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Preface
Apache Spark has captured the imagination of the analytics and big data developers, 
and rightfully so. In a nutshell, Spark enables distributed computing on a large scale 
in the lab or in production. Till now, the pipeline collect-store-transform was distinct 
from the Data Science pipeline reason-model, which was again distinct from the 
deployment of the analytics and machine learning models. Now, with Spark and 
technologies, such as Kafka, we can seamlessly span the data management and data 
science pipelines. We can build data science models on larger datasets, requiring 
not just sample data. However, whatever models we build can be deployed into 
production (with added work from engineering on the "ilities", of course). It is our 
hope that this book would enable an engineer to get familiar with the fundamentals 
of the Spark platform as well as provide hands-on experience on some of the 
advanced capabilities. 

What this book covers
Chapter 1, Installing Spark and Setting up your Cluster, discusses some common 
methods for setting up Spark.

Chapter 2, Using the Spark Shell, introduces the command line for Spark. The Shell is 
good for trying out quick program snippets or just iguring out the syntax of a call 
interactively.

Chapter 3, Building and Running a Spark Application, covers Maven and sbt for 
compiling Spark applications.

Chapter 4, Creating a SparkContext, describes the programming aspects of the 
connection to a Spark server, for example, the SparkContext.

Chapter 5, Loading and Saving Data in Spark, deals with how we can get data in and out 
of a Spark environment.
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Chapter 6, Manipulating your RDD, describes how to program the Resilient 
Distributed Datasets, which is the fundamental data abstraction in Spark that makes 
all the magic possible.

Chapter 7, Spark SQL, deals with the SQL interface in Spark. Spark SQL probably is 
the most widely used feature. 

Chapter 8, Spark with Big Data, describes the interfaces with Parquet and HBase.

Chapter 9, Machine Learning Using Spark MLlib, talks about regression, classiication, 
clustering, and recommendation. This is probably the largest chapter in this book. If 
you are stranded on a remote island and could take only one chapter with you, this 
should be the one!

Chapter 10, Testing, talks about the importance of testing distributed applications.

Chapter 11, Tips and Tricks, distills some of the things we have seen. Our hope is that 
as you get more and more adept in Spark programming, you will add this to the list 
and send us your gems for us to include in the next version of this book!

What you need for this book
Like any development platform, learning to develop systems with Spark takes trial 
and error. Writing programs, encountering errors, agonizing over pesky bugs are  
all part of the process. We expect a basic level of programming skills—Python or 
Java—and experience in working with operating system commands. We have kept 
the examples simple and to the point. In terms of resources, we do not assume any 
esoteric equipment for running the examples and developing the code. A normal 
development machine is enough.

Who this book is for
Data scientists and data engineers would beneit more from this book. Folks who have 
an exposure to big data and analytics will recognize the patterns and the pragmas. 
Having said that, anyone who wants to understand distributed programming would 
beneit from working through the examples and reading the book.
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Conventions
In this book, you will ind a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"While the methods for loading an RDD are largely found in the SparkContext  
class, the methods for saving an RDD are deined on the RDD classes."

A block of code is set as follows:

//Next two lines only needed if you decide to use the assembly plugin

import AssemblyKeys._assemblySettings

scalaVersion := "2.10.4"

name := "groupbytest"

libraryDependencies ++= Seq(

   "org.spark-project" % "spark-core_2.10" % "1.1.0"

)

Any command-line input or output is written as follows:

scala> val inFile = sc.textFile("./spam.data")

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: " Select 
Source Code from option 2. Choose a package type and either download directly  
or select a mirror."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are veriied, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Installing Spark and Setting 

up your Cluster
This chapter will detail some common methods to set up Spark. Spark on a single 
machine is excellent for testing or exploring small datasets, but here you will also learn 
to use Spark's built-in deployment scripts with a dedicated cluster via SSH (Secure 
Shell). This chapter will explain the use of Mesos and Hadoop clusters with YARN or 
Chef to deploy Spark. For Cloud deployments of Spark, this chapter will look at EC2 
(both traditional and EC2MR). Feel free to skip this chapter if you already have your 
local Spark instance installed and want to get straight to programming.

Regardless of how you are going to deploy Spark, you will want to get the latest 
version of Spark from https://spark.apache.org/downloads.html (Version 
1.2.0 as of this writing). Spark currently releases every 90 days. For coders who want 
to work with the latest builds, try cloning the code directly from the repository at 
https://github.com/apache/spark. The building instructions are available at 
https://spark.apache.org/docs/latest/building-spark.html. Both source 
code and prebuilt binaries are available at this link. To interact with Hadoop 
Distributed File System (HDFS), you need to use Spark, which is built against the 
same version of Hadoop as your cluster. For Version 1.1.0 of Spark, the prebuilt 
package is built against the available Hadoop Versions 1.x, 2.3, and 2.4. If you are up 
for the challenge, it's recommended that you build against the source as it gives you 
the lexibility of choosing which HDFS Version you want to support as well as apply 
patches with. In this chapter, we will do both.

To compile the Spark source, you will need the appropriate version of Scala and the 
matching JDK. The Spark source tar includes the required Scala components. The 
following discussion is only for information—there is no need to install Scala.

www.allitebooks.com

https://spark.apache.org/downloads.html
https://github.com/apache/spark
https://spark.apache.org/docs/latest/building-spark.html
http://www.allitebooks.org


Installing Spark and Setting up your Cluster

[ 2 ]

The Spark developers have done a good job of managing the dependencies. Refer to 
the https://spark.apache.org/docs/latest/building-spark.html web page 
for the latest information on this. According to the website, "Building Spark using 
Maven requires Maven 3.0.4 or newer and Java 6+." Scala gets pulled down as a 
dependency by Maven (currently Scala 2.10.4). Scala does not need to be installed 
separately, it is just a bundled dependency.

Just as a note, Spark 1.1.0 requires Scala 2.10.4 while the 1.2.0 version would run on 
2.10 and Scala 2.11. I just saw e-mails in the Spark users' group on this.

This brings up another interesting point about the Spark 
community. The two essential mailing lists are user@
spark.apache.org and dev@spark.apache.org. 
More details about the Spark community are available at 
https://spark.apache.org/community.html.

Directory organization and convention
One convention that would be handy is to download and install software in the /opt 
directory. Also have a generic soft link to Spark that points to the current version. For 
example, /opt/spark points to /opt/spark-1.1.0 with the following command:

sudo ln -f -s spark-1.1.0 spark

Later, if you upgrade, say to Spark 1.2, you can change the softlink.

But remember to copy any coniguration changes and old logs when you change 
to a new distribution. A more lexible way is to change the coniguration directory 
to /etc/opt/spark and the log iles to /var/log/spark/. That way, these 
will stay independent of the distribution updates. More details are available at 
https://spark.apache.org/docs/latest/configuration.html#overriding-

configuration-directory and https://spark.apache.org/docs/latest/
configuration.html#configuring-logging.

https://spark.apache.org/docs/latest/building-spark.html
https://spark.apache.org/community.html
https://spark.apache.org/docs/latest/configuration.html#overriding-configuration-directory
https://spark.apache.org/docs/latest/configuration.html#overriding-configuration-directory
https://spark.apache.org/docs/latest/configuration.html#configuring-logging
https://spark.apache.org/docs/latest/configuration.html#configuring-logging
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Installing prebuilt distribution
Let's download prebuilt Spark and install it. Later, we will also compile a Version 
and build from the source. The download is straightforward. The page to go to for 
this is http://spark.apache.org/downloads.html. Select the options as shown in 
the following screenshot:

We will do a wget from the command line. You can do a direct download as well:

cd /opt

sudo wget http://apache.arvixe.com/spark/spark-1.1.1/spark-1.1.1-bin-
hadoop2.4.tgz

We are downloading the prebuilt version for Apache Hadoop 2.4 from one of the 
possible mirrors. We could have easily downloaded other prebuilt versions as well, 
as shown in the following screenshot:

http://spark.apache.org/downloads.html
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To uncompress it, execute the following command:

tar xvf spark-1.1.1-bin-hadoop2.4.tgz

To test the installation, run the following command:

/opt/spark-1.1.1-bin-hadoop2.4/bin/run-example SparkPi 10

It will ire up the Spark stack and calculate the value of Pi. The result should be as 
shown in the following screenshot:

Building Spark from source
Let's compile Spark on a new AWS instance. That way you can clearly understand 
what all the requirements are to get a Spark stack compiled and installed. I am using 
the Amazon Linux AMI, which has Java and other base stack installed by default. 
As this is a book on Spark, we can safely assume that you would have the base 
conigurations covered. We will cover the incremental installs for the Spark stack here.

The latest instructions for building from the source are 
available at https://spark.apache.org/docs/
latest/building-with-maven.html.

https://spark.apache.org/docs/latest/building-with-maven.html
https://spark.apache.org/docs/latest/building-with-maven.html
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Downloading the source
The irst order of business is to download the latest source from https://spark.
apache.org/downloads.html. Select Source Code from option 2. Chose a package 
type and either download directly or select a mirror. The download page is shown in 
the following screenshot:

We can either download from the web page or use wget. We will do the wget from 
one of the mirrors, as shown in the following code:

cd /opt

sudo wget http://apache.arvixe.com/spark/spark-1.1.1/spark-1.1.1.tgz

sudo tar -xzf spark-1.1.1.tgz

The latest development source is in GitHub, which is 
available at https://github.com/apache/spark. 
The latest version can be checked out by the Git clone at 
https://github.com/apache/spark.git. This should 
be done only when you want to see the developments for the 
next version or when you are contributing to the source.

Compiling the source with Maven
Compilation by nature is uneventful, but a lot of information gets displayed on  
the screen:

cd /opt/spark-1.1.1

export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M 
-XX:ReservedCodeCacheSize=512m"

mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -DskipTests clean  
package

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://github.com/apache/spark
https://github.com/apache/spark.git
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In order for the preceding snippet to work, we will need Maven installed in our 
system. In case Maven is not installed in your system, the commands to install the 
latest version of Maven are given here:

wget http://download.nextag.com/apache/maven/maven- 
3/3.2.5/binaries/apache-maven-3.2.5-bin.tar.gz

sudo tar -xzf apache-maven-3.2.5-bin.tar.gz

sudo ln -f -s apache-maven-3.2.5 maven

export M2_HOME=/opt/maven

export PATH=${M2_HOME}/bin:${PATH}

Detailed Maven installation instructions are available 
at http://maven.apache.org/download.
cgi#Installation.

Sometimes you will have to debug Maven using the –X 
switch. When I ran Maven, the Amazon Linux AMI didn't 
have the Java compiler! I had to install javac for Amazon 
Linux AMI using the following command:

sudo yum install java-1.7.0-openjdk-devel

The compilation time varies. On my Mac it took approximately 11 minutes. The 
Amazon Linux on a t2-medium instance took 18 minutes. In the end, you should see 
a build success message like the one shown in the following screenshot:

 

http://maven.apache.org/download.cgi#Installation
http://maven.apache.org/download.cgi#Installation
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Compilation switches
As an example, the switches for compilation of -Pyarn -Phadoop-2.4 -Dhadoop.
version=2.4.0 are explained in https://spark.apache.org/docs/latest/
building-spark.html#specifying-the-hadoop-version.  –D deines a system 
property and –P deines a proile.

A typical compile coniguration that I use (for YARN, Hadoop Version 2.6 with Hive 
support) is given here:

mvn clean package -Pyarn -Dyarn.version=2.6.0 -Phadoop-2.4 - 
Dhadoop.version=2.6.0 -Phive -DskipTests

You can also compile the source code in IDEA and then 
upload the built Version to your cluster.

Testing the installation
A quick way to test the installation is by calculating Pi:

/opt/spark/bin/run-example SparkPi 10

The result should be a few debug messages and then the value of Pi as shown in the 
following screenshot:

Spark topology
This is a good time to talk about the basic mechanics and mechanisms of Spark.  
We will progressively dig deeper, but for now let's take a quick look at the top level.

https://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version
https://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version
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Essentially, Spark provides a framework to process vast amounts of data, be it in  
gigabytes and terabytes and occasionally petabytes. The two main ingredients are 
computation and scale. The size and effectiveness of the problems we can solve 
depends on these two factors, that is, the ability to apply complex computations over 
large amounts of data in a timely fashion. If our monthly runs take 40 days, we have 
a problem. The key, of course, is parallelism, massive parallelism to be exact. We can 
make our computational algorithm tasks go parallel, that is instead of doing the steps 
one after another, we can perform many steps in parallel or carry out data parallelism, 
that is, we run the same algorithms over a partitioned dataset in parallel. In my humble 
opinion, Spark is extremely effective in data parallelism in an elegant framework.  
As you will see in the rest of this book, the two components are Resilient Distributed 
Dataset (RDD) and cluster manager. The cluster manager distributes the code and 
manages the data that is represented in RDDs. RDDs with transformations and actions 
are the main programming abstractions and present parallelized collections. Behind 
the scenes, a cluster manager controls the distribution and interaction with RDDs, 
distributes code, and manages fault-tolerant execution. Spark works with three types 
of cluster managers – standalone, Apache Mesos, and Hadoop YARN. The Spark page 
at http://spark.apache.org/docs/latest/cluster-overview.html has a lot 
more details on this. I just gave you a quick introduction here.

If you have installed Hadoop 2.0, you are recommended to 
install Spark on YARN. If you have installed Hadoop 1.0, 
the standalone version is recommended. If you want to try 
Mesos, you can choose to install Spark on Mesos. Users are 
not recommended to install both YARN and Mesos.

http://spark.apache.org/docs/latest/cluster-overview.html
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The Spark driver program takes the program classes and hands them over to a 
cluster manager. The cluster manager, in turn, starts executors in multiple worker 
nodes, each having a set of tasks. When we ran the example program earlier, all these 
actions happened transparently in your machine! Later when we install in a cluster, 
the examples would run, again transparently, but across multiple machines in the 
cluster. That is the magic of Spark and distributed computing!

A single machine
A single machine is the simplest use case for Spark. It is also a great way to sanity 
check your build. In the spark/bin directory, there is a shell script called run-
example, which can be used to launch a Spark job. The run-example script takes the 
name of a Spark class and some arguments. Earlier, we used the run-example script 
from the /bin directory to calculate the value of Pi. There is a collection of sample 
Spark jobs in examples/src/main/scala/org/apache/spark/examples/.

All of the sample programs take the parameter master (the cluster manager), which 
can be the URL of a distributed cluster or local[N], where N is the number of threads.

Going back to our run-example script, it invokes the more general bin/spark-
submit script. For now, let's stick with the run-example script.

To run GroupByTest locally, try running the following code:

bin/run-example GroupByTest

It should produce an output like this given here:

14/11/15 06:28:40 INFO SparkContext: Job finished: count at  
GroupByTest.scala:51, took 0.494519333 s

2000

Running Spark on EC2
The ec2 directory contains the script to run a Spark cluster in EC2. These scripts can 
be used to run multiple Spark clusters and even run on spot instances. Spark can also 
be run on Elastic MapReduce, which is Amazon's solution for Map Reduce cluster 
management, and it gives you more lexibility around scaling instances. The Spark 
page at http://spark.apache.org/docs/latest/ec2-scripts.html has the latest 
on-running spark on EC2.

http://spark.apache.org/docs/latest/ec2-scripts.html
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Running Spark on EC2 with the scripts
To get started, you should make sure you have EC2 enabled on your account by 
signing up at https://portal.aws.amazon.com/gp/aws/manageYourAccount. Then 
it is a good idea to generate a separate access key pair for your Spark cluster, which 
you can do at https://portal.aws.amazon.com/gp/aws/securityCredentials. 
You will also need to create an EC2 key pair so that the Spark script can SSH to the 
launched machines, which can be done at https://console.aws.amazon.com/ec2/
home by selecting Key Pairs under Network & Security. Remember that key pairs 
are created per region, and so you need to make sure you create your key pair in the 
same region as you intend to run your Spark instances. Make sure to give it a name 
that you can remember as you will need it for the scripts (this chapter will use spark-
keypair as its example key pair name.). You can also choose to upload your public 
SSH key instead of generating a new key. These are sensitive; so make sure that you 
keep them private. You also need to set AWS_ACCESS_KEY and AWS_SECRET_KEY as 
environment variables for the Amazon EC2 scripts:

chmod 400 spark-keypair.pem

export AWS_ACCESS_KEY_ID= AWSACcessKeyId

export AWS_SECRET_ACCESS_KEY=AWSSecretKey

You will ind it useful to download the EC2 scripts provided by Amazon from 
http://aws.amazon.com/developertools/Amazon-EC2/351. Once you unzip the 
resulting zip ile, you can add the bin to your PATH in a manner similar to what you 
did with the Spark bin:

wget http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip

unzip ec2-api-tools.zip

cd ec2-api-tools-*

export EC2_HOME=`pwd`

export PATH=$PATH:`pwd`/bin

In order to test whether this works, try the following commands:

$ec2-describe-regions

This should display the following output:

REGION eu-central-1    ec2.eu-central-1.amazonaws.com

REGION sa-east-1       ec2.sa-east-1.amazonaws.com

REGION ap-northeast-1  ec2.ap-northeast-1.amazonaws.com

REGION eu-west-1       ec2.eu-west-1.amazonaws.com

REGION us-east-1       ec2.us-east-1.amazonaws.com

https://portal.aws.amazon.com/gp/aws/manageYourAccount
https://portal.aws.amazon.com/gp/aws/securityCredentials
https://console.aws.amazon.com/ec2/home
https://console.aws.amazon.com/ec2/home
http://aws.amazon.com/developertools/Amazon-EC2/351
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REGION us-west-1       ec2.us-west-1.amazonaws.com

REGION us-west-2       ec2.us-west-2.amazonaws.com

REGION ap-southeast-2  ec2.ap-southeast-2.amazonaws.com

REGION ap-southeast-1  ec2.ap-southeast-1.amazonaws.com

Finally, you can refer to the EC2 command line tools reference page http://docs.
aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up- 

ec2-cli-linux.html as it has all the gory details.

The Spark EC2 script automatically creates a separate security group and irewall 
rules for running the Spark cluster. By default, your Spark cluster will be universally 
accessible on port 8080, which is a somewhat poor form. Sadly, the spark_ec2.py 
script does not currently provide an easy way to restrict access to just your host. If 
you have a static IP address, I strongly recommend limiting access in spark_ec2.py; 
simply replace all instances of 0.0.0.0/0 with [yourip]/32. This will not affect  
intra-cluster communication as all machines within a security group can talk to each 
other by default.

Next, try to launch a cluster on EC2:

./ec2/spark-ec2 -k spark-keypair -i pk-[....].pem -s 1 launch  
myfirstcluster

If you get an error message like The requested Availability 
Zone is currently constrained and...., you can specify 
a different zone by passing in the --zone lag.

The -i parameter (in the preceding command line) is provided for specifying the 
private key to log into the instance; -i pk-[....].pem represents the path to the 
private key.

If you get an error about not being able to SSH to the master, make sure that only 
you have the permission to read the private key otherwise SSH will refuse to use it.

You may also encounter this error due to a race condition, when the hosts report 
themselves as alive but the Spark-ec2 script cannot yet SSH to them. A ix for this 
issue is pending in https://github.com/mesos/spark/pull/555. For now, a 
temporary workaround until the ix is available in the version of Spark you are using 
is to simply sleep an extra 100 seconds at the start of setup_cluster using the –w 
parameter. The current script has 120 seconds of delay built in.

www.allitebooks.com

http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up- ec2-cli-linux.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up- ec2-cli-linux.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up- ec2-cli-linux.html
https://github.com/mesos/spark/pull/555
http://www.allitebooks.org
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If you do get a transient error while launching a cluster, you can inish the launch 
process using the resume feature by running:

./ec2/spark-ec2 -i ~/spark-keypair.pem launch myfirstsparkcluster  
--resume

It will go through a bunch of scripts, thus setting up Spark, Hadoop and so forth.  
If everything goes well, you should see something like the following screenshot:

This will give you a bare bones cluster with one master and one worker with all of 
the defaults on the default machine instance size. Next, verify that it started up and 
your irewall rules were applied by going to the master on port 8080. You can see 
in the preceding screenshot that the UI for the master is the output at the end of the 
script with port at 8080 and ganglia at 5080.

Downloading the example code

You can download the example code iles for all 
Packt books you have purchased from your account 
at http://www.packtpub.com. If you purchased 
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the 
iles e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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Your AWS EC2 dashboard will show the instances as follows:

The ganglia dashboard shown in the following screenshot is a good place to monitor 
the instances:
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Try running one of the example jobs on your new cluster to make sure everything  
is okay, as shown in the following screenshot:

The JPS should show this:

root@ip-172-31-45-56 ~]$ jps

1904 NameNode

2856 Jps

2426 Master

2078 SecondaryNameNode

The script has started Spark master, the Hadoop name node, and data nodes  
(in slaves).
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Let's run the two programs that we ran earlier on our local machine:

cd spark

bin/run-example GroupByTest

bin/run-example SparkPi 10

The ease with which one can spin up a few nodes in the Cloud, install the Spark 
stack, and run the program in a distributed manner is interesting.

The ec2/spark-ec2 destroy <cluster name> command will terminate  
the instances.

Now that you've run a simple job on our EC2 cluster, it's time to conigure your EC2 
cluster for our Spark jobs. There are a number of options you can use to conigure 
with the spark-ec2 script.

The ec2/ spark-ec2 –help command will display all the options available.

First, consider what instance types you may need. EC2 offers an ever-growing 
collection of instance types and you can choose a different instance type for the 
master and the workers. The instance type has the most obvious impact on the 
performance of your Spark cluster. If your work needs a lot of RAM, you should 
choose an instance with more RAM. You can specify the instance type with 
--instance-type= (name of instance type). By default, the same instance type 
will be used for both the master and the workers; this can be wasteful if your 
computations are particularly intensive and the master isn't being heavily utilized. 
You can specify a different master instance type with --master-instance-type= 
(name of instance).

EC2 also has GPU instance types, which can be useful for workers but would be 
completely wasted on the master. This text will cover working with Spark and GPUs 
later on; however, it is important to note that EC2 GPU performance may be lower 
than what you get while testing locally due to the higher I/O overhead imposed by 
the hypervisor.

Spark's EC2 scripts use Amazon Machine Images (AMI) provided by the Spark 
team. Usually, they are current and suficient for most of the applications. You  
might need your own AMI in case of circumstances like custom patches  
(for example, using a different version of HDFS) for Spark, as they will not be 
included in the machine image.
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Deploying Spark on Elastic MapReduce
In addition to the Amazon basic EC2 machine offering, Amazon offers a hosted Map 
Reduce solution called Elastic MapReduce (EMR). Amazon provides a bootstrap 
script that simpliies the process of getting started using Spark on EMR. You will 
need to install the EMR tools from Amazon:

mkdir emr

cd emr

wget http://elasticmapreduce.s3.amazonaws.com/elastic-mapreduce-ruby.zip

unzip *.zip

This way the EMR scripts can access your AWS account you will want, to create a 
credentials.json ile:

 {

    "access-id": "<Your AWS access id here>", 
    "private-key": "<Your AWS secret access key here>", 
    "key-pair": "<The name of your ec2 key-pair here>", 
    "key-pair-file": "<path to the .pem file for your ec2 key pair  
    here>", 
    "region": "<The region where you wish to launch your job flows  
    (e.g us-east-1)>"

  }

Once you have the EMR tools installed, you can launch a Spark cluster by running:

elastic-mapreduce --create --alive --name "Spark/Shark Cluster" \

--bootstrap-action s3://elasticmapreduce/samples/spark/install-spark-
shark.sh \

--bootstrap-name "install Mesos/Spark/Shark" \

--ami-version 2.0  \

--instance-type m1.large --instance-count 2

This will give you a running EC2MR instance after about 5 to 10 minutes. You can 
list the status of the cluster by running elastic-mapreduce -listode. Once it 
outputs j-[jobid], it is ready.
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Deploying Spark with Chef (Opscode)
Chef is an open source automation platform that has become increasingly popular 
for deploying and managing both small and large clusters of machines. Chef can  
be used to control a traditional static leet of machines and can also be used with  
EC2 and other cloud providers. Chef uses cookbooks as the basic building blocks  
of coniguration and can either be generic or site-speciic. If you have not used  
Chef before, a good tutorial for getting started with Chef can be found at  
https://learnchef.opscode.com/. You can use a generic Spark cookbook as  
the basis for setting up your cluster.

To get Spark working, you need to create a role for both the master and the workers 
as well as conigure the workers to connect to the master. Start by getting the 
cookbook from https://github.com/holdenk/chef-cookbook-spark. The bare 
minimum need is setting the master hostname (as master) to enable worker nodes 
to connect and the username, so that Chef can be installed in the correct place. You 
will also need to either accept Sun's Java license or switch to an alternative JDK. 
Most of the settings that are available in spark-env.sh are also exposed through 
the cookbook settings. You can see an explanation of the settings in your section on 
"coniguring multiple hosts over SSH". The settings can be set as per-role or you can 
modify the global defaults.

Create a role for the master with a knife role; create spark_master_role -e 
[editor]. This will bring up a template role ile that you can edit. For a simple 
master, set it to this:

{

  "name": "spark_master_role", 
  "description": "", 
  "json_class": "Chef::Role", 
  "default_attributes": { 
  },  
  "override_attributes": {

   "username":"spark",  
   "group":"spark",  
   "home":"/home/spark/sparkhome",  
   "master_ip":"10.0.2.15",  
  }, 
  "chef_type": "role", 
  "run_list": [

   "recipe[spark::server]",  
   "recipe[chef-client]",  
  ],  
  "env_run_lists": {

  }

}

https://learnchef.opscode.com/
https://github.com/holdenk/chef-cookbook-spark
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Then create a role for the client in the same manner except that instead of 
spark::server, you need to use the spark::client recipe. Deploy the roles  
to different hosts:

knife node run_list add master role[spark_master_role]

knife node run_list add worker role[spark_worker_role]

Then run chef-client on your nodes to update. Congrats, you now have a Spark 
cluster running!

Deploying Spark on Mesos
Mesos is a cluster management platform for running multiple distributed applications 
or frameworks on a cluster. Mesos can intelligently schedule and run Spark, Hadoop, 
and other frameworks concurrently on the same cluster. Spark can be run on Mesos 
either by scheduling individual jobs as separate Mesos tasks or running all of Spark 
as a single Mesos task. Mesos can quickly scale up to handle large clusters beyond the 
size of which you would want to manage with plain old SSH scripts. Mesos, written 
in C++, was originally created at UC Berkley as a research project; it is currently 
undergoing Apache incubation and is actively used by Twitter.

The Spark web page has detailed instructions on installing and running Spark  
on Mesos.

To get started with Mesos, you can download the latest version from http://
mesos.apache.org/downloads/ and unpack it. Mesos has a number of different 
coniguration scripts you can use; for an Ubuntu installation use configure.
ubuntu-lucid-64 and for other cases, the Mesos README ile will point you at the 
coniguration ile you need to use. In addition to the requirements of Spark, you 
will need to ensure that you have the Python C header iles installed (python-dev 
on Debian systems) or pass --disable-python to the conigure script. Since Mesos 
needs to be installed on all the machines, you may ind it easier to conigure Mesos 
to install somewhere other than on the root, most easily alongside your Spark 
installation:

./configure --prefix=/home/sparkuser/mesos && make && make check &&  
make install

Much like the coniguration of Spark in standalone mode, with Mesos you need 
to make sure the different Mesos nodes can ind each other. Start by having 
mesossprefix/var/mesos/deploy/masters to the hostname of the master and 
adding each worker hostname to mesossprefix/var/mesos/deploy/slaves. Then 
you will want to point the workers at the master (and possibly set some other values) 
in mesossprefix/var/mesos/conf/mesos.conf.

http://mesos.apache.org/downloads/
http://mesos.apache.org/downloads/
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Once you have Mesos built, it's time to conigure Spark to work with Mesos. This is 
as simple as copying the conf/spark-env.sh.template to conf/spark-env.sh and 
updating MESOS_NATIVE_LIBRARY to point to the path where Mesos is installed. You 
can ind more information about the different settings in spark-env.sh in irst table 
of the next section.

You will need to install both Mesos and Spark on all of the machines in your cluster. 
Once both Mesos and Spark are conigured, you can copy the build to all of the 
machines using pscp, as shown in the following command:

pscp -v -r -h  -l sparkuser ./mesos /home/sparkuser/mesos

You can then start your Mesos clusters using mesosprefix/sbin/mesos-start-
cluster.sh and schedule your Spark on Mesos by using mesos://[host]:5050 as 
the master.

Spark on YARN
YARN is Apache Hadoop's NextGen MapReduce. The Spark project provides an 
easy way to schedule jobs on YARN once you have a Spark assembly built. The 
Spark web page http://spark.apache.org/docs/latest/running-on-yarn.
html has the coniguration details for YARN, which we had built earlier for when 
compiling with the –Pyarn switch. It is important that the Spark job you create uses 
a standalone master URL. The example Spark applications all read the master URL 
from the command line arguments; so specify --args standalone.

To run the same example as given in the SSH section, write the following commands:

sbt/sbt assembly #Build the assembly

SPARK_JAR=./core/target/spark-core-assembly-1.1.0.jar ./run  
spark.deploy.yarn.Client --jar examples/target/scala-2.9.2/spark- 
examples_2.9.2-0.7.0.jar --class spark.examples.GroupByTest --args  
standalone --num-workers 2 --worker-memory 1g --worker-cores 1

Spark Standalone mode
If you have a set of machines without any existing cluster management software, 
you can deploy Spark over SSH with some handy scripts. This method is known 
as "standalone mode" in the Spark documentation at http://spark.apache.org/
docs/latest/spark-standalone.html. An individual master and worker can be 
started by sbin/start-master.sh  and sbin/start-slaves.sh respectively. The 
default port for the master is 8080. As you likely don't want to go to each of your 
machines and run these commands by hand, there are a number of helper scripts in 
bin/ to help you run your servers.

http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/spark-standalone.html
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A prerequisite for using any of the scripts is having password-less SSH access set 
up from the master to all of the worker machines. You probably want to create a 
new user for running Spark on the machines and lock it down. This book uses the 
username "sparkuser". On your master, you can run ssh-keygen to generate the SSH 
keys and make sure that you do not set a password. Once you have generated the 
key, add the public one (if you generated an RSA key, it would be stored in ~/.ssh/
id_rsa.pub by default) to ~/.ssh/authorized_keys2 on each of the hosts.

The Spark administration scripts require that your usernames 
match. If this isn't the case, you can conigure an alternative 
username in your ~/.ssh/config.

Now that you have the SSH access to the machines set up, it is time to conigure 
Spark. There is a simple template in [filepath]conf/spark-env.sh.template[/
filepath], which you should copy to [filepath]conf/spark-env.sh[/filepath]. 
You will need to set SCALA_HOME to the path where you extracted Scala to. You may 
also ind it useful to set some (or all) of the following environment variables:

Name Purpose Default

MESOS_NATIVE_LIBRARY Point to math where 
Mesos lives

None

SCALA_HOME Point to where you 
extracted Scala

None, must be set

SPARK_MASTER_IP The IP address for the 
master to listen on and the 
IP address for the workers 
to connect to.

The result of running 
hostname

SPARK_MASTER_PORT The port # for the Spark 
master to listen on

7077

SPARK_MASTER_WEBUI_PORT The port # of the WEB UI 
on the master

8080

SPARK_WORKER_CORES Number of cores to use All of them

SPARK_WORKER_MEMORY How much memory to 
use

Max of (system memory - 
1GB, 512MB)

SPARK_WORKER_PORT What port # the worker 
runs on

Rand

SPARK_WEBUI_PORT What port # the worker 
WEB UI runs on

8081

SPARK_WORKER_DIR Where to store files from 
the worker

SPARK_HOME/work_dir
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Once you have your coniguration done, it's time to get your cluster up and running. 
You will want to copy the version of Spark and the coniguration you have built to 
all of your machines. You may ind it useful to install pssh, a set of parallel SSH tools 
including pscp. The pscp makes it easy to scp to a number of target hosts, although 
it will take a while, as shown here:

pscp -v -r -h conf/slaves -l sparkuser ../opt/spark ~/

If you end up changing the coniguration, you need to distribute the coniguration to 
all of the workers, as shown here:

pscp -v -r -h conf/slaves -l sparkuser conf/spark-env.sh  
/opt/spark/conf/spark-env.sh

If you use a shared NFS on your cluster, while by default Spark 
names log iles and similar with shared names, you should conigure 
a separate worker directory,  otherwise they will be conigured to 
write to the same place. If you want to have your worker directories 
on the shared NFS, consider adding `hostname` for example 
SPARK_WORKER_DIR=~/work-`hostname`.

You should also consider having your log iles go to a scratch 
directory for performance.

Then you are ready to start the cluster and you can use the sbin/start-all.sh, 
sbin/start-master.sh and sbin/start-slaves.sh scripts. It is important to note 
that start-all.sh and start-master.sh both assume that they are being run on 
the node, which is the master for the cluster. The start scripts all daemonize, and so 
you don't have to worry about running them in a screen:

ssh master bin/start-all.sh

If you get a class not found error stating "java.lang.NoClassDefFoundError: 
scala/ScalaObject", check to make sure that you have Scala installed on that 
worker host and that the SCALA_HOME is set correctly.

The Spark scripts assume that your master has Spark 
installed in the same directory as your workers. If this is not 
the case, you should edit bin/spark-config.sh and set it 
to the appropriate directories.

www.allitebooks.com

http://www.allitebooks.org
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The commands provided by Spark to help you administer your cluster are  
given in the following table. More details are available in the Spark website at 
http://spark.apache.org/docs/latest/spark-standalone.html#cluster-

launch-scripts.

Command Use

bin/slaves.sh <command> Runs the provided command on all of the worker hosts. 
For example, bin/slave.sh uptime will show how 
long each of the worker hosts have been up.

bin/start-all.sh Starts the master and all of the worker hosts. Must be 
run on the master.

bin/start-master.sh Starts the master host. Must be run on the master.

bin/start-slaves.sh Starts the worker hosts.

bin/start-slave.sh Start a specific worker.

bin/stop-all.sh Stops master and workers.

bin/stop-master.sh Stops the master.

bin/stop-slaves.sh Stops all the workers.

You now have a running Spark cluster, as shown in the following screenshot! There 
is a handy Web UI on the master running on port 8080 you should go and visit, and 
on all of the workers on port 8081. The Web UI contains such helpful information as 
the current workers, and current and past jobs.

http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts
http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts
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Now that you have a cluster up and running, let's actually do something with it. 
As with the single host example, you can use the provided run script to run Spark 
commands. All of the examples listed in examples/src/main/scala/spark/org/
apache/spark/examples/ take a parameter, master, which points them to the 
master. Assuming that you are on the master host, you could run them like this:

./run-example GroupByTest spark://`hostname`:7077

If you run into an issue with java.lang.
UnsupportedClassVersionError, you may need to update your 
JDK or recompile Spark if you grabbed the binary version. Version 
1.1.0 was compiled with JDK 1.7 as the target. You can check the 
version of the JRE targeted by Spark with the following commands:

java -verbose -classpath ./core/target/scala- 
2.9.2/classes/

spark.SparkFiles |head -n 20

Version 49 is JDK1.5, Version 50 is JDK1.6 and Version  
60 is JDK1.7

If you can't connect to localhost, make sure that you've conigured your 
master (spark.driver.port) to listen to all of the IP addresses (or if you don't 
want to replace localhost with the IP address conigured to listen to). More 
port conigurations are listed at http://spark.apache.org/docs/latest/
configuration.html#networking.

If everything has worked correctly, you will see the following log messages output  
to stdout:

13/03/28 06:35:31 INFO spark.SparkContext: Job finished: count at 
GroupByTest.scala:35, took 2.482816756 s

2000

References:

• http://archive09.linux.com/feature/151340

• http://spark-project.org/docs/latest/spark-standalone.html

• http://bickson.blogspot.com/2012/10/deploying-

graphlabsparkmesos-cluster-on.html

• http://www.ibm.com/developerworks/library/os-spark/

• http://mesos.apache.org/

• http://aws.amazon.com/articles/Elastic-MapReduce/4926593393724923

• http://spark-project.org/docs/latest/ec2-scripts.html

• http://spark.apache.org/docs/latest/cluster-overview.html

http://spark.apache.org/docs/latest/configuration.html#networking
http://spark.apache.org/docs/latest/configuration.html#networking
http://archive09.linux.com/feature/151340
http://spark-project.org/docs/latest/spark-standalone.html
http://bickson.blogspot.com/2012/10/deploying-graphlabsparkmesos-cluster-on.html
http://bickson.blogspot.com/2012/10/deploying-graphlabsparkmesos-cluster-on.html
http://www.ibm.com/developerworks/library/os-spark/
http://mesos.apache.org/
http://aws.amazon.com/articles/Elastic-MapReduce/4926593393724923
http://spark-project.org/docs/latest/ec2-scripts.html
http://spark.apache.org/docs/latest/cluster-overview.html
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• https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

• http://research.google.com/pubs/pub41378.html

• http://aws.amazon.com/articles/4926593393724923

• http://docs.aws.amazon.com/ElasticMapReduce/latest/

DeveloperGuide/emr-cli-install.html

Summary
In this chapter, we have gotten Spark installed on our machine for local development 
and set up on our cluster, and so we are ready to run the applications that we write. 
While installing and maintaining a cluster is a good option, Spark is also available as 
a service option from Databricks. Databricks' upcoming Databricks Cloud for Spark 
available at http://databricks.com/product is a very convenient offering for 
anyone who does not want to deal with the set up/maintenance of the cluster. They 
have the concept of a big data pipeline — from ETL to Analytics. This looks truly 
interesting to explore!

In the next chapter, you will learn to use the Spark shell.

https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf
http://research.google.com/pubs/pub41378.html
http://aws.amazon.com/articles/4926593393724923
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-cli-install.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-cli-install.html
http://databricks.com/product
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Using the Spark Shell
The Spark shell is a wonderful tool for rapid prototyping with Spark. It helps to be 
familiar with Scala, but that isn't necessary. The Spark shell works with Scala and 
Python. The Spark shell allows you to interactively query and communicate with 
the Spark cluster. This can be great for debugging, for just trying things out, or 
interactively exploring new datasets or approaches. The previous chapter should 
have gotten you to the point of having a Spark instance running, so now, all you 
need to do is start your Spark shell and point it at your running instance with the 
command given in the next few lines. Spark will start an instance when you invoke 
the Spark shell or start a Spark program from an IDE. So, a local installation on a Mac 
or Linux PC/laptop is suficient to start exploring the Spark shell. Not having to spin 
up a real cluster to do the prototyping is an important feature of Spark.

Assuming that you have installed Spark in the /opt directory and have a soft link to 
Spark, run the following commands:

cd /opt/spark 

export MASTER=spark://`hostname`:7077 

bin/spark-shell

If you are running Spark in the local mode and don't have a Spark instance already 
running, you can just run the preceding command without the MASTER= part. As  
a result, the shell will run with only one thread; you can specify local[n] to run  
n threads.
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You will see the shell prompt as shown in the following screenshot:

Loading a simple text ile
While running a Spark shell and connecting to an existing cluster, you should see 
something specifying the app ID such as "Connected to Spark cluster with app ID 
app-20130330015119-0001." The app ID will match the application entry as shown in 
the Web UI under running applications (by default, it will be viewable on port 4040). 
Start by downloading a dataset to use for some experimentation. There are a number 
of datasets put together for The Elements of Statistical Learning, which are in a very 
convenient form to use. Grab the spam dataset using the following command:

wget http://www-stat.stanford.edu/~tibs/ElemStatLearn/ 
datasets/spam.data

Alternatively, you can ind the spam dataset from the GitHub link at  
https://github.com/xsankar/fdps-vii.

Now, load it as a text ile into Spark with the following command inside your  
Spark shell:

scala> val inFile = sc.textFile("./spam.data")

https://github.com/xsankar/fdps-vii
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This loads the spam.data ile into Spark with each line being a separate entry in the 
Resilient Distributed Datasets (RDD). You will see RDDs in the later chapters, but 
RDD, in brief, is the basic data structure that Spark relies on. RDDs are very versatile 
in terms of scaling, computation capabilities, and transformations.

The path assumes that the data would be in the /opt/spark directory. Please type in 
the appropriate directory where you have downloaded the data.

The sc in the command line is the Spark context. While applications would create a 
Spark context explicitly, the Spark shell creates one called sc for you and that is the 
one we normally use.

Note: If you've connected to a Spark master, it's possible that it will attempt to 
load the ile on any one of the different machines in the cluster, so make sure that 
it can be accessed by all the worker nodes in the cluster. In general you will want 
to put your data in HDFS, S3, or a similar distributed ile systems for the future to 
avoid this problem. In a local mode, you can just load the ile directly (for example, 
sc.textFile([filepath])). You can also use the addFile function on the Spark 
context to make a ile available across all of the machines like this:

scala> import org.apache.spark.SparkFiles

scala> val file = sc.addFile("/opt/spark/spam.data")

scala> val inFile = sc.textFile(SparkFiles.get("spam.data"))

Just like most shells, the Spark shell has a command history; 
you can press the up arrow key to get to the previous 
commands. Are you getting tired of typing or not sure what 
method you want to call on an object? Press Tab, and the Spark 
shell will autocomplete the line of code in the best way it can.

For this example, the RDD with each line as an individual string isn't super useful 
as our input data is actually space separated numerical information. We can use the 
map() operation to iterate over the elements of the RDD and quickly convert it to a 
usable format (Note: _.toDouble is the Scala syntactic sugar for x => x.toDouble). 
We use one map operation to convert the line to a set of numbers in string format 
and then convert each of the number to a double, as shown next:

scala> val nums = inFile.map(line => line.split(' ').map(_.toDouble))



Using the Spark Shell

[ 28 ]

Verify that this is what we want by inspecting some elements in the nums RDD and 
comparing them against the original string RDD. Take a look at the irst element of 
each by calling .first() on the RDDs:

Most of the output following these commands is extraneous 
INFO messages. It is informative to see what Spark is doing 
under the covers. But if you want to keep the detailed messages 
out, you can copy log4j.properties into the current 
directory and set the log4j.rootCategory to ERROR instead 
of INFO. Then none of these messages will appear and it will be 
possible to concentrate just on the commands and the output.

scala> inFile.first()

[...]

14/11/15 23:46:41 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose  
tasks have all completed, from pool 

14/11/15 23:46:41 INFO DAGScheduler: Stage 0 (first at <console>:15)  
finished in 0.058 s

14/11/15 23:46:41 INFO SparkContext: Job finished: first at  
<console>:15, took 0.088417 s

res0: String = 0 0.64 0.64 0 0.32 0 0 0 0 0 0 0.64 0 0 0 0.32 0 1.29  
1.93 0 0.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0.778 0 0 3.756 61 278 1

scala> nums.first()

[...]

14/11/15 23:46:42 INFO DAGScheduler: Stage 1 (first at <console>:17)  
finished in 0.008 s

14/11/15 23:46:42 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose  
tasks have all completed, from pool 

14/11/15 23:46:42 INFO SparkContext: Job finished: first at  
<console>:17, took 0.01287 s

res1: Array[Double] = Array(0.0, 0.64, 0.64, 0.0, 0.32, 0.0, 0.0,  
0.0, 0.0, 0.0, 0.0, 0.64, 0.0, 0.0, 0.0, 0.32, 0.0, 1.29, 1.93, 0.0,  
0.96, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
0.0, 0.0, 0.0, 0.0, 0.778, 0.0, 0.0, 3.756, 61.0, 278.0, 1.0)
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Operators in Spark are divided into transformations and actions. 
Transformations are evaluated lazily. Spark just creates the RDD's 
lineage graph when you call a transformation like map. No actual 
work is done until an action is invoked on the RDD. Creating the 
RDD and the map functions are transformations. The .first() 
function is an action that forces execution.

So when we created the inFile, it really didn't do anything except 
for creating a variable and set up the pointers. Only when we call 
an action like .first() does Spark evaluate the transformations. 
As a result, even if we point the inFile to a non-existent directory, 
Spark will take it. But when we call inFile.first(), it will 
throw the Input path does not exist: error.

Using the Spark shell to run logistic 

regression
When you run a command and do not specify a left-hand side of the assignment 
(that is leaving out the val x of val x = y), the Spark shell will assign a default 
name (that is, res[number] to the value. Now that you have the data in a more 
usable format, try to do something cool with it! Use Spark to run logistic regression 
over the dataset, as shown here:

scala> import breeze.linalg.{Vector, DenseVector}

import breeze.linalg.{Vector, DenseVector}

scala> case class DataPoint(x: Vector[Double], y: Double)

defined class DataPoint

scala> 

scala> def parsePoint(x: Array[Double]): DataPoint = {

     |       DataPoint(new DenseVector(x.slice(0,x.size-2)) , x(x.size-
1))

     |       }

parsePoint: (x: Array[Double])DataPoint

scala> val points = nums.map(parsePoint(_))

points: org.apache.spark.rdd.RDD[DataPoint] = MappedRDD[3] at map at 
<console>:21
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scala> import java.util.Random

import java.util.Random

scala> val rand = new Random(42)

rand: java.util.Random = java.util.Random@24c55bf5

scala> points.first()

14/11/15 23:47:19 INFO SparkContext: Starting job: first at <console>:25

[..] 

14/11/15 23:47:20 INFO SparkContext: Job finished: first at <console>:25, 
took 0.188923 s

res2: DataPoint = DataPoint(DenseVector(0.0, 0.64, 0.64, 0.0, 0.32, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.64, 0.0, 0.0, 0.0, 0.32, 0.0, 1.29, 1.93, 0.0, 
0.96, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.778, 0.0, 0.0, 3.756, 61.0),1.0)

scala> var w = DenseVector.fill(nums.first.size-2){rand.nextDouble}

14/11/15 23:47:36 INFO SparkContext: Starting job: first at <console>:20

[..]

14/11/15 23:47:36 INFO SparkContext: Job finished: first at <console>:20, 
took 0.010883 s

w: breeze.linalg.DenseVector[Double] = DenseVector(0.7275636800328681, 
0.6832234717598454, 0.30871945533265976, 0.27707849007413665, 
0.6655489517945736, 0.9033722646721782, 0.36878291341130565, 
0.2757480694417024, 0.46365357580915334, 0.7829017787900358, 
0.9193277828687169, 0.43649097442328655, 0.7499061812554475, 
0.38656687435934867, 0.17737847790937833, 0.5943499108896841, 
0.20976756886633208, 0.825965871887821, 0.17221793768785243, 
0.5874273817862956, 0.7512804067674601, 0.5710403484148672, 
0.5800248845020607, 0.752509948590651, 0.03141823882658079, 
0.35791991947712865, 0.8177969308356393, 0.41768754675291875, 
0.9740356814958814, 0.7134062578232291, 0.48057451655643435, 
0.2916564974118041, 0.9498601346594666, 0.8204918233863466, 
0.636644547856282, 0.3691214939418974, 0.36025487536613...

scala> val iterations = 100

iterations: Int = 100

scala> import scala.math._

import scala.math._
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scala> for (i <- 1 to iterations) {

     |         val gradient = points.map(p =>

     |           p.x * (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y

     |         ).reduce(_ + _)

     |         w -= gradient

     |       }

14/11/15 23:48:49 INFO SparkContext: Starting job: reduce at <console>:37

14/11/15 23:48:49 INFO DAGScheduler: Got job 4 (reduce at <console>:37) 
with 2 output partitions (allowLocal=false)

[…]

14/11/15 23:48:53 INFO DAGScheduler: Stage 103 (reduce at <console>:37) 
finished in 0.024 s

14/11/15 23:48:53 INFO SparkContext: Job finished: reduce at 
<console>:37, took 0.027829 s

scala> w

res5: breeze.linalg.DenseVector[Double] = DenseVector(0.7336269947556883, 
0.6895025214435749, 0.4721342862007282, 0.27723026762411473, 
0.7829698104387295, 0.9109178772078957, 0.4421282714160576, 
0.305394995185795, 0.4669066877779788, 0.8357335159675405, 
0.9326548346504113, 0.5986886716855019, 0.7726151240395974, 
0.3898162675706965, 0.18143939819778826, 0.8501243079114542, 
0.28042415484918654, 0.867752122388921, 2.8395263204719647, 
0.5976683218335691, 1.0764145195987342, 0.5718553843530828, 
0.5876679823887092, 0.7609997638366504, 0.0793768969191899, 
0.4177180953298126, 0.8177970052737001, 0.41885534550137715, 
0.9741059468651804, 0.7137870996096644, 0.48057587402871155, 
0.2916564975512847, 0.9533675296503782, 0.8204918691826701, 
0.6367663765600675, 0.3833218016601887, 0.36677476558721556,...

scala> 

If things went well, you were successful in using Spark to run logistic regression. 
That's awesome! We have just done a number of things; we deined a class and 
created an RDD and a function. As you can see, the Spark shell is quite powerful. 
Much of the power comes from it being based on the Scala REPL(the Scala interactive 
shell), and so it inherits all of the power of the Scala REPL. That being said, most of 
them time you will probably prefer to work with more traditional compiled code 
rather than in the REPL.

www.allitebooks.com

http://www.allitebooks.org
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Interactively loading data from S3
Now try another exercise with the Spark shell. As part of Amazon's EMR Spark 
support, they have handily provided some sample data of Wikipedia trafic statistics 
in S3 in the format that Spark can use. To access the data, you irst need to set your 
AWS access credentials as shell params. For instructions on signing up for EC2 and 
setting up the shell parameters, see Running Spark on EC2 section in Chapter 1, Installing 
Spark and Setting up your Cluster (S3 access requires additional keys such as, fs.s3n.
awsAccessKeyId/awsSecretAccessKey or using the s3n://user:pw@ syntax). You 
can also set the shell parameters as AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_
KEY. We will leave the AWS coniguration out of this discussion, but it needs to be 
completed. Once this is done, load the S3 data and take a look at the irst line:

scala> val file = sc.textFile("s3n://bigdatademo/sample/wiki/")

14/11/16 00:02:43 INFO MemoryStore: ensureFreeSpace(34070) called with 
curMem=512470, maxMem=278302556

14/11/16 00:02:43 INFO MemoryStore: Block broadcast_105 stored as values 
in memory (estimated size 33.3 KB, free 264.9 MB)

file: org.apache.spark.rdd.RDD[String] = s3n://bigdatademo/sample/wiki/ 
MappedRDD[105] at textFile at <console>:17

scala> file.first()

14/11/16 00:02:58 INFO BlockManager: Removing broadcast 104

14/11/16 00:02:58 INFO BlockManager: Removing block broadcast_104

[..]

14/11/16 00:03:00 INFO SparkContext: Job finished: first at <console>:20, 
took 0.442788 s

res6: String = aa.b Pecial:Listusers/sysop 1 4695

scala> file.take(1)

14/11/16 00:05:06 INFO SparkContext: Starting job: take at <console>:20

14/11/16 00:05:06 INFO DAGScheduler: Got job 105 (take at <console>:20) 
with 1 output partitions (allowLocal=true)

14/11/16 00:05:06 INFO DAGScheduler: Final stage: Stage 105(take at 
<console>:20)

[…]

14/11/16 00:05:07 INFO SparkContext: Job finished: take at <console>:20, 
took 0.777104 s

res7: Array[String] = Array(aa.b Pecial:Listusers/sysop 1 4695)

You don't need to set your AWS credentials as shell params; the general form of the 
S3 path is s3n://<AWS ACCESS ID>:<AWS SECRET>@bucket/path.
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It is important to take a look at the irst line of the data; the reason for this is 
that  Spark won't actually bother to load the data unless we force it to materialize 
something with it. It is useful to note that Amazon had provided a small sample 
dataset to get started with. The data is pulled from a much larger set available at 
http://aws.amazon.com/datasets/4182. This practice can be quite useful when 
developing in interactive mode as you want fast feedback of your jobs that are 
completing quickly. If your sample data was too big and your runs were taking too 
long, you could quickly slim down the RDD by using the sample functionality built 
into the Spark shell:

scala> val seed  = (100*math.random).toInt

seed: Int = 8

scala> val sample = file.sample(false,1/10.,seed)

res10: spark.RDD[String] = SampledRDD[4] at sample at <console>:17

If you wanted to rerun on the sampled data later, you could write it back to S3:

scala> sample.saveAsTextFile("s3n://mysparkbucket/test")

13/04/21 22:46:18 INFO spark.PairRDDFunctions: Saving as hadoop file  
of type (NullWritable, Text)

....

13/04/21 22:47:46 INFO spark.SparkContext: Job finished:  
saveAsTextFile at <console>:19, took 87.462236222 s

Now that you have the data loaded, ind the most popular articles in a sample. 
First, parse the data by separating it into name and count. Then, reduce by the key 
summing the counts as there can be multiple entries with the same name. Finally, we 
swap the key/value so that when we sort by key, we get back the highest count item:

scala> val parsed = file.sample(false,1/10.,seed).map(x => x.split("  
")).map(x => (x(1), x(2).toInt))

parsed: spark.RDD[(java.lang.String, Int)] = MappedRDD[5] at map at  
<console>:16

scala> val reduced = parsed.reduceByKey(_+_)

13/04/21 23:21:49 WARN util.NativeCodeLoader: Unable to load native- 
hadoop library for your platform... using builtin-java classes where  
applicable

13/04/21 23:21:49 WARN snappy.LoadSnappy: Snappy native library not  
loaded

13/04/21 23:21:50 INFO mapred.FileInputFormat: Total input paths to  
process : 1

http://aws.amazon.com/datasets/4182
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reduced: spark.RDD[(java.lang.String, Int)] = MapPartitionsRDD[8] at  
reduceByKey at <console>:18

scala> val countThenTitle = reduced.map(x => (x._2, x._1))

countThenTitle: spark.RDD[(Int, java.lang.String)] = MappedRDD[9] at  
map at <console>:20

scala> countThenTitle.sortByKey(false).take(10)

13/04/21 23:22:08 INFO spark.SparkContext: Starting job: take at  
<console>:23

....

13/04/21 23:23:15 INFO spark.SparkContext: Job finished: take at  
<console>:23, took 66.815676564 s

res1: Array[(Int, java.lang.String)] = Array((213652,Main_Page),  
(14851,Special:Search), (9528,Special:Export/Can_You_Hear_Me),  
(6454,Wikipedia:Hauptseite), (4189,Special:Watchlist),  
(3520,%E7%89%B9%E5%88%A5:%E3%81%8A%E3%81%BE%E3%81%8B%E3%81%9B%E8%A1%A 
8%E7%A4%BA), (2857,Special:AutoLogin), (2416,P%C3%A1gina_principal),  
(1990,Survivor_(TV_series)), (1953,Asperger_syndrome))

Running Spark shell in Python
If you are more comfortable with Python than Scala, you can also work with Spark 
interactively in Python by running [cmd]./pyspark[/cdm]. Just to start working 
in the Python shell, let's perform the commands in quick start, as shown at http://
spark.apache.org/docs/1.1.0/quick-start.html. This is just a simple exercise. 
We will see more of Python in Chapter 9, Machine Learning Using Spark Mllib:

$ bin/pyspark

[..]

Welcome to

      ____              __

     / __/__  ___ _____/ /__

    _\ \/ _ \/ _ `/ __/  '_/

   /__ / .__/\_,_/_/ /_/\_\   version 1.1.1

      /_/

Using Python version 2.7.8 (default, Aug 21 2014 15:21:46)

SparkContext available as sc.

Let us read in a file

http://spark.apache.org/docs/1.1.0/quick-start.html
http://spark.apache.org/docs/1.1.0/quick-start.html
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>>> textFile = sc.textFile("README.md")

14/11/16 00:12:11 INFO MemoryStore: ensureFreeSpace(34046) called with 
curMem=0, maxMem=278302556

14/11/16 00:12:11 INFO MemoryStore: Block broadcast_0 stored as values in 
memory (estimated size 33.2 KB, free 265.4 MB)

>>> textFile.count()

[..]

14/11/16 00:12:23 INFO DAGScheduler: Stage 0 (count at <stdin>:1) 
finished in 0.733 s

14/11/16 00:12:23 INFO SparkContext: Job finished: count at <stdin>:1, 
took 0.769692 s

141

>>> textFile.first()

14/11/16 00:12:35 INFO SparkContext: Starting job: runJob at PythonRDD.
scala:300

[..]

14/11/16 00:12:35 INFO SparkContext: Job finished: runJob at PythonRDD.
scala:300, took 0.029673 s

u'# Apache Spark'

>>> linesWithSpark = textFile.filter(lambda line: "Spark" in line)

>>> textFile.filter(lambda line: "Spark" in line).count()

14/11/16 00:13:15 INFO SparkContext: Starting job: count at <stdin>:1

[..]

14/11/16 00:13:15 INFO SparkContext: Job finished: count at <stdin>:1, 
took 0.0379 s

21

>>> 

As you can see, the Python operations are very similar to those in Scala.

Summary
In this chapter, you learned how to start the Spark shell and load our data, and 
you also did some simple machine learning. Now that you've seen how Spark's 
interactive console works, it's time to see how to build Spark jobs in a more 
traditional and persistent environment in the subsequent chapters.
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Building and Running  

a Spark Application
Using Spark in an interactive mode with the Spark shell has limited permanence  
and does not work in Java. Building Spark jobs is a bit trickier than building a 
normal application as all dependencies have to be available on all the machines  
that are in your cluster. This chapter will cover the process of building a Java and 
Scala Spark job with Maven or sbt (simple-build-tool) and how to build Spark 
jobs with a non-Maven aware build system. A reference website to build Spark is 
http://spark.apache.org/docs/latest/building-spark.html.

Building your Spark project with sbt
The sbt is a popular build tool for Scala that supports building both Scala and Java 
codes. Building Spark projects with sbt is one of the easiest options. Spark release 
was originally built with sbt, but now they use Maven. However, the various 
members of the team actively use both sbt and Maven. The current normal method 
of building packages that use sbt is to use a shell script that bootstraps the speciic 
version of sbt your project uses, thus making installation simpler.

If you are using a prebuilt Spark version, you will need 
to download and create the sbt directory.

http://spark.apache.org/docs/latest/building-spark.html
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As a irst step, take a Spark job that already works and go through the process of 
creating a build ile for it. In the Spark directory, start by copying the GroupByTest 
example into a new directory, as shown here:

mkdir -p example-scala-build/src/main/scala/spark/examples/

cp -af sbt example-scala-build//

cp examples/src/main/scala/org/apache/spark/examples/GroupByTest.scala  
example-scala-build/src/main/scala/spark/examples/

As you are going to ship your JAR to the other machines, you will want to ensure all 
dependencies are included. You can either add a bunch of JARs or use a handy sbt 
plugin called sbt-assembly to group everything into a single JAR. If you don't have 
a bunch of transitive dependencies, you may decide that using the assembly extension 
isn't for your project. Instead of using sbt-assembly, you probably want to run sbt/
sbt assembly in the Spark project and add the resulting JAR, core/target/ spark-
core_2.10-1.1.1.jar, to your class path. The sbt assembly package is a great 
tool to avoid manual management of a large number of JARs. To add the assembly 
extension to your build, add the following code to project/plugins.sbt:

resolvers += Resolver.url("artifactory",  
url("http://scalasbt.artifactoryonline.com/scalasbt/sbt-plugin- 
releases"))(Resolver.ivyStylePatterns)

resolvers += "Typesafe Repository" at  
"http://repo.typesafe.com/typesafe/releases/"

resolvers += "Spray Repository" at "http://repo.spray.cc/"

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.8.7")

For sbt 0.13.6+, add sbt-assembly as a dependency in project/
assembly.sbt:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

Resolvers are used by sbt so that it can ind out where a package is; 
you can think of this as similar to specifying an additional apt Personal 
Package Archive (PPA) source with the exception that it only applies 
to the one package you are trying to build. If you load up the resolver 
URLs in your browser, most of them have the directory listing turned 
on, and so you can see what packages are provided by the resolver. 
These resolvers point at web URLs, but there are also resolvers available 
for local paths that can be useful during development. The addSbt 
plugin directive is deceptively simple; it tells the user to include the 
sbt-assembly package from com.eed3si9n in Version 0.8.7 and 
implicitly adds the Scala Version and the sbt Version. Make sure to run 
the sbt reload clean update to install new plugins.



Chapter 3

[ 39 ]

Here is the build ile for one of the examples of GroupByTest.scala as if it was 
being built on its own; put the following code in ./build.sbt:

//Next two lines only needed if you decide to use the assembly plugin

import AssemblyKeys._assemblySettings

scalaVersion := "2.10.4"

name := "groupbytest"

libraryDependencies ++= Seq(

   "org.spark-project" % "spark-core_2.10" % "1.1.0"

)

If the preceding code does not work, you can try:

libraryDependencies += "org.apache.spark" %% "spark- 
core" % "1.1.0"

Otherwise, you can try this code snippet:

libraryDependencies += "org.apache.spark" %% "spark- 
core" % "1.1.1".

resolvers ++= Seq(

   "JBoss Repository" at  
"http://repository.jboss.org/nexus/content/repositories/releases/", 
   "Spray Repository" at "http://repo.spray.cc/", 
   "Cloudera Repository" at "https://repository.cloudera.com/
artifactory/cloudera-repos/", 
  "Akka Repository" at "http://repo.akka.io/releases/", 
   "Twitter4J Repository" at "http://twitter4j.org/maven2/" 
)

// Only include if using assembly

mergeStrategy in assembly <<= (mergeStrategy in assembly) { (old)  
=>

  { 
    case PathList("javax", "servlet", xs @ _*) =>  
    MergeStrategy.first 
    case PathList("org", "apache", xs @ _*) => MergeStrategy.first 
    case "about.html"  => MergeStrategy.rename 
    case x => old(x)

  }

}
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As you can see, the build ile is similar to plugin.sbt in format. There are a 
few unique things about this build ile that are worth mentioning. Just like with 
the plugin ile, you need to add a number of resolvers here so that sbt can ind 
all the dependencies. Note that we are including it as "org.spark-project" % 
"spark-core_2.10.4" % "1.1.0" rather than using "org.spark-project" %% 
"spark-core" % "1.1.0". If possible, you should try to use the %% format, which 
automatically adds the Scala version. Another unique part of this build ile is the use 
of MergeStrategy. As multiple dependencies can deine the same iles, when you 
merge everything into a single JAR you need to tell the plugin how to handle it. It is 
a fairly simple build ile other than the merge strategy you need to manually specify 
the Scala version of Spark you are using.

Note: If you have a different JDK on the master than JRE on the 
workers, you may want to switch the target JDK by adding the 
following to your build ile:

javacOptions ++= Seq("-target", "1.6")

Now that your build ile is deined, build your GroupByTest Spark job using the 
following command:

sbt/sbt clean compile package

It will then produce target/scala-2.10.4/groupbytest_2.10.4-0.1- 
SNAPSHOT.jar.

Run sbt/sbt assembly in the Spark directory to make sure you have the Spark 
assembly available to your class paths. The example requires a pointer to the location 
where Spark is using SPARK_HOME; provide a pointer to the example of  JAR with 
SPARK_EXAMPLES_JAR for Spark to distribute out. We also need to specify the class 
path that we built to Scala locally with -cp. So we can then run the following example:

SPARK_HOME="../"  SPARK_EXAMPLES_JAR="./target/scala- 
2.10.4/groupbytest-assembly-0.1-SNAPSHOT.jar"  scala -cp  
/users/sparkuser/spark-1.1.0/example-scala-build/target/scala- 
2.10.4/groupbytest_2.10.4-0.1-SNAPSHOT.jar:/users/sparkuser/spark- 
1.1.0/core/target/spark-core-assembly-1.1.0.jar  
spark.examples.GroupByTest local[1]

If you have decided to build all of your dependencies into a single JAR with the 
assembly plugin, we need to call it using this command:

sbt/sbt assembly
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This will produce an assembly snapshot at target/scala-2.10.4/groupbytest-
assembly-0.1-SNAPSHOT.jar, which you can then run in a very similar manner, 
simply without the spark-core-assembly, as shown here:

SPARK_HOME="../" \ SPARK_EXAMPLES_JAR="./target/scala- 
2.10.4/groupbytest-assembly-0.1-SNAPSHOT.jar" \

 scala -cp /users/sparkuser/spark-1.1.0/example-scala- 
build/target/scala-2.10.4/groupbytest-assembly-0.1-SNAPSHOT.jar  
spark.examples.GroupByTest local[1]

You may run into merge issues with sbt assembly if things have 
changed; a quick search of the Web will probably provide better 
current guidance than anything that could be written in future. 
So you need to keep in mind future merge problems. In general, 
MergeStategy.first should work.

Your success in the preceding section may have given you a false 
sense of security. As sbt will resolve from the local cache, deps 
that were brought in by another project could mean that the code 
builds on one machine and not others. Delete your local ivy cache 
and run sbt clean to make sure. If some iles fail to download, try 
looking at Spark's list of resolvers and add any missing ones to 
your build.sbt.

Building your Spark job with Maven
Maven is an open source Apache project that builds Spark jobs in Java or Scala. 
As of Version 1.2.0, the building Spark site states that Maven is the oficial 
recommendation for packaging Spark and is the "build of reference" too. As with sbt, 
you can include the Spark dependency through Maven central simplifying our build 
process. Also similar to sbt is the ability of Spark and all of our dependencies to put 
everything in a single JAR using a plugin or build Spark as a monolithic JAR using 
sbt/sbt assembly for inclusion.

To illustrate the build process for Spark jobs with Maven, this section will use Java as 
an example as Maven is more commonly used to build Java tasks. As a irst step, let's 
take a Spark job that already works and go through the process of creating a build 
ile for it. We can start by copying the GroupByTest example into a new directory 
and generating the Maven template, as shown here:

mkdir example-java-build/; cd example-java-build

mvn archetype:generate \

   -DarchetypeGroupId=org.apache.maven.archetypes \

   -DgroupId=spark.examples \

www.allitebooks.com

http://www.allitebooks.org
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   -DartifactId=JavaWordCount \

   -Dfilter=org.apache.maven.archetypes:maven-archetype-quickstart

cp ../examples/src/main/java/spark/examples/JavaWordCount.java  
JavaWordCount/src/main/java/spark/examples/JavaWordCount.java

Next, update your Maven example-java-build/JavaWordCount/pom.xml to 
include information on the version of Spark we are using. Also, since the example 
ile we are working with requires a JDK version greater than 1.5, we will need to 
update the Java version that Maven is conigured to use; the current version is 1.3. In 
between the project tags, we will need to add the following code:

  <dependencies>

    <dependency>

      <groupId>junit</groupId>

      <artifactId>junit</artifactId>

      <version>4.11</version>

      <scope>test</scope>

    </dependency>

    <dependency>

      <groupId>org.spark-project</groupId>

      <artifactId>spark-core_2.10.4</artifactId>

      <version>1.1.0</version>

    </dependency>

  </dependencies>

  <build>

    <plugins>

      <plugin>

        <groupId>org.apache.maven.plugins</groupId>

        <artifactId>maven-compiler-plugin</artifactId>

        <configuration>

          <source>1.7</source>

          <target>1.7</target>

        </configuration>

      </plugin>

    </plugins>

  </build>

We can now build our JAR with the mvn package that can be run with the  
following command:

SPARK_HOME="../"  SPARK_EXAMPLES_JAR="./target/JavaWordCount-1.0- 
SNAPSHOT.jar"  java -cp ./target/JavaWordCount-1.0- 
SNAPSHOT.jar:../../core/target/spark-core-assembly-1.1.0.jar  
spark.examples.JavaWordCount local[1] ../../README
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As with sbt, we can use a plugin to include all of the dependencies in our JAR ile. 
Between the <plugins> tags, add the following code:

<plugin>

  <groupId>org.apache.maven.plugins</groupId>

  <artifactId>maven-shade-plugin</artifactId>

  <version>2.3</version>

  <configuration>

    <!-- This transform is used so that merging of akka configuration 
files works -->

    <transformers>

      <transformer implementation="org.apache.maven.plugins.shade.
resource.ApacheLicenseResourceTransformer">

      </transformer>

      <transformer implementation="org.apache.maven.plugins.shade.
resource.AppendingTransformer">

        <resource>reference.conf</resource>

      </transformer>

    </transformers>

  </configuration>

  <executions>

    <execution>

      <phase>package</phase>

      <goals>

        <goal>shade</goal>

      </goals>

    </execution>

  </executions>

</plugin>

Then run mvn assembly and the resulting JAR can be run as shown in the preceding 
section; but leave out the Spark assembly JAR from the class path.

As I was writing this chapter (November 16, 2014), an e-mail 
chain crossed the Spark user group discussing sbt versus 
Maven. The use of Maven is recommended unless one needs 
some special capability of sbt.
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Building your Spark job with  
something else
If neither sbt nor Maven suits your needs, you may decide to use another build system. 
Thankfully, Spark supports building a fat JAR with all its dependencies, which makes 
it easy to include in the build system of your choice. Simply run sbt/sbt assembly in 
the Spark directory and copy the resulting assembly JAR at core/target/spark-core-
assembly-1.1.0.jar to your build dependencies, and you are good to go. It is more 
common to use the spark-assembly-1.2.0-hadoop2.6.0.jar ile. These iles exist in 
$SPARK_HOME$/lib (if users use a prebuilt version) or in $SPARK_HOME$/ assembly/
target/scala-2.10/ (if users build the source code with Maven or sbt).

No matter what your build system is, you may ind yourself 
wanting to use a patched version of the Spark libraries. In this 
case, you can deploy your Spark library locally. I recommend 
giving it a different version number to ensure that sbt/Maven 
picks up the modiied version. You can change the version 
by editing project/SparkBuild.scala and changing the 
version:= part according to the version you have installed. 
If you are using sbt, you should run sbt/sbt update in the 
project that is importing the custom version. For other build 
systems, you just need to ensure that you use the new assembly 
JAR as part of your build.

Some references are as follows:

• http://spark.apache.org/docs/latest/building-spark.html

• http://www.scala-sbt.org/

• https://github.com/sbt/sbt-assembly

• http://spark-project.org/docs/latest/scala-programming-guide.

html

• http://maven.apache.org/guides/getting-started/

• http://maven.apache.org/plugins/maven-compiler-plugin/examples/

set-compiler-source-and-target.html

• http://maven.apache.org/plugins/maven-dependency-plugin/

Summary
So now you can build your Spark jobs with Maven, sbt, or the build system of your 
choice. It's time to jump in and start learning how to do more fun and exciting things 
such as learning how to create a Spark context in the subsequent chapter.

http://spark.apache.org/docs/latest/building-spark.html
http://www.scala-sbt.org/
https://github.com/sbt/sbt-assembly
http://spark-project.org/docs/latest/scala-programming-guide.html
http://spark-project.org/docs/latest/scala-programming-guide.html
http://maven.apache.org/guides/getting-started/
http://maven.apache.org/plugins/maven-compiler-plugin/examples/set-compiler-source-and-target.html
http://maven.apache.org/plugins/maven-compiler-plugin/examples/set-compiler-source-and-target.html
http://maven.apache.org/plugins/maven-dependency-plugin/
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Creating a SparkContext
This chapter will cover how to create a SparkContext object in your cluster. A 
SparkContext object represents the connection to a Spark cluster and provides the 
entry point to interact with Spark. We need to create SparkContext so that we can 
interact with Spark and distribute our jobs. In Chapter 2, Using the Spark Shell, we 
interacted with Spark through the Spark shell that created a SparkContext object. 
Now you can create RDDs, broadcast variables and counters, and actually do fun 
things with your data. The Spark shell serves as an example of interacting with the 
Spark cluster through a SparkContext object in ./spark/repl/Main.scala, as 
shown here:

def createSparkContext(): SparkContext = {

    val master = this.master match {

      case Some(m) => m

      case None => {

        val prop = System.getenv("MASTER")

        if (prop != null) prop else "local"

      }

    }

    sparkContext = new SparkContext(master, "Spark shell") 
    sparkContext

  }

The preceding code snippet creates a SparkContext object using the provided 
MASTER environment variable (or local if none are set) called Spark Shell and 
doesn't specify any dependencies. This is because Spark Shell is built into Spark, 
and as such it doesn't have any JARs that needs to be distributed.
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For a client to establish a connection to the Spark cluster, the SparkContext object 
needs some basic information, which is given here:

• Master URL: Can be local[n] for local mode or Spark://[sparkip]  
for Spark Server or mesos://path for a Mesos cluster

• application name: This is a human-readable application name

• sparkHome: This is the path to Spark on the master/workers

• jars: This is the path to the JARs required for your job

Scala
In a Scala program, you can create a SparkContext object with the following code:

val sparkContext = new SparkContext(master_path, "application  
name", ["optional spark home path"],["optional list of jars"])

While you can hardcode all of these values, it's better to read them from the 
environment with reasonable defaults. This approach provides maximum lexibility 
to run the code in a changing environment without having to recompile. Using local 
as the default value for the master makes it easy to launch your application in a test 
environment locally. By carefully selecting the defaults, you can avoid having to over 
specify this. Here is an example of it:

import spark.sparkContext

import spark.sparkContext._

import scala.util.Properties

val master = Properties.envOrElse("MASTER","local")

val sparkHome = Properties.get("SPARK_HOME")

val myJars = Seq(System.get("JARS"))

val sparkContext = new SparkContext(master, "my app", sparkHome,  
myJars)

Java
To create a SparkContext object in Java, try using the following code:

import spark.api.java.JavaSparkContext;

…

JavaSparkContext ctx = new JavaSparkContext("master_url",  
"application name", ["path_to_spark_home", "path_to_jars"]);
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While the preceding code snippet works (once you have replaced the parameters 
with the correct values for your setup), it requires a code change if you change any of 
the parameters. So instead of that, you can use reasonable defaults and allow them to 
be overridden in a similar way to the following example of the Scala code:

String master = System.getEnv("MASTER");

if (master == null) {

    master = "local";

}

String sparkHome = System.getEnv("SPARK_HOME");

if (sparkHome == null) {

    sparkHome = "./";

}

String jars = System.getEnv("JARS");

JavaSparkContext ctx = new  
JavaSparkContext(System.getenv("MASTER"), "my Java app",  
System.getenv("SPARK_HOME"), System.getenv("JARS"));

SparkContext – metadata
The SparkContext object has a set of metadata that I found useful. The version 
number, application name, and memory available are useful. At the start of a Spark 
program, I usually display/log the version number.

Value Use

appName This is the application name. If you have established a 
convention, this field can be useful at runtime.

getConf It returns configuration information.

getExecutorMemoryStatus This retrieves the memory details. It could be useful 
if you want to check memory details. As Spark is 
distributed, the values do not mean that you are out 
of memory.

Master This is the name of the master.

Version I found this very useful – especially while testing with 
different versions. 

Execute the following command from shell:

bin/spark-shell

scala> sc.version

res1: String = 1.1.1
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As you can see, I am running Version 1.1.1:

scala> sc.appName

res2: String = Spark shell

scala> sc.master

res3: String = local[*]

scala> sc.getExecutorMemoryStatus

res4: scala.collection.Map[String,(Long, Long)] = Map(10.0.1.3:56814  
-> (278302556,278302556))

The 10.0.1.3 is the address of the machine. The irst value is the maximum amount 
of memory allocated for the block manager (for buffering the intermediate data or 
caching RDDs), while the second value is the amount of remaining memory:

scala> sc.getConf

res5: org.apache.spark.SparkConf = org.apache.spark.SparkConf@7bc17541

scala> sc.getConf.toString()

res6: String = org.apache.spark.SparkConf@48acaa84

scala> 

A more informative call of this is given here:

scala> sc.getConf.toDebugString

res1: String =

spark.app.id=local-1422768546091

spark.app.name=Spark shell

spark.driver.host=10.0.1.3

spark.driver.port=51904

spark.executor.id=driver

spark.fileserver.uri=http://10.0.1.3:51905

spark.home=/usr/local/spark

spark.jars=

spark.master=local[*]

spark.repl.class.uri=http://10.0.1.3:51902

spark.tachyonStore.folderName=spark-237294fa-1a29-4550-b033- 
9a73a8222774
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Shared Java and Scala APIs
Once you have a SparkContext object created, it will serve as your main entry point. 
In the next chapter, you will learn how to use our SparkContext object to load and 
save data. You can also use SparkContext to launch more Spark jobs and add or 
remove dependencies. Some of the nondata-driven methods you can use on the 
SparkContext object are shown here:

Method Use

addJar(path) This adds the JAR for all future jobs run through the 
SparkContext object.

addFile(path) This downloads the file to all nodes on the cluster.

stop() This shuts down SparkContext.

clearFiles() This removes the files so that new nodes will not download them.

clearJars() This removes the JARs from being required for future jobs.

Python
The Python SparkContext object is a bit different than the Scala and Java contexts 
as Python doesn't use JARs to distribute dependencies. As you are still likely to have 
dependencies, set pyFiles with a ZIP ile containing all the dependent libraries as 
desired on SparkContext (or leave it empty if you don't have any iles to distribute). 
Create a Python SparkContext object using this code:

from pyspark import SparkContext

sc = SparkContext("master","my python app", sparkHome="sparkhome",  
pyFiles="placeholderdeps.zip")

The context metadata from Python is similar to that in Spark, as shown here:

bin/pyspark

Welcome to

      ____              __

     / __/__  ___ _____/ /__

    _\ \/ _ \/ _ `/ __/  '_/

   /__ / .__/\_,_/_/ /_/\_\   version 1.1.1

      /_/

Using Python version 2.7.8 (default, Aug 21 2014 15:21:46)

SparkContext available as sc.
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>>> sc.version

u'1.1.1'

>>> sc.appName

u'PySparkShell'

>>> sc.master

u'local[*]'

>>> sc.getExecutorMemoryStatus

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

AttributeError: 'SparkContext' object has no attribute  
'getExecutorMemoryStatus'

>>> from pyspark.conf import SparkConf

>>> conf = SparkConf()

>>> conf.toDebugString()

u'spark.app.name=pyspark-shell\nspark.master=local[*]\nspark.submit.
pyFiles='

>>> 

PySpark does not have the getExecutorMemoryStatus call yet but we can get some 
information with the .toDebugString call.

Now that you are able to create a connection with your Spark cluster, it's time to start 
loading our data into Spark.

Some more information is as follows:

• http://spark-project.org/docs/latest/quick-start.html

• http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html

• https://github.com/mesos/spark/blob/master/repl/src/main/scala/

spark/repl/SparkILoop.scala

• http://spark.apache.org/docs/latest/api/python/pyspark.context.

SparkContext-class.html

• http://www.scala-lang.org/api/current/index.html#scala.util.

Properties$

• http://spark.apache.org/docs/latest/api/java/org/apache/spark/

SparkContext.html

Summary
In this chapter, we covered how to connect to our Spark cluster using a 
SparkContext object. By using this knowledge, we will look at the different data 
sources we can use to load data into Spark in the next chapter.

http://spark-project.org/docs/latest/quick-start.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
https://github.com/mesos/spark/blob/master/repl/src/main/scala/spark/repl/SparkILoop.scala
https://github.com/mesos/spark/blob/master/repl/src/main/scala/spark/repl/SparkILoop.scala
http://spark.apache.org/docs/latest/api/python/pyspark.context.SparkContext-class.html
http://spark.apache.org/docs/latest/api/python/pyspark.context.SparkContext-class.html
http://www.scala-lang.org/api/current/index.html#scala.util.Properties$
http://www.scala-lang.org/api/current/index.html#scala.util.Properties$
http://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html 
http://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html 
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Loading and Saving  

Data in Spark
By this point in the book, you have already experimented with the Spark shell, 
igured out how to create a connection with the Spark cluster, and built jobs for 
deployment. Now to make those jobs useful, you will learn how to load and save data 
in Spark. Spark's primary unit for representation of data is an RDD, which allows for 
easy parallel operations on the data. Other forms of data, such as counters, have their 
own representation. Spark can load and save RDDs from a variety of sources.

RDDs
Spark RDDs can be created from any supported Hadoop source. Native collections in 
Scala, Java, and Python can also serve as the basis for an RDD. Creating RDDs from a 
native collection is especially useful for testing.

Before jumping into the details on the supported data sources/links, take some time 
to learn about what RDDs are and what they are not. It is crucial to understand that 
even though an RDD is deined, it does not actually contain data but just creates 
the pipeline for it. (As an RDD follows the principle of lazy evaluation, it evaluates 
an expression only when it is needed, that is, when an action is called for.) This 
means that when you go to access the data in an RDD, it could fail. The computation 
to create the data in an RDD is only done when the data is referenced by caching 
or writing out the RDD. This also means that you can chain a large number of 
operations and not have to worry about excessive blocking in a computational 
thread. It's important to note during application development that you can write 
code, compile it, and even run your job; unless you materialize the RDD, your code 
may not have even tried to load the original data.

www.allitebooks.com

http://www.allitebooks.org
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Each time you materialize an RDD, it is recomputed; if we 
are going to be using something frequently, a performance 
improvement can be achieved by caching the RDD.

Loading data into an RDD
Now the chapter will examine the different sources you can use for your RDD. If 
you decide to run it through the examples in the Spark shell, you can call .cache() 
or .first() on the RDDs you generate to verify that it can be loaded. In Chapter 
2, Using the Spark Shell, you learned how to load data text from a ile and from S3. 
In this chapter, we will look at different formats of data (text ile and CSV) and the 
different sources (ilesystem, HDFS) supported.

One of the easiest ways of creating an RDD is taking an existing Scala collection 
and converting it into an RDD. The SparkContext object provides a function called 
parallelize that takes a Scala collection and turns it into an RDD over the same 
type as the input collection, as shown here:

• Scala:

val dataRDD = sc.parallelize(List(1,2,4))

dataRDD.take(3)

• Java:

import java.util.Arrays;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.*;

import org.apache.spark.api.java.function.Function;

public class LDSV01 {

  public static void main(String[] args) {

    // TODO Auto-generated method stub

    SparkConf conf = new SparkConf().setAppName("Chapter  
    05").setMaster("local");

    JavaSparkContext ctx = new JavaSparkContext(conf);

    JavaRDD<Integer> dataRDD = ctx.parallelize(Arrays.
asList(1,2,4));

    System.out.println(dataRDD.count());

    System.out.println(dataRDD.take(3));

  }

}

[..]
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14/11/22 13:37:46 INFO SparkContext: Job finished: count at  
Test01.java:13, took 0.153231 s

3

[..]

14/11/22 13:37:46 INFO SparkContext: Job finished: take at  
Test01.java:14, took 0.010193 s

[1, 2, 4]

The reason for a full program in Java is that you can use the Scala and Python shell, 
but for Java you need to compile and run the program. I use Eclipse and add the JAR 
ile /usr/local/spark-1.1.1/assembly/target/scala-2.10/spark-assembly-
1.1.1-hadoop2.4.0.jar in the Java build path.

• Python:

rdd = sc.parallelize([1,2,3])

rdd.take(3)

The simplest method for loading external data is loading text from a ile. This has a 
requirement that the ile should be available on all the nodes in the cluster, which 
isn't much of a problem for local mode. When you're in a distributed mode, you will 
want to use Spark's addFile functionality to copy the ile to all of the machines in 
your cluster. Assuming your SparkContext object is called sc, we could load text 
data from a ile (you need to create the ile):

• Scala:

import org.apache.spark.SparkFiles;

...

sc.addFile("spam.data")

val inFile = sc.textFile(SparkFiles.get("spam.data"))

inFile.first()

• Java:

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.*;

import org.apache.spark.SparkFiles;;

public class LDSV02 {

  public static void main(String[] args) {

    SparkConf conf = new SparkConf().setAppName("Chapter 05").
setMaster("local");

    JavaSparkContext ctx = new JavaSparkContext(conf);

    System.out.println("Running Spark Version : " +ctx.version());

    ctx.addFile("/Users/ksankar/fpds-vii/data/spam.data");
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    JavaRDD<String> lines = ctx.textFile(SparkFiles.get("spam.
data"));

    System.out.println(lines.first());

  }

} 

The runtime messages are interesting:

Running Spark Version : 1.1.1

<It copied the file to a temporary directory in the  
cluster. This would work in local mode as well as in a  
spark cluster of many machines>

14/11/22 14:05:43 INFO Utils: Copying  
/Users/ksankar/Tech/spark/book/spam.data to  
/var/folders/gq/70vnnyfj6913b6lms_td7gb40000gn/T/spark- 
f4c60229-8290-4db3-a39b-2941f63aabf8/spam.data

14/11/22 14:05:43 INFO SparkContext: Added file  
/Users/ksankar/Tech/spark/book/spam.data at  
http://10.0.1.3:52338/files/spam.data with timestamp  
1416693943289

14/11/22 14:05:43 INFO MemoryStore: ensureFreeSpace(163705)  
called with curMem=0, maxMem=2061647216

14/11/22 14:05:43 INFO MemoryStore: Block broadcast_0  
stored as values in memory (estimated size 159.9 KB, free  
1966.0 MB)

14/11/22 14:05:43 INFO FileInputFormat: Total input paths  
to process : 1

[..]

14/11/22 14:05:43 INFO SparkContext: Job finished: first at  
Test02.java:13, took 0.191388 s

0 0.64 0.64 0 0.32 0 0 0 0 0 0 0.64 0 0 0 0.32 0 1.29 1.93  
0 0.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0.778 0 0 3.756 61 278 1

• Python:

from pyspark.files import SparkFiles

…

sc.addFile("spam.data")

in_file = sc.textFile(SparkFiles.get("spam.data"))

in_file.take(1)

The resulting RDD is of the string type, with each line being a unique element in the 
RDD. take(1) is an action that picks the irst element from the RDD.
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Frequently, your input iles will be CSV or TSV iles, which you will want to read 
and parse and then create RDDs for processing. The two ways of reading CSV iles 
are either reading and parsing them using our own functions or using a CSV library 
like opencsv.

Let's irst look at parsing using our own functions:

• Scala:

val inFile = sc.textFile("Line_of_numbers.csv")

val numbersRDD = inFile.map(line => line.split(','))

scala> numbersRDD.take(10)

[..]

14/11/22 12:13:11 INFO SparkContext: Job finished: take at 
<console>:18, took 0.010062 s

res7: Array[Array[String]] = Array(Array(42, 42, 55, 61, 53, 49, 
43, 47, 49, 60, 68, 54, 34, 35, 35, 39))

It is an array of String. We need float or double

val numbersRDD = inFile.map(line => line.split(',')).map(_.
toDouble)

scala> val numbersRDD = inFile.map(line => line.split(',')).map(_.
toDouble)

<console>:15: error: value toDouble is not a member of 
Array[String]

       val numbersRDD = inFile.map(line => line.split(',')).map(_.
toDouble)

This will not work as we have an array of array of strings. This 
is where flatMap comes handy!

scala> val numbersRDD = inFile.flatMap(line => line.split(',')).
map(_.toDouble)

numbersRDD: org.apache.spark.rdd.RDD[Double] = MappedRDD[10] at 
map at <console>:15

scala> numbersRDD.collect()

 [..]

res10: Array[Double] = Array(42.0, 42.0, 55.0, 61.0, 53.0, 49.0, 
43.0, 47.0, 49.0, 60.0, 68.0, 54.0, 34.0, 35.0, 35.0, 39.0)

scala> numbersRDD.sum()

[..]

14/11/22 12:19:15 INFO SparkContext: Job finished: sum at 
<console>:18, took 0.013293 s

res9: Double = 766.0

scala>

• Python:

inp_file = sc.textFile("Line_of_numbers.csv")

numbers_rdd = inp_file.map(lambda line: line.split(','))

>>> numbers_rdd.take(10)
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[..]

14/11/22 11:12:25 INFO SparkContext: Job finished: runJob at 
PythonRDD.scala:300, took 0.023086 s

[[u'42', u'42', u'55', u'61', u'53', u'49', u'43', u'47', u'49', 
u'60', u'68', u'54', u'34', u'35', u'35', u'39']]

>>>

But we want the values as integers or double

numbers_rdd = inp_file.flatMap(lambda line: line.split(',')).
map(lambda x:float(x))

>>> numbers_rdd.take(10)

14/11/22 11:52:39 INFO SparkContext: Job finished: runJob at 
PythonRDD.scala:300, took 0.022838 s

[42.0, 42.0, 55.0, 61.0, 53.0, 49.0, 43.0, 47.0, 49.0, 60.0]

>>> numbers_sum = numbers_rdd.sum()

[..]

14/11/22 12:03:16 INFO SparkContext: Job finished: sum at 
<stdin>:1, took 0.026984 s

>>> numbers_sum

766.0

>>>

• Java:

import java.util.Arrays;

import java.util.List;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.*;

import org.apache.spark.api.java.function.DoubleFunction;

import org.apache.spark.api.java.function.FlatMapFunction;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.SparkFiles;;

public class LDSV03 {

  public static void main(String[] args) {

    SparkConf conf = new SparkConf().setAppName("Chapter 05").
setMaster("local");

    JavaSparkContext ctx = new JavaSparkContext(conf);

    System.out.println("Running Spark Version : " +ctx.version());

    ctx.addFile("/Users/ksankar/fdps-vii/data/Line_of_numbers.
csv");

    //

    JavaRDD<String> lines = ctx.textFile(SparkFiles.get("Line_of_
numbers.csv"));
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    //

    JavaRDD<String[]> numbersStrRDD = lines.map(new 
Function<String,String[]>() {

      public String[] call(String line) {return line.split(",");}

    });

    List<String[]> val = numbersStrRDD.take(1);

    for (String[] e : val) {

      for (String s : e) {

        System.out.print(s+" ");

      }

      System.out.println();

    }

    //

    JavaRDD<String> strFlatRDD = lines.flatMap(new FlatMapFunction
<String,String>() {

      public Iterable<String> call(String line) {return Arrays.
asList(line.split(","));}

    });

    List<String> val1 = strFlatRDD.collect();

    for (String s : val1) {

      System.out.print(s+" ");

      }

    System.out.println();

    //

    JavaRDD<Integer> numbersRDD = strFlatRDD.map(new 
Function<String,Integer>() {

      public Integer call(String s) {return Integer.parseInt(s);}

    });

    List<Integer> val2 = numbersRDD.collect();

    for (Integer s : val2) {

      System.out.print(s+" ");

      }

    System.out.println();

    //

    Integer sum = numbersRDD.reduce(new Function2<Integer,Integer,
Integer>() {

      public Integer call(Integer a, Integer b) {return a+b;}

    });

    System.out.println("Sum = "+sum);

  }

}

The results are as expected:

[..]

14/11/22 16:02:18 INFO AkkaUtils: Connecting to HeartbeatReceiver: 
akka.tcp://sparkDriver@10.0.1.3:56479/user/HeartbeatReceiver
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Running Spark Version : 1.1.1

14/11/22 16:02:18 INFO Utils: Copying /Users/ksankar/Tech/spark/
book/Line_of_numbers.csv to /var/folders/gq/70vnnyfj6913b6lms_
td7gb40000gn/T/spark-9a4bed6d-adb5-4e08-b5c5-5e9089d6e54b/Line_of_
numbers.csv

14/11/22 16:02:18 INFO SparkContext: Added file /Users/ksankar/
fdps-vii/data/Line_of_numbers.csv at http://10.0.1.3:56484/files/
Line_of_numbers.csv with timestamp  
1416700938334

14/11/22 16:02:18 INFO MemoryStore: ensureFreeSpace(163705)  
called with curMem=0, maxMem=2061647216

14/11/22 16:02:18 INFO MemoryStore: Block broadcast_0 stored  
as values in memory (estimated size 159.9 KB, free 1966.0 MB)

14/11/22 16:02:18 INFO FileInputFormat: Total input paths to  
process : 1

14/11/22 16:02:18 INFO SparkContext: Starting job: take at  
Test03.java:25

[..]

14/11/22 16:02:18 INFO SparkContext: Job finished: take at  
Test03.java:25, took 0.155961 s

42 42 55 61 53 49 43 47 49 60 68 54 34 35 35 39 

14/11/22 16:02:18 INFO BlockManager: Removing broadcast 1

[..]

14/11/22 16:02:18 INFO SparkContext: Job finished: collect at  
Test03.java:36, took 0.016938 s

42 42 55 61 53 49 43 47 49 60 68 54 34 35 35 39 

14/11/22 16:02:18 INFO SparkContext: Starting job: collect at  
Test03.java:45

[..]

14/11/22 16:02:18 INFO SparkContext: Job finished: collect at  
Test03.java:45, took 0.016657 s

42 42 55 61 53 49 43 47 49 60 68 54 34 35 35 39 

14/11/22 16:02:18 INFO SparkContext: Starting job: reduce at  
Test03.java:51

[..]

14/11/22 16:02:18 INFO SparkContext: Job finished: reduce at  
Test03.java:51, took 0.019349 s

Sum = 766
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This also illustrates one of the ways of getting data out of Spark; you can transform 
it to a standard Scala array using the collect() function. The collect() function is 
especially useful for testing, in much the same way that the parallelize() function 
is. The collect() function collects the job's execution results, while parallelize() 
partitions the input data and makes it an RDD. The collect function only works if 
your data its in memory in a single host (where your code runs on), and even in that 
case, it adds to the bottleneck that everything has to come back to a single machine. 

The collect() function brings all the data to the machine 
that runs the code. So beware of accidentally doing 
collect() on a large RDD!

The split() and toDouble() functions doesn't always work out so well for more 
complex CSV iles. opencsv is a versatile library for Java and Scala. For Python the 
CSV library does the trick. Let's use the opencsv library to parse the CSV iles in Scala.

• Scala:

import au.com.bytecode.opencsv.CSVReader

import java.io.StringReader

sc.addFile("Line_of_numbers.csv")

val inFile = sc.textFile("Line_of_numbers.csv")

val splitLines = inFile.map(line => {

  val reader = new CSVReader(new StringReader(line))

  reader.readNext()

})

val numericData = splitLines.map(line =>  
line.map(_.toDouble))

val summedData = numericData.map(row => row.sum)

println(summedData.collect().mkString(","))

[..]

14/11/22 12:37:43 INFO TaskSchedulerImpl: Removed TaskSet  
13.0, whose tasks have all completed, from pool 

14/11/22 12:37:43 INFO SparkContext: Job finished: collect  
at <console>:28, took 0.0234 s

766.0

While loading text iles into Spark is certainly easy, text iles on local disk are often 
not the most convenient format for storing large chunks of data. Spark supports 
loading from all of the different Hadoop formats (sequence iles, regular text iles, 
and so on) and from all of the support Hadoop storage sources (HDFS, S3, HBase, 
and so on). You can also load your CSV into HBase using some of their bulk loading 
tools (like import TSV) and get your CSV data.
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Sequence iles are binary lat iles consisting of key value pairs; they are one of the 
common ways of storing data for use with Hadoop. Loading a sequence ile into 
Spark is similar to loading a text ile, but you also need to let it know about the types 
of the keys and values. The types must either be subclasses of Hadoop's Writable 
class or be implicitly convertible to such a type. For Scala users, some natives are 
convertible through implicits in WritableConverter. As of Version 1.1.0, the 
standard WritableConverter types are int, long, double, loat, boolean, byte arrays, 
and string. Let's illustrate by looking at the process of loading a sequence ile of 
String to Integer, as shown here:

• Scala:

val data = sc.sequenceFile[String, Int](inputFile)

• Java:

JavaPairRDD<Text, IntWritable> dataRDD = sc.sequenceFile(file, 
Text.class, IntWritable.class);

JavaPairRDD<String, Integer> cleanData = dataRDD.map(new 
PairFunction<Tuple2<Text, IntWritable>, String, Integer>() {

 @Override

public Tuple2<String, Integer> call(Tuple2<Text, IntWritable> 
pair) {

return new Tuple2<String, Integer>(pair._1().toString(), 
pair._2().get());

}

});

Note that in the preceding cases, like with the text input, the 
ile need not be a traditional ile; it can reside on S3, HDFS, 
and so on. Also note that for Java, you can't rely on implicit 
conversions between types.

HBase is a Hadoop-based database designed to support random read/write 
access to entries. Loading data from HBase is a bit different from text files 
and sequence in files with respect to how we tell Spark what types to use for 
the data.

• Scala:

import spark._

import org.apache.hadoop.hbase.{HBaseConfiguration,  
HTableDescriptor}

import org.apache.hadoop.hbase.client.HBaseAdmin

import org.apache.hadoop.hbase.mapreduce.TableInputFormat

….

val conf = HBaseConfiguration.create()
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conf.set(TableInputFormat.INPUT_TABLE, input_table)

 // Initialize hBase table if necessary

val admin = new HBaseAdmin(conf)

if(!admin.isTableAvailable(input_table)) {

  val tableDesc = new HTableDescriptor(input_table)

  admin.createTable(tableDesc)

}

val hBaseRDD =  sc.newAPIHadoopRDD(conf,  
      classOf[TableInputFormat],  
      classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],  
      classOf[org.apache.hadoop.hbase.client.Result])

• Java:

import spark.api.java.JavaPairRDD;

import spark.api.java.JavaSparkContext;

import spark.api.java.function.FlatMapFunction;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.HTableDescriptor;

import org.apache.hadoop.hbase.client.HBaseAdmin;

import org.apache.hadoop.hbase.mapreduce.TableInputFormat;

import org.apache.hadoop.hbase.io.ImmutableBytesWritable;

import org.apache.hadoop.hbase.client.Result;

...

JavaSparkContext sc = new JavaSparkContext(args[0],  
"sequence load", System.getenv("SPARK_HOME"),  
System.getenv("JARS"));

Configuration conf = HBaseConfiguration.create();

conf.set(TableInputFormat.INPUT_TABLE, args[1]);

// Initialize hBase table if necessary

HBaseAdmin admin = new HBaseAdmin(conf);

if(!admin.isTableAvailable(args[1])) {

    HTableDescriptor tableDesc = new  
HTableDescriptor(args[1]);

    admin.createTable(tableDesc);

}

JavaPairRDD<ImmutableBytesWritable, Result> hBaseRDD =  
sc.newAPIHadoopRDD( conf, TableInputFormat.class,  
ImmutableBytesWritable.class, Result.class);

The method that you used to load the HBase data can be generalized for loading all 
other sorts of Hadoop data. If a helper method in SparkContext does not already 
exist for loading the data, simply create a coniguration specifying how to load the 
data and pass it into a new APIHadoopRDD function. Helper methods exist for plain 
text iles and sequence iles. A helper method also exists for Hadoop iles similar to 
the Sequence ile API.
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Saving your data
While distributed computational jobs are a lot of fun, they are much more useful 
when the results are stored in a useful place. While the methods for loading an RDD 
are largely found in the SparkContext class, the methods for saving an RDD are 
deined on the RDD classes. In Scala, implicit conversions exist so that an RDD, that 
can be saved as a sequence ile, is converted to the appropriate type, and in Java 
explicit conversion must be used.

Here are the different ways to save an RDD:

• For Scala:

rddOfStrings.saveAsTextFile("out.txt")

keyValueRdd.saveAsObjectFile("sequenceOut")

• For Java:

rddOfStrings.saveAsTextFile("out.txt")

keyValueRdd.saveAsObjectFile("sequenceOut")

• For Python:

rddOfStrings.saveAsTextFile("out.txt")

In addition, users can save the RDD as a compressed text ile 
by using the following function:

saveAsTextFile(path: String, codec: Class[_ 
<: CompressionCodec])

Some references are as follows:

• http://spark-project.org/docs/latest/scala-programming-guide.

html#hadoop-datasets

• http://opencsv.sourceforge.net/

• http://commons.apache.org/proper/commons-csv/

• http://hadoop.apache.org/docs/current/api/org/apache/hadoop/

mapred/SequenceFileInputFormat.html

• http://hadoop.apache.org/docs/current/api/org/apache/hadoop/

mapred/InputFormat.html

• http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-

linux-single-node-cluster/

• http://spark.apache.org/docs/latest/api/python/

• http://wiki.apache.org/hadoop/SequenceFile

http://spark-project.org/docs/latest/scala-programming-guide.html#hadoop-datasets
http://spark-project.org/docs/latest/scala-programming-guide.html#hadoop-datasets
http://opencsv.sourceforge.net/
http://commons.apache.org/proper/commons-csv/
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/SequenceFileInputFormat.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/SequenceFileInputFormat.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/InputFormat.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/InputFormat.html
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://spark.apache.org/docs/latest/api/python/
http://wiki.apache.org/hadoop/SequenceFile
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• http://hbase.apache.org/book/quickstart.html

• http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/

mapreduce/TableInputFormat.html

• https://spark.apache.org/docs/latest/api/java/org/apache/spark/

api/java/JavaPairRDD.html

• https://bzhangusc.wordpress.com/2014/06/18/csv-parser/

Summary
In this chapter, you saw how to load data from a variety of different sources.  
We also looked at basic parsing of the data from text input iles. Now that we can get 
our data loaded into a Spark RDD, it is time to explore the different operations we 
can perform on our data in the next chapter.

http://hbase.apache.org/book/quickstart.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableInputFormat.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableInputFormat.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/api/java/JavaPairRDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/api/java/JavaPairRDD.html
https://bzhangusc.wordpress.com/2014/06/18/csv-parser/
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Manipulating your RDD
The last few chapters have been the necessary groundwork to get Spark working. 
Now that you know how to load and save your data in different ways, it's time for 
the big payoff, that is, manipulating data. The API to manipulate your RDD is similar 
among the languages but not identical. Unlike the previous chapters, each language 
is covered in its own section; you likely only need to read the one pertaining to the 
language you are interested in using. Particularly, the Python implementation is 
currently not fully at feature parity with the Scala/Java API, but it supports most of 
the basic functionality as of version 1.1.0 and has plans to improve feature parity in 
the future versions.

Manipulating your RDD in Scala and Java
RDDs are the primary abstraction in Spark. From a structural view, they are just a 
bunch of elements—but elements that can be operated in parallel!

Manipulating your RDD in Scala is quite simple, especially if you are familiar with 
Scala's collection library. Many of the standard functions are available directly on 
Spark's RDDs with the primary catch being that they are immutable. This makes 
porting existing Scala code to be distributed much simpler than porting Java or 
Python code. At least in theory, this is true. While Scala encourages functional 
programming, one can always use Scala in a non-functional way. Vice versa, while 
using Python, one can, to a large extent, apply a functional approach to programming. 
In other words, the difference lies in whether it is the functional/immutable style of 
programming or not, and the programs written in a functional way can be ported to 
Spark easily.
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Manipulating your RDD in Java is fairly simple but a little more awkward at times 
than it is in Scala. There are a couple of reasons for this. The main reason has to do with 
type inference and also with the fact that Java doesn't have anonymous functions. In 
the following code snippets, sometimes the Java code is more unwieldy because Java 
lacks type inference and anonymous functions. Java 8 has lambda, which would make 
Java a lot more elegant with Spark. Secondly, as Java doesn't have implicit conversions, 
we have to be more explicit with our types. While the return types are Java friendly, 
Spark requires the use of Scala's Tuple2 class for key-value pairs.

The hallmark of a MapReduce system are the two primitives: map and reduce. We've 
seen the map function used in the past chapters. Map works by taking in a function, 
which acts on each individual element in the input RDD and produces a new output 
element. For example, to produce a new RDD where you add one to every number, 
use rdd.map(x => x+1).

Alternatively, in Java, you can use this:

rdd.map(new Function<Integer, Integer>() { public Integer  
  call(Integer x) { return x+1;} });

There are actually two types of map function—map and flatMap. 
It is easy to get confused between them. The map function takes 
an element and returns an element. The element could be a 
single entity, a tuple, or a list; nevertheless, there is a one-to-one 
correspondence with the map function. The flatMap function, 
on the other hand, takes one element and will return one or more 
elements. Actually, the map in Hadoop MapReduce is flatMap. 
In fact, the Spark word count example is implemented using the 
flatMap(), map(), and reduceByKey() functions.

It is important to understand that the map function and the other Spark functions 
do not modify/update the existing elements; rather, they return a new RDD with 
new elements—the RDDs are immutable. The reduce function takes a function that 
operates on pairs to combine all the data. The reduce function you provide needs 
to be commutative and associative (that is, f(a,b) == f(b,a), and f(a,f(b,c)) == f(f(a,b),c). 
For example, to sum all of the elements, you need to use rdd.reduce(x,y => 
x+y) or rdd.reduce(new Function2<Integer, Integer>(){ public Integer 
call(Integer x, Integer y) { return x+y;} }.
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All functions are not commutative; for example, while 
multiplication is commutative 2*3 = 3*2, subtraction is not, that is, 
3-2 is not the same as 2-3, and division is not, that is, 4/2 is not the 
same as 2/4. The same applies for associativity; sum is associative, 
that is, 2+3+4 = (2+3)+4 or 2+(3+4), but average is not, that is, 
average (2,3,4,5,6) is not equal to average (2,3) + average (4,5,6).

The flatMap function is a useful utility function that lets you write a function that 
returns an iterable of the type you want and then lattens the results. A simple 
example of this is a case where you want to parse all of the data, but some of it might 
fail to be parsed. The flatMap function can be used to output an empty list if it 
has failed or a list with success if it has worked. Another example when the output 
collection has a different size than the input collection is while parsing a document 
and splitting in words; here every line may contain one or more words.

In addition to the reduce function, there is a corresponding reduceByKey function 
that works on RDDs, which are key-value pairs to produce another RDD. Unlike 
when you're using map on a list in Scala, your function will run on a number of 
different machines, and so you can't depend on the shared state with this.

Before continuing into other wonderful functions for manipulating your RDD, you 
need to read a bit about shared states. In the example given earlier where we added 
one to every integer, we didn't really share states. However, for even simple tasks 
such as distributed parsing of data that we did when loading the CSV ile, it can be 
quite handy to have shared counters for things such as keeping track of the number 
of rejected records. Spark supports both shared immutable data, which it calls 
broadcast and accumulate (via accumulators):

• You can create a new broadcast by calling sc.broadcast(value). While 
you don't have to explicitly broadcast values as Spark does its magic in the 
background, broadcasting ensures that the value is sent to each node only 
once. Broadcasts are often used for things such as side inputs (for example, a 
hashmap that you need to look up as part of the map function). This returns 
an object that can be used to reference the broadcast value.

• Another method for sharding states is using an accumulator. To create an 
accumulator, use sc.accumulator(initialvalue). This returns an object 
you can add to in a distributed context and then get back the value by calling 
.value(). The accumulableCollection can be used to create a collection 
that is appended in a distributed fashion; however, if you find yourself using 
this, ask yourself whether you could use the results of a map output instead. 
If the predefined accumulators don't work for your use case, you can use 
accumulable to define your own accumulation type. A broadcast value can 
be read by all of the workers and an accumulator can be written by all of the 
workers but read by only the driver.
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If you are writing Scala code that interacts with a Java Spark process 
(say for testing), you may find it useful to use the int accumulator 
and similar others on the Java Spark context; otherwise, your 
accumulator types might not quite match up.

If you find that your accumulator isn't increasing in value like you 
expect, remember that Spark follows the principle of lazy evaluation. 
This means that Spark won't actually perform the maps, reductions, 
or other computation on RDDs until the data has to be output.

Look at the previous example, which parsed CSV iles, and make it a bit more robust. 
In your previous work, you had assumed that the input was well formatted and if any 
errors occur, our entire pipeline would fail. While this can be the correct behavior for 
some kind of work, we may want to accept some number of malformed records while 
dealing with data from third parties. On the other hand, we don't want to just throw 
out all of the records and declare it a success; we might miss an important format 
change and produce meaningless results. Consider the following code:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkFiles;

import au.com.bytecode.opencsv.CSVReader

import java.io.StringReader

object LoadCsvWithCountersExample {

  def main(args: Array[String]) {

    if (args.length != 2) {

      System.err.println("Usage: LoadCsvExample <master>  
        <inputfile>")

      System.exit(1)

    }

    val master = args(0)

    val inputFile = args(1)

    val sc = new SparkContext(master, "Load CSV With Counters 
Example",

                 System.getenv("SPARK_HOME"),

                 Seq(System.getenv("JARS")))

    val invalidLineCounter = sc.accumulator(0)

    val invalidNumericLineCounter = sc.accumulator(0)

    sc.addFile(inputFile)

    val inFile = sc.textFile(inputFile)

    val splitLines = inFile.flatMap(line => {

      try {
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    val reader = new CSVReader(new StringReader(line))

      Some(reader.readNext())

      } catch {

    case _ => {

      invalidLineCounter += 1

      None

    }

      }

    }

            )

    val numericData = splitLines.flatMap(line => {

      try {

    Some(line.map(_.toDouble))

      } catch {

    case _ => {

      invalidNumericLineCounter += 1

      None

    }

      }

    }

    )

    val summedData = numericData.map(row => row.sum)

    println(summedData.collect().mkString(","))

    println("Errors: "+invalidLineCounter+"," 
      +invalidNumericLineCounter)

  }

}

You can run the code with parameters local/path/Line_of_numbers.csv and the 
code will run with the following result:

[..]

2014-11-22 18:15:48,399 INFO  [main] spark.SparkContext (Logging.
scala:logInfo(59)) - Job finished: collect at LoadCsvWithCountersExample.
scala:47, took 0.256383 s

766.0

Errors: 0,0

Alternatively, in Java you can do the following:

import org.apache.spark.Accumulator;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.FlatMapFunction;
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import au.com.bytecode.opencsv.CSVReader;

import java.io.StringReader;

import java.util.Arrays;

import java.util.List;

import java.util.ArrayList;

public class JavaLoadCsvCounters {

  public static void main(String[] args) throws Exception {

    if (args.length != 2) {

    System.err.println("Usage: JavaLoadCsvCounters <master>  
      <inputfile>");

    System.exit(1);

    }

    String master = args[0];

    String inputFile = args[1];

    JavaSparkContext sc = new JavaSparkContext(master, "java load  
      csv with counters",

        System.getenv("SPARK_HOME"), System.getenv("JARS"));

    final Accumulator<Integer> errors = sc.accumulator(0);

    JavaRDD<String> inFile = sc.textFile(inputFile);

    JavaRDD<Integer[] > splitLines = inFile.flatMap(new  
      FlatMapFunction<String, Integer[]> (){

        public Iterable<Integer[]> call(String line) {

        ArrayList<Integer[]> result = new ArrayList<Integer[]>();

        try {

            CSVReader reader = new CSVReader(new StringReader 
              (line));

              String[] parsedLine = reader.readNext();

              Integer[] intLine = new Integer[parsedLine.length];

              for (int i = 0; i < parsedLine.length; i++) {

                intLine[i] = Integer.parseInt(parsedLine[i]);

             }

              result.add(intLine);

         } catch (Exception e) {

              errors.add(1);

         }

           return result;

         }

    }

    );

    List <Integer[]> res = splitLines.collect();

    System.out.print("Loaded data ");

    for (Integer[] e : res) {

      for (Integer val:e) {
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        System.out.print(val+" ");

      }

      System.out.println();

    }

    System.out.println("Error count "+errors.value());

  }

}

You can run the code with parameters local/path/Line_of_numbers.csv and the 
code will run with the following result:

[..]

14/11/22 19:33:05 INFO SparkContext: Job finished: collect at 
JavaLoadCsvCounters.java:44, took 0.106908 s

Loaded data 42 42 55 61 53 49 43 47 49 60 68 54 34 35 35 39 

Error count 0

The preceding code example illustrates the usefulness of 
flatMap. In general, flatMap can be used when the required 
output collection is of a different size than that of the input 
collection. You can do this because in general there are nested 
collections or types involved, which need to be lattened. 
As the options in Scala can be used as sequences through an 
implicit conversion, you can avoid having to explicitly ilter 
out the None result and just use flatMap.

Summary statistics can be quite useful when examining large datasets. In the preceding 
example, you loaded the data as Doubles to use Spark's provided summary statistics 
capabilities on the RDD. In Java, this requires explicitly using the JavaDoubleRDD 
type. For Java, it is important to use DoubleFunction<Integer[]> rather than 
Function<Integer[], Double> in the example as the second option won't result 
in the JavaDoubleRDD type. No such consideration is required for Scala as implicit 
conversions deal with the details. Compute the mean and the variance or compute 
them together with stats. You can extend this by adding it at the end of the preceding 
function to print out the summary statistics as println(summedData.stats()).

To do this with Java, we would do it as follows:

JavaDoubleRDD summedData = splitLines.map(new  
  DoubleFunction<Integer[]>() {

        public Double call(Integer[] in) {

          Double ret = 0.;

          for (int i = 0; i < in.length; i++) {

            ret += in[i];

          }
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          return ret;

        }

}

);

System.out.println(summedData.stats());

While working with key-value pair data, it can be quite useful to group data with 
the same key together (for example, if the key represents a user or a sample). The 
groupByKey function provides an easy way to group data together by key. The 
groupByKey function is a special case of combineByKey. There are several functions 
in the PairRDD class that are all implemented very closely on top of combineByKey. 
If you ind yourself using groupByKey or one of the other functions derived from 
combineByKey and immediately transforming the result, you should check to see 
whether there is a function better suited to the task. A common thing to do while 
starting out is to perform groupByKey and then sum the results with groupByKey().
map({case (x,y) => (x,y.sum)}). Alternatively, in Java you can do the following:

pairData.groupByKey().mapValues(new Function<List<Integer>,  
  Integer >(){

        public Integer call(List<Integer> x) {

          Integer sum = 0;

          for (Integer i : x) {

            sum += i;

          }

          return sum;

        }

}

); or in python .map(lambda (x,y): (x,sum(y))).collect()

By using reduceByKey, it could be simpliied to reduceByKey((x,y) => x+y) or in 
Java, as follows:

pairData.groupByKey().mapValues(

  new Function<Iterable<Integer>, Integer >(){

    public Integer call(Iterable<Integer> x) {

      Integer sum = 0; for (Integer i : x) {

        sum += i;

      }

    return sum;

    }

  }

);

In fact, this may be much more eficient. No big shufle is needed, as is the case for the 
groupBy. The only thing required is an aggregation of the values, which is important.
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The foldByKey(zeroValue)(function) function is similar to a traditional fold 
operation, which works per key. In a traditional fold, a list that is provided would 
be called with the initial value and the irst element of the list, and then the resulting 
value and the next element of the list would be the input to the next call of fold. Doing 
this requires sequentially processing the entire list, and so foldByKey behaves slightly 
differently. There is a handy table of functions of PairRDDs at the end of this section.

Sometimes, you will only want to update the values of a key-value pair data 
structure such as a PairRDD. You've learned about foldByKey and how it doesn't 
quite work as a traditional fold. If you're a Scala developer and you require the 
"traditional" fold behavior, you can perform the groupByKey function and then map 
a fold by value over the resulting RDD. This is an example of a case where you only 
want to change the value and we don't care about the key of the RDD; so examine 
the following code:

rdd.groupByKey().mapValues(x => {x.fold(0)((a,b) => a+b)})

The preceding code is interesting as it combines the Spark function groupByKey with 
a Scala function fold().The groupBy() function shufles the data so that the values 
are "together".  The fold mentioned is a "local" Scala fold on the nodes in parallel.

Often your data won't come in cleanly from a single source and you will want to 
join the data together for processing, which can be done with coGroup. This can be 
done when you are joining web access logs with transaction data or just joining two 
different computations on the same data. Provided that the RDDs have the same key, 
we can join two RDDs together with rdd.coGroup(otherRdd). There are a number 
of different join functions for different purposes illustrated in the table at the end of 
this section.

The next task you will learn is distributing iles among the cluster. We illustrate this 
by adding GeoIP support and mixing it together with the gradient descent example 
from the earlier chapter. Sometimes, the libraries you will use need iles distributed 
along with them. While it is possible to add them to the JAR and access them as 
class objects, Spark provides a simple way to distribute the required iles by calling 
addFile(), as shown here:

import scala.math

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkFiles;

import org.apache.spark.util.Vector

import au.com.bytecode.opencsv.CSVReader
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import java.util.Random

import java.io.StringReader

import java.io.File

import com.snowplowanalytics.maxmind.geoip.IpGeo

case class DataPoint(x: Vector, y: Double)

object GeoIpExample {

  

  def main(args: Array[String]) {

    if (args.length != 2) {

      System.err.println("Usage: GeoIpExample <master>  
        <inputfile>")

      System.exit(1)

    }

    val master = args(0)

    val inputFile = args(1)

    val iterations = 100

    val maxMindPath = "GeoLiteCity.dat"

    val sc = new SparkContext(master, "GeoIpExample",

                 System.getenv("SPARK_HOME"),

                 Seq(System.getenv("JARS")))

    val invalidLineCounter = sc.accumulator(0)

    val inFile = sc.textFile(inputFile)

    val parsedInput = inFile.flatMap(line => {

      try {

        val row = (new CSVReader(new StringReader 
          (line))).readNext()

          Some((row(0),row.drop(1).map(_.toDouble)))

      } catch {

        case _ => {

        invalidLineCounter += 1

        None 
      }

      }

    })

    val geoFile = sc.addFile(maxMindPath)

    // getLocation gives back an option so we use flatMap to only  
       output if its a some type

    val ipCountries = parsedInput.flatMapWith(_ => IpGeo(dbFile =  
      SparkFiles.get(maxMindPath) ))((pair, ipGeo) => {

     ipGeo.getLocation(pair._1).map(c => (pair._1,  
       c.countryCode)).toSeq

     })
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    ipCountries.cache()

    val countries = ipCountries.values.distinct().collect()

    val countriesBc = sc.broadcast(countries)

    val countriesSignal = ipCountries.mapValues(country =>  
      countriesBc.value.map(s => if (country == s) 1. else 0.))

    val dataPoints = parsedInput.join(countriesSignal).map(input  
      => {

      input._2 match {

    case (countryData, originalData) => DataPoint(new  
      Vector(countryData++originalData.slice(1,originalData.size- 
      2)) , originalData(originalData.size-1))

      }

    })

    countriesSignal.cache()

    dataPoints.cache()

    val rand = new Random(53)

    var w = Vector(dataPoints.first.x.length, _ => rand. 
      nextDouble)

    for (i <- 1 to iterations) {

      val gradient = dataPoints.map(p =>

    (1 / (1 + math.exp(-p.y*(w dot p.x))) - 1) * p.y * p.x). 
      reduce(_ + _)

      w -= gradient

    }

    println("Final w: "+w)

  }

}

In this example, you see multiple Spark computations. The irst is to determine all of 
the countries where our data is; so we can map the country to a binary feature. The 
code then uses a public list of proxies and the reported latency to try and estimate the 
latency I measured. This also illustrates the use of mapWith. If you have a mapping 
job that needs to create a per partition resource, mapWith can be used to do this. This 
can be useful for connections to backends or the creation of something like a PRNG. 
Some elements also can't be serialized over the wire (such as the IpCountry in the 
example), and so you have to create them per shard. You can also see that we cache a 
number of our RDDs to keep them from having to be recomputed.

There are several options when working with multiple RDDs.
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Scala RDD functions
These are PairRDD functions based on combineByKey. All operate on RDDs of  
type [K,V]:

Function Param options Explanation Return type

foldByKey (zeroValue)
(func(V,V)=>V)

(zeroValue,  
partitioner)
(func(V,V=>V)

(zeroValue, 
partitions)
(func(V,V=>V)

foldByKey merges the 
values using the provided 
function. Unlike a traditional 
fold over a list, the 
zeroValue can be added an 
arbitrary number of times.

RDD[K,V]

reduceByKey (func(V,V)=>V)

(func(V,V)=>V, 
numTasks)

reduceByKey is the parallel 
version of reduce that merges 
the values for each key using 
the provided function and 
returns an RDD.

RDD[K,V]

groupByKey ()

(numPartitions)
This groups elements 
together by key.

RDD[K,Seq[V]]

Functions for joining PairRDDs
Often while working with two or more key-value RDDs, it is useful to join them 
together. There are a few different methods to do this depending on what your 
desired behavior is:

Function Param options Explanation Return type

coGroup (otherRdd 
[K,W]...)

Join two (or more) RDDs by the 
shared key. Note if an element is 
missing in one RDD but present 
in the other one, the Seq value 
will simply be empty.

RDD[(K,(Seq[V], 
Seq[W]...))]

join (otherRdd[K,W])

(otherRdd[K,W], 
partitioner)

(otherRdd[K,W], 
numPartitions)

Join an RDD with another 
RDD. The result is only present 
for elements where the key is 
present in both RDDs.

RDD[(K,(V,W))]

subtract 
Key

(otherRdd[K,W])

(otherRdd[K,W], 
partitioner)

(otherRdd[K,W], 
numPartitions)

This returns an RDD with only 
keys not present in the other 
RDD.

RDD[(K,V)]
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Other PairRDD functions
Some functions only make sense when working on key-value pairs, as follows:

Function Param options Explanation Return type

lookup (key: K) This looks up a specific 
element in the RDD. It uses 
the RDD's partitioner to 
figure out which shard(s) to 
look at.

Seq[V]

mapValues (f: V => U) This is a specialized version 
of map for PairRDDs when 
you only want to change the 
value of the key-value pair. 
It takes the provided map 
function and applies it to the 
value. If you need to make 
your change based on both 
key and value, you must use 
one of the normal RDD map 
functions.

RDD[(K,U)]

collectAsMap () This takes an RDD and 
returns a concrete map. 
Your RDD must be able to 
fit in memory.

Map[K, V]

countByKey () This counts the number of 
elements for each key.

Map[K, Long]

partitionBy (partitioner: 
Partitioner, 
mapSideCombine: 
Boolean)

This returns a new RDD 
with the same data but 
partitioned by the new 
partitioner. The Boolean 
flag mapSideCombine 
controls whether Spark 
should group values with 
the same key together before 
repartitioning. It defaults to 
false and sets to true if 
you have a large percentage 
of duplicate keys.

RDD[(K,V)]
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Function Param options Explanation Return type

flatMapValues (f: V => 
TraversableOnce 
[U])

This is similar to 
MapValues. It's a 
specialized version of 
flatMap for PairRDDs 
when you only want to 
change the value of the 
key-value pair. It takes the 
provided map function and 
applies it to the value. The 
resulting sequence is then 
"flattened", that is, instead 
of getting Seq[Seq[V]], 
you get Seq[V]. If you need 
to make your change based 
on both key and value, you 
must use one of the normal 
RDD map functions.

RDD[(K,U)]

For information on saving PairRDDs, refer to the previous chapter.

Double RDD functions
Spark deines a number of convenience functions that work when your RDD is 
comprised of doubles, as follows:

Function Arguments Return value

Mean () Average

sampleStdev () Standard deviation for a sample rather 
than a population (as it divides by N-1 
rather than N).

Stats () Mean, variance, and count as a 
StatCounter.

Stdev () Standard deviation (for population).

Sum () Sum of the elements.

variance () Variance



Chapter 6

[ 79 ]

General RDD functions
The remaining RDD functions are deined on all RDDs:

Function Arguments Returns

aggregate (zero: U)(seqOp: 
(U,T) => T, combOp 
(U, U) => U)

It aggregates all of the elements of  
each partition of an RDD and then 
combines them using combOp. The  
zero value should be neutral (that is 0 
for + and 1 for *).

cache () It caches an RDD reused without 
re-computing. It's the same as 
persist(StorageLevel.MEMORY_
ONLY).

collect () It returns an array of all of the elements 
in the RDD.

count () It returns the number of elements in an 
RDD.

countByValue () It returns a map of value to the number 
of times that value occurs.

distinct ()

(partitions: Int)
It returns an RDD that contains only 
distinct elements.

filter (f: T => Boolean) It returns an RDD that contains only 
elements matching f.

filterWith (constructA: Int => 
A )(f: (T, A) => 
Boolean)

It is similar to filter, but f takes an 
additional parameter generated by 
constructA, which is called per-
partition. The original motivation 
for this came from providing PRNG 
generation per shard.

first () It returns the "first" element of the RDD.

flatMap (f: T => 
TraversableOnce[U])

It returns an RDD of type U.

fold (zeroValue: T)(op: 
(T,T) => T)

It merges values using the provided 
operation, first on each partition, and 
then merges the merged result.

foreach (f: T => Unit) It applies the function f to each 
element.

groupBy (f: T => K)

(f: T => K, p: 
Partitioner)

(f: T => K, 
numPartitions:Int)

It takes in an RDD and produces a 
PairRDD of type (K,Seq[T]) using the 
result of f for the key for each element.
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Function Arguments Returns

keyBy (f: T => K)

(f: T => K, p: 
Partitioner)

(f: T => K, 
numPartitions:Int)

It is the same as groupBy but does not 
group results together with duplicate 
keys. It returns an RDD of (K,T).

map (f: T => U) It returns an RDD of the result of 
applying f to every element in the 
input RDD.

mapPartitions (f: Iterator[T] => 
Iterator[U])

It is similar to map except that the 
provided function takes and returns an 
iterator and is applied to each partition.

mapPartitions 
WithIndex

(f: (Int, 
Iterator[T]) => 
Iterator[U], 
preservePartitions)

It is the same as mapPartitions but 
also provides the index of the original 
partition.

mapWith (constructA: Int => 
A)(f: (T, A) => U)

It is similar to map, but f takes an 
additional parameter generated by 
constructA, which is called per-
partition. The original motivation 
for this came from providing PRNG 
generation per shard.

persist ()

(newLevel: 
StorageLevel)

Sets the RDD storage level, which can 
cause the RDD to be stored after it is 
computed. Different StorageLevel 
values can be seen in StorageLevel.
scala (NONE, DISK_ONLY, MEMORY_
ONLY, and MEMORY_AND_DISK are the 
common ones).

pipe (command: 
Seq[String])

(command: 
Seq[String], 
env: Map[String, 
String])

It takes an RDD and calls the 
specified command with the optional 
environment. Then, it pipes each 
element through the command. That 
results in an RDD of type string.

sample (withReplacement: 
Boolean, fraction: 
Double, seed: Int)

It returns an RDD of that fraction.

takeSample (withReplacement: 
Boolean, num: Int, 
seed: Int)

It returns an array of the requested 
number of elements. It works by over 
sampling the RDD and then grabbing a 
subset.

toDebugString () It's a handy function that outputs the 
recursive deps of the RDD.
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Function Arguments Returns

union (other: RDD[T]) It's an RDD containing elements of 
both RDDs. Here, duplicates are not 
removed.

unpersist () Remove all blocks of the RDD from 
memory/disk if they've persisted.

zip (other: RDD[U]) It is important to note that it requires 
that the RDDs have the same number 
of partitions and the same size of each 
partition. It returns an RDD of  
key-value pairs RDD[T,U].

Java RDD functions
Many of the Java RDD functions are quite similar to the Scala RDD functions, but the 
type signatures are somewhat different.

Spark Java function classes
For the Java RDD API, we need to extend one of the provided function classes while 
implementing our function:

Name Params Purpose

Function<T,R> R call(T t) It is a function that takes something 
of type T and returns something 
of type R. It is commonly used for 
maps.

DoubleFunction<T> Double call(T t) It is the same as Function<T, 
Double>, but the result of the map-
like  call returns a JavaDoubleRDD 
(for summary statistics).

PairFunction<T, 
K, V>

Tuple2<K, V> 
call(T t)

It is a function that results in a 
JavaPairRDD. If you're working on 
JavaPairRDD<A,B>, have T of 
type Tuple2<A,B>.

FlatMap 
Function<T, R>

Iterable<R> call(T 
t)

It is a function for producing a RDD 
through flatMap.

PairFlatMap 
Function<T, K, V>

Iterable<Tuple2<K, 
V>> call(T t)

It's a function that results in a 
JavaPairRDD. If you're working on 
JavaPairRDD<A,B>, have T of 
type Tuple2<A,B>.
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Name Params Purpose

DoubleFlatMap 
Function<T>

Iterable<Double> 
call(T t)

It is the same as 
FlatMapFunction<T, Double>, 
but the result of the map-like call 
returns a JavaDoubleRDD (for 
summary statistics).

Function2<T1, T2, 
R>

R call(T1 t1, T2 
t2)

It is a function for taking two inputs 
and returning an output. It is used 
by fold and similar.

Common Java RDD functions
These RDD functions are available regardless of the type of RDD.

Name Params Purpose

cache () It makes an RDD persist in 
memory.

coalesce numPartitions: Int It returns a new RDD with 
numPartitions partitions.

collect () It returns the List representation 
of the entire RDD.

count () It returns the number of elements.

countByValue () It returns a map of each unique 
value to the number of times that 
value shows up.

distinct ()

(Int numPartitions)
It is an RDD consisting of all 
of the distinct elements of the 
RDD, optionally in the provided 
number of partitions.

filter (Function<T, Boolean> f) It is an RDD consisting only of the 
elements for which the provided 
function returns true.

first () It is the first element of the RDD.

flatMap (FlatMapFunction<T, U> f)

(DoubleFlatMapFunction<T> 
f)

(PairFlatMapFunction<T, 
K, V> f)

It is an RDD of the specified types 
(U, Double and Pair<K,V> 
respectively).

fold (T zeroValue, 
Function2<T, T, T> f)

It returns the result T. Each 
partition is folded individually 
with the zero value and then the 
results are folded.
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Name Params Purpose

foreach (VoidFunction<T> f) It applies the function to each 
element in the RDD.

groupBy (Function<T, K> f)

(Function<T, K> f, Int 
numPartitions)

It returns a JavaPairRDD of 
grouped elements.

map (DoubleFunction<T> f)

(PairFunction<T, K2, V2> 
f)

(Function<T, U> f)

It returns an RDD of an 
appropriate type for the input 
function (see previous table) by 
calling the provided function on 
each element in the input RDD.

mapPartitions (DoubleFunction 
<Iterator<T>> f)

(PairFunction 
<Iterator<T>, K2, V2> f)

(Function<Iterator<T>, 
U> f)

It is similar to map, but the 
provided function is called  
per-partition. This can be useful 
if you have done some setup 
work that is necessary for each 
partition.

reduce (Function2<T, T, T> f) It uses the provided function to 
reduce down all of the elements.

sample (Boolean withReplacement, 
Double fraction, Int 
seed)

It returns a smaller RDD 
consisting of only the requested 
fraction of the data.

Methods for combining JavaRDDs
There are a number of different functions that we can use to combine RDDs:

Name Params Purpose

subtract (JavaRDD<T> other)

(JavaRDD<T> other, 
Partitioner p)

(JavaRDD<T> other, 
Int numPartitions)

It returns an RDD with only the elements 
initially present in the first RDD and not 
present in the other RDD.

union (JavaRDD<T> other) It is the union of the two RDDs.

zip (JavaRDD<U> other) It returns an RDD of key-value pairs 
RDD[T,U].

It is important to note that it requires that 
the RDDs should have the same number of 
partitions and the size of each partition.
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Functions on JavaPairRDDs
Some functions are only deined on key-value PairRDDs:

Name Params Purpose

cogroup (JavaPairRDD<K, W> other)

(JavaPairRDD<K, W> other, 
Int numPartitions)

(JavaPairRDD<K, W> other1, 
JavaPairRDD<K, W> other2)

(JavaPairRDD<K, W> other1, 
JavaPairRDD<K, W> other2, 
Int numPartitions)

It joins two (or more) RDDs 
by the shared key. Note that 
if an element is missing in 
one RDD but present in the 
other one, the list will simply 
be empty.

combineByKey (Function<V, C> 
createCombiner

Function2<C, V, C> 
mergeValue,

Function2<C,C,C> 
mergeCombiners)

It's a generic function to 
combine elements by key. 
The createCombiner 
function turns something 
of type V into something of 
type C. The mergeValue 
function adds V to C and 
mergeCombiners is used to 
combine two C values into a 
single C value.

collectAsMap () It returns a map of the key-
value pairs.

countByKey () It returns a map of the key to 
the number of elements with 
that key.

flatMapValues (Function[T] f, 
Iterable[V] v)

It returns an RDD of type V.

join (JavaPairRDD<K, W> other)

(JavaPairRDD<K, W> other, 
Int integers)

It joins an RDD with another 
RDD. The result is only 
present for elements where 
the key is present in both the 
RDDs.

keys () It returns an RDD of only the 
keys.

lookup (Key k) It looks up a specific element 
in the RDD. It uses the RDD's 
partitioner to figure out 
which shard(s) to look at.
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Name Params Purpose

reduceByKey (Function2[V,V,V] f) The reduceByKey function 
is the parallel version of 
reduce that merges the 
values for each key using 
the provided function and 
returns an RDD.

sortByKey (Comparator[K] comp, 
Boolean ascending)

(Comparator[K] comp)

(Boolean ascending)

It sorts the RDD by key; so 
each partition contains a 
fixed range.

values () It returns an RDD of only the 
values.

Manipulating your RDD in Python
Spark has a more limited Python API than Java and Scala, but it supports for most of 
the core functionality.

The hallmark of a MapReduce system are the two commands map and reduce. 
You've seen the map function used in the past chapters. The map function works by 
taking in a function that works on each individual element in the input RDD and 
produces a new output element. For example, to produce a new RDD where you 
have added one to every number, you would use rdd.map(lambda x: x+1). It's 
important to understand that the map function and the other Spark functions, do not 
transform the existing elements; rather they return a new RDD with new elements. 
The reduce function takes a function that operates on pairs to combine all the data. 
This is returned to the calling program. If you were to sum all of the elements, you 
would use rdd.reduce(lambda x, y: x+y). The flatMap function is a useful 
utility function that allows you to write a function that returns an iterable of the type 
you want and then lattens the results. A simple example of this is a case where you 
want to parse all of the data, but some of it might fail to parse. The flatMap function 
can output an empty list if it has failed or a list with its success if it has worked. In 
addition to reduce, there is a corresponding reduceByKey function that works on 
RDDs, which are key-value pairs, and produces another RDD.
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Many of the mapping operations are also deined with a partition's variant. In 
this case, the function you need to provide takes and returns an iterator, which 
represents all of the data on that partition, thus performing work on a per-partition 
level. The mapPartitions(func) function can be quite useful if the operation you 
need to perform has to do expensive work on each shard/partition. An example 
of this is establishing a connection to a backend server. Another reason for using 
mapPartitions(func) is to do setup work for your map function that can't be 
serialized across the network. A good example of this is parsing some expensive side 
input, as shown here:

def f(iterator):
      // Expensive work goes here
     for i in iterator:
          yield per_element_function(i)

Often, your data can be expressed with key-value mappings. As such, many of the 
functions deined on Python's RDD class only work if your data is in a key-value 
mapping. The mapValues function is used when you only want to update the key-
value pair you are working with.

In addition to performing simple operations on the data, Spark also provides support 
for broadcast values and accumulators. Broadcast values can be used to broadcast a 
read-only value to all of the partitions, which can save the need to re-serialize a given 
value multiple times. Accumulators allow all of the shards to add to the accumulator 
and the result can then be read on the master. You can create an accumulator by 
doing counter = sc.accumulator(initialValue). If you want customized add 
behavior, you can also provide an AccumulatorParam to the accumulator. The return 
can then be incremented as counter += x on any of the workers. The resulting 
value can then be read with counter.value(). The broadcast value is created with 
bc = sc.broadcast(value) and then accessed by bc.value() on any worker. The 
accumulator can only be read on the master, and the broadcast value can be read on 
all of the shards.

Let's look at a quick Python example that shows multiple RDD operations. We have 
two text iles 2009-2014-BO.txt and 1861-1864-AL.txt. These are the State Of 
the Union speeches by Presidents Barack Obama and Abraham Lincoln. We want to 
compare the mood of the nation by comparing the salient difference in the words used.

The irst step is reading the iles and creating the word frequency vector, that is, 
each word and the number of times it is used in the speech. I am sure you would 
recognize this as a canonical word count MapReduce example and, in traditional 
Hadoop Map Reduce, it takes around 100 lines of code. In Spark, as we shall see, it 
takes only 5 lines of code:

from pyspark.context import SparkContext

print "Running Spark Version %s" % (sc.version)
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from pyspark.conf import SparkConf

conf = SparkConf()

print conf.toDebugString()

The MapReduce code is shown here:

from operator import add

lines = sc.textFile("sotu/2009-2014-BO.txt")

word_count_bo = lines.flatMap(lambda x: x.split(' ')).\

    map(lambda x: (x.lower().rstrip(). 
      lstrip().rstrip(',').rstrip('.'), 1)).\

    reduceByKey(add)

word_count_bo.count()

#6658 without lower, 6299 with lower, rstrip,lstrip 4835 

lines = sc.textFile("sotu/1861-1864-AL.txt")

word_count_al = lines.flatMap(lambda x: x.split(' ')).map(lambda  
  x: (x.lower().rstrip().lstrip().rstrip(',').rstrip('.'),  
  1)).reduceByKey(add)

word_count_al.count()

Sorting an RDD by any column is very easy as shown next:

word_count_bo_1 = word_count_bo.sortBy(lambda x:  
  x[1],ascending=False)

We can collect the word vector. But don't print it! It is a long list:

for x in word_count_bo_1.take(10):

    print x

Now, let's take out common words, as shown here:

common_words = ["us","has","all", "they", "from", "who","what","on",
"by","more","as","not","their","can","new","it","but","be","are","--
","i","have","this","will","for","with","is","that","in","our","we","
a","of","to","and","the","that's","or","make","do","you","at","it\'s"
,"than","if","know","last","about","no","just","now","an","because","
<p>we","why","we\'ll","how","two","also","every","come","we've","year"
,"over","get","take","one","them","we\'re","need","want","when","like"
,"most","-","been","first","where","so","these","they\'re","good","wou
ld","there","should","-->","<!--","up","i\'m","his","their","which","m
ay","were","such","some","those","was","here","she","he","its","her","
his","don\'t","i\'ve","what\'s","didn\'t","shouldn\'t","(applause.)","
let\'s","doesn\'t"]



Manipulating your RDD

[ 88 ]

Filtering out common words is also a single ilter operation. Of course, as RDDs are 
immutable, we would create a new iltered RDD:

word_count_bo_clean = word_count_bo_1.filter(lambda x: x[0] not in  
  common_words)

word_count_al_clean = word_count_al.filter(lambda x: x[0] not in  
  common_words)

Finding the words that were spoken by Obama but not by Lincoln, is a single RDD 
operation. You need to use subractByKey and then use sortBy on the count to see 
the different but most frequent words, as shown here:

for x in word_count_bo_clean.subtractByKey 
  (word_count_al_clean).sortBy(lambda x:  
  x[1],ascending=False).take(15): #collect():

    print x

The preceding program should give you a good grip on the RDD functions and how 
to use them in Python.

Standard RDD functions
These functions are available on all RDDs in Python:

Name Params Purpose

flatMap f, preserves 
Partitioning=False

It takes a function that returns an iterator of 
type U for each input of type T and returns 
a flattened RDD of type U.

mapParitions f, preserves 
Partitioning=False

It takes a function that takes in an iterator 
of type T and returns an iterator of type U, 
which then results in an RDD of type U. It's 
useful for map operations with expensive 
per machine setup work.

filter f It takes a function and returns an RDD 
with only the elements for which the 
function returns true.

distinct () It returns an RDD with distinct elements 
(for example, 1, 1, 2 gives the output as 1, 
2).

union other It returns a union of two RDDs.

cartesian other It returns the cartesian product of the RDD 
with the other RDD.
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Name Params Purpose

groupBy f, 
numPartitions=None

It returns an RDD with the elements 
grouped together for the value that f 
outputs.

pipe command, env={} It pipes each element of the RDD to the 
provided command and returns an RDD of 
the result.

foreach f It applies the function f to each element in 
the RDD.

reduce f It reduces the elements using the provided 
function.

fold zeroValue, op Each partition is folded individually with 
zero value and then the results are folded.

countByValue () It returns a dictionary mapping of each 
distinct value to the number of times it is 
found in the RDD.

take num It returns a list of num elements. This can 
be slow for large values of num; so use 
collect if you want to get back the entire 
RDD.

partitionBy numPartitions, 
partitionFunc=hash

Make a new RDD partitioned by the 
provided partitioning function. The 
partitionFunc function simply 
needs to map the input key to an integer 
number and the partitionBy calculates 
the partition by that number mod 
numPartitions.

PairRDD functions
These functions are only available on key-value pair functions:

Name Params Purpose

collectAsMap () This returns a dictionary consisting of 
all of the key-value pairs of the RDD.

reduceByKey func, 
numPartitions=None

The reduceByKey function is the 
parallel version of reduce, which 
merges the values for each key using the 
provided function and returns an RDD.

countByKey () This returns a dictionary of the number 
of elements for each key.
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Name Params Purpose

join other, 
numPartitions=None

This joins an RDD with another RDD. 
The result is only present for elements 
where the key is present in both RDDs. 
The value that gets stored for each key is 
a tuple of the values from each RDD.

rightOuterJoin other, 
numPartitions=None

This joins an RDD with another RDD. 
It outputs a given key-value pair only if 
the key it's being joined with is present 
in the RDD. If key is not present in the 
source RDD, the first value in the tuple 
will be None.

leftOuterJoin other, 
numPartitions=None

This joins an RDD with another RDD. 
It outputs a given key-value pair only if 
the key is present in the source RDD. If 
the key is not present in other RDD, the 
second value in the tuple will be None.

combineByKey createCombiner, 
mergeValues, 
mergeCombiners

This combines elements by key. 
It takes an RDD of type (K,V) and 
returns an RDD of type (K,C). The 
createCombiner function turns 
something of type V into something 
of type C. The mergeValue function 
adds a V to a C, and mergeCombiners 
is used to combine two C values into a 
single C value.

zip other This returns key-value pairs, pairing 
one element from each RDD. The first 
key-value pair would be the 1st element 
from this RDD, and the value would be 
the 1st element from the "other" RDD; 
the second pair would be the respective 
second elements from each of the RDDs 
and so on. 

groupByKey numPartitions=None This groups the values in the RDD by 
the key they have.

cogroup other, 
numPartitions=None

This joins two (or more) RDDs by the 
shared key. Note that if an element is 
missing in one RDD but present in the 
other one, the list will simply be empty.
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Some references are as follows:

• http://www.scala-lang.org/api/current/index.html#scala.

collection.immutable.List

• http://spark.apache.org/docs/latest/api/scala/index.html#org.

apache.spark.api.java.JavaRDD

• http://spark.apache.org/docs/latest/api/scala/index.html#org.

apache.spark.api.java.JavaPairRDD

• http://spark.apache.org/docs/latest/api/scala/index.html#org.

apache.spark.api.java.JavaDoubleRDD

• https://spark.apache.org/docs/latest/api/scala/index.html#org.

apache.spark.SparkContext

• http://abshinn.github.io/python/apache-spark/2014/10/11/using-

combinebykey-in-apache-spark/

• Good examples of RDD transformations (https://github.com/JerryLead/
SparkLearning/tree/master/src)

Summary
This chapter looked at how to perform computations on data in a distributed fashion 
once it's loaded into an RDD. With our knowledge of how to load and save RDDs, 
we can now write distributed programs using Spark.

http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.List
http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.List
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaPairRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaPairRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaDoubleRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaDoubleRDD
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext
http://abshinn.github.io/python/apache-spark/2014/10/11/using-combinebykey-in-apache-spark/
http://abshinn.github.io/python/apache-spark/2014/10/11/using-combinebykey-in-apache-spark/
https://github.com/JerryLead/SparkLearning/tree/master/src
https://github.com/JerryLead/SparkLearning/tree/master/src
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Spark SQL
Spark SQL holds an important feature in the Spark ecosystem, that is, integration 
with different data sources as well as the capability to interact with other subsystems 
such as visualization. As we know that in modern data stacks, no stack is an island 
by itself and in many ways, the versatility of integration with other components 
is an important capability. Obviously, the role of Spark SQL is not to replace 
SQL databases. We see it more as a versatile query interface to Spark data that 
complements the data wrangling and input capabilities of Spark. The ability to scale 
complex data operations makes sense only when one can utilize the results in lexible 
ways and Spark SQL achieves that. We'll cover the following topics in this chapter:

• Interfacing Spark to dashboards (such as Tableau and Qlik) that know  
how to fire off SQL statements from a visualization interface based on  
what a user selects.

• Another use case for Spark SQL is programming queries to Spark data 
without employing RDD semantics. While RDD manipulations are required 
to implement data algorithms, the final dataset can be in a SchemaRDD, 
which can be queried using SQL. Sometimes, a combination of both works 
very well.

• Leveraging the knowledge of SQL queries. There is a huge amount of SQL 
knowledge among various people with roles ranging from data analysts and 
programmers to data engineers who have developed interesting SQL queries 
over their data. Spark needs to leverage that and it does that via Spark SQL.
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The Spark SQL architecture
Interestingly as I was writing this chapter, Michael Armbrust from Databricks wrote 
a blog about the data sources API and an architecture diagram, from which I got the 
inspiration to create the following diagram:

The bottom layer is the lexible data access (and store) that works via multiple 
formats, usually a distributed ilesystem such as the HDFS. The computation layer is 
the place where we leverage the distributed-at-scale processing of the Spark engine 
including the streaming data. The computation layer usually acts on RDDs. The 
Spark SQL then overlays the SchemaRDD veneer and provides the data access for 
applications, dashboards, BI tools, and so forth.

Spark SQL how-to in a nutshell
The heart of the Spark SQL is the SchemaRDD, which, as you can guess, associates 
a schema with an RDD. Of course, internally it does a lot of magic by leveraging the 
ability to scale and distribute processing, and that of lexible storage.

In many ways, the data access via Spark SQL is deceptively simple, that is, creating 
one or more appropriate RDDs paying attention to the layout, data types, and so 
on and then accessing via SchemaRDDs. We get to use all the interesting features 
of Spark for creating the RDDs: structured data from Hive or Parquet, unstructured 
data from any source, and the ability to apply the RDD operations at scale. Then you 
need to overlay respective schemas to the RDDs by creating SchemaRDDs. Viola! 
You now have the ability to run SQL over RDDs. You can see the SchemaRDDs being 
created in the log entries.
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Spark SQL programming
Let's not get our hands dirty and work through various examples. We will start with 
a simple dataset and then progressively perform more sophisticated SQL statements. 
While writing other chapters, I was wondering what a good dataset that brings out 
the various aspects of SQL would be. And I hit upon an idea! Long time ago, the 
Northwind database was the canonical database to learn Microsoft Access and later 
SQL server. And that would be a good dataset for learning Spark SQL as well!

Let's use some of the tables and data to dig deeper into Spark SQL. The SQL scripts 
to create the Northwind database is available at https://northwinddatabase.
codeplex.com/releases/view/71634. In our case, we will load data from a set 
of CSV iles and create an appropriate SchemaRDDs in Spark. Then we will ire off 
SQL queries of increasing complexity. A good reference for this is the Spark SQL 
programming guide available at https://spark.apache.org/docs/latest/sql-
programming-guide.html.

SQL access to a simple data table
Let's load a small CSV ile to the employee table, as shown here:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._ // for implicit conversations

import org.apache.spark.sql._

object BigData01 {

  // register case class external to main

  case class Employee(EmployeeID : Int, 

    LastName : String, FirstName : String, Title : String,

    BirthDate : String, HireDate : String,

    City : String, State : String, Zip : String, Country : String,

    ReportsTo : String)

    //

  def main(args: Array[String]): Unit = {

val sc = new SparkContext("local","Chapter 7")

    println(s"Running Spark Version ${sc.version}")

    //

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

import sqlContext.createSchemaRDD // to implicitly convert an RDD  
  to a SchemaRDD.

import sqlContext._

    //

val employeeFile = sc.textFile("/Users/ksankar/fdps-vii/NW- 
  Employees-NoHdr.csv")

https://northwinddatabase.codeplex.com/releases/view/71634
https://northwinddatabase.codeplex.com/releases/view/71634
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
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    println("Employee File has %d Lines." 
      .format(employeeFile.count()))

    val employees = employeeFile.map(_.split(",")).

      map(e => Employee( e(0).trim.toInt,

        e(1), e(2), e(3), 

        e(4), e(5), 

        e(6), e(7), e(8), e(9), e(10)))

     println(employees.count)

     employees.registerTempTable("Employees")

     var result = sqlContext.sql("SELECT * from Employees")

     result.foreach(println)

     result = sqlContext.sql("SELECT * from Employees WHERE State = 
'WA'")

     result.foreach(println)

  }

}

The code is straightforward. We create a case class that represents the employee 
table. We then parse the CSV ile and create an RDD that has the Employee classes  
as its elements.

The datailes are available from at https://github.com/
xsankar/fdps-vii.

The screenshot of the process and output of running the code from the Spark shell is 
shown here:

https://github.com/xsankar/fdps-vii
https://github.com/xsankar/fdps-vii
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We declare a case class and parse the ile to RDD[Employee], as shown here:

Now, you'll learn about the SQL magic. We turn the RDD into a SchemaRDD and 
then run SQL queries, as shown in this screenshot:

You can see the query plan and see that inally an RDD is returned as the  
query result.
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Let us try a ilter query SELECT * from Employees WHERE State = 'WA' and see 
how it works. Here is a screenshot of this:

Great, it worked as expected! You can see that the ilter did get into the query plan.

Handling multiple tables with Spark SQL
Now that we have mastered the art of Spark SQL, let's try multiple datasets and 
slightly larger datasets. The Orders table's dataset has 830 records and the Order 
Details has approximately 2000 records. These would give us a good representation 
of a few queries with joins that span the two tables.

Let's start by loading the Orders table, as shown next:

val ordersFile = sc.textFile("/Users/ksankar/fdps-vii/NW-Orders- 
  NoHdr.csv")
    println("Orders File has %d Lines." 
      .format(ordersFile.count()))
    val orders = ordersFile.map(_.split(",")).
      map(e => Order( e(0), e(1), e(2),e(3), e(4) ))
     println(orders.count)
     orders.registerTempTable("Orders")
     var result = sqlContext.sql("SELECT * from Orders")
     result.take(10).foreach(println)
     //

The output of this is shown in the next screenshot. This is nothing different from  
our earlier work. You can see where it casts the variable result as a SchemaRDD.  
We have 830 orders in our table, as you can see here:
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In this chapter, we are trying to create a few queries. So we really do not need 
hundreds of records. But the dataset has more records so that you can try out various 
queries on your own. The dataset is big enough to do meaningful queries but small 
enough to work on a laptop with limited resources. This would be a good exercise 
for you to experiment with Spark SQL. Look at the following screenshot for the 
results of this exercise:
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Now let's load the Order Details table. By now, we are an old hand at doing this. 
The following is the code for the loading process of the table:

val orderDetFile = sc.textFile("/Users/ksankar/fdps-vii/NW-Order- 
  Details-NoHdr.csv")

    println("Order Details File has %d Lines." 
      .format(orderDetFile.count()))

val orderDetails = orderDetFile.map(_.split(",")).

      map(e => OrderDetails( e(0), e(1), e(2). 
        trim.toFloat,e(3).trim.toInt, e(4).trim.toFloat ))

     println(orderDetails.count)

     orderDetails.registerTempTable("OrderDetails")

     result = sqlContext.sql("SELECT * from OrderDetails")

     result.take(10).foreach(println)

The output from the Spark shell is again as expected. It has 2,155 order details, as 
shown in the next screenshot:
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Let's create the Orderdetails table and make sure it works as expected. The table is 
shown here:

Now comes the interesting part. Let's join the two tables and see how that query 
works. In this process, you might make some mistakes and learn a few things. Have 
a look at the following screenshot:

Here, the error was that Order.ID is a wrong name. So, we get the identifier 
expected error. Have a look at the following screenshot:
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This is interesting. It doesn't like the ; at the end!. Now, have a look at the  
following screenshot:

This one took me a little time to igure out. The culprit was OrderId, which is really 
OrderID!. Now, consider the following screenshot:

Now it understands all the attributes. Of course, there are two OrderID values, one 
from the Orders table and another from the OrderDetails table. Have a look at the 
next screenshot:
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Finally, after correcting the errors, it works ine! Good stuff! Now, have a look at the 
following screenshot:

Interestingly, this worked on the irst try, the credit for which goes to the Spark 
developers. In my machine, Spark progressively spawned many tasks with 
lots of shufle and broadcast stages. You will see so many pages of logs entries 
(approximately 2,500 lines!); we suggest you just quickly browse through them  
to get a feel for the worklow graph.

Before we end this chapter, let us try printing all the results. The call skips take(10).

The scala> result.foreach(println) command works ine, but the results were 
mixed with the log entries. Take a quick look at the query plan it has printed out. It 
gives us an insight on the different operations it performs on the RDD, as shown in 
the next screenshot:
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I did a count and then printed out all the records, as shown in the next screenshot. 
It worked out well. We could also format the printout with currency as well. I leave 
that as an exercise to be done by you!

Aftermath
As seen in the preceding screenshot, this was a good exercise. We are thoroughly 
impressed! We just created the last query and it ran ine! The Spark developers have 
done a good job. Good work, guys.

The dataset also includes the product table, which I leave to you as an exercise. 
For example, you can work on a query that gives the sales by product or one that 
shows which products are selling more. The dataset also has date ields such as 
order dates, which you can use to query sales by quarter or reports like Product 
sales for 1997. The dates are now read in as strings. They need to be converted to the 
TIMESTAMP data type.
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Some more information can be found at the following sites:

• https://northwinddatabase.codeplex.com/releases/view/71634

• https://databricks.com/blog/2015/01/09/spark-sql-data-sources-

api-unified-data-access-for-the-spark-platform.html

• https://spark.apache.org/docs/latest/sql-programming-guide.html

Summary
This was an important chapter that discussed the integration aspects of Spark. We 
have covered the main parts, namely, SchemaRDD and programmatic access. But 
there are more capabilities such as the JDBC/ODBC server for direct SQL queries 
as well as the Spark SQL CLI. On the integration side, you will see more integration 
capabilities in Chapter 8, Spark with Big Data. Spark SQL will be getting more features 
in future versions and I think this will be one of the areas that will grow at a much 
faster pace; interesting features such as partitioning, persistent tables, and optional 
user speciied schema are slated for Spark 1.3.

https://northwinddatabase.codeplex.com/releases/view/71634
https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html
https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
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Spark with Big Data
As we mentioned in Chapter 7, Spark SQL, the big data compute stack doesn't work  
in isolation. Integration points across multiple stacks and technologies are essential. 
In this chapter, we will look at how Spark works with some of the big data 
technologies that are part of the Hadoop ecosystem. We will cover the following 
topics in this chapter:

• Parquet: This is an efficient storage format

• HBase: This is the database in the Hadoop Ecosystem

Parquet – an eficient and interoperable 
big data format
Parquet is essentially an interoperable storage format; its main goals are space 
eficiency and query eficiency. Parquet's origin is based on Google's Dremel and 
was developed by Twitter and Cloudera. Parquet is now an Apache incubator 
project. The nested storage format from Google Dremel is implemented in Parquet. 
Parquet stores data in a columnar format and has an evolvable schema. This enables 
you to optimize queries (it can restrict columns that you need to access, and so you 
need not bring all columns into memory and discard the ones not needed), and it 
allows storage optimization (by decoding at the column level, which gives a much 
higher compression ratio). In addition to the ability to restrict column fetches during 
queries, Parquet 2.0 would implement push-down predicates. While writing this 
book, the Parquet version was 1.6.
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Saving iles to the Parquet format
In Chapter 7, Spark SQL, we loaded the Orders tables from the .csv format. Let's save 
the data in the Parquet format so that we can query the data from Impala. Usually one 
would take a .csv ile, do transformations, and then store it in the Parquet format (for 
example, the Sales By Country RDD that we had created). This is shown here:

     //

     // Parquet Operations

     //

valparquetFileOrders     val parquetFileOrders = orders.
saveAsParquetFile("/Users/ksankar/fdps-vii/Orders.parquet")

valparquetFileOrderDet     val parquetFileOrderDet = orderDetails.
saveAsParquetFile("/Users/ksankar/fdps-vii/OrderDetails.parquet")

The output is shown in the following screenshot:

Even though in this example we store the Parquet ile in the local ilesystem, in the 
actual production system you would use HDFS to store the iles. We can inspect the 
log entries and see that it has started a job with the ParquetTableOperations class. 
The scheme used to save this was Run Length Encoding (RLE). As you can see, we 
need only a couple of lines of code and Spark does all the hard work under the covers. 
It creates a directory, data, and metadata iles underneath the main directory. It has 
created two iles corresponding to the two jobs for two partitions, as shown here:
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Loading Parquet iles
Let's now load the Orders Parquet iles and see whether the data got saved correctly. 
The code, again, is deceptively simple, as shown here:

     //

     // Let us read back the file

     //

valsqlContext= new org.apache.spark.sql.SQLContext(sc)

val parquetOrders= sqlContext.parquetFile("/Users/ksankar/fdps-vii/
Orders.parquet")

     parquetOrders.registerTempTable("ParquetOrders")

     val result = sqlContext.sql("SELECT * from ParquetOrders")

     result.take(10).foreach(e=>println("%5s | %5s | %s | %10s | %15s 
|".format(e(0),e(1),e(2),e(3),e(4))))

The output is as follows:
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As you can see, the irst few lines create all the scaffolding and needed deinitions. 
The lazy evaluation does not do anything unless we ask for some action, such as 
take(10), as shown in the following screenshot:

It does all the work. You can see that Spark igured out that there are two iles to 
process along with the ield names and their types. It actually fails with an error, 
because EmployeeID was deined as string and I tried to print it with the '%d' mask. 
Now that's interesting, Spark keeps the data type in the Parquet metadata and can 
read it back. Once I used the %s mask, everything worked out ine.

Note that you cannot overwrite a Parquet ile, as shown:
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Saving processed RDD in the Parquet format
Now let's save our SalesByCountry report in the Parquet format. We create a SQL 
table ieaSchemaRDD and then save that as a Parquet ile:

     //

     // Save our Sales By Country Report as parquet

     //

valsalesByCountry = sqlContext.sql("SELECT ShipCountry, 
Sum(OrderDetails.UnitPrice * Qty * Discount) AS ProductSales FROM 
Orders INNER JOIN OrderDetails ON Orders.OrderID = OrderDetails.
OrderID GROUP BY ShipCountry")

     salesByCountry.registerTempTable("SalesByCountry")

     result = sqlContext.sql("SELECT * from SalesByCountry")

     result.take(30).foreach(e=>println("%15s | %9.2f  
       |".format(e(0),e(1))))

valparquetSALES = salesByCountry.saveAsParquetFile("/Users/ksankar/
fdps-vii/SalesByCountry.parquet") 

By now we know the drill, and as expected, the iles are created, as shown next:

Querying Parquet iles with Impala
Impala is a massively parallel processing (MPP) data layer that is focused on SQL 
queries over large data sets and suited for exploratory data analytics. The main 
utility is the ability of SQL queries over Hadoop data; this means that the data is 
stored in HDFS in different formats by MapReduce and Spark. Let's ire up Impala 
and see if we can query our Orders database.
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The best way to try out Impala is through Cloudera's QuickStart VM available at 
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/

cdh-5-3-x.html. While the details are outside the scope of this book, let me quickly 
outline the top level steps for MacOS:

1. Download the VMWare VM and install via VMWare Fusion.
2. The VM starts and it has a single-node Hadoop cluster with all the stack 

including Impala, Spark, and HBase, and so on.

3. The VM is CentOS 6.4. You need to start the terminal from Applications | 
System Tools | Terminal.

4. At the terminal prompt, type Impala-shell to start the Impala shell and 
verify that it works. Type Exit and exit out of it.

5. Copy the files under the Orders.parquet directory to the Orders directory 
in HDFS in the Cloudera VM using a USB disk. The commands that I used 
for this are shown here:

Copy the files to a USB disk:

cp -rv ~/fdps-vii/Orders.parquet /Volumes/USB\ DISK/

Connect the USB to the VM.

In the VM, copy the files to a local directory first and then to a directory in 
the HDFS (hdfsdfs –copyToLocal gives unexpected urisyntaxexception 
if copied directly from the USB disk—probably the way VMware maps the 
USB disk), as shown here:

[cloudera@quickstart ~]$ mkdir Orders

[cloudera@quickstart ~]$ cp /media/USB\ DISK/fdps-vii/Orders.
parquet/* Orders/.

[cloudera@quickstart ~]$ hdfsdfs -mkdir Orders

[cloudera@quickstart ~]$ hdfsdfs -copyFromLocal /Orders/* Orders/.

6. Verify that the files are indeed in HDFS, as shown in the following screenshot:

http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html
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7. Get back to Impala using the following command:

[cloudera@quickstart ~]$ impala-shell

8. Create an external table pointing to the HDFS directory where we have 
copied the files, as shown here:

[quickstart.cloudera:21000] > create external table orders 
(ordered string,customerID string,employeeid string,orderdate 
string,shipCountry string) stored as parquet location '/user/
cloudera/Orders';

The result is shown in the following screenshot:

9. Finally, execute the following SQL statement:

select * from orders limit 10;

And you can see the records, as shown in the following screenshot:
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We can also use the Hue graphical query UI and execute the queries, as shown in the 
following screenshot:

That was not so hard. Once we master the various steps and commands, the rest  
is easy.

HBase
HBase is the NoSQL datastore in the Hadoop ecosystem. Integration with a database 
is essential for Spark. It could read data from an HBase table or write to one. In fact, 
Spark supports HBase very well via the HadoopdataSet calls.

Before working through the examples, let's irst create a table and three records in 
HBase. For testing, you can install a local standalone version of HBase that works 
from the local ilesystem. So there's no need for Hadoop or HDFS. But that won't be 
suitable for production.
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I created a test table with three records via the HBase shell as shown in the  
next screenshot:

Loading from HBase
The HBase test code in the Apache Spark examples is a good start to test our HBase 
connectivity and the loading data. The code is not that dificult, but we do need to 
keep track of the data types, that is, keys as bytes, values as strings, and so on. The 
test code is given here:

Val sc = new SparkContext("local","Chapter 8")

println(s"Running Spark Version ${sc.version}")

//

val conf = HBaseConfiguration.create()

conf.set(TableInputFormat.INPUT_TABLE, "test")

val admin = new HBaseAdmin(conf)

println(admin.isTableAvailable("test"))

val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],

classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],

classOf[org.apache.hadoop.hbase.client.Result])

      println(hBaseRDD.count())

      //

      hBaseRDD.foreach(println) // will print bytes
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      hBaseRDD.foreach(e=> ( println("%s | %s |".format(  
        Bytes.toString(e._1.get()),e._2) ) ) )

//

println("** Read Done **")

The output of this is shown in the following screenshot:

This is just a starting point. You would need to convert the bytes from HBase to the 
actual data types of your data structures. You need to experiment a bit to get it right.

Saving to HBase
Now let's store a new record in our test table—key as row4 and value as value4. It 
does require a few more classes and manipulations but nothing fancy, as shown next:

      //

      // create a pair RDD "row4":"value4"

      // save it in column family "d"

      //

      val testMap = Map("row4" -> "value4")

      val pairs = sc.parallelize(List(("row4","value4")))

      pairs.foreach(println)

      //

      //Function to convert our RDD to the required format for  
        HBase

      //

      def convert(triple: (String, String)) = {

        val p = new Put(Bytes.toBytes(triple._1))

        p.add(Bytes.toBytes("cf"), Bytes.toBytes("d"),  
          Bytes.toBytes(triple._2))

        (neworg.apache.hadoop.hbase.io.ImmutableBytesWritable, p)
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      }

      //

      valjobConfig: JobConf = new JobConf(conf, this.getClass)

      jobConfig.setOutputFormat(classOf[TableOutputFormat])

      jobConfig.set(TableOutputFormat.OUTPUT_TABLE, "test")

      //

newPairRDDFunctions(pairs.map(convert)).saveAsHadoopDataset(jobCon 
  fig)

      //

      println("** Write Done **")

The program runs and prints out as shown in the next screenshot:

Now let's go back to the HBase shell and verify that the fourth record is added, as 
shown in the next screenshot:

Good. We can see the fourth record and a later timestamp!

Other HBase operations
We can also get the metadata about the HBase server and environment, as  
shown here:

val status = admin.getClusterStatus();

println("HBase Version : " +status.getHBaseVersion())

println("Average Load : "+status.getAverageLoad())

println("Backup Master Size : " + status.getBackupMastersSize())

println("Balancer On : " + status.getBalancerOn())

println("Cluster ID : "+ status.getClusterId())

println("Server Info : " + status.getServerInfo())
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The output prints out the details, as you can see in the following screenshot:

Some more information is available at the following websites:

• https://github.com/apache/spark/tree/master/examples/src/main/

scala/org/apache/spark/examples

• http://parquet.incubator.apache.org/documentation/latest/

• http://www.slideshare.net/cloudera/hadoop-summit-

36479635?ref=http://parquet.incubator.apache.org/presentations/

• Google Dremel paper at http://research.google.com/pubs/pub36632.
html

• https://blog.twitter.com/2013/dremel-made-simple-with-parquet

• http://planetcassandra.org/getting-started-with-apache-spark-

and-cassandra/

• http://blog.cloudera.com/blog/2014/12/new-in-cloudera-labs-

sparkonhbase/

• http://www.vidyasource.com/blog/Programming/Scala/Java/Data/

Hadoop/Analytics/2014/01/25/lighting-a-spark-with-hbase

• https://github.com/apache/spark/blob/master/examples/src/main/

scala/org/apache/spark/examples/HBaseTest.scala

• https://federicodayan.wordpress.com/2010/09/28/hbase-

textgetbytes-and-immutablebyteswritabletostring/

Summary
This chapter was focused on the integration of Spark with other big data 
technologies. The Parquet format is an excellent way to expose the data processed 
by Spark to external systems, and Impala makes this very easy. The advantage of the 
Parquet format is that it is very eficient in terms of storage and expressive enough 
to capture the schema. We also looked at the process of interfacing with HBase. 
Thus, we can have our cake and eat it too! This means that we can leverage Spark for 
distributed scalable data processing, without losing the capability to integrate with 
other big data technologies.

https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples
https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples
http://parquet.incubator.apache.org/documentation/latest/
http://www.slideshare.net/cloudera/hadoop-summit-36479635?ref=http://parquet.incubator.apache.org/presentations/
http://www.slideshare.net/cloudera/hadoop-summit-36479635?ref=http://parquet.incubator.apache.org/presentations/
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
https://blog.twitter.com/2013/dremel-made-simple-with-parquet
http://planetcassandra.org/getting-started-with-apache-spark-and-cassandra/
http://planetcassandra.org/getting-started-with-apache-spark-and-cassandra/
http://blog.cloudera.com/blog/2014/12/new-in-cloudera-labs-sparkonhbase/
http://blog.cloudera.com/blog/2014/12/new-in-cloudera-labs-sparkonhbase/
http://www.vidyasource.com/blog/Programming/Scala/Java/Data/Hadoop/Analytics/2014/01/25/lighting-a-spark-with-hbase
http://www.vidyasource.com/blog/Programming/Scala/Java/Data/Hadoop/Analytics/2014/01/25/lighting-a-spark-with-hbase
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/HBaseTest.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/HBaseTest.scala
https://federicodayan.wordpress.com/2010/09/28/hbase-textgetbytes-and-immutablebyteswritabletostring/
https://federicodayan.wordpress.com/2010/09/28/hbase-textgetbytes-and-immutablebyteswritabletostring/
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Machine Learning Using 

Spark MLlib
One of the major attractions of Spark is the ability to scale computation massively, 
and that is exactly what you need for machine learning algorithms. But the caveat 
is that all machine learning algorithms cannot be effectively parallelized. Each 
algorithm has its own challenges for parallelization, whether it is task parallelism 
or data parallelism. Having said that, Spark is becoming the de-facto platform 
for building machine learning algorithms and applications. For example, Apache 
Mahout is moving away from Hadoop MapReduce and implementing the 
algorithms in Spark (see the irst reference at the end of this chapter). The developers 
working on the Spark MLlib are implementing more and more machine algorithms 
in a scalable and concise manner in the Spark framework. For the latest information 
on this, you can refer to the Spark site at https://spark.apache.org/docs/
latest/mllib-guide.html, which is the authoritative source.

This chapter covers the following machine learning algorithms:

• Basic statistics

• Linear regression

• Classification

• Clustering

• Recommendations

https://spark.apache.org/docs/latest/mllib-guide.html
https://spark.apache.org/docs/latest/mllib-guide.html
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The Spark machine learning  

algorithm table
The Spark machine learning algorithms implemented in Spark 1.1.0 org.apache.
spark.mllib for Scala and Java, and in pyspark.mllib for Python is shown in the 
following table:

Algorithm Feature Notes

Basic statistics Summary statistics Mean, variance, count, max, min, and 
numNonZeros

Correlations Spearman and Pearson correlation

Stratified sampling sampleBykey, sampleByKeyExact—With 
and without replacement

Hypothesis testing Pearson's chi-squared goodness of fit test
Random data 
generation

RandomRDDs

Normal, Poisson, and so on

Regression Linear models Linear regression—least square, Lasso, and 
ridge regression

Classification Binary classification Logistic regression, SVM, decision trees, 
and naïve Bayes

Multi-class 
classification

Decision trees, naïve Bayes, and so on

Recommendation Collaborative filtering Alternating least squares

Clustering k-means

Dimensionality 
reduction

SVD

PCA

Feature extraction TF-IDF

Word2Vec
StandardScaler

Normalizer

Optimization SGD

L-BFGS

Spark MLlib examples
Now, let's look at how to use the algorithms. Naturally, we need interesting datasets 
to implement the algorithms; we will use appropriate datasets for the algorithms 
shown in the next section. In the book text, we will use Scala, but I have included 
iPython notebooks of the algorithm examples in Python as well.
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The code and data iles are available in the GitHub repository 
at https://github.com/xsankar/fdps-vii. We'll keep 
it updated with corrections.

Basic statistics
Let's read the car mileage data into an RDD and then compute some basic statistics. 
We will use a simple parse class to parse a line of data. This will work if you know 
the type and the structure of your CSV ile. We will use this technique for the 
examples in this chapter:

import org.apache.spark.SparkContext
import org.apache.spark.mllib.stat. 
  {MultivariateStatisticalSummary, Statistics}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.rdd.RDD

object MLlib01 {
  //
  def getCurrentDirectory = new java.io.File( "." ).getCanonicalPath
  //
  def parseCarData(inpLine : String) : Array[Double] = {
    val values = inpLine.split(',')
    val mpg = values(0).toDouble
    val displacement = values(1).toDouble
    val hp = values(2).toInt
    val torque = values(3).toInt
    val CRatio = values(4).toDouble
    val RARatio = values(5).toDouble
    val CarbBarrells = values(6).toInt
    val NoOfSpeed = values(7).toInt
    val length = values(8).toDouble
    val width = values(9).toDouble
    val weight = values(10).toDouble
    val automatic = values(11).toInt
    return Array(mpg,displacement,hp,
    torque,CRatio,RARatio,CarbBarrells,
    NoOfSpeed,length,width,weight,automatic)
  }
  //
  def main(args: Array[String]) {
    println(getCurrentDirectory)
    val sc = new SparkContext("local","Chapter 9")
    println(s"Running Spark Version ${sc.version}")
    //
   val dataFile = sc.textFile("/Users/ksankar/fdps-vii/data/car- 

https://github.com/xsankar/fdps-vii
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     milage-no-hdr.csv")
   val carRDD = dataFile.map(line => parseCarData(line))
   //
   // Let us find summary statistics
   //
   val vectors: RDD[Vector] = carRDD.map(v => Vectors.dense(v))
   val summary = Statistics.colStats(vectors)
   carRDD.foreach(ln=> {ln.foreach(no => print("%6.2f | " 
     .format(no))); println()})
   print("Max  :");summary.max.toArray.foreach(m => print("%5.1f |  
     ".format(m)));println
   print("Min  :");summary.min.toArray.foreach(m => print("%5.1f |  
     ".format(m)));println
   print("Mean :");summary.mean.toArray.foreach(m => print("%5.1f  
     | ".format(m)));println
   }
}

This program will produce the following output:
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Let's also run some correlations, as shown here:

//

// correlations

//

val hp = vectors.map(x => x(2))

val weight = vectors.map(x => x(10))

var corP = Statistics.corr(hp,weight,"pearson") // default

println("hp to weight : Pearson Correlation = %2.4f".format(corP))

var corS = Statistics.corr(hp,weight,"spearman") // Need to  
  specify

println("hp to weight : Spearman Correlation = %2.4f" 
  .format(corS)) 

//

val raRatio = vectors.map(x => x(5))

val width = vectors.map(x => x(9))

corP = Statistics.corr(raRatio,width,"pearson") // default

println("raRatio to width : Pearson Correlation = %2.4f" 
  .format(corP))

corS = Statistics.corr(raRatio,width,"spearman") // Need to  
  specify

println("raRatio to width : Spearman Correlation = %2.4f" 
  .format(corS)) 

//

This will produce interesting results as shown in the next screenshot:

While this might seem too much work to calculate the correlation of a tiny dataset, 
remember that this will scale to datasets consisting of 1,000,000 rows or even a  
billion rows!
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Linear regression
Linear regression takes a little more work than statistics. We need the LabeledPoint 
class as well as a few more parameters such as the learning rate, that is, the step size. 
We will also split the dataset into training and test, as shown here:

   //

   //

  def carDataToLP(inpArray : Array[Double]) : LabeledPoint = {

    return new LabeledPoint( inpArray(0),Vectors.dense (  
      inpArray(1), inpArray(2), inpArray(3),  
      inpArray(4), inpArray(5), inpArray(6), inpArray(7),  
      inpArray(8), inpArray(9), inpArray(10), inpArray(11) ) )

    }

// Linear Regression

   //

   val carRDDLP = carRDD.map(x => carDataToLP(x)) // create a  
     labeled point RDD

   println(carRDDLP.count())

   println(carRDDLP.first().label)

   println(carRDDLP.first().features)

   //

   // Let us split the data set into training & test set using a  
     very simple filter

   //

   val carRDDLPTrain = carRDDLP.filter( x => x.features(9) <=  
     4000)

   val carRDDLPTest = carRDDLP.filter( x => x.features(9) > 4000)

   println("Training Set : " + "%3d".format 
     (carRDDLPTrain.count()))

   println("Training Set : " + "%3d".format(carRDDLPTest.count()))

   //

   // Train a Linear Regression Model

   // numIterations = 100, stepsize = 0.000000001

   // without such a small step size the algorithm will diverge

   //

   val mdlLR = LinearRegressionWithSGD.train 
     (carRDDLPTrain,100,0.000000001)

   println(mdlLR.intercept) // Intercept is turned off when using  
     LinearRegressionSGD object, so intercept will always be 0 for  
     this code

   println(mdlLR.weights)

   //

   // Now let us use the model to predict our test set

   //

   val valuesAndPreds = carRDDLPTest.map(p => (p.label,  
     mdlLR.predict(p.features)))
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   val mse = valuesAndPreds.map( vp => math.pow( (vp._1 - vp._2),2  
     ) ).

       reduce(_+_) / valuesAndPreds.count()

   println("Mean Squared Error      = " + "%6.3f".format(mse))

    println("Root Mean Squared Error = " + "%6.3f" 
      .format(math.sqrt(mse)))

    // Let us print what the model predicted

    valuesAndPreds.take(20).foreach(m => println("%5.1f | %5.1f |" 
      .format(m._1,m._2)))

The run result will be as expected, as shown in the next screenshot:

The prediction is not that impressive. There are a couple of reasons for this. There 
might be quadratic effects; some of the variables might be correlated (for example, 
length, width, and weight, and so we might not need all three to predict the mpg 
value). Finally, we might not need all the 10 features anyways. I leave it to you to try 
with different combinations of features. (In the parseCarData function, take only a 
subset of the variables; for example take hp, weight, and number of speed and see 
which combination minimizes the mse value.)
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Classiication
Classiication is very similar to linear regression. The algorithms take labeled points, 
and the train process has various parameters to tweak the algorithm to it the needs 
of an application. The returned model can be used to predict the class of a labeled 
point. Here is a quick example using the titanic dataset:

For our example, we will keep the same structure as the linear regression example. 
First, we will parse the full dataset line and then later keep it simple by creating a 
labeled point with a set of selected features, as shown in the following code:

import org.apache.spark.SparkContext

import org.apache.spark.mllib.regression.LabeledPoint

import org.apache.spark.mllib.linalg.Vectors

import org.apache.spark.mllib.tree.DecisionTree

object Chapter0802 {

  //

  def getCurrentDirectory = new java.io.File( "."  
    ).getCanonicalPath

  //

  //  0 pclass,1 survived,2 l.name,3.f.name, 4 sex,5 age,6 sibsp,7  
      parch,8 ticket,9 fare,10 cabin,

  // 11 embarked,12 boat,13 body,14 home.dest

  //

  def str2Double(x: String) : Double = {

    try {

      x.toDouble

    } catch {

      case e: Exception => 0.0

    }

  }

  //

  def parsePassengerDataToLP(inpLine : String) : LabeledPoint = {

    val values = inpLine.split(',')

    //println(values)

    //println(values.length)

    //

    val pclass = str2Double(values(0))

    val survived = str2Double(values(1))

    // skip last name, first name

    var sex = 0

    if (values(4) == "male") {

      sex = 1

    }
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    var age = 0.0 // a better choice would be the average of all  
      ages

    age = str2Double(values(5))

    //

    var sibsp = 0.0

    age = str2Double(values(6))

    //

    var parch = 0.0

    age = str2Double(values(7))

    //

    var fare = 0.0

    fare = str2Double(values(9))

    return new LabeledPoint(survived,Vectors.dense 
      (pclass,sex,age,sibsp,parch,fare))

  }

Now that we have setup the routines to parse the data, let's dive into the  
main program:

  //

  def main(args: Array[String]): Unit = {

    println(getCurrentDirectory)

    val sc = new SparkContext("local","Chapter 8")

    println(s"Running Spark Version ${sc.version}")

    //

    val dataFile = sc.textFile("/Users/ksankar/bdtc-2014 
      /titanic/titanic3_01.csv")

    val titanicRDDLP = dataFile.map(_.trim).filter( _.length > 1).

      map(line => parsePassengerDataToLP(line))

    //

    println(titanicRDDLP.count())

    //titanicRDDLP.foreach(println)

    //

    println(titanicRDDLP.first().label)

    println(titanicRDDLP.first().features)

    //

    val categoricalFeaturesInfo = Map[Int, Int]()

    val mdlTree = DecisionTree.trainClassifier(titanicRDDLP, 2, //  
      numClasses

        categoricalFeaturesInfo, // all features are continuous

        "gini", // impurity

        5, // Maxdepth

        32) //maxBins

    //

    println(mdlTree.depth)

    println(mdlTree)
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The tree is interesting to inspect. Check it out here:

    //

    // Let us predict on the dataset and see how well it works.

    // In the real world, we should split the data to train & test  
       and then predict the test data:

    //

    val predictions = mdlTree.predict(titanicRDDLP. 
      map(x=>x.features))

    val labelsAndPreds = titanicRDDLP. 
      map(x=>x.label).zip(predictions)

    //

    val mse = labelsAndPreds.map( vp => math.pow( (vp._1 -  
      vp._2),2 ) ).

       reduce(_+_) / labelsAndPreds.count()

    println("Mean Squared Error = " + "%6f".format(mse))

    //

    // labelsAndPreds.foreach(println)

    //

    val correctVals = labelsAndPreds.aggregate(0.0)((x, rec) => x  
      + (rec._1 == rec._2).compare(false), _ + _)

    val accuracy = correctVals/labelsAndPreds.count()

    println("Accuracy = " + "%3.2f%%".format(accuracy*100))

    //

    println("*** Done ***")

  }

}

The result obtained when you run the program is as expected. The printout of the 
tree is interesting, as shown here:

Running Spark Version 1.1.1

14/11/28 18:41:27 INFO MemoryStore: ensureFreeSpace(163705) called with 
curMem=0, maxMem=2061647216

[..]

14/11/28 18:41:27 INFO SparkContext: Job finished: count at Chapter0802.
scala:56, took 0.260993 s

1309

14/11/28 18:41:27 INFO SparkContext: Starting job: first at Chapter0802.
scala:59

[..]

14/11/28 18:41:27 INFO SparkContext: Job finished: first at Chapter0802.
scala:59, took 0.016479 s

1.0
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14/11/28 18:41:27 INFO SparkContext: Starting job: first at Chapter0802.
scala:60

[..]

14/11/28 18:41:27 INFO SparkContext: Job finished: first at Chapter0802.
scala:60, took 0.014408 s

[1.0,0.0,0.0,0.0,0.0,211.3375]

14/11/28 18:41:27 INFO SparkContext: Starting job: take at 
DecisionTreeMetadata.scala:66

[..]

14/11/28 18:41:28 INFO DecisionTree: Internal timing for DecisionTree:

14/11/28 18:41:28 INFO DecisionTree:   init: 0.36408

  total: 0.95518

  extractNodeInfo: 7.3E-4

  findSplitsBins: 0.249814

  extractInfoForLowerLevels: 7.74E-4

  findBestSplits: 0.565394

  chooseSplits: 0.201012

  aggregation: 0.362411

5

DecisionTreeModel classifier

  If (feature 1 <= 0.0)

   If (feature 0 <= 2.0)

    If (feature 5 <= 26.0)

     If (feature 2 <= 1.0)

      If (feature 0 <= 1.0)

       Predict: 1.0

      Else (feature 0 > 1.0)

       Predict: 1.0

     Else (feature 2 > 1.0)

      Predict: 1.0

    Else (feature 5 > 26.0)

     If (feature 2 <= 1.0)

      If (feature 5 <= 38.0021)

       Predict: 1.0

      Else (feature 5 > 38.0021)

       Predict: 1.0

     Else (feature 2 > 1.0)

      If (feature 5 <= 79.42500000000001)

       Predict: 1.0

      Else (feature 5 > 79.42500000000001)
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       Predict: 1.0

   Else (feature 0 > 2.0)

    If (feature 5 <= 25.4667)

     If (feature 5 <= 7.2292)

      If (feature 5 <= 7.05)

       Predict: 1.0

      Else (feature 5 > 7.05)

       Predict: 1.0

     Else (feature 5 > 7.2292)

      If (feature 5 <= 15.5646)

       Predict: 0.0

      Else (feature 5 > 15.5646)

       Predict: 1.0

    Else (feature 5 > 25.4667)

     If (feature 5 <= 38.0021)

      If (feature 5 <= 30.6958)

       Predict: 0.0

      Else (feature 5 > 30.6958)

       Predict: 0.0

     Else (feature 5 > 38.0021)

      Predict: 0.0

  Else (feature 1 > 0.0)

   If (feature 0 <= 1.0)

    If (feature 5 <= 26.0)

     If (feature 5 <= 7.05)

      If (feature 5 <= 0.0)

       Predict: 0.0

      Else (feature 5 > 0.0)

       Predict: 0.0

     Else (feature 5 > 7.05)

      Predict: 0.0

    Else (feature 5 > 26.0)

     If (feature 5 <= 30.6958)

      If (feature 2 <= 0.0)

       Predict: 0.0

      Else (feature 2 > 0.0)

       Predict: 0.0

     Else (feature 5 > 30.6958)

      If (feature 2 <= 1.0)

       Predict: 0.0
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      Else (feature 2 > 1.0)

       Predict: 1.0

   Else (feature 0 > 1.0)

    If (feature 2 <= 0.0)

     If (feature 5 <= 38.0021)

      If (feature 5 <= 14.4583)

       Predict: 0.0

      Else (feature 5 > 14.4583)

       Predict: 0.0

     Else (feature 5 > 38.0021)

      If (feature 0 <= 2.0)

       Predict: 0.0

      Else (feature 0 > 2.0)

       Predict: 1.0

    Else (feature 2 > 0.0)

     If (feature 5 <= 26.0)

      If (feature 2 <= 1.0)

       Predict: 0.0

      Else (feature 2 > 1.0)

       Predict: 0.0

     Else (feature 5 > 26.0)

      If (feature 0 <= 2.0)

       Predict: 0.0

      Else (feature 0 > 2.0)

       Predict: 0.0

14/11/28 18:41:28 INFO SparkContext: Starting job: reduce at Chapter0802.
scala:79

[..]

14/11/28 18:41:28 INFO SparkContext: Job finished: count at Chapter0802.
scala:79, took 0.077973 s

Mean Squared Error = 0.200153

14/11/28 18:41:28 INFO SparkContext: Starting job: aggregate at 
Chapter0802.scala:84

[..]

14/11/28 18:41:28 INFO SparkContext: Job finished: count at Chapter0802.
scala:85, took 0.042592 s

Accuracy = 79.98%

*** Done ***
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In the real world, one would create a training and a test dataset and train the 
model on the training dataset and then predict on the test dataset. Then we can 
calculate the mse and minimize it on various feature combinations, some of which 
could also be engineered features.

Clustering
Spark MLlib has implemented the k-means clustering algorithm. The model training 
and prediction interfaces are similar to other machine learning algorithms. Let's see 
how it works by going through an example.

Let's use a sample data that has two dimensions x and y. The plot of the points 
would look like the following screenshot:

From the preceding graph, we can see that four clusters form one solution. Let's try 
with k=2 and k=4. Let's see how the Spark clustering algorithm handles this dataset 
and the groupings:

import org.apache.spark.SparkContext

import org.apache.spark.mllib.linalg.{Vector,Vectors}

import org.apache.spark.mllib.clustering.KMeans

object Chapter0803 {

  def parsePoints(inpLine : String) : Vector = {

    val values = inpLine.split(',')

    val x = values(0).toInt

    val y = values(1).toInt
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    return Vectors.dense(x,y)

  }

  //

  def main(args: Array[String]): Unit = {

    val sc = new SparkContext("local","Chapter 8")

    println(s"Running Spark Version ${sc.version}")

    //

    val dataFile = sc.textFile("/Users/ksankar/bdtc-2014/cluster- 
      points/cluster-points.csv")

    val points = dataFile.map(_.trim).filter( _.length > 1). 
      map(line => parsePoints(line))

    //

    println(points.count())

    //

    var numClusters = 2

    val numIterations = 20

    var mdlKMeans = KMeans.train(points, numClusters,  
      numIterations)

    //

    println(mdlKMeans.clusterCenters)

    //

    var clusterPred = points.map(x=>mdlKMeans.predict(x))

    var clusterMap = points.zip(clusterPred)

    //

    clusterMap.foreach(println)

    //

    clusterMap.saveAsTextFile("/Users/ksankar/bdtc-2014/cluster- 
      points/2-cluster.csv")

    //

    // Now let us try 4 centers:

    //

    numClusters = 4

    mdlKMeans = KMeans.train(points, numClusters, numIterations)

    clusterPred = points.map(x=>mdlKMeans.predict(x))

    clusterMap = points.zip(clusterPred)

    clusterMap.saveAsTextFile("/Users/ksankar/bdtc-2014/cluster- 
      points/4-cluster.csv")

    clusterMap.foreach(println)

  }

}
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The results of the run would be as shown in the next screenshot (your run could give 
slightly different results):

The k=2 graph shown in the next screenshot looks as expected:
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With k=4 the results are as shown in the following screenshot:

The plot shown in the following screenshot conirms that the clusters are obtained as 
expected. Spark does understand clustering!

Bear in mind that the results could vary a little between runs because the clustering 
algorithm picks the centers randomly and grows from there. With k=4, the results are 
stable; but with k=2, there is room for partitioning the points in different ways. Try it 
out a few times and see the results.



Machine Learning Using Spark MLlib

[ 136 ]

Recommendation
The recommendation algorithms fall under ive general mechanisms, namely, 
knowledge-based, demographic-based, content-based, collaborative iltering  
(item-based or user-based), and latent factor-based. Usually, the collaborative 
iltering is computationally intensive—Spark implements the Alternating Least 
Square (ALS) algorithm authored by Yehuda Koren, available at http://dl.acm.
org/citation.cfm?id=1608614. It is user-based collaborative iltering using the 
method of learning latent factors, which can scale to a large dataset. Let's quickly  
use the movielens medium dataset to implement a recommendation using Spark.

There are some interesting RDD transformations. Apart from that, the code is not 
that complex, as shown next:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._ // for implicit  
  conversations

import org.apache.spark.mllib.recommendation.Rating

import org.apache.spark.mllib.recommendation.ALS

object Chapter0804 {

  

  def parseRating1(line : String) : (Int,Int,Double,Int) = {

    //println(x)

    val x = line.split("::")

    val userId = x(0).toInt

    val movieId = x(1).toInt

    val rating = x(2).toDouble

    val timeStamp = x(3).toInt/10

    return (userId,movieId,rating,timeStamp)

  }

  //

  def parseRating(x : (Int,Int,Double,Int)) : Rating = {

    val userId = x._1

    val movieId = x._2

    val rating = x._3

    val timeStamp = x._4 // ignore

    return new Rating(userId,movieId,rating)

  }

  //

http://dl.acm.org/citation.cfm?id=1608614
http://dl.acm.org/citation.cfm?id=1608614
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Now that we have the parsers in place, let's focus on the main program, as  
shown next:

  def main(args: Array[String]): Unit = {

    val sc = new SparkContext("local","Chapter 8")

    println(s"Running Spark Version ${sc.version}")

    //

    val moviesFile = sc.textFile("/Users/ksankar/bdtc- 
      2014/movielens/medium/movies.dat")

    val moviesRDD = moviesFile.map(line => line.split("::"))

    println(moviesRDD.count())

    //

    val ratingsFile = sc.textFile("/Users/ksankar/bdtc- 
      2014/movielens/medium/ratings.dat")

    val ratingsRDD = ratingsFile.map(line => parseRating1(line))

    println(ratingsRDD.count())

    //

    ratingsRDD.take(5).foreach(println) // always check the RDD

    //

    val numRatings = ratingsRDD.count()

    val numUsers = ratingsRDD.map(r => r._1).distinct().count()

    val numMovies = ratingsRDD.map(r => r._2).distinct().count()

    println("Got %d ratings from %d users on %d movies.".

         format(numRatings, numUsers, numMovies))

Split the dataset into training, validation, and test. We can use any random 
dataset. But here we will use the last digit of the timestamp:

val trainSet = ratingsRDD.filter(x => (x._4 % 10) < 6) 
  .map(x=>parseRating(x))

    val validationSet = ratingsRDD.filter(x => (x._4 % 10) >= 6 &  
      (x._4 % 10) < 8).map(x=>parseRating(x))

    val testSet = ratingsRDD.filter(x => (x._4 % 10) >= 8) 
      .map(x=>parseRating(x))

    println("Training: "+ "%d".format(trainSet.count()) + 

      ", validation: " + "%d".format(validationSet.count()) + ",  
        test: " + "%d".format(testSet.count()) + ".")

    //

    // Now train the model using the training set:

    val rank = 10

    val numIterations = 20

    val mdlALS = ALS.train(trainSet,rank,numIterations)

    //

    // prepare validation set for prediction

    //

    val userMovie = validationSet.map { 
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      case Rating(user, movie, rate) =>(user, movie)

    }

    //

    // Predict and convert to Key-Value PairRDD

    val predictions = mdlALS.predict(userMovie).map {

      case Rating(user, movie, rate) => ((user, movie), rate)

    }

    //

    println(predictions.count())

    predictions.take(5).foreach(println)

    //

    // Now convert the validation set to PairRDD:

    //

    val validationPairRDD = validationSet.map(r => ((r.user,  
      r.product), r.rating))

    println(validationPairRDD.count())

    validationPairRDD.take(5).foreach(println)

    println(validationPairRDD.getClass())

    println(predictions.getClass())

    //

    // Now join the validation set with predictions.

    // Then we can figure out how good our recommendations are.

    // Tip:

    //   Need to import org.apache.spark.SparkContext._ 

    //   Then MappedRDD would be converted implicitly to PairRDD

    //

    val ratingsAndPreds = validationPairRDD.join(predictions) 

    println(ratingsAndPreds.count())

    ratingsAndPreds.take(3).foreach(println)

    //

    val mse = ratingsAndPreds.map(r => {

      math.pow((r._2._1 - r._2._2),2)

    }).reduce(_+_) / ratingsAndPreds.count()

    val rmse = math.sqrt(mse)

    println("MSE = %2.5f".format(mse) + " RMSE = %2.5f" 
      .format(rmse))

    println("** Done **")

  }

}
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The run results, as shown in the next screenshot, are obtained as expected:

Check the following screenshot as well:
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Some more information is available at:

• The Goodby MapReduce article from Mahout News (https://mahout.
apache.org/)

• https://spark.apache.org/docs/latest/mllib-guide.html

• A Collaborative Filtering ALS paper (http://dl.acm.org/citation.
cfm?id=1608614)

• A good presentation on decision trees (http://spark-summit.org/wp-
content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-

Spark-Made-Das-Sparks-Talwalkar.pdf)

• A recommended hands-on exercise from Spark Summit 2014 (https://
databricks-training.s3.amazonaws.com/movie-recommendation-with-

mllib.html)

Summary
In this chapter, we looked at the most common machine learning algorithms. 
Naturally, ML is a vast subject and requires lot more study, experimentation, and 
practical experience on interesting data science problems. Two books that are 
relevant to Spark Machine Learning are Packt's own book Machine Learning with 
Spark, Nick Pentreath, and O'Reilly's Advanced Analytics with Spark, Sandy Ryza, Uri 
Laserson, Sean Owen, and Josh Wills. Both are excellent books that you can refer to.

https://mahout.apache.org/
https://mahout.apache.org/
https://spark.apache.org/docs/latest/mllib-guide.html
http://dl.acm.org/citation.cfm?id=1608614
http://dl.acm.org/citation.cfm?id=1608614
http://spark-summit.org/wp-content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-Spark-Made-Das-Sparks-Talwalkar.pdf
http://spark-summit.org/wp-content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-Spark-Made-Das-Sparks-Talwalkar.pdf
http://spark-summit.org/wp-content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-Spark-Made-Das-Sparks-Talwalkar.pdf
https://databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html
https://databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html
https://databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html
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Testing
Writing effective software without tests is quite challenging. Effective testing, 
especially in cases with slow end-to-end running times, such as distributed systems, 
can help improve developer effectiveness greatly. This chapter isn't going to try to 
convince you that you should be testing; however, if you really want to ride without 
a seat belt, that's ine too.

Testing in Java and Scala
For the sake of simplicity, this chapter covers using ScalaTest and JUnit as testing 
libraries. ScalaTest can be used to test both Scala and Java code and is the testing 
library currently used in Spark. To use ScalaTest with sbt, you need to add this to the 
.sbt ile: libraryDependencies += "org.scalatest" % "scalatest_2.10" % 
"2.0" % "test". JUnit is a popular testing framework for Java.

Making your code testable
If you have code that can be isolated from the RDD interaction or SparkContext 
interaction, that code can be tested using standard methodologies. While it can be 
quite convenient to use anonymous functions when writing Spark code, you cannot 
test them independently without the expensive overhead of setting up SparkContext. 
So the best practice is to write named functions. For example, in your CSV parser, 
you could take the following code:

• Scala code could be the following:

val splitLines = inFile.map(line => {

    val reader = new CSVReader(new StringReader(line))

    reader.readNext().map(_.toDouble)

  }
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• Java code could be the following:

   JavaRDD<Integer[]> splitLines = inFile.flatMap(new 
FlatMapFunction<String, Integer[]> (){ 
      public Iterable<Integer[]> call(String line) { 
          ArrayList<Integer[]> result = new  
            ArrayList<Integer[]>();

          try { 
              CSVReader reader = new CSVReader(new  
                 StringReader(line));

              String[] parsedLine = reader.readNext();

              Integer[] intLine = new  
                Integer[parsedLine.length];

              for (int i = 0; i < parsedLine.length; i++) { 
                intLine[i] = Integer.parseInt 
                (parsedLine[i]);

              }

              result.add(intLine);

          } catch (Exception e) { 
              errors.add(1);

          }

          return result;

       }

   }

  );

Instead of this, you could write the code as shown next:

 def parseLine(line: String): Array[Double] = {

      val reader = new CSVReader(new StringReader(line))

      reader.readNext().map(_.toDouble)

  }

Alternatively, in Java, you could write the code as shown here:

public class JavaLoadCsvTestable {

    public static class ParseLine extends Function<String, Integer[]> 
{

    public Integer[] call(String line) throws Exception {

        CSVReader reader = new CSVReader(new StringReader(line));

        String[] parsedLine = reader.readNext();

        Integer[] intLine = new Integer[parsedLine.length];

        for (int i = 0; i < parsedLine.length; i++) {

          intLine[i] = Integer.parseInt(parsedLine[i]);

        }

        return intLine;

    }

  }

}
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You can then test it without having to worry about any Spark speciic setup or logic 
as shown in the following code:

import org.scalatest.FunSuite

import org.scalatest.matchers.ShouldMatchers

class TestableLoadCsvExampleSuite extends FunSuite with  
  ShouldMatchers {

    test("should parse a csv line with numbers") {

      TestableLoadCsvExample.parseLine("1,2") should equal  
        (Array[Double](1.0,2.0))

      TestableLoadCsvExample.parseLine("100,-1,1,2,2.5") should  
        equal (Array[Double](100,-1,1.0,2.0,2.5))

    }

    test("should error if there is a non-number") {

      evaluating { TestableLoadCsvExample.parseLine("pandas")  }  
        should produce [NumberFormatException]

    }

}

Alternatively, to test the Java code, you would do something like the following  
code (note that the test is still written in Scala; don't worry as we will look at JUnit 
tests later):

class JavaLoadCsvExampleSuite extends FunSuite with ShouldMatchers {

    test("should parse a csv line with numbers") {

      val parseLine = new JavaLoadCsvTestable.ParseLine();

      parseLine.call("1,2") should equal (Array[Integer](1,2))

      parseLine.call("100,-1,1,2,2") should equal (Array[Integer] 
        (100,-1,1,2,2))

    }

    test("should error if there is a non-integer") {

      val parseLine = new JavaLoadCsvTestable.ParseLine();

      evaluating { parseLine.call("pandas")  } should produce  
        [NumberFormatException]

      evaluating {parseLine.call("100,-1,1,2.2,2") should equal  
        (Array[Integer](100,-1,1,2,2)) } should produce  
        [NumberFormatException]

    }

}
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Testing interactions with SparkContext
You may, however, remember that you later extended the CSV parser to increment 
counters on invalid input to gracefully handle failures. To verify that behavior, you 
could provide mock counters and other mock objects for the Spark components you 
use. You are restricted to only test the parts of the code that do not depend on Spark. 
Instead, you could re-factor the code to make the core testable without Spark and to 
do a more complete test using a provided SparkContext, as shown:

object MoreTestableLoadCsvExample {

  def parseLine(line: String): Array[Double] = {

    val reader = new CSVReader(new StringReader(line))

    reader.readNext().map(_.toDouble)

  }

  def handleInput(invalidLineCounter: Accumulator[Int], inFile:  
    RDD[String]): RDD[Double] = {

    val numericData = inFile.flatMap(line => {

      try {

    Some(parseLine(line))

      } catch {

    case _ => {

      invalidLineCounter += 1

      None

    }

      }

    })

    numericData.map(row => row.sum)

  }

  def main(args: Array[String]) {

    if (args.length != 2) {

      System.err.println("Usage: TestableLoadCsvExample <master>  
        <inputfile>")

      System.exit(1)

    }

    val master = args(0)

    val inputFile = args(1)

    val sc = new SparkContext(master, "Load CSV Example",

                      System.getenv("SPARK_HOME"),

                      Seq(System.getenv("JARS")))

    sc.addFile(inputFile)

    val inFile = sc.textFile(inputFile)

    val invalidLineCounter = sc.accumulator(0)

    val summedData = handleInput(invalidLineCounter, inFile)

    println(summedData.collect().mkString(","))
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    println("Errors: "+invalidLineCounter)

    println(summedData.stats())

  }

}

This does have the downside of requiring that your tests run 
serially, else sbt (or other build infrastructure) may try to 
launch multiple Spark contexts at the same time, which will 
cause confusing error messages. We can force the tests to 
execute sequentially in sbt with parallelExecution in 
Test := false.

We test this by using the following code:

import org.apache.spark._

import org.apache.spark.SparkContext._

import org.scalatest.FunSuite

import org.scalatest.matchers.ShouldMatchers

class MoreTestableLoadCsvExampleSuite extends FunSuite with  
  ShouldMatchers {

  test("summ data on input") {

    val sc = new SparkContext("local", "Load CSV Example")

    val counter = sc.accumulator(0)

    val input = sc.parallelize(List("1,2","1,3"))

    val result = MoreTestableLoadCsvExample.handleInput(counter,  
      input)

    result.collect() should equal (Array[Int](3,4))

  }

  test("should parse a csv line with numbers") {

    MoreTestableLoadCsvExample.parseLine("1,2") should equal  
      (Array[Double](1.0,2.0))

    MoreTestableLoadCsvExample.parseLine("100,-1,1,2,2.5") should  
      equal (Array[Double](100,-1,1.0,2.0,2.5))

  }

  test("should error if there is a non-number") {

    evaluating { MoreTestableLoadCsvExample.parseLine("pandas")  }  
      should produce [NumberFormatException]

  }

}
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In Java, you can test with the following code:

public class JavaLoadCsvMoreTestable {

    public static class ParseLineWithAcc extends  
      FlatMapFunction<String, Integer[]> {

    Accumulator<Integer> acc;

    ParseLineWithAcc(Accumulator<Integer> acc) {

        this.acc = acc;

    }

   public Iterable<Integer[]> call(String line) throws Exception {

        ArrayList<Integer[]> result = new ArrayList<Integer[]>();

        try {

            CSVReader reader = new CSVReader(new  
              StringReader(line));

        String[] parsedLine = reader.readNext();

        Integer[] intLine = new Integer[parsedLine.length];

        for (int i = 0; i < parsedLine.length; i++) {

            intLine[i] = Integer.parseInt(parsedLine[i]);

        }

        result.add(intLine);

        } catch (Exception e) {

        acc.add(1);

        }

        return result;

    }

    }

    public static JavaDoubleRDD processData(Accumulator<Integer>  
      acc, JavaRDD<String> input) {

    JavaRDD<Integer[]> splitLines = input.flatMap(new  
      ParseLineWithAcc(acc));

    JavaDoubleRDD summedData = splitLines.map(new  
      DoubleFunction<Integer[]>() {

         public Double call(Integer[] in) {

            Double ret = 0.;

            for (int i = 0; i < in.length; i++) {

                ret += in[i];

            }

            return ret;

        }

      }

    );

return summedData;

    }



Chapter 10

[ 147 ]

You can test this in Scala code as shown here (note that we add an invalid input for 
the counter here):

class JavaLoadCsvMoreTestableSuite extends FunSuite with  
  ShouldMatchers {

  test("sum data on input") {

    val sc = new JavaSparkContext("local", "Load Java CSV test")

    val counter: Accumulator[Integer] = sc.intAccumulator(0)

    val input: JavaRDD[String] =  
      sc.parallelize(List("1,2","1,3","murh"))

    val javaLoadCsvMoreTestable = new JavaLoadCsvMoreTestable();

    val resultRDD = JavaLoadCsvMoreTestable. 
      processData(counter,input)

    resultRDD.cache();

    val resultCount = resultRDD.count()

    val result = resultRDD.collect().toArray()

    resultCount should equal (2)

    result should equal (Array[Double](3.0, 4.0))

    counter.value should equal (1)

    sc.stop()

  }

}

You can test this in Java with Junit4, as shown in the following code:

package pandaspark.examples;

import org.apache.spark.*;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaDoubleRDD;

import org.scalatest.FunSuite;

import org.scalatest.matchers.ShouldMatchers;

import static org.junit.Assert.assertEquals;

import org.junit.Test;

import org.junit.Ignore;

import org.junit.runner.RunWith;

import org.junit.runners.JUnit4;

import java.util.Arrays;

import java.util.List;

import java.util.ArrayList;

@RunWith(JUnit4.class)
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public class JavaLoadCsvMoreTestableSuiteJunit {

    @Test

    public void testSumDataOnInput() {

    JavaSparkContext sc = new JavaSparkContext("local", "Load Java  
      CSV test");

    Accumulator<Integer> counter = sc.intAccumulator(0);

    String[] inputArray = {"1,2","1,3","murh"};

    JavaRDD<String> input = sc.parallelize 
      (Arrays.asList(inputArray));

    JavaDoubleRDD resultRDD = JavaLoadCsvMoreTestable. 
      processData(counter, input);

    long resultCount = resultRDD.count();

    assertEquals(resultCount, 2);

    int errors = counter.value();

    assertEquals(errors, 1);

    sc.stop();

  }

}

Testing in Python
Python testing of Spark is very similar in concept to testing in Java and Scala, but 
the testing libraries are a bit different. PySpark uses both doctest and unittest to test 
itself. doctest makes it easy to create tests based on the expected output of code run 
in the Python interpreter. We can run the tests using the following commands:

export SPARK_TESTING=1

export PYSPARK_DOC_TEST=1

bin/pyspark [pathtocode]

By taking the wordcount.py example from Spark and factoring out countWords, 
you can test the word count functionality using doctest. Some doctest examples are 
shown next:

"""

>>> from pyspark.context import SparkContext

>>> sc = SparkContext('local', 'test')

>>> b = sc.parallelize(["pandas are awesome","and ninjas are also 
awesome"])

>>> countWords(b)

[('also', 1), ('and', 1), ('are', 2), ('awesome', 2), ('ninjas', 1), 
('pandas', 1)]

"""
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import sys

from operator import add

from pyspark import SparkContext

def countWords(lines):

    counts = lines.flatMap(lambda x: x.split(' ')) \

                  .map(lambda x: (x, 1)) \

                  .reduceByKey(add)

    return sorted(counts.collect())

if __name__ == "__main__":

    if len(sys.argv) < 3:

        print >> sys.stderr, \

            "Usage: PythonWordCount <master> <file>"

        exit(-1)

    sc = SparkContext(sys.argv[1], "PythonWordCount")

    lines = sc.textFile(sys.argv[2], 1)

    output = countWords(lines)

    for (word, count) in output:

        print "%s : %i" % (word, count)

Note about doctest

You put the test in between triple quotes. The testing code is 
preixed with >>> as if it's running in the Python shell. The 
expected output that would be seen is added exactly as if it's 
returned in the Python shell.

We can also test something similar to our Java and Scala programs, as shown next:

"""

>>> from pyspark.context import SparkContext

>>> sc = SparkContext('local', 'test')

>>> b = sc.parallelize(["1,2","1,3"])

>>> handleInput(b)

[3, 4]

"""

import sys

from operator import add

from pyspark import SparkContext

def handleInput(lines):
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    data = lines.map(lambda x: sum(map(int, x.split(','))))

    return sorted(data.collect())

if __name__ == "__main__":

    if len(sys.argv) < 3:

        print >> sys.stderr, \

            "Usage: PythonLoadCsv <master> <file>"

        exit(-1)

    sc = SparkContext(sys.argv[1], "PythonLoadCsv")

    lines = sc.textFile(sys.argv[2], 1)

    output = handleInput(lines)

    for sum in output:

        print sum

Some more information can be found at the following sites:

• http://blog.quantifind.com/posts/spark-unit-test/

• http://www.scalatest.org/

• http://junit.org/

• http://docs.python.org/2/library/unittest.html

• http://docs.python.org/2/library/doctest.html

Summary
This chapter discussed how to structure your code so that it is testable as well as  
the testing framework that is used within Spark. Effective testing can save large 
amounts of debugging time, which can be especially painful in large distributed 
systems. In the next chapter, we will look at some tips and tricks such as tuning  
and securing Spark.

http://blog.quantifind.com/posts/spark-unit-test/
http://www.scalatest.org/
http://junit.org/
http://docs.python.org/2/library/unittest.html
http://docs.python.org/2/library/doctest.html
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Tips and Tricks
As discussed in the earlier chapters, you have the tools to build and test Spark jobs 
as well as set up a Spark cluster to run them on, so now it's time to igure out how to 
make the most of your time as a Spark developer. The Spark documentation includes 
good tips on tuning and is available at http://spark.apache.org/docs/latest/
tuning.html.

Where to ind logs
Spark has very useful logs to igure out what's going on when things are not  
going as expected. Spark keeps a per machine log on each machine by default  
in the SPARK_HOME/work subdirectory. Spark's web UI provides a convenient  
place to see STDOUT and STDERR of each job, running and completed jobs,  
separated out per worker.

Concurrency limitations
Spark's concurrency for operations is limited by the number of partitions. 
Conversely, having too many partitions can cause excess overhead by launching 
too many tasks. If you have too many partitions, you can shrink it by using the 
coalesce(numPartitions,shuffle) method. The coalesce method is a good 
method to pack and rebalance your RDDs (for example, after a ilter operation where 
you have less data after the action). If the new number of partitions is more than 
what you have now, set shuffle=True, else set shuffle=false. While creating a 
new RDD, you can specify the number of partitions to be used. Also, the grouping/
joining mechanism on RDDs of pairs can take the number of partitions or a custom 
partitioner class. The default number of partitions for new RDDs is controlled 
by spark.default.parallelism, which also controls the number of tasks used by 
groupByKey and other shufle operations that need shufling.

http://spark.apache.org/docs/latest/tuning.html
http://spark.apache.org/docs/latest/tuning.html
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Memory usage and garbage collection
To measure the impact of garbage collection, you can ask the JVM to print 
details about the garbage collection. You can do this by adding -verbose:gc 
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps to your SPARK_JAVA_OPTS 
in conf/spark-env.sh. You can also include the -Xloggc option to print the log 
messages to a separate ile so that log messages are kept separate. The details will 
then be printed to the standard out when you run your job, which will be available 
as described in the irst section of this chapter.

If you ind that your Spark cluster uses too much time collecting garbage, you can 
reduce the amount of space used for RDD caching by changing spark.storage.
memoryFraction; here, the default is 0.6. If you are planning to run Spark for a long 
time on a cluster, you may wish to enable spark.cleaner.ttl. By default, Spark 
does not clean up any metadata (stages generated, tasks generated, and so on); set this 
to a non-zero value in seconds to clean up the metadata after that length of time. The 
documentation page (https://spark.apache.org/docs/latest/configuration.
html) has the default settings and details about all the coniguration options.

You can also control the RDD storage level if you ind that you use too much 
memory. I usually use top to see the memory consumption of the processes. If your 
RDDs don't it within memory and you still wish to cache them, you can try using a 
different storage level shown as follows (also check the documentation page for the 
latest information on RDD persistence options at http://spark.apache.org/docs/
latest/programming-guide.html#rdd-persistence):

• MEMORY_ONLY: This stores the entire RDD in memory if it can, which is  
the default

• MEMORY_AND_DISK: This stores each partition in memory if it can fit; else it 
stores it on disk

• DISK_ONLY: This stores each partition on disk regardless of whether it can fit 
in memory

These options are set when you call the persist function (rdd.persist()) on  
your RDD. By default, the RDDs are stored in a deserialized form, which requires 
less parsing. We can save space by adding _SER to the storage level (for example, 
MEMORY_ONLY_SER, MEMORY_AND_DISK_SER), in which case Spark will serialize the 
data to be stored, which normally saves some space but increases the execution time.

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
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Serialization
Spark supports different serialization mechanisms; the choice is a trade-off between 
speed, space eficiency, and full support of all Java objects. If you are using the 
serializer to cache your RDDs, you should strongly consider a fast serializer. The 
default serializer uses Java's default serialization. The KyroSerializer is much faster 
and generally uses about one tenth of the memory as the default serializer. You can 
switch the serializer by setting spark.serializer to spark.KryoSerializer. If you 
want to use KyroSerializer, you need to make sure that the classes are serializable by 
KyroSerializer. Spark provides a trait KryoRegistrator, which you can extend to 
register your classes with Kyro, as shown in the following code:

class Reigstrer extends spark.KyroRegistrator {

    override def registerClasses(kyro: Kyro) {

              kyro.register(classOf[MyClass])

    }

}

Take a look at https://code.google.com/p/
kryo/#Quickstart to igure out how to write custom 
serializers for your classes if you need something customized. 
You can substantially decrease the amount of space used for your 
objects by customizing your serializers. For example, rather than 
writing out the full class name, you can give them an integer ID 
by calling kyro.register(classOf[MyClass],100).

IDE integration
For Emacs users, the ENSIME sbt plugin is a good addition. ENhanced Scala 
Interaction Mode for Emacs (ENSIME) provides many features that are available in 
IDEs such as error checking and symbol inspection. You can install the latest ENSIME 
from https://github.com/aemoncannon/ensime/downloads (make sure you choose 
the one that matches your Scala version). Or, you can run the following commands:

wget https://github.com/downloads/aemoncannon/ensime/ ensime_2.10.0-RC3-
0.9.8.2.tar.gz

tar -xvf ensime_2.10.0-RC3-0.9.8.2.tar.gz 

In your .emacs, add this:

;; Load the ensime lisp code...

(add-to-list 'load-path "ENSIME_ROOT/elisp/")

(require 'ensime)

https://code.google.com/p/kryo/#Quickstart
https://code.google.com/p/kryo/#Quickstart
https://github.com/aemoncannon/ensime/downloads
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;; This step causes the ensime-mode to be started whenever 
;; scala-mode is started for a buffer. You may have to customize ;; 
this step if you're not using the standard scala mode.

(add-hook 'scala-mode-hook 'ensime-scala-mode-hook)

You can then add the ENSIME sbt plugin to your project (in project/plugins.sbt):

addSbtPlugin("org.ensime" % "ensime-sbt-cmd" % "0.1.0")

You should then run the following commands:

sbt

> ensime generate

If you are using Git, you will probably want to add .ensime to the .gitignore ile if 
it isn't already present.

If you have an IntelliJ, a similar plugin exists called sbt-idea, which can be used 
to generate IntelliJ idea iles. You can add the IntelliJ sbt plugin to your project (in 
project/plugins.sbt) like this:

addSbtPlugin("com.github.mpeltonen" % "sbt-idea" % "1.5.1")

You should then run the following commands:

sbt

> gen-idea

This will generate the idea ile, which can be loaded into IntelliJ.

Eclipse users can also use sbt to generate Eclipse project iles with the sbteclipse plugin. 
You can add the Eclipse sbt plugin to your project (in project/plugins.sbt) like this:

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" %  
  "2.3.0")

You should then run the following commands:

sbt

> eclipse

This will generate the Eclipse project iles and you can then import them into your 
Eclipse project using the Import Wizard in Eclipse. Eclipse users might also ind the 
spark-plug project useful, which can be used to launch clusters from within Eclipse.

An import step is to add spark-assembly-1.2.0-hadoop2.6.0.jar in your Java 
build path or Maven dependency. Pay attention so you match the Spark version 
number (1.2.0) with the Hadoop version number (2.6.0).
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Using Spark with other languages
If you ind yourself wanting to work with your RDD in another language, there 
are a few options available for you. From Java/Scala you can try using JNI, and 
with Python you can use the FFI. Sometimes however, you will want to work with 
a language that isn't C or work with an already compiled program. In that case, 
the easiest thing to do is to use the pipe interface that is available in all three of the 
APIs. The stream API works by taking the RDD and serializing it to strings and 
then piping it to the speciied program. If your data happens to be plain strings, this 
is very convenient, but if it's not so, you will need to serialize your data in such a 
way that it can be understood on either side. JSON or protocol buffers can be good 
options for this depending on how structured your data is.

A quick note on security
Another important consideration in your Spark setup is security. If you are using 
Spark on EC2 with the default scripts, you will notice that the access to your Spark 
cluster is restricted. This is a good idea to do even if you aren't running inside of 
EC2 since your Spark cluster will likely have access to the data you would rather not 
share with the world (and even if it doesn't have it, you probably don't want to allow 
arbitrary code execution by strangers). If your Spark cluster is already on a private 
network, that is great, otherwise you should talk with your system administrator 
about setting up some IPtables rules to restrict access.

Community developed packages
A new package index site (http://spark-packages.org/) has a lot of packages and 
libraries that work with Apache Spark. It's an essential site to visit and make use of.

Mailing lists
Probably the most useful tip to inish this chapter with is that the Spark user's 
mailing list is an excellent source of up-to-date information about other people's 
experiences in using Spark. The best place to get information on meetups, slides, 
and so forth is https://spark.apache.org/community.html. The two Spark users 
mailing lists are user@spark.apache.org and dev@spark.apache.org.

http://spark-packages.org/
https://spark.apache.org/community.html
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Some more information can be found at the following sites:

• http://blog.quantifind.com/posts/logging-post/

• http://jawher.net/2011/01/17/scala-development-environment-

emacs-sbt-ensime/

• https://www.assembla.com/spaces/liftweb/wiki/Emacs-ENSIME

• https://github.com/shivaram/spark-ec2/blob/master/ganglia/init.

sh

• https://spark.apache.org/docs/latest/tuning.html

• http://spark.apache.org/docs/latest/running-on-mesos.html

• http://kryo.googlecode.com/svn/api/v2/index.html

• https://code.google.com/p/kryo/

• http://scala-ide.org/download/current.html

• http://syndeticlogic.net/?p=311

• http://mail-archives.apache.org/mod_mbox/incubator-spark-user/

• https://groups.google.com/forum/?fromgroups#!forum/spark-users

Summary
That wraps up some common things that you can use to help improve your Spark 
development experience. I wish you the best of luck with your Spark projects; now 
go and solve some fun problems! :)

http://blog.quantifind.com/posts/logging-post/
http://jawher.net/2011/01/17/scala-development-environment-emacs-sbt-ensime/
http://jawher.net/2011/01/17/scala-development-environment-emacs-sbt-ensime/
https://www.assembla.com/spaces/liftweb/wiki/Emacs-ENSIME
https://github.com/shivaram/spark-ec2/blob/master/ganglia/init.sh
https://github.com/shivaram/spark-ec2/blob/master/ganglia/init.sh
https://spark.apache.org/docs/latest/tuning.html
http://spark.apache.org/docs/latest/running-on-mesos.html
http://kryo.googlecode.com/svn/api/v2/index.html
https://code.google.com/p/kryo/
http://scala-ide.org/download/current.html
http://syndeticlogic.net/?p=311
http://mail-archives.apache.org/mod_mbox/incubator-spark-user/
https://groups.google.com/forum/?fromgroups#!forum/spark-users
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