
www.allitebooks.com

http://www.allitebooks.org

Fast Data Processing

with Spark

Second Edition

Perform real-time analytics using Spark in a fast,

distributed, and scalable way

Krishna Sankar

Holden Karau

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Fast Data Processing with Spark
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Second edition: March 2015

Production reference: 1250315

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-257-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors

Krishna Sankar

Holden Karau

Reviewers

Robin East

Toni Verbeiren

Lijie Xu

Commissioning Editor

Akram Hussain

Acquisition Editors

Shaon Basu

Kunal Parikh

Content Development Editor

Arvind Koul

Technical Editors

Madhunikita Sunil Chindarkar

Taabish Khan

Copy Editor

Hiral Bhat

Project Coordinator

Neha Bhatnagar

Proofreaders

Maria Gould

Ameesha Green

Joanna McMahon

Indexer

Tejal Soni

Production Coordinator

Nilesh R. Mohite

Cover Work

Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Krishna Sankar is a chief data scientist at http://www.blackarrow.tv/,
where he focuses on optimizing user experiences via inference, intelligence, and
interfaces. His earlier roles include principal architect, data scientist at Tata America
Intl, director of a data science and bioinformatics start-up, and a distinguished
engineer at Cisco. He has spoken at various conferences, such as Strata-Sparkcamp,
OSCON, Pycon, and Pydata about predicting NFL (http://goo.gl/movfds), Spark
(http://goo.gl/E4kqMD), data science (http://goo.gl/9pyJMH), machine learning
(http://goo.gl/SXF53n), and social media analysis (http://goo.gl/D9YpVQ). He
was a guest lecturer at Naval Postgraduate School, Monterey. His blogs can be found
at https://doubleclix.wordpress.com/. His other passion is Lego Robotics. You
can ind him at the St. Louis FLL World Competition as the robots design judge.

The credit goes to my coauthor, Holden Karau, the reviewers, and
the editors at Packt Publishing. Holden wrote the irst edition, and I
hope I was able to contribute to the same depth. I am deeply thankful
to the reviewers Lijie, Robin, and Toni. They spent time diligently
reviewing the material and code. They have added lots of insightful
tips to the text, which I have gratefully included. In addition, their
sharp eyes caught tons of errors in the code and text. Thanks to
Arvind Koul, who has been the chief force behind the book. A great
editor is absolutely essential for the completion of a book, and I
was lucky to have Arvind. I also want to thank the editors at Packt
Publishing: Anila, Madhunikita, Milton, Neha, and Shaon, with whom
I had the fortune to work with at various stages. The guidance and
wisdom from Joe Matarese, my boss at http://www.blackarrow.
tv/, and from Paco Nathan at Databricks are invaluable. My spouse,
Usha and son Kaushik, were always with me, cheering me on for any
endeavor that I embark upon—mostly successful, like this book, and
occasionally foolhardy efforts! I dedicate this book to my mom, who
unfortunately passed away last month; she was always proud to see
her eldest son as an author.

www.allitebooks.com

http://www.blackarrow.tv/
http://goo.gl/movfds
http://goo.gl/E4kqMD
http://goo.gl/9pyJMH
http://goo.gl/SXF53n
http://goo.gl/D9YpVQ
https://doubleclix.wordpress.com/
http://www.blackarrow.tv/
http://www.blackarrow.tv/
http://www.allitebooks.org

Holden Karau is a software development engineer and is active in the open source
sphere. She has worked on a variety of search, classiication, and distributed systems
problems at Databricks, Google, Foursquare, and Amazon. She graduated from the
University of Waterloo with a bachelor's of mathematics degree in computer science.
Other than software, she enjoys playing with ire and hula hoops, and welding.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Robin East has served a wide range of roles covering operations research, inance,
IT system development, and data science. In the 1980s, he was developing credit
scoring models using data science and big data before anyone (including himself)
had even heard of those terms! In the last 15 years, he has worked with numerous
large organizations, implementing enterprise content search applications, content
intelligence systems, and big data processing systems. He has created numerous
solutions, ranging from swaps and derivatives in the banking sector to fashion
analytics in the retail sector.

Robin became interested in Apache Spark after realizing the limitations of the
traditional MapReduce model with respect to running iterative machine learning
models. His focus is now on trying to further extend the Spark machine learning
libraries, and also on teaching how Spark can be used in data science and data
analytics through his blog, Machine Learning at Speed (http://mlspeed.
wordpress.com).

Before NoSQL databases became the rage, he was an expert on tuning Oracle
databases and extracting maximum performance from EMC Documentum systems.
This work took him to clients around the world and led him to create the open
source proiling tool called DFCprof that is used by hundreds of EMC users to
track down performance problems. For many years, he maintained the popular
Documentum internals and tuning blog, Inside Documentum (http://robineast.
wordpress.com), and contributed hundreds of posts to EMC support forums. These
community efforts bore fruit in the form of the award of EMC MVP and acceptance
into the EMC Elect program.

www.allitebooks.com

http://mlspeed.wordpress.com
http://mlspeed.wordpress.com
http://robineast.wordpress.com
http://robineast.wordpress.com
http://www.allitebooks.org

Toni Verbeiren graduated as a PhD in theoretical physics in 2003. He used to
work on models of artiicial neural networks, entailing mathematics, statistics,
simulations, (lots of) data, and numerical computations. Since then, he has been
active in the industry in diverse domains and roles: infrastructure management and
deployment, service management, IT management, ICT/business alignment, and
enterprise architecture. Around 2010, Toni started picking up his earlier passion,
which was then named data science. The combination of data and common sense can
be a very powerful basis to make decisions and analyze risk.

Toni is active as an owner and consultant at Data Intuitive (http://www.data-
intuitive.com/) in everything related to big data science and its applications to
decision and risk management. He is currently involved in Exascience Life Lab
(http://www.exascience.com/) and the Visual Data Analysis Lab (http://vda-lab.
be/), which is concerned with scaling up visual analysis of biological and chemical data.

I'd like to thank various employers, clients, and colleagues for the
insight and wisdom they shared with me. I'm grateful to the Belgian
and Flemish governments (FWO, IWT) for inancial support of the
aforementioned academic projects.

Lijie Xu is a PhD student at the Institute of Software, Chinese Academy of Sciences.
His research interests focus on distributed systems and large-scale data analysis.
He has both academic and industrial experience in Microsoft Research Asia,
Alibaba Taobao, and Tencent. As an open source software enthusiast, he has
contributed to Apache Spark and written a popular technical report, named
Spark Internals, in Chinese at https://github.com/JerryLead/SparkInternals/
tree/master/markdown.

www.allitebooks.com

http://www.data-intuitive.com/
http://www.data-intuitive.com/
http://www.exascience.com/
http://vda-lab.be/
http://vda-lab.be/
https://github.com/JerryLead/SparkInternals/tree/master/markdown
https://github.com/JerryLead/SparkInternals/tree/master/markdown
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers,
and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents

Preface v

Chapter 1: Installing Spark and Setting up your Cluster 1

Directory organization and convention 2

Installing prebuilt distribution 3

Building Spark from source 4
Downloading the source 5

Compiling the source with Maven 5

Compilation switches 7

Testing the installation 7

Spark topology 7

A single machine 9

Running Spark on EC2 9

Running Spark on EC2 with the scripts 10

Deploying Spark on Elastic MapReduce 16

Deploying Spark with Chef (Opscode) 17

Deploying Spark on Mesos 18

Spark on YARN 19

Spark Standalone mode 19

Summary 24
Chapter 2: Using the Spark Shell 25

Loading a simple text ile 26
Using the Spark shell to run logistic regression 29

Interactively loading data from S3 32

Running Spark shell in Python 34

Summary 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Building and Running a Spark Application 37
Building your Spark project with sbt 37
Building your Spark job with Maven 41
Building your Spark job with something else 44
Summary 44

Chapter 4: Creating a SparkContext 45
Scala 46
Java 46
SparkContext – metadata 47
Shared Java and Scala APIs 49
Python 49
Summary 50

Chapter 5: Loading and Saving Data in Spark 51

RDDs 51

Loading data into an RDD 52

Saving your data 62
Summary 63

Chapter 6: Manipulating your RDD 65
Manipulating your RDD in Scala and Java 65

Scala RDD functions 76

Functions for joining PairRDDs 76

Other PairRDD functions 77

Double RDD functions 78

General RDD functions 79

Java RDD functions 81
Spark Java function classes 81

Common Java RDD functions 82

Methods for combining JavaRDDs 83

Functions on JavaPairRDDs 84

Manipulating your RDD in Python 85

Standard RDD functions 88

PairRDD functions 89

Summary 91

Chapter 7: Spark SQL 93

The Spark SQL architecture 94
Spark SQL how-to in a nutshell 94

Spark SQL programming 95
SQL access to a simple data table 95

Handling multiple tables with Spark SQL 98

Aftermath 104

Summary 105

Table of Contents

[iii]

Chapter 8: Spark with Big Data 107
Parquet – an eficient and interoperable big data format 107

Saving iles to the Parquet format 108
Loading Parquet iles 109
Saving processed RDD in the Parquet format 111

Querying Parquet iles with Impala 111
HBase 114

Loading from HBase 115

Saving to HBase 116

Other HBase operations 117

Summary 118

Chapter 9: Machine Learning Using Spark MLlib 119

The Spark machine learning algorithm table 120

Spark MLlib examples 120

Basic statistics 121

Linear regression 124

Classiication 126
Clustering 132

Recommendation 136

Summary 140
Chapter 10: Testing 141

Testing in Java and Scala 141
Making your code testable 141

Testing interactions with SparkContext 144

Testing in Python 148
Summary 150

Chapter 11: Tips and Tricks 151

Where to ind logs 151
Concurrency limitations 151

Memory usage and garbage collection 152

Serialization 153

IDE integration 153

Using Spark with other languages 155

A quick note on security 155

Community developed packages 155

Mailing lists 155

Summary 156
Index 157

[v]

Preface
Apache Spark has captured the imagination of the analytics and big data developers,
and rightfully so. In a nutshell, Spark enables distributed computing on a large scale
in the lab or in production. Till now, the pipeline collect-store-transform was distinct
from the Data Science pipeline reason-model, which was again distinct from the
deployment of the analytics and machine learning models. Now, with Spark and
technologies, such as Kafka, we can seamlessly span the data management and data
science pipelines. We can build data science models on larger datasets, requiring
not just sample data. However, whatever models we build can be deployed into
production (with added work from engineering on the "ilities", of course). It is our
hope that this book would enable an engineer to get familiar with the fundamentals
of the Spark platform as well as provide hands-on experience on some of the
advanced capabilities.

What this book covers
Chapter 1, Installing Spark and Setting up your Cluster, discusses some common
methods for setting up Spark.

Chapter 2, Using the Spark Shell, introduces the command line for Spark. The Shell is
good for trying out quick program snippets or just iguring out the syntax of a call
interactively.

Chapter 3, Building and Running a Spark Application, covers Maven and sbt for
compiling Spark applications.

Chapter 4, Creating a SparkContext, describes the programming aspects of the
connection to a Spark server, for example, the SparkContext.

Chapter 5, Loading and Saving Data in Spark, deals with how we can get data in and out
of a Spark environment.

Preface

[vi]

Chapter 6, Manipulating your RDD, describes how to program the Resilient
Distributed Datasets, which is the fundamental data abstraction in Spark that makes
all the magic possible.

Chapter 7, Spark SQL, deals with the SQL interface in Spark. Spark SQL probably is
the most widely used feature.

Chapter 8, Spark with Big Data, describes the interfaces with Parquet and HBase.

Chapter 9, Machine Learning Using Spark MLlib, talks about regression, classiication,
clustering, and recommendation. This is probably the largest chapter in this book. If
you are stranded on a remote island and could take only one chapter with you, this
should be the one!

Chapter 10, Testing, talks about the importance of testing distributed applications.

Chapter 11, Tips and Tricks, distills some of the things we have seen. Our hope is that
as you get more and more adept in Spark programming, you will add this to the list
and send us your gems for us to include in the next version of this book!

What you need for this book
Like any development platform, learning to develop systems with Spark takes trial
and error. Writing programs, encountering errors, agonizing over pesky bugs are
all part of the process. We expect a basic level of programming skills—Python or
Java—and experience in working with operating system commands. We have kept
the examples simple and to the point. In terms of resources, we do not assume any
esoteric equipment for running the examples and developing the code. A normal
development machine is enough.

Who this book is for
Data scientists and data engineers would beneit more from this book. Folks who have
an exposure to big data and analytics will recognize the patterns and the pragmas.
Having said that, anyone who wants to understand distributed programming would
beneit from working through the examples and reading the book.

Preface

[vii]

Conventions
In this book, you will ind a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"While the methods for loading an RDD are largely found in the SparkContext
class, the methods for saving an RDD are deined on the RDD classes."

A block of code is set as follows:

//Next two lines only needed if you decide to use the assembly plugin

import AssemblyKeys._assemblySettings

scalaVersion := "2.10.4"

name := "groupbytest"

libraryDependencies ++= Seq(

 "org.spark-project" % "spark-core_2.10" % "1.1.0"

)

Any command-line input or output is written as follows:

scala> val inFile = sc.textFile("./spam.data")

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Select
Source Code from option 2. Choose a package type and either download directly
or select a mirror."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are veriied, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Installing Spark and Setting

up your Cluster
This chapter will detail some common methods to set up Spark. Spark on a single
machine is excellent for testing or exploring small datasets, but here you will also learn
to use Spark's built-in deployment scripts with a dedicated cluster via SSH (Secure
Shell). This chapter will explain the use of Mesos and Hadoop clusters with YARN or
Chef to deploy Spark. For Cloud deployments of Spark, this chapter will look at EC2
(both traditional and EC2MR). Feel free to skip this chapter if you already have your
local Spark instance installed and want to get straight to programming.

Regardless of how you are going to deploy Spark, you will want to get the latest
version of Spark from https://spark.apache.org/downloads.html (Version
1.2.0 as of this writing). Spark currently releases every 90 days. For coders who want
to work with the latest builds, try cloning the code directly from the repository at
https://github.com/apache/spark. The building instructions are available at
https://spark.apache.org/docs/latest/building-spark.html. Both source
code and prebuilt binaries are available at this link. To interact with Hadoop
Distributed File System (HDFS), you need to use Spark, which is built against the
same version of Hadoop as your cluster. For Version 1.1.0 of Spark, the prebuilt
package is built against the available Hadoop Versions 1.x, 2.3, and 2.4. If you are up
for the challenge, it's recommended that you build against the source as it gives you
the lexibility of choosing which HDFS Version you want to support as well as apply
patches with. In this chapter, we will do both.

To compile the Spark source, you will need the appropriate version of Scala and the
matching JDK. The Spark source tar includes the required Scala components. The
following discussion is only for information—there is no need to install Scala.

www.allitebooks.com

https://spark.apache.org/downloads.html
https://github.com/apache/spark
https://spark.apache.org/docs/latest/building-spark.html
http://www.allitebooks.org

Installing Spark and Setting up your Cluster

[2]

The Spark developers have done a good job of managing the dependencies. Refer to
the https://spark.apache.org/docs/latest/building-spark.html web page
for the latest information on this. According to the website, "Building Spark using
Maven requires Maven 3.0.4 or newer and Java 6+." Scala gets pulled down as a
dependency by Maven (currently Scala 2.10.4). Scala does not need to be installed
separately, it is just a bundled dependency.

Just as a note, Spark 1.1.0 requires Scala 2.10.4 while the 1.2.0 version would run on
2.10 and Scala 2.11. I just saw e-mails in the Spark users' group on this.

This brings up another interesting point about the Spark
community. The two essential mailing lists are user@
spark.apache.org and dev@spark.apache.org.
More details about the Spark community are available at
https://spark.apache.org/community.html.

Directory organization and convention
One convention that would be handy is to download and install software in the /opt
directory. Also have a generic soft link to Spark that points to the current version. For
example, /opt/spark points to /opt/spark-1.1.0 with the following command:

sudo ln -f -s spark-1.1.0 spark

Later, if you upgrade, say to Spark 1.2, you can change the softlink.

But remember to copy any coniguration changes and old logs when you change
to a new distribution. A more lexible way is to change the coniguration directory
to /etc/opt/spark and the log iles to /var/log/spark/. That way, these
will stay independent of the distribution updates. More details are available at
https://spark.apache.org/docs/latest/configuration.html#overriding-

configuration-directory and https://spark.apache.org/docs/latest/
configuration.html#configuring-logging.

https://spark.apache.org/docs/latest/building-spark.html
https://spark.apache.org/community.html
https://spark.apache.org/docs/latest/configuration.html#overriding-configuration-directory
https://spark.apache.org/docs/latest/configuration.html#overriding-configuration-directory
https://spark.apache.org/docs/latest/configuration.html#configuring-logging
https://spark.apache.org/docs/latest/configuration.html#configuring-logging

Chapter 1

[3]

Installing prebuilt distribution
Let's download prebuilt Spark and install it. Later, we will also compile a Version
and build from the source. The download is straightforward. The page to go to for
this is http://spark.apache.org/downloads.html. Select the options as shown in
the following screenshot:

We will do a wget from the command line. You can do a direct download as well:

cd /opt

sudo wget http://apache.arvixe.com/spark/spark-1.1.1/spark-1.1.1-bin-
hadoop2.4.tgz

We are downloading the prebuilt version for Apache Hadoop 2.4 from one of the
possible mirrors. We could have easily downloaded other prebuilt versions as well,
as shown in the following screenshot:

http://spark.apache.org/downloads.html

Installing Spark and Setting up your Cluster

[4]

To uncompress it, execute the following command:

tar xvf spark-1.1.1-bin-hadoop2.4.tgz

To test the installation, run the following command:

/opt/spark-1.1.1-bin-hadoop2.4/bin/run-example SparkPi 10

It will ire up the Spark stack and calculate the value of Pi. The result should be as
shown in the following screenshot:

Building Spark from source
Let's compile Spark on a new AWS instance. That way you can clearly understand
what all the requirements are to get a Spark stack compiled and installed. I am using
the Amazon Linux AMI, which has Java and other base stack installed by default.
As this is a book on Spark, we can safely assume that you would have the base
conigurations covered. We will cover the incremental installs for the Spark stack here.

The latest instructions for building from the source are
available at https://spark.apache.org/docs/
latest/building-with-maven.html.

https://spark.apache.org/docs/latest/building-with-maven.html
https://spark.apache.org/docs/latest/building-with-maven.html

Chapter 1

[5]

Downloading the source
The irst order of business is to download the latest source from https://spark.
apache.org/downloads.html. Select Source Code from option 2. Chose a package
type and either download directly or select a mirror. The download page is shown in
the following screenshot:

We can either download from the web page or use wget. We will do the wget from
one of the mirrors, as shown in the following code:

cd /opt

sudo wget http://apache.arvixe.com/spark/spark-1.1.1/spark-1.1.1.tgz

sudo tar -xzf spark-1.1.1.tgz

The latest development source is in GitHub, which is
available at https://github.com/apache/spark.
The latest version can be checked out by the Git clone at
https://github.com/apache/spark.git. This should
be done only when you want to see the developments for the
next version or when you are contributing to the source.

Compiling the source with Maven
Compilation by nature is uneventful, but a lot of information gets displayed on
the screen:

cd /opt/spark-1.1.1

export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M
-XX:ReservedCodeCacheSize=512m"

mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -DskipTests clean
package

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://github.com/apache/spark
https://github.com/apache/spark.git

Installing Spark and Setting up your Cluster

[6]

In order for the preceding snippet to work, we will need Maven installed in our
system. In case Maven is not installed in your system, the commands to install the
latest version of Maven are given here:

wget http://download.nextag.com/apache/maven/maven-
3/3.2.5/binaries/apache-maven-3.2.5-bin.tar.gz

sudo tar -xzf apache-maven-3.2.5-bin.tar.gz

sudo ln -f -s apache-maven-3.2.5 maven

export M2_HOME=/opt/maven

export PATH=${M2_HOME}/bin:${PATH}

Detailed Maven installation instructions are available
at http://maven.apache.org/download.
cgi#Installation.

Sometimes you will have to debug Maven using the –X
switch. When I ran Maven, the Amazon Linux AMI didn't
have the Java compiler! I had to install javac for Amazon
Linux AMI using the following command:

sudo yum install java-1.7.0-openjdk-devel

The compilation time varies. On my Mac it took approximately 11 minutes. The
Amazon Linux on a t2-medium instance took 18 minutes. In the end, you should see
a build success message like the one shown in the following screenshot:

http://maven.apache.org/download.cgi#Installation
http://maven.apache.org/download.cgi#Installation

Chapter 1

[7]

Compilation switches
As an example, the switches for compilation of -Pyarn -Phadoop-2.4 -Dhadoop.
version=2.4.0 are explained in https://spark.apache.org/docs/latest/
building-spark.html#specifying-the-hadoop-version. –D deines a system
property and –P deines a proile.

A typical compile coniguration that I use (for YARN, Hadoop Version 2.6 with Hive
support) is given here:

mvn clean package -Pyarn -Dyarn.version=2.6.0 -Phadoop-2.4 -
Dhadoop.version=2.6.0 -Phive -DskipTests

You can also compile the source code in IDEA and then
upload the built Version to your cluster.

Testing the installation
A quick way to test the installation is by calculating Pi:

/opt/spark/bin/run-example SparkPi 10

The result should be a few debug messages and then the value of Pi as shown in the
following screenshot:

Spark topology
This is a good time to talk about the basic mechanics and mechanisms of Spark.
We will progressively dig deeper, but for now let's take a quick look at the top level.

https://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version
https://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version

Installing Spark and Setting up your Cluster

[8]

Essentially, Spark provides a framework to process vast amounts of data, be it in
gigabytes and terabytes and occasionally petabytes. The two main ingredients are
computation and scale. The size and effectiveness of the problems we can solve
depends on these two factors, that is, the ability to apply complex computations over
large amounts of data in a timely fashion. If our monthly runs take 40 days, we have
a problem. The key, of course, is parallelism, massive parallelism to be exact. We can
make our computational algorithm tasks go parallel, that is instead of doing the steps
one after another, we can perform many steps in parallel or carry out data parallelism,
that is, we run the same algorithms over a partitioned dataset in parallel. In my humble
opinion, Spark is extremely effective in data parallelism in an elegant framework.
As you will see in the rest of this book, the two components are Resilient Distributed
Dataset (RDD) and cluster manager. The cluster manager distributes the code and
manages the data that is represented in RDDs. RDDs with transformations and actions
are the main programming abstractions and present parallelized collections. Behind
the scenes, a cluster manager controls the distribution and interaction with RDDs,
distributes code, and manages fault-tolerant execution. Spark works with three types
of cluster managers – standalone, Apache Mesos, and Hadoop YARN. The Spark page
at http://spark.apache.org/docs/latest/cluster-overview.html has a lot
more details on this. I just gave you a quick introduction here.

If you have installed Hadoop 2.0, you are recommended to
install Spark on YARN. If you have installed Hadoop 1.0,
the standalone version is recommended. If you want to try
Mesos, you can choose to install Spark on Mesos. Users are
not recommended to install both YARN and Mesos.

http://spark.apache.org/docs/latest/cluster-overview.html

Chapter 1

[9]

The Spark driver program takes the program classes and hands them over to a
cluster manager. The cluster manager, in turn, starts executors in multiple worker
nodes, each having a set of tasks. When we ran the example program earlier, all these
actions happened transparently in your machine! Later when we install in a cluster,
the examples would run, again transparently, but across multiple machines in the
cluster. That is the magic of Spark and distributed computing!

A single machine
A single machine is the simplest use case for Spark. It is also a great way to sanity
check your build. In the spark/bin directory, there is a shell script called run-
example, which can be used to launch a Spark job. The run-example script takes the
name of a Spark class and some arguments. Earlier, we used the run-example script
from the /bin directory to calculate the value of Pi. There is a collection of sample
Spark jobs in examples/src/main/scala/org/apache/spark/examples/.

All of the sample programs take the parameter master (the cluster manager), which
can be the URL of a distributed cluster or local[N], where N is the number of threads.

Going back to our run-example script, it invokes the more general bin/spark-
submit script. For now, let's stick with the run-example script.

To run GroupByTest locally, try running the following code:

bin/run-example GroupByTest

It should produce an output like this given here:

14/11/15 06:28:40 INFO SparkContext: Job finished: count at
GroupByTest.scala:51, took 0.494519333 s

2000

Running Spark on EC2
The ec2 directory contains the script to run a Spark cluster in EC2. These scripts can
be used to run multiple Spark clusters and even run on spot instances. Spark can also
be run on Elastic MapReduce, which is Amazon's solution for Map Reduce cluster
management, and it gives you more lexibility around scaling instances. The Spark
page at http://spark.apache.org/docs/latest/ec2-scripts.html has the latest
on-running spark on EC2.

http://spark.apache.org/docs/latest/ec2-scripts.html

Installing Spark and Setting up your Cluster

[10]

Running Spark on EC2 with the scripts
To get started, you should make sure you have EC2 enabled on your account by
signing up at https://portal.aws.amazon.com/gp/aws/manageYourAccount. Then
it is a good idea to generate a separate access key pair for your Spark cluster, which
you can do at https://portal.aws.amazon.com/gp/aws/securityCredentials.
You will also need to create an EC2 key pair so that the Spark script can SSH to the
launched machines, which can be done at https://console.aws.amazon.com/ec2/
home by selecting Key Pairs under Network & Security. Remember that key pairs
are created per region, and so you need to make sure you create your key pair in the
same region as you intend to run your Spark instances. Make sure to give it a name
that you can remember as you will need it for the scripts (this chapter will use spark-
keypair as its example key pair name.). You can also choose to upload your public
SSH key instead of generating a new key. These are sensitive; so make sure that you
keep them private. You also need to set AWS_ACCESS_KEY and AWS_SECRET_KEY as
environment variables for the Amazon EC2 scripts:

chmod 400 spark-keypair.pem

export AWS_ACCESS_KEY_ID= AWSACcessKeyId

export AWS_SECRET_ACCESS_KEY=AWSSecretKey

You will ind it useful to download the EC2 scripts provided by Amazon from
http://aws.amazon.com/developertools/Amazon-EC2/351. Once you unzip the
resulting zip ile, you can add the bin to your PATH in a manner similar to what you
did with the Spark bin:

wget http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip

unzip ec2-api-tools.zip

cd ec2-api-tools-*

export EC2_HOME=`pwd`

export PATH=$PATH:`pwd`/bin

In order to test whether this works, try the following commands:

$ec2-describe-regions

This should display the following output:

REGION eu-central-1 ec2.eu-central-1.amazonaws.com

REGION sa-east-1 ec2.sa-east-1.amazonaws.com

REGION ap-northeast-1 ec2.ap-northeast-1.amazonaws.com

REGION eu-west-1 ec2.eu-west-1.amazonaws.com

REGION us-east-1 ec2.us-east-1.amazonaws.com

https://portal.aws.amazon.com/gp/aws/manageYourAccount
https://portal.aws.amazon.com/gp/aws/securityCredentials
https://console.aws.amazon.com/ec2/home
https://console.aws.amazon.com/ec2/home
http://aws.amazon.com/developertools/Amazon-EC2/351

Chapter 1

[11]

REGION us-west-1 ec2.us-west-1.amazonaws.com

REGION us-west-2 ec2.us-west-2.amazonaws.com

REGION ap-southeast-2 ec2.ap-southeast-2.amazonaws.com

REGION ap-southeast-1 ec2.ap-southeast-1.amazonaws.com

Finally, you can refer to the EC2 command line tools reference page http://docs.
aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up-

ec2-cli-linux.html as it has all the gory details.

The Spark EC2 script automatically creates a separate security group and irewall
rules for running the Spark cluster. By default, your Spark cluster will be universally
accessible on port 8080, which is a somewhat poor form. Sadly, the spark_ec2.py
script does not currently provide an easy way to restrict access to just your host. If
you have a static IP address, I strongly recommend limiting access in spark_ec2.py;
simply replace all instances of 0.0.0.0/0 with [yourip]/32. This will not affect
intra-cluster communication as all machines within a security group can talk to each
other by default.

Next, try to launch a cluster on EC2:

./ec2/spark-ec2 -k spark-keypair -i pk-[....].pem -s 1 launch
myfirstcluster

If you get an error message like The requested Availability
Zone is currently constrained and...., you can specify
a different zone by passing in the --zone lag.

The -i parameter (in the preceding command line) is provided for specifying the
private key to log into the instance; -i pk-[....].pem represents the path to the
private key.

If you get an error about not being able to SSH to the master, make sure that only
you have the permission to read the private key otherwise SSH will refuse to use it.

You may also encounter this error due to a race condition, when the hosts report
themselves as alive but the Spark-ec2 script cannot yet SSH to them. A ix for this
issue is pending in https://github.com/mesos/spark/pull/555. For now, a
temporary workaround until the ix is available in the version of Spark you are using
is to simply sleep an extra 100 seconds at the start of setup_cluster using the –w
parameter. The current script has 120 seconds of delay built in.

www.allitebooks.com

http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up- ec2-cli-linux.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up- ec2-cli-linux.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up- ec2-cli-linux.html
https://github.com/mesos/spark/pull/555
http://www.allitebooks.org

Installing Spark and Setting up your Cluster

[12]

If you do get a transient error while launching a cluster, you can inish the launch
process using the resume feature by running:

./ec2/spark-ec2 -i ~/spark-keypair.pem launch myfirstsparkcluster
--resume

It will go through a bunch of scripts, thus setting up Spark, Hadoop and so forth.
If everything goes well, you should see something like the following screenshot:

This will give you a bare bones cluster with one master and one worker with all of
the defaults on the default machine instance size. Next, verify that it started up and
your irewall rules were applied by going to the master on port 8080. You can see
in the preceding screenshot that the UI for the master is the output at the end of the
script with port at 8080 and ganglia at 5080.

Downloading the example code

You can download the example code iles for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
iles e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[13]

Your AWS EC2 dashboard will show the instances as follows:

The ganglia dashboard shown in the following screenshot is a good place to monitor
the instances:

Installing Spark and Setting up your Cluster

[14]

Try running one of the example jobs on your new cluster to make sure everything
is okay, as shown in the following screenshot:

The JPS should show this:

root@ip-172-31-45-56 ~]$ jps

1904 NameNode

2856 Jps

2426 Master

2078 SecondaryNameNode

The script has started Spark master, the Hadoop name node, and data nodes
(in slaves).

Chapter 1

[15]

Let's run the two programs that we ran earlier on our local machine:

cd spark

bin/run-example GroupByTest

bin/run-example SparkPi 10

The ease with which one can spin up a few nodes in the Cloud, install the Spark
stack, and run the program in a distributed manner is interesting.

The ec2/spark-ec2 destroy <cluster name> command will terminate
the instances.

Now that you've run a simple job on our EC2 cluster, it's time to conigure your EC2
cluster for our Spark jobs. There are a number of options you can use to conigure
with the spark-ec2 script.

The ec2/ spark-ec2 –help command will display all the options available.

First, consider what instance types you may need. EC2 offers an ever-growing
collection of instance types and you can choose a different instance type for the
master and the workers. The instance type has the most obvious impact on the
performance of your Spark cluster. If your work needs a lot of RAM, you should
choose an instance with more RAM. You can specify the instance type with
--instance-type= (name of instance type). By default, the same instance type
will be used for both the master and the workers; this can be wasteful if your
computations are particularly intensive and the master isn't being heavily utilized.
You can specify a different master instance type with --master-instance-type=
(name of instance).

EC2 also has GPU instance types, which can be useful for workers but would be
completely wasted on the master. This text will cover working with Spark and GPUs
later on; however, it is important to note that EC2 GPU performance may be lower
than what you get while testing locally due to the higher I/O overhead imposed by
the hypervisor.

Spark's EC2 scripts use Amazon Machine Images (AMI) provided by the Spark
team. Usually, they are current and suficient for most of the applications. You
might need your own AMI in case of circumstances like custom patches
(for example, using a different version of HDFS) for Spark, as they will not be
included in the machine image.

Installing Spark and Setting up your Cluster

[16]

Deploying Spark on Elastic MapReduce
In addition to the Amazon basic EC2 machine offering, Amazon offers a hosted Map
Reduce solution called Elastic MapReduce (EMR). Amazon provides a bootstrap
script that simpliies the process of getting started using Spark on EMR. You will
need to install the EMR tools from Amazon:

mkdir emr

cd emr

wget http://elasticmapreduce.s3.amazonaws.com/elastic-mapreduce-ruby.zip

unzip *.zip

This way the EMR scripts can access your AWS account you will want, to create a
credentials.json ile:

 {

 "access-id": "<Your AWS access id here>",
 "private-key": "<Your AWS secret access key here>",
 "key-pair": "<The name of your ec2 key-pair here>",
 "key-pair-file": "<path to the .pem file for your ec2 key pair
 here>",
 "region": "<The region where you wish to launch your job flows
 (e.g us-east-1)>"

 }

Once you have the EMR tools installed, you can launch a Spark cluster by running:

elastic-mapreduce --create --alive --name "Spark/Shark Cluster" \

--bootstrap-action s3://elasticmapreduce/samples/spark/install-spark-
shark.sh \

--bootstrap-name "install Mesos/Spark/Shark" \

--ami-version 2.0 \

--instance-type m1.large --instance-count 2

This will give you a running EC2MR instance after about 5 to 10 minutes. You can
list the status of the cluster by running elastic-mapreduce -listode. Once it
outputs j-[jobid], it is ready.

Chapter 1

[17]

Deploying Spark with Chef (Opscode)
Chef is an open source automation platform that has become increasingly popular
for deploying and managing both small and large clusters of machines. Chef can
be used to control a traditional static leet of machines and can also be used with
EC2 and other cloud providers. Chef uses cookbooks as the basic building blocks
of coniguration and can either be generic or site-speciic. If you have not used
Chef before, a good tutorial for getting started with Chef can be found at
https://learnchef.opscode.com/. You can use a generic Spark cookbook as
the basis for setting up your cluster.

To get Spark working, you need to create a role for both the master and the workers
as well as conigure the workers to connect to the master. Start by getting the
cookbook from https://github.com/holdenk/chef-cookbook-spark. The bare
minimum need is setting the master hostname (as master) to enable worker nodes
to connect and the username, so that Chef can be installed in the correct place. You
will also need to either accept Sun's Java license or switch to an alternative JDK.
Most of the settings that are available in spark-env.sh are also exposed through
the cookbook settings. You can see an explanation of the settings in your section on
"coniguring multiple hosts over SSH". The settings can be set as per-role or you can
modify the global defaults.

Create a role for the master with a knife role; create spark_master_role -e
[editor]. This will bring up a template role ile that you can edit. For a simple
master, set it to this:

{

 "name": "spark_master_role",
 "description": "",
 "json_class": "Chef::Role",
 "default_attributes": {
 },
 "override_attributes": {

 "username":"spark",
 "group":"spark",
 "home":"/home/spark/sparkhome",
 "master_ip":"10.0.2.15",
 },
 "chef_type": "role",
 "run_list": [

 "recipe[spark::server]",
 "recipe[chef-client]",
],
 "env_run_lists": {

 }

}

https://learnchef.opscode.com/
https://github.com/holdenk/chef-cookbook-spark

Installing Spark and Setting up your Cluster

[18]

Then create a role for the client in the same manner except that instead of
spark::server, you need to use the spark::client recipe. Deploy the roles
to different hosts:

knife node run_list add master role[spark_master_role]

knife node run_list add worker role[spark_worker_role]

Then run chef-client on your nodes to update. Congrats, you now have a Spark
cluster running!

Deploying Spark on Mesos
Mesos is a cluster management platform for running multiple distributed applications
or frameworks on a cluster. Mesos can intelligently schedule and run Spark, Hadoop,
and other frameworks concurrently on the same cluster. Spark can be run on Mesos
either by scheduling individual jobs as separate Mesos tasks or running all of Spark
as a single Mesos task. Mesos can quickly scale up to handle large clusters beyond the
size of which you would want to manage with plain old SSH scripts. Mesos, written
in C++, was originally created at UC Berkley as a research project; it is currently
undergoing Apache incubation and is actively used by Twitter.

The Spark web page has detailed instructions on installing and running Spark
on Mesos.

To get started with Mesos, you can download the latest version from http://
mesos.apache.org/downloads/ and unpack it. Mesos has a number of different
coniguration scripts you can use; for an Ubuntu installation use configure.
ubuntu-lucid-64 and for other cases, the Mesos README ile will point you at the
coniguration ile you need to use. In addition to the requirements of Spark, you
will need to ensure that you have the Python C header iles installed (python-dev
on Debian systems) or pass --disable-python to the conigure script. Since Mesos
needs to be installed on all the machines, you may ind it easier to conigure Mesos
to install somewhere other than on the root, most easily alongside your Spark
installation:

./configure --prefix=/home/sparkuser/mesos && make && make check &&
make install

Much like the coniguration of Spark in standalone mode, with Mesos you need
to make sure the different Mesos nodes can ind each other. Start by having
mesossprefix/var/mesos/deploy/masters to the hostname of the master and
adding each worker hostname to mesossprefix/var/mesos/deploy/slaves. Then
you will want to point the workers at the master (and possibly set some other values)
in mesossprefix/var/mesos/conf/mesos.conf.

http://mesos.apache.org/downloads/
http://mesos.apache.org/downloads/

Chapter 1

[19]

Once you have Mesos built, it's time to conigure Spark to work with Mesos. This is
as simple as copying the conf/spark-env.sh.template to conf/spark-env.sh and
updating MESOS_NATIVE_LIBRARY to point to the path where Mesos is installed. You
can ind more information about the different settings in spark-env.sh in irst table
of the next section.

You will need to install both Mesos and Spark on all of the machines in your cluster.
Once both Mesos and Spark are conigured, you can copy the build to all of the
machines using pscp, as shown in the following command:

pscp -v -r -h -l sparkuser ./mesos /home/sparkuser/mesos

You can then start your Mesos clusters using mesosprefix/sbin/mesos-start-
cluster.sh and schedule your Spark on Mesos by using mesos://[host]:5050 as
the master.

Spark on YARN
YARN is Apache Hadoop's NextGen MapReduce. The Spark project provides an
easy way to schedule jobs on YARN once you have a Spark assembly built. The
Spark web page http://spark.apache.org/docs/latest/running-on-yarn.
html has the coniguration details for YARN, which we had built earlier for when
compiling with the –Pyarn switch. It is important that the Spark job you create uses
a standalone master URL. The example Spark applications all read the master URL
from the command line arguments; so specify --args standalone.

To run the same example as given in the SSH section, write the following commands:

sbt/sbt assembly #Build the assembly

SPARK_JAR=./core/target/spark-core-assembly-1.1.0.jar ./run
spark.deploy.yarn.Client --jar examples/target/scala-2.9.2/spark-
examples_2.9.2-0.7.0.jar --class spark.examples.GroupByTest --args
standalone --num-workers 2 --worker-memory 1g --worker-cores 1

Spark Standalone mode
If you have a set of machines without any existing cluster management software,
you can deploy Spark over SSH with some handy scripts. This method is known
as "standalone mode" in the Spark documentation at http://spark.apache.org/
docs/latest/spark-standalone.html. An individual master and worker can be
started by sbin/start-master.sh and sbin/start-slaves.sh respectively. The
default port for the master is 8080. As you likely don't want to go to each of your
machines and run these commands by hand, there are a number of helper scripts in
bin/ to help you run your servers.

http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/spark-standalone.html

Installing Spark and Setting up your Cluster

[20]

A prerequisite for using any of the scripts is having password-less SSH access set
up from the master to all of the worker machines. You probably want to create a
new user for running Spark on the machines and lock it down. This book uses the
username "sparkuser". On your master, you can run ssh-keygen to generate the SSH
keys and make sure that you do not set a password. Once you have generated the
key, add the public one (if you generated an RSA key, it would be stored in ~/.ssh/
id_rsa.pub by default) to ~/.ssh/authorized_keys2 on each of the hosts.

The Spark administration scripts require that your usernames
match. If this isn't the case, you can conigure an alternative
username in your ~/.ssh/config.

Now that you have the SSH access to the machines set up, it is time to conigure
Spark. There is a simple template in [filepath]conf/spark-env.sh.template[/
filepath], which you should copy to [filepath]conf/spark-env.sh[/filepath].
You will need to set SCALA_HOME to the path where you extracted Scala to. You may
also ind it useful to set some (or all) of the following environment variables:

Name Purpose Default

MESOS_NATIVE_LIBRARY Point to math where
Mesos lives

None

SCALA_HOME Point to where you
extracted Scala

None, must be set

SPARK_MASTER_IP The IP address for the
master to listen on and the
IP address for the workers
to connect to.

The result of running
hostname

SPARK_MASTER_PORT The port # for the Spark
master to listen on

7077

SPARK_MASTER_WEBUI_PORT The port # of the WEB UI
on the master

8080

SPARK_WORKER_CORES Number of cores to use All of them

SPARK_WORKER_MEMORY How much memory to
use

Max of (system memory -
1GB, 512MB)

SPARK_WORKER_PORT What port # the worker
runs on

Rand

SPARK_WEBUI_PORT What port # the worker
WEB UI runs on

8081

SPARK_WORKER_DIR Where to store files from
the worker

SPARK_HOME/work_dir

Chapter 1

[21]

Once you have your coniguration done, it's time to get your cluster up and running.
You will want to copy the version of Spark and the coniguration you have built to
all of your machines. You may ind it useful to install pssh, a set of parallel SSH tools
including pscp. The pscp makes it easy to scp to a number of target hosts, although
it will take a while, as shown here:

pscp -v -r -h conf/slaves -l sparkuser ../opt/spark ~/

If you end up changing the coniguration, you need to distribute the coniguration to
all of the workers, as shown here:

pscp -v -r -h conf/slaves -l sparkuser conf/spark-env.sh
/opt/spark/conf/spark-env.sh

If you use a shared NFS on your cluster, while by default Spark
names log iles and similar with shared names, you should conigure
a separate worker directory, otherwise they will be conigured to
write to the same place. If you want to have your worker directories
on the shared NFS, consider adding `hostname` for example
SPARK_WORKER_DIR=~/work-`hostname`.

You should also consider having your log iles go to a scratch
directory for performance.

Then you are ready to start the cluster and you can use the sbin/start-all.sh,
sbin/start-master.sh and sbin/start-slaves.sh scripts. It is important to note
that start-all.sh and start-master.sh both assume that they are being run on
the node, which is the master for the cluster. The start scripts all daemonize, and so
you don't have to worry about running them in a screen:

ssh master bin/start-all.sh

If you get a class not found error stating "java.lang.NoClassDefFoundError:
scala/ScalaObject", check to make sure that you have Scala installed on that
worker host and that the SCALA_HOME is set correctly.

The Spark scripts assume that your master has Spark
installed in the same directory as your workers. If this is not
the case, you should edit bin/spark-config.sh and set it
to the appropriate directories.

www.allitebooks.com

http://www.allitebooks.org

Installing Spark and Setting up your Cluster

[22]

The commands provided by Spark to help you administer your cluster are
given in the following table. More details are available in the Spark website at
http://spark.apache.org/docs/latest/spark-standalone.html#cluster-

launch-scripts.

Command Use

bin/slaves.sh <command> Runs the provided command on all of the worker hosts.
For example, bin/slave.sh uptime will show how
long each of the worker hosts have been up.

bin/start-all.sh Starts the master and all of the worker hosts. Must be
run on the master.

bin/start-master.sh Starts the master host. Must be run on the master.

bin/start-slaves.sh Starts the worker hosts.

bin/start-slave.sh Start a specific worker.

bin/stop-all.sh Stops master and workers.

bin/stop-master.sh Stops the master.

bin/stop-slaves.sh Stops all the workers.

You now have a running Spark cluster, as shown in the following screenshot! There
is a handy Web UI on the master running on port 8080 you should go and visit, and
on all of the workers on port 8081. The Web UI contains such helpful information as
the current workers, and current and past jobs.

http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts
http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts

Chapter 1

[23]

Now that you have a cluster up and running, let's actually do something with it.
As with the single host example, you can use the provided run script to run Spark
commands. All of the examples listed in examples/src/main/scala/spark/org/
apache/spark/examples/ take a parameter, master, which points them to the
master. Assuming that you are on the master host, you could run them like this:

./run-example GroupByTest spark://`hostname`:7077

If you run into an issue with java.lang.
UnsupportedClassVersionError, you may need to update your
JDK or recompile Spark if you grabbed the binary version. Version
1.1.0 was compiled with JDK 1.7 as the target. You can check the
version of the JRE targeted by Spark with the following commands:

java -verbose -classpath ./core/target/scala-
2.9.2/classes/

spark.SparkFiles |head -n 20

Version 49 is JDK1.5, Version 50 is JDK1.6 and Version
60 is JDK1.7

If you can't connect to localhost, make sure that you've conigured your
master (spark.driver.port) to listen to all of the IP addresses (or if you don't
want to replace localhost with the IP address conigured to listen to). More
port conigurations are listed at http://spark.apache.org/docs/latest/
configuration.html#networking.

If everything has worked correctly, you will see the following log messages output
to stdout:

13/03/28 06:35:31 INFO spark.SparkContext: Job finished: count at
GroupByTest.scala:35, took 2.482816756 s

2000

References:

• http://archive09.linux.com/feature/151340

• http://spark-project.org/docs/latest/spark-standalone.html

• http://bickson.blogspot.com/2012/10/deploying-

graphlabsparkmesos-cluster-on.html

• http://www.ibm.com/developerworks/library/os-spark/

• http://mesos.apache.org/

• http://aws.amazon.com/articles/Elastic-MapReduce/4926593393724923

• http://spark-project.org/docs/latest/ec2-scripts.html

• http://spark.apache.org/docs/latest/cluster-overview.html

http://spark.apache.org/docs/latest/configuration.html#networking
http://spark.apache.org/docs/latest/configuration.html#networking
http://archive09.linux.com/feature/151340
http://spark-project.org/docs/latest/spark-standalone.html
http://bickson.blogspot.com/2012/10/deploying-graphlabsparkmesos-cluster-on.html
http://bickson.blogspot.com/2012/10/deploying-graphlabsparkmesos-cluster-on.html
http://www.ibm.com/developerworks/library/os-spark/
http://mesos.apache.org/
http://aws.amazon.com/articles/Elastic-MapReduce/4926593393724923
http://spark-project.org/docs/latest/ec2-scripts.html
http://spark.apache.org/docs/latest/cluster-overview.html

Installing Spark and Setting up your Cluster

[24]

• https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

• http://research.google.com/pubs/pub41378.html

• http://aws.amazon.com/articles/4926593393724923

• http://docs.aws.amazon.com/ElasticMapReduce/latest/

DeveloperGuide/emr-cli-install.html

Summary
In this chapter, we have gotten Spark installed on our machine for local development
and set up on our cluster, and so we are ready to run the applications that we write.
While installing and maintaining a cluster is a good option, Spark is also available as
a service option from Databricks. Databricks' upcoming Databricks Cloud for Spark
available at http://databricks.com/product is a very convenient offering for
anyone who does not want to deal with the set up/maintenance of the cluster. They
have the concept of a big data pipeline — from ETL to Analytics. This looks truly
interesting to explore!

In the next chapter, you will learn to use the Spark shell.

https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf
http://research.google.com/pubs/pub41378.html
http://aws.amazon.com/articles/4926593393724923
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-cli-install.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-cli-install.html
http://databricks.com/product

[25]

Using the Spark Shell
The Spark shell is a wonderful tool for rapid prototyping with Spark. It helps to be
familiar with Scala, but that isn't necessary. The Spark shell works with Scala and
Python. The Spark shell allows you to interactively query and communicate with
the Spark cluster. This can be great for debugging, for just trying things out, or
interactively exploring new datasets or approaches. The previous chapter should
have gotten you to the point of having a Spark instance running, so now, all you
need to do is start your Spark shell and point it at your running instance with the
command given in the next few lines. Spark will start an instance when you invoke
the Spark shell or start a Spark program from an IDE. So, a local installation on a Mac
or Linux PC/laptop is suficient to start exploring the Spark shell. Not having to spin
up a real cluster to do the prototyping is an important feature of Spark.

Assuming that you have installed Spark in the /opt directory and have a soft link to
Spark, run the following commands:

cd /opt/spark

export MASTER=spark://`hostname`:7077

bin/spark-shell

If you are running Spark in the local mode and don't have a Spark instance already
running, you can just run the preceding command without the MASTER= part. As
a result, the shell will run with only one thread; you can specify local[n] to run
n threads.

Using the Spark Shell

[26]

You will see the shell prompt as shown in the following screenshot:

Loading a simple text ile
While running a Spark shell and connecting to an existing cluster, you should see
something specifying the app ID such as "Connected to Spark cluster with app ID
app-20130330015119-0001." The app ID will match the application entry as shown in
the Web UI under running applications (by default, it will be viewable on port 4040).
Start by downloading a dataset to use for some experimentation. There are a number
of datasets put together for The Elements of Statistical Learning, which are in a very
convenient form to use. Grab the spam dataset using the following command:

wget http://www-stat.stanford.edu/~tibs/ElemStatLearn/
datasets/spam.data

Alternatively, you can ind the spam dataset from the GitHub link at
https://github.com/xsankar/fdps-vii.

Now, load it as a text ile into Spark with the following command inside your
Spark shell:

scala> val inFile = sc.textFile("./spam.data")

https://github.com/xsankar/fdps-vii

Chapter 2

[27]

This loads the spam.data ile into Spark with each line being a separate entry in the
Resilient Distributed Datasets (RDD). You will see RDDs in the later chapters, but
RDD, in brief, is the basic data structure that Spark relies on. RDDs are very versatile
in terms of scaling, computation capabilities, and transformations.

The path assumes that the data would be in the /opt/spark directory. Please type in
the appropriate directory where you have downloaded the data.

The sc in the command line is the Spark context. While applications would create a
Spark context explicitly, the Spark shell creates one called sc for you and that is the
one we normally use.

Note: If you've connected to a Spark master, it's possible that it will attempt to
load the ile on any one of the different machines in the cluster, so make sure that
it can be accessed by all the worker nodes in the cluster. In general you will want
to put your data in HDFS, S3, or a similar distributed ile systems for the future to
avoid this problem. In a local mode, you can just load the ile directly (for example,
sc.textFile([filepath])). You can also use the addFile function on the Spark
context to make a ile available across all of the machines like this:

scala> import org.apache.spark.SparkFiles

scala> val file = sc.addFile("/opt/spark/spam.data")

scala> val inFile = sc.textFile(SparkFiles.get("spam.data"))

Just like most shells, the Spark shell has a command history;
you can press the up arrow key to get to the previous
commands. Are you getting tired of typing or not sure what
method you want to call on an object? Press Tab, and the Spark
shell will autocomplete the line of code in the best way it can.

For this example, the RDD with each line as an individual string isn't super useful
as our input data is actually space separated numerical information. We can use the
map() operation to iterate over the elements of the RDD and quickly convert it to a
usable format (Note: _.toDouble is the Scala syntactic sugar for x => x.toDouble).
We use one map operation to convert the line to a set of numbers in string format
and then convert each of the number to a double, as shown next:

scala> val nums = inFile.map(line => line.split(' ').map(_.toDouble))

Using the Spark Shell

[28]

Verify that this is what we want by inspecting some elements in the nums RDD and
comparing them against the original string RDD. Take a look at the irst element of
each by calling .first() on the RDDs:

Most of the output following these commands is extraneous
INFO messages. It is informative to see what Spark is doing
under the covers. But if you want to keep the detailed messages
out, you can copy log4j.properties into the current
directory and set the log4j.rootCategory to ERROR instead
of INFO. Then none of these messages will appear and it will be
possible to concentrate just on the commands and the output.

scala> inFile.first()

[...]

14/11/15 23:46:41 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose
tasks have all completed, from pool

14/11/15 23:46:41 INFO DAGScheduler: Stage 0 (first at <console>:15)
finished in 0.058 s

14/11/15 23:46:41 INFO SparkContext: Job finished: first at
<console>:15, took 0.088417 s

res0: String = 0 0.64 0.64 0 0.32 0 0 0 0 0 0 0.64 0 0 0 0.32 0 1.29
1.93 0 0.96 0
0 0.778 0 0 3.756 61 278 1

scala> nums.first()

[...]

14/11/15 23:46:42 INFO DAGScheduler: Stage 1 (first at <console>:17)
finished in 0.008 s

14/11/15 23:46:42 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose
tasks have all completed, from pool

14/11/15 23:46:42 INFO SparkContext: Job finished: first at
<console>:17, took 0.01287 s

res1: Array[Double] = Array(0.0, 0.64, 0.64, 0.0, 0.32, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.64, 0.0, 0.0, 0.0, 0.32, 0.0, 1.29, 1.93, 0.0,
0.96, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.778, 0.0, 0.0, 3.756, 61.0, 278.0, 1.0)

Chapter 2

[29]

Operators in Spark are divided into transformations and actions.
Transformations are evaluated lazily. Spark just creates the RDD's
lineage graph when you call a transformation like map. No actual
work is done until an action is invoked on the RDD. Creating the
RDD and the map functions are transformations. The .first()
function is an action that forces execution.

So when we created the inFile, it really didn't do anything except
for creating a variable and set up the pointers. Only when we call
an action like .first() does Spark evaluate the transformations.
As a result, even if we point the inFile to a non-existent directory,
Spark will take it. But when we call inFile.first(), it will
throw the Input path does not exist: error.

Using the Spark shell to run logistic

regression
When you run a command and do not specify a left-hand side of the assignment
(that is leaving out the val x of val x = y), the Spark shell will assign a default
name (that is, res[number] to the value. Now that you have the data in a more
usable format, try to do something cool with it! Use Spark to run logistic regression
over the dataset, as shown here:

scala> import breeze.linalg.{Vector, DenseVector}

import breeze.linalg.{Vector, DenseVector}

scala> case class DataPoint(x: Vector[Double], y: Double)

defined class DataPoint

scala>

scala> def parsePoint(x: Array[Double]): DataPoint = {

 | DataPoint(new DenseVector(x.slice(0,x.size-2)) , x(x.size-
1))

 | }

parsePoint: (x: Array[Double])DataPoint

scala> val points = nums.map(parsePoint(_))

points: org.apache.spark.rdd.RDD[DataPoint] = MappedRDD[3] at map at
<console>:21

Using the Spark Shell

[30]

scala> import java.util.Random

import java.util.Random

scala> val rand = new Random(42)

rand: java.util.Random = java.util.Random@24c55bf5

scala> points.first()

14/11/15 23:47:19 INFO SparkContext: Starting job: first at <console>:25

[..]

14/11/15 23:47:20 INFO SparkContext: Job finished: first at <console>:25,
took 0.188923 s

res2: DataPoint = DataPoint(DenseVector(0.0, 0.64, 0.64, 0.0, 0.32, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.64, 0.0, 0.0, 0.0, 0.32, 0.0, 1.29, 1.93, 0.0,
0.96, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.778, 0.0, 0.0, 3.756, 61.0),1.0)

scala> var w = DenseVector.fill(nums.first.size-2){rand.nextDouble}

14/11/15 23:47:36 INFO SparkContext: Starting job: first at <console>:20

[..]

14/11/15 23:47:36 INFO SparkContext: Job finished: first at <console>:20,
took 0.010883 s

w: breeze.linalg.DenseVector[Double] = DenseVector(0.7275636800328681,
0.6832234717598454, 0.30871945533265976, 0.27707849007413665,
0.6655489517945736, 0.9033722646721782, 0.36878291341130565,
0.2757480694417024, 0.46365357580915334, 0.7829017787900358,
0.9193277828687169, 0.43649097442328655, 0.7499061812554475,
0.38656687435934867, 0.17737847790937833, 0.5943499108896841,
0.20976756886633208, 0.825965871887821, 0.17221793768785243,
0.5874273817862956, 0.7512804067674601, 0.5710403484148672,
0.5800248845020607, 0.752509948590651, 0.03141823882658079,
0.35791991947712865, 0.8177969308356393, 0.41768754675291875,
0.9740356814958814, 0.7134062578232291, 0.48057451655643435,
0.2916564974118041, 0.9498601346594666, 0.8204918233863466,
0.636644547856282, 0.3691214939418974, 0.36025487536613...

scala> val iterations = 100

iterations: Int = 100

scala> import scala.math._

import scala.math._

Chapter 2

[31]

scala> for (i <- 1 to iterations) {

 | val gradient = points.map(p =>

 | p.x * (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y

 |).reduce(_ + _)

 | w -= gradient

 | }

14/11/15 23:48:49 INFO SparkContext: Starting job: reduce at <console>:37

14/11/15 23:48:49 INFO DAGScheduler: Got job 4 (reduce at <console>:37)
with 2 output partitions (allowLocal=false)

[…]

14/11/15 23:48:53 INFO DAGScheduler: Stage 103 (reduce at <console>:37)
finished in 0.024 s

14/11/15 23:48:53 INFO SparkContext: Job finished: reduce at
<console>:37, took 0.027829 s

scala> w

res5: breeze.linalg.DenseVector[Double] = DenseVector(0.7336269947556883,
0.6895025214435749, 0.4721342862007282, 0.27723026762411473,
0.7829698104387295, 0.9109178772078957, 0.4421282714160576,
0.305394995185795, 0.4669066877779788, 0.8357335159675405,
0.9326548346504113, 0.5986886716855019, 0.7726151240395974,
0.3898162675706965, 0.18143939819778826, 0.8501243079114542,
0.28042415484918654, 0.867752122388921, 2.8395263204719647,
0.5976683218335691, 1.0764145195987342, 0.5718553843530828,
0.5876679823887092, 0.7609997638366504, 0.0793768969191899,
0.4177180953298126, 0.8177970052737001, 0.41885534550137715,
0.9741059468651804, 0.7137870996096644, 0.48057587402871155,
0.2916564975512847, 0.9533675296503782, 0.8204918691826701,
0.6367663765600675, 0.3833218016601887, 0.36677476558721556,...

scala>

If things went well, you were successful in using Spark to run logistic regression.
That's awesome! We have just done a number of things; we deined a class and
created an RDD and a function. As you can see, the Spark shell is quite powerful.
Much of the power comes from it being based on the Scala REPL(the Scala interactive
shell), and so it inherits all of the power of the Scala REPL. That being said, most of
them time you will probably prefer to work with more traditional compiled code
rather than in the REPL.

www.allitebooks.com

http://www.allitebooks.org

Using the Spark Shell

[32]

Interactively loading data from S3
Now try another exercise with the Spark shell. As part of Amazon's EMR Spark
support, they have handily provided some sample data of Wikipedia trafic statistics
in S3 in the format that Spark can use. To access the data, you irst need to set your
AWS access credentials as shell params. For instructions on signing up for EC2 and
setting up the shell parameters, see Running Spark on EC2 section in Chapter 1, Installing
Spark and Setting up your Cluster (S3 access requires additional keys such as, fs.s3n.
awsAccessKeyId/awsSecretAccessKey or using the s3n://user:pw@ syntax). You
can also set the shell parameters as AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_
KEY. We will leave the AWS coniguration out of this discussion, but it needs to be
completed. Once this is done, load the S3 data and take a look at the irst line:

scala> val file = sc.textFile("s3n://bigdatademo/sample/wiki/")

14/11/16 00:02:43 INFO MemoryStore: ensureFreeSpace(34070) called with
curMem=512470, maxMem=278302556

14/11/16 00:02:43 INFO MemoryStore: Block broadcast_105 stored as values
in memory (estimated size 33.3 KB, free 264.9 MB)

file: org.apache.spark.rdd.RDD[String] = s3n://bigdatademo/sample/wiki/
MappedRDD[105] at textFile at <console>:17

scala> file.first()

14/11/16 00:02:58 INFO BlockManager: Removing broadcast 104

14/11/16 00:02:58 INFO BlockManager: Removing block broadcast_104

[..]

14/11/16 00:03:00 INFO SparkContext: Job finished: first at <console>:20,
took 0.442788 s

res6: String = aa.b Pecial:Listusers/sysop 1 4695

scala> file.take(1)

14/11/16 00:05:06 INFO SparkContext: Starting job: take at <console>:20

14/11/16 00:05:06 INFO DAGScheduler: Got job 105 (take at <console>:20)
with 1 output partitions (allowLocal=true)

14/11/16 00:05:06 INFO DAGScheduler: Final stage: Stage 105(take at
<console>:20)

[…]

14/11/16 00:05:07 INFO SparkContext: Job finished: take at <console>:20,
took 0.777104 s

res7: Array[String] = Array(aa.b Pecial:Listusers/sysop 1 4695)

You don't need to set your AWS credentials as shell params; the general form of the
S3 path is s3n://<AWS ACCESS ID>:<AWS SECRET>@bucket/path.

Chapter 2

[33]

It is important to take a look at the irst line of the data; the reason for this is
that Spark won't actually bother to load the data unless we force it to materialize
something with it. It is useful to note that Amazon had provided a small sample
dataset to get started with. The data is pulled from a much larger set available at
http://aws.amazon.com/datasets/4182. This practice can be quite useful when
developing in interactive mode as you want fast feedback of your jobs that are
completing quickly. If your sample data was too big and your runs were taking too
long, you could quickly slim down the RDD by using the sample functionality built
into the Spark shell:

scala> val seed = (100*math.random).toInt

seed: Int = 8

scala> val sample = file.sample(false,1/10.,seed)

res10: spark.RDD[String] = SampledRDD[4] at sample at <console>:17

If you wanted to rerun on the sampled data later, you could write it back to S3:

scala> sample.saveAsTextFile("s3n://mysparkbucket/test")

13/04/21 22:46:18 INFO spark.PairRDDFunctions: Saving as hadoop file
of type (NullWritable, Text)

....

13/04/21 22:47:46 INFO spark.SparkContext: Job finished:
saveAsTextFile at <console>:19, took 87.462236222 s

Now that you have the data loaded, ind the most popular articles in a sample.
First, parse the data by separating it into name and count. Then, reduce by the key
summing the counts as there can be multiple entries with the same name. Finally, we
swap the key/value so that when we sort by key, we get back the highest count item:

scala> val parsed = file.sample(false,1/10.,seed).map(x => x.split("
")).map(x => (x(1), x(2).toInt))

parsed: spark.RDD[(java.lang.String, Int)] = MappedRDD[5] at map at
<console>:16

scala> val reduced = parsed.reduceByKey(_+_)

13/04/21 23:21:49 WARN util.NativeCodeLoader: Unable to load native-
hadoop library for your platform... using builtin-java classes where
applicable

13/04/21 23:21:49 WARN snappy.LoadSnappy: Snappy native library not
loaded

13/04/21 23:21:50 INFO mapred.FileInputFormat: Total input paths to
process : 1

http://aws.amazon.com/datasets/4182

Using the Spark Shell

[34]

reduced: spark.RDD[(java.lang.String, Int)] = MapPartitionsRDD[8] at
reduceByKey at <console>:18

scala> val countThenTitle = reduced.map(x => (x._2, x._1))

countThenTitle: spark.RDD[(Int, java.lang.String)] = MappedRDD[9] at
map at <console>:20

scala> countThenTitle.sortByKey(false).take(10)

13/04/21 23:22:08 INFO spark.SparkContext: Starting job: take at
<console>:23

....

13/04/21 23:23:15 INFO spark.SparkContext: Job finished: take at
<console>:23, took 66.815676564 s

res1: Array[(Int, java.lang.String)] = Array((213652,Main_Page),
(14851,Special:Search), (9528,Special:Export/Can_You_Hear_Me),
(6454,Wikipedia:Hauptseite), (4189,Special:Watchlist),
(3520,%E7%89%B9%E5%88%A5:%E3%81%8A%E3%81%BE%E3%81%8B%E3%81%9B%E8%A1%A
8%E7%A4%BA), (2857,Special:AutoLogin), (2416,P%C3%A1gina_principal),
(1990,Survivor_(TV_series)), (1953,Asperger_syndrome))

Running Spark shell in Python
If you are more comfortable with Python than Scala, you can also work with Spark
interactively in Python by running [cmd]./pyspark[/cdm]. Just to start working
in the Python shell, let's perform the commands in quick start, as shown at http://
spark.apache.org/docs/1.1.0/quick-start.html. This is just a simple exercise.
We will see more of Python in Chapter 9, Machine Learning Using Spark Mllib:

$ bin/pyspark

[..]

Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ `/ __/ '_/

 /__ / .__/_,_/_/ /_/_\ version 1.1.1

 /_/

Using Python version 2.7.8 (default, Aug 21 2014 15:21:46)

SparkContext available as sc.

Let us read in a file

http://spark.apache.org/docs/1.1.0/quick-start.html
http://spark.apache.org/docs/1.1.0/quick-start.html

Chapter 2

[35]

>>> textFile = sc.textFile("README.md")

14/11/16 00:12:11 INFO MemoryStore: ensureFreeSpace(34046) called with
curMem=0, maxMem=278302556

14/11/16 00:12:11 INFO MemoryStore: Block broadcast_0 stored as values in
memory (estimated size 33.2 KB, free 265.4 MB)

>>> textFile.count()

[..]

14/11/16 00:12:23 INFO DAGScheduler: Stage 0 (count at <stdin>:1)
finished in 0.733 s

14/11/16 00:12:23 INFO SparkContext: Job finished: count at <stdin>:1,
took 0.769692 s

141

>>> textFile.first()

14/11/16 00:12:35 INFO SparkContext: Starting job: runJob at PythonRDD.
scala:300

[..]

14/11/16 00:12:35 INFO SparkContext: Job finished: runJob at PythonRDD.
scala:300, took 0.029673 s

u'# Apache Spark'

>>> linesWithSpark = textFile.filter(lambda line: "Spark" in line)

>>> textFile.filter(lambda line: "Spark" in line).count()

14/11/16 00:13:15 INFO SparkContext: Starting job: count at <stdin>:1

[..]

14/11/16 00:13:15 INFO SparkContext: Job finished: count at <stdin>:1,
took 0.0379 s

21

>>>

As you can see, the Python operations are very similar to those in Scala.

Summary
In this chapter, you learned how to start the Spark shell and load our data, and
you also did some simple machine learning. Now that you've seen how Spark's
interactive console works, it's time to see how to build Spark jobs in a more
traditional and persistent environment in the subsequent chapters.

[37]

Building and Running

a Spark Application
Using Spark in an interactive mode with the Spark shell has limited permanence
and does not work in Java. Building Spark jobs is a bit trickier than building a
normal application as all dependencies have to be available on all the machines
that are in your cluster. This chapter will cover the process of building a Java and
Scala Spark job with Maven or sbt (simple-build-tool) and how to build Spark
jobs with a non-Maven aware build system. A reference website to build Spark is
http://spark.apache.org/docs/latest/building-spark.html.

Building your Spark project with sbt
The sbt is a popular build tool for Scala that supports building both Scala and Java
codes. Building Spark projects with sbt is one of the easiest options. Spark release
was originally built with sbt, but now they use Maven. However, the various
members of the team actively use both sbt and Maven. The current normal method
of building packages that use sbt is to use a shell script that bootstraps the speciic
version of sbt your project uses, thus making installation simpler.

If you are using a prebuilt Spark version, you will need
to download and create the sbt directory.

http://spark.apache.org/docs/latest/building-spark.html

Building and Running a Spark Application

[38]

As a irst step, take a Spark job that already works and go through the process of
creating a build ile for it. In the Spark directory, start by copying the GroupByTest
example into a new directory, as shown here:

mkdir -p example-scala-build/src/main/scala/spark/examples/

cp -af sbt example-scala-build//

cp examples/src/main/scala/org/apache/spark/examples/GroupByTest.scala
example-scala-build/src/main/scala/spark/examples/

As you are going to ship your JAR to the other machines, you will want to ensure all
dependencies are included. You can either add a bunch of JARs or use a handy sbt
plugin called sbt-assembly to group everything into a single JAR. If you don't have
a bunch of transitive dependencies, you may decide that using the assembly extension
isn't for your project. Instead of using sbt-assembly, you probably want to run sbt/
sbt assembly in the Spark project and add the resulting JAR, core/target/ spark-
core_2.10-1.1.1.jar, to your class path. The sbt assembly package is a great
tool to avoid manual management of a large number of JARs. To add the assembly
extension to your build, add the following code to project/plugins.sbt:

resolvers += Resolver.url("artifactory",
url("http://scalasbt.artifactoryonline.com/scalasbt/sbt-plugin-
releases"))(Resolver.ivyStylePatterns)

resolvers += "Typesafe Repository" at
"http://repo.typesafe.com/typesafe/releases/"

resolvers += "Spray Repository" at "http://repo.spray.cc/"

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.8.7")

For sbt 0.13.6+, add sbt-assembly as a dependency in project/
assembly.sbt:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

Resolvers are used by sbt so that it can ind out where a package is;
you can think of this as similar to specifying an additional apt Personal
Package Archive (PPA) source with the exception that it only applies
to the one package you are trying to build. If you load up the resolver
URLs in your browser, most of them have the directory listing turned
on, and so you can see what packages are provided by the resolver.
These resolvers point at web URLs, but there are also resolvers available
for local paths that can be useful during development. The addSbt
plugin directive is deceptively simple; it tells the user to include the
sbt-assembly package from com.eed3si9n in Version 0.8.7 and
implicitly adds the Scala Version and the sbt Version. Make sure to run
the sbt reload clean update to install new plugins.

Chapter 3

[39]

Here is the build ile for one of the examples of GroupByTest.scala as if it was
being built on its own; put the following code in ./build.sbt:

//Next two lines only needed if you decide to use the assembly plugin

import AssemblyKeys._assemblySettings

scalaVersion := "2.10.4"

name := "groupbytest"

libraryDependencies ++= Seq(

 "org.spark-project" % "spark-core_2.10" % "1.1.0"

)

If the preceding code does not work, you can try:

libraryDependencies += "org.apache.spark" %% "spark-
core" % "1.1.0"

Otherwise, you can try this code snippet:

libraryDependencies += "org.apache.spark" %% "spark-
core" % "1.1.1".

resolvers ++= Seq(

 "JBoss Repository" at
"http://repository.jboss.org/nexus/content/repositories/releases/",
 "Spray Repository" at "http://repo.spray.cc/",
 "Cloudera Repository" at "https://repository.cloudera.com/
artifactory/cloudera-repos/",
 "Akka Repository" at "http://repo.akka.io/releases/",
 "Twitter4J Repository" at "http://twitter4j.org/maven2/"
)

// Only include if using assembly

mergeStrategy in assembly <<= (mergeStrategy in assembly) { (old)
=>

 {
 case PathList("javax", "servlet", xs @ _*) =>
 MergeStrategy.first
 case PathList("org", "apache", xs @ _*) => MergeStrategy.first
 case "about.html" => MergeStrategy.rename
 case x => old(x)

 }

}

Building and Running a Spark Application

[40]

As you can see, the build ile is similar to plugin.sbt in format. There are a
few unique things about this build ile that are worth mentioning. Just like with
the plugin ile, you need to add a number of resolvers here so that sbt can ind
all the dependencies. Note that we are including it as "org.spark-project" %
"spark-core_2.10.4" % "1.1.0" rather than using "org.spark-project" %%
"spark-core" % "1.1.0". If possible, you should try to use the %% format, which
automatically adds the Scala version. Another unique part of this build ile is the use
of MergeStrategy. As multiple dependencies can deine the same iles, when you
merge everything into a single JAR you need to tell the plugin how to handle it. It is
a fairly simple build ile other than the merge strategy you need to manually specify
the Scala version of Spark you are using.

Note: If you have a different JDK on the master than JRE on the
workers, you may want to switch the target JDK by adding the
following to your build ile:

javacOptions ++= Seq("-target", "1.6")

Now that your build ile is deined, build your GroupByTest Spark job using the
following command:

sbt/sbt clean compile package

It will then produce target/scala-2.10.4/groupbytest_2.10.4-0.1-
SNAPSHOT.jar.

Run sbt/sbt assembly in the Spark directory to make sure you have the Spark
assembly available to your class paths. The example requires a pointer to the location
where Spark is using SPARK_HOME; provide a pointer to the example of JAR with
SPARK_EXAMPLES_JAR for Spark to distribute out. We also need to specify the class
path that we built to Scala locally with -cp. So we can then run the following example:

SPARK_HOME="../" SPARK_EXAMPLES_JAR="./target/scala-
2.10.4/groupbytest-assembly-0.1-SNAPSHOT.jar" scala -cp
/users/sparkuser/spark-1.1.0/example-scala-build/target/scala-
2.10.4/groupbytest_2.10.4-0.1-SNAPSHOT.jar:/users/sparkuser/spark-
1.1.0/core/target/spark-core-assembly-1.1.0.jar
spark.examples.GroupByTest local[1]

If you have decided to build all of your dependencies into a single JAR with the
assembly plugin, we need to call it using this command:

sbt/sbt assembly

Chapter 3

[41]

This will produce an assembly snapshot at target/scala-2.10.4/groupbytest-
assembly-0.1-SNAPSHOT.jar, which you can then run in a very similar manner,
simply without the spark-core-assembly, as shown here:

SPARK_HOME="../" \ SPARK_EXAMPLES_JAR="./target/scala-
2.10.4/groupbytest-assembly-0.1-SNAPSHOT.jar" \

 scala -cp /users/sparkuser/spark-1.1.0/example-scala-
build/target/scala-2.10.4/groupbytest-assembly-0.1-SNAPSHOT.jar
spark.examples.GroupByTest local[1]

You may run into merge issues with sbt assembly if things have
changed; a quick search of the Web will probably provide better
current guidance than anything that could be written in future.
So you need to keep in mind future merge problems. In general,
MergeStategy.first should work.

Your success in the preceding section may have given you a false
sense of security. As sbt will resolve from the local cache, deps
that were brought in by another project could mean that the code
builds on one machine and not others. Delete your local ivy cache
and run sbt clean to make sure. If some iles fail to download, try
looking at Spark's list of resolvers and add any missing ones to
your build.sbt.

Building your Spark job with Maven
Maven is an open source Apache project that builds Spark jobs in Java or Scala.
As of Version 1.2.0, the building Spark site states that Maven is the oficial
recommendation for packaging Spark and is the "build of reference" too. As with sbt,
you can include the Spark dependency through Maven central simplifying our build
process. Also similar to sbt is the ability of Spark and all of our dependencies to put
everything in a single JAR using a plugin or build Spark as a monolithic JAR using
sbt/sbt assembly for inclusion.

To illustrate the build process for Spark jobs with Maven, this section will use Java as
an example as Maven is more commonly used to build Java tasks. As a irst step, let's
take a Spark job that already works and go through the process of creating a build
ile for it. We can start by copying the GroupByTest example into a new directory
and generating the Maven template, as shown here:

mkdir example-java-build/; cd example-java-build

mvn archetype:generate \

 -DarchetypeGroupId=org.apache.maven.archetypes \

 -DgroupId=spark.examples \

www.allitebooks.com

http://www.allitebooks.org

Building and Running a Spark Application

[42]

 -DartifactId=JavaWordCount \

 -Dfilter=org.apache.maven.archetypes:maven-archetype-quickstart

cp ../examples/src/main/java/spark/examples/JavaWordCount.java
JavaWordCount/src/main/java/spark/examples/JavaWordCount.java

Next, update your Maven example-java-build/JavaWordCount/pom.xml to
include information on the version of Spark we are using. Also, since the example
ile we are working with requires a JDK version greater than 1.5, we will need to
update the Java version that Maven is conigured to use; the current version is 1.3. In
between the project tags, we will need to add the following code:

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.spark-project</groupId>

 <artifactId>spark-core_2.10.4</artifactId>

 <version>1.1.0</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

We can now build our JAR with the mvn package that can be run with the
following command:

SPARK_HOME="../" SPARK_EXAMPLES_JAR="./target/JavaWordCount-1.0-
SNAPSHOT.jar" java -cp ./target/JavaWordCount-1.0-
SNAPSHOT.jar:../../core/target/spark-core-assembly-1.1.0.jar
spark.examples.JavaWordCount local[1] ../../README

Chapter 3

[43]

As with sbt, we can use a plugin to include all of the dependencies in our JAR ile.
Between the <plugins> tags, add the following code:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-shade-plugin</artifactId>

 <version>2.3</version>

 <configuration>

 <!-- This transform is used so that merging of akka configuration
files works -->

 <transformers>

 <transformer implementation="org.apache.maven.plugins.shade.
resource.ApacheLicenseResourceTransformer">

 </transformer>

 <transformer implementation="org.apache.maven.plugins.shade.
resource.AppendingTransformer">

 <resource>reference.conf</resource>

 </transformer>

 </transformers>

 </configuration>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>shade</goal>

 </goals>

 </execution>

 </executions>

</plugin>

Then run mvn assembly and the resulting JAR can be run as shown in the preceding
section; but leave out the Spark assembly JAR from the class path.

As I was writing this chapter (November 16, 2014), an e-mail
chain crossed the Spark user group discussing sbt versus
Maven. The use of Maven is recommended unless one needs
some special capability of sbt.

Building and Running a Spark Application

[44]

Building your Spark job with
something else
If neither sbt nor Maven suits your needs, you may decide to use another build system.
Thankfully, Spark supports building a fat JAR with all its dependencies, which makes
it easy to include in the build system of your choice. Simply run sbt/sbt assembly in
the Spark directory and copy the resulting assembly JAR at core/target/spark-core-
assembly-1.1.0.jar to your build dependencies, and you are good to go. It is more
common to use the spark-assembly-1.2.0-hadoop2.6.0.jar ile. These iles exist in
$SPARK_HOME$/lib (if users use a prebuilt version) or in $SPARK_HOME$/ assembly/
target/scala-2.10/ (if users build the source code with Maven or sbt).

No matter what your build system is, you may ind yourself
wanting to use a patched version of the Spark libraries. In this
case, you can deploy your Spark library locally. I recommend
giving it a different version number to ensure that sbt/Maven
picks up the modiied version. You can change the version
by editing project/SparkBuild.scala and changing the
version:= part according to the version you have installed.
If you are using sbt, you should run sbt/sbt update in the
project that is importing the custom version. For other build
systems, you just need to ensure that you use the new assembly
JAR as part of your build.

Some references are as follows:

• http://spark.apache.org/docs/latest/building-spark.html

• http://www.scala-sbt.org/

• https://github.com/sbt/sbt-assembly

• http://spark-project.org/docs/latest/scala-programming-guide.

html

• http://maven.apache.org/guides/getting-started/

• http://maven.apache.org/plugins/maven-compiler-plugin/examples/

set-compiler-source-and-target.html

• http://maven.apache.org/plugins/maven-dependency-plugin/

Summary
So now you can build your Spark jobs with Maven, sbt, or the build system of your
choice. It's time to jump in and start learning how to do more fun and exciting things
such as learning how to create a Spark context in the subsequent chapter.

http://spark.apache.org/docs/latest/building-spark.html
http://www.scala-sbt.org/
https://github.com/sbt/sbt-assembly
http://spark-project.org/docs/latest/scala-programming-guide.html
http://spark-project.org/docs/latest/scala-programming-guide.html
http://maven.apache.org/guides/getting-started/
http://maven.apache.org/plugins/maven-compiler-plugin/examples/set-compiler-source-and-target.html
http://maven.apache.org/plugins/maven-compiler-plugin/examples/set-compiler-source-and-target.html
http://maven.apache.org/plugins/maven-dependency-plugin/

[45]

Creating a SparkContext
This chapter will cover how to create a SparkContext object in your cluster. A
SparkContext object represents the connection to a Spark cluster and provides the
entry point to interact with Spark. We need to create SparkContext so that we can
interact with Spark and distribute our jobs. In Chapter 2, Using the Spark Shell, we
interacted with Spark through the Spark shell that created a SparkContext object.
Now you can create RDDs, broadcast variables and counters, and actually do fun
things with your data. The Spark shell serves as an example of interacting with the
Spark cluster through a SparkContext object in ./spark/repl/Main.scala, as
shown here:

def createSparkContext(): SparkContext = {

 val master = this.master match {

 case Some(m) => m

 case None => {

 val prop = System.getenv("MASTER")

 if (prop != null) prop else "local"

 }

 }

 sparkContext = new SparkContext(master, "Spark shell")
 sparkContext

 }

The preceding code snippet creates a SparkContext object using the provided
MASTER environment variable (or local if none are set) called Spark Shell and
doesn't specify any dependencies. This is because Spark Shell is built into Spark,
and as such it doesn't have any JARs that needs to be distributed.

Creating a SparkContext

[46]

For a client to establish a connection to the Spark cluster, the SparkContext object
needs some basic information, which is given here:

• Master URL: Can be local[n] for local mode or Spark://[sparkip]
for Spark Server or mesos://path for a Mesos cluster

• application name: This is a human-readable application name

• sparkHome: This is the path to Spark on the master/workers

• jars: This is the path to the JARs required for your job

Scala
In a Scala program, you can create a SparkContext object with the following code:

val sparkContext = new SparkContext(master_path, "application
name", ["optional spark home path"],["optional list of jars"])

While you can hardcode all of these values, it's better to read them from the
environment with reasonable defaults. This approach provides maximum lexibility
to run the code in a changing environment without having to recompile. Using local
as the default value for the master makes it easy to launch your application in a test
environment locally. By carefully selecting the defaults, you can avoid having to over
specify this. Here is an example of it:

import spark.sparkContext

import spark.sparkContext._

import scala.util.Properties

val master = Properties.envOrElse("MASTER","local")

val sparkHome = Properties.get("SPARK_HOME")

val myJars = Seq(System.get("JARS"))

val sparkContext = new SparkContext(master, "my app", sparkHome,
myJars)

Java
To create a SparkContext object in Java, try using the following code:

import spark.api.java.JavaSparkContext;

…

JavaSparkContext ctx = new JavaSparkContext("master_url",
"application name", ["path_to_spark_home", "path_to_jars"]);

Chapter 4

[47]

While the preceding code snippet works (once you have replaced the parameters
with the correct values for your setup), it requires a code change if you change any of
the parameters. So instead of that, you can use reasonable defaults and allow them to
be overridden in a similar way to the following example of the Scala code:

String master = System.getEnv("MASTER");

if (master == null) {

 master = "local";

}

String sparkHome = System.getEnv("SPARK_HOME");

if (sparkHome == null) {

 sparkHome = "./";

}

String jars = System.getEnv("JARS");

JavaSparkContext ctx = new
JavaSparkContext(System.getenv("MASTER"), "my Java app",
System.getenv("SPARK_HOME"), System.getenv("JARS"));

SparkContext – metadata
The SparkContext object has a set of metadata that I found useful. The version
number, application name, and memory available are useful. At the start of a Spark
program, I usually display/log the version number.

Value Use

appName This is the application name. If you have established a
convention, this field can be useful at runtime.

getConf It returns configuration information.

getExecutorMemoryStatus This retrieves the memory details. It could be useful
if you want to check memory details. As Spark is
distributed, the values do not mean that you are out
of memory.

Master This is the name of the master.

Version I found this very useful – especially while testing with
different versions.

Execute the following command from shell:

bin/spark-shell

scala> sc.version

res1: String = 1.1.1

Creating a SparkContext

[48]

As you can see, I am running Version 1.1.1:

scala> sc.appName

res2: String = Spark shell

scala> sc.master

res3: String = local[*]

scala> sc.getExecutorMemoryStatus

res4: scala.collection.Map[String,(Long, Long)] = Map(10.0.1.3:56814
-> (278302556,278302556))

The 10.0.1.3 is the address of the machine. The irst value is the maximum amount
of memory allocated for the block manager (for buffering the intermediate data or
caching RDDs), while the second value is the amount of remaining memory:

scala> sc.getConf

res5: org.apache.spark.SparkConf = org.apache.spark.SparkConf@7bc17541

scala> sc.getConf.toString()

res6: String = org.apache.spark.SparkConf@48acaa84

scala>

A more informative call of this is given here:

scala> sc.getConf.toDebugString

res1: String =

spark.app.id=local-1422768546091

spark.app.name=Spark shell

spark.driver.host=10.0.1.3

spark.driver.port=51904

spark.executor.id=driver

spark.fileserver.uri=http://10.0.1.3:51905

spark.home=/usr/local/spark

spark.jars=

spark.master=local[*]

spark.repl.class.uri=http://10.0.1.3:51902

spark.tachyonStore.folderName=spark-237294fa-1a29-4550-b033-
9a73a8222774

Chapter 4

[49]

Shared Java and Scala APIs
Once you have a SparkContext object created, it will serve as your main entry point.
In the next chapter, you will learn how to use our SparkContext object to load and
save data. You can also use SparkContext to launch more Spark jobs and add or
remove dependencies. Some of the nondata-driven methods you can use on the
SparkContext object are shown here:

Method Use

addJar(path) This adds the JAR for all future jobs run through the
SparkContext object.

addFile(path) This downloads the file to all nodes on the cluster.

stop() This shuts down SparkContext.

clearFiles() This removes the files so that new nodes will not download them.

clearJars() This removes the JARs from being required for future jobs.

Python
The Python SparkContext object is a bit different than the Scala and Java contexts
as Python doesn't use JARs to distribute dependencies. As you are still likely to have
dependencies, set pyFiles with a ZIP ile containing all the dependent libraries as
desired on SparkContext (or leave it empty if you don't have any iles to distribute).
Create a Python SparkContext object using this code:

from pyspark import SparkContext

sc = SparkContext("master","my python app", sparkHome="sparkhome",
pyFiles="placeholderdeps.zip")

The context metadata from Python is similar to that in Spark, as shown here:

bin/pyspark

Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ `/ __/ '_/

 /__ / .__/_,_/_/ /_/_\ version 1.1.1

 /_/

Using Python version 2.7.8 (default, Aug 21 2014 15:21:46)

SparkContext available as sc.

Creating a SparkContext

[50]

>>> sc.version

u'1.1.1'

>>> sc.appName

u'PySparkShell'

>>> sc.master

u'local[*]'

>>> sc.getExecutorMemoryStatus

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'SparkContext' object has no attribute
'getExecutorMemoryStatus'

>>> from pyspark.conf import SparkConf

>>> conf = SparkConf()

>>> conf.toDebugString()

u'spark.app.name=pyspark-shell\nspark.master=local[*]\nspark.submit.
pyFiles='

>>>

PySpark does not have the getExecutorMemoryStatus call yet but we can get some
information with the .toDebugString call.

Now that you are able to create a connection with your Spark cluster, it's time to start
loading our data into Spark.

Some more information is as follows:

• http://spark-project.org/docs/latest/quick-start.html

• http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html

• https://github.com/mesos/spark/blob/master/repl/src/main/scala/

spark/repl/SparkILoop.scala

• http://spark.apache.org/docs/latest/api/python/pyspark.context.

SparkContext-class.html

• http://www.scala-lang.org/api/current/index.html#scala.util.

Properties$

• http://spark.apache.org/docs/latest/api/java/org/apache/spark/

SparkContext.html

Summary
In this chapter, we covered how to connect to our Spark cluster using a
SparkContext object. By using this knowledge, we will look at the different data
sources we can use to load data into Spark in the next chapter.

http://spark-project.org/docs/latest/quick-start.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
https://github.com/mesos/spark/blob/master/repl/src/main/scala/spark/repl/SparkILoop.scala
https://github.com/mesos/spark/blob/master/repl/src/main/scala/spark/repl/SparkILoop.scala
http://spark.apache.org/docs/latest/api/python/pyspark.context.SparkContext-class.html
http://spark.apache.org/docs/latest/api/python/pyspark.context.SparkContext-class.html
http://www.scala-lang.org/api/current/index.html#scala.util.Properties$
http://www.scala-lang.org/api/current/index.html#scala.util.Properties$
http://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
http://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html

[51]

Loading and Saving

Data in Spark
By this point in the book, you have already experimented with the Spark shell,
igured out how to create a connection with the Spark cluster, and built jobs for
deployment. Now to make those jobs useful, you will learn how to load and save data
in Spark. Spark's primary unit for representation of data is an RDD, which allows for
easy parallel operations on the data. Other forms of data, such as counters, have their
own representation. Spark can load and save RDDs from a variety of sources.

RDDs
Spark RDDs can be created from any supported Hadoop source. Native collections in
Scala, Java, and Python can also serve as the basis for an RDD. Creating RDDs from a
native collection is especially useful for testing.

Before jumping into the details on the supported data sources/links, take some time
to learn about what RDDs are and what they are not. It is crucial to understand that
even though an RDD is deined, it does not actually contain data but just creates
the pipeline for it. (As an RDD follows the principle of lazy evaluation, it evaluates
an expression only when it is needed, that is, when an action is called for.) This
means that when you go to access the data in an RDD, it could fail. The computation
to create the data in an RDD is only done when the data is referenced by caching
or writing out the RDD. This also means that you can chain a large number of
operations and not have to worry about excessive blocking in a computational
thread. It's important to note during application development that you can write
code, compile it, and even run your job; unless you materialize the RDD, your code
may not have even tried to load the original data.

www.allitebooks.com

http://www.allitebooks.org

Loading and Saving Data in Spark

[52]

Each time you materialize an RDD, it is recomputed; if we
are going to be using something frequently, a performance
improvement can be achieved by caching the RDD.

Loading data into an RDD
Now the chapter will examine the different sources you can use for your RDD. If
you decide to run it through the examples in the Spark shell, you can call .cache()
or .first() on the RDDs you generate to verify that it can be loaded. In Chapter
2, Using the Spark Shell, you learned how to load data text from a ile and from S3.
In this chapter, we will look at different formats of data (text ile and CSV) and the
different sources (ilesystem, HDFS) supported.

One of the easiest ways of creating an RDD is taking an existing Scala collection
and converting it into an RDD. The SparkContext object provides a function called
parallelize that takes a Scala collection and turns it into an RDD over the same
type as the input collection, as shown here:

• Scala:

val dataRDD = sc.parallelize(List(1,2,4))

dataRDD.take(3)

• Java:

import java.util.Arrays;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.*;

import org.apache.spark.api.java.function.Function;

public class LDSV01 {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 SparkConf conf = new SparkConf().setAppName("Chapter
 05").setMaster("local");

 JavaSparkContext ctx = new JavaSparkContext(conf);

 JavaRDD<Integer> dataRDD = ctx.parallelize(Arrays.
asList(1,2,4));

 System.out.println(dataRDD.count());

 System.out.println(dataRDD.take(3));

 }

}

[..]

Chapter 5

[53]

14/11/22 13:37:46 INFO SparkContext: Job finished: count at
Test01.java:13, took 0.153231 s

3

[..]

14/11/22 13:37:46 INFO SparkContext: Job finished: take at
Test01.java:14, took 0.010193 s

[1, 2, 4]

The reason for a full program in Java is that you can use the Scala and Python shell,
but for Java you need to compile and run the program. I use Eclipse and add the JAR
ile /usr/local/spark-1.1.1/assembly/target/scala-2.10/spark-assembly-
1.1.1-hadoop2.4.0.jar in the Java build path.

• Python:

rdd = sc.parallelize([1,2,3])

rdd.take(3)

The simplest method for loading external data is loading text from a ile. This has a
requirement that the ile should be available on all the nodes in the cluster, which
isn't much of a problem for local mode. When you're in a distributed mode, you will
want to use Spark's addFile functionality to copy the ile to all of the machines in
your cluster. Assuming your SparkContext object is called sc, we could load text
data from a ile (you need to create the ile):

• Scala:

import org.apache.spark.SparkFiles;

...

sc.addFile("spam.data")

val inFile = sc.textFile(SparkFiles.get("spam.data"))

inFile.first()

• Java:

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.*;

import org.apache.spark.SparkFiles;;

public class LDSV02 {

 public static void main(String[] args) {

 SparkConf conf = new SparkConf().setAppName("Chapter 05").
setMaster("local");

 JavaSparkContext ctx = new JavaSparkContext(conf);

 System.out.println("Running Spark Version : " +ctx.version());

 ctx.addFile("/Users/ksankar/fpds-vii/data/spam.data");

Loading and Saving Data in Spark

[54]

 JavaRDD<String> lines = ctx.textFile(SparkFiles.get("spam.
data"));

 System.out.println(lines.first());

 }

}

The runtime messages are interesting:

Running Spark Version : 1.1.1

<It copied the file to a temporary directory in the
cluster. This would work in local mode as well as in a
spark cluster of many machines>

14/11/22 14:05:43 INFO Utils: Copying
/Users/ksankar/Tech/spark/book/spam.data to
/var/folders/gq/70vnnyfj6913b6lms_td7gb40000gn/T/spark-
f4c60229-8290-4db3-a39b-2941f63aabf8/spam.data

14/11/22 14:05:43 INFO SparkContext: Added file
/Users/ksankar/Tech/spark/book/spam.data at
http://10.0.1.3:52338/files/spam.data with timestamp
1416693943289

14/11/22 14:05:43 INFO MemoryStore: ensureFreeSpace(163705)
called with curMem=0, maxMem=2061647216

14/11/22 14:05:43 INFO MemoryStore: Block broadcast_0
stored as values in memory (estimated size 159.9 KB, free
1966.0 MB)

14/11/22 14:05:43 INFO FileInputFormat: Total input paths
to process : 1

[..]

14/11/22 14:05:43 INFO SparkContext: Job finished: first at
Test02.java:13, took 0.191388 s

0 0.64 0.64 0 0.32 0 0 0 0 0 0 0.64 0 0 0 0.32 0 1.29 1.93
0 0.96 0
0 0 0 0 0.778 0 0 3.756 61 278 1

• Python:

from pyspark.files import SparkFiles

…

sc.addFile("spam.data")

in_file = sc.textFile(SparkFiles.get("spam.data"))

in_file.take(1)

The resulting RDD is of the string type, with each line being a unique element in the
RDD. take(1) is an action that picks the irst element from the RDD.

Chapter 5

[55]

Frequently, your input iles will be CSV or TSV iles, which you will want to read
and parse and then create RDDs for processing. The two ways of reading CSV iles
are either reading and parsing them using our own functions or using a CSV library
like opencsv.

Let's irst look at parsing using our own functions:

• Scala:

val inFile = sc.textFile("Line_of_numbers.csv")

val numbersRDD = inFile.map(line => line.split(','))

scala> numbersRDD.take(10)

[..]

14/11/22 12:13:11 INFO SparkContext: Job finished: take at
<console>:18, took 0.010062 s

res7: Array[Array[String]] = Array(Array(42, 42, 55, 61, 53, 49,
43, 47, 49, 60, 68, 54, 34, 35, 35, 39))

It is an array of String. We need float or double

val numbersRDD = inFile.map(line => line.split(',')).map(_.
toDouble)

scala> val numbersRDD = inFile.map(line => line.split(',')).map(_.
toDouble)

<console>:15: error: value toDouble is not a member of
Array[String]

 val numbersRDD = inFile.map(line => line.split(',')).map(_.
toDouble)

This will not work as we have an array of array of strings. This
is where flatMap comes handy!

scala> val numbersRDD = inFile.flatMap(line => line.split(',')).
map(_.toDouble)

numbersRDD: org.apache.spark.rdd.RDD[Double] = MappedRDD[10] at
map at <console>:15

scala> numbersRDD.collect()

 [..]

res10: Array[Double] = Array(42.0, 42.0, 55.0, 61.0, 53.0, 49.0,
43.0, 47.0, 49.0, 60.0, 68.0, 54.0, 34.0, 35.0, 35.0, 39.0)

scala> numbersRDD.sum()

[..]

14/11/22 12:19:15 INFO SparkContext: Job finished: sum at
<console>:18, took 0.013293 s

res9: Double = 766.0

scala>

• Python:

inp_file = sc.textFile("Line_of_numbers.csv")

numbers_rdd = inp_file.map(lambda line: line.split(','))

>>> numbers_rdd.take(10)

Loading and Saving Data in Spark

[56]

[..]

14/11/22 11:12:25 INFO SparkContext: Job finished: runJob at
PythonRDD.scala:300, took 0.023086 s

[[u'42', u'42', u'55', u'61', u'53', u'49', u'43', u'47', u'49',
u'60', u'68', u'54', u'34', u'35', u'35', u'39']]

>>>

But we want the values as integers or double

numbers_rdd = inp_file.flatMap(lambda line: line.split(',')).
map(lambda x:float(x))

>>> numbers_rdd.take(10)

14/11/22 11:52:39 INFO SparkContext: Job finished: runJob at
PythonRDD.scala:300, took 0.022838 s

[42.0, 42.0, 55.0, 61.0, 53.0, 49.0, 43.0, 47.0, 49.0, 60.0]

>>> numbers_sum = numbers_rdd.sum()

[..]

14/11/22 12:03:16 INFO SparkContext: Job finished: sum at
<stdin>:1, took 0.026984 s

>>> numbers_sum

766.0

>>>

• Java:

import java.util.Arrays;

import java.util.List;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.*;

import org.apache.spark.api.java.function.DoubleFunction;

import org.apache.spark.api.java.function.FlatMapFunction;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.SparkFiles;;

public class LDSV03 {

 public static void main(String[] args) {

 SparkConf conf = new SparkConf().setAppName("Chapter 05").
setMaster("local");

 JavaSparkContext ctx = new JavaSparkContext(conf);

 System.out.println("Running Spark Version : " +ctx.version());

 ctx.addFile("/Users/ksankar/fdps-vii/data/Line_of_numbers.
csv");

 //

 JavaRDD<String> lines = ctx.textFile(SparkFiles.get("Line_of_
numbers.csv"));

Chapter 5

[57]

 //

 JavaRDD<String[]> numbersStrRDD = lines.map(new
Function<String,String[]>() {

 public String[] call(String line) {return line.split(",");}

 });

 List<String[]> val = numbersStrRDD.take(1);

 for (String[] e : val) {

 for (String s : e) {

 System.out.print(s+" ");

 }

 System.out.println();

 }

 //

 JavaRDD<String> strFlatRDD = lines.flatMap(new FlatMapFunction
<String,String>() {

 public Iterable<String> call(String line) {return Arrays.
asList(line.split(","));}

 });

 List<String> val1 = strFlatRDD.collect();

 for (String s : val1) {

 System.out.print(s+" ");

 }

 System.out.println();

 //

 JavaRDD<Integer> numbersRDD = strFlatRDD.map(new
Function<String,Integer>() {

 public Integer call(String s) {return Integer.parseInt(s);}

 });

 List<Integer> val2 = numbersRDD.collect();

 for (Integer s : val2) {

 System.out.print(s+" ");

 }

 System.out.println();

 //

 Integer sum = numbersRDD.reduce(new Function2<Integer,Integer,
Integer>() {

 public Integer call(Integer a, Integer b) {return a+b;}

 });

 System.out.println("Sum = "+sum);

 }

}

The results are as expected:

[..]

14/11/22 16:02:18 INFO AkkaUtils: Connecting to HeartbeatReceiver:
akka.tcp://sparkDriver@10.0.1.3:56479/user/HeartbeatReceiver

Loading and Saving Data in Spark

[58]

Running Spark Version : 1.1.1

14/11/22 16:02:18 INFO Utils: Copying /Users/ksankar/Tech/spark/
book/Line_of_numbers.csv to /var/folders/gq/70vnnyfj6913b6lms_
td7gb40000gn/T/spark-9a4bed6d-adb5-4e08-b5c5-5e9089d6e54b/Line_of_
numbers.csv

14/11/22 16:02:18 INFO SparkContext: Added file /Users/ksankar/
fdps-vii/data/Line_of_numbers.csv at http://10.0.1.3:56484/files/
Line_of_numbers.csv with timestamp
1416700938334

14/11/22 16:02:18 INFO MemoryStore: ensureFreeSpace(163705)
called with curMem=0, maxMem=2061647216

14/11/22 16:02:18 INFO MemoryStore: Block broadcast_0 stored
as values in memory (estimated size 159.9 KB, free 1966.0 MB)

14/11/22 16:02:18 INFO FileInputFormat: Total input paths to
process : 1

14/11/22 16:02:18 INFO SparkContext: Starting job: take at
Test03.java:25

[..]

14/11/22 16:02:18 INFO SparkContext: Job finished: take at
Test03.java:25, took 0.155961 s

42 42 55 61 53 49 43 47 49 60 68 54 34 35 35 39

14/11/22 16:02:18 INFO BlockManager: Removing broadcast 1

[..]

14/11/22 16:02:18 INFO SparkContext: Job finished: collect at
Test03.java:36, took 0.016938 s

42 42 55 61 53 49 43 47 49 60 68 54 34 35 35 39

14/11/22 16:02:18 INFO SparkContext: Starting job: collect at
Test03.java:45

[..]

14/11/22 16:02:18 INFO SparkContext: Job finished: collect at
Test03.java:45, took 0.016657 s

42 42 55 61 53 49 43 47 49 60 68 54 34 35 35 39

14/11/22 16:02:18 INFO SparkContext: Starting job: reduce at
Test03.java:51

[..]

14/11/22 16:02:18 INFO SparkContext: Job finished: reduce at
Test03.java:51, took 0.019349 s

Sum = 766

Chapter 5

[59]

This also illustrates one of the ways of getting data out of Spark; you can transform
it to a standard Scala array using the collect() function. The collect() function is
especially useful for testing, in much the same way that the parallelize() function
is. The collect() function collects the job's execution results, while parallelize()
partitions the input data and makes it an RDD. The collect function only works if
your data its in memory in a single host (where your code runs on), and even in that
case, it adds to the bottleneck that everything has to come back to a single machine.

The collect() function brings all the data to the machine
that runs the code. So beware of accidentally doing
collect() on a large RDD!

The split() and toDouble() functions doesn't always work out so well for more
complex CSV iles. opencsv is a versatile library for Java and Scala. For Python the
CSV library does the trick. Let's use the opencsv library to parse the CSV iles in Scala.

• Scala:

import au.com.bytecode.opencsv.CSVReader

import java.io.StringReader

sc.addFile("Line_of_numbers.csv")

val inFile = sc.textFile("Line_of_numbers.csv")

val splitLines = inFile.map(line => {

 val reader = new CSVReader(new StringReader(line))

 reader.readNext()

})

val numericData = splitLines.map(line =>
line.map(_.toDouble))

val summedData = numericData.map(row => row.sum)

println(summedData.collect().mkString(","))

[..]

14/11/22 12:37:43 INFO TaskSchedulerImpl: Removed TaskSet
13.0, whose tasks have all completed, from pool

14/11/22 12:37:43 INFO SparkContext: Job finished: collect
at <console>:28, took 0.0234 s

766.0

While loading text iles into Spark is certainly easy, text iles on local disk are often
not the most convenient format for storing large chunks of data. Spark supports
loading from all of the different Hadoop formats (sequence iles, regular text iles,
and so on) and from all of the support Hadoop storage sources (HDFS, S3, HBase,
and so on). You can also load your CSV into HBase using some of their bulk loading
tools (like import TSV) and get your CSV data.

Loading and Saving Data in Spark

[60]

Sequence iles are binary lat iles consisting of key value pairs; they are one of the
common ways of storing data for use with Hadoop. Loading a sequence ile into
Spark is similar to loading a text ile, but you also need to let it know about the types
of the keys and values. The types must either be subclasses of Hadoop's Writable
class or be implicitly convertible to such a type. For Scala users, some natives are
convertible through implicits in WritableConverter. As of Version 1.1.0, the
standard WritableConverter types are int, long, double, loat, boolean, byte arrays,
and string. Let's illustrate by looking at the process of loading a sequence ile of
String to Integer, as shown here:

• Scala:

val data = sc.sequenceFile[String, Int](inputFile)

• Java:

JavaPairRDD<Text, IntWritable> dataRDD = sc.sequenceFile(file,
Text.class, IntWritable.class);

JavaPairRDD<String, Integer> cleanData = dataRDD.map(new
PairFunction<Tuple2<Text, IntWritable>, String, Integer>() {

 @Override

public Tuple2<String, Integer> call(Tuple2<Text, IntWritable>
pair) {

return new Tuple2<String, Integer>(pair._1().toString(),
pair._2().get());

}

});

Note that in the preceding cases, like with the text input, the
ile need not be a traditional ile; it can reside on S3, HDFS,
and so on. Also note that for Java, you can't rely on implicit
conversions between types.

HBase is a Hadoop-based database designed to support random read/write
access to entries. Loading data from HBase is a bit different from text files
and sequence in files with respect to how we tell Spark what types to use for
the data.

• Scala:

import spark._

import org.apache.hadoop.hbase.{HBaseConfiguration,
HTableDescriptor}

import org.apache.hadoop.hbase.client.HBaseAdmin

import org.apache.hadoop.hbase.mapreduce.TableInputFormat

….

val conf = HBaseConfiguration.create()

Chapter 5

[61]

conf.set(TableInputFormat.INPUT_TABLE, input_table)

 // Initialize hBase table if necessary

val admin = new HBaseAdmin(conf)

if(!admin.isTableAvailable(input_table)) {

 val tableDesc = new HTableDescriptor(input_table)

 admin.createTable(tableDesc)

}

val hBaseRDD = sc.newAPIHadoopRDD(conf,
 classOf[TableInputFormat],
 classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
 classOf[org.apache.hadoop.hbase.client.Result])

• Java:

import spark.api.java.JavaPairRDD;

import spark.api.java.JavaSparkContext;

import spark.api.java.function.FlatMapFunction;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.HTableDescriptor;

import org.apache.hadoop.hbase.client.HBaseAdmin;

import org.apache.hadoop.hbase.mapreduce.TableInputFormat;

import org.apache.hadoop.hbase.io.ImmutableBytesWritable;

import org.apache.hadoop.hbase.client.Result;

...

JavaSparkContext sc = new JavaSparkContext(args[0],
"sequence load", System.getenv("SPARK_HOME"),
System.getenv("JARS"));

Configuration conf = HBaseConfiguration.create();

conf.set(TableInputFormat.INPUT_TABLE, args[1]);

// Initialize hBase table if necessary

HBaseAdmin admin = new HBaseAdmin(conf);

if(!admin.isTableAvailable(args[1])) {

 HTableDescriptor tableDesc = new
HTableDescriptor(args[1]);

 admin.createTable(tableDesc);

}

JavaPairRDD<ImmutableBytesWritable, Result> hBaseRDD =
sc.newAPIHadoopRDD(conf, TableInputFormat.class,
ImmutableBytesWritable.class, Result.class);

The method that you used to load the HBase data can be generalized for loading all
other sorts of Hadoop data. If a helper method in SparkContext does not already
exist for loading the data, simply create a coniguration specifying how to load the
data and pass it into a new APIHadoopRDD function. Helper methods exist for plain
text iles and sequence iles. A helper method also exists for Hadoop iles similar to
the Sequence ile API.

Loading and Saving Data in Spark

[62]

Saving your data
While distributed computational jobs are a lot of fun, they are much more useful
when the results are stored in a useful place. While the methods for loading an RDD
are largely found in the SparkContext class, the methods for saving an RDD are
deined on the RDD classes. In Scala, implicit conversions exist so that an RDD, that
can be saved as a sequence ile, is converted to the appropriate type, and in Java
explicit conversion must be used.

Here are the different ways to save an RDD:

• For Scala:

rddOfStrings.saveAsTextFile("out.txt")

keyValueRdd.saveAsObjectFile("sequenceOut")

• For Java:

rddOfStrings.saveAsTextFile("out.txt")

keyValueRdd.saveAsObjectFile("sequenceOut")

• For Python:

rddOfStrings.saveAsTextFile("out.txt")

In addition, users can save the RDD as a compressed text ile
by using the following function:

saveAsTextFile(path: String, codec: Class[_
<: CompressionCodec])

Some references are as follows:

• http://spark-project.org/docs/latest/scala-programming-guide.

html#hadoop-datasets

• http://opencsv.sourceforge.net/

• http://commons.apache.org/proper/commons-csv/

• http://hadoop.apache.org/docs/current/api/org/apache/hadoop/

mapred/SequenceFileInputFormat.html

• http://hadoop.apache.org/docs/current/api/org/apache/hadoop/

mapred/InputFormat.html

• http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-

linux-single-node-cluster/

• http://spark.apache.org/docs/latest/api/python/

• http://wiki.apache.org/hadoop/SequenceFile

http://spark-project.org/docs/latest/scala-programming-guide.html#hadoop-datasets
http://spark-project.org/docs/latest/scala-programming-guide.html#hadoop-datasets
http://opencsv.sourceforge.net/
http://commons.apache.org/proper/commons-csv/
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/SequenceFileInputFormat.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/SequenceFileInputFormat.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/InputFormat.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/InputFormat.html
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://spark.apache.org/docs/latest/api/python/
http://wiki.apache.org/hadoop/SequenceFile

Chapter 5

[63]

• http://hbase.apache.org/book/quickstart.html

• http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/

mapreduce/TableInputFormat.html

• https://spark.apache.org/docs/latest/api/java/org/apache/spark/

api/java/JavaPairRDD.html

• https://bzhangusc.wordpress.com/2014/06/18/csv-parser/

Summary
In this chapter, you saw how to load data from a variety of different sources.
We also looked at basic parsing of the data from text input iles. Now that we can get
our data loaded into a Spark RDD, it is time to explore the different operations we
can perform on our data in the next chapter.

http://hbase.apache.org/book/quickstart.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableInputFormat.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableInputFormat.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/api/java/JavaPairRDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/api/java/JavaPairRDD.html
https://bzhangusc.wordpress.com/2014/06/18/csv-parser/

[65]

Manipulating your RDD
The last few chapters have been the necessary groundwork to get Spark working.
Now that you know how to load and save your data in different ways, it's time for
the big payoff, that is, manipulating data. The API to manipulate your RDD is similar
among the languages but not identical. Unlike the previous chapters, each language
is covered in its own section; you likely only need to read the one pertaining to the
language you are interested in using. Particularly, the Python implementation is
currently not fully at feature parity with the Scala/Java API, but it supports most of
the basic functionality as of version 1.1.0 and has plans to improve feature parity in
the future versions.

Manipulating your RDD in Scala and Java
RDDs are the primary abstraction in Spark. From a structural view, they are just a
bunch of elements—but elements that can be operated in parallel!

Manipulating your RDD in Scala is quite simple, especially if you are familiar with
Scala's collection library. Many of the standard functions are available directly on
Spark's RDDs with the primary catch being that they are immutable. This makes
porting existing Scala code to be distributed much simpler than porting Java or
Python code. At least in theory, this is true. While Scala encourages functional
programming, one can always use Scala in a non-functional way. Vice versa, while
using Python, one can, to a large extent, apply a functional approach to programming.
In other words, the difference lies in whether it is the functional/immutable style of
programming or not, and the programs written in a functional way can be ported to
Spark easily.

Manipulating your RDD

[66]

Manipulating your RDD in Java is fairly simple but a little more awkward at times
than it is in Scala. There are a couple of reasons for this. The main reason has to do with
type inference and also with the fact that Java doesn't have anonymous functions. In
the following code snippets, sometimes the Java code is more unwieldy because Java
lacks type inference and anonymous functions. Java 8 has lambda, which would make
Java a lot more elegant with Spark. Secondly, as Java doesn't have implicit conversions,
we have to be more explicit with our types. While the return types are Java friendly,
Spark requires the use of Scala's Tuple2 class for key-value pairs.

The hallmark of a MapReduce system are the two primitives: map and reduce. We've
seen the map function used in the past chapters. Map works by taking in a function,
which acts on each individual element in the input RDD and produces a new output
element. For example, to produce a new RDD where you add one to every number,
use rdd.map(x => x+1).

Alternatively, in Java, you can use this:

rdd.map(new Function<Integer, Integer>() { public Integer
 call(Integer x) { return x+1;} });

There are actually two types of map function—map and flatMap.
It is easy to get confused between them. The map function takes
an element and returns an element. The element could be a
single entity, a tuple, or a list; nevertheless, there is a one-to-one
correspondence with the map function. The flatMap function,
on the other hand, takes one element and will return one or more
elements. Actually, the map in Hadoop MapReduce is flatMap.
In fact, the Spark word count example is implemented using the
flatMap(), map(), and reduceByKey() functions.

It is important to understand that the map function and the other Spark functions
do not modify/update the existing elements; rather, they return a new RDD with
new elements—the RDDs are immutable. The reduce function takes a function that
operates on pairs to combine all the data. The reduce function you provide needs
to be commutative and associative (that is, f(a,b) == f(b,a), and f(a,f(b,c)) == f(f(a,b),c).
For example, to sum all of the elements, you need to use rdd.reduce(x,y =>
x+y) or rdd.reduce(new Function2<Integer, Integer>(){ public Integer
call(Integer x, Integer y) { return x+y;} }.

Chapter 6

[67]

All functions are not commutative; for example, while
multiplication is commutative 2*3 = 3*2, subtraction is not, that is,
3-2 is not the same as 2-3, and division is not, that is, 4/2 is not the
same as 2/4. The same applies for associativity; sum is associative,
that is, 2+3+4 = (2+3)+4 or 2+(3+4), but average is not, that is,
average (2,3,4,5,6) is not equal to average (2,3) + average (4,5,6).

The flatMap function is a useful utility function that lets you write a function that
returns an iterable of the type you want and then lattens the results. A simple
example of this is a case where you want to parse all of the data, but some of it might
fail to be parsed. The flatMap function can be used to output an empty list if it
has failed or a list with success if it has worked. Another example when the output
collection has a different size than the input collection is while parsing a document
and splitting in words; here every line may contain one or more words.

In addition to the reduce function, there is a corresponding reduceByKey function
that works on RDDs, which are key-value pairs to produce another RDD. Unlike
when you're using map on a list in Scala, your function will run on a number of
different machines, and so you can't depend on the shared state with this.

Before continuing into other wonderful functions for manipulating your RDD, you
need to read a bit about shared states. In the example given earlier where we added
one to every integer, we didn't really share states. However, for even simple tasks
such as distributed parsing of data that we did when loading the CSV ile, it can be
quite handy to have shared counters for things such as keeping track of the number
of rejected records. Spark supports both shared immutable data, which it calls
broadcast and accumulate (via accumulators):

• You can create a new broadcast by calling sc.broadcast(value). While
you don't have to explicitly broadcast values as Spark does its magic in the
background, broadcasting ensures that the value is sent to each node only
once. Broadcasts are often used for things such as side inputs (for example, a
hashmap that you need to look up as part of the map function). This returns
an object that can be used to reference the broadcast value.

• Another method for sharding states is using an accumulator. To create an
accumulator, use sc.accumulator(initialvalue). This returns an object
you can add to in a distributed context and then get back the value by calling
.value(). The accumulableCollection can be used to create a collection
that is appended in a distributed fashion; however, if you find yourself using
this, ask yourself whether you could use the results of a map output instead.
If the predefined accumulators don't work for your use case, you can use
accumulable to define your own accumulation type. A broadcast value can
be read by all of the workers and an accumulator can be written by all of the
workers but read by only the driver.

Manipulating your RDD

[68]

If you are writing Scala code that interacts with a Java Spark process
(say for testing), you may find it useful to use the int accumulator
and similar others on the Java Spark context; otherwise, your
accumulator types might not quite match up.

If you find that your accumulator isn't increasing in value like you
expect, remember that Spark follows the principle of lazy evaluation.
This means that Spark won't actually perform the maps, reductions,
or other computation on RDDs until the data has to be output.

Look at the previous example, which parsed CSV iles, and make it a bit more robust.
In your previous work, you had assumed that the input was well formatted and if any
errors occur, our entire pipeline would fail. While this can be the correct behavior for
some kind of work, we may want to accept some number of malformed records while
dealing with data from third parties. On the other hand, we don't want to just throw
out all of the records and declare it a success; we might miss an important format
change and produce meaningless results. Consider the following code:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkFiles;

import au.com.bytecode.opencsv.CSVReader

import java.io.StringReader

object LoadCsvWithCountersExample {

 def main(args: Array[String]) {

 if (args.length != 2) {

 System.err.println("Usage: LoadCsvExample <master>
 <inputfile>")

 System.exit(1)

 }

 val master = args(0)

 val inputFile = args(1)

 val sc = new SparkContext(master, "Load CSV With Counters
Example",

 System.getenv("SPARK_HOME"),

 Seq(System.getenv("JARS")))

 val invalidLineCounter = sc.accumulator(0)

 val invalidNumericLineCounter = sc.accumulator(0)

 sc.addFile(inputFile)

 val inFile = sc.textFile(inputFile)

 val splitLines = inFile.flatMap(line => {

 try {

Chapter 6

[69]

 val reader = new CSVReader(new StringReader(line))

 Some(reader.readNext())

 } catch {

 case _ => {

 invalidLineCounter += 1

 None

 }

 }

 }

)

 val numericData = splitLines.flatMap(line => {

 try {

 Some(line.map(_.toDouble))

 } catch {

 case _ => {

 invalidNumericLineCounter += 1

 None

 }

 }

 }

)

 val summedData = numericData.map(row => row.sum)

 println(summedData.collect().mkString(","))

 println("Errors: "+invalidLineCounter+","
 +invalidNumericLineCounter)

 }

}

You can run the code with parameters local/path/Line_of_numbers.csv and the
code will run with the following result:

[..]

2014-11-22 18:15:48,399 INFO [main] spark.SparkContext (Logging.
scala:logInfo(59)) - Job finished: collect at LoadCsvWithCountersExample.
scala:47, took 0.256383 s

766.0

Errors: 0,0

Alternatively, in Java you can do the following:

import org.apache.spark.Accumulator;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.FlatMapFunction;

Manipulating your RDD

[70]

import au.com.bytecode.opencsv.CSVReader;

import java.io.StringReader;

import java.util.Arrays;

import java.util.List;

import java.util.ArrayList;

public class JavaLoadCsvCounters {

 public static void main(String[] args) throws Exception {

 if (args.length != 2) {

 System.err.println("Usage: JavaLoadCsvCounters <master>
 <inputfile>");

 System.exit(1);

 }

 String master = args[0];

 String inputFile = args[1];

 JavaSparkContext sc = new JavaSparkContext(master, "java load
 csv with counters",

 System.getenv("SPARK_HOME"), System.getenv("JARS"));

 final Accumulator<Integer> errors = sc.accumulator(0);

 JavaRDD<String> inFile = sc.textFile(inputFile);

 JavaRDD<Integer[] > splitLines = inFile.flatMap(new
 FlatMapFunction<String, Integer[]> (){

 public Iterable<Integer[]> call(String line) {

 ArrayList<Integer[]> result = new ArrayList<Integer[]>();

 try {

 CSVReader reader = new CSVReader(new StringReader
 (line));

 String[] parsedLine = reader.readNext();

 Integer[] intLine = new Integer[parsedLine.length];

 for (int i = 0; i < parsedLine.length; i++) {

 intLine[i] = Integer.parseInt(parsedLine[i]);

 }

 result.add(intLine);

 } catch (Exception e) {

 errors.add(1);

 }

 return result;

 }

 }

);

 List <Integer[]> res = splitLines.collect();

 System.out.print("Loaded data ");

 for (Integer[] e : res) {

 for (Integer val:e) {

Chapter 6

[71]

 System.out.print(val+" ");

 }

 System.out.println();

 }

 System.out.println("Error count "+errors.value());

 }

}

You can run the code with parameters local/path/Line_of_numbers.csv and the
code will run with the following result:

[..]

14/11/22 19:33:05 INFO SparkContext: Job finished: collect at
JavaLoadCsvCounters.java:44, took 0.106908 s

Loaded data 42 42 55 61 53 49 43 47 49 60 68 54 34 35 35 39

Error count 0

The preceding code example illustrates the usefulness of
flatMap. In general, flatMap can be used when the required
output collection is of a different size than that of the input
collection. You can do this because in general there are nested
collections or types involved, which need to be lattened.
As the options in Scala can be used as sequences through an
implicit conversion, you can avoid having to explicitly ilter
out the None result and just use flatMap.

Summary statistics can be quite useful when examining large datasets. In the preceding
example, you loaded the data as Doubles to use Spark's provided summary statistics
capabilities on the RDD. In Java, this requires explicitly using the JavaDoubleRDD
type. For Java, it is important to use DoubleFunction<Integer[]> rather than
Function<Integer[], Double> in the example as the second option won't result
in the JavaDoubleRDD type. No such consideration is required for Scala as implicit
conversions deal with the details. Compute the mean and the variance or compute
them together with stats. You can extend this by adding it at the end of the preceding
function to print out the summary statistics as println(summedData.stats()).

To do this with Java, we would do it as follows:

JavaDoubleRDD summedData = splitLines.map(new
 DoubleFunction<Integer[]>() {

 public Double call(Integer[] in) {

 Double ret = 0.;

 for (int i = 0; i < in.length; i++) {

 ret += in[i];

 }

Manipulating your RDD

[72]

 return ret;

 }

}

);

System.out.println(summedData.stats());

While working with key-value pair data, it can be quite useful to group data with
the same key together (for example, if the key represents a user or a sample). The
groupByKey function provides an easy way to group data together by key. The
groupByKey function is a special case of combineByKey. There are several functions
in the PairRDD class that are all implemented very closely on top of combineByKey.
If you ind yourself using groupByKey or one of the other functions derived from
combineByKey and immediately transforming the result, you should check to see
whether there is a function better suited to the task. A common thing to do while
starting out is to perform groupByKey and then sum the results with groupByKey().
map({case (x,y) => (x,y.sum)}). Alternatively, in Java you can do the following:

pairData.groupByKey().mapValues(new Function<List<Integer>,
 Integer >(){

 public Integer call(List<Integer> x) {

 Integer sum = 0;

 for (Integer i : x) {

 sum += i;

 }

 return sum;

 }

}

); or in python .map(lambda (x,y): (x,sum(y))).collect()

By using reduceByKey, it could be simpliied to reduceByKey((x,y) => x+y) or in
Java, as follows:

pairData.groupByKey().mapValues(

 new Function<Iterable<Integer>, Integer >(){

 public Integer call(Iterable<Integer> x) {

 Integer sum = 0; for (Integer i : x) {

 sum += i;

 }

 return sum;

 }

 }

);

In fact, this may be much more eficient. No big shufle is needed, as is the case for the
groupBy. The only thing required is an aggregation of the values, which is important.

Chapter 6

[73]

The foldByKey(zeroValue)(function) function is similar to a traditional fold
operation, which works per key. In a traditional fold, a list that is provided would
be called with the initial value and the irst element of the list, and then the resulting
value and the next element of the list would be the input to the next call of fold. Doing
this requires sequentially processing the entire list, and so foldByKey behaves slightly
differently. There is a handy table of functions of PairRDDs at the end of this section.

Sometimes, you will only want to update the values of a key-value pair data
structure such as a PairRDD. You've learned about foldByKey and how it doesn't
quite work as a traditional fold. If you're a Scala developer and you require the
"traditional" fold behavior, you can perform the groupByKey function and then map
a fold by value over the resulting RDD. This is an example of a case where you only
want to change the value and we don't care about the key of the RDD; so examine
the following code:

rdd.groupByKey().mapValues(x => {x.fold(0)((a,b) => a+b)})

The preceding code is interesting as it combines the Spark function groupByKey with
a Scala function fold().The groupBy() function shufles the data so that the values
are "together". The fold mentioned is a "local" Scala fold on the nodes in parallel.

Often your data won't come in cleanly from a single source and you will want to
join the data together for processing, which can be done with coGroup. This can be
done when you are joining web access logs with transaction data or just joining two
different computations on the same data. Provided that the RDDs have the same key,
we can join two RDDs together with rdd.coGroup(otherRdd). There are a number
of different join functions for different purposes illustrated in the table at the end of
this section.

The next task you will learn is distributing iles among the cluster. We illustrate this
by adding GeoIP support and mixing it together with the gradient descent example
from the earlier chapter. Sometimes, the libraries you will use need iles distributed
along with them. While it is possible to add them to the JAR and access them as
class objects, Spark provides a simple way to distribute the required iles by calling
addFile(), as shown here:

import scala.math

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkFiles;

import org.apache.spark.util.Vector

import au.com.bytecode.opencsv.CSVReader

Manipulating your RDD

[74]

import java.util.Random

import java.io.StringReader

import java.io.File

import com.snowplowanalytics.maxmind.geoip.IpGeo

case class DataPoint(x: Vector, y: Double)

object GeoIpExample {

 def main(args: Array[String]) {

 if (args.length != 2) {

 System.err.println("Usage: GeoIpExample <master>
 <inputfile>")

 System.exit(1)

 }

 val master = args(0)

 val inputFile = args(1)

 val iterations = 100

 val maxMindPath = "GeoLiteCity.dat"

 val sc = new SparkContext(master, "GeoIpExample",

 System.getenv("SPARK_HOME"),

 Seq(System.getenv("JARS")))

 val invalidLineCounter = sc.accumulator(0)

 val inFile = sc.textFile(inputFile)

 val parsedInput = inFile.flatMap(line => {

 try {

 val row = (new CSVReader(new StringReader
 (line))).readNext()

 Some((row(0),row.drop(1).map(_.toDouble)))

 } catch {

 case _ => {

 invalidLineCounter += 1

 None
 }

 }

 })

 val geoFile = sc.addFile(maxMindPath)

 // getLocation gives back an option so we use flatMap to only
 output if its a some type

 val ipCountries = parsedInput.flatMapWith(_ => IpGeo(dbFile =
 SparkFiles.get(maxMindPath)))((pair, ipGeo) => {

 ipGeo.getLocation(pair._1).map(c => (pair._1,
 c.countryCode)).toSeq

 })

Chapter 6

[75]

 ipCountries.cache()

 val countries = ipCountries.values.distinct().collect()

 val countriesBc = sc.broadcast(countries)

 val countriesSignal = ipCountries.mapValues(country =>
 countriesBc.value.map(s => if (country == s) 1. else 0.))

 val dataPoints = parsedInput.join(countriesSignal).map(input
 => {

 input._2 match {

 case (countryData, originalData) => DataPoint(new
 Vector(countryData++originalData.slice(1,originalData.size-
 2)) , originalData(originalData.size-1))

 }

 })

 countriesSignal.cache()

 dataPoints.cache()

 val rand = new Random(53)

 var w = Vector(dataPoints.first.x.length, _ => rand.
 nextDouble)

 for (i <- 1 to iterations) {

 val gradient = dataPoints.map(p =>

 (1 / (1 + math.exp(-p.y*(w dot p.x))) - 1) * p.y * p.x).
 reduce(_ + _)

 w -= gradient

 }

 println("Final w: "+w)

 }

}

In this example, you see multiple Spark computations. The irst is to determine all of
the countries where our data is; so we can map the country to a binary feature. The
code then uses a public list of proxies and the reported latency to try and estimate the
latency I measured. This also illustrates the use of mapWith. If you have a mapping
job that needs to create a per partition resource, mapWith can be used to do this. This
can be useful for connections to backends or the creation of something like a PRNG.
Some elements also can't be serialized over the wire (such as the IpCountry in the
example), and so you have to create them per shard. You can also see that we cache a
number of our RDDs to keep them from having to be recomputed.

There are several options when working with multiple RDDs.

Manipulating your RDD

[76]

Scala RDD functions
These are PairRDD functions based on combineByKey. All operate on RDDs of
type [K,V]:

Function Param options Explanation Return type

foldByKey (zeroValue)
(func(V,V)=>V)

(zeroValue,
partitioner)
(func(V,V=>V)

(zeroValue,
partitions)
(func(V,V=>V)

foldByKey merges the
values using the provided
function. Unlike a traditional
fold over a list, the
zeroValue can be added an
arbitrary number of times.

RDD[K,V]

reduceByKey (func(V,V)=>V)

(func(V,V)=>V,
numTasks)

reduceByKey is the parallel
version of reduce that merges
the values for each key using
the provided function and
returns an RDD.

RDD[K,V]

groupByKey ()

(numPartitions)
This groups elements
together by key.

RDD[K,Seq[V]]

Functions for joining PairRDDs
Often while working with two or more key-value RDDs, it is useful to join them
together. There are a few different methods to do this depending on what your
desired behavior is:

Function Param options Explanation Return type

coGroup (otherRdd
[K,W]...)

Join two (or more) RDDs by the
shared key. Note if an element is
missing in one RDD but present
in the other one, the Seq value
will simply be empty.

RDD[(K,(Seq[V],
Seq[W]...))]

join (otherRdd[K,W])

(otherRdd[K,W],
partitioner)

(otherRdd[K,W],
numPartitions)

Join an RDD with another
RDD. The result is only present
for elements where the key is
present in both RDDs.

RDD[(K,(V,W))]

subtract
Key

(otherRdd[K,W])

(otherRdd[K,W],
partitioner)

(otherRdd[K,W],
numPartitions)

This returns an RDD with only
keys not present in the other
RDD.

RDD[(K,V)]

Chapter 6

[77]

Other PairRDD functions
Some functions only make sense when working on key-value pairs, as follows:

Function Param options Explanation Return type

lookup (key: K) This looks up a specific
element in the RDD. It uses
the RDD's partitioner to
figure out which shard(s) to
look at.

Seq[V]

mapValues (f: V => U) This is a specialized version
of map for PairRDDs when
you only want to change the
value of the key-value pair.
It takes the provided map
function and applies it to the
value. If you need to make
your change based on both
key and value, you must use
one of the normal RDD map
functions.

RDD[(K,U)]

collectAsMap () This takes an RDD and
returns a concrete map.
Your RDD must be able to
fit in memory.

Map[K, V]

countByKey () This counts the number of
elements for each key.

Map[K, Long]

partitionBy (partitioner:
Partitioner,
mapSideCombine:
Boolean)

This returns a new RDD
with the same data but
partitioned by the new
partitioner. The Boolean
flag mapSideCombine
controls whether Spark
should group values with
the same key together before
repartitioning. It defaults to
false and sets to true if
you have a large percentage
of duplicate keys.

RDD[(K,V)]

Manipulating your RDD

[78]

Function Param options Explanation Return type

flatMapValues (f: V =>
TraversableOnce
[U])

This is similar to
MapValues. It's a
specialized version of
flatMap for PairRDDs
when you only want to
change the value of the
key-value pair. It takes the
provided map function and
applies it to the value. The
resulting sequence is then
"flattened", that is, instead
of getting Seq[Seq[V]],
you get Seq[V]. If you need
to make your change based
on both key and value, you
must use one of the normal
RDD map functions.

RDD[(K,U)]

For information on saving PairRDDs, refer to the previous chapter.

Double RDD functions
Spark deines a number of convenience functions that work when your RDD is
comprised of doubles, as follows:

Function Arguments Return value

Mean () Average

sampleStdev () Standard deviation for a sample rather
than a population (as it divides by N-1
rather than N).

Stats () Mean, variance, and count as a
StatCounter.

Stdev () Standard deviation (for population).

Sum () Sum of the elements.

variance () Variance

Chapter 6

[79]

General RDD functions
The remaining RDD functions are deined on all RDDs:

Function Arguments Returns

aggregate (zero: U)(seqOp:
(U,T) => T, combOp
(U, U) => U)

It aggregates all of the elements of
each partition of an RDD and then
combines them using combOp. The
zero value should be neutral (that is 0
for + and 1 for *).

cache () It caches an RDD reused without
re-computing. It's the same as
persist(StorageLevel.MEMORY_
ONLY).

collect () It returns an array of all of the elements
in the RDD.

count () It returns the number of elements in an
RDD.

countByValue () It returns a map of value to the number
of times that value occurs.

distinct ()

(partitions: Int)
It returns an RDD that contains only
distinct elements.

filter (f: T => Boolean) It returns an RDD that contains only
elements matching f.

filterWith (constructA: Int =>
A)(f: (T, A) =>
Boolean)

It is similar to filter, but f takes an
additional parameter generated by
constructA, which is called per-
partition. The original motivation
for this came from providing PRNG
generation per shard.

first () It returns the "first" element of the RDD.

flatMap (f: T =>
TraversableOnce[U])

It returns an RDD of type U.

fold (zeroValue: T)(op:
(T,T) => T)

It merges values using the provided
operation, first on each partition, and
then merges the merged result.

foreach (f: T => Unit) It applies the function f to each
element.

groupBy (f: T => K)

(f: T => K, p:
Partitioner)

(f: T => K,
numPartitions:Int)

It takes in an RDD and produces a
PairRDD of type (K,Seq[T]) using the
result of f for the key for each element.

Manipulating your RDD

[80]

Function Arguments Returns

keyBy (f: T => K)

(f: T => K, p:
Partitioner)

(f: T => K,
numPartitions:Int)

It is the same as groupBy but does not
group results together with duplicate
keys. It returns an RDD of (K,T).

map (f: T => U) It returns an RDD of the result of
applying f to every element in the
input RDD.

mapPartitions (f: Iterator[T] =>
Iterator[U])

It is similar to map except that the
provided function takes and returns an
iterator and is applied to each partition.

mapPartitions
WithIndex

(f: (Int,
Iterator[T]) =>
Iterator[U],
preservePartitions)

It is the same as mapPartitions but
also provides the index of the original
partition.

mapWith (constructA: Int =>
A)(f: (T, A) => U)

It is similar to map, but f takes an
additional parameter generated by
constructA, which is called per-
partition. The original motivation
for this came from providing PRNG
generation per shard.

persist ()

(newLevel:
StorageLevel)

Sets the RDD storage level, which can
cause the RDD to be stored after it is
computed. Different StorageLevel
values can be seen in StorageLevel.
scala (NONE, DISK_ONLY, MEMORY_
ONLY, and MEMORY_AND_DISK are the
common ones).

pipe (command:
Seq[String])

(command:
Seq[String],
env: Map[String,
String])

It takes an RDD and calls the
specified command with the optional
environment. Then, it pipes each
element through the command. That
results in an RDD of type string.

sample (withReplacement:
Boolean, fraction:
Double, seed: Int)

It returns an RDD of that fraction.

takeSample (withReplacement:
Boolean, num: Int,
seed: Int)

It returns an array of the requested
number of elements. It works by over
sampling the RDD and then grabbing a
subset.

toDebugString () It's a handy function that outputs the
recursive deps of the RDD.

Chapter 6

[81]

Function Arguments Returns

union (other: RDD[T]) It's an RDD containing elements of
both RDDs. Here, duplicates are not
removed.

unpersist () Remove all blocks of the RDD from
memory/disk if they've persisted.

zip (other: RDD[U]) It is important to note that it requires
that the RDDs have the same number
of partitions and the same size of each
partition. It returns an RDD of
key-value pairs RDD[T,U].

Java RDD functions
Many of the Java RDD functions are quite similar to the Scala RDD functions, but the
type signatures are somewhat different.

Spark Java function classes
For the Java RDD API, we need to extend one of the provided function classes while
implementing our function:

Name Params Purpose

Function<T,R> R call(T t) It is a function that takes something
of type T and returns something
of type R. It is commonly used for
maps.

DoubleFunction<T> Double call(T t) It is the same as Function<T,
Double>, but the result of the map-
like call returns a JavaDoubleRDD
(for summary statistics).

PairFunction<T,
K, V>

Tuple2<K, V>
call(T t)

It is a function that results in a
JavaPairRDD. If you're working on
JavaPairRDD<A,B>, have T of
type Tuple2<A,B>.

FlatMap
Function<T, R>

Iterable<R> call(T
t)

It is a function for producing a RDD
through flatMap.

PairFlatMap
Function<T, K, V>

Iterable<Tuple2<K,
V>> call(T t)

It's a function that results in a
JavaPairRDD. If you're working on
JavaPairRDD<A,B>, have T of
type Tuple2<A,B>.

Manipulating your RDD

[82]

Name Params Purpose

DoubleFlatMap
Function<T>

Iterable<Double>
call(T t)

It is the same as
FlatMapFunction<T, Double>,
but the result of the map-like call
returns a JavaDoubleRDD (for
summary statistics).

Function2<T1, T2,
R>

R call(T1 t1, T2
t2)

It is a function for taking two inputs
and returning an output. It is used
by fold and similar.

Common Java RDD functions
These RDD functions are available regardless of the type of RDD.

Name Params Purpose

cache () It makes an RDD persist in
memory.

coalesce numPartitions: Int It returns a new RDD with
numPartitions partitions.

collect () It returns the List representation
of the entire RDD.

count () It returns the number of elements.

countByValue () It returns a map of each unique
value to the number of times that
value shows up.

distinct ()

(Int numPartitions)
It is an RDD consisting of all
of the distinct elements of the
RDD, optionally in the provided
number of partitions.

filter (Function<T, Boolean> f) It is an RDD consisting only of the
elements for which the provided
function returns true.

first () It is the first element of the RDD.

flatMap (FlatMapFunction<T, U> f)

(DoubleFlatMapFunction<T>
f)

(PairFlatMapFunction<T,
K, V> f)

It is an RDD of the specified types
(U, Double and Pair<K,V>
respectively).

fold (T zeroValue,
Function2<T, T, T> f)

It returns the result T. Each
partition is folded individually
with the zero value and then the
results are folded.

Chapter 6

[83]

Name Params Purpose

foreach (VoidFunction<T> f) It applies the function to each
element in the RDD.

groupBy (Function<T, K> f)

(Function<T, K> f, Int
numPartitions)

It returns a JavaPairRDD of
grouped elements.

map (DoubleFunction<T> f)

(PairFunction<T, K2, V2>
f)

(Function<T, U> f)

It returns an RDD of an
appropriate type for the input
function (see previous table) by
calling the provided function on
each element in the input RDD.

mapPartitions (DoubleFunction
<Iterator<T>> f)

(PairFunction
<Iterator<T>, K2, V2> f)

(Function<Iterator<T>,
U> f)

It is similar to map, but the
provided function is called
per-partition. This can be useful
if you have done some setup
work that is necessary for each
partition.

reduce (Function2<T, T, T> f) It uses the provided function to
reduce down all of the elements.

sample (Boolean withReplacement,
Double fraction, Int
seed)

It returns a smaller RDD
consisting of only the requested
fraction of the data.

Methods for combining JavaRDDs
There are a number of different functions that we can use to combine RDDs:

Name Params Purpose

subtract (JavaRDD<T> other)

(JavaRDD<T> other,
Partitioner p)

(JavaRDD<T> other,
Int numPartitions)

It returns an RDD with only the elements
initially present in the first RDD and not
present in the other RDD.

union (JavaRDD<T> other) It is the union of the two RDDs.

zip (JavaRDD<U> other) It returns an RDD of key-value pairs
RDD[T,U].

It is important to note that it requires that
the RDDs should have the same number of
partitions and the size of each partition.

Manipulating your RDD

[84]

Functions on JavaPairRDDs
Some functions are only deined on key-value PairRDDs:

Name Params Purpose

cogroup (JavaPairRDD<K, W> other)

(JavaPairRDD<K, W> other,
Int numPartitions)

(JavaPairRDD<K, W> other1,
JavaPairRDD<K, W> other2)

(JavaPairRDD<K, W> other1,
JavaPairRDD<K, W> other2,
Int numPartitions)

It joins two (or more) RDDs
by the shared key. Note that
if an element is missing in
one RDD but present in the
other one, the list will simply
be empty.

combineByKey (Function<V, C>
createCombiner

Function2<C, V, C>
mergeValue,

Function2<C,C,C>
mergeCombiners)

It's a generic function to
combine elements by key.
The createCombiner
function turns something
of type V into something of
type C. The mergeValue
function adds V to C and
mergeCombiners is used to
combine two C values into a
single C value.

collectAsMap () It returns a map of the key-
value pairs.

countByKey () It returns a map of the key to
the number of elements with
that key.

flatMapValues (Function[T] f,
Iterable[V] v)

It returns an RDD of type V.

join (JavaPairRDD<K, W> other)

(JavaPairRDD<K, W> other,
Int integers)

It joins an RDD with another
RDD. The result is only
present for elements where
the key is present in both the
RDDs.

keys () It returns an RDD of only the
keys.

lookup (Key k) It looks up a specific element
in the RDD. It uses the RDD's
partitioner to figure out
which shard(s) to look at.

Chapter 6

[85]

Name Params Purpose

reduceByKey (Function2[V,V,V] f) The reduceByKey function
is the parallel version of
reduce that merges the
values for each key using
the provided function and
returns an RDD.

sortByKey (Comparator[K] comp,
Boolean ascending)

(Comparator[K] comp)

(Boolean ascending)

It sorts the RDD by key; so
each partition contains a
fixed range.

values () It returns an RDD of only the
values.

Manipulating your RDD in Python
Spark has a more limited Python API than Java and Scala, but it supports for most of
the core functionality.

The hallmark of a MapReduce system are the two commands map and reduce.
You've seen the map function used in the past chapters. The map function works by
taking in a function that works on each individual element in the input RDD and
produces a new output element. For example, to produce a new RDD where you
have added one to every number, you would use rdd.map(lambda x: x+1). It's
important to understand that the map function and the other Spark functions, do not
transform the existing elements; rather they return a new RDD with new elements.
The reduce function takes a function that operates on pairs to combine all the data.
This is returned to the calling program. If you were to sum all of the elements, you
would use rdd.reduce(lambda x, y: x+y). The flatMap function is a useful
utility function that allows you to write a function that returns an iterable of the type
you want and then lattens the results. A simple example of this is a case where you
want to parse all of the data, but some of it might fail to parse. The flatMap function
can output an empty list if it has failed or a list with its success if it has worked. In
addition to reduce, there is a corresponding reduceByKey function that works on
RDDs, which are key-value pairs, and produces another RDD.

Manipulating your RDD

[86]

Many of the mapping operations are also deined with a partition's variant. In
this case, the function you need to provide takes and returns an iterator, which
represents all of the data on that partition, thus performing work on a per-partition
level. The mapPartitions(func) function can be quite useful if the operation you
need to perform has to do expensive work on each shard/partition. An example
of this is establishing a connection to a backend server. Another reason for using
mapPartitions(func) is to do setup work for your map function that can't be
serialized across the network. A good example of this is parsing some expensive side
input, as shown here:

def f(iterator):
 // Expensive work goes here
 for i in iterator:
 yield per_element_function(i)

Often, your data can be expressed with key-value mappings. As such, many of the
functions deined on Python's RDD class only work if your data is in a key-value
mapping. The mapValues function is used when you only want to update the key-
value pair you are working with.

In addition to performing simple operations on the data, Spark also provides support
for broadcast values and accumulators. Broadcast values can be used to broadcast a
read-only value to all of the partitions, which can save the need to re-serialize a given
value multiple times. Accumulators allow all of the shards to add to the accumulator
and the result can then be read on the master. You can create an accumulator by
doing counter = sc.accumulator(initialValue). If you want customized add
behavior, you can also provide an AccumulatorParam to the accumulator. The return
can then be incremented as counter += x on any of the workers. The resulting
value can then be read with counter.value(). The broadcast value is created with
bc = sc.broadcast(value) and then accessed by bc.value() on any worker. The
accumulator can only be read on the master, and the broadcast value can be read on
all of the shards.

Let's look at a quick Python example that shows multiple RDD operations. We have
two text iles 2009-2014-BO.txt and 1861-1864-AL.txt. These are the State Of
the Union speeches by Presidents Barack Obama and Abraham Lincoln. We want to
compare the mood of the nation by comparing the salient difference in the words used.

The irst step is reading the iles and creating the word frequency vector, that is,
each word and the number of times it is used in the speech. I am sure you would
recognize this as a canonical word count MapReduce example and, in traditional
Hadoop Map Reduce, it takes around 100 lines of code. In Spark, as we shall see, it
takes only 5 lines of code:

from pyspark.context import SparkContext

print "Running Spark Version %s" % (sc.version)

Chapter 6

[87]

from pyspark.conf import SparkConf

conf = SparkConf()

print conf.toDebugString()

The MapReduce code is shown here:

from operator import add

lines = sc.textFile("sotu/2009-2014-BO.txt")

word_count_bo = lines.flatMap(lambda x: x.split(' ')).\

 map(lambda x: (x.lower().rstrip().
 lstrip().rstrip(',').rstrip('.'), 1)).\

 reduceByKey(add)

word_count_bo.count()

#6658 without lower, 6299 with lower, rstrip,lstrip 4835

lines = sc.textFile("sotu/1861-1864-AL.txt")

word_count_al = lines.flatMap(lambda x: x.split(' ')).map(lambda
 x: (x.lower().rstrip().lstrip().rstrip(',').rstrip('.'),
 1)).reduceByKey(add)

word_count_al.count()

Sorting an RDD by any column is very easy as shown next:

word_count_bo_1 = word_count_bo.sortBy(lambda x:
 x[1],ascending=False)

We can collect the word vector. But don't print it! It is a long list:

for x in word_count_bo_1.take(10):

 print x

Now, let's take out common words, as shown here:

common_words = ["us","has","all", "they", "from", "who","what","on",
"by","more","as","not","their","can","new","it","but","be","are","--
","i","have","this","will","for","with","is","that","in","our","we","
a","of","to","and","the","that's","or","make","do","you","at","it\'s"
,"than","if","know","last","about","no","just","now","an","because","
<p>we","why","we\'ll","how","two","also","every","come","we've","year"
,"over","get","take","one","them","we\'re","need","want","when","like"
,"most","-","been","first","where","so","these","they\'re","good","wou
ld","there","should","-->","<!--","up","i\'m","his","their","which","m
ay","were","such","some","those","was","here","she","he","its","her","
his","don\'t","i\'ve","what\'s","didn\'t","shouldn\'t","(applause.)","
let\'s","doesn\'t"]

Manipulating your RDD

[88]

Filtering out common words is also a single ilter operation. Of course, as RDDs are
immutable, we would create a new iltered RDD:

word_count_bo_clean = word_count_bo_1.filter(lambda x: x[0] not in
 common_words)

word_count_al_clean = word_count_al.filter(lambda x: x[0] not in
 common_words)

Finding the words that were spoken by Obama but not by Lincoln, is a single RDD
operation. You need to use subractByKey and then use sortBy on the count to see
the different but most frequent words, as shown here:

for x in word_count_bo_clean.subtractByKey
 (word_count_al_clean).sortBy(lambda x:
 x[1],ascending=False).take(15): #collect():

 print x

The preceding program should give you a good grip on the RDD functions and how
to use them in Python.

Standard RDD functions
These functions are available on all RDDs in Python:

Name Params Purpose

flatMap f, preserves
Partitioning=False

It takes a function that returns an iterator of
type U for each input of type T and returns
a flattened RDD of type U.

mapParitions f, preserves
Partitioning=False

It takes a function that takes in an iterator
of type T and returns an iterator of type U,
which then results in an RDD of type U. It's
useful for map operations with expensive
per machine setup work.

filter f It takes a function and returns an RDD
with only the elements for which the
function returns true.

distinct () It returns an RDD with distinct elements
(for example, 1, 1, 2 gives the output as 1,
2).

union other It returns a union of two RDDs.

cartesian other It returns the cartesian product of the RDD
with the other RDD.

Chapter 6

[89]

Name Params Purpose

groupBy f,
numPartitions=None

It returns an RDD with the elements
grouped together for the value that f
outputs.

pipe command, env={} It pipes each element of the RDD to the
provided command and returns an RDD of
the result.

foreach f It applies the function f to each element in
the RDD.

reduce f It reduces the elements using the provided
function.

fold zeroValue, op Each partition is folded individually with
zero value and then the results are folded.

countByValue () It returns a dictionary mapping of each
distinct value to the number of times it is
found in the RDD.

take num It returns a list of num elements. This can
be slow for large values of num; so use
collect if you want to get back the entire
RDD.

partitionBy numPartitions,
partitionFunc=hash

Make a new RDD partitioned by the
provided partitioning function. The
partitionFunc function simply
needs to map the input key to an integer
number and the partitionBy calculates
the partition by that number mod
numPartitions.

PairRDD functions
These functions are only available on key-value pair functions:

Name Params Purpose

collectAsMap () This returns a dictionary consisting of
all of the key-value pairs of the RDD.

reduceByKey func,
numPartitions=None

The reduceByKey function is the
parallel version of reduce, which
merges the values for each key using the
provided function and returns an RDD.

countByKey () This returns a dictionary of the number
of elements for each key.

Manipulating your RDD

[90]

Name Params Purpose

join other,
numPartitions=None

This joins an RDD with another RDD.
The result is only present for elements
where the key is present in both RDDs.
The value that gets stored for each key is
a tuple of the values from each RDD.

rightOuterJoin other,
numPartitions=None

This joins an RDD with another RDD.
It outputs a given key-value pair only if
the key it's being joined with is present
in the RDD. If key is not present in the
source RDD, the first value in the tuple
will be None.

leftOuterJoin other,
numPartitions=None

This joins an RDD with another RDD.
It outputs a given key-value pair only if
the key is present in the source RDD. If
the key is not present in other RDD, the
second value in the tuple will be None.

combineByKey createCombiner,
mergeValues,
mergeCombiners

This combines elements by key.
It takes an RDD of type (K,V) and
returns an RDD of type (K,C). The
createCombiner function turns
something of type V into something
of type C. The mergeValue function
adds a V to a C, and mergeCombiners
is used to combine two C values into a
single C value.

zip other This returns key-value pairs, pairing
one element from each RDD. The first
key-value pair would be the 1st element
from this RDD, and the value would be
the 1st element from the "other" RDD;
the second pair would be the respective
second elements from each of the RDDs
and so on.

groupByKey numPartitions=None This groups the values in the RDD by
the key they have.

cogroup other,
numPartitions=None

This joins two (or more) RDDs by the
shared key. Note that if an element is
missing in one RDD but present in the
other one, the list will simply be empty.

Chapter 6

[91]

Some references are as follows:

• http://www.scala-lang.org/api/current/index.html#scala.

collection.immutable.List

• http://spark.apache.org/docs/latest/api/scala/index.html#org.

apache.spark.api.java.JavaRDD

• http://spark.apache.org/docs/latest/api/scala/index.html#org.

apache.spark.api.java.JavaPairRDD

• http://spark.apache.org/docs/latest/api/scala/index.html#org.

apache.spark.api.java.JavaDoubleRDD

• https://spark.apache.org/docs/latest/api/scala/index.html#org.

apache.spark.SparkContext

• http://abshinn.github.io/python/apache-spark/2014/10/11/using-

combinebykey-in-apache-spark/

• Good examples of RDD transformations (https://github.com/JerryLead/
SparkLearning/tree/master/src)

Summary
This chapter looked at how to perform computations on data in a distributed fashion
once it's loaded into an RDD. With our knowledge of how to load and save RDDs,
we can now write distributed programs using Spark.

http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.List
http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.List
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaPairRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaPairRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaDoubleRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaDoubleRDD
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext
http://abshinn.github.io/python/apache-spark/2014/10/11/using-combinebykey-in-apache-spark/
http://abshinn.github.io/python/apache-spark/2014/10/11/using-combinebykey-in-apache-spark/
https://github.com/JerryLead/SparkLearning/tree/master/src
https://github.com/JerryLead/SparkLearning/tree/master/src

[93]

Spark SQL
Spark SQL holds an important feature in the Spark ecosystem, that is, integration
with different data sources as well as the capability to interact with other subsystems
such as visualization. As we know that in modern data stacks, no stack is an island
by itself and in many ways, the versatility of integration with other components
is an important capability. Obviously, the role of Spark SQL is not to replace
SQL databases. We see it more as a versatile query interface to Spark data that
complements the data wrangling and input capabilities of Spark. The ability to scale
complex data operations makes sense only when one can utilize the results in lexible
ways and Spark SQL achieves that. We'll cover the following topics in this chapter:

• Interfacing Spark to dashboards (such as Tableau and Qlik) that know
how to fire off SQL statements from a visualization interface based on
what a user selects.

• Another use case for Spark SQL is programming queries to Spark data
without employing RDD semantics. While RDD manipulations are required
to implement data algorithms, the final dataset can be in a SchemaRDD,
which can be queried using SQL. Sometimes, a combination of both works
very well.

• Leveraging the knowledge of SQL queries. There is a huge amount of SQL
knowledge among various people with roles ranging from data analysts and
programmers to data engineers who have developed interesting SQL queries
over their data. Spark needs to leverage that and it does that via Spark SQL.

Spark SQL

[94]

The Spark SQL architecture
Interestingly as I was writing this chapter, Michael Armbrust from Databricks wrote
a blog about the data sources API and an architecture diagram, from which I got the
inspiration to create the following diagram:

The bottom layer is the lexible data access (and store) that works via multiple
formats, usually a distributed ilesystem such as the HDFS. The computation layer is
the place where we leverage the distributed-at-scale processing of the Spark engine
including the streaming data. The computation layer usually acts on RDDs. The
Spark SQL then overlays the SchemaRDD veneer and provides the data access for
applications, dashboards, BI tools, and so forth.

Spark SQL how-to in a nutshell
The heart of the Spark SQL is the SchemaRDD, which, as you can guess, associates
a schema with an RDD. Of course, internally it does a lot of magic by leveraging the
ability to scale and distribute processing, and that of lexible storage.

In many ways, the data access via Spark SQL is deceptively simple, that is, creating
one or more appropriate RDDs paying attention to the layout, data types, and so
on and then accessing via SchemaRDDs. We get to use all the interesting features
of Spark for creating the RDDs: structured data from Hive or Parquet, unstructured
data from any source, and the ability to apply the RDD operations at scale. Then you
need to overlay respective schemas to the RDDs by creating SchemaRDDs. Viola!
You now have the ability to run SQL over RDDs. You can see the SchemaRDDs being
created in the log entries.

Chapter 7

[95]

Spark SQL programming
Let's not get our hands dirty and work through various examples. We will start with
a simple dataset and then progressively perform more sophisticated SQL statements.
While writing other chapters, I was wondering what a good dataset that brings out
the various aspects of SQL would be. And I hit upon an idea! Long time ago, the
Northwind database was the canonical database to learn Microsoft Access and later
SQL server. And that would be a good dataset for learning Spark SQL as well!

Let's use some of the tables and data to dig deeper into Spark SQL. The SQL scripts
to create the Northwind database is available at https://northwinddatabase.
codeplex.com/releases/view/71634. In our case, we will load data from a set
of CSV iles and create an appropriate SchemaRDDs in Spark. Then we will ire off
SQL queries of increasing complexity. A good reference for this is the Spark SQL
programming guide available at https://spark.apache.org/docs/latest/sql-
programming-guide.html.

SQL access to a simple data table
Let's load a small CSV ile to the employee table, as shown here:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._ // for implicit conversations

import org.apache.spark.sql._

object BigData01 {

 // register case class external to main

 case class Employee(EmployeeID : Int,

 LastName : String, FirstName : String, Title : String,

 BirthDate : String, HireDate : String,

 City : String, State : String, Zip : String, Country : String,

 ReportsTo : String)

 //

 def main(args: Array[String]): Unit = {

val sc = new SparkContext("local","Chapter 7")

 println(s"Running Spark Version ${sc.version}")

 //

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

import sqlContext.createSchemaRDD // to implicitly convert an RDD
 to a SchemaRDD.

import sqlContext._

 //

val employeeFile = sc.textFile("/Users/ksankar/fdps-vii/NW-
 Employees-NoHdr.csv")

https://northwinddatabase.codeplex.com/releases/view/71634
https://northwinddatabase.codeplex.com/releases/view/71634
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html

Spark SQL

[96]

 println("Employee File has %d Lines."
 .format(employeeFile.count()))

 val employees = employeeFile.map(_.split(",")).

 map(e => Employee(e(0).trim.toInt,

 e(1), e(2), e(3),

 e(4), e(5),

 e(6), e(7), e(8), e(9), e(10)))

 println(employees.count)

 employees.registerTempTable("Employees")

 var result = sqlContext.sql("SELECT * from Employees")

 result.foreach(println)

 result = sqlContext.sql("SELECT * from Employees WHERE State =
'WA'")

 result.foreach(println)

 }

}

The code is straightforward. We create a case class that represents the employee
table. We then parse the CSV ile and create an RDD that has the Employee classes
as its elements.

The datailes are available from at https://github.com/
xsankar/fdps-vii.

The screenshot of the process and output of running the code from the Spark shell is
shown here:

https://github.com/xsankar/fdps-vii
https://github.com/xsankar/fdps-vii

Chapter 7

[97]

We declare a case class and parse the ile to RDD[Employee], as shown here:

Now, you'll learn about the SQL magic. We turn the RDD into a SchemaRDD and
then run SQL queries, as shown in this screenshot:

You can see the query plan and see that inally an RDD is returned as the
query result.

Spark SQL

[98]

Let us try a ilter query SELECT * from Employees WHERE State = 'WA' and see
how it works. Here is a screenshot of this:

Great, it worked as expected! You can see that the ilter did get into the query plan.

Handling multiple tables with Spark SQL
Now that we have mastered the art of Spark SQL, let's try multiple datasets and
slightly larger datasets. The Orders table's dataset has 830 records and the Order
Details has approximately 2000 records. These would give us a good representation
of a few queries with joins that span the two tables.

Let's start by loading the Orders table, as shown next:

val ordersFile = sc.textFile("/Users/ksankar/fdps-vii/NW-Orders-
 NoHdr.csv")
 println("Orders File has %d Lines."
 .format(ordersFile.count()))
 val orders = ordersFile.map(_.split(",")).
 map(e => Order(e(0), e(1), e(2),e(3), e(4)))
 println(orders.count)
 orders.registerTempTable("Orders")
 var result = sqlContext.sql("SELECT * from Orders")
 result.take(10).foreach(println)
 //

The output of this is shown in the next screenshot. This is nothing different from
our earlier work. You can see where it casts the variable result as a SchemaRDD.
We have 830 orders in our table, as you can see here:

Chapter 7

[99]

In this chapter, we are trying to create a few queries. So we really do not need
hundreds of records. But the dataset has more records so that you can try out various
queries on your own. The dataset is big enough to do meaningful queries but small
enough to work on a laptop with limited resources. This would be a good exercise
for you to experiment with Spark SQL. Look at the following screenshot for the
results of this exercise:

Spark SQL

[100]

Now let's load the Order Details table. By now, we are an old hand at doing this.
The following is the code for the loading process of the table:

val orderDetFile = sc.textFile("/Users/ksankar/fdps-vii/NW-Order-
 Details-NoHdr.csv")

 println("Order Details File has %d Lines."
 .format(orderDetFile.count()))

val orderDetails = orderDetFile.map(_.split(",")).

 map(e => OrderDetails(e(0), e(1), e(2).
 trim.toFloat,e(3).trim.toInt, e(4).trim.toFloat))

 println(orderDetails.count)

 orderDetails.registerTempTable("OrderDetails")

 result = sqlContext.sql("SELECT * from OrderDetails")

 result.take(10).foreach(println)

The output from the Spark shell is again as expected. It has 2,155 order details, as
shown in the next screenshot:

Chapter 7

[101]

Let's create the Orderdetails table and make sure it works as expected. The table is
shown here:

Now comes the interesting part. Let's join the two tables and see how that query
works. In this process, you might make some mistakes and learn a few things. Have
a look at the following screenshot:

Here, the error was that Order.ID is a wrong name. So, we get the identifier
expected error. Have a look at the following screenshot:

Spark SQL

[102]

This is interesting. It doesn't like the ; at the end!. Now, have a look at the
following screenshot:

This one took me a little time to igure out. The culprit was OrderId, which is really
OrderID!. Now, consider the following screenshot:

Now it understands all the attributes. Of course, there are two OrderID values, one
from the Orders table and another from the OrderDetails table. Have a look at the
next screenshot:

Chapter 7

[103]

Finally, after correcting the errors, it works ine! Good stuff! Now, have a look at the
following screenshot:

Interestingly, this worked on the irst try, the credit for which goes to the Spark
developers. In my machine, Spark progressively spawned many tasks with
lots of shufle and broadcast stages. You will see so many pages of logs entries
(approximately 2,500 lines!); we suggest you just quickly browse through them
to get a feel for the worklow graph.

Before we end this chapter, let us try printing all the results. The call skips take(10).

The scala> result.foreach(println) command works ine, but the results were
mixed with the log entries. Take a quick look at the query plan it has printed out. It
gives us an insight on the different operations it performs on the RDD, as shown in
the next screenshot:

Spark SQL

[104]

I did a count and then printed out all the records, as shown in the next screenshot.
It worked out well. We could also format the printout with currency as well. I leave
that as an exercise to be done by you!

Aftermath
As seen in the preceding screenshot, this was a good exercise. We are thoroughly
impressed! We just created the last query and it ran ine! The Spark developers have
done a good job. Good work, guys.

The dataset also includes the product table, which I leave to you as an exercise.
For example, you can work on a query that gives the sales by product or one that
shows which products are selling more. The dataset also has date ields such as
order dates, which you can use to query sales by quarter or reports like Product
sales for 1997. The dates are now read in as strings. They need to be converted to the
TIMESTAMP data type.

Chapter 7

[105]

Some more information can be found at the following sites:

• https://northwinddatabase.codeplex.com/releases/view/71634

• https://databricks.com/blog/2015/01/09/spark-sql-data-sources-

api-unified-data-access-for-the-spark-platform.html

• https://spark.apache.org/docs/latest/sql-programming-guide.html

Summary
This was an important chapter that discussed the integration aspects of Spark. We
have covered the main parts, namely, SchemaRDD and programmatic access. But
there are more capabilities such as the JDBC/ODBC server for direct SQL queries
as well as the Spark SQL CLI. On the integration side, you will see more integration
capabilities in Chapter 8, Spark with Big Data. Spark SQL will be getting more features
in future versions and I think this will be one of the areas that will grow at a much
faster pace; interesting features such as partitioning, persistent tables, and optional
user speciied schema are slated for Spark 1.3.

https://northwinddatabase.codeplex.com/releases/view/71634
https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html
https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html
https://spark.apache.org/docs/latest/sql-programming-guide.html

[107]

Spark with Big Data
As we mentioned in Chapter 7, Spark SQL, the big data compute stack doesn't work
in isolation. Integration points across multiple stacks and technologies are essential.
In this chapter, we will look at how Spark works with some of the big data
technologies that are part of the Hadoop ecosystem. We will cover the following
topics in this chapter:

• Parquet: This is an efficient storage format

• HBase: This is the database in the Hadoop Ecosystem

Parquet – an eficient and interoperable
big data format
Parquet is essentially an interoperable storage format; its main goals are space
eficiency and query eficiency. Parquet's origin is based on Google's Dremel and
was developed by Twitter and Cloudera. Parquet is now an Apache incubator
project. The nested storage format from Google Dremel is implemented in Parquet.
Parquet stores data in a columnar format and has an evolvable schema. This enables
you to optimize queries (it can restrict columns that you need to access, and so you
need not bring all columns into memory and discard the ones not needed), and it
allows storage optimization (by decoding at the column level, which gives a much
higher compression ratio). In addition to the ability to restrict column fetches during
queries, Parquet 2.0 would implement push-down predicates. While writing this
book, the Parquet version was 1.6.

Spark with Big Data

[108]

Saving iles to the Parquet format
In Chapter 7, Spark SQL, we loaded the Orders tables from the .csv format. Let's save
the data in the Parquet format so that we can query the data from Impala. Usually one
would take a .csv ile, do transformations, and then store it in the Parquet format (for
example, the Sales By Country RDD that we had created). This is shown here:

 //

 // Parquet Operations

 //

valparquetFileOrders val parquetFileOrders = orders.
saveAsParquetFile("/Users/ksankar/fdps-vii/Orders.parquet")

valparquetFileOrderDet val parquetFileOrderDet = orderDetails.
saveAsParquetFile("/Users/ksankar/fdps-vii/OrderDetails.parquet")

The output is shown in the following screenshot:

Even though in this example we store the Parquet ile in the local ilesystem, in the
actual production system you would use HDFS to store the iles. We can inspect the
log entries and see that it has started a job with the ParquetTableOperations class.
The scheme used to save this was Run Length Encoding (RLE). As you can see, we
need only a couple of lines of code and Spark does all the hard work under the covers.
It creates a directory, data, and metadata iles underneath the main directory. It has
created two iles corresponding to the two jobs for two partitions, as shown here:

Chapter 8

[109]

Loading Parquet iles
Let's now load the Orders Parquet iles and see whether the data got saved correctly.
The code, again, is deceptively simple, as shown here:

 //

 // Let us read back the file

 //

valsqlContext= new org.apache.spark.sql.SQLContext(sc)

val parquetOrders= sqlContext.parquetFile("/Users/ksankar/fdps-vii/
Orders.parquet")

 parquetOrders.registerTempTable("ParquetOrders")

 val result = sqlContext.sql("SELECT * from ParquetOrders")

 result.take(10).foreach(e=>println("%5s | %5s | %s | %10s | %15s
|".format(e(0),e(1),e(2),e(3),e(4))))

The output is as follows:

Spark with Big Data

[110]

As you can see, the irst few lines create all the scaffolding and needed deinitions.
The lazy evaluation does not do anything unless we ask for some action, such as
take(10), as shown in the following screenshot:

It does all the work. You can see that Spark igured out that there are two iles to
process along with the ield names and their types. It actually fails with an error,
because EmployeeID was deined as string and I tried to print it with the '%d' mask.
Now that's interesting, Spark keeps the data type in the Parquet metadata and can
read it back. Once I used the %s mask, everything worked out ine.

Note that you cannot overwrite a Parquet ile, as shown:

Chapter 8

[111]

Saving processed RDD in the Parquet format
Now let's save our SalesByCountry report in the Parquet format. We create a SQL
table ieaSchemaRDD and then save that as a Parquet ile:

 //

 // Save our Sales By Country Report as parquet

 //

valsalesByCountry = sqlContext.sql("SELECT ShipCountry,
Sum(OrderDetails.UnitPrice * Qty * Discount) AS ProductSales FROM
Orders INNER JOIN OrderDetails ON Orders.OrderID = OrderDetails.
OrderID GROUP BY ShipCountry")

 salesByCountry.registerTempTable("SalesByCountry")

 result = sqlContext.sql("SELECT * from SalesByCountry")

 result.take(30).foreach(e=>println("%15s | %9.2f
 |".format(e(0),e(1))))

valparquetSALES = salesByCountry.saveAsParquetFile("/Users/ksankar/
fdps-vii/SalesByCountry.parquet")

By now we know the drill, and as expected, the iles are created, as shown next:

Querying Parquet iles with Impala
Impala is a massively parallel processing (MPP) data layer that is focused on SQL
queries over large data sets and suited for exploratory data analytics. The main
utility is the ability of SQL queries over Hadoop data; this means that the data is
stored in HDFS in different formats by MapReduce and Spark. Let's ire up Impala
and see if we can query our Orders database.

Spark with Big Data

[112]

The best way to try out Impala is through Cloudera's QuickStart VM available at
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/

cdh-5-3-x.html. While the details are outside the scope of this book, let me quickly
outline the top level steps for MacOS:

1. Download the VMWare VM and install via VMWare Fusion.
2. The VM starts and it has a single-node Hadoop cluster with all the stack

including Impala, Spark, and HBase, and so on.

3. The VM is CentOS 6.4. You need to start the terminal from Applications |
System Tools | Terminal.

4. At the terminal prompt, type Impala-shell to start the Impala shell and
verify that it works. Type Exit and exit out of it.

5. Copy the files under the Orders.parquet directory to the Orders directory
in HDFS in the Cloudera VM using a USB disk. The commands that I used
for this are shown here:

Copy the files to a USB disk:

cp -rv ~/fdps-vii/Orders.parquet /Volumes/USB\ DISK/

Connect the USB to the VM.

In the VM, copy the files to a local directory first and then to a directory in
the HDFS (hdfsdfs –copyToLocal gives unexpected urisyntaxexception
if copied directly from the USB disk—probably the way VMware maps the
USB disk), as shown here:

[cloudera@quickstart ~]$ mkdir Orders

[cloudera@quickstart ~]$ cp /media/USB\ DISK/fdps-vii/Orders.
parquet/* Orders/.

[cloudera@quickstart ~]$ hdfsdfs -mkdir Orders

[cloudera@quickstart ~]$ hdfsdfs -copyFromLocal /Orders/* Orders/.

6. Verify that the files are indeed in HDFS, as shown in the following screenshot:

http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html

Chapter 8

[113]

7. Get back to Impala using the following command:

[cloudera@quickstart ~]$ impala-shell

8. Create an external table pointing to the HDFS directory where we have
copied the files, as shown here:

[quickstart.cloudera:21000] > create external table orders
(ordered string,customerID string,employeeid string,orderdate
string,shipCountry string) stored as parquet location '/user/
cloudera/Orders';

The result is shown in the following screenshot:

9. Finally, execute the following SQL statement:

select * from orders limit 10;

And you can see the records, as shown in the following screenshot:

Spark with Big Data

[114]

We can also use the Hue graphical query UI and execute the queries, as shown in the
following screenshot:

That was not so hard. Once we master the various steps and commands, the rest
is easy.

HBase
HBase is the NoSQL datastore in the Hadoop ecosystem. Integration with a database
is essential for Spark. It could read data from an HBase table or write to one. In fact,
Spark supports HBase very well via the HadoopdataSet calls.

Before working through the examples, let's irst create a table and three records in
HBase. For testing, you can install a local standalone version of HBase that works
from the local ilesystem. So there's no need for Hadoop or HDFS. But that won't be
suitable for production.

Chapter 8

[115]

I created a test table with three records via the HBase shell as shown in the
next screenshot:

Loading from HBase
The HBase test code in the Apache Spark examples is a good start to test our HBase
connectivity and the loading data. The code is not that dificult, but we do need to
keep track of the data types, that is, keys as bytes, values as strings, and so on. The
test code is given here:

Val sc = new SparkContext("local","Chapter 8")

println(s"Running Spark Version ${sc.version}")

//

val conf = HBaseConfiguration.create()

conf.set(TableInputFormat.INPUT_TABLE, "test")

val admin = new HBaseAdmin(conf)

println(admin.isTableAvailable("test"))

val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],

classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],

classOf[org.apache.hadoop.hbase.client.Result])

 println(hBaseRDD.count())

 //

 hBaseRDD.foreach(println) // will print bytes

Spark with Big Data

[116]

 hBaseRDD.foreach(e=> (println("%s | %s |".format(
 Bytes.toString(e._1.get()),e._2))))

//

println("** Read Done **")

The output of this is shown in the following screenshot:

This is just a starting point. You would need to convert the bytes from HBase to the
actual data types of your data structures. You need to experiment a bit to get it right.

Saving to HBase
Now let's store a new record in our test table—key as row4 and value as value4. It
does require a few more classes and manipulations but nothing fancy, as shown next:

 //

 // create a pair RDD "row4":"value4"

 // save it in column family "d"

 //

 val testMap = Map("row4" -> "value4")

 val pairs = sc.parallelize(List(("row4","value4")))

 pairs.foreach(println)

 //

 //Function to convert our RDD to the required format for
 HBase

 //

 def convert(triple: (String, String)) = {

 val p = new Put(Bytes.toBytes(triple._1))

 p.add(Bytes.toBytes("cf"), Bytes.toBytes("d"),
 Bytes.toBytes(triple._2))

 (neworg.apache.hadoop.hbase.io.ImmutableBytesWritable, p)

Chapter 8

[117]

 }

 //

 valjobConfig: JobConf = new JobConf(conf, this.getClass)

 jobConfig.setOutputFormat(classOf[TableOutputFormat])

 jobConfig.set(TableOutputFormat.OUTPUT_TABLE, "test")

 //

newPairRDDFunctions(pairs.map(convert)).saveAsHadoopDataset(jobCon
 fig)

 //

 println("** Write Done **")

The program runs and prints out as shown in the next screenshot:

Now let's go back to the HBase shell and verify that the fourth record is added, as
shown in the next screenshot:

Good. We can see the fourth record and a later timestamp!

Other HBase operations
We can also get the metadata about the HBase server and environment, as
shown here:

val status = admin.getClusterStatus();

println("HBase Version : " +status.getHBaseVersion())

println("Average Load : "+status.getAverageLoad())

println("Backup Master Size : " + status.getBackupMastersSize())

println("Balancer On : " + status.getBalancerOn())

println("Cluster ID : "+ status.getClusterId())

println("Server Info : " + status.getServerInfo())

Spark with Big Data

[118]

The output prints out the details, as you can see in the following screenshot:

Some more information is available at the following websites:

• https://github.com/apache/spark/tree/master/examples/src/main/

scala/org/apache/spark/examples

• http://parquet.incubator.apache.org/documentation/latest/

• http://www.slideshare.net/cloudera/hadoop-summit-

36479635?ref=http://parquet.incubator.apache.org/presentations/

• Google Dremel paper at http://research.google.com/pubs/pub36632.
html

• https://blog.twitter.com/2013/dremel-made-simple-with-parquet

• http://planetcassandra.org/getting-started-with-apache-spark-

and-cassandra/

• http://blog.cloudera.com/blog/2014/12/new-in-cloudera-labs-

sparkonhbase/

• http://www.vidyasource.com/blog/Programming/Scala/Java/Data/

Hadoop/Analytics/2014/01/25/lighting-a-spark-with-hbase

• https://github.com/apache/spark/blob/master/examples/src/main/

scala/org/apache/spark/examples/HBaseTest.scala

• https://federicodayan.wordpress.com/2010/09/28/hbase-

textgetbytes-and-immutablebyteswritabletostring/

Summary
This chapter was focused on the integration of Spark with other big data
technologies. The Parquet format is an excellent way to expose the data processed
by Spark to external systems, and Impala makes this very easy. The advantage of the
Parquet format is that it is very eficient in terms of storage and expressive enough
to capture the schema. We also looked at the process of interfacing with HBase.
Thus, we can have our cake and eat it too! This means that we can leverage Spark for
distributed scalable data processing, without losing the capability to integrate with
other big data technologies.

https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples
https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples
http://parquet.incubator.apache.org/documentation/latest/
http://www.slideshare.net/cloudera/hadoop-summit-36479635?ref=http://parquet.incubator.apache.org/presentations/
http://www.slideshare.net/cloudera/hadoop-summit-36479635?ref=http://parquet.incubator.apache.org/presentations/
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
https://blog.twitter.com/2013/dremel-made-simple-with-parquet
http://planetcassandra.org/getting-started-with-apache-spark-and-cassandra/
http://planetcassandra.org/getting-started-with-apache-spark-and-cassandra/
http://blog.cloudera.com/blog/2014/12/new-in-cloudera-labs-sparkonhbase/
http://blog.cloudera.com/blog/2014/12/new-in-cloudera-labs-sparkonhbase/
http://www.vidyasource.com/blog/Programming/Scala/Java/Data/Hadoop/Analytics/2014/01/25/lighting-a-spark-with-hbase
http://www.vidyasource.com/blog/Programming/Scala/Java/Data/Hadoop/Analytics/2014/01/25/lighting-a-spark-with-hbase
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/HBaseTest.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/HBaseTest.scala
https://federicodayan.wordpress.com/2010/09/28/hbase-textgetbytes-and-immutablebyteswritabletostring/
https://federicodayan.wordpress.com/2010/09/28/hbase-textgetbytes-and-immutablebyteswritabletostring/

[119]

Machine Learning Using

Spark MLlib
One of the major attractions of Spark is the ability to scale computation massively,
and that is exactly what you need for machine learning algorithms. But the caveat
is that all machine learning algorithms cannot be effectively parallelized. Each
algorithm has its own challenges for parallelization, whether it is task parallelism
or data parallelism. Having said that, Spark is becoming the de-facto platform
for building machine learning algorithms and applications. For example, Apache
Mahout is moving away from Hadoop MapReduce and implementing the
algorithms in Spark (see the irst reference at the end of this chapter). The developers
working on the Spark MLlib are implementing more and more machine algorithms
in a scalable and concise manner in the Spark framework. For the latest information
on this, you can refer to the Spark site at https://spark.apache.org/docs/
latest/mllib-guide.html, which is the authoritative source.

This chapter covers the following machine learning algorithms:

• Basic statistics

• Linear regression

• Classification

• Clustering

• Recommendations

https://spark.apache.org/docs/latest/mllib-guide.html
https://spark.apache.org/docs/latest/mllib-guide.html

Machine Learning Using Spark MLlib

[120]

The Spark machine learning

algorithm table
The Spark machine learning algorithms implemented in Spark 1.1.0 org.apache.
spark.mllib for Scala and Java, and in pyspark.mllib for Python is shown in the
following table:

Algorithm Feature Notes

Basic statistics Summary statistics Mean, variance, count, max, min, and
numNonZeros

Correlations Spearman and Pearson correlation

Stratified sampling sampleBykey, sampleByKeyExact—With
and without replacement

Hypothesis testing Pearson's chi-squared goodness of fit test
Random data
generation

RandomRDDs

Normal, Poisson, and so on

Regression Linear models Linear regression—least square, Lasso, and
ridge regression

Classification Binary classification Logistic regression, SVM, decision trees,
and naïve Bayes

Multi-class
classification

Decision trees, naïve Bayes, and so on

Recommendation Collaborative filtering Alternating least squares

Clustering k-means

Dimensionality
reduction

SVD

PCA

Feature extraction TF-IDF

Word2Vec
StandardScaler

Normalizer

Optimization SGD

L-BFGS

Spark MLlib examples
Now, let's look at how to use the algorithms. Naturally, we need interesting datasets
to implement the algorithms; we will use appropriate datasets for the algorithms
shown in the next section. In the book text, we will use Scala, but I have included
iPython notebooks of the algorithm examples in Python as well.

Chapter 9

[121]

The code and data iles are available in the GitHub repository
at https://github.com/xsankar/fdps-vii. We'll keep
it updated with corrections.

Basic statistics
Let's read the car mileage data into an RDD and then compute some basic statistics.
We will use a simple parse class to parse a line of data. This will work if you know
the type and the structure of your CSV ile. We will use this technique for the
examples in this chapter:

import org.apache.spark.SparkContext
import org.apache.spark.mllib.stat.
 {MultivariateStatisticalSummary, Statistics}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.rdd.RDD

object MLlib01 {
 //
 def getCurrentDirectory = new java.io.File(".").getCanonicalPath
 //
 def parseCarData(inpLine : String) : Array[Double] = {
 val values = inpLine.split(',')
 val mpg = values(0).toDouble
 val displacement = values(1).toDouble
 val hp = values(2).toInt
 val torque = values(3).toInt
 val CRatio = values(4).toDouble
 val RARatio = values(5).toDouble
 val CarbBarrells = values(6).toInt
 val NoOfSpeed = values(7).toInt
 val length = values(8).toDouble
 val width = values(9).toDouble
 val weight = values(10).toDouble
 val automatic = values(11).toInt
 return Array(mpg,displacement,hp,
 torque,CRatio,RARatio,CarbBarrells,
 NoOfSpeed,length,width,weight,automatic)
 }
 //
 def main(args: Array[String]) {
 println(getCurrentDirectory)
 val sc = new SparkContext("local","Chapter 9")
 println(s"Running Spark Version ${sc.version}")
 //
 val dataFile = sc.textFile("/Users/ksankar/fdps-vii/data/car-

https://github.com/xsankar/fdps-vii

Machine Learning Using Spark MLlib

[122]

 milage-no-hdr.csv")
 val carRDD = dataFile.map(line => parseCarData(line))
 //
 // Let us find summary statistics
 //
 val vectors: RDD[Vector] = carRDD.map(v => Vectors.dense(v))
 val summary = Statistics.colStats(vectors)
 carRDD.foreach(ln=> {ln.foreach(no => print("%6.2f | "
 .format(no))); println()})
 print("Max :");summary.max.toArray.foreach(m => print("%5.1f |
 ".format(m)));println
 print("Min :");summary.min.toArray.foreach(m => print("%5.1f |
 ".format(m)));println
 print("Mean :");summary.mean.toArray.foreach(m => print("%5.1f
 | ".format(m)));println
 }
}

This program will produce the following output:

Chapter 9

[123]

Let's also run some correlations, as shown here:

//

// correlations

//

val hp = vectors.map(x => x(2))

val weight = vectors.map(x => x(10))

var corP = Statistics.corr(hp,weight,"pearson") // default

println("hp to weight : Pearson Correlation = %2.4f".format(corP))

var corS = Statistics.corr(hp,weight,"spearman") // Need to
 specify

println("hp to weight : Spearman Correlation = %2.4f"
 .format(corS))

//

val raRatio = vectors.map(x => x(5))

val width = vectors.map(x => x(9))

corP = Statistics.corr(raRatio,width,"pearson") // default

println("raRatio to width : Pearson Correlation = %2.4f"
 .format(corP))

corS = Statistics.corr(raRatio,width,"spearman") // Need to
 specify

println("raRatio to width : Spearman Correlation = %2.4f"
 .format(corS))

//

This will produce interesting results as shown in the next screenshot:

While this might seem too much work to calculate the correlation of a tiny dataset,
remember that this will scale to datasets consisting of 1,000,000 rows or even a
billion rows!

Machine Learning Using Spark MLlib

[124]

Linear regression
Linear regression takes a little more work than statistics. We need the LabeledPoint
class as well as a few more parameters such as the learning rate, that is, the step size.
We will also split the dataset into training and test, as shown here:

 //

 //

 def carDataToLP(inpArray : Array[Double]) : LabeledPoint = {

 return new LabeledPoint(inpArray(0),Vectors.dense (
 inpArray(1), inpArray(2), inpArray(3),
 inpArray(4), inpArray(5), inpArray(6), inpArray(7),
 inpArray(8), inpArray(9), inpArray(10), inpArray(11)))

 }

// Linear Regression

 //

 val carRDDLP = carRDD.map(x => carDataToLP(x)) // create a
 labeled point RDD

 println(carRDDLP.count())

 println(carRDDLP.first().label)

 println(carRDDLP.first().features)

 //

 // Let us split the data set into training & test set using a
 very simple filter

 //

 val carRDDLPTrain = carRDDLP.filter(x => x.features(9) <=
 4000)

 val carRDDLPTest = carRDDLP.filter(x => x.features(9) > 4000)

 println("Training Set : " + "%3d".format
 (carRDDLPTrain.count()))

 println("Training Set : " + "%3d".format(carRDDLPTest.count()))

 //

 // Train a Linear Regression Model

 // numIterations = 100, stepsize = 0.000000001

 // without such a small step size the algorithm will diverge

 //

 val mdlLR = LinearRegressionWithSGD.train
 (carRDDLPTrain,100,0.000000001)

 println(mdlLR.intercept) // Intercept is turned off when using
 LinearRegressionSGD object, so intercept will always be 0 for
 this code

 println(mdlLR.weights)

 //

 // Now let us use the model to predict our test set

 //

 val valuesAndPreds = carRDDLPTest.map(p => (p.label,
 mdlLR.predict(p.features)))

Chapter 9

[125]

 val mse = valuesAndPreds.map(vp => math.pow((vp._1 - vp._2),2
)).

 reduce(_+_) / valuesAndPreds.count()

 println("Mean Squared Error = " + "%6.3f".format(mse))

 println("Root Mean Squared Error = " + "%6.3f"
 .format(math.sqrt(mse)))

 // Let us print what the model predicted

 valuesAndPreds.take(20).foreach(m => println("%5.1f | %5.1f |"
 .format(m._1,m._2)))

The run result will be as expected, as shown in the next screenshot:

The prediction is not that impressive. There are a couple of reasons for this. There
might be quadratic effects; some of the variables might be correlated (for example,
length, width, and weight, and so we might not need all three to predict the mpg
value). Finally, we might not need all the 10 features anyways. I leave it to you to try
with different combinations of features. (In the parseCarData function, take only a
subset of the variables; for example take hp, weight, and number of speed and see
which combination minimizes the mse value.)

Machine Learning Using Spark MLlib

[126]

Classiication
Classiication is very similar to linear regression. The algorithms take labeled points,
and the train process has various parameters to tweak the algorithm to it the needs
of an application. The returned model can be used to predict the class of a labeled
point. Here is a quick example using the titanic dataset:

For our example, we will keep the same structure as the linear regression example.
First, we will parse the full dataset line and then later keep it simple by creating a
labeled point with a set of selected features, as shown in the following code:

import org.apache.spark.SparkContext

import org.apache.spark.mllib.regression.LabeledPoint

import org.apache.spark.mllib.linalg.Vectors

import org.apache.spark.mllib.tree.DecisionTree

object Chapter0802 {

 //

 def getCurrentDirectory = new java.io.File("."
).getCanonicalPath

 //

 // 0 pclass,1 survived,2 l.name,3.f.name, 4 sex,5 age,6 sibsp,7
 parch,8 ticket,9 fare,10 cabin,

 // 11 embarked,12 boat,13 body,14 home.dest

 //

 def str2Double(x: String) : Double = {

 try {

 x.toDouble

 } catch {

 case e: Exception => 0.0

 }

 }

 //

 def parsePassengerDataToLP(inpLine : String) : LabeledPoint = {

 val values = inpLine.split(',')

 //println(values)

 //println(values.length)

 //

 val pclass = str2Double(values(0))

 val survived = str2Double(values(1))

 // skip last name, first name

 var sex = 0

 if (values(4) == "male") {

 sex = 1

 }

Chapter 9

[127]

 var age = 0.0 // a better choice would be the average of all
 ages

 age = str2Double(values(5))

 //

 var sibsp = 0.0

 age = str2Double(values(6))

 //

 var parch = 0.0

 age = str2Double(values(7))

 //

 var fare = 0.0

 fare = str2Double(values(9))

 return new LabeledPoint(survived,Vectors.dense
 (pclass,sex,age,sibsp,parch,fare))

 }

Now that we have setup the routines to parse the data, let's dive into the
main program:

 //

 def main(args: Array[String]): Unit = {

 println(getCurrentDirectory)

 val sc = new SparkContext("local","Chapter 8")

 println(s"Running Spark Version ${sc.version}")

 //

 val dataFile = sc.textFile("/Users/ksankar/bdtc-2014
 /titanic/titanic3_01.csv")

 val titanicRDDLP = dataFile.map(_.trim).filter(_.length > 1).

 map(line => parsePassengerDataToLP(line))

 //

 println(titanicRDDLP.count())

 //titanicRDDLP.foreach(println)

 //

 println(titanicRDDLP.first().label)

 println(titanicRDDLP.first().features)

 //

 val categoricalFeaturesInfo = Map[Int, Int]()

 val mdlTree = DecisionTree.trainClassifier(titanicRDDLP, 2, //
 numClasses

 categoricalFeaturesInfo, // all features are continuous

 "gini", // impurity

 5, // Maxdepth

 32) //maxBins

 //

 println(mdlTree.depth)

 println(mdlTree)

Machine Learning Using Spark MLlib

[128]

The tree is interesting to inspect. Check it out here:

 //

 // Let us predict on the dataset and see how well it works.

 // In the real world, we should split the data to train & test
 and then predict the test data:

 //

 val predictions = mdlTree.predict(titanicRDDLP.
 map(x=>x.features))

 val labelsAndPreds = titanicRDDLP.
 map(x=>x.label).zip(predictions)

 //

 val mse = labelsAndPreds.map(vp => math.pow((vp._1 -
 vp._2),2)).

 reduce(_+_) / labelsAndPreds.count()

 println("Mean Squared Error = " + "%6f".format(mse))

 //

 // labelsAndPreds.foreach(println)

 //

 val correctVals = labelsAndPreds.aggregate(0.0)((x, rec) => x
 + (rec._1 == rec._2).compare(false), _ + _)

 val accuracy = correctVals/labelsAndPreds.count()

 println("Accuracy = " + "%3.2f%%".format(accuracy*100))

 //

 println("*** Done ***")

 }

}

The result obtained when you run the program is as expected. The printout of the
tree is interesting, as shown here:

Running Spark Version 1.1.1

14/11/28 18:41:27 INFO MemoryStore: ensureFreeSpace(163705) called with
curMem=0, maxMem=2061647216

[..]

14/11/28 18:41:27 INFO SparkContext: Job finished: count at Chapter0802.
scala:56, took 0.260993 s

1309

14/11/28 18:41:27 INFO SparkContext: Starting job: first at Chapter0802.
scala:59

[..]

14/11/28 18:41:27 INFO SparkContext: Job finished: first at Chapter0802.
scala:59, took 0.016479 s

1.0

Chapter 9

[129]

14/11/28 18:41:27 INFO SparkContext: Starting job: first at Chapter0802.
scala:60

[..]

14/11/28 18:41:27 INFO SparkContext: Job finished: first at Chapter0802.
scala:60, took 0.014408 s

[1.0,0.0,0.0,0.0,0.0,211.3375]

14/11/28 18:41:27 INFO SparkContext: Starting job: take at
DecisionTreeMetadata.scala:66

[..]

14/11/28 18:41:28 INFO DecisionTree: Internal timing for DecisionTree:

14/11/28 18:41:28 INFO DecisionTree: init: 0.36408

 total: 0.95518

 extractNodeInfo: 7.3E-4

 findSplitsBins: 0.249814

 extractInfoForLowerLevels: 7.74E-4

 findBestSplits: 0.565394

 chooseSplits: 0.201012

 aggregation: 0.362411

5

DecisionTreeModel classifier

 If (feature 1 <= 0.0)

 If (feature 0 <= 2.0)

 If (feature 5 <= 26.0)

 If (feature 2 <= 1.0)

 If (feature 0 <= 1.0)

 Predict: 1.0

 Else (feature 0 > 1.0)

 Predict: 1.0

 Else (feature 2 > 1.0)

 Predict: 1.0

 Else (feature 5 > 26.0)

 If (feature 2 <= 1.0)

 If (feature 5 <= 38.0021)

 Predict: 1.0

 Else (feature 5 > 38.0021)

 Predict: 1.0

 Else (feature 2 > 1.0)

 If (feature 5 <= 79.42500000000001)

 Predict: 1.0

 Else (feature 5 > 79.42500000000001)

Machine Learning Using Spark MLlib

[130]

 Predict: 1.0

 Else (feature 0 > 2.0)

 If (feature 5 <= 25.4667)

 If (feature 5 <= 7.2292)

 If (feature 5 <= 7.05)

 Predict: 1.0

 Else (feature 5 > 7.05)

 Predict: 1.0

 Else (feature 5 > 7.2292)

 If (feature 5 <= 15.5646)

 Predict: 0.0

 Else (feature 5 > 15.5646)

 Predict: 1.0

 Else (feature 5 > 25.4667)

 If (feature 5 <= 38.0021)

 If (feature 5 <= 30.6958)

 Predict: 0.0

 Else (feature 5 > 30.6958)

 Predict: 0.0

 Else (feature 5 > 38.0021)

 Predict: 0.0

 Else (feature 1 > 0.0)

 If (feature 0 <= 1.0)

 If (feature 5 <= 26.0)

 If (feature 5 <= 7.05)

 If (feature 5 <= 0.0)

 Predict: 0.0

 Else (feature 5 > 0.0)

 Predict: 0.0

 Else (feature 5 > 7.05)

 Predict: 0.0

 Else (feature 5 > 26.0)

 If (feature 5 <= 30.6958)

 If (feature 2 <= 0.0)

 Predict: 0.0

 Else (feature 2 > 0.0)

 Predict: 0.0

 Else (feature 5 > 30.6958)

 If (feature 2 <= 1.0)

 Predict: 0.0

Chapter 9

[131]

 Else (feature 2 > 1.0)

 Predict: 1.0

 Else (feature 0 > 1.0)

 If (feature 2 <= 0.0)

 If (feature 5 <= 38.0021)

 If (feature 5 <= 14.4583)

 Predict: 0.0

 Else (feature 5 > 14.4583)

 Predict: 0.0

 Else (feature 5 > 38.0021)

 If (feature 0 <= 2.0)

 Predict: 0.0

 Else (feature 0 > 2.0)

 Predict: 1.0

 Else (feature 2 > 0.0)

 If (feature 5 <= 26.0)

 If (feature 2 <= 1.0)

 Predict: 0.0

 Else (feature 2 > 1.0)

 Predict: 0.0

 Else (feature 5 > 26.0)

 If (feature 0 <= 2.0)

 Predict: 0.0

 Else (feature 0 > 2.0)

 Predict: 0.0

14/11/28 18:41:28 INFO SparkContext: Starting job: reduce at Chapter0802.
scala:79

[..]

14/11/28 18:41:28 INFO SparkContext: Job finished: count at Chapter0802.
scala:79, took 0.077973 s

Mean Squared Error = 0.200153

14/11/28 18:41:28 INFO SparkContext: Starting job: aggregate at
Chapter0802.scala:84

[..]

14/11/28 18:41:28 INFO SparkContext: Job finished: count at Chapter0802.
scala:85, took 0.042592 s

Accuracy = 79.98%

*** Done ***

Machine Learning Using Spark MLlib

[132]

In the real world, one would create a training and a test dataset and train the
model on the training dataset and then predict on the test dataset. Then we can
calculate the mse and minimize it on various feature combinations, some of which
could also be engineered features.

Clustering
Spark MLlib has implemented the k-means clustering algorithm. The model training
and prediction interfaces are similar to other machine learning algorithms. Let's see
how it works by going through an example.

Let's use a sample data that has two dimensions x and y. The plot of the points
would look like the following screenshot:

From the preceding graph, we can see that four clusters form one solution. Let's try
with k=2 and k=4. Let's see how the Spark clustering algorithm handles this dataset
and the groupings:

import org.apache.spark.SparkContext

import org.apache.spark.mllib.linalg.{Vector,Vectors}

import org.apache.spark.mllib.clustering.KMeans

object Chapter0803 {

 def parsePoints(inpLine : String) : Vector = {

 val values = inpLine.split(',')

 val x = values(0).toInt

 val y = values(1).toInt

Chapter 9

[133]

 return Vectors.dense(x,y)

 }

 //

 def main(args: Array[String]): Unit = {

 val sc = new SparkContext("local","Chapter 8")

 println(s"Running Spark Version ${sc.version}")

 //

 val dataFile = sc.textFile("/Users/ksankar/bdtc-2014/cluster-
 points/cluster-points.csv")

 val points = dataFile.map(_.trim).filter(_.length > 1).
 map(line => parsePoints(line))

 //

 println(points.count())

 //

 var numClusters = 2

 val numIterations = 20

 var mdlKMeans = KMeans.train(points, numClusters,
 numIterations)

 //

 println(mdlKMeans.clusterCenters)

 //

 var clusterPred = points.map(x=>mdlKMeans.predict(x))

 var clusterMap = points.zip(clusterPred)

 //

 clusterMap.foreach(println)

 //

 clusterMap.saveAsTextFile("/Users/ksankar/bdtc-2014/cluster-
 points/2-cluster.csv")

 //

 // Now let us try 4 centers:

 //

 numClusters = 4

 mdlKMeans = KMeans.train(points, numClusters, numIterations)

 clusterPred = points.map(x=>mdlKMeans.predict(x))

 clusterMap = points.zip(clusterPred)

 clusterMap.saveAsTextFile("/Users/ksankar/bdtc-2014/cluster-
 points/4-cluster.csv")

 clusterMap.foreach(println)

 }

}

Machine Learning Using Spark MLlib

[134]

The results of the run would be as shown in the next screenshot (your run could give
slightly different results):

The k=2 graph shown in the next screenshot looks as expected:

Chapter 9

[135]

With k=4 the results are as shown in the following screenshot:

The plot shown in the following screenshot conirms that the clusters are obtained as
expected. Spark does understand clustering!

Bear in mind that the results could vary a little between runs because the clustering
algorithm picks the centers randomly and grows from there. With k=4, the results are
stable; but with k=2, there is room for partitioning the points in different ways. Try it
out a few times and see the results.

Machine Learning Using Spark MLlib

[136]

Recommendation
The recommendation algorithms fall under ive general mechanisms, namely,
knowledge-based, demographic-based, content-based, collaborative iltering
(item-based or user-based), and latent factor-based. Usually, the collaborative
iltering is computationally intensive—Spark implements the Alternating Least
Square (ALS) algorithm authored by Yehuda Koren, available at http://dl.acm.
org/citation.cfm?id=1608614. It is user-based collaborative iltering using the
method of learning latent factors, which can scale to a large dataset. Let's quickly
use the movielens medium dataset to implement a recommendation using Spark.

There are some interesting RDD transformations. Apart from that, the code is not
that complex, as shown next:

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._ // for implicit
 conversations

import org.apache.spark.mllib.recommendation.Rating

import org.apache.spark.mllib.recommendation.ALS

object Chapter0804 {

 def parseRating1(line : String) : (Int,Int,Double,Int) = {

 //println(x)

 val x = line.split("::")

 val userId = x(0).toInt

 val movieId = x(1).toInt

 val rating = x(2).toDouble

 val timeStamp = x(3).toInt/10

 return (userId,movieId,rating,timeStamp)

 }

 //

 def parseRating(x : (Int,Int,Double,Int)) : Rating = {

 val userId = x._1

 val movieId = x._2

 val rating = x._3

 val timeStamp = x._4 // ignore

 return new Rating(userId,movieId,rating)

 }

 //

http://dl.acm.org/citation.cfm?id=1608614
http://dl.acm.org/citation.cfm?id=1608614

Chapter 9

[137]

Now that we have the parsers in place, let's focus on the main program, as
shown next:

 def main(args: Array[String]): Unit = {

 val sc = new SparkContext("local","Chapter 8")

 println(s"Running Spark Version ${sc.version}")

 //

 val moviesFile = sc.textFile("/Users/ksankar/bdtc-
 2014/movielens/medium/movies.dat")

 val moviesRDD = moviesFile.map(line => line.split("::"))

 println(moviesRDD.count())

 //

 val ratingsFile = sc.textFile("/Users/ksankar/bdtc-
 2014/movielens/medium/ratings.dat")

 val ratingsRDD = ratingsFile.map(line => parseRating1(line))

 println(ratingsRDD.count())

 //

 ratingsRDD.take(5).foreach(println) // always check the RDD

 //

 val numRatings = ratingsRDD.count()

 val numUsers = ratingsRDD.map(r => r._1).distinct().count()

 val numMovies = ratingsRDD.map(r => r._2).distinct().count()

 println("Got %d ratings from %d users on %d movies.".

 format(numRatings, numUsers, numMovies))

Split the dataset into training, validation, and test. We can use any random
dataset. But here we will use the last digit of the timestamp:

val trainSet = ratingsRDD.filter(x => (x._4 % 10) < 6)
 .map(x=>parseRating(x))

 val validationSet = ratingsRDD.filter(x => (x._4 % 10) >= 6 &
 (x._4 % 10) < 8).map(x=>parseRating(x))

 val testSet = ratingsRDD.filter(x => (x._4 % 10) >= 8)
 .map(x=>parseRating(x))

 println("Training: "+ "%d".format(trainSet.count()) +

 ", validation: " + "%d".format(validationSet.count()) + ",
 test: " + "%d".format(testSet.count()) + ".")

 //

 // Now train the model using the training set:

 val rank = 10

 val numIterations = 20

 val mdlALS = ALS.train(trainSet,rank,numIterations)

 //

 // prepare validation set for prediction

 //

 val userMovie = validationSet.map {

Machine Learning Using Spark MLlib

[138]

 case Rating(user, movie, rate) =>(user, movie)

 }

 //

 // Predict and convert to Key-Value PairRDD

 val predictions = mdlALS.predict(userMovie).map {

 case Rating(user, movie, rate) => ((user, movie), rate)

 }

 //

 println(predictions.count())

 predictions.take(5).foreach(println)

 //

 // Now convert the validation set to PairRDD:

 //

 val validationPairRDD = validationSet.map(r => ((r.user,
 r.product), r.rating))

 println(validationPairRDD.count())

 validationPairRDD.take(5).foreach(println)

 println(validationPairRDD.getClass())

 println(predictions.getClass())

 //

 // Now join the validation set with predictions.

 // Then we can figure out how good our recommendations are.

 // Tip:

 // Need to import org.apache.spark.SparkContext._

 // Then MappedRDD would be converted implicitly to PairRDD

 //

 val ratingsAndPreds = validationPairRDD.join(predictions)

 println(ratingsAndPreds.count())

 ratingsAndPreds.take(3).foreach(println)

 //

 val mse = ratingsAndPreds.map(r => {

 math.pow((r._2._1 - r._2._2),2)

 }).reduce(_+_) / ratingsAndPreds.count()

 val rmse = math.sqrt(mse)

 println("MSE = %2.5f".format(mse) + " RMSE = %2.5f"
 .format(rmse))

 println("** Done **")

 }

}

Chapter 9

[139]

The run results, as shown in the next screenshot, are obtained as expected:

Check the following screenshot as well:

Machine Learning Using Spark MLlib

[140]

Some more information is available at:

• The Goodby MapReduce article from Mahout News (https://mahout.
apache.org/)

• https://spark.apache.org/docs/latest/mllib-guide.html

• A Collaborative Filtering ALS paper (http://dl.acm.org/citation.
cfm?id=1608614)

• A good presentation on decision trees (http://spark-summit.org/wp-
content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-

Spark-Made-Das-Sparks-Talwalkar.pdf)

• A recommended hands-on exercise from Spark Summit 2014 (https://
databricks-training.s3.amazonaws.com/movie-recommendation-with-

mllib.html)

Summary
In this chapter, we looked at the most common machine learning algorithms.
Naturally, ML is a vast subject and requires lot more study, experimentation, and
practical experience on interesting data science problems. Two books that are
relevant to Spark Machine Learning are Packt's own book Machine Learning with
Spark, Nick Pentreath, and O'Reilly's Advanced Analytics with Spark, Sandy Ryza, Uri
Laserson, Sean Owen, and Josh Wills. Both are excellent books that you can refer to.

https://mahout.apache.org/
https://mahout.apache.org/
https://spark.apache.org/docs/latest/mllib-guide.html
http://dl.acm.org/citation.cfm?id=1608614
http://dl.acm.org/citation.cfm?id=1608614
http://spark-summit.org/wp-content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-Spark-Made-Das-Sparks-Talwalkar.pdf
http://spark-summit.org/wp-content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-Spark-Made-Das-Sparks-Talwalkar.pdf
http://spark-summit.org/wp-content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-Spark-Made-Das-Sparks-Talwalkar.pdf
https://databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html
https://databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html
https://databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html

[141]

Testing
Writing effective software without tests is quite challenging. Effective testing,
especially in cases with slow end-to-end running times, such as distributed systems,
can help improve developer effectiveness greatly. This chapter isn't going to try to
convince you that you should be testing; however, if you really want to ride without
a seat belt, that's ine too.

Testing in Java and Scala
For the sake of simplicity, this chapter covers using ScalaTest and JUnit as testing
libraries. ScalaTest can be used to test both Scala and Java code and is the testing
library currently used in Spark. To use ScalaTest with sbt, you need to add this to the
.sbt ile: libraryDependencies += "org.scalatest" % "scalatest_2.10" %
"2.0" % "test". JUnit is a popular testing framework for Java.

Making your code testable
If you have code that can be isolated from the RDD interaction or SparkContext
interaction, that code can be tested using standard methodologies. While it can be
quite convenient to use anonymous functions when writing Spark code, you cannot
test them independently without the expensive overhead of setting up SparkContext.
So the best practice is to write named functions. For example, in your CSV parser,
you could take the following code:

• Scala code could be the following:

val splitLines = inFile.map(line => {

 val reader = new CSVReader(new StringReader(line))

 reader.readNext().map(_.toDouble)

 }

Testing

[142]

• Java code could be the following:

 JavaRDD<Integer[]> splitLines = inFile.flatMap(new
FlatMapFunction<String, Integer[]> (){
 public Iterable<Integer[]> call(String line) {
 ArrayList<Integer[]> result = new
 ArrayList<Integer[]>();

 try {
 CSVReader reader = new CSVReader(new
 StringReader(line));

 String[] parsedLine = reader.readNext();

 Integer[] intLine = new
 Integer[parsedLine.length];

 for (int i = 0; i < parsedLine.length; i++) {
 intLine[i] = Integer.parseInt
 (parsedLine[i]);

 }

 result.add(intLine);

 } catch (Exception e) {
 errors.add(1);

 }

 return result;

 }

 }

);

Instead of this, you could write the code as shown next:

 def parseLine(line: String): Array[Double] = {

 val reader = new CSVReader(new StringReader(line))

 reader.readNext().map(_.toDouble)

 }

Alternatively, in Java, you could write the code as shown here:

public class JavaLoadCsvTestable {

 public static class ParseLine extends Function<String, Integer[]>
{

 public Integer[] call(String line) throws Exception {

 CSVReader reader = new CSVReader(new StringReader(line));

 String[] parsedLine = reader.readNext();

 Integer[] intLine = new Integer[parsedLine.length];

 for (int i = 0; i < parsedLine.length; i++) {

 intLine[i] = Integer.parseInt(parsedLine[i]);

 }

 return intLine;

 }

 }

}

Chapter 10

[143]

You can then test it without having to worry about any Spark speciic setup or logic
as shown in the following code:

import org.scalatest.FunSuite

import org.scalatest.matchers.ShouldMatchers

class TestableLoadCsvExampleSuite extends FunSuite with
 ShouldMatchers {

 test("should parse a csv line with numbers") {

 TestableLoadCsvExample.parseLine("1,2") should equal
 (Array[Double](1.0,2.0))

 TestableLoadCsvExample.parseLine("100,-1,1,2,2.5") should
 equal (Array[Double](100,-1,1.0,2.0,2.5))

 }

 test("should error if there is a non-number") {

 evaluating { TestableLoadCsvExample.parseLine("pandas") }
 should produce [NumberFormatException]

 }

}

Alternatively, to test the Java code, you would do something like the following
code (note that the test is still written in Scala; don't worry as we will look at JUnit
tests later):

class JavaLoadCsvExampleSuite extends FunSuite with ShouldMatchers {

 test("should parse a csv line with numbers") {

 val parseLine = new JavaLoadCsvTestable.ParseLine();

 parseLine.call("1,2") should equal (Array[Integer](1,2))

 parseLine.call("100,-1,1,2,2") should equal (Array[Integer]
 (100,-1,1,2,2))

 }

 test("should error if there is a non-integer") {

 val parseLine = new JavaLoadCsvTestable.ParseLine();

 evaluating { parseLine.call("pandas") } should produce
 [NumberFormatException]

 evaluating {parseLine.call("100,-1,1,2.2,2") should equal
 (Array[Integer](100,-1,1,2,2)) } should produce
 [NumberFormatException]

 }

}

Testing

[144]

Testing interactions with SparkContext
You may, however, remember that you later extended the CSV parser to increment
counters on invalid input to gracefully handle failures. To verify that behavior, you
could provide mock counters and other mock objects for the Spark components you
use. You are restricted to only test the parts of the code that do not depend on Spark.
Instead, you could re-factor the code to make the core testable without Spark and to
do a more complete test using a provided SparkContext, as shown:

object MoreTestableLoadCsvExample {

 def parseLine(line: String): Array[Double] = {

 val reader = new CSVReader(new StringReader(line))

 reader.readNext().map(_.toDouble)

 }

 def handleInput(invalidLineCounter: Accumulator[Int], inFile:
 RDD[String]): RDD[Double] = {

 val numericData = inFile.flatMap(line => {

 try {

 Some(parseLine(line))

 } catch {

 case _ => {

 invalidLineCounter += 1

 None

 }

 }

 })

 numericData.map(row => row.sum)

 }

 def main(args: Array[String]) {

 if (args.length != 2) {

 System.err.println("Usage: TestableLoadCsvExample <master>
 <inputfile>")

 System.exit(1)

 }

 val master = args(0)

 val inputFile = args(1)

 val sc = new SparkContext(master, "Load CSV Example",

 System.getenv("SPARK_HOME"),

 Seq(System.getenv("JARS")))

 sc.addFile(inputFile)

 val inFile = sc.textFile(inputFile)

 val invalidLineCounter = sc.accumulator(0)

 val summedData = handleInput(invalidLineCounter, inFile)

 println(summedData.collect().mkString(","))

Chapter 10

[145]

 println("Errors: "+invalidLineCounter)

 println(summedData.stats())

 }

}

This does have the downside of requiring that your tests run
serially, else sbt (or other build infrastructure) may try to
launch multiple Spark contexts at the same time, which will
cause confusing error messages. We can force the tests to
execute sequentially in sbt with parallelExecution in
Test := false.

We test this by using the following code:

import org.apache.spark._

import org.apache.spark.SparkContext._

import org.scalatest.FunSuite

import org.scalatest.matchers.ShouldMatchers

class MoreTestableLoadCsvExampleSuite extends FunSuite with
 ShouldMatchers {

 test("summ data on input") {

 val sc = new SparkContext("local", "Load CSV Example")

 val counter = sc.accumulator(0)

 val input = sc.parallelize(List("1,2","1,3"))

 val result = MoreTestableLoadCsvExample.handleInput(counter,
 input)

 result.collect() should equal (Array[Int](3,4))

 }

 test("should parse a csv line with numbers") {

 MoreTestableLoadCsvExample.parseLine("1,2") should equal
 (Array[Double](1.0,2.0))

 MoreTestableLoadCsvExample.parseLine("100,-1,1,2,2.5") should
 equal (Array[Double](100,-1,1.0,2.0,2.5))

 }

 test("should error if there is a non-number") {

 evaluating { MoreTestableLoadCsvExample.parseLine("pandas") }
 should produce [NumberFormatException]

 }

}

Testing

[146]

In Java, you can test with the following code:

public class JavaLoadCsvMoreTestable {

 public static class ParseLineWithAcc extends
 FlatMapFunction<String, Integer[]> {

 Accumulator<Integer> acc;

 ParseLineWithAcc(Accumulator<Integer> acc) {

 this.acc = acc;

 }

 public Iterable<Integer[]> call(String line) throws Exception {

 ArrayList<Integer[]> result = new ArrayList<Integer[]>();

 try {

 CSVReader reader = new CSVReader(new
 StringReader(line));

 String[] parsedLine = reader.readNext();

 Integer[] intLine = new Integer[parsedLine.length];

 for (int i = 0; i < parsedLine.length; i++) {

 intLine[i] = Integer.parseInt(parsedLine[i]);

 }

 result.add(intLine);

 } catch (Exception e) {

 acc.add(1);

 }

 return result;

 }

 }

 public static JavaDoubleRDD processData(Accumulator<Integer>
 acc, JavaRDD<String> input) {

 JavaRDD<Integer[]> splitLines = input.flatMap(new
 ParseLineWithAcc(acc));

 JavaDoubleRDD summedData = splitLines.map(new
 DoubleFunction<Integer[]>() {

 public Double call(Integer[] in) {

 Double ret = 0.;

 for (int i = 0; i < in.length; i++) {

 ret += in[i];

 }

 return ret;

 }

 }

);

return summedData;

 }

Chapter 10

[147]

You can test this in Scala code as shown here (note that we add an invalid input for
the counter here):

class JavaLoadCsvMoreTestableSuite extends FunSuite with
 ShouldMatchers {

 test("sum data on input") {

 val sc = new JavaSparkContext("local", "Load Java CSV test")

 val counter: Accumulator[Integer] = sc.intAccumulator(0)

 val input: JavaRDD[String] =
 sc.parallelize(List("1,2","1,3","murh"))

 val javaLoadCsvMoreTestable = new JavaLoadCsvMoreTestable();

 val resultRDD = JavaLoadCsvMoreTestable.
 processData(counter,input)

 resultRDD.cache();

 val resultCount = resultRDD.count()

 val result = resultRDD.collect().toArray()

 resultCount should equal (2)

 result should equal (Array[Double](3.0, 4.0))

 counter.value should equal (1)

 sc.stop()

 }

}

You can test this in Java with Junit4, as shown in the following code:

package pandaspark.examples;

import org.apache.spark.*;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaDoubleRDD;

import org.scalatest.FunSuite;

import org.scalatest.matchers.ShouldMatchers;

import static org.junit.Assert.assertEquals;

import org.junit.Test;

import org.junit.Ignore;

import org.junit.runner.RunWith;

import org.junit.runners.JUnit4;

import java.util.Arrays;

import java.util.List;

import java.util.ArrayList;

@RunWith(JUnit4.class)

Testing

[148]

public class JavaLoadCsvMoreTestableSuiteJunit {

 @Test

 public void testSumDataOnInput() {

 JavaSparkContext sc = new JavaSparkContext("local", "Load Java
 CSV test");

 Accumulator<Integer> counter = sc.intAccumulator(0);

 String[] inputArray = {"1,2","1,3","murh"};

 JavaRDD<String> input = sc.parallelize
 (Arrays.asList(inputArray));

 JavaDoubleRDD resultRDD = JavaLoadCsvMoreTestable.
 processData(counter, input);

 long resultCount = resultRDD.count();

 assertEquals(resultCount, 2);

 int errors = counter.value();

 assertEquals(errors, 1);

 sc.stop();

 }

}

Testing in Python
Python testing of Spark is very similar in concept to testing in Java and Scala, but
the testing libraries are a bit different. PySpark uses both doctest and unittest to test
itself. doctest makes it easy to create tests based on the expected output of code run
in the Python interpreter. We can run the tests using the following commands:

export SPARK_TESTING=1

export PYSPARK_DOC_TEST=1

bin/pyspark [pathtocode]

By taking the wordcount.py example from Spark and factoring out countWords,
you can test the word count functionality using doctest. Some doctest examples are
shown next:

"""

>>> from pyspark.context import SparkContext

>>> sc = SparkContext('local', 'test')

>>> b = sc.parallelize(["pandas are awesome","and ninjas are also
awesome"])

>>> countWords(b)

[('also', 1), ('and', 1), ('are', 2), ('awesome', 2), ('ninjas', 1),
('pandas', 1)]

"""

Chapter 10

[149]

import sys

from operator import add

from pyspark import SparkContext

def countWords(lines):

 counts = lines.flatMap(lambda x: x.split(' ')) \

 .map(lambda x: (x, 1)) \

 .reduceByKey(add)

 return sorted(counts.collect())

if __name__ == "__main__":

 if len(sys.argv) < 3:

 print >> sys.stderr, \

 "Usage: PythonWordCount <master> <file>"

 exit(-1)

 sc = SparkContext(sys.argv[1], "PythonWordCount")

 lines = sc.textFile(sys.argv[2], 1)

 output = countWords(lines)

 for (word, count) in output:

 print "%s : %i" % (word, count)

Note about doctest

You put the test in between triple quotes. The testing code is
preixed with >>> as if it's running in the Python shell. The
expected output that would be seen is added exactly as if it's
returned in the Python shell.

We can also test something similar to our Java and Scala programs, as shown next:

"""

>>> from pyspark.context import SparkContext

>>> sc = SparkContext('local', 'test')

>>> b = sc.parallelize(["1,2","1,3"])

>>> handleInput(b)

[3, 4]

"""

import sys

from operator import add

from pyspark import SparkContext

def handleInput(lines):

Testing

[150]

 data = lines.map(lambda x: sum(map(int, x.split(','))))

 return sorted(data.collect())

if __name__ == "__main__":

 if len(sys.argv) < 3:

 print >> sys.stderr, \

 "Usage: PythonLoadCsv <master> <file>"

 exit(-1)

 sc = SparkContext(sys.argv[1], "PythonLoadCsv")

 lines = sc.textFile(sys.argv[2], 1)

 output = handleInput(lines)

 for sum in output:

 print sum

Some more information can be found at the following sites:

• http://blog.quantifind.com/posts/spark-unit-test/

• http://www.scalatest.org/

• http://junit.org/

• http://docs.python.org/2/library/unittest.html

• http://docs.python.org/2/library/doctest.html

Summary
This chapter discussed how to structure your code so that it is testable as well as
the testing framework that is used within Spark. Effective testing can save large
amounts of debugging time, which can be especially painful in large distributed
systems. In the next chapter, we will look at some tips and tricks such as tuning
and securing Spark.

http://blog.quantifind.com/posts/spark-unit-test/
http://www.scalatest.org/
http://junit.org/
http://docs.python.org/2/library/unittest.html
http://docs.python.org/2/library/doctest.html

[151]

Tips and Tricks
As discussed in the earlier chapters, you have the tools to build and test Spark jobs
as well as set up a Spark cluster to run them on, so now it's time to igure out how to
make the most of your time as a Spark developer. The Spark documentation includes
good tips on tuning and is available at http://spark.apache.org/docs/latest/
tuning.html.

Where to ind logs
Spark has very useful logs to igure out what's going on when things are not
going as expected. Spark keeps a per machine log on each machine by default
in the SPARK_HOME/work subdirectory. Spark's web UI provides a convenient
place to see STDOUT and STDERR of each job, running and completed jobs,
separated out per worker.

Concurrency limitations
Spark's concurrency for operations is limited by the number of partitions.
Conversely, having too many partitions can cause excess overhead by launching
too many tasks. If you have too many partitions, you can shrink it by using the
coalesce(numPartitions,shuffle) method. The coalesce method is a good
method to pack and rebalance your RDDs (for example, after a ilter operation where
you have less data after the action). If the new number of partitions is more than
what you have now, set shuffle=True, else set shuffle=false. While creating a
new RDD, you can specify the number of partitions to be used. Also, the grouping/
joining mechanism on RDDs of pairs can take the number of partitions or a custom
partitioner class. The default number of partitions for new RDDs is controlled
by spark.default.parallelism, which also controls the number of tasks used by
groupByKey and other shufle operations that need shufling.

http://spark.apache.org/docs/latest/tuning.html
http://spark.apache.org/docs/latest/tuning.html

Tips and Tricks

[152]

Memory usage and garbage collection
To measure the impact of garbage collection, you can ask the JVM to print
details about the garbage collection. You can do this by adding -verbose:gc
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps to your SPARK_JAVA_OPTS
in conf/spark-env.sh. You can also include the -Xloggc option to print the log
messages to a separate ile so that log messages are kept separate. The details will
then be printed to the standard out when you run your job, which will be available
as described in the irst section of this chapter.

If you ind that your Spark cluster uses too much time collecting garbage, you can
reduce the amount of space used for RDD caching by changing spark.storage.
memoryFraction; here, the default is 0.6. If you are planning to run Spark for a long
time on a cluster, you may wish to enable spark.cleaner.ttl. By default, Spark
does not clean up any metadata (stages generated, tasks generated, and so on); set this
to a non-zero value in seconds to clean up the metadata after that length of time. The
documentation page (https://spark.apache.org/docs/latest/configuration.
html) has the default settings and details about all the coniguration options.

You can also control the RDD storage level if you ind that you use too much
memory. I usually use top to see the memory consumption of the processes. If your
RDDs don't it within memory and you still wish to cache them, you can try using a
different storage level shown as follows (also check the documentation page for the
latest information on RDD persistence options at http://spark.apache.org/docs/
latest/programming-guide.html#rdd-persistence):

• MEMORY_ONLY: This stores the entire RDD in memory if it can, which is
the default

• MEMORY_AND_DISK: This stores each partition in memory if it can fit; else it
stores it on disk

• DISK_ONLY: This stores each partition on disk regardless of whether it can fit
in memory

These options are set when you call the persist function (rdd.persist()) on
your RDD. By default, the RDDs are stored in a deserialized form, which requires
less parsing. We can save space by adding _SER to the storage level (for example,
MEMORY_ONLY_SER, MEMORY_AND_DISK_SER), in which case Spark will serialize the
data to be stored, which normally saves some space but increases the execution time.

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence

Chapter 11

[153]

Serialization
Spark supports different serialization mechanisms; the choice is a trade-off between
speed, space eficiency, and full support of all Java objects. If you are using the
serializer to cache your RDDs, you should strongly consider a fast serializer. The
default serializer uses Java's default serialization. The KyroSerializer is much faster
and generally uses about one tenth of the memory as the default serializer. You can
switch the serializer by setting spark.serializer to spark.KryoSerializer. If you
want to use KyroSerializer, you need to make sure that the classes are serializable by
KyroSerializer. Spark provides a trait KryoRegistrator, which you can extend to
register your classes with Kyro, as shown in the following code:

class Reigstrer extends spark.KyroRegistrator {

 override def registerClasses(kyro: Kyro) {

 kyro.register(classOf[MyClass])

 }

}

Take a look at https://code.google.com/p/
kryo/#Quickstart to igure out how to write custom
serializers for your classes if you need something customized.
You can substantially decrease the amount of space used for your
objects by customizing your serializers. For example, rather than
writing out the full class name, you can give them an integer ID
by calling kyro.register(classOf[MyClass],100).

IDE integration
For Emacs users, the ENSIME sbt plugin is a good addition. ENhanced Scala
Interaction Mode for Emacs (ENSIME) provides many features that are available in
IDEs such as error checking and symbol inspection. You can install the latest ENSIME
from https://github.com/aemoncannon/ensime/downloads (make sure you choose
the one that matches your Scala version). Or, you can run the following commands:

wget https://github.com/downloads/aemoncannon/ensime/ ensime_2.10.0-RC3-
0.9.8.2.tar.gz

tar -xvf ensime_2.10.0-RC3-0.9.8.2.tar.gz

In your .emacs, add this:

;; Load the ensime lisp code...

(add-to-list 'load-path "ENSIME_ROOT/elisp/")

(require 'ensime)

https://code.google.com/p/kryo/#Quickstart
https://code.google.com/p/kryo/#Quickstart
https://github.com/aemoncannon/ensime/downloads

Tips and Tricks

[154]

;; This step causes the ensime-mode to be started whenever
;; scala-mode is started for a buffer. You may have to customize ;;
this step if you're not using the standard scala mode.

(add-hook 'scala-mode-hook 'ensime-scala-mode-hook)

You can then add the ENSIME sbt plugin to your project (in project/plugins.sbt):

addSbtPlugin("org.ensime" % "ensime-sbt-cmd" % "0.1.0")

You should then run the following commands:

sbt

> ensime generate

If you are using Git, you will probably want to add .ensime to the .gitignore ile if
it isn't already present.

If you have an IntelliJ, a similar plugin exists called sbt-idea, which can be used
to generate IntelliJ idea iles. You can add the IntelliJ sbt plugin to your project (in
project/plugins.sbt) like this:

addSbtPlugin("com.github.mpeltonen" % "sbt-idea" % "1.5.1")

You should then run the following commands:

sbt

> gen-idea

This will generate the idea ile, which can be loaded into IntelliJ.

Eclipse users can also use sbt to generate Eclipse project iles with the sbteclipse plugin.
You can add the Eclipse sbt plugin to your project (in project/plugins.sbt) like this:

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" %
 "2.3.0")

You should then run the following commands:

sbt

> eclipse

This will generate the Eclipse project iles and you can then import them into your
Eclipse project using the Import Wizard in Eclipse. Eclipse users might also ind the
spark-plug project useful, which can be used to launch clusters from within Eclipse.

An import step is to add spark-assembly-1.2.0-hadoop2.6.0.jar in your Java
build path or Maven dependency. Pay attention so you match the Spark version
number (1.2.0) with the Hadoop version number (2.6.0).

Chapter 11

[155]

Using Spark with other languages
If you ind yourself wanting to work with your RDD in another language, there
are a few options available for you. From Java/Scala you can try using JNI, and
with Python you can use the FFI. Sometimes however, you will want to work with
a language that isn't C or work with an already compiled program. In that case,
the easiest thing to do is to use the pipe interface that is available in all three of the
APIs. The stream API works by taking the RDD and serializing it to strings and
then piping it to the speciied program. If your data happens to be plain strings, this
is very convenient, but if it's not so, you will need to serialize your data in such a
way that it can be understood on either side. JSON or protocol buffers can be good
options for this depending on how structured your data is.

A quick note on security
Another important consideration in your Spark setup is security. If you are using
Spark on EC2 with the default scripts, you will notice that the access to your Spark
cluster is restricted. This is a good idea to do even if you aren't running inside of
EC2 since your Spark cluster will likely have access to the data you would rather not
share with the world (and even if it doesn't have it, you probably don't want to allow
arbitrary code execution by strangers). If your Spark cluster is already on a private
network, that is great, otherwise you should talk with your system administrator
about setting up some IPtables rules to restrict access.

Community developed packages
A new package index site (http://spark-packages.org/) has a lot of packages and
libraries that work with Apache Spark. It's an essential site to visit and make use of.

Mailing lists
Probably the most useful tip to inish this chapter with is that the Spark user's
mailing list is an excellent source of up-to-date information about other people's
experiences in using Spark. The best place to get information on meetups, slides,
and so forth is https://spark.apache.org/community.html. The two Spark users
mailing lists are user@spark.apache.org and dev@spark.apache.org.

http://spark-packages.org/
https://spark.apache.org/community.html

Tips and Tricks

[156]

Some more information can be found at the following sites:

• http://blog.quantifind.com/posts/logging-post/

• http://jawher.net/2011/01/17/scala-development-environment-

emacs-sbt-ensime/

• https://www.assembla.com/spaces/liftweb/wiki/Emacs-ENSIME

• https://github.com/shivaram/spark-ec2/blob/master/ganglia/init.

sh

• https://spark.apache.org/docs/latest/tuning.html

• http://spark.apache.org/docs/latest/running-on-mesos.html

• http://kryo.googlecode.com/svn/api/v2/index.html

• https://code.google.com/p/kryo/

• http://scala-ide.org/download/current.html

• http://syndeticlogic.net/?p=311

• http://mail-archives.apache.org/mod_mbox/incubator-spark-user/

• https://groups.google.com/forum/?fromgroups#!forum/spark-users

Summary
That wraps up some common things that you can use to help improve your Spark
development experience. I wish you the best of luck with your Spark projects; now
go and solve some fun problems! :)

http://blog.quantifind.com/posts/logging-post/
http://jawher.net/2011/01/17/scala-development-environment-emacs-sbt-ensime/
http://jawher.net/2011/01/17/scala-development-environment-emacs-sbt-ensime/
https://www.assembla.com/spaces/liftweb/wiki/Emacs-ENSIME
https://github.com/shivaram/spark-ec2/blob/master/ganglia/init.sh
https://github.com/shivaram/spark-ec2/blob/master/ganglia/init.sh
https://spark.apache.org/docs/latest/tuning.html
http://spark.apache.org/docs/latest/running-on-mesos.html
http://kryo.googlecode.com/svn/api/v2/index.html
https://code.google.com/p/kryo/
http://scala-ide.org/download/current.html
http://syndeticlogic.net/?p=311
http://mail-archives.apache.org/mod_mbox/incubator-spark-user/
https://groups.google.com/forum/?fromgroups#!forum/spark-users

[157]

Index

A

accumulate 67
Alternating Least Square (ALS) algorithm

about 136
reference link 136

Amazon Machine Images (AMI) 15
architecture, Spark SQL 94

B
basic statistics, Spark MLlib

examples 121-123
broadcast 67

C

Chef
about 17
Spark, deploying with 17
references 17

classiication, Spark MLlib
examples 126-132

clustering, Spark MLlib examples 132-135
code testable

making 141-143
commands, quick start

URL 34
community developed packages 155
concurrency, limitations

about 151
IDE integration 153, 154
memory usage, and garbage collection 152
serialization 153

custom serializers
references 153

D

data
loading, from S3 32, 33
loading, into RDD 52-61
saving 62

datailes, GitHub
reference link 96

directory
convention 2
organization 2
references 2

doctest 149
double RDD functions

about 78
sampleStdev 78
Stats 78
Stdev 78
Sum 78
variance 78

E

EC2
Spark, running on 9, 10

EC2 command line tools
references 11

EC2 scripts, Amazon
URL 10

Elastic MapReduce (EMR)
Spark, deploying on 16

ENhanced Scala Interaction Mode for
Emacs (ENSIME)

about 153
URL 153

[158]

F

iles
loading, to Parquet 109, 110
saving, to Parquet 108

latMap function 67
functions, for joining PairRDDs

about 76
coGroup 76
join 76
subtractKey 76

functions, on JavaPairRDDs
about 84
cogroup 84
collectAsMap 84
combineByKey 84
countByKey 84
latMapValues 84
join 84
keys 84
lookup 84
reduceByKey 85
sortByKey 85
values 85

G

general RDD functions
about 79
aggregate 79
cache 79
collect 79
count 79
countByValue 79
distinct 79
ilter 79
ilterWith 79
irst 79
latMap 79
fold 79
foreach 79
groupBy 79
keyBy 80
map 80
mapPartitions 80
mapPartitionsWithIndex 80
mapWith 80

persist 80
pipe 80
sample 80
takeSample 80
toDebugString 80
union 81
unpersist 81
zip 81

GitHub repository
reference link, for data iles 121

H

Hadoop Distributed File System (HDFS) 1
HBase

about 107, 114
data, loading 115, 116
data, saving 116, 117
metadata, obtaining 117

I

Impala
Parquet iles, querying 111-114

interactions
testing, with SparkContext 144-147

J

Java
RDD, manipulating in 65-75
SparkContext object, creating in 46
using, as testing library 141

Java RDD functions
about 81, 82
cache 82
coalesce 82
collect 82
common Java RDD functions 82
count 82
countByValue 82
distinct 82
ilter 82
irst 82
latMap 82
fold 82
foreach 83

[159]

groupBy 83
map 83
mapPartitions 83
reduce 83
sample 83
Spark Java function classes 81

L

lambda 66
latest development source, Spark

references 5
linear regression, Spark MLlib

examples 124, 125
logistic regression

running, Spark shell used 29-31
logs

inding 151

M

mailing lists
about 155
references 156

map 66
massively parallel processing (MPP) 111
Maven

Spark job, building with 41-43
Mesos

about 18
Spark, deploying on 18
URL 18

metadata, SparkContext object
about 48
appName 47
getConf 47
getExecutorMemoryStatus 47
Master 47
Version 47

methods, for combining JavaRDDs
about 83
subtract 83
union 83
zip 83

multiple tables
handling, with Spark SQL 98-104

N

nondata-driven methods,
SparkContext object

addFile(path) 49
addJar(path) 49
clearFiles() 49
clearJars() 49
stop() 49

P

package index site
reference link 155

PairRDD functions
about 77, 89
cogroup 90
collectAsMap 77, 89
combineByKey 90
countByKey 77, 89
latMapValues 78
groupByKey 90
join 90
leftOuterJoin 90
lookup 77
mapValues 77
partitionBy 77
reduceByKey 89
rightOuterJoin 90
zip 90

Parquet
about 107
iles, loading 109, 110
iles, querying with Impala 111-114
iles, saving 108
processed RDD, saving 111

Personal Package Archive (PPA) 38
prebuilt distribution

installing 3, 4
processed RDD

saving, in Parquet 111
PySpark 148
Python

RDD, manipulating in 85-88
SparkContext object, creating in 49, 50
Spark shell, running in 34, 35

Python testing, of Spark 148, 149

[160]

Q

QuickStart VM
URL 112

R

recommendation, Spark MLlib examples
about 136-140
reference link 140

reduce 66
Resilient Distributed Dataset (RDD)

about 8, 27, 51
data, loading into 52-61
manipulating, in Java 65-75
manipulating, in Python 85-88
manipulating, in Scala 65-75
references 91

Run Length Encoding (RLE) 108

S

S3
data, loading from 32, 33

sbt (simple-build-tool)
Spark project, building with 37-41

Scala
RDD, manipulating in 65-75
SparkContext object, creating in 46

Scala APIs 49
Scala RDD functions

about 76
foldByKey 76
groupByKey 76
reduceByKey 76

ScalaTest
using, as testing library 141

security 155
shared Java APIs 49
simple text ile

loading 26-29
single machine 9
source

Spark, building from 4
spam dataset, GitHub link

URL 26

Spark
building, from source 4
deploying, on Elastic MapReduce (EMR) 16
deploying, on Mesos 18
deploying, with Chef 17
installation, testing 7
references 1-5, 19, 37
running, on EC2 9
running on EC2, with scripts 10-15
standalone mode 19-23
using, with other languages 155

Spark, building from source
about 4
compilation switches 7
download source 5
source, compiling with Maven 5, 6

Spark community
URL 2

SparkContext object
creating, in Java 46
creating, in Python 49, 50
creating, in Scala 46
interactions, testing with 144-147
metadata 47, 48
references 50

Spark documentation
references 151, 152

Spark Java function classes
about 81
DoubleFlatMapFunction<T> 82
DoubleFunction<T> 81
FlatMapFunction<T, R> 81
Function2<T1, T2, R> 82
Function<T,R> 81
PairFlatMapFunction<T, K, V> 81
PairFunction<T, K, V> 81

Spark job
building 44
building, with Maven 41-43

Spark machine learning algorithm table 120
Spark MLlib

about 119
URL 119

Spark MLlib examples
about 120
basic statistics 121-123

[161]

classiication 126-132
clustering 132-135
linear regression 124, 125
recommendation 136-140

Spark, on YARN 19
Spark project

building, with sbt 37-41
Spark shell

about 25
running, in Python 34, 35
used, for running logistic regression 29-31

Spark SQL
about 93-95
architecture 94
multiple tables, handling with 98-104
overview 94
references 105
SQL access, to simple data table 95-98

Spark topology 7-9
standalone mode, Spark

reference link 19
standard RDD functions

about 88
cartesian 88
countByValue 89

distinct 88
ilter 88
latMap 88
fold 89
foreach 89
groupBy 89
mapParitions 88
partitionBy 89
pipe 89
reduce 89
take 89
union 88

T

testing
references 150

type inference 66

Y

YARN 19

Thank you for buying
Fast Data Processing with Spark

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Machine Learning with Spark
ISBN: 978-1-78328-851-9 Paperback: 338 pages

Create scalable machine learning applications to
power a modern data-driven business using Spark

1. A practical tutorial with real-world use cases
allowing you to develop your own machine
learning systems with Spark.

2. Combine various techniques and models into
an intelligent machine learning system.

3. Use Spark's powerful tools to load, analyze,
clean, and transform your data.

Application Development with

Parse using iOS SDK
ISBN: 978-1-78355-033-3 Paperback: 112 pages

Develop the backend of your applications instantly
using Parse iOS SDK

1. Build your applications using Parse iOS
which serves as a complete cloud-based
backend service.

2. Understand and write your code on cloud to
minimize the load on the client side.

3. Learn how to create your own applications
using Parse SDK, with the help of the
step-by-step, practical tutorials.

Please check www.PacktPub.com for information on our titles

Practical Data Science Cookbook
ISBN: 978-1-78398-024-6 Paperback: 396 pages

89 hands-on recipes to help you complete real-world
data science projects in R and Python

1. Learn about the data science pipeline and use it
to acquire, clean, analyze, and visualize data.

2. Understand critical concepts in data science in
the context of multiple projects.

3. Expand your numerical programming skills
through step-by-step code examples and
learn more about the robust features of R
and Python.

Starling Game Development

Essentials
ISBN: 978-1-78398-354-4 Paperback: 116 pages

Develop and deploy isometric turn-based games
using Starling

1. Create a cross-platform Starling
Isometric game.

2. Add enemy AI and multiplayer capability.

3. Explore the complete source code for the Web
and cross-platform game development.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Spark and Setting up your Cluster
	Directory organization and convention
	Installing prebuilt distribution
	Building Spark from source
	Download source
	Compile source with Maven
	Compilation switches
	Testing the installation

	Spark topology
	Single machine
	Running Spark on EC2
	Running Spark on EC2 with the scripts
	Deploying Spark on Elastic MapReduce

	Deploying Spark with Chef (opscode)
	Deploying Spark on Mesos
	Spark on YARN
	Spark Standalone mode
	Summary

	Chapter 2: Using the Spark Shell
	Loading a simple text file
	Using the Spark shell to run Logistic regression
	Interactively Loading data from S3
	Running Spark shell in Python

	Summary

	Chapter 3: Building and Running
a Spark Application
	Building your Spark project with sbt
	Building your Spark job with Maven
	Building your Spark job with
something else
	Summary

	Chapter 4: Creating a SparkContext
	Scala
	Java
	SparkContext – metadata
	Shared Java and Scala APIs
	Python
	Summary

	Chapter 5: Loading and Saving
Data in Spark
	RDDs
	Loading data into an RDD
	Saving your data
	Summary

	Chapter 6: Manipulating your RDD
	Manipulating your RDD in Scala and Java
	Scala RDD functions
	Functions for joining Pair RDDs
	Other PairRDD functions
	Double RDD functions
	General RDD functions
	Java RDD functions
	Spark Java function classes
	Common Java RDD functions
	Methods for combining JavaRDDs
	Functions on JavaPairRDDs

	Manipulating your RDD in Python
	Standard RDD functions
	Pair RDD functions

	Summary

	Chapter 7: Spark SQL
	Spark SQL architecture
	Spark SQL how-to in a nutshell
	Spark SQL programming
	SQL access to a simple data table
	Handling multiple tables with Spark SQL
	Aftermath

	Summary

	Chapter 8: Spark with Big Data
	Parquet – an efficient and interoperable big data format
	Saving files to the Parquet format
	Loading Parquet files
	Saving processed RDD in the Parquet format

	Querying Parquet files with Impala
	HBase
	Loading from HBase
	Saving to HBase
	Other HBase operations

	Summary

	Chapter 9: Machine Learning Using Spark MLlib
	Spark machine learning algorithm table
	Spark MLlib examples
	Basic statistics
	Linear regression
	Classification
	Clustering
	Recommendation

	Summary

	Chapter 10: Testing
	Testing in Java and Scala
	Making your code testable
	Testing interactions with SparkContext

	Testing in Python
	Summary

	Chapter 11: Tips and Tricks
	Where to find Logs
	Concurrency limitations
	Memory usage and garbage collection
	Serialization
	IDE integration

	Using Spark with other languages
	A quick note on security
	Community developed packages
	Mailing lists
	Summary

	Index

