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Preface

What is Hadoop and why should you care? This book will help you
understand what Hadoop is, but for now, let’s tackle the second part
of that question. Hadoop is the most common single platform for
storing and analyzing big data. If you and your organization are
entering the exciting world of big data, you’ll have to decide whether
Hadoop is the right platform and which of the many components
are best suited to the task. The goal of this book is to introduce you
to the topic and get you started on your journey.

There are many books, websites, and classes about Hadoop and
related technologies. This one is different. It does not provide a
lengthy tutorial introduction to a particular aspect of Hadoop or to
any of the many components of the Hadoop ecosystem. It certainly
is not a rich, detailed discussion of any of these topics. Instead, it is
organized like a field guide to birds or trees. Each chapter focuses on
portions of the Hadoop ecosystem that have a common theme.
Within each chapter, the relevant technologies and topics are briefly
introduced: we explain their relation to Hadoop and discuss why
they may be useful (and in some cases less than useful) for particular
needs. To that end, this book includes various short sections on the
many projects and subprojects of Apache Hadoop and some related
technologies, with pointers to tutorials and links to related technolo‐
gies and processes.

vii

www.allitebooks.com

http://www.allitebooks.org


In each section, we have included a table that looks like this:

License <License here>

Activity None, Low, Medium, High

Purpose <Purpose here>

Oicial Page <URL>

Hadoop Integration Fully Integrated, API Compatible, No Integration, Not Applicable

Let’s take a deeper look at what each of these categories entails:

License
While all of the sections in the first version of this field guide
are open source, there are several different licenses that come
with the software—mostly alike, with some differences. If you
plan to include this software in a product, you should familiar‐
ize yourself with the conditions of the license.

Activity
We have done our best to measure how much active develop‐
ment work is being done on the technology. We may have mis‐
judged in some cases, and the activity level may have changed
since we first wrote on the topic.

Purpose
What does the technology do? We have tried to group topics
with a common purpose together, and sometimes we found that
a topic could fit into different chapters. Life is about making
choices; these are the choices we made.

Oicial Page
If those responsible for the technology have a site on the Inter‐
net, this is the home page of the project.

Hadoop Integration
When we started writing, we weren’t sure exactly what topics we
would include in the first version. Some on the initial list were
tightly integrated or bound into Apache Hadoop. Others were
alternative technologies or technologies that worked with
Hadoop but were not part of the Apache Hadoop family. In
those cases, we tried to best understand what the level of inte‐
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gration was at the time of our writing. This will no doubt
change over time.

You should not think that this book is something you read from
cover to cover. If you’re completely new to Hadoop, you should start
by reading the introductory chapter, Chapter 1. Then you should
look for topics of interest, read the section on that component, read
the chapter header, and possibly scan other selections in the same
chapter. This should help you get a feel for the subject. We have
often included links to other sections in the book that may be rele‐
vant. You may also want to look at links to tutorials on the subject or
to the “official” page for the topic.

We’ve arranged the topics into sections that follow the pattern in the
diagram shown in Figure P-1. Many of the topics fit into the
Hadoop Common (formerly the Hadoop Core), the basic tools and
techniques that support all the other Apache Hadoop modules.
However, the set of tools that play an important role in the big data
ecosystem isn’t limited to technologies in the Hadoop core. In this
book we also discuss a number of related technologies that play a
critical role in the big data landscape.

Figure P-1. Overview of the topics covered in this book

In this first edition, we have not included information on any pro‐
prietary Hadoop distributions. We realize that these projects are
important and relevant, but the commercial landscape is shifting so
quickly that we propose a focus on open source technology only.
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Open source has a strong hold on the Hadoop and big data markets
at the moment, and many commercial solutions are heavily based
on the open source technology we describe in this book. Readers
who are interested in adopting the open source technologies we dis‐
cuss are encouraged to look for commercial distributions of those
technologies if they are so inclined.

This work is not meant to be a static document that is only updated
every year or two. Our goal is to keep it as up to date as possible,
adding new content as the Hadoop environment grows and some of
the older technologies either disappear or go into maintenance
mode as they become supplanted by others that meet newer tech‐
nology needs or gain in favor for other reasons.

Since this subject matter changes very rapidly, readers are invited to
submit suggestions and comments to Kevin (ksitto@gmail.com) and
Marshall (bigmaish@gmail.com). Thank you for any suggestions you
wish to make.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.
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800-998-9938 (in the United States or Canada)
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For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.
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Follow us on Twitter: http://twitter.com/oreillymedia
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CHAPTER 1

Core Technologies

In 2002, when the World Wide Web was relatively new and before
you “Googled” things, Doug Cutting and Mike Cafarella wanted to
crawl the Web and index the content so that they could produce an
Internet search engine. They began a project called Nutch to do this
but needed a scalable method to store the content of their indexing.
The standard method to organize and store data in 2002 was by
means of relational database management systems (RDBMS), which
were accessed in a language called SQL. But almost all SQL and rela‐
tional stores were not appropriate for Internet search engine storage
and retrieval. They were costly, not terribly scalable, not as tolerant
to failure as required, and possibly not as performant as desired.

In 2003 and 2004, Google released two important papers, one on the
Google File System1 and the other on a programming model on
clustered servers called MapReduce.2 Cutting and Cafarella incorpo‐
rated these technologies into their project, and eventually Hadoop
was born. Hadoop is not an acronym. Cutting’s son had a yellow
stuffed elephant he named Hadoop, and somehow that name stuck
to the project and the icon is a cute little elephant. Yahoo! began
using Hadoop as the basis of its search engine, and soon its use

1

http://bit.ly/1CgWGTy
http://bit.ly/12c3Ifq


spread to many other organizations. Now Hadoop is the predomi‐
nant big data platform. There are many resources that describe
Hadoop in great detail; here you will find a brief synopsis of many
components and pointers on where to learn more.

Hadoop consists of three primary resources:

• The Hadoop Distributed File System (HDFS)

• The MapReduce programing platform

• The Hadoop ecosystem, a collection of tools that use or sit
beside MapReduce and HDFS to store and organize data, and
manage the machines that run Hadoop

These machines are called a cluster—a group of servers, almost
always running some variant of the Linux operating system—that
work together to perform a task.

The Hadoop ecosystem consists of modules that help program the
system, manage and configure the cluster, manage data in the clus‐
ter, manage storage in the cluster, perform analytic tasks, and the
like. The majority of the modules in this book will describe the com‐
ponents of the ecosystem and related technologies.
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Hadoop Distributed File System (HDFS)

License Apache License, Version 2.0

Activity High

Purpose High capacity, fault tolerant, inexpensive storage of very large datasets

Oicial Page http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUser

Guide.html

Hadoop

Integration

Fully Integrated

The Hadoop Distributed File System (HDFS) is the place in a
Hadoop cluster where you store data. Built for data-intensive appli‐
cations, the HDFS is designed to run on clusters of inexpensive
commodity servers. HDFS is optimized for high-performance, read-
intensive operations, and is resilient to failures in the cluster. It does
not prevent failures, but is unlikely to lose data, because HDFS by
default makes multiple copies of each of its data blocks. Moreover,
HDFS is a write once, read many (or WORM-ish) filesystem: once a
file is created, the filesystem API only allows you to append to the
file, not to overwrite it. As a result, HDFS is usually inappropriate
for normal online transaction processing (OLTP) applications. Most
uses of HDFS are for sequential reads of large files. These files are
broken into large blocks, usually 64 MB or larger in size, and these
blocks are distributed among the nodes in the server.

HDFS is not a POSIX-compliant filesystem as you would see on
Linux, Mac OS X, and on some Windows platforms (see the POSIX
Wikipedia page for a brief explanation). It is not managed by the OS
kernels on the nodes in the server. Blocks in HDFS are mapped to
files in the host’s underlying filesystem, often ext3 in Linux systems.
HDFS does not assume that the underlying disks in the host are
RAID protected, so by default, three copies of each block are made
and are placed on different nodes in the cluster. This provides pro‐
tection against lost data when nodes or disks fail and assists in
Hadoop’s notion of accessing data where it resides, rather than mov‐
ing it through a network to access it.
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Although an explanation is beyond the scope of this book, metadata
about the files in the HDFS is managed through a NameNode, the
Hadoop equivalent of the Unix/Linux superblock.

Tutorial Links
Oftentimes you’ll be interacting with HDFS through other tools like
Hive (described on page 34) or Pig (described on page 76). That
said, there will be times when you want to work directly with HDFS;
Yahoo! has published an excellent guide for configuring and explor‐
ing a basic system.

Example Code
When you use the command-line interface (CLI) from a Hadoop
client, you can copy a file from your local filesystem to the HDFS
and then look at the first 10 lines with the following code snippet:

[hadoop@client-host ~]$ hadoop fs -ls /data

Found 4 items

drwxr-xr-x - hadoop supergroup 0 2012-07-12 08:55 /data/faa

-rw-r--r-- 1 hadoop supergroup 100 2012-08-02 13:29

/data/sample.txt

drwxr-xr-x - hadoop supergroup 0 2012-08-09 19:19 /data/wc

drwxr-xr-x - hadoop supergroup 0 2012-09-11 11:14 /data/weblogs

[hadoop@client-host ~]$ hadoop fs -ls /data/weblogs/

[hadoop@client-host ~]$ hadoop fs -mkdir /data/weblogs/in

[hadoop@client-host ~]$ hadoop fs -copyFromLocal

weblogs_Aug_2008.ORIG /data/weblogs/in

[hadoop@client-host ~]$ hadoop fs -ls /data/weblogs/in

Found 1 items

-rw-r--r-- 1 hadoop supergroup 9000 2012-09-11 11:15

/data/weblogs/in/weblogs_Aug_2008.ORIG

[hadoop@client-host ~]$ hadoop fs -cat

/data/weblogs/in/weblogs_Aug_2008.ORIG \

| head

10.254.0.51 - - [29/Aug/2008:12:29:13 -0700] "GGGG / HTTP/1.1"

200 1456

10.254.0.52 - - [29/Aug/2008:12:29:13 -0700] "GET / HTTP/1.1"

200 1456

10.254.0.53 - - [29/Aug/2008:12:29:13 -0700] "GET /apache_pb.gif

HTTP/1.1" 200 2326

10.254.0.54 - - [29/Aug/2008:12:29:13 -0700] "GET /favicon.ico
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HTTP/1.1" 404 209

10.254.0.55 - - [29/Aug/2008:12:29:16 -0700] "GET /favicon.ico

HTTP/1.1"

404 209

10.254.0.56 - - [29/Aug/2008:12:29:21 -0700] "GET /mapreduce

HTTP/1.1" 301 236

10.254.0.57 - - [29/Aug/2008:12:29:21 -0700] "GET /develop/

HTTP/1.1" 200 2657

10.254.0.58 - - [29/Aug/2008:12:29:21 -0700] "GET

/develop/images/gradient.jpg

HTTP/1.1" 200 16624

10.254.0.59 - - [29/Aug/2008:12:29:27 -0700] "GET /manual/

HTTP/1.1" 200 7559

10.254.0.62 - - [29/Aug/2008:12:29:27 -0700] "GET

/manual/style/css/manual.css

HTTP/1.1" 200 18674
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MapReduce

License Apache License, Version 2.0

Activity High

Purpose A programming paradigm for processing big data

Oicial Page https://hadoop.apache.org

Hadoop Integration Fully Integrated

MapReduce was the first and is the primary programming frame‐
work for developing applications in Hadoop. You’ll need to work in
Java to use MapReduce in its original and pure form. You should
study WordCount, the “Hello, world” program of Hadoop. The code
comes with all the standard Hadoop distributions. Here’s your prob‐
lem in WordCount: you have a dataset that consists of a large set of
documents, and the goal is to produce a list of all the words and the
number of times they appear in the dataset.

MapReduce jobs consist of Java programs called mappers and reduc‐
ers. Orchestrated by the Hadoop software, each of the mappers is
given chunks of data to analyze. Let’s assume it gets a sentence: “The
dog ate the food.” It would emit five name-value pairs or maps:
“the”:1, “dog”:1, “ate”:1, “the”:1, and “food”:1. The name in the
name-value pair is the word, and the value is a count of how many
times it appears. Hadoop takes the result of your map job and sorts
it. For each map, a hash value is created to assign it to a reducer in a
step called the shuffle. The reducer would sum all the maps for each
word in its input stream and produce a sorted list of words in the
document. You can think of mappers as programs that extract data
from HDFS files into maps, and reducers as programs that take the
output from the mappers and aggregate results. The tutorials linked
in the following section explain this in greater detail.

You’ll be pleased to know that much of the hard work—dividing up
the input datasets, assigning the mappers and reducers to nodes,
shuffling the data from the mappers to the reducers, and writing out
the final results to the HDFS—is managed by Hadoop itself. Pro‐
grammers merely have to write the map and reduce functions. Map‐
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pers and reducers are usually written in Java (as in the example cited
at the conclusion of this section), and writing MapReduce code is
nontrivial for novices. To that end, higher-level constructs have been
developed to do this. Pig is one example and will be discussed on
page 76. Hadoop Streaming is another.

Tutorial Links
There are a number of excellent tutorials for working with MapRe‐
duce. A good place to start is the official Apache documentation, but
Yahoo! has also put together a tutorial module. The folks at MapR, a
commercial software company that makes a Hadoop distribution,
have a great presentation on writing MapReduce.

Example Code
Writing MapReduce can be fairly complicated and is beyond the
scope of this book. A typical application that folks write to get
started is a simple word count. The official documentation includes
a tutorial for building that application.
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YARN

License Apache License, Version 2.0

Activity Medium

Purpose Processing

Oicial Page https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.ht

ml

Hadoop

Integration

Fully Integrated

When many folks think about Hadoop, they are really thinking
about two related technologies. These two technologies are the
Hadoop Distributed File System (HDFS), which houses your data,
and MapReduce, which allows you to actually do things with your
data. While MapReduce is great for certain categories of tasks, it falls
short with others. This led to fracturing in the ecosystem and a vari‐
ety of tools that live outside of your Hadoop cluster but attempt to
communicate with HDFS.

In May 2012, version 2.0 of Hadoop was released, and with it came
an exciting change to the way you can interact with your data. This
change came with the introduction of YARN, which stands for Yet
Another Resource Negotiator.

YARN exists in the space between your data and where MapReduce
now lives, and it allows for many other tools that used to live outside
your Hadoop system, such as Spark and Giraph, to now exist
natively within a Hadoop cluster. It’s important to understand that
Yarn does not replace MapReduce; in fact, Yarn doesn’t do anything
at all on its own. What Yarn does do is provide a convenient, uni‐
form way for a variety of tools such as MapReduce, HBase, or any
custom utilities you might build to run on your Hadoop cluster.
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Tutorial Links
YARN is still an evolving technology, and the official Apache guide
is really the best place to get started.

Example Code
The truth is that writing applications in Yarn is still very involved
and too deep for this book. You can find a link to an excellent walk-
through for building your first Yarn application in the preceding
“Tutorial Links” section.
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Spark

License Apache License, Version 2.0

Activity High

Purpose Processing/Storage

Oicial Page http://spark.apache.org/

Hadoop Integration API Compatible

MapReduce is the primary workhorse at the core of most Hadoop
clusters. While highly effective for very large batch-analytic jobs,
MapReduce has proven to be suboptimal for applications like graph
analysis that require iterative processing and data sharing.

Spark is designed to provide a more flexible model that supports
many of the multipass applications that falter in MapReduce. It
accomplishes this goal by taking advantage of memory whenever
possible in order to reduce the amount of data that is written to and
read from disk. Unlike Pig and Hive, Spark is not a tool for making
MapReduce easier to use. It is a complete replacement for MapRe‐
duce that includes its own work execution engine.

Spark operates with three core ideas:

Resilient Distributed Dataset (RDD)
RDDs contain data that you want to transform or analyze. They
can either be be read from an external source, such as a file or a
database, or they can be created by a transformation.

Transformation
A transformation modifies an existing RDD to create a new
RDD. For example, a filter that pulls ERROR messages out of a
log file would be a transformation.
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Action
An action analyzes an RDD and returns a single result. For
example, an action would count the number of results identified
by our ERROR filter.

If you want to do any significant work in Spark, you would be wise
to learn about Scala, a functional programming language. Scala
combines object orientation with functional programming. Because
Lisp is an older functional programming language, Scala might be
called “Lisp joins the 21st century.” This is not to say that Scala is the
only way to work with Spark. The project also has strong support
for Java and Python, but when new APIs or features are added, they
appear first in Scala.

Tutorial Links
A quick start for Spark can be found on the project home page.

Example Code
We’ll start with opening the Spark shell by running ./bin/spark-shell
from the directory we installed Spark in.

In this example, we’re going to count the number of Dune reviews in
our review file:

// Read the csv file containing our reviews

scala> val reviews = spark.textFile("hdfs://reviews.csv")

testFile: spark.RDD[String] = spark.MappedRDD@3d7e837f

// This is a two-part operation:

// first we'll filter down to the two

// lines that contain Dune reviews

// then we'll count those lines

scala> val dune_reviews = reviews.filter(line =>

  line.contains("Dune")).count()

res0: Long = 2
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CHAPTER 2

Database and Data Management

If you’re planning to use Hadoop, it’s likely that you’ll be managing
lots of data, and in addition to MapReduce jobs, you may need some
kind of database. Since the advent of Google’s BigTable, Hadoop has
an interest in the management of data. While there are some rela‐
tional SQL databases or SQL interfaces to HDFS data, like Hive,
much data management in Hadoop uses non-SQL techniques to
store and access data. The NoSQL Archive lists more than 150
NoSQL databases that are then classified as:

• Column stores

• Document stores

• Key-value/tuple stores

• Graph databases

• Multimodel databases

• Object databases

• Grid and cloud databases

• Multivalue databases

• Tabular stores

• Others

NoSQL databases generally do not support relational join opera‐
tions, complex transactions, or foreign-key constraints common in
relational systems but generally scale better to large amounts of data.
You’ll have to decide what works best for your datasets and the
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information you wish to extract from them. It’s quite possible that
you’ll be using more than one.

This book will look at many of the leading examples in each section,
but the focus will be on the two major categories: key-value stores
and document stores (illustrated in Figure 2-1).

Figure 2-1. Two approaches to indexing

A key-value store can be thought of like a catalog. All the items in a
catalog (the values) are organized around some sort of index (the
keys). Just like a catalog, a key-value store is very quick and effective
if you know the key you’re looking for, but isn’t a whole lot of help if
you don’t.

For example, let’s say I’m looking for Marshall’s review of he Godfa‐
ther. I can quickly refer to my index, find all the reviews for that
film, and scroll down to Marshall’s review: “I prefer the book…”

A document warehouse, on the other hand, is a much more flexible
type of database. Rather than forcing you to organize your data
around a specific key, it allows you to index and search for your data
based on any number of parameters. Let’s expand on the last exam‐
ple and say I’m in the mood to watch a movie based on a book. One
naive way to find such a movie would be to search for reviews that
contain the word “book.”
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In this case, a key-value store wouldn’t be a whole lot of help, as my
key is not very clearly defined. What I need is a document ware‐
house that will let me quickly search all the text of all the reviews
and find those that contain the word “book.”
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Cassandra

License GPL v2

Activity High

Purpose Key-value store

Oicial Page https://cassandra.apache.org

Hadoop Integration API Compatible

Oftentimes you may need to simply organize some of your big data
for easy retrieval. One common way to do this is to use a key-value
datastore. This type of database looks like the white pages in a
phone book. Your data is organized by a unique “key,” and values are
associated with that key. For example, if you want to store informa‐
tion about your customers, you may use their username as the key,
and information such as transaction history and addresses as values
associated with that key.

Key-value datastores are a common fixture in any big data system
because they are easy to scale, quick, and straightforward to work
with. Cassandra is a distributed key-value database designed with
simplicity and scalability in mind. While often compared to HBase
(described on page 19), Cassandra differs in a few key ways:

• Cassandra is an all-inclusive system, which means it does not
require a Hadoop environment or any other big data tools.

• Cassandra is completely masterless: it operates as a peer-to-peer
system. This makes it easier to configure and highly resilient.
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Tutorial Links
DataStax, a company that provides commercial support for Cassan‐
dra, offers a set of freely available videos.

Example Code
The easiest way to interact with Cassandra is through its shell inter‐
face. You start the shell by running bin/cqlsh from your install direc‐
tory.

Then you need to create a keyspace. Keyspaces are similar to sche‐
mas in traditional relational databases; they are a convenient way to
organize your tables. A typical pattern is to use a single different
keyspace for each application:

CREATE KEYSPACE field_guide

WITH REPLICATION = {

    'class': 'SimpleStrategy', 'replication factor' : 3 };

USE field_guide;

Now that you have a keyspace, you’ll create a table within that key‐
space to hold your reviews. This table will have three columns and a
primary key that consists of both the reviewer and the title, as that
pair should be unique within the database:

CREATE TABLE reviews (

    reviewer varchar,

    title varchar,

    rating int,

    PRIMARY KEY (reviewer, title));

Once your table is created, you can insert a few reviews:

INSERT INTO reviews (reviewer,title,rating)

    VALUES ('Kevin','Dune',10);

INSERT INTO reviews (reviewer,title,rating)

    VALUES ('Marshall','Dune',1);

INSERT INTO reviews (reviewer,title,rating)

    VALUES ('Kevin','Casablanca',5);

And now that you have some data, you will create an index that will
allow you to execute a simple SQL query to retrieve Dune reviews:
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CREATE INDEX ON reviews (title);

SELECT * FROM reviews WHERE title = 'Dune';

 reviewer |      title | rating

----------+------------+-------

    Kevin |       Dune |     10

 Marshall |       Dune |      1

    Kevin | Casablanca |      5
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HBase

License Apache License, Version 2.0

Activity High

Purpose NoSQL database with random access

Oicial Page https://hbase.apache.org

Hadoop Integration Fully Integrated

There are many situations in which you might have sparse data.
That is, there are many attributes of the data, but each observation
only has a few of them. For example, you might want a table of vari‐
ous tickets in a help-desk application. Tickets for email might have
different information (and attributes or columns) than tickets for
network problems or lost passwords, or issues with backup system.
There are other situations in which you have data that has a large
number of common values in a column or attribute, say “country”
or “state.” Each of these example might lead you to consider HBase.

HBase is a NoSQL database system included in the standard
Hadoop distributions. It is a key-value store, logically. This means
that rows are defined by a key, and have associated with them a
number of bins (or columns) where the associated values are stored.
The only data type is the byte string. Physically, groups of similar
columns are stored together in column families. Most often, HBase
is accessed via Java code, but APIs exist for using HBase with Pig,
Thrift, Jython (Python based), and others. HBase is not normally
accessed in a MapReduce fashion. It does have a shell interface for
interactive use.

HBase is often used for applications that may require sparse rows.
That is, each row may use only a few of the defined columns. It is
fast (as Hadoop goes) when access to elements is done through the
primary key, or defining key value. It’s highly scalable and reasona‐
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bly fast. Unlike traditional HDFS applications, it permits random
access to rows, rather than sequential searches.

Though faster than MapReduce, you should not use HBase for any
kind of transactional needs, nor any kind of relational analytics. It
does not support any secondary indexes, so finding all rows where a
given column has a specific value is tedious and must be done at the
application level. HBase does not have a JOIN operation; this must
be done by the individual application. You must provide security at
the application level; other tools like Accumulo (described on page
22) are built with security in mind.

While Cassandra (described on page 16) and MongoDB (described
on page 31) might still be the predominant NoSQL databases today,
HBase is gaining in popularity and may well be the leader in the
near future.

Tutorial Links
The folks at Coreservlets.com have put together a handful of
Hadoop tutorials including an excellent series on HBase. There’s
also a handful of video tutorials available on the Internet, including
this one, which we found particularly helpful.

Example Code
In this example, your goal is to find the average review for the movie
Dune. Each movie review has three elements: a reviewer name, a
film title, and a rating (an integer from 0 to 10). The example is
done in the HBase shell:

hbase(main):008:0> create 'reviews', 'cf1'

0 row(s) in 1.0710 seconds

hbase(main):013:0> put 'reviews', 'dune-marshall', \

hbase(main):014:0> 'cf1:score', 1

0 row(s) in 0.0370 seconds

hbase(main):015:0> put 'reviews', 'dune-kevin', \

hbase(main):016:0> 'cf1:score', 10

0 row(s) in 0.0090 seconds

hbase(main):017:0> put 'reviews', 'casablanca-kevin', \

hbase(main):018:0> 'cf1:score', 5

0 row(s) in 0.0130 seconds

hbase(main):019:0> put 'reviews', 'blazingsaddles-b0b', \
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hbase(main):020:0> 'cf1:score', 9

0 row(s) in 0.0090 seconds

hbase(main):021:0> scan 'reviews'

ROW                          COLUMN+CELL

 blazingsaddles-b0b          column=cf1:score,

                             timestamp=1390598651108,

                             value=9

 casablanca-kevin            column=cf1:score,

                             timestamp=1390598627889,

                             value=5

 dune-kevin                  column=cf1:score,

                             timestamp=1390598600034,

                             value=10

 dune-marshall               column=cf1:score,

                             timestamp=1390598579439,

                             value=1

3 row(s) in 0.0290 seconds

hbase(main):024:0> scan 'reviews', {STARTROW => 'dune', \

hbase(main):025:0> ENDROW => 'dunf'}

ROW                          COLUMN+CELL

 dune-kevin                  column=cf1:score,

                             timestamp=1390598791384,

                             value=10

 dune-marshall               column=cf1:score,

                             timestamp=1390598579439,

                             value=1

2 row(s) in 0.0090 seconds

Now you’ve retrieved the two rows using an efficient range scan, but
how do you compute the average? In the HBase shell, it’s not possi‐
ble; using the HBase Java APIs, you can extract the values, but there
is no built-in row aggregation function for average or sum, so you
would need to do this in your Java code.

The choice of the row key is critical in HBase. If you want to find the
average rating of all the movies Kevin has reviewed, you would need
to do a full table scan, potentially a very tedious task with a very
large dataset. You might want to have two versions of the table, one
with the row key given by reviewer-film and another with film-
reviewer. Then you would have the problem of ensuring they’re in
sync.
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Accumulo

License Apache License, Version 2.0

Activity High

Purpose Name-value database with cell-level security

Oicial Page http://accumulo.apache.org/index.html

Hadoop Integration Fully Integrated

You have an application that could use a good column/name-value
store, like HBase (described on page 19), but you have an additional
security issue; you must carefully control which users can see which
cells in your data. For example, you could have a multitenancy data
store in which you are storing data from different divisions in your
enterprise in a single table and want to ensure that users from one
division cannot see the data from another, but that senior manage‐
ment can see across the whole enterprise. For internal security rea‐
sons, the U.S. National Security Agency (NSA) developed Accumulo
and then donated the code to the Apache foundation.

You might notice a great deal of similarity between HBase and Accu‐
mulo, as both systems are modeled on Google’s BigTable. Accumulo
improves on that model with its focus on security and cell-based
access control. Each user has a set of security labels, simple text
strings. Suppose yours were “admin,” “audit,” and “GroupW.” When
you want to define the access to a particular cell, you set the column
visibility for that column in a given row to a Boolean expression of
the various labels. In this syntax, the & is logical AND and | is logical
OR. If the cell’s visibility rule were admin|audit, then any user with
either admin or audit label could see that cell. If the column visibil‐
lity rule were admin&Group7, you would not be able to see it, as
you lack the Group7 label, and both are required.

22 | Chapter 2: Database and Data Management

http://accumulo.apache.org/index.html


But Accumulo is more than just security. It also can run at massive
scale, with many petabytes of data with hundreds of thousands of
ingest and retrieval operations per second.

Tutorial Links
For more information on Accumulo, check out the following
resources:

• An introduction from Aaron Cordova, one of the originators of
Accumulo.

• A video tutorial that focuses on performance and the Accumulo
architecture.

• This tutorial is more focused on security and encryption.

• The 2014 Accumulo Summit has a wealth of information.

Example Code
Good example code is a bit long and complex to include here, but
can be found on the “Examples” section of the project’s home page.
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Memcached

License Revised BSD License

Activity Medium

Purpose In-Memory Cache

Oicial Page http://memcached.org

Hadoop Integration No Integration

It’s entirely likely you will eventually encounter a situation where
you need very fast access to a large amount of data for a short period
of time. For example, let’s say you want to send an email to your cus‐
tomers and prospects letting them know about new features you’ve
added to your product, but you also need to make certain you
exclude folks you’ve already contacted this month.

The way you’d typically address this query in a big data system is by
distributing your large contact list across many machines, and then
loading the entirety of your list of folks contacted this month into
memory on each machine and quickly checking each contact
against your list of those you’ve already emailed. In MapReduce, this
is often referred to as a “replicated join.” However, let’s assume
you’ve got a large network of contacts consisting of many millions of
email addresses you’ve collected from trade shows, product demos,
and social media, and you like to contact these people fairly often.
This means your list of folks you’ve already contacted this month
could be fairly large and the entire list might not fit into the amount
of memory you’ve got available on each machine.

What you really need is some way to pool memory across all your
machines and let everyone refer back to that large pool. Memcached
is a tool that lets you build such a distributed memory pool. To fol‐
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low up on our previous example, you would store the entire list of
folks who’ve already been emailed into your distributed memory
pool and instruct all the different machines processing your full
contact list to refer back to that memory pool instead of local mem‐
ory.

Tutorial Links
The spymemcached project has a handful of examples using its API
available on its wiki.

Example Code
Let’s say we need to keep track of which reviewers have already
reviewed which movies, so we don’t ask a reviewer to review the
same movie twice. Because there is no single, officially supported
Java client for Memcached, we’ll use the popular spymemcached cli‐
ent.

We’ll start by defining a client and pointing it at our Memcached
servers:

MemcachedClient client = new MemcachedClient(

    AddrUtil.getAddresses("server1:11211 server2:11211"));

Now we’ll start loading data into our cache. We’ll use the popular
OpenCSV library to read our reviews file and write an entry to our
cache for every reviewer and title pair we find:

CSVReader reader = new CSVReader(new FileReader("reviews.csv"));

String [] line;

while ((line = reader.readNext()) != null) {

    //Merge the reviewer name and the movie title

    //into a single value (ie: KevinDune)

    //that we'll use as a key

    String reviewerAndTitle = line[0] + line[1];

    //Write the key to our cache and store it for 30 minutes

    //(188 seconds)

    client.set(reviewerAndTitle, 1800, true);

}

Once we have our values loaded into the cache, we can quickly
check the cache from a MapReduce job or any other Java code:

Object myObject=client.get(aKey);
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Blur

License Apache License, Version 2.0

Activity Medium

Purpose Document Warehouse

Oicial Page https://incubator.apache.org/blur

Hadoop Integration Fully Integrated

Let’s say you’ve bought in to the entire big data story using Hadoop.
You’ve got Flume gathering data and pushing it into HDFS, your
MapReduce jobs are transforming that data and building key-value
pairs that are pushed into HBase, and you even have a couple enter‐
prising data scientists using Mahout to analyze your data. At this
point, your CTO walks up to you and asks how often one of your
specific products is mentioned in a feedback form your are collect‐
ing from your users. Your heart drops as you realize the feedback is
free-form text and you’ve got no way to search any of that data.

Blur is a tool for indexing and searching text with Hadoop. Because
it has Lucene (a very popular text-indexing framework) at its core, it
has many useful features, including fuzzy matching, wildcard
searches, and paged results. It allows you to search through unstruc‐
tured data in a way that would otherwise be very difficult.

Tutorial Links
You can’t go wrong with the official “getting started” guide on the
project home page. There is also an excellent, though slightly out of
date, presentation from a Hadoop User Group meeting in 2011.

26 | Chapter 2: Database and Data Management

www.allitebooks.com

https://incubator.apache.org/blur
http://bit.ly/1CgXgRf
http://youtu.be/w4zLz9ussdI
http://www.allitebooks.org


Example Code
There are a couple different ways to load data into Blur. When you
have large amounts of data you want to index in bulk, you will likely
use MapReduce, whereas if you want to stream data in, you are
likely better off with the mutation interface. In this case, we’re going
to use the mutation interface, as we’re just going to index a couple
records:

import static org.apache.blur.thrift.util.BlurThriftHelper.*;

Iface aClient = BlurClient.getClient(

    "controller1:40010,controller2:40010");

//Create a new Row in table 1

RowMutation mutation1 = newRowMutation("reviews", "Dune",

    newRecordMutation("review", "review_1.json",

        newColumn("Reviewer", "Kevin"),

        newColumn("Rating", "10")

        newColumn(

            "Text",

            "I was taken away with the movie's greatness!")

    ),

    newRecordMutation("review", "review_2.json",

        newColumn("Reviewer", "Marshall"),

        newColumn("Rating", "1")

        newColumn(

            "Text",

            "I thought the movie was pretty terrible :(")

    )

);

client.mutate(mutation);

Now let’s say we want to search for all reviews where the review text
mentions something being great. We’re going to pull up the Blur
shell by running /bin/blur shell from our installation directory and
run a simple query. This query tells Blur to look in the “Text” col‐
umn of the review column family in the reviews table for anything
that looks like the word “great”:

blur> query reviews review.Text:great

 - Results Summary -

    total : 1

    time : 41.372 ms

--------------------------------------------------------------

      hit : 0

    score : 0.9548232184568715
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       id : Dune

 recordId : review_1.json

   family : review

     Text : I was taken away with the movie's greatness!

--------------------------------------------------------------

 - Results Summary -

    total : 1

    time  : 41.372 ms
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Solr

License Apache License, Version 2.0

Activity High

Purpose Document Warehouse

Oicial Page https://lucene.apache.org/solr

Hadoop Integration API Compatible

Sometimes you just want to search through a big stack of docu‐
ments. Not all tasks require big, complex analysis jobs spanning
petabytes of data. For many common use cases, you may find that
you have too much data for a simple Unix grep or Windows search,
but not quite enough to warrant a team of data scientists. Solr fits
comfortably in that middle ground, providing an easy-to-use means
to quickly index and search the contents of many documents.

Solr supports a distributed architecture that provides many of the
benefits you expect from big data systems (e.g., linear scalability,
data replication, and failover). It is based on Lucene, a popular
framework for indexing and searching documents, and implements
that framework by providing a set of tools for building indexes and
querying data.

While Solr is able to use the Hadoop Distributed File System
(HDFS; described on page 3) to store data, it is not truly compatible
with Hadoop and does not use MapReduce (described on page 6) or
YARN (described on page 8) to build indexes or respond to queries.
There is a similar effort named Blur (described on page 26) to build
a tool on top of the Lucene framework that leverages the entire
Hadoop stack.
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Tutorial Links
Apart from the tutorial on the official Solr home page, there is a Solr
wiki with great information.

Example Code
In this example, we’re going to assume we have a set of semi-
structured data consisting of movie reviews with labels that clearly
mark the title and the text of the review. These reviews will be stored
in individual JSON files in the reviews directory.

We’ll start by telling Solr to index our data; there are a handful of
different ways to do this, all with unique trade-offs. In this case,
we’re going to use the simplest mechanism, which is the post.sh
script located in the exampledocs/ subdirectory of our Solr install:

./example/exampledocs/post.sh /reviews/*.json

Once our reviews have been indexed, they are ready to search. Solr
has its own graphical user interface (GUI) that can be used for sim‐
ple searches. We’ll pull up that GUI and search for movie reviews
that contain the word “great”:

review_text:great&fl=title

This search tells Solr that we want to retrieve the title field
(fl=title) for any review where the word “great” appears in the
review_text field.
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MongoDB

License Free Software Foundation’s GNU AGPL v3.0.; commercial licenses available

from MongoDB, Inc.

Activity High

Purpose JSON document-oriented database

Oicial Page http://www.mongodb.org

Hadoop Integration API Compatible

If you have a large number of JSON documents (described on page
48) in your Hadoop cluster and need some data management tool to
effectively use them, consider MongoDB, an open source, big data,
document-oriented database whose documents are JSON objects. At
the start of 2015, it is one of the most popular NoSQL databases.
Unlike some other database systems, MongoDB supports secondary
indexes—meaning it is possible to quickly search on other than the
primary key that uniquely identifies each document in the Mongo
database. The name derives from the slang word “humongous,”
meaning very, very large. While MongoDB did not originally run on
Hadoop and the HDFS, it can be used in conjunction with Hadoop.

MongoDB is a document-oriented database, the document being a
JSON object. In relational databases, you have tables and rows. In
MongoDB, the equivalent of a row is a JSON document, and the
analog to a table is a collection, a set of JSON documents. To under‐
stand MongoDB, you should skip ahead to “JSON” on page 48 of
this book.

Perhaps the best way to understand its use is by way of a code exam‐
ple, shown in the next “Example Code” section.
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Tutorial Links
The tutorials section on the official project page is a great place to
get started. There are also plenty of videos available on the Internet,
including this informative series.

Example Code
This time you’ll want to compute the average ranking of the movie
Dune in the standard dataset. If you know Python, this will be clear.
If you don’t, the code is still pretty straightforward:

#!/usr/bin/python

# import required packages

import sys

import pymongo

# json movie reviews

movieReviews = [

    { "reviewer":"Kevin", "movie":"Dune", "rating","10" },

    { "reviewer":"Marshall", "movie":"Dune", "rating","1" },

    { "reviewer":"Kevin", "movie":"Casablanca", "rating","5" },

    { "reviewer":"Bob", "movie":"Blazing Saddles", "rating","9" }

]

# MongoDB connection info

MONGODB_INFO = 'mongodb://juser:password@localhost:27018/db'

# connect to MongoDB

client=pymongo.MongoClient(MONGODB_INFO)

db=client.get_defalut_database()

# create the movies collection

movies=db['movies']

#insert the movie reviews

movies.insert(movieReviews)

# find all the movies with title Dune, iterate through them

# finding all scores by using

# standard db cursor technology

mcur=movies.find({'movie': {'movie': 'Dune'})

count=0

sum=0

# for all reviews of Dune, count them up and sum the rankings

for m in mcur:

    count += 1

    sum += m['rating']

client.close()
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rank=float(sum)/float(count)

print ('Dune %s\n' % rank)
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Hive

License Apache License, Version 2.0

Activity High

Purpose Data Interaction

Oicial Page http://hive.apache.org

Integration Fully Integrated

At first, all access to data in your Hadoop cluster came through
MapReduce jobs written in Java. This worked fine during Hadoop’s
infancy when all Hadoop users had a stable of Java-savvy coders.
However, as Hadoop emerged into the broader world, many wanted
to adopt Hadoop but had stables of SQL coders for whom writing
MapReduce would be a steep learning curve. Enter Hive. The goal of
Hive is to allow SQL access to data in the HDFS. The Apache Hive
data-warehouse software facilitates querying and managing large
datasets residing in HDFS. Hive defines a simple SQL-like query
language, called HQL, that enables users familiar with SQL to query
the data. Queries written in HQL are converted into MapReduce
code by Hive and executed by Hadoop. But beware! HQL is not full
ANSI-standard SQL. While the basics are covered, some features are
missing. Here’s a partial list as of early 2015:

• Hive does not support non-equality join conditions.

• Update and delete statements are not supported.

• Transactions are not supported.

You may not need these, but if you run code generated by third-
party solutions, they may generate non-Hive compliant code.
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Hive does not mandate read or written data be in the “Hive format”
—there is no such thing. This means your data can be accessed
directly by Hive without any of the extract, transform, and load
(ETL) preprocessing typically required by traditional relational
databases.

Tutorial Links
A couple of great resources are the official Hive tutorial and this
video published by the folks at HortonWorks.

Example Code
Say we have a comma-separated values (CSV) file containing movie
reviews with information about the reviewer, the movie, and the rat‐
ing:

Kevin,Dune,10

Marshall,Dune,1

Kevin,Casablanca,5

Bob,Blazing Saddles,9

First, we need to define the schema for our data:

CREATE TABLE movie_reviews

    ( reviewer STRING, title STRING, rating INT)

ROW FORMAT DELIMITED

FILEDS TERMINATED BY ‘\,’

STORED AS TEXTFILE

Next, we need to load the data by pointing the table at our movie
reviews file. Because Hive doesn’t require that data be stored in any
specific format, loading a table consists simply of pointing Hive at a
file in HDFS:

LOAD DATA LOCAL INPATH ‘reviews.csv’

OVERWRITE INTO TABLE movie_reviews

Now we are ready to perform some sort of analysis. Let’s say, in this
case, we want to find the average rating for the movie Dune:

Select AVG(rating) FROM movie_reviews WHERE title = ‘Dune’;
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Spark SQL (formerly Shark)

License Apache License, Version 2.0

Activity High

Purpose SQL access to Hadoop Data

Oicial Page http://spark.apache.org/sql/

Hadoop Integration API Compatible

If you need SQL access to your data, and Hive (described on page
34) is a bit underperforming, and you’re willing to commit to a
Spark environment (described on page 10), then you need to con‐
sider Spark SQL. SQL access in Spark was originally called the Shark
project, and was a port of Hive, but Shark has ceased development
and its successor, Spark SQL, is now the mainline SQL project on
Spark. The blog post “Shark, Spark SQL, Hive on Spark, and the
Future of SQL on Spark” provides more information about the
change. Spark SQL, like Spark, has an in-memory computing
model, which helps to account for its speed. It’s only in recent years
that decreasing memory costs have made large memory Linux
servers ubiquitous, thus leading to recent advances in in-memory
computing for large datasets. Because memory access times are usu‐
ally 100 times as fast as disk access times, it’s quite appealing to keep
as much in memory as possible, using the disks as infrequently as
possible. But abandoning MapReduce has made Spark SQL much
faster, even if it requires disk access.

While Spark SQL speaks HQL, the Hive query language, it has a few
extra features that aren’t in Hive. One is the ability to encache table
data for the duration of a user session. This corresponds to tempo‐
rary tables in many other databases, but unlike other databases,
these tables live in memory and are thus accessed much faster. Spark
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SQL also allows access to tables as though they were Spark Resilient
Distributed Datasets (RDD).

Spark SQL supports the Hive metastore, most of its query language,
and data formats, so existing Hive users should have an easier time
converting to Shark than many others. However, while the Spark
SQL documentation is currently not absolutely clear on this, not all
the Hive features have yet been implemented in Spark SQL. APIs
currently exist for Python, Java, and Scala. See “Hive” on page 34 for
more details. Spark SQL also can run Spark’s MLlib machine-
learning algorithms as SQL statements.

Spark SQL can use JSON (described on page 48) and Parquet
(described on page 52) as data sources, so it’s pretty useful in an
HDFS environment.

Tutorial Links
There are a wealth of tutorials on the project home page.

Example Code
At the user level, Shark looks like Hive, so if you can code in Hive,
you can almost code in Spark SQL. But you need to set up your
Spark SQL environment. Here’s how you would do it in Python
using the movie review data we use in other examples (to under‐
stand the setup, you’ll need to read “Spark” on page 10, as well as
have some knowledge of Python):

# Spark requires a Context object.  Let's assume it exists

# already. You need a SQL Context object as well

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

# Load a the CSV text file and convert each line to a Python

# dictionary using lambda notation for anonymous functions.

lines = sc.textFile("reviews.csv")

movies = lines.map(lambda l: l.split(","))

reviews = movies.map(

    lambda p: {"name": p[0], "title": p[1], "rating": int(p[2])})

# Spark SQL needs to think of the RDD

# (Resilient Distributed Dataset) as a data schema

# and register the table name

schemaReviews = sqlContext.inferSchema(reviews)

schemaReviews.registerAsTable("reviews")
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# once you've registered the RDD as a schema,

# you can run SQL statements over it.

dune_reviews = sqlContext.sql(

    "SELECT * FROM reviews WHERE title = 'Dune'")
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Giraph

License Apache License, Version 2.0

Activity High

Purpose Graph database

Oicial Page https://giraph.apache.org

Hadoop Integration Fully Integrated

You may know a parlor game called Six Degrees of Separation from
Kevin Bacon in which movie trivia experts try to find the closest
relationship between a movie actor and Kevin Bacon. If an actor is
in the same movie, that’s a “path” of length 1. If an actor has never
been in a movie with Kevin Bacon, but has been in a movie with an
actor who has been, that’s a path of length 2. It rests on the assump‐
tion that any individual involved in the film industry can be linked
through his or her film roles to Kevin Bacon within six steps, or six
degrees of separation. For example, there is an arc between Kevin
Bacon and Sean Penn, because they were both in Mystic River, so
they have one degree of separation or a path of length 1. But Benicio
Del Toro has a path of length 2 because he has never been in a movie
with Kevin Bacon, but has been in one with Sean Penn.

You can show these relationships by means of a graph, a set of
ordered pairs (N,M) which describe a connection from N to M.

You can think of a tree (such as a hierarchical filesystem) as a graph
with a single source node or origin, and arcs leading down the tree
branches. The set {(top, b1), (top, b2), (b1,c1), (b1,c2), (b2,c3)} is a
tree rooted at top, with branches from top to b1 and b2, b1 to c1 and
c2, and b2 to c3. The elements of the set {top, b1, b2, c1,c2,c3} are
called the nodes.
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You will find graphs useful in describing relationships between enti‐
ties. For example, if you had a collection of emails sent between peo‐
ple in your organization, you could build a graph where each node
represents a person in your organization and an arc would exist
between node a and node b if a sent an email to b or vice versa. It
could look like Figure 2-2.

Figure 2-2. A graph detailing email relationships between people

Giraph is an Apache project to build and extract information from
graphs. For example, you could use Giraph to calculate the shortest
distance (number of arc hops) from one node in the graph to
another or to calculate if there was a path between two nodes.

Apache Giraph is derived from a Google project called Pregel and
has been used by Facebook to build and analyze a graph with a tril‐
lion nodes, admittedly on a very large Hadoop cluster. It is built
using a technology called Bulk Synchronous Parallel (BSP).

The general notion is that there are a set of “supersteps” in the BSP
model. In step zero, the vertices or nodes are distributed to worker
processes. In each following superstep, each of the vertices iterates
through a set of messages it received from the previous superset and
sends messages to other nodes to which it is connected.

In the Kevin Bacon example, each node represents an actor, director,
producer, screenwriter, and so on. Each arc connects two people
who are part of the same movie. And we want to test the hypothesis
that everyone in the industry is connected to Kevin Bacon within six
hops in the graph. Each node is given an initial value to the number
of hops; for Kevin Bacon, it is zero. For everyone else, the initial
value is a very large integer. At the first superstep, each node sends
its value to all those nodes connected to it. Then, at each of the other
supersteps, each node first reads all its messages and takes the mini‐
mum value. If it is less than its current value, the node adds 1 and
then sends this to all its connected nodes at the end of the superstep.
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Why? Because if a connected node is N steps from Kevin, then this
node is at mosts N+1 steps away. Once a node has established a new
value, it opts out of sending more messages.

At the end of six supersteps, you’ll have all the persons connected to
Kevin Bacon by six or fewer hops.

Tutorial Links
The official product page has a quick start guide. In addition, there
are a handful of videotaped talks, including one by PayPal and
another by Facebook. Finally, there’s this particularly informative
blog post.
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CHAPTER 3

Serialization

Big data systems spend a great deal of time and resources moving
data around. Take, for example, a typical process that looks at logs.
That process might collect logs from a few servers, moving those
logs to HDFS, perform some sort of analysis to build a handful of
reports, then move those reports to some sort of dashboard your
users can see. At each step in that process, you’re moving data, in
some cases multiple times, between systems, off hard drives and into
memory. See Figure 3-1.

Figure 3-1. Serialization and deserialization of a movie review

When modern computers work with data, it’s often held in all man‐
ner of complex formats, full of internal relationships and references.
When you want to write this data down, whether to share it or to
store it for later, you need to find a way to break down those rela‐
tionships, explain the references, and build a representation of the
data that can be read from start to finish. This process is called seri‐
alization.

43



Similarly, have you ever read a great description of a place or event
and found that you could picture it perfectly in your head? This pro‐
cess of reading something that’s been written down (serialized) and
rebuilding all the complex references and relationships is known as
de-serialization.

There is a wide variety of data serialization tools and frameworks
available to help manage what your data looks like as it is moved
around. Choosing the right serialization format for each task is a
critical aspect of building a system that is scalable, performs well,
and can be easily managed. As you’ll see, there are a handful of
major considerations to keep in mind when choosing a serialization
format, including:

Data size
How much space does your data take up in memory or on disk?

Read/write speed
How long does it take a computer to read/write your data?

Human readability
Can humans make sense out of your serialized data without
outside assistance?

Ease of use
How hard is it to write or read data in this format? Do you need
to share special files or tools with other folks who want to read
your data?
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Avro

License Apache License, Version 2.0

Activity Medium

Purpose Data Serialization

Oicial Page http://avro.apache.org

Hadoop Integration API Compatible

Let’s say you have some data and you want to share it with someone
else. The first thing you might do is write out the structure of your
data, defining things like how many fields there are and what kind of
data those fields contain. In technical terms, that definition could be
called a schema. You would likely share that schema along with your
data, and the folks who are interested in your data might put
together a little code to make sure they can read it.

Avro is a system that automates much of that work. You provide it
with a schema, and it builds the code you need to read and write
data. Because Avro was designed from the start to work with
Hadoop and big data, it goes to great lengths to store your data as
efficiently as possible.

There are two unique behaviors that differentiate Avro from many
other serialization systems such as Thrift and Protocol Buffers
(protobuf; described on page 50):

Runtime assembled
Avro does not require special serialization code to be generated
and shared beforehand. This simplifies the process of deploying
applications that span multiple platforms, but comes at a cost to
performance. In some cases, you can work around this and gen‐
erate the code beforehand, but you’ll need to regenerate and
reshare the code every time you change the format of your data.
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Schema-driven
Each data transfer consists of two parts: a schema describing the
format of the data and the data itself. Because the format of the
data is defined in the schema, each item does not need to be tag‐
ged. This allows for a dramatic reduction in the overhead asso‐
ciated with transferring many complex objects, but can actually
increase the overhead involved with transferring a small num‐
ber of large but simple objects.

Tutorial Links
The official Avro documentation page is a great place to get started
and provides “getting started” guides for both Java and Python. If
you’re more interested in diving straight into integrating Avro with
MapReduce, you can’t go wrong with the avro-mr-sample project on
GitHub.

Example Code
Avro supports two general models:

• A traditional serialization model where a developer authors a
schema, runs a compiler to create models based on that schema,
and then uses those models in their application

• A runtime model where Avro builds records based on a schema
file provided at runtime

In our example, we’ll use the runtime model because this is one of
the most interesting differentiators for Avro.

We start out by defining a schema in a file that we’ll call review.avsc:

{"namespace": "example.elephant",

 "type": "record",

 "name": "Review",

 "fields": [

     {"name": "reviewer", "type": "string"},

     {"name": "movieTitle",  "type": "string"},

     {"name": "rating", "type": "int"}

 ]

}

Now we can create an object based on this schema and write it out
to disk:

46 | Chapter 3: Serialization

www.allitebooks.com

http://bit.ly/1CVll30
http://bit.ly/1FyNXNJ
http://www.allitebooks.org


//Bind the schema

Schema schema = new Parser().parse(new File("review.avsc"));

//Build a record

GenericRecord review = new GenericData.Record(schema);

review.put("reviewer", "Kevin");

review.put("movieTitle", "Dune");

review.put("rating", 10);

// Serialize our review to disk

File file = new File("review.avro");

DatumWriter<GenericRecord> datumWriter =

    new GenericDatumWriter<GenericRecord>(schema);

DataFileWriter<GenericRecord> dataFileWriter =

    new DataFileWriter<GenericRecord>(datumWriter);

dataFileWriter.create(schema, file);

dataFileWriter.append(user1);

dataFileWriter.append(user2);

dataFileWriter.close();

We can also deserialize that file we just created to populate a review
object:

//Bind the schema

Schema schema = new Parser().parse(new File("review.avsc"));

File file = new File("review.avro");

DatumReader<GenericRecord> datumReader =

    new GenericDatumReader<GenericRecord>(schema);

DataFileReader<GenericRecord> dataFileReader =

    new DataFileReader<GenericRecord>(file, datumReader);

GenericRecord review = null;

while (dataFileReader.hasNext()) {

// Reuse user object by passing it to next(). This saves us from

// allocating and garbage collecting many objects for files with

// many items.

    review = dataFileReader.next(review);

}

Avro | 47



JSON

License http://www.json.org/license.html

Activity Medium

Purpose Data description and transfer

Oicial Page http://www.json.org

Hadoop Integration No Integration

As JSON is not part of Hadoop, you may wonder why it’s included
here. Increasingly, JSON is becoming common in Hadoop because it
implements a key-value view of the world. JSON is an acronym for
Java Script Object Notation, and is a convenient way to describe,
serialize, and transfer data. It’s easy to learn and understand, and is
easily parsable, self-describing, and hierarchical. In addition, JSON
syntax is fairly simple. Data is represented by name-value pairs and
is comma separated. Objects are enclosed by curly brackets, and
arrays are enclosed by square brackets.

JSON is often compared to XML because both are used in data
description and data transfer. While you’ll find XML is perhaps a
richer and more extensible method of serializing and describing
data, you may also find that it is more difficult to read and parse.
The Hadoop community seems to favor JSON rather than XML.
That said, many of the configuration files in the Hadoop infrastruc‐
ture are written in XML, so a basic knowledge of XML is still
required to maintain a Hadoop cluster.

Tutorial Links
JSON has become one of the most widely adopted standards for
sharing data. As a result, there’s a wealth of information available on
the Internet, including this w3schools article.
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Example Code
Our movie review data can easily be expressed in JSON.

For example, here’s the original data:

Kevin,Dune,10

Marshall,Dune,1

Kevin,Casablanca,5

Bob,Blazing Saddles,9

And here’s the JSON-formatted data (the reviews are described as a
collection called movieReviews, which consists of an array of a col‐
lection of name-value pairs—one for the name of the reviewer, one
for the name of the move, and one for the rating):

{

"movieReviews": [

    { "reviewer":"Kevin", "movie":"Dune", "rating","10" },

    { "reviewer":"Marshall", "movie":"Dune", "rating","1" },

    { "reviewer":"Kevin", "movie":"Casablanca", "rating","5" },

    { "reviewer":"Bob", "movie":"Blazing Saddles", "rating","9" }

]

}
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Protocol Bufers (protobuf)

License BSD Simpliied

Activity Medium

Purpose Data Serialization

Oicial Page https://developers.google.com/protocol-bufers

Hadoop Integration API Compatible

One common theme you’ll see expressed throughout this book is
the trade-off between flexibility and performance. Sometimes you
want to easily share data with other folks and you’re willing to take a
hit in performance to make sure that data is easy to consume. There
will be other occasions where you need to maximize your perfor‐
mance and find that you’re willing to trade away flexibility in order
to get it—on those occasions, you’re going to want to take a look at
Protocol Buffers.

The primary reason for this trade-off is that Protocol Buffers is
compile-time assembled. This means you need to define the precise
structure for your data when you build your application, a stark
contrast to Avro’s runtime assembly, which allows you to define the
structure of your data while the application is running, or JSON’s
even more flexible, schema-less design. The upside of compile-time
assembly is the code that actually serializes and deserializes your
data is likely to be more optimized, and you do not need to pay the
cost of building that code while your application is running.

Protocol Buffers is intended to be fast, simple, and small. As a result,
it has less support for programming languages and complex data
types than other serialization frameworks such as Thrift.
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Tutorial Links
Google provides excellent tutorials for a variety of languages in the
official project documentation.

Example Code
Unlike Avro (described on page 45), which supports runtime
schema binding, protobuf must be integrated into your development
and build process. You begin by defining a model in a .proto file. For
example:

message Review {

  required string reviewer = 1;

  required string movieTitle = 2;

  required int32 rating = 3;

}

You then run a protobuf compiler for your specific development
language (e.g., Java) to generate code based on your model defini‐
tion.

The mechanism for working with the objects generated by the pro‐
tobuf compiler changes slightly from language to language. In Java,
we use a builder to create a new, writeable object:

Review.Builder reviewBuilder = Review.newBuilder();

reviewBuilder.setReviewer("Kevin");

reviewBuilder.setMovieTitle("Dune");

reviewBuilder.setRating(10);

Review review = reviewBuilder.build();

This review object can then be written to any sort of output stream:

FileOutputStream output = new FileOutputStream("review.dat");

review.writeTo(output);

Repopulating objects from previously serialized data is done in a
similar fashion:

FileInputStream input = new FileInputStream("review.dat");

review.parseFrom(input);
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Parquet

License Apache License, Version 2.0

Activity Medium

Purpose File Format

Oicial Page http://parquet.io

Hadoop Integration API Compatible

One of the most compelling ideas behind an open ecosystem of
tools, such as Hadoop, is the ability to choose the right tool for each
specific job. For example, you have a choice between tools like distcp
(described on page 95) or Flume (described on page 93) for moving
your data into your cluster; Java MapReduce or Pig for building big
data processing jobs; Puppet (described on page 61) or Chef
(described on page 63) for managing your cluster; and so on. This
choice differs from many traditional platforms that offer a single
tool for each job and provides flexibility at the cost of complexity.

Parquet is one choice among many for managing the way your data
is stored. It is a columnar data storage format, which means it per‐
forms very well with data that is structured and has a fair amount of
repetition. On the other hand, the Parquet format is fairly complex
and does not perform as well in cases where you want to retrieve
entire records of data at a time.

Tutorial Links
The GitHub page for the Parquet format project is a great place to
start if you’re interested in learning a bit more about how the tech‐
nology works. If, on the other hand, you’d like to dive straight into
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examples, move over to the GitHub page for the parquet m/r
project.

Example Code
The Parquet file format is supported by many of the standard
Hadoop tools, including Hive (described on page 34) and Pig
(described on page 76). Using the Parquet data format is typically as
easy as adding a couple lines to your CREATE TABLE command or
changing a few words in your Pig script.

For example, to change our Hive example to use Parquet instead of
the delimited textfile format, we simply refer to Parquet when we
create the table:

CREATE EXTERNAL TABLE movie_reviews

    ( reviewer STRING, title STRING, rating INT)

ROW FORMAT SERDE 'parquet.hive.serde.ParquetHiveSerDe'

STORED

    INPUTFORMAT "parquet.hive.DeprecatedParquetInputFormat"

    OUTPUTFORMAT "parquet.hive.DeprecatedParquetOutputFormat"

    LOCATION '/data/reviews';

We can similarly modify our Pig example to load a review file that is
stored in the Parquet format instead of CSV:

reviews = load ‘reviews.pqt’ using parquet.pig.ParquetLoader

    as (reviewer:chararray, title:chararray, rating:int);
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CHAPTER 4

Management and Monitoring

Building and keeping tabs on a big data architecture can be a daunt‐
ing task. You’ve got a diverse set of software spread out across many
machines that might have dramatically different configurations.
How can you tell if part of your system is failing, and how do you
bring that component back up after you’ve fixed the problem? How
can the different parts of your system communicate with on another
so they can do big jobs with many moving parts?

Fortunately, the big data ecosystem provides a variety of tools to
ease the burden of managing and monitoring your architecture.
We’re going to address three primary categories of these tools:

Node coniguration management
These are tools like Puppet or Chef that can help you manage
the configuration of your systems. They do things like change
operating system parameters and install software.

Resource tracking
While many individual components in your architecture may
come with tools to monitor the performance of that specific
component, sometimes you need a single dashboard or insight
into something that isn’t tied to a specific tool.

Coordination
Many tasks take advantage of a handful of different components
of your big data system. Tools like ZooKeeper can help you syn‐
chronize all those moving parts to accomplish a single goal.
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Ambari

License Apache License, Version 2.0

Activity High

Purpose Provisioning, monitoring, and management of a Hadoop cluster

Oicial Page http://ambari.apache.org

Hadoop Integration Fully Integrated

If you’ve ever tried to install Hadoop from the Apache download,
you’ll know that Hadoop is still a bear to install and manage.
Recently, Pivotal and Hortonworks, two of the major vendors,
agreed to work jointly on Ambari in an attempt to produce a
production-ready, easy-to-use, web-based GUI tool based on a
RESTful API.

The Ambari documentation at the official page says that it can:

• Provision and monitor a Hadoop cluster

• Provide a step-by-step wizard for installing Hadoop services
across any number of hosts

• Provide central management for starting, stopping, and reconfi‐
guring Hadoop services across the entire cluster

• Provide a dashboard for monitoring health and status of the
Hadoop cluster

• Leverage Ganglia (described on page 70) for metrics collection

• Leverage Nagios (described on page 60) for system alerting

While installing Hadoop with traditional methods might be a multi‐
day ordeal, Ambari can accomplish this in a few hours with relative
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ease. Ambari graduated from Incubator status to Top Level Project
late in 2013 and should now be ready for production use.

Tutorial Links
There is a silent video that takes you through a cluster build with
Ambari.

Here’s a great slideshow tutorial.

Example Code
Ambari is a GUI-based tool, so there’s no way we can present a code
example.
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HCatalog

License Apache License, Version 2.0

Activity High

Purpose Data abstraction layer

Oicial Page http://hive.apache.org/javadocs/hcat-r0.5.0/index.html

Hadoop Integration Fully Integrated

Suppose you have a set of files that you access with MapReduce,
Hive, and Pig. Wouldn’t it be useful if you had a way of accessing
them so that you didn’t have to know details of file format and loca‐
tion? You do. HCatalog provides an abstraction layer on many file
types in HDFS allowing users of Pig, Hive, and MapReduce to con‐
centrate on reading and writing their data without detailed consid‐
eration of what format it is using. This abstraction layer makes the
data look very much like relational data (i.e., arranged in tables with
rows and columns and a very SQL-like feel). HCatalog is closely
associated with Hive because it uses and derives from the Hive
metastore, the place that Hive stores its metadata about its tables.

HCatalog has the notion of partitions. A partition is a subset of rows
of a table that have some common characteristic. Often, tables are
partitioned by a date field. This makes it easy to query and also easy
to manage, dropping partitions when they are no longer needed.

If you decide to use HCatalog, you’ll access your data via the HCata‐
log methods rather than those native to Pig or MapReduce. For
example, in Pig, you commonly use PigStorage or TextLoader to
read data, whereas when using HCatalog, you would use HCat‐
Loader and HCatStorer.
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Tutorial Links
HCatalog is one of the more sparsely documented major projects in
the Hadoop ecosystem, but this tutorial from HortonWorks is well
done.

Example Code
In Pig without HCatalog, you might load a file using something like:

reviews = load ‘reviews.csv’ using PigStorage(',')

    as (reviewer:chararray, title:chararray,rating:int);

Using HCatalog, you might first create a table within Hive

CREATE TABLE movie_reviews

    ( reviewer STRING, title STRING, rating INT)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ‘|’

STORED AS TEXTFILE

and then use it in your Pig statement:

reviews = load ‘movie_reviews’

USING org.apache.hcatalog.pig.HCatLoader(); -

HCatalog | 59

http://youtu.be/_dVlNu4lqpE


Nagios

License GNU General Public License

Activity High

Purpose IT infrastructure monitoring

Oicial Page http://www.nagios.org

Hadoop Integration No Integration

As anyone who has ever been responsible for a networked computer
system knows, keeping track of what’s happening in such a network
is of critical importance. You need to know when things go wrong
by being alerted rather than manually polling. You would like to
have automated restart of failed components. You would like a tool
that presents a graphical interface so you can quickly see what’s hap‐
pening in the environment. Nagios is such a tool. Like many prod‐
ucts in the open source world, there is a version that you can freely
download, and expanded versions that are licensed at a cost.

The open source core product has many useful features. It provides
monitoring of servers, switches, OS, and application through a web-
based interface. More important, it provides quick detection of out‐
ages and problems and can alert your operations staff via email or
text message. There are provisions for automatic restart.

Importantly, Nagios can be embedded into other systems, including
Ambari (described on page 56).

Tutorial Links
The Nagios main site has a live demo system.

There are a score of others, including this page on Debian Help and
this one on TuxRadar.
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Puppet

License Apache License, Version 2.0

Activity High

Purpose Node Management

Oicial Page https://puppetlabs.com

Hadoop Integration API Compatible

Puppet is a popular system for managing the configuration of large
numbers of machines. It uses a “declarative” syntax, which means
you describe the configuration of your machines and Puppet takes
care of figuring out the steps necessary to achieve that configura‐
tion. For example, you will describe a configuration that has certain
programs installed and Puppet will take care of figuring out how to
determine if those programs are installed and how to install them if
they are not yet installed.

Puppet configurations are written in terms of resources, manifests,
and modules. A resource is the most basic unit of configuration and
represents the state of a specific thing. For example, a resource
might state that a specific file should exist and that everyone should
be able to view its contents, but only the system administrator
should be able to alter its contents.

The next level of configuration is a manifest. A manifest is a group
of related resources. For example, a manifest may say that installing
your application requires both a specific version of a RedHat Pack‐
age Manager (RPM) to be installed, and that a configuration direc‐
tory be created.

A module is a logical group of related, but separate, manifests. For
example, a module for our application might contain one manifest
that installs our application, another manifest that configures our
application to work with an HBase instance (described on page 19),
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and a third module that configures our application to send logs to a
specific location.

Tutorial Links
Puppet Labs provides a variety of resources for those getting started.

Example Code
Puppet manifests are written in Ruby and follow typical Ruby syntax
rules.

Our example manifest to install our application and ensure the con‐
figuration directory exists would look like this:

# 'test_application.pp'

class test_application {

    package { 'test_application':

        ensure => installed

    }

    file { 'test_application_conf':

        path => '/etc/test_application/conf',

        ensure => directory,

        require => Package['test_application']

    }

}
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Chef

License Apache License, Version 2.0

Activity High

Purpose Node Management

Oicial Page https://www.getchef.com

Hadoop Integration API Compatible

Chef is designed to ease the burden of managing the configuration
of your infrastructure. It follows an “imperative” syntax that is famil‐
iar to many software developers, allowing them to write software
configuration the same we they write software code.

Chef configurations are written as resources, recipes, and cook‐
books. A resource is the most basic unit of configuration and
describes how to configure a specific thing. For example, a resource
might tell Chef to create a specific directory and to make sure that
everyone is able to view its contents, but that the contents can only
be altered by the system administrator.

The next level of configuration is a recipe. A recipe is a group of
related resources. For example, a recipe may say that installing your
application takes two steps: first you must install a specific package,
and then you must create a configuration directory.

A cookbook is a logical group of related, but separate, recipes. For
example, a module for our application might contain one recipe that
installs our application, another recipe that configures our applica‐
tion to work with an HBase instance (described on page 19), and a
third recipe that configures our application to work with an Accu‐
mulo instance (described on page 22). All three of these manifests
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relate to installing and configuring our application, but we need to
be be able to control which of these manifests is actually run without
being required to run them all.

Tutorial
Opscode provides a variety of resources for getting started on its
wiki page.

Example Code
Chef recipes are written in Ruby and follow typical Ruby syntax
rules.

Our example manifest to install our application and ensure the con‐
figuration directory exists would look like this:

# 'default.rb'

package "test_application" do

    action :install

end

directory "/etc/test_application/conf" do

    action :create

end
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ZooKeeper

License Apache License, Version 2.0

Activity Medium

Purpose Coordination

Oicial Page https://zookeeper.apache.org

Hadoop Integration API Compatible

Hadoop and HDFS are effective tools for distributing work across
many machines, but sometimes you need to quickly share little bits
of information between a number of simultaneously running pro‐
cesses. ZooKeeper is built for exactly this sort of need: it’s an effec‐
tive mechanism for storing and sharing small amounts of state and
configuration data across many machines.

For example, let’s say you have a job that takes information from a
large number of small files, transforms that data, and puts the infor‐
mation into a database.

You could store the information in a file on a fileshare or in HDFS,
but accessing that information from many machines can be very
slow and attempting to update the information can be difficult due
to synchronization issues.

A slightly better approach would be to move the connection infor‐
mation into a MapReduce job configuration file. Even then, you
would need to update a file for every analytic every time the data‐
base moves. Also, there would be no straightforward way to update
the connection information if the database needs to be moved while
you have an analytic running.
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Better still, storing the connection information in ZooKeeper allows
your analytics to quickly access the information while also providing
a simple mechanism for updates.

ZooKeeper is not intended to fill the space of HBase (described on
page 19) or any other big data key-value store. In fact, there are pro‐
tections built into ZooKeeper to ensure that folks do not attempt to
use it as a large data store. ZooKeeper is, however, just right when all
you want to do is share a little bit of information across your envi‐
ronment.

Tutorial Links
The official getting started guide is a great place to get your feet wet
with ZooKeeper.

Example Code
In this example, we’re going to start by opening the ZooKeeper
command-line interface:

$ zookeeper-client

Now we’ll create a key-value pair. In this case, the key
is /movie_reviews/database and the value is the IP address of a
database we’ll use for our movie reviews:

[zk: localhost:3000(CONNECTED) 0] create /movie_reviews ''

Created /movie_reviews

[zk: localhost:3000(CONNECTED) 1] create /movie_reviews/database

'10.2.1.1'

Created /movie_reviews/database

Now we’ll retrieve the value for our key. Notice that we get back two
important pieces of data—the actual value of 10.2.1.1 and the ver‐
sion of the value:

[zk: localhost:3000(CONNECTED) 2] get /movie_reviews/database

'10.2.1.1'

<metadata>

dataVersion = 0

<metadata>

Imagine the original server hosting our database has crashed and we
need to point all the different processes that use that database to our
failover. We’ll update the value associated with our key to point to
the IP address of our failover:
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[zk: localhost:3000(CONNECTED) 0] set /movie_reviews/database

'10.2.1.2'

<metadata>

dataVersion = 1

<metadata>

Now let’s get the key one last time. Notice that we retrieve the new
IP address and the version has incremented to indicate that the
value has changed:

[zk: localhost:3000(CONNECTED) 1] get /movie_reviews/database

'10.2.1.2'

<metadata>

dataVersion = 1

<metadata>
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Oozie

License Apache License, Version 2.0

Activity High

Purpose A worklow scheduler to manage complex multipart Hadoop jobs

Oicial Page https://oozie.apache.org

Hadoop Integration Fully Integrated

You may be able to complete some of your data analytic tasks with a
single MapReduce, Pig, or Hive job that reads its data from the
Hadoop Distributed File System (HDFS, described on page 3), com‐
putes its output and stores it in HDFS, but some tasks will be more
complicated. For example, you may have a job that requires that two
or three other jobs finish, and each of these require that data is
loaded into HDFS from some external source. And you may want to
run this job on a periodic basis. Of course, you could orchestrate
this manually or by some clever scripting, but there is an easier way.

That way is Oozie, Hadoop’s workflow scheduler. It’s a bit compli‐
cated at first, but has some useful power to start, stop, suspend, and
restart jobs, and control the workflow so that no task within the
complete job runs before the tasks and objects it requires are ready.
Oozie puts its actions (jobs and tasks) in a directed acyclic graph
(DAG) that describe what actions depend upon previous actions
completing successfully. This is defined in a large XML file (actually
hPDL, Hadoop Process Definition Language). The file is too large to
display here for any nontrivial example, but the tutorials and Oozie
site have examples.

What is a DAG? A graph is a collection of nodes and arcs. Nodes
represent states or objects. Arcs connect the nodes. If an arc has an
arrow at either end, then that arc is directed and the direction of the
arrow indicates the direction. In Oozie, the nodes are the actions,
such as to run a job, fork, fail, or end. The arcs show which actions
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flow into others. It’s directed to show the ordering of the actions and
decision or controls—that is, what nodes must run jobs or whether
events precede or follow (e.g., a file object must be present before a
Pig script is run). Acyclic means that in traversing the graph, once
you leave a node, you cannot get back there. That would be a cycle.
An implication of this is that Oozie cannot be used to iterate
through a set of nodes until a condition is met (i.e., there are no
while loops). There is more information about graphs in “Giraph”
on page 39.

Figure 4-1 is a graphic example of an Oozie flow in which a Hive job
requires the output of both a Pig job and a MapReduce job, both of
which require external files to be present.

Figure 4-1. Graph representation of Oozie job low

The Oozie installation comes with a GUI console for job monitor‐
ing, but it requires the use of Ext JS, a JavaScript framework for
building desktop apps that comes with both open source and com‐
mercial versions.

Recently there has been some use of Hue as a more general Hadoop
monitoring tool. Hue is open source, distributed under the Apache
License, Version 2.0 and is primarly associated with the Cloudera
Hadoop Distribution.

Tutorial Links
There are a handful of interesting Oozie presentations, including
this one by IBM’s big data team and this academic presentation.

Example Code
The actual example files are too large to easily fit here. For more
information, refer to the official user resources page, which contains
cookbooks for a variety of languages.
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Ganglia

License BSD

Activity Medium

Purpose Monitoring

Oicial Page http://ganglia.sourceforge.net

Hadoop Integration API Compatible

Ganglia is a distributed monitoring system specifically designed to
work with clusters and grids consisting of many machines. It allows
you to quickly visualize how your systems are being used and can be
a useful tool for keeping track of the general welfare of your cluster.
Ganglia is best used to understand how your system is behaving at a
very broad but very shallow level. Folks who are looking to debug or
optimize specific analytics would be better served to look at other
tools that are geared toward providing much deeper information at
a much narrower scope, such as White Elephant.

By default, Ganglia is capable of providing information about much
of the inner workings of your system right out of the box. This
includes a number of data points describing such things as how
much of your total computing capability is being used, how much
data is moving through your network, and how your persistent stor‐
age is being utilized. Users with additional needs can also extend
Ganglia to capture and display more information, such as
application-specific metrics, through the use of plug-ins. Hadoop is
packaged with a set of plug-ins for reporting information about
HDFS and MapReduce to Ganglia (see the Ganglia Metrics project
for more information).

Ganglia is being used in the Ambari project (described on page 56).
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Tutorial Links
Ganglia has a widely distributed support network spanning mailing
lists, GitHub defect tracking, wiki pages, and more. An excellent
starting off point for folks looking to get their first Ganglia installa‐
tion working is the Ganglia wiki page.

Example Code
Configuring a Ganglia instance is beyond the scope of this book, as
is even the most basic of distributed system monitoring and diag‐
nostic processes. Interested readers are encouraged to look at the
Ganglia instance monitoring the Wikimedia (Wikipedia) cluster to
see Ganglia in action.
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CHAPTER 5

Analytic Helpers

Now that you’ve ingested data into your Hadoop cluster, what’s
next? Usually you’ll want to start by simply cleansing or transform‐
ing your data. This could be as simple or reformatting fields and
removing corrupt records or it could involve all manner of complex
aggregation, enrichment, and summarization. Once you’ve cleaned
up your data, you may be satisfied to simply push it into a more tra‐
ditional data store, such as a relational database, and consider your
big data work to be done. On the other hand, you may want to con‐
tinue to work with your data, running specialized machine-learning
algorithms to categorize your data or perhaps performing some sort
of geospatial analysis.

In this chapter, we’re going to talk about two types of tools:

MapReduce interfaces
General-purpose tools that make it easier to process your data

Analytic libraries
Focused-purpose libraries that include functionality to make it
easier to analyze your data

MapReduce Interfaces
In the early days of Hadoop, the only way to process the data in your
system was to work with MapReduce in Java, but this approach pre‐
sented a couple of major problems:
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• Your analytic writers need to not only understand your business
and your data, but they also need to understand Java code

• Pushing a Java archive to Hadoop is more time-consuming than
simply authoring a query

For example, the process of developing and testing a simple analytic
written directly in MapReduce might look something like the fol‐
lowing for a developer:

1. Write about a hundred lines of Java MapReduce.

2. Compile the code into a JAR file (Java archive).

3. Copy the JAR file to cluster.

4. Run the analytic.

5. Find a bug, go back and write some more code.

As you can imagine, this process can be time-consuming, and tin‐
kering with the code can disrupt thinking about the business prob‐
lem. Fortunately, a robust ecosystem of tools to work with Hadoop
and MapReduce have emerged to simplify this process and allow
your analysts to spend more time thinking about the business prob‐
lem at hand.

As you’ll see, these tools generally do a few things:

• Provide a simpler, more familiar interface to MapReduce

• Generate immediate feedback by allowing users to build queries
interactively

• Simplify complex operations

Analytic Libraries
While there is much analysis that can be done in MapReduce or Pig,
there are some machine-learning algorithms that are distributed as
part of Apache Mahout project. Some examples of the kinds of
problems suited for Mahout are classification, recommendation,
and clustering.

You point machine-learning algorithms at a dataset, and they “learn”
something from the data. They fall into two classes: supervised and
unsupervised. In supervised learning, the data typically has a set of
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observations and an outcome value. For example, clinical data about
patients would be the observations, and an outcome value might be
the presence of a disease. A supervised-learning algorithm, given a
new patient’s clinical data, would try to predict the presence of a dis‐
ease. Unsupervised algorithms do not use a given outcome, and
instead attempt to find some hidden pattern in the data. For exam‐
ple, we could take a set of observations of clinical data from patients
and try to see if they tend to cluster, so that points inside a cluster
would be “close” to one another and the cluster centers would be far
from one another. The interpretation of the cluster is not given by
the algorithm and is left for the data analyst to discover. You can
find the list of supported algorithms on the Mahout home page.

Recommendation algorithms determine the following: based on
other people’s ratings, and the similarity of them to you, what would
you be likely to rate highly?

Classification algorithms, given a set of observations on an individ‐
ual, predict some unknown outcome. If the outcome is a binary
variable, logistic regression can be used to predict the probability of
that outcome. For example, given the set of lab results of a patient,
predict the probability that the patient has a given disease. If the
outcome is a numeric variable, linear regression can be used to pre‐
dict the value of that outcome. For example, given this month’s eco‐
nomic conditions, predict the unemployment rate for next month.

Clustering algorithms don’t really answer a question. You frequently
use them in the first stage of your analysis to get a feel for the data.

Data analytics is a deep topic—too deep to discuss in any detail here.
O’Reilly has an excellent series of books on the topic of data analyt‐
ics.

Most of the analytics just discussed deal with numerical or categori‐
cal data. Increasingly important in the Hadoop world are text ana‐
lytics and geospatial analytics.
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Pig

License Apache License, Version 2.0

Activity High

Purpose High-level data low language for processing data

Oicial Page http://pig.apache.org

Hadoop Integration Fully Integrated

If MapReduce code in Java is the “assembly language” of Hadoop,
then Pig is analogous to Python or another high-level language.
Why would you want to use Pig rather than MapReduce? Writing in
Pig may not be as performant as writing mappers and reducers in
Java, but it speeds up your coding and makes it much more main‐
tainable. Pig calls itself a data flow language in which datasets are
read in and transformed to other datasets using a combination of
procedural thinking as well as some SQL-like constructs.

Pig is so called because “pigs eat everything,” meaning that Pig can
accommodate many different forms of input, but is frequently used
for transforming text datasets. In many ways, Pig is an admirable
extract, transform, and load (ETL) tool. Pig is translated or com‐
piled into MapReduce code and it is reasonably well optimized so
that a series of Pig statements do not generate mappers and reducers
for each statement and then run them sequentially.

There is a library of shared Pig routines available in the Piggy Bank.
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Tutorial Links
There’s a fairly complete guide to get you through the process of
installing Pig and writing your first couple scripts. “Working with
Pig” is a great overview of the Pig technology.

Example Code
The movie review problem can be expressed quickly in Pig with
only five lines of code:

-- Read in all the movie review and find the average rating

   for the film Dune

-- the file reviews.csv has lines of form:

   name, film_title, rating

   reviews = load ‘reviews.csv’ using PigStorage(',')

    as (reviewer:chararray, title:chararray,rating:int);

-- Only consider reviews of Dune

   duneonly = filter reviews by title == 'Dune';

-- we want to use the Pig builtin AVG function but

-- AVG works on bags, not lists, this creates bags

   dunebag = group duneonly by title;

-- now generate the average and then dump it

   dunescore = foreach dunebag generate AVG(dune.rating);

   dump dunescore;
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Hadoop Streaming

License Apache License, Version 2.0

Activity Medium

Purpose Write MapReduce code without Java

Oicial Page http://hadoop.apache.org/docs/r1.2.1/streaming.html

Hadoop Integration Fully Integrated

You have some data, you have an idea of what you want to do with
it, you understand the concepts of MapReduce, but you don’t have
solid Java or MapReduce expertise, and the problem does not really
fit into any of the other major tools that Hadoop has to offer. Your
solution may be Hadoop Streaming, which allows you to write code
in any Linux program that reads from stdin and writes to stdout.

You still need to write mappers and reducers, but in the language of
your choice. Your mapper will likely read lines from a text file and
produce a key-value pair separated by a tab character. The shuffle
phase of the process will be handled by the MapReduce infrastruc‐
ture, and your reducer will read from standard input (stdin), do its
processing, and write its output to standard output (stdout).

The reference in the following “Tutorial Links” section shows a
WordCount application in Hadoop Streaming using Python.

Is Streaming going to be as performant as native Java code? Almost
certainly not, but if your organization has Ruby or Python or similar
skills, you will definitely yield better results than sending your devel‐
opers off to learn Java before doing any MapReduce projects.
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Tutorial Links
There’s an excellent overview of the technology as well as a tutorial
available on this web page.

Example Code
We’ll use streaming to compute the average ranking for Dune. Let’s
start with our small dataset:

Kevin,Dune,10

Marshall,Dune,1

Kevin,Casablanca,5

Bob,Blazing Saddles,9

The mapper function could be:

#! /usr/bin/python

import sys

for line in sys.stdin:

   line = line.strip()

   keys = line.split(',')

   print( "%s\t%s" % (keys[1], keys[2]) )

The reducer function could be:

#!/usr/bin/python

import sys

count = 0

rating_sum = 0

for input_line in sys.stdin:

   input_line = input_line.strip()

   title, rating = input_line.split("\t", 1)

   rating = float(rating)

   if title == 'Dune':

      count += 1

      rating_sum += rating

dune_avg = rating_sum/count

print("%s\t%f" % ('Dune',dune_avg))

And the job would be run as:
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hadoop jar contrib/streaming/hadoop-*streaming*.jar \

-file /home/hduser/mapper.py  \

-mapper /home/hduser/movie-mapper.py \

-file /home/hduser/reducer.py \

-reducer /home/hduser/movie-reducer.py \

-input /user/hduser/movie-reviews-in/* \

-output /user/hduser/movie-reviews-out

producing the result:

Dune    5.500000
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Mahout

License Apache License, Version 2.0

Activity High

Purpose Machine learning and data analytics

Oicial Page http://mahout.apache.org

Hadoop Integration API Compatible

You have a bunch of data in your Hadoop cluster. What are you
going to do with it? You might want to do some analytics, or data
science, or machine learning. Much of this can be done in some of
the tools that come with the standard Apache distribution, such as
Pig, MapReduce, or Hive. But more sophisticated uses will involve
algorithms that you will not want to code yourself. So you turn to
Mahout. What is Mahout? Mahout is a collection of scalable
machine-learning algorithms that run on Hadoop. Why is it called
Mahout? Mahout is the Hindi word for an elephant handler, as you
can see from the logo. The list of algorithms is constantly growing,
but as of March 2014, it includes the ones listed in Table 5-1.

Table 5-1. Mahout MapReduce algorithms

Mahout algorithm Brief description

k-means/fuzzy k-means

clustering

Clustering is dividing a set of observation into groups where elements

in the group are similar and the groups are distinct

Latent Dirichlet allocation LDA is a modelling technique often used for classifying documents

predicated on the use of speciic topic terms in the document
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Mahout algorithm Brief description

Singular value

decomposition

SVD is diicult to explain succinctly without a lot of linear algebra and

eigenvalue background

Logistic-regression-based

classiier

Logistic regression is used to predict variables that have a zero-one

value, such as presence or absense of a disease, or membership in a

group

Complementary naive

Bayes classiier

Another classiication scheme making use of Bayes’ theorem (which

you may remember from Statistics 101)

Random forest decision

tree-based classiier

Yet another classiier based on decision trees

Collaborative iltering Used in recommendation systems (if you like X, may we suggest Y)

A fuller discussion of all these is well beyond the scope of this book.
There are many good introductions to machine learning available.
Google is your friend here.

In April 2014, the Mahout community announced that it was mov‐
ing away from MapReduce to a domain-specific language (DSL)
based on Scala to a Spark implementation (described on page 10).
Current MapReduce algorithms would continue to be supported,
but additions to the code base could not be MapReduce based. In
fact, in the latest release, the Mahout community had dropped sup‐
port for some infrequently used routines.

Tutorial Links
The Mahout folks have an entire page of curated links to books,
tutorials, and talks.

Example Code
The process of using Mahout to produce a recommendation system
is too complex to present here. Mahout includes an example of a
movie ratings recommendation system. The data is available via
GroupLens Research.
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MLLib

License Apache License, Version 2.0

Activity High

Purpose Machine-learning tools for Spark

Oicial Page https://spark.apache.org/mllib

Hadoop Integration Fully Integrated

If you’ve decided to invest in Spark but need some machine-learning
tools, then MLLib provides you with a basic set. Similar in function‐
ality to Mahout (described on page 81), MLLib has an ever-growing
list of modules that perform many tasks useful to data scientists and
big data analytics teams. As of Version 1.2, the list includes (but is
not limited to) those in Table 5-2. New algorithms are frequently
added.

Table 5-2. MLLib algorithms

MLLib algorithm Brief description

Linear SVM and logistic

regression

Prediction using continuous and binary variables

Classiication and regression tree Methods to classify data based on binary decisions

k-means clustering Clustering is dividing a set of observation into groups where

elements in the group are similar and the groups are distinct

Recommendation via

alternating least squares

Used in recommendation systems (if you like X, you might like Y)

Multinomial naive Bayes Classiication based upon Bayes’ Theorem

Basic statistics Summary statistics, random data generation, correlations
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MLLib algorithm Brief description

Feature extraction and

transformation

A number of routines often used in text analytics

Dimensionality reduction Reducing the number of variables in an analytic problem, often

used when they are highly correlated

Again, as MLLib lives on Spark, you would be wise to know Scala,
Python, or Java to do anything sophisticated with it.

You may wonder whether to choose MLLib or Mahout. In the short
run, Mahout is more mature and has a larger set of routines, but the
current version of Mahout uses MapReduce and is slower in general
(though likely more stable). If the algorithms you need only exist
today on Mahout, that solves your problem. Mahout currently has a
much larger user community, so if you’re looking for online help
with problems, you’re more likely to find it for Mahout. On the
other hand, Mahout v2 will move to Spark and Scala, so in the long
run, MLLib may well replace Mahout or they may merge efforts.

Tutorial Links
“MLLib: Scalable Machine Learning on Spark” is a thorough but
rather technical tutorial that you may find useful.

Example Code
The AMPlab at Berkeley has some example code to do personalized
movie recommendations based on collaborative filtering.
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Hadoop Image Processing Interface (HIPI)

License BSD Simpliied

Activity Moderate

Purpose Image Processing

Oicial Page http://hipi.cs.virginia.edu/index.html

Hadoop Integration API Compatible

Image processing is a vastly overloaded term. It can mean some‐
thing as simple as “cleaning up” your image by putting it into focus
and making the boundaries more distinct. It can also mean deter‐
mining what is in your image, or scene analysis. For example, does
the image of a lung X-ray show a tumor? Does the image of cells col‐
lected in a Pap smear indicate potential cervical cancer? Or it can
mean deciding whether a fingerprint image matches a particular
image or is similar to one in a set of images.

HIPI is an image-processing package under development at the Uni‐
versity of Virginia. While the documentation is sketchy, the main
use is the examination of a collection of images and determining
their similarity or dissimilarity. This package seems to assume a
knowledge of image processing and specific technologies such as the
exchangeable image file format (EXIF). As this is a university
project, its future is unknown, but there seems to be a resurgence of
activity expected in 2015, including Spark integration.

Tutorial Links
HIPI is still a fairly new technology; the best source of information
at the moment is this thesis paper.
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Example Code
A number of examples of HIPI usage can be found on the project’s
official examples page.
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SpatialHadoop

License Unknown

Activity High

Purpose Spatial Analytics

Oicial Page http://spatialhadoop.cs.umn.edu

Hadoop Integration API Compatible

If you’ve been doing much work with spatial data, it’s likely you’re
familiar with PostGIS, the open source spatial extension to the open
source PostgreSQL database. But what if you want to work in a mas‐
sively Hadoop environment rather than PostgreSQL? The University
of Minnesota’s computer science department has developed Spatial‐
Hadoop, which is an open source extension to MapReduce designed
to process huge datasets of spatial data in Hadoop. To use SpatialHa‐
doop, you first load data into HDFS and then build a spatial index.
Once you index the data, you can execute any of the spatial opera‐
tions provided in SpatialHadoop such as range query, k-nearest
neighbor, and spatial join.

There are high-level calls in SHadoop that generate MapReduce
jobs, so it’s possible to use SHadoop without writing MapReduce
code. There are clear usage examples at the website.

In addition to the MapReduce implementation, there is an extension
to Pig, called Pigeon, that allows spatial queries in Pig Latin. This is
available at the project page in GitHub. Pigeon has the stated goal of
supporting as many of the PostGIS functions as possible. This is an
ambitious but extremely useful goal because PostGIS has a wide fol‐
lowing and the ST functions it supports make it fairly simple to do
spatial analytics in a high-level language like Pig/Pigeon.
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The code is all open source and available on GitHub.

Tutorial Links
The official project page has a handful of links to great tutorials.
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CHAPTER 6

Data Transfer

Data transfer deals with three important questions:

• How do you get data into a Hadoop cluster?

• How do you get data out of a Hadoop cluster?

• How do you move data from one Hadoop cluster to another
Hadoop cluster?

In general, Hadoop is not a transactional engine, where data is
loaded in small, discrete, related bits of information like it would be
in an airline reservation system. Instead, data is bulk loaded from
external sources such a flat files for sensors, bulk loads from sources
like http://www.data.gov for U.S. federal government data or log
files, or transfers from relational systems.

The Hadoop ecosystem contains a variety of great tools for working
with your data. However, it’s rare for your data to start or end in
Hadoop. It’s much more common to have a workflow that starts
with data from external systems, such as logs from your web servers,
and ends with analytics hosted on a business intelligence (BI) sys‐
tem.

Data transfer tools help move data between those systems. More
specifically, data transfer tools provide three basic capabilities:
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File transfer
Tools like Flume (described on page 93) and DistCp (described
on page 95) help move files and flat text, such as long entries,
into your Hadoop cluster.

Database transfer
Tools like Sqoop (described next) provide a simple mechanism
for moving data between traditional relational databases, such
as Oracle or SQL Server, and your Hadoop cluster.

Data triage
Tools like Storm (described on page 97) can be used to quickly
evaluate and categorize new data as it arrives onto your Hadoop
system.
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Sqoop

License Apache License, Version 2.0

Activity High

Purpose Transfer data from HDFS to and from relational databases

Oicial Page http://sqoop.apache.org

Hadoop Integration Fully Integrated

It’s likely that some of your data may originate in a relational data‐
base management system (RDBMS) that is usually accessed nor‐
mally by SQL. You could also use your SQL engine to produce flat
files to load into HDFS. While dumps may load large datasets more
quickly, you may have reason to take data directly from an RDMBS
or place the results of your Hadoop processing into an RDBMS.
Sqoop (meaning SQL to Hadoop) is designed to transfer data
between Hadoop clusters and relational databases. It’s a top-level
Apache project developed by Cloudera, now in the public domain.
While Sqoop automates much of the process, some SQL knowledge
is required to have this work properly. The Sqoop job is then trans‐
formed into a MapReduce job that does the work.

You’ll start your import to Hadoop with a database table that is read
into Hadoop as a text file or in Avro or SequenceFile format. You
can also export an HDFS file into an RDBMS. In this case, the Map‐
Reduce job reads a set of text-delimited files in HDFS in parallel and
converts them into rows in an RDBMS. There are options to filter
rows and columns, alter delimiters, and more.

Tutorial Links
There’s an excellent series of lectures on this topic available on You‐
Tube. Once you’ve watched Apache Sqoop Tutorial Part 1, you can
jump to Parts 2, 3, and 4.
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Example Code
Our movie review dataset is in a table in a PostgreSQL database, and
we want to import it into a text file in Hadoop (it is also possible to
move data from Hadoop to an RDBMS, but this is not illustrated
here):

myschema=> select * from moviereviews

reviewer  |     title      | score

----------+----------------+-------

Kevin     | Dune           |    10

Kevin     | Casablanca     |     5

Bob       | Blazing Saddles|     9

Marshall  | Dune           |     1

sqoop import --connect jdbc:postgresql://<host>/<database> \

    --table moviereviews --username JoeUser --P

<lots of lines omitted>

hadoop fs -cat moviereviews/part-m-00000

Kevin,Dune,10

Kevin,Casablanca,5

Bob, Blazing Saddles,9

Marshall,Dune,1
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Flume

License Apache License, Version 2.0

Activity Medium

Purpose Data collection and aggregation, especially for log data

Oicial Page http://lume.apache.org

Hadoop Integration Fully Integrated

You have identified data that lives in a feeder system that you’ll need
in your Hadoop cluster to do some analysis and now need to find a
way to move it there. In general, you cannot use FTP or SCP, as
these transport data between POSIX-compliant filesystems and
HDFS is not POSIX compliant. Some Hadoop distributions, such as
the MapR distribution or those that are certified to use the Isilon
OneFS, can accommodate this. You could FTP the data to the native
filesystem on a Hadoop node and then use HDFS commands like
copyFromLocal, but this is tedious and single threaded. Flume to the
rescue!

Flume is a reliable distributed system for collecting, aggregating,
and moving large amounts of log data from multiple sources into
HDFS. It supports complex multihop flows and fan-in and fan-out.
Events are staged in a channel on each agent and delivered to the
next agent in the chain, finally removed once they reach the next
agent or HDFS, the ultimate sink. A Flume process has a configura‐
tion file that list the sources, sinks, and channels for the data flow.
Typical use cases include loading log data into Hadoop.
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Tutorial Links
Dr. Dobb’s Journal published an informative article on Flume. Read‐
ers who enjoy a lecture should check out this interesting presenta‐
tion from 2011.

Example Code
To use Flume, you’ll first build a configuration file that describes the
agent: the source, the sink, and the channel. Here the source is net‐
cat, a program that echoes output through TCP, the sink is an HDFS
file, and the channel is a memory channel:

# xmpl.conf

# Name the components on this agent

agent1.sources = src1

agent1.sinks = snk1

agent1.channels = chn1

# Describe/configure the source

agent1.sources.src1.type = exec

agent.sources.src1.command = tail -F /var/log/system.log

agent.sources.src1.channels = memory-channel

# Describe the sink

agent1.sinks.snk1.channel = memory-channel

agent1.sinks.snk1.type = hdfs

agent1.sinks.snk1.hdfs.path = hdfs://n1:54310/tmp/system.log/

agent1.sinks.snk1.hdfs.fileType = DataStream

# Use a channel which buffers events in memory

agent1.channels.chn1.type = memory

agent1.channels.chn1.capacity = 1000

agent1.channels.chn1.transactionCapacity = 100

# Bind the source and sink to the channel

agent1.sources.src1.channels = c1

agent1.sinks.snk1.channel = c1

# Then start the agent.  As the lines are added to the log file,

# they will be pushed to the memory channel and then to the

# HDFS file_

flume-ng agent --conf conf --conf-file xmpl.conf --name agent1 \

    -Dflume.root.logger=INFO,console
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DistCp

License Apache License, Version 2.0

Activity Low

Purpose Data movement between Hadoop clusters

Oicial Page http://hadoop.apache.org/docs/r1.2.1/distcp2.html

Hadoop Integration Fully Integrated

If you have a Hadoop cluster and worry what would happen if the
entire cluster became unusable, you have a disaster recovery (DR) or
continuity of operations (COOP) issue. There are several strategies
for dealing with this. One solution might be to load all data into
both a primary Hadoop cluster and a backup cluster located
remotely from the primary cluster. This is frequently called dual
ingest. Then you would have to run every job on the primary cluster
on the remote cluster to keep the result files in sync. While feasible,
this is managerially complex. You might want to consider using a
built-in part of Apache Hadoop called DistCp. Short for distributed
copy, DistCP is the primary tool for moving data between Hadoop
clusters. You may want to use DistCp for other reasons as well, such
as moving data from a test or development cluster to a production
cluster. Commercial Hadoop distributions have tools to deal with
DR and COOP. Some are built on top of DistCp.

Tutorial Links
Likely as a result of the single-minded simplicity of DistCp, there
aren’t a whole lot of dedicated tutorials about the technology. Read‐
ers who are interested in digging deeper are invited to start with the
official project page.
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Example Code
Here’s how you would copy a file named source-ile in the source
system n1 in the source-dir to destination system n2, where the host‐
names n1 and n2 are the hostnames of the node on which the Name‐
Node lives for the source and destination, respectively. If you were
using this code snippet in a DR situation, the source-dir and dest-dir
would be the same, as would be the source-ile and dest-ile:

$ hadoop distcp hdfs://n1:8020/source-dir/source-file \

                    hdfs://n2:8020/dest-dir/dest-file

96 | Chapter 6: Data Transfer



Storm

License Apache License, Version 2.0

Activity High

Purpose Streaming Ingest

Oicial Page http://storm.apache.org

Hadoop Integration API Compatible

Many of the technologies in the big data ecosystem, including
Hadoop MapReduce, are built with very large tasks in mind. These
systems are designed to perform work in batches, bundling groups
of smaller tasks into larger tasks and distributing those large tasks.

While batch processing is an effective strategy for performing com‐
plex analysis of very large amounts of data in a distributed and fault-
tolerant fashion, it’s ill-suited for processing data in real time. This is
where a system like Storm comes in. Storm follows a stream pro‐
cessing model rather than a batch processing model. This means it’s
designed to quickly perform relatively simple transformations of
very large numbers of small records.

In Storm, a workflow is called a “topology,” with inputs called
“spouts” and transformations called “bolts.” It’s important to note
that Storm topologies are very different from MapReduce jobs,
because jobs have a beginning and an end while topologies do not.
The intent is that once you define a topology, data will continue to
stream in from your spout and be processed through a series of
bolts.

Tutorial Links
In addition to the official Storm tutorial, there is an excellent set of
starter resources in GitHub in the Storm-Starter project.
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Example Code
In this example, we’re going to build a topology that reads comma-
delimited reviews from a ReviewSpout and keeps track of the num‐
ber of times each title is reviewed. Defining a Storm topology can
get a little involved, so we’ll just cover the highlights.

The first step of defining a topology is to define our inputs. We do
this by associating a spout with our topology. This spout will be
responsible for reading data from some source, such as a Twitter or
an RSS feed.

Once we have our spout defined, we can start defining bolts. Bolts
are responsible for processing our data. In this case, we have two
bolts—the first extracts the movie title from a review, and the sec‐
ond counts the number of times an individual title appears:

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("review_spout", new ReviewSpout(), 10);

builder.setBolt("extract_title", new TitleBolt(), 8);

builder.setBolt("count", new TitleCount(), 15);

//Build the "conf" object and configure it appropriately

// for your job

...

StormSubmitter.submitTopology("review_counter", conf,

builder.createTopology());

Spouts and bolts can be authored in a variety of languages, and you
can even mix languages in an individual topology. For example, we
authored our topology in Java, but we’re going to write one of our
bolts in Python. This bolt extracts the film title from a review by
splitting the review on commas and retrieving the second field:
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import storm

class TitleBolt(storm.BasicBolt):

    def process(self, tuple):

        words = tuple.values[0].split(",")

        storm.emit([words[1]])

TitleBolt().run()
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CHAPTER 7

Security, Access Control,
and Auditing

When Hadoop was getting started, its basic security model might
have been described as “build a fence around an elephant, but once
inside the fence, security is a bit lax.” While the HDFS has access
control mechanisms, security is a bit of an afterthought in the
Hadoop world. Recently, as Hadoop has become much more main‐
stream, security issues are being addressed through the development
of new tools, such as Sentry and Knox, as well as established mecha‐
nisms like Kerberos.

Large, well-established computing systems have methods for access
and authorization, encryption, and audit logging, as required by
HIPAA, FISMA, and PCI requirements.

Authentication answers the question, “Who are you?” Traditional
strong authentication methods include Kerberos, Lightweight Direc‐
tory Access Protocol (LDAP), and Active Directory (AD). These are
done outside of Hadoop, usually at the client site, or within the web
server if appropriate.

Authorization answers the question, “What can you do?” Here
Hadoop is spread all over the place. For example, the MapReduce
job queue system stores its authorization in a different way than
HDFS, which uses a common read/write/execute permission for
users/groups/other. HBase has column family and table-level
authorization, and Accumulo has cell-level authorization.
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Data protection generally refers to encryption, both at rest or in
transit. HTTP, RPC, JDBC, and ODBC all provide encryption in
transit or over the wire. HDFS currently has no native encryption,
but there is a proposal in process to include this in a future release.

Governance and auditing are now done component-wise in
Hadoop. There are some basic mechanisms in HDFS and MapRe‐
duce, whereas Hive metastore provides logging services and Oozie
provides logging for its job-management service.

This guide is a good place to start reading about a more secure
Hadoop.

Recently, as Hadoop has become much more mainstream, these
issues are being addressed through the development of new tools,
such as Sentry (described on page 103), Kerberos (described on page
105), and Knox (described on page 107).
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Sentry

License Apache License, Version 2.0

Activity High

Purpose Provide a base level of authorization in Hadoop

Oicial Page https://incubator.apache.org/projects/sentry.html

Hadoop Integration API Compatible Incubator project (work in progress)

If you need authentication services in Hadoop, one possibility is
Sentry, an Apache Incubator project to provide authentication serv‐
ices to components in the Hadoop ecosystem. The system currently
defines a set of policy rules in a file that defines groups, mapping of
groups to rules, and rules that define the privileges of groups to
resources. You can think of this as role-based access control
(RBAC). Your application then calls a Sentry API with the name of
the user, the resource the user wishes to access, and the manner of
access. The Sentry policy engine then sees if the user belongs to a
group that has a role that enables it to use the resource in the man‐
ner requested. It returns a binary yes/no answer to the application,
which can then take the appropriate response.

At the moment, this is filesystem-based and works with Hive and
Impala out of the box. Other components can utilitze the API. One
shortcoming of this system is that one could write a rogue MapRe‐
duce program that can access the data that would be restricted by
using the Hive interface to the data.

Incubator projects are not part of the official Hadoop distribution
and should not be used in production systems.

Sentry | 103

https://incubator.apache.org/projects/sentry.html


Tutorial Links
There are a pair of excellent posts on the official Apache blog. The
first post provides an overview of the technology, while the second
post is a getting-started guide.

Example Code
Configuration of Sentry is fairly complex and beyond the scope of
this book. The Apache blog posts referenced here an excellent
resource for readers looking to get started with the technology.

There is very succinct example code in this Apache blog tutorial.

104 | Chapter 7: Security, Access Control, and Auditing

http://bit.ly/1EYsznm
http://bit.ly/1KJe9rE
http://bit.ly/1KJe9rE
http://bit.ly/1KJe9rE


Kerberos

License MIT license

Activity High

Purpose Secure Authentication

Oicial Page http://web.mit.edu/kerberos

Hadoop Integration API Compatible

One common way to authenticate in a Hadoop cluster is with a
security tool called Kerberos. Kerberos is a network-based tool dis‐
tributed by the Massachusetts Institute of Technology to provide
strong authentication based upon supplying secure encrypted tick‐
ets between clients requesting access to servers providing the access.

The model is fairly simple. Clients register with the Kerberos key
distribution center (KDC) and share their password. When a client
wants access to a resource like a file server, it sends a request to the
KDC with some portion encryped with this password. The KDC
attempts to decrypt this material. If successful, it sends back a ticket
generating ticket (TGT) to the client, which has material encrypted
with its special passcode. When the client receives the TGT, it sends
a request back to the KDC with a request for access to the file server.
The KDC sends back a ticket with bits encrypted with the file serv‐
er’s passcode. From then on, the client and the file server use this
ticket to authenticate.

The notion is that the file server, which might be very busy with
many client requests, is not bogged down with the mechanics of
keeping many user passcodes. It just shares its passcode with the
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KDC and uses the ticket the client has received from the KDC to
authenticate.

Kerberos is thought to be tedious to set up and maintain. To this
end, there is some active work in the Hadoop community to present
a simpler and more effective authentication mechanism.

Tutorial Links
This lecture provides a fairly concise and easy-to-follow description
of the technology.

Example Code
An effective Kerberos installation can be a daunting task and is well
beyond the scope of this book. Many operating system vendors pro‐
vide a guide for configuring Kerberos. For more information, refer
to the guide for your particular OS.
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Knox

License Apache License, Version 2.0

Activity Medium

Purpose Secure Gateway

Oicial Page https://knox.apache.org

Hadoop Integration Fully Integrated

Securing a Hadoop cluster is often a complicated, time-consuming
endeavor fraught with trade-offs and compromise. The largest con‐
tributing factor to this challenge is that Hadoop is made of a variety
of different technologies, each of which has its own idea of security.

One common approach to securing a cluster is to simply wrap the
environment with a firewall (“fence the elephant”). This may have
been acceptable in the early days when Hadoop was largely a stand‐
alone tool for data scientists and information analysts, but the
Hadoop of today is part of a much larger big data ecosystem and
interfaces with many tools in a variety of ways. Unfortunately, each
tool seems to have its own public interface, and if a security model
happens to be present, it’s often different from that of any other tool.
The end result of all this is that users who want to maintain a secure
environment find themselves fighting a losing battle of poking holes
in firewalls and attempting to manage a large variety of separate user
lists and tool configurations.

Knox is designed to help combat this complexity. It is a single gate‐
way that lives between systems external to your Hadoop cluster and
those internal to your cluster. It also provides a single security inter‐
face with authorization, authentication, and auditing (AAA) capabi‐
lies that interface with many standard systems, such as Active
Directory and LDAP.

Knox | 107

https://knox.apache.org


Tutorial Links
The folks at Hortonworks have put together a very concise guide for
getting a minimal Knox gateway going. If you’re interested in dig‐
ging a little deeper, the official quick-start guide, which can be found
on the Knox home page, provides a considerable amount of detail.

Example Code
Even a simple configuration of Knox is beyond the scope of this
book. Interested readers are encouraged to check out the tutorials
and quickstarts.
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CHAPTER 8

Cloud Computing and
Virtualization

Most Hadoop clusters today run on “real iron”—that is, on small,
Intel-based computers running some variant of the Linux operating
system with directly attached storage. However, you might want to
try this in a cloud or virtual environment. While virtualization usu‐
ally comes with some degree of performance degradation, you may
find it minimal for your task set or that it’s a worthwhile trade-off
for the benefits of cloud computing; these benefits include low up-
front costs and the ability to scale up (and down sometimes) as your
dataset and analytic needs change.

By cloud computing, we’ll follow guidelines established by the
National Institute of Standards and Technology (NIST), whose defi‐
nition of cloud computing you’ll find here. A Hadoop cluster in the
cloud will have:

• On-demand self-service

• Network access

• Resource sharing

• Rapid elasticity

• Measured resource service

While these resource need not exist virtually, in practice, they usu‐
ally do.
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Virtualization means creating virtual, as opposed to real, computing
entities. Frequently, the virtualized object is an operating system on
which software or applications are overlaid, but storage and net‐
works can also be virtualized. Lest you think that virtualization is a
relatively new computing technology, in 1972 IBM released VM/
370, in which the 370 mainframe could be divided into many small,
single-user virtual machines. Currently, Amazon Web Services is
likely the most well-known cloud-computing facility. For a brief
explanation of virtualization, look here on Wikipedia.

The official Hadoop perspective on cloud computing and virtualiza‐
tion is explained on this Wikipedia page. One guiding principle of
Hadoop is that data analytics should be run on nodes in the cluster
close to the data. Why? Transporting blocks of data in a cluster
diminishes performance. Because blocks of HDFS files are normally
stored three times, it’s likely that MapReduce can chose nodes to run
your jobs on datanodes on which the data is stored. In a naive vir‐
tual environment, the physical location of the data is not known,
and in fact, the real physical storage may be someplace that is not on
any node in the cluster at all.

While it’s admittedly from a VMware perspective, good background
reading on virtualizing Hadoop can be found here.

In this chapter, you’ll read about some of the open source software
that facilitates cloud computing and virtualization. There are also
proprietary solutions, but they’re not covered in this edition of the
Field Guide to Hadoop.
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Serengeti

License Apache License, Version 2.0

Activity Medium

Purpose Hadoop Virtualization

Oicial Page http://www.projectserengeti.org

Hadoop Integration No Integration

If your organization uses VMware’s vSphere as the basis of the virtu‐
alization strategy, then Serengeti provides you with a method of
quickly building Hadoop clusters in your environment. Admittedly,
vSphere is a proprietary environment, but the code to run Hadoop
in this environment is open source. Though Serengeti is not affili‐
ated with the Apache Software Foundation (which operates many of
the other Hadoop-related projects), many people have successfully
used it in deployments.

Why virtualize Hadoop at all? Historically, Hadoop clusters have
run on commodity servers (i.e., Intel x86 machines with their own
set of disks running the Linux OS). When scheduling jobs, Hadoop
made use of the location of data in the HDFS (described on page 3)
to run the code as close to the data as possible, preferably in the
same node, to minimize the amount of data transferred across the
network. In many virtualized environments, the directly attached
storage is replaced by a common storage device like a storage area
network (SAN) or a network attached storage (NAS). In these envi‐
ronments, there is no notion of locality of storage.

There are good reasons for virtualizing Hadoop, and there seem to
be many Hadoop clusters running on public clouds today:
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• Speed of quickly spinning up a cluster. You don’t need to order
and configure hardware.

• Ability to quickly increase and reduce the size of the cluster to
meet demand for services.

• Resistance and recovery from failures managed by the virtuali‐
zation technology.

And there are some disadvantages:

• MapReduce and YARN assume complete control of machine
resources. This is not true in a virtualized environment.

• Data layout is critical, so excessive disk head movement may
occur and the normal triple mirroring is critical for data protec‐
tion. A good virtualization strategy must do the same. Some do,
some don’t.

You’ll need to weigh the advantages and disadvantages to decide if
Virtual Hadoop is appropriate for your projects.

Tutorial Links
Background reading on virtualizing Hadoop can be found at:

• “Deploying Hadoop with Serengeti”

• The Virtual Hadoop wiki

• “Hadoop Virtualization Extensions on VMware vSphere 5”

• “Virtualizing Apache Hadoop”
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Docker

License Apache License, Version 2.0

Activity High

Purpose Container to run apps, including Hadoop nodes

Oicial Page https://www.docker.com

Hadoop Integration No Integration

You may have heard the buzz about Docker and containerized appli‐
cations. A little history may help here. Virtual machines were a large
step forward in both cloud computing and infrastructure as a ser‐
vice (IaaS). Once a Linux virtual machine was created, it took less
than a minute to spin up a new one, whereas building a Linux hard‐
ware machine could take hours. But there are some drawbacks. If
you built a cluster of 100 VMs, and needed to change an OS param‐
eter or update something in your Hadoop environment, you would
need to do it on each of the 100 VMs.

To understand Docker’s advantages, you’ll find it useful to under‐
stand its lineage. First came chroot jails, in which Unix subsystems
could be built that were restricted to a smaller namespace than the
entire Unix OS. Then came Solaris containers in which users and
programs could be restricted to zones, each protected from the oth‐
ers with many virtualized resources. Linux containers are roughly
the same as Solaris containers, but for the Linux OS rather than
Solaris. Docker arose as a technology to do lightweight virtualization
for applications. The Docker container sits on top of Linux OS
resources and just houses the application code and whatever it
depends upon over and above OS resources. Thus Dockers enjoys
the resource isolation and resource allocation features of a virtual
machine, but is much more portable and lightweight. A full descrip‐
tion of Docker is beyoond the scope of this book, but recently
attempts have been made to run Hadoop nodes in a Docker envi‐
ronment.
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Docker is new. It’s not clear that this is ready for a large Hadoop pro‐
duction environment.

Tutorial Links
The Docker folks have made it easy to get started with an interactive
tutorial. Readers who want to know more about the container tech‐
nology behind Docker will find this developerWorks article particu‐
larly interesting.

Example Code
The tutorials do a very good job giving examples of running Docker.
This Pivotal blog post illustrates an example of deploying Hadoop
on Docker.

114 | Chapter 8: Cloud Computing and Virtualization

http://bit.ly/1DFq08i
http://bit.ly/1DFq08i
http://ibm.co/1E9F5MY
http://bit.ly/1EYt4hr


Whirr

License Apache License, Version 2.0

Activity Low

Purpose Cluster Deployment

Oicial Page https://whirr.apache.org

Hadoop Integration API Compatible

Building a big data cluster is an expensive, time-consuming, and
complicated endeavor that often requires coordination between
many teams. Sometimes you just need to spin up a cluster to test a
capability or prototype a new idea. Cloud services like Amazon EC2
or Rackspace Cloud Servers provide a way to get that done.
Unfortunately, different providers have very different interfaces for
working with their services, so once you’ve developed some automa‐
tion around the process of building and tearing down these test
clusters, you’ve effectively locked yourself in with a single service
provider. Apache Whirr provides a standard mechanism for work‐
ing with a handful of different service providers. This allows you to
easily change cloud providers or to share configurations with other
teams that do not use the same cloud provider.

The most basic building block of Whirr is the instance template.
Instance templates define a purpose; for example, there are templates
for the Hadoop jobtracker, ZooKeeper, and HBase region nodes.
Recipes are one step up the stack from templates and define a cluster.
For example, a recipe for a simple data-processing cluster might call
for deploying a Hadoop NameNode, a Hadoop jobtracker, a couple
ZooKeeper servers, an HBase master, and a handful of HBase region
servers.
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Tutorial Links
The official Apache Whirr website provides a couple of excellent
tutorials. The Whirr in 5 minutes tutorial provides the exact com‐
mands necessary to spin up and shut down your first cluster. The
quick-start guide is a little more involved, walking through what
happens during each stage of the process.

Example Code
In this case, we’re going to deploy the simple data cluster we
described earlier to an Amazon EC2 account we’ve already estab‐
lished.

The first step is to build our recipe file (we’ll call this file
ield_guide.properties):

# field_guide.properties

# The name we'll give this cluster,

# this gets communicated with the cloud service provider

whirr.cluster-name=field_guide

# Because we're just testing

# we'll put all the masters on one single machine

# and build only three worker nodes

whirr.instance-templates= \

1 zookeeper+hadoop-namenode \

+hadoop-jobtracker \

+hbase-master,\

3 hadoop-datanode \

+hadoop-tasktracker \

+hbase-regionserver

# We're going to deploy the cluster to Amazon EC2

whirr.provider=aws-ec2

# The identity and credential mean different things

# depending on the provider you choose.

# Because we're using EC2, we need to enter our

# Amazon access key ID and secret access key;

# these are easily available from your provider.

whirr.identity=<your identity here>

whirr.credential=<your key here>

# The credentials we'll use to access the cluster.

# In this case, Whirr will create a user named field_guide_user

# on each of the machines it spins up and

# we'll use our ssh public key to connect as that user.
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whirr.cluster-user=field_guide_user

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa

whirr.public-key-file=${sys:user.home}/.ssh/id_rsa

We're now ready to deploy our cluster.

# In order to do so we simply run whirr with the

# "launch cluster" argument and pass it our recipe:

$ whirr launch-cluster --config field_guide.properties

Once we're done with the cluster and we want to tear it down

# we run a similar command,

# this time passing the aptly named "destroy-cluster" argument:

$ whirr destroy-cluster --config field_guide.properties
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