecece e sn e 45
Lo 101 0 T OO RSRP 46
SCript COMPONENT.......o e r e e nr e nn s 50
SUMMEAIY ...t r e s e e R e a e e Re e s e ne e e Renn e e nnennnneas 54
Chapter 3: .NET Fundamentalscccuscmmmmnssmmmmmnssssnnnmmssssssnmssssssssssssssssssssssnsnns 55
INEFOAUCHION ... ———— 55
.NET Data Types .vs Data Flow Data TYpes.........cccvrrrrrrsersersensessnsssssssses s sessnssessennas 55
D L e2 1] LTSS 56
VariabIEs.......ccooereei e ———————————————— 57
00 TC T 10 SRS 57
Using/Import, Classes, and NameSPACESccceeruerrererreerersssssesssssssssssssssssssssssssssssssssens 58
4 1RSSR 929
The Different TYPES OF AITAYS.......cceveiviererirrir ettt sr e e e sa s s sa s et et a e e e e sn e e sn e sa e nn s 59
INIEANIZING AFTAYS . .veveeerieciere e s s b e e e e e e s e e e e e e e e e e b e s e e sa e s e e e e e e saesee e e neenaensennn 60
AccesSing Array MEMDEIS........coc i r e e e e e e s a e se e e a e nn s 61
010] 1= (0] 61
R 61
612 T 0 PP 62
[T 0L OSSR 62
THE WHIlE LOOP ..ttt s e s bbb e bt e e p e ne e nnis 62
LTI {0 0o o OO SRSR 63
B (=0 (=T T 8 T o 64

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Error HANAIINGc.coveeceescce et s 65
The throw STAtEMENT ..o ———————————— 65
The try-CatCh STALEMENT........c.eeee e 66
The try-catch-finally Statement..........ococree s 66

E3 1111 P2 S 66

Part Il: Script Tasks ...cccuuusseememmmmmmmsssssssssnmmmmsssssssssnsnnnnssssssssannsnnsnssssns 67

Chapter 4: Script TaskKccuseemmmmsssnsnmmsssssnnmssssssssnmssssssnssssssnssnssssssnsnssssssnnnsssssnnnnss 69

B0 . —————————————— 69

RS T 101 P] 72

Variables and Parameters ... 77
Method 1: ReadOnlyVariables and ReadWriteVariables.............cccooervenniennnnennnesnesssese s 77
Method 2: Variable DiSPENSETccccevererereresesseseessessessesaesaessessessesssssssssssesssssssssssssssssesssssssssssssssssnns 83

Referencing ASSEMDIIES.........cccererenrsiesrnrse e s 88
Creating an ASSEIMDIYcccerererererreesererrsese s se s e s e e esse e e e s s e e e se e e e nse e e e nsnnnas 89

ConNECtion MANAQGETScccevrereereerererserserae e ssersesaessessessesassaesaesaesassassassassaesassassassasssssnes 98
File CONNECHION MANAGEIS......ccceeeerrererererersesersesersesessessssessesessesessessssessssessesessssssssssssessssessesessssssassansens 98
I T o T J =]] 3 106

FireCUSTOMEVENTS ... 109

(0 11 (o o e 6 T TSR 110

THE SCHIPL....e e e 110

The Parent Packagec.ccocveerierrersinsissss s se s e sns s s sns e s s snssnnnes 111
(LT 01 2T LS 113

L TC 0oL 113

E3 1111 P2 7 114

Chapter 5: File Properties........cccummmmnsmmmmmnssssnmmssssssnmmssssssnmsssssssssssssssssssssssnnns 115

GEtting All ProPErties......coiverereereereereersessessessessesssssssasssssassassassssssssssssssasssssssssssasssssnnns 115
Checking fOr File EXISTENCEccccvererererererersesersesessesessessssessssessesessesessessssessssessssessssssssssssesassessssenes 118
File Name, Extension, and Path ... sssesns 118
File Created and Modified TiME ... 119

vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

e 119
File Attributes and REAAONIYccccceverrererere et res e s sse e s e sse e ssesas e sassesassesassassesassesasnenes 119
FIlR SIZE ...t 119
Examples of the File Properties Mentioned ... ssssssssssse s 119
Deleting Files Older Than X DAYSc.cccccrmenmmnnnsssssssss s s 121
Checking for @ LOCKEM File.......ccccvuevererererrereeree e sse s sss e sesses s ssssasssssssssssssssssenns 124
MOVING the FilB.....cccceeeercerserrersersrrse s se s sn s nn e sr s sn e sn e nn s snennnnnnnans 128
Foreach Loop Ordered File ENUMErator..........ccocvcrvercercessr s sns s snnnns 133
Foreach Ordered File ENUMErALOr...........coovnnnncninicns s 133
Creating @ DAtASEL..........ccceeereeccere et 135
LOAAING FlESeceeeeeeereeccirisec et s e ssne e e nn e e e s 135
Adding ROwsS 10 the DAtaset ..o s 136
WIting the RESUIL ... 136
PULEING [t Al TOGEINET...... .t 137
1111 1P 2SS 144
Chapter 6: Working Through the Internet and the Web............ccceiiimeeeennnnecnsinnns 145
Sending HTML-Formatted Emailccoocerierienensesenenesen s sse e sessessesennens 145
SMTP ConNECTiON MANAGETcovvueeerrrrreereressesesesssse e sesssssse e sas s e ssssssssesssssssssssssssssssssssssssssssssasenes 145
VAHADIES ... e e e e e s 146
ST 01 =T GOSN 147
LI o PP 147
THE RESUITS ..ottt 150
Downloading a File from @ Web SErver.........ccvvrvrvrvrrnsesses s ses e s sesnnns 151
Data FIOW TaSKcocvererisisisisisisismsisisiissss s 151
HTTP CONNECLION MANAGETc.ceveerreerrerererersersesersesessssessessssessssessesessesssssssssessssessssessssssssssssesassesssneres 152
LT 101 0 T PR 152
L= 153
THE RESUIS ...t 155
Downloading the Latest File from an FTP Server.........ccovvrcrvrcrcrsessesces s 155
VAHTDIES ... s 155
THE RESUIS ... 165

viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Downloading a File from an SFTP SErVer..........cccivrvrvrrrssses s ses s sennns 165
Download and INSTAIL ... 166

L LT] T 166

ST 0 G =TSRSS 166

FaT 0y (] (=] T 167

LI TC N 0o 168
THE RESUIES ... 174
SUMMAIY ..ttt e 174
Chapter 7: Working with Web Services and XMLcccccccmmmmrnmssssssssssnsssssssssnns 175
Windows Communication Foundation.............cccvmmmnnnnnee s 175
WED SEIVICES......cuiuiccciriri i e 176
Creating Variables..........ccoieeeciierencre e s r e s st p e e e e p e p e s 177
L1]) O 177
SEIVICE REFEIBINCEcuericisrsiricsi i bbb 177
CUSTOM NAMESPACE. ... ccerrerrerrerereresesse e e e e ssessesaesaesaesaesaesae s e saesa e s e e s e e sa e s e e saesaesaena e e e e e ae e e naeannes 179
Config Or NOT CONTIQ ..cveveeeierircree e r e e e n s r e 179
Solution 1: Modifying .CONTiG FIlES.......cccvirrrnnicririrn s sa s sas s 180
Solution 2: The In-Code MEtNOU ..o 181
The Foreach Loop t0 HANAIE XML.........coooiieiiirrer st ses e e s e snesassas e s sas s sassassassens 184
Variable MappiNgScccceerierniere s e e s p e r e e e e p e R e nennnnas 186
Validating XML Against SChEmMas...........cccceceeereeressne e sse e e e e snnns 187
Validating XML With SCHEMAScccuoeieericccrirescsre s 188

0] 14T (0] 188

LI TC N 0o 189
CUSTOM NAMESPACES.....ccveeeererrrreeseressessesesssssessssssssssessssssssessssssssesssssssssssssssssssssssssnsssssssessssssssssssssns 189
Validating the XIML.........ooccess s e p s ne s 191
1111 112 7SS 193
Chapter 8: Advanced Solutions with Script Task.......ccccussemmmmsssssnsmnssssnsnssssssnnns 195
Regular EXPreSSIONS.......coererererrersessessessessessnns 195
VaTADIES ..o ————————— 196

LT 101 T R 196

ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

L1]) O 197
Precedence CONSTrAINt ... 199
TESTING e —————— 200
Ao VA 14 oSSR 201
Downloading the LIDFAIYc.ccoceeieienerrsescsesese s se s s snns 201
L1200 o OO RS 201
AddiNG @ BEEIEINCE ... et p e p e 202
TRE UNZIP SCHPL ...t e b e s b e e et s p e e nnns 203
A o] o1 T OO SRRSRR 205
RETBIBNCE ... 205
THE ZIP SCHIPL .. s 205
ENCrypt/DEcCrypt FIleS.....coceereeeeereeeese et sn s 207
CONNECHION MANAGELS......cveueererrrreererssseeseresssesesssssssesesssss e sesss s e e s sssseessssasssssssssssssssssssssnsssssessnsnnns 208
L LT o] PP 208
SCHPE TASK ..eeerreeeeresree s se e s st a s e s e s e e s Re e e s Re e e e nr e e e e nrnsnaes 208
THE SCHIPL ..vveeeetrreeer e s e s R e s e Re e A e R e e e e s R e e e e s R e e e e nrans 209
31111 1P 7SR 215

Part lIl: Script Component............oocemmmmmnmnmsssssessssnmmsssssssssssssssesssss 217

Chapter 9: Script Component Foundation.........c.cccusmmmmnssnmnmmssssssnmsssssssnsssssssnns 219
EAItOr .. —————————— 219
INPUL COIUMINS......cveieceitccsce s r s e s e s e s e e s s an e e s ne e e nenanannnnes 220
INPULS AN QUIPULS ...t s s n s s s ne e nannn e e nes 221
CONNECHION MANAGELS......cveueererrrreererssseesesessssesessssssssesesssss e e sss s s e s sssse e sesssssssssssssssssssssssssnsssssessnsnns 222
SCHPELAYOUL ..ot s s e e ae e ne e n e e s e s s 223
Variables and Parameters ... 230
Method 1: ReadOnlyVariables and ReadWriteVariables..........ccccovererererererierensessesessesessesesesessessssenes 231
Method 2: Variable DiSPENSETcceverererererere e sae s saesaesae s s e saesae s e st s saesaesassssssnses 232

0] 1T [0 234

CONTENTS

ConNection MANAQETScccoevererrerererserresse e sse e ssessessesaessessssresssssssassaesaesassnssnssnnnnens 235
LOGUING EVENLS ..o ree e s e sas s s sassnssaesassassassassaesassassassassnssassasnnnns 237
Changing .NET VEISIONSccccivrririerrsinsee e s e sses e sses e ssssssesssessessssssessasssnssanns 240
SUMMAY ...t e s s e sae e e er e e s e en e e eaenrn e nnnnnnnas 241
Chapter 10: Script Component AS SOUICEccsvsmsssssssssssssssssssssssssssnsssassnsnsnnns 243
Flat File with an Uneven Number of COlUMNSccocvvrvrrrcr st 243
SCript COMPONENT SOUICE......c.ccerireererieeererere e s ne e n e nn s s 244
Creating QUPUL COIUMNS......coov et s s e e ne e e 245
Creating a File CONNECHION MANAGETccooveeerererrreerirenee s se e sss s sassssssnnns 246
THE COUE......ce et e s e s ae e s e R e e s e Re e A s Re e e e s R e e e e s s e s e e nrans 247
THE RESUITScceeeccirie et e ae e s e e p e et ne s e s e s ans 250
Flat File with Records Split over Multiple ROWS........ccccvvevvernenieenenieenessee e ssse e ssassaes 251
SCript COMPONENT SOUICE.......ceverereererereeereerersesersesasessesersesessessssessssessssesssssssesssssssssesssessenssssssssesassens 251
00T 0] 11 252
Create @ ConNNECioN MANAQETccceeveereriererrerrerersesersererseresersssessesessesessesassesassessesesssssssssassesassesssneres 253
THE COUE......c.eeeceeeresereseresesesesesese e e e e e e e e e e e e e e e ne e e neneneneneenes 254
THE RESUITS ...t 257
Generate Random Data with the Script Component As a Source.........cccceeveeeeereeeennnnns 258
SCript COMPONENT SOUICE.......coveeeiuerirerieerre e e s a e s e e ae e s s e et pe e ene e e nennnnens 258
OUEPUL COIUMINS ... s a e s e e s e s e e sa e e e e e e e e e e e sa e nae e e e e e e nenaenenaenns 259
LT3 LT 260
THE RESUILS ...ttt e ne s a e ee e n e nnnn s 264
SUMMEAIY ...t a s ae e r e e s a e e ae e s nnnnnnnas 265
Chapter 11: Script Component Transformationccccunvemnnnssssssnnnsssssnsssssnnns 267
Script Component Transformation.............cceeeerrrvrrrsnsssr e 267
(0] 41T 0 T SR 268
THE SOUICE. ...cueeeeeceererereeseseseseseses e e se e e e e e se e e e e e e e e e e e e e e e nene e e neneneneneenes 268
The Script TranSfOrMationccccveererrierre e ra e rae e sae e saesasaesa s e sae e saenenaes 269

xi

CONTENTS

Encrypting and Decrypting Dataccovcreniiennnnenssessse e 272
The SOIULION PACKAGEcocevrereeeerirecresisee e 272
L LT] T 273
L TC IR T SRR SPST 275
Salting the PASSWOIT........ccoeecrerieccrerre s s s n e e 276
ENCrypting the SIrEAM ... 276
ENCIypting DAcccoceeieiecirineeirine e s e a e e 277
DECrypting DAta.........cccovreeecriririeeir e e e 277
COMPANING BOWSoouireireiriereersersessessessesssssssssssssssssssassassassassassssssssssssssassssssssssssssssssnns 279
L1 T g 282
Creating SUrrogate KeYSccovcererriernsmsessssessssesesssse s sss s s ssssssssssssssnsssnsenns 284
Creating GUIDSc.coerererere e sse e sassaesas s saesas s e saesaesaesaesaesaesaesaesaesassaesnesannnnns 286
L0 0 L TR (T T Vo - 286
Add SCript COMPONENL........covrererereererererereseraesersesessesessersssersssessesesassassesassesassessssessessssessssessenesssssaes 287
THE RESUIS ...t 288
Conditional MUIEICAST.........cocrreriirrrir - 289
THE DALA SOUICEcciiiiiririiiii e 289
L ([T] 1 S 290
SUMMEAIY ...t a s s aesr s e r e s e n e e ae e s nnnnnnnnas 293
Chapter 12: Script Component As Destinationccccunemrnnssssssnnsssssnsssssnnns 295
Basic Flat File Destination with Header and FOOtercocovinriicnnnscnrscnesncens 295
Create a File CONNECtion MANAGENcccourrevererrrrreesirinee st se s sas s nnns 295
£ 0111 296
SCHPE COMPONENT ... s e n e e pnnn s 297
Adding INPUL COIUMNSooeriirecririrecres s esa e ne s e s e npans 297
Selecting ConNECtion MANAGET...........covueeerereresesirse e ss s s s s s e snsnaes 299
LI Tc N o T 300
THE RESUIES ... 302
Basic XML DeStination.........c.covriinnnmnmnmnsssssssssssssssss e 303
Creating a File CONNECtioN MANAGETcccvvererrerereerererereresersssersesessesessessssessssessesessessssssassesassesseneres 303
301 304

xii

CONTENTS

SCHPt COMPONENT.......ceeeeereerererererererse e rresessesesserassess e e ssesesaesessesssaesaesesaesesse s saesenserassesassesasansenansens 304
0 oL 00 T 1T 304
Selecting ConNECtioN MANAGETcccverereererererererersesersesessesessessssessssessesssssssssessssessssessssssssssssesassens 306
L= 0 306
THE RESUIS ...t 309
1111 11T SRS 310
Chapter 13: Regular EXPreSSionscccussmsssssssssssssmsssssnssssssssssnssssssssssssssnsnsasns 311
o (T (0 [T | 312
Validating Email AdAreSSEScccceverererereersersessessesssssesssssssssssssssssssssssssssssssssssssasssnses 313
L LC TR T o SR SOSTSR 316
Calling the METNOM..........cueeeeeerrrcererre s s s n s se s s e e nn e e e 318
Removing HTML TAQScccovirrirerrirer st sse s sse s e sse s e s s s s ssse s ssesaesne s 319
(o 5= T2 2 Vo OSSR 319
THE SCIPE oo —————— 320
Cleaning/Validatingccooeeerereresesese s sre e ssesae e snessessssresnesnssnssnssnesnssnssnesnannnns 322
QLTI 5 T - T OO 322
(=T] 1 323
SUMMEAIY ...ttt r s ae e e s sae e s ea e e s e an e ene e e e nnnnnnnnns 326
Chapter 14: Script Component Reflectioncccccvvnnnssesemmmnmnnnnsssssssssssssesnnes 327
Flexible XML DeStination..........cccoueceeneresessesesssessssessessssessssssssssssesssssssessssssssssssesssssnnes 327
QL LC TR T o TSRO 328
THE RESUITS ...t 332
Transformation of All COIUMNSc.covrriinnnr s 333
SCIPt COMPONENT TYPE...veuerreereerererererseersesersesessesassessesessssessesessessssessssesssssssesssssssssessssessssssssssssessnsens 333
Script Component INPUL COIUMNScoveverererere s e sesse e sessesae e ssesessesessesessesasessssesssssssesassens 334
L1]) O 335
THE RESUIS ...t 338
Calculating @ Hash for @ ROWcceceeecenecccececse s s e e s e snssnesnsnns 338
VAHTADIES ... s 338
SCHPL COMPONENL.........coeeceecccrtr e s e e s et b e e se e e e e e et e ae e e ae e e aenenanns 339

CONTENTS

REAAONIY VAADIE..........ceeerererererrererere e reserse e rse e sae e ssesas e sa s e sae e saesesaesasaesas e sae e sas e sasasaesansesasnenes 340
0 oL 00 T T3 341
00T 0] 1 342
L1]) 342
THE RESUIS ...t 348
1111 11 SRS 348
Chapter 15: Web ServiCes......cciummmmmmmmssssmmmssnnssssssnnnnss 349
Enriching with Weather ... 349
VAHTDIES ... s 349
SCHPL COMPONENL.........coeieeeccctr e e e st se e e s e e et e b et e ne e e ae e naens 350
INPUL COMUMINS.....c.c e e e e e e AR R e R e e e b e e 350
INPULES AN QULPULS ... e s e e b 351
FT 0y (] (] T 352
Add Service REFEIENCE ..o 353
NAMESPACESueveereire et s e e e e e e s b e e R e e e Re e e R A e e R e e R e e e Re e e Re e e e R e e 354
LT T 1T] 354
PIEEXECULE.....c.ciercriiccccc e 355
INPUL0_ProCeSSINPULROW........couieeceeeecccreriee et 355
POSIEXECULR ... 356
THE RESUIS ... 356
DYNAMICS CRM ..o e sn s s s sn s sne s nn s sne e enn e nnas 357
0 U B (01T 11T 0 357
Data FIOW EXAMPIE 2. se s ses s ss s se s ssssssss s ssssessssesasssssssssssssnsenes 359
DOWNIOAU CRIM SDK.........ooeeeeeeeneceseeeseesene e se e se e s s s e ss s s s snens 360
Windows Identity FOUNAALIONcoeeeeriecscrrecse e snsnns 360
VAHADIES ... e e e e e e e e e s 360
Add SCript COMPONENT.......cccovirreerirrreese e se s e s s e e s s e e e s s s e e e nrans 361
INPUL COIUMINS......cveieceitccsce s r s e s e s e s e e s s an e e s ne e e nenanannnnes 361
A REFEIBINCES ... e e e e e e e e enes 362
AdU NAMESPACES.......ccrueersererererersesessesessesessesssesssnes 363
ClaSS VAITADIEScoceeeeeeereereses e s 364

xiv

CONTENTS

PIEEXBCULE......cciiiiiiisisisis i 364
INPUL0_ProCesSINPULROW........cc.eiiiecerecerer e s a e sa e s s a e sa e s a e sa e s s a e n e se e r e nn e s 365
SNArEPOIN ...t ——————————————— 371
VAHTADIES ... s 371
SCHPL COMPONENL.......c.citieeccccertr e s e s st b e e e R e e s e et s e e e e ne e e ae e naens 372
L 1T] 0 OO 373
Extracting Excel Files from the LIDraries.........co s 377
PIEEXECULE.....c.cicririicicce e 379
INPULO_ProCeSSINPULROW...........couiicircrcrtr et s e e 379
SUMMEAIY ...ttt e s ae s a s sae e s e ae e s e na e e nae e s e nnnnnnnnns 381

Part IV: Custom Tasks and Components..........ccccvvmmmmnssssssssssssssssssss 383

Chapter 16: Create a Custom Taskcccermnssmmnmnssssnsnsmssssnsnnsssssssssssssssssssssssnnnes 385
Custom Task Preparations...........cceceeeeeresensessessesse e sse s sssssssssssssssssssssssssssssssssssssnns 386
Creating Visual StUdi0 ProJECES........couieeeerercercrtrrecsi e 386
Adding SSIS REEIENCEScccoueeecerereecerireeiress et 387
Default Namespace and ASSEMDIY NAME........cccooureicrerrecrrree s 387
Creating a Key for @ STrong NAmEcccouririnecrsecese s 387
Getting the PUDIIC KEY TOKEN ..ottt 388
JEOMS ... s 389
BUII EVENTS.....cociiccce s 389
Custom Task RUNEIME COTE.........ccceurmrerereirereere e 390
TaSK PrOPEITIESvveeceerrssecse e e s e s e e a e g p e e e np e e e e nnans 391
ValidALING TASK....cveveeererrrsesesersssesesessssssssessssssssessssssesessssssesessans 392
EXECULION COUE ... e e 394
SaveToXML and LOAdFIOMXMI ..o s s ssss s ssssssssassssssssnnns 395
Custom Task FOrM.......ccviiin s 396
FOrM COOR ...ttt 397
TaskHost and ServiCEPrOVILE ..o 397
e 1o T=] - o TSR 398
INterface Class COUE.........orririninininiss s 405

XV

CONTENTS

EXPression BUIAENc.ccovvieriencirr sttt se e s e sn e 406
RETBIBINCES.......cccecccce e 407
USINGS ..eeceerreesesessese e sssesese s s e e s s se e ssse e e e e ae e e s e s Ra e e e s R e Re e s e A e Re e e e s s Re e e e s nRe e e nensnnnnnnes 407
L0110 0] 011 0] 407
LT 0o T 408

E3 1111 P2 7S 409

Chapter 17: Create Custom Transformationc..ccccinnnemmmmnsssssnnmnssssssnmssssnnns 411

Custom Transformation Preparations..........cccccvvevcerreniesssensesssesssesesssesesssssssssssssssssenns 412
Creating Visual STUAIO ProjJECTS.........cccvereriererrerrerersesereeseseresessssessesessesessesessessssessssessessssssassesassessenenes 412
AdAINg SSIS RETEIENCESevvruerererrereraerersereressesersesersessssessssersssessesesssssssessssessssessssesssssssessssessenssssssaes 413
Default Namespace and ASSEMDBIY NAME.........coeceverererererereresreree e e seres e ssesessesessssessesassessesenes 413
Creating a Key for the STrong NAME..........cccecererererrerrerereres e reesersesesse e ssesasessesessssessssessesassesssnenes 414
Getting the PUDIIC KEY TOKENcccvueeerererererereesersesesaesessesessessssessesessesesssssssessssessssessssssssassesassesssnenes 414
JCOMS .. —————————————————————————————— 415
BUIIA EVENTS.....coiceisiiicsssiisss s 416

Custom Transformation Runtime Code............cccvmniniinnnnnnsess s 416
Component Properties and Input and Qutput POMS ... 418
Validating TransSformation...........cccoeceeencnnicnnre e s sa e s r e e 420
EXECULION COUE......cceiiciiiiieesiie e 422
PIEEXECULE.....c.ceciciiiiei e 422
PerfOrmMUDGIAUEcovieeereir st s e s et p e e e e p e p e e 423
Disable Advanced EdIOr ... s 424
Custom Transformation FOIM ..o 424

FOPM COUCceieieirceer et n s e nn e s 425
ServiceProvider, Connections, Variables, and Metadata.............cccccvvvvrvvvnvennennes s s vessessessesnenns 425
] 111 0 o 426
INErfAce ClasS COUE........c.cociereececeece e 428

E3 1111 P2 7S 430

xvi

CONTENTS

Part V: Scripting from .NET Applications.........ccccciinrrnssssnnccnnnnnnssnas 431
Chapter 18: Package Creationccccuseemmmssssmsmmmssssssnssssssssnssssssssnsssssssnnsssssnnnnns 433
Creating an SSIS Package Programmatically............cccuoererriernnnnsesnsesessssessssesesensenns 433
Creating an SSIS Package with BIMLSCKIPYccooevererrnerrrr s ses e sennenns 435
Creating Stage DAtaDASEccccevereerererererererre e rsesesseressesas e ssesessesesaesasaesassesaesesassesassassesansesssneres 435
Adding @ NEW BIML Fil......ccvcerererrerereerereresessssessesessessssessssessssessesssssssssessssesssssssssssssssssessssesssssssssssaes 436
AdUING NET COUEveuerreereererererersesersesersersssessssessesessssssssssssessssessessssssssssssssessssessssssssssssessssessssesssssaes 439
Adding a Script Component with @ ROWNUMDETcceoeeeeececeeeee e 441
BIMLSCript: Master PACKAJEccccovrerernmrnenrsersesesesessessessssessssssssssssessssssssssssssssssnsens 446
E3 1111 1P 7S 448
Chapter 19: Package Execution from .NETccccccmmmmmsmmmmmssssnsnmmsssssssssssssnnns 449
Package Deployment Model...........ccoorrrrenirce e 449
AQA BETEIEINCEccveececrrieeisise e e s e e d e e Rt p R e e nnnnans 450
Create @ FOMM ... e e e e e e bR e bR e b n e e e nnne e e nas 451
THE COUE......cveueeererreereers e s e e bt E A e R e e A e Re e e R e R e e e A e R e e e A e R e e e e e R e ae e e Eans 452

I T o 1o 454

L L J0 2= LT PSR 456
Project Deployment MOdElccocveriercersersirsire s se s e s snssnesnn e 457
D (o) (T T T RO 457
L0 LI 0] 1 OO 458
TRE COR.......ceieeeececr e b e e e R e R e R e e R e e R e e e Re e e e R e e Re e nnis 459
TRE RESUIS ...ttt e e b et R e e R e e e e e e R e nennns 465
SUMMANY .t r e a s s ae e e r e s a e sne e s nnnnnnnnns 465
INAEX.eeiiiiisnnnnnrnsssnnnnnssssnnnnnssssnnnnessssnnnnessssnnnnsssssnnnnessssnnneessssnnnesssssnnnnssssnnnnessssnnnnsssss 467

xvii

About the Authors

Joost van Rossum has been a data warehouse/business intelligence
consultant for more than 10 years; his focus is on the Microsoft SQL Server
stack, especially SQL Server Integration Services. He speaks, writes, and
blogs (http://microsoft-ssis.blogspot.com) about SSIS and related
matters. He is a moderator for the Microsoft Developer Network on the
SQL Server Integration Services forum and is an active volunteer for the
PASS chapter in the Netherlands. In 2014, Joost received an MVP award for
SQL Server. You can find him on twitter at @5SISJoost.

Régis Baccaro was born from the illegitimate alliance of C# and business
intelligence in a SharePoint farm. He currently works as a principal
consultant in Denmark, mainly doing architecture, mentoring, and
performance tuning of large SQL Server data warehouse installations.

He blogs at http://theblobfarm.wordpress.com. Régis is the founder of
SQL Saturday Denmark, an active member of the European SQL Server
community, and a top-rated speaker at SQL Server conferences. When not
working on a SQL Server, you can find him cooking, running, or farming on
his Danish island. He tweets at @regbac.

Xix

http://microsoft-ssis.blogspot.com
http://@SSISJoost
http://theblobfarm.wordpress.com
http://@regbac

About the Technical Reviewer

John Welch works at Pragmatic Works, where he manages the
development of a suite of BI products that make developing, managing,
and documenting BI solutions easier. John has been working with
business intelligence and data warehousing technologies since 2001,
with a focus on Microsoft products in heterogeneous environments. He
is a Microsoft Most Valued Professional (MVP), an award given due to his
commitment to sharing his knowledge with the IT community, and an
SSAS Maestro. John is an experienced speaker, having given presentations
at Professional Association for SQL Server (PASS) conferences, the
Microsoft Business Intelligence conference, Software Development West
(SD West), Software Management Conference (ASM/SM), and others.
He has also contributed to multiple books on SQL Server and business
intelligence, including Microsoft Big Data Solutions (Wiley, 2014), Smart
Business Intelligence Solutions with Microsoft SQL Server 2008 (Microsoft Press, 2009), and the SQL Server
MVP Deep Dives (Manning, 2009) series.

John writes a blog on business intelligence and SSIS topics at http://agilebi.com/jwelch. He is active
in open source projects that help ease the development process for Microsoft BI developers, including
ssisUnit (http://ssisunit.codeplex.com), a unit-testing framework for SSIS.

XXi

vww allitebooks.conl

http://agilebi.com/jwelch
http://ssisunit.codeplex.com
http://www.allitebooks.org

Acknowledgments

The writing of this book has been a great experience. I would like to thank Reza Rad for helping me initiate
the writing process, and especially Régis Baccaro for joining me while the train was already moving. And
just as important, I would like to thank my wife Merlijn and my sons Ruben, Jonathan, and Jasper for their
support and for letting me write so often.

—Joost van Rossum

It has been a lot of rewarding work, mostly at night. This wouldn’t have been possible without the
continuous support of my wife, Annette—you make every day a better day.

—Régis Baccaro

xxiii

Introduction

Microsoft SQL Server Integration Service (SSIS) is one of the leading tools for data integration, data
consolidation, and data transformation. It is used by ETL developers, DBAs, and data analysts to extract,
transform, and load data in ETL (Extract, Load and Transform) processes, or to do maintenance tasks.
There are a lot of out-of-the-box tasks, sources, transformations, and destinations to solve the majority of
everyone’s needs, but they never cover 100 percent of everybody’s needs.

Sometimes you need something very specific for your case, which isn’t useful for the majority of the
people; or the ever-continuing developments in ICT are just too fast for the SSIS version you are using; and
of course, you sometimes just wonder why Microsoft didn’t include a ZIP task, an SFTP task, or an XML
destination. That is what this book is for.

Who This Book Is For

You have some experience with creating SSIS packages, but encountered some of the limitations of the
out-of-the-box tasks and transformations. You are not an experienced programmer, but maybe you have
adjusted an Excel macro or added some simple JavaScript to your web site. At least you're not afraid to
use some scripting if you get some good guidance.

Or you might have a .NET developer background and you want to understand how SSIS scripting
integrates with the rest of the SSIS components for data transfer and consolidation purposes; or maybe you
are a DBA interested in using SSIS to perform some administrative tasks.

Regardless of your background and motivations for using SSIS scripting components, you need a proper
fundamental and basic introduction to SSIS and scripting. Besides describing the fundamentals, this book
also has a whole array of ready-made scripting examples for all common problems.

XXV

PART |

Getting Started

CHAPTER 1

Getting Started with SSIS and
Scripting

This chapter walks you through a simple scenario where you will use .NET scripting to achieve the required
functionality. The hope is that you learn how simple and how powerful it is to implement scenarios with
.NET scripts. For each .NET version, new capabilities are added. You will also learn how these versions are
correlated to the versions of SSIS.

In this chapter you will look at how to perform basic tasks using SSIS and how to use scripting to make
these basic tasks easier.

Performing a Basic Action with SSIS Built-in Components

Learning by doing is often the easiest way to understand functionalities. So let’s have a look at how it is
possible to build a basic action with .NET scripting. But before you get started, let’s set the scene and provide
a formal introduction to SSIS.

What Is SSIS?

SQL Server Integration Services (SSIS) is an SQL Server service. The story started in SQL Server 2000 with
DTS (Data Transformation Services). SSIS was first released with SQL Server 2005, and it has been enhanced
for every version of SQL Server ever since—2008, 2008 R2, 2012, and 2014 at the time this book is being
written. SSIS is a BI (business intelligence) developer’s preferred tool for ETL (Extract, Transform, and Load).
SQL developers use it for data transformation and DBAs use it for automation of some administrative tasks.
Programmers use it to avoid having to do a huge amount of coding.

An SSIS project contains one or more packages. An SSIS project is developed in Business Intelligence
Development Studio (BIDS) and on the later versions on SQL Server Data Tools (SSDT) with the BI
templates installed. It is a bit confusing as to what tools are needed to develop SSIS packages. So to make it
completely clear, here are the facts about SSDT, so that you can get started and create your first SSIS package:

e SSDTis available as a free component of the SQL Server platform and is available for
all SQL Server users. It targets SQL Server 2005, 2008, 2008 R2, 2012, 2014, and Azure.

e SSDT full versions and updates are available online at
https://msdn.microsoft.com/en-us/library/mt204009.aspx.

e SSDT can be installed stand-alone or together with Visual Studio.

https://msdn.microsoft.com/en-us/library/mt204009.aspx

CHAPTER 1 * GETTING STARTED WITH SSIS AND SCRIPTING

To work with SSIS packages you need to download the BI templates that match your version of SSDT.
e SSDT 2012: https://www.microsoft.com/en-us/download/details.aspx?id=36843
e SSDT 2014: https://www.microsoft.com/en-us/download/details.aspx?id=42313

The following is a list of useful links for downloading the different versions of BIDS and SSDT. This book
focuses on SSDT 2013.

e BIDS2005: http://www.microsoft.com/en-us/download/details.aspx?id=19413.
The Express Edition of SQL Server 2005 does not include BIDS.

e BIDS 2008 and 2008 R2 require Visual Studio 2010.

This web page at https://msdn.microsoft.com/en-us/data/hh297027 sums up the several download
possibilities, but the versions listed are a bit confusing.

Development Tool

Figure 1-1 shows the different elements of SSDT (BIDS has the same default layout but uses different colors).

] Chapter 1 - Micrasoft Visual Seudia PG Coick Launch (Ci-Q G
FLE BT WIEW PROECT BUMD DEBUG TEAM 5SS TOOWS TEST ARCHITECTURE MNETREFLECTOR ANALYZE WINDOW HELP Réga Bsccars = E]
[: = Y - =| b St e O - Develops - || Dtk - ",

3 x| Packagedhs [Dasign] &

e

(3

Package Package
=N s

5 Idemtification
CrestisnDate e 13-03-2015 07:25
Cremorlomputeriame weRga

Cremuetisme REHFELDba
Deseriptien

] (PATGIRAS- 36164885 RI37-4T:
Carracion Mansgm Hame Puikage -

oa«w(km.wxmwswmsm Specifins the name of the ciect

Figure 1-1. SSDT development studio

The callouts in Figure 1-1 highlight the following areas and aspects of the interface:
1. SSIS Toolbox: Has all available components and tasks.
2. Variable pane: Where you can create new variables and edit existing ones.

3. Main design pane: Where you add components and tasks, but also work with
package parameters (SSIS 2012 and after) and define event handlers.

https://www.microsoft.com/en-us/download/details.aspx?id=36843
https://www.microsoft.com/en-us/download/details.aspx?id=42313
http://www.microsoft.com/en-us/download/details.aspx?id=19413
https://msdn.microsoft.com/en-us/data/hh297027

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

4. Connection Managers pane: For managing all connections to external resources
for the current SSIS package.

5. Solution Explorer: For managing the solution, project, files, connection
managers, and project parameters inside the project.

6. Properties pane: Lists and manages all properties for the selected object.

Control Flow Tasks

An SSIS package consists of one control flow and optionally one or several data flows. SSIS provides three
types of control flow elements:

e Containers that provide structures in packages
e Tasks that provide functionality
e Precedence constraints that connect the executables

Figure 1-2 shows an example of the control flow in the designer pane.

B@ LGS o DataFlow @ Parameters IF] EventHandlers “s= Package Explorer

|] [Foreach Loop Container o -~

i-)i Data Flow Task

Failure

v
5 Script Task ’E:‘I. gte Package Task

Figure 1-2. Control Flow design area

The following are the callouts in Figure 1-2:

1. A container that provides the structure of the package and some functionality
that manages control flow.

2. Atask thatimplements the functionality.

3. Aprecedence constraint that defines the flow of execution.

CHAPTER 1 * GETTING STARTED WITH SSIS AND SCRIPTING

Note As new versions of SSIS are released, new Control Flow Tasks appear and their graphical layouts are
slightly different.

Figure 1-3 shows an example of the available Control Flow Tasks in the SSIS Toolbox.

SSIS Toolbox v 1 X
4 Favorites
s& Data Flow Task

@) Execute SQL Task

4 Common
6@ Analysis Services Processing Task
Bulk Insert Task
E] Data Profiling Task
'&), Execute Package Task
U™ Execute Process Task
JX Expression Task
" File System Task
§P FTP Task
I3 Script Task
EA Send Mail Task
@ Web Service Task
D XML Task
4 Containers
77 For Loop Container
B3 Foreach Loop Container

[Z] Sequence Container

» Cther Tasks

v Execute SQL Task (7]

Executes SQL statements or stored procedures in a
relational database. For example, truncate a table before
starting a load, or create a foreign-key relationship after
2 load has completed.

Find Samples

Figure 1-3. Control Flow Tasks
6

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

As mentioned, Control Flow Tasks contain three types of elements: containers for structure, precedence
constraints for connecting the executables, and tasks that provide functionality. From the tasks that provide
functionality, there are elements for working with databases, such as the Execute SQL Task, the Bulk Insert
Task, and the Analysis Services Processing Task; elements that operate with external systems include the File
System Task and the Web Service Task; and database administration tasks include the Backup Database Task
and the Shrink Database Task. The Execute Package Task is a task to call other packages. The Data Flow Task
manages data transfer between the source and destination with various transformations. The Script Task is
available for writing .NET scripts (and is one of the main subjects of this book).

Alist of all the available Control Flow Tasks is at http://msdn.microsoft.com/en-us/library/
ms139892.aspx.

Also notable, there are some structural elements in the control flow that can be used for grouping and
looping. More information about containers in SSIS can be found at https://msdn.microsoft.com/en-us/
library/ms137728.aspx.

Data Flow Components

Data flow is probably the most important task in SSIS. Data flow is the task that defines the data
transformation from one or more sources into one or more destinations, through various transformations.
Data flow is the cornerstone of building ETL and data integration solutions. There is a fundamental
difference between data flow and control flow. Whereas control flows use precedence constraints for
structuring the flow, data flow components use a data path for flowing data from one element to another.
This is illustrated in Figure 1-4.

http://msdn.microsoft.com/en-us/library/ms139892.aspx
http://msdn.microsoft.com/en-us/library/ms139892.aspx
https://msdn.microsoft.com/en-us/library/ms137728.aspx
https://msdn.microsoft.com/en-us/library/ms137728.aspx

CHAPTER 1 * GETTING STARTED WITH SSIS AND SCRIPTING

8.0 ControlFlow [GEICECIicL] &@ Parameters 1] EventHandlers i— Package Explorer

i—) OLE DB Source

—a
1 Check for New Record
m

|

Lookup Match Output l

—

1 Check for Changes
o

Lookup No Match Output

Lookup No Match Output

"H Update Existing Record ToDate

3

v
x Union All

fx! Add New Record FromDate

e(- Insert New Record

Figure 1-4. Data Flow design pane

As mentioned, there are three main stages in ETL: Extract, Transform, and Load. These three stages can
be matched to the component types of the data flow.

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Extract

The first stage is designed to fetch data from different data sources based on various data providers. Source
data can come from databases like SQL Server, DB2, Oracle, MySQL, and so forth, or it might come from text
files, XML datasets, Excel files, and so on. Figure 1-5 shows a list of available source components in the SSIS
Data Flow Task (this list is for SQL Server 2012/2014, which is slightly different in prior versions).

| 55IS Toolbox

drovortes |

» Common

» Other Transforms

4 QOther Sources

w2 ADO NET Source

:¥; CDC Source

B, Excel Source
5 Flat File Source
g ODBC Source
w?> OLE DB Source
»> Raw File Source
B} XML Source

» Other Destinations

Figure 1-5. Source components in data flow

Transform

The second stage in ETL and probably the most challenging is the transformation required of data after it is
extracted from source(s). There are many transformations available in SSIS data flow; it not within the scope
of this book to describe them all. Some of the most commonly used transformations include creating new
columns or replacing existing ones (Derived Column), converting data (Data Conversion), different types of
joins (Lookup), pivoting and unpivoting data, and merging and sorting datasets. Figure 1-6 shows some data
transformation components available in SSIS for SQL Server 2012/2014. You can find the complete list at
http://msdn.microsoft.com/en-us/library/ms141713.aspx.

vww allitebooks.conl

http://msdn.microsoft.com/en-us/library/ms141713.aspx
http://www.allitebooks.org

CHAPTER 1 * GETTING STARTED WITH SSIS AND SCRIPTING

SSIS Toolbox * o X

4 Common
% Aggregate
& Conditional Split
%1 Data Conversion
A Derived Column
i Lookup
'Y Merge
Merge Join
Multicast
OLE DB Command

Row Count

B> <«

Script Component

=

Slowly Changing Dimension
Sort
¥ Union All

-
-

4 Qther Transforms

g Audit
o3, Cache Transform
¥, CDC Splitter
B s Character Map
&' Copy Column
& Data Mining Query
JA DQS Cleansing
> Export Column
1} Fuzzy Grouping
, Fuzzy Lookup
Import Column
Percentage Sampling

Pivot

Row Sampling

L= e ST, e SR L

Figure 1-6. Transformation components in data flow

Load (Destination)

The final stage of ETL is to load data into destination(s). In the same manner that there is a wide range of
available sources, there are many destinations. Figure 1-7 is an SQL Server 2012/2014 screenshot showing
some of the available destinations.

10

CHAPTER 1

SSIS Toolbox

v];l.x

» Favorites

» Common

» Other Transforms

» Other Sources

FB Other Destinations

HEfOYRPRNYYY

ADO NET Destination

Data Mining Model Training
DataReader Destination
Dimension Processing

Excel Destination

Flat File Destination

ODBC Destination

OLE DB Destination
Partition Processing

Raw File Destination
Recordset Destination

SQL Server Compact Destination

SQL Server Destination

Figure 1-7. Destination components in SSIS

Example 1: Load .csv File into Database

GETTING STARTED WITH SSIS AND SCRIPTING

The following example is an introduction to working with SSIS tasks and components. The purpose of this
example is to build a simple SSIS package and illustrate how some of the features are better achieved by
using scripting. It also points out which features can only be achieved using scripting in SSIS.

Note The package corresponding to this example is called Package1.dtsx, which can be found in the code
for Chapter 1.

In this exercise, you will load a . csv file into a database. In SQL Server Management Studio (SSMS),
create a database called Apress_SSIS_Scripting using your SQL Server default with the following script:

CREATE DATABASE [Apress SSIS Scripting]
CONTAINMENT = NONE

11

http://dx.doi.org/10.1007/978-1-4842-0638-6_1

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Create a table in the Apress_SSIS_Scripting database with the following script:

USE [Apress SSIS Scripting]
GO0
CREATE TABLE [dbo].[Customer](

[CustomerKey] [varchar](50) NOT NULL,

[GeographyKey] [varchar](50) NULL,
[CustomerAlternateKey] [varchar](50) NULL,
[Title] [varchar](50) NULL,
[FirstName] [varchar](50) NULL,
[MiddleName] [varchar](50) NULL,
[LastName] [varchar](50) NULL,
[NameStyle] [varchar](50) NULL,
[BirthDate] [varchar](50) NULL,
[MaritalStatus] [varchar](50) NULL,
[Suffix] [varchar](50) NULL,
[Gender] [varchar](50) NULL,
[EmailAddress] [varchar](50) NULL,
[YearlyIncome] [varchar](50) NULL,
[TotalChildren] [varchar](50) NULL,
[NumberChildrenAtHome] [varchar](50) NULL,
[EnglishEducation] [varchar](50) NULL,
[SpanishEducation] [varchar](50) NULL,
[FrenchEducation] [varchar](50) NULL,
[EnglishOccupation] [varchar](50) NULL,
[SpanishOccupation] [varchar](50) NULL,
[FrenchOccupation] [varchar](50) NULL,
[HouseOwnerFlag] [varchar](50) NULL,
[NumberCarsOwned] [varchar](50) NULL,
[AddressLine1] [varchar](50) NULL,
[AddressLine2] [varchar](50) NULL,
[Phone] [varchar](50) NULL,
[DateFirstPurchase] [varchar](50) NULL,
[CommuteDistance] [varchar](50) NULL,

[SourceFile] [varchar](50) NULL
) ON [PRIMARY]

Open SSDT or BIDS and create a new SSIS project, as shown in Figure 1-8a. In the new SSIS package
(created by default), drag and drop a Data Flow Task from the SSIS Toolbox into the main pane, and then
double-click it to go to Data Flow tab. Figure 1-8b shows how to create a new SSIS project in SSDT-BI with
Visual Studio 2013.

12

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

b Recent |.NET-r k45 -| Sort by: | Default v| i = Search Installed Templates (Ctrl+E) P
4 Installed : -
@ Integration Services Project Business Intelligence Type: Business Intelligence
4 Templates B This project may be used for building high
4 Business Intelligence Zm Integrati ; rt Project Wi Busi Intell; e peri data integration and
A isS g. il. Inksgreticn Servicys Inport Propect Wizard o workflow solutions, including extraction,
natyns. "““f transformation, and leading (ETL)
Integration Servic perations for data housing.
Reporting Services
¢ Visual Basic 2
b Visual C#
b Visual C++
b Visual F#
SQL Server
b JavaScript
HDInsight
Python
b TypeScript
b Other Project Types
Medeling Projects
Samples
b Online
Click here to go online and find templates
Name: Integration Services Projectl
Location: [C:AUsers\ba\Do APress\02_Code\2012\Bxtending SSIS with .NET\Chapter 1\ = | Browse. |
i | Create new seluti -
S name: [t Services Project] | [Create di y for soluti
["] Add to source control

Figure 1-8a. Flat File Connection Manager

SSIS Toolbox
T Sort
¥ Union All

Package.ctax Design)* = |

2.0 Control Flow [GRIRECIaLl & Parameters T Eventh

» Other Transforms Data Flow Task: | ws Data Flow Task

4 QOther Sources

®? ADO NET Source
#¥; CDC Source
Excel Source
Flat File Source
& ODBC Source
w?* OLE DB Source
5 Raw File Source
B} XML Source

E_) Flat File Source €

4 QOther Destinations
we ADO NET Destination
A\ Data Mining Model Training
w€ DataReader Destination

Figure 1-8b. Creating a Flat File Source
13

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Drag a Data Flow Task on the design surface and double-click it. Within the Data Flow Task, drag a Flat
File Source and double-click it to open its property dialog.

Click New to create a new Flat File Connection Manager pointing at the .csv file in the book’s source
code bundle at Chapter 01\Source Files\Customers.csv.

Configure the General tab of Flat File Connection Manager, as shown in Figure 1-9.

8 Flat File Connection Manager Editor O X
Connection manager name: |Flat File Connection Manager |
Description: [l
. 241 General | select afile and specify the file properties and the file format.

& Columns File name: lJET\BookCode\Chapter 1\SourceCode\Customers.csx{l

& Advanced Browse...

=1 Preview
Locale: English - [[] Unicode
Code page: 1252 (ANSI - Latin I) v

Format: Delimited v

Text qualifier: |<none> |
Header row delimiter: [m vl
Header rows to skip: 0 =

Column names in the first data row

Figure 1-9. Flat File Connection Manager

Click the Columns page to load the available columns from the file. Click OK and close the Flat File
Connection Manager Editor. In the Flat File Source Editor, select the “Retain null values” option from the
source as null values in the data flow.

Close the Flat File Source Editor by clicking OK.

Create an OLE DB Destination after the Flat File Source, and connect the data path from the Flat File Source
to this component. Choose the flat file data output (not the error output). Double-click the OLE DB Destination
and create an OLE DB connection manager pointing at the database that you created in step 1. Figure 1-10
shows the Connection Manager pointing at the local instance of SQL Server (your instance name might vary).

14

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Provider: | Native OLE DB\SQL Server Native Client 11.0

Server name:

|Ioca|host

Log on to the server

(® Use Windows Authentication
() Use SQL Server Authentication

User name:

Password:

[] Save my password

Connect to a database

(®) Select or enter a database name:
Aress_SSIS_Scritin
() Attach a database file:

Logical name:

Test Connection

Figure 1-10. Creating an OLE DB connection

Select [dbo].[Customer] in the table and view drop-down menu, as shown in Figure 1-11.

15

CHAPTER 1 * GETTING STARTED WITH SSIS AND SCRIPTING

Configure the properties used to insert data into a relational database using an OLE DB provider.

Connection Manager Specify an OLE DB connection manager, a data source, or a data source view, and select the data access mode. If using
Mangi the SQL command access mode, specify the SQL command either by typing the query or by using Query Builder. For
appings fast-load data access, set the table update options.
Error Output

OLE DB connection manager:

| localhost.Apress_SSIS_Scripting

Data access mode:

j Table or view

Name of the table or the view:
(BB (dbol[Customer]

Figure 1-11. OLE DB Destination Editor configuration

Click the Mappings item on the left pane and make sure that every single column is mapped as shown
in Figure 1-12.

16

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Configure the properties used to insert data into a relational database using an OLE DB provider.

Connection Manager

Error Qutput

Available Input Col...

~

| Input Column

Destination Column

E CustomerKey

E CustomerKey

GeographykKey

| CustomerAlternatekey
I Title

I FirstName

| MiddleName

I LastName

f MNameStyle

GeographyKey
CustomerAlternateKey
Title

FirstName
MiddleName
LastName

MNameStyle

Figure 1-12. Column mappings in the destination component

Right-click the package in Solution Explorer and execute the package by clicking the Execute Package
menu item. You see that 1,000 rows have transferred successfully from the . csv file into the database table
(see Figure 1-13).

17

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Package.dtsx [Design] + X

2o Control Flow [l lac] &@ Paramet

Data Flow Task: | gy Data Flow Task

X0q|oo] SISS

.W.

P Flat File Source
ES

1.000 rows

€ oLE DB Destination T

v

Figure 1-13. Execution results

Performing an Action with a Combination of SSIS Built-in
Components

In the previous section, you learned how to create a simple Data Flow Task with source and destination
components. You also learned how SSIS helps to reduce programming and coding. What you achieved in
the previous lab was with the help of drag-and-drop and simple configuration on the user interface. One
of the purposes of this lab (besides it being introductory) was to illustrate how easily SSIS can help reduce
development time for data transfer and consolidation.

In the following section, you walk through an example where SSIS helps build a solution through built-
in components. You will use the same Data Flow Task as before, and add a Foreach Loop Container and an
Expression Task. You will also add a variable to the package to enable these components to communicate
with each other in a more dynamic way.

The Foreach Loop Container defines a repeating control flow in a package. The loop implementation
is very similar to the For looping in programming languages. The container enumerates each item in a
collection. In this example, you use the File Enumerator to loop through all files in a specified directory.

The Expression Task (only available in SSIS 2012 and higher versions) creates and evaluates values of
an expression at runtime. The Expression Task works with the SSIS Expression Language. This language
includes operators and functions for working with dates, strings, numbers, and converting data types, and
so forth. A full description of the language is available at http://msdn.microsoft.com/en-us/1library/
ms137547.aspx. In this lab, you will write an expression to compare the values of two variables for finding
the most recent file.

18

http://msdn.microsoft.com/en-us/library/ms137547.aspx
http://msdn.microsoft.com/en-us/library/ms137547.aspx

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Example 2: Find Files in a Folder and Load Them into the Database
with Built-in Components

Please run the following code to truncate the destination table in SSMS:
Truncate table dbo.Customer

Copy and paste the package from the previous example. Go to the Control Flow designer, and then drag
and drop a Foreach Loop Container in the main design area.

Create one new variable with datatypes and name it as specified in Figure 1-14. If you don't see the
variables window, right-click an empty area in the control flow and choose Variables from the context menu.

Variables v B

CE -1
Name Scope Data type Value Expression
i@ | FullFilePath Package2 String

Figure 1-14. Variables definition

Go to the Foreach Loop Editor (double-click the Foreach Loop Container), and go to the Collection
page. Set enumerator as Foreach File Enumerator, which displays the options for that enumerator. Then set
the Folder to Chapter 01\Source Files (from the source code bundle of the book), and verify that you fetched
the Fully Qualified file names, as shown in Figure 1-15.

19

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 * GETTING STARTED WITH SSIS AND SCRIPTING

B The Foreach Loop container allows execution iteration over an enun

General
Collection numerator Forem:h File Enumerator
Variableleppings b Expressions

Expressio

Enumerator

Specifies the enumerator type. W
Enumerator configuration
Folder:

|s\02 Code\2012\Extending SSIS with .NET\Chapter T\Chapter 1\SourceCor.le

Files:

*x

Retrieve file name

() Name and extension (@ Fully qualified () Name only

[7] Traverse subfolders

Figure 1-15. Foreach File Enumerator

For more granular filtering, you can add wildcards in the Files fields (for example, *.csv).
Go to the Variable Mappings page, and choose User::FullFilePath from the Variable column. Verify that
the index is 0 (automatically set this time), as shown in Figure 1-16.

20

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

im} The Foreach Loop container allows execution iteration over an enumeration.
General : :
i Select variables to map to the collection value.
Collection
Variable Mappings ' Variable Index
. 1
Expeassions | UserzFullFilePath o

Figure 1-16. Variable Mappings

Close the Foreach Loop Editor by clicking OK.
Drag and drop the Data Flow Task and the file destination from the previous chapter into the Foreach
Loop Container so that everything looks like what’s shown in Figure 1-17.

Package?.dtsx [Design] + X

&5 DataFlow g@ Parameters If] EventHandlers ‘i= Package Explorer {3 Execution Results

ﬁ I Foreach Loop Container ~)

i-)i Data Flow Task

@ File System Task

Figure 1-17. Control Flow layout

21

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Open the Data Flow Task by double-clicking it. It should look like what’s shown in Figure 1-18.

Packagezats Designl =

8.5 Control Flow [GERlElilll &@ Parameters If] EventHandlers s Package Explorer Ol Execution Results

Data Flow Task: |y Data Flow Task

B Flat File Source
B

€ oLe D8 Destination

Figure 1-18. Data Flow Task

In the connection pane, right-click the Flat File Connection Manager and choose Properties in the
context menu. This brings up the Properties tools window. Click the Expressions item in the property list,
and then click the ellipsis button that appears to the right to open the Property Expressions Editor.

Select the ConnectionString property, and in Expression type @[User::FullFilePath]. (Now this
connection is dynamic, based on the selected file name from the Foreach Loop Container.) What you see
should look like Figure 1-19.

22

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Packagel.dtex [Desi

8o Control Flow [ERRE Gl & Farameters [F] EventHanders = Package Explorer {3} Execution Results

Data Flow Task: | gig Data Flow Task

oe Property Expressions Editor o x Properties pil=li
Flat File Connection Manager Connection -
I:="_) Flat File Source EN| e
Expression ConnectionManagerType -
| @[User:-FullFiePath] ConnectionString
. DataRowsToSkip 0
DataSourceiD
DelayValidation False
Description
B Expressions
ConnecticnString
FileUsageType
i(- OLE D8 Destination Firnit
HasExpressions i
HeaderRowDelimiter {CRHLF}
HeaderRowsT; 0
Cancel D [S684AT0F-FFF7-4434-0FBD-6E33
LocalelD English (United States)
Mame Flat File Connection Manager ™
ions
A collection of i The evaluation result of each 10N is
assigned to a property and replaces the value of the property.

Figure 1-19. Data Flow layout

Open the File System Task Editor located inside the Foreach Loop Container by double-clicking the File
System Task. Set the configuration to move the file from the User::FullFilePath source variable to an Archive
folder. (For the Destination Connection, create a new connection to an existing folder and choose the
Archive folder from the source code bundle of book.) The detailed configuration is shown in Figure 1-20.

23

CHAPTER 1 * GETTING STARTED WITH SSIS AND SCRIPTING

B Configure the properties required to perform file system operations, such as creating, moving, or deleting files or
] directories.

General 4 Destination Connection

Expressions IsDestinationPathVariable False
DestinationConnection Archive
OverwriteDestination True

4 General
Name Archive File
Description File System Task

4 Operation
Operation Move file

4 Source Connection
IsSourcePathVariable True
SourceVariable UserzLastFile

DestinationG i
Specifies the connection of the destination directory.

Figure 1-20. File System Task Editor

Close the File System Task Editor. There is still a red stop icon beside this task. Go to the Properties
window and set the DelayValidation property to True. This happens because the variable used is only
populated at runtime. When SSIS validates the value at design time, it fails, but it will succeed at runtime.

Note You may want to truncate the destination table before executing the task because there might be
some duplicate values in the CustomerKey column. Use this command:

TRUNCATE TABLE [Apress SSIS Scripting].[dbo].[Customer]

Execute the package and check the records in the customer table. You will see that data from all the
customer files is loaded and that the archive folder contains the loaded files (see Figure 1-21).

24

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

SO Sl 5% DataFlow g@ Parameters EventHandlers 's— Package Explorer #3} Progress

[] | Foreach Loop Container A~

i-)i Data Flow Task T

@ File System Task

Figure 1-21. Successful package execution

NET Scripting Makes Life Easier

In the previous section you saw how to solve problems using SSIS components and tasks. You found files,
and then loaded and archived them. Now consider that you only want to find the latest file based on some
of its properties, such as the modified date. Unfortunately, there is no built-in component in SSIS that allows
you to do that. This is where SSIS scripting comes in handy.

In the next section, you will create a Script Task and a .NET script to find the latest modified file. The
rest of the package will be unchanged. After finding the latest modified file, you will load it into the customer
table and archive it.

The Script Task is a Control Flow Task that allows you to write a .NET script. Then you can set the
execution order of that .NET script by placing the Script Task somewhere in the control flow with precedence
constraints.

This section is meant to be introductory; therefore, there are some sections of this lab that will be
covered in greater detail later in the book. The purpose of this section is to give you a basic understanding of
the Script Task.

25

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Example 3: Find the Latest Modified .csv File

In this example, you find the latest modified . csv file in the source folder (with scripting), and load it into
the database (with built-in components).

Open the SSIS package from the previous example. Move the Data Flow Task and the File System Task
out of the Foreach Loop Container. Delete the Foreach Loop Container so that it looks like Figure 1-22.

Package 3.dtsx Designl” = [

8@ LA &% DataFlow @ Parameters 1%] EventHandlers “s— Package Explorer

i-)i Data Flow Task

|

r

v

B] File System Task

Figure 1-22. Cleaned up package

Remove the FileFullPath variable.
If necessary, move the Customer files from the Archive folder back to the source folder. Truncate the
customer table with the code:

TRUNCATE TABLE [Apress SSIS Scripting].[dbo].[Customer]

Add a Script Task. Go to the Script Task Editor by double-clicking the Script Task. Leave the script
language as C#. Choose User::FullFilePath in the ReadWriteVariables as shown in Figure 1-23.

26

8 Script Task Editor

-]

CHAPTER 1 " GETTING STARTED WITH SSIS AND SCRIPTING

O

and configure the task's properties.

Script
General
Expressions

v Script
ScriptLanguage Microsoft Visual C# 2012
EntryPoint Main
ReadOnlyVariables
ReadWriteVariables User:FullFilePath
ReadWriteVariables

X

J Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or Visual C# 2012,
LY

Specifies a comma-separated list of read/write variables.

Figure 1-23. Script Task Editor

Edit Script...

Click the Edit Script... button. A new Visual Studio window opens with a C# project and an
autogenerated name. A ScriptMain.cs file opens in the main section (see Figure 1-24).

27

CHAPTER 1 * GETTING STARTED WITH SSIS AND SCRIPTING

11 Visual Studic ek Lumch (0 P =B x
ELE BT WEW PROECT EUMD DEBUG TEAM S0 TEST ARCHITECTLEE NETREFMLECTOR JOOMS ANALYZE WINDOW HELP
» CR A by - N PrEHEED-,
Fmprerd 5 D0 8 2D
#3 ST_cB60a P88 e Tatach 18 M erbed Scnpthaen

namsipace ST_cBSS1fa0STIEAleTa0RMEE 1AM Tented

[Micressft.sqlser
8 = petlic partial class
i

-SeriptTask. S5155cr Lot Task iseaneribate]
sin i Micresoft.Sqlserver Dts, Tasks. SriptTask, vsTan

o indicate success or failure

Dista Testls Operstions Erse List Outpun Test Rests

Figure 1-24. Script Editor

Replace the contents of the Main method with the following script:

public void Main()
{
// TODO: Add your code here
string[] files = System.IO.Directory.GetFiles(@"C:\APress\02_Code\2014\Extending SSIS
with .NET\BookCode\Chapter 1\SourceCode");
System.IO0.FileInfo finf;
DateTime lastDate = new DateTime();
string lastFile = string.Empty;
foreach (string f in files)
{
finf = new System.IO.FileInfo(f);
//1let's find the last file and only csv files
if (finf.LastWriteTime > lastDate 88 finf.Name.Contains("csv"))
{
lastDate = finf.CreationTime;
lastFile = f;

}

Dts.Variables["User::FullFilePath"].Value = lastFile;
Dts.TaskResult = (int)ScriptResults.Success;

Dts.TaskResult = (int)ScriptResults.Success;

28

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

Save the script by exiting the VSTA editor (click the X in the top-right corner). Close the Script Task Editor.

Connect the Script Task to the Data Flow Task with a success precedence constraint.

Execute the package. You see that Customer 2.csv isloaded into the customer table and moved to the
archive, as this file is the latest modified file (see Figure 1-25).

e LGS g% DataFlow @ Parameters 5] EventHandlers "s= Package Explorer #Z} Progress

IWI
Script Task
LQ cript Tasl

i-)i Data Flow Task

|
@ Archive File

«

Connection Managers

B Archive 2 s« Flat File Connection Manager ® LocalHost.Apress_SSIS_Scripting

Figure 1-25. Control Flow layout

Note You might want to open Customer_2.csv in Notepad and save it again to modify its timestamp
because the downloaded files all have the same timestamp.

You've seen how helpful Script Task and scripting are in SSIS. In this lab you used C# code to loop
through files in the source folder and find the latest modified file—a task that cannot be achieved with
built-in SSIS tasks. You then used data flow to transfer the data from that file to an SQL Server database
table, which is much easier to do in SSIS rather than with scripting. The combination of SSIS and scripting is
important; it greatly extends the capabilities of the SSIS packages that you build.

In this book, you will go through scripting samples in SSIS and you will learn how to create a custom
task based on a script, so that you can reuse it in other packages and projects.

29

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED WITH SSIS AND SCRIPTING

SSIS Versions and .NET Library Limitations

Each version of SSIS is compatible with specific versions of the .NET libraries. SSIS 2005 was the first version
of SSIS to support a version of the .NET Framework. The Table 1-1 lists the SSIS versions and the .NET
Framework version that they support.

Table 1-1. SSIS versions and the .NET Framework version that they support

SSIS Version .NET Framework Supported

2005 2.0

2008 & 2008 R2 2.0t03.5

2012 4.0 preferred but works from 2.0 to 4.0
2014 5

Programming Language: C# or VB.NET

Since .NET programming languages get compiled into an intermediate language (MSIL) before being
transformed into machine instructions, all .NET Framework elements are available for both C# and VB.NET.
This means that you can either use C# or VB.NET for writing SSIS scripting tasks and components. Most
of the examples in this book cover both languages. More information about the .NET Framework and its
programming languages is available in Chapter 3.

Choosing a scripting language is mostly a question of personal opinion. Most of the examples available
on the Internet seem to typically be written in C#; the authors of this book also prefer C#. But feel free to use
VB.NET if you feel more comfortable with it. SSIS 2005 only supported VB.NET.

Summary

In this chapter, you learned the basics of SSIS, which is one of the components of SQL Server. You saw how
SSIS is helpful, namely for implementing data consolidation and ETL scenarios. You also saw how to extend
the abilities of SSIS by using Script Tasks.

30

http://dx.doi.org/10.1007/978-1-4842-0638-6_3

CHAPTER 2

Script Task vs. Script Component/

Within SSIS, .NET scripts can be written in a Script Task or in a Script Component. The purpose of the
Script Task and Script Component is to extend the functionality of SSIS with your own custom code when
the out-of-the-box tasks and components don’t meet your requirements. And there are more similarities
between Script Task and Script Component. They both have a general editor such as in Figure 2-1 to specify
properties such as scripting language and the usages of variables. And they both have a VSTA editor to write
Visual C# or Visual Basic code.

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or
Visual C# 2012, and configure the task’s properties,

- Sarpt
General. ScriptLanguage Microsoft Visual C# 2012
Expressions EntryPoint Main

ReadOnlyVariables

ReadWriteVariables

ScriptLanguage
Specifies the programming language used by the script.

Edit Script..

OK Cancel Help

Figure 2-1. General Script Task Editor
31

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

Note Since SSIS 2008, the code for both Script Task and Script Component are precompiled into binary

code and stored in your package to permit faster execution.

In the various SSIS forums on Internet, Script Task and Script Component are often confused because

they look alike and share all these features, but they are, in fact, fundamentally different. A Script Task is part

of the SSIS Control Flow and executes a certain task, such as checking the size of a file, unzipping a source
file, or sending a formatted email to let the analysts know that the cube was successfully processed.

The Script Task can pretty much do anything, but it is not used for row-based transformations or actions.
That is what the Script Component is used for. Figure 2-2 shows the Script Component editor.

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#

2012, and configure component properties.

[5criod
Input Columns
Inputs and Qutputs -
Connection Managers et

4 Common Properties
ComponentClassiD
Contactinfo
Description
ID
IdentificationString
IsDefaultlocale
LocalelD
Name
PipelineVersion
UsesDispositions
ValidateExternalMetadata
Version

4 Custom Properties
ReadOnlyVariables
ReadWriteVariables
Scriptlanguage

UserComponentTypeName

' Name
Specifies the name of the component.

Includes and runs custom script code. For example, appl

Includes and runs custom script code. For example, appl

63

Script Component
True

Dutch (Netherlands)
Script Component
0

False

True

o
o

Microsoft Visual C# 2012

Microsoft.SqlServer.Dis.Pipeline ScriptComponentHost, K

Edit Script..

0K Cancel Help

Figure 2-2. General Script Component Editor

32

CHAPTER 2 " SCRIPT TASK VS. SCRIPT COMPONENT

A Script Component is part of the SSIS Data Flow Task. It can be used as a source, a transformation, or
a destination. The transformation type is probably the most popular type for row-based transformations or
actions such as validating an email address or encrypting a sensitive column value.

Introduction to Script Task

To demonstrate the possibilities of the Script Task, let’s look at a very simplified example; but when you have
finished this book, you will be able to create a more sophisticated and more stable version of it. For this first
case, let’s check the file size of a flat file before processing it in the Data Flow Task. When the size is zero
bytes, let’s send an email to the person responsible.

Package Design

Create a Data Flow Task that uses a flat file as source. What the data flow does isn’t important for this
example, but make sure that the name of the Flat File Connection Manager is myFlatFile. Also add a Send
Mail Task for sending the error email. Now add the Script Task and connect it to both the Data Flow Task
and the Send Mail Task. Change the precedence constraint to Failure for the Send Mail Task. It should look
something like Figure 2-3. You can also use the Script Task starter package from the solution folder.

scrptTascasc Deson) = < R

SCR - Check File Size
['

Su
KTGSS Failure l

w7

e
@ DOF - Stage File [§7] smr - send zero Bytes Email

Connection Managers

% myFlatFile ? SMTP Connection Manager

Figure 2-3. Script Task to check file size

Edit Script Task

Now edit the Script Task by double-clicking it or by right-clicking it, and then choose Edit. On the first tab,
called Script, choose your scripting language (C# or VB.NET) as shown in Figure 2-4. You don’t have to
change any other options of the Script Task. On the same tab, locate the Edit Script... button in the lower-
right corner and click it to open the VSTA environment, where you are adding your .NET code. A new Visual
Studio window will open.

33

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

_S Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or
’ Visual C# 2012, and configure the task’s properties.

Script 4 Script
Senessl ScriptLanguage Microsoft Visual Basic 2012 &
Expressions EntryPoint Microsoft Visual Basic 2012

ReadOnlyVariables Microsoft Visual C# 2012

ReadWriteVariables

Scriptlanguage
Specifies the programming language used by the script.
Edit Script...

Figure 2-4. Script Task: Choose ScriptLanguage and Edit Script...

The Script

When the VSTA environment has opens, you see a lot of generated code. If you chose C#, locate the method
called Main. It should look something like this:

public void Main()
{
// TODO: Add your code here

Dts.TaskResult = (int)ScriptResults.Success;

34

CHAPTER 2 " SCRIPT TASK VS. SCRIPT COMPONENT

Now replace that code with the following code. Afterward, close the newly opened Visual Studio
window so that you return to the Script Task Editor. Click OK to close it.

public void Main()

{
// F
stri
file

/U
Syst

/l F
if (

}

else

{
}

ill variable with the filepath from a Flat File Connection Manager
ng filePath;
Path = Dts.Connections["myFlatFile"].ConnectionString;

se the FileInfo class to check the length of the file
em.I10.FileInfo fi = new System.IO.FileInfo(filePath);

ail the Script Task if the length is not greater than zero
fi.Length > 0)

Dts.TaskResult = (int)ScriptResults.Success;

Dts.TaskResult = (int)ScriptResults.Failure;

If you chose VB.NET, locate the method called Main. It should look something like this:

Public S

End Sub

ub Main()

Add your code here

Dts.TaskResult = ScriptResults.Success

Replace this code with the following code. Afterward, you close the newly opened Visual Studio window
so that you return to the Script Task Editor. Click OK to close it.

Public S

End Sub

ub Main()

' Fill variable with the filepath from a Flat File Connection Manager
Dim filePath As String

filePath = Dts.Connections("myFlatFile").ConnectionString

' Use the FileInfo class to check the length of the file
Dim fi As System.IO.FileInfo = New System.IO.FileInfo(filePath)
' Fail the Script Task if the length is not greater than zero
If (fi.Length > 0) Then

Dts.TaskResult = ScriptResults.Success
Else

Dts.TaskResult = ScriptResults.Failure
End If

35

CHAPTER 2 © SCRIPT TASK VS. SCRIPT COMPONENT

Testing

Now you're ready for the coding part. In Chapter 4 and beyond, you learn how to extend this example code
with other file properties, logging, and error handling.

Make sure that the Data Flow Task and the Send Mail Task are working properly. Also make sure that
the text file mentioned in the Flat File Connection Manager contains data. If you don’t have an SMTP server,
then replace the Send Mail Task with another task, such as the Execute SQL Task. Now run the package.

If the file contains data, then the Script Task should be successful and continue with the data flow.
See Figure 2-5 for an example.

s oo oesont + <

BETE 0N % Data Flow & Parameters [Event Handlers i Package Explo... (] Progress

.
l SCR - Check File Size
* L Fi
e Failure l
» AV
@ DOF - Stage File [B2] smr - send zero Bytes Email

Connection Managers

% myFlatFile ? SMTP Connection Manager

Figure 2-5. The result of your first Script Task with a filled text file

Open the text file in Notepad and remove all text. Save the file and run the package again. The Script
Task should fail and continue with the Send Mail Task. Figure 2-6 shows this behavior.

ESCEEEIET] <% DataFlow @ Parameters [Event Handers = Package Expo... (@ Progress

Qo

SCR - Check File Size
5

I Failure

v

L
4% l

i-’i DFT - Stage File M SMT - Send Zero Bytes Email

Connection Managers

@ myFlatFile @ SMTP Connection Manager

Figure 2-6. The result of your first Script Task with an empty text file

36

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 2 " SCRIPT TASK VS. SCRIPT COMPONENT

Introduction to Script Component

To introduce the Script Component, let’s add a surrogate key column in the Data Flow Task. A surrogate key
is an automatically incremented row number, similar to the identity column in an SQL Server table. Again,
this is a very simplified example that you will be able to extend after reading this book.

Flat File

For this example, you will use a text file with some bicycle types in it as a source in the data flow. Add a Flat
File Source component to your data flow as shown in Figure 2-7. Specify a connection manager that refers to
a text file with the following content:

BikeTypes
Mountainbike
City bike
BMX

Unicycle
Racing bike

Script Taskdtsx [Design] +® X

2o Control Flow Wa Parameters [Event Handlers - P:

Data Flow Task: @& DFT - Stage Fle
|==. FF_SCR - Bicycle
=3

Qg

Flat File Source Output Data Viewer at DFT - StageFile ~ B X

4 Detach Copy Data

BikeTypes
Mountainbike
Tricyde
City bke
BMX
Unicycie
Racding bike

Attached _ Total rows: 0, buffers: 0 ‘Rows displayed = 6 _

Figure 2-7. Data Flow Task with Flat File Source

37

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

Script Component

Add a Script Component to the Data Flow Task and choose Transformation as the Script Component Type as
in Figure 2-8. Next, connect the Flat File Source to your new Script Component.

Script Component.dtsx [Design]* £ X

2, Control Fow ERIEEEYEeul] @ Parameters H Event Handlers = Package Expb...

Data Flow Task: &% DFT - Bioyde

a FF_SRC - Bicyle

Specify how the script will be used in the data flow

! l Script Component souce
Script is a source in the data fiow and provides data to output columns.

Destination

Script is a destination in the data flow and consumes data from input
columns.

® Transformation

Script is a transformation in the data flow and operates on data from input
columns and provides data to output columns.

Figure 2-8. Script Component Type: Transformation

After giving it a useful name, like SCR - Add Surrogate Key, you can edit the Script Component by
double-clicking it or by right-clicking it, and then choosing Edit. Chapter 9 discusses all the options and
pages. For now, go to the first page, called Script, and choose your preferred scripting language (C# or
VB.NET) under Custom Properties.

Next, go to the third page, Inputs and Outputs, and open Output 0 in the “Inputs and outputs:” treeview.
Then click Output Columns. Click the Add Column button to add a new output column; name it Bikeld.

The new column stores a number, so make sure that the DataType is “four-byte signed integer” You can
change the DataType in Data Type Properties on the right side of the window (see Figure 2-9).

38

http://dx.doi.org/10.1007/978-1-4842-0638-6_9

CHAPTER 2 " SCRIPT TASK VS. SCRIPT COMPONENT

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.
[seript | Specify column properties of the script component.

Input Columns

Inputs and Outputs

Connection Managers :lnputs il -

& 42 Input 0 4 Common Properties
=3 Output 0 ComparisonFlags
& Output Columns Description
3/ Bikeld | ——
_ ErrorOrTruncation
ErrorRowDispositi RD_NotUsed
D 33
IdentificationStrin| SCR - Add surrogate key.
LineagelD 33
MappedColumniC 0
Name Bikeld
SpecialFlags 0
TruncationRowDis RD_NotUsed
4 Data Type Properties !
CodePage 0
DataType (four-byie signed integer)
Length 0
Precision 0
Scale 0
Add Output Add Column D
Remove Column
oK ‘ Cancel Help

Figure 2-9. Script Component: Add new output column and set the datatype

After adding the new output column, go back to the Script page and click the Edit Script... button.
A new Visual Studio window opens with the so-called VSTA environment.

You will see a lot of generated code. First, locate the method called Input0_ProcessInputRow.
Depending on the chosen language, the code should look something like the following:
public override void Inputo ProcessInputRow(InputoBuffer Row)

And the VB.NET code would look like this:

Public Overrides Sub Input0 ProcessInputRow(ByVal Row As InputOBuffer)

39

vww .allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 © SCRIPT TASK VS. SCRIPT COMPONENT

Add the following five lines of code (including one empty row and two comment rows) to this method.
The end result should look like this:

public override void Input0 ProcessInputRow(InputOBuffer Row)

{

// Increment value
rowNumber++;

// Rssigning value to new output column
Row.BikeId = rowNumber;

And here is the VB.NET code:

Public Overrides Sub Inputo ProcessInputRow(ByVal Row As InputOBuffer)
' Increment value
rowNumber = rowNumber + 1

' Assigning value to new output column
Row.BikeId = rowNumber
End Sub

You will see some red lines under rowNumber indicating that there is an error. Now add the following
code above the comment lines of the Input0_ProcessInputRow method. In C#, a comment starts with
slashes. In VB.NET, a comment starts with a single quote.

// Integer variable to keep track of the row number value
int rowNumber = 0;

Here is the VB.NET code:

Integer variable to keep track of the row number value
Dim rowNumber As Int32 = 0

There are also two other methods, called PreExecute and PostExecute. You can either remove them
or leave them unchanged. You will not use them in this first example. The end result should look something
like the following, where the help text is removed, the comments are changed, and unnecessary pre- and
post- methods are removed to keep the code short and clean:

#region Namespaces

using System;

using System.Data;

using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime.Wrapper;
#endregion

/// <summary>
/// This is the class to which to add your code.
/// Do not change the name, attributes, or parent
/// of this class.
/// </summary>
[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent
{
// Integer variable to keep track of the row number value
int rowNumber = 0;

40

/17
11/
11/
/17
/17
/17
/17
11/

CHAPTER 2

<summary>
This method is called once for every row that
passes through the component from Inputo.

Increment and assign variable to new output column
</summary>

<param name="Row">The row that is currently passing
through the component</param>

public override void Input0 ProcessInputRow(InputOBuffer Row)

{

// Increment value
rowNumber++;

// Assigning value to new output column
Row.BikeId = rowNumber,

This is the VB.NET code:

#Region "Imports"

Imports System

Imports System.Data

Imports System.Math

Imports Microsoft.SqlServer.Dts.Pipeline.Wrapper
Imports Microsoft.SqlServer.Dts.Runtime.Wrapper
#End Region

This is the class to which to add your code.
Do not change the name, attributes, or parent
of this class.

SCRIPT TASK VS. SCRIPT COMPONENT

<Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute>
<CLSCompliant(False)> _
Public Class ScriptMain

Inherits UserComponent

" Integer variable to keep track of the row number value
Dim rowNumber As Int32 = 0

‘This method is called once for every row that
'passes through the component from Inputo.

"Increment and assign variable to new output column
Public Overrides Sub Inputo ProcessInputRow(ByVal Row As InputOBuffer)

Increment value

rowNumber = rowNumber + 1

Assigning value to new output column

Row.BikeId = rowNumber

End

Sub

End Class

41

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

Note The generated code varies per SSIS version, so there could be some changes in text or in position.

With only three lines of code, you have created a perfect surrogate key. You could extend this code with,
for example, a variable starting number and increment. Chapter 11 will continue with this example.

Now you can close the VSTA environment and the Script Component editor. You are now ready to test it.
Add a dummy derived column after the new script component so that you can add a data viewer to see the
result of the script. Then execute the Data Flow Task and check the result in the data viewer. It should look
like Figure 2-10.

Script Component.dtsx [Design] # X

8o Control Flow 0 Parameters Event Handers = Pa

Data Flow Task: | & DFT - Boyde
= FF_SRC - Bicyle
EN

61

! l SCR - Add surrogate key

|

Output 0 Data Viewer at DFT - Bicycle ML=
L Detach Copy Data
Bicycle Bikeld
Mountanbike 1
Tricyde 2
City bke 3
BMX 4
Unicyce 5
Racding bike 6
Attached Total rows: 0, buffers: 0 Rows displayed = 6

Figure 2-10. New surrogate key added

42

http://dx.doi.org/10.1007/978-1-4842-0638-6_11

CHAPTER 2 " SCRIPT TASK VS. SCRIPT COMPONENT

When to Use a Script Task/Component

The two introduction examples, although very simple, showed how useful scripting can be as an addition
to SSIS, but there are a few disadvantages to using them. The most important drawback is maintainability.
You might have excellent coding skills, but a colleague who works on the same project or the person that will
maintain your packages when you finish them, might not. In fact, many SSIS developers and administrators
do not have any C# or VB.NET coding skills at all.

Another drawback is clarity. When you see a Send Mail Task or an Execute Package Task, you can tell
at a glance what the task does and what to expect when you edit the task. With the Script Task, you only
have the name that the developer gave it, and then you probably still have to edit the Script Task and study
the code to see what it is doing exactly. SCR - Unzip File looks very straightforward, but where is the zip file
located? Is it extracting all files? Where does it put the unzipped files? Is it deleting, moving, or ignoring the
original zipped file afterward? The same applies to the Data Flow Task transformations. A Merge Join or a
Conditional Split is very clear, but with SCR - Validate Email, you might want to know how it is validating an
email address and what it does with email addresses that are not valid.

The conditions for using Script Tasks and Script Components are very easy: only use them if they offer
an advantage over the built-in tasks and components. Don’t use them if you don’t have to. Deleting a single
file with a Script Task is not a good idea because you can easily do that with a File System Task. But what if
you want to delete all *.txt and *. csv files in a folder? You could use two For each Loop Containers with a
File System Task in them to delete the files, but you could also do that more easily and faster in a single Script
Task. And what if you want to delete all files older than seven days? Then you are stuck with a Script Task
because that is very hard to accomplish with the built-in tasks.

You should also not use the Script Task or Script Component when you have to use that same script
in multiple packages. Solving a bug or adding a feature in a Script Component that is used in several
packages could be very annoying and tiresome. In this case, you should consider creating a custom task or
transformation. Chapters 16 through 19 xplain how this works.

Building Code

When your code is syntactically not correct, Visual Studio warns you in a couple of ways. First, you see some
red wavy lines under your code. You can see those in Figure 2-11, under the ConnectionStrings identifier.
When you move your mouse pointer to the error, the interface shows the error message.

¥i

// Fill variable with the filepath from a Flat File Connection Manager
string filePath;
filePath = Dts.Connections["myFlatFile"].ConnectionStrings;

Figure 2-11. Wavy red lines under ConnectionStrings indicates an error

Some errors—like a missing semicolon in C#—are less visible, especially in a large script. When you
close the Script Task or Script Component editor, Visual Studio warns you again as in Figure 2-12. And if you
choose to ignore this error, then the famous red circle with a cross in it indicates the error.

43

http://dx.doi.org/10.1007/978-1-4842-0638-6_16
http://dx.doi.org/10.1007/978-1-4842-0638-6_19

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

g Script Task Editor = =

; Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or Visual C# 2012,
= and configure the task's properties.

Script 4 Script
General Scriptlanguage Microsoft Visual C# 2012
Expressions EntryPoint Main

ReadOnlyVariables

ReadWriteVariables

Script Error ﬂ—

Scripts contained in the package have compilation errors. Do you want to save
changes?

Scriptlanguage
Specifies the programming language used by the script.

Edit Script..

| OK Cancel Help

Figure 2-12. A compilation error occurs because the script contains an error

To make sure that your code is syntactically correct before you close the VSTA environment, you can
build the code (see Figure 2-13) in the Build menu of Visual Studio. Any errors will show up in the Error
pane. You can click these error messages to jump to the actual error in the code.

44

CHAPTER 2 " SCRIPT TASK VS. SCRIPT COMPONENT

DQ VstaProjects - Microsoft Visual Studio
FILE EDIT WIEW PROJECT | BUILD | DEBUG TEAM SOL TEST TOOLS ANALYZE WINDOW HELP

- B - X Run Code Analysis on Solution Alt+F11 MereselEo-.
: | ol Build 5T_b30bb32358e6495292d52e972¢b21665 cEmpAafEE (DS T
m Run Code Analysis on 5T_b30bb32368e6455292d52e572b2f6F6
#3 ST_83006d504caed9748 ScriptMain -|@ Maing - @loeo-adp o sm
c . TVET U T TOSRS T ICT IPC TS ST TP FroTTOATTTIOUTE] ¥
= public partial class ScriptMain : Microsoft.SqlServer.Dts.Tasks.ScriptTask.ViTARTScriptObjectModelBase Search on Explorer (Ctrls:) -
@] Solution VstaProjects’ (1 project)
mmary 4 [=] 5T_b30bb32368e6495292d52e972fb216F6
Check whether a file iz filled B & Properties
f/ </summar B =8 References
= public void Main() B ScriptTask
i b ©* ScriptMain.cs
/f Fill variable with the filepath from a Flat File Connection Manager
string filePath; Solution Explorer [f8 v Team Explorer

filePath = Dts.Connections[“myFlatFile”].ConnectionString

Properties -3 x

/7 Use the FileInfo class to check the length

System.I0.F nfo fi = new System.IO0.Fi =
y Y M| s
/f Fail the Script Task if the length is not greater than zero
if (fi.length > @) i

_ r

100% =4 4

Y ~| @ 1Emer | ¢ 0Wamings 0 Messages Search Error List p-

Description File Line Celumn Project
€31 : expected ScriptMain.cs 21 & 5T_b30bb32368e6495a32d52e972f 02166

Varables JUGIIREY Output Find Results 1 Getting Starte Properties

Ready

Figure 2-13. Building the code to check for syntax errors

Debugging in Visual Studio

When your .NET code is syntactically correct, but still not working properly, or when you get a vague
runtime error such as Exception has been thrown by the target of an invocation or Object reference not set
to an instance of an object, you want to know what is wrong with your code. Figure 2-14 shows an example
of such an error.

ga DataFlow @@ Parameters If] EventHandlers “i= Package Explorer I3 Progress

a5l DTS Script Task: Runtime Error ﬂ
S SCR - Check File Size

DTS Script Task has encountered an exception in user code:
Project name: ST_b30bb32368e6495a92d52e972fb2f6f6

25 Exception has been thrown by the target of an invocation.
i i DFT - Stage File

Figure 2-14. This is a vague error for most people

45

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

The easiest way to find out what is wrong is to debug your code by setting breakpoints in it, and then
running the code again to see where it goes wrong. A breakpoint is a point that you add on a line of code to
intentionally pause the script on that line while executing. The debugger pauses the execution, and then you
can continue to run your code, line by line, to see the values of all the properties in scope. It works similar
to the data viewer in the data flow. When you add a data viewer, the data flow pauses, and you can see the
values of all the rows.

But before going on, you should know that not all versions of SSIS support breakpoints for Script Tasks
and Script Components. To use breakpoints in a Script Task prior to SSIS 2012, you first need to switch your
SSIS project to 32-bit as in Figure 2-15, otherwise the breakpoints won't work. Go to your project’s properties
by right-clicking in Solution Explorer. Choose Properties. This opens a new window with project-related
properties. Now go to the Debugging page and locate the Run64BitRuntime property under Debug Options.
Set it to False and click OK so that your project runs in 32-bit mode. Now the breakpoints will work.

I 1| 7 il H s 32 s
- x| Solution Explorer - tweeendertighit -nx'_[_
3 3 | @ =
9 Package Explorer e 2
A twecendetiobit L
[E Data? #4| Build E-
[y Data) Rebuild
r —) 5 [y SSISF
tweeendertighit Property Pages L F | Gl Add *
| T R o B — 4 Gl Debug v
Configuration: | Active{Development] - N/A | Cenfiguration Manager... Fu
i . T S ——" % o 5| AddProject to Source Centrol...
r = T a
a Conflqwatnon Properties B Data FimmOplmlms i Miscd % | Cut
Build RuninOptimizedhiode False =
Deployrnent WMility B Debug Options
Debugging InteractiveMode True i
RunS4BitRuntime False | [Properties
B Start Action True
SaAcion E—
StartApplication
StartObjectiD <Active Package>

B Start Options
CmdLinetrguments

CmdlineArguments
Specifies the command line arguments to be passed when running the

program.
o) Cama)

Figure 2-15. Switch SSIS 2008 project to 32-bit

Setting breakpoints in Script Components unfortunately only works for SSIS 2012 and later. There are
some alternatives—like firing events and trace logging—to get some form of debugging. These are described
later on in this chapter.

Script Task

First, start with the Script Task example that checks whether the size of a file is at least 1 byte in size.

We created a package called debug. dtsx with this script, but we intentionally added an error. Try to find
it and correct it. The scripts builds successfully, but when running it, you get an error: Exception has been
thrown by the target of an invocation. See Figure 2-16.

46

CHAPTER 2 " SCRIPT TASK VS. SCRIPT COMPONENT

Debug.dtsx [Design] & X
g5 DataFlow g Parameters] EventHandlers ‘i— Package Explorer) Progress

a DTS Script Task: Runtime Error n
I—-.'; SCR - Check File Size

it 5 DTS Script Task has encountered an exception in user code:

Project name: ST_b30bb32368e6495a92d52e972fb2f6f6

[Exception has been thrown by the target of an invocation.

i-)i DFT - Stage File

at System.RuntimeMethodHandle.InvokeMethod(Object -
target, Object[] arguments, Signature sig, Boolean constructor)

Figure 2-16. Our intentionally added error

You should edit the Script Task and click the Edit Script... button to see the code in the VSTA
environment. Go to the line where you want the debugger to break. This could be the first line of code in the
Main method or a line just before the place where you suspect your script will fail. In the Debug menu you
find the Toggle Breakpoint option shown in Figure 2-17, but you can also hit F9 or click the light-gray column
on the left side to add a breakpoint. You cannot add breakpoints on empty lines or comment lines.

ﬂ VstaProjects - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD | DEBUG | TEAM SQL TEST TOOLS ANALYZE WINDOW HELP

0 - | -Hdl|3(,|j'lnﬁ| Windows L -
5 | | | | Graphics YT @ g A

S 0 Start Pe.rformanc_e Analysis Paused Ctrl+Alt+F2 !
#z ST_83006d504cae497481bb3f25¢f33e201.5¢(e e T y
AName=paces] Attach to Process...

Debug Installed App Package...
Elnamespace ST_83806d584caed9748

Toggle Breakpoint]
[Microsoft.SqlServer.Dts.Tas Delete All Breakpoints Ctel+Shift+F9
E public partial class Scripth = = FtModelBase
{ Clear All DataTips

Export DataTips ...

E 1/ <summary>

Import DataTips ...
// Check whether a file i
/11 </summary> Options and Settings...
E public void Main() & ST b30bb32368e6495a92d52€972fb2f666 Properties...

{
// Fill variable with the filepath from a Flat File Connection Manager
string filePath;
filePath = Dts.Connections["MyFlatFile"].ConnectionString;
// Use the FileInfo class to check the length of the file
System.I0.FileInfo fi = new System.I0.FileInfo(filePath);

Figure 2-17. Add a breakpoint in a Script Task

47

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

When you add a breakpoint, it is clearly visible in the code. A red ball and a red background color are
added, and you can see those in Figure 2-18. The same red ball is added in the task when you close the
Script Task editor, and that is shown in Figure 2-19. You can add multiple breakpoints in your code, but don’t
overdo it by adding a breakpoint on each line.

= /// <summary>

/'// Check whether a file is filled

. /// </summary>
= public veid Main()
{
// Fill variable with the filepath from a Flat File Connection Manager
string filePath;
€] = Dts.Connections["MyFlatFile"].ConnectionString;

// Use the FileInfo class to check the length of the file
System.I0.FileInfo fi = new System.IO.FileInfo(filePath);

// Fail the Script Task if the length is not greater than zero
if (fi.Length > @)

Figure 2-18. Breakpoint added

g oesort + I

RIS &% Data Fow @ Parameters B EventH

|-) SCR - Check File Size @

|

a-’a DFT - Stage File

Figure 2-19. Script Task with breakpoint

Now you can either run the entire package or only the Script Task with the breakpoint to start
debugging. When you have multiple Script Tasks with breakpoints, the debugger can only debug one at a
time. And breakpoints in a child package will be disregarded if they are executed via an Execute Package
Task. After executing, the VSTA environment opens, and a yellow marking indicates where the debugger
paused. The yellow marking is the highlighting that you see in Figure 2-20. This highlighted line is the next
statement to be executed. Now hover your mouse cursor over a variable to see its value at this moment.

48

CHAPTER 2 © SCRIPT TASK VS. SCRIPT COMPONENT

= f// <summary>
Check whether a file is filled
FAf </summary>
E public void Main()
1
// Fill variable with the filepath from a Flat File Connection Manager
string filePath;
e filePath = Dts.Connections["MyFlatFile"].ConnectionString;

// Use the FileInfo class to check the length of the file
System.I0.FileInfo fi = new System.IO.FileInfo(filePath);

|@ filePath| null = |
// Fail the Script Task if the length is not greater than zerd|
if (fi.Length > @)

Figure 2-20. Hitting a breakpoint and pause execution

By pressing Debug...Step Over (F10), the currently selected line of code is executed. The yellow marking
moves to the next code line and then you can check the values again. You can repeat this until there are
no code lines left. You can also press F5 (continue), and then execution of the code proceeds until the next
breakpoint, or if there are no more breakpoints, until the end of the script.

By now you probably found the error in the script. Our error is shown in Figure 2-21. It tells us that
MyFlatFile is not found. Some further research will tell you that the name of the flat file doesn’t start with a
capital letter and that the code is case sensitive.

/ Check whether a file is filled
/ SummMary>
- public void Main()
{
// Fill variable with the filepath from a Flat File Connection Manager
string filePath;

< filePath = Dts.Connections["MyFlatFile"].ConnectionString;|
// Use § 1 DtsRunti Exception was unhandled by user code X
System.

The connection "MyFlatFile" is not found. This error is thrown by Connections collection when the specific connection
element is not found.

S/ Fail
if (fi.L Troubleshooting tips:
{ | i Get aeneral helo for excentions. | Al

Figure 2-21. An error message that makes more sense

You can also add a watch on a variable or a piece of code. Select the filePath variable from the
example. Right-click it and select Add Watch as shown in Figure 2-22. The variable is added to the Watch
window. Now you can step through your code by pressing F10 to see the value change in the Watch window
without hovering your mouse pointer above the variable. If the Watch window isn’t visible, then go to the
Debug menu, and choose Windows » Watch » Watch 1, or press Ctrl + Alt + W, 1.

49

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

{

{
b
{

// Use the Fil
System.IO.File

// Fail the Sc
if (fi.Length

Dts.TaskResu
else

Dts.TaskResu

Name

(@ filePath

5 public void Main()

-

» [o

oy 3 v

// Fill variable with the filepath from a Fla
string filePath-
e filePath = Dts

Run Tests

Debug Tests

Go To Definition
Find All References
View Call Hierarchy
Breakpoint

Add Watch

Add Parallel Watch
QuickWatch...

Pin To Source

Show Next Statement

Step Into Specific

Step over properties and operators

Run To Cursor

Run Flagged Threads To Cursor

Set Next Statement
Go To Disassembly
Cut

Copy

Figure 2-22. Add a Watch to the Script Task

Script Component

Ctrl+R, T
Ctrl+R, Ctrl+T
F12

Shift+F12
Ctrl+K, Ctrl+T

Shift+F9

Alt+Num *

Ctrl+F10

Ctrl+Shift+F10

Ctrl+X
Ctrl+C

t File Connection Manager

Type
string

For this example we will use the simplified Surrogate Key script which is available in the same debug.dtsx
package. Debugging a Script Component works nearly the same as with the Script Task, but some methods
are executed multiple times. Edit the Script Component and click on the Edit Script... button to open the
VSTA environment with our Surrogate Key script. Select a code line within the Input0_ProcessInputRow
method and add a breakpoint as illustrated in Figure 2-23. The breakpoint will be clearly visible within the
VSTA environment but not on the transformation itself like with the Script Task.

50

CHAPTER 2 © SCRIPT TASK VS. SCRIPT COMPONENT

ﬂ VstaProjects - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TOOLS WINDOW HELP

e - WM XA Windows »
FTwimAf =3 9YH|| JavaScript Analysis »
P
S e epa & Attach to Process.
tMain Debug Installed App Package...
Toggle Breakpoint [} F9
& Delete All Breakpoints Ctrl+Shift+F9
This is the class to ¢ Disable All Breakpoints parent
of this class. “lear All DataTit
[chr‘osoft SqlServer‘ Dts F
Spublic class ScriptMain : Import DataTips ...
{ - Options and Settings...
// Integer variable to § g 0 oocadcnn06954a418983ebeff5159140 Propert
: i
int rowNumber = @; - L = e DpsTes
This method is called once for every row that passes through the component from Input®.

Increment and assign variable to new output column

The row that is cur antl\ Lmssue through the component
= publlc override void Input®_ProcessInputRow(Input@Buffer Row)

{

// Increment value

// Assigning value to new output column
Row.Bikeld = rowNumber;

Figure 2-23. Adding a breakpoint in a Script Component

Now close the VSTA environment and execute the Data Flow Task or the entire package. Because you
added a breakpoint within the ProcessInputRow method, which executes for each row, the debugger will
continue with the second row after finishing the first row, and continue until all rows have been processed.
Try this by pressing F5 (continue), and then checking the value of the rowNumber variable. Repeat this until
all rows are processed. The watch functionality also works within the Script Component. For example, select
the rowNumber variable, right-click it, and add a Watch. Figure 2-24 shows the result.

51

CHAPTER 2 © SCRIPT TASK VS. SCRIPT COMPONENT

Dd VstaProjects (Debugging) - Microsoft Visual Studio

FILE EDIT VIEW PROJECT BUILD DEBUG TOOLS WINDOW HELP

e - W XA A - = | P Continue ~ A ok
F @ i Al e 3 i g 41 » i IS

This is the class to which to add your code. Do not change the name, attributes, or parent
of this class.

[chr‘osoft SqlSer‘ver Dts Plpelme SSISScriptComponentEntryPointAttribute]
—public class ScriptM : UserComponent
{
// Integer variable to keep track of the row number value

int rowNumber = @;

This method is called once for every row that passes through the component from Input®.
Increment and assign variable to new output column

aram r "R »The row that is (urr‘mtlv Msing through the component:-
- publ)c overrlde vmd Input®_ProcessInputRow(Ir @Buffer Row)
{
[/ Increment value
(] rowhumber++;

[/ Assigning value to new output column
Row.BikeId = rowNumber;
} @; rowNumber 2 = |

Name Value Type

@; rowNumber 2 int

Figure 2-24. Watch in Script Component

When using an SSIS version prior to SSIS 2012, you cannot use breakpoints in the Script Component.
There are a few workarounds to get some form of debugging. The good-old message box is a simple and
quick way of displaying a value.

The message box is useful and traditional, but can get a little annoying when processing a large of
records. No one wants to click OK 10,000 times. There is also the chance that you might accidentally leave a
message box in the code when going to production.

52

CHAPTER 2 © SCRIPT TASK VS. SCRIPT COMPONENT

The following code example implements a message box for debugging. Figure 2-25 shows that message
box being used to display the current row number.

public override void Input0 ProcessInputRow(InputOBuffer Row)

{

// Increment value
rowNumber++;

// MessageBox for a quick and dirty debug workaround
System.Windows.Forms.MessageBox.Show(rowNumber.ToString());

// Assigning value to new output column
Row.BikeId = rowNumber;

Dd Extending SSIS with .NET (Running) - Mic DC Extending SSIS with .NET (Running) - Microsoft Visual Studio
FILE EDIT WVIEW PROJECT BULD DEBUG FILE EDIT VIEW PROJECT BUILD DEBUG SSIS TOOLS WINDOW

-0l -mw» Q- i0-0(G-MP|XE AT - > conine-

s amponritn e+ I s conomeris o+ > I

8 Control Flow [ERIEEEYEEN]] @ Parameters B Event HYl 3. ControlFlow gk DataFlow & Parameters [Event Handers = Package Expho... [

SRy scriot Comporent]

Data Flow Task: | & DFT - Bicyde - SEQC- C#
= Task DFT - Bicycle

w © start, 22:30:03
P validation has started
- FF_SRC - Bicyle O [SSI5.Fipeline] Information: Validation phase Is beginning.
* = Progress: Validating - 0 percent complete
= Progress: Validating - 25 percent complete
= Progress: Validating - 50 percent complete
= Progress: Validating - 75 percent complete
6 = Progress: Validating - 100 percent complete
P validation ts completed
@) [5515.Pipeline] Information: Prepare for Execute phase is beginning.
<» Progress: Prepare for Execute - 0 percent complete

< = Progress: Prepare for Execute - 25 percent complete
! I SCR - Add surrogate key = Progress: Prepare for Execute - 50 percent complete

=* Progress: Prepare for Execute - 75 percent complete
= Progress: Prepare for Execute - 100 percent complete
© [SSIS.Pipeline] Information: Pre-Execute phase is beginning.
= Progress: Pre-Execute - 0 percent complete
=* Progress: Pre-Execute - 25 percent complete
0 [FF_SRC - Bicyle [8]] Information: The processing of file "C:\SSIS Seripting Book\Solutic
-» Progress: Pre-Execute - 50 percent complete
=* Progress: Pre-Execute - 75 percent complete
My current rownumber: 2 = Progress: Pre-Execute - 100 percent complete
© [SS1S.Pipeline] Information: Execute phase is beginning.
F -

fi : The nym| f rows processed for file "C:\
[ScriptComponent] Information: My current rownumber: 1

Figure 2-25. Result debug alternatives

A better alternative is to fire events to show the value in the Execution Result tab. Firing events are
described in more depth in Chapter 4.

public override void Input0_ProcessInputRow(InputOBuffer Row)

{

// Increment value
rowNumber++;

53

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 2 * SCRIPT TASK VS. SCRIPT COMPONENT

// Firing events for a more fancy debug workaround

bool fireAgain = true;

this.ComponentMetaData.FireInformation(0, "ScriptComponent"”,
"My current rowNumber: " +
rowNumber.ToString(),
string.Empty, 0, ref fireAgain);

// Assigning value to new output column
Row.BikeId = rowNumber;

Another good alternative for breakpoints is to write trace messages to a listener. You can capture
these messages with a free tool like DebugView (http://technet.microsoft.com/en-us/sysinternals/
bb896647.aspx).

Following is a code example, and Figure 2-26 shows the trace output that is written.

public override void Input0 ProcessInputRow(InputOBuffer Row)

{
// Increment value
rowNumber++;

// Write trace messages and use the DebugView to watch them
System.Diagnostics.Trace.WriteLine("My current rownumber: " +
rowNumber.ToString());

// Assigning value to new output column
Row.BikeId = rowNumber;

N
3% DebugView ESEEN

File Edit Capture Options Computer Help
Hdd KR E- A BEEBT| P | A

Tine Debug Print A

0.00000000 [6384] My current rownumber:
0.00366123 [6384] My current rownumber:
0.00371285 [6384] My current rownumber:
0.00375680 [6384] My current rownumber:
0.003799_89 [6384] My current rownumber:

m

e LD PO

O e QD PO =

-
€

Figure 2-26. Watching trace messages with DebugView

Summary

This chapter explained the differences between the Script Task and the script component. It also showed
some very basic examples to get an idea of what you can accomplish with coding. And it explained how you
can solve errors in your script. The next chapter explains some C# and VB.NET basics.

54

http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

CHAPTER 3

.NET Fundamentals

If you are not familiar with the .NET Framework, or if you haven’t written VB.NET or C# code before, this
chapter is for you. In this chapter, you learn the basics and fundamentals of .NET development. You learn
about data types, variables, and the structure of writing code in .NET; you learn this in both C# and VB.NET.
The main purpose of this chapter, as one of the very first chapters in the book, is to help you understand
.NET scripting. You'll enhance your knowledge in future chapters, because as you continue reading this
book, you'll see more complex lines of code that need a good understanding of .NET fundamentals. If you
are familiar with .NET, or if you are coming from a C#/VB.NET developer background, then you can simply
skip this chapter.

Introduction

The .NET Framework is a proprietary and partial open source framework (the .NET Core is open source,
including the runtime and the framework libraries) developed by Microsoft; it runs primarily on the
Microsoft Windows platform. Its two main components are a large Framework Class Library (FCL) and the
Common Language Runtime (CLR), which provides language interoperability, meaning that each language
can use code written in other languages. The CLR is a managed software environment that allows programs
and applications written with the NET Framework to execute. The CLR is a kind of application virtual
machine that deals with security, memory management, and exception handling. The FCL and CLR form
the .NET Framework.

Microsoft provides an integrated development environment for the .NET Framework called Visual Studio.

More information about the basic concepts of the .NET Framework can be found on MSDN at
https://msdn.microsoft.com/en-us/library/ff361664(v=vs.110).aspx.

.NET Data Types .vs Data Flow Data Types

Although there are similarities between them, there are also several fundamental differences between the
data types used in .NET and the data types used in SSIS. The data types used in SSIS are data flow, which are
supported by the pipeline buffer and are exposed using a dedicated type system.

This type system is different from the one used by SSIS variables or by data providers such as OLE DB
and ADO.NET. Table 3-1 shows comparisons between the data types found in .NET and SSIS pipeline
buffer types.

55

https://msdn.microsoft.com/en-us/library/ff361664(v=vs.110).aspx

CHAPTER 3 © .NET FUNDAMENTALS

Table 3-1. Data Types in .NET and in SSIS Pipeline

.NET Type SSIS Pipeline Buffer Type
Int64 DT_I8

Array of Byte DT_BYTES

Boolean DT_BOOL

String DT_STR

DateTime DT_DBDATE
DateTime DT_DBTIMESTAMP
DateTime DT_DBTIMESTAMP2
DateTimeOffset DT_DBTIMESTAMPOFESET
Prior to SQL Server 2012 : Object* DT_NUMERIC

from SQL Server 2012 : Decimal

Double DT_R8

Object* DT_IMAGE

Int32 DT 14

String DT_WSTR

String DT_NTEXT

Single DT_R4

Int16 DT _I2

TimeSpan DT_DBTIME2

Byte DT_UI

GUID** DT_GUID

*All the data types in the .NET Framework derive from the Object type. Therefore, all data types can be
converted to Object. This means that if you have a data type in SSIS that lacks an appropriate counterpart, you
can always convert it to the Object type.

**Even though GUID is a native .NET, it is not a part of the available SSIS variable type system. To create
GUID you must resort to Script Tasks or Script Components. If you want to assign a GUID to a variable, you
have to convert it to a string first; for example:Dts.Variable["MyGUID"].Value = "{" + Guid.NewGuid().

Tostring() + "}";

Data Types

The data type of an element indicates what kind of data the element can hold and how the data is stored.

All the values that can be part of the evaluation of an expression or that can be stored into the computer
memory have a data type. These elements can be variables, constants, enumerations, parameters,
arguments, and properties. Procedure return values also have a data type. In the .NET Framework, you must
declare the data types beforehand. The syntax varies whether you are using C# or VB.NET as a programming
language. Table 3-2 shows how elements are declared in both languages.

56

Table 3-2. Net Declaring Data Types

CHAPTER 3

.NET FUNDAMENTALS

Programming Element

C# Declaration

VB.NET Declaration

Variable

Literal

Constant

Enumeration

Property

Parameter

Argument

Return value

Double Amount;
String Name;

Double Amount = 10.5;
String Name = “Regis”;

const Double VAT = 18.6;

Enum Colors{ blue, green}

public int MyProperty { get; set; }

public void myMethod
(string parameter1)

newsString = inputArgument.
Substring(0,2);

public string myNewMethod
(String parameter)

Dim Amount as Double
Dim Name as String

Dim Amount as Double = 10.5
Dim Name as String = “Regis”

Const VAT as Double = 18.6

Enum Colors Green Blue
End Enum

Public Property MyProperty() As Integer
Get

Return m_MyProperty

End Get

Set

m_MyProperty = Value

End Set

End Property

Private m_MyProperty As Integer

Sub myMethod(ByVal parameterl
As String)

newString = Left(inputArgument, 2)

Function myNewMethod(ByVal
parameter as String) As String

Variables

A variable is a storage location that contains a known or unknown quantity of information called a value.
In VB.NET, a variable is dimensioned, hence the name Dim. Variables can have access modifiers indicating
their scope. At a class level, a variable with a public scope is exposed to all instances of the class, as well

as other objects—including other classes. If the variable is private, it is only available inside the class. The
same rules apply to properties: a public property is exposed to all other objects. A variable declared inside
a method or a function is scoped to this method or function and cannot be used outside the scope of the
function. Furthermore, if the variable is declared inside an if or a loop construct in a function, it is only
scoped to the if or the loop construct.

Operators

There are different categories of operators in the .NET Framework, as shown in Table 3-3.

57

CHAPTER 3 © .NET FUNDAMENTALS

Table 3-3. Operators Categories

Category Example

Primary X.y, typeof, x++, x--
Unary IX, ++X, --X
Multiplicative x*y, x/y, xky
Additive X+y, X-y

Shift X>>Y, X<KYy

Relational X3y, X>Y, X<=y, X>=y
Type testing is, as

Equality x==y, x!=y

Logical AND x&y

Logical XOR x"y

Logical OR x|y

Conditional AND x88y

Conditional OR x|y

Null-coalescing x??y

Conditional ?:

Assignment and lambda expressions X=Y, X+=Yy, X -= Yy, X *=y, x/=y,

X%y, X8y, X |=y, x =y,
1. X <<=y, X >=Yy, =>

For more information about operators and their usage, please visit MSDN at
https://msdn.microsoft.com/en-us/library/6a71f45d.aspx; and for more information
regarding VB.NET, go to https://msdn.microsoft.com/en-us/library/aiw3te48.aspx.

Using/Import, Classes, and Namespaces

To enable type names to be referenced without having to qualifying them with their namespace, you need to
use the using (C#) or Imports (VB.NET) keywords. This is done at the file level and can also be done inside
namespaces, classes, and so forth. Each source file can contain any number of Imports or usings.

Note Neither Import nor using make elements from other projects or assemblies available to your project.
You still need to set a reference to the projects or assemblies. The using or Imports keywords only remove the
need for qualifying names that are already available to your project.

58

https://msdn.microsoft.com/en-us/library/6a71f45d.aspx
https://msdn.microsoft.com/en-us/library/a1w3te48.aspx

CHAPTER 3 © .NET FUNDAMENTALS

The following is an example of a using statement in C#:

using System;

using System.Collections.Generic;
using System.Data;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

In VB.NET, the equivalent is an Import statement; for example:

Import System;

Import System.Collections.Generic;
Import System.Data;

Import System.Lling;

Import System.Text;

Import System.Threading.Tasks;

Arrays

Arrays in C# and VB.NET are zero-indexed, meaning that the index starts at zero. When declaring an array
in C#, the square brackets come after the type. In the following, note the identifier as illustrated in C#:

int[] myArray;

Or write it as follows in VB.NET:
Dim myArray as int[];

Another thing that makes arrays in C# or VB.NET different from arrays in other languages is that the
size of the array is not part of its type. This way, it is possible to declare an array and assign objects to it,
regardless of the array’s length.
int[] myArray; // declares an array of int of any size

myNumberedArray = new int[10]; // number is a 10-elements array
myNumberedArray = new int[15]; // number is now a 15-elements array

The Different Types of Arrays

In C# and VB.NET, you can declare different type of arrays: single-dimensional, multi-dimensional, and
array of arrays. Table 3-4 lists these types.

59

CHAPTER 3 © .NET FUNDAMENTALS

Table 3-4. Types of Array

Array Type Example Declaration
Single dimensional array int[] myArray;
Multidimensional array String[,] myArray;
Array of arrays Byte[][] matrix;

As illustrated in Table 3-1, declaring arrays does not actually create them. In C# and VB.NET, arrays are
objects and must be instantiated like any other objects. Table 3-5 provides some examples.

Table 3-5. Instantiating Arrays

Array Type Example Instantiation
Single dimensional array int[] myArray = new int[5];
Multidimensional array String[,] myArray = new string[2,3];
Array of arrays Byte[][] matrix = new byte[5][];
2. For(int I = 0; I < matrix.length; i++)
Z éatrix[x] = new byte[4];
5.

It is also possible to have larger arrays; for example, a three-dimensional array can be written
in C# as follows:

int[,,] 3DArray = new int[3,4,5];
And in VB.NET it is as follows:

Dim anArray As Integer(,,) = New Integer(2, 3, 4) {}

Initializing Arrays

Initializing arrays is simple and straightforward; it is done at declaration time by enclosing the values in
curly brackets.

Int[] numbers = new int[]{1,2,3,4,5};
This is the VB.NET version:

Dim numbers As Int() = New Integer() {1, 2, 3, 4, 5}

60

CHAPTER 3 © .NET FUNDAMENTALS

Accessing Array Members

Accessing array members is also straightforward; it is very much like what is found in other programming
languages. The following C# code declares an array and assigns a value of 12 to the fifth element.

Int[] numbers = new int[]{1,2,3,4,5,6,7,8,9};
numbers[4] = 12;

And here is the same example written in VB.NET:

Dim numbers As Int() = New Integer() {1, 2, 3, 4, 5, 6, 7, 8, 9}
numbers(4) = 12

As mentioned, arrays are objects that all descend from the base type System.Array. As such, they have
properties and methods; for example, the length property lets you retrieve the number of elements in an array.

Note Arrays are 0-indexed but the length is 1-based.

Collections

Collections contain interfaces and classes that you can use to define collections of objects. These collections
can be generic or non-generic and can hold various objects, such as lists, queues, arrays, dictionaries, and
hash tables.

Lists

Lists are dynamic, strongly typed collections of objects that can be accessed by index. Lists have methods
that help you search, sort, and work with data. It is ideal for elements accessed by indices. The following
example in C# creates a list of four elements of type int.

List<inty> mylList = new List<int>();
myList.Add(1);
myList.Add(2);
myList.Add(3);
myList.Add(4);

Note The angle brackets are part of the declaration type in C#; they are not the operators (lesser than and
greater than).

The same example is written in VB.NET as follows:

Dim myList As New List(Of Integer)()
myList.Add(1)
myList.Add(2)
myList.Add(3)
myList.Add(4)

61

CHAPTER 3 © .NET FUNDAMENTALS

Generics

The preceding examples added a primitive type to a list, but you can add object types and reference types as
elements.

Lists are objects that are derived from the System.Collection.Generic class, and as such they have
properties and methods that make them great types to work with. While the number of elements of an array
is obtained with its 1ength property, the number of elements in a list is obtained via its count property.

Generic lists are strongly typed, which usually gives them better safety and performance compared to
non-generic lists; for example, List<T> is the generic version of the non-generic ArraylList.

For more information about lists, visit MSDN at https://msdn.microsoft.com/en-us/library/6sh2ey19
(v=vs.110).aspx

Loops

Loops are obviously a very helpful programming artifact. With loops you can apply logic to every single
element of a collection, a list, or an array.
Let’s begin by discussing the while loop.

The while Loop

The while loop executes until the while condition evaluates to false. And because the test for the while
condition executes before the content, a while loop executes zero or more times.
The following is an example of a while loop in C#:

int 1 = 0;
while(i++ < 10)
{

// do something
}

In VB.NET you can write the same loop as follows:

Dim index As Integer = 0

While index <= 10
Debug.Write(index.ToString & " ")
index += 1

End While

Note If you want a loop that executes one or more times, then there is a construct called the do loop,
which is explained in detail at https://msdn.microsoft.com/en-us/library/370s1zax.aspx.

The .NET Framework has two types of loop found in SSIS: the foreach loop and the for loop.

62

https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/370s1zax.aspx

CHAPTER 3 © .NET FUNDAMENTALS

The for Loop

A for loop is typically used for looping over an array or a list. Arrays have a length property and lists
have a count property; both can be used in the initialization of the loop. The following example has a
single-dimensional array with three elements, as well as a list with five elements. You want to iterate

through all of their elements:

//instantiate the array
int[] numberArray = new int[]{1,2,3};

//instantiate the List
List<string> numberList = new List<string>();

//Add elements to the list
numberList.Add("a");
numberList.Add("b");
numberList.Add("c");
numberList.Add("d");
numberList.Add("e");

//iterate through the elements of the array
for(int i = 0; i < numberArray.length;i++)
{

//print out the value
Console.WriteLine(numberArray[i]);

}

//iterate through the elements of the list in the same manner
for(int i = 0; i < numberList.Count;i++)

{

//print out the value

Console.Writeline(numberList[i]);

}
The prior example is in C#. You can achieve the same effect in VB.NET by writing this:

'instantiate the array
Dim numberArray As Integer() = New Integer() {1, 2, 3}

'instantiate the List
Dim numberList As New List(Of String)()

'Add elements to the list
numberList.Add("a")
numberList.Add("b")
numberList.Add("c")
numberList.Add("d")
numberList.Add("e")

63

CHAPTER 3 © .NET FUNDAMENTALS

'iterate through the elements of the array

For i As Integer = 0 To numberArray.lLength - 1
'print out the value
Console.WritelLine(numberArray(i))

Next

'iterate through the elements of the list in the same manner
For i As Integer = 0 To numberList.Count - 1

"print out the value

Console.WriteLine(numberList(i))
Next

At any point during the iteration you can break out of the loop by using the break keyword, or you
can step to the next iteration with the continue keyword. It is also possible to exit a for loop by using the
following keywords : goto, return, throw.

Note If you want to iterate through a list or an array backward, you just need to count down in the
following way: for(int i = myArray.Length -1; i = 0; i--).

The foreach Loop

Just like the for loop, the foreach loop repeats a statement or a group of statements for each element
of an array or a collection. The foreach loop is used to execute those statements in the order provided
by the list or the array, but the statements cannot alter the list or the array because they are iterated to
avoid side effects.

At any point during the iteration, you can break out of the loop by using the break keyword, or you can
step to the next iteration with the continue keyword. It is also possible to exit a foreach loop by using the
following keywords : goto, return, throw.

The only condition your list or collection you want to iterate over need to fulfill is that it must
implement the IEnumerable interface. Generic lists and collections do exactly that. They are available in
System.Collections.Generic.

The following illustrates using the foreach loop to iterate over elements of an array.

int[] numbers = { 1, 2, 4, 6, 7, 9, -3, -1, 0 };

foreach (int i in numbers)

{

}
// Output: 124679 -3-10

Console.Write("{o} ", i);

Here is the same loop type in VB.NET:
Dim numbers As Integer() = {1, 2, 4, 6, 7, 9, -3, -1, 0}

For Each i As Integer In numbers
Console.Write("{o} ", i)

Next

"Output: 124679 -3-10

64

CHAPTER 3 © .NET FUNDAMENTALS

Itis also possible to use foreach loops to iterate over items in multidimensional arrays, but using a
nested for loop gives you more control over the elements.

Error Handling

A well-designed script must handle errors and exceptions to prevent crashes. The following are guidelines
on how to handle errors and raise exceptions.

The throw Statement

The throw statement is used to signal a situation where there is an anomaly during program execution. It is
used to raise exceptions. Exceptions are always objects that are derived from the System.Exception class;
for example, in C# it is as follows:

class exampleException : System.Exception{}
/! ... do something
throw new exampleException();

And in VB.NET, you throw an exception as follows:

Private Class exampleException Inherits System.Exception
End Class

' ... do something

Throw New exampleException()

Ultimately, the fact that exceptions are derived from the System.Exception class means that you can
create your own exception classes and throw them in your code, depending on the situation. The result
could look like the following C# code snippet:

try
{

}

catch (CustomException ce)

{
}

catch (AnotherCustomException ace)

{
}
catch (Exception ex)

{
}

// Do something and throw different type of exceptions.

//the generic exception

65

CHAPTER 3 © .NET FUNDAMENTALS

In VB.NET, it would look like this:

Try

' Do something and throw different type of exceptions.
Catch ce As CustomException

"do something

Catch ace As AnotherCustomException

' do somerhing

Catch ex As Exception

"the generic exception

End Try

The try-catch Statement

By using try-catch you can programmatically check for and handle an exception that is likely to occur. The
try-catch statement always consists of a try block followed by one or several catch clauses that specify how
to handle different types of exceptions. When an exception is caught, the CLR looks for the catch statement
that will handle that exception. If the executed method doesn’t contain a catch statement, then the errors
bubble up to the method calling this method, and so on until the CLR meets a catch block that it can use. If
there are no catch blocks, then the program or application will return an unhandled error exception. There
are several types of exceptions that can be raised; for more granular exception handling, you can check for
several types in one try-catch block. Of course, by deriving from the base class System.Exception, you can
always build your own exception classes to handle errors that suit your application or program.

The try-catch-finally Statement

A common usage of try-catch-finally is to obtain a resource in try, deal with exceptions in catch, and
release the resource in finally. By using finally, you ensure that whether the code executed successfully or
raised an exception, the finally clause will be executed. This is a great way to deal with connections, blocking
10 resources and objects that you want to use and release afterward.

Another way of doing this—and generally a better approach—is to use the using(){} block in C# since
it ensures that resources are cleaned up, as long these resources implement the iDisposable interface.

Note InVB.NET it is possible to filter exceptions and build conditional catch clauses. It is not possible in
C# until .NET Framework 4.6 (which ships with SQL Server 2016).

Summary

The goal of this chapter was to provide an introduction to the data types and the most used constructs used in
SSIS when scripting with C# and VB.NET. As you can imagine, there is a lot more to the framework than what
can be written in a single chapter. We've merely scratched the surface. You are encouraged to read more about
the .NET Frameworlk, its capacities, and its strength on MSDN, starting at www.microsoft.com/net.

66

http://www.microsoft.com/net

PART Il

Script Tasks

CHAPTER 4

Script Task

If you want to work through SFTP (SSH File Transfer Protocol), or if you want to automate sending a highly
customized email, or applying passwords on files, or checking file properties such as creation date and
modified date, then the Script Task is one of your best choices. This chapter dives into the Script Task and
some of its most common usages, including how to use it with variables and connection managers, how to
use it with logging and error handling, and how to reference custom assemblies.

Editor

When you add a Script Task to the Control Flow and edit it, you first have to choose the Script Language:

C# or VB.NET (see Figure 4-1). If you still work with SSIS 2005, then you can only select VB.NET. This option
is write-once. After hitting the Edit Script... button, this option is grayed out and you cannot change the
Script Language anymore. The only way to change it is to delete the entire Script Task, add a new Script Task
to the Control Flow, and then start over again.

69

CHAPTER 4 " SCRIPT TASK

—ioix)

= Access Microsoft Visual Studio Tools for Applications (VSTA) to write saripts using the Visual Basic 2010
) or Visual C# 2010, and configure the task's properties.

Saipt B Script
General ScriptLanguage Microsoft Visual C= 2010
Expressions EntryPont Main
ReadWritevariables UserzFileCount
ReadOnlyVariables
Spedfies a comma-separated list of read-only variables.

Edit Saript....

Figure 4-1. The Script Task Editor

You can change the default programming language to your own preference. In Visual Studio, go to
the Tools menu and select Options.... Expand the Business Intelligence Designer section and then the
Integration Services Designer. The default Language option appears on the right side (see Figure 4-2).

70

b SSIS - Microsoft Visual Studio
FILE EDIT WVIEW PROJCT BUILD DEBUG FORMAT SSIS

- 8- - < P Start ~

recagecioc Desgol + < I

WS Sl &% Data Fow @ Parameters Bl Event Handlers = Pax

Analysis Services Designers
4 Integration Services Designers
General
Database Tools
HTML Designer
Text Templating
Windows Forms Designer

Connecty

TOOLS | WINDOW HELP

‘? Connect to Database...
Choose Toolbox ltems...
Add-in Manager..

€ Exensions and Updates..
Create GUID
External Tools..

Import and Export Settings...

CHAPTER 4 ' SCRIPT TASK

HNr=C@EDO

Customize...
£ Options..
Options
Ernvironment Digital signature
Projects and Solutions ¥ Check diital sianature when loading a backace
Source Control Show waming if a packace is unsioned
Vext Editor Accessibility
Debugging Show orecedence constraint labels
Analysis Services Tabular Designers
B a r = Script
Business Intelligence Designers
po Language

Microsoft Visual C# 2012

Microsoft Visual Basic 2012
Microsoft Visual C# 2012

oK Cancel

Figure 4-2. Changing the default Script Language

The second property in the editor is the Entry Point. With this property, you can change the name
of the method that will be the starting point for your script. The default is the Main method. Unless you
have a good reason, changing it could perhaps be a little confusing for others. ReadOnlyVariables and
ReadWriteVariables give you the ability to read and change variables within the Script Task code, but you
can also use them to read package and project parameters if you are using the project deployment model
(available since SSIS 2012). You can either enter the variable names manually or use the pop-up window.
These fields are optional, but more information and examples are provided later in this chapter.

71

CHAPTER 4 SCRIPT TASK

Script Layout

Hitting the Edit Script... button starts the VSTA editor, which gives you the ability to write .NET code.
This editor is a new instance of Visual Studio in a VSTA project with either C# or VB.NET code. VSTA stands
for Visual Studio Tools for Applications. If you are still using SSIS 2005, then the VSA (Visual Studio for
Applications) editor gives you the ability to write VB.NET code. The VSA editor is a stripped version of Visual
Studio that lacks a lot of functionality, including the ability to write C# code.

The first time you start a VSTA editor for a Script Task, it generates default code to help you get started.
The VSTA environment has three main sections (see Figure 4-3).

o VsuaProjects - Microsoft Visusl Studio
Rl (DT YW PROECT UMD DIBUG TEAM X TEST JOOLS ANALYIL NDOW [P I
W xd - e | |ARrascEO-,

SeriptMaincy Fix Properte:
B s

Figure 4-3. The VSTA editor for the Script Task

A. ScriptMain: The editor in which you type your code. Saving is done
automatically when you close the VSTA environment.

B. Solution Explorer: In this section, you can add extra references to other NET
libraries, such as LINQ or to custom libraries. You could also change project
properties, such as the target framework, and optionally add extra C# or VB.NET
files. Changes should be saved with the Save All button; otherwise, they will be
lost when you close the VSTA editor.

C. Properties: Here you can see the properties of the item you selected in the
Solution Explorer. You can see where the (temporary) VSTA project is stored on
disk, for example.

72

CHAPTER 4 " SCRIPT TASK

The script in section A is generated and the code varies per SSIS version and, of course, per scripting
language (see Figures 4-4 and 4-5).

= [om

sy
Microsoft SQL Server Integration Services Script Task
Urite scripts using Microsoft Visual CN¥ 2008. 1
The ScriptMain is the entry point class of the script.
Lowy
B using Syscem;
using System.Daca;
using ver.Des
Lusing System.Vindows.Forms;
a 5T leal.coprol
1{
[System. AddIn. AddIn("ScriptMain®, Version = "1.07, Publisher = "~, Description = "")] 3
=] public partial class Scriptiain : Nicrosoft.Sql3erver.Dts.Tesks.ScriptTesk.VITARTScriptibjectlode lBas
t
B Weegion VSTA generated code
=] enuwm ScriptResults
t
- . .Drs.Runtime.[TSExecResult.Success,
Failure = Nicrosoft.SqlServer.Dta.Runtime.DTSExecResulc.Failure
F {H]
H fendregion
=] I

The execution engine calls this method when the task executes.
To access the object model, use the Drs property. Connections, varisbles, events,
and logging features are available as mexbers of the Dt3 property as shown in the folloving exemples.

To reference a variable, call Dts.Variables("NyCaseSensitiveVarisbleNams*] .Value;
To post & log entry, call Des.Log("This is mwy log cexc”™, 999, null):
To zire sn event, call Dus.Events.Firelnformation($9, “test”, “hit the help message”, 7, 0, true): 5

To use the connections collection use sowething like the following:
ConnectionManager cm = Dts.Connections.Add("OLEDE"):
cm.ConnectionString = "Data Source=localhost:Initial Catalog Provider=SOLNCLIL0; Integr Security=55PI:Auto Translate=False:":

Before recurning from this method, set the value of Dts.TaskResult to indicate success or failure.

To open Help, press Fi.

a8 public void Haini)

t
/4 TODO: Add your code here 6
Dea.TaskResult = (int)ScriptResulcs.Success:

Figure 4-4. SSIS 2008 C# Script Task code

73

CHAPTER 4 " SCRIPT TASK

#§ (General) -| §1§ (Dedlarations)
@®Help: Introduction to the script task } 1

E#Region “Imports”

Imports System

Imports System.Data 2
Imports System.Math

Imports Microsoft.SqlServer.Dts.Runtime

#End Region

B 'ScriptMain is the entry point class of the script. Do not change the name, attributes,

| ‘or parent of this class.

Fl<Microsoft.SqlServer.Dts.Tasks.ScriptTask.55ISScriptTaskEntryPointAttribute()> _ 3
<System.CLSCompliantAttribute(False)> _

Partial Public Class ScriptMain
Inherits Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase

BHelp: Using Integration Services variables and parameters in a script|

E}lelp: Firing Integration Services events from a script|

Ei-]iielp: Using Integration Services connection managers in a script]

'This method is called when this script task executes in the control flow.
‘Before returning from this method, set the value of Dts.TaskResult to indicate success or failure.
'To open Help, press Fl.

=] Public Sub Main()
* Add your code here 6
Dts.TaskResult = ScriptResults.Success
End Sub

m

J#Region "ScriptResults declaration™
‘This enum provides a convenient shorthand within the scope of this class for setting the
‘result of the script.

‘This code was generated automatically.
= Enum ScriptResults 4
Success = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Success

m

Failure = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Failure
End Enum

#End Region

End Class

Figure 4-5. 2012 VB.NET Script Task code

The Script Task always starts with a general comment. The text changes between SSIS versions. Remove
these, or even better, replace them with a useful comment about the file/script. Why did you use a Script
Task and what is your code doing? In 2012, regions were added to make the code more orderly. You could
also add them manually to SSIS 2008 script.

#region Help: Introduction to the script task

/* The Script Task allows you to perform virtually any operation that can be
accomplished in a .Net application within the context of an Integration
Services control flow.

Expand the other regions which have "Help" prefixes for examples of specific
ways to use Integration Services features within this script task.

* ¥ X ¥ ¥

*/
#endregion

74

CHAPTER 4 " SCRIPT TASK

This is the VB.NET code:

#Region "Help: Introduction to the script task"

'The Script Task allows you to perform virtually any operation that can be
"accomplished in a .Net application within the context of an Integration
'Services control flow.

'Expand the other regions which have "Help" prefixes for examples of specific
'ways to use Integration Services features within this script task.
#End Region

Next part are the using directives or import statements. In C# they are called using directives and in
VB.NET they are called Imports statements. For example:

#iregion Namespaces

using System;

using System.Data;

using Microsoft.SqlServer.Dts.Runtime;
using System.Windows.Forms;

#endregion

And here is the VB.NET code:

#Region "Imports"

Imports System

Imports System.Data

Imports System.Math

Imports Microsoft.SqlServer.Dts.Runtime
#End Region

Which namespaces are included varies per SSIS version and even per scripting language. You can
add extra usings/imports to make your code more compact. They enable/allow the use of types in a given
namespace. See Chapter 3 for more information about .NET fundamentals.

The third part is the namespace and class declaration. These are generated. Don’t change these unless
you are an experienced .NET developer with a good reason to do it.

namespace ST_abfa556bdb974f78a26e3c3at4606e6e

{
/// <summary>
/// ScriptMain is the entry point class of the script. Do not change the
/// name, attributes, or parent of this class.
/// </summary>
[Microsoft.SqlServer.Dts.Tasks.ScriptTask.SSISScriptTaskEntryPointAttribute]
public partial class ScriptMain : Microsoft.SqlServer.Dts.Tasks.ScriptTask.
VSTARTScriptObjectModelBase

{

75

http://dx.doi.org/10.1007/978-1-4842-0638-6_3

CHAPTER 4 SCRIPT TASK

And here is the VB.NET code:

'ScriptMain is the entry point class of the script. Do not change the name, 'attributes, or
parent of this class.
<Microsoft.SqlServer.Dts.Tasks.ScriptTask.SSISScriptTaskEntryPointAttribute()> _
<System.CLSCompliantAttribute(False)> _
Partial Public Class ScriptMain

Inherits Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase

Next is the Script Result declaration (in SSIS 2012 these were moved to the bottom of the script; they
don’t exist in SSIS 2005). This generated code is for assigning a result to the Script Task: Success or Failure.
Don’t change this. To save space, the book examples do no show this code, but you can’t delete it from the
actual code!

#iregion ScriptResults declaration

/// <summary>

/// This enum provides a convenient shorthand within the scope of this class
/// for setting the result of the script.

11/

/// This code was generated automatically.

/// </summary>

enum ScriptResults

{
Success = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Success,
Failure = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Failure
};
#endregion
And this is the VB.NET code:

#Region "ScriptResults declaration”
‘This enum provides a convenient shorthand within the scope of this class
'for setting the result of the script.

'This code was generated automatically.
Enum ScriptResults
Success = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Success
Failure = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Failure
End Enum
#End Region

The fifth part consists of help text and example code. You can leave it, remove it, or change it to general
comments about your class and its methods.

The final part is the Main method. This is the method that starts when you run the Script Task and
where you add your custom code. The Main method should always result in either ScriptResults.Success
or ScriptResults.Failure. In SSIS 2005, you see a different syntax. To succeed the Script Task, it is
Dts.TaskResult = Dts.TaskResult.Success and to fail the Script Task, itis Dts.TaskResult =
Dts.TaskResult.Failure.

76

CHAPTER 4 " SCRIPT TASK

Variables and Parameters

The package variables in SSIS 2012 introduced parameters that can be used in a Script Task. You can use
them to avoid hard-coded values in the script itself, or you can adjust the variable values in the script so that
they can be used in other tasks or expressions. There are two different methods. In this example, you are
counting the number of files in a folder. The folder path will be provided by a string variable or parameter,
and the number of files will be stored in an integer variable.

Note Parameters are read-only. You can’t change them, and you will get this error if you try to: Exception
has been thrown by the target of an invocation.

First, create a new package called variables.dtsx and add a Script Task to the Control Flow. Give the
Script Task a useful name like SCR - Count Files. Next, create a string variable (or a string package parameter
or a string project parameter), name it FolderPath, and fill it with the path of an existing directory. Also
create an integer (Int32) variable called FileCount for storing the number of files. Figure 4-6 shows the two
variables.

Variables

e Blad

Name Scope Datatype Value Expression
ilo FileCount Variables Int32 0

& FolderPath Variables String d\

Figure 4-6. Use variables for the FileCount and FolderPath

Method 1: ReadOnlyVariables and ReadWriteVariables

For the first method, you need to fill the ReadOnlyVariables and ReadWriteVariables properties in the
Script Task Editor so that these variables are locked by the Script Task during runtime. This can be done by
typing the name or using the selection window (click the button with the three dots that appears when you
select the field). Add the string variable name FolderPath (or one of the string parameters) as the read-only
variable and add the integer variable FileCount as the read-write variable.

7

CHAPTER 4 " SCRIPT TASK

Package.disx [Desgn]® = X
il DotsFlow i@ Parameters [I] EventHanders = Packsge Bxplrer () Execution Renits
(ol x
5 SCR - Read and Write Vanaties -
Access Micosoft Visual Studio Tools for Applcations (VSTA) to write sripts using the Visual Basic 2012 or Visual C#
r) 2012, and configure the task’s propertes.
St |8 script
General PR
Expressions EnfryPoint Main
ReadOnlyVariables User=FolderPath,$PackagezFolderPath, sProject=FolderPath
| ResdVintevarisbles
_iaixl
Salact one or more vanables
v [Hame [Type |
___m______‘_‘_‘_‘____} User FlsCourt 32
r User FolderPath Sng =
farite varisbles.
Y
ok | _cod |
Y

Figure 4-7. Select the variables (or parameters) that you want to use

After filling the ReadOnlyVariables and ReadWriteVariables properties, you can click the Edit Script...
button to open the VSTA environment. First, add an extra using/import for System.IO on top so that you can
do IO operations such as counting all the files in a folder.
using System.IO;

And here is the VB.NET code:

Imports System.IO

Next, add the actual code to the Main method. First you need to get the folder path from the variable and
store it in a local .NET variable.

string myFolder = Dts.Variables["User::FolderPath"].Value.ToString();
And this is the VB.NET code:

Dim myFolder As String = Dts.Variables("User::FolderPath").Value.ToString()

78

CHAPTER 4 ' SCRIPT TASK

Then you need to use that local variable in the actual file counting code and store the file count directly
in the SSIS integer variable FileCount.

Dts.Variables["User::FileCount"].Value = Directory.GetFiles(myFolder, "*.*",

SearchOption.TopDirectoryOnly).Length;

And this is the VB.NET code:

Dts.Variables("User::FileCount").Value = Directory.GetFiles(myFolder, "*.*",

SearchOption.TopDirectaryOnly).Length

Your total script now should look something like the following, but the namespace has a different name
because it is generated. And the ScriptResults declaration is not shown in this code.

#iregion Namespaces

using System;

using System.Data;

using Microsoft.SqlServer.Dts.Runtime;
using System.Windows.Forms;

#endregion

#iregion customNamespaces
using System.IO;
#endregion

namespace ST_a0107ad99e244d5ca57c869184dd6a52
{
/// <summary>
/// This is an example on how to use variables and parameters in a Script
/// Task. It gets a folder from a variable or parameter. Counts the number of
/// files in it and fill the read write integer variable with the filecount.
/// </summary>
[Microsoft.SqlServer.Dts.Tasks.ScriptTask.SSISScriptTaskEntryPointAttribute]
public partial class ScriptMain : Microsoft.SqlServer.Dts.Tasks.ScriptTask.
VSTARTScriptObjectModelBase
{
/// <summary>
/// Get folder and count the number of files in it.
/// Pass te file count to the SSIS variable
/// </summary>
public void Main()
{
// First create a .NET string variable to store the path in. A little
// redundant in this example but you could add extra steps to for
// example validate the existance of the folder. Then choose which
// variable or parameter you want to use to get the path from. In this
// case I used the variable
string myFolder = Dts.Variables["User::FolderPath"].Value.ToString();

79

CHAPTER 4 SCRIPT TASK

// If you rather want to use a parameter then use one of these codelines instead
// of the variable line above. One of the three lines should be uncommented.
//string myFolder = Dts.Variables["$Package::FolderPath"].Value.ToString();
//string myFolder = Dts.Variables["$Project::FolderPath"].Value.ToString();

// Get the file count from the my folder and store that number

// in the SSIS integer variable.

Dts.Variables["User::FileCount"].Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length;

// Close the script with result success.
Dts.TaskResult = (int)ScriptResults.Success;
}
}
}

And here is the VB.NET code:

#Region "Imports"

Imports System

Imports System.Data

Imports System.Math

Imports Microsoft.SqlServer.Dts.Runtime
#End Region

#region customNamespaces
Imports System.IO
#endregion

<Microsoft.SqlServer.Dts.Tasks.ScriptTask.SSISScriptTaskEntryPointAttribute()> _
<System.CLSCompliantAttribute(False)> _
Partial Public Class ScriptMain
Inherits Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase
' This is an example on how to use variables and parameters in a Script Task.
It gets a folder from a variable or parameter. counts the number of files
" in it and fill the read write integer variable with the file count.
Public Sub Main()
' First create a .NET string variable to store the path in. A little
redundant in this example but you could add extra steps to for
example validate the existance of the folder. Then choose which
variable or parameter you want to use to get the path from. In this
case I used the variable
Dim myFolder As String = Dts.Variables("User::FolderPath").Value.ToString()

If you rather want to use a parameter then use one of these codelines instead
of the variable line above. One of the three lines should be uncommented. ' string
myFolder = Dts.Variables("$Package::FolderPath").Value.ToString()

' string myFolder = Dts.Variables("$Project::FolderPath").Value.ToString()

80

CHAPTER 4 ' SCRIPT TASK

' Get the file count from the my folder and store that number in the SSIS
' integer variable.
Dts.Variables("User::FileCount").Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length
' Close the script with result success.
Dts.TaskResult = ScriptResults.Success
End Sub
End Class

When you copy and paste a lot of code to other Script Tasks, it is also possible to check if a variable
exists in the collection of ReadOnlyVariables and ReadWriteVariables, and then log a meaningful error if it

isn’t available:

if (Dts.Variables.Contains("FileCount"))

{
// Get the file count from the my folder and store that number in the SSIS integer
variable. Dts.Variables["User::FileCount"].Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length;
}
else
{
// Handle error
}

And here is the VB.NET code:

If (Dts.Variables.Contains("FileCount")) Then
' Get the file count from the my folder and store that number in the SSIS ' integer variable.
Dts.Variables("User::FileCount").Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length
Else

Handle error
End If

And it is also possible to loop through the collection of variables that are added to the
ReadOnlyVariables and ReadWriteVariables properties. In this example, you use a message box, but in one
of the next paragraphs, you see a more elegant way to show the variables:

foreach (Variable myVar in Dts.Variables)

{

MessageBox. Show(myVar.Namespace +

}

+ myVar.Name);

And this is the VB.NET code:
For Each myVar As Variable In Dts.Variables

MessageBox. Show(myVar.Namespace & "::" & myVar.Name)
Next

81

CHAPTER 4 SCRIPT TASK

However, it is not possible to loop through all package variables and parameters because the Script
Task doesn’t support enumerating the list of all variables and parameters. You always have to hard-code
the names unless you hard-code a reference to your package, and then you can iterate through all package
variables and parameters. You should be aware that in this case it will create a second instance in the
memory of the package. If you want to try this code, change the file path of the package.

Microsoft.SqlServer.Dts.Runtime.Application app = new Microsoft.SqlServer.Dts.Runtime
.Application();
Package myPackage = app.LoadPackage(@"Y:\SSIS\Variables.dtsx", null);

// Loop through package variables and parameters
foreach (Variable myVar in myPackage.Variables)
{

// Filter System variables

if (!myVar.Namespace.Equals("System"))

{

MessageBox . Show(myVar.Name) ;

}

}

And this is the VB.NET code:

Dim app As Microsoft.SqlServer.Dts.Runtime.Application = _
New Microsoft.SqlServer.Dts.Runtime.Application()
Dim myPackage As Package = app.LoadPackage("Y:\SSIS\Variables.dtsx", Nothing)

Loop through package variables and parameters
For Each myVar As Variable In myPackage.Variables
' Filter System variables
If Not myVar.Namespace.Equals("System") Then
MessageBox. Show(myVar.Name)
End If
Next

If you want to get the value of a sensitive parameter, then you have to slightly change the code. Instead
of using .Value.toString(), you need to use .GetSensitiveValue().ToString(). But be aware that you're
now responsible for not accidently leaking sensitive values like passwords.

// Create string variable to store the parameter value
string mySecretPassword = Dts.Variables["$Package: :MySecretPassword"].GetSensitiveValue()
.ToString();

// Show the parameter value with a messagebox
MessageBox.Show("Your secret password is " + mySecretPassword);

And here is the VB.NET code:

Create string variable to store the parameter value
Dim mySecretPassword as string = _
Dts.Variables("$Package: :MySecretPassword").GetSensitiveValue().ToString()

Show the parameter value with a messagebox
MessageBox.Show("Your secret password is " + mySecretPassword)

82

CHAPTER 4 ' SCRIPT TASK

Method 2: Variable Dispenser

For the second method, you don’t use the ReadOnlyVariables and ReadWriteVariables properties in
the Script Task Editor. Instead you lock the variables in the script using the variable dispenser with the
LockForRead and LockForlWrite methods. A different method than earlier, but it has the same end result.
Add a new Script Task to your variables.dtsx package and connect it to the existing Script Task to
make sure that the two Script Tasks don’t execute at the same time; otherwise, they will both try to lock the
same variables.
Edit the Script Task and open the VSTA environment. Add an extra using/import for System.IO on top so
that you can do IO operations such as counting all the files in a folder.

using System.IO;
And this is the VB.NET code:
Imports System.IO

Now go to the Main method and add the following lines to lock the variables by code. The FolderPath
variable is locked for read and the FileCount variable is locked for write.

Dts.VariableDispenser.LockForRead("User::FolderPath");
Dts.VariableDispenser.LockForhWrite("User::FileCount");

And here is the VB.NET code:

Dts.VariableDispenser.LockForRead("User: :FolderPath"]
Dts.VariableDispenser.LockForWrite["User::FileCount"]

Then read the FolderPath variable and store its content in a local string variable.
Variables vars = null;
Dts.VariableDispenser.GetVariables(ref vars);
string myFolder = vars["User::FolderPath"].Value.ToString();
And here is the VB.NET code:
Dim vars As Variables = Nothing
Dts.VariableDispenser.GetVariables(vars)

Dim myFolder As String = vars("User::FolderPath").Value.ToString()

The next step is to count the number of files in the folder and store it in the SSIS integer variable
FileCount.

vars["User::FileCount"].Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length;

And this is the VB.NET code:

vars("User::FileCount").Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length

83

CHAPTER 4 SCRIPT TASK

Now the last part: releasing the lock on the variables.
vars.Unlock();

And here is the VB.NET code:
vars.Unlock()

The finale code should look something like this:

#iregion Namespaces

using System;

using System.Data;

using Microsoft.SqlServer.Dts.Runtime;
using System.Windows.Forms;

#endregion

#region customNamespaces
using System.IO;
#endregion

namespace ST_fb03c633e7fc4e20a58e8e1ffc40b68e
{
/// <summary>
/// This is an example on how to use variables and parameters in a Script
/// Task. It gets a folder from a variable or parameter. Counts the number
/// of files in it and fill the read write integer variable with the file
/// count.
/// </summary>
[Microsoft.SqlServer.Dts.Tasks.ScriptTask.SSISScriptTaskEntryPointAttribute]
public partial class ScriptMain : Microsoft.SqlServer.Dts.Tasks.ScriptTask
.VSTARTScriptObjectModelBase
{
/// <summary>
/// Get folder and count the number of files in it. Pass te file count to
/// the SSIS variable
/// </summary>
public void Main()
{
// Lock variables for read or for write
Dts.VariableDispenser.LockForRead("User::FolderPath");
Dts.VariableDispenser.LockForhWrite("User::FileCount");

// If you want to use a parameter instead of a variable then change the code to one of
these lines.

//Dts.VariableDispenser.LockForRead("$Package: :FolderPath");
//Dts.VariableDispenser.LockForRead("$Project::FolderPath");

// Create a variable 'container' to store variables
Variables vars = null;

84

CHAPTER 4 ' SCRIPT TASK

// Add variables from the VariableDispenser to the variables container
Dts.VariableDispenser.GetVariables(ref vars);

// First create a .NET string variable to store the path in. A little
// redundant in this example but you could add extra steps to for

// example validate the existance of the folder. Then choose which

// variable or parameter you want to use to get the path from. In

// this case I used the variable

string myFolder = vars["User::FolderPath"].Value.ToString();

// Same alternative for using a parameter instead of a variable. Only use one of these

three lines.

//string myFolder = vars["$Package::FolderPath"].Value.ToString();

//string myFolder = vars["$Project::FolderPath"].Value.ToString();

// Get the file count from the my folder and store that number in the

// SSIS integer variable.

vars["User::FileCount"].Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length;

// Release the locks
vars.Unlock();

// Close the script with result success.
Dts.TaskResult = (int)ScriptResults.Success;

And this is the VB.NET code:

#Region "Imports"

Imports System

Imports System.Data

Imports System.Math

Imports Microsoft.SqlServer.Dts.Runtime
#End Region

#region customNamespaces
Imports System.IO
#endregion
' This is an example on how to use variables and parameters in a Script
Task. It gets a folder from a variable or parameter. Counts the number
of files in it and fill the read write integer variable with the file
' count.
<Microsoft.SqlServer.Dts.Tasks.ScriptTask.SSISScriptTaskEntryPointAttribute()> _
<System.CLSCompliantAttribute(False)> _
Partial Public Class ScriptMain

Inherits Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase

85

CHAPTER 4 SCRIPT TASK

' Get folder and count the number of files in it. Pass te file count to
' the SSIS variable
Public Sub Main()
' Lock variables for read or for write
Dts.VariableDispenser.LockForRead("User::FolderPath")
Dts.VariableDispenser.LockForRead("$Package: :FolderPath")
Dts.VariableDispenser.LockForRead("$Project::FolderPath")
Dts.VariableDispenser.LockForWrite("User::FileCount")
' Create a variable 'container' to store variables
Dim vars As Variables = Nothing
' Add variables from the VariableDispenser to the variables container
Dts.VariableDispenser.GetVariables(vars)

First create a .NET string variable to store the path in. A little
redundant in this example but you could add extra steps to for example
validate the existance of the folder. Then choose which variable or
parameter you want to use to get the path from. In this case I used the
variable

Dim myFolder As String = vars("User::FolderPath").Value.ToString()

' Get the file count from the my folder and store that number in
the SSIS integer variable.

vars("User::FileCount").Value = Directory.GetFiles(myFolder, "*.*",

SearchOption.TopDiEectoryOnly).Length

' Release the locks

vars.Unlock()

' Close the script with result success.
Dts.TaskResult = ScriptResults.Success

End Sub

End Class

If you only need to lock one variable for read or for write, then you can use the LockOneForRead and
LockOneForWrite methods. You need a little less code, but the result is similar. Here you only show the
alternative code from the Main method. The extra using/import is the same as before.

public void Main()

{
// Create a variable 'container' to store variables
Variables vars = null;

// Lock variable for read and add it to the variables 'container’
Dts.VariableDispenser.LockOneForRead("User::FolderPath", ref vars);

// First create a .NET string variable to store the path in. A little

// redundant in this example but you could add extra steps to for example
// validate the existance of the folder. Then choose which variable or

86

CHAPTER 4 ' SCRIPT TASK

// parameter you want to use to get the path from. In this case I used
// the variable
string myFolder = vars["User::FolderPath"].Value.ToString();

// Release the lock
vars.Unlock();

// Lock variable for write and add it to the variables container
Dts.VariableDispenser.LockOneForWrite("User::FileCount", ref vars);

// Get the file count from the my folder and store that number in the

// SSIS integer variable.

vars["User::FileCount"].Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length;

// Release the lock
vars.Unlock();

// Close the script with result success.
Dts.TaskResult = (int)ScriptResults.Success;

And here is the VB.NET code:

Public Sub Main()
' Create a variable 'container' to store variables
Dim vars As Variables = Nothing

' Lock variable for read and add it to the variables 'container’
Dts.VariableDispenser.LockOneForRead("User: :FolderPath", vars)

' Dts.VariableDispenser.lockOneForRead("$Package: :FolderPath", vars)
' Dts.VariableDispenser.lLockOneForRead("$Project::FolderPath", vars)
First create a .NET string variable to store the path in. A little
redundant in this example but you could add extra steps to for example
validate the existence of the folder. Then choose which variable or
parameter you want to use to get the path from. In this case I used the
variable

Dim myFolder As String = vars("User::FolderPath").Value.ToString()

' Release the locks
vars.Unlock()

' Lock variable for write and add it to the variables 'container’
Dts.VariableDispenser.LockOneForWrite("User::FileCount", vars)

' Get the file count from the my folder and store that number in the
SSIS integer variable.

vars("User::FileCount").Value = Directory.GetFiles(myFolder, "*.*",
SearchOption.TopDirectoryOnly).Length

87

CHAPTER 4 SCRIPT TASK

' Release the locks
vars.Unlock()

' Close the script with result success.
Dts.TaskResult = ScriptResults.Success
End Sub

Advantages and Disadvantages of Both Methods

With the variable dispenser method, you have a little more control when you lock and unlock your variables.
The big downside is that you cannot quickly see which variables you are using. You have to check the entire
code. Another disadvantage is that you need more code to accomplish the same thing. Therefore, the first
method should be your preferred method. And you can also unlock the variables manually when you use the
first method:

if (Dts.Variables.Count > 0)
{
Dts.Variables.Unlock();

}

And here is the VB.NET code:

If (Dts.Variables.Count > 0) Then
Dts.Variables.Unlock()
End If

Parent Package Variables

A parent package is a package that executes another package (a child) via the Execute Package Task. In the
child package, you can read and write variables from a parent package with a Script Task, but the variables
are only available in run-time mode and not in design-time mode. This means you cannot use the selection
window, but you can type it manually. You can use both methods to read/write parent package variables in a
Script Task.

There is one downside: without proper error handling, you won’t be able to run the child package
without the parent package, because it expects a variable that is not available. An alternative for reading
parent package variables is to use parent package configurations, but that is only for reading and not for
writing.

Referencing Assemblies

Sometimes you reuse a piece of code in multiple Script Tasks. If for some reason you have to change that
piece of code, then you have to edit all the Scripts Tasks that use that code. To avoid this, you could create an
assembly and reference it in your Script Tasks. An assembly is a piece of precompiled code that can be used
by .NET applications. You can create an assembly to store your often-used methods. If you have to change
one of those methods, then you only have to change the assembly (and not all of those Script Tasks).

Third-party companies (including Microsoft) can create assemblies for you as well; for example, an
assembly to unzip files or to download files via SFTP. So, you don’t have to reinvent the wheel. In some of the
following chapters, you will learn how to use these third-party assemblies. In this chapter, you will learn how
to create a simple assembly and use it in a Script Task.

88

CHAPTER 4 " SCRIPT TASK

Creating an Assembly

If you want to create your own assembly, then you need the “full” version of Visual Studio, or at least a
version that supports a C# or VB.NET project. (So not just BIDS or SSDT BL.) In this example, you will create
an assembly with a method to validate the format of an email address. Start Visual Studio and create a new
Class Library project called myMethodsForSSIS. This template can be found under Visual Basic and Visual
C# (see Figure 4-8). Make sure that you choose the right .NET Framework version (see Table 4-1); otherwise,
you cannot reference it. Referencing a lower .NET version is possible with some extra steps, but you can’t
reference an assembly with a higher .NET version.

Recent Templates « Sortby: Name Ascending v () x
Installed Templates
. ’ : Visual C#
; : dE Class Library Visual C# frpe el O
4 Business Intelligence A project for creating a C# class library
Analysis Services dil)
e] s : ‘E Class Library Visual Basic ‘
Integration Services
Reporting Services
I Visual Basic
Visual C#
SQL Server
I Other Project Types
Database
I Test Projects
Search Results
Online Templates
MName: myMethodsForSSIS
Location: di\visual studio 2010\projects v Browse...
Solution: Create new solution -
Solution name: myMethodsForSSIS Create directory for solution
[| Add to soyrce control

Figure 4-8. New Class Library project

Table 4-1. Choose the Correct .NET Framework Version

SSIS Version Supported Framework
2005 2.0

2008 (R2) 2.0=>3.5

2012 2.0 =>4.0

2014 2.0=>45.1

89

CHAPTER 4 SCRIPT TASK

When you create the new project, the Class1.cs or Class1.vb file is pretty empty. Start with adding the
usings or imports at the top of the Classl file. The C# file already has some usings, but the VB.NET file has
none. They are in the project properties, but to keep the examples the same, you are adding them to the file
as well.

using System;

using System.Collections.Generic;

using System.ling;

using System.Text;

using System.Text.RegularExpressions; // Added

And this is the VB.NET code:

Imports System

Imports System.Collections.Generic

Imports System.Linq

Imports System.Text

Imports System.Text.RegularExpressions ' Added

The next step is the namespace and class declaration. You used a static class with static methods so
that you can simply call the methods in your Script Task. The VB.NET equivalent for a static class is a module
with functions. For more information about the static class, go to http://msdn.microsoft.com/en-us/
library/79b3xss3.aspx. For more information about the module, go to http://msdn.microsoft.com/
en-us/library/aaxss7da.aspx. The classname/modulename is EmailMethods and the namespace is
myMethodsForSSIS.

namespace myMethodsForSSIS

{
// A static class with email methods
public static class EmailMethods
{
}
}

And here is the VB.NET code:

Namespace myMethodsForSSIS
' A module with email methods
Public Module EmailMethods

End Module
End Namespace

And the last step for the code is to add a public static method that validates the email address format
to the C# class, or a public function to the VB.NET module. It is called IsCorrectEmail and it takes an
email address as input and returns either true or false, indicating whether the format is correct. You can
copy the method from the sources added to this book. When you are finished, the complete code should
look like this.

90

http://msdn.microsoft.com/en-us/library/79b3xss3.aspx
http://msdn.microsoft.com/en-us/library/79b3xss3.aspx
http://msdn.microsoft.com/en-us/library/aaxss7da.aspx
http://msdn.microsoft.com/en-us/library/aaxss7da.aspx

CHAPTER 4

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.Text.RegularExpressions; // Added

namespace myMethodsForSSIS

// A static class with email methods
public static class EmailMethods
{
// A boolean method that validates an email address
// with a regex pattern.
public static bool IsCorrectEmail(String emailAddress)
{
// The pattern for email
string emailAddressPattern = @"~(([*<>()[\]\\.,;:\s@\""]+"
+ @"(\.[*OOININ 5 s\ " TH)*F) [(\"".+\""))e"
+ @"((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}"
+ @"\.[0-9]{1,31\]) | (([a-zA-Z\-0-9]+\.)+"
+ 0"[a-zA-Z]{2,}))$";
// Create a regex object with the pattern
Regex emailAddressRegex = new Regex(emailAddressPattern);
// Check if it is match and return that value (boolean)
return emailAddressRegex.IsMatch(emailAddress);

And this is the VB.NET code:

Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.Text.RegularExpressions ' Added
Namespace myMethodsForSSIS
" A module with email methods
Public Module EmailMethods
' A boolean method that validates an email address
with a regex pattern.
Public Function IsCorrectEmail(emailAddress As [String]) As Boolean
' The pattern for email
Dim emailAddressPattern As String = "~(([*<>()[\I\\.,;:\s@\""]+" &
"GRG OV SO TH)F) (V"))e" &
"((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}" &
"\.[0-91{1,31\]) | (([a-zA-Z\-0-9]+\.)+" &
"[a-zA-2]{2,}))$"

SCRIPT TASK

91

CHAPTER 4 SCRIPT TASK

' Create a regex object with the pattern
Dim emailAddressRegex As New Regex(emailAddressPattern)
' Check if it is match and return that value (boolean)
Return emailAddressRegex.IsMatch(emailAddress)
End Function
End Module
End Namespace

Strong Name

Before you can use the new assembly in an SSIS Script Task, you first have to strong name it. Go to the
properties of the project and then to the Signing page. Check the “Sign the assembly” check box and then
add a new key file in the drop-down list. The name for this example is PublicPrivateKeyFile.snk with
sha256RSA as signature algorithm, and no password (see Figure 4-9). After clicking the OK button, the new
key file will be visible in the Solution Explorer.

Application
Build
Build Events
Debug
Resources

i Create Strong Name Key ? n
Services
Settings Key file pame:
Reference Paths . PublicPrivateKeyFile.sni
Signing™

Code Analysis

[] Protect my key file with a password

Enter password:

Confirm password:
[¥] Sign the assembly

Choose a strong name key file:
Signature Algorithm:
<New...>

: sha256RSA v
[_] Delay sign only

When delay signed, the project will ny OK | Cancel

Figure 4-9. Add key file (C# project, but VB.NET looks similar)

Now close the project properties and build the project as a Release instead of the default Debug mode.
You can change this in the Visual Studio toolbar. When you build the project, the assembly is signed with this
new keyfile.

Note Adding a strong name is not a security measure. It only provides a unique identity.

92

CHAPTER 4 " SCRIPT TASK

Global Assembly Cache

The last step for preparing the assembly is to add it to the Global Assembly Cache (GAC) on the SSIS
machine. SSIS can only use assemblies that are available via the GAC. Open the Visual Studio (2008/2010/
etc.) command prompt, but run it as administrator; otherwise, you can’t add assemblies to the GAC. Go
to the Bin\Release folder of your project, where you will find the .d11 file of your newly created assembly.
Execute the following command to add it to the GAC (see Figure 4-10):

gacutil /i myMethodsForSSIS.dll

] Administrator: Developer Command Prompt for V52012 = = “

E:\Hindows\system32)1:

L:N\>cd "Chapter 4 Assembly C\bin\Release"

L:~\Chapter 4 Assembly Cs\hin\Release >gacutil /i myMethodsForSSIS.dl1l
icrosoft (R> .NET Glohal Assembly Cache Utility. VUersion 4.0.30319.186020

opyright <(c> Microsoft Corporation. All rights reserved.

ssembly successfully added to the cache

L:\Chapter 4 Assembly C\bin\Release>

Figure 4-10. .NET Global Assembly Cache Utility

If you don’t have gacutil on your server, which is often the case if don’t have Visual Studio installed on a
server, then you can use PowerShell to deploy your assembly (an example script is available with the source
code for this book), or you can create a Setup and Deployment project in Visual Studio to create an installer
for your assembly. Depending on the Visual Studio version installer, projects are located in Other Project
Types » Setup » Deployment Projects. For Visual Studio 2013 and above, you need to download this project
template: https://visualstudiogallery.msdn.microsoft.com/9abe329c-9bba-44a1-be59-0fbf6151054d.

Build Events

If you don’t want to use the command prompt to add the assembly to the GAC each time you change it, then
you could also add a post-build event to your Visual Studio project. Go to the properties of your assembly
project by right-clicking it in the Solution Explorer. For C#, you can go to the Build Events tab and locate the
post-build event command line (see Figure 4-11). For VB.NET, you need to go to the Compile tab and hit
the Build events button in the lower-right corner, and then locate the same post-build event command line
(see Figure 4-12).

93

https://visualstudiogallery.msdn.microsoft.com/9abe329c-9bba-44a1-be59-0fbf6151054d

CHAPTER 4 " SCRIPT TASK

e R
Application
MN/A atform /A
Build
Build Events Pre-build event command line:
Debug
Resources
Services
Edit Pre-build ...
Settings
Post-build event command line:
Reference Paths T : :
kd $(ProjectDir) ~
Signing @SET GACUTIL="C}\Program Files (x86)\Microsoft SDKs\V o
< >
Edit Post-build ...
Run the post-build event:
On successful build o

Figure 4-11. Post-build event with C#

Chapter 4 Assembly VB
Application
Configuration: | Active (Release) ~| Platform: | Active (Any CPU) +
Compile
Debug Build output path:
References bin\Release\, Browse...
Resources Compile Options:
P Option explicit: Option strict:
—~ e B :
Signing Option compare:
e-build event command line:
My Extensions Binary T - s M
Waming configurations:
Condition
w -
Edit Pre-build ..
Late binding; call could fail at run time ot
== : = Pgst-build event command line:
mplicit type; object assume: . v
PHOR ype, o% cd S{ProjectDir) ~
Use of variable prior to assignment @SET GACUTIL="C:\Program Files (x86)\Microsoft SDKs\V 5 M
Function retuming reference type withoutll 5 v
Function returning intrinsic value type witl = = bt
= Edit Post-byild .
Unused local variable o
Ri -build event:
Instance variable accesses shared membe; oithe past:buRd L ¥
On successful build ~
Recursive operator or property access e
Duplicate or overlapping catch blocks oK | Cancel ot
["] Disable all warnings
[] Treat all warnings as errors
[v] Generate XML documentation file
[Register for COM interop
Advanced Compile Options...

Figure 4-12. Post-build event with VB.NET

94

CHAPTER 4 " SCRIPT TASK

Now copy the following command, but change the path of the gacutil. The path depends on the .NET
Framework version and even the Windows version. This example is for .NET 3.5 on Windows 7.

cd $(ProjectDir)

@SET GACUTIL="C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\gacutil.exe"
Echo Installing d11l in GAC

Echo $(OutDir)

Echo $(TargetFileName)

%GACUTIL% -if "$(OutDir)$(TargetFileName)"

Here are some alternative paths:

C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin\NETFX 4.0 Tools\gacutil.exe
(4.0 on Win7)

C:\Program Files (x86)\Microsoft SDKs\Windows\v8.1A\bin\NETFX 4.5.1 Tools\gacutil.exe
(4.5.1 on Win8.1)

Now you can add the assembly to the GAC by building the assembly project, but you need to run
Visual Studio as an administrator, otherwise it won’t work. To use the assembly in a Script Task you also
need to think of a location for the actual dll file. For SSIS 2005, it is mandatory to put the .d11 file in the
Assemblies folder of SQL Server: C: \Program Files\Microsoft SQL Server\90\SDK\Assemblies\.For
newer versions, you can put it anywhere. You can do that manually, but you could also add some extra lines
to the post-build event:

@SET DLLDIR="C:\Program Files (x86)\Microsoft SQL Server\100\DTS\Assemblies\"
Echo Copying files to Assemblies
copy "$(OutDir)$(TargetFileName)" %DLLDIR%

Add a Reference in the Script Task

Now you can add a reference in the Script Task to the newly created assembly. For C#, right-click References
in the Solution Explorer and choose Add Reference (see Figure 4-13). For VB.NET, right-click the project in
the Solution Explorer and choose Add Reference (see Figure 4-14). Now browse to your . d11 file and click
OK to add it. The location of the browse button varies per version of Visual Studio. After adding the new
reference, you need to click Save All to save the internal project and its new references. In newer versions of
Visual Studio (2014), this mandatory Save All step isn’t necessary anymore.

95

CHAPTER 4 " SCRIPT TASK

iadl|e & AT ¢ u|GE B e s 8o HEIGSER

=| "9 Main0

NET |COM |Projects Browse Recent
131 Lookjn | Release v| @ ¥ i* @
Name) Date modified
- as | o) myMethodsForSSISwithC.dil 6-10-2014 20:37
1. 881
it 54
< >
wmat
tariall] Fiepame miyNtethodsF orSSiSwehC di v
Suc Fies oftype Component Files (".diL" fb.°.olb." oo " exe” mandest) v
oK Cancel
E o
..Failure;

B

Add Service Reference.

Solution Explorer -3 x

Rl
(7 ST_de80828d263d40878373¢2601bcb3031
4 Properties

Data
Math

wt.SqlServer.Dts. Runtime
sdsForsSIS.myMethodsForSSIS * Added

NET | COM | Projects| Browse Recent

Lookjn) Rslesse v 0@ @

Name . Date modified

& myMethodsForSSISwithVB.all 6-10-2014 2048

< >

Fila pame: [-

Fioscliype Component Fies (" 0L" 85" o oox” exe " mardest) v
oK Cancel

2

(ER0]

G B

[T =1

Add Service Reference...

Paste

Open Folder in Windows Explorer

CuteV

M My Project
A ScriptMainyt

Figure 4-14. Add reference in VB.NET Script Task

96

LR I o Explorer BE Closs View |

CHAPTER 4 ' SCRIPT TASK

Note Adding a reference to a third-party assembly works the same as adding a reference to your
own assembly.

The following is some example code for using the assembly in a Script Task. To test this code, you first
need to create an SSIS string variable named emailaddress and fill it with a valid email address. Then add a
new Script Task and select the string variable as a ReadOnlyVariable in the Script Task Editor.

Now go to the VSTA environment and add the assembly myMethodsForSSIS as a reference. To create
more compact code, you can add an extra using/import. Note that the import of the VB assembly in the
VB.NET code is slightly different.

#region customNamespaces
using myMethodsForSSIS;
#endregion

And here is the VB.NET code:

#iregion customNamespaces
Imports myMethodsForSSIS.myMethodsForSSIS
#End Region

Now comes the actual code in the Main method. The script uses a variable as the parameter for the
email method that checks the format with a regular expression. If the format is correct, then it succeeds the
Script Task. If it’s not correct, it fails the Script Task, but it also fires an error event explaining why the Script
Task failed. Firing events for logging purposes is explained in detail in the last part of this chapter.

public void Main()
{
// Get email address from variable
string email = Dts.Variables["User::emailaddress"].Value.ToString();

// Let the script task fail if the format of the email is incorrect

if (EmailMethods.IsCorrectEmail(email))

{
Dts.TaskResult = (int)ScriptResults.Success;

}

else

{
// Show why the Script Task is failing by firing an error event
Dts.Events.FireError(0, "Email check", "Incorrect format:" + email, string.Empty, 0);
Dts.TaskResult = (int)ScriptResults.Failure;

}

}

97

CHAPTER 4 SCRIPT TASK

And this is the VB.NET code:

Public Sub Main()
' Get email address from variable
Dim email As String = Dts.Variables("User::emailaddress").Value.ToString()
" Let the script task fail if the format of the email address is incorrect
If (IsCorrectEmail(email)) Then
Dts.TaskResult = ScriptResults.Success
Else
Dts.Events.FireError(0, "Email check", "Incorrect format:" + email, String.Empty, 0)
Dts.TaskResult = ScriptResults.Failure
End If
End Sub

Connection Managers

Integration Services uses connection managers to provide access to various data sources, such as flat files
and databases, but also to web servers or FTP servers, or a message queue. You can use these connection
managers in a Script Task to avoid hard-coded paths and connection strings. When used in the correct
way, you can even let them participate in MSDTC transactions, but only for connection managers that
support it.

File Connection Managers

Let’s first cover the connection managers for files and folders such as File, Flat File, and Excel. There are two
different methods for using connection managers in a Script Task. The first one is just getting properties
from the connection manager, such as the ConnectionString property from a flat file connection manager or
the ExcelFilePath property of an Excel connection manager.

In the first code example, you need a File or Flat File Connection Manager to an existing text file. The
content doesn’t matter as long as the connection manager is called myFlatFile and the file contains some
data. The script gets the file path and checks whether it contains data by checking the file size. It uses
FileInfo from the System.IO namespace, which you will add as using/import.

#iregion customNamespaces
using System.IO;
#endregion

And this is the VB.NET code:
#region customNamespaces

Imports System.IO
#End Region

98

CHAPTER 4 ' SCRIPT TASK

Now the actual code from the Main method:

public void Main()

{

}

// Declare string variable and fill it with the connection string of the Flat File.
string filePath = Dts.Connections["myFlatFile"].ConnectionString;

// Declare file info object and fill it with the filepath from the string variable.
// Then fill a bigint variable with the actual filesize for the next if-statement
FileInfo fi = new FileInfo(filePath);

Int64 length = fi.length;

// Let the script fail when the filesize is 0 bytes
if (length.Equals(0))
{

Dts.TaskResult = (int)ScriptResults.Failure;

}

else

{
Dts.TaskResult = (int)ScriptResults.Success;

}

And here is the VB.NET code:

Public Sub Main()

Declare string variable and fill it with the connection string of the Flat File.
Dim filePath As String = Dts.Connections("myFlatFile").ConnectionString

" Declare file info object and fill it with the filepath from the string variable.
" Then fill a bigint variable with the actual filesize for the next if-statement
Dim fi As FileInfo = New FileInfo(filePath)
Dim length As Int64 = fi.Length
' Let the script fail when the filesize is 0 bytes
If (length.Equals(0)) Then

Dts.TaskResult = ScriptResults.Failure
Else

Dts.TaskResult = ScriptResults.Success
End If

End Sub

When you are using an Excel file, you cannot use the whole ConnectionString property because it

contains more than just the file path. The next example extracts the file path from a connection string of an
Excel connection manager named myExcel by using a substring method. It is stored in a string variable that

you can use in your actual code.

99

CHAPTER 4 SCRIPT TASK

// Declare string variable and fill it with the connection string of the Excel File.
string filePath = Dts.Connections["myExcel"].ConnectionString;

// For Excel connection you only need a part of the connectionstring:

// ===============================s===ss==ss==ss==ssmmssmmssmsssmsssmsmssms
// Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\MyExcelFile.xls;

// Extended Properties="Excel 8.0;HDR=YES";

// Provider=Microsoft.ACE.OLEDB.12.0;Data Source=D:\MyExcelFile.x1sx;

// Extended Properties="Excel 12.0 XML;HDR=YES";

// ======================s===s=m=smmmssmmsmmmsmmmsmmmsmmmssmmsmmmommmssms
// You only want the part after 'Source=' until the next semicolon (;)
filePath = filePath.Substring(filePath.IndexOf("Source=") + 6);

filePath = filePath.Substring(1, filePath.IndexOf(";") - 1);

And here is the VB.NET code:
' Declare string variable and fill it with the connection string of the Excel File.
Dim filePath As String = Dts.Connections("myExcel").ConnectionString

For Excel connection you only need a part of the connectionstring:

" Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\MyExcelFile.xls;

' Extended Properties="Excel 8.0;HDR=YES";

' Provider=Microsoft.ACE.OLEDB.12.0;Data Source=D:\MyExcelFile.x1sx;
' Extended Properties="Excel 12.0 XML;HDR=YES";

You only want the part after 'Source=' until the next semicolon (;)
filePath = filePath.Substring(filePath.IndexOf("Source=") + 6)
filePath = filePath.Substring(1, filePath.IndexOf(";") - 1)

Another trick is to first create a connection manager variable and fill it a reference to the Excel connection
manager. Then you can read the ExcelFilePath property to get the file path instead of the complete connection
string. It then stores the file path in a string variable that you can use in your actual code.

// Get the Excel connection manager to read its properties
ConnectionManager myExcelConn = Dts.Connections["myExcel"];

// Declare string variable and fill it with the ExcelFilePath property of the Excel
connection manager.
string filePath = myExcelConn.Properties["ExcelFilePath"].GetValue(myExcelConn).ToString();

And this is the VB.NET code:
' Get the Excel connection manager to read its properties
Dim myExcelConn As ConnectionManager = Dts.Connections("myExcel)

' Declare string variable and fill it with the ExcelFilePath property of the Excel
connection manager.

Dim filePath As String = myExcelConn.Properties("ExcelFilePath").GetValue(myExcelConn)
.ToString()

100

CHAPTER 4 ' SCRIPT TASK

The big downside with this first method is that it doesn’t validate expressions on the connection
manager. If you are using it within a Foreach Loop Container, it could cause some unexpected results. By
using the AcquireConnection method, you can overcome this because it forces SSIS to re-evaluate any
expressions on the connection manager. Here are two examples that fill the same string variable with the file
path of the flat file:

// Declare string variable and fill it with the connection string of the Flat File.
string filePath = Dts.Connections["myFlatFile"].AcquireConnection(Dts.Transaction)
.ToString();

// Or a little more complicated version that applies to more to all connection manager types

// Declare object variable to reference a connection manager
object rawConnection = Dts.Connections["myFlatFile"].AcquireConnection(Dts.Transaction);

// Declare string variable and fill it with the connection string of the Flat File.
string filePath = rawConnection.ToString();

And here is the VB.NET code:

// And optional release the connection manager manually to let SSIS know you’re done
Dts.Connections["myFlatFile"].ReleaseConnection(rawConnection);

' Declare string variable and fill it with the connection string of the Flat File.

Dim filePath As String = Dts.Connections("myFlatFile").AcquireConnection(Dts.Transaction)
.ToString()

Or a little more complicated version that applies to more to all connection manager types
' Declare object variable to store a Connection Manager

Dim rawConnection As Object = Dts.Connections("myFlatFile").AcquireConnection(Dts.Transaction)
' Declare string variable and fill it with the connection string of the Flat File.
Dim filePath As String = rawConnection.ToString()

' And optional release the connection manager manually to let SSIS know you're done
Dts.Connections("myFlatFile").ReleaseConnection(rawConnection)

Note If you don't want to use MSDTC transactions, then you can replace the AcquireConnection parameter
Dts.Transaction with null.

The same can be done for OLE DB and ADO.NET Connection Managers, but beware of using database
connection managers in a Script Task. Don’t use them unnecessarily if you can also use an Execute SQL
Task, such as for executing a query or stored procedure. The preferred connection manager for connecting
databases in a Script Task is the ADO.NET Connection Manager. OLE DB is also possible, but it is a lot more
difficult and it has some limitations, like not being able to pass current transactions, and it doesn’t honor the
Retain Same Connection property. This is because the Script Task has managed code that interacts better
with other managed code, and the OLE DB provider is made with unmanaged code. The following code is
avery simplified example of using a database connection manager in a Script Task. It could have been

101

CHAPTER 4 SCRIPT TASK

accomplished more easily with an Execute SQL Task, but more sophisticated examples will follow
later in this book. For this example, you have added an SSIS string variable named sqlServerVersion
in the ReadWriteVariables property. It will be filled with the SQL Server version information by the
Script Task. Also make sure that you have an ADO.NET Connection Manager in your package named
myADONETConnection.

This example uses the SqlClient assembly, which you will add as using/import to shorten the code.

#region customNamespaces
using System.Data.SqlClient;
#endregion

And here is the VB.NET code:

#region customNamespaces
Imports System.Data.SqlClient
#End Region

And now the actual code in the Main method.

public void Main()
{
// Declare a SqlClient connection and assign your ADO.NET Connection Manager to this
connection.
SqlConnection myADONETConnection = (SqlConnection)
Dts.Connections["myADONETConnection"].AcquireConnection(Dts.Transaction);

// Create string variable with query
string myQueryText = "SELECT @@version as SqlVersion";

// Create a SqlClient command to store a query in it. In this case a simple query to get
the SQL version
SqlCommand myQuery = new SqlCommand(myQueryText, myADONETConnection);

// Execute the query and store the result in a SqlClient datareader object
SqlDataReader myQueryResult = myQuery.ExecuteReader();

// Go to the first record of the datareader
myQueryResult.Read();

// Store the value of the 'SqlVersion' column in an SSIS string variable
Dts.Variables["User::sqlServerVersion"].Value = myQueryResult["SqlVersion"].ToString();

// Close Script Task with success
Dts.TaskResult = (int)ScriptResults.Success;

102

CHAPTER 4 " SCRIPT TASK

And this is the VB.NET code:

Public Sub Main()
' Declare a SqlClient connection and assign your ADO.NET Connection Manager to this connection
Dim myADONETConnection As SqlConnection = DirectCast(Dts.Connections("myADONETConnection™)
.AcquireConnection(Dts.Transaction), SqlConnection)

' Create string variable with query
Dim myQueryText As String = "SELECT @@version as SqlVersion"

' Create a SqlClient command to store a query in it. In this case a simple query to get

the SQL version
Dim myQuery As SqlCommand = New SqlCommand(myQueryText, myADONETConnection)

' Execute the query and store the result in a SqlClient datareader object
Dim myQueryResult As SqlDataReader = myQuery.ExecuteReader()

' Go to the first record of the datareader
myQueryResult.Read()

' Store value of the SqlVerion column in an SSIS string variable
Dts.Variables("User::sqlServerVersion").Value = myQueryResult("SqlVersion").ToString()

' Close Script Task with success
Dts.TaskResult = ScriptResults.Success
End Sub

As I said earlier, getting the OLE DB version to work is a lot more difficult. The AcquireConnection method
cannot be used for OLE DB connection managers because it returns a native COM object. In this example, you
need an OLE DB Connection Manager named myOLEDBConnection, and the same sqlServerVersion string
variable as in the previous example in the ReadWriteVariable property. The work-around is casting the OLE
DB connection manager’s InnerObject to the IDTSConnectionManagerDatabaseParameters100 interface
(SSIS 2005 uses 90 instead of 100). To do that, you first have to add a reference to Microsoft.SqlServer
.DTSRuntimeWrap.dll in the VSTA project. That assembly can be found in the GAC 64-bit folder. The folder
path should look something like this: C: \Windows\Microsoft.NET\assembly\GAC_64\Microsoft.SqlServer
.DTSRuntimeWrap\v4.0 11.0.0.0_89845dcd8080cc91\.

For C#, go to the Solution Explorer of the VSTA project and right-click References. Choose Add
Reference to open the Add Reference window (see Figure 4-15). You can search for it in newer versions of
Visual Studio or browse to it. In the Browse tab, you can browse to the correct folder. Select the assembly and
click OK to add the new reference. After adding the reference, it is necessary to click the Save All button if
you are using Visual Studio 2010 or lower!

103

CHAPTER 4 " SCRIPT TASK

Solution Explorer

| % Mainp

= ia|

NI

? KN

Add Reference
T [coM |Projects Browse |Recent

Lookin |). w40_11.000_89845d:dB060¢c91 v @ F ir @~

Date modified

< 43
File name: v

Files of fype: ;CompomFnhs(.a.‘n.'.olb.'.m'._.n:fmm hd

Ok Cancel

(ST 083f3778bceT4adc9d63123e67 1dcafc
+ B8 Properties
+ | References|

= Add Reference...

: Add Service Reference...

-3 Microsoft.SqlServerScriptTask.
-3 System
-3 System.Data
-3 System.Windows.Forms
-3 System.Xml
[SeriptTask
) ScriptMain.cs

Figure 4-15. Add reference to DTSRuntimeWrap.dll in C# project

For VB.NET, go to the Solution Explorer of the VSTA project and right-click the project. Choose Add
Reference to open the Add Reference window (see Figure 4-16). In the Browse tab, you can browse to the
correct folder. Select the assembly and click OK to add the new reference. After adding the reference, it is

necessary to click the Save All button!

VstaProjects - Microsoft Visual Studio

]

Add Reference

[NeT [com | Projects Browse |Recent

Loak e

L. v40_11.000_55545dcdB0Bleed! v @

Name

<

Fila pame.

Filas of yyper

| Componant Files (" dil :" olb:* 0o axe* maniast)

2 - |

M«
Date modified
25-9-2014 14:48

Refresh

Build

Rebuild

Clean

Add

Add Reference...

Add Service Reference..
& Paste

Rename

Gi [

5 Open Folder in Windows Explorer
[Properties

Ciri+V

Figure 4-16. Add reference to DTSRuntimeWrap.dll in VB project

104

CHAPTER 4 ' SCRIPT TASK

Add two extra usings/imports for shorter code: one for the OLE DB and one for the newly added reference.

#region customNamespaces

using System.Data.SqlClientOleDb;

using Microsoft.SqlServer.Dts.Runtime.Wrapper;
#endregion

And here is the VB.NET code:

#iregion customNamespaces

Imports System.Data.SqlClient

using Microsoft.SqlServer.Dts.Runtime.Wrapper
#End Region

Next is the actual code for the Main method. The major code difference is mainly in the beginning of the
code. The rest looks very similar to the ADO.net example.

public void Main()
{
// Store the connection in a Connection Manager object
ConnectionManager myConnectionManager = Dts.Connections["myOLEDBConnection"];

// Cast the Connection Managers's InnerObject to the

// IDTSConnectionManagerDatabaseParameters100

// interface (SSIS 2005 uses 90 instead of 100).
IDTSConnectionManagerDatabaseParameters100 cmParams;

cmParams = myConnectionManager.InnerObject as IDTSConnectionManagerDatabaseParameters100;

// Get the connection from the IDTSConnectionManagerDatabaseParameters100 object
0leDbConnection myConnection = cmParams.GetConnectionForSchema() as 0leDbConnection;

// Create string variable with query
string myQueryText = "SELECT @@version as SqlVersion";

// Create a new OleDbCommand object to store a query in it.
0OleDbCommand myQuery = new OleDbCommand(myQueryText, myConnection);

// Execute the query and store the result in an OleDb DataReader object
OleDbDataReader myQueryResult = myQuery.ExecuteReader();

// Go to the first record of the datareader
myQueryResult.Read();

// Store the value of the SqlVersion column in an SSIS
// string variable

Dts.Variables["User::sqlServerVersion"].Value = myQueryResult["SqlVersion"].ToString();

// Close Script Task with success
Dts.TaskResult = (int)ScriptResults.Success;

105

CHAPTER 4 SCRIPT TASK

And here is the VB.NET code:

Public Sub Main()
' Store the connection in a Connection Manager object
Dim myConnectionManager As ConnectionManager = Dts.Connections("myOLEDBConnection")

' Cast the Connection Managers's InnerObject to the IDTSConnectionManagerDatabaseParameters100
" interface (SSIS 2005 uses 90 instead of 100).

Dim cmParams As IDTSConnectionManagerDatabaseParameters100

cmParams = TryCast(myConnectionManager.InnerObject, IDTSConnectionManagerDatabaseParameters100)
' Get the connection from the IDTSConnectionManagerDatabaseParameters100 object
Dim myConnection As 0leDbConnection = DirectCast(cmParams.GetConnectionForSchema(),
0leDbConnection)

Create a new OleDbCommand object to store a query in it.

Dim myQuery As OleDbCommand = New OleDbCommand("SELECT @@version as SqlVersion",
myConnection)

' Execute the query and store the result in an OleDb DataReader object
Dim myQueryResult As OleDbDataReader = myQuery.ExecuteReader()

Go to the first record of the datareader
myQueryResult.Read()

Store the value of the SqlVersion column in an SSIS string variable
Dts.Variables("User::sqlServerVersion").Value = myQueryResult("SqlVersion").ToString()

' Close Script Task with success
Dts.TaskResult = ScriptResults.Success
End Sub

Note If you don’t want to use this complicated method, you could always just use the ConnectionString
property of the OLE DB connection manager and create a new connection.

Logging Events

When you want to log messages from a Script Task into the SSIS log, you have to raise events with code.
Whether they will show up in the log depends on the chosen log level (project deployment) or on the
chosen logging configuration (package deployment). The Script Task can raise events by calling event firing
methods on the Events property of the Dts object. In this example, you will check whether a file from a File
Connection Manager exists and contains data.

Create a File or Flat File Connection Manager named myFile that points to a random text file. The
content doesn’t matter. Because you will try to get some file properties, you need the System.IO assembly.
You will add this to the usings/imports.

#iregion customNamespaces
using System.IO;
#endregion

106

CHAPTER 4 ' SCRIPT TASK

And this is the VB.NET code:
#region customNamespaces
Imports System.IO
#End Region

Next is the actual code for the Main method. First get the file path from the connection manager and
then check if the file exists and contains data.

public void Main()

{
// Get filepath from File Connection Manager and store it in a string variable
string filePath = Dts.Connections["myFile"].AcquireConnection(Dts.Transaction).ToString();
// Create File Info object with filepath variable
FileInfo fi = new FileInfo(filePath);
// Check if file exists
if (fi.Exists)
{
// File exists, but check size
if (fi.Length > 0)
// Boolean variable indicating if the same event can fire
// multiple times
bool fireAgain = true;
// File exists and contains data. Fire Information event
Dts.Events.FireInformation(0, "Script Task File Check", "File exists and contains data.”,
string.Empty, 0, ref fireAgain);
}
else
{
// File exists, but contains no data. Fire Warning event
Dts.Events.FireWarning(0, "Script Task File Check", "File exists, but contains no
data.", string.Empty, 0);
}
// Succeed Script Task
Dts.TaskResult = (int)ScriptResults.Success;
}
else
{
// File doesn't exists. Fire Error event and fail Script Task
Dts.Events.FireError(0, "Script Task File Check", "File doesn't exists.", string.Empty, 0);
// Fail Script Task
Dts.TaskResult = (int)ScriptResults.Failure;
}
}

107

CHAPTER 4 SCRIPT TASK

And here is the VB.NET code:

Public Sub Main()
' Get filepath from File Connection Manager and store it in a string variable
Dim filePath As String = Dts.Connections("myFile").AcquireConnection(Dts.Transaction)

.ToString()

' Create File Info object with filepath variable
Dim fi As FileInfo = New FileInfo(filePath)

' Check if file exists
If (fi.Exists) Then
' File exists, but check size
If (fi.Length > 0) Then
' Boolean variable indicating if the same event can fire multiple times
Dim fireAgain As Boolean = True

' File exists and contains data. Fire Information event
Dts.Events.FireInformation(0, "Script Task File Check", "File exists and
contains data.", _
String.Empty, 0, fireAgain)
Else
' File exists, but contains no data. Fire Waring event
Dts.Events.FireWarning(0, "Script Task File Check", "File exists, but contains no
data.", _
String.Empty, 0)
End If
" Succeed Script Task
Dts.TaskResult = ScriptResults.Success

Else
' File doesn't exists. Fire Error event and fail Script Task
Dts.Events.FireError(0, "Script Task File Check", "File doesn't exists.", String.Empty, 0)

' Fail Script Task
Dts.TaskResult = ScriptResults.Failure
End If
End Sub

Now you can test the script by emptying or deleting the file that is referenced in the connection manager,
and then run the package and watch the Execution Results tab. Besides the common FireInformation,
FireWarning, and FireError, there are more firing event methods available, but they are less used:

e FireBreakpointHit: Raises an event indicating a breakpoint has been hit in the
Script Task

e FireCustomEvents: Raises a custom event
e FireProgress: Raises an event that shows the progress of the Script Task

¢ FileQueryCancel: Raises an event that indicates whether the Script Task should shut
down prematurely

108

CHAPTER 4 " SCRIPT TASK

Note Because firing events is expensive, you shouldn’t use it excessively. Some firing event methods have
a Boolean parameter, fireAgain, to suppress firing the same event multiple times.

FireCustomEvents

Once in a while you end up in a situation where SSIS lacks some of the enterprise skills that a complete ETL
solution offers, such as when you want to implement a custom metadata driven logging solution.

Let’s say that you want to centrally configure the logging setup for all the running packages. What
happens with the logging logic has to be transparent for all the child packages.

The only thing a package has to do is notify the master package by firing a custom event. A good way
to handle that on the master package is to use the event handling functionality. There are several types of
events at your disposal (see Figure 4-17).

parent.dtsx [Design] = [
8o ControlFlow gk DataFlow &g Parameters |FIRS Rt - PackageE... ¢ 3

Executable: Event handler:

Parent _vJ OnVariableValueChanged v Delete

OnError
OnExecStatusChanged
OnInformation
OnPostExecute
OnPostValidate
OnPreBxecute
OnPreValidate
OnProgress
OnQueryCancel
OnTaskFailed

OnVariableValueChanged |
OnWarning

Figure 4-17. Events at our disposal

A good candidate for this example is the OnVariableValueChanged because
e Ithas some built-in variables you can use.
e [Itisnotfired automatically, even when a variable changes.

Basically, you want to be able to catch a custom event fired in the child packages by using an event
handler of the parent package.
Let’s start by building the child package.

109

CHAPTER 4 SCRIPT TASK

Child Package

Create a new SSIS package called Child and add a Script Task called SCR_FireCustomEvent to it.

The code for the event is simple and does nothing else than take some of the available variables to the

package and fire them in an event.

The Script

In the Main method of the class, add the following:

// fire once or multiple times

bool fireAgain = false;

// the values that we want to surface in the custom event

object[] parameters = new object[] { "This is the value I want to log", "Second value to log",
DateTime.Now.TolLongDateString(), "More value to log" };

//fire the right event type : OnVariableValueChanged

Dts.

Dts.

Events.FireCustomEvent("OnVariableValueChanged", "", ref parameters, "", ref fireAgain);

TaskResult = (int)ScriptResults.Success;
And in VB.NET code:

' fire once or multiple times

110

Dim fireAgain As Boolean = False

' the values that we want to surface in the custom event

Dim parameters As Object() = New Object() {"This is the value I want to log", _
"Second value to log", DateTime.Now.TolLongDateString(), "More value to log"}

'fire the right event type : OnVariableValueChanged
Dts.Events.FireCustomEvent("OnVariableValueChanged",

, parameters, "", fireAgain)

Dts.TaskResult = CInt(ScriptResults.Success)

Asyou can seg, it is quite simple. You call the SSIS method FireCustomEvent with:
e The name of the event to be fired: OnVariableValueChanged
e The event text, which you don’t need, so itis ""
e An object array with some string parameters (can also be other types)
¢ The name of a subcomponent (not needed)

e Instruction about firing the event again, false in this case

This is all that you need for the Script Task.
Now let’s create a second package called Parent.

CHAPTER 4 " SCRIPT TASK

The Parent Package

This package invokes the child package; so for that you need an Execute Package Task that points at the child
package as shown in Figure 4-18.

s The Execute Package task executes another SIS package. Use this editor to configure how the child package runs.
LI

General 4 Package

ReferenceType Project Reference
Parameter bindings PackageNameFromProjectReference Child.dtsx
Expressions Password sgsiane

ExecuteQutOfProcess False

ReferenceType
Select Project Reference for child packages within this project. Select External Reference for
child packages located outside of the project (in the file system or on an instance of SQL Serv...

Help

Figure 4-18. Execute Package Task Editor

On the Event handler tab of the package surface, choose the OnVariableValueChanged event in the
drop-down list. It opens the designer surface for this specific event and you can place a Script Component
on the surface of the event handler (see Figure 4-19).

111

CHAPTER 4 " SCRIPT TASK

parent.dtsx (Designl -+ < |

8o ControlFlow g4 DataFlow g&@ Parameters .= PackageE... ¢ 3
Executable: Event handler:
IParent Z| OnvariableValueChanged v | Delete

-:) SCR_CaptureEvent

Figure 4-19. Configuring the event handler

Here is the callout for Figure 4-19:
1. The Executable is set to the top level element (the package).
2. The event handler is OnVariableValueChanged.

3. The Script Task that you use for capturing the event.

112

CHAPTER 4 " SCRIPT TASK

The Script Task

You added a Script Task on the surface of the event handler, which you called SCR_CaptureEvent.
Inside the script, you need to set some of the available system variables as read-only:

e System:TaskName

e System:SourceName

e System::VariableDescription
e System:VariableID

e System:VariableName

e System:VariableValue

The last four variables are the ones that you populated with the object array from the child package.

The Code

You open the script by clicking the Edit Script... button on the Script page of the Script Component Editor.
Next, you add the following lines of code to the Main method:

//Building a string that gets the values of the variables

// from the event fired in the child package

string result = "VariableName: " + Dts.Variables["System::VariableName"].Value.ToString() +
Environment.NewLine;

result += "VariableID: " + Dts.Variables["System::VariableID"].Value.ToString() +
Environment.NewLine;

result += "VariableDescription: "
.ToString() + Environment.Newline;

+ Dts.Variables["System::VariableDescription"].Value

result += "VariableValue: " + Dts.Variables["System::VariableValue"].Value.ToString() +
Environment.NewLine;
result += "TaskName: "
Environment.NewLine;

+ Dts.Variables["System::TaskName"].Value.ToString() +

result += "SourceName: " + Dts.Variables["System::SourceName"].Value.ToString();

//Showing the string value as a message box
MessageBox.Show(result);

And in VB.NET:
'Building a string that gets the values of the variables
' from the event fired in the child package

Dim result As String = "VariableName: " + Dts.Variables("System::VariableName").Value
.ToString() + Environment.NewLine

113

CHAPTER 4 SCRIPT TASK

result += "VariableID: " + Dts.Variables("System::VariableID").Value.ToString() +
Environment.NewLine

result += "VariableDescription:
.ToString() + Environment.NewLine

result += "VariableValue: " + Dts.Variables("System::VariableValue").Value.ToString() + _
Environment.NewLine

result += "TaskName: " + Dts.Variables("System::TaskName").Value.ToString() +
Environment.NewLine
result += "SourceName:

+ Dts.Variables("System: :VariableDescription").Value

+ Dts.Variables("System::SourceName").Value.ToString()

'Showing the string value as a message box
MessageBox.Show(result)

Running the parent package invokes the child package, which in turn fires a custom event that is
captured by the event handler of the parent package, and shows the results in Figure 4-20.

cnid e [0esignl = > |
fo ControlFlon g DetaFow @ Parameters [FEEIEIERE] = Pecose ... O Frogess @ [0 || FOYEEEEEER] ob CotsFiow @ Parameters [Eventanders 1 Packsge Bl D Progess @ @
Exscutable: Event hander:

Pacent ~| | onvariablevaluechanged " Delete

I3 scr_rirccusomevent
-

_f":, SCR_Capturevent
Ex

VanableMName: Thas is the value | want to log
VariablelD: Second value to log
VanableDescrption: 27, maj 2015
VarableValue: Mare value to log

TaskNarne: SCR_Capturefvent

SeurceMame: SCR_FireCustomEvent

oK

Ceonnection Managers

Raght-chick here to add & new connection manager to the SSIS package. Right-chick here to add & new connection manager to the SS15 package.

Figure 4-20. The results of running the package

In this example, you kept it really simple, but it wouldn’t be a problem to create a metadata framework
to control the logging or to implement some custom auditing using FireCsutomEvents.

Summary

In this chapter you learned the basic functionality of the Script Task, such as the use of variables and
connection managers to avoid hard-code values in your scripts, and logging useful information by firing
events. And you saw how you can reference custom or third-party assemblies.

In the next few chapters you will see solutions for all the common problems. With the knowledge of this
Script Task chapter, you can now customize those examples by logging or by using a different connection
manager.

114

CHAPTER 5

File Properties

The built-in File System Task in SSIS does basic operations on files, such as copy, move, and delete.
Sometimes, however (especially in data transfer scenarios), you want to find the most recent file, or you want
to check whether a file is locked or if it is read-only. In these situations, Script Task is useful in getting help
from .NET libraries such as System.IO.File. This chapter presents some very common usage examples of
working with files within Script Task.

Getting All Properties

As shown in Figure 5-1, the built-in File System Task is good for copying/moving files and directories,
and also for setting attributes, but it cannot be used to work with file properties such as sorting by
modified date.

115

CHAPTER 5 ' FILE PROPERTIES

ol File System Task Editor —~ =

Configure the properties required to perform file system operations, such as creating, moving, or deleting files or
|l directories.

General | 4 Destination Connection
Expressions IsDestinationPathVariable False
DestinationConnection
OverwriteDestination False
4 General
Name File System Task
Description File System Task
4 Operation

R oy fie 9

4 Source Connection Copy directory
IsSourcePathVariable

SourceConnection Create directory

Delete directory

Delete directory content
Delete file

Move directory

Move file

Rename file

Set Attributes

[Operation
Select an operation to perform.

0K Cancel Help

Figure 5-1. Built-in File System Task operations

One of the limitations is that you cannot read all the file attributes (i.e., file system information such as
read-only flags or permissions) and properties (i.e., metadata about the file itself). This built-in task uses
System.IO.File and System.IO.Directory as the core of operations, but these two namespaces include more
features that can be used when you work with them directly in .NET scripts.

In this section, you learn how to read file and directory properties, and attributes from .NET scripts. The
scripts used in this chapter use System.IO.File and System.I0.Directory, which exist in all versions of . NET
framework (with some minor differences).

Usually a file contains detailed properties such as attributes, date created, modified date, owner, file
size, and so forth. Figure 5-2 shows how you can view file properties.

116

CHAPTER 5 ' FILE PROPERTIES

g Customers_1.csv Properties “

[GenemllSemnty] Details i

Property Value

File
Name Customers_1.csv
Type Microsoft Excel Comma Separated Values ...
Folderpath C:\Users\Reza\Dropbox\SSIS Scripting B...
Size 1.36 MB

Date created 12/21/2014 10:55 AM
Date modffied 12/21/2014 12:30 PM
Availability Available offline
Owner REZA-VAIO\Reza
Computer REZA-VAIO {this PC)

Remove Properties and Personal Information

OK || Cancel Apply

Figure 5-2. File properties

The built-in File System Task won’t provide any of this information. In real-world ETL or data
transformation scenarios, you need to find last modified file, or all files from a specific owner, or only files
smaller than a specific size. So the ability to read the details of file properties are important, and fortunately,
it is possible with a few lines of .NET scripts.

117

CHAPTER 5 ' FILE PROPERTIES

Checking for File Existence

It is always recommended to check for the existence of a file before any file operations. This helps you to
reduce the risk of error catching when a file does not exist. It is really simple to check the existence of a file;
System.IO.File has a method for it: Exists. This method gets the file path as input, and returns a Boolean
value that indicates the existence of the file.

string FilePath = @"C:\APRESS\SSIS Scripting Book\02_Code\Chapter 05\Source Files\
Customers_1.csv";

if (System.IO0.File.Exists(FilePath))

{ \\ some code

}

In the preceding code, the @ character is used at the beginning of the string to avoid conflict with a
character that would otherwise need to be escaped, such as " or \, because these are reserved characters in
the code.

The example here uses the System.IO.File class to determine whether the given file exists on disk. Other
classes and methods are also useful. Some of these are listed in Table 5-1.

Table 5-1. Methods and properties useful in working with files

Method or Property Name Class Name Data Type

Name System.I0.FileInfo String

Extension System.I0.FileInfo String
Directory.FullName System.I0.FileInfo System.IO.Directory
CreationTime System.I0.FileInfo Datetime
LastWriteTime System.I0.FileInfo Datetime
GetAccessControl(filePath) System.I0.File FileSecurity
FileAttributes System.IO.File FileAttributes
FileSize System.I0.FileInfo FileInfo

File Name, Extension, and Path

In SSIS, with a complete file name and path, it is possible to find the file name, the extension, and the file
path. To find this information, you need to use the position of the last backslash in the file path, and the
position of the last dot in the string.

For example, if you have a variable with a qualified file name called strFilePath, you use the following
expression to get the file name:

REVERSE (SUBSTRING(REVERSE(@[User::strFilePath]), 1, FINDSTRING(REVERSE(@
[User::strFilePath]),"\\", 1)-1))

Not an easy to read solution! .NET provides a much more readable and elegant solution using System.
10.FileInfo.

118

CHAPTER 5 ' FILE PROPERTIES

File Created and Modified Time

System.IO.FileInfo also has four properties to read a file’s creation time, and also its last modified time. There
are two properties for creation time: CreationTime and CreationTimeUtc. The same type of UTC and local
timing is available for modified time: LastWriteTime and LastWriteTimeUtc.

File Owner

Information about the owner of a file is accessed with the GetAccessControl method of the System.I0.File
class. This method takes the file’s path as the input parameter and returns an object of type FileSecurity.
This object has a method for fetching the file’s owner: GetOwner. GetOwner returns the Security Identifier
(SID) of the user, and then it can be translated into a network account.

File Attributes and ReadOnly

GetAttributes is the method in the System.I0.File class that returns enumeration of a file’s attributes.
There is also an IsReadOnly property in System.IO.FileInfo that returns a Boolean value indicating the
ReadOnly property of the file.

File Size

You can read a file’s size with the Length property of the System.IO.FileInfo object. The length value is
returned as bytes, so if you want to convert it to kilobytes, megabytes, or other scales, you have to do it after
fetching the value.

Examples of the File Properties Mentioned

For the following script to work, you first need to add a reference to the System.Security.Principal
namespace.

The following code shows the Main method of the Script Task used in this example. Figure 5-3 shows the
output window for the FireInformation event:

public void Main()

{
string FilePath = @"C:\APRESS\SSIS Scripting Book\02_Code\Chapter 05\

Source Files\Customers_1.csv";

//Check for file existence
if (File.Exists(strFilePath))

{

//Get file informations
FileInfo objFileInfo = new FileInfo(strFilePath);

//Get the creation time
DateTime createdTime = objFileInfo.CreationTime;

119

CHAPTER 5 ' FILE PROPERTIES

// What is the length (in bytes) of the file
long Filelength = objFileInfo.Length;

//Gets the name of the file (with the extension)
string fileName = objFileInfo.Name;

//Get the directory
string Directory = objFileInfo.Directory.Name;

//Get the path and the name of the file
string PathAndName = objFileInfo.FullName;

//Get the extension for the file
string Extension = objFileInfo.Extension;

//is the file Read Only?
bool isReadOnly = objFileInfo.IsReadOnly;

//When was the file opened for the last time (and date)
DateTime lastAccessTime = objFileInfo.LastAccessTime;

//When was the file written for the last time (and date)
DateTime lastWriteTime = objFileInfo.lLastWriteTime;

//gets the owner

string owner = System.I0.File.GetAccessControl(strFilePath).GetOwner (typeof(System.Security.
Principal.NTAccount)).ToString();
string status ="Creation time: " + createdTime.ToString() + Environment.NewLine +
"Directory: " +Directory + Environment.NewLine +

"Owner: " + owner + Environment.NewLine +

"Extension: " + Extension + Environment.NewlLine +

"PathName: " + PathAndName + Environment.NewlLine +

"is file ReadOnly: " + isReadOnly.ToString() + Environment.NewLine +

"last accessed: " + lastAccessTime.ToString() + Environment.NewlLine +

"last written: " + lastWriteTime.ToString() + Environment.NewLine +

"Length (in Bytes): " + FilelLength.ToString() + Environment.NewlLine +

"File name: " + fileName;

bool fireagain = false;
Dts.Events.FireInformation(0, "File properties example", status, string.Empty,
0,ref fireagain);

120

CHAPTER 5 ' FILE PROPERTIES

Qutput *Ox
Show output from: | Debug B -] -] = | =3
| Information: @x@ at SCR_GetFileInfos, File properties example: Creation time: 19-85-2815 18:57:32 -

Directory: ContentFolder

Owner: REHFELD\rba

Extension: .csv

PathName: C:\Users\rba\Documents\APress\@2_Code\2@14\Extending S5IS with .NET\BookCode\Chapter 5\ContentFolder\Customers 2.csv
is file ReadOnly: False

last accessed: 19-85-2015 10:57:32

last written: 16-83-2015 €8:13:27

Length (in Bytes): 251159

File name: Customers 2.csv -

) - - - - ,

Call Stack Breakpoints Command Window |mmediate Window RSNGINE Autos Locals Watch 1 Find Symbol Results

Figure 5-3. Output window with Firelnformation text and file properties

Deleting Files Older Than X Days

If you're familiar with the Foreach Loop Container in SSIS, you know that there is an enumerator for looping
through files in a directory, called the Foreach File Enumerator. This option works in most scenarios,

but there are also scenarios that you want to do a conditional search (through a folder, for example) for
searching for files modified within a specific date range. Or you might want to read some folder properties
that cannot be done using the File System Task. System.IO.Directory and System.IO.DirectorylInfo give you
the most usability when you work with folders.

An example of a conditional loop is looping through files that are older than X days ago. With a Script
Task and few lines of .NET code, you can loop through files in a directory and check their LastWriteTime,
and then remove every file last modified more than X days ago.

The following example uses a couple of variables in the package: one for FolderPath and one for
DaysToKeep. Figure 5-4 shows the variable definitions.

Variables *Ox
ew P

Name Scope Data type Value Expression
/@ | DaysOfRetention DeleteOldFiles Int32 1

& SourceFolder DeleteQldFiles String C:\APress\02_Code\2014\Extending 5515 with .NET\Chapter 5\ContentFolder

Figure 5-4. Variable definitions

A Script Task is used to accept these two variables as input parameters. Figure 5-5 shows the input
parameters for a Script Task.

121

CHAPTER 5 ' FILE PROPERTIES

S Script Task Editor

= =

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or Visual C# 2012,

_) and configure the task's properties.

ReadWriteVariables
Select Variables

Select one or more variables.

Name

System::CreatorName
User::DaysOf Retention

System::FailedConfigurations

System::InteractiveMode

System::MachineName
System::OffineMode
System::PackagelD
System::PackageName
System::Product Version
System::ServerExecutionlD
User::SourceFolder
System::Stat Time

~O00nboobbudxRidm

Figure 5-5. Input parameters for Script Task

System::CreatorComputeriN...

System::Executioninstance. ..

System::lgnoreConfiguration...

System::LastModdfiedProdu...

Type
String
String
Int32
String
String
Boolean
Boolean
String
String
Boolean
String
String
String
Int64
String
DateTime

0K

Seript 4 Script
General_ ScriptLanguage Microsoft Visual C# 2012
Expressions EntryPoint Main
ReadOnlyVariables User:DaysOfRetention,User:SourceFolder

- oM

elp

Note The entire code is in the downloadable code for this book. In the following, only the relevant parts

were highlighted.

First, two lines of code read input variable values from the package (there are other methods for reading

a package variable’s values, which are described in Chapter):

string DirectoryPath = Dts.Variables["User::FolderPath"].Value.ToString();
int DaysToKeep=(int) Dts.Variables["User::DaysToKeep"].Value;

122

CHAPTER 5 ' FILE PROPERTIES

After checking for the existence of a directory, a list of existing files is fetched into an array of
strings. This line of defensive programming allows you to take another course of action should the
directory not exist.

//check directory existance
if (System.IO0.Directory.Exists(DirectoryPath))
{
//fetch files
string[] files=System.IO.Directory.GetFiles(DirectoryPath);

Then in a loop structure, all the files are checked, one by one, creating a FileInfo object for the
specified file path.

//1loop through files
foreach (var file in files)
{
//read file information
System.I0.FileInfo finf = new System.IO.FileInfo(file);

Then FileInfo object is able to return a file’s LastWriteTime. The TimeSpan object has been used
to identify the difference between the file’s LastWriteTime and today’s date, which indicates how long it
has been since the file was last modified. If the days since the last modification date are greater than the
DaysToKeep value, the file will be removed. TimeSpan is a structure representing a time interval.

//calculate difference between file creation date and today
TimeSpan span = DateTime.Now.Subtract(finf.LastWriteTime);

//compare difference with DaysToKeep variable
if ((int)span.TotalDays>DaysToKeep)

//xremove old file
System.I0.File.Delete(file);

}
Here is the full VB.NET code:

'read parameters
Dim DirectoryPath As String = Dts.Variables("User::FolderPath").Value.ToString

Dim DaysToKeep As Integer = Convert.ToInt32(Dts.Variables("User::DaysToKeep").Value)

'check existance of directory
If System.IO.Directory.Exists(DirectoryPath) Then
'fetch files in the directory
Dim files() As String = System.IO.Directory.GetFiles(DirectoryPath)

"loop through files
For Each file As String In files
'read file information
Dim finf As System.IO0.FileInfo = New System.IO.FileInfo(file)

123

CHAPTER 5 ' FILE PROPERTIES

'‘calculate difference between file modified date and today
Dim span As TimeSpan = DateTime.Now.Subtract(finf.LastWriteTime)

'compare difference with DaysToKeep variable
If Convert.ToInt32(span.TotalDays) > DaysToKeep Then
'remove old file
System.I0.File.Delete(file)
End If
Next

End If

Dts.TaskResult = ScriptResults.Success

Note The screenshots show an example run on December 22, 2014, so you expect the two older files to be

removed. If you want to run this package yourself, you might want to use a more recent date; otherwise, all the
files will be moved/deleted.

Figure 5-6 shows the list of the files in the example before running the package.

Name Date modified Type Size

f1-) Customers_1.csv 12/21/201412:30... Microsoft Excel C... _

F1) Customers_2.csv 10/9/2014 6:45 PM Microsoft Excel C... 1,748 KB
fl-| Customers_3.csv 6/25/2013 9:38 PM Microsoft Excel C... 1,895 KB

Figure 5-6. List of all the files in the directory

And Figure 5-7 shows the same folder after running the packages.

Name Date modified Type Size

£ Customers_l.csv 12/21/201412:30 ... Microsoft Excel C...

w

96 KB
Figure 5-7. The remaining files after running the package

Checking for a Locked File

An ETL process or a data transfer process can fail because a file (or files) that is the source of the data is open
or in use, resulting in the file being locked. It is essential to have the process of checking for locked files as

part of your ETL scenario. Fortunately, with a few lines of C# or VB.NET code, you can identify whether a file
is locked or not.

124

CHAPTER 5 ' FILE PROPERTIES

In this example, you use a variable called FilePath to store the path of the file, and then you check
this file in the script to identify whether or not the file exists; the result of this is stored in another package
variable called Exists. Then you check the file against locking, so if file is locked, a variable called IsLocked
is written as true. The result of checking this against the file is used in precedence constraint for the
following actions;

e Ifthe file exists and it is not locked, then move it to an archive folder.

e Ifthe file does not exists or is locked, then log this situation in a log table with the
date and time of checking and the status of existence and locking.

e Add two variables, as shown in Figure 5-8. Set the value of the FilePath variable to
the Customers_1.csv file.

Figure 5-8 shows the variables used in the package.

Variables *A X
R

Name Scope Data type Value E
& FilePath MoveUnlocke.. String C:\APress\02_Code\2014\Extending 5515 with .NET\Chapter 5\ContentFolder\Customers_1....
'lO | isLocked Movelnlocke.. Boolean False

Variables *AOXx
R R

Name Scope Data type Value E
&@ FilePath MoveUnlocke... String

& isLocked MoveUnlocke.. Boolean Falze

@ Exists MoveUnlocke... Boolean False

Figure 5-8. Variables

Add a new Script Task to the control flow. Set the language as C# or VB.NET. The FilePath variable is
ReadOnlyVariables (because you want to only read it). Exists and isLocked are ReadWriteVariables (because
you want to write into these variables), as shown in Figure 5-9.

125

CHAPTER 5 ' FILE PROPERTIES

= Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or Visual C 2012,

= and configure the task's properties.

4 Script

General. ScriptLanguage

Expressions EntryPoint
ReadOnlyVariables
ReadWriteVariables

Figure 5-9. Define input variables for Script Task

Microsoft Visual C# 2012
Main

User:FilePath
User:Exists,User:IsLocked

Click the Edit Script... button. In the Namespaces region of the script editor, add a line for System.IO.

For a custom namespace, add this:
using System.IO;

In VB.NET, add this:
Imports System.IO

In the Main method, check for the existence of the file:

string filepath=Dts.Variables["User::FilePath"].Value.ToString();

bool exists = Dts.Variables["User::Exists"].Value;

Here itisin VB.NET:

Dim filepath As String = Dts.Variables("User::FilePath").Value.ToString()

Dim exists As Boolean = File.Exists(filepath)
Set the Exists package variable accordingly:

if (File.Exists(filepath))

{
Dts.Variables["User::Exists"].Value = true;
// rest of the code will be here
}
else
{
Dts.Variables["User::Exists"].Value = false;
}

126

CHAPTER 5 ' FILE PROPERTIES

And here it is in VB.NET:

If exists Then

Dts.Variables("User::Exists").Value = True
' rest of the code will be here
Else

Dts.Variables("User::Exists").Value = False
End If

If the file exists, you want to check for locking, so define a FileStream variable and try to fill it. If you
faced an error of type I0exception, it means that the file is locked for read or write, or a process is using it.

FileStream fs = null;

try
{
fs = File.Open(filepath, FileMode.Open, FileAccess.ReadWrite, FileShare.None);
}
catch (IOException ex)
{
Dts.Variables["User::IsLocked"].Value = true;
}

Here itis in VB.NET:

Dim fs As FileStream = Nothing
Try

fs = File.Open(filepath, FileMode.Open, FileAccess.ReadWrite, FileShare.None)
Catch ex As IOException

Dts.Variables("User::IsLocked").Value = True
End Try

If the file opened successfully, then it will return an object of FileStream type, which means file is not
locked. Using a finally block ensures that the file is released before the Script Task exits.

Finally
{
if (fs != null)
{
fs.Close();
Dts.Variables["User::IsLocked"].Value = false;
}
}
And here it is in VB.NET:

If Not (fs Is Nothing) Then
fs.Close()
Dts.Variables("User::IslLocked").Value = False
End If

127

CHAPTER 5 ' FILE PROPERTIES

Moving the File

Now that the previous script has identified whether the file exists or if it is locked, the Exists and IsLocked
package variables show the values accordingly. By checking these values, you can take the necessary action
move the file or not.

You need to define a connection manager called Archive for stating where to move the file(s). Once this
is done, add a File System Task after the Script Task, and connect a precedence constraint from the Script
Task to this task. Next, go to the task editor and assign the right connection to archive the file by moving it to
an archive folder, as shown in Figure 5-10.

iy Configure the properties required to perform file system operations, such as creating, moving, or deleting files or
_].J directories.
[Generall | | 4 Destination Connection
Expressions IsDestinationPathVariable False
DestinationConnection Archive
OverwriteDestination True
4 General
Name Move File
Description File System Task
4 Operation
Operation Move file
4 Source Connection
IsSourcePathVariable True
SourceVariable User:FilePath

Figure 5-10. Configure the File System Task Editor to Move File

Right-click the precedence constraint between the Script Task and the File System Task. From the
context menu, choose Edit. In the Precedence Constraint Editor, change Evaluation Operation to Expression
and Constraint. Confirm the value to be a success, and write the following expression to check that the file
exists and is not locked.

@[User::Exists] && !(@[User::IsLocked])

Figure 5-11 shows the Precedence Constraint Editor with the Expression filled in.

128

CHAPTER 5 ' FILE PROPERTIES

A precedence constraint defines the workflow between two executables. The precedence constraint can be
based on a combination of the execution results and the evaluation of expressions.

Constraint options

Evaluation operation: IExpression and Constraint

Value: [-Success

Bretion @[User:Exists) &8t !(@[User:lsLocked])

Multiple constraints

If the constrained task has multiple constraints, you can choose how the constraints interoperate to
control the execution of the constrained task.

(® Logical AND. All constraints must evaluate to True

() Logical OR. One constraint must evaluate to True

Figure 5-11. The file exists and it is not locked

If file does not exist or it is locked, you want to log this status (with the date and time) into a log table
in database; in this example, the Apress_SSIS_Scripting database. Run the following script to create the
FileCheckLog table (run the script in Management Studio).

Note The table creation script is also included in the Chapter 5 source code.

CREATE TABLE [dbo].[FileCheckLog](
[ID] [int] IDENTITY(1,1) NOT NULL,
[FilePath] [varchar](4000) NULL,
[Locked] [bit] NULL,
[Exists] [bit] NULL,
[CheckedDateTime] [datetime] NULL,
CONSTRAINT [PK_FileCheckLog] PRIMARY KEY CLUSTERED

(
[ID] ASC
JWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW ROW_
LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

129

http://dx.doi.org/10.1007/978-1-4842-0638-6_5

CHAPTER 5 ' FILE PROPERTIES

In the package’s control flow, add an Execute SQL Task and configure it to insert a log record into the

FileCheckLog table.

You need an OLE DB Connection Manager pointing at the database where the preceding table was

created.

The following are other required properties of the Execute SQL Task Editor:

e SQLSourceType = Direct Input
e ConnectionType = OLE DB

e SQLStatement = insert into FileCheckLog (FilePath, Locked, [Exists],
CheckedDateTime) values (?,?,?,getdate())

Figure 5-12 lists all the properties.

'L1 . Configure the properties required to run SQL stat ts and stored procedures using the selected connection.
)
General 4 General
Parameter Mapping [T Fite Check Log
Result Set Description Execute SQL Task
Expressions 4 Options
TimeOut 0
CodePage 1252
TypeC onMod Al N
4 Result Set
ResultSet None
4 S50l Statement
ConnectionType OLEDBE
Connection LocalHost.Apress_S515_Scripting
SQLScurceType Direct input
SQLStatement insert into FileCheckLog (FilePath,Locked, [Exists].CheckedDateTime) values (2.2.7.getdate()
1sQueryStoredProcedure False
BypassPrepare True
‘Name
Specifies the name of the task.
Browse... Build Query... Parse Query

Figure 5-12. Configure Execute SQL Task to write log entry

Because FilePath, the Locked status, and the Exists status come from package variables, go to the
Parameter Mapping tab and add mappings, as shown in Figure 5-13.

130

CHAPTER 5 ' FILE PROPERTIES

’Lj - Configure the properties required to run SQL statements and stored procedures using the selected connection.
)
General | Variable Name Direction Data Type Parameter Name Parameter Size
Parameter Mapping i :
Result Set bl VARCLERIN LD !
Expressions User:lsLocked Input LONG 1 -1
User:Exists Input LONG 2 -1

Figure 5-13. Parameter mapping for file check log

Because an OLE DB connection is used in this example, parameter names should be indexed 0-based
(0, 1, 2...). To learn more about the parameter names of other connection types, read the article at
http://msdn.microsoft.com/en-us/library/ms140355.aspx.

Connect a success precedence constraint from Script Task to the execute SQL task. Go to the
Precedence Constraint Editor window to configure it (see Figure 5-14) and determine if a file does not exists
or is locked. The Expression is: !(@[User::Exists]) && @[User::IsLocked].

A precedence constraint defines the workflow between two executables. The precedence constraint can be
based on a combination of the execution results and the evaluation of expressions.

Constraint options

Evaluation operation: | Expression and Constraint

Value: E-Success

e (@[User:Exists]) || @[User:lsLocked]

Multiple constraints

If the constrained task has multiple constraints, you can choose how the constraints interoperate to
control the execution of the constrained task.

(®) Logical AND. All constraints must evaluate to True

() Logical OR. One constraint must evaluate to True

Figure 5-14. Check if the file does not exists or is locked

131

http://msdn.microsoft.com/en-us/library/ms140355.aspx

CHAPTER 5 ' FILE PROPERTIES
Figure 5-15 shows the schema for the package’s control flow (i.e., an annotation was added to explain
the behavior more clearly).
(=
5

@[User:Exists] && !(@[User:IsLocked]) | |(@[User:Exists]) || @[User:lsLocked]

Jx fx

v

v

a\l Move File g‘a File Check Log

Figure 5-15. Control flow schema or the check file is locked package

Now it is time to run and test the example. If you run the code when the Customers_1.csv file is not
opened, you will see that the control flow follows the path to the Move File task, and the file will be moved to
an archive directory.

Note Opening a file in Notepad won't lock it; whereas opening it in Excel will lock it. Different programs
have different behaviors regarding locking files.

If file is open for reading or if it is locked for any other reason, the control flow will follow the path to
File Check Log and add an entry to the FileCheckLog table with the appropriate information about the
file’s status and the date and time of the action. Figure 5-16 illustrates the flow, and Figure 5-17 shows the
resulting log entry.

@[User:Exists] && (@[User:IsLocked]) ' l (@[User:Exists]) || @[User:IsLocked]

fx Jx

|
i
1
|
‘\?

v
@ Move File g“i File Check Log

Figure 5-16. Locked file detected

132

CHAPTER 5 ' FILE PROPERTIES

...ID FilePath Locked Bdsts CheckedDateTime
é ! C:\Users\Reza\Dropbox\SSIS Scripting Book\02_Cod... 1 1 2015-01-02 13:40:08.400

Figure 5-17. A log entry added to FileCheckLog table

You can use the method that you learned in this exercise in data transfer scenarios to determine
whether or not a file is locked.

Foreach Loop Ordered File Enumerator

There is a container in the SSIS control flow called the Foreach Loop. Foreach Loop allows you to develop a
control flow that loops through the items of an enumerator. There are seven types of enumerators, including
a File Enumerator to loop through files in a directory, and an ADO enumerator to loop through records of a
data table in an object variable.

The File Enumerator provides basic search functionalities, such as a mask on a file name or extension,
or the ability to traverse subfolders. But there are some requirements that cannot be handled with the built-
in file enumerator; for example, when you want to load files in a folder in a specific order, such as by creation
date (i.e., you want to load files into the database based on their datetime order).

In the next section, you learn how to empower the Foreach Loop Container with scripts (you are already
familiar with most of them from examples earlier in this chapter) to create a data table with columns and
rows, and then using that data table as the source object for enumeration in the Foreach Loop.

Foreach Ordered File Enumerator

In this example, you loop through . csv files in the specified directory, and load them based on their created
date and time order. You will archive each file, and then write a log entry to a file load table at the end.
Create package variables and set the directory path to the folder that contains . csv files in this book’s
code bundle.
The following is a list of the values and names used. Change it so that it matches your setup. It is also
shown in Figure 5-18.

e FilePath (String): C:\APress\02_Code\2014\Extending SSIS with .NET\
BookCode\Chapter 5\ContentFolder\Customer.csv

e OrderedeFiles (Object): defaults to System.Object

e SourceFolder (String): C:\APress\02_Code\2014\Extending SSIS with .NET\
Chapter 5\ContentFolder

Variables *ax
PR | E

MName Scope Data type Value Expressicn

@ FiPath OrderedFileén... String C\APress\02_Code\2014\Extending 5315 with .NET\BookCode\Cha... |

@ OrderedFiles OrderedFilefn... Object S Ol >

W SourceFolder OrderedFileEn... String C\APress\02_Code\2014\Extending 55IS with .NET\Chapter S\Cont...

Figure 5-18. Variables definition

133

CHAPTER 5 ' FILE PROPERTIES

Create a Script Task, set User::SourceFolder as ReadOnlyVariables, and User::OrderedFiles as
ReadWriteVariables, as shown in Figure 5-19.

S Script Task Editor - o IEl

; Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or Visual C# 2012,
A and configure the task’s properties.

Script 4 Script
General_ ScriptLanguage Microsoft Visual C= 2012
Eipaesons EntryPoint Main
ReadOnlyVariables User:SourceFolder
ReadWriteVariables User::OrderedFiles
. Scriptlanguage

Specifies the programming language used by the script.

Edit Script...

0K Cancel Help

Figure 5-19. Setting variables

Choose the language, and then click Edit Script to open the script editor.

Add the System.IO namespace to the Namespace (C#) or Imports (VB) region. The custom namespace
should be as follows:

using System.IO;
And in VB.NET:

Imports System.IO

134

CHAPTER 5 ' FILE PROPERTIES

Creating a Dataset

In the Main method, create a DataSet object. A dataset object can contain one or more data tables.
DataSet dsUnsorted = new DataSet();
And here it is in VB.NET:
Dim dsUnsorted As New DataSet()
Add a data table for keeping file information:
DataTable filelistTable = dsUnsorted.Tables.Add();

After adding the table, you can add the columns to the table, specifying a name for the column and a
datatype:

filelistTable.Columns.Add("FilePath", typeof(string));
filelistTable.Columns.Add("FileName", typeof(string));
filelistTable.Columns.Add("FileDate", typeof(DateTime));

And here it is in VB.NET:

Dim filelistTable As DataTable = dsUnsorted.Tables.Add()
filelistTable.Columns.Add("FilePath", GetType(String))
filelistTable.Columns.Add("FileName", GetType(String))
filelistTable.Columns.Add("FileDate", GetType(DateTime))

Loading Files

Read all the files in the directory and load them into a string array:

string[] allFiles = Directory.GetFiles(Dts.Variables["User::DirectoryPath"].Value.
ToString());

Here itisin VB.NET:

Dim allFiles As String() = Directory.GetFiles(Dts.Variables("User::DirectoryPath").Value.
ToString())

Loop through each file in the array, and then create each file’s FileInfo object. Next, insert a new
record in the data table with information loaded from FileInfo object.

FileInfo fileInfo;

foreach (string currentFile in allFiles)
{
fileInfo = new FileInfo(currentFile);
// Columns: FilePath,FileName,FileDate
filelistTable.Rows.Add(fileInfo.FullName, fileInfo.Name, fileInfo.CreationTime);

}

135

CHAPTER 5 ' FILE PROPERTIES

Here itisin VB.NET:

Dim fileInfo As FileInfo

For Each currentFile As String In allFiles
fileInfo = New FileInfo(currentFile)
' Columns: FilePath,FileName,FileDate
filelistTable.Rows.Add(fileInfo.FullName, fileInfo.Name, fileInfo.CreationTime)
Next

Define a new set of DataRows based on the desired filter condition and the order of the files (FileDate
ASC in this example):

DataRow[] rows = dsUnsorted.Tables[0].Select("FileName like '*.csv'", "FileDate ASC");
Here it is in VB.NET:
Dim rows As DataRow() = dsUnsorted.Tables(0).[Select]("FileName like '*.csv'", "FileDate ASC")

Create a new dataset and a data table with only a FilePath column (this new dataset will be used to store
ordered and filtered list):

DataSet dsSorted = new DataSet();

DataTable filelistTableSorted = dsSorted.Tables.Add();

filelistTableSorted.Columns.Add("FilePath", typeof(string));
And here it is in VB.NET:

Dim dsSorted As New DataSet()

Dim filelistTableSorted As DataTable = dsSorted.Tables.Add()
filelistTableSorted.Columns.Add("FilePath", GetType(String))

Adding Rows to the Dataset

Add rows, one by one, to the new data table in a foreach loop:

foreach (DataRow row in rows)

{
}

filelistTableSorted.Rows.Add(row["FilePath"].ToString());

And here it is in VB.NET:
For Each row As DataRow In rows

filelistTableSorted.Rows.Add(row("FilePath").ToString())
Next

Writing the Result

Write the result dataset into the FileList package variable:
Dts.Variables["User::0OrderedFiles "].Value = dsSorted;

136

CHAPTER 5 ' FILE PROPERTIES

Here itisin VB.NET:

Dts.Variables("User::OrderedFiles ").Value = dsSorted

Note The code for this example is available in the Source code/Downloads area for this book at
www. apress. com. An alternative method is to use a generic list instead of a dataset, and then sort it.

Putting It All Together

Save and close the script. Add a Foreach Loop Container after the Script Task, and a precedence constraint
connecting the script to the foreach loop.

Set the enumerator for the Foreach Loop to ADO enumerator. Select the User::OrderedFiles variable as
the ADO object source variable, as shown in Figure 5-20.

] Foreach Loop Editor - o IEN
|im| The Foreach Loop container allows execution iteration over an enumeration.
General 2 Foreach Loop Editor
Enumerator Foreach ADO Enumerator
Variable Mappings b Expressions
Expressions L
Enumerator

Specifies the enumerator type.

Enumerator configuration

ADO object source variable:
User::OrderedFiles -

Enumeration mode

(®) Rows in the first table
() Rows in all the tables (ADO.NET dataset only)

(O All tables (ADO.NET dataset only)

| 0K Cancel Help

Figure 5-20. Foreach ADO enumerator

137

http://www.apress.com

CHAPTER 5 ' FILE PROPERTIES

Go to the Variable Mappings page and map the User::FilePath variable with index 0. (Columns in
the dataset’s table are indexed based on their order from 0). Click OK to close the Foreach Loop Editor, as
illustrated in Figure 5-21.

im| The Foreach Loop container allows execution iteration over an enumeration.
General A ;
) Select variables to map to the collection value.
Collection _)
Variable Mappings Variable Index
Expressions User:FilePath ‘0

Figure 5-21. Foreach Loop Editor’s variable mappings configuration

Use Chapter 1’s Customer table in the Apress_SSIS_Scripting database.
Add a Data Flow Task - DFT_OrderedFiles - inside a Foreach Loop Container. In the Data Flow tab, add
a Flat File Source. Create a Flat File Connection Manager to a .csv file from the source code folder:

C:\APress\02_Code\2014\Extending SSIS with .NET\BookCode\Chapter 5\ContentFolder\Customers.csv

Leave the other configurations as they are, so that they look like what’s shown in Figure 5-22.

138

http://dx.doi.org/10.1007/978-1-4842-0638-6_1

CHAPTER 5 ' FILE PROPERTIES

2 Flat File Connection Manager Editor - o IEH

Connection manager name: Flat File Connection Manager

Description:

2 General| Select a file and specify the file properties and the file format.

[Columns Fi

ile name:

(& Advanced MBookCode\Chapter 5\ContentFolder\Customers.csv B

= Preview
Locale: Danish (Denmark) v [[] Unicode
Code page: 11252 (AN - Latin I) v

Format: Delimited v

Text qualifier: <none>
Header row delimiter: | [TaiTiz v
Header rows to skip: 0 =

Column names in the first data row

[0K Cancel Help

Figure 5-22. File Connection Manager configuration

Click the Columns item in the left pane to generate column mappings. Close the editor by clicking OK.
In the Data Flow Task, add OLE DB Destination connected to Apress_SSIS_Scripting database, and
Customer Table. Use the default mappings. Connect it to the source, as shown in Figure 5-23.

139

CHAPTER 5 ' FILE PROPERTIES

8o Control Flow [GellEiclac il &@ Parameters I2] Eventl

DataFlow Task: | g} Data Flow Task

@9 CSV File

i@ Customers Table

Figure 5-23. Data Flow schema

Inside the Foreach Loop Container, after the Data Flow Task, add a File System Task. Connect it to the
output of the Data Flow Task. Open the File System Task Editor, and configure it as shown in Figure 5-24.

Ny Configure the properties required to perform file system operations, such as creating, moving, or deleting files or
_]_I directories.
General "4 Destination Connection
Expressions IsDestinationPathVariable False
DestinationConnection Archive
OverwriteDestination True
4 General
Name Archive File
Description Archive File
4 Operation
Operation Move file
4 Source Connection
IsSourcePathVariable True
SourceVariable User:FilePath

Figure 5-24. File System Task Editor for archiving file

140

CHAPTER 5 ' FILE PROPERTIES

Create a FileLoadLog table to store information about loading files into the database. Run the following
script in SSMS in the Apress_SSIS_Scripting database:

CREATE TABLE [dbo].[FileLoadLog](
[ID] [int] IDENTITY(1,1) NOT NULL,
[FilePath] [varchar](4000) NULL,
[LoadDateTime] [datetime] NULL,

) ON [PRIMARY]

Add an Execute SQL Task after the Archive File task. Add a precedence constraint to the Archive File
task. Write an insert command to add the log entry into FileLoadLog table as follows:

INSERT INTO FilelLoadLog (FilePath,LoadDateTime) values (?,getdate())

Figure 5-25 shows the final task configuration.

=l Configure the properti ired to run SQL statements and stored procedures using the selected connection.

LS

General General
Parameter Mapping Name
Result Set Description
Expressions Options
TimeQut 0
CodePage
TypeConversionMode Allowed
Result Set
ResultSet None
5QL Statement
ConnectionType OLEDB
Connection LocalHost.Apress_S515_Scripting
SQLSourceType Direct input
insert into FileLoadLog (FilePath,LoadDateTime) values (2.getdate() ...
IsQueryStoredProcedure False

BypassPrepare True

' SQLStatement
Specifies the query to be run by the task.

Figure 5-25. File Load Log execute SQL Task configuration

141

CHAPTER 5 ' FILE PROPERTIES

On the Parameter Mapping page, set the User::FilePath variable to parameter name 0 with data type

VARCHAR, as shown in Figure 5-26.

I_g

- ol

Execute SQL Task Editor

Configure the properties required to run SCL statements and stored procedures using the selected connection.

L)

General
Parameter Mapping
Result Set

Variable Name Direction Data Type Parameter.. Parameter...

VARCHAR

MewPara... : 0

User:FilePath Input

Expressions

Figure 5-26. Parameter mapping

142

CHAPTER 5 ' FILE PROPERTIES

Figure 5-27 shows the full layout of the package.

' il
-:) SCR_OrderFiles

Foreach Loop
Container

i-)i DFT_OrderFiles

l

@ Archive

l

Q‘a File Load Log

Figure 5-27. Schema of Package 04 - Foreach Ordered File Enumerator

143

CHAPTER 5 ' FILE PROPERTIES

Run the package. You will see that all the files from the source folder are loaded into the database, and
then moved to an archive folder. They will write an entry log in FileLoadLog, as shown in Figure 5-28.

ID FilePath LoadDateTime
C:\Users\Reza"\Dropbox\SSIS Scripting Book\02_Code\Chapter 05\Source Files\Customers_1.csv 2015-01-04 15:26:13.073
C:\Users\Reza"\Dropbox\SSIS Scripting Book\02_Code\Chapter 05\Source Files\Customers_2.csv 2015-01-04 15:26:14.627
3 C:\Users\Reza\Dropbox\SSIS Scripting Book\02_Code\Chapter 05\Source Files\Customers_3.csv 2015-01-04 15:26:16.533

Figure 5-28. Result in FileLoadLog table

Note This example didn’t check whether the file was locked or in use. Should you want to add that check
to your ETL scenario, simply combine it with the code from the first example in this chapter.

In this example you learned how to customize order of files in the enumeration, and then pass the
desired ordered dataset through a package variable and use it in the rest of the package.

Summary

In this chapter you learned about System. IO classes, such as File, FileInfo, and Directory. You learned how
to use the methods and the properties of these classes to enhance your SSIS package implementation. You
learned some scenarios in which you can extend your SSIS package with a combination of code and built-in
tasks, such as Foreach Ordered File Enumerator. You learned how to check whether file is locked or in use
with Script Task, and return the result status to package variables for further checking in the SSIS package. In
next chapter, you learn how to work on the Internet and the Web with SSIS and scripting.

144

CHAPTER 6

Working Through the Internet
and the Web

The Web is an important source for data. Data might come from files that are located on a web site or on an
(S)FTP server. In this chapter, you learn how to work with files through the Web, how to download files, and
how to work with FTP and SFTP. Scenarios in this chapter cannot be done easily with built-in tasks, such as
the FTP Task.

Sending HTML-Formatted Email

One of the drawbacks of the out-of-the-box Send Mail Task is that it doesn’t support HTML-formatted
emails. The associated SMTP Connection Manager doesn’t support more-advanced settings like changing
port and setting basic credentials. The Script Task could help you here, however.

An alternative is to use an Execute SQL Task that calls sp_send_dbmail, but the Script Task gives
you more possibilities and you don’t have to ask your database administrator (DBA) to enable this in the
database.

SMTP Connection Manager

For storing the SMTP server address, let’s use the SMTP Connection Manager shown in Figure 6-1. You can
add it by right-clicking the Connection Manager pane, choosing New Connection, and then choosing SMTP.
Enter the server address and optionally change other settings. Make sure that the name of the connection
manager is SMTP Mail Server. You can change it, but remember to change it in the script as well. The
alternative is to use an extra SSIS string variable in the next step for storing the SMTP Server name or IP
address.

145

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

Connection manager information

Name: SMTP Mail Server
Description: The SMTP Mail Server of MyCompany
SMTP server: smtp.mycompany.com

["] Use Windows Authentication
[_] Enable Secure Sockets Layer (S5L)

Timeout (milliseconds):

0K Cancel

Figure 6-1. SMTP Connection Manager

If your company or provider don’t have an SMTP server, then you can search for public SMTP servers
like gmail.com or outlook.com, but they often require authentication or have other limitations.

Note If sending HTML-formatted emails is your only reason for using the Script Task, then it is a best
practice to use the SMTP Connection Manager. If you also want to change the port or the credentials, then it
is probably a little confusing to use both variables and an SMTP Connection Manager as an input for the
Script Task.

Variables

For storing an email’s From, To, Subject, and Body, you need four string variables as shown in Figure 6-2. If
you also want to change the default port number, then you need an additional integer variable. The same
applies for adding authentication, for which you need additional string variables to store the username and
password.

Variables

e B aa

MName Scope Datatype Value Expression

& EmailBody SendMail String Hi Joost,

Something went wrong with your package:
 <bra] =
& EmailFrom SendMail String Regis@mycompany.com

@ EmailSubject SendMail String S5IS Package Emor -
& EmailTo SendMail String Joost@mycompany.com

Figure 6-2. String variables for storing email parts

146

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

Script Task

Add a Script Task to the control flow (or one of the event handlers, if you prefer that) and give it a suitable
name, like SCR - Send Error Mail. You don’t need additional tasks to test this, but you could, for example,
connect it to your Data Flow Task with an error precedence constraint. Edit the Script Task and add the
variables from the previous step as shown in Figure 6-3. Make these ReadOnlyVariables so that you can use
them in the script code.

seravanascoesorr + < I

-) g Script Task Editor S

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or
Visual C# 2012, and configure the task's properties.
[Fail

Script + Script

B SCR - Send Error Mail General ScriptLanguage Microsoft Visual C# 2012
- Expressions EntryPoint Main
ReadOnlyVariables User::EmailBody,User:EmailFrom,UserzEmailSubject,Us:
I ReadWriteVariables

Selact one of more variables

[a] Name Type ~
[System: CreatorComputerNa_.. String
| System: CreatorName String
(S User: EmailBody String
e User Emaifrom String

.'r User EmaiSubject String
| user EmaiTo String
System: ExecutioninstanceG String
System: FailedConfigurations String
System: ignoreConfiguration Boolean
System InteractiveMode Boolean
System: LostModifiedProduc String
System: MachineName String w

bd list of read-only variables.

Edit Script..

oK Cancel Help

Figure 6-3. Adding variables (or parameters) to the Script Task

The Code

Click the Edit Script. . . button to open the VSTA environment. First, add the extra namespaces to shorten the
code:

#region customNamespaces
using System.Net;

using System.Net.Mail;
#endregion

147

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

And here is the VB.NET code:

#Region "customNamespaces"
Imports System.Net

Imports System.Net.Mail
#End Region

Now it’s time to add the following code to your Main method. There are some lines commented out to
provide extra code for additional requirements, such as changing port numbers or adding credentials.

public void Main()

{
// Storing SSIS variables in .Net variables. You could skip this step and
// call the SSIS variables in the actual mail code to reduce the number
// of code lines, but this looks more orderly.
String SendMailFrom = Dts.Variables["EmailFrom"].Value.ToString();
String SendMailTo = Dts.Variables["EmailTo"].Value.ToString();
String SendMailSubject = Dts.Variables["EmailSubject"].Value.ToString();
String SendMailBody = Dts.Variables["EmailBody"].Value.ToString();

// Get the SMTP connection manager read its properties
ConnectionManager mySmtpConn = Dts.Connections["SMTP Mail Server"];
string SmtpServer = mySmtpConn.Properties["SmtpServer"]
.GetValue(mySmtpConn).ToString();
int Timeout = Convert.ToInt32(mySmtpConn.Properties["Timeout"]
.GetValue(mySmtpConn));
bool EnableSsl = Convert.ToBoolean(mySmtpConn
.Properties["EnableSs1"].GetValue(mySmtpConn));
Convert.ToBoolean(mySmtpConn
.Properties["UseWindowsAuthentication"]
.GetValue(mySmtpConn));

bool UseWinAut

// Create an email and change the format to HTML
MailMessage myHtmlFormattedMail = new MailMessage(SendMailFrom
, SendMailTo
, SendMailSubject
, SendMailBody);
myHtmlFormattedMail.IsBodyHtml = true;

// Create a SMTP client to send the email

SmtpClient mySmtpClient = new SmtpClient(SmtpServer);

mySmtpClient.EnableSsl = EnableSsl;

mySmtpClient.UseDefaultCredentials = UseWinAut;

// Check other properties like portnumber

// mySmtpClient.Port = 587; // Get value from variable

// or credentials with an username/email and password

// mySmtpClient.Credentials = new NetworkCredential("username", "password");

148

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

// Try sending the email

try

{
// Send email
mySmtpClient.Send(myHtmlFormattedMail);

// Close Script Task with success
Dts.TaskResult = (int)ScriptResults.Success;
}

catch (Exception ex)

// Fire an error for logging purposes
string Error = "Error: " + ex.Message +
Error += ((ex.InnerException != null) ? ex.InnerException.Message : "");
Dts.Events.FireError(0, "Send Mail Task", Error, string.Empty, 0);

non,
)

// Close Script Task with Failure
Dts.TaskResult = (int)ScriptResults.Failure;

Here is the VB.Net code:

Public Sub Main()
' Storing SSIS variables in .Net variables. You could skip this step and
' call the SSIS variables in the actual mail code to reduce the number
" of code lines, but this looks more orderly.
Dim SendMailFrom As String = Dts.Variables("EmailFrom").Value.ToString()
Dim SendMailTo As String = Dts.Variables("EmailTo").Value.ToString()
Dim SendMailSubject As String = Dts.Variables("EmailSubject").Value _
.ToString()
Dim SendMailBody As String = Dts.Variables("EmailBody").Value.ToString()

' Get the SMTP connection manager read its properties

Dim mySmtpConn As ConnectionManager = Dts.Connections("SMTP Mail Server")

Dim SmtpServer As String = mySmtpConn.Properties("SmtpServer") _

.GetValue(mySmtpConn).ToString()
Dim Timeout As Integer = Convert.ToInt32(mySmtpConn.Properties("Timeout") _
.GetValue(mySmtpConn))

Dim EnableSsl As Boolean = Convert.ToBoolean(mySmtpConn _
.Properties("EnableSs1l")
.GetValue(mySmtpConn))

Dim UseWinAut As Boolean = Convert.ToBoolean(mySmtpConn _
.Properties("UseWindowsAuthentication") _
.GetValue(mySmtpConn))

' Create an email and change the format to HTML

Dim myHtmlFormattedMail As New MailMessage(SendMailFrom _
, SendMailTo _
, SendMailSubject _
, SendMailBody)

149

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

myHtmlFormattedMail.IsBodyHtml = True

' Create a SMTP client to send the email

Dim mySmtpClient As New SmtpClient(SmtpServer)
mySmtpClient.EnableSsl = EnableSsl
mySmtpClient.UseDefaultCredentials = UseWinAut

' Check other properties like portnumber

" mySmtpClient.Port = 587; // Get value from variable

' or credentials with an username/email and password
mySmtpClient.Credentials = New NetworkCredential("username", "password")

Try sending the email
Try

Send email
mySmtpClient.Send(myHtmlFormattedMail)

' Close Script Task with success
Dts.TaskResult = ScriptResults.Success
Catch ex As Exception
' Fire an error for logging purposes
Dim ErrorStr As String = "Error: " + ex.Message & " "
ErrorStr = ErrorStr + ex.InnerException.Message.Replace(vbNullString, "")
Dts.Events.FireError(0, "Send Mail Task", ErrorStr, String.Empty, 0)

' Close Script Task with Failure
Dts.TaskResult = ScriptResults.Failure

End Try
End Sub

The Results

Now close the Script Task and execute it to see the results. You should see an image and a message such
as in Figure 6-4.

SSIS Package Error

{ 1 Regis Baccaro 5/15/2015
e

!1 " To: Joost van Rossum ¥

Hi Joost,
Something went wrong with your package:

Figure 6-4. Email from Régis

150

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

Downloading a File from a Web Server

Downloading a file from an FTP Server is easy with the FTP Task, but sometimes you need a file from a web
server. This example shows how to do that with a Script Task. Logging in or other manual actions are beyond
the scope of this book. One starting point is a publicly downloadable file. For testing purposes, you can use
the following URL: https://sites.google.com/site/ssisblogspot/products.csv.

Data Flow Task

The Starting situation is a simple Data Flow Task such as in Figure 6-5 that reads a flat file, but you want
to refresh that flat file and download a new version from a web site. You will use the Flat File Connection
Manager, named Products, to determine the download location. There is a starter package available that
already has the data flow in it.

DownloadHTTP.dtsx [Design] + X DownloadHTTP.dtsx [Design] + X _

RS enl s DataFlow & Parameters [l Evel 2, Control Flow [ERJBEEITenlll & Parameters El EventH

Data Flow Task: | ww DFT - Stage Products

= FF_SRC - Products
E.)

i-)a DFT - Stage Products

’.\! DER - Add Metadata

! l SCR - Dummy Destination

Connection Managers Connection Managers

% Products % Products

Figure 6-5. Simple Data Flow Task with Flat File Source

151

https://sites.google.com/site/ssisblogspot/products.csv

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB
HTTP Connection Manager

To store the source file’s URL, use an HTTP Connection Manager. For this example, only fill in the URL of the
file that you want to download; leave all other values in their defaults. See Figure 6-6 for an example.

£ HTTP Connection Manager Editor - 0O -

Server settings
Server URL:

https://sites.google.com/site/ssisblogspot/products.csv

("] Use credentials
Client certificate

[7] Use client certificate

Time-gut (in seconds): 30

Chunk size (in KB): 1

Test Connection

OK Cancel Help

Figure 6-6. HTTP Connection Manager with download URL

Script Task

Now add a Script Task above the Data Flow Task and connect it with a precedence constraint. Edit the Script
Task. Give it a suitable name, like SCR - Download Products, and choose your Scripting Language. After that,
click the Edit Script. . . button to open the VSTA environment. You should see the flow shown in Figure 6-7.

152

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

' =) SCR - Download Products
-

i—)ﬁ DFT - Stage Products

Figure 6-7. Adding the Script Task

The Code

Now go to the Main method and add the following code:

public void Main()
{
// Get your newly added HTTP Connection Manager
Object HTTPConnectionManager =
Dts.Connections["WebProducts"].AcquireConnection(null);

// Create a new connection
HttpClientConnection WebProductConnection =
new HttpClientConnection(HTTPConnectionManager);

// Get the location from the Flat File Connection Manager
string DownloadlLocation = Dts.Connections["Products"].
AcquireConnection(Dts.Transaction).ToString();

try
{
// Logging start of download (optional)
bool fireAgain = true;
Dts.Events.FireInformation(0, "Download", "Downloading " +
WebProductConnection.ServerURL, string.Empty, 0, ref fireAgain);

// Download the file and replace the current CSV
WebProductConnection.DownloadFile(DownloadLocation, true);

// Logging end of download (optional)
Dts.Events.FireInformation(0, "Download", "Saved " + DownloadlLocation,

string.Empty, 0, ref fireAgain);

// Quit Script Task succesful
Dts.TaskResult = (int)ScriptResults.Success;

153

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

catch (Exception ex)

{
// Logging why download failed
Dts.Events.FireError(0, "Download", "Failed:

+ ex.Message, string.Empty, 0);

// Quit Script Task unsuccesful
Dts.TaskResult = (int)ScriptResults.Failure;

Here is theVB.Net code:

Public Sub Main()
' Get your newly added HTTP Connection Manager
Dim HTTPConnectionManager As [Object] = _
Dts.Connections("WebProducts").AcquireConnection(Nothing)

' Create a new connection
Dim WebProductConnection As New HttpClientConnection(HTTPConnectionManager)

' Get the location from the Flat File Connection Manager

Dim Downloadlocation As String = _
Dts.Connections("Products"). _
AcquireConnection(Dts.Transaction).ToString()

Try
' Logging start of download (optional)
Dim fireAgain As Boolean = True
Dts.Events.FireInformation(0, "Download", "Downloading " + _
WebProductConnection.ServerURL, String.Empty, 0, fireAgain)
' Download the file and replace the current CSV
WebProductConnection.DownloadFile(DownloadLocation, True)

' Logging end of download (optional)
Dts.Events.FireInformation(0, "Download", "Saved " & DownloadLocation, _
String.Empty, 0, fireAgain)
' Quit Script Task succesful
Dts.TaskResult = ScriptResults.Success
Catch ex As Exception
' Logging why download failed
Dts.Events.FireError(0, "Download", "Failed:
String.Empty, 0)

+ ex.Message, _

' Quit Script Task unsuccesful
Dts.TaskResult = ScriptResults.Failure
End Try
End Sub

154

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

The Results

Now close the Script Task and execute it to see the results.

Downloading the Latest File from an FTP Server

The FTP Task is an often-used task to download a specific file from an FTP server. But what if you want to
download the latest file from an FTP folder and you don’t know the exact name? This is not possible with
the out-of-the-box FTP task. For this example, you use a wildcard filter to select all the appropriate files, and
then loop through these files to determine the newest file. This example is for a Windows-based FTP server.
And if there are multiple files with the same maximum file date, you only get one.

Variables

In most cases, it’s preferable to use a connection manager to pass on login information to the script, but in
this case, you need a password, which you can’t extract from the FTP Connection Manager object because
it is a sensitive property. In this case, you will use variables (or parameters) to store the connection data
in. Make sure to remove the value from the password variable when you are ready. Replace its value with
configurations, otherwise the password will be visible in your package.

First, create five SSIS string variables and fill them with correct connection data from your own FRP
server. The names and example values are shown in Figure 6-8.

Variables

gOX B g

Name Scope Data type Value Expression

downloadPath FTPDownloadLast String d:\downloadfolder :
 ftpFolderPath FTPDownloadLast String ftp://ftp.yourcompany.com/ _“I
 ftpPassword FTPDownloadlLast String secret [_!
 ftpUser FTPDownloadlLast String youruser

EIE)

‘/ éftpWiIdcard FTPDownloadlLast String *.csv

Figure 6-8. SSIS string variables

Script Task

Add a Script Task to the Control Flow to download the latest file. Give it a suitable name, like SCR - Get
Latest FTP File. Next, edit it and add the five SSIS string variables as ReadOnlyVariables. See Figure 6-9.

155

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

DT

%, Control Flow | DataFlow | (Parameters | & EventHanders | Tg Package Explorer | % Execution Resuts

= 0 Script Task Editor 8 =
§ SCR - Get Latest FTP File
I N Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2010 or Visual C# 2010,
] and configure the task’s properties.
| =% | DFT-Stage FTP file
Seript 4 Script
General ScriptLanguage Microsoft Visual C# 2010
Expressions EntryPaint Main
ReadOnhyVariabl APath L pFolderPath,L tp d Use

ReadWriteVariables

p- . , .
Select Variables Lo [
Select one or more vanables.
a Name Type -
System: CreatorComputerM... Sting
System: CreatorName Sing

el User: dovmloadPath Siing

il User. fipFolderPath Sting _ |Ifof read-only variables.

& User: fpPassword Sting

| User: fipUser Sing 1

v User: fipWikdcard Sting [Edit Script...

System: IgnoreConfiguration... Boolean
System:InteractiveMode Boclean
il ot et Frime

Fi! m * [

Lok J(cmu]

oK][Cancel] |r Help

Figure 6-9. Script Task and its read-only variables

The Script

Now click the Edit Script. . . button to open the VSTA environment. First, add the extra namespaces to
shorten the code.

#region customNamespaces

using System.Globalization;

using System.IO;

using System.Text.RegularExpressions;
#endregion

And here is the VB.NET code:

#Region "customNamespaces"

Imports System.Globalization

Imports System.IO

Imports System.Text.RegularExpressions
#End Region

156

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

Now add the following code to your Main method; also add the two extra methods to your class.
The first custom method is for determining the latest file on your FTP server. Make sure that the
ListDirectoryDetails output format in that method is equal to yours; otherwise, you need to change the
datetime format. The second custom method is for downloading the file from your FTP server.

public void Main()

{
// String variable to store the ftp connection data
string ftpFolderPath = Dts.Variables["User::ftpFolderPath"].Value.ToString();
string ftpUser = Dts.Variables["User::ftpUser"].Value.ToString();
string ftpPassword = Dts.Variables["User::ftpPassword"].Value.ToString();
string ftpWildcard = Dts.Variables["User::ftpWildcard"].Value.ToString();
string downloadFolder = Dts.Variables["User::downloadPath"].Value.ToString();

try
{
// Determine latest file
string latestFile = GetlatestFile(ftpFolderPath, ftpUser, ftpPassword, ftpWildcard);

// Now you can either fill an SSIS string variable (see chapter 4) and use
// the FTP Task to download the file or you can use a piece of code to

// download it.

DownloadFile(latestFile, ftpUser, ftpPassword, downloadFolder);

// Succeed Script Task
Dts.TaskResult = (int)ScriptResults.Success;
}

catch (Exception ex)

// No file found
Dts.Events.FireError(0, "Most recent file", ex.Message + Environment.NewlLine +
ex.InnerException.Message, string.Empty, 0);

// Fail Script Task
Dts.TaskResult = (int)ScriptResults.Failure;
}
}

// Method to determine the latest file

private string GetlatestFile(string ftpFolderPath,
string ftpUser,
string ftpPassword,
string ftpWildcard)

// DateTime variable to check the highest date
DateTime highestDateTime = Convert.ToDateTime("1-1-1900");

// String variable to store the latest file
string fileWithHighestDate = "";

157

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

// Create an FTP Web Request
FtpWebRequest ftpRequest;
ftpRequest = (FtpWebRequest)FtpWebRequest.Create(ftpFolderPath);

// Provide credentials and set settings

ftpRequest.Credentials = new NetworkCredential(ftpUser, ftpPassword);
ftpRequest.UseBinary = true;

ftpRequest.UsePassive = true;

ftpRequest.KeepAlive = true;

// Specify the Type of FTP Request. This type
// returns a string containing file details.
// For Windows based FTP sites it looks like:

// 08-09-14 07:35PM 435279 fileA.csv
// 08-10-15 07:34PM 443808 fileB.csv
// 08-11-16 07:33PM 424118 fileC.csv
// 07-06-13 03:53PM <DIR> foldername

ftpRequest.Method = WebRequestMethods.Ftp.ListDirectoryDetails;

// Try to connect to the server

try

{
// Establish connection and return communication
FtpWebResponse ftpResponse;
ftpResponse = (FtpWebResponse)ftpRequest.GetResponse();

// Create stream and get FTP Server's Response stream
Stream ftpStream;
ftpStream = ftpResponse.GetResponseStream();

// Put stream in streamreader
StreamReader ftpReader = new StreamReader(ftpStream);

// Set the format of the datetime: 08-09-14 07:35PM
// Verify that your ftp server uses the same format
string dtFormat = "MM-dd-yy hh:mmtt";

CultureInfo ci = Culturelnfo.InvariantCulture;

// Read each line of the response and check
// which file is the most recent file
while (ftpReader.Peek() != -1)
{
// Fill variable with 1 line of response
string textLine = ftpReader.ReadlLine();

// If you want to check the row layout you could
// add something like this and comment out the
// rest of the code in and after the while loop:
// MessageBox.Show(textLine);

158

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

// Remove all duplicate spaces
textLine = Regex.Replace(textLine, @"\s+", " ");

// Split textlLine on space and fill array
string[] fileDetails = textLine.Split(" ".ToCharArray());

// Change wildcard into regex pattern
string wildcardPattern = "~" + Regex.Escape(ftpWildcard).Replace("*",
",*"),Replace("\\?", ll‘ll) + Il$ll;

// Create wildcard regular expression
Regex wildcardRegex = new Regex(wildcardPattern,
RegexOptions.IgnoreCase);

// Check if file matches wildcard and skip subfolders
if (wildcardRegex.IsMatch(fileDetails[3]) 8&

IfileDetails[2].Trim().ToLower().Equals("<dir>"))
{

// Compose filedatetime with date and time column
string fileDateTxt = fileDetails[0] + " " + fileDetails[1];
DateTime fileDate = DateTime.ParseExact(fileDateTxt, dtFormat, ci);

// Check if the current file is the most recent one

if (fileDate > highestDateTime)

{
// If it is, replace the most recent file variables
highestDateTime = fileDate;
fileWithHighestDate = fileDetails[3];

}

}
}

// Resource cleanup
ftpReader.Close();
ftpStream.Close();
ftpResponse.Close();
ftpRequest = null;

}

catch (Exception ex)

// Error in ftp response or in peak
throw new Exception("Error in ftp response or peak”, ex);

}

if (fileWithHighestDate.Equals(""))

{
// No file found
throw new Exception("No file found matching wildcard");

}

return ftpFolderPath + fileWithHighestDate;
}

159

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

// Method to download a file

private void DownloadFile(string ftpFilePath,
string ftpUser,
string ftpPassword,
string downloadFolder)

// Create an FTP Web Request
FtpWebRequest ftpRequest;
ftpRequest = (FtpWebRequest)FtpWebRequest.Create(ftpFilePath);

// Provide credentials and set settings

ftpRequest.Credentials = new NetworkCredential(ftpUser, ftpPassword);
ftpRequest.UseBinary = true;

ftpRequest.UsePassive = true;

ftpRequest.KeepAlive = true;

// Specify the Type of FTP Request.
ftpRequest.Method = WebRequestMethods.Ftp.DownloadFile;

// Try to connect to the server

try

{
// Establish connection and return communication
FtpWebResponse ftpResponse;
ftpResponse = (FtpWebResponse)ftpRequest.GetResponse();

// Create stream and get FTP Server's Response stream
Stream ftpStream;
ftpStream = ftpResponse.GetResponseStream();

// Determine filename in FTP path
string downloadFile = Path.Combine(downloadFolder,
Path.CGetFileName(ftpFilePath));

// Specify the size of the buffer
int bufferSize = 2048;

// Create filestream to save the FTP file in
FileStream localFileStream = new FileStream(downloadFile, FileMode.Create);

// Create buffer to download data
byte[] byteBuffer = new byte[bufferSize];

// Integer variable to store the number of read bytes in
int bytesRead = ftpStream.Read(byteBuffer, 0, bufferSize);

// Start downloading until all bytes are downloaded
while (bytesRead > 0)
{

// Write current buffer to local file
localFileStream.Write(byteBuffer, 0, bytesRead);

160

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

// Download next buffer
bytesRead = ftpStream.Read(byteBuffer, 0, bufferSize);

}

// Resource cleanup
localFileStream.Close();
ftpStream.Close();
ftpResponse.Close();
ftpRequest = null;

}

catch (Exception ex)

// Error in ftp response or in peak
throw new Exception("Error in ftp response or peak”, ex);

}
}

This is the VB.NET code:

Public Sub Main()

' String variable to store the ftp connection data

Dim ftpFolderPath As String = _
Dts.Variables("User::ftpFolderPath").Value.ToString()

Dim ftpUser As String = Dts.Variables("User::ftpUser").Value.ToString()

Dim ftpPassword As String = _
Dts.Variables("User::ftpPassword").Value.ToString()

Dim ftpWildcard As String = _
Dts.Variables("User::ftpWildcard").Value.ToString()

Dim downloadFolder As String = _
Dts.Variables("User::downloadPath").Value.ToString()

Try
' Determine latest file
Dim latestFile As String = GetlatestFile(ftpFolderPath, _
ftpUser, _
ftpPassword, _

ftpWildcard)

' Now you can either fill an SSIS string variable (see chapter 4) and use
' the FTP Task to download the file or you can use a piece of code to

' download it.

DownloadFile(latestFile, ftpUser, ftpPassword, downloadFolder)

" Succeed Script Task

Dts.TaskResult = ScriptResults.Success

161

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

Catch ex As Exception
' No file found
Dts.Events.FireError(0, "Most recent file", ex.Message & _
Environment.NewLine & ex.InnerException.Message, _
String.Empty, 0)
' Fail Script Task
Dts.TaskResult = ScriptResults.Failure
End Try
End Sub

' Method to determine the latest file

Private Function GetlLatestFile(ftpFolderPath As String, ftpUser As String, ftpPassword As
String, ftpWildcard As String) As String

DateTime variable to check the highest date

Dim highestDateTime As DateTime = Convert.ToDateTime("1-1-1900")

String variable to store the latest file
Dim fileWithHighestDate As String = ""

' Create an FTP Web Request
Dim ftpRequest As FtpWebRequest
ftpRequest = DirectCast(FtpWebRequest.Create(ftpFolderPath), FtpWebRequest)

' Provide credentials and set settings

ftpRequest.Credentials = New NetworkCredential(ftpUser, ftpPassword)
ftpRequest.UseBinary = True

ftpRequest.UsePassive = True

ftpRequest.KeepAlive = True

Specify the Type of FTP Request. This type
returns a string containing file details.
For Windows based FTP sites it looks like:

' 08-09-14 07:35PM 435279 fileA.csv
' 08-10-15 07:34PM 443808 fileB.csv
' 08-11-16 07:33PM 424118 fileC.csv
' 07-06-13 03:53PM <DIR> foldername

ftpRequest.Method = WebRequestMethods.Ftp.ListDirectoryDetails

" Try to connect to the server

Try
' Establish connection and return communication

Dim ftpResponse As FtpWebResponse

ftpResponse = DirectCast(ftpRequest.GetResponse(), FtpWebResponse)

' Create stream and get FTP Server's Response stream

Dim ftpStream As Stream

ftpStream = ftpResponse.GetResponseStream()

' Put stream in streamreader

Dim ftpReader As New StreamReader(ftpStream)

162

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

' Set the format of the datetime: 08-09-14 07:35PM
Dim dtFormat As String = "MM-dd-yy hh:mmtt"
Dim ci As CultureInfo = CultureInfo.InvariantCulture
' Read each line of the response and check
which file is the most recent file
While ftpReader.Peek() <> -1

' Fill variable with 1 line of response

Dim textLine As String = ftpReader.ReadlLine()

If you want to check the row layout you could
add something like this and comment out the
rest of the code in and after the while loop:
MessageBox. Show(textLine);

Remove all duplicate spaces

textLine = Regex.Replace(textLine, "\s+", " ")

' Split textLine on space and fill array

Dim fileDetails As String() = textLine.Split(" ".ToCharArray())

' Change wildcard into regex pattern

Dim wildcardPattern As String = "*" & _
Regex.Escape(ftpWildcard).Replace("*", ".*") _
.Replace("\?", n‘u) & ||$||

' Create wildcard regular expression

Dim wildcardRegex As New Regex(wildcardPattern, RegexOptions.IgnoreCase)

' Check if file matches wildcard and skip subfolders
If wildcardRegex.IsMatch(fileDetails(3)) AndAlso _
Not fileDetails(2).Trim().ToLower().Equals("<dir>") Then
' Compose filedatetime with date and time column
Dim fileDateTxt As String = fileDetails(0) & " " & fileDetails(1)
Dim fileDate As DateTime = DateTime.ParseExact(fileDateTxt, _
dtFormat, ci)
' Check if the current file is the most recent one
If fileDate > highestDateTime Then
' If it is, replace the most recent file variables
highestDateTime = fileDate
fileWithHighestDate = fileDetails(3)
End If
End If
End While

' Resource cleanup
ftpReader.Close()
ftpStream.Close()
ftpResponse.Close()
ftpRequest = Nothing

163

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

Catch ex As Exception

' Error in ftp response or in peak

Throw New Exception("Error in ftp response or peak”, ex)
End Try

If fileWithHighestDate.Equals("") Then

' No file found

Throw New Exception("No file found matching wildcard")
End If

Return ftpFolderPath & fileWithHighestDate
End Function

' Method to download a file

Private Sub DownloadFile(ftpFilePath As String, ftpUser As String, ftpPassword As String,
downloadFolder As String)

Create an FTP Web Request

Dim ftpRequest As FtpWebRequest

ftpRequest = DirectCast(FtpWebRequest.Create(ftpFilePath), FtpWebRequest)

' Provide credentials and set settings

ftpRequest.Credentials = New NetworkCredential(ftpUser, ftpPassword)
ftpRequest.UseBinary = True

ftpRequest.UsePassive = True

ftpRequest.KeepAlive = True

' Specify the Type of FTP Request.

ftpRequest.Method = WebRequestMethods.Ftp.DownloadFile

" Try to connect to the server

Try

' Establish connection and return communication

Dim ftpResponse As FtpWebResponse

ftpResponse = DirectCast(ftpRequest.GetResponse(), FtpWebResponse)

' Create stream and get FTP Server's Response stream

Dim ftpStream As Stream

ftpStream = ftpResponse.GetResponseStream()

' Determine filename in FTP path

Dim downloadFilePath As String = Path.Combine(downloadFolder, _
Path.GetFileName(ftpFilePath))

' Specify the size of the buffer

Dim bufferSize As Integer = 2048

' Create filestream to save the FTP file in
Dim localFileStream As New FileStream(downloadFilePath, FileMode.Create)

' Create buffer to download data
Dim byteBuffer As Byte() = New Byte(bufferSize - 1) {}

164

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

' Integer variable to store the number of read bytes in
Dim bytesRead As Integer = ftpStream.Read(byteBuffer, 0, bufferSize)
' Start downloading until all bytes are downloaded
While bytesRead > 0
" Write current buffer to local file
localFileStream.Write(byteBuffer, 0, bytesRead)
' Download next buffer
bytesRead = ftpStream.Read(byteBuffer, 0, bufferSize)
End While

' Resource cleanup
localFileStream.Close()
ftpStream.Close()
ftpResponse.Close()
ftpRequest = Nothing
Catch ex As Exception
' Error in ftp response or in peak
Throw New Exception("Error in ftp response or peak”, ex)
End Try
End Sub

The Results

Now close the Script Task and execute it to see the results. The newest file that meets the filter will be
downloaded. If you want a Data Flow Task behind it to process that newest file, you need to know the file
name and path in the connection manager. The easiest way to do this is to write that path to an SSIS string
variable in the Main method; something like this:

Dts.Variables["NewestFile"].Value = Path.Combine(downloadFolder, latestFile);

And here is the VB.NET code:

Dts.Variables("NewestFile").Value = Path.Combine(downloadFolder, latestFile)

Downloading a File from an SFTP Server

Secure FTP is not supported by the SSIS FTP Task, and it isn’t even supported by the .NET Framework. So
for this example you need to use a third-party SFTP library in the Script Task. There are plenty commercial
libraries available, but for this example, you will use the SSH.NET library from CodePlex
(http://sshnet.codeplex.com).

CodePlex is Microsoft’s open source project hosting site. Although all projects are open source, check
the project licenses before you start using an assembly or a piece of code. Some projects have limitations on
commercial use.

165

http://sshnet.codeplex.com/

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

Download and Install

Goto http://sshnet.codeplex.comand download the appropriate SSHNet Binary (SSHNet .NET 3.5 Binary
for SSIS 2008 and SSHNet .NET 4.0 Binary for SSIS 2012 and later). Via the Visual Studio Command prompt,
you can use the gacutil to add this library to the Global Assembly Cache: gacutil -i Renci.SshNet.dll
(see Chapter 4). Afterward, it is ready to be used in the Script Task.

Variables

In most cases, it’s preferable to use a connection manager, but since there is no SFTP Connection Manager
available, you need to use variables (or parameters). For this example, you will use variables to store the
connection data. Make sure to remove sensitive data, such as passwords and keys, from the variable values
when you are ready. Replace these values with configurations; otherwise, they will be visible in your
package.

First, create five SSIS string variables and fill them with the correct connection data. Table 6-1 describes
the variables and their usage. Figure 6-10 shows them populated with data.

Table 6-1. Variables for holding connection data

Name Data Type Description
sftpServer String Contains the name or IP address of the SFTP server
sftpUser String Contains the username that has access on the SFTP server
sftpPassword String The corresponding password
sftpFilePath String The file path of the file you need to download: /export/source.zip
downloadPath String The path of the local download folder: d: \downloadfolder
Variables > 1 x
e w Ga @
Name [scope [Datatype [vake [Expression |
& | downloadPath SFTP String d:\downloadfolder Jeal
& sfipFilePath SFTP String Jexportfsource.zip o]
& sftpPassword SFTP String S3CR3T! e |
& sfipserver SFTP String 192.168.230.1 sl
& sfipuser SFTP String Reza e |

Figure 6-10. Variable for SFTP connection: Download

Script Task

Add a Script Task to the Control Flow to download the file from the SFTP server. Give it a suitable name, such
as SCR - Download SFTP File. Afterward, edit it and add the five SSIS string variables as ReadOnlyVariables.
Figure 6-11 shows the dialog from wich to add the variables.

166

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

GRSl g Data Flow @ Parameters [E] EventHandlers ‘= Package Explorer

= il
-:) SCR - Download SFTP File X
5 = Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012
$ Jy or Visual C# 2012, and configure the task’s properties.
Saipt B Script
General scriptLanguage Microsoft Visual C# 2012
Expressions EntryPoint Main
ReadOnlyVariables User:downloadPath,U: ftpFilePath,User:

ReadWriteVariables

ReadWriteVariables
Spedifies a cor D i list of read fwrite variabl

Edit Saipt... |

Figure 6-11. Add variables for read-only lock

Add Reference

Edit the Script Task and add a new reference to the Renci.SshNet.dl1 assembly located in the Global
Assembly Cache (GAC) (see Chapter 4 for more information). The location could vary per assembly version,
but is should look something like this:
C:\Windows\Microsoft.NET\assembly\GAC_MSIL\Renci.SshNet\v4.0 2014.4.6.0__1cee9f8bde3db106\

Figure 6-12 shows reference in place in the Reference Manager dialog.

167

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

—mww aE
B 2 @l e-adp +B

Search Soution Exglorer (Ci+; P~
= ¥ ST_c05440310475451 29045c0390299601
2l
b B Properties

8 Mcrosoft SofServer ManagediTS

8 Mirosoft SoServer SaiptTask
8 flend Sshivet

8 System

8 System.Data

8 System Windows Forms
*8 System sl

i sootTask

©* Seriptain.ce

Figure 6-12. Adding reference to SFTP assembly (C#)

Tip Are you using Visual Studio 2010 or older? Don’t forget to press the Save All button after adding a
reference; otherwise, that reference will be gone the next time you open the Script Task.

The Code

Now click the Edit Script. . . button to open the VSTA environment. First, add the extra namespaces to
shorten the code.

#iregion customNamespaces
using System.IO;

using Renci.SshNet;
#endregion

And here is the VB.NET code:
#Region "customNamespaces"
Imports System.IO

Imports Renci.SshNet
#End Region

168

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

Then add the following code to your Main method:

public void Main()

{
// Store values of SSIS variables in local variable
string sftpServer = Dts.Variables["User::sftpServer"].Value.ToString();
string sftpUser = Dts.Variables["User::sftpUser"].Value.ToString();
string sftpPassword = Dts.Variables["User::sftpPassword"].Value.ToString();
string sftpFilePath = Dts.Variables["User::sftpFilePath"].Value.ToString();
string downloadPath = Dts.Variables["User::downloadPath"].Value.ToString();
try
{
// Specify SFTP Connection
using (SftpClient mySftpClient = new SftpClient(sftpServer,
sttpUser,
sftpPassword))
{
// Connect to server
mySftpClient.Connect();
// Combine the remote filename and the download path
string localFilePath = Path.GetFileName(sftpFilePath);
localFilePath = Path.Combine(downloadPath, localFilePath);
// Create a file stream for the local file
using (Stream localFile = File.OpenWrite(localFilePath))
{
// Download the remote file and store it in the filestream
mySftpClient.DownloadFile(sftpFilePath, localFile);
// Cleanup
localFile.Dispose();
}
// Disconnect and Cleanup
mySftpClient.Disconnect();
mySftpClient.Dispose();
}
// Succeed Script Task
Dts.TaskResult = (int)ScriptResults.Success;
}
catch (Exception ex)
{
// Fire error message
Dts.Events.FireError(-1, "SFTP Download", ex.Message, string.Empty, 0);
// Fail Script Task
Dts.TaskResult = (int)ScriptResults.Failure;
}
}

169

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

Here is the VB.NET code:

Public Sub Main()

' Store values of SSIS variables in local variable

Dim sftpServer As String = Dts.Variables("User::sftpServer").Value.ToString()

Dim sftpUser As String = Dts.Variables("User::sftpUser").Value.ToString()

Dim sftpPassword As String = _
Dts.Variables("User::sftpPassword").Value.ToString()

Dim sftpFilePath As String = _
Dts.Variables("User::sftpFilePath").Value.ToString()

Dim downloadPath As String = _
Dts.Variables("User::downloadPath").Value.ToString()

Try
' Specify SFTP Connection and connect to server
Using mySftpClient As New SftpClient(sftpServer, sftpUser, sftpPassword)
mySftpClient.Connect()

' Combine the remote filename and the download path
Dim localFilePath As String = Path.GetFileName(sftpFilePath)
localFilePath = Path.Combine(downloadPath, localFilePath)

' Create a file stream for the local file
Using localFile As Stream = File.OpenWrite(localFilePath)

' Download the remove file and store it in the filestream
mySftpClient.DownloadFile(sftpFilePath, localFile)

' Cleanup
localFile.Dispose()
End Using
' Disconnect and Cleanup
mySftpClient.Disconnect()
mySftpClient.Dispose()
End Using

' Succeed Script Task
Dts.TaskResult = ScriptResults.Success
Catch ex As Exception
' Fire error message
Dts.Events.FireError(-1, "SFTP Download", ex.Message, String.Empty, 0)

' Fail Script Task
Dts.TaskResult = ScriptResults.Failure
End Try
End Sub

170

Upload

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

If you want to upload files via SFTP (instead of downloading), then you need to change a couple of variables

and, of course, the code. The rest of the steps are similar. Table 6-2 describse the variables needed, and
Figure 6-13 shows them populated.

Table 6-2. Descriptions of the variables for SFTP connections

Name Data Type Description

sftpServer String Contains the name or IP address of the SFTP server
sftpUser String Contains the username that has access on the SFTP server
sftpPassword String The corresponding password

sftpFolderPath String
localFilePath String

The folder path of the SFTP server for storing the files: /export/

The path of the local file which you want to upload: d: \somefile.txt

=

Name [scope [Datatype [value Expression

@ | locaFiepath sFTP String d:\exportlsales.csv (=
& sfiprolderPath SFTP String fsales] =
& sfipPassword SFTP String Confidant1al =i
@ sftpServer SFTP String 192.168,230.2 o |
@@ sftpUser SFTP Siring Joost Jo

Figure 6-13. Variable for SFTP connection: Upload

The Code: Upload

First, add the extra namespaces to shorten the code.

#region customNamespaces
using System.IO;

using Renci.SshNet;
#endregion

This is the VB.NET code:

#Region "customNamespaces"
Imports System.IO

Imports Renci.SshNet

#End Region

171

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

Now you can add the following code to the Main method:

public void Main()

{
// Store values of SSIS variables in local variable
string sftpServer = Dts.Variables["User::sftpServer"].Value.ToString();
string sftpUser = Dts.Variables["User::sftpUser"].Value.ToString();
string sftpPassword = Dts.Variables["User::sftpPassword"].Value.ToString();
string sftpFolderPath = Dts.Variables["User::sftpFolderPath"].Value.ToString();
string localFilePath = Dts.Variables["User::localFilePath"].Value.ToString();

try
{
// Specify SFTP Connection
using (SftpClient mySftpClient = new SftpClient(sftpServer, sftpUser, sftpPassword))

// Connect to server
mySftpClient.Connect();

// Stream local file
using (Stream localFile = File.OpenRead(localFilePath))

// Combine the local filename and the SFTP folder path
string remoteFilePath = Path.GetFileName(localFilePath);
remoteFilePath = Path.Combine(sftpFolderPath, remoteFilePath);

// Upload local file to SFTP Server (and overwrite)
mySftpClient.UploadFile(localFile, remoteFilePath, true);

// Cleanup
localFile.Dispose();
}
// Disconnect and Cleanup
mySftpClient.Disconnect();
mySftpClient.Dispose();

}

// Succeed Script Task
Dts.TaskResult = (int)ScriptResults.Success;

}

catch (Exception ex)

{
// Fire error message
Dts.Events.FireError(-1, "SFTP Upload", ex.Message, string.Empty, 0);
// Fail Script Task
Dts.TaskResult = (int)ScriptResults.Failure;

}

}

172

CHAPTER 6 ©* WORKING THROUGH THE INTERNET AND THE WEB

This is the VB.NET code:

Public Sub Main()
' Store values of SSIS variables in local variable
Dim sftpServer As String = Dts.Variables("User::sftpServer").Value.ToString()
Dim sftpUser As String = Dts.Variables("User::sftpUser").Value.ToString()
Dim sftpPassword As String = Dts.Variables("User::sftpPassword").Value.ToString()
Dim sftpFolderPath As String = Dts.Variables("User::sftpFolderPath").Value.ToString()
Dim localFilePath As String = Dts.Variables("User::localFilePath").Value.ToString()

Try
' Specify SFTP Connection

Using mySftpClient As New SftpClient(sftpServer, sftpUser, sftpPassword)
' Connect to server
mySftpClient.Connect()

Stream local file
Using localFile As Stream = File.OpenRead(localFilePath)

' Combine the local filename and the SFTP folder path

Dim remoteFilePath As String = Path.GetFileName(localFilePath)
remoteFilePath = Path.Combine(sftpFolderPath, remoteFilePath)
' Upload local file to SFTP Server (and overwrite)
mySftpClient.UploadFile(localFile, remoteFilePath, True)

' Cleanup
localFile.Dispose()
End Using
' Disconnect and Cleanup
mySftpClient.Disconnect()
mySftpClient.Dispose()
End Using
" Succeed Script Task
Dts.TaskResult = ScriptResults.Success
Catch ex As Exception
' Fire error message
Dts.Events.FireError(-1, "SFTP Upload", ex.Message, String.Empty, 0)

' Fail Script Task
Dts.TaskResult = ScriptResults.Failure
End Try
End Sub

173

CHAPTER 6 © WORKING THROUGH THE INTERNET AND THE WEB

The Results

Now close the Script Task and execute it to see the results. In the upload example, you could also replace the
localFilePath variable with a connection manager if you are already using it; for example, a data flow. See
Chapter 4 for connection manager code examples.

Summary

In this chapter you learned how to use the Script Task for web-based tasks, where the built-in tasks simply
come up short. You also experienced your first example of a third-party assembly.

174

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 7

Working with Web Services
and XML

According to World Wide Web Consortium (W3C), a web service is a software system designed to support
interoperable machine-to-machine interaction over a network. Furthermore, W3C specifies that a web
service must have a described interface and that other systems interact with this web service using Simple
Object Access Protocol (SOAP) typically over HTTP using XML serialization. This very short introduction
clearly describes that you don’t have a web service without XML. In SSIS you can consume web services using
scripting tasks and the .NET Framework, namely by using .NET and Windows Communication Foundation.

Windows Communication Foundation

Windows Communication Foundation (WCF) is a framework for building service-oriented applications.
WCF makes the development and usage of web services easier because it offers a manageable approach to
the creation of web services and web services clients.

WCEF offers the following features:

e Service orientation

e Security

e Interoperability

e Multiple message patterns

e Service metadata

e Data contracts

e Multiple transports and encodings
e Durable, reliable, and queued messages
e Transactions

e Support for REST and AJAX

e Extensibility

A lot has already been written about WCF; it is a very vast subject. For more information, you can read
about it on MSDN at https://msdn.microsoft.com/en-us/library/ms730846(v=vs.110).aspx or read
Pro WCF 4 by Nishith Pathak (Apress, 2011).

175

https://msdn.microsoft.com/en-us/library/ms730846(v=vs.110).aspx

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

Web Services

In SSIS there is a built-in Web Service Task that you can use for calling web services. The component is pretty
straightforward. You can save the result to a file or a variable, as shown in Figure 7-1.

Package.dtsx [Design]* + X—
gu DataFlow g Paramet

@ cet weather

i

Figure 7-1. The built-in Web Service Task

As you've seen many times in the previous chapters, sometimes the capabilities of the built-in tasks in
SSIS are not enough; this is when you need the flexibility and power of scripting.

Let’s assume that you want to call a WCF web service that is communicating over NetTCP rather
than HTTP. NetTCP offers the advantage of binary-encoded communication and interprocess and across-
computer communication over the TCP protocol. This option is not available from within the standard Web
Service Task.

Figure 7-2 is a schema that shows which protocol to use and when. All the cases where HTTP is not an
option, you need to use a Script Task Component to call your web service.

— terop? — Queued? Yes—» NetMSMQBinding

Yés - Yes

2 b 4
Yl?s
Yes

WsDualHttpBinding NetTCPBlndlng

Figure 7-2. WCF protocol chart

176

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

Creating Variables
You need the following variables to get started:
e City of type string to store the city name
¢ Country of type string to store the country name
¢ ResultString of type string to store the XML result from the web service call

e WeatherServiceURL is also a string in the web service URL. The main advantage
of saving the web service URL address in a variable is that you are able to change
it without having to open the package. For example, when the web service (or the
package) goes from development to production, you might want to control which
address to use; one way to do this is to use parameters or to configure it dynamically.

The Script

Create a new Script Task Component and call it SCR_Get Weather. Add the four variables created previously.
City, Country, and ResultString should be ReadWrite and the WeatherServiceURL should be ReadOnly.

Service Reference

When working with web services, you need to generate a contract. This is done by adding a service reference
in the VSTA project. The service reference generates the interface needed to call the web service with the
methods and types available for the call.

Note This is only available from SSIS on SQL Server 2008 and later. Prior to that, VSTA didn’t support
adding service references.

There are several things that you need to be aware of when you add a service reference. In the following
example, you use a reference to the weather web service available at http://www.webservicex.net/
globalweather.asmx?WSDL.

Initially, there is no Service Reference folder—just the Reference folder. You have to add a service
reference for the folder to show up. To add a reference to a web service, right-click the Reference folder in
the VSTA Solution Explorer and choose Add Service Reference. This opens the dialog window shown in
Figure 7-3.

177

http://www.webservicex.net/globalweather.asmx?WSDL
http://www.webservicex.net/globalweather.asmx?WSDL

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

To see a list of available services on a specific server, enter a service URL and click b browse for available
services, click Discover.

Address:

htt:_;’_.r'\,-;u.vw,webservicex.netx’[obalweather.asmx?WSDL VH Go ‘ ‘ lDischer I'[

Services: Operations:
4 ®:® GlobalWeather @ GetCitiesByCountry
*0 GlobalWeatherHttpGet ® GetWeather
*9 GlobalWeatherHttpPost
|*$ GlobalWeatherSoap

1 service(s) found at address "http://www.webservicex.net/globalweather.asmx?WSDL'.

Namespace:
l GetWeather

Figure 7-3. Add Service Reference dialog

Here are the steps to complete in the Add Service Reference dialog shown in Figure 7-3.
1. Enter the address of the web service you want to connect to.
2. InServices, since you are using WCEF, select the SOAP implementation.
3. In Operations, you have two methods to choose from.
4

Enter a namespace, which is the name that you will use when calling the service
from your script.

Once the dialog is filled out, press the OK button. A few things are happening behind the scenes: VSTA
generates the metadata necessary to use the web service. The methods, properties, signature, interfaces, and
all the artifacts necessary to call the web service are autogenerated.

Note Since it is autogenerated code, you shouldn't alter it, because the changes will be lost if you refresh
the service reference.

178

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

If you want to find out how the metadata is generated and learn the intrinsic nature of the web service,
you have a look at the autogenerated files. In most cases, this is not necessary because VSTA provides the
necessary IntelliSense to call the service. Together with the code files, an app.config file is added to the
project with the information needed for the contract and the binding to the web service.

The following is the app.config for the reference to the weather web service:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<bindings>
<basicHttpBinding>
<binding name="GetCitiesByCountry" />
</basicHttpBinding>
</bindings>
<client>
<endpoint address="http://www.webservicex.net/globalweather.asmx"
binding="basicHttpBinding" bindingConfiguration="GlobalWeatherSoap"
contract="GetCitiesByCountry.GloballWeatherSoap" name="GlobalWeatherSoap" />
</client>
</system.serviceModel>
</configuration>

Custom Namespace

System.ServiceModel is the namespace where all the WCF implementation lives. You need to add that to the
namespace region; or even better, add a custom namespace region, as follows:

#iregion CustomNamespace

using System.ServiceModel;

using System.Xml;

using ST 1211e492c97246a9947e241a0234dceb.GetWeather;
using System.IO;

#endregion

The System.ServiceModel was first introduced in .NET Framework 3.0.

Note If you are working with an earlier version of the .NET Framework, you need to manually generate
the WSDL, the .disco file, the XSD schemas, and more artifacts. For more information on how to do this, go to
https://msdn.microsoft.com/en-us/library/7h3ystb6%28v=vs.80%29.aspx.

Config or Not Config

After having generated the code, things get a bit more complicated because there are two ways of calling
WCF web services. Now you have two options for configuring and debugging: modify a bunch of .config files,
or do the configuration in C#/VB.NET. The first one is the most portable, whereas the second one is best
suited for debugging. Both solutions are described next.

179

http://www.webservicex.net/globalweather.asmx
https://msdn.microsoft.com/en-us/library/7h3ystb6%28v=vs.80%29.aspx

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

Solution 1: Modifying .config Files

This solution involves two steps.

Changes Required for Debugging

When debugging, you need to modify the DtsDebugHost.exe.Config file. DtsDebugHost . exe is the file used
by SSDT when executing a package in debug mode. Therefore, its .config file needs to be modified to reflect
the changes made to the app.config in the VSTA project. The file can be found in the 64-bits folder and

the 32-bits folder. SSDT is only 32-bits, but the debugger supports both modes, making things even more
confusing. The Run64BitRuntime can be changed in the Debugging pane of the project properties. On an
SQL Server 2014 installation, the file is located at C: \Program Files\Microsoft SQL Server\120\DTS\Binn.

Changes Required After Debugging Is Done

This section should probably be called “Where is my app.config?” because you might need to change several
more files, depending on how you are calling your packages.

e DTExec.exe.config: The .config file to the stand-alone DTExec.exe application used
for calling packages. It has both a 32-bits and a 64-bits version; in SQL Server 2014 it
is found in C: \ProgramFiles\MicrosoftSQLServer\120\DTS\Binn.

e DtsHost.exe.config: The file used by the SQL Server Agent when it is calling a
package. There is a 32-bits version and a 64-bits version of the file. On SQL Server 2014,
itis typically located at C: \ProgramFiles\MicrosoftSQLServer\120\DTS\Binn.

e DTExecUI.exe.config: The file used by the DTExec.exe UL It is also typically located
in C:\ProgramFiles\MicrosoftSQLServer\120\DTS\Binn on an SQL Server 2014
installation.

e ISServer.exe.config: The file used by SSISDB and ISServer.exe when using the
package deployment model and executing the package from SSMS. The file is found
in C:\Program Files\Microsoft SQL Server\120\DTS\Binn.

As you can imagine, it can be pretty tough to keep all of those files up-to-date.
Table 7-1 lists all the files and where to find them.

Table 7-1. .config Files and Their Locations

File Name 32-bit 64-bit
DtsDebugHost.exe.config C:\Program Files (x86)\Microsoft SQL C:\Program Files\Microsoft SQL
Server\120\DTS\Binn Server\120\DTS\Binn
DTExec.exe.config C:\Program Files (x86))\Microsoft SQL C:\Program Files\Microsoft SQL
Server\120\DTS\Binn Server\120\DTS\Binn
DtsHost.exe.config C:\Program Files (x86))\Microsoft SQL C:\Program Files\Microsoft SQL
Server\120\DTS\Binn Server\120\DTS\Binn
ISServer.exe.config C:\Program Files (x86))\Microsoft SQL C:\Program Files\Microsoft SQL
Server\120\DTS\Binn Server\120\DTS\Binn

180

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

Note The folder named 120 is for SQL Server 2014, 110 is for SQL Server 2012, and 100 is for
SQL Server 2008.

This brings you to solution 2 for implementing web service calls in Script Tasks.

Solution 2: The In-Code Method

With this method, you don’t need to change a single .config file. It is also an easy way to figure out how web
services are configured and called without needing to keep several .config files in sync and up-to-date. The
only downside is that you need to recompile the script should the service change its endpoint address or
authentication method.

The code is basically the C# or VB.NET representation of what is described in the .config file. The code
for the GetWeather application is shown later.

The Code

Note The following code snippets show different parts of the script. The whole script is shown further
down; it is also available in the Chapter 7 source code.

The Channel Factory type to use is of the interface generated when adding a reference to the web
service. In this case, it is the GlobalWeatherSoap public interface.

//Create a Channel Factory with the type of the

//Web Service.

ChannelFactory<GlobalWeatherSoap> channelFactory = null;
And here it is in VB.NET:

'Create a ChannelFactory of the right type
Dim channelFactory As ChannelFactory(Of GlobalWeatherSoap) = Nothing

You also need a variable to store the endpoint for later usage.
EndpointAddress ep = null;

And here it is in VB.NET:
Dim ep As EndpointAddress = Nothing

To call a web service, you need an endpoint address, which is basically the address that you used when
adding the service reference. You are using a variable for more flexibility.

//Specify what the address is
string epAdr = "http://www.webservicex.net/globalweather.asmx";

181

http://dx.doi.org/10.1007/978-1-4842-0638-6_7
http://www.webservicex.net/globalweather.asmx

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

Here itisin VB.NET:

'Specify what the address is
Dim epAdr As String = "http://www.webservicex.net/globalweather.asmx"

After this, you can start specifying the binding to use and create the endpoint to be used with the
ChannelFactory:

//Get the right binding
BasicHttpBinding httpb = new BasicHttpBinding();
channelFactory = new ChannelFactory<GloballeatherSoap>(httpb);

//The necessary endpoint with our address
ep = new EndpointAddress(epAdr);

Here itisin VB.NET:

'Get the right binding
Dim httpb As New BasicHttpBinding()
channelFactory = New ChannelFactory(Of GlobalWeatherSoap)(httpb)

'The necessary endpoint with our address
ep = New EndpointAddress(epAdr)

Once you have the elements ready, you are ready for the important part of the web service: calling the
service itself and getting the result.

//Ready to create the representation of the web svc
GlobalWeatherSoap weatherSvcObj = channelFactory.CreateChannel(ep);
//Getting some geographic info about a country

string result = weatherSvcObj.GetCitiesByCountry("France");

//Save the result in a variable for later use.

Dts.Variables["ResultString"].Value = result;

And here it is in VB.NET:

'The necessary endpoint with our address

'Ready to create the representation of the web svc

Dim weatherSvcObj As GlobalWeatherSoap = channelFactory.CreateChannel(ep)
'Getting some geographic info about a country

Dim result As String = weatherSvcObj.GetCitiesByCountry("France")

'Save the result in a variable for later use.
Dts.Variables("ResultString").Value = result

Since a web service usually isn’t something that is under your control, it is a really good idea to be ready
to handle errors, which can happen many places along the lines to the endpoint. So a try-catch is very
necessary here.

The following is the entire Main method in C#:

//Create a ChannelFactory of the right type - a using is necessary to use the service
reference in the code
// in our case it is :

182

http://www.webservicex.net/globalweather.asmx

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

// using ST_751el10ef586a4cd9ac45c6dic84c526c.CetWeather;
ChannelFactory<GlobalWeatherSoap> channelFactory = null;
EndpointAddress ep = null;

string City = Dts.Variables["City"].Value.ToString();
string Country = Dts.Variables["Country"].Value.ToString();

//Specify what the address is
string epAdr = Dts.Variables["WeatherServiceURL"].Value.ToString();
try
{
//Get the right binding
BasicHttpBinding httpb = new BasicHttpBinding();
channelFactory = new ChannelFactory<GlobalWeatherSoap>(httpb);

//The necessary endpoint with our address
ep = new EndpointAddress(epAdr);

//Ready to create the representation of the web svc
GlobalWeatherSoap weatherSvcObj = channelFactory.CreateChannel(ep);
//Getting some geographic info about a country

string result = weatherSvcObj.GetWeather(City, Country);

////make sure that you are dealing with an XML document
//¥XmlDocument doc = new XmlDocument();
//doc.LoadXml(result);

ValidateXML(result);
//Save the result in a variable for later use.
Dts.Variables["ResultString"].Value = result;

MessageBox.Show(result);

}

catch (Exception ex)

{
Dts.TaskResult = (int)ScriptResults.Failure;

throw ex;

And this is itin VB.NET:

'Create a ChannelFactory of the right type - a using is necessary to use the service
reference in the code

' in our case it is :

' using ST_751e10ef586a4cd9ac45c6dic84c526¢.Getheather;

Dim channelFactory As ChannelFactory(Of GlobalWeatherSoap) = Nothing

Dim ep As EndpointAddress = Nothing

Dim City As String = Dts.Variables("City").Value.ToString()
Dim Country As String = Dts.Variables("Country").Value.ToString()

183

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

'Specify what the address is
Dim epAdr As String = Dts.Variables("WeatherServiceURL").Value.ToString()
Try

'Get the right binding

Dim httpb As New BasicHttpBinding()

channelFactory = New ChannelFactory(0Of GlobalWeatherSoap)(httpb)

'The necessary endpoint with our address
ep = New EndpointAddress(epAdr)

'Ready to create the representation of the web svc

Dim weatherSvcObj As GlobalWeatherSoap = channelFactory.CreateChannel(ep)
'Getting some geographic info about a country

Dim result As String = weatherSvcObj.GetWeather(City, Country)

/make sure that you are dealing with an XML document
'XmlDocument doc = new XmlDocument();
"doc.LoadXml(result);

ValidateXML(result)
'Save the result in a variable for later use.
Dts.Variables("ResultString").Value = result

MessageBox. Show(result)

Catch ex As Exception
Dts.TaskResult = CInt(ScriptResults.Failure)
Throw ex

End Try

Once you have called the web service as described here, you should get a result that looks like this
(shortened for simplicity):

<NewDataSet>

<Table>
<Country>France</Country>
<City>Le Touquet</City>

</Table>

<Table>
<Country>France</Country>
<City>Agen</City>

</Table>

</NewDataSet>

So now that you have an XML structure representing the cities in France where weather data is available
for this web service, you want to loop on each City element and get the weather for every single one.

The Foreach Loop to Handle XML

When creating the Foreach Loop Container, you need to specify the type of enumeration you are dealing
with. The container needs a precedence constraint on the script. Figure 7-4 shows the collection settings for
the container.

184

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

The Foreach Loop container allows execution iteration over an enum

General 2 Foreach Loop

Enumerator Foreach NodeList Enumerator
Variable Mappings b Expressions

Expressions

Enumerator
Specifies the enumerator type.

Enumerator confi

DocumentSourceType
DocumentSource
4 XPath

EnumerationType
OuterXPathStringSourceType
QOuterXPathString
InnerElementType
InnerXPathStringSourceType
InnerXPathString

Cancel

Figure 7-4. Foreach Loop Container Collection settings

The following explains the callouts for Figure 7-4:
1. You want to enumerate over a NodeList to get every city in the XML node list.
2. Thenode list is specified in a variable.

3. The variable name that holds the XML (of type string or even Object since every
type inherits from the Object type).

4. The enumeration type is an element collection.

5. Where to find the elements. From the root (indicated by the first /) and every
node below (indicated by the second /), node-by-node.

6. Each elementin the node is index based and specified in the next pane of the
Foreach Loop Editor.

Now that you have a loop over the <Table> element of the XML document, you need to get the element
that you need. In this case, the <City> element. It is specified in Variable Mappings in the Foreach Loop Editor.

185

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

Variable Mappings

Variable mappings are based on the index of the element in the XML node.
In this case, you have a node called <Table>, which looks like this:

<Table>
<Country>France</Country> & index O
<City>Le Touquet</City> & index 1
</Table>

You already have the country because it is saved in a variable, so you only need to get the city (index 1).
Figure 7-5 shows the variable mapping.

im| The Foreach Loop container allows execution it OVEr an enum

General
Collection

Variable Mappings Variable Index

Expressions l User:City i1

Select variables to map to the collection value,

Figure 7-5. Variable Mappings pane in the Foreach Loop Editor

So now that everything is set in the Foreach Loop, you can iterate over the XML node list and get every
city name. This demonstrates how to validate XML against a schema.

186

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

Validating XML Against Schemas

Before working with XML documents, it is often very useful to validate the content and make sure that the
provided XML can adhere to the schema that it is supposed to represent. XML schema syntax and usage
is outside the topic of this book, but it is very interesting and useful information; if you want to learn more
about the topic, you are encouraged to take a look at the following:

¢ W3C schema recommendation: www.w3.0rg/TR/xmlschema-1/

e More information about XML Schema is on MSDN (in the System.XML.Schema
namespace): https://msdn.microsoft.com/en-us/library/System.Xml.
Schema(v=vs.110).aspx

XML Schemas can contain subparts that are declaratively included in the schema; these are called
schema include elements, which look like this:

<xs:include schemalocation="CityWeather include.xsd"/>

The schemalocation attribute points at the file to include. Other attributes are the id and “any
attributes”.

Note The include element is used to add multiple schemas with the same target namespace to a
document.

An XML source honors schema include elements. But if you work with an XML task, it fails, and you get
a statement that the include element is not a valid element. This is where a scripting task is handy. In the
following examples, you use two schemas and the XML input from the GetWeather web service for all the
cities that where returned for the country that you chose.

The first schema is for validating the <CurrentWeather> element in WeatherSchema.xsd.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:include schemalocation="CityWeather include.xsd"/>
<xs:element name="CurrentWeather">
<xs:complexType>
<Xs:sequence>
<xs:element name="Location" type="LimitedString" />
<xs:element name="Time" type="xs:string" />
<xs:element name="Wind" type="xs:string" />
<xs:element name="Visibility" type="xs:string" />
<xs:element name="Temperature" type="xs:string" />
<xs:element name="DewPoint" type="xs:string" />
<xs:element name="RelativeHumidity" type="xs:string" />
<xs:element name="Pressure" type="xs:string" />
<xs:element name="Status" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

187

http://www.w3.org/TR/xmlschema-1/
https://msdn.microsoft.com/en-us/library/System.Xml.Schema(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/System.Xml.Schema(v=vs.110).aspx
http://www.w3.org/2001/XMLSchema

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

The second schema is the one that is included in the first schema: CityWeather_include.xsd.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:simpleType name="LimitedString">
<xs:restriction base="xs:string">
<xs:maxLength value="200" />
</xs:restriction>
</xs:simpleType>
</xs:schema>

It defines the length of a string type called LimitedString. The length shouldn’t exceed 200 characters.
The XML that is used for validation looks like the following:

<?xml version="1.0" encoding="utf-8"?>

<CurrentWeather>
<Location>Le Touquet, France (LFAT) 50-31N 001-37E 14M</Location>
<Time>Apr 27, 2015 - 04:00 PM EDT / 2015.04.27 2000 UTC</Time>
<Wind> from the NNW (330 degrees) at 3 MPH (3 KT):0</Wind>
<Visibility> greater than 7 mile(s):0</Visibility>
<Temperature> 46 F (8 C)</Temperature>
<DewPoint> 33 F (1 C)</DewPoint>
<RelativeHumidity> 61%</RelativeHumidity>
<Pressure> 29.91 in. Hg (1013 hPa)</Pressure>
<Status>Success</Status>

</CurrentWeather>

Asyou can seeg, it contains all the elements specified in the schema.

Validating XML with Schemas

There are different approaches for validating XML. Let’s have a look at a rather simple one where you get the
schema file from a connection.

Connections

First, you need a connection to the schema file, so let’s create a connection manager called WeatherSchema
for that purpose, as shown in Figure 7-6.

188

http://www.w3.org/2001/XMLSchema

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

2 File Connection Manager Editor = =l

Configure the file connection properties to reference a file or a folder that exists or is created at run time.

Usage type: Existing file v

File: SIS with .NET\Chapter T\ {410 ERET: Browse...

OK ‘ Cancel

Figure 7-6. Connection manager pointing at the XSD file

You don’t need a connection manager for the second schema since it is declaratively included in the
first one.

The Code

Add a Script Task inside the Foreach Loop and configure its variable as follows:
e read-only variables: User::City and User::Country
e read-write variables: User::ResultString

Once you've chosen the language to use, C# or VB.NET, click Edit Script... and create a service reference
to the GetWeather service, as described in the “Service Reference” section. Call the reference GetWeather.

Custom Namespaces

You need to reference to the following namespaces. This is C#:
#region CustomNamespace

using System.ServiceModel;

using System.Xml;

using ST_1211e492c97246a9947e241a0234dce6.Getheather;
using System.IO;

#endregion
And this is VB.NET:
#Region "CustomNameSpace"

Imports ST_64feb36f55b24388a6c2553c036e36a6.GetWeather
Imports System.ServiceModel
Imports System.Xml

#End Region
189

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

Note ST_1211e492¢97246a9947e241a0234dce6 is the autogenerated name of the authors’ project. It will
differ in your script. We are referencing it only for keeping the code more readable when having to use the web
service reference autogenerated namespace.

Calling the web service is quite straightforward.

string City = Dts.Variables["City"].Value.ToString();
string Country = Dts.Variables["Country"].Value.ToString();

//Create a ChannelFactory of the right type
ChannelFactory<GlobalWeatherSoap> channelFactory = null;
EndpointAddress ep = null;

//Specify what the address is
string epAdr = Dts.Variables["WeatherServiceURL"].Value.ToString();
try
{
//Get the right binding
BasicHttpBinding httpb = new BasicHttpBinding();
channelFactory = new ChannelFactory<GlobalWeatherSoap>(httpb);

//The necessary endpoint with our address
ep = new EndpointAddress(epAdr);

//Ready to create the representation of the web svc
GlobalWeatherSoap weatherSvcObj = channelFactory.CreateChannel(ep);
//Getting some geographic info about a country

string result = weatherSvcObj.GetWeather(City, Country);

//Calling the validation method
ValidateXML(result);

//Save the result in a variable for later use.
Dts.Variables["ResultString"].Value = result;

Boolean fireagain = false;
Dts.Events.FireInformation(0,"Calling web service",result,String.Empty,o0,
ref fireagain);

}

catch (Exception ex)

Dts.TaskResult = (int)ScriptResults.Failure;
throw ex;

}

190

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

And here it is in VB.NET:

'Create a ChannelFactory of the right type
Dim channelFactory As ChannelFactory(Of GlobalWeatherSoap) = Nothing
Dim ep As EndpointAddress = Nothing

'Specify what the address is

Dim epAdr As String = Dts.Variables("WeatherServiceURL").Value.ToString
Dim city As String = Dts.Variables("City").Value.ToString

Dim country As String = Dts.Variables("Country").Value.ToString

Try
'Get the right binding
Dim httpb As New BasicHttpBinding()
channelFactory = New ChannelFactory(Of GlobalWeatherSoap)(httpb)

'The necessary endpoint with our address
ep = New EndpointAddress(epAdr)

'Ready to create the representation of the web svc
Dim weatherSvcObj As GlobalWeatherSoap = channelFactory.CreateChannel(ep)

'Getting some weather info about the city
Dim result As String = weatherSvcObj.GetWeather(city, country)

Validate(result)
'Save the result in a variable for later use.
Dts.Variables("ResultString").Value = result

Dim fireagain As [Boolean] = False
Dts.Events.FireInformation(0, "Calling web service", result, [String].Empty, O,
fireagain)

Catch ex As Exception
Dts.TaskResult = CInt(ScriptResults.Failure)
Throw ex

End Try

Validating the XML

In the code, you added a method called ValidateXML, which takes a string as input and validates the XML
against the schema provided. The following is the entire code for the method:

private void ValidateXML(string xmlToValidate)

{

// Try reading the XML file using the XSD. Use the
// Connection Manager to get the path from the XML file
try
{
// create object for the XSD file that will be used
// for validating the XML file. Use the Connection

191

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

}

// Manager to get the path from the XSD file.

XmlReaderSettings xmlrs = new XmlReaderSettings();

xmlrs.ValidationType = ValidationType.Schema;

xmlrs.Schemas.Add(null, Dts.Connections["WeatherSchema"].ConnectionString);
xmlrs.Schemas.Compile();

XmlReader xmlr = XmlReader.Create(new StringReader(xmlToValidate),xmlrs);
while (xmlr.Read())
{

}
// The XML file was succesfully read.

// Close XML file
xmlr.Close();

catch (Exception ex)

// Validation failed, throw error
Dts.Events.FireError(-1, "Validate XML", "Validation error: " + ex.Message,
string.Empty, 0);

And here it is in VB.NET:

Private Sub ValidateXML(xmlToValidate As String)

End

192

" Try reading the XML file using the XSD. Use the

' Connection Manager to get the path from the XML file

Try
' create object for the XSD file that will be used
' for validating the XML file. Use the Connection
' Manager to get the path from the XSD file.
Dim xmlrs As New XmlReaderSettings()
xmlrs.ValidationType = ValidationType.Schema
xmlrs.Schemas.Add(Nothing, Dts.Connections("WeatherSchema").
ConnectionString)
xmlrs.Schemas.Compile()

Dim xmlr As XmlReader = XmlReader.Create(New StringReader(xmlToValidate),
xmlrs)

While xmlr.Read()

End While

' The XML file was succesfully read.

' Close XML file

xmlr.Close()
Catch ex As Exception

' Validation failed, throw error
Dts.Events.FireError(-1, "Validate XML", "Validation error:
String.Empty, 0)
End Try

+ ex.Message,

Sub

CHAPTER 7 © WORKING WITH WEB SERVICES AND XML

The important elements in the XML validation include the schema to add to the XmlReaderSettings object.
xmlrs.Schemas.Add(null, Dts.Connections["WeatherSchema"].ConnectionString);

(This is it in VB.NET):
xmlrs.Schemas.Add(Nothing, Dts.Connections("WeatherSchema").ConnectionString)

As well as the fact that you add the XmlReaderSettings to the XmlReader, forcing it to validate against
the schema.

XmlReader xmlr = XmlReader.Create(new StringReader(xmlToValidate),xmlrs);
And here it is in VB.NET:
Dim xmlr As XmlReader = XmlReader.Create(New System.IO.StreamReader(xmltoValidate), xmlrs)
If you were to read a file instead of passing an XML string to the Xm1Reader .Create method, the code
would be more straightforward (without the need to use the System.IO namespace), and the XmlReader
would look like this:
XmlReader xmlr = XmlReader.Create(pathToXmlFile,xmlrs);
And this is it in VB.NET:

Dim xmlr As XmlReader = XmlReader.Create(PathtoXmlFile, xmlrs)

If you run the package now, it will validate without any errors. But if you change the CityWeather_
include.xsd and change the maxLength to 10 instead of 200, you will see the following error:

Error: OXFFFFFFFF at SCR_GetCityWeather CSharp, Validate XML: Validation error: The
'Location’ element is invalid - The value 'Le Touquet, France (LFAT) 50-31N 001-37E 14M' is
invalid according to its datatype 'LimitedString' - The actual length is greater than the
MaxLength value.

The complete code and all the files for this chapter are available in the Chapter 7 book solution.

Summary

In this chapter, you saw how to use Script Tasks in situations where the Web Service Task cannot help. You
also walked through how to validate XML in ways that XML Task cannot. Furthermore, you explored which
kind of .config files are needed and generated, and found a way to avoid that. Please keep this in mind the
next time you are working with XML and web services in SSIS.

193

http://dx.doi.org/10.1007/978-1-4842-0638-6_7

CHAPTER 8

Advanced Solutions with
Script Task

This chapter is about common real-world scenarios that happen in ETL—scenarios such as compressing
and decompressing files, or encrypting and decrypting files. Using .NET scripting would make these
scenarios much easier to achieve. And what about using regular expressions to filter in a Foreach Loop?

Regular Expressions

Regular expressions are very useful for validating or cleaning data, which is hard or nearly impossible to do
with SSIS expressions. You probably would expect them in the Data Flow Task (and in Chapter 13 you will
see some very helpful examples of this), but they can be very useful in the Control Flow too. Let’s compare
these expression types using a very simplified filter example; first with a regular expression, and then with an
SSIS expression. They both filter with actual*.csv and budget*.csv:

~(actuals|budget).*\.csv$

LOWER(LEFT(@[User::FilePath], 7)) == "actuals" || LOWER(LEFT(@[User::FilePath], 6))
== "budget"

But what if the next four characters must be numeric (a year)? That SSIS expression would be quite
complex and hard to read/maintain, but it is much easier with a regular expression:

~(actuals|budget)[0-9]{4}.*\.csv$

So what about filtering with regular expressions in the Foreach Loop Container? The Foreach File
Enumerator only supports simple wildcards, such as a *.csv, but filtering on both actuals*.csv and
budget*.csv, or *.csv and *. txt, isn’t possible with a single Foreach Loop Container. In this example, you
add a Script Task within the Foreach Loop to validate the variable filled by the Foreach Loop. (Figure 8-1
shows this workflow). You need all budget[year]*.csv and actuals[year]*.csv files, but none of the other
.csv files. The [year] in the filter means that the text should be followed by four numbers: actuals2016.csv
or budget2017.csv. Set the filter in the Foreach Loop to *.csv to filter as much as possible. This provides
better performance when there are a lot of files.

195

http://dx.doi.org/10.1007/978-1-4842-0638-6_13

CHAPTER 8 © ADVANCED SOLUTIONS WITH SCRIPT TASK

Regular Expressions.dtsx [Design] + X _
E@ (oI o% DataFlow g Parameters I

E I FELC - Budget and Actuals ~

SCR - Regex Filt
o e

[Completion and @[User::PassRegex] == true

i-)i DFT - Process Finance

Figure 8-1. Regex filter in loop

Variables

The Foreach Loop File Enumerator fills the string variable FilePath with the file path of the current file,
but for the regular expression filter, you need two extra variables:

e RegexFilter: A string variable containing the regular expression used for filtering:

(actuals|budget)[0-9]{4}.\.csv$

e PassRegex: A Boolean variable filled with True if the current file name passes the

regular expression
Variables =X
Y| B L@
Name I Scope I Data type I Value Expression
G... FilePath Regular Expressions String oo |
@ PassRegex Regular Expressions Boolean False o]
@@ RegexFilter Regular Expressions String “~{budgetjactual)*.csv§ oo |

Figure 8-2. Variables for the regular expression filter

Script Task

Add a Script Task within your Foreach Loop Container as the first task. In the Script Task Editor, add two

string variables: FilePath and RegexFilter in ReadOnlyVariables, and the Boolean variable PassRegex in

ReadWriteVariables (see Figure 8-3).

196

CHAPTER 8 " ADVANCED SOLUTIONS WITH SCRIPT TASK

Repuar Exressons.ax Desorl~ = « I

g4 DataFlow & Parameters] EventHandlers 's= Package Explorer
B - mmiras G ol

Access Microsoft Visual Studio Tools for Applications (VSTA) to write saripts using the Visual Basic 2012
) orVisual C# 2012, and configure the task's properties.

i-’i DFT - Process Finance

f - i
-:) SCR - Regex Filter
? Saipt B Script
G‘“‘e"l_ ScriptLanguage Microsoft Visual C# 2012
Expressions EntryPoint Main
ReadOnlyVariables UserzFilePath,User:RegexFilter

ReadWriteVariables

UserzPassRegex

ReadWriteVariables
Spedifies a comma-separated list of read fwrite variables.

Edit Script... |

Bl

BN

Figure 8-3. ReadOnly and ReadWrite variables

The Script

Go to the VSTA environment and add the following namespaces to shorten the code:

#region customNamespaces

using System.Text.RegularExpressions;
using System.IO;

#endregion

And here is the VB.NET code:

#Region "customNamespaces"

Imports System.Text.RegularExpressions
Imports System.IO

#End Region

197

CHAPTER 8 © ADVANCED SOLUTIONS WITH SCRIPT TASK

Then add the following code to your Main method. Note the optional RegexOptions that you can use to
make the regular expression case insensitive.

public void Main()

{
// Store value of SSIS variables in .NET variables
string currentFile = Dts.Variables["User::FilePath"].Value.ToString();
string regexPattern = Dts.Variables["User::RegexFilter"].Value.ToString();

// Remove path from current file path
// d:\sources\myFile.csv => myFile.csv
currentFile = Path.GetFileName(currentFile);

// Create a regex object with the pattern from the SSIS variable. You
// can remove the regexoptions if you want a case-sensitive filter.
Regex FileFilterRegex = new Regex(regexPattern, RegexOptions.IgnoreCase);

// Check if it is match and return that value (boolean) to the SSIS variable
Dts.Variables["User::PassRegex"].Value = FileFilterRegex.IsMatch(currentFile);

// Log added for testing purpose only

bool fireAgain = true;

Dts.Events.FireInformation(0, "RegexFilter", currentFile + " " +
Dts.Variables["User::PassRegex"].Value.ToString(), string.Empty, O,
ref fireAgain);

// Succeed Script Task
Dts.TaskResult = (int)ScriptResults.Success;
}

And this is the VB.NET code:

Public Sub Main()
' Store value of SSIS variables in .NET variables
Dim currentFile As String = Dts.Variables("User::FilePath").Value.ToString()
Dim regexPattern As String = Dts.Variables("User::RegexFilter").Value.ToString()

' Remove path from current file path

" d:\sources\myFile.csv => myFile.csv
currentFile = Path.GetFileName(currentFile)
' Create a regex object with the pattern from the SSIS variable. You
can remove the regexoptions if you want a case-sensitive filter.

Dim FileFilterRegex As New Regex(regexPattern, RegexOptions.IgnoreCase)

' Check if it is match and return that value (boolean) to the SSIS variable
Dts.Variables("User::PassRegex").Value = FileFilterRegex.IsMatch(currentFile)

198

CHAPTER 8 ' ADVANCED SOLUTIONS WITH SCRIPT TASK

' Log added for testing purpose only
Dim fireAgain As Boolean = True

Dts.Events.FireInformation(0, "RegexFilter", currentFile + " " + _
Dts.Variables("User::PassRegex").Value.ToString(), String.Empty, O,
fireAgain)

' Succeed Script Task
Dts.TaskResult = ScriptResults.Success

End Sub

Precedence Constraint

The Script Task fills the PassRegex variable with True or False. You can use this variable in an expression
on a precedence constraint to either stop or continue after the Script Task. Connect the Script Task with
the regular expression to the next task in the Foreach Loop. Then, in the Precedence Constraint Editor
(see Figure 8-4), change the “Evaluation operation” to Expression, and set the Expression to the following:
@[User::PassRegex] == true.Or, make it even shorter, like this: @[User: : PassRegex].

Precedence Constraint Editor =

A precedence constraint defines the workflow between two executables. The precedence constraint
can be based on a combination of the execution results and the evaluation of expressions.

Constraint options

Evaluation operation: Expression w
Success
Expression: @[User:PassRegex] == true Test

Multiple constraints
If the constrained task has multiple constraints, you can choose how the constraints interoperate
to control the execution of the constrained task.

(®) Logical AND. All constraints must evaluate to True

O Logical OR. One constraint must evaluate to True

OK Cancel Help

Figure 8-4. Adding an expression in the Precedence Constraint Editor

199

CHAPTER 8 " ADVANCED SOLUTIONS WITH SCRIPT TASK

Testing

Now execute the package and watch the Execution Results tab. You will see that the Script Task is executed
more times than the Data Flow Task. For testing purposes, you add some code (see Chapter 4) in the Script
Task to log which files pass the regular expression, and which do not.

Reqgular Expressions.dtsx [Design] +# X
8o Control Flow gk Data Flow &@ Parameters P Event Handlers

=R B Regular Expressions.

[=] = FELC - Budget and Actuals C#
© start, 23:26:09
[=] = Task SCR - Regex Filter
© start (15)
"R validation has started (15)
AP validation is completed (15)
© [RegexFilter] Information: Actuals2012.csv True
© [RegexFilter] Information: Actuals2013.csv True
© [RegexFilter] Information: Actuals2014.csv True
© [RegexFilter] Information: Actuals2015.csv True
@ [RegexFilter] Information: Budget2012.csv True
© [RegexFilter] Information: Budget2013.csv True
© [RegexFilter] Information: Budget2014.csv True
© [RegexFilter] Information: Budget2015.csv True
@ [RegexFilter] Information: Budget2016.csv True
@ [RegexFilter] Information: Dump.csv False
© [RegexFilter] Information:
© [RegexFilter] Information:

Package Explo...

Empty.csv False
products.csv False
© [RegexFilter] Information:
© [RegexFilter] Information:
© [RegexFilter] Information:

products_decrypted.csv False
products_encrypted.csv False
products_encrypted2.csv False

O stop (15)

Task DFT - Process Finance

© start (9)

"R validation has started (9)
AP validation is completed (9)
© [ss15s.Pipeline] Information:
@ [SSIS.Pipeline] Information:
@ [SSIS.Pipeline] Information:
@ [ssIs.Pipeline] Information:
© [ssIs.Pipeline] Information:
© [ssIS.Pipeline] Information:
© [ssIS.Pipeline] Information:
© [ssIS.Pipeline] Information:
© [ss1S.Pipeline] Information:
O stop (9)

© Finished, 23:26:09, Elapsed time: 00:00:00.203

Execute phase is beginning.
Execute phase is beginning.
Execute phase is beginning.
Execute phase is beginning.
Execute phase is beginning.
Execute phase is beginning.
Execute phase is beginning.
Execute phase is beginning.
Execute phase is beginning.

Figure 8-5. The execution results (with extra logging)

200

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 8 ' ADVANCED SOLUTIONS WITH SCRIPT TASK

Zip/Unzip

For zipping and unzipping files prior to .NET Framework 4.5.3, you need a third-party assembly, because
zip files weren’t supported “out of the box.” In the 4.5.3 Framework, Microsoft finally added support for zip
files; but at the time this book was written, SSIS 2014 only supports 4.5.1. If you can switch to 4.5.3, then this
would be the preferred way.

R0 - Release - o “
“ Home Share View W 0

l\(—x} * 1 | » ThisPC » Downloads » DotNetZipLib-DevKit-v1.9 » zip-v1.9 » Release v (@ SearchRelease P
Eavorites i Name Date modified Type Size
lonic.Zip.dil 22-11-2014 15:32 Application extension 452 KB
@@ OneDrive
W
1item 1item selected 451 KB = E

Figure 8-6. In zip file, use zip-v1.9/Release folder to install Ionic.Zip.dll

o Administrator: V52013 x86 Native Tools Command Prompt - B n

C:\Windows\system32>cd C:\Users\jvanrossumiDownloads\DotNetZipLib-DevKit-v1.9\zip-v1.9\Release
C:\Users\jvanrossum\Downloads\DotNetZipLib-DevKit-uv1.9\zip-v1.9\Releasergacutil /i Ionic.Zip.dll
Microsoft (R) .NET Global Assembly Cache Utility. Uersion 4.8.308319.33440

Copyright (e) Microsoft Corporation. All rights reserved.

Assembly successfully added to the cache

C:\Usersh jvanrossum\Downloads\DotNetZ2ipLib-DevKit-uvl . 9\zip-v1.9\Release>

Figure 8-7. gacutil /i Ionic.Zip.dll

Downloading the Library

There are various free and open source libraries available for zipping and unzipping; for example,
SharpZipLib and DotNetZip. This example uses DotNetZip, which you can download from CodePlex at
http://dotnetzip.codeplex.com.

Search for Ionic.Zip.dll in the downloaded files. Find the file as shown in Figure 8-6. Depending
on the version, it is probably in the \DotNetZiplLib-DevKit-vX.X\zip-vX.X\ subfolder. To register this
assembly in the Global Assembly Cache (GAC), open the Visual Studio Command prompt in Administrator
mode (see Chapter 4). Go to the assembly location and execute gacutil /i Ionic.Zip.dll asshown in
Figure 8-7.

Unzipping

For this unzip example, you have a File Connection Manager pointing to a zip file, and a Flat File Connection
Manager pointing to the unzipped . csv file. Products.zip will be unzipped and then deleted. The unzipped
.csyv file is processed by a Data Flow Task. The Control Flow looks something like Figure 8-8.

201

http://dotnetzip.codeplex.com
http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 8 " ADVANCED SOLUTIONS WITH SCRIPT TASK

Unzip.dtsx [Design]* # X _

EEECEEEI &% DataFlow @ Parameters [Eve

SCR - Unzip Products
LI P

@ FSYS - Delete Zipfile

i-)i DFT - Process Products

Connection Managers

% products.zip % products

Figure 8-8. The Control Flow and connections

Adding a Reference

Edit the Script Task and then open the VSTA environment as shown in Figure 8-9 to add the reference to the
new assembly, which is now located in the GAC. For more information about adding references, see Chapter 4.

Reference Manager - ST_3f5b32deeb254626b0a6d1656ba7d631 ? “
b Assemblies Search Browse (Ctrl+E P~

P Solution Name Path
] lonicZipdil C\Windows\assembly\GAC_MSIL\lonic.Zip\1.9.1.8_edbe51ad942a...

Browse... | OK 1 Cancel I

Figure 8-9. Reference to Ionic.Zip

202

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 8 " ADVANCED SOLUTIONS WITH SCRIPT TASK

The Unzip Script

For this unzip example, you will use the File Connection Manager pointing to the zip file. The unzip location
is derived from the zip file location, but you can make that configurable if necessary.

This script extracts the zipped files, one by one, and filters on . csv files. But if you need all the files, you
can also extract all the zipped files at once. That code is included as a comment in the script and should
replace the Foreach Loop. Choose which one works for you. You can also check the properties in myZipFile
to set zip file properties such as the password, and zip64 for large files (>4GB), but these options are not
included in the example script.

Go to the VSTA environment and add the following namespaces to shorten the code:

#iregion customNamespaces
using Ionic.Zip;

using System.IO;
#endregion

And here is the VB.NET code:

#Region "customNamespaces"
Imports Ionic.Zip

Imports System.IO

#End Region

Next, add the following code to your Main method. In this example, all . csv files are unzipped and they
will overwrite any existing files.

public void Main()
{
// Get filepath of zipfile and unzipfolder
string myZipFilePath = Dts.Connections["products.zip"].AcquireConnection(null).ToString();

// Determine unzip location. In this case the folder where the

// zipfile is located. You can replace this by a variable or

// Connection Manager

string myUnzipfolder = new FileInfo(myZipFilePath).Directory.FullName;

// Create zipfile object that points to the actual zipfile
using (ZipFile myZipFile = ZipFile.Read(myZipFilePath))
{

// Extract all files at once (instead of foreach loop)
//myZipFile.ExtractAll(myUnzipfolder, ExtractExistingFileAction.OverwriteSilently);

203

CHAPTER 8 © ADVANCED SOLUTIONS WITH SCRIPT TASK

// Loop through all entries in the zipfile one by one
foreach (ZipEntry myZipEntry in myZipFile)
{

// Filter: only extract CSV files

if (myZipEntry.FileName.EndsWith(".csv"))

// Extract the file and overwrite existing files
myZipEntry.Extract(myUnzipfolder, ExtractExistingFileAction.OverwriteSilently);
}
}
}

// Succeed Script Task
Dts.TaskResult = (int)ScriptResults.Success;

}

This is the VB.NET code:

Public Sub Main()
' Get filepath of zipfile and unzipfolder
Dim myZipFilePath As String = _
Dts.Connections("products.zip").AcquireConnection(Nothing).ToString()

' Determine unzip location. In this case ' the folder where the

' zipfile is located. You can replace this by a variable or

' Connection Manager

Dim myUnzipfolder As String = New FileInfo(myZipFilePath).Directory.FullName

' Create zipfile object that points to the actual zipfile
Using myZipFile As ZipFile = ZipFile.Read(myZipFilePath)
' Extract all files at once (instead of foreach loop)
'myZipFile.ExtractAll(myUnzipfolder, ExtractExistingFileAction.OverwriteSilently);
" Loop through all entries in the zipfile one by one
For Each myZipEntry As ZipEntry In myZipFile
" Filter: only extract CSV files
If myZipEntry.FileName.ToLower().EndsWith(".csv") Then
' Extract the file and overwrite existing files
myZipEntry.Extract(myUnzipfolder, ExtractExistingFileAction.OverwriteSilently)
End If
Next
End Using
" Succeed Script Task
Dts.TaskResult = ScriptResults.Success
End Sub

Tip You could also use regular expressions to filter.

204

CHAPTER 8 ' ADVANCED SOLUTIONS WITH SCRIPT TASK

Zipping

For this zipping example, you are zipping the Flat File Designation from a Data Flow Task. For this you will
use the Flat File Connection Manager from the Flat File Destination. To specify the name and path of the
zip file, you will use a File Connection Manager pointing to a (nonexistent) zip file. After the Data Flow Task
is ready, you will zip the created .csv file so that it can be archived, uploaded, or emailed. The simplified
control flow could look something like Figure 8-10.

NSOl g% Data Flow & Parameters [Event Handl

i-)i DFT - Export Products

v

SCR - Zip Product
' = ip Pr s

|

v

@ FSYS - Move to Archive

Connection Managers

B products B products.zip ¥ someDB

Figure 8-10. Zipping files

Reference

Edit the Script Task and then open the VSTA environment to add the reference to new Ionic.Zip assembly.
For more information about adding references, see Chapter 4. Also see the unzip example that uses the same
reference.

The Zip Script

As mentioned, you use the connection managers for the source file (Flat File: products) and zip file
(File: products.zip) locations. First, add the following namespaces to shorten the code:

#region customNamespaces
using Ionic.Zip;
using System.IO;
#endregion
205

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 8 © ADVANCED SOLUTIONS WITH SCRIPT TASK

And this is the VB.NET code:

#Region "customNamespaces"
Imports Ionic.Zip

Imports System.IO

#End Region

Next, copy the following code to your Main method. The myZipFile object has a lot of properties to

tune the zip file. In the following script, you only show the most common properties, but there are more.
Use IntelliSense to explore all the properties and methods. You could also add some logging in the code
(see Chapter 4) and a try-catch around the save method to make your code more robust.

public void Main()

{

}

// Get source and zipfilename from

// the Connection Managers

string mySource = Dts.Connections["products"].AcquireConnection(null).ToString();

string myZipFilePath = Dts.Connections["products.zip"].AcquireConnection(null).ToString();

// Create a new zipfile
using (ZipFile myZipFile = new ZipFile(myZipFilePath))

// Protect your zipfile with a password
myZipFile.Password = "53cr3t!";

// Set the compression level
myZipFile.CompressionLevel = Ionic.Zlib.CompressionLevel.Level9;

// Necessary for special chars in filenames
myZipFile.AlternateEncoding = Encoding.UTFS8;
myZipFile.AlternateEncodingUsage = ZipOption.AsNecessary;

// Necessary for very large files
myZipFile.UseZip64WhenSaving = Zip640ption.AsNecessary;

// Add file in root of zipfile
myZipFile.AddFile(mySource, "\\");

// Save the zipfile
myZipFile.Save();

}
// Succeed Script Task

Dts.TaskResult = (int)ScriptResults.Success;

206

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 8 ' ADVANCED SOLUTIONS WITH SCRIPT TASK

And this is the VB.NET code:

Public Sub Main()
' Get source and zipfilename from
" the Connection Managers
Dim mySource As String = Dts.Connections("products").AcquireConnection(Nothing).
ToString()
Dim myZipFilePath As String = Dts.Connections("products.zip").AcquireConnection(Nothing).
ToString()
' Create a new zipfile

Using myZipFile As New ZipFile(myZipFilePath)
' Protect your zipfile with a password
myZipFile.Password = "53cr3t!"

' Set the compression level

myZipFile.CompressionLevel = Ionic.Zlib.CompressionLevel.Level9

' Necessary for special chars in filenames
myZipFile.AlternateEncoding = Encoding.UTF8
myZipFile.AlternateEncodingUsage = ZipOption.AsNecessary
' Necessary for very large files
myZipFile.UseZip64WhenSaving = Zip640ption.AsNecessary

' Add file in root of zipfile
myZipFile.AddFile(mySource, "\")
' Save the zipfile
myZipFile.Save()

End Using

' Succeed Script Task

Dts.TaskResult = ScriptResults.Success
End Sub

Encrypt/Decrypt Files

Sometimes you want to encrypt your files to store or send them securely. There are several encryption
possibilities available in the System.Security.Cryptography namespace, but one of the best (at the time of
writing) is RijnDael. In this example, you encrypt and decrypt a file via a connection manager. We'll use a
flow like that in Figure 8-11.

Caution Before implementing encryption for highly sensitive data, study all the possibilities, strengths,
and weaknesses of the various encryption methods; do not just take this code for granted. Also, encryption and
security develops rapidly. What was secure at the time of this book’s writing could be outdated when you read

this book.

207

CHAPTER 8 © ADVANCED SOLUTIONS WITH SCRIPT TASK

Encyptionatex esgnl = < [

n"n Data Flow & Parameters T Event Handlers = Package Explo...

s SCR - Decrypt File ﬁ-,i DFT - Process File
l '
i-)e DFT - Process File 5 SCR - Encrypt File

Figure 8-11. Encrypting and decrypting files

Connection Managers

For encrypting a flat file that was created by a Data Flow Task, you use the Flat File Connection Manager
named MyProducts as a source for the Script Task. A File Connection Manager named MyProducts_
encrypted is used as a destination. It contains the file path of the encrypted file.

For decrypting, it is vice versa. The File Connection Manager named MyProducts_encrypted is used as
a source, and a Flat File Connection Manager named MyProducts_decrypted is used as a destination. After
decrypting the file, this connection manager can be used as a source for the Data Flow Task.

Variable

For storing the password, you need a variable such as the MyPassword variable in Figure 8-12. Make sure to
remove that default value from your package when you go to production; otherwise, it won’t be very secure.
Use configurations or parameters instead.

Variables

v

Name Scope Data type Value Expression
:9 MyPassword Encryption String $3cr3t!

Figure 8-12. Your secret password

Script Task

For encrypting, add a Script Task after your Data Flow; for decrypting, add it before your Data Flow. In the
Script Task Editor, add the password variable in ReadOnlyVariables (see Figure 8-13).

208

CHAPTER 8 " ADVANCED SOLUTIONS WITH SCRIPT TASK

a5 Script Task Editor - B -

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using the Visual Basic 2012 or
Visual C# 2012, and configure the task's properties.

| [+ seript

General

ScriptLanguage Microsoft Visual C# 2012
Expressions EntryPoint Main
ReadOnlyVariables User::MyPassword
ReadWriteVariables
ScriptLanguage

Specifies the programming language used by the script.

Edit Script...

OK Cancel Help

Figure 8-13. Your secret password in ReadOnlyVariables

The Script

Go to the VSTA environment and add the following namespaces to shorten the code:

#region customNamespaces

using System.Security.Cryptography;
using System.IO;

#endregion

This is the VB.NET code:
#Region "customNamespaces"
Imports System.Security.Cryptography

Imports System.IO
#End Region

209

CHAPTER 8 © ADVANCED SOLUTIONS WITH SCRIPT TASK

For encrypting and decrypting, you need a salt, which is stored in a static class variable. A salt is some
random data that is used in addition to a password to encrypt data. The primary function is to protect
against lists of often-used passwords. Add this variable inside the class, but outside the Main method.

// Salt is some random data that is used as addition to a password to

// encrypt data. The primary function is to protect against lists of often

// used passwords.

private static readonly byte[] SALT = new byte[] { 0x26, Oxdc, oxff, 0x76,
Oxad, Oxed, Ox7a, 0x64, 0xc5, Oxfe,
0x20, Oxaf, 0x4d, 0x08, 0x22, 0X3C };

And here is the VB.NET code:

' Salt is some random data that is used as addition to a password to encrypt data.

' The primary function is to protect against lists of often used passwords.

Private Shared ReadOnly SALT As Byte() = New Byte() {&H26, &HDC, 8HFF, 8&H76,
&HAD, 8&HED, 8H7A, &H64,
8HC5, 8HFE, 8H20, 8HAF,
&H4D, &H8, &H22, &H3C}

Next are two static methods: one for encryption and one for decryption. Add these to your class. Below
the existing Main method is probably the most organized place. These methods are called from the Main
method.

// Decrypt textfile with Rijndael encryption
public static void Decrypt(string fileIn, string fileOut, string Password)
{
// Open filestream for encrypted source file
using (FileStream fsIn = new FileStream(fileIn, FileMode.Open, FileAccess.Read))

// Open filestream for decrypted file
using (FileStream fsOut = new FileStream(fileOut, FileMode.OpenOrCreate,
FileAccess.Write))
{
// Create Key and IV from the password with salt technique
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(Password, SALT);

// Create a symmetric algorithm with Rijndael
Rijndael alg = Rijndael.Create();

// Set Key and IV
alg.Key = pdb.GetBytes(32);
alg.IV = pdb.GetBytes(16);

// Create a CryptoStream

using (CryptoStream cs = new CryptoStream(fsOut, alg.CreateDecryptor(),
CryptoStreamMode.Write))

{

// Initialize a buffer and process the input file in chunks.
// This is done to avoid reading the whole file (which can be huge) into memory.

210

CHAPTER 8 " ADVANCED SOLUTIONS WITH SCRIPT TASK

int bufferlLen = 4096;
byte[] buffer = new byte[bufferLen];
int bytesRead;

do

{
// read a chunk of data from the input file
bytesRead = fsIn.Read(buffer, 0, bufferLen);

// Decrypt it
cs.Write(buffer, 0, bytesRead);
} while (bytesRead != 0);

// close everything
cs.Close();
fsOut.Close();
fsIn.Close();
}
}
}
}

// Encrypt textfile with Rijndael encryption
public static void Encrypt(string fileIn, string fileOut, string Password)
{
// Open filestream for source file
using (FileStream fsIn = new FileStream(fileIn, FileMode.Open,
FileAccess.Read))
{

// Open filestream for encrypted file

using (FileStream fsOut = new FileStream(fileOut, FileMode.OpenOrCreate,
FileAccess.Write))

{

// Create Key and IV from the password with salt technique
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(Password, SALT);

// Create a symmetric algorithm with Rijndael
Rijndael alg = Rijndael.Create();

// Set Key and IV
alg.Key = pdb.GetBytes(32);
alg.IV = pdb.GetBytes(16);

// Create a CryptoStream
using (CryptoStream cs = new CryptoStream(fsOut, alg.CreateEncryptor(),
CryptoStreamMode.Write))

{

// Initialize a buffer and process the input file in chunks.
// This is done to avoid reading the whole file (which can be huge) into memory.

211

CHAPTER 8 © ADVANCED SOLUTIONS WITH SCRIPT TASK

int bufferlLen = 4096;
byte[] buffer = new byte[bufferLen];
int bytesRead;

do

{
// read a chunk of data from the input file
bytesRead = fsIn.Read(buffer, 0, bufferLen);

// encrypt it
cs.Write(buffer, 0, bytesRead);
} while (bytesRead != 0);

// close everything
cs.Close();
fsOut.Close();
fsIn.Close();

This is the VB.NET code:

Decrypt textfile with Rijndael encryption

Public Shared Sub Decrypt(fileIn As String, fileOut As String, Password As String)

Open filestream for encrypted source file

Using fsIn As New FileStream(fileIn, FileMode.Open, FileAccess.Read)

212

' Open filestream for decrypted file
Using fsOut As New FileStream(fileOut, FileMode.OpenOrCreate, FileAccess.Write)

' Create Key and IV from the password with salt technique
Dim pdb As New Rfc2898DeriveBytes(Password, SALT)

' Create a symmetric algorithm with Rijndael
Dim alg As Rijndael = Rijndael.Create()

' Set Key and IV

alg.Key = pdb.GetBytes(32)
alg.IV = pdb.GetBytes(16)
' Create a CryptoStream

Using cs As New CryptoStream(fsOut, alg.CreateDecryptor(), CryptoStreamMode.Write)

' Initialize a buffer and process the input file in chunks.

' This is done to avoid reading the whole file (which can be huge) into memory.
Dim bufferLen As Integer = 4096

Dim buffer As Byte() = New Byte(bufferlLen - 1) {}

Dim bytesRead As Integer

CHAPTER 8 " ADVANCED SOLUTIONS WITH SCRIPT TASK

Do
' read a chunk of data from the input file

bytesRead = fsIn.Read(buffer, 0, bufferLen)

" Decrypt it
cs.Write(buffer, 0, bytesRead)
Loop While bytesRead <> 0

' close everything
cs.Close()
fsOut.Close()
fsIn.Close()
End Using
End Using
End Using
End Sub

' Encrypt textfile with Rijndael encryption
Public Shared Sub Encrypt(fileIn As String, fileOut As String, Password As String)

' Open filestream for source file
Using fsIn As New FileStream(fileIn, FileMode.Open, FileAccess.Read)

' Open filestream for encrypted file
Using fsOut As New FileStream(fileOut, FileMode.OpenOrCreate, FileAccess.Write)

' Create Key and IV from the password with salt technique
Dim pdb As New Rfc2898DeriveBytes(Password, SALT)

' Create a symmetric algorithm with Rijndael
Dim alg As Rijndael = Rijndael.Create()

' Set Key and IV
alg.Key = pdb.GetBytes(32)
alg.IV = pdb.GetBytes(16)

' Create a CryptoStream
Using cs As New CryptoStream(fsOut, alg.CreateEncryptor(), CryptoStreamMode.Write)

' Initialize a buffer and process the input file in chunks.
' This is done to avoid reading the whole file (which can be huge) into memory.

Dim bufferlLen As Integer = 4096
Dim buffer As Byte() = New Byte(bufferlLen - 1) {}
Dim bytesRead As Integer

Do
" read a chunk of data from the input file

bytesRead = fsIn.Read(buffer, 0, bufferlLen)

" encrypt it
cs.Write(buffer, 0, bytesRead)
Loop While bytesRead <> 0

213

CHAPTER 8 © ADVANCED SOLUTIONS WITH SCRIPT TASK

" close everything
cs.Close()
fsOut.Close()
fsIn.Close()
End Using
End Using
End Using
End Sub

And finally, the Main method code, in which you call the decrypt and encrypt methods. There are two
examples: the first decrypts a file and the second encrypts a file.

' Decrypt
Public Sub Main()
' Get filepath of encrypted file
Dim filepathEncrypted As String = Dts.Connections("MyProducts encrypted").
AcquireConnection(Nothing).ToString()

' Get the filepath of the decrypted file.
Dim filepathDecrypted As String = Dts.Connections("MyProducts").
AcquireConnection(Nothing).ToString()

' Get password from SSIS variable
Dim encryptionKey As String = Dts.Variables("MyPassword").ToString()

' Create a decrypted copy of the encrypted file
Decrypt(filepathEncrypted, filepathDecrypted, encryptionKey)

' Succeed Script Task

Dts.TaskResult = ScriptResults.Success
End Sub
' Encrypt
Public Sub Main()

' Get filepath of the file that needs to be encrypted.

Dim filepathSource As String = Dts.Connections("MyProducts").AcquireConnection(Nothing).

ToString()

' Get filepath of encrypted file
Dim filepathEncrypted As String = Dts.Connections("MyProducts encrypted").
AcquireConnection(Nothing).ToString()

' Get password from SSIS variable
Dim encryptionKey As String = Dts.Variables("MyPassword").ToString()

' Create an encrypted copy of the file
Encrypt(filepathSource, filepathEncrypted, encryptionKey)
" Succeed Script Task

Dts.TaskResult = ScriptResults.Success
End Sub

214

CHAPTER 8 ' ADVANCED SOLUTIONS WITH SCRIPT TASK

And here is the VB.NET code:

// Decrypt
public void Main()
{
// Get filepath of encrypted file
string filepathEncrypted = Dts.Connections["MyProducts_encrypted"].
AcquireConnection(null).ToString();

// Get the filepath of the decrypted file.
string filepathDecrypted = Dts.Connections["MyProducts"].AcquireConnection(null).
ToString();

// Get password from SSIS variable
string encryptionKey = Dts.Variables["MyPassword"].ToString();

// Create a decrypted copy of the encrypted file
Decrypt(filepathEncrypted, filepathDecrypted, encryptionKey);

// Succeed Script Task
Dts.TaskResult = (int)ScriptResults.Success;

}

// Encrypt
public void Main()

{
// Get filepath of the file that needs to be encrypted.

string filepathSource = Dts.Connections["MyProducts"].AcquireConnection(null).ToString();

// Get filepath of encrypted file
string filepathEncrypted = Dts.Connections["MyProducts_encrypted"].
AcquireConnection(null).ToString();

// Get password from SSIS variable
string encryptionKey = Dts.Variables["MyPassword"].ToString();

// Create an encrypted copy of the file
Encrypt(filepathSource, filepathEncrypted, encryptionKey);

// Succeed Script Task
Dts.TaskResult = (int)ScriptResults.Success;

Summary

In this chapter, you saw some more-advanced coding examples, such as zipping and regular expressions.
Although the examples are ready to use, you are encouraged to explore other properties from the various
objects, to add logging, to add error handling, to change connection managers to variables or parameters,
and to combine examples (using regular expressions to filter when unzipping files).

215

PART il

Script Component

CHAPTER 9

Script Component Foundation W,

If you have an abnormal flat file format, or you want to use regular expressions to clean your data,

or you need an XML destination, then the Script Component is one of your best choices. The Script
Component is part of the data flow in SSIS; it provides a scripting editor for you. It can be used as a source,
a transformation, or a destination. In this chapter, you deep-dive into the Script Component and some of
the most common usages of this component. You will learn how to use variables, connection managers,
logging methods, and error handling in a Script Component.

Editor

Because the Script Component can be used for a variety of purposes, you first have to choose the script type
(Source, Destination, or Transformation) when you add it to the surface of the Data Flow Task (see Figure 9-1).
This is a “choose once” option, which means it can only be chosen when the component is created. If you
want to change it, you have to delete and re-create the component. Depending on the type that you choose,
the default code generated for the component will change, but also other features (like the ability to add
input columns or output columns) are changed.

Select Script Component Type n

Specify how the script will be used in the data flow:

() Source
Script ig a source in the data flow and provides data to output columns.

() Destination
Script is a destination in the data flow and consumes data from input columns

(@ Transformation

Script is a transformation in the data flow and operates on data from input
columns and provides data to output columns.

| 0K Help

Figure 9-1. Script Component Type
219

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

The Script Component Editor is similar to the Script Task Editor, but it has more options and pages (see
Figure 9-2). On the first page, you can add ReadOnly and ReadWrite variables to avoid hard-coded values
in your code. You can also choose the Script Language: C# or VB.NET. If you still work with SSIS 2005, then
the only possibility is VB.NET. This language option is “write once.” After hitting the Edit Script... button,
this option is grayed-out and you can no longer change the Script Language. The only way to change it is by
deleting the entire Script Component, adding a new one to your data flow, and then starting over again.

i} Script Transformation Editor =g

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

Input Columns

Inputs and Qutputs Properties
Connection Managers -
4 Common Properties

ComponentClassiD

script ¢ For example, apply a business rule that lim

Description Includes and runs custom script code. For example, apply a business rule that lim

Contactinfo and runs custom

ntificationString

IsDefaultLocale

LocalelD English (United States)

Script Component
UsesDispositions False
ValidateExternalMetadata True
Version 8
4 Custom Properties
ReadOnlyVariables
ReadWriteVariables
ScriptLanguage Microsoft Visual C# 2012
UserComponentTypeName Microsoft.SqlServer.Dts.Pipeline.ScriptComponentHost, Microsoft.SqlServer. TxScl

ComponentClassiD

This class implements this component’s behavior.

Edit Script...

OK Cancel Help

Figure 9-2. Script Component Editor

Input Columns

The Input Columns page is only visible when you choose Transformation or Destination as the Script
Component type. On this page, you can select all the columns that you need to interact with in the .NET
code (see Figure 9-3). By default, all columns are ReadOnly, but in the Usage Type column, you can make a
column ReadWrite.

220

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

i o Script Transformation Editor - oIEd

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Micresoft Visual C# 2012, and
configure component properties.

Script 1 Input name: Input 0 v

Input Columns

Inputs and Outputs

Connection Managers

Available Input Colu...

O0R R & &R [E

Input Column Output Alias Usage Type
E Employeeld Employeeld ReadOnly
EmployeeName i EmployeeMName ReadWrite
Birthday Birthday ReadOnly
Function Function ReadOnly
1stResult 1stResult ReadOnly
2ndResult 2ndResult ReadOnly

[0K Cancel Help

Figure 9-3. Input Columns

The Script Component can’t handle names that don’t start with a letter. When a column name starts
with a number or a punctuation mark, it removes it in the internal names. So 1stResult becomes
Row.stResult in the code. This could be a problem when you have two equal names with a different
numeric prefix. In the Output Alias column, you can rename columns. This rename action is not only
for the script, but also for the rest of the data flow.

Inputs and Outputs

On the third page, you can add new columns that can be filled by the .NET script. You could, for example,
add a RowNumber column with datatype DT_I4 and fill it within the script with a sequence number

(see Figure 9-4). And it is also possible to add an extra output that allows you to divide your rows to multiple
outputs, for example; but more about that later in this chapter.

221

CHAPTER 9 " SCRIPT COMPONENT FOUNDATION

i} Script Transformation Editor - oI El

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Micresoft Visual C# 2012, and
configure component properties.

Script Specify column properties of the script component.
Input Columns

Inputs and Outputs [npiits and outputs

3-41] Input 0 4 Common Properties
=RE S Output 0 ComparisonFlags
- Output Columns Description
..-‘9|IR0WNUmb¢!‘i 1 ErrorOrTruncation(
ErrorRowDispositic RD_NotUsed
D 90

IdentificationString Script

Connection Managers

Component.Outputg

LineagelD 90
MappedColumniD 0

Name RowNumber
SpecialFlags 0

TruncationRowDis| RD_NotUsed
4 Data Type Properties
CodePage 0
DataType four-byte signed integer [C
Length

Precision

oo o

Scale

Add Output Add Celumn ID

Remove Column

OK Cancel Help

Figure 9-4. Add new RowNumber column

Connection Managers

On the last page, you can add the connection managers, which you want to use in the script code

(see Figure 9-5). You can use connection managers to prevent hard-coded paths in your code. Before you
can use a connection manager in the code, you first have to add it to this list. This is different than the
Script Task Editor, where you can add connection managers in the code itself. In the Name column, you can
add an alias for it that will be used in the script code. Spaces are removed, just like a prefix with numbers or
punctuation marks.

222

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

in) Script Transformation Editor = =) “

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C= 2012, and
configure component properties.

Script Specify the connection managers that the script component uses.
Input Celumns
Inputs and Outputs

Connection Managers Connection managers:

MName Connection Manager Description
| Employee ' Employee.csv File with employee data
Add... Remove
OK Cancel Help

Figure 9-5. Select Connnection Manager

To store a file or folder path, you will most likely use the File Connection Manager, but you can use
all connection managers. However, be cautious with the use of database connection mangers in a Script
Component to execute queries, because there are probably easier solutions that don’t require coding; for
example, with an Execute SQL Task or even an OLE DB command.

Script Layout

When you are finished with the variables, columns, and connection managers, you can click the Edit Script...
button to open the VSTA editor (see Figure 9-6). This editor is a new instance of Visual Studio, with a VSTA
project with either C# or VB.NET code. VSTA stands for Visual Studio Tools for Applications. Depending on
the script type (source, transformation, or destination), the VSTA editor adds default code with different
methods. SSIS 2005 uses Visual Studio for Applications (VSA). The biggest difference compared to VSTA is
that it doesn’t support C# as language.

223

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

B¢ VstaProjects - Microsodt Visual Studic . -- F] = o)
BE DT 6w PRONCT EWLD DOUG TEAM SOL TEST OO ABAYIE WmOOW
o- S X d -0 - Dby - | M D rmBEcKD-,
[no .

- [EET—— - 8x

@l e-0de csrp

v ' (1 posgect)
e F 3B S IO T RR932

us. Flpeline

Createtiendetputions|)

Figure 9-6. VSTA editor

The following describes the various sections of the editor seen in Figure 9-6. This is similar to the Script
Task chapter because they both use the same VSTA environment.

A. Main: The place where you type your code. Saving is done automatically when
you close the VSTA editor.

B. Solution Explorer: In this section, you can add extra references, change
project properties (like the Target Framework), and optionally add extra C# or
VB.NET files. Changes should be saved with the Save All button; otherwise, they
will be lost when you close the VSTA editor.

C. Properties: Here you can see the properties of the item you selected in
Solution Explorer; for example, you can see where the (temporary) VSTA project
is stored on disk.

The script in section A is generated and the code varies per script type, per SSIS version, and of course,
per Scripting Language. The Script Component always starts with a general comment. The text changes
between SSIS versions. Remove these, or even better, replace them with a useful comment about the file/
script. Why did you use a Script Component and what is your code doing? In 2012, regions were added to
make the code more orderly. You could also add them manually to SSIS 2008 script.

224

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

#iregion Help: Introduction to the Script Component

/* The Script Component allows you to perform virtually any operation that can
* be accomplished in a .Net application within the context of an Integration
Services data flow.

Expand the other regions which have "Help" prefixes for examples of specific
ways to use Integration Services features within this script component. */
#endregion

*
*
*
*

This is the VB.NET code:

#Region "Help: Introduction to the Script Component"

' The Script Component allows you to perform virtually any operation that can
' be accomplished in a .Net application within the context of an Integration
' Services data flow.

' Expand the other regions which have "Help" prefixes for examples of specific
ways to use Integration Services features within this script component.

#End Region

Next are the using directives or import statements. In C# they are called using directives; for example:

#region Namespaces

using System;

using System.Data;

using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime.Wrapper;
#endregion

In VB.NET, they are called Import statements; for example:

#Region "Imports"

Imports System

Imports System.Data

Imports System.Math

Imports Microsoft.SqlServer.Dts.Pipeline.Wrapper
Imports Microsoft.SqlServer.Dts.Runtime.Wrapper
#End Region

Which namespaces are included varies per SSIS version and even per scripting language. You can
add extra usings/imports to make your code more compact. They enable/allow the use of types in a given
namespace without having to fully reference them (see Chapter 3 regarding.NET fundamentals).

The third part is the namespace and class declaration. These are generated. Don’t change these unless
you are an experienced .NET developer and have a good reason to change it.

/// <summary>

/// This is the class to which to add your code. Do not change the name,
/// attributes, or parent of this class.

/// </summary>
[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent

{
225

http://dx.doi.org/10.1007/978-1-4842-0638-6_3

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

This is the VB.NET code:
' This is the class to which to add your code. Do not change the name,
attributes, or parent of this class.
<Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute> _
<CLSCompliant(False)> _
Public Class ScriptMain

Inherits UserComponent

Next is a lot of help text about variables, connection managers, and events enclosed by regions. You
can remove these to get clearer code because they aren’t needed for the actual code. After all the help text,
you reach the actual methods. The following sections describe the six most used/overridden methods:
AcquireConnections, ReleaseConnections, PreExecute, PostExecute, CreateNewOutputRows, and Inputo_
ProcessInputRow. They are not all included by default, but you can add them manually. Or if you don’t want
that many methods in your code, you can combine the code—for example, the AcquireConnections and
PreExecute methods, and only use the PreExecute method. You see that in a lot of code examples on the
Internet.

If you override a method, you automatically get some default code that executes the base code from
the overridden method. The line starts with base. and then the name of the method. You could remove this
since it’s not doing anything in SSIS. Most MSDN examples don’t include them either. Or you can leave it,
since it doesn’t hurt the code.

AcquireConnections

This method is not in the default code. As the name suggests, the AcquireConnections method is used to
acquire connections from connection managers. In this example, you are getting the connection from an
ADO.NET connection manager and you store it in a class variable so that you can use it in other methods.

// Create class variables so that they can be used in all methods.
// Added System.Data.SqlClient to usings.
IDTSConnectionManager100 myAdoConnectionManager;
System.Data.SqlClient.SqlConnection myDbConnection;

public override void AcquireConnections(object Transaction)

{
// Fill connection manager object with a Package connection manager
myAdoConnectionManager = this.Connections.myADOConn;

// Fill connection object with connection from the

// ADO.NET connection manager object.

myDbConnection = (System.Data.SqlClient.SqlConnection)myAdoConnectionManager
.AcquireConnection(Transaction);

And this is the VB.NET code:

' Create class variables so that they can be used in all
' Added System.Data.SqlClient to imports.
Private myAdoConnectionManager As IDTSConnectionManager100

Private myDbConnection As System.Data.SqlClient.SqlConnection

226

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

Public Overrides Sub AcquireConnections(Transaction As Object)
' Fill connection manager object with a Package connection manager
myAdoConnectionManager = Me.Connections.myADOConn

Fill connection object woth connection from the
ADO.NET connection manager object.
myDbConnection = DirectCast(myAdoConnectionManager _
.AcquireConnection(Transaction), System.Data.SqlClient.SqlConnection)
End Sub

ReleaseConnections

ReleaseConnections is the counterpart of the Acquire method. In this method, you release the connection
when you don’t need it any more. This code uses the same class variables as the Acquire method code.

public override void ReleaseConnections()

{
// Release the connection when finished
myAdoConnectionManager.ReleaseConnection(myDbConnection);

}

This is the VB.NET code:

Public Overrides Sub ReleaseConnections()
' Release the connection when finished
myAdoConnectionManager.ReleaseConnection(myDbConnection)
End Sub

PreExecute

The PreExecute method is executed before any of the rows pass through the component. It is often used to
get variables or connection managers, or to execute some initial code, like in the following example, where a
new XML document is started.

// Variable that contains the XML document
// Added System.Xml to usings
XmlTextWriter textWriter;

// Start of XML document
public override void PreExecute()
{
// Create a new XML document and use the filepath
// from a FILE connection manager named xmldocument as XML-file
textWriter = new XmlTextWriter(
this.Connections.xmldocument.ConnectionString.ToString(), null);

// Start writing the XML document:
texthWriter.WriteStartDocument();

// Create root element <root>
textWriter.WriteStartElement("ROOT");

227

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

And this is the VB.NET code:
' Variable that contains the XML document
' Added System.Xml to imports
Dim textWriter As XmlTextWriter

Public Overrides Sub PreExecute()
MyBase.PreExecute()
' Create a new XML document and use the filepath
' from a file connection manager named xmldocument as XML-file
textWriter = New XmlTextWriter(_
Me.Connections.xmldocument.ConnectionString.ToString(), _
System.Text.Encoding.Default)

'Start writing the XML document:
textWriter.WriteStartDocument()

'Create root element <root>
textWriter.WriteStartElement ("ROOT")
End Sub

PostExecute

The PostExecute method is executed after all the rows pass through the component. It is often used to set
variables or release connection managers, or to execute some final code. In this example, you are closing
the XML document that was opened in the PreExecute method. In Chapter 12, you will see the complete
example of this XML destination.

// Close of XML document
public override void PostExecute()

{

// Close root element: </root>
textWriter.WriteEndElement();

// Stop writing the XML document
textWriter.WriteEndDocument();

// Close document
textWriter.Close();

And this is the VB.NET code:

Public Overrides Sub PostExecute()
'Close root element: </root>
textWriter.WriteEndElement()

'Stop writing the XML document
textWriter.WriteEndDocument ()

'Close document
textWriter.Close()
End Sub

228

http://dx.doi.org/10.1007/978-1-4842-0638-6_12

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

Input()_ProcessinputRow

The Input0_ProcessInputRow method is only available in the Script Component transformation and
destination. It executes once for each record entering the Script Component. In this method, you are
working with the column values in each row. In this example, you are filling a new output column called
RowNumber with a sequence number. You can find the complete example in Chapter 11.

// New internal variable to store the rownumber
private int sequenceNumber = 0;

// Method that will be started for each record in your dataflow
public override void Inputo ProcessInputRow(InputoBuffer Row)
{

// Seed counter

sequenceNumber++;

// Fill the new column
Row.RowNumber = sequenceNumber;

}

And this is the VB.NET code:

' New internal variable to store the rownumber
Private sequenceNumber As Integer = 0
" Method that will be started for each record in your dataflow
Public Overrides Sub Input0 ProcessInputRow(ByVal Row As InputOBuffer)

'Seed counter

sequenceNumber = sequenceNumber + 1

' Fill the new column

Row.RowNumber = sequenceNumber
End Sub

CreateNewOQutputRows

The CreateNewOutputRows method is the Script Component source equivalent of Input0_ProcessInputRow,
but it is also available for transformations with asynchronous outputs. With this method you can create new
rows, but it is executed only once. So you need to add a loop construction to add multiple rows. In this very
basic example, you are adding 10 rows with an integer column containing the numbers 1 to 10, and a string
column containing the words even or uneven, depending on the value. In Chapter 10 you can find multiple
examples of this method.

229

http://dx.doi.org/10.1007/978-1-4842-0638-6_11
http://dx.doi.org/10.1007/978-1-4842-0638-6_10

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

public override void CreateNewOutputRows()

{
// Add 10 rows
for (int i = 1; 1 <= 10; i++)

{
// Add a new row
OutputoBuffer.AddRow();
// Fill two columns with data
OutputOBuffer.myIntegerColumn = i;
OutputoBuffer.myStringColumn = (i % 2) == 1 ? "uneven" : "even";
}
}

And this is the VB.NET code:

Public Overrides Sub CreateNewOutputRows()
' Add 10 rows
For i As Integer = 1 To 10
' Add a new row
OutputoBuffer.AddRow()
' Fill two columns with data
OutputoBuffer.myIntegerColumn = i
OutputoBuffer.myStringColumn = If((i Mod 2) = 1, "uneven", "even"
Next
End Sub

Variables and Parameters

Like the Script Task, you can use variables (and parameters) in the Script Component, but there are some
differences. First of all, getting variable values can only be done in the PreExecute method and setting a
variable value can only be done in the PostExecute method; otherwise, you get a runtime error. If you need
variable values in the Input0_ProcessInputRow or CreateNewOutputRows methods, for example, then you
must create a class variable to store the value from the SSIS variable and then use that class variable in the
other methods.

There are two different methods. In this example, you are filling a new RowNumber column (see the
“Inputs and Outputs” section), but the starting sequence is coming from an SSIS integer variable (see
Figure 9-7). This variable could be filled by configurations or by an Execute SQL Task with a query like this:

SELECT ISNULL(MAX(rownumber),0) + 1 as NextRowNumber FROM myTable

Variables * QX
CR EER

MName Scope Data type Value Expression

& StartingSequence RowNumber Int32 100 :

Figure 9-7. Integer variable called StartingSequence

230

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

Method 1: ReadOnlyVariables and ReadWriteVariables

This example is available to download. Add a Script Component of type Transformation after your source.
Add a new output column called RowNumber on the Inputs and Outputs page. On the first page of the
editor, you need to add the StartingSequence variable as a ReadWrite variable (see Figure 9-8). In this
example, you are first reading the starting sequence, and when you are finished, you are filling it with the last
row number.

4 Custom Properties
ReadOnlyVariables

ReadWriteVariables [User::StartingSequence|

ScriptLanguage Microsoft Visual C= 2012

UserComponentTypeName Microsoft.SqlServer.Dts.Pipeline.ScriptComponentHost, Micr

Figure 9-8. ReadWriteVariables

Now click the Edit Script... button and create an integer Class variable, which is a variable within the
class but not in one of the methods. The most appropriate location is right after the class declaration; but
that is not a requirement.

// Class variable to store a rownumber
// that can only be used in all methods
private int rowNumber = 0;

And this is the VB.NET code:

' Class variable to store a rownumber
' that can only be used in all methods
Private rowNumber as Int32 = 0

In the PreExecute method, you can fill this class variable with the SSIS integer variable value. If you type
Variables, then IntelliSense will show you a complete list of the available variables. These are the variables
that you either selected as the ReadOnly or ReadWrite variable. You may have noticed that this differs from
the Script Task.

public override void PreExecute()

{

// Fill the class variable with the
// value from the SSIS integer variable
rowNumber = Variables.StartingSequence;

}

And this is the VB.NET code:

Public Overrides Sub PreExecute()
' Fill the class variable with the
' value from the SSIS integer variable
rowNumber = Variables.StartingSequence
End Sub

231

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

In the Input0_ProcessInputRow method, you raise the value and then fill the new output row number
column for each row passing through.

public override void Input0 ProcessInputRow(InputOBuffer Row)
{

// Increase rownumber by 1

rowNumber++;

// Fill new column with the rownumber

Row.RowNumber = rowNumber;

This is the VB.NET code:

Public Overrides Sub Input0 ProcessInputRow(ByVal Row As InputOBuffer)
' Increase rownumber by 1
rowNumber = rowNumber + 1
" Fill new column with the rownumber
Row.RowNumber = rowNumber
End Sub

And in the PostExecute method, which executes after all rows have passed through, you could set the
SSIS integer variable with the last row number for the next data flow or for logging purposes.

public override void PostExecute()

{
// Fill SSIS variable with final rownumber
Variables.StartingSequence = rowNumber;

}

This is the VB.NET code:

Public Overrides Sub PostExecute()
' Fill SSIS variable with final rownumber
Variables.StartingSequence = rowNumber
End Sub

Method 2: Variable Dispenser

The second method is very similar to the second variable method for Script Tasks. Instead of using the
ReadOnly and ReadWrite variables fields in the editor, you are locking the variables in code. For this
example, you are only changing the PreExecute and the PostExecute methods. The rest of the code is
exactly the same. In the PreExecute method, you are locking the SSIS integer variable for reading, and after
you have filled the class variable with the value from the SSIS variable, you are releasing the lock. There is
also an explicit conversion (Convert.ToInt32) added because a conversion from object to integer isn’t safe
and data could get lost. An alternative to Convert.ToInt32 is Int32.TryParse, which is safer if you're not
sure what the data type is. In this case, you are sure that it’s an integer.

232

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

public override void PreExecute()

{
// Lock the variable for read
VariableDispenser variableDispenser = (VariableDispenser)VariableDispenser;
variableDispenser.LockForRead("User: :StartingSequence");

// Create a variable 'container' to store the variable(s)
IDTSVariables100 vars;
variableDispenser.GetVariables(out vars);

// Fill the class variable with the value from the SSIS integer variable
// Because the datatype is always Object if you use this method you

// first need to convert it to the appropriate Data Type with a convert.
rowNumber = Convert.ToInt32(vars["User::StartingSequence"].Value);

// Unlock the variable
vars.Unlock();

And this is the VB.NET code:

Public Overrides Sub PreExecute()

' Lock the variable for read

Dim variableDispenser As VariableDispenser = _

CType(Me.VariableDispenser, VariableDispenser)
variableDispenser.LockForRead("User: : StartingSequence")

' Create a variable 'container' to store the variable(s)
Dim vars As IDTSVariables100
variableDispenser.GetVariables(vars)

' Fill the class variable with the value from the SSIS integer variable
Because the datatype is always Object if you use this method you

' first need to convert it to the appropriate Data Type with a convert.
rowNumber = Convert.ToInt32(vars("User::StartingSequence").Value)

" Unlock the variable
vars.Unlock()
End Sub

In the PostExecute method, you need to lock the variable for write to fill it with the final row number.
Adding an extra convert is not necessary because the conversion from integer to object is an implicit
conversion where no data will get lost.

public override void PostExecute()

{

// Lock the variable for write
VariableDispenser variableDispenser = (VariableDispenser)VariableDispenser;
variableDispenser.LockForWrite("User: :StartingSequence");

233

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

// Create a variable 'container' to store the variable(s)
IDTSVariables100 vars;
variableDispenser.GetVariables(out vars);

// Fill SSIS variable with final rownumber
vars["User::StartingSequence"].Value = rowNumber;

// Unlock the variable
vars.Unlock();

This is the VB.NET code:

Public Overrides Sub PostExecute()

' Lock the variable for write

Dim variableDispenser As VariableDispenser = _

CType(Me.VariableDispenser, VariableDispenser)
variableDispenser.LockForhWrite("User: :StartingSequence")

' Create a variable 'container' to store the variable(s)
Dim vars As IDTSVariables100
variableDispenser.GetVariables(vars)

' Fill SSIS variable with final rownumber
vars("User::StartingSequence").Value = rowNumber
' Unlock the variable
vars.Unlock()

End Sub

Note If you set a variable value in the Script Component, then the new value will only be available after the
Data Flow Task is finished.

If you are still using SSIS 2005, then IDTSVariables100 should be IDTSVariables9o.

You can’t read sensitive parameters in the Script Component; that is only possible in the Script Task.

Conclusion

In the second example that used the variable dispenser, you seem to have a little more control when you
lock and unlock your variables. The big downside is that you cannot quickly see which variables you are
using; you have to check the entire code. The other disadvantages are that you need much more code to
accomplish the same thing, you have to convert the Object data type to something useful, and you can't use
IntelliSense to get the name of the variables. Therefore, the first method should be your preferred method.

234

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

Connection Managers

Integration Services uses connection managers to provide access to various data sources, such as flat files
and databases, but also to web servers and message queues. You can use these connection managers in a
Script Component to avoid hard-coded paths and connection strings. But be conservative with the use of
database connection managers because there are probably out-of-the-box alternatives, such as Execute SQL
Task, OLE DB Source, OLE DB Command, and OLE DB Destination. If you really need a database connection
manager in your script, then ADO.NET is the preferred connection manager type because connection
managers like OLE DB, ADO, and ODBC don’t return .NET managed objects. Instead, they return COM
objects, making them hard to use.

In destination scripts, you can use either the PreExecute method or the AcquireConnections method
to acquire a connection, but in a source script, you could also use the CreateNewOutputRows method since
it’s only executed once. However, it is best to use the AcquireConnections method since it is the only place
where you can start a transaction.

Before you start coding, you first need to add your connection manager to the list of connection
managers in the Script Component Editor. Once you have done that, you can use the alias (name column)
in your Script Component. If you type This.Connections., you can use IntelliSense to get the connection
manager name.

The first example is simply getting the connection string property to extract a file path from, and using
that in a StreamReader, for example.

using (StreamReader sr = new StreamReader(
this.Connections.MyProducts.ConnectionString))
{

String line;
// Read lines from the file until the end of the file is reached.
while ((line = sr.ReadLine()) != null)
{
// do something with the line variable
}
}

And this is the VB.NET code:

Using sr As New StreamReader(Me.Connections.MyProducts.ConnectionString)
Dim line As String = sr.Readline
' Read lines from the file until the end of the file is reached.
Do While (Not line Is Nothing)
' do something with the line variable
" And end the loop with a Read next line
line = sr.ReadlLine
Loop
End Using

Instead of using the connection string property, it’s even better to use the AcquireConnection. This will
process expressions on the connection manager, if there are any.

this.Connections.MyProducts.AcquireConnection(null).ToString()

235

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

This is the VB.NET code:
Me.Connections.MyProducts.AcquireConnection(Nothing).ToString()

The return value differs depending on the connection manager type. For example, the Flat File
Connection Manager returns a string containing the file path, but the ADO.NET Connection Manager
returns an SqlConnection object. Search for “Working with Connection Managers Programmatically” or
go to the BOL page at https://msdn.microsoft.com/en-us/library/cc645942.aspx to get a complete
overview.

// Store the connection manager in a local Connection Manager object
IDTSConnectionManager100 myADONETConnectionManager =
this.Connections.AdvantureWorks;

// Acquire the connection
SqlConnection myADONETConnection = (SqlConnection)myADONETConnectionManager.
AcquireConnection(null);

// Create string with query
string QueryString = "SELECT count(*) as NumberOfStores FROM [Sales].[Store]";

// Create a command with the query and the connection
SqlCommand myCommand = new SqlCommand(QueryString, myADONETConnection);

// Execute the query and loop through record(s)
SqlDataReader dr = myCommand.ExecuteReader();
while (dr.Read())

{

// do something with dr.GetValue(x)
}

A better alternative for creating all of those variables/objects is to use a using to ensure that all objects
are disposed when you are ready.

using (SqlConnection myADONETConnection = (SqlConnection)
myADONETConnectionManager.AcquireConnection(null))
{

// Do something with myADONETConnection

}
// myADONETConnection is now disposed

This is the VB.NET code:

Store the connection manager in a local Connection Manager object
Dim myADONETConnectionManager As IDTSConnectionManager100 = Me.Connections.AdvantureWorks

' Acquire the connection

Dim myADONETConnection As SqlConnection = CType(myADONETConnectionManager.
AcquireConnection(Nothing), SqlConnection)

236

https://msdn.microsoft.com/en-us/library/cc645942.aspx

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

' Create string with query
Dim QueryString As String = "SELECT count(*) as NumberOfStores FROM [Sales].[Store]"
' Create a command with the query and the connection
Dim myCommand As New SqlCommand(QueryString, myADONETConnection)
' Execute the query and loop through record(s)
Dim dr As SqlDataReader = myCommand.ExecuteReader()
While dr.Read()
' do something with dr.GetValue(x)
MessageBox. Show(dr.GetValue(0).ToString())
End While

And this is the same example in VB.NET:

Using myADONETConnection As SqlConnection = CType(myADONETConnectionManager. _
AcquireConnection(Nothing), SqlConnection)

Do something with myADONETConnection

End Using

' myADONETConnection is now disposed

Logging Events

Within the Script Component you can raise/fire events for logging purposes. But firing an information event,
for example, does not automatically log the message. You still have to capture those events in your package
logging. Firing events work similarly to Script Task events, but there are fewer events to fire:

e FireCustomEvent
e FireError

e FireInformation
e FireProgress

e FireWarning

Next are a couple of fire event examples. Don't fire too many events because that pollutes the logging,
making it worthless, and it worsens the performance of your Script Component. All methods (except for the
FireProgress) have a similar structure.

The first integer is error/warning/information code. You can keep it zero, unless you want to keep up a
complete list of all codes. The second parameter is a string containing the (sub)name of your transformation.
In most cases, this can be the name of your Script Component, unless you have quite a large piece of code
with multiple log entries; then you could use the name of the section of your code, for example. The third
parameter is the actual message that you want to log. For the other parameters, you could use the value as
shown. In most cases, they are less useful.

In the Script Component you can fire an error with the following code, which will result in a log line in
the Progress/Execution Results tab (see Figure 9-9).

Q [MyTransformation] Error: Something went wrong!

Figure 9-9. FireError result (from Progress/Execution Results tab)

237

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

The last parameters are string.Empty and 0 because you don’t have a help file reference available.

// Cancel the component on error

bool bpCancel = true;

// Firing an error

ComponentMetaData.FireError (0, "MyTransformation", "Something went wrong!",
string.Empty, 0, out bpCancel);

This is the VB.NET code:
' Cancel the component on error
Dim bpCancel As Boolean = True
' Firing an error
ComponentMetaData.FireError(0, "MyTransformation", "Something went wrong!",
String.Empty, 0, bpCancel)

You can combine the FireError method with a try-catch statement to handle your unexpected errors.

//C# code
try
{
// your code
}
catch(Exception ex)
{

bool pbCancel = True;

this.ComponentMetaData.FireError(0, "MyTransformation”,
"An error occurred: " + ex.Message,
string.Empty, 0, out pbCancel);

And this is the VB.NET code:

Try
' your code
Catch ex As Exception
Dim bpCancel As Boolean = True
ComponentMetaData.FireError(0, "MyTransformation", _
"An error occurred: " + ex.Message, _
String.Empty, 0, bpCancel)
End Try

Firing a warning has no cancel option; it results in an exclamation mark icon and the warning text in the
Progress/Execution Results tab, as shown in Figure 9-10.

1 [MyTransformation] Warning: Something went wrong!

Figure 9-10. FireWarning result (from Progress/Execution Results tab)

238

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

// Firing a warning
ComponentMetaData.FireWarning(0, "MyTransformation", "Something went wrong!",
string.Empty, 0);

This is the VB.NET code:
' Firing a warning
ComponentMetaData.FireWarning(0, "MyTransformation", "Something went wrong!", _
String.Empty, 0)

Firing an information event has a FireAgain option to prevent multiple log rows in the Progress/
Execution Results tab, as shown in Figure 9-11.

€ MyTransformation] Information: For your information!

Figure 9-11. Firelnformation result (from Progress/Execution Results tab)

// Specifies whether the event should be raised again in the future

bool pbFireAgain = true;

// Firing information

ComponentMetaData.FireInformation(0, "MyTransformation", "For your info!",
string.Empty, 0, ref pbFireAgain);

And this is the VB.NET code:
' Specifies whether the event should be raised again in the future
Dim pbFireAgain As Boolean = True
' Firing information
ComponentMetaData.FireInformation(0, "MyTransformation", "For your info!", _
String.Empty, 0, pbFireAgain)

If you have a loop construction or a method that executes for each row, then you could use the
FireProgress event to keep you informed on the progress percentage (see Figure 9-12). This is probably only
useful for processes that could take a while. In this example, 0 is the lower bound, 100 is the upper bound,
and 25 the actual value.

// Specifies whether the event should be raised again in the future

bool pbFireAgain = false;

// Firing progress

ComponentMetaData.FireProgress("Doing something", 25, 0, 100,
"MyTransformation", ref pbFireAgain);

This is the VB.NET code:
' Specifies whether the event should be raised again in the future
Dim pbFireAgain2 As Boolean = True
' Firing progress
ComponentMetaData.FireProgress("Doing something", 25, 0, 100, _
"MyTransformation", pbFireAgain)

239

CHAPTER 9 © SCRIPT COMPONENT FOUNDATION

= [MyTransformation] Progress: Doing something - 25 percent complete
= [MyTransformation] Progress: Doing something - 50 percent complete
=» [MyTransformation] Progress: Doing something - 75 percent complete
= [MyTransformation] Progress: Doing something - 100 percent complete

Figure 9-12. FireProgress result

Changing .NET Versions

Each version of SSIS has its own range of supported .NET Frameworks (see Table 9-1). This means that you
can’t use a .NET 3.5 feature like LINQ (Language-Integrated Query) in SSIS 2005 because it only supports
.NET 2.0. In SSIS 2008, Microsoft added support up to .NET 3.5; however, the default Target Framework for
SSIS 2008 is .NET 2.0, but you can change that in the VSTA editor.

Table 9-1. SSIS Versions and Supported Frameworks

SSIS Version Supported Framework
2005 2.0

2008 (R2) 2.0=>3.5

2012 2.0=>4.0

2014 2.0=>45.1

2016 2.0=>4.5.2

To change the Target Framework, go to the VSTA editor and right-click the project in Solution
Explorer. Then choose the properties. In a C# project, you can find the Target Framework on the first page
(Application, as seen in Figure 9-13).

File Edit View Project Build Debug Data Tools Window Help
e A RN~ - A AR E S IR NI R B R e
sc_ad3336dcae2...3438840dc87b9e8 |

Applicati 1
[i) Assembly name:

|xoqia01 3¢ |1ai0]dx3 aseqeleq

Build SC_ad3336dcae204cf203438840dc8TbIe8.csproj SC_ad3336dcae204cf293438840dcBTb%e8 csproj
Build Events Target Framework: I
2) .NET Framework 3.5 *| |Class Library
Debug 1 J)
Resources . Target Framework Change)
Setti
e (Not set
| . Changing the Target F k requires that the current project be
Reference Paths e closed and then recpened.
Resources ~ Any unsaved changes within the project will be automatically saved.
Signing

Specify how application resg
Are you sure you want to change the Target Framework for this project?

A manifest determines s
your project and then sel

3) [Ja Nee]

(Default Icon) —

Figure 9-13. Changing Target Framework for C#
240

CHAPTER 9 * SCRIPT COMPONENT FOUNDATION

In VB.NET, the Target Framework is in different locations, depending on the version of SSIS or Visual
Studio (see Figure 9-14). In older versions, you can find it on the Compile page in the Advanced options. And
in newer versions, Microsoft aligned the location with C# projects and moved it to the Application page.

File

KuGH0 L S | IRiodvE BeaeE gy

Apphcation

Compile 1)

View Project Buld Debug Data Took
AT - e
5C_36B84146¢89.9011542b9502638

Window Help
RS S L0 ot
|

Butd output path:

b

Compile Options:
Option explicit
[on

T ETEE PN

Option compace:
| Binary
Waming configurations:

Conditicn
Late binding: tall could fad at sun time
kit type object asiumed

s of vasisble prior to assignment
Function/Operator without return value
Unused local vansble

Instance varisble accesses shared member
Fecursive operstor of property sccess

Cuplicate or overlapping catch blocks

Disable 8 warrings
| Trest all wamings as emors
| Generate XML documentation file
| Register for COM intercp

| 2) Avanced Compie Options...

Option strict:
+| festom)
—
Advanced Compiler Settings (2 i |
L
Optimizations
Femove integer cverflow checks [Ensble optimizations T —
DLL base address &HOM400000
Generate debug infa: [Heme -
Compilation Constants —_—
i
Define DEBUG constant) Define TRACE constant
e
Custom constants:
Target Framework Change — — — =)
Exarmiple: Namel="Valuel” Namel="Valuel” Name3="Val -
Generate serisbzation sssmblies: 5% Changing the Target Framewark requines that the current project be =
closed snd then reopered. ™
Auts oy " in the prcject will be wd.

Taeget framework (all configurations):
3) [ET Framework 35

NET Framewerk 2.0
MET Framework 3.0

Are you sure you want to change the Tanget Framework foe this project!

o][]

Summary

In this chapter, you learned the Script Component basics, such as how to use variables or connection
managers. In the following chapters, you will learn more about how they are used in various examples.

Figure 9-14. Changing Target Framework for VB.NET

241

CHAPTER 10

Script Component As Source

This chapter focuses on the Script Component as a source. There are a lot of different sources available in
the Data Flow Task, but sometimes you get, for example, files that are not properly formatted to make them
readable for the Flat File Source. And what about using the Script Component to generate random test data if
you don’t have data to test your data flow?

Flat File with an Uneven Number of Columns

Some .csv files have rows where not all the columns at the end are filled. Instead of having empty columns,
the columns have been omitted. This causes some strange behavior in the Flat File Connection Manager,
where some rows and columns will be merged. This is the sample data used for this example:

"test1";"abc";"xyz";"123"
"test2";"cba";"zyx";"321"
"test3";"abc"
"test4";"efg"; " "zyx"
"tests5";"cba";"zyx";"321"

If you show a preview in the Flat File Connection Manager, it merges the short row with the next row
and shows an error. Figure 10-1 shows how that looks. You can see how “test4” is adjacent to the “abc” form
the “test3” row. Figure 10-2 shows the error message that youll receive.

Column 0 Column 1 Column 2 Column 3
“test1” “abc”® "xyz" 123"
"test2” “cha” “Zyx" "321"
"test3” ('abc"test4') "efg” "zyx"
"test5” “tha” “zyx" b 7.4

Figure 10-1. Merged columns and rows

243

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

Microsoft Visual Studio : - ﬁ

v The last row in the sampled data is incomplete. The column or the row delimiter may be missing or the text is
qualified incorrectly.

RE [ok

L

Figure 10-2. Error in the Flat File Connection Manager editor

Script Component Source

This issue was fixed in SSIS 2012 by adding a new Flat File Connection Manager property named
AlwaysCheckForRowDelimiters; but for older versions, you get an error in the Flat File Connection Manager
editor when you try to read a file with such data. A Script Component as a source could help you to read this
file. Instead of using a Flat File Connection Manager, you will use a File Connection Manager that points to
the same CSV file with the variable column numbers, but without defining the columns.

Go to the Data Flow Task and add a Script Component to the surface. You will be asked to choose
between Source, Transformation, and Destination. Choose Source as shown in Figure 10-3, and give the task
a useful name. Adding a description or an annotation about the reason for using the Script Component is
recommended.

244

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Scpiomeadim Do
3" Control Flow ({4} DataFlow | {3] EventHanders | %3 Package Explorer

Data Flow Task: 4] Read Incomplete CSV

|

| i Script -
\) Component 1 | Select Script Component Type M

Specify how the script will be used in the data flow:

@ Source
Script is a source in the data flow and provides data to output columns.

) Destination
Script is a destination in the data flow and consumes data from input columns.

(") Transformation

Script is a transformation in the data flow and operates on data from input
columns and provides data to output columns.

Figure 10-3. Script Component Source

Creating Output Columns

Open the Script Transformation Editor and go to the Inputs and Outputs page. Add four string columns to
Output 0. Before you click the Add Column button to add a second column, you should first click Output
Columns; otherwise, the new column will be added on top instead of at the bottom.

You may need to convert the data in the script from string to integer. It is a best practice to use correct
data types; otherwise, you need to cast the values downstream of your data flow. Figure 10-4 highlights the
data type dropdown list field.

245

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

3% Script Transformation Editor

(el

Access Microsoft Visual Studio 2008 Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2008 or Microsoft Visual C= 2008,

and configure component properties.

"Script

Inputs and Qutputs
Connection Managers

Specify column properties of the script component.

Inputs and outputs:
=5 Output0 B Common Properties
=3 Output Columns ComparisonFlags

=& MyFirstColumn

5 MySecondColumn

- MyThirdColumn

e MyFourthColumn

Description

ErrorOrTruncationQO

ErrorRowDispositior| RD_NotUsed

ID 52 |
IdentificationString | output column 'I‘v!-JFcurll':
LineagelD 52 '
MappedColumniD 0

Name MyFourthColumn
SortKeyPosition 0
SpecialFlags 0

TruncationRowDisp| RD_NotUsed

B Data Type Properties

CodePage 1252
DataType string [DT_STR] [~]
Length 50 |
Precision 0
Scale 0
Add Output l I Add Column ‘ =
e DataType
l Remove Column l
ok | [Cancel] [Help

Figure 10-4. Add new output columns

Creating a File Connection Manager

To avoid hard-coded connection strings in the script, you need a connection manager. For this example,
you are creating a new connection manager from within the Script Component Editor, but you could

also do that upfront and then use that one in the editor. Go to the Connection Managers page and add a
new connection (1). The Connection Manager Type (2) should be FILE and the Usage type (3) should be
“Existing file” Next, change the default name from Connection to myFile in the Name column. These steps
are shown in Figure 10-5.

246

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Figure 10-5. Add new connection manager

The Code

| =% Script Transformation Editor = .
Access Microsoft Visual Studic 2008 Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2008 or Microsoft Visual C= 2008,
and configure comy 1t properti

Script Specify the connection managers that the script component uses.
Inputs and Qutputs
Connection Managers
Connection managers:
' Name Connection Manager Description
Connection 1 <New connection...>
<New connection...>
LJ Add SSIS Connection Manager o (),
Select the type of connection manager to add to the package.
Connection manager type:
Type Description File Na... File =
ADO Connection manager for ADO connections c\Prog... 200;
ADO.NET Connection manager for ADO.NET connections ¢\Prog... 2007
CACHE Connection manager for cache c\Prog... 2007
EXCEL Connection manager for Excel files c\Prog... 200;
2 FILE Connection manager for files c\Prog... 200188
FLATFILE Connection manager for flat files c\Prog... 2005~
= = == —* jections c\Prog... 2007
=, File Connection Manager B ———— —— == hnections c\Prog... 200
hge Quevet.. Micros.. 100
Configure the file connection properties to reference a file or a folder that exists or is created at run time. ervices con... ¢\Prog.. 200}
Files c\Prog... 2007~
— lat files c\Prog... 200%
Usagetys I pafile '] nnections c\Prog... 200i
2 - lonnections c\Prog... 2000
Eile: 3 d\MyEle.csv u Browees Er transfer ta... | Micros... 100 ™
» I
. ok || coca | |[ada. [conca |
N —— e

Now you can go back to the Script page, and choose Edit Script... to open the VSTA environment. First you

need to add an extra namespace to shorten the code.

#region CustomNamespace
using System.IO;
#endregion

247

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

And here is the VB.NET code:

#Region "CustomNamespace"
Imports System.IO
#End Region

Next, you can copy the following code to the CreateNewOutputRows method. This method creates
new records.

public override void CreateNewOutputRows ()
{
// Get the filepath from the connection manager
string filePath = this.Connections.myFile
.AcquireConnection(null).ToString();

// Read file via a stream

// Encoding is optional

using (StreamReader sr = new StreamReader(filePath,
System.Text.Encoding.UTF7))

{

// string variable to temporarly
// store the contents of 1 line.
string line;

// Read lines one by one from the file
// until the end of the file is reached.
while ((line = sr.ReadlLine()) != null)
{
// Split the line into columns
string[] columns = line.Split(';');

// Add one new row to buffer
this.OutputoBuffer.AddRow();

// Fill columns, but check if they exist
if (columns.Length > 0)
{
// Remove the " at the start and end of the string
// with a trim or use a substring.
OutputOBuffer.MyFirstColumn =
columns[0].TrimStart("'"").TrimEnd('"");

if (columns.Length > 1)

{
OutputOBuffer.MySecondColumn =

columns[1].TrimStart('"").TrimEnd('"");
}

if (columns.Length > 2)

{
OutputOBuffer.MyThirdColumn =

columns[2].TrimStart('"").TrimEnd('"");

248

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

if (columns.Length > 3)
{
OutputOBuffer.MyFourthColumn =
columns[3].TrimStart("'"").TrimEnd('"");
// If you choose integer as datatype then you
// need to add a convert around columns:
// OutputoBuffer.MyIntColumn =
// Convert.ToInt32(columns[3].TrimStart('""').TrimEnd('""));

And this is the VB.NET code, where the while loop is slightly different from the C# example.

Public Overrides Sub CreateNewOutputRows()
' Get the filepath from the connection manager
Dim filePath As String = Me.Connections.myFile _

.AcquireConnection(Nothing).ToString()

' Read file via a stream

Encoding is optional

Using sr As New StreamReader(filePath, System.Text.Encoding.UTF7)
' string variable to temporarly
' store the contents of 1 line.
Dim line As String = ""

' Read first line before loop (unlike Ci#)
line = sr.ReadLine()
' Read lines one by one from the file
" until the end of the file is reached.
While (line <> Nothing)
' Split the line into columns
Dim columns As String() = line.Split(";"c)
' Add one new row to buffer
Me.OutputoBuffer.AddRow()
' Fill columns, but check if they exist
If columns.Length > 0 Then
' Remove the " at the start and end of the string
with a trim or use a substring.
OutputOBuffer.MyFirstColumn = _
columns(0).TrimStart(""""c).TrimEnd(""""c)

End If
If columns.Length > 1 Then
OutputOBuffer.MySecondColumn = _
columns(1).TrimStart(""""c).TrimEnd(""""c)
End If

249

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

If columns.Length > 2 Then
OutputOBuffer.MyThirdColumn =

columns(2).TrimStart(""""c).TrimEnd(""""c)

End If
If columns.Length > 3 Then

OutputoBuffer.MyFourthColumn = _
columns(3).TrimStart(""""c).TrimEnd(""""c)

' OutputoBuffer.MyIntColumn =

If you choose integer as datatype then you
need to add a convert around columns:

' Convert.ToInt32(columns(3).TrimStart(""""C).TrimEnd(""""C))

End If

' Read next line at bottom of loop (unlike Ci)

line = sr.ReadlLine()
End While
End Using
End Sub

You have removed the overridden pre- and post- execute methods since you don’t need them. You
could use the pre-execute to for example check if the file is filed with data. The Script Component Editor will
check whether the file in the connection manager exists before the code is executed.

The Results

When you execute the Data Flow Task, you can add a data viewer to check the results. Figure 10-6 shows

an example.

Data Flow Task: ¥ DFT - Read unéven columns

Detach

MyFirsiColumn

Copy Data

gagey

Output 0 Data Viewer at Data Flow Task

! I SCR_SRC - Read uneven columns =

MySecondCohmmn

My ThirdColm
xyz

oy

NULL

zyx

yx

MyFourthColumn

j\, DER - DoSomething

Figure 10-6. The results

250

Rows displayed = 5

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Flat File with Records Split over Multiple Rows

Another good use of the Script Component as a source is when the records are divided over multiple lines. In
this case, each line has one column.

id,1

name, Joost
address,Street 2
id,2

name,Regis
address,Avenue 4b
id,3

name,William
address,Plaza 5

Script Component Source

Go to the Data Flow Task and add a Script Component to the surface. You will be asked to choose between
Source, Transformation, and Destination. Choose Source as in Figure 10-7, and give the component a
useful name.

Source2.dtsx [Design]* # X

f.a Control Flow [ERIPECIL 0 & Parameters [l Event Handlers %= Package Explo...
Data Flow Task: ww DFT - Read multiple row records

Select Script Component Type
! l Script Component
Specify how the script will be used in the data flow:

(®) Source

Script is a source in the data flow and provides data to output columns.

(_) Destination

Script is a destination in the data flow and consumes data from input
columns.

() Transformation

Script is a transformation in the data flow and operates on data from input
columns and provides data to output columns.

OK | Helo

Figure 10-7. Script Component as source

251

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Output Columns

Edit the Script Component and go to the Inputs and Outputs page (see Figure 10-8). Add three columns at
the output section:

e ID (four-byte signed integer, DT_I4)
e Name (string 50, DT_STR 1252)
e Address (string 50, DT_STR 1252)

i Script Transformation Editor - B -

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.

| Script Specify column properties of the script component.
Inputs and Outputs
Connection Managers
Inputs and outputs:
=3 Output 0 | F= Common Properties
= Output Columns ComparisonFlags
&0 Description
® Name ErrorOfTruncationOpe
3 Address =T
ErrorRowDisposition | RD_NotUsed
ID 27
IdentificationString | Script Component.d
LineagelD 27
MappedColumniD 0
MName Address
SortKeyPosition 0
SpecialFlags 0
| TruncationRowDisposi RD_NotUsed
| 4 Data Type Properties
CodePage 1252
string [DT_STR] | v|
Length 50
Precision 0
Scale 0
Add Output Add Column [DataType
Remaove Column

OK Cancel Help

Figure 10-8. Output columns

252

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Create a Connection Manager

In this example, you are creating a new connection manager from within the Script Component Editor, but
you could also do that upfront and then use that one in this editor. Go to the Connection Managers tab and
add a new connection (1) to avoid a hard-coded connection string in your Script. The Connection Manager
Type (2) should be FILE and the Usage type (3) should be “Existing file” Next, change the default name from
Connection to myFile. These steps are shown in Figure 10-9.

] Script Transformation Editor - D -

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.

Seript Specify the connection managers that the script component uses.
Inputs and Outputs

Connection Managers
Connection managers:

Name Connection Manager Description
Connection 1| v

<New connection...>

v Add SSIS Connection Manager - B -

Select the type of connection manager to add to the package.

Connection manager type:
Type Description File N... FileV.. Conta®
EXCEL Connection manager for Excel files CA\Pr.. 2011.. Micro
Connection manager for files
FLATFILE Connection manager for flat files C\Pr.. 2011.. Micro
FTP Connection manager for FTP connecti.. C\Pr.. 2011.. Micro
&) File Connection Manager Editor =] - . C\Pr.. 2011.. Micro
. Micro.. 11.00.. Micro
Configure the file connection properties to reference a file or a folder that exists or is created at . C\Pr.. 2011.. Micro
run time. s C\Pr. 2011.. Micro
e, C\Pr. 2011.. Micro
Usage type: Existing file v . C\Pr.. 2011.. Micro

Micro... 11.00.. Micro

File: 3 DAmyfFile.txt Browse... S C\Pr.. 2011.. Micro

Le Micrn 110N Mirrm it

L] Add... Cancel

Figure 10-9. Add a new connection manager

253

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

The Code

Now you can go back to the Script page, and choose Edit Script... to open the VSTA environment. First you
need to add an extra namespace to shorten the code.

#region CustomNamespace
using System.IO;
#endregion

And here is the VB.NET code:

#Region "CustomNamespace"
Imports System.IO
#End Region

For this example, you added a file size check in the PreExecute method. When there is no data available
in the file, you fire a warning. There is also a class variable named filePath that is used for communication
between the various methods. The Script Component Editor checks whether the file in the connection
manager exists before the code is executed. This means that a file existence check would duplicate existing
logic, so it wouldn’t add any value.

// A variable for storing the filepath of the Connection Manager
private string filePath;

public override void PreExecute()
{
// Fill class variable
filePath = this.Connections.myFile.AcquireConnection(null).ToString();

// Check if file is filled with data and fire warning if it is empty.
FileInfo fi = new FileInfo(filePath);
if (fi.Length == 0)
{
this.ComponentMetaData.FireWarning(0, "myFile", "Empty file: " +
filePath, "", 0);

And here is the VB.NET code:

A variable for storing the filepath of the Connection Manager
Private filePath As String

Public Overrides Sub PreExecute()
" Fill class variable
filePath = Me.Connections.myFile.AcquireConnection(Nothing).ToString()

Check if file is filled with data and fire warning if it is empty.
Dim fi As New FileInfo(filePath)
If fi.Length = 0 Then
Me.ComponentMetaData.FireWarning(0, "myFile", "Empty file: " & _
filePath, "", 0)
End If
End Sub

254

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Next, you can copy the following code to the CreateNewOutputRows method. This method creates new
records. It loops through all the rows in the file and keeps count of the number of columns. If it reaches the
total number of columns, it creates a new record in SSIS and then resets the counter.

public override void CreateNewOutputRows()

{
// Variables to store column values
int ID = 0; // Column 1
string Name = ""; // Column 2

string Address = ""; // Column 3
int NumberOfColumns = 3;

// Counter to keep track of the current row/column
int rowCounter = 0;

// Read file via a stream. Encoding is optional

using (StreamReader sr = new StreamReader(filePath,
System.Text.Encoding.UTF7))

{

String line;
// Read lines from the file until the end of the file is reached.
while ((line = sr.ReadlLine()) != null)

// Raising the counter
rowCounter++;

// Split the line into column and value
string[] columns = line.Split(',');

// Fill the right variable
// Line 1: ID, Line 2: Name, Line 3: Address
switch (rowCounter)

{
case 1:
// Column 1
ID = System.Convert.ToInt32(columns[1]);
break;
case 2:
// Column 2
Name = columns[1];
break;
case 3:
// Column 3
Address = columns[1];
break;
default:
// Incorrect
break;
}

255

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

// Add a new row if the last column has been reached
if (rowCounter.Equals(NumberOfColumns))
{
// Add one new row and fill columns
this.OutputoBuffer.AddRow();
OutputoBuffer.ID = ID;
OutputoBuffer.Name = Name;
OutputOBuffer.Address = Address;

// Last column, reset counter and start with
// the next set of rows
rowCounter = 0;

Here is the VB.NET code:

Public Overrides Sub CreateNewOutputRows()
' Variables to store column values
Dim ID As Integer = 0
' Column 1
Dim Name As String =
' Column 2
Dim Address As String =
" Column 3
Dim NumberOfColumns As Integer = 3

' Counter to keep track of the current row/column
Dim rowCounter As Integer = 0
' Read file via a stream. Encoding is optional
Using sr As New StreamReader(filePath, System.Text.Encoding.UTF7)
Dim line As String
' Read first line
line = sr.ReadLine()
' Read lines one by one from the file
" until the end of the file is reached.
While (1line <> Nothing)
' Raising the counter
rowCounter += 1

" Split the line into column and value
Dim columns As String() = line.Split(","c)

)

' Fill the right variable
' Line 1: ID, Line 2: Name, Line 3: Address

256

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Select Case rowCounter
Case 1
" Column 1
ID = System.Convert.ToInt32(columns(1))
Case 2
" Column 2
Name = columns(1)
Case 3
" Column 3
Address = columns(1)
Case Else
' Incorrect
End Select

Add a new row if the last column has been reached
If rowCounter.Equals(NumberOfColumns) Then

' Add one new row and fill columns

Me.OutputoBuffer.AddRow()

OutputoBuffer.ID = ID

OutputOBuffer.Name = Name

OutputOBuffer.Address = Address

' Last column, reset counter and start with
the next set of rows

rowCounter = 0
End If

Read one line from file
line = sr.ReadLine()
End While
End Using
End Sub

The Results

When you execute the Data Flow Task, you can add a data viewer such as in Figure 10-10 to check the

results. If you have more columns, just extent the switch statement and raise the NumberOfColumns
integer variable.

257

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

8o Control Flow [ERJPECki: Ll & Parameters [EventHandlers ‘= Package Explo... €3 Progress

Data Flow Task: | &% DFT - Read multiple row records

y QOutput 0 Data Viewer at DFT - Read multi... ¥ B X
SCR_SRC - Read multiple row records
» Detach Copy Data
ID Name Address
1 Joost Street 2
2 Regis Avenue 4b
3{rows
iJ 3 Wiliam Plaza 5
Attached Total rows: 0, buffers: 0 Rows dis|

v
/"\- DER - DoSomething
|

Figure 10-10. The results

Generate Random Data with the Script Component
As a Source

What if you know the format of a source, but you don’t have actual data to test? With the Script Component
as a source, you can easily generate random data, such as numbers between a minimum and maximum
value, or dates between a start and an end date, or text with random chars, or text picked randomly from a
list. You can use this Script Component example to replace the source or to generate data and fill the source.

Script Component Source

Go to the Data Flow Task and add a Script Component to the surface. You will be asked to choose between
Source, Transformation, and Destination. Choose Source and give it a useful name. See Figure 10-11 for
an example.

Select Script Component Type
! l Script Component

Specify how the script will be used in the data flow:

(®) Source

Script is a source in the data flow and provides data to output columns.

Figure 10-11. Script Component as source

258

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Output Columns

Edit the Script Component and go to the Inputs and Outputs page (see Figure 10-12). Add the columns you
need and set the appropriate data types. In this example you used string, int, date, currency, and numeric,
but other data types are possible. You might have to add an extra cast/convert in your code.

i Script Transformation Editor - B -

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.

[Script 1 Specify column properties of the script component.

Inputs and Outputs
Connection Managers
Inputs and outputs:
=3 Output 0 4 Common Properties
= Output Columns ComparisonFlags
5 Name
5 Street
5 HouseNumber
% DataOfBirth
3 Price
% Percentage
& Gender

RD_NotUsed

25

SCR_SRC - Dumi
25
MappedColumniD 0

Gender

Figure 10-12. Output columns

The columns for the example are as follows:
e Name (string [DT_STR] 50)
e Street (string [DT_STR] 50)
¢ HouseNumber (four-byte signed integer [DT_I4])
e DateOfBirth (date [DT_DATE])
e Price (currency [DT_CY])
e Percentage (numeric [DT_NUMERIC] 5,2)
e Gender (string [DT_STR] 1)

Figure 10-12 shows the columns in the Script Transformation Editor.

259

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

The Code

In this example, you didn’t have to use any extra namespaces, but you used three class variables. The first
integer is to specify the number of rows that you want to generate. The two string variables are for random
words or random chars. You could create multiple versions of these strings, each with a different set of words
or chars.

// Configure the number of rows to generate
private int numberOfRows = 1000;

// List of comma seperated string values to pick from
private string randomNames = "Smith,Johnson,Williams,Brown,Jones," +
"Miller,Davis,Garcia,Rodriguez,Wilson";

// List of chars to create strings
private string chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" +
"abcdefghijklmnopgrstuvwxyz";

This is the VB.NET code:

' Configure the number of rows to generate

Private numberOfRows As Integer = 1000

' List of comma seperated string values to pick from

Private randomNames As String = "Smith,Johnson,Williams,Brown,Jones," + _
"Miller,Davis,Garcia,Rodriguez,Wilson"

' List of chars to create strings

Private chars As String = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" + _

"abcdefghijklmnopqrstuvwxyz"

Next are a couple of new methods that you have enclosed in a region called RandomMethods.
These extra methods are called from the CreateNewOutputRows method and they generate the random data.
The clearest place is probably below the CreateNewOutputRows method.

#iregion RandomMethods
// Pass a string and pick one randomly
private string pickRandomString(string stringlist, Random rndNumber)
{
// Split string in array of strings
string[] strings = stringlist.Split(',');

// Pick one randomly and return it
return strings[rndNumber.Next(strings.Length)];

}

// Create string with random chars from charcollection
private string createRandomString(string chars, int max, Random rndNumber)
{

// Comment out this row to create

// string with the same length

max = rndNumber.Next(1, max);

260

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

// Create an array of chars with a certain length
char[] stringChars = new char[max];

// Fill each array item with a random char
for (int i = 0; i < stringChars.Length; i++)
{

stringChars[i] = chars[rndNumber.Next(chars.Length)];
}

// Convert the array of chars to string and return it
return new String(stringChars);

}

// Pick a random number between min and max value
private int pickRandomNumber(int min, int max, Random rndNumber)
{

// Pick a random number/integer

return rndNumber.Next(min, max);

}

// Pick a random number between min and max value
public double pickRandomNumber(double min, double max, Random rndNumber)
{

// Pick a random number/double

return rndNumber.NextDouble() * (max - min) + min;

}

// Pick a random date between min and max date
public static DateTime pickRandomDate(DateTime from, DateTime to,
Random rndNumber)

{
// Calculate difference between to and from
TimeSpan range = to - from;
// Determine random increment
TimeSpan randTimeSpan = new TimeSpan((long)(rndNumber.NextDouble() *
range.Ticks));
// Return sum of from + random increment
return (from + randTimeSpan).Date;
}
#endregion

Here is the VB.NET code:

#Region "RandomMethods"

' Pass a string and pick one randomly

Private Function pickRandomString(stringlist As String, _
rndNumber As Random) As String

Split string in array of strings

Dim strings As String() = stringlist.Split(","c)

261

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

' Pick one randomly and return it
Return strings(rndNumber.[Next](strings.Length))
End Function

' Create string with random chars from charcollection
Private Function createRandomString(chars As String, max As Integer, _
rndNumber As Random) As String
' Comment out this row to create
" string with the same length
max = rndNumber.[Next](1, max)

' Create an array of chars with a certain length
Dim stringChars As Char() = New Char(max - 1) {}

' Fill each array item with a random char

For i As Integer = 0 To stringChars.lLength - 1
stringChars(i) = chars(rndNumber.[Next](chars.Length))

Next

' Convert the array of chars to string and return it
Return New [String](stringChars)
End Function

' Pick a random number between min and max value
Private Function pickRandomNumber(min As Integer, max As Integer, _
rndNumber As Random) As Integer
Pick a random number/integer
Return rndNumber.[Next](min, max)
End Function

Pick a random number between min and max value
Public Function pickRandomNumber(min As Double, max As Double, _
rndNumber As Random) As Double
' Pick a random number/double
Return rndNumber.NextDouble() * (max - min) + min

End Function

' Pick a random date between min and max date
Public Shared Function pickRandomDate(from As DateTime, [to] As DateTime, _
rndNumber As Random) As DateTime
' Calculate difference between to and from
Dim range As TimeSpan = [to] - from
' Determine random increment
Dim randTimeSpan As New TimeSpan(CLng(rndNumber.NextDouble() * range.Ticks))

" Return sum of from + random increment
Return (from + randTimeSpan).[Date]

End Function

#End Region

262

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

Now it is time to add the code to the CreateNewOutputRows method. There is a for loop that loops until

the requested number of records has been reached. Within the loop, the columns are filled with random data.

// Standard method to generate new rows
public override void CreateNewOutputRows()

{

// Loop until numberOfRows has been reached. The i will also
// be used to generate a different random value per row.
for (int i = 0; i < numberOfRows; i++)

{

// Add a new row

OutputoBuffer.AddRow();

// Datatype: string [DT_STR]

OutputoBuffer.Name = pickRandomString(randomNames, new Random(i));

// Datatype: string [DT_STR]

OutputoBuffer.Street = createRandomString(chars, 10, new Random(i));

// Datatype: four-byte signed integer [DT_I4]

OutputoBuffer.HouseNumber = pickRandomNumber(1, 10, new Random(i));

// Datatype: date [DT_DATE]

OutputoBuffer.DateOfBirth = pickRandomDate(new DateTime(1974, 01, 01),

new DateTime(1999, 12, 31), new Random(i));

// Datatype: currency [DT_CY]

OutputoBuffer.Price = Convert.ToDecimal(pickRandomNumber (
Convert.ToDouble(0), Convert.ToDouble(10000),
new Random(i)));

// Datatype: numeric [DT_NUMERIC]

OutputoBuffer.Percentage = Convert.ToDecimal(pickRandomNumber (
Convert.ToDouble(0), Convert.ToDouble(100),
new Random(i)));

// Datatype: string [DT_STR]

OutputoBuffer.Gender = pickRandomString("M,F", new Random(i));

This is the VB.NET code:

Standard method to generate new rows

Public Overrides Sub CreateNewOutputRows()

Loop until numberOfRows has been reached. The i will also
be used to generate a different random value per row.

For i As Integer = 0 To numberOfRows - 1

Add a new row

OutputoBuffer.AddRow()

' Datatype: string [DT _STR]

OutputoBuffer.Name = pickRandomString(randomNames, New Random(i))

' Datatype: string [DT_STR]

OutputOBuffer.Street = createRandomString(chars, 10, New Random(i))
' Datatype: four-byte signed integer [DT_I4]
OutputoBuffer.HouseNumber = pickRandomNumber(1, 10, New Random(i))
' Datatype: date [DT_DATE]

263

CHAPTER 10 © SCRIPT COMPONENT AS SOURCE

OutputoBuffer.DateOfBirth = pickRandomDate(New DateTime(1974, 1, 1), _
New DateTime(1999, 12, 31), New Random(i))
' Datatype: currency [DT_CY]
OutputoBuffer.Price = Convert.ToDecimal(pickRandomNumber(_
Convert.ToDouble(0), Convert.ToDouble(10000), _
New Random(i)))
' Datatype: numeric [DT NUMERIC]
OutputoBuffer.Percentage = Convert.ToDecimal(pickRandomNumber(_
Convert.ToDouble(0), Convert.ToDouble(100), _
New Random(i)))
' Datatype: string [DT_STR]
OutputoBuffer.Gender = pickRandomString("M,F", New Random(i))
Next
End Sub

Note that if you rerun the data flow, you get the same random data. This is because you are using row
number i as seed to calculate something random: New Random(i). If you don’t want that, you could change
the behavior by adding something like milliseconds to the seed:

new Random(i + DateTime.Now.Millisecond)

The Results

When you execute the Data Flow Task, you can add a data viewer to check the results. You can see such a
viewer in Figure 10-13. You can move the data to a table or flat file and use it as a source in another data flow
to test it. It’s easy to extend with extra columns or other sets of strings.

264

CHAPTER 10 I SCRIPT COMPONENT AS SOURCE

o Control Flow [ERIBEENGST & Parameters E] Event Handlers %= Package Explo.. 3 Progress

Data Flow Task: | w& DFT - Dummy Data

U Output 0 Data Viewer at DFT - Dummy Data *rAXx
! l SCR_SRC - Dummy Data
» Detach Copy Data
MName Street HouseMumber DateOfBirth Price Percentage Gender =
Garcia JONCYURYG 7 1992-11-17 ... 7262,4327 72,62 F
; Wilams F6SeQLwWEd 3 1980-06-19... 2486,6858 24,87 M
|3 1.000 rows Garda IPAZ6INRDO 7 1994-01-17... 7710939 77,11 F
Wilams ThrCYBFWLN 3 1981-08-18 ... 2935,1921 29,35 M
Rodiguez ozYPO3hRTK 8 1995-03-19... 8159,4453 81,59 F
: Brown KHGCSvOwa? 4 1982-10-18 ... 3383,6984 33,84 M
v Rodriguez rZxqunasll 8 1996-05-18... 8607,9516 86,08 F
! 1 Brown Nse3Mf2xqr 4 1983-12-18... 3832,2047 38,32 M
J DER - Dosomething Wison UAMGOYUSXD 9 1997-07-18 ... 9056,4578 90,56 F
Jones Q53TGQwx5a 4 1985-02-16... 4280,711 42,81 M
Wison wikkgiNSDx 9 1998-09-16... 9504,9641 95,05 F
Jones T25uAApXKK 5 1986-04-18 ... 4729,2173 47,29 M
Wison ZK97c2HSSh 9 1999-11-16... 9953,4704 99,53 F
Miler Wdrkavjxad 5 1987-06-18... 5177,7235 51,78 F
Smith 2VvYXWnBShR 1 1975-01-17 ... 401,9767 4,02 M
Miler YDFyfcxpn 6 1988-08-17 ... 5626,2298 56,26 F
Smith SVXYQXATXA 1 1976-03-18... 850,483 8,50 M
Davis bneBsPWySX 6 1989-10-16 ... 6074,7361 60,75 F
Johnson B6LOKHyTCu 2 1977-05-18... 1298,9893 12,99 M -
Attached Total rows: 0, buffers: 0 Rows displayed = 1000

Figure 10-13. The results

Summary

In this chapter you learned how to use the Script Component as a source for differently formatted text files.
As long as you can come up with a rule, the possibilities are endless. The second thing you saw was how to
generate random data for testing purposes. Handy if you don’t have data. In chapter 15 you will see that you
can even use a web service as a source.

265

http://dx.doi.org/10.1007/978-1-4842-0638-6_15

CHAPTER 11

Script Component Transformation/

You can accomplish a lot with standard transformations, but sometimes the Script Component provides an
easier solution. For example, a nested if construction is very possible in a derived column, but it becomes
unreadable and unmaintainable if you have a lot of levels or conditions. And some features are just not
available in the out-of-the-box components. This chapter shows some of the situations where a Script
Component is useful.

Script Component Transformation

The basic structure of the Script Component transformation is to give you row-by-row access to the data
coming from upstream. The transformation for the output is applied to every row from the input. The
transformation can also happen non-synchronously, meaning that every row in the input doesn’t require a
match in the outgoing row (they can yield zero or more than one row in the output). For example, one folder
name input row can return many output rows with the file names from this folder. Controlling the output
settings is set up in the Inputs and Outputs pane of the Script Component, as shown in Figure 11-1.

267

CHAPTER 11 SCRIPT COMPONENT TRANSFORMATION

o Script Transformation Editor - b
Access Microsoft Visual Studic Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Micresoft Visual C# 2012, and configure component properties.
Seript Specify column properties of the script component.
Input Columns
Inputs and Qutputs
Inputs and outputs:
Connection Managers
w1 41] Input 0
= Output0
B Output Celumns
RD_NotUsed
0
ng o
MName Output 0
SynchronousinputiD Seript Cempenent.Inputs{lnput 0] v
TruncationRowDisposition |None
Seript ComponentInputs[input 0]
Add Output Synchronouslnput!D
Specifies the input ID of rows in this cutput.
Remove Qutput
0K Cancel Help

Figure 11-1. Script Component synchronous input

If you have several inputs to one component, you can create several outputs and match inputs and
outputs or even add some asynchronous outputs.

ProperCase

Sometimes you get data that is really badly formatted and you don’t have the opportunity to access the
data source to reformat it. You might want to apply proper casing to it. In the following example, you have a
customer table where the FirstName and LastName columns are uppercase. You want to reformat them to
the proper case.

There is a VB.NET function called StrConv that can convert the case for you. In C# it is a bit more difficult.
You start by adding a Data Flow Task to your package and then use the source assistant to fetch data.

268

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

The Source

To keep things simple, create a table in the APRESS_SSIS_Scripting database called Chapter_11 with the
following definition:

CREATE TABLE [dbo].[Chapter11](
[ID] [int] IDENTITY(1,1) NOT NULL,
[FirstName] [nvarchar](50) NULL,
[LastName] [nvarchar](50) NULL,
[YearlyIncome] [int] NULL,
[TeamName] [varchar](6) NULL

) ON [PRIMARY]

The table has to be populated with some first and last names, all in uppercase. This is the data source.

INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName]) VALUES (N'JON', N'YANG')
INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName]) VALUES (N'EUGENE', N'HUANG')
INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName]) VALUES (N'RUBEN', N'TORRES')
INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName]) VALUES (N'CHRISTY', N'ZHU")
INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName]) VALUES (N'ELIZABETH', N'JOHNSON')
INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName]) VALUES (N'JULIO', N'RUIZ")

[[

INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName]) VALUES (N'JANET', N'ALVAREZ')

Note The source code for Chapter 11 contains the table schema and a script to populate the table.

The Script Transformation

You start by adding a Data Flow Task to the surface of the package. In this Data Flow Task, add an OLE DB
source component pointing to the table that you just created: “Chapter_11"

Add a Script Component named SCR_TRA_ProperCasing, as shown in Figure 11-2. In the Input pane,
check the columns that you want to change, and change their usage type to ReadWrite (ReadOnly being the
default). Connect the Script Component to the output of the OLE DB source component.

269

http://dx.doi.org/10.1007/978-1-4842-0638-6_11
http://dx.doi.org/10.1007/978-1-4842-0638-6_11

CHAPTER 11

SCRIPT COMPONENT TRANSFORMATION

LT Script Transformation Editor

[m]

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

Script Input name: Input 0 v
Inputs and Outputs
Connection Managers
Available Input Columns
@] Name A
e E IIIII] FirstName
" LastName
O Yeadyincome
O b v
£ >
Input Column Qutput Alias Usage Type
| FirstName ' FirstName ReadWrite
LastName LastName ReadWrite

Figure 11-2. ReadWrite variables

In the VSTA script that you create, you need to locate the Input0_ProcessInputRow method and
perform some string transformations.
C# doesn’t have a built-in method for transforming strings to ProperCase, so you need to find a way

to do that in C#. The simplest way may be to convert everything to lowercase and then apply the TitleCase
method on the lowercase strings.

//Apply lower case first
string firstName = Row.FirstName.ToLower();
string lastName = Row.LastName.TolLower();

// The actual Proper Casing

Row.FirstName = new System.Globalization.CultureInfo("en").TextInfo.ToTitleCase(firstName);
Row.LastName = new System.Globalization.CultureInfo("en").TextInfo.ToTitleCase(lastName);

270

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

Note Another way to do this is to add a reference to the Visual Basic DLL in the custom namespaces and
call the VBScript method from C#. Mixing programming languages is not really an elegant way in our opinion.

The solution in VB.NET is similar to that in C#:

Row.FirstName = StrConv(Row.FirstName, VbStrConv.ProperCase)
Row.LastName = StrConv(Row.LastName, VbStrConv.ProperCase)

Now that you've written the script, you can add a multicast to the data flow and connect it to the Script
Component output. Add a data viewer to the connection between the two; Figure 11-3 shows the results.

ProperCasing.dtsx [Design] + X

8. ControlFlow [GERREIELE0M & Parameters] EventHandlers "s— Package Explorer ¥ Progress

Data Flow Task: | g% DF_ProperCasing

@ Output 0 Data Viewer at DF_ProperCasing ~ 0O X
i.) OLESRE Chaggactl 4 Detach Copy Data
FirstName LastName
Sherman Oliver
’ s Jerrod Alexander
Raul Mueller
Susana Buckley
g SCR_TRA_ProperCasingCSharp e e
Maria Gallagher
Chris Mckinney
Q] 1:0p0 rows Margarita Lucero
Tina Henderson
: Erick Brennan
A MLT
Attached Total rows: 0, buffers: 0

Figure 11-3. Proper casing

271

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

Encrypting and Decrypting Data

Sometimes you want to extract data from a table or a file, but you wish to encrypt the data before exporting it
so that sensitive information is present but not exposed. For example, Social Security numbers, passwords,
or salaries. At a later point, you might want to decrypt the data to show the original value.

For this purpose, use the YearlyIncome column from the table that you created in the previous example,
which you need to encrypt, and at some point, decrypt.

Then you add some data to the table:

INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName], [YearlyIncome]) VALUES (N'Leonardo’,
N'Mc Cormick', 145872)

INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName], [YearlyIncome]) VALUES (N'Josh',
N'Cortez', 292927)

INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName], [YearlyIncome]) VALUES (N'Andres',
N'Wall', 318002)

INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName], [YearlyIncome]) VALUES (N'Leonard',
N'Chambers', 255004)

INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName], [YearlyIncome]) VALUES (N'Miguel’,
N'Kelly', 71128)

INSERT INTO [dbo].[Chapter11] ([FirstName], [LastName], [YearlyIncome]) VALUES (N'Jerry',
N'Fox', 180525)

The Solution Package

In a new package called EncryptDecrypt, you add a Data Flow Task, DFT_EncryptData. In this Data Flow
Task, add an OLE DB source component called OLE_SRC_GetDataToEncrypt. Point the source connection
to the Chapter 11 table and select all the columns, as shown on Figure 11-4.

272

http://dx.doi.org/10.1007/978-1-4842-0638-6_11

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

|_% OLE DB Source Editor o %

Configure the properties used by a data flow to obtain data from any OLE DB provider.

__ Specify an OLE DB connection manager, a data source, or a data source view, and select the data access mode. If using
ol the SOL command access mode, specify the SQL command either by typing the query or by using Query Builder.

Error Qutput

OLE DB connection manager:

localhost.Apress_SSIS_Scripting v | New...
Data access mode:
Table or view ~

Name of the table or the view:

ER [dbo).[Chapter11] vl

Preview...

Figure 11-4. OLE DB source connection window

There are two kinds of encryption that you can perform with the .NET Framework: symmetric
encryption and asymmetric encryption.

They are performed using different processes. Symmetric encryption is performed on streams and is
therefore useful to encrypt large amounts of data. Asymmetric encryption is performed on a small number
of bytes and is therefore useful only for small amounts of data. Since you are dealing with single columns,
row by row, you will use asymmetric encryption.

Symmetric encryption is typically used for encrypting an entire file.

Chapter 8 has some considerations about encrypting and decrypting entire files using Script Tasks.

Variables

The first thing you need to do encryption is an encryption key. Create a string variable called EncryptionKey
and assign its value to a top-secret encryption key using a classic pangram: “The quick fox jumps over the
lazy dog.”

273

http://dx.doi.org/10.1007/978-1-4842-0638-6_8

CHAPTER 11 SCRIPT COMPONENT TRANSFORMATION

Once the OLE DB source is configured, it’s time to add a Script Component for transformation; call it
SCR_TRA_Encryptincome.

In the Script page of the component, add the User::EncryptionKey variable as Read-only, as shown in
Figure 11-5.

L]

Access Microsoft Visual Studio Tools for App

g ¥ ERLTES

Seript
Input Columns

Inputs and Outputs
Connection M

ooooom|

Contactinfq
Description
D
Identificatig
IsDefaultLo
LocalelD
Name

PipelineVer:
UsesDispos§
ValidateExte
Version

4 _LCustam Pn\:u-ﬂit-g
ReadOnlyVariables User:EncryptionKey I

em:. ance...
System::FailedConfigurations
System::IgnoreConfi i
System::InteractiveMode

[T V|

[~1TO00O0O®

ScriptLanguage Microsoft Visual C= 2012
UserComponentTypeName Microsoft.SqlServer.Dts.Pipeline.ScriptComponentHost, Micr

ReadOnlyVariables

Specifies a comma-separated list of read-only variables.

‘ Edit Script...

Figure 11-5. ReadOnly variable

In the Input Columns page of the component, select YearlyIncome, the column that you want to encrypt
(see Figure 11-6).

274

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and

g ¥ ERLTES

Script Input name: | Input 0
Input Col .
Inputs and Outputs

Connection Managers

Available Input Col...
[®] Mame
[] FistName

Yearlyincome

Input Column Qutput Alias
Yearlylncome Yearlylncome

Figure 11-6. Script Transformation Editor input page

The Script

Click the Edit Script... button and start VSTA. First of all, you can remove the methods that you don’t need
in the autogenerated class: PreExecute and PostExecute.

Let’s add the namespaces that you need for encrypting and decrypting text. Here is the beginning of the
scriptin C#:

#region CustomNamespaces

using System.IO;

using System.Security.Cryptography;
#endregion

And here is the VB.NET version:

Imports System.IO
Imports System.Security.Cryptography

275

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

Add two methods to the script: one for encryption and one for decryption. They both take two
parameters as input: a string to encrypt and a string as the encryption key.
The two methods have the same interface:

public static string Encrypt(string clearText, string Password)
public static string Decrypt(string cipherText, string Password)

In VB.NET, you can add the two methods, as follows:

Public Shared Function Encrypt(ByVal clearText As String, ByVal Password As String)
Public Shared Function Decrypt(ByVal cipherText As String, ByVal Password As String)

Salting the Password

The main idea behind the encrypt and decrypt methods is to pass a password and a password salt, which is
used to derive the key from it. Of course, the salt needs to be the same in both the encrypt method and the
decrypt method. This is done at the class level, not in the method, since it only needs to happen once when
the class is instantiated.

In C#, the password salt is defined as follows:

// Create Key and IV from the password with salt technique
PasswordDeriveBytes pdb = new PasswordDeriveBytes(Password, new byte[] { 0x49, 0x76,
0x61, Ox6e, 0x20, Ox4d, Ox65, Ox64, 0x76, Ox65, 0x64, 0x65, 0X76 });

VB.NET readers can write the following into their code:
' Create Key and IV from the password with salt technique
Dim pdb As New PasswordDeriveBytes(Password, New Byte() {8H49, &H76, &H61, 8H6E,
8H20, 8H4D, 8H65, 8H64, 8H76, 8H65, 8H64, 8H65, 8H76})

Encrypting the Stream

From there you create a CryptoStream with a target stream (MemoryStream), an encryption algorithm
(for simplicity, you are using the Rijndael algorithm, but others are available), and the mode of the stream.
The CryptoStreamMode is set to Write for both encrypting and decrypting the values.

Here is the C# code to create the stream:

// Create a CryptoStream
CryptoStream cs = new CryptoStream(ms, alg.CreateDecryptor(), CryptoStreamMode.Write);

The VB.NET implementation is as follows:

' Create a CryptoStream
Dim cs As CryptoStream = New CryptoStream(ms, alg.CreateEncryptor(),

CryptoStreamMode.Write)

The only difference between encryption and decryption happens once you have written to the
MemoryStream.

276

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

Encrypting Data

For encryption, you need to convert the byte array to a Base64 string. Do that from C# as follows:

// return the Encypted data as a String
return Convert.ToBase64String(encryptedData);

Perform the same conversion from VB.NET using the following: ' return the Encypted data as a String
Encrypt = Convert.ToBase64String(encryptedData)

Decrypting Data

For decryption, you need to convert your content back to a regular human-readable string. In C#, write this:

// return the Decypted data as a String
return System.Text.Encoding.Unicode.GetString(decryptedData);

Whereas in VB.NET, you can write this:

return the Decypted data as a String
Decrypt = System.Text.Encoding.Unicode.GetString(decryptedData)

Note The whole script is available in the downloadable code for Chapter 11.

If you add a multicast to the output of the Script Component transformation, you are able to add a data
viewer and inspect the returned data to ensure that everything is decrypted as it should. Figure 11-7 shows
the results of the script.

277

http://dx.doi.org/10.1007/978-1-4842-0638-6_11

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

EncryptDecrypt.dtsx [Design] + X

3. Control Flow [GElPeclicl & Parameters IF] EventHandlers s Package Explorer 3 Progress
Data Flow Task: | g'§ DTF_EncryptData
> OLE_SRC_GetDataToEncrypt
Z.Inirows
U SCR_TRA_Encryptincome
|

Qutput 0 Data Viewer at DTF_EncryptData v X

> Detach Copy Data
FirstName LastName Yearylncome Encryptedincome Decryptedincome -

Sherman Oliver 281328 cO1qxk/YFVIxZEkgLRXO. .. 281328
Jerrod Alexander 171245 nqveXZK2weouDdbfuwm.., 171249
Raul Mueller 99799 FgiHkr71Zi8dmboexJvt+g... 99799
Susana Buckley 345515 nile+ESp4xP2rP7FDjg5jw... 345515
Bridget Koch 82701 2/+NziX8yYbkUmrPManQ... 82701
Maria Gallagher 142004 vUIETpOhTdVKpfcOYaeV/... 142004
Chris Mckinney 290642 ThiQLLhdhSF 1ZRI6EZS7U... 250642
Margarita Lucero 183664 EwqD9yiAxCPDoxGk+rym... 183664
Tina Henderson 117495 MScNrPd4mhMapbUYy4A... 117485
Erick Brennan 53362 SRIC4RIJOOPM+yMHTj2zGe... 53362
Vickie Perez 279610 QIRSqGTQWwwozfuFYK... 279610
Lee Harvey 58623 ql1/SnWWWAXNSIxyjf/AC... 58623
Owen Sutton 52268 RSBApIOHHLOdaM5ho0Yiz... 52268
Lana Shea 203007 vtAOSi1ICKnZpDiHZIG523... 203007
Shelia Preston 164623 AQFOHpg7ElqgcOw78zA. .. 164628
Monica Rich 133822 b94ZjXh45Z0FMCONPKRp... 133822
Dan Delgado 260927 evaOnn8FywVemShb3r3d... 260927
Vicki Dalton 120603 jeYejYaOvCtI7X MNwmS+... 120603
Carla Villanueva 269397 Io65HYOS3gKDk6PFaMNd... 269397
Damion Merritt 76700 AGVK+2QnZYBLQdBwWHS. .. 76700 v

Attached Total rows: 0, buffers: 0 Rows displayed = 2000

Figure 11-7. Encrypted and decrypted income

Encryption and decryption can be performed in many different ways. You have only scratched the
surface of the subject, and one single example is far from enough to do it justice.

If you are interested in more information about the cryptographic capabilities in .NET, we encourage
you to have a greater look at the system cryptography namespace on MSDN at https://msdn.microsoft.
com/en-us/library/System.Security.Cryptography(v=vs.110).aspx.

278

https://msdn.microsoft.com/en-us/library/System.Security.Cryptography(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/System.Security.Cryptography(v=vs.110).aspx

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

Comparing Rows

Continuing with the employee income example, let’s say that each employee is part of a team and you want
to be able to check who gets the highest income in the team and also what the income difference is between
the highest paid member and the other members of the team.

Let’s distribute the employees into ten different teams.

UPDATE dbo.Chapter11 SET TeamName = 'Team ' + CAST(RICHT(ID,1) AS VARCHAR(1))

On the design surface of a blank package, add a DFT_CompareRows data flow. In this data flow, add
an OLE DB source connection and connect to the APRESS_SSIS_Scripting database. To do a row-by-row
comparison, you need to sort the input first by TeamName and then by Income, so you need to have the
Data Access mode set to SQL Command and the command text set as follows:

SELECT [FirstName]
,[LastName]
,[YearlyIncome]
,[1D]

, [TeamName]

FROM [dbo].[Chapteri1]
ORDER BY TeamName, YearlyIncome DESC

On the Columns page, select all columns, as shown in Figure 11-8.

279

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

|_% OLE DB Source Editor o %

Configure the properties used by a data flow to obtain data from any OLE DB provider.

Specify an OLE DB connection manager, a data source, or a data source view, and select the data access mode. If using
ol the SOL command access mode, specify the SQL command either by typing the query or by using Query Builder.

Error Qutput

OLE DB connection manager:

LocalHost.Apress_SSIS_Scripting v | New...

Data access mode:

SQL command ~

SQOL command text:

SELECT [FirstName] Parameters...
[LastName] -
J[Yearlylncome]
D] Build Query...
[TeamName]

FROM [dbo].[Chapteri1] Browse...
ORDER BY TeamName, Yearlylncome DESC

Parse Query

Preview...

Figure 11-8. OLE DB Source Editor

You then add a Script Component for transformation (renamed to SCR_TRA_CompareRows) to the data
flow and connect it to the OLE DB Source output.

On the Script Component Inputs Columns page, you need to add the YearlyIncome and TeamName as
ReadOnly input columns, because you will need them in the script itself.

Next, add two columns of type DT_I4 (four-bytes signed integer) called HighestIncome and
IncomeDifference to Output0. These are the columns you are going to write to in the script.

Click Edit Script... in the Script page of the component and then start VSTA. First, remove the methods
you don't use: PostExecute and PreExecute. The important method in this case is Input0_ProcessInputRow,
where you can compare the data, row by row, that passes through.

Because the input is sorted, you can rest assured that comparing row-wise will work. This is a very
important point in this sort of script. It is crucial to the success of the comparison that the input be sorted.

280

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

The following is the C# version of the script to compare rows:

// Compare current row with previous row
if (Row.TeamName == teamname)

{
//match compare Income with previous income
Row.IncomeDifference = Row.YearlyIncome - highestincome;

}

else

{
//TeamName don't match, this is the first row of a new team
highestincome = Row.YearlyIncome;

}

//Store current row values in variables for the next row.
teamname = Row.TeamName;
Row.HighestIncome = highestincome;

Whereas in VB.NET the code is as follows:

' Compare current row with previous row
If Row.TeamName = teamname Then
'match compare Income with previous income
Row.IncomeDifference = Row.YearlyIncome - highestincome
Else
'TeamName don't match, this is the first row of a new team
highestincome = Row.YearlyIncome
End If
'Store current row values in variables for the next row.
teamname = Row.TeamName
Row.HighestIncome = highestincome

By adding a multicast and a data viewer to the data flow, you are able to check that the script is working.

Figure 11-9 is an illustration of the result from a much larger sample of data than the one in the chapter’s
source code.

281

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

CompareRows.dtsx [Design] + X Start Page EncryptDecrypt.dtsx [Design]
o
b Control Flow gl |Praiaature 1 event Output 0 Data Viewer at DFT_CompareRows » X
Data Flow Task: | glg OFT_CompareRows » Detach Copy Data

FirstName Lasthame TeamMame Yeadyincome IncomeDiference Highestincome -

i Philip Petty Team 0 345458 0 345498

i_) ODB_SRC_Chapteril Norman Black Team 0 340359 5139 345498

Lioyd Raymond Team 0 339572 5926 345498

Ashiley Ford Team 0 337786 -7732 345498

1.000 rows Yesenia Decker Team 0 337106 |392 345498

NULL Massey Team 0 335542 9956 345498

Darius Hall Team 0 334171 -11327 345498

g SCR_TRAN_Comparelncome Joan Rice Team 0 333821 -11677 345498

Shauna Fritz Team 0 332953 -12545 345458

1 Jeanne Andrews Team 0 331851 13637 345498

3| 1090 rows

s Travis Coleman Team 0 330423 -15075 345498

Alicia Stanton Team 0 329661 -15837 345498

l MC_DoSomething Colby Sulkvan Team 0 329467 -16031 345498

Guillermo Solis Team 0 326227 -19271 345498

Christie Fry Team 0 322606 -22892 345488

Alma Jordan Team 0 319533 -25965 345498
Whitney Garza Team 0 317358 -23140 345498 -

Attached Total rows: 0, buffers: 0 Rows displayed = 1000

Figure 11-9. Data viewer with result

IsNumeric

The .NET Framework has many capabilities for testing values for datatypes, null values, and such. Although
SQL Server 2012 gives you the ability to use some of these features, such as TryCast and the like, but because
you don’t always work with the most recent versions of SQL Server, you don’t always have the opportunity to
use this method. This is where the ability to use a Script Component comes in handy.

For demonstration purposes, let’s use a simple text file with a single column as input. Here’s the data:

TextNumber
1

42

3

4

Hello world!
7

I love SSIS

Asyou can see, a few of these rows are not numeric.

The testing implementation for numeric values is simple. Add a new package and a data flow to the surface.

In this data flow, add Flat File Source: FFS_TextNumbers and a connection manager pointing to the
preceding text document. Leave all the configurations at their default values. Click the Columns page to
confirm the values. Figure 11-10 shows the Flat File Connection Manager setup.

282

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

B Flat File Connection Manager Editor a X
Connection manager name: |FFS_Conn_TextNumbers]
Description: l l
241 General | select afile and specify the file properties and the file format.

& Columns Ele name: 7 : :

e | C:\APress\02_Code\2014\Extending SSIS with NET\Bo| | g0 o -

=1 Preview :
Locale: English (United States) v [Unicode
Code page: 1252 (ANSI - Latin I) v

Format: Delimited v

Text qualifier: |<none> |
Header row delimiter: [m v l
Header rows to skip: 0 =

Column names in the first data row

Figure 11-10. Flat File Connection Manager Editor

Once you have the flat file source, you add a Script Component for transformation called
SCR_TRA_TextNumber.

On the Inputs page of the component, make the TextNumber column ReadOnly.

On the Inputs and Outputs Columns page, add an output column called isNumeric of type Boolean
(DT_BOOL) to store the result.

After clicking the Edit Script. .. button on the Script page, remove the unnecessary PreExecute and
PostExecute methods, and add the following two lines of code to the Input0_ProcessInputRow method:

//Check if the value is numeric
int result;

Row.isNumeric = Int32.TryParse(Row.TextNumber, out result);

283

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

If you're writing in VB.NET, then add the following two lines instead:

Dim result As Int32
" true if successfully parsed, false otherwise
Row.isNumeric = Int32.TryParse(Row.TextNumber, result)

Very simple and powerful indeed. The results are shown in Figure 11-11.

Output 0 Data Viewer at Data Flow Task ~ B X
AV
E‘_') FFS_TextNumbers | 4 Detach Copy Data
TextNumber isNumeric
1 True
7 rows P
W 92 True
! I SCR_TRA_TextMNumber 3 True
4 True
Hello world! False
7 True
7, roves IloveSSIS False
IWI
A MC_DoSomething
Attached Total rows: 0, buffers: 0

Figure 11-11. Execution results of the int32.TryParse method

Creating Surrogate Keys

There are situations where you need to generate a unique consecutive number as a key of some sort in the
data flow. It can also be used for ranking, eliminating duplicates, and so forth. A script transformation is the
ideal solution in situations where data comes from a semistructured source or, for example, from a text file
with no knowledge of consecutive identities or row numbers.

Let’s build further on the example from the previous section, where you checked for a numeric value.
Let’s suppose that you want to make sure that all the numeric values that you get have a row number added
to the row.

Note If you haven’t seen the solution for the previous section, the code is available for download on this
book’s web site.

284

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

On the Input and Output Columns page, in the Script Component called SCR_TRA_TextNumber,
add an output column of type four-byte signed integer [DT_I4] called RowNumber.

Open the script by clicking the Edit Script. .. button. In a C# solution, add the following lines of code
right under the class declaration:
int rownumber = 0; //at class level it will retain its value for each row

VB.NET readers, do this:
Dim rownumber As Integer = 0

Replace the existing code in the Input0_ProcessInputrow method with the following:
int result;

bool isNumeric = Int32.TryParse(Row.TextNumber, out result);
if (isNumeric)

Row.isNumeric = isNumeric;
rownumber++;
Row.RowNumber = rownumber;

If using VB.NET, write the following lines:

Dim result As Integer
Dim isNumeric As Boolean = Int32.TryParse(Row.TextNumber, result)
If isNumeric Then
Row.isNumeric = isNumeric
rownumber += 1
Row.RowNumber = rownumber
End If

When running the package, you can see that a consecutive row number has been added to all the rows
that are numeric. All the non-numeric rows have a 0 value for the RowNumber column. The result is shown
in Figure 11-12.

285

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

RowNumber.dtsx [Design] +& X isNumeric.dtsx [Design] CompareRows.dtsx [Design] Start Page
g,a Control Flow [ff‘j DEICNS N @ Parameters 7] EventHandlers ':_: Package Explorer 0 Progress

Data Flow Task: | gi§ Data Flow Task

&7 Output 0 Data Viewer at Data Flow Task v 02X
\V
[:':') FFS_TextNumbers 4 Detach Copy Data
TextNumber isNumeric RowNumber
e : True 1
42 True 2
3 True 3
4 True 4
Hello world! False 0
7 True 5
[love SSIS False 0
A MC_DoSomething
Attached Total rows: 0, buffers: 0

Figure 11-12. RowNumber appended to the numeric rows

Once again, a Script Component can help you perform tasks on data that is not straightforward or that
is not available in SSIS.

Creating GUIDS

There are no built-in functions or expressions in SSIS to create a new GUID. If you already have a GUID
stored as a string, then you can use a cast in the derived column to convert it into a real GUID datatype, or if
you have an SQL Server source, then you can use the NEWID() function in your source query.

Just like in the previous example where you created a RowNumber, you can create a GUID with a Script
Component in .NET with a single line of code.

Creating the Package

Start by creating a new SSIS package and add a data flow on the surface. On this data flow, add a Flat File
Source connection pointing to the file from the previous examples, as shown in Figure 11-13.

286

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

B Flat File Connection Manager Editor a X
Connection manager name: |Flat File Connection Manager ‘
Description: l l
d,:' General | Selectafileand specify the file properties and the file format.

[Columns Eil F :

B frmaced ile name: /SIS with NET\BookCode\Chapter 11\TetNumbers.bd| | g

1 Preview :
Locale: Danish (Denmark) “ [Unicode
Code page: 1252 (ANSI - Latin I) v

Format: Delimited v

Text qualifier: |<none> |
Header row delimiter: [m vl
Header rows to skip: 0 5

Column names in the first data row

Figure 11-13. Flat File Connection Manager configuration

Add Script Component

Add a Script Component after the source and select Transformation as the script type. Connect it to your
other components and name it SCR_CreateGUID. On the Inputs and Outputs page, go to Output 0, choose
Output Columns, and then add a new column called RowGUID. Change its type to DT_GUID (unique
identifier), as shown in Figure 11-14.

287

CHAPTER 11 SCRIPT COMPONENT TRANSFORMATION

inf Script Transformation Editor - olEN

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and configure
component properties.

[Script Specify column properties of the script component.
Input Columns
Inputs and Outputs

Inputs and outputs:
Connection Managers

@42 Input 0 | 4 Common Properties
=3 Output0 ComparisonFlags
-l Output Celumns Description
% RowGUID ErrorOrTruncationOpera
ErrorRowDisposition RD_MotUsed
IdentificationString SCR_CreateGUID.Outputs[Output]
LineagelD 28
MappedCelumniD 0
Name RowGUID
SpecialFlags 0
| TruncationRowDispositic RD_MotUsed
4 Data Type Properties
CodePage 0
| unique identifier [DT_GUID] v| |
— P
Precision 0
Scale
Add Output Add Column DataType
Remove Column
oK Cancel Help

Figure 11-14. Add new output column

On the Script page of the component, click Edit Script.... In the VSTA editor, remove the PreExecute
and PostExecute methods, which you don’t need. In the Input0_ProcessInputRow method, add the single
line of C# code needed to create a random GUID and assign it to the column you created previously.

//create and assign a GUID
Row.RowGUID = Guid.NewGuid();
In VB.NET, the code is the following: ' Create a Globally Unique Identifier with SSIS
Row.Guid2 = System.Guid.NewGuid()

The Results

Close the VSTA editor and the Script Transformation Editor. Add a multicast to the data flow and connect

it to the Script Component. If you add a data viewer (by right-clicking the connection between the Script
Component and the multicast), you should see the results as shown in Figure 11-15. Since a GUID is globally
unique, the GUIDs generated should be different from run to run.

288

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

CreateGUID.dtsx [Design] # X

2o ControlFlow (Rl el & Parameters EventHandlers 3= Package Explorer 3 Progress

Data Flow Task: | gi§ Data Flow Task

A
E‘:) FF_SRC_TextNumbers Output 0 Data Viewer at Data Flow Task w5 X
4 Detach Copy Data
2 TextNumber RowGUID
W 7 03f13c45-42e5-47f9-8b63-bebe475242f2
U SCR_CreateGUID 42 66e7c7ef-3175-436d-a0d8-c690f6d724a9
Hello world! 8785d40a-f165-4fce-bdad-679a0b73a0b8
I love SSIS 938db6de-296c-4036-b148-95f950a92229
| rows 4 b372a3d3-f849-469¢c-851e-236d5a8fb 178
"y 3 b8 1cecf4-ce9f-4d34-9660-6ba 148d 75069
7 1 e9d5c144-daec-41be-b6 18-dfaa235eee74
V)
A MC_Do something
Attached Total rows: 0, buffers: 0 Rows displayed = 7

Figure 11-15. Newly added GUID column

Conditional Multicast

When dealing with fact tables in SSIS packages, you might need to handle null values. Furthermore, one of
the requirements might be to log the rows that are null for auditing purposes. This is achievable with the
built-in components, but it is really cumbersome because it involves Conditional Splits, several multicasts,
and a Union All.

This is a situation in which the possibility of the Script Component having several outputs is really
practical. There are two benefits to this approach. The first benefit is that you can handle complicated
if statements in a more elegant way than with using a lot of conditional transformations; handling all the
conditions in one piece of script is more readable than several conditional SSIS expressions. And the second
benefit is that a single row can be redirected to multiple outputs, without the need for multicast.

In the following example, you are going through all the rows from a table and redirecting some of them
to an output for auditing purposes, because the value of some of the columns have the wrong values (you
could also check whether the values exceed a threshold, or have bad quality, or any other particular reason
where you want to save some particular rows of data; but this is not part pf the example).

The Data Source

For the data source, you are getting the Chapter 11 data that you used previously. In this table you have the
income information for some employees. Since it has been a really good year for the company, management
has decided that it wants to increase everyone’s income by 20% and at the same time point out everyone
whose annual income was less than $200,000.

Start by adding a data flow to a blank package. In this data flow, add an OLE DB source connected to the
Chapter 11 table from the book code.

289

http://dx.doi.org/10.1007/978-1-4842-0638-6_11
http://dx.doi.org/10.1007/978-1-4842-0638-6_11

CHAPTER 11 = SCRIPT COMPONENT TRANSFORMATION

Note The complete code for this example is available for download on the book’s web site.

Select all the columns available from the table.

The Script

Add a Script Component and choose Transformation on the Script Type dialog. Rename the component
SCR_EnsurelncomeRaise and connect the output of the data source to its input.

On the Input Columns page of the Script Component, choose YearlyIncome as a ReadOnly input column.

On the Inputs and Outputs page of the Script Component, rename the first Output as GiveARaise and
add a second output called LessThan200K.

There a few more steps necessary to make sure that the outputs behave as you want. First of all, you
need to change the ExclusionGroup of both outputs to 1 (or something other than 0).

By default, all input rows are directed to all available outputs, unless you indicate that you want
to redirect each row to one output or the other. This is done by specifying a non-zero value for the
ExclusionGroup property of the outputs. The value of the integer doesn’t matter but it needs to be the same
value for all the specified groups of outputs.

The configuration is shown in Figure 11-16.

Inf Script Transformation Editor - olEN
Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C2 2012, and config P properti
Seript | Specify column properties of the script component.

Input Columns
Inputs and Qutputs Inputs and outputs:
Connection Managers

7-43) Input 0 | i3 Common Properties

- GiveARaise DeleteOutputOnPathDetached | False
i Output Columns Description

LB :

i Output Columns

LessThan2(0K
SynchronousinputiD SCR_EnsurelncomeRaise Inputsfinput 0]

TruncationRowDispeosition

RD_NotUsed

Add Output D

Remove Output

oK | Cancel Help

Figure 11-16. Output configuration

290

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

The following are the callouts for the configuration:
1. The ExclusionGroup is set to 1 and it needs to be the same value for all the outputs.

2. The SynchronousOuputID setting of 0 (none) creates an asynchronous output,
where the output rows don’t have any relationship with the input rows, thus
creating new memory buffers and copying values to them. Because not all the
rows from the output buffer will come to this output, this allows us to implement
conditional redirect.

Once this is set up, open the script editor by clicking Edit Script. .. on the Script page. Remove the
PreExecute and PostExecute methods. Then enter the following C# code:

In the Inputo_ProcessInputRow method of the Script add these few lines:

if (Row.YearlyIncome < 200000)

{
}

Row.DirectRowToLessThan200K();

Row.DirectRowToGiveARaise();

Or the following VB.NET code:
If Row.YearlyIncome < 200000 Then

Row.DirectRowToLessThan200K()

End If
Row.DirectRowToGiveARaise()

Tell the script to only use the rows where YearlyIncome is less than 200000 in one output, but use all the
rows in the other output. As you can see, the logic is really easy to implement and much more readable than
when using the SSIS Conditional Split.

Close the Script Component and add a derived column DER_GiveARaise to the data flow. The derived
column is used to increase (and replace) the Yearlylncome by 20%. The configuration is shown in Figure 11-17.

201

CHAPTER 11 SCRIPT COMPONENT TRANSFORMATION

Specify the expressions used to create new column values, and indicate whether the values update existi

@ (3 Varisbles and Parameters @ 3 Mathematical Functions
@ (3 Columns @ [Sting Functions

@ (2@ Date/Time Functions
@ 3 NULL Functions

® (3 Type Casts

@ [Operators

| Description:

Derived Column Name Derived Column Expression Data Type L
Yearlylncome | Replace 'Yearlylncome' | (DT_4)FLOOR(Yearlylncome * 1.2) four-byte signed integer[..

Configure Error Output...

Figure 11-17. Derived column use to increase by 20%

Connect the derived column input to the GiveARaise output of the Script Component.

Once this is done, add a multicast to the output of the derived column and another multicast to the
LessThan200K output of the Script Component. By adding data viewers to multicasts connections, you are
able to see the rows with the YearlyIncome that match the condition set up in the Script Component and
the rows with the increased YearlyIncome.

Figure 11-18 shows the data viewer after the income raise.

292

CHAPTER 11 I SCRIPT COMPONENT TRANSFORMATION

ConditionalMulticast.dtsx [Design] +

G Parameters [f] EventHandlers 1= Package Explorer {3 Progress

%o Control Flow

Data Flow Task: | gl DTF_Multicast

e_) OLE_SRC._Chapterll Derived Column Qutput Data Viewer at DTF_Multicast A X
2 Delach | [S Copy Data Sl
AR row D Frsthame LastMame Yeatylncome Team..
Py 1 Sherman Cliver 337593 Team 1
g SCR_EnsurelncomeRalse Y 5 pored s b o e 2
3 Raul Mueler 119758 Team 3
4 Susana Buckley 414618 Team 4
5 Bridget Koch 99241 Team 5
GiveARajse (1.000 rows) fyfLantibanaiok (456 rawe) 6 Maria Gallagher 170404 Team 6
u 7 Chris Mddnney 348770 Team 7
u A MLT_LogUnderpaid] Margarita Lucero 220396 Team 8
- 9 Tina Henderson 140994 Team 9
8 eGhotetn 0 Enck Brennan 64034 Team0
1 Vickie Perez 335532 Team 1
3| 1000 rows 12 Lee Harvey 70347 Team 2
2 13 Owen Sutton 62721 Team 3
u 14 Lana Shea 243608 Team 4
A MLT_DoSomething 15 Shelia Preston 197553 Team 5
16 Manica Rich 160586 Team &
17 Dan Delgado 312 Team 7
Attached Total rows: 0, buffers: 0 Rows displayed = 1000

Figure 11-18. All Income raised by 20%

Summary

In this chapter you saw several examples of where a Script Component can perform tasks that were
otherwise impossible in SSIS. You also saw examples of how Script Components are more flexible and
simpler to use and understand than the built-in tasks.

293

CHAPTER 12

Script Component As Destination/

This chapter focuses on the Script Component as a destination. There are a lot of out-of-the-box destinations
available, but sometimes you need something special—a custom flat file with extra headers and footers, a
record divided over multiple rows, and an XML destination.

But be careful when using the Script Component as a destination. Because records are processed row by
row, it is probably not a good idea to insert a lot of data into a database with stored procedure calls or a lot of
single query commands. The OLE DB destination with the fast load on is likely a lot faster; and if you really
need stored procedure calls, then the OLE DB command it a lot easier to understand and maintain. But for
custom text files, the Script Component as a destination is very useful. Web services also have a practical use
for the Script Component destination. There are some web service examples in Chapter 15.

Basic Flat File Destination with Header and Footer

The first example is a basic Flat File Destination. It is quite similar to the regular Flat File Destination, but has
extra headers and footers. You can extend this example easily to your own needs.

Create a File Connection Manager

Since you don’t want to hard-code the file path of the flat file in the script, you will use a File Connection
Manager. Create a File Connection Manager to an existing or non-existing file. See Figure 12-1 for an
example.

" File Connection Manager Editor - o IS

Configure the file connection properties to reference a file or a folder that exists or is created at

run time.
Usage type: Create file v
File: D:\Output\myFile.csv Browse...

OK Cancel

Figure 12-1. File Connection Manager pointing to CSV file

295

http://dx.doi.org/10.1007/978-1-4842-0638-6_15

CHAPTER 12 I SCRIPT COMPONENT AS DESTINATION

Source

For this example, you are using the random test data example from Chapter 10 as a source. You can use the
starter package or use your own data as source. The following are the output columns:

e FirstName (DT_STR, 1252, 50)
e LastName (DT_STR, 1252, 50)
e Employeeld (DT_I4)

e DateOfBirth (DT_DATE)

e Salary (DT_NUMERIGC, 6, 2)

e Gender (DT_STR, 1252, 1)

Figure 12-2 shows the random data source starter package for the example in this chapter.

FLat File Starter.dtsx [Design] + X

8o Control Fow ERJEEEYEEN)] @ Parameters [Event Handers = Package Expb... @ Progress

Data Flow Task: |&& DFT - Create Flat Fie

_4.J1+rows

Output 0 Data Viewer at DFT - Create XML v BX

4 Detach Copy Data

FirstName LastName Empioyeeld DateOfBirth Salary Gender -

Micheal Garcia 10000 1980-11-13... 4178,73 F

George wilams 10001 1963-03-15... 2746,01 M

David Garcia 10002 1982-07-12... 4313,28 F

John Wilams 10003 1964-11-10... 2880,56 M

David Rodriguez 10004 1984-03-09 ... 4447,83 F

John Brown 10005 1966-07-09... 3015,11 M

James Rodrguez 10006 1985-11-05... 4582,39 F

Matthew Brown 10007 1968-03-06 ... 3149,66 M

James Wison 10008 1987-07-04 ... 4716,94 F

Matthew Jones 10009 1969-11-02... 3284,21 M

John Wison 10010 1989-03-02 ... 4851,49 F ~
Attached Total rows: 0, buffers: 0 Rows displayed = 100

Figure 12-2. Random data source starter package

296

http://dx.doi.org/10.1007/978-1-4842-0638-6_10

CHAPTER 12 I SCRIPT COMPONENT AS DESTINATION

Script Component

Drag a Script Component to the canvas of the data flow and choose Destination as type as shown in
Figure 12-3. Give it a suitable name and connect it to the last transformation in your data flow.

£ Control Fiow [ERJEEEYEEM] & Parameters B EventHandiers %= Package Explo.. 3 Execution Resu...

Data Flow Task: | #& DFT - Create Flat Fie

Select Script Component Type ﬂ

Specify how the script will be used in the data flow:

f\! DER - DoSomething

{_) Source

Script is a source in the data flow and provides data to output columns.

5 Destination
Script is a destination in the data flow and consumes data from input
columns.

! I SCR_DST - Flat File Plus

() Transformation

Script is a transformation in the data flow and operates on data from input
columns and provides data to output columns.

OK Helo

Figure 12-3. Script Component Type: Destination

Adding Input Columns

Edit the Script Component and go to the Input Columns page. Select all the columns that you need in
your .csvV file as shown in Figure 12-4. Columns that start with a number or a punctuation mark should be
renamed in the Output Alias column because they are removed with in the script code.

297

CHAPTER 12 I SCRIPT COMPONENT AS DESTINATION

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.

Script Input name: Input 0 v

' Input Column Output Alias Usage Type
FirstName | FirstName ReadOnly
LastName LastName ReadOnly
Employeeld Employeeld ReadOnly
DateOfBirth DateOfBirth ReadOnly
Salary Salary ReadOnly
Gender Gender ReadOnly
K | | cowel || e

Figure 12-4. Select the needed Input Column

The following are the input columns:
e FirstName
e LastName
¢ Employeeld
e DateOfBirth
e Salary

e Gender

298

CHAPTER 12 I SCRIPT COMPONENT AS DESTINATION

Selecting Connection Manager

Go to the Connection Manager page and select the newly created File Connection Manager. After adding it as
shown in Figure 12-5, name it myFile. You can also add a new Connection Manager via the drop-down list.

In)

Script Transformation Editor - oIEN

Script
Input Columns
Inputs and Outputs

Connection Managers

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.

Specify the connection managers that the script component uses.

Connection managers:
Name Connection Manager Description
myFile | myFile.csv
Add.. Remove

oK Cancel Help

Figure 12-5. Add Connection Manager

299

CHAPTER 12 = SCRIPT COMPONENT AS DESTINATION

The Code

Now you can go back to the Script page, and click the Edit Script. . . button to open the VSTA environment.
First, you need to add an extra namespace to shorten the code.

#iregion CustomNamespace
using System.IO;
#endregion

Here is the VB.NET code:

#Region "CustomNamespace"
Imports System.IO
#End Region

Next you need a couple of class variables for storing the CSV data and footer information.

// Stream pointing to the CSV file

private StreamWriter textWriter;

// String variable for defining the column delimiter
private string ColumnDelimiter = ";";

// Counter to keep track of the number of rows
private int TotalRows = 0;

// Decimal fo summing the total salary

private decimal TotalSalary = 0;
And here is the VB.NET code:

' Stream pointing to the CSV file

Private textWriter As StreamWriter

' String variable for defining the column delimiter
Private ColumnDelimiter As String = ";"

' Counter to keep track of the number of rows
Private TotalRows As Integer = 0

' Decimal fo summing the total salary

Private TotalSalary As Decimal = 0

In the PreExecute method, you open the stream and start writing the headers. It’s not possible to write
totals, counts, or summations in the header because you don’t have that data yet.

public override void PreExecute()
{
// Create a new CSV file and use the
// filepath from the connection manager
textWriter = new StreamWriter(
this.Connections.myFile.AcquireConnection(null).ToString());

// Write header with current date
textWriter.WriteLine("ExportDate: " + DateTime.Now.ToShortDateString());

300

CHAPTER 12 I SCRIPT COMPONENT AS DESTINATION

// Write header with column names
texthWriter.Write("EmployeeId" + ColumnDelimiter);
textWriter.Write("FirstName" + ColumnDelimiter);
textWriter.Write("LastName" + ColumnDelimiter);
textWriter.Write("DateOfBirth" + ColumnDelimiter);
texthWriter.Write("Gender" + ColumnDelimiter);
texthWriter.WritelLine("Salary");

This is the VB.NET code:

Public Overrides Sub PreExecute()
' Create a new CSV file and use the
' filepath from the connection manager
texthWriter = New StreamWriter(_
Me.Connections.myFile.AcquireConnection(Nothing).ToString())

' Write header with current date
texthWriter.WritelLine("ExportDate: " + DateTime.Now.ToShortDateString())

' Write header with column names
textWriter.Write(Convert.ToString("EmployeeId") & ColumnDelimiter)
textWriter.Write(Convert.ToString("FirstName") & ColumnDelimiter)
textWriter.Write(Convert.ToString("LastName") & ColumnDelimiter)
textWriter.Write(Convert.ToString("DateOfBirth") & ColumnDelimiter)
textWriter.Write(Convert.ToString("Gender") & ColumnDelimiter)
textWriter.Writeline("Salary")

End Sub

In the PostExecute method, you are adding headers and closing the . csv file. In this stage of the script,
you can use the totals and summations because the Input0_ProcessInputRow method has calculated those.

public override void PostExecute()

{
// Add Footers
textWriter.WriteLine("Rows: " + TotalRows.ToString());
textWriter.WriteLine("Total Salary: " + TotalSalary.ToString());

// Close file
textWriter.Close();

And here is the VB.NET code:

Public Overrides Sub PostExecute()
' Add Footers
textWriter.WriteLine("Rows: " + TotalRows.ToString())
textWriter.WriteLine("Total Salary: " + TotalSalary.ToString())

' Close file

textWriter.Close()
End Sub

301

CHAPTER 12 = SCRIPT COMPONENT AS DESTINATION

In the Input0_ProcessInputRow method, you are processing all records. Each column value, combined
with the column delimiter, is written to the .csv file. The Last column uses a WritelLine instead of a Write to
add a row delimiter. This is also the place where you can calculate items that can be used in the header.

public override void Input0 ProcessInputRow(InputOBuffer Row)

{

// Write column values with a column delimiter

textWriter.Write(Row
textWriter.Write(Row
texthWriter.Write(Row
texthWriter.Write(Row
textWriter.Write(Row
// Use Writeline for
textWriter.Writeline

.EmployeeId.ToString() + ColumnDelimiter);
.FirstName.ToString() + ColumnDelimiter);
.LastName.ToString() + ColumnDelimiter);
.DateOfBirth.ToShortDateString() + ColumnDelimiter);
.Gender.ToString() + ColumnDelimiter);

the last column as row delimiter
(Row.Salary.ToString());

// Calculations for the header

TotalRows++;

TotalSalary = TotalSalary + Row.Salary;

This is the VB.NET code:

Public Overrides Sub Input0 ProcessInputRow(ByVal Row As InputOBuffer)

textWriter.Write(Row
textWriter.Write(Row
textWriter.Write(Row
texthWriter.Write(Row
texthWriter.Write(Row

textWriter.Writeline

TotalRows += 1

Write column values with a column delimiter

.EmployeeId.ToString() & ColumnDelimiter)
.FirstName.ToString() & ColumnDelimiter)
.LastName.ToString() & ColumnDelimiter)
.DateOfBirth.ToShortDateString() & ColumnDelimiter)
.Gender.ToString() & ColumnDelimiter)

Use WriteLine for the last column as row delimiter

(Row.Salary.ToString())

Calculations for the header

TotalSalary = TotalSalary + Row.Salary
End Sub

The Results

Now run the package and check the result of your flat file. Note that this is a very basic example, but very
easy to extend to your own needs. Figure 12-6 shows our results in this chapter’s example.

302

CHAPTER 12 SCRIPT COMPONENT AS DESTINATION

ExportDate: 8-7-2015
EmployeeId;FirstName;LastName;DateOfBirth;Gender;Salary
10000;Micheal;Garcia;13-11-1980;F;4178,73
10001;Geoxrge;Williams;15-3-1963;M;2746,01
10002;David;Garcia;12-7-1982;F;4313, 28
10003;John;Williams;10-11-1964;M;2880,56
10096; James;Rodriguez;10-7-1986;F;4637,22
10097 ;Matthew;Jones;8-11-1968;M; 3204, 50
10098;John;Wilson;7-3-1988;F;4771,77
10099;Matthew;Jones;7-7-1970;M; 3339, 05
Rows: 100

Total Salary: 354888,90

Figure 12-6. Part of the text file

Basic XML Destination

Unfortunately, there is still no out-of-the-box XML File Destination available. If your source is an SQL Server
table, then you could use a FOR XML query in an OLE DB Source Component and then write the results to a
headerless Flat File Destination. If you have a different source or a lot of transformations, then the FOR XML
query is not usable. The Script Component could help you out here.

Creating a File Connection Manager

Since you don’t want to hard-code the file path of the XML File in the script, you will use a File Connection
Manager. Create a File Connection Manager to an existing or non-existing file. Figure 12-7 shows an
example.

D File Connection Manager Editor -0 -_
Configure the file connection properties to reference a file or a folder that exists or is created at
run time.
Usage type: Create file]
File: DAXML\destination.xml

OK Cancel

Figure 12-7. File Connection Manager pointing to XML file

303

CHAPTER 12 SCRIPT COMPONENT AS DESTINATION

Source

For this example, you are using the random test data from the previous Flat File Destination example, which
came from Chapter 10. The following are the output columns:

e FirstName (DT_STR, 1252, 50)
e LastName (DT_STR, 1252, 50)
e Employeeld (DT_I4)

e DateOfBirth (DT_DATE)

e Salary (DT_NUMERIC, 6, 2)

e Gender (DT_STR, 1252, 1)

Script Component

Drag a Script Component to the canvas of the data flow and choose Destination as the type, as shown in
Figure 12-8. Give it a suitable name and connect it to the last transformation in your data flow.

£ Control Fow [ERJEEEYGan)] & Parameters B EventHandlers 7= Package Explo... (3 Execution Resu...

Data Flow Task: | & DFT - Create XML

Select Script Component Type “

Specify how the script will be used in the data flow:
v
f\! DER - DoSomething
o () Source

Script is a source in the data flow and provides data to output columns.

. ! Destination

Script is a destination in the data flow and consumes data from input

v
columns.
! I SCR_DST - Employees XML

_! Transformation

Script is a transformation in the data flow and operates on data from input
columns and provides data to output columns.

OK Helo

Figure 12-8. Script Component Type: Destination

Input Columns

Edit the Script Component and go to the Input Columns page. Select all the columns you need in your XML,
as shown in Figure 12-9. Columns that start with a number or a punctuation mark should be renamed in the
Output Alias column because they are removed with in the script code.

304

http://dx.doi.org/10.1007/978-1-4842-0638-6_10

CHAPTER 12 SCRIPT COMPONENT AS DESTINATION

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.

Script Input name: Input 0 v

' Input Column Output Alias Usage Type
FirstName | FirstName ReadOnly
LastName LastName ReadOnly
Employeeld Employeeld ReadOnly
DateOfBirth DateOfBirth ReadOnly
Salary Salary ReadOnly
Gender Gender ReadOnly
K | | cowel || e

Figure 12-9. Select needed Input Column

The following are the input columns:
e FirstName
e LastName
¢ Employeeld
e DateOfBirth
e Salary

e Gender

305

CHAPTER 12 SCRIPT COMPONENT AS DESTINATION

Selecting Connection Manager

Go to the Connection Manager page and select the newly created File Connection Manager. After adding it as
shown in Figure 12-10, name it xmlFile. You can also add a new Connection Manager via the drop-down list.

i Script Transformation Editor - B -

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.

Script Specify the connection managers that the script component uses.
Input Columns

Inputs and Outputs

Connection managers:

MName Connection Manager Description
MR e . —
| xmiFile | destination.xml
Add... Remove

OK Cancel Help

Figure 12-10. Add connection manager

The Code

Now you can go back to the Script page, and click the Edit Script. . . button to open the VSTA environment.
First, you need to add an extra namespace to shorten the code.

#region CustomNamespace
using System.Xml;

#endregion

306

CHAPTER 12 SCRIPT COMPONENT AS DESTINATION

And here is the VB.NET code:

#Region "CustomNamespace"
Imports System.Xml
#End Region

Next you need a class variable for storing the XML data. For this example, you use the XmLTextWriter
namespace.

// XmlTextWriter (stream) object to write the XML
XmlTextWriter textWriter;

And this is the VB.NET code:
' File stream object to write the XML
Private xmlFile As StreamWriter

In the PreExecute method, you open the stream and start writing the opening tags for the XML
structure.

public override void PreExecute()
{
// Create a new XML document and use the
// filepath in the connection as XML-file
textWriter = new XmlTextWriter(this.Connections.
xmlFile.AcquireConnection(null).ToString(), null);

// Start writing the XML document:
textWriter.WriteStartDocument();

// Create root element <Employees>
texthWriter.WriteStartElement("Employees");

And here is the VB.NET code:

Public Overrides Sub PreExecute()
' Create a new XML document and use the
' filepath in the connection as XML-file
textWriter = New XmlTextWriter(Me.Connections. _
xmlFile.AcquireConnection(Nothing).ToString(), _
System.Text.Encoding.Default)
' Start writing the XML document:
textWriter.WriteStartDocument()
' Create root element <Employees>
textWriter.WriteStartElement("Employees")
End Sub

307

CHAPTER 12 SCRIPT COMPONENT AS DESTINATION

And in the PostExecute method, you close the XML tags and clean up the resources.

public override void PostExecute()

{
// Close root element: </Employees>
texthWriter.WriteEndElement();

// Stop writing the XML document
textWriter.WriteEndDocument();

// Close document and clean up resources
textWriter.Close();

This is the VB.NET code:

Public Overrides Sub PostExecute()
'Close root element: </Employees>
textWriter.WriteEndElement()

"Stop writing the XML document
textWriter.WriteEndDocument ()

‘Close document and clean up resources
textWriter.Close()
End Sub

In the Input0_ProcessInputRow method, you process all records. Each column is mentioned as an
element of Employee, but the ID column is used as an attribute of Employee.

public override void Input0 ProcessInputRow(InputOBuffer Row)
{
// Opening tag employee with ID as attribute
textWriter.WriteStartElement("Employee");
textWriter.WriteStartAttribute("id");
textWriter.WriteString(Row.Employeeld.ToString());
textWriter.WriteEndAttribute();

// Writing elements within the Employee tag
textWriter.WriteStartElement("FirstName");
textWriter.WriteString(Row.FirstName.ToString());
textWriter.WriteEndElement();

textWriter.WriteStartElement("LastName");

textWriter.WriteString(Row.LastName.ToString());
texthWriter.WriteEndElement();

308

textWriter

textWriter

textWriter.
textWriter.
WriteEndElement();

textWriter

textWriter.
textWriter.
textWriter.

// Closing
textWriter

CHAPTER 12

WriteStartElement("DateOfBirth");
texthriter.
WriteEndElement();

WriteString(Row.DateOfBirth.ToShortDateString());

WriteStartElement("Gender");
WriteString(Row.CGender.ToString());

WriteStartElement("Salary");
WriteString(Row.Salary.ToString());
WriteEndElement();

tag employee

WriteEndElement();

And this is the VB.NET code:

SCRIPT COMPONENT AS DESTINATION

Public Overrides Sub InputO ProcessInputRow(ByVal Row As InputOBuffer)
' Write opening tag for row with id property
xmlFile.WriteLine("<Employee id=""" & Row.EmployeeId.ToString() & """>")

Extra columns

xmlFile.WriteLine("<FirstName>" & Row.FirstName.ToString() _

& "</FirstName>")

xmlFile.WriteLine("<LastName>" & Row.LastName.ToString() & "</LastName>")
xmlFile.WriteLine("<DateOfBirth>" & Row.DateOfBirth.ToShortDateString() _

& "</DateOfBirth>")

xmlFile.WriteLine("<Gender>" & Row.Gender.ToString() & "</Gender>")
xmlFile.WriteLine("<Salary>" & Row.Salary.ToString() & "</Salary>")

' Closing tag for row
xmlFile.WriteLine("</Employee>")

End Sub

The Results

Now run the package and check the result of your XML file. (Figure 12-11 shows our results). This is a very
basic example without error handling or escaping restricted characters like < and >. And it could be very
time-consuming if you have a lot of columns. Chapter 14 shows a more flexible example that loops through
the collection of columns.

309

http://dx.doi.org/10.1007/978-1-4842-0638-6_14

CHAPTER 12 SCRIPT COMPONENT AS DESTINATION

- 0IEl

7 . .
(= destination.xml X ‘

@‘ C) destination.xml ,O v O

<?xml version="1.0"?>
- <Employees>
- <Employee id="10001">
<FirstName>George</FirstName>
<LastName>Williams</LastName>
<DateOfBirth>15-3-1963</DateOfBirth>
<Gender>M</Gender>
<Salary>2746,01</Salary>
</Employee>
- <Employee id="10003">
<FirstName>John</FirstName>
<LastName>Williams</LastName>
<DateOfBirth>10-11-1964</DateOfBirth>
<Gender>M</Gender>
<Salary>2880,56</Salary> v
</Employee>

#®100% ~

Figure 12-11. Your XML file viewed in Internet Explorer

Summary

In this chapter you learned how to create your own text files (. csv and . xml) with the Script Component.
Very basic, but easy to extend. Both are perhaps a little time-consuming if you have a lot of columns, but in
Chapter 14 you will learn how to use reflection to loop through all columns.

310

http://dx.doi.org/10.1007/978-1-4842-0638-6_14

CHAPTER 13

Regular Expressions

Many ETL applications and processes usually deal with strings or have to parse large amounts of text; it is
not unusual to be in a situation where you want to strip some elements from a block of text or to validate that
an email address is in a valid format.

Regular expressions provide a flexible, powerful, and efficient method for processing text. The regular
expression pattern-matching engine enables you to

e Parse large amount of texts to find specific character patterns
e Validate text to ensure that it matches a predefined pattern

e Extract, edit, or delete text substrings and to add these substrings in a collection to
generate a report

In the heart of the regular expression is its engine, which is represented by the System Text.
RegularExpression.Regex object in the .NET Framework.

Processing text using regular expressions requires that the regular expression engine has at least two
parameters:

e The regular expression pattern to find in the text
e The text to parse for the regular expression pattern

More information about the regular expression object model is on MSDN at https://msdn.microsoft.com/
en-us/library/30wbz966(v=vs.110).aspx.

As mentioned, a regular expression is a pattern that the engine tries to match. A pattern consists of one
or more of these three parts:

e character literals
e operators
e constructs

A complete list of the regular expression syntax with character escapes, character classes, anchors,
grouping constructs, quantifiers, backreference constructs, alternation constructs, substitutions, regular
expression options, and other constructs is available for reference on MSDN at https://msdn.microsoft.com/
en-us/library/az24scfc(v=vs.110).aspx.

The following is a list of some great sites for finding Regex samples and resources:

e http://www.regexr.com

e http://www.regular-expressions.info/

311

https://msdn.microsoft.com/en-us/library/30wbz966(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/30wbz966(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
http://www.regexr.com/
http://www.regular-expressions.info/

CHAPTER 13 " REGULAR EXPRESSIONS

e http://rubular.com
e http://regexone.com
The Regex class has methods that let you perform the operations mentioned earlier.

e The IsMatch method is used for determining whether the regular expression occurs
in the input text; for example, when validating that an email address is in the correct
format.

e TheMatch or Matches methods that retrieve an object or a collection of objects with
all the occurrences of text that match the regular expression pattern.

e The Replace method is used to replace the text that matches the regular expression
pattern.

This chapter looks at three examples, where you will parse, validate, and then extract substrings.

Prerequisites

All the examples in this chapter are based on a sample file, ProductList.csv, which can be found in the
source code for this chapter.
The following are the six columns in which to keep information:

e ProductID

e Product name, which is simply the name of the product
e Date created

e The country in which the product is produced

e The email address (with some formatting errors) of the person responsible
for the product

e An HTML description of the product (the HTML description is taken from
Wikipedia)

Figure 13-1 is an extract of the . csv file opened in Excel.

A B C D E F G
1 |ProductID Date ProductName ProductiolEmail Summary
2 1 12-02-2015 Goatcheese France regis!bacc<h3><span class:
3 2 13/05/2015 Fastred car Italy enzo@fer <p>Ferrari S.|
4 3 HEHHHE Rye bread Denmark ryebread@<p>Rye breat
5 4 sgssss Running shoes USA nikuma@i <p>Athletic shoe

Figure 13-1. Product list .csv document

312

http://rubular.com/
http://regexone.com/

CHAPTER 13 I REGULAR EXPRESSIONS

Validating Email Addresses

A large part of the work done with regular expressions is to ensure greater data quality. According to the
International Data Corporation (IDC), it is estimated that bad data quality costs businesses $6.5 billion every
year. An invalid email address is the kind of error that can be caught with regular expressions.

Start by creating a new package and add a Data Flow Task to the surface. Inside the Data Flow Task, add
a Flat File Source and a new Flat File Connection Manager pointing to the .csv document mentioned earlier
(Productlist.csv, which is in the source code for this chapter). Leave all the settings from the General page
at the default, as shown in Figure 13-2.

B Flat File Connection Manager Editor a X
]
Connection manager name: |Flat File Connection Manager |
Description: | l
241 General | select afile and specify the file properties and the file format.
Columns Ele name: : 5]
i [SSIS with .NET\BookCode\Chapter 13\ProductL|st.c5\1| Browse
1 Preview ;
Locale: English (United States) v [Unicode
Code page: 1252 (ANSI - Latin) v
Format: Delimited v
Text qualifier: |<none> |
Header row delimiter: [m v l
Header rows to skip: 0 =

Column names in the first data row

Figure 13-2. Flat File Connection Manager Editor

Visit the Columns page to ensure that the metadata is fetched and that the columns are parsed
correctly.

313

CHAPTER 13 I REGULAR EXPRESSIONS

In the Advanced page of the Flat File Connection Manager, change the length of the Summary column
since truncation will occur if the data is more than 50 chars long, which triggers an error when running the
package. Change the datatype to string [DT_STR] with a width of 4000, as shown in Figure 13-3. The width
should be large enough so that truncation doesn’t occur.

2 Flat File Connection Manager Editor - o IEH

Connection manager name: Flat File Connection Manager

Description:

¢4 General Configure the properties of each column.

= Columns

E Advanced

'J Preview ProductiD 4 Misc
ProductName
ProductionCountry Hns .. e
Email ColumnDelimiter {CRH{LF}
ColumnType Delimited

InputColumnWidth

DataPrecision

o o o

DataScale
DataType string [DT_STR]
OutputColumnWidtHEh Iy
TextQualified True

' OutputColumnWidth

The width of this column in the data flow, given in
single characters. Composite characters may need t...

New ¥ Delete Suggest Types...

0K Cancel Help

Figure 13-3. Changing the datatype

Add a Script Component for transformation called SCR_ValidateEmail on the surface of the data
flow and add a data flow path between it and the Flat File Source created previously. Configure the Input
Columns page to take accept all the available columns in ReadOnly mode from the Flat File Source, as
shown in Figure 13-4. In this example, you are only using the Email column, so best practice would be to
only fetch the column you need, but since you will use some of the other columns in other examples, take all
the available columns.

314

CHAPTER 13

R Flat File Source Editor

Cenfigure the properties used to connect to and obtain data from a text file.

REGULAR EXPRESSIONS

-~ o

Connection Manager
Columns
Error Qutput

Available External Col...
] Name # A

< >
External Column Output Column
ProductName ProductName
ProductionCountry ProductionCountry
Email Email

Summary Summary

Date Date

oK Cancel

Figure 13-4. Input page of the Script Task Transformation Editor

Help

On the Inputs and Outputs page of the editor, you basically need two outputs: ValidEmail and
InvalidEmail. The first is for the valid email addresses and the second is for the invalid email addresses.
Start by renaming Output 0 to ValidEmail. For both outputs, you need to set the ExclusionGroup to 1 and
the SynchronousInputID to Input 0 (since you have exactly one output per input). Output 1 is renamed

InvalidEmail. The two outputs are shown in Figure 13-5.

315

CHAPTER 13 I REGULAR EXPRESSIONS

o Script Transformation Editor - o IEH

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

Seript Specify column properties of the script component.

Input Columns
Inputs and Outputs

’ Inputs and outputs:
Connection Managers =

3-41] Input 0 | |4 Common Properties
=3 ValidEmail DeleteOutputOnPa False
- Output Columns Description

w1 ErrorQOrTruncation(

ErrorRowDispositic| RD_NotUsed
ExclusionGroup 1

HasSideEffects True

D 52

IdentificationString| SCR_ValidateEmail.Outputy
IsErrorQut False

Name InvalidEmail
Synchronousinputl SCR_ValidateEmail.Inputs[|
TruncationRowDis| RD_MotUsed

Add OQutput SynchronouslnputiD
Specifies the input ID of rows in this output.

Remove Output

OK Cancel Help

Figure 13-5. Output columns

The Script

Clicking the Edit Script... button on the Script page brings up the VSTA editor; you can begin to add code to
perform the validation to keep the row data. First, you can safely remove the PreExecute and PostExecute
methods since you don’t need them. Then you need to add a reference to the Regular Expression
namespace.

#iregion CustomNamespace
using System.Text.RegularExpressions;

#endregion

By packing all the validations steps in functions, you can keep a clean interface. The first function that
you implement is for validating a given email address.

316

CHAPTER 13 I REGULAR EXPRESSIONS

Here is the C# implementation:

// A boolean method that validates an email address
// with a regex pattern.
public bool IsCorrectEmail(String emailAddress)

{
// The pattern for email
string emailAddressPattern = @"~(([*<>()[\I\\.,;:\s@\""]+"
0O\ OO0 TR (V"))
+ @"((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}"
+ @"\.[0-9]{1,31\]) | (([a-zA-Z\-0-9]+\.)+"
+ @"[a-2A-7]{2,}))$";
// Check if it is match and return that value (boolean)
return Regex.IsMatch(emailAddress,emailAddressPattern,RegexOptions.IgnoreCase);
}

And here is the VB.NET implementation:

' A boolean method that validates an email address

' with a regex pattern.

Public Function IsCorrectEmail(emailAddress As [String]) As Boolean

' The pattern for email

Dim emailAddressPattern As String = "~(([*<>()[\I\\.,;:\s@\""]+" + _
"GOOV S@N" " TH)F) [\ e\ ""))e" + _
"((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}" + _
"\.[0-9]{1,31\]) | (([a-zA-Z\-0-9]+\.)+" + _
"[a-zA-Z]{2,}))$"

' Check if it is match and return that value (boolean)
Return Regex.IsMatch(emailAddress, emailAddressPattern, RegexOptions.IgnoreCase)
End Function

This is not a very complicated pattern, but it matches most valid email addresses according to the email
address standard definition. Note that the pattern doesn’t determine if an email address exists, only if it is in
a valid format. Furthermore, the pattern doesn’t check if the top-level domain name is an existing domain.

Note Patterns can get very complicated, especially if you’ve never seen a regular expression before. For
validating email addresses, there is an easier way to do it—by using the System.Net.Mail.MailAddress class.
To determine whether an email address is valid, pass the email address to the MailAddress.MailAddress(String)
class constructor. We really encourage you to have a look at the Regex resources and samples available on the
Internet.

317

CHAPTER 13 " REGULAR EXPRESSIONS

Calling the Method

Once you add the method, you need to call it for each row with an email address that passes through the
script. If the method returns true, the email is valid, and you direct it to the ValidEmail output; otherwise, it’s
not valid and it has to go to the InvalidEmail output.

Here is how to invoke the method in C#:

public override void Input0 ProcessInputRow(InputOBuffer Row)

{
bool isEmailValid = false;
//If no email is provided consider it invalid
if ('Row.Email IsNull)
{
isEmailvalid = IsCorrectEmail(Row.Email);
}
if (isEmailvalid)
{
Row.DirectRowToValidEmail();
}
else
{
Row.DirectRowToInvalidEmail();
}
}

In VB.NET, you can invoke the method as follows:

Public Overrides Sub Input0 ProcessInputRow(Row As InputOBuffer)
Dim isEmailValid As Boolean = False

'If no email is provided consider it invalid
If Not Row.Email IsNull Then

iskmailvalid = IsCorrectEmail(Row.Email)
End If

If isEmailvalid Then
Row.DirectRowToValidEmail()
Else
Row.DirectRowToInvalidEmail()
End If
End Sub

Close the script editor and add two multicasts to the package: one connected to the ValidEmail output
and one connected to the InvalidEmail output. In a real-life scenario, you would probably want to log the
invalid emails rows and stop processing the row.

If you add data viewers to both precedence constraints and run the package with the input file provided
in the code example for this chapter, you can see that the invalid emails are caught by the validation method,
as shown in Figure 13-6.

318

CHAPTER 13 I REGULAR EXPRESSIONS

ValidateEmailAddress.dtsx [Design] & X

8.0 Control Flow mé Parameters [f] EventHandlers = Package Explrer) Progress
Data Flow Task: | §§§ DFT_RegularExpressions
|@|
EE) FFS. Producttlst InvalidEmail Data Viewer at DFT_RegularExpressions
» Detach Copy Data
6 oductName ProductionCountry Email Summary
Eze France regis'baccaro.com <Long Text>
d Denmark rysbread @factorydk <Long Text>
<Long Text>
! I SCR_ValidateEmail 4
ValidEmail Data Viewer at DFT_RegularExpressions *Ox
3| valigEma (2 rows) Jlml-dsma.l] -
» Detach Copy Data
MC_VahidEmail
A MC_Invalidemal ProductName ProductionCountry Emai Summany|
ed car Italy enzo@ferrari.it <Long Text>
g shoes Usa nikuma @running.com <Long Text>
]
Attached Total rows: 0, buffers: 0 Rows displayed = 2

Figure 13-6. Successfully running the package showing data viewers

Removing HTML Tags

When working with text in SSIS, you sometimes encounter HTML formatted text with a lot of markup that
you are not interested in keeping. Stripping markup from text is a well-known problem that can easily be
achieved using regular expressions. What you need to do is specify the pattern for an HTML tag, which is
quite simple:

It starts with < and has to match any single character, and even a new line, one or more times. This
pattern of one or more characters can be repeated once or not at all, thus yielding an expression like this:

<(.

The Package

Starting from the previous example (or from the sample code for Chapter 13), add a Data Flow Task to the
surface of the package and name it DFT_RemoveHTML.

Inside the Data Flow Task, add a Flat File Source as described in the previous example (Validate Email
address) and configure it to take all the columns from the source file.

Add a Script Component called Scr_RemoveHTML to the surface, choose Transformation as the type,
and connect its input to the output of the Flat File Source. Double-click the Script Component and choose
only the Summary column to be ReadWrite, as shown in Figure 13-7.

319

http://dx.doi.org/10.1007/978-1-4842-0638-6_13

CHAPTER 13 I REGULAR EXPRESSIONS

LT Script Transformation Editor [m] b

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

Script Input name: Input 0
Input Columns

Inputs and Outputs
Connection Managers

Available Input Columns

® Name ~
[0 Productid

O ProductName

O ProductionCountry
[0 Emai

Input Column Qutput Alias Usage Type
Summary Summary ’ ReadWrite J

Figure 13-7. Configuring Input columns

On the Script page, click Edit Script... to open VSTA. Remove the PreExecute and PostExecute methods
from the script.

The Script

Before you can use regular expressions in the code, you need to add a reference to the namespace with a
Using or Imports directive. Write the following code if using C#:

#iregion CustomNamespace

using System.Text.RegularExpressions;
#endregion

320

CHAPTER 13 I REGULAR EXPRESSIONS

You need a method that can use the pattern described earlier to remove HTML code.

//Created at class level for better performance

// The pattern for a html tag

public static String htmlTagPattern = "<(.|\n)+?>";
// Create a regex object with the pattern

public Regex objRegExp = new Regex(htmlTagPattern);

// A boolean method that strips HTML
// with a regex pattern.
public String RemoveHtml(String message)

{
// Replace html tag by an empty string
message = objRegExp.Replace(message, String.Empty);
// Return the message without html tags
return message;
}

Here is the code to use in VB.NET:

'Created at class level for better performance

' The pattern for a html tag

Public Shared htmlTagPattern As [String] = "<(.|" & vbLf & ")+2>"
' Create a regex object with the pattern

Public objRegExp As New Regex(htmlTagPattern)

' A boolean method that strips HTML
" with a regex pattern.
Public Function RemoveHtml(message As [String]) As [String]

' Replace html tag by an empty string
message = objRegExp.Replace(message, [String].Empty)
' Return the message without html tags
Return message
End Function

In the preceding function, you use the regular expression Replace method to remove the HTML markup
and replace it with an empty string whereas in the first example you were only interested in matching.

Then you can call the method in the Input0_ProcessInputRow method, as shown here for C#:

public override void Input0 ProcessInputRow(InputOBuffer Row)

{
}

Row.Summary = RemoveHtml(Row.Summary);

And the VB.NET invocation is as follows:
Public Overrides Sub Input0 ProcessInputRow(Row As InputoBuffer)

Row.Summary = RemoveHtml(Row.Summary)
End Sub

321

CHAPTER 13 " REGULAR EXPRESSIONS

Close the VSTA editor and add a multicast to the output of the Script Component, enabling the data
viewer on the precedence constraint. When running the package you should be able to see the summary
with no HTML markup, as shown in Figure 13-8.

Qutput 0 Data Viewer at DFT_RemoveHTML *AX
b Detach Copy Data
Pro.. Pro.. Production.. Email
1 G... France regis!baccaro.com “France[edit]France produces a great number of goat's mik cheeses, especally in the Loire Valley and Poitou, where goa
2 Fa... Italy enzo@ferrari.it Ferrari S.p.A. is an Itakian luxury sports car manufacturer based in Maranello. Founded by Enzo Ferrariin 1929, as Scud
3 R... Denmark ryebread @factorydk "Rye bread is a type of bread made with various proportions of flour from rye grain. It can be light or dark in color, deper
4 R. UsA nikuma @running.com “Athletic shoes are also known as training shoes or trainers (British English), sandshoes, gym boots or joggers (Australian |
5
6
4 »
Attached Total rows: 0, buffers: 0 Rows displayed = 6

Figure 13-8. Data viewer showing the result

In this example, you saw how to use the regular expressions Replace method to strip the HTML code
from text. In the next example, you are shown how to validate and replace dates with a default value if the
date doesn’t match the required format.

Cleaning/Validating

Regular expressions are also a great tool for ensuring data quality. Implementing patterns based on cleaning
and validating rules is quite straightforward. In the preceding example code, there is a date column. The
only issue with this column is the data quality. Sometimes parts of the date are separated with a forward
slash (/), and other times with a dash (-). In other situations, there is no date at all, only a series of # symbols.
Let’s implement a script to ensure that the date is always represented in the correct way, so that it eventually
can be converted to a datetime format. Furthermore, let’s agree that empty or invalid date strings will be
replaced by 9999-12-31.

The Package

Starting from the previous example (or from the sample code for Chapter 13), add a Data Flow Task to the
surface of the package and name it DFT_CleanseDate.

Inside the Data Flow Task, add a Flat File Source as described in the previous example (Validate Email
address) and configure it to take all the columns from the source file.

Add a Script Component called SCR_CleanseDate to the surface, choose the transformation type, and
connect its input to the output of the Flat File Source. Double-click the Script Component and choose only
the columns needed for better performance—in this case, the Date column, and mark it as ReadWrite, as
shown on Figure 13-9. Click the Edit Script... button on the Script page to open VSTA.

322

http://dx.doi.org/10.1007/978-1-4842-0638-6_13

CHAPTER 13 I REGULAR EXPRESSIONS

LT Script Transformation Editor [m] X

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

Script Input name: Input 0
Input Columns

Inputs and Outputs
Connection Managers

Available Input Columns
® Name ~
[0 ProductionCountry
[J Emai
[Summary
& | Due
v
< ¥
Input Column Qutput Alias Usage Type
Date Date ReadWrite '

Figure 13-9. Date column changed to ReadWrite

The Script

Start by removing the unnecessary PreExecute and PostExecute methods. Before you can use regular

expressions in the code, you need to add a reference to the namespace with a Using or Imports directive.
Here is the C# code for that:

#region CustomNamespace
using System.Text.RegularExpressions;
#endregion

You need a method that can validate whether the input string is in the correct format. This what the
DateTime.TryParse method does. TryParse converts the specified string representation of a date and time
to its DateTime equivalent, and returns a value that indicates whether the conversion succeeded, which is
more easily handled than returning an error. The regular expression used is quite straightforward; you want

323

CHAPTER 13 " REGULAR EXPRESSIONS

to find all occurrences of forward slashes, dots, commas, and dashes, and replace them with dashes. Again,
here is the implementation in C#:

//creating at the class level for better performance
// let's find occurrences of / , . - in the date string
Regex rgx = new Regex("([-/,.1)");

// This method uses TryParse to check if the date is valid,
// if not valid a generic value is used and returned.
public string CheckDate(String date)

{
string CleanedDate;
// replace it with a -
CleanedDate = rgx.Replace(date, "-");
DateTime parsedDate;
if (DateTime.TryParse(CleanedDate, out parsedDate) == true)
{
//if it's a date let's return it in a nicely formatted way
// the date is formated in the ISO format to avoid confusion
return parsedDate.ToString("yyyy-MM-dd");
}
else
{
//not a valid date return a generic value in ISO format
return "9999-12-31";
}
}

As always, the implementation is easily expressed in VB.NET:

'creating at the class level for better performance

' let's find occurrences of / , . - in the date string
Private rgx As New Regex("([-/,.1)")

' This method uses TryParse to check if the date is valid,
if not valid a generic value is used and returned.
Public Function CheckDate([date] As [String]) As String

Dim CleanedDate As String
" replace it with a -
CleanedDate = rgx.Replace([date], "-")

Dim parsedDate As DateTime

If DateTime.TryParse(CleanedDate, parsedDate) = True Then
'if it's a date let's return it in a nicely formatted way
' the date is formated in the ISO format to avoid confusion
Return parsedDate.ToString("yyyy-MM-dd")

324

CHAPTER 13 I REGULAR EXPRESSIONS

Else
'not a valid date return a generic value in ISO format
Return "9999-12-31"
End If
End Function

Now from the Main method it is easy to call the help method for every row passing through. In C#,
write this:

public override void Input0 ProcessInputRow(InputOBuffer Row)

{
if (!Row.Date IsNull)
{
Row.Date = CheckDate(Row.Date);
}
else
{
Row.Date = "9999-12-31";
}
}

And in VB.NET, write this:

Public Overrides Sub Input0 ProcessInputRow(Row As InputoBuffer)
If Not Row.Date IsNull Then
Row.Date = CheckDate(Row.Date)
Else
Row.Date
End If
End Sub

“9999-12-31”

Close the VSTA editor and add a multicast to the output of the Script Component, enabling the data
viewer on the precedence constraint. When running the package, you should be able to see the validated
and cleansed date, as shown in Figure 13-10.

325

CHAPTER 13 I REGULAR EXPRESSIONS

ValidEmail Data Viewer at DFT_CleanseDate +AX
| 4 Detach Copy Data
actionCountry Email Summary Date
regis'baccaro.com "<h3><span cdass="mw... | 12-02-2015
enzo@ferrari.it "<p>Ferrari S.p.A.<... | 13-05-2015
ryebread @factorydk “<p>Rye bread...] 31-12-9999
nikuma @running.com “<p>Athletic shoes are al... | 31-12-9999
4 b
Attached Total rows: 0, buffers: 0 Rows displayed = 4

Figure 13-10. Data viewer with cleansed date

Summary

Using regular expressions, you have matched, formatted, cleansed, and validated data in a nicely
straightforward way. These examples demonstrated some of the basic features of regular expressions. By
composing more complicated patterns, you can unleash the true power of the highly performant regular
expression engine.

There are also tools out there to help you build expressions, so that you don’t have to struggle with it
yourself. One of the best tools available, RegExt, is at http://regexr.com.

If you prefer offline tools, RegexMagic is also a nice tool; it’s available at waw. regular-expressions.info/
regexmagic.html.

326

http://regexr.com/
http://www.regular-expressions.info/regexmagic.html
http://www.regular-expressions.info/regexmagic.html

CHAPTER 14

Script Component Reflection

This chapter focuses on flexibility within the Script Component, because sometimes you have to do the
same transformation for a lot of columns, which could be a little tiresome. Or what about Chapter 12’s XML
destination with a lot of columns? You don’t want to code a couple dozen column names. On reflection,
you can loop through all input columns on runtime. So you don't have to hard-code all of those columns.
Another great opportunity to use reflection is calculating a hash value for all the columns.

However, this flexibility comes with a price because reflection is not the best technique if performance
is your top concern. In this case, you need to enumerate through the columns multiple times, which is a
COM bases object. At the end of this chapter, you will refer to a solution for this.

There are two points of attention before you start. First, the script loops through the collection of input
columns in the order that you selected in the editor. And second, when you change column names, data
types, or even the order of columns, you have to edit the script and let SSIS change the generated scripts.

Flexible XML Destination

This first example continues with the basic XML destination example from Chapter 12 (see Figure 14-1). The
only difference is the script itself. You can either continue with that package or use the starter package called
XML Starter.dtsx from the example project. Make sure that you have selected all the input columns you need
in your XML file, in the right order, and then click the Edit Script... button.

|

f\! DER - DoSomething

! I SCR_DST - Employees XML

Figure 14-1. XML destination

327

http://dx.doi.org/10.1007/978-1-4842-0638-6_12
http://dx.doi.org/10.1007/978-1-4842-0638-6_12

CHAPTER 14 © SCRIPT COMPONENT REFLECTION

The Script

For this example, you are using all the default methods, including PreExecute and PostExecute, but first you
need to add System.XML to the namespaces to shorten the code.

#region customNamespaces
using System.Xml;
#endregion

This is the VB.NET code:

#Region "customNamespaces"
Imports System.Xml
#End Region

You also need a couple of class variables to use in the various methods.

// XmlTextWriter (stream) object to write the XML
XmlTextWriter textWriter;

// Boolean variable to do something only onces
Boolean FirstRow = true;

// Variable to store the row type

Type rowType;

// Variable to store the input columns
IDTSInputColumnCollection100 InputColumnCollection;
// Variable to store the value of the column
String columnValue = "";

And this is the VB.NET code:

' XmlTextWriter (stream) object to write the XML

Dim textWriter As XmlTextWriter

' Boolean variable to do something only onces

Dim FirstRow As Boolean = True

' Variable to store the row type

Dim rowType As Type

' Variable to store the input columns

Dim InputColumnCollection As IDTSInputColumnCollection100
' Variable to store the value of the column

Dim columnValue As String = ""

In the PreExecute method, you are creating the XML file, but you also get the input columns. You need

those later on to loop through all the columns. For performance reasons, you are getting them only once
here in the PreExecute.

328

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

public override void PreExecute()
{
// Get collection of input columns
InputColumnCollection = this.ComponentMetaData
.InputCollection[0].InputColumnCollection;

// Create a new XML document and use the filepath

//in the connection as XML-file

textWriter = new XmlTextWriter(this.Connections.xmlFile
.AcquireConnection(null).ToString(), null);

// Start writing the XML document:
textWriter.WriteStartDocument();

// Create root element <Employees>
textWriter.WriteStartElement("Employees");

And this is the VB.NET code:

Public Overrides Sub PreExecute()
' Get collection of input columns
InputColumnCollection = Me.ComponentMetaData _
.InputCollection(0).InputColumnCollection

' Create a new XML document and use the

' filepath in the connection as XML-file

textWriter = New XmlTextWriter(Me.Connections.xmlFile _
.AcquireConnection(Nothing).ToString(), _
System.Text.Encoding.Default)

' Start writing the XML document:
texthWriter.WriteStartDocument()

' Create root element <Employees>
texthWriter.WriteStartElement("Employees™)
End Sub

The PreExecute method closes the XML document.
public override void PostExecute()

{

// Close root element: </Employees>
textWriter.WriteEndElement();

// Stop writing the XML document
textWriter.WriteEndDocument();

// Close document and clean up resources
texthriter.Close();

329

CHAPTER 14 © SCRIPT COMPONENT REFLECTION

This is the VB.NET code:

Public Overrides Sub PostExecute()
'Close root element: </Employees>
textWriter.WriteEndElement()

'Stop writing the XML document
textWriter.WriteEndDocument ()

'Close document and clean up resources
textWriter.Close()
End Sub

Next is the ProcessInputRow method that adds XML tags for each row. It has a foreach loop in it that
loops through all the columns from the input column collection. It then tries to get the value from each
column and adds an XML tag to the XML document. Within the try-catch, you find the “reflection” code:
.GetProperty(). Also notice the extra helper method that removes “forbidden” chars from the XML
document. These chars mess up your XML tags, making it impossible to read the document.

public override void Inputo ProcessInputRow(InputoBuffer Row)

{

// Do only onces
if (FirstRow)

// Row type to get the value of a column
rowType = Row.GetType();

FirstRow = false;

// Create row element: <Employee>
textWriter.WriteStartElement("Employee");

// Loop through all columns and create a column element:
// <coli>value</col1><col2>value</col2>
foreach (IDTSInputColumn100 column in InputColumnCollection)
{
// Use the SSIS column name as element name: <coli>
textWriter.WriteStartElement(column.Name);

// Get column value, will fail if null
try
{

columnValue = rowType.GetProperty(column.Name)
.GetValue(Row, null).ToString();
}

catch

{
// Default value for null values: "null", "" or string.Empty
columnValue = string.Empty;

}

330

CHAPTER 14
finally
{
textWriter.WriteString(removeForbiddenXmlChars(columnValue));
}

// Close column element: </coli>
textWriter.WriteEndElement();
}
// Close row element: </Employee>
textWriter.WriteEndElement();

// Extra: output the number of processed rows. 103 = RowsWritten
this.ComponentMetaData.IncrementPipelinePerfCounter(103, 1);

}

private string removeForbiddenXmlChars(string columnValue)
{
// Remove forbidden chars that could damage your XML document
return columnValue.Replace("&", "&")
.Replace("<", "<")
.Replace(">", "8gt;");

And this is the VB.NET code:

Public Overrides Sub Input0 ProcessInputRow(Row As InputOBuffer)
' Do only onces
If FirstRow Then
' Row type to get the value of a column
rowType = Row.GetType()
End If
FirstRow = False
' Create row element: <Employee>
textWriter.WriteStartElement("Employee")

' Loop through all columns and create a column element:

' <col1>value</coli><col2>value</col2>

For Each column As IDTSInputColumn100 In InputColumnCollection
' Use the SSIS column name as element name: <coll>
textWriter.WriteStartElement(column.Name)
' Get column value, will fail if null

Try
columnValue = rowType.GetProperty(column.Name) _

.GetValue(Row, Nothing).ToString()

Catch
' Default value for null values: "null", "" or string.Empty
columnValue = String.Empty

Finally
textWriter.WriteString(removeForbiddenXmlChars(columnValue))

End Try

SCRIPT COMPONENT REFLECTION

331

CHAPTER 14 © SCRIPT COMPONENT REFLECTION

' Close column element: </coll>
textWriter.WriteEndElement()
Next
' Close row element: </Employee>
texthWriter.WriteEndElement()
' Extra: output the number of processed rows. 103 = RowsWritten
Me.ComponentMetaData. IncrementPipelinePerfCounter(103, 1)
End Sub

Private Function removeForbiddenXmlChars(columnValue As String) As String
' Remove forbidden chars that could damage your XML document
Return columnValue.Replace("&", "&") _
.Replace("<", "8&1t;") _
.Replace(">", "8>")
End Function

The Results

Now run the package and check the results of your XML file. It should look like Figure 14-2. This is a bit more
sophisticated script that doesn’t require a lot of manual labor, but it does require a very basic XML structure.
For deviating requirements, you will probably have to add a lot of if statements in the column loop. In that
case, you are likely better off with the example in Chapter 12.

— =

S \ (,I?\‘ = : - e . . S
[__\\,\ ./}I |\r_;._\}| 2 \destination.xml Jo RN H @ destinationml... ‘ ‘ o

N
<?xml version="1.0"?>

- <Employees>
- <Employee>
<Employeeld>10001</Employeeld:
<FirstName>George</FirstName=>
<LastName>Williams</LastName>
<DateOfBirth>15-3-1963 00:00:00</DateOfBirth>
<Gender>M</Gender>
<Salary>2746,01</Salary>
</Employee>
- <Employee>
<Employeeld>10003 </Employeeld>
<FirstName>John</FirstName>
<LastName>Williams</LastName>
<DateOfBirth>10-11-1964 00:00:00</DateOfBirth>
<Gender>M</Gender>
<Salary>=2880,56</Salary>
</Employee>

Figure 14-2. Your XML file viewed in Internet Explorer

332

http://dx.doi.org/10.1007/978-1-4842-0638-6_12

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

Transformation of All Columns

Another good use of reflection in a Script Component is to do “something” on all columns. For example, trim
all the columns or replace all the null values. Of course, you can do that with the derived column, but if there
are a lot of columns, then it could be tiresome and error prone. In this example, you will convert all the string
columns to uppercase. You can use the same source as in the previous example, or you can use the “Upper
all Starter.dtsx” starter package or your own source file.

Script Component Type

Add a Script Component as a transformation to your data flow and connect it to another component
(see Figure 14-3). Make sure to give it a suitable name; for example, SCR - Uppercase.

! I Script Component

Select Script Component Type

Specify how the script will be used in the data flow:

(O Source

Script is a source in the data flow and provides data to output columns.

() Destination

Script is a destination in the data flow and consumes data from input columns.

(® Transformation

Script is a transformation in the data flow and operates on data from input
columns and provides data to output columns.

oK | Help

Figure 14-3. Script Component type transformation

333

CHAPTER 14 " SCRIPT COMPONENT REFLECTION

Script Component Input Columns

Go to the Input Columns page and select all (string) columns that you want to change and set the Usage
Type for those columns to ReadWrite (see Figure 14-4). You can select all the columns, even those with
non-string data types, because you will check the data type in the script itself. Of course, it is better for
performance to only select the correct columns. There is one downside to this method: you have to change
the Usage Type of all selected columns, one by one. This is a lot of work if you have many columns, but with

your keyboard, you can do it pretty fast (change the first and then repeat: {tab} {tab} {tab} {down}). Tiresome,
but still easier than adding dozens of expressions in a derived column.

o Script Transformation Editor - 0 -

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C#
2012, and configure component properties.

Script Input name: Input 0
Input Columns

Inputs and Outputs
Connection Managers

Available Input C...
| Name
¥ | FirstName
=~ LastName

Employeeld
DateOfBirth
Salary
¥ Gender
Input Column Qutput Alias Usage Type
FirstName FirstName ReadWrite
LastName LastName ReadWrite
Gender Gender | ReadWrite
oK Cancel Help

Figure 14-4. Select input columns and change Usage Type

334

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

The Script

For this example, you need a couple of class variables. These variables are used to prevent doing an action in
the ProcessInputRow multiple times.

// Boolean variable to do something only onces
Boolean FirstRow = true;

// Variable to store the row type

Type rowType;

// Variable to store the input columns
IDTSInputColumnCollection100 InputColumnCollection;
// Variable to store the value of the column

String columnValue = "";
This is the VB.NET code:

' Boolean variable to do something only onces

Dim FirstRow As Boolean = True

' Variable to store the row type

Dim rowType As Type

' Variable to store the input columns

Dim InputColumnCollection As IDTSInputColumnCollection100
' Variable to store the value of the column

Dim columnValue As String = ""

In the PreExecute method, you are filling a variable with the input column collection. This variable is
used in the ProcessInputRow method.

public override void PreExecute()
{
// Get collection of input columns
InputColumnCollection = this.ComponentMetaData
.InputCollection[0].InputColumnCollection;

And this is the VB.NET code:

Public Overrides Sub PreExecute()
' Get collection of input columns
InputColumnCollection = Me.ComponentMetaData _
.InputCollection(0).InputColumnCollection
End Sub

The Input0_ProcessInputRow method executes for each row, and then loops through the column
collection and changes the value of the ReadWrite string columns. Changing the value is done with a
separate method, which you can adjust to your own needs.

If you are changing the size of a text or a number, then you should make sure that you don't exceed the
length or precision, which would cause a truncation error. The variable column has various properties, such
as column.Precision or column.Length, which you can use to add extra checks. For this uppercase example,
itis not necessary to add extra checks.

335

CHAPTER 14 © SCRIPT COMPONENT REFLECTION

public override void Inputo ProcessInputRow(InputoBuffer Row)
{
// Do only onces
if (FirstRow)
{
// Row type to get the value of a column
rowType = Row.GetType();

FirstRow = false;

foreach (IDTSInputColumn100 column in InputColumnCollection)
{
// Only change columns of datatype string
// and make sure the column is READWRITE
if ((column.DataType.ToString().Equals("DT _WSTR") ||
column.DataType.ToString().Equals("DT_STR")) &&
column.UsageType.ToString().Equals("UT_READWRITE"))
{
// Get column value, will fail if null
try
{
// Get current column value
columnValue = rowType.GetProperty(column.Name).GetValue(Row,
null).ToString();

// Change the column value with a method. Make sure you comply
// to the data type incl. size(/precision/scale). The variable
// column has properties to get the size of the column.
rowType.GetProperty(column.Name).SetValue(Row,
UpperColumnValue(columnValue), null);
}

catch

{

}
}
}
}

// Do nothing when value is null

// New function that you can adjust to suit your needs
public string UpperColumnValue(string ValueOfProperty)
{

// Uppercase the value

ValueOfProperty = ValueOfProperty.ToUpper();

return ValueOfProperty;

}

336

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

And this is the VB.NET code:

Public Overrides Sub InputO ProcessInputRow(ByVal Row As InputOBuffer)
' Do only onces
If FirstRow Then
' Row type to get the value of a column
rowType = Row.GetType()
End If
FirstRow = False

For Each column As IDTSInputColumn100 In InputColumnCollection

' Only change columns of datatype string

' and make sure the column is READWRITE

If ((column.DataType = DataType.DT_WSTR Or _

column.DataType = DataType.DT STR) And _
column.UsageType = DTSUsageType.UT READWRITE) Then
' Get column value, will fail if null
Try
' Get current column value
columnValue = rowType.GetProperty(column.Name).GetValue(Row, _
Nothing).ToString()

' Change the column value with a method. Make sure you comply
to the data type incl. size(/precision/scale). The variable
column has properties to get the size of the column.
rowType.GetProperty(column.Name).SetValue(Row, _

UpperColumnValue(columnValue), Nothing)

Catch ex As Exception
' Do nothing when value is null
End Try
End If
Next
End Sub
' New function that you can adjust to suit your needs
Private Function UpperColumnValue(ValueOfProperty As String) As String
" Uppercase the value
ValueOfProperty = ValueOfProperty.ToUpper()
Return ValueOfProperty
End Function

337

CHAPTER 14 © SCRIPT COMPONENT REFLECTION

The Results

Add data viewers to test your script and run the package. You should see a lot of capitals (see Figure 14-5).

v

ﬂ SCR_SRC - Dummy Data Derived Column Output Data Viewer at DFT - Upper All *Ox
4 Detach Copy Data
100 [ows FirstName LastName Em.. DateOf... S
Micheal Garda 10... 1980-1... 4178,
. v George Wilkams 10... 1963-0... 2746,0
f\‘ DER - DoSomething - -
David Gardia 10... 1982-0... 4313,2
John Wilkams 10... 1964-1... 2880,%
4| 10D rows 1
Attached Total rows: 0, buffers: 0 Rows displayed = 100
! l SCR - Upper All Qutput 0 Data Viewer at DFT - Upper All *rAxX
| 4 Detach Copy Data
4| 10D rows
74 FirstName LastMame Em.. DateOf.. 54
MICHEAL GARCIA 10... 1580-1... 4178,
f\“ DER - Dummy GEORGE WILLIAMS 10... 1963-0... 2746,(
DAVID GARCIA 10... 1982-0... 4313,3
JOHN WILLIAMS 10... 1964-1... 2880,§
4
Attached Total rows: 0, buffers: 0 Rows displayed = 100

Figure 14-5. The results of upper all text columns

Calculating a Hash for a Row

Hashing can be used to store your passwords and other sensitive data more securely, but it can also be used
to detect changes in your records. For example, if you want to check whether you should update the record
in your destination table with data from your source, then you could compare all column values, one by one.
That’s OK if you have a four or five columns, but tiring if you have 20 columns. The trick is to calculate and
store a hash value (also called a checksum) of all of your column values. The next time you want to check for
changes, then you only have to check that hash column.

Note that calculating a hash costs extra time in SSIS and it costs extra space and time to populate the
hash in your destination table, but in most cases, that extra time and space is worth it. There are various
hashing algorithms. For example, MD5 (Message Digest 5 Algorithm) takes less time and costs less space
than SHA512 (Secure-Hash Algorithm, 512 bytes), but it is also less secure and there is a (negligibly) small
possibility that two different strings will result in the same hash value. That is called hash collision. So take
the time to research which algorithm is best for your situation, and choose wisely. For comparison, the MD5
is OK for securing sensitive data, but you should consider a more secure algorithm. And be careful with very
large (n)text columns. Hashing them could take too much time.

Variables

If you are using this script to calculate a secure hash instead of a checksum only, then you need to

add a string variable to store the salt value. For the checksum, you can skip this part. Make sure to use
configurations to avoid hard-coded values in the package. The name of the string variable is saltValue. Make
sure to add a dummy/test value (see Figure 14-6).

338

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

CR -l
| Scope Data type Value Expression
Hash String yOurS3cr3tS @it

Figure 14-6. Variable to store the salt

Script Component

For this example, you will reuse the source of the previous examples. You can use the starter package or use
your own source. Add a Script Component (type transformation) in your data flow (see Figure 14-7). Give it a
suitable name, like SCR - Hash All, and connect it to your other components.

i) Script Transformation Editor =G
Select Variables - b Basic 2012 or Microsoft Visual C# 2012, and
Select one or more variables
[=] Name Type ~
N System::MachineName String
] System::OffineMode Boolean
n System::PackagelD String
N System::PackageName String BSF-40FF-96AF-FBFFE250E3EF}
] System::ProductVersion String H runs custom script code. For example, apply a
User:saltValue String D5 hash of all columns
n System::ServerExecution|D Int64 |
O System::Start Time DateTime Hash All
W System::UserName String L
n System:Version Build Int32 0 erlands)
O System:VersionComments String Hash All
‘g | [e gy ¥ M — Y11 i - et
< >
0K Cancel
A LUSLOI FTuoperoes
ReadOnlyVariables User:saltValue
ReadWriteVariables
ScriptLanguage Micresoft Visual C# 2012
UserComponentTypeName Microsoft.SqlServer.Dts.Pipeline.ScriptComponentHost, Mic|
ReadOnlyVariables
Specifies a comma-separated list of read-only variables.
Edit Script...
OK Cancel Help

Figure 14-7. The data flow

339

CHAPTER 14 " SCRIPT COMPONENT REFLECTION

ReadOnly Variable

If you want to use the salt value, then you need to add the saltValue variable as a ReadOnly variable. The

Script Component doesn’t support sensitive parameters, but a workaround would be to use a Script Task
to read a sensitive parameter, and then store its value in a string variable (see Figure 14-8). Then you can
use that variable in the Script Component. Note that this still poses some security risks, as the value is in

memory while the package is running. But at least it is not hard-coded in the package.

o Script Transformation Editor = le)
Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

Script Input name: Input 0
Inputs and Qutputs
Connection Managers Available Input Co...
. Name
: | FirstName
"R LastName
Employeeld
DateOfBirth
[Salary
V] Gender
[v] Emai
Phone
[Rinn
Input Column Qutput Alias Usage Type
1 FirstName . FirstName ReadOnly
LastName LastName ReadOnly
Employeeld Employeeld ReadOnly
DateOfBirth DateOfBirth ReadOnly
Salary Salary ReadOnly
Gender Gender ReadOnly
Email Email ReadCOnly
Phone Phone ReadOnly
Blog Blog ReadOnly
0K Cancel Help

Figure 14-8. Saltvariable as ReadOnly

340

Input Columns

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

Go to the Input Columns tab and select all the columns you need as ReadOnly (the default); but it is not
useful to select the key column(s), since they won'’t change. If this package isn’t the only place where you
calculate the hash, then make sure to always use the same order of columns. Otherwise, the hashes won’t be
the same. For this example, you select all the columns except Employeeld, since this is the unique key

(see Figure 14-9).

Script

Input Columns

Inputs and Outputs
Connection Managers

Script Transformation Editor =G

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and

configure component properties.

Specify column properties of the script component.

Inputs and outputs:

@-42] Input 0 4 Common Properties

[Output 0 ComparisonFlags

= Output Columns Description
{3 Hash ErrorOrTruncationOperal

ErrorRowDisposition RD_NotUsed
ID 44
IdentificationString SCR_DST - Hash Al
LineagelD 44 |
MappedColumniD 0
Name Hash
SpecialFlags 0

TruncationRowDispesitic RD_NotUsed

4 Data Type Properties |

CodePage 1252
DataType string [DT_STR]
Length &
Precision 0
Scale 0
Add Output Add Column Length
Remove Column
OK Cancel Help

Figure 14-9. Select input columns as ReadOnly

341

CHAPTER 14 " SCRIPT COMPONENT REFLECTION

Output Columns

You need a new string column to store the calculated hash value. The length could vary between 32 for MD5
and 128 for SHA512. In this example, you will use an MD5 hash, which is 32 chars. Go to the Inputs and
Outputs page. Expand Output 0 and then select Output Columns. Click the Add Column button to add the
new string column (see Figure 14-10).

o Script Transformation Editor =
Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

Script | Specify column properties of the script component.

Input Columns

Inputs and Outputs Inputs and outputs:

Connection Managers -

#-4Z] Input 0 4 Common Properties
=& Output 0 ComparisonFlags
= Output Columns Description
{3 Hash ErrorOrTruncationOperat
ErrorRowDisposition RD_NotUsed
ID 47
IdentificationString SCR_DST - Hash Al
LineagelD 47
MappedColumniD 0
Name Hash
SpecialFlags 0
TruncationRowDispesitic RD_NotUsed
4 Data Type Properties
CodePage 1252
DataType string [DT_STR]
3
Precision 0
Scale 0
Add Output Add Column Length
Remove Column
0K Cancel Help

Figure 14-10. Add new hash output column

The Script

For this example, you are using all the default methods, including PreExecute and PostExecute, but first you
need to add System.Security.Cryptography to the namespaces to shorten the code.

#region customNamespaces

using System.Security.Cryptography;
#endregion

342

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

This is the VB.NET code:

#Region "customNamespaces"
Imports System.Security.Cryptography
#End Region

You also need a couple of class variables. These variables are used to prevent doing an action in
the ProcessInputRow multiple times. Also note the column separator variable, which is used to make a
difference between two columns with, for example, the values AB AB and ABA B. It is best to use a separator
that won’t appear in the data. You could use multiple chars.

// Boolean variable to do something only onces
Boolean FirstRow = true;

// Variable to store the row type

Type rowType;

// Variable to store the input columns
IDTSInputColumnCollection100 InputColumnCollection;
// Variable to store the value of the column
String columnValue = ""

// Create hashing object. Choose

// the type in the PreExecute

HMAC hashingObject = null;

// Column seperator to make a difference

// between values AB AB and ABA B

String columnSeparator = 5
This is the VB.NET code:

' Boolean variable to do something only onces

Dim FirstRow As Boolean = True

' Variable to store the row type

Dim rowType As Type

' Variable to store the input columns

Dim InputColumnCollection As IDTSInputColumnCollection100
' Variable to store the value of the column

Dim columnValue As String = ""

' Create hashing object. Choose

the type in the PreExecute

Private hashingObject As HMAC = Nothing
' Column seperator to make a difference
' between values AB AB and ABA B
Private columnSeparator As String = "|

In the PreExecute method, you need to choose the hashing type. In this example, you will use MD5, but
other algorithms are also possible. If you don’t want to use a salt, then you leave out the first two code rows
and remove the word saltByteArray in the third row of code.

343

CHAPTER 14 © SCRIPT COMPONENT REFLECTION

public override void PreExecute()

{
// Define salt to make hashing more secure.
String salt = Variables.saltValue.ToString();

// Create the ByteArray from the Salt string
byte[] saltByteArray = Encoding.Unicode.GetBytes(salt);

// Choose hashtype by replacing HMACMD5 with

// HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512
// or HMACRIPEMD160. These are more secure but
// also take more time to generate.
hashingObject = new HMACMD5(saltByteArray);

// Get collection of input columns
InputColumnCollection = ComponentMetaData.InputCollection[0]
.InputColumnCollection;

This is the VB.NET code:

Public Overrides Sub PreExecute()
' Define salt to make hashing more secure.
Dim salt As String = Variables.saltValue.ToString()
' Create the ByteArray from the Salt string
Dim saltByteArray As Byte() = Encoding.Unicode.GetBytes(salt)
' Choose hashtype by replacing HMACMD5 with
' HMACSHA1, HMACSHA256, HMACSHA384, HMACSHA512
" or HMACRIPEMD160. These are more secure but
also take more time to generate.
hashingObject = New HMACMD5(saltByteArray)

' Get collection of input columns
InputColumnCollection = Me.ComponentMetaData _
.InputCollection(0).InputColumnCollection
End Sub

In the PostExecute method, you are only cleaning up the hashing object.

public override void PostExecute()
{
// Clean up hashing object
if (hashingObject != null)
{
hashingObject.Clear();
hashingObject = null;
}
}

344

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

This is the VB.NET code:

Public Overrides Sub PostExecute()
" Clean up hashing object
If (IsNothing(hashingObject)) Then
hashingObject.Clear()
hashingObject = Nothing
End If
End Sub

In the Input0_ProcessInputRow method, you are looping through all selected columns to concatenate
all column values to one big string, including column separators. This string will be hashed by a separate
method and the returned hash value will be saved in the new output column.

public override void Inputo ProcessInputRow(InputoBuffer Row)

{

// Do only onces

if (FirstRow)

{
// Row type to get the value of a column
rowType = Row.GetType();

}

FirstRow = false;

// string builder to concatenate all column values
StringBuilder columnConcatenation = new StringBuilder();

// Used to indicate the first column
Boolean FirstColumn = true;

foreach (IDTSInputColumn100 column in InputColumnCollection)

{
// Get column value, will fail if null
try
{
// Get current column value
columnValue = rowType.GetProperty(column.Name).GetValue(Row,
null).ToString();
}
catch
{
// Do nothing when value is null
columnValue = null;
}

// Add separator except for the first column
if (!FirstColumn)

{

columnConcatenation.Append(columnSeparator);

}

FirstColumn = false;

345

CHAPTER 14 © SCRIPT COMPONENT REFLECTION

// Concatenate column value to string
columnConcatenation.Append(columnValue);

}

// Call hash method to calculate the hash

// and store hash in new output column

Row.Hash = GetHash(columnConcatenation.ToString());

}

// Hash method to convert a string to bytes
public string GetHash(string text)
{
byte[] bytes = Encoding.Unicode.GetBytes(text);
return GetHash(bytes);

}

// Hash method to calculate the hash and create
// a hash string
public string GetHash(byte[] bytes)
{
// Hashing the bytes
byte[] hash = hashingObject.ComputeHash(bytes);

// Format the bytes as string
string hashString = string.Empty;
foreach (byte x in hash)
{
// Format the byte as a hexadecimal byte
// X = Hexadecimal format
// 2 = 2 characters
hashString += String.Format("{0:x2}", x);
}

return hashString;

}

And this is the VB.NET code:

Public Overrides Sub Input0 ProcessInputRow(ByVal Row As InputoBuffer)
' Do only onces
If FirstRow Then
' Row type to get the value of a column
rowType = Row.GetType()
End If
FirstRow = False

' String builder to concatenate all column values
Dim columnConcatenation As New StringBuilder()

Used to indicate the first column
Dim FirstColumn As Boolean = True

346

CHAPTER 14 I SCRIPT COMPONENT REFLECTION

For Each column As IDTSInputColumn100 In InputColumnCollection
' Get column value, will fail if null
Try
' Get current column value
columnValue = rowType.GetProperty(column.Name).GetValue(Row,

Nothing).ToStrEng()
Catch

" If fail then make value null/nothing
columnValue = Nothing
End Try
' Add separator except for the first column
If (Not FirstColumn) Then
columnConcatenation.Append(columnSeparator)
End If
FirstColumn = False

' Concatenate column value to string
columnConcatenation.Append(columnValue)
Next
' Call hash method to calculate the hash
' and store hash in new output column
Row.Hash = GetHash(columnConcatenation.ToString())
End Sub
' Hash method to convert a string to bytes
Public Function GetHash(text As String) As String
Dim bytes As Byte() = Encoding.Unicode.GetBytes(text)
Return GetHash(bytes)
End Function
' Hash method to calculate the hash and create
a hash string
Public Function GetHash(bytes As Byte()) As String
' Hashing the bytes
Dim hash As Byte() = hashingObject.ComputeHash(bytes)

Format the bytes as string
Dim hashString As String = String.Empty
For Each x As Byte In hash
' Format the byte as a hexadecimal byte
X = Hexadecimal format
2 = 2 characters
hashString += [String].Format("{0:x2}", x)
Next
Return hashString
End Function

347

CHAPTER 14 © SCRIPT COMPONENT REFLECTION

The Results

Now run your data flow and check the results. If you add a data viewer after the Script Component, you can
see the newly created and filled hash column (see Figure 14-11).

“’“i’“"“ Output 0 Data Viewer at DFT - Stage Employee *Ox
(V' » Detach Copy Data
f\! DER - DoSomething =
irstName ~ LastName Employeeld DateOf Bath Salary Gender Hash -
Micheal Garda 10000 1980-11-1... 4178,73 M d667077976b528889a0c4e604d5124ef
1.000 rows George willams 10001 1963-03-L.. 274601 M 5b005295¢7 1aaadf2aad 346500967123
David Garda 10002 1982-07-1... 4313, 28 M f85252bf32cefc0abBb50d 19baed9ads
John Wiliams 10003 1964-11-1... 2880,56 M 5f3178df122a912535b 19e45d127817a
ﬂ SCR+ Hashi A David Rodriguez 10004 1984030... 447,83 M 4a96e0ce51229e8442414042870285
John Brown 10005 1966-0740... 301511 M 11908e leffa2b6e63a03b3370d07703
James Rodriguez 10006 1985-11-0... 4582,39 M 695133cfb284f1bdabd 706577746 7cha
i: 1.0D0 rows Matthew Brown 10007 1968-03-0... 314966 M 6018bfdbsbfd26ce90a6bco0c25dd 3fe e
Attached Total rows: 0, buffers: 0 Rows displayed = 1000

Figure 14-11. The new Hash column

You could add a lookup behind this Script Component to check whether the Employeeld exists in the
destination table. If you also retrieve the hash in that same lookup, then you can compare that to the freshly
created hash to determine if you need to update the data. Note that you shouldn’t update the records with
an OLE DB command because that is slow. Inserting into a temporary table and then bulk updating with an
Execute SQL Task is probably faster.

Summary

In this chapter you saw the possibilities of reflection. It’s handy when doing a lot of repetitive actions for a lot
of columns. Adding or removing a column doesn’t require a lot of work. You only have to open and close the
VSTA environment to let SSIS generate the standard code.

The downside is that the code is a bit more complex and performance is a little worse than when you
hard-code all column actions. You can solve some of this performance degradation by moving the columns
object to a custom object in the PreExecute method and use that object instead of the slower COM object. In
the CodePlex project for the Dimension Merge SCD component by Todd McDermid, you can find an excellent
example for that, but it requires some heavy coding (see http://dimensionmergescd.codeplex.com). You
have to consider whether this is useful for your case.

348

http://dimensionmergescd.codeplex.com/

CHAPTER 15

Web Services

Chapter 7 explained how to use a web service in a Script Task, but it is also useful in the Data Flow Task for
enriching your data, as a destination, and even as a source. Many products use web services as an interface.
Tools like Microsoft Dynamics CRM and SharePoint store all data in an SQL Server database, but you are
not allowed to edit the data directly in the database. Instead, the vendors provide web services to modify
data. This chapter provides some web service examples for commonly used Microsoft products and for web
services that you can find on the Internet.

Enriching with Weather

This first example uses the public weather web service seen in Chapter 7. For details and theory about web
services, you should read that chapter. In this example, you will enrich the geographical data coming from
a flat file with weather information from a web service. Create a package with an empty data flow. Add a
Flat File Source Component named FF_SRC - Cities, and connect it to a flat file with the following data.
The default 50 string size is OK for the columns in this example. The file in the example package is called
Weather.csv.

Country,City
netherlands,amsterdam
netherlands,maastricht
belgium,antwerp
france,le touquet
france,agen
germany,hamburg
germany,munich
denmark,alborg

Variables

Add a string variable named WebserviceUrl to the package and fill it with the following web service URL:
http://www.webservicex.net/globalweather.asmx. This makes it easier to configure the URL, as shown in
Figure 15-1.

349

http://dx.doi.org/10.1007/978-1-4842-0638-6_7
http://dx.doi.org/10.1007/978-1-4842-0638-6_7
http://www.webservicex.net/globalweather.asmx

CHAPTER 15 WEB SERVICES

Variables

PR =TT

Name Scope Data type Value Expression
& WebserviceUrl Weather String ’ http://www.webservicex.net/globalweather.asmx

Figure 15-1. String variable to configure the web service

Script Component

Add a Script Component, type transformation, to the data flow and connect it to the source, as shown in
Figure 15-2. Give it a useful name, like SCR - Get weather. Then edit the Script Component and add the
variable from the previous step to the ReadOnlyVariables property.

= FF_SRC - Cities
B~

! I SRC - Get weather

Figure 15-2. Script Component Transformation

Input Columns

In the Script Component Editor, go to the Input Columns tab and add the Country and City columns as
ReadOnly input columns for the script; Figure 15-3 shows an example.

350

CHAPTER 15 I WEB SERVICES

in) Script Transformation Editor =R

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C= 2012, and
configure component properties.

Script . Input name: Input 0

v
Input Columns|

Inputs and Outputs
Connection Managers

Available Inpu...
Name

Input Column Qutput Alias

Usage Type
l Country Country ReadOnly
City City ReadOnly

Figure 15-3. Input columns

Inputs and Outputs

You need to create a new string column in which to store the weather information. The web service returns
an XML document that you will store in the string column. You could also split the XML in separate columns

to make it even nicer. Go to the Inputs and Outputs tab and add a new string column named Weather with
date type string 1000. It should be added in Output 0, as shown in Figure 15-4.

351

CHAPTER 15 " WEB SERVICES

L8

Script Transformation Editor

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

|

Figure 15-4. New output column

Add References

Click the Edit Script... button to open the VSTA environment in Figure 15-5. In the Solution Explorer, right-
click the References and add a new Reference named System.ServiceModel. You can find it in the .NET/
Framework page. If you use VB.NET, then right-click the VSTA project to add the new reference.

ErrorRowDisposition §_NotUsed

Script Specify column properties of the script component.
Input Columns
Inputs and Outputs Inputs and outputs:
Connection Managers

@-42] Input 0 4 Common Properties

=5 Output 0 ComparisonFlags

= ﬁ Qutput Columns Description
3 m ErrorOrTruncation .

] 42 |
IdentificationString SRC - Get weather.Outputi
LineagelD a2
MappedColumniD 0 '
Name Weather

SpecialFlags 0

TruncationRowDis| RD_MotUsed

| 4 Data Type Properties

CodePage 1252 |
DataType string [DT_STR] |
Length 1000 |

Draririan n

I 4 Assemblies Targetin

Extensions

Recent o]
B Solution
P COM

P Browse

Reference Manager - SC_a064a2a5aB804496ca3277204de13f199

g: .NET Framework 4

Name Version
System.Security 4000
System.SenviceModel 4000
System.ServiceModel Activation 4000
System.ServiceModel. Activities 4000
System.ServiceModel.Channels 4000
Systemn.ServiceModel Discovery 4000
System.ServiceModel Routing 4.0.00
System.ServiceModel. Web 4000
System.ServiceProcess 4000
System.Speech 4.0.00
System.Transactions 4.000
System.Web 4.0.0.0
System. Web.Abstractions 4000
Svstem.Web.ApelicationSenvices 4000

Figure 15-5. System.ServiceModel

352

» IEN

Search Assemblies (Ctri+E) P =

Name:
Accessibility
Created by:
Microsoft Corpor;
Version:

4.0.00

File Version:

ation

4.0.30319.1 built by: RTMRel

CHAPTER 15 I WEB SERVICES

Add Service Reference

The next step is to add a new Service Reference by right-clicking References, and then choosing Add Service
Reference.... In the address bar, paste the URL (http://www.webservicex.net/globalweather.asmx) of the
web service, and then click Go to find the web service. Figure 15-6 shows an example.

Add Service Reference ? -

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover.

Address:
Ihttp://www.websewicex.netfglobalweather.asm:d vl Go Discover |~
Services: Operations:

(®):@® GlobalWeather

Select a service contract to view its operations.

1 service(s) found at address 'http://www.webservicex.net/globalweather.asmx.

Namespace:
GlobalWeather

Advanced... OK i Cancel

Figure 15-6. Add Service Reference

In the NameSpace field, type GlobalWeather and then click OK. Now you have added a web service as
reference for the design-time code. Make sure to press the Save All button in older versions of Visual Studio.

353

http://www.webservicex.net/globalweather.asmx

CHAPTER 15 WEB SERVICES

Namespaces

To shorten the code, add the following namespaces. The prefix of the second namespace named
GlobalWeather is coming from the internal VSTA project name. It will be different for each Script
Component, but start typing SC_ and IntelliSense will do the rest.

#region CustomNamespace

using System.ServiceModel;

using SC_a064a2a5a804496ca3277204de131199.Globalleather;
#endregion

And this is the VB.NET code:

#Region "CustomNamespace"

Imports System.ServiceModel

Imports SC_f27cac918ef84easbd35b959b1971ect.Clobaleather
#End Region

Class Variables

Add class variables for the channel factory and the weather web service object. You will be using these
objects in the various methods.

[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent
{
// Create a Channel Factory with the type of the Web Service.
ChannelFactory<GlobalWeatherSoap> channelFactory;
// Create a GlobalWeatherSoap object to call the web service
GlobalWeatherSoap weatherSvcObj;

And this is the VB.NET code:

<Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute> _
<CLSCompliant(False)> _
Public Class ScriptMain

Inherits UserComponent

' Create a Channel Factory with the type of the Web Service.
Dim channelFactory As ChannelFactory(Of GlobalWeatherSoap)
' Create a GlobalWeatherSoap object to call the web service
Dim weatherSvcObj As GlobalWeatherSoap

354

CHAPTER 15 WEB SERVICES

PreExecute

In the PreExecute method, you are getting the web service URL from the SSIS string variable. This URL is
used in runtime.

public override void PreExecute()
{
// Get the right binding: basicHttp
BasicHttpBinding httpb = new BasicHttpBinding();
// And initiate the channelFactory with this binding
channelFactory = new ChannelFactory<GlobalWeatherSoap>(httpb);

// The necessary endpoint with our address from the variable
EndpointAddress ep = new EndpointAddress(Variables.WebserviceUrl.ToString());

// Create the representation of the web service
weatherSvcObj = channelFactory.CreateChannel(ep);

And this is the VB.NET code:

Public Overrides Sub PreExecute()
' Get the right binding: basicHttp
Dim httpb As New BasicHttpBinding()
' And initiate the channelFactory with this binding
channelFactory = New ChannelFactory(0Of GlobalWeatherSoap)(httpb)
' The necessary endpoint with our address from the variable
Dim ep As New EndpointAddress(Variables.WebserviceUrl.ToString())
' Create the representation of the webservice
weatherSvcObj = channelFactory.CreateChannel(ep)
End Sub

Input0_ProcessInputRow

In the ProcessInputRow method, you are calling the web service with the two input columns as parameters
to the GetWeather method. The result is stored in the new output column. If you want to split the XML
document in separate columns, this is the place. You also might want to add a try-catch construction to
catch unexpected errors that this public web service might cause. The example package has an extra
try-catchincluded.

public override void Input0 ProcessInputRow(InputOBuffer Row)

{

// Call Web service with city and country parameters
Row.Weather = weatherSvcObj.GetWeather(Row.City, Row.Country);

}

355

CHAPTER 15 " WEB SERVICES

And this is the VB.NET code:

Public Overrides Sub Input0 ProcessInputRow(ByVal Row As InputOBuffer)
' Call Web service with city and country parameters
Row.Weather = weatherSvcObj.GetWeather(Row.City, Row.Country)

End Sub

PostExecute

When you are done, you can close the communication in the PostExecute method.

public override void PostExecute()

{
// Close the communication
channelFactory.Close();

}

And this is the VB.NET code:

Public Overrides Sub PostExecute()
' Close the communication
channelFactory.Close()

End Sub

The Results

Now add a dummy derived column and connect it to the Script Component. Add a data viewer, as shown in
Figure 15-7, to see the result of our web service call.

E:E) F£_SRC - Otes Output 0 Data Viewer at DFT - Get weather - 0Ox
» Detach Copy Data
L]
Courtry Cay Weasthar
netherlands amsterdam <?xmi version="1.0" encoding="utf- 167> <0 > <locaton Airport Schiphol, Netherlands (EHAM) 52-18N DD4-368 -2M</Locato. .
H SR - Get weather 1 netherlands masstricht <Puml version="1.0" encoding="utf- 167> cCurrentWeather > <Location >Maastricht Airport Zuid Limburg, Netherlands (EHE) 50-55M 005-47E 118M</Loc. ..
beigium antwerp <Paml version="1.0" encodng="utf-16"7> <C » <Location>Anty [Deurne, Belgin (EBAW) 51-124 004-28E 14M</Location> <Time>...
france la touguet <7uml vergion="1.0" encoding ="witf- 1677 > cCurrentiVeather > <Location >Le Touquet, France (LFAT) 50-31N 001-37E 14M</Locaton> <Time=May 03, 2...
b france agen <aml version="1.0" encoding="Utf-16"7> «CurrentWeather > <Location>Agen, France (LFBA) 44-11N 000-36E £0M</Location> <Time>May 03, 2015 - ...
germany hamburg <uml version="1.0" encoding="tf-16"7> <C 1 b g Fink der, Germany (EDHI) 53-32M 009-50€ 13M</Locaton> <Ti...
a Der - Dummy germany munich «<huml version="1.0" encodng="utf- 167> cCurentiVeather > <Location>Munchen, Germany (EDDM) 48-21N 011-47€ <Locaton> <Tme>May 03, 2015 ...
x denmark aborg <Haml version="1.0" encodng="utf- 16" <CurentWeather > <Locaton »Aalborg, Denmark (EKYT) 57-06M 009-51E 13 < Locabon> <Time>May 03, 201...
Attached Total rows: 0, buffers: 0 Rows displayed = 8

Figure 15-7. Data viewer

356

CHAPTER 15 WEB SERVICES

Dynamics CRM

This part of the chapter shows how to insert or update data in Microsoft Dynamics CRM 2013, but other
versions have a similar web service with similar code. If you don’t have Microsoft Dynamics CRM, you can
skip this part of the chapter. As stated in the introduction, you are not allowed to edit CRM data directly in
the database. Updates are done through web services. But for reading data, you can use the views in the
CRM database.

Because each CRM solution uses different entities with a different set of attributes, you don’t have
a step-by-step example to follow. Instead, you have a set of guidelines and some code examples for all
different field types, like regular text fields, option sets, and lookups. The data flow varies per person and per
solution, but the script design with the web service is roughly the same. First, a couple of guidelines:

¢ You want to avoid inserting duplicate data. Therefore, you have to check whether you
have a unique key in the source that you can compare to a key in CRM. If there isn't,
then you could store the business key from the source in a (hidden) column of CRM.
This makes it easy to compare data in the next run.

e To update or delete data in CRM, you need the GUID of the record (the unique key or
entity id). So you want to get this data via a lookup transformation on the CRM view
(data flow example 2) or with a join to an OLE DB source (data flow example 1) that
uses that same CRM view.

¢ You don't want to unnecessarily update records in CRM. This worsens the
performance and it pollutes the CRM history information. So, you want to check
for changes in the data. This can be done by getting all columns from CRM that
you want to compare, joining it to the source database using the business key, and
then using a big expression to compare each column. Another trick is to hash all the
columns of both the source and the CRM view. Then you only have to compare one
hash column. You can find an example of this in the previous chapter.

Next are two possible data flow designs that you could use to move data from your source to CRM.
The bottom part of both solutions (with the Script Components) is the same. If you have multiple sources
inserting and updating records in the same CRM identity, then you have to figure out a way to determine
which source, or even which record, is leading before moving the data to CRM.

Data Flow Example 1

Example 1 uses a merge-join to compare data from the source to CRM. Figure 15-8 shows the entire data
flow for the example.

357

CHAPTER 15 WEB SERVICES

> oLe_sre- My Contacts > oLe_sRC- CRM Contacts
BusinessKey BusinessKey
Column1 GUID
Column2 Hash
Hash

% CNT - Read

1231

l

+$ MRGJ - Left outer join Contactid

h
CSPL - Split inserts and updates

l Insert Upgate Unchanged l

@ CNT - Inserts % CNT - Updates @ CNT - Unchanged

1231 1231 123

| |

! I SCR_DST - Insert Contact ! I SCR_DST - Update Contact

[

Figure 15-8. Data flow example 1

In this first example, you are getting all columns from your source (My Contacts), including the business
key. And you add a hash to compare all the columns at once. Instead of using hashbytes, you could also use
the Script Component example from Chapter 14 to calculate the hash for all columns or use one of the
third-party checksum transformations. The query should look something like this:

SELECT ContactId as SourceContactId

’ Columni

s Column2

, HASHBYTES('MD5', Columni + '|' + Column2) as hash
FROM myTable

ORDER BY ContactId -- For join in SSIS

Any data transformations should be added before the merge-join and before calculating the hash.
Otherwise, you will compare two different things and always update all existing records. This example
doesn’t have transformations; therefore, you can calculate the hash in the source query.

358

http://dx.doi.org/10.1007/978-1-4842-0638-6_14

CHAPTER 15 WEB SERVICES

In the CRM source (CRM Contacts), select the GUID from CRM (for update/deletes), the source id
(for joining), and the hash (for comparing). Only select contacts that have a source id.

SELECT ContactId -- QUID (entity ID)

, SourceContactId -- ID from source

, HASHBYTES('MD5', Columni + '|' + Column2) as hash

FROM myCrmContactsView

WHERE SourceContactId is not null -- Only contacts from this source
ORDER BY SourceContactId -- For join in SSIS

In the merge-join, you do a left outer join on the source id between the source and CRM (getting all
rows from the source and only those rows from CRM that have a matching sourceid). In the next conditional
split, you check which rows should be inserted, updated, or ignored. If the source id from the CRM side is
empty, then you need to insert the record. And if the hashes are different, you need to update the record in
CRM. All other rows are ignored because they are already in CRM and nothing has changed.

Data Flow Example 2

The second example uses a lookup transformation to compare data from the source to CRM. Figure 15-9
shows this example’s flow.

> oLe srC- My Contacts

BusinessKey
Columni
Column2

v Hash

ﬂ CNT - Read

v

LKP - CRM Contacts

ol

BusinessKey
GUID
Hash

v

b=

CSPL - Split inserts and updates

= ' % ‘ =
l § =

% CNT - Updates % CNT - Inserts @ CNT - Unchanged

123 123 123

! I SCR_DST - Update Contact ! I SCR_DST - Insert Contact

Figure 15-9. Data flow example 2 using a lookup

359

CHAPTER 15 WEB SERVICES

In this second example, you are getting the CRM data with a lookup transformation instead of using
an OLE DB source and merge-join. The queries will be the same as in the first example, except without the
sorting what was only needed for the merge-join. Which solution you choose depends on the number of
records that you get from CRM (preferably, it should fit into memory if you use a lookup) and on the record
length of the CRM record because the hashbytes input is limited to 8000 bytes. Any larger and you have to
calculate the hash with a different method; for example, with a Script Component. And if you also want to
delete or inactivate records in CRM because they don't exist in the source any more, then you need a full
outer join, which is only possible with the merge-join.

Download CRM SDK

Before you go to the Script Component, you first have to download the Microsoft CRM 2013 Software Development
Kit (SDK), which can be found at http://www.microsoft.com/en-us/download/details.aspx?id=40321
(for 2011, change the ID value in the URL to 24004, 2015 ID=44567). Execute the downloaded file to extract all the
files. You only need the Microsoft.Xrm.Sdk.dll assembly, which is found in the SDK\Bin folder.

The next step is to add that assembly to the GAC on the SSIS machine and copy it to the SSIS Binn folder
at C:\Program Files (x86)\Microsoft SQL Server\110\DTS\Binn\.(The folder name 110 refers to the
SQL Server version: 100 for 2008, 110 for 2012, and 120 for 2014). On a development machine, you can use
gacutil to add the assembly to the GAC. On a production server, you need to create an installer or disable
UAC and use Windows Explorer to drag the assembly to the GAC, or use a PowerShell script to add them to
the GAC. Note that you need admin rights to add something to the GAC.

Windows Identity Foundation

The CRM SDK also required Windows Identity Foundation. To install it, download from at
http://www.microsoft.com/en-US/download/details.aspx?id=17331. A standard installation is sufficient.

Variables

To avoid hard-coded usernames, domain names, passwords, and web services, you want to use variables or
parameters and use those in the Script Components. This example uses four string variables, as shown in
Figure 15-10.

Variables

C Bd

Name Scope Data type Value
& CrmWebservice CRM String http://crmserver:5555/CRMDev/XRMServices/2011/0Organization.svc
& CrmUser CRM String crm_systemuser
& CrmPassword CRM String 53cr3t!
& CrmDomain CRM String yourdomain

Figure 15-10. Variables for storing web service connection information

The CRM web services URL is http://<servername>:5555/<sitename>/XRMServices/Organization.
svc. The port number could be different.

360

http://www.microsoft.com/en-us/download/details.aspx?id=40321
http://www.microsoft.com/en-US/download/details.aspx?id=17331

CHAPTER 15 I WEB SERVICES

Add Script Component

Add a Script Component (type destination) for insert or update, and add the four string variables from the
previous step as ReadOnlyVariables. This step is the same for all scripts, as illustrated in Figure 15-11.

i) Script Transformation Editor =R

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C= 2012, and

configure component properties.

Script

Input Columns

Inputs and Outputs Propestios
Connection Managers T

4 Common Properties

ComponentClassiD 5-FBSF-40FF-96AF-FBFF8250E3EF)}

Contactinfo Includes and runs custom script code. For example, apply a business rule that i
Description Includes and runs custom script code, For example, apply a business rule that I
D 75
IdentificationString SCR_DST - Insert Contact
IsDefaultLocale True
LocalelD Dutch (Netherlands)
Name SCR_DST - Insert Contact
PipelineVersion]
UsesDispositions False
ValidateExternalMetadata True
Version 8
4 Custom Properties
User:CrmDomain, User:CrmPassword, User:CrmUser, User:CrmWebservice ...
ReadWriteVariables
Scriptlanguage Microsoft Visual C= 2012
UserComponentTypeName Microsoft.SqlServer.Dts.Pipeline.ScriptComponentHost, Microsoft.SqlServer. Txd
| ReadOnlyVariables

Specifies a comma-separated list of read-only variables.

Edit Script...

| oK Cancel Help

Figure 15-11. ReadOnlyVariables

Input Columns

When inserting a record into CRM, you need the unique id from the source to store it in a (hidden) CRM
column, and you need all the data columns from the source (see Figure 15-12) that you want to insert into
CRM. For this script, you don't need the hashes or the columns coming from CRM (they are empty anyway).

361

CHAPTER 15 " WEB SERVICES

i) Script Transformation Editor =R
Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C= 2012, and
configure component properties.

Script . Input name: Input 0 v
x
Inputs and Outputs -
g . 4 Available Input Columns
Connection Managers
: [=] Name
[T SourceContactidinCmn
[Contactid
[¥] Firstname
[#] Lastname
V] Street
[v] HouseNumber
M Gy
[Vl DateOfBith
[¥] Gender
[[] HashFromSource
[0 HashFromCm
v
Input Column Qutput Alias Usage Type o)
: SourceContactld ReadOnly
Firstname Firstname ReadOnly
Lastname Lastname ReadOnly
Street Street ReadOnly
HouseMumber HouseMumber ReadOnly
City City ReadOnly »
i oK Cancel Help

Figure 15-12. Columns for inserting a record into CRM

When updating a record, you also need the GUID column (Contactld) from CRM because that is the
unique key, but you don’t need the business key (SourceContactld) from the source since it’s already in CRM.

Add References

Click the Edit Script... button to open the VSTA environment. In the Solution Explorer, you need to add three
references, as shown in Figure 15-13:

¢ microsoft.xrm.sdk.dll (from the SSIS bin folder, use browse)
e System.Runtime.Serialization.dll (from the .NET/Assemblies tab)

e System.ServiceModel.dll (from the .NET/Assemblies tab)

362

CHAPTER 15 I WEB SERVICES

Reference Manager - SC_6af7d7db70024595b02593f37363c07¢ ? “
b Assemblies Search Browse (Ctri=E) P -
b Solution Name Path Name:
b COM Microsoft.Xrm.Sdk.dll C:\Program Files (x86)\Microsoft SQL Server\110\DTS\Binn\MicrosoftXrm.S5dk.dll Mlcro‘suﬂ.er.Sdk.dll
L " Created by:
4 Browse | Microsoft Corporation
B — i File Version:
Recent 6.1.0001.0051
Browse.. || Ok || Concel |
Reference Manager - SC_6af7d7db70024595b02593f37363c07¢ ? “
Search Assemblies (Ctri«E) P -
Name Version
vl System.Runtime.Serialization 4.0.0.0
[+ System.ServiceModel 40,00
b Solution
b COM
b Browse
Bowse.. || Ok || Cancd

Figure 15-13. Add references

For older versions of Visual Studio (< 2013), it is now time to press the Save All button to save the entire
internal VSTA project (including the new references).

Add Namespaces

For shortening the code, add extra using/imports statements on top of the CRM SDK namespaces and to the
ServiceModel.Description for the ClientCredentials.

#region customNamespaces

using Microsoft.Xrm.Sdk;

using Microsoft.Xrm.Sdk.Client;

using Microsoft.Xrm.Sdk.Query;

using System.ServiceModel.Description;
#endregion

363

CHAPTER 15 WEB SERVICES

And this is the VB.NET code:

#Region "CustomNamespace"

Imports Microsoft.Xrm.Sdk

Imports Microsoft.Xrm.Sdk.Client
Imports Microsoft.Xrm.Sdk.Query

Imports System.ServiceModel.Description
#End Region

Class Variables

For the web service, you need an I0rganizationService class variable. A value is assigned in the
PreExecute method; and in the Input0_ProcessInputRow method it is used to commit the action in CRM.

I0rganizationService organizationservice;
And this is the VB.NET code:

Dim organizationservice As IOrganizationService

PreExecute

In the PreExecute method, you are reading the SSIS variables to get the credentials for the web service call.
A new proxy for the web service is created and assigned to the class variable so that you can use it to submit
inserts and updates later on.

public override void PreExecute()

{
// Fill the string variables with values from package variables
string CrmUrl = this.Variables.CrmWebservice.ToString();
string CrmDomainName = this.Variables.CrmDomain.ToString();
string CrmUserName = this.Variables.CrmUser.ToString();
string CrmPassWord = this.Variables.CrmPassword.ToString();

// Connect to web service with credentials
ClientCredentials credentials = new ClientCredentials();
credentials.UserName.UserName = string.Format("{0}\\{1}", CrmDomainName
, CxmUserName);
credentials.UserName.Password = CrmPassWord;
organizationservice = new OrganizationServiceProxy(new Uri(CrmUrl), null
, credentials, null);

364

And this is the VB.NET code:

Public Overrides Sub PreExecute()

Fill the string variables with values from package variables
Dim CxrmUrl As String = Me.Variables.CrmWebservice.ToString()
Dim CrmDomainName As String = Me.Variables.CrmDomain.ToString()
Dim CrmUserName As String = Me.Variables.CrmUser.ToString()
Dim CrmPassWord As String = Me.Variables.CrmPassword.ToString()

Connect to web service with credentials
Dim credentials As New ClientCredentials()

CHAPTER 15

credentials.UserName.UserName = String.Format("{o}\{1}", CrmDomainName, _

credentials.UserName.Password = CrmPassWord

CrmUserName)

organizationservice = New OrganizationServiceProxy(New Uri(CrmUrl), Nothing _

End Sub

Input0_ProcessInputRow

, credentials, Nothing)

WEB SERVICES

In this method, you are feeding each row in SSIS to the web service. You will use the late binding method
because it’s faster than early binding, but the end result is the same. A disadvantage of late binding is that
you cannot verify names and data types at compile time. In the following are the differences between early

and late binding.

// Early binding

Contact newContact = new Contact();
newContact.Name = "Joost van Rossum";
organizationservice.Create(newContact);

// Late binding

Entity newContact = new Entity("contact");

newContact["name"] = "Régis Baccaro";
organizationservice.Create(newContact);

And this is the VB.NET code:
' Early binding
Dim newContact As New Contact()
newContact.Name = "Joost van Rossum"
organizationservice.Create(newContact)
' Late binding
Dim newContact As New Entity("contact")
newContact("name") = "Régis Baccaro"
organizationservice.Create(newContact)

365

CHAPTER 15 WEB SERVICES

Input0_ProcessinputRow - Insert

The insert code starts with creating an entity object with the name of the CRM entity as parameter.

// Create an Entity object of type 'contact'
Entity newContact = new Entity("contact");

And this is the VB.NET code:
' Create an Entity object of type 'contact’
Dim newContact As New Entity("contact")

After that, you can start filling the CRM columns. If you're sure that the SSIS columns are filled with
data, then you can assign the value directly.

// Store the business key of the source in CRM
// This makes it easier to compare and filter records for update
newContact["SourceContactId"] = Row.SourceContactId;

// Fill cxm fields. Note fieldnames are case sensitive!
newContact["firstname"] = Row.Firstname;
newContact["lastname"] = Row.Llastname;

And this is the VB.NET code:
' Store the business key of the source in CRM
This makes it easier to compare and filter records for update
newContact("SourceContactId") = Row.SourceContactId

Fill crm fields. Note fieldnames are case sensitive!
newContact("firstname") = Row.Firstname
newContact("lastname") = Row.Lastname

You can also add null checks to the assignment to leave the CRM field untouched in case of a null value.
In that case, the value in CRM is null or a default value is used.

// Address, but check if the columns are filled
if (!Row.Street IsNull)

{
newContact["address1 line1"] = Row.Street;
}
if (!Row.HouseNumber IsNull)
{
newContact["address1_line2"] = Row.HouseNumber;
}

if ('Row.City IsNull)

newContact["address1 _city"] = Row.City;

}

366

CHAPTER 15 WEB SERVICES

And this is the VB.NET code:

' Address, but check if the columns are filled
If Not Row.Street IsNull Then

newContact("address1 line1") = Row.Street

End If

If Not Row.HouseNumber IsNull Then
newContact("address1 1line2") = Row.HouseNumber

End If

If Not Row.City IsNull Then
newContact("address1 city") = Row.City

End If

Filling an OptionSet (a drop-down list with defined values) is a little different. Instead of assigning a
string, you need to assign the associated id. You need some CRM knowledge to find that id in CRM, so it’s
probably easier to consult the CRM consultant for this.

OptionSetValue contactType = new OptionSetValue();
if (!Row.ContactType IsNull)

{
switch (Row.ContactType)

{

case "Client":
contactType.Value = 1;
break;

case "Partner":
contactType.Value
break;

case "Personal”:
contactType.Value = 3;
break;

default:
contactType.Value
break;

n
N
-

2;

}
newContact.Attributes.Add("contacttype", (OptionSetValue)contactType);

And this is the VB.NET code:

Dim contactType As New OptionSetValue()
If Not Row.ContactType IsNull Then
Select Case Row.ContactType
Case "Client"
contactType.Value
Exit Select
Case "Partner"
contactType.Value
Exit Select
Case "Personal”
contactType.Value
Exit Select

1

n
N

n
w

367

CHAPTER 15 WEB SERVICES

Case Else
contactType.Value = 2
Exit Select

End Select
newContact.Attributes.Add("contacttype", DirectCast(contactType,
OptionSetValue))
End If

Linking our new contact to an account (a lookup), for example, is done via EntityReference, but
you need the GUID of the concerning account. This should be done with a query on CRM in a lookup
transformation.

// Reference to another entity (lookup)
EntityReference Account = new EntityReference("account", Row.AccountGuid);
newContact["accountid"] = Account;

And this is the VB.NET code:
' Reference to another entity (lookup)
Dim Account As New EntityReference("account", Row.AccountGuid)
newContact("accountid") = Account

And finally, actually adding the contact to CRM is only one line of code.

// Create new contact
organizationservice.Create(newContact);

And this is the VB.NET code:

' Create new contact
organizationservice.Create(newContact)

Input0_ProcessinputRow - Update

Updating a contact is very similar to inserting one, but you need the GUID of the contact.

// Create an Entity object of type 'contact’
Entity existingContact = new Entity("contact");

// Most important attribute to fill is the entity id
// This is a GUID column from CRM. Without this

// column you can't update records in CRM.
existingContact["contactid"] = Row.ContactId;

And this is the VB.NET code:

Create an Entity object of type 'contact'
Dim existingContact As New Entity("contact")

368

CHAPTER 15 WEB SERVICES

' Most important attribute to fill is the entity id
' This is a GUID column from CRM. Without this

' column you can't update records in CRM.
existingContact("contactid") = Row.ContactId

Next, you can start filling all the CRM columns as in the insert.

// Fill crm fields. Note fieldnames are case sensitive!
existingContact["firstname"] = Row.Firstname;
existingContact["lastname"] = Row.Lastname;

And this is the VB.NET code:
" Fill crm fields. Note fieldnames are case sensitive!
existingContact("firstname") = Row.Firstname
existingContact("lastname") = Row.Lastname

But when you add an if statement to check for nulls, you also need to add an else; otherwise, the
column won't get updated.

// Address, but check if the columns are filled
if (!Row.Street IsNull)

{
existingContact["address1 line1l"] = Row.Street;
}
else
{
existingContact["address1 line1"] = "";
}

And this is the VB.NET code:
' Address, but check if the columns are filled
If Not Row.Street IsNull Then
existingContact("address1 line1") = Row.Street
Else
existingContact("address1 line1") =
End If

And the last step is the actual update code.

// Update contact
organizationservice.Update(existingContact);

And this is the VB.NET code:

Update contact
organizationservice.Update(existingContact)

369

CHAPTER 15 WEB SERVICES

Input0_ProcessinputRow - Hard Delete

You can also delete a record from CRM if it’s not in your source anymore. In your data flow (merge-join),
you should change the left outer join to a full outer join. After that you need to change the expressions in the
conditional split. The first “insert” output expression checks whether the sourceContactld on the CRM side
is empty. The second “delete” output expression checks whether the sourceContactld on the source side is
empty. The last “update” output expression checks whether the hashes are different.

For the input columns in the Script Component, you only need the GUID column from CRM. Note that
this will be a physical delete from CRM that can’t be undone!

// Delete account. First pararameter is the entityname, second parameter
// is the entity id from the CRM source.
organizationservice.Delete("contact”, Row.ContactId);

And this is the VB.NET code:
' Delete account. First pararameter is the entityname, second parameter
is the entity id from the CRM source.
organizationservice.Delete("contact", Row.ContactId)

Input0_ProcessinputRow - Soft Delete

If a physical delete is too much, then you can also inactivate the record, but you need to add an additional
assembly from the SDK to the GAC and to the Binn folder: Microsoft.Crm.Sdk.Proxy.dll. And then you
also need to reference this assembly in the VSTA environment. In the Add Reference window, browse to the
SSIS Binn folder. After that you need to add one more extra namespace for the inactivation.
using Microsoft.Crm.Sdk.Messages;

And this is the VB.NET code:

Import Microsoft.Crm.Sdk.Messages

Then the actual inactivate code. Note that this is a request that is added to the queue. So when it's busy
in CRM, the script may already be finished, while the request is still in the queue.

// Create CRM request to (de)activate record
SetStateRequest setStateRequest = new SetStateRequest();

// Which entity/record should be (de)activate?
// First part in the entityname, second is the entity id from the CRM source.
setStateRequest.EntityMoniker = new EntityReference("contact", Row.ContactId);

// Setting 'State' (0 - Active ; 1 - InActive)
setStateRequest.State = new OptionSetValue(1);

// Setting 'Status' (1 - Active ; 2 - InActive)
setStateRequest.Status = new OptionSetValue(2);

370

CHAPTER 15 WEB SERVICES

// Execute the request
SetStateResponse response =
(SetStateResponse)organizationservice.Execute(setStateRequest);

And this is the VB.NET code:

' Create CRM request to (de)activate record
Dim setStateRequest As New SetStateRequest()

" Which entity/record should be (de)activate?
' First part in the entityname, second is the entity id from the CRM source.
setStateRequest.EntityMoniker = New EntityReference("contact", Row.ContactId)

' Setting 'State' (0 - Active ; 1 - InActive)
setStateRequest.State = New OptionSetValue(1)

' Setting 'Status' (1 - Active ; 2 - InActive)
setStateRequest.Status = New OptionSetValue(2)

' Execute the request
Dim response As SetStateResponse = _
DirectCast(organizationservice.Execute(setStateRequest), SetStateResponse)

SharePoint

Calling a SharePoint web service from a Script Component is sometimes necessary. In some cases, you can
use a Web Service Task but in other cases, for example where you only have the data available inside the
rows of a Data Flow Task, you have to use a Script Component.

In the following example, you are going to get all the documents from all Document libraries in a
SharePoint site and get the Excel documents from each library.

You are using SharePoint 2013, but this will also work in SharePoint 2010.

Variables

Figure 15-14 shows the Variables window. Two variables are defined: SiteURL specifies the address of the
SharePoint site, and fileType specifies the type of document that is of interest. The document type in the
figure is xs1s, denoting Microsoft Excel’s Open XML spreadsheet format.

371

CHAPTER 15 " WEB SERVICES

Variables v X
=

Name Scope Data type Value Expression |
@ | fileType SharePointWe... ~ String xisx =]
@ siteUrl SharePointWe... String http://sp15 [l

Figure 15-14. The Variables window

Start by creating two string variables that you need for the execution of the package.

Script Component

Add a Data Flow Task to the surface and inside the data flow, add a Script Component called SCR_SRC-
GetSharePointLists. Specify the type as Source, as shown in Figure 15-15.

Specify how the script will be used in the data flow:

® Source
Script is a source in the data flow and provides data to output columns.

O Destination
Script is a destination in the data flow and consumes data from input columns.

(O Transformation

Script is a transformation in the data flow and operates on data from input
columns and provides data to output columns.

Figure 15-15. Script Component

372

CHAPTER 15 WEB SERVICES

Inside the Script Transformation Editor, on the Script page, add the SiteUrl variable as
ReadOnlyVariable. On the Inputs and Outputs page, add three output columns: ListName, ListID, and
webID. Make all three of type string. Figure 15-16 shows the three columns in the example.

{nj Script Transformation Editor [= [o =

Access Microsoft Visual Studio Tools for Applications (VSTA) to write scripts using Microsoft Visual Basic 2012 or Microsoft Visual C# 2012, and
configure component properties.

Script | Specify column properties of the script component.
Inputs and Outputs
Connection Managers Inputs and outputs:
= Output 0 4 General
=8] Output Columns Count
.5 ListName
-3 ListlD
5 WeblD
Add Output ‘ ‘ Add Column Count
Count of elements in this collection.

| oK ‘ | Cancel | l Help

Figure 15-16. Adding output columns

The Script

Now it is time to edit the script. First, because you are working with web services, you want to add a Service
Reference to your SharePoint list web service. It has the address http://<sitename>/_vti _bin/lists.asmx,
where <sitename> is the name of the site. You can see this in Figure 15-17. For the Namespace, choose
SharePointListWebService.

The address in Figure 15-17 is for generating the service interface and contracts. The address itself will
be dynamic and specified at runtime with the help of the variable SiteURL.

373

CHAPTER 15 " WEB SERVICES

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover.

Address:
http://sp15/_vti_bin/lists.asmx V” Go | [Iniscm |.|

Services: Operations:

Namespace:
|SharePoint|.istWebService

Figure 15-17. Adding Service Reference

For functionality, readability, and ease of use, add some custom namespaces.

#region CustomNameSpace

using System.Xml;

using System.ServiceModel;

using SC 3ed715c2a09541348alee539d02fd266.SharePointListWebService;
#endregion

And this is the VB.NET code:

#Region "CustomNamespace"

Imports System.Xml

Imports System.ServiceModel

Imports SC_3ed715c2a09541348alee539d021d266.SharePointListWebService
#End Region

374

CHAPTER 15 WEB SERVICES

If you read Chapter 7, you already know the struggle that it is to get all the right values in all the right
config files for web service configuration. This time you've created a method to implement the security
needed by SharePoint web service (NTLM). The following method is a C#/VB.NET version of what is in the
app.config. The method needs to be added after the last method declaration but inside the C# or VB.NET
class in VSTA.

internal static ListsSoapClient CreateWebServiceInstance(string siteUrl)
{
BasicHttpBinding binding = new BasicHttpBinding();
// These are defaults and reflect app.config:
binding.SendTimeout = TimeSpan.FromMinutes(1);
binding.OpenTimeout = TimeSpan.FromMinutes(1);
binding.CloseTimeout = TimeSpan.FromMinutes(1);
binding.ReceiveTimeout = TimeSpan.FromMinutes(10);
binding.AllowCookies = false;
binding.BypassProxyOnLocal = false;
binding.HostNameComparisonMode = HostNameComparisonMode.StrongWildcard;
binding.MessageEncoding = WSMessageEncoding.Text;
binding.TextEncoding = System.Text.Encoding.UTF8;
binding.TransferMode = TransferMode.Buffered;
binding.UseDefaultWebProxy = true;
binding.Security.Mode = BasicHttpSecurityMode.TransportCredentialOnly;
binding.Security.Transport.ClientCredentialType =
HttpClientCredentialType.Ntlm;
binding.Security.Message.ClientCredentialType =
BasicHttpMessageCredentialType.UserName;

return new ListsSoapClient(binding, new EndpointAddress(siteUrl + @"/_vti bin/lists.asmx"));

And this is the VB.NET code:

Friend Shared Function CreateWebServiceInstance(siteUrl As String) As ListsSoapClient

Dim binding As New BasicHttpBinding()

' These are defaults and reflectapp.config:

binding.SendTimeout = TimeSpan.FromMinutes(1)

binding.OpenTimeout = TimeSpan.FromMinutes(1)

binding.CloseTimeout = TimeSpan.FromMinutes(1)

binding.ReceiveTimeout = TimeSpan.FromMinutes(10)

binding.AllowCookies = False

binding.BypassProxyOnLocal = False

binding.HostNameComparisonMode = HostNameComparisonMode.StrongWildcard

binding.MessageEncoding = WSMessageEncoding.Text

binding.TextEncoding = System.Text.Encoding.UTF8

binding.TransferMode = TransferMode.Buffered

binding.UseDefaulthWebProxy = True

binding.Security.Mode = BasicHttpSecurityMode.TransportCredentialOnly

binding.Security.Transport.ClientCredentialType = _
HttpClientCredentialType.Ntlm

binding.Security.Message.ClientCredentialType = _
BasicHttpMessageCredentialType.UserName

375

http://dx.doi.org/10.1007/978-1-4842-0638-6_7

CHAPTER 15 WEB SERVICES

Return New ListsSoapClient(binding, New EndpointAddress(siteUrl & _
Convert.ToString("/ vti bin/lists.asmx")))
End Function

Asyou can see, everything you need for the configuration is in there. The important part though is the
ClientCredentialType. SharePoint requires NTLM. If you are calling from within, you don’t need to pass
credentials in. Instantiate the client in the PreExecute method of the script:

//Create the client with all the bindings set

ListsSoapClient client = CreateWebServiceInstance(siteUrl);

//Programatically sets the credentials
client.ClientCredentials.Windows.ClientCredential = new System.Net.NetworkCredential();
client.ClientCredentials.Windows.AllowedImpersonationLevel = System.Security.Principal.
TokenImpersonationLevel.Impersonation;

client.Open();

//Call the method to get all the lists
result = client.GetlListCollection();
//Tidy up

client.Close();

And this is the VB.NET code:

'Create the client with all the bindings set

Dim client As ListsSoapClient = CreateWebServiceInstance(siteUrl)

'Programatically sets the credentials
client.ClientCredentials.Windows.ClientCredential = New System.Net.NetworkCredential()
client.ClientCredentials.Windows.AllowedImpersonationLevel = System.Security.Principal.
TokenImpersonationLevel.Impersonation

client.Open()

'Call the method to get all the lists
result = client.GetListCollection()
'Tidy up

client.Close()

The result is stored in a variable called result, and after that in the CreateNewOutputRows method, you
can loop over it and add one row with the information for each result.

foreach (XmlNode node in result)

{
if (node.Name == "List")
{
OutputoBuffer.AddRow();
OutputoBuffer.ListID = node.Attributes["ID"].Value;
OutputoBuffer.ListName = node.Attributes["Title"].Value;
}
}

376

CHAPTER 15 WEB SERVICES

And this is the VB.NET code:

For Each node As XmlNode In result
If node.Name = "List" Then
OutputoBuffer.AddRow()
OutputoBuffer.ListID = node.Attributes("ID").Value

OutputoBuffer.ListName = node.Attributes("Title").Value
End If
Next

Extracting Excel Files from the Libraries

Now that you have the output rows, you need to add another Script Component called SRC_TRA-
GetExcelDocuments to the Data Flow Task. This time, you choose the Transformation type because you will
take every list and get the items you need from it.

On its Script page, add fileType and siteURL to the list of ReadOnlyVariables.

On the Input columns page, check all available columns: ListName, ListID, and WebID.

In the Inputs and Outputs page, it is important to remember to set the SynchronousInputID to None,
because you want the Script Component to generate more rows in its output than it received. Obviously,
there can be more than one Excel file per document library.

Note The difference between synchronous and asynchronous outputs is explained in more detail in
Chapter 11.

You also add two columns to the output: FileFullPath of type string and length 250, and a listName of type
string with a default length for returning the name of the library where the file is stored (see Figure 15-18).

377

http://dx.doi.org/10.1007/978-1-4842-0638-6_11

CHAPTER 15 " WEB SERVICES

Access Microsoft Visual Studic Toocls for Applications (VSTA) te write scripts using Microseft Visual Basic 2012 or Microseft Visual C# 2012, and configure

component properties.

Seript Specify column properties of the script comp
Input Columns
Inpuisand Ouipots Inputs and outputs:
Connection Manag — .
-4 Input 0 e e
5] @ DeleteQutputOnPathDetad False
= - Output Columns Description
F [® FileFullPath ErrorOrTruncationOperatic|
- % ListName ErrorRowDisposition | RD_NotUsed
ExclusionGroup]
HasSideEffects True
D 3
IdentificationString SCR_TRA-GetExcelDocuments.Outp
IsErrorQOut False
IsSorted False
Quiout0
SynchronousinputiD None
Add Output | Add Column D
Remove Output | Remove Column

| oK] Conct | [Bep

Figure 15-18. Adding output to the Script Component

You need to add a reference to the SharePoint web service once more, exactly as before. You also add
the help method to set the bindings.
Again, you need some custom namespaces:

#region CustomNameSpace

using System.Xml;

using System.Windows.Forms;

using System.ServiceModel;

using SC_3ed715c2a09541348alee539d021d266.SharePointListhWebService;
using System.Text;

using System.ServiceModel.Description;

#endregion

And this is the VB.NET code:
#Region "CustomNameSpace"

Imports System.Xml
Imports System.Windows.Forms

378

CHAPTER 15 WEB SERVICES

Imports System.ServiceModel

Imports SC_3ed715c2a09541348a1ee539d02fd266.SharePointListWebService
Imports System.Text

Imports System.ServiceModel.Description

#End Region

PreExecute

In the PreExecute method of the script, instantiate and open the web service. You don’t want it to get
instantiated for each row that you go through.

//Assign the package variables to some local variables

string siteUrl = Variables.siteUrl;

fileType = Variables.fileType;

//Create the client with all the bindings set

client = CreateWebServiceInstance(siteUrl);

//Programatically sets the credentials

client.ClientCredentials.Windows.ClientCredential = new

System.Net.NetworkCredential();

client.ClientCredentials.Windows.AllowedImpersonationLevel =
System.Security.Principal.TokenImpersonationLevel.Impersonation;

client.Open();

And this is the VB.NET code:

"Assign the package variables to some local variables

Dim siteUrl As String = Variables.siteUrl

fileType = Variables.fileType

'Create the client with all the bindings set

client = CreateWebServiceInstance(siteUrl)

'Programatically sets the credentials
client.ClientCredentials.Windows.ClientCredential = New System.Net.NetworkCredential()
client.ClientCredentials.Windows.AllowedImpersonationLevel = System.Security.Principal.
TokenImpersonationLevel.Impersonation

client.Open()

Input0_ProcessInputRow

The Input0_ProcessInputRow method is where the work happens. You call another SharePoint web service
method there. The GetListItems method returns all elements from a list. More information about this
method is available at https://msdn.microsoft.com/en-us/library/lists.lists.getlistitems

Basically, you need to define a query element containing the query that determines which records are
returned and in what order, as well as a viewFields element that specifies which fields to return in the query
and in what order. To keep things tidy, there are some helping methods to create the XML nodes and elements.
The complete script for the chapter is available for download, so only the relevant parts are listed here.

The call to the web service looks like the following:

XmINode listContent = client.GetlListItems(listName, null, null,
(XmlElement)ViewFields, null, (XmlElement)QueryOptions, webID);

379

https://msdn.microsoft.com/en-us/library/lists.lists.getlistitems

CHAPTER 15 WEB SERVICES

And this is the VB.NET code:

Dim listContent As XmlNode = client.GetListItems(listName, Nothing, Nothing,
DirectCast(ViewFields, XmlElement), Nothing, DirectCast(QueryOptions, XmlElement), _webID)

After calling the web service and doing some work with the schema and namespace, you are able to
loop over the result to extract the file types that you need.

foreach (XmlNode row in rows)

{
if (row.Attributes["ows ContentType"].Value == "Document" &&
row.Attributes["ows DocIcon"].Value == fileType)
{
//more than one excel file per library - add one row per file to the output
OutputoBuffer.AddRow();
OutputoBuffer.FileFullPath = row.Attributes["ows_EncodedAbsUrl"].Value;
OutputOBuffer.ListName = listName;
//xmlResultsDoc.Save(@"c:\listContent.xml"); // for debug
}
}

And this is the VB.NET code:

For Each row As XmlNode In rows
If row.Attributes("ows ContentType").Value = "Document" AndAlso row.Attributes
("ows_DocIcon").Value = fileType Then
'more than one excel file per library - add one row per file to the output
OutputoBuffer.AddRow()
OutputoBuffer.FileFullPath = row.Attributes("ows_EncodedAbsUrl").Value
OutputOBuffer.ListName = listName
End If
Next

Finally, add a Multicast and a data viewer to the data flow to be able to see the data. The result is in
Figure 15-19.

380

CHAPTER 15 I WEB SERVICES

Dd BookCode (Running) - Microsoft Visual Studio (Administrator)
FILE EDIT VIEW PROJECT BUILD DEBUG SQL SSIS TOOLS WINDOW HELP

' - @ «| b Continue - evelopment -|| A K1 £ & € B8 0 -

SharePointWebServices.dtsx [Design] + X

2. controlFiow [EOEL] & Parameters [l Everliamaiie A L L *AXxX

Data Flow Task: | @8 Data Flow Task m | Detach i | Copy Data | B
s ' FileFulPath ListName
@ 15/Documents /Excel % 205ervices % 205ample %t 20Workbook. xsx Documents
g SCS_GetsharePointLists 15/Documents/New % 20Microsoft% 20Excel % 20Worksheet%20(2).xisx Documents
15/Documents/MNew % 20Microsoft % 20Excel % 20Worksheet%20(3) . xdsx Documents
15/Documents/MNew % 20Microsoft % 20Excel % 20Worksheet. xisx Documents
s 15/DocumentsThis % 20is %20a%20folder PowerView_Demo0_Security.xsx Documents

¢

! I SCT_GetExcelDocuments

4

I Multicast [Attached Total rows: 0, buffers: 0 Rows displayed = 5

Figure 15-19. The result of the call to SharePoint web service

Summary

In this chapter you learned how to use web services in the Script Component, especially for Microsoft
products like Dynamics CRM and SharePoint. Note that web services in general are slower than accessing
APIs directly. But it has a lot of advantages, such as being the industry standard, the vendor agnostics, and
it'’s decoupled. Furthermore, the nature of web services allows you to add some extreme flexibility to your
SSIS solutions.

381

PART IV

Custom Tasks and Components

CHAPTER 16

Create a Custom Task

In the previous chapters, you created some very useful Script Tasks to help you with all kinds of tasks. The
downside of using a Script Task is that the code is stored in the package itself. If you have multiple packages
using the same Script Task, then you end up with a whole bunch of Script Tasks—each using its own copy of
the code. When you need to fix a bug or add some extra functionality, you first have to find all the packages
that use that particular Script Task and then change them all, one by one.

Another problem with the Script Task is that it requires some .NET knowledge. No problem for you,
but most SSIS developers don’t have .NET programming skills. If they want to use your handy Script Task
code, then simple things like using another variable or connection manager will require you to edit the
script. When you create a custom task, you add a user interface so that people who use your task don’t need
particular programming skills (see Figure 16-1).

=. My Task
(<]

P
8" myTaskEditor

Source
! Use connectionmanager

Connection: <Choose connectionmanager>
@ Use variable

Variable: [FilePath v

Path: D:\testl23\test.zip

—

oK][Cancel]

R

Figure 16-1. Custom task for the control flow

385

CHAPTER 16 © CREATE A CUSTOM TASK

There is one downside for using custom tasks in SSIS. You need to install your task on all the servers and
all the development stations that use it. In some organizations that can be a huge challenge, because some
server administrators don’t like adding assemblies to the Global Assembly Cache.

Custom Task Preparations

For this example, you will create a task that checks whether a file exists. It uses either a connection manager
or a variable to get the file path that it will check. For this you need a Visual Studio version that supports C#
and VB.NET projects. BIDS or SSDT is not enough because they only support BI projects. We used Visual
Studio Professional 2013 for this example, but there are less expensive versions that also support C# and
VB.NET; for example, Visual Studio Community or Visual Studio Express.

And, of course, you need to install all SSIS versions that you want to support with your custom task.
You need to recompile your code with different references if you want your task to work with multiple
versions of SSIS.

Creating Visual Studio Projects

For this custom task you use two Class Library projects: one for the actual task and one for the user interface.
Make sure that you choose the appropriate .NET version for the task (SSIS 2005: 2.0, SSIS 2008: 3.5, SSIS
2012: 4.0, and SSIS 2014 also 4.0). First, create a new project called myTask (see Figure 16-2) and then add a
second Class Library project, called myTaskU], to the same solution.

New Project ? “

P Recent [.NETFramework4 -)Sorlby: Default ~| & i= class library x>
4 Installed CH - .\ &
WCF Service Library Visual C# Type: Visual C#
4 Templates vE A project for creating a host-independent
b Business Intelligence @ WCF Service Library Visual Basic WCF service class library (.dll)
b Visual Basic .
4 \Vfisual C# ‘1[!! Class Library Visual C++
b Store Apps ™
Windows Desktop gh! Class Library Visual Basic
P Web n ci . .
b Offirs/SharaPnint = ﬂ;ﬁ! Class Library Visual C#
-
P Online nﬁ\rn
Class Library (Portable) Visual Basic
k| ¥ '
Name: myTask
Location: DAmyTask -l Browse...
Solution name: myTask v| Create directory for solution

] Add to source control

oK Cancel

Figure 16-2. Class Library projects

Before you start coding, you have to address a lot of other things, like references, strong names, build
events, and icons.

386

CHAPTER 16 © CREATE A CUSTOM TASK

Adding SSIS References

To communicate with SSIS, you need to add SSIS references to the projects. Both projects need a reference to
Microsoft.SqlServer.ManagedDTS. The second UI project also needs a reference to Microsoft.SqlServer.Dts.
Design. For SSIS 2012 and above, you can find these assemblies (.d11 files) in the Global Assembly Cache
(GAC): C:\Windows\Microsoft.NET\assembly\GAC_MSIL\.

Microsoft.SqlServer.Dts.Design\v4.0 11.0.0.0_ 89845dcd8080cc91\Microsoft.SqlServer.Dts.
Design.dll
Microsoft.SqlServer.ManagedDTS\v4.0 11.0.0.0_ 89845dcd8080cc91\Microsoft.SqlServer.
ManagedDTS.d1l

If you have installed multiple versions of SSIS 2012 and above then it is version 4.0_11.0.0.0 for 2012,
v4.0_12.0.0.0 for 2014 and for 2016 it is version 4.0_13.0.0.0 For older SSIS versions you can find these dll files
in the assemblies folder of SQL Server: C:\Program Files (x86)\Microsoft SQL Server\100\SDK\Assemblies
(replace 100 with 90 for SSIS 2005).

Default Namespace and Assembly Name

Go to the properties of your project. In the Application page, you need to change the Assembly name

and Default namespace in both projects. The Default namespace will be ScriptingBook.myTask and the
Assembly name will be the default namespace plus the project name: ScriptingBook.myTask.myTask and
ScriptingBook.myTask.myTaskUI (see Figure 16-3).

| pppliaion 2

Build

Build Events Assembly name: Default namespace:

Debug ScriptingBookmyTask.myTaskUl ScriptingBook.myTask

Resources Target framework Output type:

Services NET Framework 4 v Class Library v
Settings

Startup gbject:

Reference Paths
(Not set) st Assembly [nformation...

Signing

Figure 16-3. Setting the namespace and the assembly name

Creating a Key for a Strong Name

An SSIS runtime requirement for assemblies is that they be located in the GAC. The GAC requires that
assemblies are strong named. This provides a unique identity as well as a guaranteed location (the GAC) in
which the SSIS runtime can find the executables it needs. So you need to strong name your assemblies. Go to
the properties of one of the projects and then to the Signing page. Check the “Sign the assembly” check box
and then add a new key file in the drop-down list. The name for this example is myTask.snk, with sha256RSA
as signature algorithm and no password (see Figure 16-4). After clicking the OK button, the new key file

will be visible in the Solution Explorer. Next, copy the same . snk file to the other project and then sign that
project with the same key.

387

CHAPTER 16 CREATE A CUSTOM TASK

Application
Build

Build Events
Debug
Resources
Services
Settings
Reference Paths

Code Analysis

Sign the assembly
Choose a strong name key file:
<New...>

[[] Delay sign only
When delay signed, the project will n

Create Strong Name Key i - |

Key file name:
[myTasksnk

[] Protect my key file with a password
Enter password:

Confirm password:

Signature Algorithm:

sha236RSA v

Figure 16-4. Add key file (C# project, but VB.NET looks similar)

Getting the Public Key Token

For the runtime code you need the Public KeyToken of the GUI assembly. So first, build the projects using
the Release configuration, and then open the Visual Studio Command Prompt. Use a CD command (change
directory) to go to the Bin\Release folder of one of your projects. Execute the following command to get the
publicKeyToken: sn.exe -t ScriptingBook.myTask.myTask.dll (see Figure 16-5). Copy this key token for

later use.

V52013 x86 Native Tools Command Prompt = 2 -

C:\>d:

D:\>cd myTask\myTask\myTask\bin\Release
D:\myTask\myTask\myTask\bin\Release>sn.exe -T ScriptingBook.myTask.myTask.dll

Microsoft (R) .NET Framework Strong Name Utility Uersion 4.0.30319.33440
Copyright (c) Microsoft Corporation.

Public key token is(80664248b6de6u85S

D:\myTask\myTask\myTask\bin\Release>

All rights reserved.

Figure 16-5. Strong name utility to get the public key token

388

CHAPTER 16 © CREATE A CUSTOM TASK

Icons

Of course you need a good icon for the task. There are plenty of free icons available online and there are
also tools to create new icons. Add an icon file to both projects via the Solution Explorer. After adding the
icon file, make sure to change the Build Action property to Embedded Resource, as shown in Figure 16-6;
otherwise, the icon won’t show up. Later on you can use this icon in the Windows Form of the UI project.
Then it will show when you edit the task.

Properties 3 X
myTask.ico File Properties o
oSy =
E Advanced

Build Action (Ernbedded Resowce)

Copy to Output Directory Do not copy

Custom Tool

Custom Tool Namespace
B Misc

File Name myTaskico

Figure 16-6. Setting the Build Action of the icon

In the runtime project, you can use this file to give your task a custom icon instead of the default. This

will show in the SSIS Toolbox and in the control flow. The code is explained later on.

Build Events

To use the assemblies in SSIS, you need to install them in the GAC for runtime and copy them to the task
folder of SSIS for design-time. With the Build Events page, you can do that automatically when you build

the Visual Studio project. But because you are adding assemblies to the GAC, you need to run Visual Studio
as administrator. Go to the properties of your projects and then to the Build Events page. C# projects have a
separate tab named Build Events, but VB.NET projects have a Build Events button on the Compile tab. Add
the following command to the post-build events. Note that the number in the SQL Server folder is different

for each SSIS version: 2005: 90, 2008: 100, 2012, 110, 2014: 120, and 2016: 130.

SSIS 2008

cd $(ProjectDir)

@SET TASKDIR="C:\Program Files (x86)\Microsoft SQL Server\100\DTS\Tasks\"

@SET GACUTIL="C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\gacutil.exe"
Echo Installing d1l1l in GAC

Echo $(OutDir)

Echo $(TargetFileName)

%GACUTIL% -if "$(OutDir)$(TargetFileName)"

Echo Copying files to Tasks

copy "$(OutDir)$(TargetFileName)" %TASKDIR%

389

CHAPTER 16 © CREATE A CUSTOM TASK

SSIS 2012 with SSDT 2010

cd $(ProjectDir)

@SET TASKDIR="C:\Program Files (x86)\Microsoft SQL Server\110\DTS\Tasks\"
@SET GACUTIL="C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin\NETFX 4.0 Tools\
gacutil.exe"

Echo Installing d11 in GAC

Echo $(OutDir)

Echo $(TargetFileName)

%GACUTIL% -if "$(OutDir)$(TargetFileName)"

Echo Copying files to Tasks

copy "$(OutDir)$(TargetFileName)" %TASKDIR%

Note If you are using Visual Studio 2012, then the gacutil is located in v8.0a instead of v7.0a. This could
also vary for other versions. gactuil can also be downloaded. It is part of the Microsoft Windows SDK.

Custom Task Runtime Code

You first start with code that is used when executing and validating the task. Since the complete code is too
big to show it in a book, you are focusing on the most important SSIS stuff. But the code is available with this
book, so you can copy the myTask. cs file from example code and add it to your project.

First, you need to add the Microsoft.SqlServer.Dts.Runtime to the namespaces to shorten the code. The
following is the complete list used for this project:

using System;

using System.ComponentModel;

using System.IO;

using System.Xml;

using Microsoft.SqlServer.Dts.Runtime;

Now the most important code of your task: where you name it, add an icon for it, and connect it to the
editor assembly: DtsTask. The following is the code; note that the UITypeName assignment has been wrapped
for readability, but should be one long line in your code.

namespace ScriptingBook.myTask
{
// Connection to the editor assembly. Copy the PublicKeyToken from the previous step.
[DtsTask(
DisplayName = "My Task",
TaskType = "myTask",
TaskContact = "ScriptingBook Example",
IconResource = "ScriptingBook.myTask.myTask.ico",
UITypeName = "ScriptingBook.myTask.myTaskInterface,
ScriptingBook.myTask.myTaskUI,
Version=1.0.0.0,
Culture=Neutral,
PublicKeyToken=80664248b6de6485"

390

CHAPTER 16 © CREATE A CUSTOM TASK

RequiredProductLevel = DTSProductLevel.None)]
public class myTask : Task, IDTSComponentPersist
}

The DtsTask tag has a couple of properties that can change:

¢ DisplayName: The name you see in the toolbox; it is the default name when you
drag the task to the control flow.

e TaskType: The technical name of your task.

¢ TaskContact: Your name and contact information. This information will be shown in
case of fatal errors. The users are then able to contact you.

e IconResource: The fully qualified name of your embedded icon. This is shown in
the toolbox and when you drag the task to the control flow. Try to find an icon that
describes your task and fits the rest of the icons. Quite a daunting task.

e UlTypeName: This is the connection to the editor where you name the interface
class and Ul class. In this string you also need to paste the Public key token that you
retrieved via the sn command.

e RequiredProductLevel: It is best to keep this at the default, but you can choose
another product level (Enterprise, Standard, Workgroup), after which your tasks only
work for that edition of SQL Server.

Also notice the interface and base class names that follow the class name. IDTSComponentPersist is an
interface declaring methods that you implement as part of your class that implements that interface. Task is
a base class implementing certain default methods that you are able to override and implement somewhat
differently in your own code.

Task Properties

Next are the properties of the task (see Figure 16-7). These properties are for storing the chosen values from
your task editor. Besides the name and datatype of each task property, you can add extra metadata, like a
description to clarify the use of the property, a default value, or a category to order all properties.

_ L L—_
Properties v I X

. . My Task Task -

. My Task o5 2

B my Task Source =
4 HasConnectionmanagerSource False
SelectedConnectionManagerlDSource
(EA9BETFD-9ACE-4CTE-807A-38F8619FB320}
B Transactions
IsolationLevel Serializable
TransactionOption Supported -

Show Editor; Edit Breakpoints
SelectedVariablelDSource
GUID of the selected source variable. If a variable is used, then SelectedConnectionMan...

Figure 16-7. Custom Task properties

391

CHAPTER 16 © CREATE A CUSTOM TASK

The following code shows the three properties that you are using for this task:

private bool _hasConnectionmanagerSource = true;
[CategoryAttribute("my Task Source")]
[Description("True if a connectionmanager is used for the task as source.")]
[DefaultValue(true)]
public bool HasConnectionmanagerSource
{
get { return this._hasConnectionmanagerSource; }
set {this. hasConnectionmanagerSource = value; }

}

private string _selectedConnectionManagerIDSource = "";
[CategoryAttribute("my Task Source")]
[Description("GUID of the selected source connectionmanager.")]
public string SelectedConnectionManagerIDSource
{

get { return this. selectedConnectionManagerIDSource; }

set { this. selectedConnectionManagerIDSource = value; }

}

private string selectedVariableIDSource = "";
[CategoryAttribute("my Task Source")]
[Description("GUID of the selected source variable.")]
public string SelectedVariableIDSource
{

get { return this. selectedVariableIDSource; }

set { this. selectedVariableIDSource = value; }

}

Validating Task

To validate the custom task, you need to override the Validate method. Basically, you need to check the
values of the properties from the previous paragraph. When they don’t match your expectations, you can fire
an error or warning and return Failure as a result. The validation method is executed at design-time when
you close the editor, and twice in runtime: when the package is initialized and when the task is executed.

=
=~' My Task €3

Invalid Source Connectionmanager.

Figure 16-8. Design-time error

In this example you are checking if a connection manager or variable has been selected by the user. If
not, you fire an error. You are also checking if the selected variable or connection manager still exists. This is
done by looping through all variables or connection managers to verify that the GUID exists.

It is also possible to add checks. For example, checking whether the file path in the variable or
connection manager exists.

392

CHAPTER 16 © CREATE A CUSTOM TASK

public override DTSExecResult Validate(Connections connections,
VariableDispenser variableDispenser,
IDTSComponentEvents componentEvents,
IDTSLogging log)

{
// If you have used a ConnectionManager then
// you check if you have a valid one !
if (HasConnectionmanagerSource)
{
// Check if a connection manager is selected in the combobox
if (String.IsNullOrEmpty(_selectedConnectionManagerIDSource))
{
componentEvents.FireError(0, "MyTask",
"Connectionmanager is mandatory.",
", 0);
return DTSExecResult.Failure;
}
// Check if the selected connection manager still exists
if (FindConnectionManager(connections,
_selectedConnectionManagerIDSource)
== null)
{
componentEvents.FireError (0, "MyTask",
"Connectionmanager doesn't exist.",
", 0);
return DTSExecResult.Failure;
}
}
else
{
// Do the same checks for variables
}
// No errors encountered
return DTSExecResult.Success;
}

// Method to translate a guid to an actual connection manager.
// It loops through all connection managers and compairs the guid.
private ConnectionManager FindConnectionManager(Connections connections,
string connectionManagerID)
{
ConnectionManager tempConnManager = null;
foreach (ConnectionManager connManager in connections)

{

if (connManager.ID == connectionManagerID)

393

CHAPTER 16 © CREATE A CUSTOM TASK

tempConnManager = connManager;
return tempConnManager;
}
}

return tempConnManager;

}

Execution Code

The actual code for the task is executed in the overridden method called Execute. In this example, you
are first checking whether a connection manager or variable has been used. After that you are translating
the GUID into an actual connection manager or variable to extract the file path from it. This is done with
methods similar to those used in the preceding editor code.

Finally, you use a simple File.Exists to check whether the file path refers to an existing file. If it
doesn’t exist, you fire an error event with a descriptive error message and return Failure as the execution
result, causing the task to fail.

// Class variable for storing the filepath
private string _filePathSource = "";

public override DTSExecResult Execute(Connections connections,
VariableDispenser variableDispenser,
IDTSComponentEvents componentEvents,
IDTSLogging log,
object transaction)

// Convert the guid to an actual variable or Connection Manager
// and get the filepath from the connection manager or variable
if (HasConnectionmanagerSource)

{
_selectedConnectionManagerSource = FindConnectionManager
(connections, selectedConnectionManagerIDSource);
_filePathSource = GetFilePathSource(
_selectedConnectionManagerSource);
}
else
{
_selectedVariableSource = FindVariable(
variableDispenser,
_selectedVariableIDSource);
_filePathSource = GetFilePathSource(_selectedVariableSource);
}
if (!File.Exists(_filePathSource))
{
componentEvents.FireError(o, "My Task", "File "
+ _filePathSource
+ " doesn't exist", "", 0);
return DTSExecResult.Failure;
}

394

CHAPTER 16 © CREATE A CUSTOM TASK

else

return DTSExecResult.Success;

SaveToXML and LoadFromXml

In the class definition, you inherited from Task for executing and validating your task, but you also
implemented the IDTSComponentPersist interface for saving changes from the editor into the package XML
and vice versa.

void IDTSComponentPersist.LoadFromXML(System.Xml.XmlElement node,

{

}

IDTSInfoEvents infoEvents)

// This might occur when the task's XML
// has been modified outside BIDS/SSDT
if (node.Name != "MyTask")
{
throw new Exception(string.Format(
"Unexpected task element when loading task - {0}.", "MyTask"));
}

else
{
// populate the private property variables with values from package XML.
_hasConnectionmanagerSource = Convert.ToBoolean(
node.Attributes.GetNamedItem(
"HasConnectionmanagerSource").Value);
_selectedConnectionManagerIDSource = node.Attributes.GetNamedItem(
"SelectedConnectionManagerIDSource").Value;
_selectedVariableIDSource = node.Attributes.GetNamedItem(
"SelectedVariableIDSource").Value;

}

void IDTSComponentPersist.SaveToXML(System.Xml.XmlDocument doc,

{

IDTSInfoEvents infoEvents)

// create node in the package XML
XmlElement taskElement = doc.CreateElement(string.Empty, "MyTask",
string.Empty);

// create attributes in the node that represent the custom properties
// and add each to the element

// Boolean indicating if you are using a connection manager or variable
XmlAttribute MyTaskXmlAttribute = doc.CreateAttribute(string.Empty,
"HasConnectionmanagerSource", string.Empty);
MyTaskXmlAttribute.Value = _hasConnectionmanagerSource.ToString();
taskElement.Attributes.Append(MyTaskXmlAttribute);

395

CHAPTER 16 © CREATE A CUSTOM TASK

// The GUID from the connection manager

MyTaskXmlAttribute = doc.CreateAttribute(string.Empty,
"SelectedConnectionManagerIDSource",
string.Empty);

MyTaskXmlAttribute.Value = _selectedConnectionManagerIDSource.ToString();

taskElement.Attributes.Append(MyTaskXmlAttribute);

// The GUID from the variable

MyTaskXmlAttribute = doc.CreateAttribute(string.Empty,
"SelectedVariableIDSource", string.Empty);

MyTaskXmlAttribute.Value = selectedVariableIDSource.ToString();

taskElement.Attributes.Append(MyTaskXmlAttribute);

//add the new element to the package document
doc.AppendChild(taskElement);

Custom Task Form

The form layout is very basic to keep things easy to explain (see Figure 16-9). To select the file that needs to
be checked, the user should be able to select a File, Flat File or Excel Connection Manager, or the user should
be able to select a string variable (that contains a file path). And to make it user-friendly, the user should also
be able to create a new connection manager or a new variable directly in the task.

Source

(_) Use connectionmanager

Connection: <Choose connectionmanager>
(®) Use variable

Variable: FilePath v

Path: h:\myFile.txt

oK Cancel

Figure 16-9. The basic form

396

CHAPTER 16 © CREATE A CUSTOM TASK

Even a very simple task like this one has a lot of code that could easily reach over 30 pages, which
probably isn’t very useful in a book. Therefore, we will only show parts of the code focusing on the SSIS stuff,
but the complete code is, of course, available with this book. You can add the form from the example project
to your Ul project in four steps:

1. Add areference to System.Drawing and System.Windows.Forms in the UI project.

2. Copy the three form files—myTaskEditor.cs, myTaskEditor.Designer.cs, and
myTaskEditor.resx—to the folder in your own UI project.

3. Right-click your UI project and choose “Add, Existing item” to add myTaskEdjitor.cs,
myTaskEditor.Designer.cs and myTaskEditor.resx.

4. Close and reopen your solution. Then, open the form to see what you have added.

Form Code

First, the usings to shorten the code. You only need six namespaces in here. By default there are more, but
you can remove them. Visual Studio even has an option to remove unused usings: right-click a using and
choose Organize usings (this could vary per Visual Studio version).

using System;

using System.Collections;

using System.Drawing;

using System.Windows.Forms;

using Microsoft.SqlServer.Dts.Runtime;

using Microsoft.SqlServer.Dts.Runtime.Design;

TaskHost and ServiceProvider

The taskHost property is used to get and set the properties of the current task. By properties, we mean

all things you want to save when you close the editor, such as which variable or connection manager was
selected. Or if you want to extend the example with a retry feature, then you also want to store the number
of retries and the pause between the retries. In the runtime code, you saw that these properties are used in
the Validate and Execute methods to check the correct file path. But the TaskHost can also be used to get
properties of the current package, like a list of all the variables that are available in this particular package.
And the ServiceProvider property is used to add new variables or connection managers or to get a list of
current connection managers. The following code is added at the top within the class code.

// Setting and getting taskhost
private TaskHost _taskHost;
public TaskHost TaskHost
{
get { return _taskHost; }
set { _taskHost = value; }

}

// Getting connections, setting is done within ServiceProvider method
private Connections _connections;
public Connections connections

{

397

CHAPTER 16 © CREATE A CUSTOM TASK

get { return _connections; }

}

// Gets or sets the serviceprovider. Used for getting
// f.a. the VariablesProvider and ConnectionsProvider
private IServiceProvider _serviceProvider = null;
public IServiceProvider ServiceProvider

{
get
{
return _serviceProvider;
}
set
{
_serviceProvider = value;
// Get connections from the services provider
// The code looks difficult, but it is just a cast
_connections = ((IDtsConnectionService)
(value.GetService(typeof(IDtsConnectionService))))
.GetConnections();
}
}

In the constructor method of this class, the taskhost and serviceprovider properties are set. This is done
with the code in myTaskInterface.cs, which is explained later on. Now you can use these properties in all
the other methods.

// Constructor to set taskhost and serviceprovider
// See GetView in myTaskInterface.cs
public myTaskEditor(TaskHost taskHost,
IServiceProvider serviceprovider)

{
InitializeComponent();
this.TaskHost = taskHost;
this.ServiceProvider = serviceprovider;
}
PagelLoad

In the PageLoad method, you need to fill combo boxes with variables or connection managers so that users
can select. For this you can use the TaskHost. The first example fills a combo box with all the string variables
that are not system variables. In the combo box, the variable name property is visible, but the QualifiedName
property is used as the key.

// Fill the combobox with string variables
cmbVariablesSource.Items.Clear();

cmbVariablesSource.DisplayMember = "Name";
cmbVariablesSource.ValueMember = "QualifiedName";
cmbVariablesSource.Items.Add("<Choose variable>");
cmbVariablesSource.Items.Add("<New variable>"); // opens new popup

398

CHAPTER 16 © CREATE A CUSTOM TASK

// Loop through all package variables
foreach (Variable variable in _taskHost.Variables)
{
// No system variables and only string variables
if ((!variable.SystemVariable) &3 (variable.DataType == TypeCode.String))
{
cmbVariablesSource.Items.Add(variable);
}
}

The same can be done for connection managers. In this example, you only want connection managers
with a file path in it (File, Flat File, and Excel). Again, the name property is used in the list, but the id (a
GUID) is used as key.

cmbConnectionsSource.Items.Clear();
cmbConnectionsSource.DisplayMember = "Name";
cmbConnectionsSource.ValueMember = "ID";
cmbConnectionsSource.Items.Add("<Choose connectionmanager>");
// This options will open new connection manager popup
cmbConnectionsSource.Items.Add("<New connectionmanager>");

foreach (ConnectionManager connection in this._connections)

{
string ConnectionType = connection.CreationName;
if (ConnectionType == "FILE" ||
ConnectionType == "EXCEL" ||
ConnectionType == "FLATFILE")
{
cmbConnectionsSource.Items.Add(connection);
}
}

Translating the GUID into a Variable

Later on, in the OnClick event of the OK button, you will see that you are storing the GUID of a variable
instead of the name. If you want to select the correct variable in the combo box, you have to retrieve the
GUID variable from the task and then loop through all the variables and compare the GUID of each one to
find the right variable. When you have found it, you can use it to select the right variable in the combo box
when the form opens.

But first you need to retrieve the GUID variable from the task. The following is the code to retrieve a
value of a property stored in the task, shown in Figure 16-10:

_taskHost.Properties["SelectedVariableIDSource].GetValue(taskHost);

399

CHAPTER 16 © CREATE A CUSTOM TASK

e ________________________________
Properties v I X
. . My Task Task v
u My Task 2 | &
B my Task Source =
° HasConnectionmanagerSource False
SelectedConnectionManagerlDSource
(EA98E1FD-OACE-4C7E-807A-38F 861978320}
B Transactions
IsolationLevel Serializable
TransactionOption Supported

Show Editor; Edit Breakpoints
SelectedVariablelDSource
GUID of the selected source variable. If a variable is used, then ‘SelectedConnectionMan...

Figure 16-10. The property you need to retrieve

This is the complete code. The FindVariable method translates this GUID into a real variable object,
which you can use to select the right item in the combo box.

Variable var = FindVariable(taskHost.Properties["SelectedVariableIDSource"]
.GetValue(_taskHost).ToString().Trim());
if (var != null)
{
// Variable found, now select it in combobox
cmbVariablesSource.SelectedItem = var;

}

else

{
// Variable not found, select first item in combobox
cmbVariablesSource.SelectedIndex = 0;

}

This is the extra method that loops through all package variables to compare the GUID. If the GUID is
found, it returns the correct variable; else it returns null.

private Variable FindVariable(string variableID)
{
// This methods loops through all variables
// and returns the one that matches the GUID.
foreach (Variable var in _taskHost.Variables)
{
if (var.ID == variableID)
{
return var;
}
}

return null;

}

The same approach can be used to find the right connection manager. You will find that code in the
example task.

400

CHAPTER 16 © CREATE A CUSTOM TASK

Adding Variables

In the onChange event of the variable combo box, you want to add a new variable when the second item in
the list <New variable> is selected. If this is the case, you use the serviceProvider to open the default SSIS
“Add variable” dialog (see Figure 16-11). After closing the dialog with OK, the new variable is added to the
package, and then you can add the new variable to the combo box and select it. On Cancel, you close the
dialog and select the default item in the combo box.

- Add Variable (5]
W My Task 9 Specify the properties of the new variable.
E
1]
n c =
Source
-, Mame: .
() Use connectionmanager Febaih
Connection: <Choose conned MNamespace: User
®u iabl -
- sevarnable Value t}"PEn St[ing 7
Variable: <New variable>
Value:
Path: [] Read only
OK Cancel

Figure 16-11. Add Variable dialog

// Class variable to store the selected variable. It will be filled by
// the SelectedIndexChange event and used by the OK button click event.
private Variable selectedVariableSource = null;

// Method to set the selected variable
private void cmbVariablesSource_ SelectedIndexChanged(object sender, EventArgs e)

{

ComboBox combobox = (ComboBox)sender;

// If <Choose variable> is selected then empty the textbox with the path
if (combobox.SelectedIndex == 0)

{
this.txtFilePathFinalSource.Text = "";
return;

401

CHAPTER 16 © CREATE A CUSTOM TASK

// If <New variable> is selected then popup to create a new variable
if (combobox.SelectedIndex == 1)

{

int currentdIndex = -1;

IDtsVariableService _dtsVariableService = _serviceProvider
.GetService(typeof(IDtsVariableService))
as IDtsVariableService;

Variable newVariable = _dtsVariableService

.PromptAndCreateVariable(this, null,
"FilePath", "User", typeof(String));
if (newVariable != null)

{

currentdIndex = combobox.Items.Add(newVariable);
combobox. SelectedIndex = currentdIndex;
return;

}

else

{

// Cancel was clicked in popup
combobox. SelectedIndex = 0;
return;

}

}

// Fill the private variable to store the selected variable
selectedVariableSource = (Variable)combobox.SelectedItem;

// If the variable is still null then clear form
if (selectedVariableSource == null)

{
this.cmbVariablesSource.SelectedIndex = 0;
this.txtFilePathFinalSource.Text = "";
return;

}

// Show path in textbox
this.txtFilePathFinalSource.Text = (String)selectedVariableSource.Value;

Add Connection Managers

When adding a connection manager, you have a similar construction, but because you first want to choose
between File, Flat File or Excel, you add an extra custom dialog before the standard SSIS Add Connection
Manager dialog is shown (see Figure 16-12). The dialog Prompt. ShowConnectionManagerTypeDialog()
returns a string with "FILE", "FLATFILE", or "EXCEL". This string is used to open the correct Add Connection

Manager dialog from SSIS.

402

CHAPTER 16 © CREATE A CUSTOM TASK

|
o My Task €3

- myTaskEditor

Source

(® Use connectionmanager
(@) Connection manager for files

Connection: <New connectionmanage
. (_) Connection manager for flat files
(_) Use variable

() Connection manager for Excel files
Variable: <Choose variable>
Ok
Path:
0K

Figure 16-12. Custom dialog before the Connection Manager dialog

// Class variable to store the selected connectionmanager. It will be filled
// by the SelectedIndexChange event and used by the OK button click event.
private ConnectionManager selectedConnectionManagerSource = null;

// Method to set the selected connectionmanager

private void cmbConnectionsSource SelectedIndexChanged(object sender,
EventArgs e)

{

ComboBox combobox = (ComboBox)sender;

// If <Choose connectionmanager> is selected
// then empty the textbox with the path
if (combobox.SelectedIndex == 0)
{
this.txtFilePathFinalSource.Text = "";
return;

}

// If <New connectionmanager> is selected

// then popup to create a new connection manager
if (combobox.SelectedIndex == 1)

{

int currentIndex = -1;

IDtsConnectionService _dtsConnectionService = _serviceProvider
.GetService(typeof(IDtsConnectionService))
as IDtsConnectionService;

Arraylist createdConnection = _dtsConnectionService

.CreateConnection
(Prompt.ShowConnectionManagerTypeDialog());

Choose Connection Manager type

403

CHAPTER 16 © CREATE A CUSTOM TASK

if (createdConnection.Count > 0)

{
ConnectionManager newConnectionManager = (ConnectionManager)
createdConnection[0];
_dtsConnectionService.AddConnectionToPackage(
newConnectionManager);
currentIndex = combobox.Items.Add(newConnectionManager);
combobox.SelectedIndex = currentIndex;
return;
}
else
{
// Cancel was clicked in popup
combobox. SelectedIndex = 0;
return;
}

}

// Fill the private variable to store the selected connectionmanager
selectedConnectionManagerSource = (ConnectionManager)
combobox. SelectedItem;
// If the variable is still null then clear form
if (selectedConnectionManagerSource == null)

{
this.cmbConnectionsSource.SelectedIndex = 0;
this.txtFilePathFinalSource.Text = "";
return;

}

// Get the path of the connectionmanager. For Excel connectionmanagers
// you should use ExcelFilePath property instead of the connectionstring
if (selectedConnectionManagerSource.CreationName == "EXCEL")
{
this.txtFilePathFinalSource.Text = selectedConnectionManagerSource
.Properties["ExcelFilePath"]
.GetValue(selectedConnectionManagerSource)

.ToString();
}
else
{
this.txtFilePathFinalSource.Text = selectedConnectionManagerSource
.ConnectionString;
}

Close Editor and Save Changes

When you close the editor with the OK button, you want to save the values from the form into the properties
of the task so that you can use them when you reopen the editor or when you execute the task. And when
you click the Cancel button, you just close the editor and return Cancel as the dialog result.

404

CHAPTER 16 © CREATE A CUSTOM TASK

private void btnCancel Click(object sender, EventArgs e)
{

// Close editor with Cancel

this.DialogResult = DialogResult.Cancel;

this.Close();

}

private void btnSave Click(object sender, EventArgs e)
{
// Save values (connectionmanager and variable guid) in tasks properties.
if (this.cmbConnectionsSource.SelectedIndex != 0)
{
// Something is selected, get selected connection
// manager from private class variable
_taskHost.Properties["SelectedConnectionManagerIDSource"]
.SetValue(taskHost, selectedConnectionManagerSource.ID);
}

else
{
// Nothing selected, save empty string
_taskHost.Properties["SelectedConnectionManagerIDSource"]
.SetValue(_taskHost, string.Empty);
}

if (this.cmbVariablesSource.SelectedIndex != 0)
{
// Something is selected, get selected variable
// from private class variable
_taskHost.Properties["SelectedVariableIDSource"]
.SetValue(_taskHost, selectedVariableSource.ID);
}

else

{

// Nothing selected, save empty string
_taskHost.Properties["SelectedVariableIDSource"].SetValue(taskHost,
string.Empty);
}

// Close editor with OK
this.DialogResult = DialogResult.OK;
this.Close();

Interface Class Code

The next class file interfaces IDtsTaskUI. The only thing it is doing is passing through the taskHost and
serviceProvider to the editor. This class file is called myTaskInterface.cs and it is located in the Ul project.

using System;
using System.Windows.Forms;

405

CHAPTER 16 © CREATE A CUSTOM TASK

using Microsoft.SqlServer.Dts.Runtime;
using Microsoft.SqlServer.Dts.Runtime.Design;

// Class, Interfacing for task editor
namespace ScriptingBook.myTask
{
public class myTaskInterface : IDtsTaskUI
{
private TaskHost _taskHost;
private IServiceProvider _serviceProvider;

public myTaskInterface()

{
}

public void Initialize(TaskHost taskHost,
IServiceProvider serviceProvider)
{

// Get taskhost and service provider
// and fill class variables

taskHost = taskHost;

serviceProvider = serviceProvider;

}

public ContainerControl GetView()

{
// Pass through taskHost and serviceProvider to editor
myTaskEditor editor = new myTaskEditor();
editor.TaskHost = this. taskHost;
editor.ServiceProvider = this. serviceProvider;
return editor;

}

public void Delete(IWin32Window parentWindow)
{
}

public void New(IWin32Window parentWindow)
{
}
}
}

Expression Builder

It is also possible to use the built-in Expression Builder in a custom task (see Figure 16-13). However, it is an
unsupported feature, which means you have no guarantees that it will still work after the next SSIS update.
The code is not included in the example task, but it is available in a separate text file.

406

CHAPTER 16 © CREATE A CUSTOM TASK

%, ConwroiFiom |41 DataFlow | Parmmeters | & Eventrianders | o Paciage Expiorer FA|[e]
[1] Expressicn Budder ee—ecy)
o
Soacty the mxpreteon
¥ 3 Verables and Parameters. £| FINDSTRING] scharacter_spressons, ety »
2 (3 System Variabies | HEX] drteger_exesssions)

B® myTaskEdinee =& 8 @ User FinPun] LEFT{ cchamcter_spmasions, snmbers |

£ LEM scharnctis_exoressions |
| LOWERY acharacier_svessons |

& Usevariabie

Variable: FilePath B :
Owpcrpton

Patk De\MySourceFies\rchive\ Testlcov

e

UPPER{ @{lser FlePath] }

izl
DM
Evabated vaise
oK Cancel Evaate Exgrasscn | ok][cweca

Figure 16-13. Expression Builder in a custom task

References

To use the Expression Builder, you need to add two references to the UI project. The first reference, which is
located in the GAC, is to Microsoft.DataTransformationServices.Controls.

C:\Windows\Microsoft.NET\assembly\GAC_MSIL\Microsoft.DataTransformationServices.Controls\
v4.0_11.0.0.0_89845dcd8080cc91\Microsoft.DataTransformationServices.Controls.DLL

And the second reference is to Microsoft.SqlServer. DTSRuntimeWrap, which is also located in the GAC,
however not in MSIL.

C:\Windows\Microsoft.NET\assembly\GAC_32\Microsoft.SqlServer.DTSRuntimelWrap\

v4.0_11.0.0.0__89845dcd8080cc91\Microsoft.SqlServer.DTSRuntimelWrap.dll
C:\Windows\Microsoft.NET\assembly\GAC_64\Microsoft.SqlServer.DTSRuntimeWrap\

v4.0_11.0.0.0__89845dcd8080cc91\Microsoft.SqlServer.DTSRuntimelWrap.dll

Usings

To make the code more compact, you need to add two extra usings to the code of the UI project. Because of
duplicate names in various namespaces, you see that the wrapper using is a little different.

usings Microsoft.DataTransformationServices.Control;
usings Wrapper = Microsoft.SqlServer.Dts.Runtime.Wrapper;

Form Controls

For this simplified example, you add a button (for opening the Expression Builder), a read-only text box (for
showing the expression), and a label (for showing the evaluated expression).

407

CHAPTER 16 © CREATE A CUSTOM TASK

Expression
Expression text UPPER(@[User:FilePath])
Expression evaluated DAMYSOURCEFILES\ARCHIVENTESTL.CSV

Figure 16-14. Form controls for using the Expression Builder

The Code

To open the Expression Builder, you need to add an onclick event handler to the button with the
following code.

private void btnExpression_Click(object sender, EventArgs e)
{
try
{
// Create an expression builder popup and make sure the expressions can be
// evaluated as a string or change it to System.Boolean if you want a
// boolean, etc. Last property is the textbox containing the expression that
// you want to edit.
using (var expressionBuilder = ExpressionBuilder.Instantiate(
_taskHost.Variables,
_taskHost.VariableDispenser,
Type.GetType("System.String"),
txtExpression.Text))
{
// Open the window / dialog with expression builder
if (expressionBuilder.ShowDialog() == DialogResult.OK)
{
// If pressed OK then the textbox gets populated with the created
// expression and the label will be emptied
txtExpression.Text = expressionBuilder.Expression;
1blExpressionEvaluated.Text = "";

// Create object to evaluate the expression
Wrapper.ExpressionEvaluator evaluator =
new Wrapper.ExpressionEvaluator();

// Add the expression
evaluator.Expression = txtExpression.Text;

// Object for storing the evaluated expression
object result = null;

408

0

CHAPTER 16 © CREATE A CUSTOM TASK

try
{
// Evalute the expression and store it in the result object
evalutor.Evaluate(DtsConvert.GetExtendedInterface(
_taskHost.VariableDispenser),
out result, false);

}

catch (Exception ex)
{
// Store error message in label
// Perhaps a little useless in this example because the expression
// builder window already validated the expression. But you could
// also make the textbox readable and change the expression there
// (without opening the expression builder window)
1blExpressionEvaluated.Text = ex.Message;
}
// 1f the Expression contains some error, the "result" will be <null>.
if (result != null)
{
// Add evaluated expression to label
1blExpressionEvaluated.Text = result.ToString();
}
}
}
}
catch (Exception ex)
{
MessageBox . Show(ex.Message);
}
}

Now you can store that expression in a property and retrieve it on runtime. On runtime, you can
evaluate the expression with this same code.

Summary

In this chapter you learned the basics of generating your own custom task. We encourage you to first learn
some basic .NET coding before rushing to create a whole bunch of custom tasks.

409

CHAPTER 17

Create Custom Transformation /

This chapter shows you how to create a custom transformation for the data flow. Compared to the custom
task, this is slightly more difficult because there are more methods and more points to address. To keep
things comprehensible, you will be using the row number script that you saw in the Script Component
chapters. A very basic transformation, but easy to extend with all the bells and whistles that you can find on
the various blogs and forums.

Creating a custom transformation instead of a Script Component has the same pros and cons as the
custom task vs. the Script Task (see Figure 17-1). However, because this is more difficult, the tipping point
where you decide to go for the custom transformation instead of the Script Component will probably shift a
little in the direction of the Script Component.

- FF_SRC - Sales
I: >

2
4 Row Number

|
B RowNumber Editor — O -

Column Name MySurrogateKey
Start Number (Seed): 100113
Increment: 12
QK Cancel Help

Figure 17-1. Custom transformation for the data flow

411

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

Custom Transformation Preparations

For this example, you will create a transformation that adds a new column with a surrogate key (or row
number). For this you need a Visual Studio version that supports C# and VB.NET projects. BIDS or SSDT
alone is not enough because they only support Bl projects. For this example, you use Visual Studio
Professional 2013, but there are less expensive versions that also support C# and VB.NET; for example,
Visual Studio Community or Visual Studio Express. The example code contains one extra installer
project. The template for this can be downloaded at https://visualstudiogallery.msdn.microsoft.
com/9abe329c-9bba-44a1-be59-0fbf6151054d.

And of course you need to install all SSIS versions that you want to support with your custom
transformation. You need to recompile your code with different references if you want your transformation
to work with multiple versions of SSIS.

Creating Visual Studio Projects

For this custom transformation, you use two Class Library projects. One for the actual transformation and
one for the user interface. Make sure that you choose the appropriate .NET version for the transformation.
SSIS 2005: 2.0, SSIS 2008: 3.5, SSIS 2012: 4.0, and SSIS 2014 4.0. First create a new project called RowNumber
and then add a second Class Library project to the same solution called RowNumberUI, as shown in

Figure 17-2.

New Project » IEl

b Recent (.NET Framework 4 -)Son by: | Default ~| & §= Class Library X -
4 |nstalled cH - o
WCF Service Library Visual C# Type: Visual C#
4 Templates v A project for creating a C# class library
b Business Intelligence WCF Service Library Visual Basic (.l
b Visual Basic o
4 Visual C# [’!: ! Class Library Visual C++
b Store Apps —
Windows Desktop Ej! Class Library Visual Basic
P Web
b Dffire/SharePnint =
b Online r
3 Class Library (Portable) Visual Basic
oh y
Name: RowNumber
Location: D:\RowNumber - Browse...
Solution name: RowNumber || Create directory for solution

|| Add to soyrce control

oK . Cancel

Figure 17-2. Class Library projects

Before you start coding, you first have to address a lot of other things, like references, strong names,
build events, and, of course, icons.

412

https://visualstudiogallery.msdn.microsoft.com/9abe329c-9bba-44a1-be59-0fbf6151054d
https://visualstudiogallery.msdn.microsoft.com/9abe329c-9bba-44a1-be59-0fbf6151054d

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

Adding SSIS References

To communicate with SSIS, you need to add SSIS references to these projects. Both projects need
references to

e Microsoft.SqglServer.Dts.Design
e Microsoft.SQLServer. DTSPipelineWrap
e Microsoft.SqlServer. DTSRuntimeWrap
e Microsoft.SqlServer.ManagedDTS
And the RowNumber project with the runtime code also needs a reference to
e Microsoft.SQLServer.PipelineHost
For SSIS 2012 and above, you can find these assemblies (. d11 files) in the Global Assembly Cache
(GAC) at C: \Windows\Microsoft.NET\assembly\GAC_MSIL\. For example:

Microsoft.SqlServer.Dts.Design\v4.0 11.0.0.0_ 89845dcd8080cc91\Microsoft.SqlServer.Dts.
Design.dll

If you have installed multiple versions of SSIS 2012 and above, then it is version 4.0_11.0.0.0 for 2012,
v4.0_12.0.0.0 for 2014, and version 4.0_13.0.0.0 for 2016. For older SSIS versions, you can find these .d11
files in the assemblies folder of SQL Server at C: \Program Files (x86)\Microsoft SQL Server\100\SDK\
Assemblies (replace 100 with 90 for SSIS 2005).

Default Namespace and Assembly Name

Go to your project’s properties. In the Application page, you need to change the Assembly name and the
Default namespace for both projects (see Figure 17-3). The Default namespace will be ScriptingBook.
RowNumber. The Assembly name will be the default namespace plus the project name: ScriptingBook.
RowNumber.RowNumber and ScriptingBook.RowNumber.RowNumberUI for the RowNumber

and RowNumberUI projects, respectively.

Application

Build

Build Events Assembly name: Default namespace:

Debug ScriptingBookRowNumber.RowNumberUl ScriptingBook.RowNumber

Resources Target framework: Output type:

Services NET Framework 4 v (Class Library e
Settings Startup gbject:

Reference Paths (Not set) v Assembly [nformation...
Signing

Figure 17-3. Setting the namespace and the assembly name

413

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

Creating a Key for the Strong Name

An SSIS runtime requirement for assemblies is that they are located in the GAC. The GAC requires

that assemblies are strong-named. This provides a unique identity. So you need to strong name for the
assemblies. Go to the properties of one of the projects and then to the Signing page. Check the “Sign the
assembly” check box and then add a new key file in the drop-down list. The name for this example is
RowNumber.snk, with sha256RSA as the signature algorithm and no password (see Figure 17-4). After
clicking the OK button, the new key file will be visible in the Solution Explorer. Next, you need to copy the
same . snk file to the other project and then sign that project with the same key file. You could also reuse the
key file from the custom task project by copying it to the current projects.

Application
Build

Build Events
Debug
:::::es Create Strong Name Key ? n
Settings Key file name:

Reference Paths RowNumber.snk

Signing®

Code Analysis

[Protect my key file with a password

Enter password:

Confirm password:
[¥] Sign the assembly
Choose a strong name key file:

Signature Algorithm:
<New...>

; sha256RSA W
[[] Delay sign only

When delay signed, the project will ny oK | Cancel

Figure 17-4. Add key file (C# project, but VB.NET looks similar)

Getting the Public Key Token

For the runtime code, you need the Public KeyToken of the GUI assembly. So first build the projects using
the release configuration and then open the Visual Studio Command prompt (see Figure 17-5). Use a

CD command (change directory) to go to the Bin\Release folder of one of your projects and execute the
following command to get the public key token:

sn.exe -T ScriptingBook.RowNumber.RowNumber.dll

414

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

= V52013 x86 Native Tools Command Prompt = (= “

~

:\Program Files (x86)\Microsoft Uisual Studio 12.0\UC>d:
:\»>cd RowNumber\RowNumber\RowNumber\bin\Release
:\RowNumber\RowNumber\RouNumber\bin\Release>sn.exe -T ScriptingBook.RowNumber .RowNumber.dll

icrosoft (R) .NET Framework Strong Name Utility Uersion 4.0.30319.33440
opyright (c) Microsoft Corporation. #All rights reserved.

ublic key token is (BB664248b6deB48S

:\RowNumber\RowNumber\RouNumber\bin\Release>_

Figure 17-5. The strong name utility to get the public key token

Copy this key token for later use.
If you reused the key file from the custom task project, then the public key token is the same and you
can skip this step.

Icons

Of course you need a good icon for our transformation. There are plenty of free icons available online and
there are also tools to create new icons. Add an . ico file to both projects via the Solution Explorer. After
adding the icon file, make sure to change the Build Action property to Embedded Resource; otherwise, the
icon won’t show up. Later on you can use this icon in the Windows Form of the UI project. Then it will show
when you edit the transformation (see Figure 17-6).

Properties * 3 x
RowNumber.ico File Properties -
ol 4| #

El Advanced

Build Action
Copy to Output Directory Do not copy
Custom Tool
Custom Tool Namespace
El Misc
File Name RowNumber.ico

yX\RowNumber\RowNumt
Figure 17-6. Setting the Build Action of the icon

In the runtime project, you can use this file to give your transformation a custom icon instead of the
default. This will show in the SSIS Toolbox and in the data flow. The code to do this is explained later on.

415

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

Build Events

To use the assemblies in SSIS, you need to install them in the GAC for runtime and copy them to the
PipelineComponents folder of SSIS for design-time. You can do that automatically with the Build Events
when you build the Visual Studio project. But because you are adding assemblies to the GAC, you need to
run Visual Studio as administrator. Go to the properties of your projects and then to the Build Events.

C# projects have a separate tab named Build Events, but VB.NET projects have a Build Events button on the
Compile tab. Add the following command to the Post-Build events. Note that the number in the SQL Server
folder is different for each SSIS version: 2005: 90, 2008: 100, 2012: 110, 2014: 120, and 2016: 130. Also note
that the paths should be on a single line in the post-build event command-line text box. They are wrapped in
the text to fit on this page.

SSIS 2008

cd $(ProjectDir)

@SET PIPEDIR="C:\Program Files (x86)\Microsoft SQL Server\100\DTS\
PipelineComponents\"

@SET GACUTIL="C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\
bin\gacutil.exe"

Echo Installing d11l in GAC

Echo $(OutDir)

Echo $(TargetFileName)

%GACUTIL% -if "$(OutDir)$(TargetFileName)"

Echo Copying files to Tasks

copy "$(OutDir)$(TargetFileName)" %PIPEDIR%

SSIS 2012 with Visual Studio 2010

cd $(ProjectDir)

@SET PIPEDIR="C:\Program Files (x86)\Microsoft SQL Server\110\DTS\

PipelineComponents\"

@SET GACUTIL="C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\
Bin\NETFX 4.0 Tools\gacutil.exe"

Echo Installing d11 in GAC

Echo $(OutDir)

Echo $(TargetFileName)

%GACUTIL% -if "$(OutDir)$(TargetFileName)"

Echo Copying files to Tasks

copy "$(OutDir)$(TargetFileName)" %PIPEDIR%

Note If you are using Visual Studio 2012 or Visual Studio 2013, then gacutil.exe is located in v8.0a
instead of v7.0a. It could also vary for other versions. gacutil.exe can also be downloaded; it is part of the
Microsoft Windows SDK.

Custom Transformation Runtime Code

You start with code that is used when executing transformation. Since the complete code is too big to show
in a book, you will focus on the most important SSIS stuff. But the code is available with this book. So you
can copy the RowNumber . cs file from the example code and add it to your project.

416

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

First you need to add some extra SSIS namespaces to shorten the code. This is the complete list that

you'll use for this project:

using System;

using Microsoft.SqlServer.Dts.Pipeline;

using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime.Wrapper;

Now the most important code of your transformation—where you name it, give it an icon, and connect

it to the editor assembly: DtsPipelineComponent. This attribute allows you to set all the metadata of your
component.

namespace ScriptingBook.RowNumber

{

[DtsPipelineComponent(

DisplayName = "Row Number",

ComponentType = ComponentType.Transform,

Description = "Adds a rownumber to the output",

IconResource = "ScriptingBook.RowNumber.RowNumber.ico",

UITypeName = "ScriptingBook.RowNumber.RowNumberInterface,
ScriptingBook.RowNumber.RowNumberUI,
Version=1.0.0.0,
Culture=Neutral,
PublicKeyToken=80664248b6de6485",

CurrentVersion = 1

)]

public class RowNumber : PipelineComponent

{

The DtsPipelineComponent tag has properties that can change, which are as follows:

e DisplayName: This is the name you see in the toolbox; it is the default name when
you drag the transformation to the data flow.

e ComponentType: With this you tell SSIS whether it is a transformation, source, or
destination.

e Description: The text used as the default description of your transformation.

e IconResource: The fully qualified name of your embedded icon. This is shown in the
toolbox and when you drag the transformation to the data flow. Try to find an icon
that describes your task and fits the rest of the icons. Quite a daunting task.

e UlTypeName: This is the connection to the editor in which you name the interface
class and the Ul class. In this string you also need to paste the public key token that
you retrieved via the sn command. Note that this is one line of code, but wrapped to
fit the page.

e CurrentVersion: This can be used in a method called PerformUpgrade to handle
changes when you add extra properties that don’t exist in packages that use an older
version of the transformation. If you don’t handle those, you get an error in the
package that uses the older version. More information follows.

417

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

Also notice the interface after the class name: PipelineComponent. This allows you to override the
methods from the interface with your own code. Each method in the code with the override modifier in it
comes from this interface.

Component Properties and Input and Output Ports

The first method is ProvideComponentProperties, which is called when the component is added to the data
flow surface. In this method, you initialize the component by adding an input port, output port, custom
properties, and a new output column to store the row number in.

In the input port, you let the component know what is coming into the component and what should you
do when that fails. In this case you don’t need input columns because you don’t use data from upstream and
you don’t want an error output.

In the output port, you let the component know whether the output is synchronous and which new
output columns you added. Our example is synchronous and you need a new output column to store the
new row number in.

The custom property port is where you add the properties (Increment and Seed) to the component
(see Figure 17-7). This is in a totally different way than in the custom task example. Besides the name,
description, and initial value, you can also indicate whether the user can use expressions in the properties.

Properties

Row Number Data Flow Component .
ooy | &

True

LocalelD Dutch (Netherlands)

sDefaultLocale

= FF_SRC - Sales
I:.)

ralse

True

ﬁ Row Number

Figure 17-7. Custom Properties and the metadata version

And there is one addition. The version number of the component is stored in a property. If afterward a
new version of the component is installed, this initial (metadata) version number can be compared to the
current (binary) version in the PerformUpgrade method. More details will follow.

// Class variables to store the default

// values of the custom properties

private Int64 _seed = 1;

private int _increment = 1;

private string newColumnName = "RowNumber";

public override void ProvideComponentProperties()

{

// This method is called when the component
// is initially added to the data flow task.

418

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

// Add the input

IDTSInput100 input = ComponentMetaData.InputCollection.New();
input.Name = "RowNumberInput";

// You don't use the ErrorRowDisposition.

// If you fail somewhere in the rows, you

// don't wan't it to go to an alternative output buffer.
input.ErrorRowDisposition = DTSRowDisposition.RD_NotUsed;

// Add the output (Synchronous)

// Async creates new buffers

// Sync adds columns to existing buffers

// SynchronousInputID connects the input

// and output for sync components

IDTSOutput100 output = ComponentMetaData.OutputCollection.New();
output.Name = "RowNumberOutput";

output.SynchronousInputID = input.ID;

output.ExclusionGroup = 1;

// Add Column

// Initially you start with a new output column

// with a default name. In the UI you can change

// this name. The Default datatype is DT_I8. You

// could add a combobox with datatypes to let the

// user choose which datatype to use.

IDTSOutputColumn100 outputColumn = output.OutputColumnCollection.New();
outputColumn.Name = _newColumnName;

outputColumn.Description = "Generated Rownumber";
outputColumn.SetDataTypeProperties(DataType.DT I8, 0, 0, 0, 0);

// Define the CustomProperties of the this component
AddProperty("Seed", "Starting number.", seed, false);
AddProperty("Increment”, "Increment size.", _increment, false);

// Workaround for versioning bug by Todd McDermid

// When adding the component to the data flow the

// version number is saved in the package. When

// a new component version is installed then the

// PerformUpgrade method can handle the changes.

DtsPipelineComponentAttribute componentAttribute =
(DtsPipelineComponentAttribute)
Attribute.GetCustomAttribute(this.GetType(),
typeof(DtsPipelineComponentAttribute), false);

ComponentMetaData.Version = componentAttribute.CurrentVersion;

}

// Helper method to add custom properties
private void AddProperty(string name,
string description,
object value,
bool supportsExpression)

419

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

// Add a custom property to the component

IDTSCustomProperty100 commandProp = this.ComponentMetaData.CustomPropertyCollection.New();
commandProp.Name = name;

commandProp.Description = description;

if (supportsExpression)

// Let SSIS know that you allow expressions on our property
commandProp.ExpressionType = DTSCustomPropertyExpressionType.CPET_NOTIFY;
}

commandProp.Value = value;

return;

Validating Transformation

For validating the custom transformation, you need to override the Validate method. Just like in the custom
task, you can check the values of the custom properties to see if they match expectations. But you can also
validate the inputs and outputs: Is the number of output columns correct? Is a certain input column read/
write? Or is the number of inputs more than one? The validation method is executed at design-time when
you close the editor, and twice in runtime when the package is initialized and when the data flow task is
executed (see Figure 17-8).

v

l% Row Number Q

| Increment can't be zero

Figure 17-8. Design-time error

The following are the four different statuses that you can return:

e VS_ISBROKEN: Metadata of the component is not OK. The user should resolve this
in the data flow. Example: the increment = 0.

e VS_ISCORRUPT: Something is broken that can’t be fixed. Better to start over by
removing and adding the component. Example: Incorrect number of inputs or
outputs.

e VS_ISVALID: Everything is OK.

e VS_NEEDSNEWMETADATA: Something is wrong with the metadata of the columns,
which needs to be fixed. Example: removed or changed a column upstream.

public override DTSValidationStatus Validate()

{

// boolean used for FireError to specify whether execution is cancelled
bool pbCancel = false;

420

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

// If you are using an input column and input flow
// is removed or changed then that could hurt our

// code. Therefore check if the input columns are

// still valid

if (!ComponentMetaData.AreInputColumnsValid)

{
}

// Validate that there is only 1 input
if (ComponentMetaData.InputCollection.Count != 1)

return DTSValidationStatus.VS_NEEDSNEWMETADATA;

{
ComponentMetaData.FireError(0, ComponentMetaData.Name,
"Incorrect number of inputs.", "", 0, out pbCancel);
return DTSValidationStatus.VS_ISCORRUPT;

}

// Validate that there are no input columns
if (ComponentMetaData.InputCollection[0].InputColumnCollection.Count !=

0)

{
ComponentMetaData.FireError(0, ComponentMetaData.Name,
"Incorrect number of inputs columns.", "", 0, out pbCancel);
return DTSValidationStatus.VS_ISCORRUPT;

}

// Validate that there is only 1 output
if (ComponentMetaData.OutputCollection.Count != 1)

{
ComponentMetaData.FireError(0, ComponentMetaData.Name,
"Incorrect number of outputs.”, "", 0, out pbCancel);
return DTSValidationStatus.VS_ISCORRUPT;

}

// Validate that there is 1 output column
if (ComponentMetaData.OutputCollection[0].OutputColumnCollection.Count
1= 1)

{
ComponentMetaData.FireError(0, ComponentMetaData.Name,
"Incorrect number of outputs columns", "", 0, out pbCancel);
return DTSValidationStatus.VS_ISCORRUPT;

}

// Validate that the increment isn't zero
if (_increment == 0)

{
ComponentMetaData.FireError(0, ComponentMetaData.Name,
"Increment can't be zero", "", 0, out pbCancel);
return DTSValidationStatus.VS_ISBROKEN;

}

return base.Validate();

421

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

Execution Code

The actual code for this transformation is executed in the overridden method called ProcessInput. For this
example, with no input columns and only one output column, it is rather simple. The method is executed for
each buffer passed to the component. You loop through the rows in the current buffer, fill the new column,
and then increment the row number for the next row.

There is also the possibility to validate the new values. If your new column is a DT_I4, then you want
make sure that the new row number will fit. This example uses a DT_I8 with a rather large max value, which
isn’t reached quickly.

public override void ProcessInput(int inputID, PipelineBuffer buffer)

{
// Loop through the rows in the buffer

while (buffer.NextRow())

{
// Check if the new number isn't out of range. Perhaps less usefull
// for a bigint with a max size of 9,223,372,036,854,775,807
if (_currentRowNumber < Int64.MinValue ||
_currentRowNumber > Int64.MaxValue)
{
// Throw an error, the value can't be contained
// in the variable type chosen !
bool pbCancel = true;
ComponentMetaData.FireError(0, this.ComponentMetaData.Name,
"Rownumber is not in range of the chosen variables" +
" type DT_I8 (Int64)", string.Empty, 0, out pbCancel);
throw new ApplicationException("Rownumber is not in range of the " +
" chosen variables type 'DT_I8 (Int64)'.");
}
// Fill first (0) output column with the rownumber
buffer.SetInt64(0, currentRowNumber);
// Increment when ready
_currentRowNumber = currentRowNumber + _increment;
// Direct the row to the defaultOutput
buffer.DirectRow(ComponentMetaData.OutputCollection[0].ID);
}
}
PreExecute

The PreExecute method executes once, right before starting the ProcessInput method. It is a good location
to do any processing that can be done upfront and cached for other methods. For this example, you only
get the values from the properties so that they can be used for adding the row number in the ProcessInut
method. If you also have input columns, then this is also the location to map the input and output.

422

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

public override void PreExecute()
{
// Get values from the properties for use in the ProcessInput
_currentRowNumber = Int64.Parse(this.ComponentMetaData
.CustomPropertyCollection["Seed"].Value.ToString());
_increment = (int)this.ComponentMetaData
.CustomPropertyCollection["Increment"].Value;

PerformUpgrade

This is an important method if you want to extend your custom transformation. You compare the version
in the code with the version in the package (see Figure 17-9). If version 0 of the transformation didn’t have
a property to change the increment, and version 1 introduces that property, then you don’t want existing
packages that were created with version 0 to fail.

L RowNumber Editor — O n

Column Name RowNumber

Start Number (Seed): 15

Increment: 15 <= New in version 1
OK Cancel Help

Figure 17-9. New version with increment option

If the metadata version is lower than the binary version, then you can add additional properties with a
default value. This should prevent errors due to upgrades.

And if you, for example, forgot to upgrade the transformation on the production server, then the
metadata version could be higher than the binary version. In that case you also want to throw an error.

public override void PerformUpgrade(int pipelineVersion)
{
// Obtain the current component version from the attribute.
DtsPipelineComponentAttribute componentAttribute =
(DtsPipelineComponentAttribute)Attribute.GetCustomAttribute(
this.GetType(), typeof(DtsPipelineComponentAttribute), false);
int binaryVersion = componentAttribute.CurrentVersion;
int metaDataVersion = ComponentMetaData.Version;

// If the component version saved in the package is less than
// the current version, Version 2, perform the upgrade.

423

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

if (metaDataVersion < binaryVersion)

{

// Upgrade from version 0 to 1
if (metaDataVersion == 0)

{
if (ComponentMetaData.CustomPropertyCollection["Increment"] == null)
{
// Add the new property with a default value
AddProperty("Increment", "Increment size.", 1, false);
}
}

// Update the metadata version otherwise the versions are still

// different and then next time you open the package it will perform
// the upgrade again causing errors.

ComponentMetaData.Version = binaryVersion;

}

// Forgot to upgrade the transformation on a server?
if (metaDataVersion > binaryVersion)

{

throw new Exception("Runtime version of the component is out of date.”
+ " Upgrading the installation can possibly solve this issue.");

Disable Advanced Editor

If you have added a custom editor to your transformation, then you probably don’t want the user to use the
advanced editor and possibly mess up your component. You can override those handlers and throw an error.
The following is one example for deleting an output port, but the code has lots more.

public override void DeleteOutput(int outputID)
{

throw new Exception(string.Format("Deleting output from '{0}' isn't" +
" allowed.", ComponentMetaData.Name), null);

Custom Transformation Form

The form layout is, again, very basic in order to keep things easy to explain (see Figure 17-10). To add a row
number, the user can specify the name of the new column containing the row number. And the user can
change the start number and increment in the editor.

Column Name RowNumber

Start Number (Seed): 1

Increment: 1

Ar A»

Figure 17-10. The basic form

424

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

The complete code for this editor is available with the book. You can add the form from the example
project to your Ul project in four steps:

1. Add areference to System.Drawing and System.Windows.Forms in the
Ul project.

2. Copy the three form files RowNumberEditor.cs, RowNumberEditor.resx, and
RowNumberEditor.Designer.cs to your Ul project folder.

3. Right-click your UI project and choose Add ä Existing item to add the
following files: RowNumberEditor.cs, RowNumberEditor.Designer.cs, and
RowNumberEditor.resx.

4. Close and reopen your solution. Then open the form to see what you have added.

Form Code

First, the usings to shorten the code. You only need four namespaces in here. By default there are more, but
you can remove them. Visual Studio even has an option to remove unused usings if you right-click a using
and choose Organize Usings (this could vary per Visual Studio version).

using System;

using System.Windows.Forms;

using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime;

ServiceProvider, Connections, Variables, and Metadata

The component provides some objects that can be used to get variables or connection managers, or to get
and set custom properties. These objects will be set by the RowNumberInterface class that implements
IDtsComponentUI.

In this example, you will only use the IDTSComponentMetaDatal00 to get the values from the custom
properties. The IServiceProvider can create variables. The Variables object can be used to loop through all
variables, and Connections can be used to loop through all connection managers.

private Variables _vars = null;
public Variables Variables
{

get { return vars; }

set { _vars = value; }

}

private Connections _conns = null;
public Connections Connections

{
get { return conns; }
set { _conns = value; }

}

425

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

private IServiceProvider sp = null;
public IServiceProvider ServiceProvider
{

get { return _sp; }

set { _sp = value; }

}

private IDTSComponentMetaData100 _cmd = null;
public IDTSComponentMetaData100 ComponentMetadata
{

get { return _cmd; }

set { _cmd = value; }

}

FormLoad

In the Form Load method RowNumberEditor_Load, you get the values from the custom properties and use
them to fill the fields in the editor.

private void RowNumberEditor Load(object sender, EventArgs e)
{
// Get the name of the new column and fill the textbox
txtColumnName.Text = _cmd.OutputCollection[0]
.OutputColumnCollection[0].Name;
// Cast seed from custom property to bigint
// and fill the spincontrol
numSeed.Value = Int64.Parse(_cmd
.CustomPropertyCollection["Seed"].Value.ToString());
// Cast increment from custom property to int
// and fill the spincontrol
numIncrement.Value = (int) cmd
.CustomPropertyCollection["Increment"].Value;

This example doesn’t use variables, but if you want a combo box with variables, then this is the location
to fill that combo box. Here is some basic example code for that (this is not included in the example code):

// Extra namespace
using Microsoft.SqlServer.Dts.Runtime;

// Looping through all variables
foreach (Microsoft.SqlServer.Dts.Runtime.Variable variable in Variables)
{
// Filter system variables
if (!variable.SystemVariable)
{
// Fill combobox
cmbMyVariables.Items.Add(variable);

426

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

// Select variable from custom property in combobox
if (variable.QualifiedName ==

(string) cmd.CustomPropertyCollection["myVar"].Value)
{

cmbMyVariables.SelectedItem = variable;
}
}
}

And adding a variable in the editor is also possible and works similarly to the custom task example.
The following code is not included in the example code:

// integer to store the index of the variable in the combobox
int currentdIndex = -1;

// Open new add variable screen to add an integer variable
IDtsVariableService _dtsVariableService = sp.GetService(
typeof(IDtsVariableService)) as IDtsVariableService;
Variable newVariable = _dtsVariableService.PromptAndCreateVariable(this,
null, "StartNumber", "User", typeof(Int32));

// Check if a new variable was created
if (newvariable != null)
{
// Add variable to combobox
currentdIndex = combobox.Items.Add(newVariable);
// Select new variable in combobox
combobox. SelectedIndex = currentdIndex;

Close Editor and Save Changes

When you close the editor with the OK button, you want to save the values from the form into the custom
properties of the transformation so that you can use them when you reopen the editor or when you execute
the transformation. And when you click the Cancel button, you just close the editor.

// Wrapper around the DTSComponent
private CManagedComponentWrapper _designTimeInstance;

private void btnOK Click(object sender, EventArgs e)
{

// Only instantiate once. You don't want to add outputs
// and columns each time you close the editor
if (_designTimeInstance == null)

_designTimeInstance = cmd.Instantiate();

}

// Check if the column name already exists
// If not change the name of the output column

427

CHAPTER 17 © CREATE CUSTOM TRANSFORMATION

IDTSOutputColumn100 outputColumn = cmd.OutputCollection[0]
.OutputColumnCollection[0];
if (outputColumn.Name != txtColumnName.Text)

outputColumn.Name = txtColumnName.Text;

}

// Pass the Seed to the componentProperty
_designTimeInstance.SetComponentProperty("Seed", (Int64)numSeed.Value);

// Pass the Incremenent to the componentProperty
_designTimeInstance.SetComponentProperty("Increment"”,
(int)numIncrement.Value);
}

private void btnCancel Click(object sender, EventArgs e)
{

// Close the window and undo changes

this.Close();

}

Interface Class Code

The next class file implements IDtsComponentUI. The only thing it is doing is passing through the objects,
like variables and serviceProvider, to the editor. It acts as an interaction point between the SSIS logic and
your custom code. This class file is called RowNumberInterface.cs, which is located in the UI project.

The empty methods are here because they are required by interface IDtsComponentU], but for this
example, you haven’t implemented any custom code for them. If you leave them out, you will get a build
error telling you that you forgot to implement an interface member.

using System;

using System.Windows.Forms;

using Microsoft.SqlServer.Dts.Pipeline.Design;
using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime;

// Class, Interfacing for transformation editor
namespace ScriptingBook.RowNumber

public class RowNumberInterface : IDtsComponentUI

{

IDTSComponentMetaData100 _cmd;
IServiceProvider _sp;

public void Help(System.Windows.Forms.IWin32Window parentWindow)

{
}

public void New(System.Windows.Forms.IWin32Window parentWindow)

{
}

428

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

public void Delete(System.Windows.Forms.IWin32Window parentWindow)

{
}

public bool Edit(System.Windows.Forms.IWin32Window parentWindow,
Variables variables, Connections connections)
{

// Create and display the form for the user interface.
RowNumberEditor componentEditor = new RowNumberEditor();

componentEditor.Connections = connections;
componentEditor.Variables = variables;
componentEditor.ComponentMetadata = _cmd;
componentEditor.ServiceProvider = _sp;

return componentEditor.ShowDialog(parentWindow) == DialogResult.OK;
}
public void Initialize(IDTSComponentMetaData100 dtsComponentMetadata,
IServiceProvider serviceProvider)
{

// Store the component metadata.
_cmd = dtsComponentMetadata;
_sp = serviceProvider;
}
}
}

When running the data flow with the new custom transformation, you can add a data viewer to see the
result of your hard work, as shown in Figure 17-11.

429

CHAPTER 17 I CREATE CUSTOM TRANSFORMATION

test.dtsx [Design] + X
8o Control Flow [CEIDBEEISTM & Parameters Tl Event Handlers := Package Explo... 3 Progress

Data Flow Task: |#%& DFT - Sales

P
- 9 FF_SRC - Sales S

Detach Copy |
RowNumber .
49.430 rows 1
2
3
4
r Row Number l 5
4
6
7
_&]9.8 6 rows 8
9
H RowNumber Editor — O [HESM | 10
11
Attached Total rows: 0, buff
Column Name RowNumber
Start Number (Seed): U=
Increment: 1

Figure 17-11. The end result

Summary

In this chapter you saw the basics for generating your own custom transformation. We encourage you to
first learn some basic .NET coding before rushing to create a whole bunch of custom tasks and components.
MSDN is full of example code that you can use to extend this basic example with all the bells and whistles.

430

PART V

Scripting from .NET Applications

CHAPTER 18

Package Creation

This chapter shows that besides using .NET within an SSIS package, you can also use .NET to create an SSIS
package. Although that sounds like a lot of work, especially when you can easily do that in SSDT by using
drag-and-drop, there are benefits.

Creating a couple of staging packages is not the most challenging work, but what about creating dozens
of them? That could be really tiresome and error-prone if you don’t pay attention. Beyond not having to do
the boring part of ETL, mass-producing packages has the following benefits:

e Speed: Even the most experienced SSIS specialist can’t create 50 or more
packages in a day.

e Extensibility: It's easy to add additional functionality to all packages.

e Equality: All packages look the same and use the same naming conventions.
There are two different ways of mass-producing packages:

e Programmatically with C# or VB.NET only

e BIMLScript with XML mixed with some C# or VB.NET code

Creating an SSIS Package Programmatically

The first method programmatically creates packages using .NET assemblies. You can do this with a Class
Library project in Visual Studio; but if you only have SSDT for BI without projects for C# or VB.NET, you
could even use a Script Task to execute the following code (by adding it to the Main method). However, you
could also obtain a free version of Visual Studio Community or Visual Studio Express to do this.

First, add a reference to Microsoft.SqlServer.ManagedDTS.dll, which is located in the Global Assembly
Cache (GAC). Each version of SSIS has its own version of the assemblies in the GAC. Next, add a Using or
Import for Microsoft.SqlServer.Dts.Runtime. If you are using the Script Task, you can skip the reference and
namespace because it is already there by default. In this example, you will create a very basic package with
an OLE DB connection manager and only one Execute SQL Task that executes a certain statement.

// Create new package
Package package = new Package();

// Add an OLE DB connection manager to the package
ConnectionManager 0leDbCon = package.Connections.Add("OLEDB");
0leDbCon.ConnectionString = "Data Source=.;Integrated Security=SSPI;

Initial Catalog=MyDB;";
0leDbCon.Name = "MyOleDbConnection";

433

CHAPTER 18 © PACKAGE CREATION

// Add an Execute SQL Task to the package

Executable exec = package.Executables.Add("STOCK:SQLTask");
TaskHost thSqlTask = exec as TaskHost;

thSqlTask.Name = "SQL - Truncate Stage";

// Add properties to the Execute SOL Task (sample table)
thSqlTask.Properties["SqlStatementSource"].SetValue(thSqlTask,

"Truncate table ABC;");
thSqlTask.Properties["Connection"].SetValue(thSqlTask, 0leDbCon.ID);

// Create an application object to save the package
Microsoft.SqlServer.Dts.Runtime.Application app = new
Microsoft.SqlServer.Dts.Runtime.Application();

// Save the package to XML
app.SaveToXml(@"D:\myPackage.dtsx", package, null);

And here is the VB.NET code:

' Create new package
Dim package As New Package()

Add an OLE DB connection manager to the package
Dim OleDbCon As ConnectionManager = package.Connections.Add("OLEDB")
OleDbCon.ConnectionString = "Data Source=.;Integrated Security=SSPI;

Initial Catalog=MyDB;"
0leDbCon.Name = "MyOleDbConnection"

' Add an Execute SQL Task to the package

Dim exec As Executable = package.Executables.Add("STOCK:SQLTask")
Dim thSqlTask As TaskHost = TryCast(exec, TaskHost)
thSqlTask.Name = "SQL - Truncate Stage"

' Add properties to the Execute SQL Task (sample table)

thSqlTask.Properties("SqlStatementSource").SetValue(thSqlTask,
"Truncate table ABC;")

thSqlTask.Properties("Connection").SetValue(thSqlTask, 0leDbCon.ID)

Create an application object to save the package
Dim app As New Microsoft.SqlServer.Dts.Runtime.Application()

Save the package to XML
app.SaveToXml("D:\myPackage.dtsx", package, Nothing)

The tasks are relatively easy to add, but the transformations are quite difficult due to the use of native COM
APIs. If you really like this method and want to continue this example, go to https://msdn.microsoft.com/
en-us/library/ms345167.aspx for more examples.

For most ETL consultants, this is probably too difficult. That’s why some clever people at Microsoft created
EzAPI, which is a powerful framework for generating packages; it is also much easier to use. Before the arrival
of BIML (see the next section), this was the most popular way to generate packages. Unfortunately, this project
hasn’t been updated for a while; perhaps due the rise of the even more popular BIMLScript. But EZAPI is still
available on CodePlex if you want to check it out at http://sqlsrvintegrationsrv.codeplex.com/releases/
view/21238.

434

https://msdn.microsoft.com/en-us/library/ms345167.aspx
https://msdn.microsoft.com/en-us/library/ms345167.aspx
http://sqlsrvintegrationsrv.codeplex.com/releases/view/21238
http://sqlsrvintegrationsrv.codeplex.com/releases/view/21238

CHAPTER 18 © PACKAGE CREATION

Creating an SSIS Package with BIMLScript

Business Intelligence Markup Language (BIML) is an XML dialect for creating SSIS, SSAS, and database
assets; it was created by Varigence. The most interesting part of this method is that you can add .NET code to
the XML to add, for example, an iteration that loops through all source tables. So you can create the package
with XML and then add flexibility and repeatability with relatively easy .NET statements.

The free community version of BIMLScript is available via BIDSHelper, but there is also a
commercial version, called MIST, with even more functionality. You can download a trial version from
https://varigence.com/Mist. For this example, you will use BIDSHelper, which can be downloaded
from CodePlex at https://bidshelper.codeplex.com. Download and install the appropriate version
for your SQL Server version and check whether you have the AdventureWorks database (OLTP, 2012,
or 2014) available. If you don't already have this database, you can download it from CodePlex at
http://msftdbprodsamples.codeplex.com.

In this example, you will create staging packages to stage tables from AdventureWorks. The packages are
very basic, but you can extend them to your own needs. There are many examples available on the Web. You
can even generate the destination tables; you do that manually in the next step.

Creating Stage Database

Create a new database called StageAW to store the staging tables from AdventureWorks. The first table
to stage is Person.Person; you need to create this table in the stage database. Remove all the “clutter”
(constraints, defaults, schemas, etc.) to create a very basic stage table. Later on you can do that for all the
tables that you want to stage. A script for the second table, Person.EmailAddress, is also included.

USE [StageAW]
G0

CREATE TABLE [Person](
[BusinessEntityID] [int] NULL,
[PersonType] [nvarchar](2) NULL,
[NameStyle] [bit] NULL,
[Title] [nvarchar](8) NULL,
[FirstName] [nvarchar](50) NULL,
[MiddleName] [nvarchar](50) NULL,
[LastName] [nvarchar](50) NULL,
[Suffix] [nvarchar](10) NULL,
[EmailPromotion] [int] NULL,
[AdditionalContactInfo] [nvarchar](max) NULL,
[Demographics] [nvarchar](max) NULL,
[rowguid] [uniqueidentifier] NULL,
[ModifiedDate] [datetime] NULL
) ON [PRIMARY]

GO

435

https://varigence.com/Mist
https://bidshelper.codeplex.com/
http://msftdbprodsamples.codeplex.com/

CHAPTER 18 I PACKAGE CREATION

CREATE TABLE [EmailAddress](
[BusinessEntityID] [int] NULL,
[EmailAddressID] [int] NULL,
[EmailAddress] [nvarchar](50) NULL,
[rowguid] [uniqueidentifier] NULL,
[ModifiedDate] [datetime] NULL

) ON [PRIMARY]

Adding a New BIML File

Create a new SSIS project in SSDT/BIDS called StageAW. Then right-click the project or the folder called
SSIS Packages and choose Add New BIML File (see Figure 18-1). If this option isn’t available, make sure that
the Add-in BIDSHelper is active (in the Tools menu). A new file called BimlScript.biml will be added to the
Miscellaneous folder.

Solution Explorer v+ o x
@ o-ad@| -
Search Solution Explorer (Ctrl+;) P~
4 StageAW

& Project.params
> ml Connection Managers

=l Packages
P & = Add New Biml File
&), New SSIS Package
EL SSIS Import and Export Wizard...
Convert Deployment Model
Upgrade All Packages
‘EL Add Existing Package
Sort by name, persisted
Sort by name

Paste Ctri+V

Figure 18-1. Add a new BIML file

Open the new BIML file. It contains the following XML start and end tags. Within these tags you will
add new tags to generate a single stage package for Person.Person. Add a few empty rows between them and

start adding new tags. Notice that there is no .NET code in the first part; but don’t worry, you will add that
later on.

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
</Biml>

436

http://schemas.varigence.com/biml.xsd

CHAPTER 18 © PACKAGE CREATION

Start with the OLE DB connection managers. You need a source and a destination connection
manager. The CreateInProject option is for the Project Deployment model only. If you type "<" within the
Connections tags, IntelliSense will show you all the possible connection managers that are available. Change

the connection strings if necessary.

<!--Package connection managers-->
<Connections>
<0leDbConnection
Name="Souzrce"
CreateInProject="true"
ConnectionString="Data Source=.;Initial Catalog=AdventureWorks2012;
Provider=SQLNCLI11.1;Integrated Security=SSPI;Auto Translate=False;">
</0leDbConnection>

<0leDbConnection
Name="Destination"
CreateInProject="true"
ConnectionString="Data Source=.;Initial Catalog=StageAW;
Provider=SQLNCLI11.1;Integrated Security=SSPI;Auto Translate=False;">
</0leDbConnection>
</Connections>

The second step is to add the package tag, which is still within the BIML tags, but after the Connections
tags. Again, IntelliSense will help you define all the properties of the package tag. Make sure that the
protection level matches your SSIS project. A linear constraint mode automatically connects all tasks with
default precedence constraints. The variable and tasks in the next steps will be added within the package tags.

<Packages>
<Package
Protectionlevel="EncryptSensitiveWithUserKey"
ConstraintMode="Linear"
AutoCreateConfigurationsType="None"
Name="stg Person">

</Package>
</Packages>

The third step is to add an integer variable, which you need for a Row Count transformation within the
data flow. Add this within the package tags.

<Variables>
<Variable Name="ReadCount" DataType="Int32">0</Variable>
</Variables>

The fourth step is to add the tasks. Add an Execute Package Task that truncates the stage table, and a
Data Flow Task that transfers the data to the stage table. Add these tasks within the package tags. In the next
step, you will be adding the transformations within the data flow tags. Note the ConnectionName property,
which refers to the connections from the first step.

437

CHAPTER 18 © PACKAGE CREATION

<!--Control Flow Tasks -->
<Tasks>
<!--Execute SQL Task to truncate the staging table-->
<ExecuteSQL
Name="SQL - Truncate Person"
ConnectionName="Destination"
ResultSet="None">
<DirectInput>TRUNCATE TABLE Person</DirectInput>
</ExecuteSQL>

<!--Data Flow Task to fill the staging table-->
<Dataflow
Name="DFT - Stage Person">

</Dataflow>
</Tasks>

The fifth step is to add the transformations: a source, a row count, and a destination. Note the
connection names that refer to the first step and the variable in the row count that refers to the third step.
Since all source columns exist with the same name in the stage table, there is no column mapping required,
because BIML will do that for you. However, you can add column mappings for more complex scenarios.

<Transformations>

<0leDbSource
ConnectionName="Source"
Name="OLE_SRC - Person">
<!-- A ugly SELECT *, but you could replace it with some .net code retrieving the
columnnames -->
<DirectInput>SELECT * FROM [Person].Person</DirectInput>

</0leDbSource>

<!-- Count the rows -->
<RowCount
Name="CNT - ReadCount"
VariableName="User.ReadCount">
</RowCount>

<!--Destination without column mappings -->
<0leDbDestination
Name="OLE_DST - Person"
ConnectionName="Destination">
<ExternalTableOutput Table="Person" />
</0leDbDestination>
</Transformations>

Now save the BIMLScript file and right-click it in Solution Explorer. Choose Check Biml for Errors to

find typos and errors. If there are no errors, right-click it again and choose Generate SSIS Packages.
It generates a single SSIS package within the project, as shown in Figure 18-2.

438

CHAPTER 18 I PACKAGE CREATION

g Personatex Design]_+ X

%o Control Flow [l Chatul & Parameters @] Event Hanc

stg_Person.dtsx [Design] + > Enlailvidsii|

el sk Data Flow & Parameters [Ew

X0q|oo]

Data Flow Task: | W& DFT - Stage Person

g‘a SQL - Truncate Person

X0q|o0y SISS

e-) OLE_SRC - Person

i-)i DFT - Stage Person

v
@ CNT - ReadCount

123

v

e(- OLE_DST - Person

Connection Managers

E (project) Destination 9 (project) Source

Connection Managers

¥ (project) Destination ¥ (project) So

Figure 18-2. Generated stage package

Adding .NET Code

It may seem like a lot of work for a single package, but now it’s time to add some .NET code and loop through
all the AdventureWorks tables. All hard-coded table names will now be replaced by a piece of script, which
gets the table name from the loop. The BIML engine will then generate multiple packages instead of one. But
first you let BIML know which programming language you want to use and which Usings/Imports you need.
You need to put these outside the BIML tags. The best place to put them is on the bottom of the BIMLScript.
Putting them on top could cause you to lose IntelliSense. If you want to use VB, then replace C# with VB.

<!--Includes/Imports for C#-->

<#@ template language="C#" hostspecific="true"#>
<#@ import namespace="System.Data"#>

<#@ import namespace="System.Data.SqlClient"#>

.NET code should be added between the <# and #> tags. Between <Packages> and <Package> you are
executing a query via .NET to retrieve table information from AdventureWorks. And you are also opening the
Foreach Loop that loops through all the records from that query. Note that the strings are wrapped to fit on

this page!

439

CHAPTER 18 © PACKAGE CREATION

<Packages>
<H#
string myConn = @"Data Source=.;Initial Catalog=AdventureWorks2012;
Provider=SQLNCLI11.1;Integrated Security=SSPI;
Auto Translate=False;";
string myQuery ="SELECT TABLE_NAME as tableName, TABLE_SCHEMA as schemaName
FROM INFORMATION SCHEMA.TABLES
WHERE TABLE_TYPE = 'BASE TABLE' AND
TABLE_NAME = 'Person'";
DataTable allTables = ExternalDataAccess.GetDataTable(myConn,myQuery);
foreach (DataRow row in allTables.Rows) {
#>
<Package

And here is the VB.NET code:

<Packages>
<#
Dim myConn As String = "Data Source=.;Initial Catalog=AdventureWorks2012;
Provider=SQLNCLI11.1;Integrated
Security=SSPI; Auto Translate=False;"
Dim myQuery As String = "SELECT TABLE_NAME as tableName,
TABLE_SCHEMA as schemaName
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE TYPE = 'BASE TABLE'
AND TABLE_NAME = 'Person'"
Dim allTables As DataTable = ExternalDataAccess.GetDataTable(myConn, myQuery)
For Each row As DataRow In allTables.Rows
#>
<Package

And between </Package> and </Packages> you are closing the loop. This means that everything
between this code is repeated X times, depending on the number of rows in the query.

</Package>
<HHb
</Packages>

And here is the VB.NET code:

</Package>
<HNext#>
</Packages>

Now you can replace every hard-coded table name and schema name in the BIMLScript with data
from the query. If you want to write something with .NET, you can do that by adding the equal sign:
<#t=something#>. In this case, you can use <#=row["tableName"]#> and <#=row["schemaName"]#> like this.

<Package
ProtectionLevel="EncryptSensitiveWithUserKey"
ConstraintMode="Linear"
AutoCreateConfigurationsType="None"
Name="stg <#=row["tableName"J#>">

440

CHAPTER 18 © PACKAGE CREATION

<Variables>
<Variable Name="ReadCount" DataType="Int32">0</Variable>
</Variables>
<!--Control Flow tasks -->
<Tasks>
<!--Execute SQL Task to truncate the staging table-->
<ExecuteSQL
Name="SQL - Truncate <#=row["tableName"]#>"
ConnectionName="Destination"
ResultSet="None">
<DirectInput>TRUNCATE TABLE <#=row["tableName"]#>
</DirectInput>

A downside of adding .NET code to your BIMLScript is that is messes up the format and the IntelliSense
(see Figure 18-3). C# comments will particularly ruin your code format.

foreach (DataRow row in allTables.Rows) {

#>

<Package
ProtectionLevel ="EncryptSensitiveWithUserKey"
ConstraintMode="Linear"
AutoCreateConfigurationsType="None"
Name="stg_<#=rou["tableName" J#>">
<Variables>

<Variable Name="ReadCount" DataType="Int32">@</Variable>

</Variables>

<!--Control Flow tasks --3>

<Tasks>
<!--Execute SQL Task to truncate the staging table--»>
<ExecutesoL

Name="SQL - Truncate <#=row["tableName"]#>"
ConnectionName="Destination"
ResultSet="None">
<DirectInput>TRUNCATE TABLE <#=row["tableName"]#>
</DirectInput>

</ExecuteSOL>

Figure 18-3. A messed up format and annoying and wavy lines

After replacing all hard-coded parts (names, queries, and destination) test your code and generate
the package. If there are no errors and the generated package is correct, then you can add the second table
(EmailAddress) to your staging area and extend your query in the BIMLScript so that it also selects that extra
table in the WHERE clause: AND TABLE_NAME in ('Person', 'EmailAddress').Ifthatalso generatestwo
working packages, you can add all the tables and adjust the WHERE clause. In a matter of seconds, you will
have dozens of staging packages.

Adding a Script Component with a RowNumber

You can also add a Script Task or Component with BIMLScript; for example, the row number Script
Component that you have often used in this book. To keep things easy, you will continue with the previous
example, but first you need to add an extra integer column called SurrogateKey to the stage tables. You can
do that manually with the designer in SSMS or by using a TSQL script (as follows), which adds a new column
at the bottom of the person table.

441

CHAPTER 18 © PACKAGE CREATION

ALTER TABLE dbo.Person ADD
SurrogateKey int NULL
GO

Next you need to add an integer variable to store the seed (starting number). The best place to do
this is immediately after the opening <Package> tag. If you want to expand the BIMLScript, you could fill
this variable with an Execute SQL Task by retrieving the max value from a table to set the correct starting
seed. Since there will already be a <Variables> tag, you can just add the variable line below the existing
ReadCount variable and skip the variables lines.

<Variables>
<Variable Name="Seed" DataType="Int32">1</Variable>
</Variables>

Now the Script Component. In Visual Studio, this is an internal project that is opened in the VSTA
environment. In BIMLScript, this is also a separate project enclosed in the <ScriptProjects> tag. Add the
following tags below the closing Connections tag. It contains the unique ProjectCoreName, which contains a
GUID. This the same project name that you see in Solution Explorer when you edit a Script Component. The
Name property is used later to reference to this project from the Data Flow Task. Within these tags you add
references, input and output columns, variables, and the actual script. For VB, use the .vbproj extension
and change the ScriptLanguage to VB.

<ScriptProjects>
<ScriptComponentProject
ScriptlLanguage="CSharp"
ProjectCoreName="sc_c253bef215bf4d6b85dbe3919c35c167.csproj"”
Name="SurrogateKeyScript">

</ScriptComponentProject>
</ScriptProjects>

Next are the assembly references. You need to add the same references that you see in the Solution
Explorer of the Script Component. Add these after the opening <ScriptComponentProject> tag. For VB you
find these in the project properties, but they are equal to C#.

<AssemblyReferences>
<AssemblyReference AssemblyPath="Microsoft.SqlServer.DTSPipelinelrap" />
<AssemblyReference AssemblyPath="Microsoft.SqlServer.DTSRuntimeWrap" />
<AssemblyReference AssemblyPath="Microsoft.SqlServer.PipelineHost" />
<AssemblyReference AssemblyPath="Microsoft.SqlServer.TxScript" />
<AssemblyReference AssemblyPath="System.d1l" />
<AssemblyReference AssemblyPath="System.AddIn.d11" />
<AssemblyReference AssemblyPath="System.Data.dll" />
<AssemblyReference AssemblyPath="System.Xml.d11l" />
</AssemblyReferences>

The next step is to add read-only and read-write variables. In this example, you only use the Seed

variable as ReadOnlyVariable. Add these after the closing </AssemblyReferences> tag. Note that this is not
the same variable tag as before, but you have to specify nearly the same properties.

442

CHAPTER 18 © PACKAGE CREATION

<ReadOnlyVariables>
<Variable
VariableName="Seed"
Namespace="User"
DataType="Int32" />
</ReadOnlyVariables>

Next you have to add the file content of the AssemblyInfo.cs and main.cs files. If you don’t want a lot of
white space in the generated code, then it is advisable to decrease the indentation to a minimum and align it
to the far left. The actual file content is in the next step. For VB you should use the .vb extension.

<Files>
<File Path="AssemblyInfo.cs">

</File>
<File Path="main.cs">

</File>
</Files>

The first file is the AssemblyInfo.cs. You can just open the file in Solution Explorer and copy the content
to the BIMLScript. Paste the following inside the preceding file tag.

using System.Reflection;
using System.Runtime.CompilerServices;

/7

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.

//

[assembly: AssemblyTitle("SC_ c253bef215bf4d6b85dbe3919c35c167")]

[assembly: AssemblyDescription("")]

[assembly: AssemblyConfiguration("")]

[assembly: AssemblyCompany("Joost and Régis")]

[assembly: AssemblyProduct("SC_ c253bef215bf4d6b85dbe3919c35c167")]
[assembly: AssemblyCopyright("Copyright @ Joost and Régis 2015")]

[assembly: AssemblyTrademark("")]

[assembly: AssemblyCulture("")]

//

// Version information for an assembly consists of the following four values:
//

// Major Version
// Minor Version
// Build Number
// Revision

//

// You can specify all the values or you can default the Revision and Build Numbers
// by using the '*' as shown below:

[assembly: AssemblyVersion("1.0.*")]

443

CHAPTER 18 © PACKAGE CREATION

And here is the VB.NET code:

Imports System
Imports System.Reflection
Imports System.Runtime.InteropServices

' General Information about an assembly is controlled through the following
' set of attributes. Change these attribute values to modify the information
' associated with an assembly.

Review the values of the assembly attributes

81t;Assembly: AssemblyTitle("SC_ c253bef215bf4d6b85dbe3919c35c167")8gt;
81t;Assembly: AssemblyDescription("")>

81t;Assembly: AssemblyCompany("Joost and Régis")3gt;

81t;Assembly: AssemblyProduct("SC_ c253bef215bf4d6b85dbe3919c35c167")8égt;
81t;Assembly: AssemblyCopyright("Copyright @ Joost and Régis 2015")8gt;
81t;Assembly: AssemblyTrademark("")8gt;

&1t;Assembly: CLSCompliant(True)dgt;

81t;Assembly: ComVisible(False)>

'The following GUID is for the ID of the typelib if this project is exposed to COM
81t;Assembly: Guid("4d9b8fe7-8cfa-45ea-98e5-0eec88be0a93”)8gt;

Version information for an assembly consists of the following four values:

Major Version
Minor Version
' Build Number
Revision

You can specify all the values or you can default the Build and Revision Numbers
' by using the '*' as shown below:
" &1t;Assembly: AssemblyVersion("1.0.*")>

81t;Assembly: AssemblyVersion("1.0.0.0")8gt;
81t;Assembly: AssemblyFileVersion("1.0.0.0")>

The second file is the main.cs. Again, just open your example script and copy the content to the
BIMLScript, but first replace < and > with 8gt; and &1t ;; otherwise, the XML tags will be messed up. Paste
this in the second file tag:

#region Namespaces

using System;

using System.Data;

using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime.Wrapper;
#endregion

444

CHAPTER 18 © PACKAGE CREATION

/// <summarydgt;

/// Rownumber transformation to create an identity column

/// </summarydgt;
[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent

{
int rownumber = 0;
/// &1t;summarydgt;
/// Get starting rownumber from variable
/// 81t;/summarydgt;
public override void PreExecute()
{
rownumber = this.Variables.Seed;
}
/// 8&1t;summarydgt;
/// Fill rownumber column and then increase the rownumber
/// 8&1t;/summarydgt;
/// <param name="Row">The row that is currently passing through the
component8l1t;/paramdgt;
public override void Input0 ProcessInputRow(InputOBuffer Row)
{
Row. SurrogateKey = rownumber;
rownumber++;
}
}

And here is the VB.NET code:

#Region "Imports"

Imports System

Imports System.Data

Imports System.Math

Imports Microsoft.SqlServer.Dts.Pipeline.Wrapper
Imports Microsoft.SqlServer.Dts.Runtime.Wrapper
#End Region

'Rownumber transformation to create an identity column
&1t;Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute8gt; _
&1t;CLSCompliant(False)> _
Public Class ScriptMain

Inherits UserComponent

Dim rownumber As Integer = 0
'Get starting rownumber from variable
Public Overrides Sub PreExecute()

rownumber = Me.Variables.Seed
End Sub

445

CHAPTER 18 © PACKAGE CREATION

'Fill rownumber column and then increase the rownumber
Public Overrides Sub Input0 ProcessInputRow(ByVal Row As InputOBuffer)
Row.SurrogateKey = rownumber
rownumber = rownumber + 1
End Sub
End Class

And the last step of the “internal” project is adding input and output columns. In this example,
there is only one output column, named SurrogateKey. This should also be added within the
ScriptComponentProject tag.

<InputBuffer Name="Inputo">
<Columns>
<!-- No input columns -->
</Columns>
</InputBuffer>
<OutputBuffers>
<OutputBuffer Name="Outputo">
<Columns>
<Column Name="SurrogateKey" DataType="Int32"></Column>
</Columns>
</OutputBuffer>
</OutputBuffers>

In the Data Flow Task, you can add a reference to the project that you just created. And since the output
column has the same name as the new column that was added to the destination table, you don’t have to
add any mappings. Add this between the Row Count transformation and the OLE DB Destination:

<ScriptComponentTransformation Name="SCR - Rownumber">
<ScriptComponentProjectReference ScriptComponentProjectName="SurrogateKeyScript" />
</ScriptComponentTransformation>

Now regenerate the packages by right-clicking the BIMLScript in the miscellaneous folder. Replace the
existing package. It is preferable that you first close those packages if they are still opened in Visual Studio;
otherwise, you get reload requests.

If the BIMLScript gets too large, you can move parts (such as the ScriptProjects) to a separate BIML file
and then embed this file in the main BIML file with an include tag.

<#@ include file="ScriptProjects.biml" #>
Of course, the ScriptProjects.biml file contains the exact XML that should replace the include tag when

you generate the packages. This makes your BIMLScript much more compact and clear. Moreover, it also
makes it easier to reuse parts in other BIML files.

BIMLScript: Master Package

Now that you have created dozens of stage packages, you also need to generate a master package; otherwise,
you end up adding a lot of Execute Package Tasks by hand. Here is some basic BIML code for a simple master
package. It generates a package called Master.dtsx and has one Execute Package Task.

446

CHAPTER 18

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
<Packages>
<Package
Name="Master"
ConstraintMode="Parallel"”
AutoCreateConfigurationsType="None"
ProtectionlLevel="EncryptSensitiveWithUserKey">
<Tasks>
<!--Execute Project Package-->
<ExecutePackage Name="EPT - stg Person">
<ExternalProjectPackage Package="stg Person.dtsx" />
</ExecutePackage >
</Tasks>
</Package>
</Packages>
</Biml>

PACKAGE CREATION

First, specify the programming language at the bottom and add an import to System.IO. Replace C# with

VB if you prefer that language.

<!--Includes/Imports for Ci#-->
<#@ template language="C#" hostspecific="true"#>
<#@ import namespace="System.IO"#>

Next, add a loop within the Tasks tag and around the Execute Package Task. This loop could be similar
to the one in the first example, but you can also loop through files. In this example, you are looping through

the project folder of the current SSIS project. Change the D: \stageAW\ path, if necessary.

<!-- Get all staging packages from SSIS project folder on file system -->
<#
string[] myStagingfiles = Directory.GetFiles(@"D:\stageAW\", "stg *.dtsx");
foreach(string fileName in myStagingfiles) {

FileInfo stagePackage = new FileInfo(fileName);

// Remove Extension because . is not allowed in the task name

string nameOnly = Path.GetFileNameWithoutExtension(stagePackage.Name);
#
<!--Execute Project Package-->
<ExecutePackage Name="EPT - <#=nameOnly#>">

<ExternalProjectPackage Package="<#=stagePackage.Name#>" />
</ExecutePackage>
<t}

And this is the VB.NET code:

<!-- Get all staging packages from SSIS project folder on file system -->
<#
Dim myStagingfiles As String() = Directory.GetFiles("D:\stageAW\","stg *.dtsx")
For Each fileName As String In myStagingfiles

Dim stagePackage As New FileInfo(fileName)

' Remove Extension because . is not allowed in the task name

Dim nameOnly As String = Path.GetFileNameWithoutExtension(stagePackage.Name)
#>

447

http://schemas.varigence.com/biml.xsd

CHAPTER 18 © PACKAGE CREATION

<!--Execute Project Package-->

<ExecutePackage Name="EPT - <#=nameOnly#>">
<ExternalProjectPackage Package="<#=stagePackage.Name#>" />

</ExecutePackage>

<# Next #>

Figure 18-4 shows the simplified master package with Execute Package Tasks.

vasteas Desinl = < [

sl as e 290N g% Data Flow & Parameters £ Event Handlers %= Package Explo...

b B
E"I. EPT - stg_EmailAddress T"I EPT - stg_Person
B

Figure 18-4. Simplified master package with Execute Package Tasks

Tip If you want to test your .NET code before adding it to BIML, you can use a tool like LINQPad
(www. 1lingpad.net) to test your code snippets.

Summary

In this chapter you learned how to generate packages. The first package may take a little longer than using
drag-and-drop, but if you have to create dozens of dull packages by hand, then generating is the best option.
There are two flavors: .NET assemblies and BIML. The diehard .NET developers probably prefer the
first, but BIML is increasingly getting more popular. As an ETL consultant, you should master one of these
methods. All examples in this chapter were very simple, but the purpose was to show you the absolute
basics. There are plenty of online resources available, especially for BIML (http://bimlscript.com).

448

http://www.linqpad.net/
http://bimlscript.com/

CHAPTER 19

Package Execution from .NET W,

This chapter shows you how to execute a package from a .NET application, which could be a web
application, a web service, a Windows service, or a Windows application. Since there are two deployment
models, there are also two different ways to execute packages; however, there is one requirement: you need
SQL Server Integration Services installed on the same machine as your application. The packages will run
on this machine. If this is not possible in your situation, you could create a web service on machine A to
execute packages locally and then call that web service from an application that runs on machine B. Another
alternative is to let your code on machine B execute a remote SQL Server Agent job on machine A to execute
a package locally. In both cases, the application runs on machine B, but the package runs on machine A.

And if you are using the Integration Services catalog (project deployment model), you can execute a
stored procedure from that database remotely.

Package Deployment Model

This first example uses a Windows application running a package that is stored on the file system. Make sure
that you have a dummy package available to work with. You can create a new package and add a Script Task
that fires a warning event (see Chapter 4 for an example).

To create this Windows application, you need a version of Visual Studio that has C# or VB.NET
templates; SSDT for BI or BIDS isn’t enough (see Chapter 16 for more details).

Start Visual Studio and create a new Windows Forms Application project named MySsisApplication.
Make sure to choose the appropriate .NET Framework version. For this example, you are using .NET
Framework 4 to execute an SSIS 2012 package. The screenshots, starting with Figure 19-1, are from Visual
Studio 2013.

449

http://dx.doi.org/10.1007/978-1-4842-0638-6_4
http://dx.doi.org/10.1007/978-1-4842-0638-6_16

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

MNew Project ? “
b Recent NET Framework 4 ~ |Bort by: | Default - &= Search Installed Templates (Ctrl+E D~
4 Installed & i
|| Windows Forms Application Visual C# Type: Visual C#
-
4 Templates = A project for creating an application with
4 Business Intelligence _] WPF Application Visual C# a Windows Forms user interface
L b
Analysis Services ca
Integration Services n Console Application Visual C#
Reporting Services cn
b Visual Basic 5‘! Class Library Visual C#
4 \Visual C# ¢
b Store Apps 95! Class Library (Portable) Visual C#
.
‘Windows Desktop e
b Web &9 WPF Browser Application Visual C#
Lt
b Office/SharePoint -t
Cloud N] EmptyProject Visual C#
LightSwitch]
Reporting EU Windows Service Visual C#
Silverlight e
Test ii! WPF Custom Control Library Visual C#
est o
WCF «
Workflow - | WPF User Control Library Visual C#
(2]
b Online B0 Windewas Eneme Crntenl 1iheans Viesica ¥
Click here 1o go online and find templates
HName: MySsisApplication
Location: d:\MySsisApplication -| | Browse..
Solution name: MySsisApplication [w| Create directory for solution
[_| Add to soyrce control
OK Cancel

Figure 19-1. Windows Form Application to execute an SSIS package

Add Reference

First, you need to add a reference to SSIS, particularly to Microsoft.SqlServer.ManagedDTS.dll, which is
located in the global assembly cache in Windows. Right-click References (in VB, right-click the project) in
Solution Explorer and choose Add Reference.... Then browse to the correct assembly. If you have multiple
versions of SSIS installed on your development machine, make sure to choose the right one. Each version of
SSIS has its own folder. The X in the file path differs per version.

C:\Windows\Microsoft.NET\assembly\GAC_MSIL\Microsoft.SqlServer.ManagedDTS\
v4.0 1X.0.0.0_89845dcd8080cc91\Microsoft.SqlServer.ManagedDTS.d11

In Figure 19-2, you see three versions: v4.0_11 (SSIS 2012), v4.0_12 (SSIS 2014), and v4.0_13 (SSIS 2016).

450

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

Reference Manager - MySsisApplication i
b Assemblies Search Browse (Ctrl+E P~
P Solution Name Path Name:
b COM V] MicrosoftSqlServer.ManagedDTS.dll C\Windows\MicrosoftNET\a: Microsoft.SqlServer.ManagedDTS
Microsoft.5QLServer.DTSPipelineWrap.dll C\Windows\Microsoft NET\a: dII
A Browse Created by:
Select the files to reference... pretion
- w b Mi Sql M I arch Microsoft.SglServer.Ma.. .
@ ™ b« GAC_ icrosoft.SqlServer.Manag v & | Search Microsoft.SqiServerMa.. 2 in).141029-1950
Organize ~ New folder =~ [@
~ Name Date modified Type Size
@ OneDrive
I v40_11.0.0.0_89845dcd8080cc91 28-5-2015 22:59 File folder
= I v4.0.12.0.0.0_89845dcdB080cc9 28-5-2015 23:01 File folder
& This PC :
}. v40_13.0.0.0_89845dcd8080cco 25-6-2015 21:15 File folder
@& Network
v
File name: | v | |Component Files (*dli;*tib;* v
Add Cancel
4 13
| Browse. || OK || cancel

Figure 19-2. Add a reference to Microsoft.SqlServer. ManagedDTS.dll

Create a Form

Open the Forml1 file and add a button called btnStart and a label called IblStatus. You can find them in the
toolbox. When ready, your form should look something like Figure 19-3.

451

CHAPTER 19 © PACKAGE EXECUTION FROM .NET

DQ MySsisApplication - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM FORMAT TOOLS TEST AN/

OO B-A BP9 -C | Pstat~ O ~[Debug - | L] | B _E

Toolbox Form1.cs [Design] + X

Search Toolbox -

S22.n0S eleq

> All Windows Forms LS Form1 E

4 Common Controls

Pointer Start
Button

CheckBox StatusLabel

CheckedListBox L

ComboBox
DateTimePicker
Label

LinkLabel
ListBox

ListView

Figure 19-3. A simple form with just one button and a label

The Code

Now double-click the Start button (btnStart) to create an onClick event handler. The code page opens and a
new method is created, called btnStart_Click.

private void btnStart Click(object sender, EventArgs e)

{
}

And this is the VB.NET code:

Private Sub btnStart Click(sender As Object, e As EventArgs) Handles _
btnStart.Click
End Sub

You will add the code to this method, but first you need to add an extra namespace to shorten the code.
For VB.NET projects, the imported namespace is a property of the project, but you can also add the imports
code at the top of your code, like in a Script Task or a Script Component.

#region CustomNamespace

using Microsoft.SqlServer.Dts.Runtime;
#endregion

452

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

And this is the VB.NET code:

#Region "CustomNamespace"
Imports Microsoft.SqlServer.Dts.Runtime
#End Region

Now back to the code for the button. This example uses myApplication .LoadPackage toload a
package from the file system, but you can also use LoadFromSqlServer or LoadFromDtsServer to load the
package from the MSDB or the package store. If you type a dot behind myApplication, then IntelliSense will
show you all the possibilities.

In this code, you need to change the reference to your own example package. On the line below that,
there is code to set the value of a variable. Either remove that line or add a variable to your sample package.

private void btnStart Click(object sender, EventArgs e)
{
// Instantiate SSIS application object
Microsoft.SqlServer.Dts.Runtime.Application myApplication =
new Microsoft.SqlServer.Dts.Runtime.Application();

// Load package from file system

//(use LoadFromSqlServer for SQL Server based packages)

1blStatus.Text = "Loading package from file system.";

Package myPackage = myApplication.LoadPackage(@"D:\myPackage.dtsx", null);

// Optional set the value from one of the SSIS package variables
myPackage.Variables["User::myVar"].Value = "test123";

// Execute package
1blStatus.Text = "Executing package";
DTSExecResult myResult = myPackage.Execute();

// Show the execution result
1blStatus.Text = "Package result: " + myResult.ToString();

This is the VB.NET code:

Private Sub btnStart Click(sender As Object, e As EventArgs) Handles btnStart.Click
' Instantiate SSIS application object
Dim myApplication As Application = New Application()
' Load package from file system

" (use LoadFromSglServer for SQL Server based packages)

1blStatus.Text = "Loading package from file system."

Dim myPackage As Package = _

myApplication.LoadPackage("D:\myPackage.dtsx", Nothing)

' Optional set the value from one of the SSIS package variables
myPackage.Variables("User::myVar").Value = "test123"

453

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

Execute package
1blStatus.Text = "Executing package"
Dim myResult As DTSExecResult = myPackage.Execute()
' Show the execution result

1blStatus.Text = "Package result: " + myResult.ToString()
End Sub

Logging

Since this example is for packages using the package deployment model, there isn’t any default logging
available like in the catalog. If you are logging to a table, text file, or so forth, and you want to show that in the
Windows application, then you need to add custom code for it. However, it is also possible to get warnings
and errors from the package and display these messages in a simple list box, for example. First, add a list box
named lbLog to your form. It should look something like what’s shown in Figure 19-4.

DQ MySsisApplication - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM FORMAT TOOLS TEST AN

@0 B2 M| - < P st - Debug - -

Toolbox Form1vb [Design] + X
Search Toolbox
P All Windows Forms
4 Common Controls

-

L, Forml =] @R

Pointer e
Button

CheckBox StatusLabel |
CheckedListBox IbLog 1 L

ComboBox
DateTimePicker
Label

LinkLabel
ListBox

Ed > > (B @

ListView

Figure 19-4. The simple form extended with a list box for log messages

454

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

Next, you need to add the warnings and errors to the list box. One drawback is that they come from two
different sets. If you want to show them in order of appearance, then you have to merge and order them.
For this example, you stored both errors and warnings in a temporary data table to add them sorted to the
list box. You can add this code at the bottom of the btnStart_Click method. Note that this is a quick and
dirty way to show the logs, which works just fine, but there are more sophisticated ways or more convenient
controls to do this. Let’s focus on the SSIS stuff, however.

// Create a temporary table to store warnings and errors
DataTable myLogTable = new DataTable("myLogTable");
myLogTable.Columns.Add("LogTime", typeof(DateTime));
myLogTable.Columns.Add("Source", typeof(string));
myLogTable.Columns.Add("Message", typeof(string));

// Loop through all warnings and add them to the table

foreach (DtsWarning packageWarning in myPackage.Warnings)

{
myLogTable.Rows.Add(Convert.ToDateTime(packageWarning.TimeStamp), packageWarning.Source,
packageWarning.Description);

// Loop through all errors and add them to the table
foreach (DtsError packageError in myPackage.Errors)
{
myLogTable.Rows.Add(Convert.ToDateTime(packageError.TimeStamp), packageError.Source,
packageError.Description);

}

// Create a sorted view and then make a new datatable with it
myLogTable.DefaultView.Sort = "LogTime";
DataTable myLogTableSorted = myLogTable.DefaultView.ToTable();

// Cleanup resource
myLogTable.Dispose();

// Loop through the new sorted dataset and add rows to the listbox
foreach (DataRow row in myLogTableSorted.Rows)

{

1bLog.Items.Add(row.Field<DateTime>(0).ToLongTimeString() + " - " + row.Field<string>(1)

+ " - " + row.Field<string>(2));

}

// Cleanup resource
myLogTableSorted.Dispose();

This is the VB.NET code:
' Create a temporary table to store warnings and errors
Dim myLogTable As DataTable = New DataTable("myLogTable")
myLogTable.Columns.Add("LogTime", GetType(DateTime))
myLogTable.Columns.Add("Source", GetType(String))
myLogTable.Columns.Add("Message", GetType(String))

455

CHAPTER 19 © PACKAGE EXECUTION FROM .NET

' Loop through all warnings and add them to the table

For Each packageWarning As DtsWarning In myPackage.Warnings
myLogTable.Rows.Add(Convert.ToDateTime(packageWarning.TimeStamp), packageWarning.Source,
packagelWarning.Description)

Next

' Loop through all errors and add them to the table

For Each packageError As DtsError In myPackage.Errors
myLogTable.Rows.Add(Convert.ToDateTime(packageError.TimeStamp), packageError.Source,
packageError.Description)

Next

' Create a sorted view and then make a new datatable with it
myLogTable.DefaultView.Sort = "LogTime"
Dim myLogTableSorted As DataTable = myLogTable.DefaultView.ToTable()

' Cleanup resource
myLogTable.Dispose()
" Loop through the new sorted dataset and add rows to the listbox
For Each row As DataRow In mylLogTableSorted.Rows

lbLog.Items.Add(row.Field(Of DateTime)(0).ToLongTimeString() + " - " + row.Field
(Of String)(1) + " - " + row.Field(Of String)(2))
Next

' Cleanup resource
myLogTableSorted.Dispose()

The Results

Now run the application and click the Start button. Check the package log to see if the package was really
executed. As explained earlier, an easy way to check if the log works is to add a Script Task to your sample
package to fire some warnings and/or errors (see Chapter 4 for firing event examples).

If you get the following error, you are probably using an older version of Visual Studio (2010).

The Execute method on the task returned error code 0x80131621 (Mixed mode assembly is built
against version 'v2.0.50727' of the runtime and cannot be loaded in the 4.0 runtime without
additional configuration information.). The Execute method must succeed, and indicate the
result using an "out" parameter.

The solution is to tell Visual Studio that it is OK to use .NET Framework 2.0 code in a 4.0 application.
You do this by adding the useLegacyV2RuntimeActivationPolicy="true" attribute to the startup tagin
the App . config file. If you don’t have an App. config file, you can add one by right-clicking the project in
Solution Explorer and then selecting Add » New Item » Application Configuration File » App.config,
which should look something like Figure 19-5.

456

http://dx.doi.org/10.1007/978-1-4842-0638-6_4

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

wonconty = < [

1 <?xml version="1.0" encoding="utf-8" ?>

2 [F<configuration>

3 H <startup uselegacyV2RuntimeActivationPolicy="true">

4 <supportedRuntime version="v4.0" sku="_.NETFramework,Version=V4.0" />
5 </startup>

& </configuration>

Figure 19-5. App.config example used in a C# project

Another option is to change the target framework of your Windows application project to 2.0 or 3.5.

Project Deployment Model

This second example also uses a Windows application—this time running a package that is stored in the
Integration Services Catalog. Start Visual Studio and create a new Windows Forms Application project
named MySsisApplication2. Make sure to choose the appropriate .NET Framework version. For this
example, you are using .NET Framework 4 to execute an SSIS 2012 package.

Add Reference

First, you need to add four references, which are located in the global assembly cache in Windows. Right-
click References (in VB, right-click the project) in Solution Explorer and choose Add Reference.... Then
browse to the correct assembly. If you have multiple versions of SSIS installed on your development
machine, make sure to choose the right one. Each version of SSIS has its own folder. The X in the file path
differs per version (see previous example; also see Figure 19-6).

C:\Windows\assembly\GAC_MSIL\Microsoft.SqlServer.ConnectionInfo\1X.0.0.0_ 89845dcd8080cc91\
Microsoft.SqlServer.ConnectionInfo.dll
C:\Windows\assembly\GAC_MSIL\Microsoft.SqlServer.Management.Sdk.Sfc\1X.0.0.0_89845dcd8080cc91
\Microsoft.SqlSexrver.Management.Sdk.Sfc.d11l
C:\Windows\assembly\GAC_MSIL\Microsoft.SqlServer.Smo\1X.0.0.0__ 89845dcd8080cc91\Microsoft.
SqlServer.Smo.dll
C:\Windows\assembly\GAC_MSIL\Microsoft.SqlServer.Management.IntegrationServices\1X.0.0.0
89845dcd8080cc91\Microsoft.SqlServer.Management.IntegrationServices.dll

457

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

Reference Manager - MySsisApplication2 ?
b Assemblies Search Browse (Ctrl+E) P~
b Solution Name Path Name:
b COM Microsoft.5glServer.ManagedDTS.dll CAWindows\Mi Microsoft.SqlServer.Connectionin
Microsoft.SQLServer.DTSPipelineWrap.dll C\Windows\Mi fo.dll
4 Browse [W] MicrosoftSgiServer.Management.IntegrationServices.dll C:\Windows\as Created by:
1] MicrosoftSglServer.Smo.dil C\Windows\as Microsoft Corporation
Recent] MicrosoftSqlServerManagement.Sdk.Sfc.dll C\Windows\as File Version:
[¥] Microsoft.SglServer.Connectioninfo.dil C\Windows\as 11.0.5058.0
((SQL11_PCU_Main).140514-1820
Select the files to reference...
@ * 1 L « GAC_. » MicrosoftSqlServer... » v ¢ | Search Microsoft.SqiServerMa.. 2
Organize * New folder =~ O @
2 Name Date modified Type Size
, Favorites z
}. 11.0.0.0_89845dcd8080cc91 28-5-2015 22:59 File folder
; L. 12.0.0.0_89845dcd8080cc91 12-11-2014 21:59 File folder
& OneDrive
). 13.0.0.0_89845dcd8080cc91 25-6-2015 21:15 File folder
& This PC i < o
File pame: | V| Component Files (*.dIl*tlb* v
Add Cancel
| powse. || ok || cancel

Figure 19-6. Add multiple references to SSIS

Create a Form

Open the Form1 file and add a button called btnStart and a label called 1blStatus. You can find them in the
toolbox. When ready, your form should look something like Figure 19-7.

458

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

DQ MySsisApplication - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM FORMAT TOOLS TEST AN/

OO0 B2 W9 -C - P Statv & - Debug ~ | o _E

Toolbox Form1.cs [Design] # X

Search Toolbox

$321N0S e1e(]

> All Windows Forms LE Form1 E

4 Common Controls

Pointer Start
Button

CheckBox
CheckedListBox m
ComboBox

StatusLabel

DateTimePicker
Label
LinkLabel
ListBox
ListView e —]

Figure 19-7. A simple form with just one button and a label

The Code

Double-click the Start button (btnStart) to create an onClick event handler. The code page opens and a new
method is created, called btnStart_Click.

private void btnStart Click(object sender, EventArgs e)

{
}

This is the VB.NET code:

Private Sub btnStart Click(sender As Object, e As EventArgs) Handles _
btnStart.Click
End Sub

You will add the code to this method, but first you need to add some extra namespaces to shorten the
code. For VB.NET projects, the imported namespace is a property of the project, but you can also add the
imports code at the top of your code, like in a Script Task or a Script Component.

#region CustomNamespace

using System.Data.SqlClient;

using Microsoft.SqlServer.Management.IntegrationServices;
using System.Collections.ObjectModel;

#endregion

459

CHAPTER 19 © PACKAGE EXECUTION FROM .NET

This is the VB.NET code:

#Region "CustomNamespace"

Imports System.Data.SqlClient

Imports Microsoft.SqlServer.Management.IntegrationServices
Imports System.Collections.ObjectModel

#End Region

Now back to the code for the button. This example first connects to the SQL Server instance where the
catalog is located. Then the package is loaded and optional parameters are supplied. After that, the package
is executed; but there is a problem if you want to wait for the package result. There is a 30-second timeout
that cannot be changed. If your package takes more than 30 seconds to finish, then you get an error:

Timeout expired. The timeout period elapsed prior to completion of the operation or the
server is not responding.

To solve this, you need to execute the package asynchronized so that it does not wait for an answer.
However, this is the default method, so no need to change the code. After the execution code, you can add a
while loop that checks whether the status is Completed, which indicates that the package is finished.

In this code, you see the location of an example package. Make sure that you have deployed a test
package to the SSISDB and changed the location in the code. You also see code for two parameters. Again,
make sure that you have added those to the project and package, or that you have removed those lines from
the code.

private void btnStart_Click(object sender, EventArgs e)
{
// Connecting to the SQL Server instance where the catalog is located
using (SglConnection ssisConnection = new SqlConnection
("Data Source=.;Initial Catalog=master;Integrated Security=SSPI;"))
{

try
{
// SSIS server object with connection
IntegrationServices ssisServer = new IntegrationServices(ssisConnection);

// The reference to the package which you want to execute

1blStatus.Text = "Loading package from catalog.";

Form.ActiveForm.Refresh();

PackageInfo ssisPackage = ssisServer.Catalogs["SSISDB"]
.Folders["Extending SSIS"]
.Projects["Chapter 19"]
.Packages["myPackage.dtsx"];

// Setting parameters
Collection<PackageInfo.ExecutionValueParameterSet> executionParameter =
new Collection<PackageInfo.ExecutionValueParameterSet>();

// Add execution parameter for an asynchronized (value=0, default)
// or synchronized (value=1) execution. You could skip this code line.
executionParameter.Add(new PackageInfo.ExecutionValueParameterSet
{ObjectType = 50, ParameterName = "SYNCHRONIZED", ParameterValue = 0});

460

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

// Add execution parameter (value) to override the default logging level
// (0=None, 1=Basic, 2=Performance, 3=Verbose)
executionParameter.Add(new PackageInfo.ExecutionValueParameterSet
{ObjectType = 50, ParameterName = "LOGGING LEVEL", ParameterValue = 3});

// Add a project parameter (value) to fill a project parameter

executionParameter.Add(new PackageInfo.ExecutionValueParameterSet
{ObjectType = 20, ParameterName = "MyProjectParameter",
ParameterValue = "some value"});

// Add a package parameter (value) to fill a package parameter

executionParameter.Add(new PackageInfo.ExecutionValueParameterSet
{ObjectType = 30, ParameterName = "MyPackageParameter",
ParameterValue = "some value"});

// Execute package and return the ServerExecutionId

long executionIdentifier = ssisPackage.Execute(false,
null,
executionParameter);

// Get execution details with the ServerExecutionId from previous step

1blStatus.Text = "Executing package";

Form.ActiveForm.Refresh();

ExecutionOperation executionOperation = ssisServer.Catalogs["SSISDB"]
.Executions[executionIdentifier];

// Loop while the execution is not completed (timeout workaround)
while (!(executionOperation.Completed))
{

// Refresh execution info

executionOperation.Refresh();

// Wait 5 seconds before refreshing
// (you don't want to stress the server)
System.Threading.Thread.Sleep(5000);
}
// Showing the ServerExecutionId
1blStatus.Text = "Execution " + executionOperation.Id.ToString() +
" finished: " + executionOperation.Status.ToString();

}

catch (Exception ex)
{
// Log code for exceptions
1blStatus.Text = "Error: " + ex.Message;
}
}
}

461

CHAPTER 19 © PACKAGE EXECUTION FROM .NET

And this is the VB.NET code:

Private Sub btnStart Click(sender As Object, e As EventArgs) _

Handles btnStart.Click

Connecting to the SQL Server instance where the catalog is located

Using ssisConnection As New SqlConnection(_

462

"Data Source=.;Initial Catalog=master;Integrated Security=SSPI;")

Try

' SSIS server object with connection

Dim ssisServer As New IntegrationServices(ssisConnection)

' The reference to the package which you want to execute

1blStatus.Text = "Loading package from catalog."

Form.ActiveForm.Refresh()

Dim ssisPackage As PackageInfo = ssisServer.Catalogs("SSISDB") _
.Folders("Extending SSIS") _
.Projects("Chapter 19") _
.Packages ("myPackage.dtsx")

' Setting parameters
Dim executionParameter As New Collection(_
0f PackageInfo.ExecutionValueParameterSet)()

' Add execution parameter for an asynchronized (value=0, default)
" or synchronized (value=1) execution. You could skip these code lines.
executionParameter.Add(New PackageInfo.ExecutionValueParameterSet() _
With { _

.ObjectType = 50, _

.ParameterName = "SYNCHRONIZED", _

.ParameterValue = 0 _

1)

Add execution parameter (value) to override the default logging level
' (0=None, 1=Basic, 2=Performance, 3=Verbose)
executionParameter.Add(New PackageInfo.ExecutionValueParameterSet() _
With { _

.ObjectType = 50, _

.ParameterName = "LOGGING LEVEL", _

.ParameterValue = 3 _

1)

Add a project parameter (value) to fill a project parameter
executionParameter.Add(New PackageInfo.ExecutionValueParameterSet() _
With { _

.ObjectType = 20, _

.ParameterName = "MyProjectParameter", _

.ParameterValue = "some value" _

)

Add a package parameter (value) to fill a package parameter
executionParameter.Add(New PackageInfo.ExecutionValueParameterSet() _

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

With { _
.ObjectType = 30, _
.ParameterName = "MyPackageParameter", _
.ParameterValue = "some value" _

1)

Execute package and return the ServerkExecutionId

Dim executionIdentifier As Long = ssisPackage.Execute(False, _

Nothing, _
executionParameter)

' Get execution details with the ServerExecutionId from the previous step
1b1Status.Text = "Executing package"
Form.ActiveForm.Refresh()
Dim executionOperation As ExecutionOperation = ssisServer _
.Catalogs("SSISDB") _
.Executions(executionIdentifier)
' Loop while the execution is not completed
While Not (executionOperation.Completed)
' Refresh execution info
executionOperation.Refresh()
' Wait 5 seconds before refreshing
" (you don't want to stress the server)
System.Threading.Thread.Sleep(5000)
End While
' Showing the ServerExecutionId
1blStatus.Text = "Execution " + executionOperation.Id.ToString() + _
" finished: " + executionOperation.Status.ToString()

Catch ex As Exception
' Log code for exceptions
1b1Status.Text = "Error: " + ex.Message
End Try
End Using
End Sublogging

Showing the log is a little easier than in the previous example, but first you need to add a list box named
IbLog to the form. It should look something like Figure 19-8.

463

CHAPTER 19 © PACKAGE EXECUTION FROM .NET

od MySsisApplication - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM FORMAT TOOLS TEST AN

N - RS AN - < P Stat~ © - |Debug -)

¥

Form1.vb [Design] # X

[Form (= |

Start

Toolbox
Search Toolbox
P All Windows Forms
4 Common Controls

Pointer

Button
CheckBox
CheckedListBox
ComboBox

StatusLabel

IIbLog u

DateTimePicker
Label

LinkLabel
ListBox
ListView

Eer>EHENES »

Figure 19-8. The simple form extended with a list box for log messages

To fill the list box, simply add the following loop, but make sure that the list box is cleared before doing
it. You can add this code after showing the ServerExecutionId and the status.

// Clear listbox before adding log rows to it
lbLog.Items.Clear();

// Loop through the log and add the messages to the listbox
foreach (OperationMessage message in ssisServer.Catalogs["SSISDB"].
Executions[executionIdentifier].Messages)

{
}

1bLog.Items.Add(message.MessageType.ToString() + + message.Message);

And this is the VB.NET code:

' Clear listbox before adding log rows to it

lbLog.Items.Clear()

' Loop through the log and add the messages to the listbox

For Each message As OperationMessage In ssisServer.Catalogs("SSISDB") _
.Executions(executionIdentifier) _
.Messages

lbLog.Items.Add(message.MessageType.ToString() + ": "
Next

+ message.Message)

464

CHAPTER 19 I PACKAGE EXECUTION FROM .NET

The Results

Now run the application and click the Start button. Check the log in the list box (see Figure 19-9). You can
compare it to the log in the catalog.

ay Form1 - O -

Start
Bxecution 26 finished: Success

| 20: SCR - Dummy:Validation is complete.
| 20: myPackage:Validation is complete.
400: Beginning of package execution.
| 90: Based on the system configuration, the maximum concurmrent executables are set to 6.
| 140: <Paml version="1.0"7><DTS:ParameterValues xmins:DTS="www microsoft.com/SqlServer/Dts"><DTS:PackageParal
| 30: myPackage:Start, 10:48:34.
30: SCR - Dummy:Start, 10:48:34.
| 10: SCR - Dummy:Validation has started.
| 20: SCR - Dummy:Validation is complete. v

Figure 19-9. The results

Summary

In this chapter, you learned how to execute packages via a .NET application. You could create a web service
that is used to execute packages remotely or you could create a Windows service that watches a certain
folder and executes a package when a new file is dropped into that folder. The possibilities are endless.

465

Index

A

AcquireConnections method, 226, 235
Asymmetric encryption, 273

BIMLScript, SSIS package, 436
execute package task, 437
integer variable, 437
master package, 446
.NET code, 439
OLE DB connection managers, 437
package tag, 437
Solution Explorer, 438
stage database, 435
transformations, 438

Breakpoint, 46

C

Column transformation

class variables, 335

code implementation, 335

data viewers, 338

Input Columns page, 334

transformation type, 333
Common Language Runtime (CLR), 55
Connection manager type, 236
C# or VB.NET, 30
CreateNewOutputRows methods, 229-230, 235
CryptoStreamMode, 276
Custom task

Assembly name, 387

Build Action property, 389

Build Events page, 389

control flow, 385

Default namespace, 387

Expression Builder, 406

code implementation, 408
form controls, 407

references, 407
usings, 407
form layout, 396
add variables, 401
close editor and save changes, 404
code implementation, 397
connection manager, 402
FindVariable method, 400
GUID variable, 399
interface class, 405
PageLoad method, 398
taskHost property, 397
GAC, 387
Public KeyToken, 388
Runtime code
DtsTask tag, 391
execution code, 394
IDTSComponentPersist interface, 395
task property, 391
Validate method, 392
SSIS references, 387
Visual Studio projects, 386
Custom transformation
Assembly name and Default
namespace, 413
Build Events, 416
Class Library projects, 412
for data flow, 411
DtsPipelineComponent
custom transformation form, 424
DeleteOutput method, 424
execution code, 422
input and output ports, 418
PerformUpgrade method, 423
PreExecute method, 422
properties, 417
Validate method, 420
Form Code
Connections and Variables, 425
Form Load method, 426

467

INDEX

Custom transformation (cont.) locked file, 132
IDtsComponentU]I, 428 log entry, 130
IServiceProvider, 425 OLE DB connection, 131

icons, 415 parameter mapping, 131
key file, 414 SQL Task Editor, 130
public key token, 414 NET scripts, 116
SSIS references, 413 properties, 117
read-only flags, 116
D Script Task, 121-122
TimeSpan object, 123
Design-time error, 392 TimeSpan object, 124
DtsPipelineComponent, 417 Foreach Loop, regular
expressions, 195
E code implementation, 197
PassRegex, 196
Error handling precedence constraint, 199
throw statement, 65 RegexFilter, 196
try-catch-finally statement, 66 Script Task, 196
try-catch statement, 66 testing, 200
Exception, 45 Framework Class Library (FCL), 55
F G
File System Task operation Global Assembly Cache
copying/moving files, 115-116 (GAC), 93, 167, 201
CreationTime and CreationTimeUtc, 119
error catching, 118 H
file name, extension, and path, 118
file’s size, 119 Hashing
FireInformation text, 119-120 code implementation, 342
Foreach Loop Container, 121 data flow, 339
ADO enumerator, 137 data viewers, 348
archiving file, 140 Input Columns, 341
csv files, 133 Output Columns, 342
data flow schema, 140 ReadOnly variable, 340
DataSet object, 135 string variables, 338
data table, 136
file connection manager configuration, 139 1L J. K
filelist package variable, 136 1 Y
FileLoadLog table, 144 Input0_ProcessInputRow
loading files, 135-136 method, 229, 232
parameter mapping, 142
SQL task configuration, 141 LM
variables, 133-134 ’
GetAccessControl method, 119 Logging events
GetAttributes method, 119 FireError result, 237
locked files, 124 FireInformation result, 239
FileStream type, 127 FireProgress result, 239-240
Script Task, 126 FireWarning result, 238
variables, 125 firing events, 237
loop structure, 123 loop construction, 239
methods and properties, 118 Progress/Execution
move file, 128 results tab, 237
control flow schema, 132 unexpected errors, 238
FileCheckLog table, 129, 133 VB.NET code, 238

468

N

.NET Framework
arrays
accessing array members, 61
initialization, 60
types, 59
classes and namespaces, 58
collections, 61
components, 55
data types
elements, 57
in .NET and SSIS, 55
error handling
throw statement, 65
try-catch-finally statement, 66
try-catch statement, 66
generics, 62
lists, 61
loops
for, 63
foreach loop, 64
while loop, 62
operators, 57
using/imports keywords, 58
variables, 57
.NET library, 30
.NET versions
C#-target framework, 240
SSIS versions and
frameworks, 240
VB.NET, 241

(0

OLE DB command, 295

PQ

Package Deployment model, 449

add reference, 450

App.contfig file, 456

btnStart_Click method, 452, 455

execute method, 456

form creation, 451

logging, 454

windows application, 450
PassRegex, 196
PostExecute methods, 40, 228, 232, 323
PreExecute methods, 40, 227, 232, 235, 323, 422
ProcessInput method, 422
Project Deployment model

add reference, 457

code implementation, 460

form creation, 458

INDEX

log messages, 464
onClick event handler, 459
results, 465

R

ReadOnlyVariable method, 231
ReadWrite variable method, 231
Real-world scenarios, 195

encrypt/decrypt files, 207
code implementation, 209
Connection Manager, 208
Script Task, 208
variables, 208

Foreach Loop, regular expressions, 195
code implementation, 197
PassRegex, 196
precedence constraint, 199
Regex filter, 196
RegexFilter, 196
Script Task, 196
testing, 200

Ionic.Zip.dll, 201

unzipping, 201
add references, 202
code implementation, 203
Control Flow, 202
script, 203

zipping
code implementation, 205
reference, 205

RegexFilter, 196
Regular expressions, 311

cleaning and validating rules
code implementation, 324
data viewer, 325
DFT_CleanseDate, 322
SCR_CleanseDate, 322

email validation
call method, 318
clean interface, 316
data viewers, 318
Flat File Connection Manager, 313
script task transformation, 315
SCR_ValidateEmail, 314
VSTA editor, 316

pattern, 311

processing text, 311

Regex class, 312

remove HTML tags
code implementation, 320
data viewer, 322
DFT_RemoveHTML, 319
replace method, 321
Scr_RemoveHTML, 319

469

INDEX

Regular expressions (cont.)
requirements, 312

ReleaseConnections method, 227

RowNumber method, 231

S

Script Component, 37, 243
breakpoint, 50
connection managers, 235, 299
datatype, 39
debugging, 46
DebugView, 54
editor, 32
data flow task, 219
file connection managers, 222
input columns page, 220
inputs and outputs, 221
RowNumber column, 222
script layout, 223
script task editor, 220
error message, 43
file connection manager, 295
Flat File, 37
Input0_ProcessInputRow method, 39, 302
integer variable, 230
logging events, 237
message box, 52
.NET versions, 240
PostExecute method, 301
pre-and post-methods, 40
PreExecute method, 300
ReadOnlyVariables and
ReadWriteVariables, 231
SSIS package, 441
starter package, 296
surrogate key, 42
text file, 303
transformation type, 38
types, 297
usages, 43
variable dispenser, 232
variables (and parameters), 230
watch functionality, 51
XML file
connection manager, 306
employee attribute, 308
error handling, 309
file connection manager, 303
input columns, 305
PostExecute method, 308
script component, 304
types, 304
XML structure, 307
XmlTextWriter namespace, 307

470

Script Component source
connection manager, 253
CreateNewQutputRows method, 263
createRandomString, 260
data flow task, 244, 250-251
DateTime pickRandomDate, 261
file connection manager, 246-247
flat file connection manager, 243-244
NumberOfColumns integer variable, 257
output columns, 252, 259
RandomMethods, 261
Script Transformation Editor, 245

source, transformation, and destination, 258

VB.NET code, 247, 254, 260
Script Component transformation, 267
APRESS_SSIS_Scripting database, 268
compare rows, 279
Data Access mode, 279
data viewer, 282
in C# version, 281
OLE DB Source, 280
in VB.NET, 281
conditional multicast
configuration, 290
data source, 289
data viewer, 292
derived column, 292

PreExecute and PostExecute methods, 291

encrypt and decrypt data, 272
CryptoStream, 276
decryption data, 277
Editor page, 275
encryption data, 277
OLE DB source, 273
password salt, 276
ReadOnly variable, 274
Script button, 275

GUID creation
packages, 286
RowGUID, 287

Input0_ProcessInputRow method, 270

IsNumeric method, 282
Flat File Connection Manager, 283
int32.TryParse method, 284

Proper casing, 271

ReadWrite variables, 270

results, 288

SCR_TRA_ProperCasing, 269

StrConv, 268

surrogate keys, 284

synchronous input, 268

VSTA editor, 288

Script Layout
AcquireConnections method, 226
class declaration, 225

CreateNewOutputRows method, 229
directives, 225

environment, 224

Import statements, 225

Input0_ProcessInputRow method, 229

namespaces, 225
PostExecute method, 228
PreExecute method, 227
ReleaseConnections method, 227
VB.NET code, 225
VSTA editor, 224
Script Task, 33
assembly, 88
build events, 93
class library, 89
creation, 89
GAC, 93
key file, 92
namespace, 90
public static method, 90
references, 95
breakpoint, 48
connection managers, 98
AcquireConnection method, 101
ADO.NET Connection, 101
ConnectionString property, 99
ExcelFilePath property, 100
logging events, 106
Main method, 99
OLE DB connection, 103
debugging, 46
default language, 70
editor, 31, 69
error message, 43, 49
exception, 46
FireCustomEvents, 109
child package, 110
code implementation, 113
event handler, 113
execution, 114
parent package, 111
package design, 33
programming language, 33
readonly variable, 77
readwrite variable, 77
testing, 36
usages, 43
variable dispenser method
advantages and disadvantages, 88
code implementation, 83
parent package, 88
variables, 77
VB.NET code, 74
class declaration, 75
import statements, 75

INDEX

main method, 76
name space, 75
result declaration, 76
SSIS version, 75
VSTA editor
Properties, 72
ScriptMain, 72
Solution Explorer, 72
SSIS version, 73
VSTA environment, 34, 48
watch window, 49
Simple Object Access Protocol (SOAP), 175
SMTP Connection Manager, 145
data flow task, 147, 152
flat file source, 151
FTP server
ListDirectoryDetails, 157-158, 160, 162-164
SSIS string variables, 155-156
VSTA environment, 156
HTTP connection manager, 153-154
server name/IP address, 145
SFTP server, 165
customNamespaces, 171-173
read-only lock, 167
SFTP assembly, 167-168
SFTP connections, 171
variables, 166
VSTA environment, 168-170
string variables, 146
URL, 152
VB.NET code, 148-150
VSTA environment, 147
Software Development Kit (SDK), 360
SQL Server Data Tools (SSDT), 3
SQL Server Integration Services (SSIS), 3
SSH File Transfer Protocol (SFTP), 69
SSIS and scripting
column mappings, 17
Control Flow layout, 21
Control Flow tasks, 5-6
C# or VB.NET, 30
csv File into Database, 11
data flow design pane, 7-8
Data Flow layout, 23
Data Flow Task, 22
destination components, 11
drag-and-drop, 18
DTS, 3
file system task editor, 24
flat file connection manager, 13-14
flat file source, 13
Foreach File Enumerator, 20
Foreach Loop Container, 18
.NET library limitations, 30
.NET scripting, 25

471

INDEX

SSIS and scripting (cont.)
control flow layout, 29
.csv file, 26
script task editor, 27-28
OLE DB connection, 15
OLE DB destination editor, 16
source components, 9
SSDT development studio, 4
SSDT or BIDS, 12
transformation components, 10
Variable Mappings, 21
SSIS package
BIMLScript (see BIMLScript, SSIS package)
programatic creation, 433
Script Component, 441
SSIS Toolbox, 4
StartingSequence method, 230
StartingSequence variable, 231
Surrogate keys, 284
Symmetric encryption, 273

T, U

<Table> element, 185

\'

Vague error, 45

Visual Studio for Applications (VSA)
editor, 223
environment, 224

void PostExecute() function, 301

W

Web services, 349
add service reference dialog, 177-178
binary-encoded communication, 176
built-in web service task, 176
config/not config, 179
debugging, 180
Dynamics CRM
data flow designs, 357
delete method, 370
guidelines, 357
input columns, 361
insert method, 366
I0rganizationService class variable, 364
late binding method, 365
namespaces, 363
PreExecute method, 364
references, 362
Script Component, 361

472

SDK, 360

update method, 368

variables, 360

Windows Identity Foundation, 360
in-code method, 181

methods, properties, signature, interfaces, 178

public weather
class variables, 354
data viewer, 356
input columns, 350
namespaces, 354
output columns, 351
PostExecute method, 356
PreExecute method, 355
Input0_ProcessInputRow method, 355
Script Component, 350
Service Reference, 353
System.ServiceModel, 352
variables, 349

SharePoint, 371
CreateNewOutputRows method, 376
custom namespaces, 374
GetListItems method, 379
help method, 378
PreExecute method, 376, 379
Script Component, 372
Service Reference, 373
SRC_TRA-GetExcelDocuments, 377
variables, 372

System.ServiceModel, 179

variables, 177

WCE 175-176

WCEF protocol chart, 176

Windows Communication Foundation
(WCF), 175-176
World Wide Web Consortium (W3C), 175

X,Y,Z

XML
connection manager, 188-189
custom namespaces, 189
destination, 327
in Internet Explorer, 332
namespaces, 328
PreExecute method, 328-329
ProcessInputRow
method, 330
Foreach Loop Container, 184-185
Script Task, 189
ValidateXML, 191
variable mappings pane, 186
XML schema, 187-188

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started
	Chapter 1: Getting Started with SSIS and Scripting
	 Performing a Basic Action with SSIS Built-in Components
	 What Is SSIS?
	 Development Tool
	 Control Flow Tasks
	 Data Flow Components
	Extract
	Transform
	Load (Destination)

	 Example 1: Load . csv File into Database

	 Performing an Action with a Combination of SSIS Built-in Components
	 Example 2: Find Files in a Folder and Load Them into the Database with Built-in Components

	 .NET Scripting Makes Life Easier
	 Example 3: Find the Latest Modified .csv File

	 SSIS Versions and .NET Library Limitations
	 Programming Language: C# or VB.NET
	 Summary

	Chapter 2: Script Task vs. Script Component
	 Introduction to Script Task
	 Package Design
	 Edit Script Task
	 The Script
	 Testing

	 Introduction to Script Component
	 Flat File
	 Script Component

	 When to Use a Script Task/Component
	 Building Code
	 Debugging in Visual Studio
	 Script Task

	 Script Component
	 Summary

	Chapter 3: .NET Fundamentals
	 Introduction
	 .NET Data Types .vs Data Flow Data Types
	 Data Types
	 Variables
	 Operators
	 Using/Import, Classes, and Namespaces
	 Arrays
	 The Different Types of Arrays
	 Initializing Arrays
	 Accessing Array Members

	 Collections
	 Lists
	 Generics
	 Loops
	 The while Loop
	 The for Loop
	 The foreach Loop

	 Error Handling
	 The throw Statement
	 The try-catch Statement
	 The try-catch-finally Statement

	 Summary

	Part II: Script Tasks
	Chapter 4: Script Task
	 Editor
	 Script Layout
	 Variables and Parameters
	 Method 1: ReadOnlyVariables and ReadWriteVariables
	 Method 2: Variable Dispenser
	Advantages and Disadvantages of Both Methods
	Parent Package Variables

	 Referencing Assemblies
	 Creating an Assembly
	Strong Name
	Global Assembly Cache
	 Build Events
	 Add a Reference in the Script Task

	 Connection Managers
	 File Connection Managers
	 Logging Events

	 FireCustomEvents
	 Child Package
	 The Script
	 The Parent Package
	 The Script Task

	 The Code
	 Summary

	Chapter 5: File Properties
	 Getting All Properties
	 Checking for File Existence
	 File Name, Extension, and Path
	 File Created and Modified Time
	 File Owner
	 File Attributes and ReadOnly
	 File Size
	 Examples of the File Properties Mentioned

	 Deleting Files Older Than X Days
	 Checking for a Locked File
	 Moving the File
	 Foreach Loop Ordered File Enumerator
	 Foreach Ordered File Enumerator
	 Creating a Dataset
	 Loading Files
	 Adding Rows to the Dataset
	 Writing the Result
	 Putting It All Together

	 Summary

	Chapter 6: Working Through the Internet and the Web
	 Sending HTML-Formatted Email
	 SMTP Connection Manager
	 Variables
	 Script Task
	 The Code
	 The Results

	 Downloading a File from a Web Server
	 Data Flow Task
	 HTTP Connection Manager
	 Script Task
	 The Code
	 The Results

	 Downloading the Latest File from an FTP Server
	 Variables
	Script Task
	The Script

	 The Results

	 Downloading a File from an SFTP Server
	 Download and Install
	 Variables
	 Script Task
	 Add Reference
	 The Code
	Upload
	The Code: Upload

	 The Results

	 Summary

	Chapter 7: Working with Web Services and XML
	 Windows Communication Foundation
	 Web Services
	 Creating Variables
	 The Script
	 Service Reference
	 Custom Namespace
	 Config or Not Config
	 Solution 1: Modifying .config Files
	Changes Required for Debugging
	Changes Required After Debugging Is Done

	 Solution 2: The In-Code Method
	The Code

	 The Foreach Loop to Handle XML
	 Variable Mappings

	 Validating XML Against Schemas
	 Validating XML with Schemas
	 Connections
	 The Code
	 Custom Namespaces
	 Validating the XML

	 Summary

	Chapter 8: Advanced Solutions with Script Task
	 Regular Expressions
	 Variables
	 Script Task
	 The Script
	 Precedence Constraint
	 Testing

	 Zip/Unzip
	 Downloading the Library
	 Unzipping
	 Adding a Reference
	 The Unzip Script
	 Zipping
	 Reference
	 The Zip Script

	 Encrypt/Decrypt Files
	 Connection Managers
	 Variable
	 Script Task
	 The Script

	 Summary

	Part III: Script Component
	Chapter 9: Script Component Foundation
	 Editor
	 Input Columns
	 Inputs and Outputs
	 Connection Managers
	 Script Layout
	AcquireConnections
	ReleaseConnections
	 PreExecute
	PostExecute
	 Input( )_ProcessInputRow
	 CreateNewOutputRows

	 Variables and Parameters
	 Method 1: ReadOnlyVariables and ReadWriteVariables
	 Method 2: Variable Dispenser
	 Conclusion

	 Connection Managers
	 Logging Events
	 Changing .NET Versions
	 Summary

	Chapter 10: Script Component As Source
	 Flat File with an Uneven Number of Columns
	 Script Component Source
	 Creating Output Columns
	 Creating a File Connection Manager
	 The Code
	 The Results

	 Flat File with Records Split over Multiple Rows
	 Script Component Source
	 Output Columns
	 Create a Connection Manager
	 The Code
	 The Results

	 Generate Random Data with the Script Component As a Source
	 Script Component Source
	 Output Columns
	 The Code
	 The Results

	 Summary

	Chapter 11: Script Component Transformation
	 Script Component Transformation
	 ProperCase
	 The Source
	 The Script Transformation

	 Encrypting and Decrypting Data
	 The Solution Package
	 Variables
	 The Script
	 Salting the Password
	 Encrypting the Stream
	 Encrypting Data
	 Decrypting Data

	 Comparing Rows
	 IsNumeric
	 Creating Surrogate Keys
	 Creating GUIDS
	 Creating the Package
	 Add Script Component
	 The Results

	 Conditional Multicast
	 The Data Source
	 The Script

	 Summary

	Chapter 12: Script Component As Destination
	 Basic Flat File Destination with Header and Footer
	 Create a File Connection Manager
	 Source
	 Script Component
	 Adding Input Columns
	 Selecting Connection Manager
	 The Code
	 The Results

	 Basic XML Destination
	 Creating a File Connection Manager
	 Source
	 Script Component
	 Input Columns
	 Selecting Connection Manager
	 The Code
	 The Results

	 Summary

	Chapter 13: Regular Expressions
	 Prerequisites
	 Validating Email Addresses
	 The Script
	 Calling the Method

	 Removing HTML Tags
	 The Package
	 The Script

	 Cleaning/Validating
	 The Package
	 The Script

	 Summary

	Chapter 14: Script Component Reflection
	 Flexible XML Destination
	 The Script
	 The Results

	 Transformation of All Columns
	 Script Component Type
	 Script Component Input Columns
	 The Script
	 The Results

	 Calculating a Hash for a Row
	 Variables
	 Script Component
	 ReadOnly Variable
	 Input Columns
	 Output Columns
	 The Script
	 The Results

	 Summary

	Chapter 15: Web Services
	 Enriching with Weather
	 Variables
	 Script Component
	 Input Columns
	 Inputs and Outputs
	 Add References
	 Add Service Reference
	 Namespaces
	 Class Variables
	 PreExecute
	 Input0_ProcessInputRow
	 PostExecute
	 The Results

	 Dynamics CRM
	 Data Flow Example 1
	 Data Flow Example 2
	 Download CRM SDK
	 Windows Identity Foundation
	 Variables
	 Add Script Component
	 Input Columns
	 Add References
	 Add Namespaces
	 Class Variables
	 PreExecute
	 Input0_ProcessInputRow
	Input0_ProcessInputRow - Insert
	Input0_ProcessInputRow - Update
	Input0_ProcessInputRow - Hard Delete
	Input0_ProcessInputRow - Soft Delete

	 SharePoint
	 Variables
	 Script Component
	 The Script
	 Extracting Excel Files from the Libraries
	 PreExecute
	 Input0_ProcessInputRow

	 Summary

	Part IV: Custom Tasks and Components
	Chapter 16: Create a Custom Task
	 Custom Task Preparations
	 Creating Visual Studio Projects
	 Adding SSIS References
	 Default Namespace and Assembly Name
	 Creating a Key for a Strong Name
	 Getting the Public Key Token
	 Icons
	 Build Events

	 Custom Task Runtime Code
	 Task Properties
	 Validating Task
	 Execution Code
	 SaveToXML and LoadFromXml

	 Custom Task Form
	 Form Code
	 TaskHost and ServiceProvider
	 PageLoad
	Translating the GUID into a Variable
	Adding Variables
	Add Connection Managers
	Close Editor and Save Changes

	 Interface Class Code

	 Expression Builder
	 References
	 Usings
	 Form Controls
	 The Code

	 Summary

	Chapter 17: Create Custom Transformation
	 Custom Transformation Preparations
	 Creating Visual Studio Projects
	 Adding SSIS References
	 Default Namespace and Assembly Name
	 Creating a Key for the Strong Name
	 Getting the Public Key Token
	 Icons
	 Build Events

	 Custom Transformation Runtime Code
	 Component Properties and Input and Output Ports
	 Validating Transformation
	 Execution Code
	 PreExecute
	 PerformUpgrade
	 Disable Advanced Editor
	 Custom Transformation Form

	 Form Code
	 ServiceProvider, Connections, Variables, and Metadata
	 FormLoad
	Close Editor and Save Changes

	 Interface Class Code

	 Summary

	Part V: Scripting from .NET Applications
	Chapter 18: Package Creation
	 Creating an SSIS Package Programmatically
	 Creating an SSIS Package with BIMLScript
	 Creating Stage Database
	 Adding a New BIML File
	 Adding .NET Code

	 Adding a Script Component with a RowNumber
	 BIMLScript: Master Package
	 Summary

	Chapter 19: Package Execution from .NET
	 Package Deployment Model
	 Add Reference
	 Create a Form
	 The Code
	 Logging
	 The Results

	 Project Deployment Model
	 Add Reference
	 Create a Form
	 The Code
	 The Results

	 Summary

	Index

